NASA Astrophysics Data System (ADS)
Mohammadi, S. M.; Tavakoli-Anbaran, H.; Zeinali, H. Z.
2017-02-01
The parallel-plate free-air ionization chamber termed FAC-IR-300 was designed at the Atomic Energy Organization of Iran, AEOI. This chamber is used for low and medium X-ray dosimetry on the primary standard level. In order to evaluate the air-kerma, some correction factors such as electron-loss correction factor (ke) and photon scattering correction factor (ksc) are needed. ke factor corrects the charge loss from the collecting volume and ksc factor corrects the scattering of photons into collecting volume. In this work ke and ksc were estimated by Monte Carlo simulation. These correction factors are calculated for mono-energy photon. As a result of the simulation data, the ke and ksc values for FAC-IR-300 ionization chamber are 1.0704 and 0.9982, respectively.
Oparaji, U; Tsai, Y H; Liu, Y C; Lee, K W; Patelli, E; Sheu, R J
2017-06-01
This paper presents improved and extended results of our previous study on corrections for conventional neutron dose meters used in environments with high-energy neutrons (En > 10 MeV). Conventional moderated-type neutron dose meters tend to underestimate the dose contribution of high-energy neutrons because of the opposite trends of dose conversion coefficients and detection efficiencies as the neutron energy increases. A practical correction scheme was proposed based on analysis of hundreds of neutron spectra in the IAEA-TRS-403 report. By comparing 252Cf-calibrated dose responses with reference values derived from fluence-to-dose conversion coefficients, this study provides recommendations for neutron field characterization and the corresponding dose correction factors. Further sensitivity studies confirm the appropriateness of the proposed scheme and indicate that (1) the spectral correction factors are nearly independent of the selection of three commonly used calibration sources: 252Cf, 241Am-Be and 239Pu-Be; (2) the derived correction factors for Bonner spheres of various sizes (6"-9") are similar in trend and (3) practical high-energy neutron indexes based on measurements can be established to facilitate the application of these correction factors in workplaces. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
2014-09-01
peak shaving, conducting power factor correction, matching critical load to most efficient distributed resource, and islanding a system during...photovoltaic arrays during islanding, and power factor correction, the implementation of the ESS by itself is likely to prove cost prohibitive. The DOD...These functions include peak shaving, conducting power factor correction, matching critical load to most efficient distributed resource, and islanding a
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bergstrom, P
Purpose: The National Institute of Standards and Technology (NIST) uses 3 free-air chambers to establish primary standards for radiation dosimetry at x-ray energies. For medium-energy × rays, the Ritz free-air chamber is the main measurement device. In order to convert the charge or current collected by the chamber to the radiation quantities air kerma or air kerma rate, a number of correction factors specific to the chamber must be applied. Methods: We used the Monte Carlo codes EGSnrc and PENELOPE. Results: Among these correction factors are the diaphragm correction (which accounts for interactions of photons from the x-ray source inmore » the beam-defining diaphragm of the chamber), the scatter correction (which accounts for the effects of photons scattered out of the primary beam), the electron-loss correction (which accounts for electrons that only partially expend their energy in the collection region), the fluorescence correction (which accounts for ionization due to reabsorption ffluorescence photons and the bremsstrahlung correction (which accounts for the reabsorption of bremsstrahlung photons). We have computed monoenergetic corrections for the NIST Ritz chamber for the 1 cm, 3 cm and 7 cm collection plates. Conclusion: We find good agreement with other’s results for the 7 cm plate. The data used to obtain these correction factors will be used to establish air kerma and it’s uncertainty in the standard NIST x-ray beams.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-04
... Conservation Program: Test Procedures for Residential Clothes Washers; Correction AGENCY: Office of Energy.... Department of Energy (DOE) is correcting a final rule establishing revised test procedures for residential... factor calculation section of the currently applicable test procedure. DATES: Effective: April 6, 2012...
Diaphragm correction factors for the FAC-IR-300 free-air ionization chamber.
Mohammadi, Seyed Mostafa; Tavakoli-Anbaran, Hossein
2018-02-01
A free-air ionization chamber FAC-IR-300, designed by the Atomic Energy Organization of Iran, is used as the primary Iranian national standard for the photon air kerma. For accurate air kerma measurements, the contribution from the scattered photons to the total energy released in the collecting volume must be eliminated. One of the sources of scattered photons is the chamber's diaphragm. In this paper, the diaphragm scattering correction factor, k dia , and the diaphragm transmission correction factor, k tr , were introduced. These factors represent corrections to the measured charge (or current) for the photons scattered from the diaphragm surface and the photons penetrated through the diaphragm volume, respectively. The k dia and k tr values were estimated by Monte Carlo simulations. The simulations were performed for the mono-energetic photons in the energy range of 20 - 300keV. According to the simulation results, in this energy range, the k dia values vary between 0.9997 and 0.9948, and k tr values decrease from 1.0000 to 0.9965. The corrections grow in significance with increasing energy of the primary photons. Copyright © 2017 Elsevier Ltd. All rights reserved.
INVESTIGATION OF THE HUMIDITY EFFECT ON THE FAC-IR-300 IONIZATION CHAMBER RESPONSE.
Mohammadi, Seyed Mostafa; Tavakoli-Anbaran, Hossein
2018-02-01
The free-air ionization chamber is communicating with the ambient air, therefore, the atmospheric parameters such as temperature, pressure and humidity effect on the ionization chamber performance. The free-air ionization chamber, entitled as FAC-IR-300, that design at the Atomic Energy Organization of Iran, AEOI, is required the atmospheric correction factors for correct the chamber reading. In this article, the effect of humidity on the ionization chamber response was investigated. For this reason, was introduced the humidity correction factor, kh. In this article, the Monte Carlo simulation was used to determine the kh factor. The simulation results show in relative humidities between 30% to 80%, the kh factor is equal 0.9970 at 20°C and 0.9975 at 22°C. From the simulation results, at low energy the energy dependence of the kh factor is significant and with increasing energy this dependence is negligible. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lessard, Francois; Archambault, Louis; Plamondon, Mathieu
Purpose: Photon dosimetry in the kilovolt (kV) energy range represents a major challenge for diagnostic and interventional radiology and superficial therapy. Plastic scintillation detectors (PSDs) are potentially good candidates for this task. This study proposes a simple way to obtain accurate correction factors to compensate for the response of PSDs to photon energies between 80 and 150 kVp. The performance of PSDs is also investigated to determine their potential usefulness in the diagnostic energy range. Methods: A 1-mm-diameter, 10-mm-long PSD was irradiated by a Therapax SXT 150 unit using five different beam qualities made of tube potentials ranging from 80more » to 150 kVp and filtration thickness ranging from 0.8 to 0.2 mmAl + 1.0 mmCu. The light emitted by the detector was collected using an 8-m-long optical fiber and a polychromatic photodiode, which converted the scintillation photons to an electrical current. The PSD response was compared with the reference free air dose rate measured with a calibrated Farmer NE2571 ionization chamber. PSD measurements were corrected using spectra-weighted corrections, accounting for mass energy-absorption coefficient differences between the sensitive volumes of the ionization chamber and the PSD, as suggested by large cavity theory (LCT). Beam spectra were obtained from x-ray simulation software and validated experimentally using a CdTe spectrometer. Correction factors were also obtained using Monte Carlo (MC) simulations. Percent depth dose (PDD) measurements were compensated for beam hardening using the LCT correction method. These PDD measurements were compared with uncorrected PSD data, PDD measurements obtained using Gafchromic films, Monte Carlo simulations, and previous data. Results: For each beam quality used, the authors observed an increase of the energy response with effective energy when no correction was applied to the PSD response. Using the LCT correction, the PSD response was almost energy independent, with a residual 2.1% coefficient of variation (COV) over the 80-150-kVp energy range. Monte Carlo corrections reduced the COV to 1.4% over this energy range. All PDD measurements were in good agreement with one another except for the uncorrected PSD data, in which an over-response was observed with depth (13% at 10 cm with a 100 kVp beam), showing that beam hardening had a non-negligible effect on the PSD response. A correction based on LCT compensated very well for this effect, reducing the over-response to 3%.Conclusion: In the diagnostic energy range, PSDs show high-energy dependence, which can be corrected using spectra-weighted mass energy-absorption coefficients, showing no considerable sign of quenching between these energies. Correction factors obtained by Monte Carlo simulations confirm that the approximations made by LCT corrections are valid. Thus, PSDs could be useful for real-time dosimetry in radiology applications.« less
The perturbation correction factors for cylindrical ionization chambers in high-energy photon beams.
Yoshiyama, Fumiaki; Araki, Fujio; Ono, Takeshi
2010-07-01
In this study, we calculated perturbation correction factors for cylindrical ionization chambers in high-energy photon beams by using Monte Carlo simulations. We modeled four Farmer-type cylindrical chambers with the EGSnrc/Cavity code and calculated the cavity or electron fluence correction factor, P (cav), the displacement correction factor, P (dis), the wall correction factor, P (wall), the stem correction factor, P (stem), the central electrode correction factor, P (cel), and the overall perturbation correction factor, P (Q). The calculated P (dis) values for PTW30010/30013 chambers were 0.9967 +/- 0.0017, 0.9983 +/- 0.0019, and 0.9980 +/- 0.0019, respectively, for (60)Co, 4 MV, and 10 MV photon beams. The value for a (60)Co beam was about 1.0% higher than the 0.988 value recommended by the IAEA TRS-398 protocol. The P (dis) values had a substantial discrepancy compared to those of IAEA TRS-398 and AAPM TG-51 at all photon energies. The P (wall) values were from 0.9994 +/- 0.0020 to 1.0031 +/- 0.0020 for PTW30010 and from 0.9961 +/- 0.0018 to 0.9991 +/- 0.0017 for PTW30011/30012, in the range of (60)Co-10 MV. The P (wall) values for PTW30011/30012 were around 0.3% lower than those of the IAEA TRS-398. Also, the chamber response with and without a 1 mm PMMA water-proofing sleeve agreed within their combined uncertainty. The calculated P (stem) values ranged from 0.9945 +/- 0.0014 to 0.9965 +/- 0.0014, but they are not considered in current dosimetry protocols. The values were no significant difference on beam qualities. P (cel) for a 1 mm aluminum electrode agreed within 0.3% with that of IAEA TRS-398. The overall perturbation factors agreed within 0.4% with those for IAEA TRS-398.
Calculation of the Pitot tube correction factor for Newtonian and non-Newtonian fluids.
Etemad, S Gh; Thibault, J; Hashemabadi, S H
2003-10-01
This paper presents the numerical investigation performed to calculate the correction factor for Pitot tubes. The purely viscous non-Newtonian fluids with the power-law model constitutive equation were considered. It was shown that the power-law index, the Reynolds number, and the distance between the impact and static tubes have a major influence on the Pitot tube correction factor. The problem was solved for a wide range of these parameters. It was shown that employing Bernoulli's equation could lead to large errors, which depend on the magnitude of the kinetic energy and energy friction loss terms. A neural network model was used to correlate the correction factor of a Pitot tube as a function of these three parameters. This correlation is valid for most Newtonian, pseudoplastic, and dilatant fluids at low Reynolds number.
Wegener, Sonja; Sauer, Otto A
2018-02-01
Different detector properties will heavily affect the results of off-axis measurements outside of radiation fields, where a different energy spectrum is encountered. While a diode detector would show a high spatial resolution, it contains high atomic number elements, which lead to perturbations and energy-dependent response. An ionization chamber, on the other hand, has a much smaller energy dependence, but shows dose averaging over its larger active volume. We suggest a way to obtain spatial energy response corrections of a detector independent of its volume effect for profiles of arbitrary fields by using a combination of two detectors. Measurements were performed at an Elekta Versa HD accelerator equipped with an Agility MLC. Dose profiles of fields between 10 × 4 cm² and 0.6 × 0.6 cm² were recorded several times, first with different small-field detectors (unshielded diode 60012 and stereotactic field detector SFD, microDiamond, EDGE, and PinPoint 31006) and then with a larger volume ionization chamber Semiflex 31010 for different photon beam qualities of 6, 10, and 18 MV. Correction factors for the small-field detectors were obtained from the readings of the respective detector and the ionization chamber using a convolution method. Selected profiles were also recorded on film to enable a comparison. After applying the correction factors to the profiles measured with different detectors, agreement between the detectors and with profiles measured on EBT3 film was improved considerably. Differences in the full width half maximum obtained with the detectors and the film typically decreased by a factor of two. Off-axis correction factors outside of a 10 × 1 cm² field ranged from about 1.3 for the EDGE diode about 10 mm from the field edge to 0.7 for the PinPoint 31006 25 mm from the field edge. The microDiamond required corrections comparable in size to the Si-diodes and even exceeded the values in the tail region of the field. The SFD was found to require the smallest correction. The corrections typically became larger for higher energies and for smaller field sizes. With a combination of two detectors, experimentally derived correction factors can be obtained. Application of those factors leads to improved agreement between the measured profiles and those recorded on EBT3 film. The results also complement so far only Monte Carlo-simulated values for the off-axis response of different detectors. © 2017 American Association of Physicists in Medicine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mille, M; Bergstrom, P
2015-06-15
Purpose: To use Monte Carlo radiation transport methods to calculate correction factors for a free-air ionization chamber in support of a national air-kerma standard for low-energy, miniature x-ray sources used for electronic brachytherapy (eBx). Methods: The NIST is establishing a calibration service for well-type ionization chambers used to characterize the strength of eBx sources prior to clinical use. The calibration approach involves establishing the well-chamber’s response to an eBx source whose air-kerma rate at a 50 cm distance is determined through a primary measurement performed using the Lamperti free-air ionization chamber. However, the free-air chamber measurements of charge or currentmore » can only be related to the reference air-kerma standard after applying several corrections, some of which are best determined via Monte Carlo simulation. To this end, a detailed geometric model of the Lamperti chamber was developed in the EGSnrc code based on the engineering drawings of the instrument. The egs-fac user code in EGSnrc was then used to calculate energy-dependent correction factors which account for missing or undesired ionization arising from effects such as: (1) attenuation and scatter of the x-rays in air; (2) primary electrons escaping the charge collection region; (3) lack of charged particle equilibrium; (4) atomic fluorescence and bremsstrahlung radiation. Results: Energy-dependent correction factors were calculated assuming a monoenergetic point source with the photon energy ranging from 2 keV to 60 keV in 2 keV increments. Sufficient photon histories were simulated so that the Monte Carlo statistical uncertainty of the correction factors was less than 0.01%. The correction factors for a specific eBx source will be determined by integrating these tabulated results over its measured x-ray spectrum. Conclusion: The correction factors calculated in this work are important for establishing a national standard for eBx which will help ensure that dose is accurately and consistently delivered to patients.« less
Grimbergen, T W; van Dijk, E; de Vries, W
1998-11-01
A new method is described for the determination of x-ray quality dependent correction factors for free-air ionization chambers. The method is based on weighting correction factors for mono-energetic photons, which are calculated using the Monte Carlo method, with measured air kerma spectra. With this method, correction factors for electron loss, scatter inside the chamber and transmission through the diaphragm and front wall have been calculated for the NMi free-air chamber for medium-energy x-rays for a wide range of x-ray qualities in use at NMi. The newly obtained correction factors were compared with the values in use at present, which are based on interpolation of experimental data for a specific set of x-ray qualities. For x-ray qualities which are similar to this specific set, the agreement between the correction factors determined with the new method and those based on the experimental data is better than 0.1%, except for heavily filtered x-rays generated at 250 kV. For x-ray qualities dissimilar to the specific set, differences up to 0.4% exist, which can be explained by uncertainties in the interpolation procedure of the experimental data. Since the new method does not depend on experimental data for a specific set of x-ray qualities, the new method allows for a more flexible use of the free-air chamber as a primary standard for air kerma for any x-ray quality in the medium-energy x-ray range.
Improved scatter correction with factor analysis for planar and SPECT imaging
NASA Astrophysics Data System (ADS)
Knoll, Peter; Rahmim, Arman; Gültekin, Selma; Šámal, Martin; Ljungberg, Michael; Mirzaei, Siroos; Segars, Paul; Szczupak, Boguslaw
2017-09-01
Quantitative nuclear medicine imaging is an increasingly important frontier. In order to achieve quantitative imaging, various interactions of photons with matter have to be modeled and compensated. Although correction for photon attenuation has been addressed by including x-ray CT scans (accurate), correction for Compton scatter remains an open issue. The inclusion of scattered photons within the energy window used for planar or SPECT data acquisition decreases the contrast of the image. While a number of methods for scatter correction have been proposed in the past, in this work, we propose and assess a novel, user-independent framework applying factor analysis (FA). Extensive Monte Carlo simulations for planar and tomographic imaging were performed using the SIMIND software. Furthermore, planar acquisition of two Petri dishes filled with 99mTc solutions and a Jaszczak phantom study (Data Spectrum Corporation, Durham, NC, USA) using a dual head gamma camera were performed. In order to use FA for scatter correction, we subdivided the applied energy window into a number of sub-windows, serving as input data. FA results in two factor images (photo-peak, scatter) and two corresponding factor curves (energy spectra). Planar and tomographic Jaszczak phantom gamma camera measurements were recorded. The tomographic data (simulations and measurements) were processed for each angular position resulting in a photo-peak and a scatter data set. The reconstructed transaxial slices of the Jaszczak phantom were quantified using an ImageJ plugin. The data obtained by FA showed good agreement with the energy spectra, photo-peak, and scatter images obtained in all Monte Carlo simulated data sets. For comparison, the standard dual-energy window (DEW) approach was additionally applied for scatter correction. FA in comparison with the DEW method results in significant improvements in image accuracy for both planar and tomographic data sets. FA can be used as a user-independent approach for scatter correction in nuclear medicine.
Ipe, N E; Rosser, K E; Moretti, C J; Manning, J W; Palmer, M J
2001-08-01
This paper evaluates the characteristics of ionization chambers for the measurement of absorbed dose to water using very low-energy x-rays. The values of the chamber correction factor, k(ch), used in the IPEMB 1996 code of practice for the UK secondary standard ionization chambers (PTW type M23342 and PTW type M23344), the Roos (PTW type 34001) and NACP electron chambers are derived. The responses in air of the small and large soft x-ray chambers (PTW type M23342 and PTW type M23344) and the NACP and Roos electron ionization chambers were compared. Besides the soft x-ray chambers, the NACP and Roos chambers can be used for very low-energy x-ray dosimetry provided that they are used in the restricted energy range for which their response does not change by more than 5%. The chamber correction factor was found by comparing the absorbed dose to water determined using the dosimetry protocol recommended for low-energy x-rays with that for very low-energy x-rays. The overlap energy range was extended using data from Grosswendt and Knight. Chamber correction factors given in this paper are chamber dependent, varying from 1.037 to 1.066 for a PTW type M23344 chamber, which is very different from a value of unity given in the IPEMB code. However, the values of k(ch) determined in this paper agree with those given in the DIN standard within experimental uncertainty. The authors recommend that the very low-energy section of the IPEMB code is amended to include the most up-to-date values of k(ch).
Lee, K W; Sheu, R J
2015-04-01
High-energy neutrons (>10 MeV) contribute substantially to the dose fraction but result in only a small or negligible response in most conventional moderated-type neutron detectors. Neutron dosemeters used for radiation protection purpose are commonly calibrated with (252)Cf neutron sources and are used in various workplace. A workplace-specific correction factor is suggested. In this study, the effect of the neutron spectrum on the accuracy of dose measurements was investigated. A set of neutron spectra representing various neutron environments was selected to study the dose responses of a series of Bonner spheres, including standard and extended-range spheres. By comparing (252)Cf-calibrated dose responses with reference values based on fluence-to-dose conversion coefficients, this paper presents recommendations for neutron field characterisation and appropriate correction factors for responses of conventional neutron dosemeters used in environments with high-energy neutrons. The correction depends on the estimated percentage of high-energy neutrons in the spectrum or the ratio between the measured responses of two Bonner spheres (the 4P6_8 extended-range sphere versus the 6″ standard sphere). © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Detector signal correction method and system
Carangelo, Robert M.; Duran, Andrew J.; Kudman, Irwin
1995-07-11
Corrective factors are applied so as to remove anomalous features from the signal generated by a photoconductive detector, and to thereby render the output signal highly linear with respect to the energy of incident, time-varying radiation. The corrective factors may be applied through the use of either digital electronic data processing means or analog circuitry, or through a combination of those effects.
Detector signal correction method and system
Carangelo, R.M.; Duran, A.J.; Kudman, I.
1995-07-11
Corrective factors are applied so as to remove anomalous features from the signal generated by a photoconductive detector, and to thereby render the output signal highly linear with respect to the energy of incident, time-varying radiation. The corrective factors may be applied through the use of either digital electronic data processing means or analog circuitry, or through a combination of those effects. 5 figs.
Palmans, H; Al-Sulaiti, L; Andreo, P; Shipley, D; Lühr, A; Bassler, N; Martinkovič, J; Dobrovodský, J; Rossomme, S; Thomas, R A S; Kacperek, A
2013-05-21
The conversion of absorbed dose-to-graphite in a graphite phantom to absorbed dose-to-water in a water phantom is performed by water to graphite stopping power ratios. If, however, the charged particle fluence is not equal at equivalent depths in graphite and water, a fluence correction factor, kfl, is required as well. This is particularly relevant to the derivation of absorbed dose-to-water, the quantity of interest in radiotherapy, from a measurement of absorbed dose-to-graphite obtained with a graphite calorimeter. In this work, fluence correction factors for the conversion from dose-to-graphite in a graphite phantom to dose-to-water in a water phantom for 60 MeV mono-energetic protons were calculated using an analytical model and five different Monte Carlo codes (Geant4, FLUKA, MCNPX, SHIELD-HIT and McPTRAN.MEDIA). In general the fluence correction factors are found to be close to unity and the analytical and Monte Carlo codes give consistent values when considering the differences in secondary particle transport. When considering only protons the fluence correction factors are unity at the surface and increase with depth by 0.5% to 1.5% depending on the code. When the fluence of all charged particles is considered, the fluence correction factor is about 0.5% lower than unity at shallow depths predominantly due to the contributions from alpha particles and increases to values above unity near the Bragg peak. Fluence correction factors directly derived from the fluence distributions differential in energy at equivalent depths in water and graphite can be described by kfl = 0.9964 + 0.0024·zw-eq with a relative standard uncertainty of 0.2%. Fluence correction factors derived from a ratio of calculated doses at equivalent depths in water and graphite can be described by kfl = 0.9947 + 0.0024·zw-eq with a relative standard uncertainty of 0.3%. These results are of direct relevance to graphite calorimetry in low-energy protons but given that the fluence correction factor is almost solely influenced by non-elastic nuclear interactions the results are also relevant for plastic phantoms that consist of carbon, oxygen and hydrogen atoms as well as for soft tissues.
Calculation of Coincidence Summing Correction Factors for an HPGe detector using GEANT4.
Giubrone, G; Ortiz, J; Gallardo, S; Martorell, S; Bas, M C
2016-07-01
The aim of this paper was to calculate the True Coincidence Summing Correction Factors (TSCFs) for an HPGe coaxial detector in order to correct the summing effect as a result of the presence of (88)Y and (60)Co in a multigamma source used to obtain a calibration efficiency curve. Results were obtained for three volumetric sources using the Monte Carlo toolkit, GEANT4. The first part of this paper deals with modeling the detector in order to obtain a simulated full energy peak efficiency curve. A quantitative comparison between the measured and simulated values was made across the entire energy range under study. The True Summing Correction Factors were calculated for (88)Y and (60)Co using the full peak efficiencies obtained with GEANT4. This methodology was subsequently applied to (134)Cs, and presented a complex decay scheme. Copyright © 2016 Elsevier Ltd. All rights reserved.
Method and system for photoconductive detector signal correction
Carangelo, Robert M.; Hamblen, David G.; Brouillette, Carl R.
1992-08-04
A corrective factor is applied so as to remove anomalous features from the signal generated by a photoconductive detector, and to thereby render the output signal highly linear with respect to the energy of incident, time-varying radiation. The corrective factor may be applied through the use of either digital electronic data processing means or analog circuitry, or through a combination of those effects.
Method and system for photoconductive detector signal correction
Carangelo, R.M.; Hamblen, D.G.; Brouillette, C.R.
1992-08-04
A corrective factor is applied so as to remove anomalous features from the signal generated by a photoconductive detector, and to thereby render the output signal highly linear with respect to the energy of incident, time-varying radiation. The corrective factor may be applied through the use of either digital electronic data processing means or analog circuitry, or through a combination of those effects. 5 figs.
Rosser, K E
1998-11-01
This paper evaluates the characteristics of ionization chambers for the measurement of absorbed dose to water for medium-energy x-rays. The values of the chamber correction factor, k(ch), used in the IPEMB code of practice for the UK secondary standard (NE2561/NE2611) ionization chamber are derived and their constituent factors examined. The comparison of the chambers' responses in air revealed that of the chambers tested only the NE2561, NE2571 and NE2505 exhibit a flat (within 5%) energy response in air. Under no circumstances should the NACP, Sanders electron chamber, or any chamber that has a wall made of high atomic number material, be used for medium-energy x-ray dosimetry. The measurements in water reveal that a chamber that has a substantial housing, such as the PTW Grenz chamber, should not be used to measure absorbed dose to water in this energy range. The value of k(ch) for an NE2561 chamber was determined by measuring the absorbed dose to water and comparing it with that for an NE2571 chamber, for which k(ch) data have been published. The chamber correction factor varies from 1.023 +/- 0.03 to 1.018 +/- 0.001 for x-ray beams with HVL between 0.15 and 4 mm Cu. The values agree with that for an NE2571 chamber within the experimental uncertainty. The corrections due to the stem, waterproof sleeve and replacement of the phantom material by the chamber for an NE2561 chamber are described.
Radiative corrections to the η(') Dalitz decays
NASA Astrophysics Data System (ADS)
Husek, Tomáš; Kampf, Karol; Novotný, Jiří; Leupold, Stefan
2018-05-01
We provide the complete set of radiative corrections to the Dalitz decays η(')→ℓ+ℓ-γ beyond the soft-photon approximation, i.e., over the whole range of the Dalitz plot and with no restrictions on the energy of a radiative photon. The corrections inevitably depend on the η(')→ γ*γ(*) transition form factors. For the singly virtual transition form factor appearing, e.g., in the bremsstrahlung correction, recent dispersive calculations are used. For the one-photon-irreducible contribution at the one-loop level (for the doubly virtual form factor), we use a vector-meson-dominance-inspired model while taking into account the η -η' mixing.
Power corrections to TMD factorization for Z-boson production
Balitsky, I.; Tarasov, A.
2018-05-24
A typical factorization formula for production of a particle with a small transverse momentum in hadron-hadron collisions is given by a convolution of two TMD parton densities with cross section of production of the final particle by the two partons. For practical applications at a given transverse momentum, though, one should estimate at what momenta the power corrections to the TMD factorization formula become essential. In this work, we calculate the first power corrections to TMD factorization formula for Z-boson production and Drell-Yan process in high-energy hadron-hadron collisions. At the leading order in N c power corrections are expressed inmore » terms of leading power TMDs by QCD equations of motion.« less
Power corrections to TMD factorization for Z-boson production
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balitsky, I.; Tarasov, A.
A typical factorization formula for production of a particle with a small transverse momentum in hadron-hadron collisions is given by a convolution of two TMD parton densities with cross section of production of the final particle by the two partons. For practical applications at a given transverse momentum, though, one should estimate at what momenta the power corrections to the TMD factorization formula become essential. In this work, we calculate the first power corrections to TMD factorization formula for Z-boson production and Drell-Yan process in high-energy hadron-hadron collisions. At the leading order in N c power corrections are expressed inmore » terms of leading power TMDs by QCD equations of motion.« less
SU-F-T-67: Correction Factors for Monitor Unit Verification of Clinical Electron Beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haywood, J
Purpose: Monitor units calculated by electron Monte Carlo treatment planning systems are often higher than TG-71 hand calculations for a majority of patients. Here I’ve calculated tables of geometry and heterogeneity correction factors for correcting electron hand calculations. Method: A flat water phantom with spherical volumes having radii ranging from 3 to 15 cm was created. The spheres were centered with respect to the flat water phantom, and all shapes shared a surface at 100 cm SSD. D{sub max} dose at 100 cm SSD was calculated for each cone and energy on the flat phantom and for the spherical volumesmore » in the absence of the flat phantom. The ratio of dose in the sphere to dose in the flat phantom defined the geometrical correction factor. The heterogeneity factors were then calculated from the unrestricted collisional stopping power for tissues encountered in electron beam treatments. These factors were then used in patient second check calculations. Patient curvature was estimated by the largest sphere that aligns to the patient contour, and appropriate tissue density was read from the physical properties provided by the CT. The resulting MU were compared to those calculated by the treatment planning system and TG-71 hand calculations. Results: The geometry and heterogeneity correction factors range from ∼(0.8–1.0) and ∼(0.9–1.01) respectively for the energies and cones presented. Percent differences for TG-71 hand calculations drop from ∼(3–14)% to ∼(0–2)%. Conclusion: Monitor units calculated with the correction factors typically decrease the percent difference to under actionable levels, < 5%. While these correction factors work for a majority of patients, there are some patient anatomies that do not fit the assumptions made. Using these factors in hand calculations is a first step in bringing the verification monitor units into agreement with the treatment planning system MU.« less
NASA Astrophysics Data System (ADS)
Badawi, Mohamed S.; Jovanovic, Slobodan I.; Thabet, Abouzeid A.; El-Khatib, Ahmed M.; Dlabac, Aleksandar D.; Salem, Bohaysa A.; Gouda, Mona M.; Mihaljevic, Nikola N.; Almugren, Kholud S.; Abbas, Mahmoud I.
2017-03-01
The 4π NaI(Tl) γ-ray detectors are consisted of the well cavity with cylindrical cross section, and the enclosing geometry of measurements with large detection angle. This leads to exceptionally high efficiency level and a significant coincidence summing effect, much more than a single cylindrical or coaxial detector especially in very low activity measurements. In the present work, the detection effective solid angle in addition to both full-energy peak and total efficiencies of well-type detectors, were mainly calculated by the new numerical simulation method (NSM) and ANGLE4 software. To obtain the coincidence summing correction factors through the previously mentioned methods, the simulation of the coincident emission of photons was modeled mathematically, based on the analytical equations and complex integrations over the radioactive volumetric sources including the self-attenuation factor. The measured full-energy peak efficiencies and correction factors were done by using 152Eu, where an exact adjustment is required for the detector efficiency curve, because neglecting the coincidence summing effect can make the results inconsistent with the whole. These phenomena, in general due to the efficiency calibration process and the coincidence summing corrections, appear jointly. The full-energy peak and the total efficiencies from the two methods typically agree with discrepancy 10%. The discrepancy between the simulation, ANGLE4 and measured full-energy peak after corrections for the coincidence summing effect was on the average, while not exceeding 14%. Therefore, this technique can be easily applied in establishing the efficiency calibration curves of well-type detectors.
Impact of reconstruction parameters on quantitative I-131 SPECT
NASA Astrophysics Data System (ADS)
van Gils, C. A. J.; Beijst, C.; van Rooij, R.; de Jong, H. W. A. M.
2016-07-01
Radioiodine therapy using I-131 is widely used for treatment of thyroid disease or neuroendocrine tumors. Monitoring treatment by accurate dosimetry requires quantitative imaging. The high energy photons however render quantitative SPECT reconstruction challenging, potentially requiring accurate correction for scatter and collimator effects. The goal of this work is to assess the effectiveness of various correction methods on these effects using phantom studies. A SPECT/CT acquisition of the NEMA IEC body phantom was performed. Images were reconstructed using the following parameters: (1) without scatter correction, (2) with triple energy window (TEW) scatter correction and (3) with Monte Carlo-based scatter correction. For modelling the collimator-detector response (CDR), both (a) geometric Gaussian CDRs as well as (b) Monte Carlo simulated CDRs were compared. Quantitative accuracy, contrast to noise ratios and recovery coefficients were calculated, as well as the background variability and the residual count error in the lung insert. The Monte Carlo scatter corrected reconstruction method was shown to be intrinsically quantitative, requiring no experimentally acquired calibration factor. It resulted in a more accurate quantification of the background compartment activity density compared with TEW or no scatter correction. The quantification error relative to a dose calibrator derived measurement was found to be <1%,-26% and 33%, respectively. The adverse effects of partial volume were significantly smaller with the Monte Carlo simulated CDR correction compared with geometric Gaussian or no CDR modelling. Scatter correction showed a small effect on quantification of small volumes. When using a weighting factor, TEW correction was comparable to Monte Carlo reconstruction in all measured parameters, although this approach is clinically impractical since this factor may be patient dependent. Monte Carlo based scatter correction including accurately simulated CDR modelling is the most robust and reliable method to reconstruct accurate quantitative iodine-131 SPECT images.
NASA Astrophysics Data System (ADS)
Jiménez Pérez, L. A.; Toledo Sánchez, G.
2017-12-01
Unstable spin-1 particles are properly described by including absorptive corrections to the electromagnetic vertex and propagator, without breaking the electromagnetic gauge invariance. We show that the modified propagator can be set in a complex mass form, provided the mass and width parameters, which are properly defined at the pole, are replaced by energy dependent functions fulfilling the same requirements at the pole. We exemplify the case for the {K}* (892) vector meson, and find that the mass function deviates around 2 MeV from the Kπ threshold to the pole, and that the width function exhibits a different behavior compared to the uncorrected energy dependent width. Considering the {τ }-\\to {K}{{S}}{π }-{ν }τ decay as dominated by the {K}* (892) and {K}{\\prime * }(1410) vectors and one scalar particle, we exhibit the role of the transversal and longitudinal corrections to the vector propagator by obtaining the modified vector and scalar form factors. The modified vector form factor is found to be the same as in the complex mass form, while the scalar form factor receives a modification from the longitudinal correction to the vector propagator. A fit to the experimental Kπ spectrum shows that the phase induced by the presence of this new contribution in the scalar sector improves the description of the experimental data in the troublesome region around 0.7 GeV. Besides that, the correction to the scalar form factor is found to be negligible.
NASA Astrophysics Data System (ADS)
Talamo, Alberto; Gohar, Y.; Cao, Y.; Zhong, Z.; Kiyavitskaya, H.; Bournos, V.; Fokov, Y.; Routkovskaya, C.
2012-03-01
In subcritical assemblies, the Bell and Glasstone spatial correction factor is used to correct the measured reactivity from different detector positions. In addition to the measuring position, several other parameters affect the correction factor: the detector material, the detector size, and the energy-angle distribution of source neutrons. The effective multiplication factor calculated by computer codes in criticality mode slightly differs from the average value obtained from the measurements in the different experimental channels of the subcritical assembly, which are corrected by the Bell and Glasstone spatial correction factor. Generally, this difference is due to (1) neutron counting errors; (2) geometrical imperfections, which are not simulated in the calculational model, and (3) quantities and distributions of material impurities, which are missing from the material definitions. This work examines these issues and it focuses on the detector choice and the calculation methodologies. The work investigated the YALINA Booster subcritical assembly of Belarus, which has been operated with three different fuel enrichments in the fast zone either: high (90%) and medium (36%), medium (36%), or low (21%) enriched uranium fuel.
Heavy quarkonium production at collider energies: Partonic cross section and polarization
Qiu, Jian -Wei; Kang, Zhong -Bo; Ma, Yan -Qing; ...
2015-01-27
We calculate the O(α³ s) short-distance, QCD collinear-factorized coefficient functions for all partonic channels that include the production of a heavy quark pair at short distances. Thus, this provides the first power correction to the collinear-factorized inclusive hadronic production of heavy quarkonia at large transverse momentum, pT, including the full leading-order perturbative contributions to the production of heavy quark pairs in all color and spin states employed in NRQCD treatments of this process. We discuss the role of the first power correction in the production rates and the polarizations of heavy quarkonia in high-energy hadronic collisions. The consistency of QCDmore » collinear factorization and nonrelativistic QCD factorization applied to heavy quarkonium production is also discussed.« less
An optically stimulated luminescence system to measure dose profiles in x-ray computed tomography
NASA Astrophysics Data System (ADS)
Yukihara, E. G.; Ruan, C.; Gasparian, P. B. R.; Clouse, W. J.; Kalavagunta, C.; Ahmad, S.
2009-10-01
This paper describes an LED-based optically stimulated luminescence (OSL) system for dose profile measurements using OSL detector strips and investigates its performance in x-ray computed tomography (CT) dosimetry. To compensate for the energy response of the Al2O3:C OSL detectors, which have an effective atomic number of 11.28, field-specific energy correction factors were determined using two methods: (a) comparing the OSL profiles with ionization chamber point measurements (0.3 cm3 ionization chamber) and (b) comparing the OSL profiles integrated over a 100 mm length with 100 mm long pencil ionization chamber measurements. These correction factors were obtained for the CT body and head phantoms, central and peripheral positions and three x-ray tube potential differences (100 kVp, 120 kVp and 140 kVp). The OSL dose profiles corrected by the energy dependence agreed with the ionization chamber point measurements over the entire length of the phantom (300 mm). For 120 kVp x-ray tube potential difference, the CTDI100 values calculated using the OSL dose profiles corrected for the energy dependence and those obtained from an independent measurement with a 100 mm long pencil ionization chamber also agreed within ±5%.
Beam quality corrections for parallel-plate ion chambers in electron reference dosimetry
NASA Astrophysics Data System (ADS)
Zink, K.; Wulff, J.
2012-04-01
Current dosimetry protocols (AAPM, IAEA, IPEM, DIN) recommend parallel-plate ionization chambers for dose measurements in clinical electron beams. This study presents detailed Monte Carlo simulations of beam quality correction factors for four different types of parallel-plate chambers: NACP-02, Markus, Advanced Markus and Roos. These chambers differ in constructive details which should have notable impact on the resulting perturbation corrections, hence on the beam quality corrections. The results reveal deviations to the recommended beam quality corrections given in the IAEA TRS-398 protocol in the range of 0%-2% depending on energy and chamber type. For well-guarded chambers, these deviations could be traced back to a non-unity and energy-dependent wall perturbation correction. In the case of the guardless Markus chamber, a nearly energy-independent beam quality correction is resulting as the effects of wall and cavity perturbation compensate each other. For this chamber, the deviations to the recommended values are the largest and may exceed 2%. From calculations of type-B uncertainties including effects due to uncertainties of the underlying cross-sectional data as well as uncertainties due to the chamber material composition and chamber geometry, the overall uncertainty of calculated beam quality correction factors was estimated to be <0.7%. Due to different chamber positioning recommendations given in the national and international dosimetry protocols, an additional uncertainty in the range of 0.2%-0.6% is present. According to the IAEA TRS-398 protocol, the uncertainty in clinical electron dosimetry using parallel-plate ion chambers is 1.7%. This study may help to reduce this uncertainty significantly.
Comparison of Activity Determination of Radium 226 in FUSRAP Soil using Various Energy Lines - 12299
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tucker, Brian; Donakowski, Jough; Hays, David
2012-07-01
Gamma spectroscopy is used at the Formerly Utilized Sites Remedial Action Program (FUSRAP) Maywood Superfund Site as the primary radioanalytical tool for quantization of activities of the radionuclides of concern in site soil. When selecting energy lines in gamma spectroscopy, a number of factors are considered including assumptions concerning secondary equilibrium, interferences, and the strength of the lines. The case of the Maywood radionuclide of concern radium-226 (Ra-226) is considered in this paper. At the FUSRAP Maywood Superfund Site, one of the daughters produced from radioactive decay of Ra-226, lead-214 (Pb- 214), is used to quantitate Ra-226. Another Ra-226 daughter,more » bismuth-214 (Bi-214), also may be used to quantitate Ra-226. In this paper, a comparison of Ra-226 to Pb-214 activities and Ra-226 to Bi-214 activities, obtained using gamma spectrometry for a large number of soil samples, was performed. The Pb-214, Bi-214, and Ra-226 activities were quantitated using the 352 kilo electron volt (keV), 609 keV, and 186 keV lines, respectively. The comparisons were made after correcting the Ra-226 activities by a factor of 0.571 and both ignoring and accounting for the contribution of a U-235 interfering line to the Ra-226 line. For the Pb-214 and Bi-214 activities, a mean in-growth factor was employed. The gamma spectrometer was calibrated for efficiency and energy using a mixed gamma standard and an energy range of 59 keV to 1830 keV. The authors expect other sites with Ra-226 contamination in soil may benefit from the discussions and points in this paper. Proper use of correction factors and comparison of the data from three different gamma-emitting radionuclides revealed agreement with expectations and provided confidence that using such correction factors generates quality data. The results indicate that if contamination is low level and due to NORM, the Ra-226 can be measured directly if corrected to subtract the contribution from U-235. If there is any indication that technologically enhanced uranium may be present, the preferred measurement approach for quantitation of Ra-226 activity is detection of one of the Ra-226 daughters, Pb-214 or Bi-214, using a correction factor obtained from an in-growth curve. The results also show that the adjusted Ra-226 results compare very well with both the Pb-214 and Bi-214 results obtained using an in-growth curve correction factor. (authors)« less
NASA Astrophysics Data System (ADS)
Bonczyk, Michal
2018-07-01
This article deals with the problem of the self-attenuation of low-energy gamma-rays from the isotope of lead 210Pb (46.5 keV) in industrial waste. The 167 samples of industrial waste, belonging to nine categories, were tested by means of gamma spectrometry in order to determine 210Pb activity concentration. The experimental method for self-attenuation corrections for gamma rays emitted by lead isotope was applied. Mass attenuation coefficients were determined for energy of 46.5 keV. Correction factors were calculated based on mass attenuation coefficients, sample density and thickness. A mathematical formula for correction calculation was evaluated. The 210Pb activity concentration obtained varied in the range from several Bq·kg-1 up to 19,810 Bq kg-1. The mass attenuation coefficients varied across the range of 0.19-4.42 cm2·g-1. However, the variation of mass attenuation coefficient within some categories of waste was relatively small. The calculated corrections for self-attenuation were 0.98 - 6.97. The high value of correction factors must not be neglect in radiation risk assessment.
A Novel Simple Phantom for Verifying the Dose of Radiation Therapy
Lee, J. H.; Chang, L. T.; Shiau, A. C.; Chen, C. W.; Liao, Y. J.; Li, W. J.; Lee, M. S.; Hsu, S. M.
2015-01-01
A standard protocol of dosimetric measurements is used by the organizations responsible for verifying that the doses delivered in radiation-therapy institutions are within authorized limits. This study evaluated a self-designed simple auditing phantom for use in verifying the dose of radiation therapy; the phantom design, dose audit system, and clinical tests are described. Thermoluminescent dosimeters (TLDs) were used as postal dosimeters, and mailable phantoms were produced for use in postal audits. Correction factors are important for converting TLD readout values from phantoms into the absorbed dose in water. The phantom scatter correction factor was used to quantify the difference in the scattered dose between a solid water phantom and homemade phantoms; its value ranged from 1.084 to 1.031. The energy-dependence correction factor was used to compare the TLD readout of the unit dose irradiated by audit beam energies with 60Co in the solid water phantom; its value was 0.99 to 1.01. The setup-condition factor was used to correct for differences in dose-output calibration conditions. Clinical tests of the device calibrating the dose output revealed that the dose deviation was within 3%. Therefore, our homemade phantoms and dosimetric system can be applied for accurately verifying the doses applied in radiation-therapy institutions. PMID:25883980
Mashouf, Shahram; Lechtman, Eli; Beaulieu, Luc; Verhaegen, Frank; Keller, Brian M; Ravi, Ananth; Pignol, Jean-Philippe
2013-09-21
The American Association of Physicists in Medicine Task Group No. 43 (AAPM TG-43) formalism is the standard for seeds brachytherapy dose calculation. But for breast seed implants, Monte Carlo simulations reveal large errors due to tissue heterogeneity. Since TG-43 includes several factors to account for source geometry, anisotropy and strength, we propose an additional correction factor, called the inhomogeneity correction factor (ICF), accounting for tissue heterogeneity for Pd-103 brachytherapy. This correction factor is calculated as a function of the media linear attenuation coefficient and mass energy absorption coefficient, and it is independent of the source internal structure. Ultimately the dose in heterogeneous media can be calculated as a product of dose in water as calculated by TG-43 protocol times the ICF. To validate the ICF methodology, dose absorbed in spherical phantoms with large tissue heterogeneities was compared using the TG-43 formalism corrected for heterogeneity versus Monte Carlo simulations. The agreement between Monte Carlo simulations and the ICF method remained within 5% in soft tissues up to several centimeters from a Pd-103 source. Compared to Monte Carlo, the ICF methods can easily be integrated into a clinical treatment planning system and it does not require the detailed internal structure of the source or the photon phase-space.
Lourenço, Ana; Thomas, Russell; Bouchard, Hugo; Kacperek, Andrzej; Vondracek, Vladimir; Royle, Gary; Palmans, Hugo
2016-07-01
The aim of this study was to determine fluence corrections necessary to convert absorbed dose to graphite, measured by graphite calorimetry, to absorbed dose to water. Fluence corrections were obtained from experiments and Monte Carlo simulations in low- and high-energy proton beams. Fluence corrections were calculated to account for the difference in fluence between water and graphite at equivalent depths. Measurements were performed with narrow proton beams. Plane-parallel-plate ionization chambers with a large collecting area compared to the beam diameter were used to intercept the whole beam. High- and low-energy proton beams were provided by a scanning and double scattering delivery system, respectively. A mathematical formalism was established to relate fluence corrections derived from Monte Carlo simulations, using the fluka code [A. Ferrari et al., "fluka: A multi-particle transport code," in CERN 2005-10, INFN/TC 05/11, SLAC-R-773 (2005) and T. T. Böhlen et al., "The fluka Code: Developments and challenges for high energy and medical applications," Nucl. Data Sheets 120, 211-214 (2014)], to partial fluence corrections measured experimentally. A good agreement was found between the partial fluence corrections derived by Monte Carlo simulations and those determined experimentally. For a high-energy beam of 180 MeV, the fluence corrections from Monte Carlo simulations were found to increase from 0.99 to 1.04 with depth. In the case of a low-energy beam of 60 MeV, the magnitude of fluence corrections was approximately 0.99 at all depths when calculated in the sensitive area of the chamber used in the experiments. Fluence correction calculations were also performed for a larger area and found to increase from 0.99 at the surface to 1.01 at greater depths. Fluence corrections obtained experimentally are partial fluence corrections because they account for differences in the primary and part of the secondary particle fluence. A correction factor, F(d), has been established to relate fluence corrections defined theoretically to partial fluence corrections derived experimentally. The findings presented here are also relevant to water and tissue-equivalent-plastic materials given their carbon content.
Coherent vector meson photoproduction from deuterium at intermediate energies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rogers, T.C.; Strikman, M.I.; Sargsian, M.M.
2006-04-15
We analyze the cross section for vector meson photoproduction off a deuteron for the intermediate range of photon energies starting at a few giga-electron-volts above the threshold and higher. We reproduce the steps in the derivation of the conventional nonrelativistic Glauber expression based on an effective diagrammatic method while making corrections for Fermi motion and intermediate-energy kinematic effects. We show that, for intermediate-energy vector meson production, the usual Glauber factorization breaks down, and we derive corrections to the usual Glauber method to linear order in longitudinal nucleon momentum. The purpose of our analysis is to establish methods for probing interestingmore » physics in the production mechanism for {phi} mesons and heavier vector mesons. We demonstrate how neglecting the breakdown of Glauber factorization can lead to errors in measurements of basic cross sections extracted from nuclear data.« less
Analysis of U.S. household wood energy consumption: 1967-2009
Nianfu Song; Francisco X. Aguilar; Stephen R. Shifley; Michael E. Goerndt
2012-01-01
The residential sector consumes about 23% of the energy derived from wood (wood energy) in the U.S. An estimated error correction model with data from 1967 to 2009 suggests that residential wood energy consumption has declined by an average 3% per year in response to technological progress, urbanization, accessibility of non-wood energy, and other factors associated...
Bohm, Tim D; Griffin, Sheridan L; DeLuca, Paul M; DeWerd, Larry A
2005-04-01
The determination of the air kerma strength of a brachytherapy seed is necessary for effective treatment planning. Well ionization chambers are used on site at therapy clinics to determine the air kerma strength of seeds. In this work, the response of the Standard Imaging HDR 1000 Plus well chamber to ambient pressure is examined using Monte Carlo calculations. The experimental work examining the response of this chamber as well as other chambers is presented in a companion paper. The Monte Carlo results show that for low-energy photon sources, the application of the standard temperature pressure PTP correction factor produces an over-response at the reduced air densities/pressures corresponding to high elevations. With photon sources of 20 to 40 keV, the normalized PTP corrected chamber response is as much as 10% to 20% over unity for air densities/pressures corresponding to an elevation of 3048 m (10000 ft) above sea level. At air densities corresponding to an elevation of 1524 m (5000 ft), the normalized PTP-corrected chamber response is 5% to 10% over unity for these photon sources. With higher-energy photon sources (>100 keV), the normalized PTP corrected chamber response is near unity. For low-energy beta sources of 0.25 to 0.50 MeV, the normalized PTP-corrected chamber response is as much as 4% to 12% over unity for air densities/pressures corresponding to an elevation of 3048 m (10000 ft) above sea level. Higher-energy beta sources (>0.75 MeV) have a normalized PTP corrected chamber response near unity. Comparing calculated and measured chamber responses for common 103Pd- and 125I-based brachytherapy seeds show agreement to within 2.7% and 1.9%, respectively. Comparing MCNP calculated chamber responses with EGSnrc calculated chamber responses show agreement to within 3.1% at photon energies of 20 to 40 keV. We conclude that Monte Carlo transport calculations accurately model the response of this well chamber. Further, applying the standard PTP correction factor for this well chamber is insufficient in accounting for the change in chamber response with air pressure for low-energy (<100 keV) photon and low-energy (<0.75 MeV)beta sources.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mart, E.I.; Denham, D.H.; Thiede, M.E.
1993-12-01
This report is a result of the Hanford Environmental Dose Reconstruction (HEDR) Project whose goal is to estimate the radiation dose that individuals could have received from emissions since 1944 at the U.S. Department of Energy`s (DOE) Hanford Site near Richland, Washington. The HEDR Project is conducted by Battelle, Pacific Northwest Laboratories (BNW). One of the radionuclides emitted that would affect the radiation dose was iodine-131. This report describes in detail the reconstructed conversion and correction factors for historical measurements of iodine-131 in Hanford-area vegetation which was collected from the beginning of October 1945 through the end of December 1947.
Using Mason number to predict MR damper performance from limited test data
NASA Astrophysics Data System (ADS)
Becnel, Andrew C.; Wereley, Norman M.
2017-05-01
The Mason number can be used to produce a single master curve which relates MR fluid stress versus strain rate behavior across a wide range of shear rates, temperatures, and applied magnetic fields. As applications of MR fluid energy absorbers expand to a variety of industries and operating environments, Mason number analysis offers a path to designing devices with desired performance from a minimal set of preliminary test data. Temperature strongly affects the off-state viscosity of the fluid, as the passive viscous force drops considerably at higher temperatures. Yield stress is not similarly affected, and stays relatively constant with changing temperature. In this study, a small model-scale MR fluid rotary energy absorber is used to measure the temperature correction factor of a commercially-available MR fluid from LORD Corporation. This temperature correction factor is identified from shear stress vs. shear rate data collected at four different temperatures. Measurements of the MR fluid yield stress are also obtained and related to a standard empirical formula. From these two MR fluid properties - temperature-dependent viscosity and yield stress - the temperature-corrected Mason number is shown to predict the force vs. velocity performance of a full-scale rotary MR fluid energy absorber. This analysis technique expands the design space of MR devices to high shear rates and allows for comprehensive predictions of overall performance across a wide range of operating conditions from knowledge only of the yield stress vs. applied magnetic field and a temperature-dependent viscosity correction factor.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mathew, D; Tanny, S; Parsai, E
2015-06-15
Purpose: The current small field dosimetry formalism utilizes quality correction factors to compensate for the difference in detector response relative to dose deposited in water. The correction factors are defined on a machine-specific basis for each beam quality and detector combination. Some research has suggested that the correction factors may only be weakly dependent on machine-to-machine variations, allowing for determinations of class-specific correction factors for various accelerator models. This research examines the differences in small field correction factors for three detectors across two Varian Truebeam accelerators to determine the correction factor dependence on machine-specific characteristics. Methods: Output factors were measuredmore » on two Varian Truebeam accelerators for equivalently tuned 6 MV and 6 FFF beams. Measurements were obtained using a commercial plastic scintillation detector (PSD), two ion chambers, and a diode detector. Measurements were made at a depth of 10 cm with an SSD of 100 cm for jaw-defined field sizes ranging from 3×3 cm{sup 2} to 0.6×0.6 cm{sup 2}, normalized to values at 5×5cm{sup 2}. Correction factors for each field on each machine were calculated as the ratio of the detector response to the PSD response. Percent change of correction factors for the chambers are presented relative to the primary machine. Results: The Exradin A26 demonstrates a difference of 9% for 6×6mm{sup 2} fields in both the 6FFF and 6MV beams. The A16 chamber demonstrates a 5%, and 3% difference in 6FFF and 6MV fields at the same field size respectively. The Edge diode exhibits less than 1.5% difference across both evaluated energies. Field sizes larger than 1.4×1.4cm2 demonstrated less than 1% difference for all detectors. Conclusion: Preliminary results suggest that class-specific correction may not be appropriate for micro-ionization chamber. For diode systems, the correction factor was substantially similar and may be useful for class-specific reference conditions.« less
Underwood, T S A; Rowland, B C; Ferrand, R; Vieillevigne, L
2015-09-07
In this work we use EBT3 film measurements at 10 MV to demonstrate the suitability of the Exradin W1 (plastic scintillator) for relative dosimetry within small photon fields. We then use the Exradin W1 to measure the small field correction factors required by two other detectors: the PTW unshielded Ediode 60017 and the PTW microDiamond 60019. We consider on-axis correction-factors for small fields collimated using MLCs for four different TrueBeam energies: 6 FFF, 6 MV, 10 FFF and 10 MV. We also investigate percentage depth dose and lateral profile perturbations. In addition to high-density effects from its silicon sensitive region, the Ediode exhibited a dose-rate dependence and its known over-response to low energy scatter was found to be greater for 6 FFF than 6 MV. For clinical centres without access to a W1 scintillator, we recommend the microDiamond over the Ediode and suggest that 'limits of usability', field sizes below which a detector introduces unacceptable errors, can form a practical alternative to small-field correction factors. For a dosimetric tolerance of 2% on-axis, the microDiamond might be utilised down to 10 mm and 15 mm field sizes for 6 MV and 10 MV, respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benmakhlouf, H; Andreo, P; Brualla, L
2016-06-15
Purpose: To calculate output correction factors for Varian Clinac 2100iX beams for seven small field detectors and use the values to determine the small field output factors for the linacs at Karolinska university hospital. Methods: Phase space files (psf) for square fields between 0.25cm and 10cm were calculated using the PENELOPE-based PRIMO software. The linac MC-model was tuned by comparing PRIMO-estimated and experimentally determined depth doses and lateral dose-profiles for 40cmx40cm fields. The calculated psf were used as radiation sources to calculate the correction factors of IBA and PTW detectors with the code penEasy/PENELOPE. Results: The optimal tuning parameters ofmore » the MClinac model in PRIMO were 5.4 MeV incident electron energy and zero energy spread, focal spot size and beam divergence. Correction factors obtained for the liquid ion chamber (PTW-T31018) are within 1% down to 0.5 cm fields. For unshielded diodes (IBA-EFD, IBA-SFD, PTW-T60017 and PTW-T60018) the corrections are up to 2% at intermediate fields (>1cm side), becoming down to −11% for fields smaller than 1cm. The shielded diode (IBA-PFD and PTW-T60016) corrections vary with field size from 0 to −4%. Volume averaging effects are found for most detectors in the presence of 0.25cm fields. Conclusion: Good agreement was found between correction factors based on PRIMO-generated psf and those from other publications. The calculated factors will be implemented in output factor measurements (using several detectors) in the clinic. PRIMO is a userfriendly general code capable of generating small field psf and can be used without having to code own linac geometries. It can therefore be used to improve the clinical dosimetry, especially in the commissioning of linear accelerators. Important dosimetry data, such as dose-profiles and output factors can be determined more accurately for a specific machine, geometry and setup by using PRIMO and having a MC-model of the detector used.« less
Dosimetry for Small and Nonstandard Fields
NASA Astrophysics Data System (ADS)
Junell, Stephanie L.
The proposed small and non-standard field dosimetry protocol from the joint International Atomic Energy Agency (IAEA) and American Association of Physicist in Medicine working group introduces new reference field conditions for ionization chamber based reference dosimetry. Absorbed dose beam quality conversion factors (kQ factors) corresponding to this formalism were determined for three different models of ionization chambers: a Farmer-type ionization chamber, a thimble ionization chamber, and a small volume ionization chamber. Beam quality correction factor measurements were made in a specially developed cylindrical polymethyl methacrylate (PMMA) phantom and a water phantom using thermoluminescent dosimeters (TLDs) and alanine dosimeters to determine dose to water. The TLD system for absorbed dose to water determination in high energy photon and electron beams was fully characterized as part of this dissertation. The behavior of the beam quality correction factor was observed as it transfers the calibration coefficient from the University of Wisconsin Accredited Dosimetry Calibration Laboratory (UWADCL) 60Co reference beam to the small field calibration conditions of the small field formalism. TLD-determined beam quality correction factors for the calibration conditions investigated ranged from 0.97 to 1.30 and had associated standard deviations from 1% to 3%. The alanine-determined beam quality correction factors ranged from 0.996 to 1.293. Volume averaging effects were observed with the Farmer-type ionization chamber in the small static field conditions. The proposed small and non-standard field dosimetry protocols new composite-field reference condition demonstrated its potential to reduce or remove ionization chamber volume dependancies, but the measured beam quality correction factors were not equal to the standard CoP's kQ, indicating a change in beam quality in the small and non-standard field dosimetry protocols new composite-field reference condition relative to the standard broad beam reference conditions. The TLD- and alanine-determined beam quality correction factors in the composite-field reference conditions were approximately 3% greater and differed by more than one standard deviation from the published TG-51 kQ values for all three chambers.
NASA Astrophysics Data System (ADS)
Marsolat, F.; De Marzi, L.; Pouzoulet, F.; Mazal, A.
2016-01-01
In proton therapy, the relative biological effectiveness (RBE) depends on various types of parameters such as linear energy transfer (LET). An analytical model for LET calculation exists (Wilkens’ model), but secondary particles are not included in this model. In the present study, we propose a correction factor, L sec, for Wilkens’ model in order to take into account the LET contributions of certain secondary particles. This study includes secondary protons and deuterons, since the effects of these two types of particles can be described by the same RBE-LET relationship. L sec was evaluated by Monte Carlo (MC) simulations using the GATE/GEANT4 platform and was defined by the ratio of the LET d distributions of all protons and deuterons and only primary protons. This method was applied to the innovative Pencil Beam Scanning (PBS) delivery systems and L sec was evaluated along the beam axis. This correction factor indicates the high contribution of secondary particles in the entrance region, with L sec values higher than 1.6 for a 220 MeV clinical pencil beam. MC simulations showed the impact of pencil beam parameters, such as mean initial energy, spot size, and depth in water, on L sec. The variation of L sec with these different parameters was integrated in a polynomial function of the L sec factor in order to obtain a model universally applicable to all PBS delivery systems. The validity of this correction factor applied to Wilkens’ model was verified along the beam axis of various pencil beams in comparison with MC simulations. A good agreement was obtained between the corrected analytical model and the MC calculations, with mean-LET deviations along the beam axis less than 0.05 keV μm-1. These results demonstrate the efficacy of our new correction of the existing LET model in order to take into account secondary protons and deuterons along the pencil beam axis.
NASA Astrophysics Data System (ADS)
Murrill, Steven R.; Tipton, Charles W.; Self, Charles T.
1991-03-01
The dose absorbed in an integrated circuit (IC) die exposed to a pulse of low-energy electrons is a strong function of both electron energy and surrounding packaging materials. This report describes an experiment designed to measure how well the Integrated TIGER Series one-dimensional (1-D) electron transport simulation program predicts dose correction factors for a state-of-the-art IC package and package/printed circuit board (PCB) combination. These derived factors are compared with data obtained experimentally using thermoluminescent dosimeters (TLD's) and the FX-45 flash x-ray machine (operated in electron-beam (e-beam) mode). The results of this experiment show that the TIGER 1-D simulation code can be used to accurately predict FX-45 e-beam dose deposition correction factors for reasonably complex IC packaging configurations.
Britton, Jr., Charles L.; Wintenberg, Alan L.
1993-01-01
A radiation detection method and system for continuously correcting the quantization of detected charge during pulse pile-up conditions. Charge pulses from a radiation detector responsive to the energy of detected radiation events are converted to voltage pulses of predetermined shape whose peak amplitudes are proportional to the quantity of charge of each corresponding detected event by means of a charge-sensitive preamplifier. These peak amplitudes are sampled and stored sequentially in accordance with their respective times of occurrence. Based on the stored peak amplitudes and times of occurrence, a correction factor is generated which represents the fraction of a previous pulses influence on a preceding pulse peak amplitude. This correction factor is subtracted from the following pulse amplitude in a summing amplifier whose output then represents the corrected charge quantity measurement.
Design of exchange-correlation functionals through the correlation factor approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pavlíková Přecechtělová, Jana, E-mail: j.precechtelova@gmail.com, E-mail: Matthias.Ernzerhof@UMontreal.ca; Institut für Chemie, Theoretische Chemie / Quantenchemie, Sekr. C7, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin; Bahmann, Hilke
The correlation factor model is developed in which the spherically averaged exchange-correlation hole of Kohn-Sham theory is factorized into an exchange hole model and a correlation factor. The exchange hole model reproduces the exact exchange energy per particle. The correlation factor is constructed in such a manner that the exchange-correlation energy correctly reduces to exact exchange in the high density and rapidly varying limits. Four different correlation factor models are presented which satisfy varying sets of physical constraints. Three models are free from empirical adjustments to experimental data, while one correlation factor model draws on one empirical parameter. The correlationmore » factor models are derived in detail and the resulting exchange-correlation holes are analyzed. Furthermore, the exchange-correlation energies obtained from the correlation factor models are employed to calculate total energies, atomization energies, and barrier heights. It is shown that accurate, non-empirical functionals can be constructed building on exact exchange. Avenues for further improvements are outlined as well.« less
Radiological responses of different types of Egyptian Mediterranean coastal sediments
NASA Astrophysics Data System (ADS)
El-Gamal, A.; Rashad, M.; Ghatass, Z.
2010-08-01
The aim of this study was to identify gamma self-absorption correction factors for different types of Egyptian Mediterranean coastal sediments. Self-absorption corrections based on direct transmission through different thicknesses of the most dominant sediment species have been tested against point sources with gamma-ray energies of 241Am, 137Cs and 60Co with 2% uncertainties. Black sand samples from the Rashid branch of the Nile River quantitatively absorbed the low energy of 241Am through a thickness of 5 cm. In decreasing order of gamma energy self-absorption of 241Am, the samples under investigation ranked black sand, Matrouh sand, Sidi Gaber sand, shells, Salloum sand, and clay. Empirical self-absorption correction formulas were also deduced. Chemical analyses such as pH, CaCO 3, total dissolved solids, Ca 2+, Mg 2+, CO 32-, HCO 3- and total Fe 2+ have been carried out for the sediments. The relationships between self absorption corrections and the other chemical parameters of the sediments were also examined.
NASA Astrophysics Data System (ADS)
Adloff, C.; Blaha, J.; Blaising, J.-J.; Drancourt, C.; Espargilière, A.; Gaglione, R.; Geffroy, N.; Karyotakis, Y.; Prast, J.; Vouters, G.; Francis, K.; Repond, J.; Smith, J.; Xia, L.; Baldolemar, E.; Li, J.; Park, S. T.; Sosebee, M.; White, A. P.; Yu, J.; Buanes, T.; Eigen, G.; Mikami, Y.; Watson, N. K.; Goto, T.; Mavromanolakis, G.; Thomson, M. A.; Ward, D. R.; Yan, W.; Benchekroun, D.; Hoummada, A.; Khoulaki, Y.; Benyamna, M.; Cârloganu, C.; Fehr, F.; Gay, P.; Manen, S.; Royer, L.; Blazey, G. C.; Dyshkant, A.; Lima, J. G. R.; Zutshi, V.; Hostachy, J.-Y.; Morin, L.; Cornett, U.; David, D.; Falley, G.; Gadow, K.; Göttlicher, P.; Günter, C.; Hermberg, B.; Karstensen, S.; Krivan, F.; Lucaci-Timoce, A.-I.; Lu, S.; Lutz, B.; Morozov, S.; Morgunov, V.; Reinecke, M.; Sefkow, F.; Smirnov, P.; Terwort, M.; Vargas-Trevino, A.; Feege, N.; Garutti, E.; Marchesini, I.; Ramilli, M.; Eckert, P.; Harion, T.; Kaplan, A.; Schultz-Coulon, H.-Ch; Shen, W.; Stamen, R.; Tadday, A.; Bilki, B.; Norbeck, E.; Onel, Y.; Wilson, G. W.; Kawagoe, K.; Dauncey, P. D.; Magnan, A.-M.; Wing, M.; Salvatore, F.; Calvo Alamillo, E.; Fouz, M.-C.; Puerta-Pelayo, J.; Balagura, V.; Bobchenko, B.; Chadeeva, M.; Danilov, M.; Epifantsev, A.; Markin, O.; Mizuk, R.; Novikov, E.; Rusinov, V.; Tarkovsky, E.; Kirikova, N.; Kozlov, V.; Smirnov, P.; Soloviev, Y.; Buzhan, P.; Dolgoshein, B.; Ilyin, A.; Kantserov, V.; Kaplin, V.; Karakash, A.; Popova, E.; Smirnov, S.; Kiesling, C.; Pfau, S.; Seidel, K.; Simon, F.; Soldner, C.; Szalay, M.; Tesar, M.; Weuste, L.; Bonis, J.; Bouquet, B.; Callier, S.; Cornebise, P.; Doublet, Ph; Dulucq, F.; Faucci Giannelli, M.; Fleury, J.; Li, H.; Martin-Chassard, G.; Richard, F.; de la Taille, Ch; Pöschl, R.; Raux, L.; Seguin-Moreau, N.; Wicek, F.; Anduze, M.; Boudry, V.; Brient, J.-C.; Jeans, D.; Mora de Freitas, P.; Musat, G.; Reinhard, M.; Ruan, M.; Videau, H.; Bulanek, B.; Zacek, J.; Cvach, J.; Gallus, P.; Havranek, M.; Janata, M.; Kvasnicka, J.; Lednicky, D.; Marcisovsky, M.; Polak, I.; Popule, J.; Tomasek, L.; Tomasek, M.; Ruzicka, P.; Sicho, P.; Smolik, J.; Vrba, V.; Zalesak, J.; Belhorma, B.; Ghazlane, H.; Takeshita, T.; Uozumi, S.; Sauer, J.; Weber, S.; Zeitnitz, C.
2012-09-01
The energy resolution of a highly granular 1 m3 analogue scintillator-steel hadronic calorimeter is studied using charged pions with energies from 10 GeV to 80 GeV at the CERN SPS. The energy resolution for single hadrons is determined to be approximately 58%/√E/GeV. This resolution is improved to approximately 45%/√E/GeV with software compensation techniques. These techniques take advantage of the event-by-event information about the substructure of hadronic showers which is provided by the imaging capabilities of the calorimeter. The energy reconstruction is improved either with corrections based on the local energy density or by applying a single correction factor to the event energy sum derived from a global measure of the shower energy density. The application of the compensation algorithms to geant4 simulations yield resolution improvements comparable to those observed for real data.
Ionization correction factors for H II regions in blue compact dwarf galaxies
NASA Astrophysics Data System (ADS)
Holovatyi, V. V.; Melekh, B. Ya.
2002-08-01
Energy distributions in the spectra of the ionizing nuclei of H II regions beyond λ <= 91.2 nm were calculated. A grid of photoionization models of 270 H II regions was constructed. The free parameters of the model grid are the hydrogen density nH in the nebular gas, filling factor, energy Lc-spectrum of ionizing nuclei, and metallicity. The chemical composition from the studies of Izotov et al. were used for model grid initialization. The integral linear spectra calculated for the photoionization models were used to determine the concentration ne, temperatures Te of electrons, and ionic concentrations n(A+i)/n(H+) by the nebular gas diagnostic method. The averaged relative ionic abundances n(A+i)/n(H+) thus calculated were used to determine new expressions for ionization correction factors which we recommend for the determination of abundances in the H II regions of blue compact dwarf galaxies.
Wang, L; Rogers, Dwo
2008-07-01
The replacement correction factor (P repl ) in ion chamber dosimetry accounts for the effects of the medium being replaced by the air cavity of the chamber. In TG-21, P repl was conceptually separated into two components: fluence correction, P fl , and gradient correction, P gr . In TG-51, for electron beams, the calibration is at d ref where P gr is required for cylindrical chambers and P fl is unknown and assumed to be the same as that for a beam having the same mean electron energy at d max . For cylindrical chambers in high-energy photon beams, P repl also represents a major uncertainty in current dosimetry protocols. In this study, P repl is calculated with high precision (<0.1%) by the Monte Carlo method as the ratio of the dose in a phantom to the dose scored in water-walled cylindrical cavities of various radii (with the center of the cavity being the point of measurement) in both high energy photon and electron beams. It is found that, for electron beams, the mean electron energy at depth is a good beam quality specifier for P fl ; and TG-51's adoption of P fl at d max with the same mean electron energy for use at d ref is proven to be accurate. For Farmer chambers in photon beams, there is essentially no beam quality dependence for P repl values. In a Co photon beam, the calculated P repl is about 0.4-0.6% higher than the TG-21 value, indicating TG-21 (and TG-51) used incorrect values of P repl for cylindrical chambers. © 2008 American Association of Physicists in Medicine.
Radiation Surveys of the Naval Postgraduate School LINAC.
1992-06-01
personnel dosimetry at the NPS LINAC. This will result in the reduction of the TLD measured neutron dose evaluation for personnel. Accession For NTIS F. A...29 ix Figure 16: Average TLD NECF for electron energy and slit width co m b inatio ns...values obtained at 90 MeV electron energy, or NECFfmal = 0.341 ± 0.015 TABLE 5: AVERAGE TLD NEUTRON ENERGY CORRECTION FACTORS Electron Energy S lit
Many-body effects and ultraviolet renormalization in three-dimensional Dirac materials
NASA Astrophysics Data System (ADS)
Throckmorton, Robert; Hofmann, Johannes; Barnes, Edwin
We develop a theory for electron-electron interaction-induced many-body effects in three dimensional (3D) Weyl or Dirac semimetals, including interaction corrections to the polarizability, electron self-energy, and vertex function, up to second order in the effective fine structure constant of the Dirac material. These results are used to derive the higher-order ultraviolet renormalization of the Fermi velocity, effective coupling, and quasiparticle residue, revealing that the corrections to the renormalization group (RG) flows of both the velocity and coupling counteract the leading-order tendencies of velocity enhancement and coupling suppression at low energies. This in turn leads to the emergence of a critical coupling above which the interaction strength grows with decreasing energy scale. In addition, we identify a range of coupling strengths below the critical point in which the Fermi velocity varies non-monotonically as the low-energy, non-interacting fixed point is approached. Furthermore, we find that while the higher-order correction to the flow of the coupling is generally small compared to the leading order, the corresponding correction to the velocity flow carries an additional factor of the Dirac cone flavor number relative to the leading-order result. Supported by LPS-MPO-CMTC.
Lépy, M-C; Altzitzoglou, T; Anagnostakis, M J; Capogni, M; Ceccatelli, A; De Felice, P; Djurasevic, M; Dryak, P; Fazio, A; Ferreux, L; Giampaoli, A; Han, J B; Hurtado, S; Kandic, A; Kanisch, G; Karfopoulos, K L; Klemola, S; Kovar, P; Laubenstein, M; Lee, J H; Lee, J M; Lee, K B; Pierre, S; Carvalhal, G; Sima, O; Tao, Chau Van; Thanh, Tran Thien; Vidmar, T; Vukanac, I; Yang, M J
2012-09-01
The second part of an intercomparison of the coincidence summing correction methods is presented. This exercise concerned three volume sources, filled with liquid radioactive solution. The same experimental spectra, decay scheme and photon emission intensities were used by all the participants. The results were expressed as coincidence summing corrective factors for several energies of (152)Eu and (134)Cs, and different source-to-detector distances. They are presented and discussed. Copyright © 2012 Elsevier Ltd. All rights reserved.
Correction factors to convert microdosimetry measurements in silicon to tissue in 12C ion therapy
NASA Astrophysics Data System (ADS)
Bolst, David; Guatelli, Susanna; Tran, Linh T.; Chartier, Lachlan; Lerch, Michael L. F.; Matsufuji, Naruhiro; Rosenfeld, Anatoly B.
2017-03-01
Silicon microdosimetry is a promising technology for heavy ion therapy (HIT) quality assurance, because of its sub-mm spatial resolution and capability to determine radiation effects at a cellular level in a mixed radiation field. A drawback of silicon is not being tissue-equivalent, thus the need to convert the detector response obtained in silicon to tissue. This paper presents a method for converting silicon microdosimetric spectra to tissue for a therapeutic 12C beam, based on Monte Carlo simulations. The energy deposition spectra in a 10 μm sized silicon cylindrical sensitive volume (SV) were found to be equivalent to those measured in a tissue SV, with the same shape, but with dimensions scaled by a factor κ equal to 0.57 and 0.54 for muscle and water, respectively. A low energy correction factor was determined to account for the enhanced response in silicon at low energy depositions, produced by electrons. The concept of the mean path length < {{l}\\text{Path}}> to calculate the lineal energy was introduced as an alternative to the mean chord length < l> because it was found that adopting Cauchy’s formula for the < l> was not appropriate for the radiation field typical of HIT as it is very directional. < {{l}\\text{Path}}> can be determined based on the peak of the lineal energy distribution produced by the incident carbon beam. Furthermore it was demonstrated that the thickness of the SV along the direction of the incident 12C ion beam can be adopted as < {{l}\\text{Path}}> . The tissue equivalence conversion method and < {{l}\\text{Path}}> were adopted to determine the RBE10, calculated using a modified microdosimetric kinetic model, applied to the microdosimetric spectra resulting from the simulation study. Comparison of the RBE10 along the Bragg peak to experimental TEPC measurements at HIMAC, NIRS, showed good agreement. Such agreement demonstrates the validity of the developed tissue equivalence correction factors and of the determination of < {{l}\\text{Path}}> .
Linear optics measurements and corrections using an AC dipole in RHIC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, G.; Bai, M.; Yang, L.
2010-05-23
We report recent experimental results on linear optics measurements and corrections using ac dipole. In RHIC 2009 run, the concept of the SVD correction algorithm is tested at injection energy for both identifying the artificial gradient errors and correcting it using the trim quadrupoles. The measured phase beatings were reduced by 30% and 40% respectively for two dedicated experiments. In RHIC 2010 run, ac dipole is used to measure {beta}* and chromatic {beta} function. For the 0.65m {beta}* lattice, we observed a factor of 3 discrepancy between model and measured chromatic {beta} function in the yellow ring.
NOTE: Monte Carlo simulation of correction factors for IAEA TLD holders
NASA Astrophysics Data System (ADS)
Hultqvist, Martha; Fernández-Varea, José M.; Izewska, Joanna
2010-03-01
The IAEA standard thermoluminescent dosimeter (TLD) holder has been developed for the IAEA/WHO TLD postal dose program for audits of high-energy photon beams, and it is also employed by the ESTRO-QUALity assurance network (EQUAL) and several national TLD audit networks. Factors correcting for the influence of the holder on the TL signal under reference conditions have been calculated in the present work from Monte Carlo simulations with the PENELOPE code for 60Co γ-rays and 4, 6, 10, 15, 18 and 25 MV photon beams. The simulation results are around 0.2% smaller than measured factors reported in the literature, but well within the combined standard uncertainties. The present study supports the use of the experimentally obtained holder correction factors in the determination of the absorbed dose to water from the TL readings; the factors calculated by means of Monte Carlo simulations may be adopted for the cases where there are no measured data.
Towards an Optimal Gradient-dependent Energy Functional of the PZ-SIC Form
Jónsson, Elvar Örn; Lehtola, Susi; Jónsson, Hannes
2015-06-01
Results of Perdew–Zunger self-interaction corrected (PZ-SIC) density functional theory calculations of the atomization energy of 35 molecules are compared to those of high-level quantum chemistry calculations. While the PBE functional, which is commonly used in calculations of condensed matter, is known to predict on average too high atomization energy (overbinding of the molecules), the application of PZ-SIC gives a large overcorrection and leads to significant underestimation of the atomization energy. The exchange enhancement factor that is optimal for the generalized gradient approximation within the Kohn-Sham (KS) approach may not be optimal for the self-interaction corrected functional. The PBEsol functional, wheremore » the exchange enhancement factor was optimized for solids, gives poor results for molecules in KS but turns out to work better than PBE in PZ-SIC calculations. The exchange enhancement is weaker in PBEsol and the functional is closer to the local density approximation. Furthermore, the drop in the exchange enhancement factor for increasing reduced gradient in the PW91 functional gives more accurate results than the plateaued enhancement in the PBE functional. A step towards an optimal exchange enhancement factor for a gradient dependent functional of the PZ-SIC form is taken by constructing an exchange enhancement factor that mimics PBEsol for small values of the reduced gradient, and PW91 for large values. The average atomization energy is then in closer agreement with the high-level quantum chemistry calculations, but the variance is still large, the F 2 molecule being a notable outlier.« less
Nevelsky, Alexander; Bernstein, Zvi; Bar-Deroma, Raquel; Kuten, Abraham; Orion, Itzhak
2010-07-19
The design concept and dosimetric characteristics of a new applicator system for intraoperative radiation therapy (IORT) are presented in this work. A new hard-docking commercial system includes polymethylmethacrylate (PMMA) applicators with different diameters and applicator end angles and a set of secondary lead collimators. A telescopic device allows changing of source-to-surface distance (SSD). All measurements were performed for 6, 9, 12 and 18 MeV electron energies. Output factors and percentage depth doses (PDD) were measured in a water phantom using a plane-parallel ion chamber. Isodose contours and radiation leakage were measured using a solid water phantom and radiographic films. The dependence of PDD on SSD was checked for the applicators with the smallest and the biggest diameters. SSD dependence of the output factors was measured. Hardcopies of PDD and isodose contours were prepared to help the team during the procedure on deciding applicator size and energy to be chosen. Applicator output factors are a function of energy, applicator size and applicator type. Dependence of SSD correction factors on applicator size and applicator type was found to be weak. The same SSD correction will be applied for all applicators in use for each energy. The radiation leakage through the applicators is clinically acceptable. The applicator system enables effective collimation of electron beams for IORT. The data presented are sufficient for applicator, energy and monitor unit selection for IORT treatment of a patient.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soh, R; Lee, J; Harianto, F
Purpose: To determine and compare the correction factors obtained for TLDs in 2 × 2cm{sup 2} small field in lung heterogenous phantom using Acuros XB (AXB) and EGSnrc. Methods: This study will simulate the correction factors due to the perturbation of TLD-100 chips (Harshaw/Thermoscientific, 3 × 3 × 0.9mm{sup 3}, 2.64g/cm{sup 3}) in small field lung medium for Stereotactic Body Radiation Therapy (SBRT). A physical lung phantom was simulated by a 14cm thick composite cork phantom (0.27g/cm{sup 3}, HU:-743 ± 11) sandwiched between 4cm thick Plastic Water (CIRS,Norfolk). Composite cork has been shown to be a good lung substitute materialmore » for dosimetric studies. 6MV photon beam from Varian Clinac iX (Varian Medical Systems, Palo Alto, CA) with field size 2 × 2cm{sup 2} was simulated. Depth dose profiles were obtained from the Eclipse treatment planning system Acuros XB (AXB) and independently from DOSxyznrc, EGSnrc. Correction factors was calculated by the ratio of unperturbed to perturbed dose. Since AXB has limitations in simulating actual material compositions, EGSnrc will also simulate the AXB-based material composition for comparison to the actual lung phantom. Results: TLD-100, with its finite size and relatively high density, causes significant perturbation in 2 × 2cm{sup 2} small field in a low lung density phantom. Correction factors calculated by both EGSnrc and AXB was found to be as low as 0.9. It is expected that the correction factor obtained by EGSnrc wlll be more accurate as it is able to simulate the actual phantom material compositions. AXB have a limited material library, therefore it only approximates the composition of TLD, Composite cork and Plastic water, contributing to uncertainties in TLD correction factors. Conclusion: It is expected that the correction factors obtained by EGSnrc will be more accurate. Studies will be done to investigate the correction factors for higher energies where perturbation may be more pronounced.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin, Chengjun; Markussen, Troels; Thygesen, Kristian S., E-mail: thygesen@fysik.dtu.dk
We study the effect of functional groups (CH{sub 3}*4, OCH{sub 3}, CH{sub 3}, Cl, CN, F*4) on the electronic transport properties of 1,4-benzenediamine molecular junctions using the non-equilibrium Green function method. Exchange and correlation effects are included at various levels of theory, namely density functional theory (DFT), energy level-corrected DFT (DFT+Σ), Hartree-Fock and the many-body GW approximation. All methods reproduce the expected trends for the energy of the frontier orbitals according to the electron donating or withdrawing character of the substituent group. However, only the GW method predicts the correct ordering of the conductance amongst the molecules. The absolute GWmore » (DFT) conductance is within a factor of two (three) of the experimental values. Correcting the DFT orbital energies by a simple physically motivated scissors operator, Σ, can bring the DFT conductances close to experiments, but does not improve on the relative ordering. We ascribe this to a too strong pinning of the molecular energy levels to the metal Fermi level by DFT which suppresses the variation in orbital energy with functional group.« less
A study on scattering correction for γ-photon 3D imaging test method
NASA Astrophysics Data System (ADS)
Xiao, Hui; Zhao, Min; Liu, Jiantang; Chen, Hao
2018-03-01
A pair of 511KeV γ-photons is generated during a positron annihilation. Their directions differ by 180°. The moving path and energy information can be utilized to form the 3D imaging test method in industrial domain. However, the scattered γ-photons are the major factors influencing the imaging precision of the test method. This study proposes a γ-photon single scattering correction method from the perspective of spatial geometry. The method first determines possible scattering points when the scattered γ-photon pair hits the detector pair. The range of scattering angle can then be calculated according to the energy window. Finally, the number of scattered γ-photons denotes the attenuation of the total scattered γ-photons along its moving path. The corrected γ-photons are obtained by deducting the scattered γ-photons from the original ones. Two experiments are conducted to verify the effectiveness of the proposed scattering correction method. The results concluded that the proposed scattering correction method can efficiently correct scattered γ-photons and improve the test accuracy.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-11
... for Residential Furnaces and Boilers Test Procedure Amendments; Correction AGENCY: Office of Energy..., 2011), a 180-day extension of the compliance date for recent amendments to the DOE test procedure for... DOE received this petition well after February 17, 2011, the Department believes a number of factors...
Higher order corrections to mixed QCD-EW contributions to Higgs boson production in gluon fusion
NASA Astrophysics Data System (ADS)
Bonetti, Marco; Melnikov, Kirill; Tancredi, Lorenzo
2018-03-01
We present an estimate of the next-to-leading-order (NLO) QCD corrections to mixed QCD-electroweak contributions to the Higgs boson production cross section in gluon fusion, combining the recently computed three-loop virtual corrections and the approximate treatment of real emission in the soft approximation. We find that the NLO QCD corrections to the mixed QCD-electroweak contributions are nearly identical to NLO QCD corrections to QCD Higgs production. Our result confirms an earlier estimate of these O (α αs2) effects by Anastasiou et al. [J. High Energy Phys. 04 (2009) 003, 10.1088/1126-6708/2009/04/003] and provides further support for the factorization approximation of QCD and electroweak corrections.
Zhu, X. R.
2000-01-01
Silicon diode dosimeters have been used routinely for in‐vivo dosimetry. Despite their popularity, an appropriate implementation of an in‐vivo dosimetry program using diode detectors remains a challenge for clinical physicists. One common approach is to relate the diode readout to the entrance dose, that is, dose to the reference depth of maximum dose such as dmax for the 10×10 cm2 field. Various correction factors are needed in order to properly infer the entrance dose from the diode readout, depending on field sizes, target‐to‐surface distances (TSD), and accessories (such as wedges and compensate filters). In some clinical practices, however, no correction factor is used. In this case, a diode‐dosimeter‐based in‐vivo dosimetry program may not serve the purpose effectively; that is, to provide an overall check of the dosimetry procedure. In this paper, we provide a formula to relate the diode readout to the entrance dose. Correction factors for TSD, field size, and wedges used in this formula are also clearly defined. Two types of commercial diode detectors, ISORAD (n‐type) and the newly available QED (p‐type) (Sun Nuclear Corporation), are studied. We compared correction factors for TSDs, field sizes, and wedges. Our results are consistent with the theory of radiation damage of silicon diodes. Radiation damage has been shown to be more serious for n‐type than for p‐type detectors. In general, both types of diode dosimeters require correction factors depending on beam energy, TSD, field size, and wedge. The magnitudes of corrections for QED (p‐type) diodes are smaller than ISORAD detectors. PACS number(s): 87.66.–a, 87.52.–g PMID:11674824
FIELD CALIBRATION OF A TLD ALBEDO DOSEMETER IN THE HIGH-ENERGY NEUTRON FIELD OF CERF.
Haninger, T; Kleinau, P; Haninger, S
2017-04-28
The new albedo dosemeter-type AWST-TL-GD 04 has been calibrated in the CERF neutron field (Cern-EU high-energy Reference Field). This type of albedo dosemeter is based on thermoluminescent detectors (TLDs) and used by the individual monitoring service of the Helmholtz Zentrum München (AWST) since 2015 for monitoring persons, who are exposed occupationally against photon and neutron radiation. The motivation for this experiment was to gain a field specific neutron correction factor Nn for workplaces at high-energy particle accelerators. Nn is a dimensionless factor relative to a basic detector calibration with 137Cs and is used to calculate the personal neutron dose in terms of Hp(10) from the neutron albedo signal. The results show that the sensitivity of the albedo dosemeter for this specific neutron field is not significantly lower as for fast neutrons of a radionuclide source like 252Cf. The neutron correction factor varies between 0.73 and 1.16 with a midrange value of 0.94. The albedo dosemeter is therefore appropriate to monitor persons, which are exposed at high-energy particle accelerators. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
SU-E-T-123: Anomalous Altitude Effect in Permanent Implant Brachytherapy Seeds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watt, E; Spencer, DP; Meyer, T
Purpose: Permanent seed implant brachytherapy procedures require the measurement of the air kerma strength of seeds prior to implant. This is typically accomplished using a well-type ionization chamber. Previous measurements (Griffin et al., 2005; Bohm et al., 2005) of several low-energy seeds using the air-communicating HDR 1000 Plus chamber have demonstrated that the standard temperature-pressure correction factor, P{sub TP}, may overcompensate for air density changes induced by altitude variations by up to 18%. The purpose of this work is to present empirical correction factors for two clinically-used seeds (IsoAid ADVANTAGE™ {sup 103}Pd and Nucletron selectSeed {sup 125}I) for which empiricalmore » altitude correction factors do not yet exist in the literature when measured with the HDR 1000 Plus chamber. Methods: An in-house constructed pressure vessel containing the HDR 1000 Plus well chamber and a digital barometer/thermometer was pumped or evacuated, as appropriate, to a variety of pressures from 725 to 1075 mbar. Current measurements, corrected with P{sub TP}, were acquired for each seed at these pressures and normalized to the reading at ‘standard’ pressure (1013.25 mbar). Results: Measurements in this study have shown that utilization of P{sub TP} can overcompensate in the corrected current reading by up to 20% and 17% for the IsoAid Pd-103 and the Nucletron I-125 seed respectively. Compared to literature correction factors for other seed models, the correction factors in this study diverge by up to 2.6% and 3.0% for iodine (with silver) and palladium respectively, indicating the need for seed-specific factors. Conclusion: The use of seed specific altitude correction factors can reduce uncertainty in the determination of air kerma strength. The empirical correction factors determined in this work can be applied in clinical quality assurance measurements of air kerma strength for two previously unpublished seed designs (IsoAid ADVANTAGE™ {sup 103}Pd and Nucletron selectSeed {sup 125}I) with the HDR 1000 Plus well chamber.« less
Wang, X; Chauvat, M-P; Ruterana, P; Walther, T
2017-12-01
We have applied our previous method of self-consistent k*-factors for absorption correction in energy-dispersive X-ray spectroscopy to quantify the indium content in X-ray maps of thick compound InGaN layers. The method allows us to quantify the indium concentration without measuring the sample thickness, density or beam current, and works even if there is a drastic local thickness change due to sample roughness or preferential thinning. The method is shown to select, point-by-point in a two-dimensional spectrum image or map, the k*-factor from the local Ga K/L intensity ratio that is most appropriate for the corresponding sample geometry, demonstrating it is not the sample thickness measured along the electron beam direction but the optical path length the X-rays have to travel through the sample that is relevant for the absorption correction. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blunden, P. G.; Melnitchouk, W.
We examine the two-photon exchange corrections to elastic electron-nucleon scattering within a dispersive approach, including contributions from both nucleon and Δ intermediate states. The dispersive analysis avoids off-shell uncertainties inherent in traditional approaches based on direct evaluation of loop diagrams, and guarantees the correct unitary behavior in the high energy limit. Using empirical information on the electromagnetic nucleon elastic and NΔ transition form factors, we compute the two-photon exchange corrections both algebraically and numerically. Finally, results are compared with recent measurements of e + p to e - p cross section ratios from the CLAS, VEPP-3 and OLYMPUS experiments.
Kohno, Ryosuke; Hotta, Kenji; Matsubara, Kana; Nishioka, Shie; Matsuura, Taeko; Kawashima, Mitsuhiko
2012-03-08
When in vivo proton dosimetry is performed with a metal-oxide semiconductor field-effect transistor (MOSFET) detector, the response of the detector depends strongly on the linear energy transfer. The present study reports a practical method to correct the MOSFET response for linear energy transfer dependence by using a simplified Monte Carlo dose calculation method (SMC). A depth-output curve for a mono-energetic proton beam in polyethylene was measured with the MOSFET detector. This curve was used to calculate MOSFET output distributions with the SMC (SMC(MOSFET)). The SMC(MOSFET) output value at an arbitrary point was compared with the value obtained by the conventional SMC(PPIC), which calculates proton dose distributions by using the depth-dose curve determined by a parallel-plate ionization chamber (PPIC). The ratio of the two values was used to calculate the correction factor of the MOSFET response at an arbitrary point. The dose obtained by the MOSFET detector was determined from the product of the correction factor and the MOSFET raw dose. When in vivo proton dosimetry was performed with the MOSFET detector in an anthropomorphic phantom, the corrected MOSFET doses agreed with the SMC(PPIC) results within the measurement error. To our knowledge, this is the first report of successful in vivo proton dosimetry with a MOSFET detector.
Power inversion design for ocean wave energy harvesting
NASA Astrophysics Data System (ADS)
Talebani, Anwar N.
The needs for energy sources are increasing day by day because of several factors, such as oil depletion, and global climate change due to the higher level of CO2, so the exploration of various renewable energy sources is very promising area of study. The available ocean waves can be utilized as free source of energy as the water covers 70% of the earth surface. This thesis presents the ocean wave energy as a source of renewable energy. By addressing the problem of designing efficient power electronics system to deliver 5 KW from the induction generator to the grid with less possible losses and harmonics as possible and to control current fed to the grid to successfully harvest ocean wave energy. We design an AC-DC full bridge rectifier converter, and a DC-DC boost converter to harvest wave energy from AC to regulated DC. In order to increase the design efficiency, we need to increase the power factor from (0.5-0.6) to 1. This is accomplished by designing the boost converter with power factor correction in continues mode with RC circuit as an input to the boost converter power factor correction. This design results in a phase shift between the input current and voltage of the full bridge rectifier to generate a small reactive power. The reactive power is injected to the induction generator to maintain its functionality by generating a magnetic field in its stator. Next, we design a single-phase pulse width modulator full bridge voltage source DC-AC grid-tied mode inverter to harvest regulated DC wave energy to AC. The designed inverter is modulated by inner current loop, to control current injected to the grid with minimal filter component to maintain power quality at the grid. The simulation results show that our design successfully control the current level fed to the grid. It is noteworthy that the simulated efficiency is higher than the calculated one since we used an ideal switch in the simulated circuit.
Frank, Florian; Liu, Chen; Scanziani, Alessio; Alpak, Faruk O; Riviere, Beatrice
2018-08-01
We consider an energy-based boundary condition to impose an equilibrium wetting angle for the Cahn-Hilliard-Navier-Stokes phase-field model on voxel-set-type computational domains. These domains typically stem from μCT (micro computed tomography) imaging of porous rock and approximate a (on μm scale) smooth domain with a certain resolution. Planar surfaces that are perpendicular to the main axes are naturally approximated by a layer of voxels. However, planar surfaces in any other directions and curved surfaces yield a jagged/topologically rough surface approximation by voxels. For the standard Cahn-Hilliard formulation, where the contact angle between the diffuse interface and the domain boundary (fluid-solid interface/wall) is 90°, jagged surfaces have no impact on the contact angle. However, a prescribed contact angle smaller or larger than 90° on jagged voxel surfaces is amplified. As a remedy, we propose the introduction of surface energy correction factors for each fluid-solid voxel face that counterbalance the difference of the voxel-set surface area with the underlying smooth one. The discretization of the model equations is performed with the discontinuous Galerkin method. However, the presented semi-analytical approach of correcting the surface energy is equally applicable to other direct numerical methods such as finite elements, finite volumes, or finite differences, since the correction factors appear in the strong formulation of the model. Copyright © 2018 Elsevier Inc. All rights reserved.
Acoustic fill factors for a 120 inch diameter fairing
NASA Technical Reports Server (NTRS)
Lee, Y. Albert
1992-01-01
Data from the acoustic test of a 120-inch diameter payload fairing were collected and an analysis of acoustic fill factors were performed. Correction factors for obtaining a weighted spatial average of the interior sound pressure level (SPL) were derived based on this database and a normalized 200-inch diameter fairing database. The weighted fill factors were determined and compared with statistical energy analysis (VAPEPS code) derived fill factors. The comparison is found to be reasonable.
Hansen, Anja; Géneaux, Romain; Günther, Axel; Krüger, Alexander; Ripken, Tammo
2013-06-01
In femtosecond laser ophthalmic surgery tissue dissection is achieved by photodisruption based on laser induced optical breakdown. In order to minimize collateral damage to the eye laser surgery systems should be optimized towards the lowest possible energy threshold for photodisruption. However, optical aberrations of the eye and the laser system distort the irradiance distribution from an ideal profile which causes a rise in breakdown threshold energy even if great care is taken to minimize the aberrations of the system during design and alignment. In this study we used a water chamber with an achromatic focusing lens and a scattering sample as eye model and determined breakdown threshold in single pulse plasma transmission loss measurements. Due to aberrations, the precise lower limit for breakdown threshold irradiance in water is still unknown. Here we show that the threshold energy can be substantially reduced when using adaptive optics to improve the irradiance distribution by spatial beam shaping. We found that for initial aberrations with a root-mean-square wave front error of only one third of the wavelength the threshold energy can still be reduced by a factor of three if the aberrations are corrected to the diffraction limit by adaptive optics. The transmitted pulse energy is reduced by 17% at twice the threshold. Furthermore, the gas bubble motions after breakdown for pulse trains at 5 kilohertz repetition rate show a more transverse direction in the corrected case compared to the more spherical distribution without correction. Our results demonstrate how both applied and transmitted pulse energy could be reduced during ophthalmic surgery when correcting for aberrations. As a consequence, the risk of retinal damage by transmitted energy and the extent of collateral damage to the focal volume could be minimized accordingly when using adaptive optics in fs-laser surgery.
Hansen, Anja; Géneaux, Romain; Günther, Axel; Krüger, Alexander; Ripken, Tammo
2013-01-01
In femtosecond laser ophthalmic surgery tissue dissection is achieved by photodisruption based on laser induced optical breakdown. In order to minimize collateral damage to the eye laser surgery systems should be optimized towards the lowest possible energy threshold for photodisruption. However, optical aberrations of the eye and the laser system distort the irradiance distribution from an ideal profile which causes a rise in breakdown threshold energy even if great care is taken to minimize the aberrations of the system during design and alignment. In this study we used a water chamber with an achromatic focusing lens and a scattering sample as eye model and determined breakdown threshold in single pulse plasma transmission loss measurements. Due to aberrations, the precise lower limit for breakdown threshold irradiance in water is still unknown. Here we show that the threshold energy can be substantially reduced when using adaptive optics to improve the irradiance distribution by spatial beam shaping. We found that for initial aberrations with a root-mean-square wave front error of only one third of the wavelength the threshold energy can still be reduced by a factor of three if the aberrations are corrected to the diffraction limit by adaptive optics. The transmitted pulse energy is reduced by 17% at twice the threshold. Furthermore, the gas bubble motions after breakdown for pulse trains at 5 kilohertz repetition rate show a more transverse direction in the corrected case compared to the more spherical distribution without correction. Our results demonstrate how both applied and transmitted pulse energy could be reduced during ophthalmic surgery when correcting for aberrations. As a consequence, the risk of retinal damage by transmitted energy and the extent of collateral damage to the focal volume could be minimized accordingly when using adaptive optics in fs-laser surgery. PMID:23761849
Correction of Hydrostatic Cluster Masses through Power Ratios and Weak Lensing
NASA Astrophysics Data System (ADS)
Mahdavi, Andisheh
2009-09-01
The evolution of rich, X-ray emitting clusters of galaxies has given us precise measurements of the cosmological parameters, with dramatic constraints on the dark energy equation of state. Built into these measurements are wholesale corrections for the infamous "X-ray mass underestimate"---the fact that X-ray masses are systematically low due to the incomplete thermalization of the intracluster plasma. We seek to refine the mass correction for cosmological use through morphological power ratios. Power ratios deliver more accurate correction factors because they take into account variations in substructure from cluster to cluster. We will test their ability to correct X-ray masses by comparing hydrostatic and weak lensing mass profiles for a sample of 44 rich clusters of galaxies.
Characterization of the nanoDot OSLD dosimeter in CT.
Scarboro, Sarah B; Cody, Dianna; Alvarez, Paola; Followill, David; Court, Laurence; Stingo, Francesco C; Zhang, Di; McNitt-Gray, Michael; Kry, Stephen F
2015-04-01
The extensive use of computed tomography (CT) in diagnostic procedures is accompanied by a growing need for more accurate and patient-specific dosimetry techniques. Optically stimulated luminescent dosimeters (OSLDs) offer a potential solution for patient-specific CT point-based surface dosimetry by measuring air kerma. The purpose of this work was to characterize the OSLD nanoDot for CT dosimetry, quantifying necessary correction factors, and evaluating the uncertainty of these factors. A characterization of the Landauer OSL nanoDot (Landauer, Inc., Greenwood, IL) was conducted using both measurements and theoretical approaches in a CT environment. The effects of signal depletion, signal fading, dose linearity, and angular dependence were characterized through direct measurement for CT energies (80-140 kV) and delivered doses ranging from ∼5 to >1000 mGy. Energy dependence as a function of scan parameters was evaluated using two independent approaches: direct measurement and a theoretical approach based on Burlin cavity theory and Monte Carlo simulated spectra. This beam-quality dependence was evaluated for a range of CT scanning parameters. Correction factors for the dosimeter response in terms of signal fading, dose linearity, and angular dependence were found to be small for most measurement conditions (<3%). The relative uncertainty was determined for each factor and reported at the two-sigma level. Differences in irradiation geometry (rotational versus static) resulted in a difference in dosimeter signal of 3% on average. Beam quality varied with scan parameters and necessitated the largest correction factor, ranging from 0.80 to 1.15 relative to a calibration performed in air using a 120 kV beam. Good agreement was found between the theoretical and measurement approaches. Correction factors for the measurement of air kerma were generally small for CT dosimetry, although angular effects, and particularly effects due to changes in beam quality, could be more substantial. In particular, it would likely be necessary to account for variations in CT scan parameters and measurement location when performing CT dosimetry using OSLD.
Correction factors to convert microdosimetry measurements in silicon to tissue in 12C ion therapy.
Bolst, David; Guatelli, Susanna; Tran, Linh T; Chartier, Lachlan; Lerch, Michael L F; Matsufuji, Naruhiro; Rosenfeld, Anatoly B
2017-03-21
Silicon microdosimetry is a promising technology for heavy ion therapy (HIT) quality assurance, because of its sub-mm spatial resolution and capability to determine radiation effects at a cellular level in a mixed radiation field. A drawback of silicon is not being tissue-equivalent, thus the need to convert the detector response obtained in silicon to tissue. This paper presents a method for converting silicon microdosimetric spectra to tissue for a therapeutic 12 C beam, based on Monte Carlo simulations. The energy deposition spectra in a 10 μm sized silicon cylindrical sensitive volume (SV) were found to be equivalent to those measured in a tissue SV, with the same shape, but with dimensions scaled by a factor κ equal to 0.57 and 0.54 for muscle and water, respectively. A low energy correction factor was determined to account for the enhanced response in silicon at low energy depositions, produced by electrons. The concept of the mean path length [Formula: see text] to calculate the lineal energy was introduced as an alternative to the mean chord length [Formula: see text] because it was found that adopting Cauchy's formula for the [Formula: see text] was not appropriate for the radiation field typical of HIT as it is very directional. [Formula: see text] can be determined based on the peak of the lineal energy distribution produced by the incident carbon beam. Furthermore it was demonstrated that the thickness of the SV along the direction of the incident 12 C ion beam can be adopted as [Formula: see text]. The tissue equivalence conversion method and [Formula: see text] were adopted to determine the RBE 10 , calculated using a modified microdosimetric kinetic model, applied to the microdosimetric spectra resulting from the simulation study. Comparison of the RBE 10 along the Bragg peak to experimental TEPC measurements at HIMAC, NIRS, showed good agreement. Such agreement demonstrates the validity of the developed tissue equivalence correction factors and of the determination of [Formula: see text].
Monte Carlo study of si diode response in electron beams.
Wang, Lilie L W; Rogers, David W O
2007-05-01
Silicon semiconductor diodes measure almost the same depth-dose distributions in both photon and electron beams as those measured by ion chambers. A recent study in ion chamber dosimetry has suggested that the wall correction factor for a parallel-plate ion chamber in electron beams changes with depth by as much as 6%. To investigate diode detector response with respect to depth, a silicon diode model is constructed and the water/silicon dose ratio at various depths in electron beams is calculated using EGSnrc. The results indicate that, for this particular diode model, the diode response per unit water dose (or water/diode dose ratio) in both 6 and 18 MeV electron beams is flat within 2% versus depth, from near the phantom surface to the depth of R50 (with calculation uncertainty <0.3%). This suggests that there must be some other correction factors for ion chambers that counter-balance the large wall correction factor at depth in electron beams. In addition, the beam quality and field-size dependence of the diode model are also calculated. The results show that the water/diode dose ratio remains constant within 2% over the electron energy range from 6 to 18 MeV. The water/diode dose ratio does not depend on field size as long as the incident electron beam is broad and the electron energy is high. However, for a very small beam size (1 X 1 cm(2)) and low electron energy (6 MeV), the water/diode dose ratio may decrease by more than 2% compared to that of a broad beam.
NASA Astrophysics Data System (ADS)
He, L.-C.; Diao, L.-J.; Sun, B.-H.; Zhu, L.-H.; Zhao, J.-W.; Wang, M.; Wang, K.
2018-02-01
A Monte Carlo method based on the GEANT4 toolkit has been developed to correct the full-energy peak (FEP) efficiencies of a high purity germanium (HPGe) detector equipped with a low background shielding system, and moreover evaluated using summing peaks in a numerical way. It is found that the FEP efficiencies of 60Co, 133Ba and 152Eu can be improved up to 18% by taking the calculated true summing coincidence factors (TSCFs) correction into account. Counts of summing coincidence γ peaks in the spectrum of 152Eu can be well reproduced using the corrected efficiency curve within an accuracy of 3%.
Finite-nuclear-size contribution to the g factor of a bound electron: Higher-order effects
NASA Astrophysics Data System (ADS)
Karshenboim, Savely G.; Ivanov, Vladimir G.
2018-02-01
A precision comparison of theory and experiments on the g factor of an electron bound in a hydrogenlike ion with a spinless nucleus requires a detailed account of finite-nuclear-size contributions. While the relativistic corrections to the leading finite-size contribution are known, the higher-order effects need an additional consideration. Two results are presented in the paper. One is on the anomalous-magnetic-moment correction to the finite-size effects and the other is due to higher-order effects in Z α m RN . We also present here a method to relate the contributions to the g factor of a bound electron in a hydrogenlike atom to its energy within a nonrelativistic approach.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chofor, N; Poppe, B; Nebah, F
Purpose: In a brachytherapy photon field in water the fluence-averaged mean photon energy Em at the point of measurement correlates with the radiation quality correction factor kQ of a non water-equivalent detector. To support the experimental assessment of Em, we show that the normalized signal ratio NSR of a pair of radiation detectors, an unshielded silicon diode and a diamond detector can serve to measure quantity Em in a water phantom at a Ir-192 unit. Methods: Photon fluence spectra were computed in EGSnrc based on a detailed model of the GammaMed source. Factor kQ was calculated as the ratio ofmore » the detector's spectrum-weighted responses under calibration conditions at a 60Co unit and under brachytherapy conditions at various radial distances from the source. The NSR was investigated for a pair of a p-type unshielded silicon diode 60012 and a synthetic single crystal diamond detector 60019 (both PTW Freiburg). Each detector was positioned according to its effective point of measurement, with its axis facing the source. Lateral signal profiles were scanned under complete scatter conditions, and the NSR was determined as the quotient of the signal ratio under application conditions x and that at position r-ref = 1 cm. Results: The radiation quality correction factor kQ shows a close correlation with the mean photon energy Em. The NSR of the diode/diamond pair changes by a factor of two from 0–18 cm from the source, while Em drops from 350 to 150 keV. Theoretical and measured NSR profiles agree by ± 2 % for points within 5 cm from the source. Conclusion: In the presence of the close correlation between radiation quality correction factor kQ and photon mean energy Em, the NSR provides a practical means of assessing Em under clinical conditions. Precise detector positioning is the major challenge.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stanke, Monika, E-mail: monika@fizyka.umk.pl; Palikot, Ewa, E-mail: epalikot@doktorant.umk.pl; Adamowicz, Ludwik, E-mail: ludwik@email.arizona.edu
2016-05-07
Algorithms for calculating the leading mass-velocity (MV) and Darwin (D) relativistic corrections are derived for electronic wave functions expanded in terms of n-electron explicitly correlated Gaussian functions with shifted centers and without pre-exponential angular factors. The algorithms are implemented and tested in calculations of MV and D corrections for several points on the ground-state potential energy curves of the H{sub 2} and LiH molecules. The algorithms are general and can be applied in calculations of systems with an arbitrary number of electrons.
Electron fluence correction factors for various materials in clinical electron beams.
Olivares, M; DeBlois, F; Podgorsak, E B; Seuntjens, J P
2001-08-01
Relative to solid water, electron fluence correction factors at the depth of dose maximum in bone, lung, aluminum, and copper for nominal electron beam energies of 9 MeV and 15 MeV of the Clinac 18 accelerator have been determined experimentally and by Monte Carlo calculation. Thermoluminescent dosimeters were used to measure depth doses in these materials. The measured relative dose at dmax in the various materials versus that of solid water, when irradiated with the same number of monitor units, has been used to calculate the ratio of electron fluence for the various materials to that of solid water. The beams of the Clinac 18 were fully characterized using the EGS4/BEAM system. EGSnrc with the relativistic spin option turned on was used to optimize the primary electron energy at the exit window, and to calculate depth doses in the five phantom materials using the optimized phase-space data. Normalizing all depth doses to the dose maximum in solid water stopping power ratio corrected, measured depth doses and calculated depth doses differ by less than +/- 1% at the depth of dose maximum and by less than 4% elsewhere. Monte Carlo calculated ratios of doses in each material to dose in LiF were used to convert the TLD measurements at the dose maximum into dose at the center of the TLD in the phantom material. Fluence perturbation correction factors for a LiF TLD at the depth of dose maximum deduced from these calculations amount to less than 1% for 0.15 mm thick TLDs in low Z materials and are between 1% and 3% for TLDs in Al and Cu phantoms. Electron fluence ratios of the studied materials relative to solid water vary between 0.83+/-0.01 and 1.55+/-0.02 for materials varying in density from 0.27 g/cm3 (lung) to 8.96 g/cm3 (Cu). The difference in electron fluence ratios derived from measurements and calculations ranges from -1.6% to +0.2% at 9 MeV and from -1.9% to +0.2% at 15 MeV and is not significant at the 1sigma level. Excluding the data for Cu, electron fluence correction factors for open electron beams are approximately proportional to the electron density of the phantom material and only weakly dependent on electron beam energy.
Attenuation correction for the large non-human primate brain imaging using microPET.
Naidoo-Variawa, S; Lehnert, W; Kassiou, M; Banati, R; Meikle, S R
2010-04-21
Assessment of the biodistribution and pharmacokinetics of radiopharmaceuticals in vivo is often performed on animal models of human disease prior to their use in humans. The baboon brain is physiologically and neuro-anatomically similar to the human brain and is therefore a suitable model for evaluating novel CNS radioligands. We previously demonstrated the feasibility of performing baboon brain imaging on a dedicated small animal PET scanner provided that the data are accurately corrected for degrading physical effects such as photon attenuation in the body. In this study, we investigated factors affecting the accuracy and reliability of alternative attenuation correction strategies when imaging the brain of a large non-human primate (papio hamadryas) using the microPET Focus 220 animal scanner. For measured attenuation correction, the best bias versus noise performance was achieved using a (57)Co transmission point source with a 4% energy window. The optimal energy window for a (68)Ge transmission source operating in singles acquisition mode was 20%, independent of the source strength, providing bias-noise performance almost as good as for (57)Co. For both transmission sources, doubling the acquisition time had minimal impact on the bias-noise trade-off for corrected emission images, despite observable improvements in reconstructed attenuation values. In a [(18)F]FDG brain scan of a female baboon, both measured attenuation correction strategies achieved good results and similar SNR, while segmented attenuation correction (based on uncorrected emission images) resulted in appreciable regional bias in deep grey matter structures and the skull. We conclude that measured attenuation correction using a single pass (57)Co (4% energy window) or (68)Ge (20% window) transmission scan achieves an excellent trade-off between bias and propagation of noise when imaging the large non-human primate brain with a microPET scanner.
Attenuation correction for the large non-human primate brain imaging using microPET
NASA Astrophysics Data System (ADS)
Naidoo-Variawa, S.; Lehnert, W.; Kassiou, M.; Banati, R.; Meikle, S. R.
2010-04-01
Assessment of the biodistribution and pharmacokinetics of radiopharmaceuticals in vivo is often performed on animal models of human disease prior to their use in humans. The baboon brain is physiologically and neuro-anatomically similar to the human brain and is therefore a suitable model for evaluating novel CNS radioligands. We previously demonstrated the feasibility of performing baboon brain imaging on a dedicated small animal PET scanner provided that the data are accurately corrected for degrading physical effects such as photon attenuation in the body. In this study, we investigated factors affecting the accuracy and reliability of alternative attenuation correction strategies when imaging the brain of a large non-human primate (papio hamadryas) using the microPET Focus 220 animal scanner. For measured attenuation correction, the best bias versus noise performance was achieved using a 57Co transmission point source with a 4% energy window. The optimal energy window for a 68Ge transmission source operating in singles acquisition mode was 20%, independent of the source strength, providing bias-noise performance almost as good as for 57Co. For both transmission sources, doubling the acquisition time had minimal impact on the bias-noise trade-off for corrected emission images, despite observable improvements in reconstructed attenuation values. In a [18F]FDG brain scan of a female baboon, both measured attenuation correction strategies achieved good results and similar SNR, while segmented attenuation correction (based on uncorrected emission images) resulted in appreciable regional bias in deep grey matter structures and the skull. We conclude that measured attenuation correction using a single pass 57Co (4% energy window) or 68Ge (20% window) transmission scan achieves an excellent trade-off between bias and propagation of noise when imaging the large non-human primate brain with a microPET scanner.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sorriaux, J; Lee, J; ICTEAM Institute, Universite catholique de Louvain, Louvain-la-Neuve
2015-06-15
Purpose: The IAEA TRS-398 code of practice details the reference conditions for reference dosimetry of proton beams using ionization chambers and the required beam quality correction factors (kQ). Pencil beam scanning (PBS) requires multiple spots to reproduce the reference conditions. The objective is to demonstrate, using Monte Carlo (MC) calculations, that kQ factors for broad beams can be used for scanned beams under the same reference conditions with no significant additional uncertainty. We consider hereafter the general Alfonso formalism (Alfonso et al, 2008) for non-standard beam. Methods: To approach the reference conditions and the associated dose distributions, PBS must combinemore » many pencil beams with range modulation and shaping techniques different than those used in passive systems (broad beams). This might lead to a different energy spectrum at the measurement point. In order to evaluate the impact of these differences on kQ factors, ion chamber responses are computed with MC (Geant4 9.6) in a dedicated scanned pencil beam (Q-pcsr) producing a 10×10cm2 composite field with a flat dose distribution from 10 to 16 cm depth. Ion chamber responses are also computed by MC in a broad beam with quality Q-ds (double scattering). The dose distribution of Q -pcsr matches the dose distribution of Q-ds. k-(Q-pcsr,Q-ds) is computed for a 2×2×0.2cm{sup 3} idealized air cavity and a realistic plane-parallel ion chamber (IC). Results: Under reference conditions, quality correction factors for a scanned composite field versus a broad beam are the same for air cavity dose response, k-(Q-pcsr,Q-ds) =1.001±0.001 and for a Roos IC, k-(Q-pcsr,Q-ds) =0.999±0.005. Conclusion: Quality correction factors for ion chamber response in scanned and broad proton therapy beams are identical under reference conditions within the calculation uncertainties. The results indicate that quality correction factors published in IAEA TRS-398 can be used for scanned beams in the SOBP of a high-energy proton beam. Jefferson Sorriaux is financed by the Walloon Region under the convention 1217662. Jefferson Sorriaux is sponsored by a public-private partnership IBA - Walloon Region.« less
Energy propagation by transverse waves in multiple flux tube systems using filling factors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Doorsselaere, T.; Gijsen, S. E.; Andries, J.
2014-11-01
In the last few years, it has been found that transverse waves are present at all times in coronal loops or spicules. Their energy has been estimated with an expression derived for bulk Alfvén waves in homogeneous media, with correspondingly uniform wave energy density and flux. The kink mode, however, is localized in space with the energy density and flux dependent on the position in the cross-sectional plane. The more relevant quantities for the kink mode are the integrals of the energy density and flux over the cross-sectional plane. The present paper provides an approximation to the energy propagated bymore » kink modes in an ensemble of flux tubes by means of combining the analysis of single flux tube kink oscillations with a filling factor for the tube cross-sectional area. This finally allows one to compare the expressions for energy flux of Alfvén waves with an ensemble of kink waves. We find that the correction factor for the energy in kink waves, compared to the bulk Alfvén waves, is between f and 2f, where f is the density filling factor of the ensemble of flux tubes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
DiLabio, Gino A., E-mail: Gino.DiLabio@nrc.ca; Department of Chemistry, University of British Columbia, Okanagan, 3333 University Way, Kelowna, British Columbia V1V 1V7; Koleini, Mohammad
2014-05-14
Dispersion-correcting potentials (DCPs) are atom-centered Gaussian functions that are applied in a manner that is similar to effective core potentials. Previous work on DCPs has focussed on their use as a simple means of improving the ability of conventional density-functional theory methods to predict the binding energies of noncovalently bonded molecular dimers. We show in this work that DCPs developed for use with the LC-ωPBE functional along with 6-31+G(2d,2p) basis sets are capable of simultaneously improving predicted noncovalent binding energies of van der Waals dimer complexes and covalent bond dissociation enthalpies in molecules. Specifically, the DCPs developed herein for themore » C, H, N, and O atoms provide binding energies for a set of 66 noncovalently bonded molecular dimers (the “S66” set) with a mean absolute error (MAE) of 0.21 kcal/mol, which represents an improvement of more than a factor of 10 over unadorned LC-ωPBE/6-31+G(2d,2p) and almost a factor of two improvement over LC-ωPBE/6-31+G(2d,2p) used in conjunction with the “D3” pairwise dispersion energy corrections. In addition, the DCPs reduce the MAE of calculated X-H and X-Y (X,Y = C, H, N, O) bond dissociation enthalpies for a set of 40 species from 3.2 kcal/mol obtained with unadorned LC-ωPBE/6-31+G(2d,2p) to 1.6 kcal/mol. Our findings demonstrate that broad improvements to the performance of DFT methods may be achievable through the use of DCPs.« less
NASA Astrophysics Data System (ADS)
Faustov, R. N.; Martynenko, A. P.; Martynenko, F. A.; Sorokin, V. V.
2017-12-01
On the basis of quasipotential method in quantum electrodynamics we calculate nuclear finite size radiative corrections of order α(Zα) 5 to the Lamb shift in muonic hydrogen and helium. To construct the interaction potential of particles, which gives the necessary contributions to the energy spectrum, we use the method of projection operators to states with a definite spin. Separate analytic expressions for the contributions of the muon self-energy, the muon vertex operator and the amplitude with spanning photon are obtained. We present also numerical results for these contributions using modern experimental data on the electromagnetic form factors of light nuclei.
Albacete, Javier L
2007-12-31
We present predictions for the pseudorapidity density of charged particles produced in central Pb-Pb collisions at the LHC. Particle production in such collisions is calculated in the framework of k(t) factorization. The nuclear unintegrated gluon distributions at LHC energies are determined from numerical solutions of the Balitsky-Kovchegov equation including recently calculated running coupling corrections. The initial conditions for the evolution are fixed by fitting Relativistic Heavy Ion Collider data at collision energies square root[sNN]=130 and 200 GeV per nucleon. We obtain dNch(Pb-Pb)/deta(square root[sNN]=5.5 TeV)/eta=0 approximately 1290-1480.
Hotta, Kenji; Matsubara, Kana; Nishioka, Shie; Matsuura, Taeko; Kawashima, Mitsuhiko
2012-01-01
When in vivo proton dosimetry is performed with a metal‐oxide semiconductor field‐effect transistor (MOSFET) detector, the response of the detector depends strongly on the linear energy transfer. The present study reports a practical method to correct the MOSFET response for linear energy transfer dependence by using a simplified Monte Carlo dose calculation method (SMC). A depth‐output curve for a mono‐energetic proton beam in polyethylene was measured with the MOSFET detector. This curve was used to calculate MOSFET output distributions with the SMC (SMCMOSFET). The SMCMOSFET output value at an arbitrary point was compared with the value obtained by the conventional SMCPPIC, which calculates proton dose distributions by using the depth‐dose curve determined by a parallel‐plate ionization chamber (PPIC). The ratio of the two values was used to calculate the correction factor of the MOSFET response at an arbitrary point. The dose obtained by the MOSFET detector was determined from the product of the correction factor and the MOSFET raw dose. When in vivo proton dosimetry was performed with the MOSFET detector in an anthropomorphic phantom, the corrected MOSFET doses agreed with the SMCPPIC results within the measurement error. To our knowledge, this is the first report of successful in vivo proton dosimetry with a MOSFET detector. PACS number: 87.56.‐v PMID:22402385
Iancu, E.; Mueller, A. H.; Triantafyllopoulos, D. N.
2016-12-13
Within the Color Glass Condensate effective theory, we reconsider the next-to-leading order (NLO) calculation of the single inclusive particle production at forward rapidities in proton-nucleus collisions at high energy. Focusing on quark production for definiteness, we establish a new factorization scheme, perturbatively correct through NLO, in which there is no ‘rapidity subtraction’. That is, the NLO correction to the impact factor is not explicitly separated from the high-energy evolution. Our construction exploits the skeleton structure of the (NLO) Balitsky-Kovchegov equation, in which the first step of the evolution is explicitly singled out. The NLO impact factor is included by computingmore » this first emission with the exact kinematics for the emitted gluon, rather than by using the eikonal approximation. This particular calculation has already been presented in the literature, but the reorganization of the perturbation theory that we propose is new. As compared to the proposal in, our scheme is free of the fine-tuning inherent in the rapidity subtraction, which might be the origin of the negativity of the NLO cross-section observed in previous studies.« less
Generalized model screening potentials for Fermi-Dirac plasmas
NASA Astrophysics Data System (ADS)
Akbari-Moghanjoughi, M.
2016-04-01
In this paper, some properties of relativistically degenerate quantum plasmas, such as static ion screening, structure factor, and Thomson scattering cross-section, are studied in the framework of linearized quantum hydrodynamic theory with the newly proposed kinetic γ-correction to Bohm term in low frequency limit. It is found that the correction has a significant effect on the properties of quantum plasmas in all density regimes, ranging from solid-density up to that of white dwarf stars. It is also found that Shukla-Eliasson attractive force exists up to a few times the density of metals, and the ionic correlations are seemingly apparent in the radial distribution function signature. Simplified statically screened attractive and repulsive potentials are presented for zero-temperature Fermi-Dirac plasmas, valid for a wide range of quantum plasma number-density and atomic number values. Moreover, it is observed that crystallization of white dwarfs beyond a critical core number-density persists with this new kinetic correction, but it is shifted to a much higher number-density value of n0 ≃ 1.94 × 1037 cm-3 (1.77 × 1010 gr cm-3), which is nearly four orders of magnitude less than the nuclear density. It is found that the maximal Thomson scattering with the γ-corrected structure factor is a remarkable property of white dwarf stars. However, with the new γ-correction, the maximal scattering shifts to the spectrum region between hard X-ray and low-energy gamma-rays. White dwarfs composed of higher atomic-number ions are observed to maximally Thomson-scatter at slightly higher wavelengths, i.e., they maximally scatter slightly low-energy photons in the presence of correction.
Motion correction for improving the accuracy of dual-energy myocardial perfusion CT imaging
NASA Astrophysics Data System (ADS)
Pack, Jed D.; Yin, Zhye; Xiong, Guanglei; Mittal, Priya; Dunham, Simon; Elmore, Kimberly; Edic, Peter M.; Min, James K.
2016-03-01
Coronary Artery Disease (CAD) is the leading cause of death globally [1]. Modern cardiac computed tomography angiography (CCTA) is highly effective at identifying and assessing coronary blockages associated with CAD. The diagnostic value of this anatomical information can be substantially increased in combination with a non-invasive, low-dose, correlative, quantitative measure of blood supply to the myocardium. While CT perfusion has shown promise of providing such indications of ischemia, artifacts due to motion, beam hardening, and other factors confound clinical findings and can limit quantitative accuracy. In this paper, we investigate the impact of applying a novel motion correction algorithm to correct for motion in the myocardium. This motion compensation algorithm (originally designed to correct for the motion of the coronary arteries in order to improve CCTA images) has been shown to provide substantial improvements in both overall image quality and diagnostic accuracy of CCTA. We have adapted this technique for application beyond the coronary arteries and present an assessment of its impact on image quality and quantitative accuracy within the context of dual-energy CT perfusion imaging. We conclude that motion correction is a promising technique that can help foster the routine clinical use of dual-energy CT perfusion. When combined, the anatomical information of CCTA and the hemodynamic information from dual-energy CT perfusion should facilitate better clinical decisions about which patients would benefit from treatments such as stent placement, drug therapy, or surgery and help other patients avoid the risks and costs associated with unnecessary, invasive, diagnostic coronary angiography procedures.
NUCLEON Satellite Mission. Status and Plans
NASA Technical Reports Server (NTRS)
Bashindzhagyan, G.; Adams, J.; Bashindzhagyan, P.; Baranova, N.; Christl, M.; Chilingarian, A.; Chupin, I.; Derrickson, J.; Drury, L.; Egorov, N.
2003-01-01
The main objective of the NUCLEON satellite mission is direct measurements of the elemental energy spectra of high-energy (10(exp 11) - 10(exp 15) eV) cosmic rays with Kinematic Lightweight Energy Meter (KLEM) device. The design of the instrument has been corrected to increase geometry factor and improve charge resolution. The special mechanical and electronic systems have been developed for installation of the experimental apparatus in a regular Russian satellite. It is planned to launch the NUCLEON instrument in 2006.
Fluence correction factor for graphite calorimetry in a clinical high-energy carbon-ion beam.
Lourenço, A; Thomas, R; Homer, M; Bouchard, H; Rossomme, S; Renaud, J; Kanai, T; Royle, G; Palmans, H
2017-04-07
The aim of this work is to develop and adapt a formalism to determine absorbed dose to water from graphite calorimetry measurements in carbon-ion beams. Fluence correction factors, [Formula: see text], needed when using a graphite calorimeter to derive dose to water, were determined in a clinical high-energy carbon-ion beam. Measurements were performed in a 290 MeV/n carbon-ion beam with a field size of 11 × 11 cm 2 , without modulation. In order to sample the beam, a plane-parallel Roos ionization chamber was chosen for its small collecting volume in comparison with the field size. Experimental information on fluence corrections was obtained from depth-dose measurements in water. This procedure was repeated with graphite plates in front of the water phantom. Fluence corrections were also obtained with Monte Carlo simulations through the implementation of three methods based on (i) the fluence distributions differential in energy, (ii) a ratio of calculated doses in water and graphite at equivalent depths and (iii) simulations of the experimental setup. The [Formula: see text] term increased in depth from 1.00 at the entrance toward 1.02 at a depth near the Bragg peak, and the average difference between experimental and numerical simulations was about 0.13%. Compared to proton beams, there was no reduction of the [Formula: see text] due to alpha particles because the secondary particle spectrum is dominated by projectile fragmentation. By developing a practical dose conversion technique, this work contributes to improving the determination of absolute dose to water from graphite calorimetry in carbon-ion beams.
Monte Carlo calculated correction factors for diodes and ion chambers in small photon fields.
Czarnecki, D; Zink, K
2013-04-21
The application of small photon fields in modern radiotherapy requires the determination of total scatter factors Scp or field factors Ω(f(clin), f(msr))(Q(clin), Q(msr)) with high precision. Both quantities require the knowledge of the field-size-dependent and detector-dependent correction factor k(f(clin), f(msr))(Q(clin), Q(msr)). The aim of this study is the determination of the correction factor k(f(clin), f(msr))(Q(clin), Q(msr)) for different types of detectors in a clinical 6 MV photon beam of a Siemens KD linear accelerator. The EGSnrc Monte Carlo code was used to calculate the dose to water and the dose to different detectors to determine the field factor as well as the mentioned correction factor for different small square field sizes. Besides this, the mean water to air stopping power ratio as well as the ratio of the mean energy absorption coefficients for the relevant materials was calculated for different small field sizes. As the beam source, a Monte Carlo based model of a Siemens KD linear accelerator was used. The results show that in the case of ionization chambers the detector volume has the largest impact on the correction factor k(f(clin), f(msr))(Q(clin), Q(msr)); this perturbation may contribute up to 50% to the correction factor. Field-dependent changes in stopping-power ratios are negligible. The magnitude of k(f(clin), f(msr))(Q(clin), Q(msr)) is of the order of 1.2 at a field size of 1 × 1 cm(2) for the large volume ion chamber PTW31010 and is still in the range of 1.05-1.07 for the PinPoint chambers PTW31014 and PTW31016. For the diode detectors included in this study (PTW60016, PTW 60017), the correction factor deviates no more than 2% from unity in field sizes between 10 × 10 and 1 × 1 cm(2), but below this field size there is a steep decrease of k(f(clin), f(msr))(Q(clin), Q(msr)) below unity, i.e. a strong overestimation of dose. Besides the field size and detector dependence, the results reveal a clear dependence of the correction factor on the accelerator geometry for field sizes below 1 × 1 cm(2), i.e. on the beam spot size of the primary electrons hitting the target. This effect is especially pronounced for the ionization chambers. In conclusion, comparing all detectors, the unshielded diode PTW60017 is highly recommended for small field dosimetry, since its correction factor k(f(clin), f(msr))(Q(clin), Q(msr)) is closest to unity in small fields and mainly independent of the electron beam spot size.
Wang, L L W; Perles, L A; Archambault, L; Sahoo, N; Mirkovic, D; Beddar, S
2013-01-01
The plastic scintillation detectors (PSD) have many advantages over other detectors in small field dosimetry due to its high spatial resolution, excellent water equivalence and instantaneous readout. However, in proton beams, the PSDs will undergo a quenching effect which makes the signal level reduced significantly when the detector is close to Bragg peak where the linear energy transfer (LET) for protons is very high. This study measures the quenching correction factor (QCF) for a PSD in clinical passive-scattering proton beams and investigates the feasibility of using PSDs in depth-dose measurements in proton beams. A polystyrene based PSD (BCF-12, ϕ0.5mm×4mm) was used to measure the depth-dose curves in a water phantom for monoenergetic unmodulated proton beams of nominal energies 100, 180 and 250 MeV. A Markus plane-parallel ion chamber was also used to get the dose distributions for the same proton beams. From these results, the QCF as a function of depth was derived for these proton beams. Next, the LET depth distributions for these proton beams were calculated by using the MCNPX Monte Carlo code, based on the experimentally validated nozzle models for these passive-scattering proton beams. Then the relationship between the QCF and the proton LET could be derived as an empirical formula. Finally, the obtained empirical formula was applied to the PSD measurements to get the corrected depth-dose curves and they were compared to the ion chamber measurements. A linear relationship between QCF and LET, i.e. Birks' formula, was obtained for the proton beams studied. The result is in agreement with the literature. The PSD measurements after the quenching corrections agree with ion chamber measurements within 5%. PSDs are good dosimeters for proton beam measurement if the quenching effect is corrected appropriately. PMID:23128412
NASA Astrophysics Data System (ADS)
Wang, L. L. W.; Perles, L. A.; Archambault, L.; Sahoo, N.; Mirkovic, D.; Beddar, S.
2012-12-01
Plastic scintillation detectors (PSDs) have many advantages over other detectors in small field dosimetry due to their high spatial resolution, excellent water equivalence and instantaneous readout. However, in proton beams, the PSDs undergo a quenching effect which makes the signal level reduced significantly when the detector is close to the Bragg peak where the linear energy transfer (LET) for protons is very high. This study measures the quenching correction factor (QCF) for a PSD in clinical passive-scattering proton beams and investigates the feasibility of using PSDs in depth-dose measurements in proton beams. A polystyrene-based PSD (BCF-12, ϕ0.5 mm × 4 mm) was used to measure the depth-dose curves in a water phantom for monoenergetic unmodulated proton beams of nominal energies 100, 180 and 250 MeV. A Markus plane-parallel ion chamber was also used to get the dose distributions for the same proton beams. From these results, the QCF as a function of depth was derived for these proton beams. Next, the LET depth distributions for these proton beams were calculated by using the MCNPX Monte Carlo code, based on the experimentally validated nozzle models for these passive-scattering proton beams. Then the relationship between the QCF and the proton LET could be derived as an empirical formula. Finally, the obtained empirical formula was applied to the PSD measurements to get the corrected depth-dose curves and they were compared to the ion chamber measurements. A linear relationship between the QCF and LET, i.e. Birks' formula, was obtained for the proton beams studied. The result is in agreement with the literature. The PSD measurements after the quenching corrections agree with ion chamber measurements within 5%. PSDs are good dosimeters for proton beam measurement if the quenching effect is corrected appropriately.
Ding, George X; Malcolm, Arnold W
2013-09-07
There is a growing interest in patient exposure resulting from an x-ray imaging procedure used in image-guided radiation therapy. This study explores a feasibility to use a commercially available optically stimulated luminescence (OSL) dosimeter, nanoDot, for estimating imaging radiation exposure to patients. The kilovoltage x-ray sources used for kV-cone-beam CT (CBCT) imaging acquisition procedures were from a Varian on-board imager (OBI) image system. An ionization chamber was used to determine the energy response of nanoDot dosimeters. The chamber calibration factors for x-ray beam quality specified by half-value layer were obtained from an Accredited Dosimetry Calibration Laboratory. The Monte Carlo calculated dose distributions were used to validate the dose distributions measured by using the nanoDot dosimeters in phantom and in vivo. The range of the energy correction factors for the nanoDot as a function of photon energy and bow-tie filters was found to be 0.88-1.13 for different kVp and bow-tie filters. Measurement uncertainties of nanoDot were approximately 2-4% after applying the energy correction factors. The tests of nanoDot placed on a RANDO phantom and on patient's skin showed consistent results. The nanoDot is suitable dosimeter for in vivo dosimetry due to its small size and manageable energy dependence. The dosimeter placed on a patient's skin has potential to serve as an experimental method to monitor and to estimate patient exposure resulting from a kilovoltage x-ray imaging procedure. Due to its large variation in energy response, nanoDot is not suitable to measure radiation doses resulting from mixed beams of megavoltage therapeutic and kilovoltage imaging radiations.
NASA Astrophysics Data System (ADS)
Ding, George X.; Malcolm, Arnold W.
2013-09-01
There is a growing interest in patient exposure resulting from an x-ray imaging procedure used in image-guided radiation therapy. This study explores a feasibility to use a commercially available optically stimulated luminescence (OSL) dosimeter, nanoDot, for estimating imaging radiation exposure to patients. The kilovoltage x-ray sources used for kV-cone-beam CT (CBCT) imaging acquisition procedures were from a Varian on-board imager (OBI) image system. An ionization chamber was used to determine the energy response of nanoDot dosimeters. The chamber calibration factors for x-ray beam quality specified by half-value layer were obtained from an Accredited Dosimetry Calibration Laboratory. The Monte Carlo calculated dose distributions were used to validate the dose distributions measured by using the nanoDot dosimeters in phantom and in vivo. The range of the energy correction factors for the nanoDot as a function of photon energy and bow-tie filters was found to be 0.88-1.13 for different kVp and bow-tie filters. Measurement uncertainties of nanoDot were approximately 2-4% after applying the energy correction factors. The tests of nanoDot placed on a RANDO phantom and on patient's skin showed consistent results. The nanoDot is suitable dosimeter for in vivo dosimetry due to its small size and manageable energy dependence. The dosimeter placed on a patient's skin has potential to serve as an experimental method to monitor and to estimate patient exposure resulting from a kilovoltage x-ray imaging procedure. Due to its large variation in energy response, nanoDot is not suitable to measure radiation doses resulting from mixed beams of megavoltage therapeutic and kilovoltage imaging radiations.
A simple but fully nonlocal correction to the random phase approximation
NASA Astrophysics Data System (ADS)
Ruzsinszky, Adrienn; Perdew, John P.; Csonka, Gábor I.
2011-03-01
The random phase approximation (RPA) stands on the top rung of the ladder of ground-state density functional approximations. The simple or direct RPA has been found to predict accurately many isoelectronic energy differences. A nonempirical local or semilocal correction to this direct RPA leaves isoelectronic energy differences almost unchanged, while improving total energies, ionization energies, etc., but fails to correct the RPA underestimation of molecular atomization energies. Direct RPA and its semilocal correction may miss part of the middle-range multicenter nonlocality of the correlation energy in a molecule. Here we propose a fully nonlocal, hybrid-functional-like addition to the semilocal correction. The added full nonlocality is important in molecules, but not in atoms. Under uniform-density scaling, this fully nonlocal correction scales like the second-order-exchange contribution to the correlation energy, an important part of the correction to direct RPA, and like the semilocal correction itself. For the atomization energies of ten molecules, and with the help of one fit parameter, it performs much better than the elaborate second-order screened exchange correction.
Communication: Finite size correction in periodic coupled cluster theory calculations of solids.
Liao, Ke; Grüneis, Andreas
2016-10-14
We present a method to correct for finite size errors in coupled cluster theory calculations of solids. The outlined technique shares similarities with electronic structure factor interpolation methods used in quantum Monte Carlo calculations. However, our approach does not require the calculation of density matrices. Furthermore we show that the proposed finite size corrections achieve chemical accuracy in the convergence of second-order Møller-Plesset perturbation and coupled cluster singles and doubles correlation energies per atom for insulating solids with two atomic unit cells using 2 × 2 × 2 and 3 × 3 × 3 k-point meshes only.
Dispersive approach to two-photon exchange in elastic electron-proton scattering
Blunden, P. G.; Melnitchouk, W.
2017-06-14
We examine the two-photon exchange corrections to elastic electron-nucleon scattering within a dispersive approach, including contributions from both nucleon and Δ intermediate states. The dispersive analysis avoids off-shell uncertainties inherent in traditional approaches based on direct evaluation of loop diagrams, and guarantees the correct unitary behavior in the high energy limit. Using empirical information on the electromagnetic nucleon elastic and NΔ transition form factors, we compute the two-photon exchange corrections both algebraically and numerically. Finally, results are compared with recent measurements of e + p to e - p cross section ratios from the CLAS, VEPP-3 and OLYMPUS experiments.
NASA Astrophysics Data System (ADS)
Ehringfeld, Christian; Schmid, Susanne; Poljanc, Karin; Kirisits, Christian; Aiginger, Hannes; Georg, Dietmar
2005-01-01
The purpose of this study was to investigate the dosimetric characteristics (energy dependence, linearity, fading, reproducibility, etc) of MOSFET detectors for in vivo dosimetry in the kV x-ray range. The experience of MOSFET in vivo dosimetry in a pre-clinical study using the Alderson phantom and in clinical practice is also reported. All measurements were performed with a Gulmay D3300 kV unit and TN-502RDI MOSFET detectors. For the determination of correction factors different solid phantoms and a calibrated Farmer-type chamber were used. The MOSFET signal was linear with applied dose in the range from 0.2 to 2 Gy for all energies. Due to fading it is recommended to read the MOSFET signal during the first 15 min after irradiation. For long time intervals between irradiation and readout the fading can vary largely with the detector. The temperature dependence of the detector signal was small (0.3% °C-1) in the temperature range between 22 and 40 °C. The variation of the measuring signal with beam incidence amounts to ±5% and should be considered in clinical applications. Finally, for entrance dose measurements energy-dependent calibration factors, correction factors for field size and irradiated cable length were applied. The overall accuracy, for all measurements, was dominated by reproducibility as a function of applied dose. During the pre-clinical in vivo study, the agreement between MOSFET and TLD measurements was well within 3%. The results of MOSFET measurements, to determine the dosimetric characteristics as well as clinical applications, showed that MOSFET detectors are suitable for in vivo dosimetry in the kV range. However, some energy-dependent dosimetry effects need to be considered and corrected for. Due to reproducibility effects at low dose levels accurate in vivo measurements are only possible if the applied dose is equal to or larger than 2 Gy.
Ehringfeld, Christian; Schmid, Susanne; Poljanc, Karin; Kirisits, Christian; Aiginger, Hannes; Georg, Dietmar
2005-01-21
The purpose of this study was to investigate the dosimetric characteristics (energy dependence, linearity, fading, reproducibility, etc) of MOSFET detectors for in vivo dosimetry in the kV x-ray range. The experience of MOSFET in vivo dosimetry in a pre-clinical study using the Alderson phantom and in clinical practice is also reported. All measurements were performed with a Gulmay D3300 kV unit and TN-502RDI MOSFET detectors. For the determination of correction factors different solid phantoms and a calibrated Farmer-type chamber were used. The MOSFET signal was linear with applied dose in the range from 0.2 to 2 Gy for all energies. Due to fading it is recommended to read the MOSFET signal during the first 15 min after irradiation. For long time intervals between irradiation and readout the fading can vary largely with the detector. The temperature dependence of the detector signal was small (0.3% degrees C(-1)) in the temperature range between 22 and 40 degrees C. The variation of the measuring signal with beam incidence amounts to +/-5% and should be considered in clinical applications. Finally, for entrance dose measurements energy-dependent calibration factors, correction factors for field size and irradiated cable length were applied. The overall accuracy, for all measurements, was dominated by reproducibility as a function of applied dose. During the pre-clinical in vivo study, the agreement between MOSFET and TLD measurements was well within 3%. The results of MOSFET measurements, to determine the dosimetric characteristics as well as clinical applications, showed that MOSFET detectors are suitable for in vivo dosimetry in the kV range. However, some energy-dependent dosimetry effects need to be considered and corrected for. Due to reproducibility effects at low dose levels accurate in vivo measurements are only possible if the applied dose is equal to or larger than 2 Gy.
1993-09-01
Different Size Transformers (Per Transformer ) 41 15 Additional Energy Losses for Mis-Sized Transformers (Per Transformer ) 42 16 Power System ...directly affects the amount of neutral line power loss in the system . Since most Army three-phase loads are distribution transformers spread out over a...61 Balancing Three-Phase Loads Balancing Feeder Circuit Loads Power Factor Correction Optimal Transformer Sizing Conductor Sizing Combined
Cherepy, Nerine Jane; Payne, Stephen Anthony; Drury, Owen B.; Sturm, Benjamin W.
2016-02-09
According to one embodiment, a scintillator radiation detector system includes a scintillator, and a processing device for processing pulse traces corresponding to light pulses from the scintillator, where the processing device is configured to: process each pulse trace over at least two temporal windows and to use pulse digitization to improve energy resolution of the system. According to another embodiment, a scintillator radiation detector system includes a processing device configured to: fit digitized scintillation waveforms to an algorithm, perform a direct integration of fit parameters, process multiple integration windows for each digitized scintillation waveform to determine a correction factor, and apply the correction factor to each digitized scintillation waveform.
Neutrons in proton pencil beam scanning: parameterization of energy, quality factors and RBE
NASA Astrophysics Data System (ADS)
Schneider, Uwe; Hälg, Roger A.; Baiocco, Giorgio; Lomax, Tony
2016-08-01
The biological effectiveness of neutrons produced during proton therapy in inducing cancer is unknown, but potentially large. In particular, since neutron biological effectiveness is energy dependent, it is necessary to estimate, besides the dose, also the energy spectra, in order to obtain quantities which could be a measure of the biological effectiveness and test current models and new approaches against epidemiological studies on cancer induction after proton therapy. For patients treated with proton pencil beam scanning, this work aims to predict the spatially localized neutron energies, the effective quality factor, the weighting factor according to ICRP, and two RBE values, the first obtained from the saturation corrected dose mean lineal energy and the second from DSB cluster induction. A proton pencil beam was Monte Carlo simulated using GEANT. Based on the simulated neutron spectra for three different proton beam energies a parameterization of energy, quality factors and RBE was calculated. The pencil beam algorithm used for treatment planning at PSI has been extended using the developed parameterizations in order to calculate the spatially localized neutron energy, quality factors and RBE for each treated patient. The parameterization represents the simple quantification of neutron energy in two energy bins and the quality factors and RBE with a satisfying precision up to 85 cm away from the proton pencil beam when compared to the results based on 3D Monte Carlo simulations. The root mean square error of the energy estimate between Monte Carlo simulation based results and the parameterization is 3.9%. For the quality factors and RBE estimates it is smaller than 0.9%. The model was successfully integrated into the PSI treatment planning system. It was found that the parameterizations for neutron energy, quality factors and RBE were independent of proton energy in the investigated energy range of interest for proton therapy. The pencil beam algorithm has been extended using the developed parameterizations in order to calculate the neutron energy, quality factor and RBE.
Neutrons in proton pencil beam scanning: parameterization of energy, quality factors and RBE.
Schneider, Uwe; Hälg, Roger A; Baiocco, Giorgio; Lomax, Tony
2016-08-21
The biological effectiveness of neutrons produced during proton therapy in inducing cancer is unknown, but potentially large. In particular, since neutron biological effectiveness is energy dependent, it is necessary to estimate, besides the dose, also the energy spectra, in order to obtain quantities which could be a measure of the biological effectiveness and test current models and new approaches against epidemiological studies on cancer induction after proton therapy. For patients treated with proton pencil beam scanning, this work aims to predict the spatially localized neutron energies, the effective quality factor, the weighting factor according to ICRP, and two RBE values, the first obtained from the saturation corrected dose mean lineal energy and the second from DSB cluster induction. A proton pencil beam was Monte Carlo simulated using GEANT. Based on the simulated neutron spectra for three different proton beam energies a parameterization of energy, quality factors and RBE was calculated. The pencil beam algorithm used for treatment planning at PSI has been extended using the developed parameterizations in order to calculate the spatially localized neutron energy, quality factors and RBE for each treated patient. The parameterization represents the simple quantification of neutron energy in two energy bins and the quality factors and RBE with a satisfying precision up to 85 cm away from the proton pencil beam when compared to the results based on 3D Monte Carlo simulations. The root mean square error of the energy estimate between Monte Carlo simulation based results and the parameterization is 3.9%. For the quality factors and RBE estimates it is smaller than 0.9%. The model was successfully integrated into the PSI treatment planning system. It was found that the parameterizations for neutron energy, quality factors and RBE were independent of proton energy in the investigated energy range of interest for proton therapy. The pencil beam algorithm has been extended using the developed parameterizations in order to calculate the neutron energy, quality factor and RBE.
A Higher-Order Bending Theory for Laminated Composite and Sandwich Beams
NASA Technical Reports Server (NTRS)
Cook, Geoffrey M.
1997-01-01
A higher-order bending theory is derived for laminated composite and sandwich beams. This is accomplished by assuming a special form for the axial and transverse displacement expansions. An independent expansion is also assumed for the transverse normal stress. Appropriate shear correction factors based on energy considerations are used to adjust the shear stiffness. A set of transverse normal correction factors is introduced, leading to significant improvements in the transverse normal strain and stress for laminated composite and sandwich beams. A closed-form solution to the cylindrical elasticity solutions for a wide range of beam aspect ratios and commonly used material systems. Accurate shear stresses for a wide range of laminates, including the challenging unsymmetric composite and sandwich laminates, are obtained using an original corrected integration scheme. For application of the theory to a wider range of problems, guidelines for finite element approximations are presented.
Ion recombination correction in carbon ion beams.
Rossomme, S; Hopfgartner, J; Lee, N D; Delor, A; Thomas, R A S; Romano, F; Fukumura, A; Vynckier, S; Palmans, H
2016-07-01
In this work, ion recombination is studied as a function of energy and depth in carbon ion beams. Measurements were performed in three different passively scattered carbon ion beams with energies of 62 MeV/n, 135 MeV/n, and 290 MeV/n using various types of plane-parallel ionization chambers. Experimental results were compared with two analytical models for initial recombination. One model is generally used for photon beams and the other model, developed by Jaffé, takes into account the ionization density along the ion track. An investigation was carried out to ascertain the effect on the ion recombination correction with varying ionization chamber orientation with respect to the direction of the ion tracks. The variation of the ion recombination correction factors as a function of depth was studied for a Markus ionization chamber in the 62 MeV/n nonmodulated carbon ion beam. This variation can be related to the depth distribution of linear energy transfer. Results show that the theory for photon beams is not applicable to carbon ion beams. On the other hand, by optimizing the value of the ionization density and the initial mean-square radius, good agreement is found between Jaffé's theory and the experimental results. As predicted by Jaffé's theory, the results confirm that ion recombination corrections strongly decrease with an increasing angle between the ion tracks and the electric field lines. For the Markus ionization chamber, the variation of the ion recombination correction factor with depth was modeled adequately by a sigmoid function, which is approximately constant in the plateau and strongly increasing in the Bragg peak region to values of up to 1.06. Except in the distal edge region, all experimental results are accurately described by Jaffé's theory. Experimental results confirm that ion recombination in the investigated carbon ion beams is dominated by initial recombination. Ion recombination corrections are found to be significant and cannot be neglected for reference dosimetry and for the determination of depth dose curves in carbon ion beams.
Measurement of absorbed dose with a bone-equivalent extrapolation chamber.
DeBlois, François; Abdel-Rahman, Wamied; Seuntjens, Jan P; Podgorsak, Ervin B
2002-03-01
A hybrid phantom-embedded extrapolation chamber (PEEC) made of Solid Water and bone-equivalent material was used for determining absorbed dose in a bone-equivalent phantom irradiated with clinical radiation beams (cobalt-60 gamma rays; 6 and 18 MV x rays; and 9 and 15 MeV electrons). The dose was determined with the Spencer-Attix cavity theory, using ionization gradient measurements and an indirect determination of the chamber air-mass through measurements of chamber capacitance. The collected charge was corrected for ionic recombination and diffusion in the chamber air volume following the standard two-voltage technique. Due to the hybrid chamber design, correction factors accounting for scatter deficit and electrode composition were determined and applied in the dose equation to obtain absorbed dose in bone for the equivalent homogeneous bone phantom. Correction factors for graphite electrodes were calculated with Monte Carlo techniques and the calculated results were verified through relative air cavity dose measurements for three different polarizing electrode materials: graphite, steel, and brass in conjunction with a graphite collecting electrode. Scatter deficit, due mainly to loss of lateral scatter in the hybrid chamber, reduces the dose to the air cavity in the hybrid PEEC in comparison with full bone PEEC by 0.7% to approximately 2% depending on beam quality and energy. In megavoltage photon and electron beams, graphite electrodes do not affect the dose measurement in the Solid Water PEEC but decrease the cavity dose by up to 5% in the bone-equivalent PEEC even for very thin graphite electrodes (<0.0025 cm). In conjunction with appropriate correction factors determined with Monte Carlo techniques, the uncalibrated hybrid PEEC can be used for measuring absorbed dose in bone material to within 2% for high-energy photon and electron beams.
Characterization of the nanoDot OSLD dosimeter in CT
Scarboro, Sarah B.; Cody, Dianna; Alvarez, Paola; Followill, David; Court, Laurence; Stingo, Francesco C.; Zhang, Di; Kry, Stephen F.
2015-01-01
Purpose: The extensive use of computed tomography (CT) in diagnostic procedures is accompanied by a growing need for more accurate and patient-specific dosimetry techniques. Optically stimulated luminescent dosimeters (OSLDs) offer a potential solution for patient-specific CT point-based surface dosimetry by measuring air kerma. The purpose of this work was to characterize the OSLD nanoDot for CT dosimetry, quantifying necessary correction factors, and evaluating the uncertainty of these factors. Methods: A characterization of the Landauer OSL nanoDot (Landauer, Inc., Greenwood, IL) was conducted using both measurements and theoretical approaches in a CT environment. The effects of signal depletion, signal fading, dose linearity, and angular dependence were characterized through direct measurement for CT energies (80–140 kV) and delivered doses ranging from ∼5 to >1000 mGy. Energy dependence as a function of scan parameters was evaluated using two independent approaches: direct measurement and a theoretical approach based on Burlin cavity theory and Monte Carlo simulated spectra. This beam-quality dependence was evaluated for a range of CT scanning parameters. Results: Correction factors for the dosimeter response in terms of signal fading, dose linearity, and angular dependence were found to be small for most measurement conditions (<3%). The relative uncertainty was determined for each factor and reported at the two-sigma level. Differences in irradiation geometry (rotational versus static) resulted in a difference in dosimeter signal of 3% on average. Beam quality varied with scan parameters and necessitated the largest correction factor, ranging from 0.80 to 1.15 relative to a calibration performed in air using a 120 kV beam. Good agreement was found between the theoretical and measurement approaches. Conclusions: Correction factors for the measurement of air kerma were generally small for CT dosimetry, although angular effects, and particularly effects due to changes in beam quality, could be more substantial. In particular, it would likely be necessary to account for variations in CT scan parameters and measurement location when performing CT dosimetry using OSLD. PMID:25832070
Characterization of the nanoDot OSLD dosimeter in CT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scarboro, Sarah B.; Graduate School of Biomedical Sciences, The University of Texas Health Science Center Houston, Houston, Texas 77030; The Methodist Hospital, Houston, Texas 77030
Purpose: The extensive use of computed tomography (CT) in diagnostic procedures is accompanied by a growing need for more accurate and patient-specific dosimetry techniques. Optically stimulated luminescent dosimeters (OSLDs) offer a potential solution for patient-specific CT point-based surface dosimetry by measuring air kerma. The purpose of this work was to characterize the OSLD nanoDot for CT dosimetry, quantifying necessary correction factors, and evaluating the uncertainty of these factors. Methods: A characterization of the Landauer OSL nanoDot (Landauer, Inc., Greenwood, IL) was conducted using both measurements and theoretical approaches in a CT environment. The effects of signal depletion, signal fading, dosemore » linearity, and angular dependence were characterized through direct measurement for CT energies (80–140 kV) and delivered doses ranging from ∼5 to >1000 mGy. Energy dependence as a function of scan parameters was evaluated using two independent approaches: direct measurement and a theoretical approach based on Burlin cavity theory and Monte Carlo simulated spectra. This beam-quality dependence was evaluated for a range of CT scanning parameters. Results: Correction factors for the dosimeter response in terms of signal fading, dose linearity, and angular dependence were found to be small for most measurement conditions (<3%). The relative uncertainty was determined for each factor and reported at the two-sigma level. Differences in irradiation geometry (rotational versus static) resulted in a difference in dosimeter signal of 3% on average. Beam quality varied with scan parameters and necessitated the largest correction factor, ranging from 0.80 to 1.15 relative to a calibration performed in air using a 120 kV beam. Good agreement was found between the theoretical and measurement approaches. Conclusions: Correction factors for the measurement of air kerma were generally small for CT dosimetry, although angular effects, and particularly effects due to changes in beam quality, could be more substantial. In particular, it would likely be necessary to account for variations in CT scan parameters and measurement location when performing CT dosimetry using OSLD.« less
The effect of low-energy electrons on the response of ion chambers to ionizing photon beams
NASA Astrophysics Data System (ADS)
La Russa, Daniel J.
Cavity ionization chambers are one of the most popular and widely used devices for quantifying ionizing photon beams. This popularity originates from the precision of these devices and the relative ease with which ionization measurements are converted to quantities of interest in therapeutic radiology or radiation protection, collectively referred to as radiation dosimetry. The formalisms used for these conversions, known as cavity theory, make several assumptions about the electron spectrum in the low-energy range resulting from the incident photon beam. These electrons often account for a significant fraction of the ion chamber response. An inadequate treatment of low-energy electrons can therefore significantly effect calculated quantities of interest. This thesis sets out to investigate the effect of low-energy electrons on (1) the use of Spencer-Attix cavity theory with 60Co beams; and (2) the standard temperature-pressure correction factor, P TP, used to relate the measured ionization to a set of reference temperature and pressure conditions for vented ion chambers. Problems with the PTP correction are shown to arise when used with kilovoltage x rays, where ionization measurements are due primarily to electrons that do not have enough energy to cross the cavity. A combination of measurements and Monte Carlo calculations using the EGSnrc Monte Carlo code demonstrate the breakdown of PTP in these situations when used with non-air-equivalent chambers. The extent of the breakdown is shown to depend on cavity size, energy of the incident photons, and the composition of the chamber. In the worst case, the standard P TP factor overcorrects the response of an aluminum chamber by ≈12% at an air density typical of Mexico City. The response of a more common graphite-walled chamber with similar dimensions at the same air density is undercorrected by ≈ 2%. The EGSnrc Monte Carlo code is also used to investigate Spencer-Attix cavity theory as it is used in the formalism to determine the air kerma for a 60Co beam. Following a comparison with measurements in the literature, the air kerma formalism is shown to require a fluence correction factor, Kfl, to ensure the accuracy of the formalism regardless of chamber composition and cavity size. The need for such a correction stems from the fact that the cavity clearly distorts the fluence for mismatched cavity and wall materials, and the inability to select the appropriate "cut-off" energy, Delta, in the Spencer-Attix stopping-power ratio. A discussion of this issue is followed by detailed calculations of K fl values for several of the graphite ionization chambers used at national metrology institutes, which range between 0.9999 and 0.9994 with a one standard deviation uncertainty of +/- 0.0002.
Mökkönen, Harri; Ala-Nissila, Tapio; Jónsson, Hannes
2016-09-07
The recrossing correction to the transition state theory estimate of a thermal rate can be difficult to calculate when the energy barrier is flat. This problem arises, for example, in polymer escape if the polymer is long enough to stretch between the initial and final state energy wells while the polymer beads undergo diffusive motion back and forth over the barrier. We present an efficient method for evaluating the correction factor by constructing a sequence of hyperplanes starting at the transition state and calculating the probability that the system advances from one hyperplane to another towards the product. This is analogous to what is done in forward flux sampling except that there the hyperplane sequence starts at the initial state. The method is applied to the escape of polymers with up to 64 beads from a potential well. For high temperature, the results are compared with direct Langevin dynamics simulations as well as forward flux sampling and excellent agreement between the three rate estimates is found. The use of a sequence of hyperplanes in the evaluation of the recrossing correction speeds up the calculation by an order of magnitude as compared with the traditional approach. As the temperature is lowered, the direct Langevin dynamics simulations as well as the forward flux simulations become computationally too demanding, while the harmonic transition state theory estimate corrected for recrossings can be calculated without significant increase in the computational effort.
Sequential limiting in continuous and discontinuous Galerkin methods for the Euler equations
NASA Astrophysics Data System (ADS)
Dobrev, V.; Kolev, Tz.; Kuzmin, D.; Rieben, R.; Tomov, V.
2018-03-01
We present a new predictor-corrector approach to enforcing local maximum principles in piecewise-linear finite element schemes for the compressible Euler equations. The new element-based limiting strategy is suitable for continuous and discontinuous Galerkin methods alike. In contrast to synchronized limiting techniques for systems of conservation laws, we constrain the density, momentum, and total energy in a sequential manner which guarantees positivity preservation for the pressure and internal energy. After the density limiting step, the total energy and momentum gradients are adjusted to incorporate the irreversible effect of density changes. Antidiffusive corrections to bounds-compatible low-order approximations are limited to satisfy inequality constraints for the specific total and kinetic energy. An accuracy-preserving smoothness indicator is introduced to gradually adjust lower bounds for the element-based correction factors. The employed smoothness criterion is based on a Hessian determinant test for the density. A numerical study is performed for test problems with smooth and discontinuous solutions.
Calculation versus measurement of total energy expenditure.
van Lanschot, J J; Feenstra, B W; Vermeij, C G; Bruining, H A
1986-11-01
In acutely ill patients both hypo- and hyperalimentation must be avoided by adjusting caloric intake to total energy expenditure (TEE). We determined the discrepancy between basal energy expenditure (BEE) calculated from the basic Harris-Benedict formula and TEE measured by continuous indirect calorimetry in a heterogeneous group of mechanically ventilated surgical patients. We also compared the accuracy of TEE calculated from the corrected Harris-Benedict formula or estimated by intermittent indirect calorimetry to that of TEE measured by continuous indirect calorimetry. The poor correlation between calculated BEE and measured TEE was significantly (p less than .05) improved by a correction factor based on each patient's clinical condition. The mean absolute difference between calculated TEE and measured TEE was 8.9 +/- 9.6 (SD) %. Calculations were significantly (p less than .05) improved by estimating TEE from two 5-min recording periods, which suggests that continuous indirect calorimetry may not always be necessary to guide caloric replacement.
78 FR 54640 - Secretary of Energy Advisory Board: Correction
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-05
... DEPARTMENT OF ENERGY Secretary of Energy Advisory Board: Correction AGENCY: Department of Energy. ACTION: Notice of Open Meeting: Correction. SUMMARY: The Department of Energy (DOE) published in the Federal Register on August 27, 2013, a notice of an open meeting for the Secretary of Energy Advisory...
Energy dependence corrections to MOSFET dosimetric sensitivity.
Cheung, T; Butson, M J; Yu, P K N
2009-03-01
Metal Oxide Semiconductor Field Effect Transistors (MOSFET's) are dosimeters which are now frequently utilized in radiotherapy treatment applications. An improved MOSFET, clinical semiconductor dosimetry system (CSDS) which utilizes improved packaging for the MOSFET device has been studied for energy dependence of sensitivity to x-ray radiation measurement. Energy dependence from 50 kVp to 10 MV x-rays has been studied and found to vary by up to a factor of 3.2 with 75 kVp producing the highest sensitivity response. The detectors average life span in high sensitivity mode is energy related and ranges from approximately 100 Gy for 75 kVp x-rays to approximately 300 Gy at 6 MV x-ray energy. The MOSFET detector has also been studied for sensitivity variations with integrated dose history. It was found to become less sensitive to radiation with age and the magnitude of this effect is dependant on radiation energy with lower energies producing a larger sensitivity reduction with integrated dose. The reduction in sensitivity is however approximated reproducibly by a slightly non linear, second order polynomial function allowing corrections to be made to readings to account for this effect to provide more accurate dose assessments both in phantom and in-vivo.
Takayanagi, Taisuke; Nihongi, Hideaki; Nishiuchi, Hideaki; Tadokoro, Masahiro; Ito, Yuki; Nakashima, Chihiro; Fujitaka, Shinichiro; Umezawa, Masumi; Matsuda, Koji; Sakae, Takeji; Terunuma, Toshiyuki
2016-07-01
To develop a multilayer ionization chamber (MLIC) and a correction technique that suppresses differences between the MLIC and water phantom measurements in order to achieve fast and accurate depth dose measurements in pencil beam scanning proton therapy. The authors distinguish between a calibration procedure and an additional correction: 1-the calibration for variations in the air gap thickness and the electrometer gains is addressed without involving measurements in water; 2-the correction is addressed to suppress the difference between depth dose profiles in water and in the MLIC materials due to the nuclear interaction cross sections by a semiempirical model tuned by using measurements in water. In the correction technique, raw MLIC data are obtained for each energy layer and integrated after multiplying them by the correction factor because the correction factor depends on incident energy. The MLIC described here has been designed especially for pencil beam scanning proton therapy. This MLIC is called a dual ring multilayer ionization chamber (DRMLIC). The shape of the electrodes allows the DRMLIC to measure both the percentage depth dose (PDD) and integrated depth dose (IDD) because ionization electrons are collected from inner and outer air gaps independently. IDDs for which the beam energies were 71.6, 120.6, 159, 180.6, and 221.4 MeV were measured and compared with water phantom results. Furthermore, the measured PDDs along the central axis of the proton field with a nominal field size of 10 × 10 cm(2) were compared. The spread out Bragg peak was 20 cm for fields with a range of 30.6 and 3 cm for fields with a range of 6.9 cm. The IDDs measured with the DRMLIC using the correction technique were consistent with those that of the water phantom; except for the beam energy of 71.6 MeV, all of the points satisfied the 1% dose/1 mm distance to agreement criterion of the gamma index. The 71.6 MeV depth dose profile showed slight differences in the shallow region, but 94.5% of the points satisfied the 1%/1 mm criterion. The 90% ranges, defined at the 90% dose position in distal fall off, were in good agreement with those in the water phantom, and the range differences from the water phantom were less than ±0.3 mm. The PDDs measured with the DRMLIC were also consistent with those that of the water phantom; 97% of the points passed the 1%/1 mm criterion. It was demonstrated that the new correction technique suppresses the difference between the depth dose profiles obtained with the MLIC and those obtained from a water phantom, and a DRMLIC enabling fast measurements of both IDD and PDD was developed. The IDDs and PDDs measured with the DRMLIC and using the correction technique were in good agreement with those that of the water phantom, and it was concluded that the correction technique and DRMLIC are useful for depth dose profile measurements in pencil beam scanning proton therapy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takayanagi, Taisuke, E-mail: taisuke.takayanagi.wd
2016-07-15
Purpose: To develop a multilayer ionization chamber (MLIC) and a correction technique that suppresses differences between the MLIC and water phantom measurements in order to achieve fast and accurate depth dose measurements in pencil beam scanning proton therapy. Methods: The authors distinguish between a calibration procedure and an additional correction: 1—the calibration for variations in the air gap thickness and the electrometer gains is addressed without involving measurements in water; 2—the correction is addressed to suppress the difference between depth dose profiles in water and in the MLIC materials due to the nuclear interaction cross sections by a semiempirical modelmore » tuned by using measurements in water. In the correction technique, raw MLIC data are obtained for each energy layer and integrated after multiplying them by the correction factor because the correction factor depends on incident energy. The MLIC described here has been designed especially for pencil beam scanning proton therapy. This MLIC is called a dual ring multilayer ionization chamber (DRMLIC). The shape of the electrodes allows the DRMLIC to measure both the percentage depth dose (PDD) and integrated depth dose (IDD) because ionization electrons are collected from inner and outer air gaps independently. Results: IDDs for which the beam energies were 71.6, 120.6, 159, 180.6, and 221.4 MeV were measured and compared with water phantom results. Furthermore, the measured PDDs along the central axis of the proton field with a nominal field size of 10 × 10 cm{sup 2} were compared. The spread out Bragg peak was 20 cm for fields with a range of 30.6 and 3 cm for fields with a range of 6.9 cm. The IDDs measured with the DRMLIC using the correction technique were consistent with those that of the water phantom; except for the beam energy of 71.6 MeV, all of the points satisfied the 1% dose/1 mm distance to agreement criterion of the gamma index. The 71.6 MeV depth dose profile showed slight differences in the shallow region, but 94.5% of the points satisfied the 1%/1 mm criterion. The 90% ranges, defined at the 90% dose position in distal fall off, were in good agreement with those in the water phantom, and the range differences from the water phantom were less than ±0.3 mm. The PDDs measured with the DRMLIC were also consistent with those that of the water phantom; 97% of the points passed the 1%/1 mm criterion. Conclusions: It was demonstrated that the new correction technique suppresses the difference between the depth dose profiles obtained with the MLIC and those obtained from a water phantom, and a DRMLIC enabling fast measurements of both IDD and PDD was developed. The IDDs and PDDs measured with the DRMLIC and using the correction technique were in good agreement with those that of the water phantom, and it was concluded that the correction technique and DRMLIC are useful for depth dose profile measurements in pencil beam scanning proton therapy.« less
Kaneta, Tomohiro; Kurihara, Hideyuki; Hakamatsuka, Takashi; Ito, Hiroshi; Maruoka, Shin; Fukuda, Hiroshi; Takahashi, Shoki; Yamada, Shogo
2004-12-01
123I-15-(p-iodophenyl)-3-(R,S)-methylpentadecanoic acid (BMIPP) and 99mTc-tetrofosmin (TET) are widely used for evaluation of myocardial fatty acid metabolism and perfusion, respectively. ECG-gated TET SPECT is also used for evaluation of myocardial wall motion. These tests are often performed on the same day to minimize both the time required and inconvenience to patients and medical staff. However, as 123I and 99mTc have similar emission energies (159 keV and 140 keV, respectively), it is necessary to consider not only scattered photons, but also primary photons of each radionuclide detected in the wrong window (cross-talk). In this study, we developed and evaluated the effectiveness of a new scatter and cross-talk correction imaging protocol. Fourteen patients with ischemic heart disease or heart failure (8 men and 6 women with a mean age of 69.4 yr, ranging from 45 to 94 yr) were enrolled in this study. In the routine one-day acquisition protocol, BMIPP SPECT was performed in the morning, with TET SPECT performed 4 h later. An additional SPECT was performed just before injection of TET with the energy window for 99mTc. These data correspond to the scatter and cross-talk factor of the next TET SPECT. The correction was performed by subtraction of the scatter and cross-talk factor from TET SPECT. Data are presented as means +/- S.E. Statistical analyses were performed using Wilcoxon's matched-pairs signed-ranks test, and p < 0.05 was considered significant. The percentage of scatter and cross-talk relative to the corrected total count was 26.0 +/- 5.3%. EDV and ESV after correction were significantly greater than those before correction (p = 0.019 and 0.016, respectively). After correction, EF was smaller than that before correction, but the difference was not significant. Perfusion scores (17 segments per heart) were significantly lower after as compared with those before correction (p < 0.001). Scatter and cross-talk correction revealed significant differences in EDV, ESV, and perfusion scores. These observations indicate that scatter and cross-talk correction is required for one-day acquisition of 123I-BMIPP and 99mTc-tetrofosmin SPECT.
Mackie, Iain D; DiLabio, Gino A
2011-10-07
The first-principles calculation of non-covalent (particularly dispersion) interactions between molecules is a considerable challenge. In this work we studied the binding energies for ten small non-covalently bonded dimers with several combinations of correlation methods (MP2, coupled-cluster single double, coupled-cluster single double (triple) (CCSD(T))), correlation-consistent basis sets (aug-cc-pVXZ, X = D, T, Q), two-point complete basis set energy extrapolations, and counterpoise corrections. For this work, complete basis set results were estimated from averaged counterpoise and non-counterpoise-corrected CCSD(T) binding energies obtained from extrapolations with aug-cc-pVQZ and aug-cc-pVTZ basis sets. It is demonstrated that, in almost all cases, binding energies converge more rapidly to the basis set limit by averaging the counterpoise and non-counterpoise corrected values than by using either counterpoise or non-counterpoise methods alone. Examination of the effect of basis set size and electron correlation shows that the triples contribution to the CCSD(T) binding energies is fairly constant with the basis set size, with a slight underestimation with CCSD(T)∕aug-cc-pVDZ compared to the value at the (estimated) complete basis set limit, and that contributions to the binding energies obtained by MP2 generally overestimate the analogous CCSD(T) contributions. Taking these factors together, we conclude that the binding energies for non-covalently bonded systems can be accurately determined using a composite method that combines CCSD(T)∕aug-cc-pVDZ with energy corrections obtained using basis set extrapolated MP2 (utilizing aug-cc-pVQZ and aug-cc-pVTZ basis sets), if all of the components are obtained by averaging the counterpoise and non-counterpoise energies. With such an approach, binding energies for the set of ten dimers are predicted with a mean absolute deviation of 0.02 kcal/mol, a maximum absolute deviation of 0.05 kcal/mol, and a mean percent absolute deviation of only 1.7%, relative to the (estimated) complete basis set CCSD(T) results. Use of this composite approach to an additional set of eight dimers gave binding energies to within 1% of previously published high-level data. It is also shown that binding within parallel and parallel-crossed conformations of naphthalene dimer is predicted by the composite approach to be 9% greater than that previously reported in the literature. The ability of some recently developed dispersion-corrected density-functional theory methods to predict the binding energies of the set of ten small dimers was also examined. © 2011 American Institute of Physics
Bruggmoser, Gregor; Saum, Rainer; Kranzer, Rafael
2018-01-12
The aim of this technical communication is to provide correction factors for recombination and polarity effect for two new ionization chambers PTW PinPoint 3D (type 31022) and PTW Semiflex 3D (type 31021). The correction factors provided are for the (based on the) German DIN 6800-2 dosimetry protocol and the AAPM TG51 protocol. The measurements were made in filtered and unfiltered high-energy photon beams in a water equivalent phantom at maximum depth of the PDD and a field size on the surface of 10cm×10cm. The design of the new chamber types leads to an ion collection efficiency and a polarity effect that are well within the specifications requested by pertinent dosimetry protocols including the addendum of TG-51. It was confirmed that the recombination effect of both chambers mainly depends on dose per pulse and is independent of the filtration of the photon beam. Copyright © 2018. Published by Elsevier GmbH.
Analysis of position-dependent Compton scatter in scintimammography with mild compression
NASA Astrophysics Data System (ADS)
Williams, M. B.; Narayanan, D.; More, M. J.; Goodale, P. J.; Majewski, S.; Kieper, D. A.
2003-10-01
In breast scintigraphy using /sup 99m/Tc-sestamibi the relatively low radiotracer uptake in the breast compared to that in other organs such as the heart results in a large fraction of the detected events being Compton scattered gamma-rays. In this study, our goal was to determine whether generalized conclusions regarding scatter-to-primary ratios at various locations within the breast image are possible, and if so, to use them to make explicit scatter corrections to the breast scintigrams. Energy spectra were obtained from patient scans for contiguous regions of interest (ROIs) centered left to right within the image of the breast, and extending from the chest wall edge of the image to the anterior edge. An anthropomorphic torso phantom with fillable internal organs and a compressed-shape breast containing water only was used to obtain realistic position-dependent scatter-only spectra. For each ROI, the measured patient energy spectrum was fitted with a linear combination of the scatter-only spectrum from the anthropomorphic phantom and the scatter-free spectrum from a point source. We found that although there is a very strong dependence on location within the breast of the scatter-to-primary ratio, the spectra are well modeled by a linear combination of position-dependent scatter-only spectra and a position-independent scatter-free spectrum, resulting in a set of position-dependent correction factors. These correction factors can be used along with measured emission spectra from a given breast to correct for the Compton scatter in the scintigrams. However, the large variation among patients in the magnitude of the position-dependent scatter makes the success of universal correction approaches unlikely.
NASA Astrophysics Data System (ADS)
Gimenez-Alventosa, V.; Gimenez, V.; Ballester, F.; Vijande, J.; Andreo, P.
2018-06-01
Treatment of small skin lesions using HDR brachytherapy applicators is a widely used technique. The shielded applicators currently available in clinical practice are based on a tungsten-alloy cup that collimates the source-emitted radiation into a small region, hence protecting nearby tissues. The goal of this manuscript is to evaluate the correction factors required for dose measurements with a plane-parallel ionization chamber typically used in clinical brachytherapy for the ‘Valencia’ and ‘large field Valencia’ shielded applicators. Monte Carlo simulations have been performed using the PENELOPE-2014 system to determine the absorbed dose deposited in a water phantom and in the chamber active volume with a Type A uncertainty of the order of 0.1%. The average energies of the photon spectra arriving at the surface of the water phantom differ by approximately 10%, being 384 keV for the ‘Valencia’ and 343 keV for the ‘large field Valencia’. The ionization chamber correction factors have been obtained for both applicators using three methods, their values depending on the applicator being considered. Using a depth-independent global chamber perturbation correction factor and no shift of the effective point of measurement yields depth-dose differences of up to 1% for the ‘Valencia’ applicator. Calculations using a depth-dependent global perturbation factor, or a shift of the effective point of measurement combined with a constant partial perturbation factor, result in differences of about 0.1% for both applicators. The results emphasize the relevance of carrying out detailed Monte Carlo studies for each shielded brachytherapy applicator and ionization chamber.
General radiographic attributes of optically stimulated luminescence dosimeters: A basic insight
NASA Astrophysics Data System (ADS)
Musa, Y.; Hashim, S.; Ghoshal, S. K.; Bradley, D. A.; Ahmad, N. E.; Karim, M. K. A.; Hashim, A.; Kadir, A. B. A.
2018-06-01
We report the ubiquitous radiographic characteristics of optically stimulated luminescence dosimeters (OSLD) so called nanoDot OSLDs (Landauer Inc., Glendwood, IL). The X-ray irradiations were performed in free air ambiance to inspect the repeatability, the reproducibility, the signal depletion, the element correction factors (ECFs), the dose response and the energy dependence. Repeatability of multiple readouts after single irradiation to 10 mGy revealed a coefficient of variation below 3%, while the reproducibility in repeated irradiation-readout-annealing cycles was above 2%. The OSL signal depletion for three nanoDots with simultaneous irradiation to 20 mGy and sequential readouts of 25 times displayed a consistent signal reduction ≈0.5% per readout with R2 values over 0.98. ECFs for individual OSLDs were varied from 0.97 to 1.03. In the entire dose range under 80 kV, a good linearity with an R2 exceeding 0.99 was achieved. Besides, the percentage difference between OSLD and ion-chamber dose was less than 5%, which was superior to TLD. The X-ray photon irradiated energy response factors (between 0.76 and 1.12) in the range of 40-150 kV (26.1-61.2 keV) exhibited significant energy dependence. Indeed, the nanoDot OSLDs disclosed good repeatability, reproducibility and linearity. The OSLDs measured doses were closer to ion-chamber doses than that of TLD. It can be further improved up to ≈3% by applying the individual dosimeter ECF. On top, the energy dependent uncertainties can be minimized using the energy correction factors. It is established that the studied nanoDot OSLDs are prospective for measuring entrance dose in general radiographic practices.
Marre, D; Ferreira, I H; Bridier, A; Björeland, A; Svensson, H; Dutreix, A; Chavaudra, J
2000-12-01
Absorbed dose determination with thermoluminescent dosimeters (TLDs) generally relies on calibration in 60Co gamma-ray reference beams. The energy correction factor fCo(E) for electron beams takes into account the difference between the response of the TLD in the beam of energy E and in the 60Co gamma-ray beam. In this work, fCo(E) was evaluated for an LiF powder irradiated in electron beams of 6 to 20 MeV (Varian 2300C/D) and 10 to 50 MeV (Racetrack MM50), and its variation with electron energy, TLD size and nature of the surrounding medium was also studied for LiF powder. The results have been applied to the ESTRO-EQUAL mailed dosimetry quality assurance network. Monte Carlo calculations (EGS4, PENELOPE) and experiments have been performed for the LiF powder (rho = 1.4 g cm3) (DTL937, Philitech, France), read on a home made reader and a PCL3 automatic reader (Fimel, France). The TLDs were calibrated using Fricke dosimetry and compared with three ionization chambers (NE2571, NACP02, ROOS). The combined uncertainties in the experimental fCo(E) factors determined in this work are less than about 0.4% (1 SD), which is appreciably smaller than the uncertainties up to 1.4% (1 SD) reported for other calculated values in the literature. Concerning the Varian 2300C/D beams, the measured fCo(E) values decrease from 1.065 to 1.049 +/- 0.004 (1 SD) when the energy at depth in water increases from 2.6 to 14.1 MeV; the agreement with Monte Carlo calculations is better than 0.5%. For the Racetrack MM50 pulsed-scanned beams, the average experimental value of fCo(E) is 1.071 +/- 0.005 (1 SD) for a mean electron energy at depth Ez ranging from 4.3 to 36.3 MeV: fCo(E) is up to 2% higher for the MM50 beams than for the 2300C/D beams in the range of the tested energies. The energy correction factor for LiF powder (3 mm diameter and 15 mm length) varies with beam quality and type (pulsed or pulsed-scanning), cavity size and nature of the surrounding medium. The fCo(E) values obtained for the LiF powder (3 mm diameter and 15 mm length) irradiated in water, have been applied to the EQUAL external audit network, leading to a good agreement between stated and measured doses, with a mean value of 1.002 +/- 0.022 (1 SD), for 170 beam outputs checked (36 electron beam energies) in 13 'reference' radiotherapy centres in Europe. Such fCo(E) data improve the accuracy of the absorbed dose TLD determination in electron beams, justifying their use for quality control in radiotherapy.
ERIC Educational Resources Information Center
Metz, Ron
This instructional unit is one of 10 developed by students on various energy-related areas that deals specifically with weatherizing a structure. Its objective is for the student to be able to analyze factors related to specific structures that indicate need for weatherizing activities and to determine steps to correct defects in structures that…
SU-E-I-38: Improved Metal Artifact Correction Using Adaptive Dual Energy Calibration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dong, X; Elder, E; Roper, J
2015-06-15
Purpose: The empirical dual energy calibration (EDEC) method corrects for beam-hardening artifacts, but shows limited performance on metal artifact correction. In this work, we propose an adaptive dual energy calibration (ADEC) method to correct for metal artifacts. Methods: The empirical dual energy calibration (EDEC) method corrects for beam-hardening artifacts, but shows limited performance on metal artifact correction. In this work, we propose an adaptive dual energy calibration (ADEC) method to correct for metal artifacts. Results: Highly attenuating copper rods cause severe streaking artifacts on standard CT images. EDEC improves the image quality, but cannot eliminate the streaking artifacts. Compared tomore » EDEC, the proposed ADEC method further reduces the streaking resulting from metallic inserts and beam-hardening effects and obtains material decomposition images with significantly improved accuracy. Conclusion: We propose an adaptive dual energy calibration method to correct for metal artifacts. ADEC is evaluated with the Shepp-Logan phantom, and shows superior metal artifact correction performance. In the future, we will further evaluate the performance of the proposed method with phantom and patient data.« less
Volume dependence of N-body bound states
NASA Astrophysics Data System (ADS)
König, Sebastian; Lee, Dean
2018-04-01
We derive the finite-volume correction to the binding energy of an N-particle quantum bound state in a cubic periodic volume. Our results are applicable to bound states with arbitrary composition and total angular momentum, and in any number of spatial dimensions. The only assumptions are that the interactions have finite range. The finite-volume correction is a sum of contributions from all possible breakup channels. In the case where the separation is into two bound clusters, our result gives the leading volume dependence up to exponentially small corrections. If the separation is into three or more clusters, there is a power-law factor that is beyond the scope of this work, however our result again determines the leading exponential dependence. We also present two independent methods that use finite-volume data to determine asymptotic normalization coefficients. The coefficients are useful to determine low-energy capture reactions into weakly bound states relevant for nuclear astrophysics. Using the techniques introduced here, one can even extract the infinite-volume energy limit using data from a single-volume calculation. The derived relations are tested using several exactly solvable systems and numerical examples. We anticipate immediate applications to lattice calculations of hadronic, nuclear, and cold atomic systems.
Measurement of the low-energy quenching factor in germanium using an Y 88 / Be photoneutron source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scholz, B. J.; Chavarria, A. E.; Collar, J. I.
2016-12-01
We employ an 88Y/Be photoneutron source to derive the quenching factor for neutron-induced nuclear recoils in germanium, probing recoil energies from a few hundred eVnr to 8.5 keV nr. A comprehensive Monte Carlo simulation of our setup is compared to experimental data employing a Lindhard model with a free electronic energy loss k and an adiabatic correction for sub-keVnr nuclear recoils. The best fit k=0.179±0.001 obtained using a Monte Carlo Markov chain (MCMC) ensemble sampler is in good agreement with previous measurements, confirming the adequacy of the Lindhard model to describe the stopping of few-keV ions in germanium crystals at a temperaturemore » of ~77 K. This value of k corresponds to a quenching factor of 13.7% to 25.3% for nuclear recoil energies between 0.3 and 8.5 keV nr, respectively.« less
SU-E-T-98: An Analysis of TG-51 Electron Beam Calibration Correction Factor Uncertainty
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, P; Alvarez, P; Taylor, P
Purpose: To analyze the uncertainty of the TG-51 electron beam calibration correction factors for farmer type ion chambers currently used by institutions visited by IROC Houston. Methods: TG-51 calibration data were collected from 181 institutions visited by IROC Houston physicists for 1174 and 197 distinct electron beams from modern Varian and Elekta accelerators, respectively. Data collected and analyzed included ion chamber make and model, nominal energy, N{sub D,w}, I{sub 50}, R{sub 50}, k’R{sub 50}, d{sub ref}, P{sub gr} and pdd(d{sub ref}). k’R{sub 50} data for parallel plate chambers were excluded from the analysis. Results: Unlike photon beams, electron nominal energymore » is a poor indicator of the actual energy as evidenced by the range of R{sub 50} values for each electron beam energy (6–22MeV). The large range in R{sub 50} values resulted k’R{sub 50} values with a small standard deviation but large range between maximum value used and minimum value (0.001–0.029) used for a specific Varian nominal energy. Varian data showed more variability in k’R{sub 50} values than the Elekta data (0.001–0.014). Using the observed range of R{sub 50} values, the maximum spread in k’R{sub 50} values was determined by IROC Houston and compared to the spread of k’R{sub 50} values used in the community. For Elekta linacs the spreads were equivalent, but for Varian energies of 6 to 16MeV, the community spread was 2 to 6 times larger. Community P{sub gr} values had a much larger range of values for 6 and 9 MeV values than predicted. The range in Varian pdd(d{sub ref} ) used by the community for low energies was large, (1.4–4.9 percent), when it should have been very close to unity. Exradin, PTW Roos and PTW farmer chambers N{sub D,w} values showed the largest spread, ≥11 percent. Conclusion: While the vast majority of electron beam calibration correction factors used are accurate, there is a surprising spread in some of the values used.« less
Characterization of an in vivo diode dosimetry system for clinical use
Huang, Kai; Bice, William S.; Hidalgo‐Salvatierra, Oscar
2003-01-01
An in vivo dosimetry system that uses p‐type semiconductor diodes with buildup caps was characterized for clinical use on accelerators ranging in energy from 4 to 18 MV. The dose per pulse dependence was investigated. This was done by altering the source‐surface distance, field size, and wedge for photons. The off‐axis correction and effect of changing repetition rate were also investigated. A model was developed to fit the measured two‐dimensional diode correction factors. PACS number(s): 87.66.–a, 87.52.–g PMID:12777148
Nuclear polarization study: new frontiers for tests of QED in heavy highly charged ions.
Volotka, Andrey V; Plunien, Günter
2014-07-11
A systematic investigation of the nuclear polarization effects in one- and few-electron heavy ions is presented. The nuclear polarization corrections in the zeroth and first orders in 1/Z are evaluated to the binding energies, the hyperfine splitting, and the bound-electron g factor. It is shown that the nuclear polarization contributions can be substantially canceled simultaneously with the rigid nuclear corrections. This allows for new prospects for probing the QED effects in a strong electromagnetic field and the determination of fundamental constants.
NASA Astrophysics Data System (ADS)
Li, Pengcheng; Wang, Yongjia; Li, Qingfeng; Guo, Chenchen; Zhang, Hongfei
2018-04-01
With the newly updated version of the ultrarelativistic quantum molecular dynamics (UrQMD) model, a systematic investigation of the effects of in-medium nucleon-nucleon (NN ) elastic cross section on the collective flow and the stopping observables in 197Au+197Au collisions at beam energies from 40 to 150 MeV/nucleon is performed. Simulations with the medium correction factors F =σNN in -medium/σNN free=0.2 ,0.3 ,0.5 and the one obtained with the FU3FP1 parametrization which depends on both the density and the momentum are compared to the FOPI and INDRA experimental data. It is found that, to best fit the experimental data of the slope of the directed flow and the elliptic flow at midrapidity as well as the nuclear stopping, the correction factors of F =0.2 and 0.5 are required for reactions at beam energies of 40 and 150 MeV/nucleon, respectively. Whereas calculations with the FU3FP1 parametrization can simultaneously reproduce these experimental data reasonably well. And, the observed increasing nuclear stopping with increasing beam energy in experimental data can also be reproduced by using the FU3FP1 parametrization, whereas the calculated stopping power in Au + Au collisions with beam energies from 40 to 150 MeV /nucleon almost remains constant when taking F equal to a fixed value.
SU-E-T-223: Computed Radiography Dose Measurements of External Radiotherapy Beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aberle, C; Kapsch, R
2015-06-15
Purpose: To obtain quantitative, two-dimensional dose measurements of external radiotherapy beams with a computed radiography (CR) system and to derive volume correction factors for ionization chambers in small fields. Methods: A commercial Kodak ACR2000i CR system with Kodak Flexible Phosphor Screen HR storage foils was used. Suitable measurement conditions and procedures were established. Several corrections were derived, including image fading, length-scale corrections and long-term stability corrections. Dose calibration curves were obtained for cobalt, 4 MV, 8 MV and 25 MV photons, and for 10 MeV, 15 MeV and 18 MeV electrons in a water phantom. Inherent measurement inhomogeneities were studiedmore » as well as directional dependence of the response. Finally, 2D scans with ionization chambers were directly compared to CR measurements, and volume correction factors were derived. Results: Dose calibration curves (0.01 Gy to 7 Gy) were obtained for multiple photon and electron beam qualities. For each beam quality, the calibration curves can be described by a single fit equation over the whole dose range. The energy dependence of the dose response was determined. The length scale on the images was adjusted scan-by-scan, typically by 2 percent horizontally and by 3 percent vertically. The remaining inhomogeneities after the system’s standard calibration procedure were corrected for. After correction, the homogeneity is on the order of a few percent. The storage foils can be rotated by up to 30 degrees without a significant effect on the measured signal. First results on the determination of volume correction factors were obtained. Conclusion: With CR, quantitative, two-dimensional dose measurements with a high spatial resolution (sub-mm) can be obtained over a large dose range. In order to make use of these advantages, several calibrations, corrections and supporting measurements are needed. This work was funded by the European Metrology Research Programme (EMRP) project HLT09 MetrExtRT Metrology for Radiotherapy using Complex Radiation Fields.« less
A systematic characterization of the low-energy photon response of plastic scintillation detectors.
Boivin, Jonathan; Beddar, Sam; Bonde, Chris; Schmidt, Daniel; Culberson, Wesley; Guillemette, Maxime; Beaulieu, Luc
2016-08-07
To characterize the low energy behavior of scintillating materials used in plastic scintillation detectors (PSDs), 3 PSDs were developed using polystyrene-based scintillating materials emitting in different wavelengths. These detectors were exposed to National Institute of Standards and Technology (NIST)-matched low-energy beams ranging from 20 kVp to 250 kVp, and to (137)Cs and (60)Co beams. The dose in polystyrene was compared to the dose in air measured by NIST-calibrated ionization chambers at the same location. Analysis of every beam quality spectrum was used to extract the beam parameters and the effective mass energy-absorption coefficient. Monte Carlo simulations were also performed to calculate the energy absorbed in the scintillators' volume. The scintillators' expected response was then compared to the experimental measurements and an energy-dependent correction factor was identified to account for low-energy quenching in the scintillators. The empirical Birks model was then compared to these values to verify its validity for low-energy electrons. The clear optical fiber response was below 0.2% of the scintillator's light for x-ray beams, indicating that a negligible amount of fluorescence contamination was produced. However, for higher-energy beams ((137)Cs and (60)Co), the scintillators' response was corrected for the Cerenkov stem effect. The scintillators' response increased by a factor of approximately 4 from a 20 kVp to a (60)Co beam. The decrease in sensitivity from ionization quenching reached a local minimum of about [Formula: see text] between 40 keV and 60 keV x-ray beam mean energy, but dropped by 20% for very low-energy (13 keV) beams. The Birks model may be used to fit the experimental data, but it must take into account the energy dependence of the kB quenching parameter. A detailed comprehension of intrinsic scintillator response is essential for proper calibration of PSD dosimeters for radiology.
A systematic characterization of the low-energy photon response of plastic scintillation detectors
NASA Astrophysics Data System (ADS)
Boivin, Jonathan; Beddar, Sam; Bonde, Chris; Schmidt, Daniel; Culberson, Wesley; Guillemette, Maxime; Beaulieu, Luc
2016-08-01
To characterize the low energy behavior of scintillating materials used in plastic scintillation detectors (PSDs), 3 PSDs were developed using polystyrene-based scintillating materials emitting in different wavelengths. These detectors were exposed to National Institute of Standards and Technology (NIST)-matched low-energy beams ranging from 20 kVp to 250 kVp, and to 137Cs and 60Co beams. The dose in polystyrene was compared to the dose in air measured by NIST-calibrated ionization chambers at the same location. Analysis of every beam quality spectrum was used to extract the beam parameters and the effective mass energy-absorption coefficient. Monte Carlo simulations were also performed to calculate the energy absorbed in the scintillators’ volume. The scintillators’ expected response was then compared to the experimental measurements and an energy-dependent correction factor was identified to account for low-energy quenching in the scintillators. The empirical Birks model was then compared to these values to verify its validity for low-energy electrons. The clear optical fiber response was below 0.2% of the scintillator’s light for x-ray beams, indicating that a negligible amount of fluorescence contamination was produced. However, for higher-energy beams (137Cs and 60Co), the scintillators’ response was corrected for the Cerenkov stem effect. The scintillators’ response increased by a factor of approximately 4 from a 20 kVp to a 60Co beam. The decrease in sensitivity from ionization quenching reached a local minimum of about 11%+/- 1% between 40 keV and 60 keV x-ray beam mean energy, but dropped by 20% for very low-energy (13 keV) beams. The Birks model may be used to fit the experimental data, but it must take into account the energy dependence of the kB quenching parameter. A detailed comprehension of intrinsic scintillator response is essential for proper calibration of PSD dosimeters for radiology.
Rizk, C; Vanhavere, F
2016-09-01
The personal dosimetry service at the Lebanese Atomic Energy Commission uses Harshaw 8814 cards with LiF:Mg,Ti detectors. The dosemeters are read in a Harshaw 6600 TLD reader. In the process of accreditation for the ISO 17025 standard((1)), different influence factors are investigated and the uncertainty has been determined. The Individual Monitoring Service Laboratory-LAEC reads the dosemeters once it receives them from the customer, and new cards are immediately given for the next wearing period. The wearing period is 2 months. The dosemeter results are reported to the customers without background subtraction. Both Hp(10) and Hp(0.07) are reported. For this paper, only the uncertainty on Hp(10) will be focussed. The following factors are taken into account for the uncertainty: calibration factor, dosemeter homogeneity and repeatability, energy and angular dependence, non-linearity, temperature dependence, etc. Also the detection limit was determined. One of the important factors is the correction for fading. This fading correction depends on the procedure used such as storage temperatures, the time-temperature profile of the read-out, pre-heat and annealing conditions. Pre- and post-irradiation fading curves were measured for a storage period up to 182 d at room temperature (15-25°C). The resulting final combined standard uncertainty on the reported doses is of the order of 24 % for doses of ∼1 mSv. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
78 FR 48661 - Application for Presidential Permit; Soule River Hydroelectric Project: Correction
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-09
... Hydroelectric Project: Correction AGENCY: Office of Electricity Delivery and Energy Reliability, DOE. ACTION: Notice of Application; correction. SUMMARY: The Department of Energy (DOE) Office of Electricity Delivery..., Office of Electricity Delivery and Energy Reliability (OE-20), U.S. Department of Energy, 1000...
Analysis of interacting entropy-corrected holographic and new agegraphic dark energies
NASA Astrophysics Data System (ADS)
Ranjit, Chayan; Debnath, Ujjal
In the present work, we assume the flat FRW model of the universe is filled with dark matter and dark energy where they are interacting. For dark energy model, we consider the entropy-corrected HDE (ECHDE) model and the entropy-corrected NADE (ECNADE). For entropy-corrected models, we assume logarithmic correction and power law correction. For ECHDE model, length scale L is assumed to be Hubble horizon and future event horizon. The ωde-ωde‧ analysis for our different horizons are discussed.
Effect of Multiple Scattering on the Compton Recoil Current Generated in an EMP, Revisited
Farmer, William A.; Friedman, Alex
2015-06-18
Multiple scattering has historically been treated in EMP modeling through the obliquity factor. The validity of this approach is examined here. A simplified model problem, which correctly captures cyclotron motion, Doppler shifting due to the electron motion, and multiple scattering is first considered. The simplified problem is solved three ways: the obliquity factor, Monte-Carlo, and Fokker-Planck finite-difference. Because of the Doppler effect, skewness occurs in the distribution. It is demonstrated that the obliquity factor does not correctly capture this skewness, but the Monte-Carlo and Fokker-Planck finite-difference approaches do. Here, the obliquity factor and Fokker-Planck finite-difference approaches are then compared inmore » a fuller treatment, which includes the initial Klein-Nishina distribution of the electrons, and the momentum dependence of both drag and scattering. It is found that, in general, the obliquity factor is adequate for most situations. However, as the gamma energy increases and the Klein-Nishina becomes more peaked in the forward direction, skewness in the distribution causes greater disagreement between the obliquity factor and a more accurate model of multiple scattering.« less
1/ f noise from the laws of thermodynamics for finite-size fluctuations.
Chamberlin, Ralph V; Nasir, Derek M
2014-07-01
Computer simulations of the Ising model exhibit white noise if thermal fluctuations are governed by Boltzmann's factor alone; whereas we find that the same model exhibits 1/f noise if Boltzmann's factor is extended to include local alignment entropy to all orders. We show that this nonlinear correction maintains maximum entropy during equilibrium fluctuations. Indeed, as with the usual way to resolve Gibbs' paradox that avoids entropy reduction during reversible processes, the correction yields the statistics of indistinguishable particles. The correction also ensures conservation of energy if an instantaneous contribution from local entropy is included. Thus, a common mechanism for 1/f noise comes from assuming that finite-size fluctuations strictly obey the laws of thermodynamics, even in small parts of a large system. Empirical evidence for the model comes from its ability to match the measured temperature dependence of the spectral-density exponents in several metals and to show non-Gaussian fluctuations characteristic of nanoscale systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, X; Rosenfield, J; Dong, X
2016-06-15
Purpose: Rotational total skin electron irradiation (RTSEI) is used in the treatment of cutaneous T-cell lymphoma. Due to inter-film uniformity variations the dosimetry measurement of a large electron beam of a very low energy is challenging. This work provides a method to improve the accuracy of flatness and symmetry for a very large treatment field of low electron energy used in dual beam RTSEI. Methods: RTSEI is delivered by dual angles field a gantry of ±20 degrees of 270 to cover the upper and the lower halves of the patient body with acceptable beam uniformity. The field size is inmore » the order of 230cm in vertical height and 120 cm in horizontal width and beam energy is a degraded 6 MeV (6 mm of PMMA spoiler). We utilized parallel plate chambers, Gafchromic films and OSLDs as a measuring devices for absolute dose, B-Factor, stationary and rotational percent depth dose and beam uniformity. To reduce inter-film dosimetric variation we introduced a new specific correction method to analyze beam uniformity. This correction method uses some image processing techniques combining film value before and after radiation dose to compensate the inter-variation dose response differences among films. Results: Stationary and rotational depth of dose demonstrated that the Rp is 2 cm for rotational and the maximum dose is shifted toward the surface (3mm). The dosimetry for the phantom showed that dose uniformity reduced to 3.01% for the vertical flatness and 2.35% for horizontal flatness after correction thus achieving better flatness and uniformity. The absolute dose readings of calibrated films after our correction matched with the readings from OSLD. Conclusion: The proposed correction method for Gafchromic films will be a useful tool to correct inter-film dosimetric variation for the future clinical film dosimetry verification in very large fields, allowing the optimizations of other parameters.« less
Gurka, Matthew J; Kuperminc, Michelle N; Busby, Marjorie G; Bennis, Jacey A; Grossberg, Richard I; Houlihan, Christine M; Stevenson, Richard D; Henderson, Richard C
2010-02-01
To assess the accuracy of skinfold equations in estimating percentage body fat in children with cerebral palsy (CP), compared with assessment of body fat from dual energy X-ray absorptiometry (DXA). Data were collected from 71 participants (30 females, 41 males) with CP (Gross Motor Function Classification System [GMFCS] levels I-V) between the ages of 8 and 18 years. Estimated percentage body fat was computed using established (Slaughter) equations based on the triceps and subscapular skinfolds. A linear model was fitted to assess the use of a simple correction to these equations for children with CP. Slaughter's equations consistently underestimated percentage body fat (mean difference compared with DXA percentage body fat -9.6/100 [SD 6.2]; 95% confidence interval [CI] -11.0 to -8.1). New equations were developed in which a correction factor was added to the existing equations based on sex, race, GMFCS level, size, and pubertal status. These corrected equations for children with CP agree better with DXA (mean difference 0.2/100 [SD=4.8]; 95% CI -1.0 to 1.3) than existing equations. A simple correction factor to commonly used equations substantially improves the ability to estimate percentage body fat from two skinfold measures in children with CP.
The Kroll-Lee-Zumino Model and Pion Form Factors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dominguez, C. A.; Loewe, M.
2010-08-04
At the one loop level, we make use of the renormalizable Abelian quantum field theory model of Kroll, Lee, and Zumino (KLZ) in order to compute the vertex corrections to the tree-level, Vector Meson Dominance (VMD) electromagnetic pion form factor. This result, together with the one-loop vacuum polarization contribution, implies an electromagnetic pion form factor which is in outstanding agreement with data in the whole range of accessible momentum transfers in the space-like region. The time-like form factor, which reproduces the Gounaris-Sakurai formula at and near the rho-meson peak, remains unaffected by the vertex correction at order O(g{sup 2}). Wemore » also use the KLZ model to compute the pion scalar radius at the one loop level, finding
Lourenço, A; Wellock, N; Thomas, R; Homer, M; Bouchard, H; Kanai, T; MacDougall, N; Royle, G; Palmans, H
2016-11-07
Water-equivalent plastics are frequently used in dosimetry for experimental simplicity. This work evaluates the water-equivalence of novel water-equivalent plastics specifically designed for light-ion beams, as well as commercially available plastics in a clinical high-energy carbon-ion beam. A plastic- to-water conversion factor [Formula: see text] was established to derive absorbed dose to water in a water phantom from ionization chamber readings performed in a plastic phantom. Three trial plastic materials with varying atomic compositions were produced and experimentally characterized in a high-energy carbon-ion beam. Measurements were performed with a Roos ionization chamber, using a broad un-modulated beam of 11 × 11 cm 2 , to measure the plastic-to-water conversion factor for the novel materials. The experimental results were compared with Monte Carlo simulations. Commercially available plastics were also simulated for comparison with the plastics tested experimentally, with particular attention to the influence of nuclear interaction cross sections. The measured [Formula: see text] correction increased gradually from 0% at the surface to 0.7% at a depth near the Bragg peak for one of the plastics prepared in this work, while for the other two plastics a maximum correction of 0.8%-1.3% was found. Average differences between experimental and numerical simulations were 0.2%. Monte Carlo results showed that for polyethylene, polystyrene, Rando phantom soft tissue and A-150, the correction increased from 0% to 2.5%-4.0% with depth, while for PMMA it increased to 2%. Water-equivalent plastics such as, Plastic Water, RMI-457, Gammex 457-CTG, WT1 and Virtual Water, gave similar results where maximum corrections were of the order of 2%. Considering the results from Monte Carlo simulations, one of the novel plastics was found to be superior in comparison with the plastic materials currently used in dosimetry, demonstrating that it is feasible to tailor plastic materials to be water-equivalent for carbon ions specifically.
A causal viscous cosmology without singularities
NASA Astrophysics Data System (ADS)
Laciana, Carlos E.
2017-05-01
An isotropic and homogeneous cosmological model with a source of dark energy is studied. That source is simulated with a viscous relativistic fluid with minimal causal correction. In this model the restrictions on the parameters coming from the following conditions are analized: (a) energy density without singularities along time, (b) scale factor increasing with time, (c) universe accelerated at present time, (d) state equation for dark energy with " w" bounded and close to -1. It is found that those conditions are satisfied for the following two cases. (i) When the transport coefficient (τ _{Π}), associated to the causal correction, is negative, with the additional restriction ζ | τ _{Π}| >2/3, where ζ is the relativistic bulk viscosity coefficient. The state equation is in the "phantom" energy sector. (ii) For τ _{Π} positive, in the "k-essence" sector. It is performed an exact calculation for the case where the equation of state is constant, finding that option (ii) is favored in relation to (i), because in (ii) the entropy is always increasing, while this does no happen in (i).
Growth failure and nutrition considerations in chronic childhood wasting diseases.
Kyle, Ursula G; Shekerdemian, Lara S; Coss-Bu, Jorge A
2015-04-01
Growth failure is a common problem in many children with chronic diseases. This article is an overview of the most common causes of growth failure/growth retardation that affect children with a number of chronic diseases. We also briefly review the nutrition considerations and treatment goals. Growth failure is multifactorial in children with chronic conditions, including patients with cystic fibrosis, chronic kidney disease, chronic liver disease, congenital heart disease, human immunodeficiency virus, inflammatory bowel disease, short bowel syndrome, and muscular dystrophies. Important contributory factors to growth failure include increased energy needs, increased energy loss, malabsorption, decreased energy intake, anorexia, pain, vomiting, intestinal obstruction, and inflammatory cytokines. Various metabolic and pathologic abnormalities that are characteristic of chronic diseases further lead to significant malnutrition and growth failure. In addition to treating disease-specific abnormalities, treatment should address the energy and protein deficits, including vitamin and mineral supplements to correct deficiencies, correct metabolic and endocrinologic abnormalities, and include long-term monitoring of weight and growth. Individualized, age-appropriate nutrition intervention will minimize the malnutrition and growth failure seen in children with chronic diseases. © 2014 American Society for Parenteral and Enteral Nutrition.
Comment on radiative magnetic energy shifts in hydrogen
DOE Office of Scientific and Technical Information (OSTI.GOV)
Calmet, J.; Grotch, H.; Owen, D.A.
It is shown that the magnetic radiative energy shift derived from the relativistic-Lamb-shift expression of Erickson and Yennie reduces in the nonrelativistic limit to a formula given by Grotch and Hegstrom, which was derived starting from the nonrelativistic theory. This clears up a discrepancy between those two approaches. The corresponding correction to the g factor, which exists only for states with l not = 0, is estimated to be -0.24 ..cap alpha../sup 3/ for the 2P state of hydrogen.
Anomalous Rayleigh scattering with dilute concentrations of elements of biological importance
NASA Astrophysics Data System (ADS)
Hugtenburg, Richard P.; Bradley, David A.
2004-01-01
The anomalous scattering factor (ASF) correction to the relativistic form-factor approximation for Rayleigh scattering is examined in support of its utilization in radiographic imaging. ASF corrected total cross-section data have been generated for a low resolution grid for the Monte Carlo code EGS4 for the biologically important elements, K, Ca, Mn, Fe, Cu and Zn. Points in the fixed energy grid used by EGS4 as well as 8 other points in the vicinity of the K-edge have been chosen to achieve an uncertainty in the ASF component of 20% according to the Thomas-Reiche-Kuhn sum rule and an energy resolution of 20 eV. Such data is useful for analysis of imaging with a quasi-monoenergetic source. Corrections to the sampled distribution of outgoing photons, due to ASF, are given and new total cross-section data including that of the photoelectric effect have been computed using the Slater exchange self-consistent potential with the Latter tail. A measurement of Rayleigh scattering in a dilute aqueous solution of manganese (II) was performed, this system enabling determination of the absolute cross-section, although background subtraction was necessary to remove K β fluorescence and resonant Raman scattering occurring within several 100 eV of the edge. Measurements confirm the presence of below edge bound-bound structure and variation in the structure due to the ionic state that are not currently included in tabulations.
On the p(dis) correction factor for cylindrical chambers.
Andreo, Pedro
2010-03-07
The authors of a recent paper (Wang and Rogers 2009 Phys. Med. Biol. 54 1609) have used the Monte Carlo method to simulate the 'classical' experiment made more than 30 years ago by Johansson et al (1978 National and International Standardization of Radiation Dosimetry (Atlanta 1977) vol 2 (Vienna: IAEA) pp 243-70) on the displacement (or replacement) perturbation correction factor p(dis) for cylindrical chambers in 60Co and high-energy photon beams. They conclude that an 'unreasonable normalization at dmax' of the ionization chambers response led to incorrect results, and for the IAEA TRS-398 Code of Practice, which uses ratios of those results, 'the difference in the correction factors can lead to a beam calibration deviation of more than 0.5% for Farmer-like chambers'. The present work critically examines and questions some of the claims and generalized conclusions of the paper. It is demonstrated that for real, commercial Farmer-like chambers, the possible deviations in absorbed dose would be much smaller (typically 0.13%) than those stated by Wang and Rogers, making the impact of their proposed values negligible on practical high-energy photon dosimetry. Differences of the order of 0.4% would only appear at the upper extreme of the energies potentially available for clinical use (around 25 MV) and, because lower energies are more frequently used, the number of radiotherapy photon beams for which the deviations would be larger than say 0.2% is extremely small. This work also raises concerns on the proposed value of pdis for Farmer chambers at the reference quality of 60Co in relation to their impact on electron beam dosimetry, both for direct dose determination using these chambers and for the cross-calibration of plane-parallel chambers. The proposed increase of about 1% in p(dis) (compared with TRS-398) would lower the kQ factors and therefore Dw in electron beams by the same amount. This would yield a severe discrepancy with the current good agreement between electron dosimetry based on an electron cross-calibrated plane-parallel chamber (against a Farmer) or on a directly 60Co calibrated plane-parallel chamber, which is not likely to be in error by 1%. It is suggested that the influence of the 60Co source spectrum used in the simulations may not be negligible for calculations aimed at an uncertainty level of 0.1%.
LETTER TO THE EDITOR: On the pdis correction factor for cylindrical chambers
NASA Astrophysics Data System (ADS)
Andreo, Pedro
2010-03-01
The authors of a recent paper (Wang and Rogers 2009 Phys. Med. Biol. 54 1609) have used the Monte Carlo method to simulate the 'classical' experiment made more than 30 years ago by Johansson et al (1978 National and International Standardization of Radiation Dosimetry (Atlanta 1977) vol 2 (Vienna: IAEA) pp 243-70) on the displacement (or replacement) perturbation correction factor pdis for cylindrical chambers in 60Co and high-energy photon beams. They conclude that an 'unreasonable normalization at dmax' of the ionization chambers response led to incorrect results, and for the IAEA TRS-398 Code of Practice, which uses ratios of those results, 'the difference in the correction factors can lead to a beam calibration deviation of more than 0.5% for Farmer-like chambers'. The present work critically examines and questions some of the claims and generalized conclusions of the paper. It is demonstrated that for real, commercial Farmer-like chambers, the possible deviations in absorbed dose would be much smaller (typically 0.13%) than those stated by Wang and Rogers, making the impact of their proposed values negligible on practical high-energy photon dosimetry. Differences of the order of 0.4% would only appear at the upper extreme of the energies potentially available for clinical use (around 25 MV) and, because lower energies are more frequently used, the number of radiotherapy photon beams for which the deviations would be larger than say 0.2% is extremely small. This work also raises concerns on the proposed value of pdis for Farmer chambers at the reference quality of 60Co in relation to their impact on electron beam dosimetry, both for direct dose determination using these chambers and for the cross-calibration of plane-parallel chambers. The proposed increase of about 1% in pdis (compared with TRS-398) would lower the kQ factors and therefore Dw in electron beams by the same amount. This would yield a severe discrepancy with the current good agreement between electron dosimetry based on an electron cross-calibrated plane-parallel chamber (against a Farmer) or on a directly 60Co calibrated plane-parallel chamber, which is not likely to be in error by 1%. It is suggested that the influence of the 60Co source spectrum used in the simulations may not be negligible for calculations aimed at an uncertainty level of 0.1%.
49 CFR 325.75 - Ground surface correction factors. 1
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 5 2010-10-01 2010-10-01 false Ground surface correction factors. 1 325.75... MOTOR CARRIER NOISE EMISSION STANDARDS Correction Factors § 325.75 Ground surface correction factors. 1... account both the distance correction factors contained in § 325.73 and the ground surface correction...
49 CFR 325.75 - Ground surface correction factors. 1
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 5 2011-10-01 2011-10-01 false Ground surface correction factors. 1 325.75... MOTOR CARRIER NOISE EMISSION STANDARDS Correction Factors § 325.75 Ground surface correction factors. 1... account both the distance correction factors contained in § 325.73 and the ground surface correction...
Quantitation of tumor uptake with molecular breast imaging.
Bache, Steven T; Kappadath, S Cheenu
2017-09-01
We developed scatter and attenuation-correction techniques for quantifying images obtained with Molecular Breast Imaging (MBI) systems. To investigate scatter correction, energy spectra of a 99m Tc point source were acquired with 0-7-cm-thick acrylic to simulate scatter between the detector heads. System-specific scatter correction factor, k, was calculated as a function of thickness using a dual energy window technique. To investigate attenuation correction, a 7-cm-thick rectangular phantom containing 99m Tc-water simulating breast tissue and fillable spheres simulating tumors was imaged. Six spheres 10-27 mm in diameter were imaged with sphere-to-background ratios (SBRs) of 3.5, 2.6, and 1.7 and located at depths of 0.5, 1.5, and 2.5 cm from the center of the water bath for 54 unique tumor scenarios (3 SBRs × 6 sphere sizes × 3 depths). Phantom images were also acquired in-air under scatter- and attenuation-free conditions, which provided ground truth counts. To estimate true counts, T, from each tumor, the geometric mean (GM) of the counts within a prescribed region of interest (ROI) from the two projection images was calculated as T=C1C2eμtF, where C are counts within the square ROI circumscribing each sphere on detectors 1 and 2, μ is the linear attenuation coefficient of water, t is detector separation, and the factor F accounts for background activity. Four unique F definitions-standard GM, background-subtraction GM, MIRD Primer 16 GM, and a novel "volumetric GM"-were investigated. Error in T was calculated as the percentage difference with respect to in-air. Quantitative accuracy using the different GM definitions was calculated as a function of SBR, depth, and sphere size. Sensitivity of quantitative accuracy to ROI size was investigated. We developed an MBI simulation to investigate the robustness of our corrections for various ellipsoidal tumor shapes and detector separations. Scatter correction factor k varied slightly (0.80-0.95) over a compressed breast thickness range of 6-9 cm. Corrected energy spectra recovered general characteristics of scatter-free spectra. Quantitatively, photopeak counts were recovered to <10% compared to in-air conditions after scatter correction. After GM attenuation correction, mean errors (95% confidence interval, CI) for all 54 imaging scenarios were 149% (-154% to +455%), -14.0% (-38.4% to +10.4%), 16.8% (-14.7% to +48.2%), and 2.0% (-14.3 to +18.3%) for the standard GM, background-subtraction GM, MIRD 16 GM, and volumetric GM, respectively. Volumetric GM was less sensitive to SBR and sphere size, while all GM methods were insensitive to sphere depth. Simulation results showed that Volumetric GM method produced a mean error within 5% over all compressed breast thicknesses (3-14 cm), and that the use of an estimated radius for nonspherical tumors increases the 95% CI to at most ±23%, compared with ±16% for spherical tumors. Using DEW scatter- and our Volumetric GM attenuation-correction methodology yielded accurate estimates of tumor counts in MBI over various tumor sizes, shapes, depths, background uptake, and compressed breast thicknesses. Accurate tumor uptake can be converted to radiotracer uptake concentration, allowing three patient-specific metrics to be calculated for quantifying absolute uptake and relative uptake change for assessment of treatment response. © 2017 American Association of Physicists in Medicine.
Air-kerma strength determination of a new directional (103)Pd source.
Aima, Manik; Reed, Joshua L; DeWerd, Larry A; Culberson, Wesley S
2015-12-01
A new directional (103)Pd planar source array called a CivaSheet™ has been developed by CivaTech Oncology, Inc., for potential use in low-dose-rate (LDR) brachytherapy treatments. The array consists of multiple individual polymer capsules called CivaDots, containing (103)Pd and a gold shield that attenuates the radiation on one side, thus defining a hot and cold side. This novel source requires new methods to establish a source strength metric. The presence of gold material in such close proximity to the active (103)Pd region causes the source spectrum to be significantly different than the energy spectra of seeds normally used in LDR brachytherapy treatments. In this investigation, the authors perform air-kerma strength (S(K)) measurements, develop new correction factors for these measurements based on an experimentally verified energy spectrum, and test the robustness of transferring S(K) to a well-type ionization chamber. S(K) measurements were performed with the variable-aperture free-air chamber (VAFAC) at the University of Wisconsin Medical Radiation Research Center. Subsequent measurements were then performed in a well-type ionization chamber. To realize the quantity S(K) from a directional source with gold material present, new methods and correction factors were considered. Updated correction factors were calculated using the MCNP 6 Monte Carlo code in order to determine S(K) with the presence of gold fluorescent energy lines. In addition to S(K) measurements, a low-energy high-purity germanium (HPGe) detector was used to experimentally verify the calculated spectrum, a sodium iodide (NaI) scintillating counter was used to verify the azimuthal and polar anisotropy, and a well-type ionization chamber was used to test the feasibility of disseminating S(K) values for a directional source within a cylindrically symmetric measurement volume. The UW VAFAC was successfully used to measure the S(K) of four CivaDots with reproducibilities within 0.3%. Monte Carlo methods were used to calculate the UW VAFAC correction factors and the calculated spectrum emitted from a CivaDot was experimentally verified with HPGe detector measurements. The well-type ionization chamber showed minimal variation in response (<1.5%) as a function of source positioning angle, indicating that an American Association of Physicists in Medicine (AAPM) Accredited Dosimetry Calibration Laboratory calibrated well chamber would be a suitable device to transfer an S(K)-based calibration to a clinical user. S(K) per well-chamber ionization current ratios were consistent among the four dots measured. Additionally, the measurements and predictions of anisotropy show uniform emission within the solid angle of the VAFAC, which demonstrates the robustness of the S(K) measurement approach. This characterization of a new (103)Pd directional brachytherapy source helps to establish calibration methods that could ultimately be used in the well-established AAPM Task Group 43 formalism. Monte Carlo methods accurately predict the changes in the energy spectrum caused by the fluorescent x-rays produced in the gold shield.
Air-kerma strength determination of a new directional 103Pd source
Reed, Joshua L.; DeWerd, Larry A.; Culberson, Wesley S.
2015-01-01
Purpose: A new directional 103Pd planar source array called a CivaSheet™ has been developed by CivaTech Oncology, Inc., for potential use in low-dose-rate (LDR) brachytherapy treatments. The array consists of multiple individual polymer capsules called CivaDots, containing 103Pd and a gold shield that attenuates the radiation on one side, thus defining a hot and cold side. This novel source requires new methods to establish a source strength metric. The presence of gold material in such close proximity to the active 103Pd region causes the source spectrum to be significantly different than the energy spectra of seeds normally used in LDR brachytherapy treatments. In this investigation, the authors perform air-kerma strength (SK) measurements, develop new correction factors for these measurements based on an experimentally verified energy spectrum, and test the robustness of transferring SK to a well-type ionization chamber. Methods: SK measurements were performed with the variable-aperture free-air chamber (VAFAC) at the University of Wisconsin Medical Radiation Research Center. Subsequent measurements were then performed in a well-type ionization chamber. To realize the quantity SK from a directional source with gold material present, new methods and correction factors were considered. Updated correction factors were calculated using the mcnp 6 Monte Carlo code in order to determine SK with the presence of gold fluorescent energy lines. In addition to SK measurements, a low-energy high-purity germanium (HPGe) detector was used to experimentally verify the calculated spectrum, a sodium iodide (NaI) scintillating counter was used to verify the azimuthal and polar anisotropy, and a well-type ionization chamber was used to test the feasibility of disseminating SK values for a directional source within a cylindrically symmetric measurement volume. Results: The UW VAFAC was successfully used to measure the SK of four CivaDots with reproducibilities within 0.3%. Monte Carlo methods were used to calculate the UW VAFAC correction factors and the calculated spectrum emitted from a CivaDot was experimentally verified with HPGe detector measurements. The well-type ionization chamber showed minimal variation in response (<1.5%) as a function of source positioning angle, indicating that an American Association of Physicists in Medicine (AAPM) Accredited Dosimetry Calibration Laboratory calibrated well chamber would be a suitable device to transfer an SK-based calibration to a clinical user. SK per well-chamber ionization current ratios were consistent among the four dots measured. Additionally, the measurements and predictions of anisotropy show uniform emission within the solid angle of the VAFAC, which demonstrates the robustness of the SK measurement approach. Conclusions: This characterization of a new 103Pd directional brachytherapy source helps to establish calibration methods that could ultimately be used in the well-established AAPM Task Group 43 formalism. Monte Carlo methods accurately predict the changes in the energy spectrum caused by the fluorescent x-rays produced in the gold shield. PMID:26632069
Tornero-López, Ana M; Guirado, Damián; Perez-Calatayud, Jose; Ruiz-Arrebola, Samuel; Simancas, Fernando; Gazdic-Santic, Maja; Lallena, Antonio M
2013-12-01
Air-communicating well ionization chambers are commonly used to assess air kerma strength of sources used in brachytherapy. The signal produced is supposed to be proportional to the air density within the chamber and, therefore, a density-independent air kerma strength is obtained when the measurement is corrected to standard atmospheric conditions using the usual temperature and pressure correction factor. Nevertheless, when assessing low energy sources, the ionization chambers may not fulfill that condition and a residual density dependence still remains after correction. In this work, the authors examined the behavior of the PTW 34051 SourceCheck ionization chamber when measuring the air kerma strength of (125)I seeds. Four different SourceCheck chambers were analyzed. With each one of them, two series of measurements of the air kerma strength for (125)I selectSeed(TM) brachytherapy sources were performed inside a pressure chamber and varying the pressure in a range from 747 to 1040 hPa (560 to 780 mm Hg). The temperature and relative humidity were kept basically constant. An analogous experiment was performed by taking measurements at different altitudes above sea level. Contrary to other well-known ionization chambers, like the HDR1000 PLUS, in which the temperature-pressure correction factor overcorrects the measurements, in the SourceCheck ionization chamber they are undercorrected. At a typical atmospheric situation of 933 hPa (700 mm Hg) and 20 °C, this undercorrection turns out to be 1.5%. Corrected measurements show a residual linear dependence on the density and, as a consequence, an additional density dependent correction must be applied. The slope of this residual linear density dependence is different for each SourceCheck chamber investigated. The results obtained by taking measurements at different altitudes are compatible with those obtained with the pressure chamber. Variations of the altitude and changes in the weather conditions may produce significant density corrections, and that effect should be taken into account. This effect is chamber-dependent, indicating that a specific calibration is necessary for each particular chamber. To our knowledge, this correction has not been considered so far for SourceCheck ionization chambers, but its magnitude cannot be neglected in clinical practice. The atmospheric pressure and temperature at which the chamber was calibrated need to be taken into account, and they should be reported in the calibration certificate. In addition, each institution should analyze the particular response of its SourceCheck ionization chamber and compute the adequate correction factors. In the absence of a suitable pressure chamber, a possibility for this assessment is to take measurements at different altitudes, spanning a wide enough air density range.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tornero-López, Ana M.; Guirado, Damián; Ruiz-Arrebola, Samuel
2013-12-15
Purpose: Air-communicating well ionization chambers are commonly used to assess air kerma strength of sources used in brachytherapy. The signal produced is supposed to be proportional to the air density within the chamber and, therefore, a density-independent air kerma strength is obtained when the measurement is corrected to standard atmospheric conditions using the usual temperature and pressure correction factor. Nevertheless, when assessing low energy sources, the ionization chambers may not fulfill that condition and a residual density dependence still remains after correction. In this work, the authors examined the behavior of the PTW 34051 SourceCheck ionization chamber when measuring themore » air kerma strength of {sup 125}I seeds.Methods: Four different SourceCheck chambers were analyzed. With each one of them, two series of measurements of the air kerma strength for {sup 125}I selectSeed{sup TM} brachytherapy sources were performed inside a pressure chamber and varying the pressure in a range from 747 to 1040 hPa (560 to 780 mm Hg). The temperature and relative humidity were kept basically constant. An analogous experiment was performed by taking measurements at different altitudes above sea level.Results: Contrary to other well-known ionization chambers, like the HDR1000 PLUS, in which the temperature-pressure correction factor overcorrects the measurements, in the SourceCheck ionization chamber they are undercorrected. At a typical atmospheric situation of 933 hPa (700 mm Hg) and 20 °C, this undercorrection turns out to be 1.5%. Corrected measurements show a residual linear dependence on the density and, as a consequence, an additional density dependent correction must be applied. The slope of this residual linear density dependence is different for each SourceCheck chamber investigated. The results obtained by taking measurements at different altitudes are compatible with those obtained with the pressure chamber.Conclusions: Variations of the altitude and changes in the weather conditions may produce significant density corrections, and that effect should be taken into account. This effect is chamber-dependent, indicating that a specific calibration is necessary for each particular chamber. To our knowledge, this correction has not been considered so far for SourceCheck ionization chambers, but its magnitude cannot be neglected in clinical practice. The atmospheric pressure and temperature at which the chamber was calibrated need to be taken into account, and they should be reported in the calibration certificate. In addition, each institution should analyze the particular response of its SourceCheck ionization chamber and compute the adequate correction factors. In the absence of a suitable pressure chamber, a possibility for this assessment is to take measurements at different altitudes, spanning a wide enough air density range.« less
Laser induced damage thresholds and laser safety levels. Do the units of measurement matter?
NASA Astrophysics Data System (ADS)
Wood, R. M.
1998-04-01
The commonly used units of measurement for laser induced damage are those of peak energy or power density. However, the laser induced damage thresholds, LIDT, of all materials are well known to be absorption, wavelength, spot size and pulse length dependent. As workers using these values become divorced from the theory it becomes increasingly important to use the correct units and to understand the correct scaling factors. This paper summarizes the theory and highlights the danger of using the wrong LIDT units in the context of potentially hazardous materials, laser safety eyewear and laser safety screens.
QCD corrections to ZZ production in gluon fusion at the LHC
Caola, Fabrizio; Melnikov, Kirill; Rontsch, Raoul; ...
2015-11-23
We compute the next-to-leading-order QCD corrections to the production of two Z-bosons in the annihilation of two gluons at the LHC. Being enhanced by a large gluon flux, these corrections provide a distinct and, potentially, the dominant part of the N 3LO QCD contributions to Z-pair production in proton collisions. The gg → ZZ annihilation is a loop-induced process that receives the dominant contribution from loops of five light quarks, that are included in our computation in the massless approximation. We find that QCD corrections increase the gg → ZZ production cross section by O(50%–100%) depending on the values ofmore » the renormalization and factorization scales used in the leading-order computation and the collider energy. Furthermore, the large corrections to the gg → ZZ channel increase the pp → ZZ cross section by about 6% to 8%, exceeding the estimated theoretical uncertainty of the recent next-to-next-to-leading-order QCD calculation.« less
Type 2 diabetes, but not obesity, prevalence is positively associated with ambient temperature.
Speakman, John R; Heidari-Bakavoli, Sahar
2016-08-01
Cold exposure stimulates energy expenditure and glucose disposal. If these factors play a significant role in whole body energy balance, and glucose homeostasis, it is predicted that both obesity and type 2 diabetes prevalence would be lower where it is colder. Previous studies have noted connections between ambient temperature and obesity, but the direction of the effect is confused. No previous studies have explored the link of type 2 diabetes to ambient temperature. We used county level data for obesity and diabetes prevalence across the mainland USA and matched this to county level ambient temperature data. Average ambient temperature explained 5.7% of the spatial variation in obesity and 29.6% of the spatial variation in type 2 diabetes prevalence. Correcting the type 2 diabetes data for the effect of obesity reduced the explained variation to 26.8%. Even when correcting for obesity, poverty and race, ambient temperature explained 12.4% of the variation in the prevalence of type 2 diabetes, and this significant effect remained when latitude was entered into the model as a predictor. When obesity prevalence was corrected for poverty and race the significant effect of temperature disappeared. Enhancing energy expenditure by cold exposure will likely not impact obesity significantly, but may be useful to combat type 2 diabetes.
S-factor for radiative capture reactions for light nuclei at astrophysical energies
NASA Astrophysics Data System (ADS)
Ghasemi, Reza; Sadeghi, Hossein
2018-06-01
The astrophysical S-factors of thermonuclear reactions, including radiative capture reactions and their analysis in the frame of different theoretical models, are the main source of nuclear processes. We have done research on the radiative capture reactions importance in the framework of a potential model. Investigation of the reactions in the astrophysical energies is of great interest in the aspect of astrophysics and nuclear physics for developing correct models of burning and evolution of stars. The experimental measurements are very difficult and impossible because of these reactions occurrence at low-energies. In this paper we do a calculation on radiative capture astrophysical S-factors for nuclei in the mass region A < 17. We calculate the astrophysical factor for the dipole electronic transition E1 and magnetic dipole transition M1 and electric quadrupole transition E2 by using the M3Y potential for non-resonances and resonances captures. Then we have got the parameter of a central part and spin-orbit part of M3Y potential and spectroscopic factor for reaction channels. For the astrophysical S-factor of this article the good agreement is achieved In comparison with experimental data and other theoretical methods.
Hadron diffractive production at ultrahigh energies and shadow effects
NASA Astrophysics Data System (ADS)
Anisovich, V. V.; Matveev, M. A.; Nikonov, V. A.
2016-10-01
Shadow effects at collisions of hadrons with light nuclei at high energies were subject of scientific interest of V.N. Gribov, first, we mean his study of the hadron-deuteron scattering, see Sov. Phys. JETP 29, 483 (1969) [Zh. Eksp. Teor. Fiz. 56, 892 (1969)] and discovery of the reinforcement of shadowing due to inelastic diffractive rescatterings. It turns out that the similar effect exists on hadron level though at ultrahigh energies. Diffractive production is considered in the ultrahigh energy region where pomeron exchange amplitudes are transformed into black disk ones due to rescattering corrections. The corresponding corrections in hadron reactions h1 + h3 → h1 + h2 + h3 with small momenta transferred (q1→12 ˜ m2/ln2s, q3→32 ˜ m2/ln2s) are calculated in terms of the K-matrix technique modified for ultrahigh energies. Small values of the momenta transferred are crucial for introducing equations for amplitudes. The three-body equation for hadron diffractive production reaction h1 + h3 → h1 + h2 + h3 is written and solved precisely in the eikonal approach. In the black disk regime final state scattering processes do not change the shapes of amplitudes principally but dump amplitudes by a factor ˜ 1 4; initial state rescatterings result in additional factor ˜ 1 2. In the resonant disk regime initial and final state scatterings damp strongly the production amplitude that corresponds to σinel/σtot → 0 at s →∞ in this mode.
Hadron Diffractive Production at Ultrahigh Energies and Shadow Effects
NASA Astrophysics Data System (ADS)
Anisovich, V. V.; Matveev, M. A.; Nikonov, V. A.
Shadow effects at collisions of hadrons with light nuclei at high energies were subject of scientific interest of V.N. Gribov, first, we mean his study of the hadron-deuteron scattering, see Sov. Phys. JETP 29, 483 (1969) [Zh. Eksp. Teor. Fiz. 56, 892 (1969)] and discovery of the reinforcement of shadowing due to inelastic diffractive rescatterings. It turns out that the similar effect exists on hadron level though at ultrahigh energies... Diffractive production is considered in the ultrahigh energy region where pomeron exchange amplitudes are transformed into black disk ones due to rescattering corrections. The corresponding corrections in hadron reactions h1 + h3 → h1 + h2 + h3 with small momenta transferred (q^2_{1 to 1} m^2/ ln^2 s, q^2_{3 to 3} m^2/ ln^2 s) are calculated in terms of the K-matrix technique modified for ultrahigh energies. Small values of the momenta transferred are crucial for introducing equations for amplitudes. The three-body equation for hadron diffractive production reaction h1 + h3 → h1 + h2 + h3 is written and solved precisely in the eikonal approach. In the black disk regime final state scattering processes do not change the shapes of amplitudes principally but dump amplitudes by a factor 1/4 initial state rescatterings result in additional factor 1/2. In the resonant disk regime initial and final state scatterings damp strongly the production amplitude that corresponds to σ_{inel}/σ_{tot} to 0 at √{s}to ∞ in this mode.
NLO QCD corrections to B c( B*c) production around the Z pole at an e + e - collider
NASA Astrophysics Data System (ADS)
Zheng, XuChang; Chang, ChaoHsi; Feng, TaiFu; Pan, Zan
2018-03-01
The production of B c and B*c mesons at a Z-factory (an e + e - collider operating at energies around the Z pole) is calculated up to the next-to-leading order (NLO) QCD accuracy. The results show that the dependence of the total cross sections on the renormalization scale μ is suppressed by the corrections, and the NLO corrections enhance the total cross sections of B c by 52% and of B*c by 33% when the renormalization scale is taken at μ = 2 m b . To observe the various behaviors of the production of the mesons B c and B*c, such as the differential cross section vs. the out-going angle, the forward-backward asymmetry, and the distribution vs. the energy fraction z up to NLO QCD accuracy as well as the relevant K-factor (NLO to LO) for the production, are calculated, and it is pointed out that some of the observables obtained in the present work may be used as a specific precision test of the standard model.
77 FR 8095 - Technical Corrections to Commission Regulations
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-14
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission 18 CFR Part 2 [Docket No. RM11-30-000; Order No. 756] Technical Corrections to Commission Regulations Issued February 8, 2012. AGENCY: Federal Energy Regulatory Commission, DOE. ACTION: Final rule: correcting amendment. SUMMARY: This document adds...
Beerten, Koen; Vanhavere, Filip
2010-08-01
New data are presented with regard to the relative OSL sensitivity of three different emergency dosemeters irradiated to various photon energies approximately between 48 and 1250 keV using blue excitation light. Investigated components extracted from commonly worn objects include those from USB flash drives (alumina substrate), mobile phones (Ba-rich silicate) and credit cards (chip card module). Several basic properties have been investigated such as the overall radiation sensitivity, the shape of the decay curve and fading of the OSL signal. An increase of the sensitivity for low energies relative to (60)Co gamma rays can be observed for the three dosemeters, the increase being very pronounced for the Ba-rich component (factor of 10) and less pronounced for the chip card module (factor of 2). It is concluded that proper dose correction factors for photon energy have to be applied in order to accurately determine the absorbed dose to tissue. The OSL sensitivity to neutron irradiation was investigated as well, but this was found to be less than the gamma sensitivity.
Bazzini, G; Capodaglio, E; Panigazzi, M; Prestifilippo, E; Vercesi, C
2010-01-01
For posture we mean the position of the body in the space and the relationship with its segments. The correct posture is determined by neurophysiological, biomechanical, emotional, psychological and relation factors, enabling us to perform daily and working activities with the lowest energy expenditure. When possible we suggest during posture variation, a preventive measure where there are prolonged fixed activities.
Air density dependence of the soft X-ray PTW 34013 ionization chamber.
Torres Del Río, Julia; Forastero, Cristina; Tornero-López, Ana M; López, Jesús J; Guirado, Damián; Perez-Calatayud, José; Lallena, Antonio M
2018-02-01
We studied the dependence on air density of the response of the PTW 34013 ionization chamber, recently upgraded for dosimetry control of low energy X-ray beams. Measurements were performed by changing the pressure conditions inside a pressure chamber. The behavior of the measurements against the air density inside this chamber was analyzed. X-ray beams generated with 50, 70, 100, 150 and 200 kVp and the two electrometer polarities were considered. For all beams studied, measurements corrected with the conventional temperature and pressure factor showed a residual dependence on the air density that was described with a linear function of the air density. For the 50 and 70 kVp beams, corrected measurements remained ∼1% smaller than the value found at standard pressure/temperature conditions, for both electrometer polarities and for the air density range typical in clinical conditions. For air densities smaller than the standard one, measurements found for 100, 150 and 200 kVp beams were below or above the value found at standard pressure and temperature when the negative or positive electrometer polarities were used, respectively. The differences with the measurements at standard conditions were less than 1% for the 100 kVp beam and below 4% for the other two beams. The PTW 34013 ionization chamber showed a dependence on the air density that is not properly described with the usual temperature and pressure correction factor. This residual dependence is negligible for low energy beams, for which this chamber is recommended, but is more substantial for beams with energy above 80 kVp. Copyright © 2018 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Sheldon, R. B.
1994-01-01
We have studied the transport and loss of H(+), He(+), and He(++) ions in the Earth's quiet time ring current (1 to 300 keV/e, 3 to 7 R(sub E), Kp less than 2+, absolute value of Dst less than 11, 70 to 110 degs pitchangles, all LT) comparing the standard radial diffusion model developed for the higher-energy radiation belt particles with measurements of the lower energy ring current ions in a previous paper. Large deviations of that model, which fit only 50% of the data to within a factor of 10, suggested that another transport mechanism is operating in the ring current. Here we derive a modified diffusion coefficient corrected for electric field effects on ring current energy ions that fit nearly 80% of the data to within a factor of 2. Thus we infer that electric field fluctuations from the low-latitude to midlatitude ionosphere (ionospheric dynamo) dominated the ring current transport, rather than high-latitude or solar wind fluctuations. Much of the remaining deviation may arise from convective electric field transport of the E less than 30 keV particles. Since convection effects cannot be correctly treated with this azimuthally symmetric model, we defer treatment of the lowest-energy ions to a another paper. We give chi(exp 2) contours for the best fit, showing the dependence of the fit upon the internal/external spectral power of the predicted electric and magnetic field fluctuations.
Atomic electron energies including relativistic effects and quantum electrodynamic corrections
NASA Technical Reports Server (NTRS)
Aoyagi, M.; Chen, M. H.; Crasemann, B.; Huang, K. N.; Mark, H.
1977-01-01
Atomic electron energies have been calculated relativistically. Hartree-Fock-Slater wave functions served as zeroth-order eigenfunctions to compute the expectation of the total Hamiltonian. A first order correction to the local approximation was thus included. Quantum-electrodynamic corrections were made. For all orbitals in all atoms with 2 less than or equal to Z less than or equal to 106, the following quantities are listed: total energies, electron kinetic energies, electron-nucleus potential energies, electron-electron potential energies consisting of electrostatic and Breit interaction (magnetic and retardation) terms, and vacuum polarization energies. These results will serve for detailed comparison of calculations based on other approaches. The magnitude of quantum electrodynamic corrections is exhibited quantitatively for each state.
76 FR 47566 - Agency Information Collection Extension; Correction
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-05
... DEPARTMENT OF ENERGY Office of Energy Efficiency and Renewable Energy Agency Information Collection Extension; Correction AGENCY: Office of Energy Efficiency and Renewable Energy, U.S. Department of... INFORMATION CONTACT: Benjamin Goldstein, Buy American Coordinator, Office of Energy Efficiency and Renewable...
Krauss, A; Kapsch, R-P
2018-02-06
For the ionometric determination of the absorbed dose to water, D w , in high-energy electron beams from a clinical accelerator, beam quality dependent correction factors, k Q , are required. By using a water calorimeter, these factors can be determined experimentally and potentially with lower standard uncertainties than those of the calculated k Q factors, which are tabulated in various dosimetry protocols. However, one of the challenges of water calorimetry in electron beams is the small measurement depths in water, together with the steep dose gradients present especially at lower energies. In this investigation, water calorimetry was implemented in electron beams to determine k Q factors for different types of cylindrical and plane-parallel ionization chambers (NE2561, NE2571, FC65-G, TM34001) in 10 cm × 10 cm electron beams from 6 MeV to 20 MeV (corresponding beam quality index R 50 ranging from 1.9 cm to 7.5 cm). The measurements were carried out using the linear accelerator facility of the Physikalisch-Technische Bundesanstalt. Relative standard uncertainties for the k Q factors between 0.50% for the 20 MeV beam and 0.75% for the 6 MeV beam were achieved. For electron energies above 8 MeV, general agreement was found between the relative electron energy dependencies of the k Q factors measured and those derived from the AAPM TG-51 protocol and recent Monte Carlo-based studies, as well as those from other experimental investigations. However, towards lower energies, discrepancies of up to 2.0% occurred for the k Q factors of the TM34001 and the NE2571 chamber.
NASA Astrophysics Data System (ADS)
Krauss, A.; Kapsch, R.-P.
2018-02-01
For the ionometric determination of the absorbed dose to water, D w, in high-energy electron beams from a clinical accelerator, beam quality dependent correction factors, k Q, are required. By using a water calorimeter, these factors can be determined experimentally and potentially with lower standard uncertainties than those of the calculated k Q factors, which are tabulated in various dosimetry protocols. However, one of the challenges of water calorimetry in electron beams is the small measurement depths in water, together with the steep dose gradients present especially at lower energies. In this investigation, water calorimetry was implemented in electron beams to determine k Q factors for different types of cylindrical and plane-parallel ionization chambers (NE2561, NE2571, FC65-G, TM34001) in 10 cm × 10 cm electron beams from 6 MeV to 20 MeV (corresponding beam quality index R 50 ranging from 1.9 cm to 7.5 cm). The measurements were carried out using the linear accelerator facility of the Physikalisch-Technische Bundesanstalt. Relative standard uncertainties for the k Q factors between 0.50% for the 20 MeV beam and 0.75% for the 6 MeV beam were achieved. For electron energies above 8 MeV, general agreement was found between the relative electron energy dependencies of the k Q factors measured and those derived from the AAPM TG-51 protocol and recent Monte Carlo-based studies, as well as those from other experimental investigations. However, towards lower energies, discrepancies of up to 2.0% occurred for the k Q factors of the TM34001 and the NE2571 chamber.
78 FR 3411 - President's Council of Advisors on Science and Technology (PCAST): Correction
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-16
... DEPARTMENT OF ENERGY President's Council of Advisors on Science and Technology (PCAST): Correction AGENCY: Department of Energy. ACTION: Notice of Open Teleconference: Correction. SUMMARY: On January 10, 2012, the Department of Energy (DOE) published a notice of open teleconference for the President's...
Underwater and Dive Station Work-Site Noise Surveys
2008-03-14
A) octave band noise measurements, dB (A) correction factors, dB ( A ) levels , MK-21 diving helmet attenuation correction factors, overall in-helmet...band noise measurements, dB (A) correction factors, dB ( A ) levels , MK-21 diving helmet attenuation correction factors, overall in-helmet dB (A...noise measurements, dB (A) correction factors, dB ( A ) levels , MK-21 diving helmet attenuation correction factors, overall in-helmet dB (A) level, and
Accurate Critical Stress Intensity Factor Griffith Crack Theory Measurements by Numerical Techniques
Petersen, Richard C.
2014-01-01
Critical stress intensity factor (KIc) has been an approximation for fracture toughness using only load-cell measurements. However, artificial man-made cracks several orders of magnitude longer and wider than natural flaws have required a correction factor term (Y) that can be up to about 3 times the recorded experimental value [1-3]. In fact, over 30 years ago a National Academy of Sciences advisory board stated that empirical KIc testing was of serious concern and further requested that an accurate bulk fracture toughness method be found [4]. Now that fracture toughness can be calculated accurately by numerical integration from the load/deflection curve as resilience, work of fracture (WOF) and strain energy release (SIc) [5, 6], KIc appears to be unnecessary. However, the large body of previous KIc experimental test results found in the literature offer the opportunity for continued meta analysis with other more practical and accurate fracture toughness results using energy methods and numerical integration. Therefore, KIc is derived from the classical Griffith Crack Theory [6] to include SIc as a more accurate term for strain energy release rate (𝒢Ic), along with crack surface energy (γ), crack length (a), modulus (E), applied stress (σ), Y, crack-tip plastic zone defect region (rp) and yield strength (σys) that can all be determined from load and deflection data. Polymer matrix discontinuous quartz fiber-reinforced composites to accentuate toughness differences were prepared for flexural mechanical testing comprising of 3 mm fibers at different volume percentages from 0-54.0 vol% and at 28.2 vol% with different fiber lengths from 0.0-6.0 mm. Results provided a new correction factor and regression analyses between several numerical integration fracture toughness test methods to support KIc results. Further, bulk KIc accurate experimental values are compared with empirical test results found in literature. Also, several fracture toughness mechanisms are discussed especially for fiber-reinforced composites. PMID:25620817
Experimental verification of a gain reduction model for the space charge effect in a wire chamber
NASA Astrophysics Data System (ADS)
Nagakura, Naoki; Fujii, Kazuki; Harayama, Isao; Kato, Yu; Sekiba, Daiichiro; Watahiki, Yumi; Yamashita, Satoru
2018-01-01
A wire chamber often suffers significant saturation of the multiplication factor when the electric field around its wires is strong. An analytical model of this effect has previously been proposed [Y. Arimoto et al., Nucl. Instrum. Meth. Phys. Res. A 799, 187 (2015)], in which the saturation was described by the multiplication factor, energy deposit density per wire length, and one constant parameter. In order to confirm the validity of this model, a multi-wire drift chamber was developed and irradiated by a MeV-range proton beam at the University of Tsukuba. The saturation effect was compared for energy deposits ranging from 70 keV/cm to 180 keV/cm and multiplication factors 3× 103 to 3× 104. The chamber was rotated with respect to the proton beam in order to vary the space charge density around the wires. The energy deposit distribution corrected for the effect was consistent with the result of a Monte Carlo simulation, thus validating the proposed model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zwan, Benjamin J., E-mail: benjamin.zwan@uon.edu.au; O’Connor, Daryl J.; King, Brian W.
2014-08-15
Purpose: To develop a frame-by-frame correction for the energy response of amorphous silicon electronic portal imaging devices (a-Si EPIDs) to radiation that has transmitted through the multileaf collimator (MLC) and to integrate this correction into the backscatter shielded EPID (BSS-EPID) dose-to-water conversion model. Methods: Individual EPID frames were acquired using a Varian frame grabber and iTools acquisition software then processed using in-house software developed inMATLAB. For each EPID image frame, the region below the MLC leaves was identified and all pixels in this region were multiplied by a factor of 1.3 to correct for the under-response of the imager tomore » MLC transmitted radiation. The corrected frames were then summed to form a corrected integrated EPID image. This correction was implemented as an initial step in the BSS-EPID dose-to-water conversion model which was then used to compute dose planes in a water phantom for 35 IMRT fields. The calculated dose planes, with and without the proposed MLC transmission correction, were compared to measurements in solid water using a two-dimensional diode array. Results: It was observed that the integration of the MLC transmission correction into the BSS-EPID dose model improved agreement between modeled and measured dose planes. In particular, the MLC correction produced higher pass rates for almost all Head and Neck fields tested, yielding an average pass rate of 99.8% for 2%/2 mm criteria. A two-sample independentt-test and fisher F-test were used to show that the MLC transmission correction resulted in a statistically significant reduction in the mean and the standard deviation of the gamma values, respectively, to give a more accurate and consistent dose-to-water conversion. Conclusions: The frame-by-frame MLC transmission response correction was shown to improve the accuracy and reduce the variability of the BSS-EPID dose-to-water conversion model. The correction may be applied as a preprocessing step in any pretreatment portal dosimetry calculation and has been shown to be beneficial for highly modulated IMRT fields.« less
NASA Astrophysics Data System (ADS)
Park, Kwangwoo; Bak, Jino; Park, Sungho; Choi, Wonhoon; Park, Suk Won
2016-02-01
A semiempirical method based on the averaging effect of the sensitive volumes of different air-filled ionization chambers (ICs) was employed to approximate the correction factors for beam quality produced from the difference in the sizes of the reference field and small fields. We measured the output factors using several cylindrical ICs and calculated the correction factors using a mathematical method similar to deconvolution; in the method, we modeled the variable and inhomogeneous energy fluence function within the chamber cavity. The parameters of the modeled function and the correction factors were determined by solving a developed system of equations as well as on the basis of the measurement data and the geometry of the chambers. Further, Monte Carlo (MC) computations were performed using the Monaco® treatment planning system to validate the proposed method. The determined correction factors (k{{Q\\text{msr}},Q}{{f\\text{smf}}, {{f}\\text{ref}}} ) were comparable to the values derived from the MC computations performed using Monaco®. For example, for a 6 MV photon beam and a field size of 1 × 1 cm2, k{{Q\\text{msr}},Q}{{f\\text{smf}}, {{f}\\text{ref}}} was calculated to be 1.125 for a PTW 31010 chamber and 1.022 for a PTW 31016 chamber. On the other hand, the k{{Q\\text{msr}},Q}{{f\\text{smf}}, {{f}\\text{ref}}} values determined from the MC computations were 1.121 and 1.031, respectively; the difference between the proposed method and the MC computation is less than 2%. In addition, we determined the k{{Q\\text{msr}},Q}{{f\\text{smf}}, {{f}\\text{ref}}} values for PTW 30013, PTW 31010, PTW 31016, IBA FC23-C, and IBA CC13 chambers as well. We devised a method for determining k{{Q\\text{msr}},Q}{{f\\text{smf}}, {{f}\\text{ref}}} from both the measurement of the output factors and model-based mathematical computation. The proposed method can be useful in case the MC simulation would not be applicable for the clinical settings.
Energy Expenditure in Critically Ill Elderly Patients: Indirect Calorimetry vs Predictive Equations.
Segadilha, Nara L A L; Rocha, Eduardo E M; Tanaka, Lilian M S; Gomes, Karla L P; Espinoza, Rodolfo E A; Peres, Wilza A F
2017-07-01
Predictive equations (PEs) are used for estimating resting energy expenditure (REE) when the measurements obtained from indirect calorimetry (IC) are not available. This study evaluated the degree of agreement and the accuracy between the REE measured by IC (REE-IC) and REE estimated by PE (REE-PE) in mechanically ventilated elderly patients admitted to the intensive care unit (ICU). REE-IC of 97 critically ill elderly patients was compared with REE-PE by 6 PEs: Harris and Benedict (HB) multiplied by the correction factor of 1.2; European Society for Clinical Nutrition and Metabolism (ESPEN) using the minimum (ESPENmi), average (ESPENme), and maximum (ESPENma) values; Mifflin-St Jeor; Ireton-Jones (IJ); Fredrix; and Lührmann. Degree of agreement between REE-PE and REE-IC was analyzed by the interclass correlation coefficient and the Bland-Altman test. The accuracy was calculated by the percentage of male and/or female patients whose REE-PE values differ by up to ±10% in relation to REE-IC. For both sexes, there was no difference for average REE-IC in kcal/kg when the values obtained with REE-PE by corrected HB and ESPENme were compared. A high level of agreement was demonstrated by corrected HB for both sexes, with greater accuracy for women. The best accuracy in the male group was obtained with the IJ equation but with a low level of agreement. The effectiveness of PEs is limited for estimating REE of critically ill elderly patients. Nonetheless, HB multiplied by a correction factor of 1.2 can be used until a specific PE for this group of patients is developed.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-05
... the Commission's Dispute Resolution Service. This document corrects various Part references on the... Service: Correction AGENCY: Federal Energy Regulatory Commission. ACTION: Final Rule: correction. SUMMARY.../Dispute Resolution Service, Federal Energy Regulatory Commission, 888 First Street, NE., Washington, DC...
10 CFR 71.133 - Corrective action.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 2 2011-01-01 2011-01-01 false Corrective action. 71.133 Section 71.133 Energy NUCLEAR....133 Corrective action. The licensee, certificate holder, and applicant for a CoC shall establish... determined and corrective action taken to preclude repetition. The identification of the significant...
10 CFR 71.133 - Corrective action.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 2 2010-01-01 2010-01-01 false Corrective action. 71.133 Section 71.133 Energy NUCLEAR....133 Corrective action. The licensee, certificate holder, and applicant for a CoC shall establish... determined and corrective action taken to preclude repetition. The identification of the significant...
The main beam correction term in kinetic energy release from metastable peaks.
Petersen, Allan Christian
2017-12-01
The correction term for the precursor ion signal width in determination of kinetic energy release is reviewed, and the correction term is formally derived. The derived correction term differs from the traditionally applied term. An experimental finding substantiates the inaccuracy in the latter. The application of the "T-value" to study kinetic energy release is found preferable to kinetic energy release distributions when the metastable peaks are slim and simple Gaussians. For electronically predissociated systems, a "borderline zero" kinetic energy release can be directly interpreted in reaction dynamics with strong curvature in the reaction coordinate. Copyright © 2017 John Wiley & Sons, Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mizuno, Hideyuki, E-mail: h-mizuno@nirs.go.jp; Fukumura, Akifumi; Fukahori, Mai
Purpose: The purpose of this study was to obtain a set of correction factors of the radiophotoluminescent glass dosimeter (RGD) output for field size changes and wedge insertions. Methods: Several linear accelerators were used for irradiation of the RGDs. The field sizes were changed from 5 × 5 cm to 25 × 25 cm for 4, 6, 10, and 15 MV x-ray beams. The wedge angles were 15°, 30°, 45°, and 60°. In addition to physical wedge irradiation, nonphysical (dynamic/virtual) wedge irradiations were performed. Results: The obtained data were fitted with a single line for each energy, and correction factorsmore » were determined. Compared with ionization chamber outputs, the RGD outputs gradually increased with increasing field size, because of the higher RGD response to scattered low-energy photons. The output increase was about 1% per 10 cm increase in field size, with a slight difference dependent on the beam energy. For both physical and nonphysical wedged beam irradiation, there were no systematic trends in the RGD outputs, such as monotonic increase or decrease depending on the wedge angle change if the authors consider the uncertainty, which is approximately 0.6% for each set of measured points. Therefore, no correction factor was needed for all inserted wedges. Based on this work, postal dose audits using RGDs for the nonreference condition were initiated in 2010. The postal dose audit results between 2010 and 2012 were analyzed. The mean difference between the measured and stated doses was within 0.5% for all fields with field sizes between 5 × 5 cm and 25 × 25 cm and with wedge angles from 15° to 60°. The standard deviations (SDs) of the difference distribution were within the estimated uncertainty (1SD) except for the 25 × 25 cm field size data, which were not reliable because of poor statistics (n = 16). Conclusions: A set of RGD output correction factors was determined for field size changes and wedge insertions. The results obtained from recent postal dose audits were analyzed, and the mean differences between the measured and stated doses were within 0.5% for every field size and wedge angle. The SDs of the distribution were within the estimated uncertainty, except for one condition that was not reliable because of poor statistics.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mackenzie, Alistair, E-mail: alistairmackenzie@nhs.net; Dance, David R.; Young, Kenneth C.
Purpose: The aim of this work is to create a model to predict the noise power spectra (NPS) for a range of mammographic radiographic factors. The noise model was necessary to degrade images acquired on one system to match the image quality of different systems for a range of beam qualities. Methods: Five detectors and x-ray systems [Hologic Selenia (ASEh), Carestream computed radiography CR900 (CRc), GE Essential (CSI), Carestream NIP (NIPc), and Siemens Inspiration (ASEs)] were characterized for this study. The signal transfer property was measured as the pixel value against absorbed energy per unit area (E) at a referencemore » beam quality of 28 kV, Mo/Mo or 29 kV, W/Rh with 45 mm polymethyl methacrylate (PMMA) at the tube head. The contributions of the three noise sources (electronic, quantum, and structure) to the NPS were calculated by fitting a quadratic at each spatial frequency of the NPS against E. A quantum noise correction factor which was dependent on beam quality was quantified using a set of images acquired over a range of radiographic factors with different thicknesses of PMMA. The noise model was tested for images acquired at 26 kV, Mo/Mo with 20 mm PMMA and 34 kV, Mo/Rh with 70 mm PMMA for three detectors (ASEh, CRc, and CSI) over a range of exposures. The NPS were modeled with and without the noise correction factor and compared with the measured NPS. A previous method for adapting an image to appear as if acquired on a different system was modified to allow the reference beam quality to be different from the beam quality of the image. The method was validated by adapting the ASEh flat field images with two thicknesses of PMMA (20 and 70 mm) to appear with the imaging characteristics of the CSI and CRc systems. Results: The quantum noise correction factor rises with higher beam qualities, except for CR systems at high spatial frequencies, where a flat response was found against mean photon energy. This is due to the dominance of secondary quantum noise in CR. The use of the quantum noise correction factor reduced the difference from the model to the real NPS to generally within 4%. The use of the quantum noise correction improved the conversion of ASEh image to CRc image but had no difference for the conversion to CSI images. Conclusions: A practical method for estimating the NPS at any dose and over a range of beam qualities for mammography has been demonstrated. The noise model was incorporated into a methodology for converting an image to appear as if acquired on a different detector. The method can now be extended to work for a wide range of beam qualities and can be applied to the conversion of mammograms.« less
GURKA, MATTHEW J; KUPERMINC, MICHELLE N; BUSBY, MARJORIE G; BENNIS, JACEY A; GROSSBERG, RICHARD I; HOULIHAN, CHRISTINE M; STEVENSON, RICHARD D; HENDERSON, RICHARD C
2010-01-01
AIM To assess the accuracy of skinfold equations in estimating percentage body fat in children with cerebral palsy (CP), compared with assessment of body fat from dual energy X-ray absorptiometry (DXA). METHOD Data were collected from 71 participants (30 females, 41 males) with CP (Gross Motor Function Classification System [GMFCS] levels I–V) between the ages of 8 and 18 years. Estimated percentage body fat was computed using established (Slaughter) equations based on the triceps and subscapular skinfolds. A linear model was fitted to assess the use of a simple correction to these equations for children with CP. RESULTS Slaughter’s equations consistently underestimated percentage body fat (mean difference compared with DXA percentage body fat −9.6/100 [SD 6.2]; 95% confidence interval [CI] −11.0 to −8.1). New equations were developed in which a correction factor was added to the existing equations based on sex, race, GMFCS level, size, and pubertal status. These corrected equations for children with CP agree better with DXA (mean difference 0.2/100 [SD=4.8]; 95% CI −1.0 to 1.3) than existing equations. INTERPRETATION A simple correction factor to commonly used equations substantially improves the ability to estimate percentage body fat from two skinfold measures in children with CP. PMID:19811518
Benmakhlouf, Hamza; Andreo, Pedro
2017-02-01
Correction factors for the relative dosimetry of narrow megavoltage photon beams have recently been determined in several publications. These corrections are required because of the several small-field effects generally thought to be caused by the lack of lateral charged particle equilibrium (LCPE) in narrow beams. Correction factors for relative dosimetry are ultimately necessary to account for the fluence perturbation caused by the detector. For most small field detectors the perturbation depends on field size, resulting in large correction factors when the field size is decreased. In this work, electron and photon fluence differential in energy will be calculated within the radiation sensitive volume of a number of small field detectors for 6 MV linear accelerator beams. The calculated electron spectra will be used to determine electron fluence perturbation as a function of field size and its implication on small field dosimetry analyzed. Fluence spectra were calculated with the user code PenEasy, based on the PENELOPE Monte Carlo system. The detectors simulated were one liquid ionization chamber, two air ionization chambers, one diamond detector, and six silicon diodes, all manufactured either by PTW or IBA. The spectra were calculated for broad (10 cm × 10 cm) and narrow (0.5 cm × 0.5 cm) photon beams in order to investigate the field size influence on the fluence spectra and its resulting perturbation. The photon fluence spectra were used to analyze the impact of absorption and generation of photons. These will have a direct influence on the electrons generated in the detector radiation sensitive volume. The electron fluence spectra were used to quantify the perturbation effects and their relation to output correction factors. The photon fluence spectra obtained for all detectors were similar to the spectrum in water except for the shielded silicon diodes. The photon fluence in the latter group was strongly influenced, mostly in the low-energy region, by photoabsorption in the high-Z shielding material. For the ionization chambers and the diamond detector, the electron fluence spectra were found to be similar to that in water, for both field sizes. In contrast, electron spectra in the silicon diodes were much higher than that in water for both field sizes. The estimated perturbations of the fluence spectra for the silicon diodes were 11-21% for the large fields and 14-27% for the small fields. These perturbations are related to the atomic number, density and mean excitation energy (I-value) of silicon, as well as to the influence of the "extracameral"' components surrounding the detector sensitive volume. For most detectors the fluence perturbation was also found to increase when the field size was decreased, in consistency with the increased small-field effects observed for the smallest field sizes. The present work improves the understanding of small-field effects by relating output correction factors to spectral fluence perturbations in small field detectors. It is shown that the main reasons for the well-known small-field effects in silicon diodes are the high-Z and density of the "extracameral" detector components and the high I-value of silicon relative to that of water and diamond. Compared to these parameters, the density and atomic number of the radiation sensitive volume material play a less significant role. © 2016 American Association of Physicists in Medicine.
Fast Solar Wind from Slowly Expanding Magnetic Flux Tubes (P54)
NASA Astrophysics Data System (ADS)
Srivastava, A. K.; Dwivedi, B. N.
2006-11-01
aks.astro.itbhu@gmail.com We present an empirical model of the fast solar wind, emanating from radially oriented slowly expanding magnetic flux tubes. We consider a single-fluid, steady state model in which the flow is driven by thermal and non-thermal pressure gradients. We apply a non-Alfvénic energy correction at the coronal base and find that specific relations correlate solar wind speed and non-thermal energy flux with the aerial expansion factor. The results are compared with the previously reported ones.
Short-range second order screened exchange correction to RPA correlation energies
NASA Astrophysics Data System (ADS)
Beuerle, Matthias; Ochsenfeld, Christian
2017-11-01
Direct random phase approximation (RPA) correlation energies have become increasingly popular as a post-Kohn-Sham correction, due to significant improvements over DFT calculations for properties such as long-range dispersion effects, which are problematic in conventional density functional theory. On the other hand, RPA still has various weaknesses, such as unsatisfactory results for non-isogyric processes. This can in parts be attributed to the self-correlation present in RPA correlation energies, leading to significant self-interaction errors. Therefore a variety of schemes have been devised to include exchange in the calculation of RPA correlation energies in order to correct this shortcoming. One of the most popular RPA plus exchange schemes is the second order screened exchange (SOSEX) correction. RPA + SOSEX delivers more accurate absolute correlation energies and also improves upon RPA for non-isogyric processes. On the other hand, RPA + SOSEX barrier heights are worse than those obtained from plain RPA calculations. To combine the benefits of RPA correlation energies and the SOSEX correction, we introduce a short-range RPA + SOSEX correction. Proof of concept calculations and benchmarks showing the advantages of our method are presented.
Short-range second order screened exchange correction to RPA correlation energies.
Beuerle, Matthias; Ochsenfeld, Christian
2017-11-28
Direct random phase approximation (RPA) correlation energies have become increasingly popular as a post-Kohn-Sham correction, due to significant improvements over DFT calculations for properties such as long-range dispersion effects, which are problematic in conventional density functional theory. On the other hand, RPA still has various weaknesses, such as unsatisfactory results for non-isogyric processes. This can in parts be attributed to the self-correlation present in RPA correlation energies, leading to significant self-interaction errors. Therefore a variety of schemes have been devised to include exchange in the calculation of RPA correlation energies in order to correct this shortcoming. One of the most popular RPA plus exchange schemes is the second order screened exchange (SOSEX) correction. RPA + SOSEX delivers more accurate absolute correlation energies and also improves upon RPA for non-isogyric processes. On the other hand, RPA + SOSEX barrier heights are worse than those obtained from plain RPA calculations. To combine the benefits of RPA correlation energies and the SOSEX correction, we introduce a short-range RPA + SOSEX correction. Proof of concept calculations and benchmarks showing the advantages of our method are presented.
NASA Astrophysics Data System (ADS)
Lourenço, A.; Shipley, D.; Wellock, N.; Thomas, R.; Bouchard, H.; Kacperek, A.; Fracchiolla, F.; Lorentini, S.; Schwarz, M.; MacDougall, N.; Royle, G.; Palmans, H.
2017-05-01
The aim of this work was to evaluate the water-equivalence of new trial plastics designed specifically for light-ion beam dosimetry as well as commercially available plastics in clinical proton beams. The water-equivalence of materials was tested by computing a plastic-to-water conversion factor, {{H}\\text{pl,\\text{w}}} . Trial materials were characterized experimentally in 60 MeV and 226 MeV un-modulated proton beams and the results were compared with Monte Carlo simulations using the FLUKA code. For the high-energy beam, a comparison between the trial plastics and various commercial plastics was also performed using FLUKA and Geant4 Monte Carlo codes. Experimental information was obtained from laterally integrated depth-dose ionization chamber measurements in water, with and without plastic slabs with variable thicknesses in front of the water phantom. Fluence correction factors, {{k}\\text{fl}} , between water and various materials were also derived using the Monte Carlo method. For the 60 MeV proton beam, {{H}\\text{pl,\\text{w}}} and {{k}\\text{fl}} factors were within 1% from unity for all trial plastics. For the 226 MeV proton beam, experimental {{H}\\text{pl,\\text{w}}} values deviated from unity by a maximum of about 1% for the three trial plastics and experimental results showed no advantage regarding which of the plastics was the most equivalent to water. Different magnitudes of corrections were found between Geant4 and FLUKA for the various materials due mainly to the use of different nonelastic nuclear data. Nevertheless, for the 226 MeV proton beam, {{H}\\text{pl,\\text{w}}} correction factors were within 2% from unity for all the materials. Considering the results from the two Monte Carlo codes, PMMA and trial plastic #3 had the smallest {{H}\\text{pl,\\text{w}}} values, where maximum deviations from unity were 1%, however, PMMA range differed by 16% from that of water. Overall, {{k}\\text{fl}} factors were deviating more from unity than {{H}\\text{pl,\\text{w}}} factors and could amount to a few percent for some materials.
Lourenço, A; Shipley, D; Wellock, N; Thomas, R; Bouchard, H; Kacperek, A; Fracchiolla, F; Lorentini, S; Schwarz, M; MacDougall, N; Royle, G; Palmans, H
2017-05-21
The aim of this work was to evaluate the water-equivalence of new trial plastics designed specifically for light-ion beam dosimetry as well as commercially available plastics in clinical proton beams. The water-equivalence of materials was tested by computing a plastic-to-water conversion factor, [Formula: see text]. Trial materials were characterized experimentally in 60 MeV and 226 MeV un-modulated proton beams and the results were compared with Monte Carlo simulations using the FLUKA code. For the high-energy beam, a comparison between the trial plastics and various commercial plastics was also performed using FLUKA and Geant4 Monte Carlo codes. Experimental information was obtained from laterally integrated depth-dose ionization chamber measurements in water, with and without plastic slabs with variable thicknesses in front of the water phantom. Fluence correction factors, [Formula: see text], between water and various materials were also derived using the Monte Carlo method. For the 60 MeV proton beam, [Formula: see text] and [Formula: see text] factors were within 1% from unity for all trial plastics. For the 226 MeV proton beam, experimental [Formula: see text] values deviated from unity by a maximum of about 1% for the three trial plastics and experimental results showed no advantage regarding which of the plastics was the most equivalent to water. Different magnitudes of corrections were found between Geant4 and FLUKA for the various materials due mainly to the use of different nonelastic nuclear data. Nevertheless, for the 226 MeV proton beam, [Formula: see text] correction factors were within 2% from unity for all the materials. Considering the results from the two Monte Carlo codes, PMMA and trial plastic #3 had the smallest [Formula: see text] values, where maximum deviations from unity were 1%, however, PMMA range differed by 16% from that of water. Overall, [Formula: see text] factors were deviating more from unity than [Formula: see text] factors and could amount to a few percent for some materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Yuxuan; Martin, William; Williams, Mark
In this paper, a correction-based resonance self-shielding method is developed that allows annular subdivision of the fuel rod. The method performs the conventional iteration of the embedded self-shielding method (ESSM) without subdivision of the fuel to capture the interpin shielding effect. The resultant self-shielded cross sections are modified by correction factors incorporating the intrapin effects of radial variation of the shielded cross section, radial temperature distribution, and resonance interference. A quasi–one-dimensional slowing-down equation is developed to calculate such correction factors. The method is implemented in the DeCART code and compared with the conventional ESSM and subgroup method with benchmark MCNPmore » results. The new method yields substantially improved results for both spatially dependent reaction rates and eigenvalues for typical pressurized water reactor pin cell cases with uniform and nonuniform fuel temperature profiles. Finally, the new method is also proved effective in treating assembly heterogeneity and complex material composition such as mixed oxide fuel, where resonance interference is much more intense.« less
NASA Astrophysics Data System (ADS)
Fakhri, G. El; Maksud, P.; Kijewski, M. F.; Haberi, M. O.; Todd-Pokropek, A.; Aurengo, A.; Moore, S. C.
2000-08-01
Simultaneous imaging of Tc-99m and I-123 would have a high clinical potential in the assessment of brain perfusion (Tc-99m) and neurotransmission (I-123) but is hindered by cross-talk between the two radionuclides. Monte Carlo simulations of 15 different dual-isotope studies were performed using a digital brain phantom. Several physiologic Tc-99m and I-123 uptake patterns were modeled in the brain structures. Two methods were considered to correct for cross-talk from both scattered and unscattered photons: constrained spectral factor analysis (SFA) and artificial neural networks (ANN). The accuracy and precision of reconstructed pixel values within several brain structures were compared to those obtained with an energy windowing method (WSA). In I-123 images, mean bias was close to 10% in all structures for SFA and ANN and between 14% (in the caudate nucleus) and 25% (in the cerebellum) for WSA. Tc-99m activity was overestimated by 35% in the cortex and 53% in the caudate nucleus with WSA, but by less than 9% in all structures with SFA and ANN. SFA and ANN performed well even in the presence of high-energy I-123 photons. The accuracy was greatly improved by incorporating the contamination into the SFA model or in the learning phase for ANN. SFA and ANN are promising approaches to correct for cross-talk in simultaneous Tc-99m/I-123 SPECT.
10 CFR 72.172 - Corrective action.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 2 2010-01-01 2010-01-01 false Corrective action. 72.172 Section 72.172 Energy NUCLEAR... Corrective action. The licensee, applicant for a license, certificate holder, and applicant for a CoC shall... that the cause of the condition is determined and corrective action is taken to preclude repetition...
10 CFR 72.172 - Corrective action.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 2 2011-01-01 2011-01-01 false Corrective action. 72.172 Section 72.172 Energy NUCLEAR... Corrective action. The licensee, applicant for a license, certificate holder, and applicant for a CoC shall... that the cause of the condition is determined and corrective action is taken to preclude repetition...
75 FR 51986 - Agency Information Collection Extension; Correction
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-24
... questionnaires to collect information on the respondents' knowledge of solar energy and energy efficiency and on installations of solar-energy and energy-efficiency equipment with which the respondents have been personally... DEPARTMENT OF ENERGY Agency Information Collection Extension; Correction AGENCY: U.S. Department...
78 FR 14087 - DOE/NSF High Energy Physics Advisory Panel: Correction
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-04
... DEPARTMENT OF ENERGY DOE/NSF High Energy Physics Advisory Panel: Correction AGENCY: Office of..., the Department of Energy (DOE) published a notice of open meeting for the DOE/NSF High Energy Physics... FURTHER INFORMATION CONTACT: John Kogut, Executive Secretary; High Energy Physics Advisory Panel; U.S...
NASA Technical Reports Server (NTRS)
Santiago, Walter; Birchenough, Arthur G.
2006-01-01
Stirling engine converters are being considered as potential candidates for high power energy conversion systems required by future NASA explorations missions. These types of engines typically contain two major moving parts, the displacer and the piston, in which a linear alternator is attached to the piston to produce a single phase sinusoidal waveform at a specific electric frequency. Since all Stirling engines perform at low electrical frequencies (less or equal to 100 Hz), space explorations missions that will employ these engines will be required to use DC power management and distribution (PMAD) system instead of an AC PMAD system to save on space and weight. Therefore, to supply such DC power an AC to DC converter is connected to the Stirling engine. There are two types of AC to DC converters that can be employed, a passive full bridge diode rectifier and an active switching full bridge rectifier. Due to the inherent line inductance of the Stirling Engine-Linear Alternator (SE-LA), their sinusoidal voltage and current will be phase shifted producing a power factor below 1. In order to keep power the factor close to unity, both AC to DC converters topologies will implement power factor correction. This paper discusses these power factor correction methods as well as their impact on overall mass for exploration applications. Simulation results on both AC to DC converters topologies with power factor correction as a function of output power and SE-LA line inductance impedance are presented and compared.
Shidahara, Miho; Watabe, Hiroshi; Kim, Kyeong Min; Kato, Takashi; Kawatsu, Shoji; Kato, Rikio; Yoshimura, Kumiko; Iida, Hidehiro; Ito, Kengo
2005-10-01
An image-based scatter correction (IBSC) method was developed to convert scatter-uncorrected into scatter-corrected SPECT images. The purpose of this study was to validate this method by means of phantom simulations and human studies with 99mTc-labeled tracers, based on comparison with the conventional triple energy window (TEW) method. The IBSC method corrects scatter on the reconstructed image I(mub)AC with Chang's attenuation correction factor. The scatter component image is estimated by convolving I(mub)AC with a scatter function followed by multiplication with an image-based scatter fraction function. The IBSC method was evaluated with Monte Carlo simulations and 99mTc-ethyl cysteinate dimer SPECT human brain perfusion studies obtained from five volunteers. The image counts and contrast of the scatter-corrected images obtained by the IBSC and TEW methods were compared. Using data obtained from the simulations, the image counts and contrast of the scatter-corrected images obtained by the IBSC and TEW methods were found to be nearly identical for both gray and white matter. In human brain images, no significant differences in image contrast were observed between the IBSC and TEW methods. The IBSC method is a simple scatter correction technique feasible for use in clinical routine.
Longo, S; Hospido, A; Lema, J M; Mauricio-Iglesias, M
2018-05-10
This article examines the potential benefits of using Data Envelopment Analysis (DEA) for conducting energy-efficiency assessment of wastewater treatment plants (WWTPs). WWTPs are characteristically heterogeneous (in size, technology, climate, function …) which limits the correct application of DEA. This paper proposes and describes the Robust Energy Efficiency DEA (REED) in its various stages, a systematic state-of-the-art methodology aimed at including exogenous variables in nonparametric frontier models and especially designed for WWTP operation. In particular, the methodology systematizes the modelling process by presenting an integrated framework for selecting the correct variables and appropriate models, possibly tackling the effect of exogenous factors. As a result, the application of REED improves the quality of the efficiency estimates and hence the significance of benchmarking. For the reader's convenience, this article is presented as a step-by-step guideline to guide the user in the determination of WWTPs energy efficiency from beginning to end. The application and benefits of the developed methodology are demonstrated by a case study related to the comparison of the energy efficiency of a set of 399 WWTPs operating in different countries and under heterogeneous environmental conditions. Copyright © 2018 Elsevier Ltd. All rights reserved.
Air-kerma strength determination of a new directional {sup 103}Pd source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aima, Manik, E-mail: aima@wisc.edu; Reed, Joshua L.; DeWerd, Larry A.
2015-12-15
Purpose: A new directional {sup 103}Pd planar source array called a CivaSheet™ has been developed by CivaTech Oncology, Inc., for potential use in low-dose-rate (LDR) brachytherapy treatments. The array consists of multiple individual polymer capsules called CivaDots, containing {sup 103}Pd and a gold shield that attenuates the radiation on one side, thus defining a hot and cold side. This novel source requires new methods to establish a source strength metric. The presence of gold material in such close proximity to the active {sup 103}Pd region causes the source spectrum to be significantly different than the energy spectra of seeds normallymore » used in LDR brachytherapy treatments. In this investigation, the authors perform air-kerma strength (S{sub K}) measurements, develop new correction factors for these measurements based on an experimentally verified energy spectrum, and test the robustness of transferring S{sub K} to a well-type ionization chamber. Methods: S{sub K} measurements were performed with the variable-aperture free-air chamber (VAFAC) at the University of Wisconsin Medical Radiation Research Center. Subsequent measurements were then performed in a well-type ionization chamber. To realize the quantity S{sub K} from a directional source with gold material present, new methods and correction factors were considered. Updated correction factors were calculated using the MCNP 6 Monte Carlo code in order to determine S{sub K} with the presence of gold fluorescent energy lines. In addition to S{sub K} measurements, a low-energy high-purity germanium (HPGe) detector was used to experimentally verify the calculated spectrum, a sodium iodide (NaI) scintillating counter was used to verify the azimuthal and polar anisotropy, and a well-type ionization chamber was used to test the feasibility of disseminating S{sub K} values for a directional source within a cylindrically symmetric measurement volume. Results: The UW VAFAC was successfully used to measure the S{sub K} of four CivaDots with reproducibilities within 0.3%. Monte Carlo methods were used to calculate the UW VAFAC correction factors and the calculated spectrum emitted from a CivaDot was experimentally verified with HPGe detector measurements. The well-type ionization chamber showed minimal variation in response (<1.5%) as a function of source positioning angle, indicating that an American Association of Physicists in Medicine (AAPM) Accredited Dosimetry Calibration Laboratory calibrated well chamber would be a suitable device to transfer an S{sub K}-based calibration to a clinical user. S{sub K} per well-chamber ionization current ratios were consistent among the four dots measured. Additionally, the measurements and predictions of anisotropy show uniform emission within the solid angle of the VAFAC, which demonstrates the robustness of the S{sub K} measurement approach. Conclusions: This characterization of a new {sup 103}Pd directional brachytherapy source helps to establish calibration methods that could ultimately be used in the well-established AAPM Task Group 43 formalism. Monte Carlo methods accurately predict the changes in the energy spectrum caused by the fluorescent x-rays produced in the gold shield.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Wenhu; Kotliar, Gabriel; Tsvelik, Alexei M.
Dynamical mean-field theory is used to study the quantum critical point (QCP) in the doped Hubbard model on a square lattice. We characterize the QCP by a universal scaling form of the self-energy and a spin density wave instability at an incommensurate wave vector. The scaling form unifies the low-energy kink and the high-energy waterfall feature in the spectral function, while the spin dynamics includes both the critical incommensurate and high-energy antiferromagnetic paramagnons. Here, we use the frequency-dependent four-point correlation function of spin operators to calculate the momentum-dependent correction to the electron self-energy. Furthermore, by comparing with the calculations basedmore » on the spin-fermion model, our results indicate the frequency dependence of the quasiparticle-paramagnon vertices is an important factor to capture the momentum dependence in quasiparticle scattering.« less
Hauri, Pascal; Schneider, Uwe
2018-04-01
Long-term survivors of cancer who were treated with radiotherapy are at risk of a radiation-induced tumor. Hence, it is important to model the out-of-field dose resulting from a cancer treatment. These models have to be verified with measurements, due to the small size, the high sensitivity to ionizing radiation and the tissue-equivalent composition, LiF thermoluminescence dosimeters (TLD) are well-suited for out-of-field dose measurements. However, the photon energy variation of the stray dose leads to systematic dose errors caused by the variation in response with radiation energy of the TLDs. We present a dosimeter which automatically corrects for the energy variation of the measured photons by combining LiF:Mg,Ti (TLD100) and LiF:Mg,Cu,P (TLD100H) chips. The response with radiation energy of TLD100 and TLD100H compared to 60 Co was taken from the literature. For the measurement, a TLD100H was placed on top of a TLD100 chip. The dose ratio between the TLD100 and TLD100H, combined with the ratio of the response curves was used to determine the mean energy. With the energy, the individual correction factors for TLD100 and TLD100H could be found. The accuracy in determining the in- and out-of-field dose for a nominal beam energy of 6MV using the double-TLD unit was evaluated by an end-to-end measurement. Furthermore, published Monte Carlo (M.C.) simulations of the mean photon energy for brachytherapy sources, stray radiation of a treatment machine and cone beam CT (CBCT) were compared to the measured mean energies. Finally, the photon energy distribution in an Alderson phantom was measured for different treatment techniques applied with a linear accelerator. Additionally, a treatment plan was measured with a cobalt machine combined with an MRI. For external radiotherapy, the presented double-TLD unit showed a relative type A uncertainty in doses of -1%±2% at the two standard deviation level compared to an ionization chamber. The type A uncertainty in dose was in agreement with the theoretically calculated type B uncertainty. The measured energies for brachytherapy sources, stray radiation of a treatment machine and CBCT imaging were in agreement with M.C. simulations. A shift in energy with increasing distance to the isocenter was noticed for the various treatment plans measured with the Alderson phantom. The calculated type B uncertainties in energy were in line with the experimentally evaluated type A uncertainties. The double-TLD unit is able to predict the photon energy of scatter radiation in external radiotherapy, X-ray imagine and brachytherapy sources. For external radiotherapy, the individual energy correction factors enabled a more accurate dose determination compared to conventional TLD measurements. Copyright © 2017. Published by Elsevier GmbH.
2015-01-01
The reliability of free energy simulations (FES) is limited by two factors: (a) the need for correct sampling and (b) the accuracy of the computational method employed. Classical methods (e.g., force fields) are typically used for FES and present a myriad of challenges, with parametrization being a principle one. On the other hand, parameter-free quantum mechanical (QM) methods tend to be too computationally expensive for adequate sampling. One widely used approach is a combination of methods, where the free energy difference between the two end states is computed by, e.g., molecular mechanics (MM), and the end states are corrected by more accurate methods, such as QM or hybrid QM/MM techniques. Here we report two new approaches that significantly improve the aforementioned scheme; with a focus on how to compute corrections between, e.g., the MM and the more accurate QM calculations. First, a molecular dynamics trajectory that properly samples relevant conformational degrees of freedom is generated. Next, potential energies of each trajectory frame are generated with a QM or QM/MM Hamiltonian. Free energy differences are then calculated based on the QM or QM/MM energies using either a non-Boltzmann Bennett approach (QM-NBB) or non-Boltzmann free energy perturbation (NB-FEP). Both approaches are applied to calculate relative and absolute solvation free energies in explicit and implicit solvent environments. Solvation free energy differences (relative and absolute) between ethane and methanol in explicit solvent are used as the initial test case for QM-NBB. Next, implicit solvent methods are employed in conjunction with both QM-NBB and NB-FEP to compute absolute solvation free energies for 21 compounds. These compounds range from small molecules such as ethane and methanol to fairly large, flexible solutes, such as triacetyl glycerol. Several technical aspects were investigated. Ultimately some best practices are suggested for improving methods that seek to connect MM to QM (or QM/MM) levels of theory in FES. PMID:24803863
König, Gerhard; Hudson, Phillip S; Boresch, Stefan; Woodcock, H Lee
2014-04-08
THE RELIABILITY OF FREE ENERGY SIMULATIONS (FES) IS LIMITED BY TWO FACTORS: (a) the need for correct sampling and (b) the accuracy of the computational method employed. Classical methods (e.g., force fields) are typically used for FES and present a myriad of challenges, with parametrization being a principle one. On the other hand, parameter-free quantum mechanical (QM) methods tend to be too computationally expensive for adequate sampling. One widely used approach is a combination of methods, where the free energy difference between the two end states is computed by, e.g., molecular mechanics (MM), and the end states are corrected by more accurate methods, such as QM or hybrid QM/MM techniques. Here we report two new approaches that significantly improve the aforementioned scheme; with a focus on how to compute corrections between, e.g., the MM and the more accurate QM calculations. First, a molecular dynamics trajectory that properly samples relevant conformational degrees of freedom is generated. Next, potential energies of each trajectory frame are generated with a QM or QM/MM Hamiltonian. Free energy differences are then calculated based on the QM or QM/MM energies using either a non-Boltzmann Bennett approach (QM-NBB) or non-Boltzmann free energy perturbation (NB-FEP). Both approaches are applied to calculate relative and absolute solvation free energies in explicit and implicit solvent environments. Solvation free energy differences (relative and absolute) between ethane and methanol in explicit solvent are used as the initial test case for QM-NBB. Next, implicit solvent methods are employed in conjunction with both QM-NBB and NB-FEP to compute absolute solvation free energies for 21 compounds. These compounds range from small molecules such as ethane and methanol to fairly large, flexible solutes, such as triacetyl glycerol. Several technical aspects were investigated. Ultimately some best practices are suggested for improving methods that seek to connect MM to QM (or QM/MM) levels of theory in FES.
NASA Astrophysics Data System (ADS)
Jeanmairet, Guillaume; Levesque, Maximilien; Borgis, Daniel
2013-10-01
We present an extension of our recently introduced molecular density functional theory of water [G. Jeanmairet et al., J. Phys. Chem. Lett. 4, 619 (2013)] to the solvation of hydrophobic solutes of various sizes, going from angstroms to nanometers. The theory is based on the quadratic expansion of the excess free energy in terms of two classical density fields: the particle density and the multipolar polarization density. Its implementation requires as input a molecular model of water and three measurable bulk properties, namely, the structure factor and the k-dependent longitudinal and transverse dielectric susceptibilities. The fine three-dimensional water structure around small hydrophobic molecules is found to be well reproduced. In contrast, the computed solvation free-energies appear overestimated and do not exhibit the correct qualitative behavior when the hydrophobic solute is grown in size. These shortcomings are corrected, in the spirit of the Lum-Chandler-Weeks theory, by complementing the functional with a truncated hard-sphere functional acting beyond quadratic order in density, and making the resulting functional compatible with the Van-der-Waals theory of liquid-vapor coexistence at long range. Compared to available molecular simulations, the approach yields reasonable solvation structure and free energy of hard or soft spheres of increasing size, with a correct qualitative transition from a volume-driven to a surface-driven regime at the nanometer scale.
NASA Astrophysics Data System (ADS)
Wang, Yuan-Zhu; Wang, Hao; Zhang, Shuai; Liang, Yun-Feng; Jin, Zhi-Ping; He, Hao-Ning; Liao, Neng-Hui; Fan, Yi-Zhong; Wei, Da-Ming
2017-02-01
GRB 160625B is an extremely bright outburst with well-monitored afterglow emission. The geometry-corrected energy is high, up to ˜5.2 × 1052 erg or even ˜8 × 1052 erg, rendering it the most energetic GRB prompt emission recorded so far. We analyzed the time-resolved spectra of the prompt emission and found that in some intervals there were likely thermal-radiation components and the high energy emission was characterized by significant cutoff. The bulk Lorentz factors of the outflow material are estimated accordingly. We found out that the Lorentz factors derived in the thermal-radiation model are consistent with the luminosity-Lorentz factor correlation found in other bursts, as well as in GRB 090902B for the time-resolved thermal-radiation components, while the spectral cutoff model yields much lower Lorentz factors that are in tension with the constraints set by the electron pair Compton scattering process. We then suggest that these spectral cutoffs are more likely related to the particle acceleration process and that one should be careful in estimating the Lorentz factors if the spectrum cuts at a rather low energy (e.g., ˜tens of MeV). The nature of the central engine has also been discussed, and a stellar-mass black hole is favored.
Torres, Jaume; Briggs, John A G; Arkin, Isaiah T
2002-01-01
Molecular interactions between transmembrane alpha-helices can be explored using global searching molecular dynamics simulations (GSMDS), a method that produces a group of probable low energy structures. We have shown previously that the correct model in various homooligomers is always located at the bottom of one of various possible energy basins. Unfortunately, the correct model is not necessarily the one with the lowest energy according to the computational protocol, which has resulted in overlooking of this parameter in favor of experimental data. In an attempt to use energetic considerations in the aforementioned analysis, we used global searching molecular dynamics simulations on three homooligomers of different sizes, the structures of which are known. As expected, our results show that even when the conformational space searched includes the correct structure, taking together simulations using both left and right handedness, the correct model does not necessarily have the lowest energy. However, for the models derived from the simulation that uses the correct handedness, the lowest energy model is always at, or very close to, the correct orientation. We hypothesize that this should also be true when simulations are performed using homologous sequences, and consequently lowest energy models with the right handedness should produce a cluster around a certain orientation. In contrast, using the wrong handedness the lowest energy structures for each sequence should appear at many different orientations. The rationale behind this is that, although more than one energy basin may exist, basins that do not contain the correct model will shift or disappear because they will be destabilized by at least one conservative (i.e. silent) mutation, whereas the basin containing the correct model will remain. This not only allows one to point to the possible handedness of the bundle, but can be used to overcome ambiguities arising from the use of homologous sequences in the analysis of global searching molecular dynamics simulations. In addition, because clustering of lowest energy models arising from homologous sequences only happens when the estimation of the helix tilt is correct, it may provide a validation for the helix tilt estimate. PMID:12023229
Singh, Prashant; Harbola, Manoj K.; Johnson, Duane D.
2017-09-08
Here, this work constitutes a comprehensive and improved account of electronic-structure and mechanical properties of silicon-nitride (more » $${\\rm Si}_{3}$$ $${\\rm N}_{4}$$ ) polymorphs via van Leeuwen and Baerends (LB) exchange-corrected local density approximation (LDA) that enforces the exact exchange potential asymptotic behavior. The calculated lattice constant, bulk modulus, and electronic band structure of $${\\rm Si}_{3}$$ $${\\rm N}_{4}$$ polymorphs are in good agreement with experimental results. We also show that, for a single electron in a hydrogen atom, spherical well, or harmonic oscillator, the LB-corrected LDA reduces the (self-interaction) error to exact total energy to ~10%, a factor of three to four lower than standard LDA, due to a dramatically improved representation of the exchange-potential.« less
Mauder, Matthias; Genzel, Sandra; Fu, Jin; ...
2017-11-10
Here, we report non-closure of the surface energy balance is a frequently observed phenomenon of hydrometeorological field measurements, when using the eddy-covariance method, which can be ascribed to an underestimation of the turbulent fluxes. Several approaches have been proposed in order to adjust the measured fluxes for this apparent systematic error. However, there are uncertainties about partitioning of the energy balance residual between the sensible and latent heat flux and whether such a correction should be applied on 30-minute data or longer time scales. The data for this study originate from two grassland sites in southern Germany, where measurements frommore » weighable lysimeters are available as reference. The adjusted evapotranspiration rates are also compared with joint energy and water balance simulations using a physically-based distributed hydrological model. We evaluate two adjustment methods: the first one preserves the Bowen ratio and the correction factor is determined on a daily basis. The second one attributes a smaller portion of the residual energy to the latent heat flux than to the sensible heat flux for closing the energy balance for every 30-minute flux integration interval. Both methods lead to an improved agreement of the eddy-covariance based fluxes with the independent lysimeter estimates and the physically-based model simulations. The first method results in a better comparability of evapotranspiration rates, and the second method leads to a smaller overall bias. These results are similar between both sites despite considerable differences in terrain complexity and grassland management. Moreover, we found that a daily adjustment factor leads to less scatter than a complete partitioning of the residual for every half-hour time interval. Lastly, the vertical temperature gradient in the surface layer and friction velocity were identified as important predictors for a potential future parameterization of the energy balance residual.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mauder, Matthias; Genzel, Sandra; Fu, Jin
Here, we report non-closure of the surface energy balance is a frequently observed phenomenon of hydrometeorological field measurements, when using the eddy-covariance method, which can be ascribed to an underestimation of the turbulent fluxes. Several approaches have been proposed in order to adjust the measured fluxes for this apparent systematic error. However, there are uncertainties about partitioning of the energy balance residual between the sensible and latent heat flux and whether such a correction should be applied on 30-minute data or longer time scales. The data for this study originate from two grassland sites in southern Germany, where measurements frommore » weighable lysimeters are available as reference. The adjusted evapotranspiration rates are also compared with joint energy and water balance simulations using a physically-based distributed hydrological model. We evaluate two adjustment methods: the first one preserves the Bowen ratio and the correction factor is determined on a daily basis. The second one attributes a smaller portion of the residual energy to the latent heat flux than to the sensible heat flux for closing the energy balance for every 30-minute flux integration interval. Both methods lead to an improved agreement of the eddy-covariance based fluxes with the independent lysimeter estimates and the physically-based model simulations. The first method results in a better comparability of evapotranspiration rates, and the second method leads to a smaller overall bias. These results are similar between both sites despite considerable differences in terrain complexity and grassland management. Moreover, we found that a daily adjustment factor leads to less scatter than a complete partitioning of the residual for every half-hour time interval. Lastly, the vertical temperature gradient in the surface layer and friction velocity were identified as important predictors for a potential future parameterization of the energy balance residual.« less
NASA Astrophysics Data System (ADS)
Lourenço, A.; Wellock, N.; Thomas, R.; Homer, M.; Bouchard, H.; Kanai, T.; MacDougall, N.; Royle, G.; Palmans, H.
2016-11-01
Water-equivalent plastics are frequently used in dosimetry for experimental simplicity. This work evaluates the water-equivalence of novel water-equivalent plastics specifically designed for light-ion beams, as well as commercially available plastics in a clinical high-energy carbon-ion beam. A plastic- to-water conversion factor {{H}\\text{pl,w}} was established to derive absorbed dose to water in a water phantom from ionization chamber readings performed in a plastic phantom. Three trial plastic materials with varying atomic compositions were produced and experimentally characterized in a high-energy carbon-ion beam. Measurements were performed with a Roos ionization chamber, using a broad un-modulated beam of 11 × 11 cm2, to measure the plastic-to-water conversion factor for the novel materials. The experimental results were compared with Monte Carlo simulations. Commercially available plastics were also simulated for comparison with the plastics tested experimentally, with particular attention to the influence of nuclear interaction cross sections. The measured H\\text{pl,w}\\exp correction increased gradually from 0% at the surface to 0.7% at a depth near the Bragg peak for one of the plastics prepared in this work, while for the other two plastics a maximum correction of 0.8%-1.3% was found. Average differences between experimental and numerical simulations were 0.2%. Monte Carlo results showed that for polyethylene, polystyrene, Rando phantom soft tissue and A-150, the correction increased from 0% to 2.5%-4.0% with depth, while for PMMA it increased to 2%. Water-equivalent plastics such as, Plastic Water, RMI-457, Gammex 457-CTG, WT1 and Virtual Water, gave similar results where maximum corrections were of the order of 2%. Considering the results from Monte Carlo simulations, one of the novel plastics was found to be superior in comparison with the plastic materials currently used in dosimetry, demonstrating that it is feasible to tailor plastic materials to be water-equivalent for carbon ions specifically.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herbert, J.M.
1997-02-01
Perturbation theory has long been utilized by quantum chemists as a method for approximating solutions to the Schroedinger equation. Perturbation treatments represent a system`s energy as a power series in which each additional term further corrects the total energy; it is therefore convenient to have an explicit formula for the nth-order energy correction term. If all perturbations are collected into a single Hamiltonian operator, such a closed-form expression for the nth-order energy correction is well known; however, use of a single perturbed Hamiltonian often leads to divergent energy series, while superior convergence behavior is obtained by expanding the perturbed Hamiltonianmore » in a power series. This report presents a closed-form expression for the nth-order energy correction obtained using Rayleigh-Schroedinger perturbation theory and a power series expansion of the Hamiltonian.« less
Radiation analysis devices, radiation analysis methods, and articles of manufacture
Roybal, Lyle Gene
2010-06-08
Radiation analysis devices include circuitry configured to determine respective radiation count data for a plurality of sections of an area of interest and combine the radiation count data of individual of sections to determine whether a selected radioactive material is present in the area of interest. An amount of the radiation count data for an individual section is insufficient to determine whether the selected radioactive material is present in the individual section. An article of manufacture includes media comprising programming configured to cause processing circuitry to perform processing comprising determining one or more correction factors based on a calibration of a radiation analysis device, measuring radiation received by the radiation analysis device using the one or more correction factors, and presenting information relating to an amount of radiation measured by the radiation analysis device having one of a plurality of specified radiation energy levels of a range of interest.
Electro-optical equivalent calibration technology for high-energy laser energy meters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wei, Ji Feng, E-mail: wjfcom2000@163.com; Institute of Applied Electronics, China Academy of Engineering Physics, Mianyang 621900; Graduate School of China Academy of Engineering Physics, Beijing 100088
Electro-optical equivalent calibration with high calibration power and high equivalence is particularly well-suited to the calibration of high-energy laser energy meters. A large amount of energy is reserved during this process, however, which continues to radiate after power-off. This study measured the radiation efficiency of a halogen tungsten lamp during power-on and after power-off in order to calculate the total energy irradiated by a lamp until the high-energy laser energy meter reaches thermal equilibrium. A calibration system was designed based on the measurement results, and the calibration equivalence of the system was analyzed in detail. Results show that measurement precisionmore » is significantly affected by the absorption factor of the absorption chamber and by heat loss in the energy meter. Calibration precision is successfully improved by enhancing the equivalent power and reducing power-on time. The electro-optical equivalent calibration system, measurement uncertainty of which was evaluated as 2.4% (k = 2), was used to calibrate a graphite-cone-absorption-cavity absolute energy meter, yielding a calibration coefficient of 1.009 and measurement uncertainty of 3.5% (k = 2). A water-absorption-type high-energy laser energy meter with measurement uncertainty of 4.8% (k = 2) was considered the reference standard, and compared to the energy meter calibrated in this study, yielded a correction factor of 0.995 (standard deviation of 1.4%).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saez-Beltran, M; Fernandez Gonzalez, F
2014-06-15
Purpose: To obtain an analytical empirical formula for the photon dose source term in forward direction from bremsstrahlung generated from laser-plasma accelerated electron beams in aluminum solid targets, with electron-plasma temperatures in the 10–100 keV energy range, and to calculate transmission factors for iron, aluminum, methacrylate, lead and concrete and air, materials most commonly found in vacuum chamber labs. Methods: Bremsstrahlung fluence is calculated from the convolution of thin-target bremsstrahlung spectrum for monoenergetic electrons and the relativistic Maxwell-Juettner energy distribution for the electron-plasma. Unattenuatted dose in tissue is calculated by integrating the photon spectrum with the mass-energy absorption coefficient. Formore » the attenuated dose, energy dependent absorption coefficient, build-up factors and finite shielding correction factors were also taken into account. For the source term we use a modified formula from Hayashi et al., and we fitted the proportionality constant from experiments with the aid of the previously calculated transmission factors. Results: The forward dose has a quadratic dependence on electron-plasma temperature: 1 joule of effective laser energy transferred to the electrons at 1 m in vacuum yields 0,72 Sv per MeV squared of electron-plasma temperature. Air strongly filters the softer part of the photon spectrum and reduce the dose to one tenth in the first centimeter. Exponential higher energy tail of maxwellian spectrum contributes mainly to the transmitted dose. Conclusion: A simple formula for forward photon dose from keV range temperature plasma is obtained, similar to those found in kilovoltage x-rays but with higher dose per dissipated electron energy, due to thin target and absence of filtration.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caola, Fabrizio; Melnikov, Kirill; Rontsch, Raoul
We compute the next-to-leading-order QCD corrections to the production of two Z-bosons in the annihilation of two gluons at the LHC. Being enhanced by a large gluon flux, these corrections provide a distinct and, potentially, the dominant part of the N 3LO QCD contributions to Z-pair production in proton collisions. The gg → ZZ annihilation is a loop-induced process that receives the dominant contribution from loops of five light quarks, that are included in our computation in the massless approximation. We find that QCD corrections increase the gg → ZZ production cross section by O(50%–100%) depending on the values ofmore » the renormalization and factorization scales used in the leading-order computation and the collider energy. Furthermore, the large corrections to the gg → ZZ channel increase the pp → ZZ cross section by about 6% to 8%, exceeding the estimated theoretical uncertainty of the recent next-to-next-to-leading-order QCD calculation.« less
Dual-energy-based metal segmentation for metal artifact reduction in dental computed tomography.
Hegazy, Mohamed A A; Eldib, Mohamed Elsayed; Hernandez, Daniel; Cho, Myung Hye; Cho, Min Hyoung; Lee, Soo Yeol
2018-02-01
In a dental CT scan, the presence of dental fillings or dental implants generates severe metal artifacts that often compromise readability of the CT images. Many metal artifact reduction (MAR) techniques have been introduced, but dental CT scans still suffer from severe metal artifacts particularly when multiple dental fillings or implants exist around the region of interest. The high attenuation coefficient of teeth often causes erroneous metal segmentation, compromising the MAR performance. We propose a metal segmentation method for a dental CT that is based on dual-energy imaging with a narrow energy gap. Unlike a conventional dual-energy CT, we acquire two projection data sets at two close tube voltages (80 and 90 kV p ), and then, we compute the difference image between the two projection images with an optimized weighting factor so as to maximize the contrast of the metal regions. We reconstruct CT images from the weighted difference image to identify the metal region with global thresholding. We forward project the identified metal region to designate metal trace on the projection image. We substitute the pixel values on the metal trace with the ones computed by the region filling method. The region filling in the metal trace removes high-intensity data made by the metallic objects from the projection image. We reconstruct final CT images from the region-filled projection image with the fusion-based approach. We have done imaging experiments on a dental phantom and a human skull phantom using a lab-built micro-CT and a commercial dental CT system. We have corrected the projection images of a dental phantom and a human skull phantom using the single-energy and dual-energy-based metal segmentation methods. The single-energy-based method often failed in correcting the metal artifacts on the slices on which tooth enamel exists. The dual-energy-based method showed better MAR performances in all cases regardless of the presence of tooth enamel on the slice of interest. We have compared the MAR performances between both methods in terms of the relative error (REL), the sum of squared difference (SSD) and the normalized absolute difference (NAD). For the dental phantom images corrected by the single-energy-based method, the metric values were 95.3%, 94.5%, and 90.6%, respectively, while they were 90.1%, 90.05%, and 86.4%, respectively, for the images corrected by the dual-energy-based method. For the human skull phantom images, the metric values were improved from 95.6%, 91.5%, and 89.6%, respectively, to 88.2%, 82.5%, and 81.3%, respectively. The proposed dual-energy-based method has shown better performance in metal segmentation leading to better MAR performance in dental imaging. We expect the proposed metal segmentation method can be used to improve the MAR performance of existing MAR techniques that have metal segmentation steps in their correction procedures. © 2017 American Association of Physicists in Medicine.
Upgraded Analytical Model of the Cylinder Test
DOE Office of Scientific and Technical Information (OSTI.GOV)
Souers, P. Clark; Lauderbach, Lisa; Garza, Raul
2013-03-15
A Gurney-type equation was previously corrected for wall thinning and angle of tilt, and now we have added shock wave attenuation in the copper wall and air gap energy loss. Extensive calculations were undertaken to calibrate the two new energy loss mechanisms across all explosives. The corrected Gurney equation is recommended for cylinder use over the original 1943 form. The effect of these corrections is to add more energy to the adiabat values from a relative volume of 2 to 7, with low energy explosives having the largest correction. The data was pushed up to a relative volume of aboutmore » 15 and the JWL parameter ω was obtained directly. The total detonation energy density was locked to the v=7 adiabat energy density, so that the Cylinder test gives all necessary values needed to make a JWL.« less
Upgraded Analytical Model of the Cylinder Test
DOE Office of Scientific and Technical Information (OSTI.GOV)
Souers, P. Clark; Lauderbach, Lisa; Garza, Raul
2013-03-15
A Gurney-type equation was previously corrected for wall thinning and angle of tilt, and now we have added shock wave attenuation in the copper wall and air gap energy loss. Extensive calculations were undertaken to calibrate the two new energy loss mechanisms across all explosives. The corrected Gurney equation is recommended for cylinder use over the original 1943 form. The effect of these corrections is to add more energy to the adiabat values from a relative volume of 2 to 7, with low energy explosives having the largest correction. The data was pushed up to a relative volume of aboutmore » 15 and the JWL parameter ω was obtained directly. Finally, the total detonation energy density was locked to the v = 7 adiabat energy density, so that the Cylinder test gives all necessary values needed to make a JWL.« less
Greer, Peter B; Vial, Philip; Oliver, Lyn; Baldock, Clive
2007-11-01
The aim of this work was to experimentally determine the difference in response of an amorphous silicon (a-Si) electronic portal imaging device (EPID) to the open and multileaf collimator (MLC) transmitted beam components of intensity modulated radiation therapy (IMRT) beams. EPID dose response curves were measured for open and MLC transmitted (MLCtr) 10 x 10 cm2 beams at central axis and with off axis distance using a shifting field technique. The EPID signal was obtained by replacing the flood-field correction with a pixel sensitivity variation matrix correction. This signal, which includes energy-dependent response, was then compared to ion-chamber measurements. An EPID calibration method to remove the effect of beam energy variations on EPID response was developed for IMRT beams. This method uses the component of open and MLCtr fluence to an EPID pixel calculated from the MLC delivery file and applies separate radially dependent calibration factors for each component. The calibration procedure does not correct for scatter differences between ion chamber in water measurements and EPID response; these must be accounted for separately with a kernel-based approach or similar method. The EPID response at central axis for the open beam was found to be 1.28 +/- 0.03 of the response for the MLCtr beam, with the ratio increasing to 1.39 at 12.5 cm off axis. The EPID response to MLCtr radiation did not change with off-axis distance. Filtering the beam with copper plates to reduce the beam energy difference between open and MLCtr beams was investigated; however, these were not effective at reducing EPID response differences. The change in EPID response for uniform sliding window IMRT beams with MLCtr dose components from 0.3% to 69% was predicted to within 2.3% using the separate EPID response calibration factors for each dose component. A clinical IMRT image calibrated with this method differed by nearly 30% in high MLCtr regions from an image calibrated with an open beam calibration factor only. Accounting for the difference in EPID response to open and MLCtr radiation should improve IMRT dosimetry with a-Si EPIDs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carlin, P W
1989-06-01
As part of US Department of Energy-sponsored research on wind energy, a Mod-O wind turbine was used to drive a variable-speed, wound-rotor, induction generator. Energy resulting from the slip frequency voltage in the generator rotor was rectified to dc, inverted back to utility frequency ac, and injected into the power line. Spurious changing frequencies displayed in the generator output by a spectrum analyzer are caused by ripple on the dc link. No resonances of any of these moving frequencies were seen in spite of the presence of a bank of power factor correcting capacitors. 5 figs.
The Internal Energy for Molecular Hydrogen in Gravitationally Unstable Protoplanetary Disks
NASA Astrophysics Data System (ADS)
Boley, Aaron C.; Hartquist, Thomas W.; Durisen, Richard H.; Michael, Scott
2007-02-01
The gas equation of state may be one of the critical factors for the disk instability theory of gas giant planet formation. This Letter addresses the treatment of H2 in hydrodynamic simulations of gravitationally unstable disks. In our discussion, we point out possible consequences of erroneous specific internal energy relations, approximate specific internal energy relations with discontinuities, and assumptions of constant Γ1. In addition, we consider whether the ortho/para ratio for H 2 in protoplanetary disks should be treated dynamically as if the species are in equilibrium. Preliminary simulations indicate that the correct treatment is particularly critical for the study of gravitational instability when T=30-50 K.
77 FR 18798 - Efficiency and Renewables Advisory Committee (ERAC); Correction
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-28
... DEPARTMENT OF ENERGY Efficiency and Renewables Advisory Committee (ERAC); Correction AGENCY: Office of Energy Efficiency and Renewable Energy, Department of Energy. ACTION: Notice of open meeting... announcing an open meeting of the Efficiency and Renewables Advisory Committee (ERAC). The meeting date has...
NASA Astrophysics Data System (ADS)
Fathi, K.; Galer, S.; Kirkby, K. J.; Palmans, H.; Nisbet, A.
2017-11-01
The high uncertainty in the Relative Biological Effectiveness (RBE) values of particle therapy beam, which are used in combination with the quantity absorbed dose in radiotherapy, together with the increase in the number of particle therapy centres worldwide necessitate a better understating of the biological effect of such modalities. The present novel study is part of performance testing and development of a micro-calorimeter based on Superconducting QUantum Interference Devices (SQUIDs). Unlike other microdosimetric detectors that are used for investigating the energy distribution, this detector provides a direct measurement of energy deposition at the micrometre scale, that can be used to improve our understanding of biological effects in particle therapy application, radiation protection and environmental dosimetry. Temperature rises of less than 1μK are detectable and when combined with the low specific heat capacity of the absorber at cryogenic temperature, extremely high energy deposition sensitivity of approximately 0.4 eV can be achieved. The detector consists of 3 layers: tissue equivalent (TE) absorber, superconducting (SC) absorber and silicon substrate. Ideally all energy would be absorbed in the TE absorber and heat rise in the superconducting layer would arise due to heat conduction from the TE layer. However, in practice direct particle absorption occurs in all 3 layers and must be corrected for. To investigate the thermal behaviour within the detector, and quantify any possible correction, particle tracks were simulated employing Geant4 (v9.6) Monte Carlo simulations. The track information was then passed to the COMSOL Multiphysics (Finite Element Method) software. The 3D heat transfer within each layer was then evaluated in a time-dependent model. For a statistically reliable outcome, the simulations had to be repeated for a large number of particles. An automated system has been developed that couples Geant4 Monte Carlo output to COMSOL for determining the expected distribution of proton tracks and their thermal contribution within the detector. The correction factor for a 3.8 MeV proton pencil beam was determined and applied to the expected spectra. The corrected microdosimetric spectra was shown to have a good agreement with the ideal spectra.
NASA Astrophysics Data System (ADS)
Kwa, William
1998-11-01
In this thesis the dosimetric characteristics of asymmetric fields are investigated and a new computation method for the dosimetry of asymmetric fields is described and implemented into an existing treatment planning algorithm. Based on this asymmetric field treatment planning algorithm, the clinical use of asymmetric fields in cancer treatment is investigated, and new treatment techniques for conformal therapy are developed. Dose calculation is verified with thermoluminescent dosimeters in a body phantom. In this thesis, an analytical approach is proposed to account for the dose reduction when a corresponding symmetric field is collimated asymmetrically to a smaller asymmetric field. This is represented by a correction factor that uses the ratio of the equivalent field dose contributions between the asymmetric and symmetric fields. The same equation used in the expression of the correction factor can be used for a wide range of asymmetric field sizes, photon energies and linear accelerators. This correction factor will account for the reduction in scatter contributions within an asymmetric field, resulting in the dose profile of an asymmetric field resembling that of a wedged field. The output factors of some linear accelerators are dependent on the collimator settings and whether the upper or lower collimators are used to set the narrower dimension of a radiation field. In addition to this collimator exchange effect for symmetric fields, asymmetric fields are also found to exhibit some asymmetric collimator backscatter effect. The proposed correction factor is extended to account for these effects. A set of correction factors determined semi-empirically to account for the dose reduction in the penumbral region and outside the radiated field is established. Since these correction factors rely only on the output factors and the tissue maximum ratios, they can easily be implemented into an existing treatment planning system. There is no need to store either additional sets of asymmetric field profiles or databases for the implementation of these correction factors into an existing in-house treatment planning system. With this asymmetric field algorithm, the computation time is found to be 20 times faster than a commercial system. This computation method can also be generalized to the dose representation of a two-fold asymmetric field whereby both the field width and length are set asymmetrically, and the calculations are not limited to points lying on one of the principal planes. The dosimetric consequences of asymmetric fields on the dose delivery in clinical situations are investigated. Examples of the clinical use of asymmetric fields are given and the potential use of asymmetric fields in conformal therapy is demonstrated. An alternative head and neck conformal therapy is described, and the treatment plan is compared to the conventional technique. The dose distributions calculated for the standard and alternative techniques are confirmed with thermoluminescent dosimeters in a body phantom at selected dose points. (Abstract shortened by UMI.)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Larraga-Gutierrez, J
Purpose: To correct for the over-response of mini-ionization chambers with high-Z central electrodes. The hypothesis is that by applying a negative/reverse voltage, it is possible to suppress the signal generated in the high-Z central electrode by low-energy photons. Methods: The mini-ionization chambers used in the experiments were a PTW-31014, PTW-31006 and IBA-CC01. The PTW-31014 has an aluminum central electrode while the PTW-31006 and IBA-CC01 have a steel one. Total scatter factors (Scp) were measured for a 6 MV photon beam down to a square field size of 0.5 cm. The measurements were performed in water at 10 cm depth withmore » SAD of 100 cm. The Scp were measured with the dosimeters with +400V bias voltage. In the case of the PTW-31006 and IBA-CC01, the measurements were repeated with −400V bias voltage. Also, the field factors in water were calculated with Monte Carlo simulations for comparison. Results: The measured Scp at +400V with the PTW-31006 and IBA-CC01 detectors were in agreement within 0.2% down to a field size of 1.5 cm. Both dosimeters shown a systematic difference about 2.5% with the Scp measured with the PTW-31014 and the Monte Carlo calculated field factors. The measured Scp at −400V with the PTW-31006 and IBA-CC01 detectors were in close agreement with the PTW-31014 measured Scp and the field factors within 0.3 and 1.0%, respectively. In the case of the IBA-CC01 it was found a good agreement (1%) down to field size of 1.0 cm. All the dosimeters shown differences up to 17% between the measured Scp and the field factor for the 0.5 cm field size. Conclusion: By applying a negative/reverse voltage to the mini-ionization chambers with high-Z central electrode it was possible to correct for their over-response to low energy photons.« less
Primary Energy Spectrum as Reconstructed from S(500) Measurements by KASCADE-Grande
NASA Astrophysics Data System (ADS)
Toma, G.; Apel, W. D.; Arteaga, J. C.; Badea, F.; Bekk, K.; Bertaina, M.; Blümer, J.; Bozdog, H.; Brancus, I. M.; Brüggemann, M.; Buchholz, P.; Cantoni, E.; Chiavassa, A.; Cossavella, F.; Daumiller, K.; de Souza, V.; Di Pierro, F.; Doll, P.; Engel, R.; Engler, J.; Finger, M.; Fuhrmann, D.; Ghia, P. L.; Gils, H. J.; Glasstetter, R.; Grupen, C.; Haungs, A.; Heck, D.; Hörandel, J. R.; Huege, T.; Isar, P. G.; Kampert, K.-H.; Kang, D.; Kickelbick, D.; Klages, H. O.; Łuczak, P.; Mathes, H. J.; Mayer, H. J.; Milke, J.; Mitrica, B.; Morello, C.; Navarra, G.; Nehls, S.; Oehlschläger, J.; Ostapchenko, S.; Over, S.; Petcu, M.; Pierog, T.; Rebel, H.; Roth, M.; Schieler, H.; Schröder, F.; Sima, O.; Stümpert, M.; Trinchero, G. C.; Ulrich, H.; Weindl, A.; Wochele, J.; Wommer, M.; Zabierowski, J.
2010-01-01
In cosmic ray investigations by observations of extensive air showers (EAS) the general question arises how to relate the registered EAS observables to the energy of the primary particle from the cosmos entering into the atmosphere. We present results on the reconstruction of the primary energy spectrum of cosmic rays from the experimentally recorded S(500) observable using the KASCADE-Grande detector array. The KASCADE-Grande experiment is installed in Forschungszentrum Karlsruhe, Germany, and driven by an international collaboration. Previous EAS investigations have shown that for a fixed energy the charged particle density becomes independent of the primary mass at certain distances from the shower core. This feature can be used as an estimator for the primary energy. The particular radial distance from the shower core where this effect shows up is a characteristic of the detector. For the KASCADE-Grande experiment it was shown to be around 500 m, hence a notation S(500). Extensive simulation studies have shown that S(500) is mapping the primary energy. The constant intensity cut (CIC) method is applied to evaluate the attenuation of the S(500) observable with the zenith angle. An attenuation correction is applied and all recorded S(500) values are corrected for attenuation. A calibration of S(500) values with the primary energy has been worked out by simulations and was used for conversion providing the possibility to obtain the primary energy spectrum (in the energy range accessible to KASCADE-Grande 1010-1018 eV). The systematic uncertainties induced by different factors are considered.
Twining, Brian V.
2016-11-29
The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Energy, has maintained a water-level monitoring program at the Idaho National Laboratory (INL) since 1949. The purpose of the program is to systematically measure and report water-level data to assess the eastern Snake River Plain aquifer and long term changes in groundwater recharge, discharge, movement, and storage. Water-level data are commonly used to generate potentiometric maps and used to infer increases and (or) decreases in the regional groundwater system. Well deviation is one component of water-level data that is often overlooked and is the result of the well construction and the well not being plumb. Depending on measured slant angle, where well deviation generally increases linearly with increasing slant angle, well deviation can suggest artificial anomalies in the water table. To remove the effects of well deviation, the USGS INL Project Office applies a correction factor to water-level data when a well deviation survey indicates a change in the reference elevation of greater than or equal to 0.2 ft.Borehole well deviation survey data were considered for 177 wells completed within the eastern Snake River Plain aquifer, but not all wells had deviation survey data available. As of 2016, USGS INL Project Office database includes: 57 wells with gyroscopic survey data; 100 wells with magnetic deviation survey data; 11 wells with erroneous gyroscopic data that were excluded; and, 68 wells with no deviation survey data available. Of the 57 wells with gyroscopic deviation surveys, correction factors for 16 wells ranged from 0.20 to 6.07 ft and inclination angles (SANG) ranged from 1.6 to 16.0 degrees. Of the 100 wells with magnetic deviation surveys, a correction factor for 21 wells ranged from 0.20 to 5.78 ft and SANG ranged from 1.0 to 13.8 degrees, not including the wells that did not meet the correction factor criteria of greater than or equal to 0.20 ft.Forty-seven wells had gyroscopic and magnetic deviation survey data for the same well. Datasets for both survey types were compared for the same well to determine whether magnetic survey data were consistent with gyroscopic survey data. Of those 47 wells, 96 percent showed similar correction factor estimates (≤ 0.20 ft) for both magnetic and gyroscopic well deviation surveys. A linear comparison of correction factor estimates for both magnetic and gyroscopic deviation well surveys for all 47 wells indicate good linear correlation, represented by an r-squared of 0.88. The correction factor difference between the gyroscopic and magnetic surveys for 45 of 47 wells ranged from 0.00 to 0.18 ft, not including USGS 57 and USGS 125. Wells USGS 57 and USGS 125 show a correction factor difference of 2.16 and 0.36 ft, respectively; however, review of the data files suggest erroneous SANG data for both magnetic deviation well surveys. The difference in magnetic and gyroscopic well deviation SANG measurements, for all wells, ranged from 0.0 to 0.9 degrees. These data indicate good agreement between SANG data measured using the magnetic deviation survey methods and SANG data measured using gyroscopic deviation survey methods, even for surveys collected years apart.
Kron, T; McNiven, A; Witruk, B; Kenny, M; Battista, J
2006-12-01
Plane parallel ionization chambers are an important tool for dosimetry and absolute calibration of electron beams used for radiotherapy. Most dosimetric protocols require corrections for recombination and polarity effects, which are to be determined experimentally as they depend on chamber design and radiation quality. Both effects were investigated in electron beams from a linear accelerator (Varian 21CD) for a set of four tissue equivalent plane parallel ionization chambers customized for the present research by Standard Imaging (Madison WI). All four chambers share the same design and air cavity dimensions, differing only in the diameter of their collecting electrode and the corresponding width of the guard ring. The diameters of the collecting electrodes were 2 mm, 4 mm, 10 mm and 20 mm. Measurements were taken using electron beams of nominal energy 6 to 20 MeV in a 10 cm x 10 cm field size with a SSD of 100 cm at various depths in a Solid Water slab phantom. No significant variation of recombination effect was found with radiation quality, depth of measurement or chamber design. However, the polarity effect exceeded 5% for the chambers with small collecting electrode for an effective electron energy below 4 MeV at the point of measurement. The magnitude of the effect increased with decreasing electron energy in the phantom. The polarity correction factor calculated following AAPM protocol TG51 ranged from approximately 1.00 for the 20.0 mm chamber to less than 0.95 for the 2 mm chamber at 4.1 cm depth in a electron beam of nominally 12 MeV. By inverting the chamber it could be shown that the polarity effect did not depend on the polarity of the electrode first traversed by the electron beam. Similarly, the introduction of an air gap between the overlying phantom layer and the chambers demonstrated that the angular distribution of the electrons at the point of measurement had a lesser effect on the polarity correction than the electron energy itself. The magnitude of the absolute difference between charge collected at positive and negative polarity was found to correlate with the area of the collecting electrode which is consistent with the explanation that differences in thickness of the collecting electrodes and the number of electrons stopped in them contribute significantly to the polarity effect. Overall, the polarity effects found in the present study would have a negligible effect on electron beam calibration at a measurement depth recommended by most calibration protocols. However, the present work tested the corrections under extreme conditions thereby aiming at greater understanding of the mechanism underlying the correction factors for these chambers. This may lead to better chamber design for absolute dosimetry and electron beam characterization with less reliance on empirical corrections.
Adiabatic corrections to density functional theory energies and wave functions.
Mohallem, José R; Coura, Thiago de O; Diniz, Leonardo G; de Castro, Gustavo; Assafrão, Denise; Heine, Thomas
2008-09-25
The adiabatic finite-nuclear-mass-correction (FNMC) to the electronic energies and wave functions of atoms and molecules is formulated for density-functional theory and implemented in the deMon code. The approach is tested for a series of local and gradient corrected density functionals, using MP2 results and diagonal-Born-Oppenheimer corrections from the literature for comparison. In the evaluation of absolute energy corrections of nonorganic molecules the LDA PZ81 functional works surprisingly better than the others. For organic molecules the GGA BLYP functional has the best performance. FNMC with GGA functionals, mainly BLYP, show a good performance in the evaluation of relative corrections, except for nonorganic molecules containing H atoms. The PW86 functional stands out with the best evaluation of the barrier of linearity of H2O and the isotopic dipole moment of HDO. In general, DFT functionals display an accuracy superior than the common belief and because the corrections are based on a change of the electronic kinetic energy they are here ranked in a new appropriate way. The approach is applied to obtain the adiabatic correction for full atomization of alcanes C(n)H(2n+2), n = 4-10. The barrier of 1 mHartree is approached for adiabatic corrections, justifying its insertion into DFT.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Diepold, Marc, E-mail: marc.diepold@mpq.mpg.de; Franke, Beatrice; Götzfried, Johannes
Avalanche photodiodes are commonly used as detectors for low energy x-rays. In this work, we report on a fitting technique used to account for different detector responses resulting from photoabsorption in the various avalanche photodiode layers. The use of this technique results in an improvement of the energy resolution at 8.2 keV by up to a factor of 2 and corrects the timing information by up to 25 ns to account for space dependent electron drift time. In addition, this waveform analysis is used for particle identification, e.g., to distinguish between x-rays and MeV electrons in our experiment.
Computational and Matrix Isolation Studies of (2- and 3-Furyl)methylene
1994-01-01
ynal, (Appendix 3) Simple HF calculations using the 6-31 G basis set + ZPE (zero point energy correction applied) predict 2.2 to be more stable in both...QCISD(T)/6-31 1 G** + ZPE predict the triplet to more stable by 2.9 Kcal/mol. However, calculations using MP4SDTQ/6-31 1 G + ZPE predict the singlet to...calculated frequencies were scaled by a factor of 0.9. 53 Table 2.30 Calculated ZPE for 2-Oxabicyclo(3.1.0]hexa-3,5-diene.a Zero Point Energy 49.9 (KcaVmol
Evaluation Of Different Power Conditioning Options For Stirling Generators
NASA Astrophysics Data System (ADS)
Garrigos, A.; Blanes, J. M.; Carrasco, J. A.; Maset, E.; Montalban, G.; Ejea, J.; Ferreres, A.; Sanchis, E.
2011-10-01
Free-piston Stirling engines are an interesting alternative for electrical power systems, especially in deep space missions where photovoltaic systems are not feasible. This kind of power generators contains two main parts, the Stirling machine and the linear alternator that converts the mechanical energy from the piston movement to electrical energy. Since the generated power is in AC form, several aspects should be assessed to use such kind of generators in a spacecraft power system: AC/DC topologies, power factor correction, power regulation techniques, integration into the power system, etc. This paper details power generator operation and explores different power conversion approaches.
Multivariate co-integration analysis of the Kaya factors in Ghana.
Asumadu-Sarkodie, Samuel; Owusu, Phebe Asantewaa
2016-05-01
The fundamental goal of the Government of Ghana's development agenda as enshrined in the Growth and Poverty Reduction Strategy to grow the economy to a middle income status of US$1000 per capita by the end of 2015 could be met by increasing the labour force, increasing energy supplies and expanding the energy infrastructure in order to achieve the sustainable development targets. In this study, a multivariate co-integration analysis of the Kaya factors namely carbon dioxide, total primary energy consumption, population and GDP was investigated in Ghana using vector error correction model with data spanning from 1980 to 2012. Our research results show an existence of long-run causality running from population, GDP and total primary energy consumption to carbon dioxide emissions. However, there is evidence of short-run causality running from population to carbon dioxide emissions. There was a bi-directional causality running from carbon dioxide emissions to energy consumption and vice versa. In other words, decreasing the primary energy consumption in Ghana will directly reduce carbon dioxide emissions. In addition, a bi-directional causality running from GDP to energy consumption and vice versa exists in the multivariate model. It is plausible that access to energy has a relationship with increasing economic growth and productivity in Ghana.
Quantum critical point revisited by dynamical mean-field theory
NASA Astrophysics Data System (ADS)
Xu, Wenhu; Kotliar, Gabriel; Tsvelik, Alexei M.
2017-03-01
Dynamical mean-field theory is used to study the quantum critical point (QCP) in the doped Hubbard model on a square lattice. The QCP is characterized by a universal scaling form of the self-energy and a spin density wave instability at an incommensurate wave vector. The scaling form unifies the low-energy kink and the high-energy waterfall feature in the spectral function, while the spin dynamics includes both the critical incommensurate and high-energy antiferromagnetic paramagnons. We use the frequency-dependent four-point correlation function of spin operators to calculate the momentum-dependent correction to the electron self-energy. By comparing with the calculations based on the spin-fermion model, our results indicate the frequency dependence of the quasiparticle-paramagnon vertices is an important factor to capture the momentum dependence in quasiparticle scattering.
Quantum critical point revisited by dynamical mean-field theory
Xu, Wenhu; Kotliar, Gabriel; Tsvelik, Alexei M.
2017-03-31
Dynamical mean-field theory is used to study the quantum critical point (QCP) in the doped Hubbard model on a square lattice. We characterize the QCP by a universal scaling form of the self-energy and a spin density wave instability at an incommensurate wave vector. The scaling form unifies the low-energy kink and the high-energy waterfall feature in the spectral function, while the spin dynamics includes both the critical incommensurate and high-energy antiferromagnetic paramagnons. Here, we use the frequency-dependent four-point correlation function of spin operators to calculate the momentum-dependent correction to the electron self-energy. Furthermore, by comparing with the calculations basedmore » on the spin-fermion model, our results indicate the frequency dependence of the quasiparticle-paramagnon vertices is an important factor to capture the momentum dependence in quasiparticle scattering.« less
Energy calibration of the fly's eye detector
NASA Technical Reports Server (NTRS)
Baltrusaitis, R. M.; Cassiday, G. L.; Cooper, R.; Elbert, J. W.; Gerhardy, P. R.; Ko, S.; Loh, E. C.; Mizumoto, Y.; Sokolsky, P.; Steck, D.
1985-01-01
The methods used to calibrate the Fly's eye detector to evaluate the energy of EAS are discussed. The energy of extensive air showers (EAS) as seen by the Fly's Eye detector are obtained from track length integrals of observed shower development curves. The energy of the parent cosmic ray primary is estimated by applying corrections to account for undetected energy in the muon, neutrino and hadronic channels. Absolute values for E depend upon the measurement of shower sizes N sub e(x). The following items are necessary to convert apparent optical brightness into intrinsical optical brightness: (1) an assessment of those factors responsible for light production by the relativistic electrons in an EAS and the transmission of light thru the atmosphere, (2) calibration of the optical detection system, and (3) a knowledge of the trajectory of the shower.
Künzel, R; Herdade, S B; Costa, P R; Terini, R A; Levenhagen, R S
2006-04-21
In this study, scattered x-ray distributions were produced by irradiating a tissue equivalent phantom under clinical mammographic conditions by using Mo/Mo, Mo/Rh and W/Rh anode/filter combinations, for 25 and 30 kV tube voltages. Energy spectra of the scattered x-rays have been measured with a Cd(0.9)Zn(0.1)Te (CZT) detector for scattering angles between 30 degrees and 165 degrees . Measurement and correction processes have been evaluated through the comparison between the values of the half-value layer (HVL) and air kerma calculated from the corrected spectra and measured with an ionization chamber in a nonclinical x-ray system with a W/Mo anode/filter combination. The shape of the corrected x-ray spectra measured in the nonclinical system was also compared with those calculated using semi-empirical models published in the literature. Scattered x-ray spectra measured in the clinical x-ray system have been characterized through the calculation of HVL and mean photon energy. Values of the air kerma, ambient dose equivalent and effective dose have been evaluated through the corrected x-ray spectra. Mean conversion coefficients relating the air kerma to the ambient dose equivalent and to the effective dose from the scattered beams for Mo/Mo, Mo/Rh and W/Rh anode/filter combinations were also evaluated. Results show that for the scattered radiation beams the ambient dose equivalent provides an overestimate of the effective dose by a factor of about 5 in the mammography energy range. These results can be used in the control of the dose limits around a clinical unit and in the calculation of more realistic protective shielding barriers in mammography.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hensley, F; Chofor, N; Schoenfeld, A
2016-06-15
Purpose: In the steep dose gradients in the vicinity of a radiation source and due to the properties of the changing photon spectra, dose measurements in Brachytherapy usually have large uncertainties. Working group DIN 6803-3 is presently discussing recommendations for practical brachytherapy dosimetry incorporating recent theoretical developments in the description of brachytherapy radiation fields as well as new detectors and phantom materials. The goal is to prepare methods and instruments to verify dose calculation algorithms and for clinical dose verification with reduced uncertainties. Methods: After analysis of the distance dependent spectral changes of the radiation field surrounding brachytherapy sources, themore » energy dependent response of typical brachytherapy detectors was examined with Monte Carlo simulations. A dosimetric formalism was developed allowing the correction of their energy dependence as function of source distance for a Co-60 calibrated detector. Water equivalent phantom materials were examined with Monte Carlo calculations for their influence on brachytherapy photon spectra and for their water equivalence in terms of generating equivalent distributions of photon spectra and absorbed dose to water. Results: The energy dependence of a detector in the vicinity of a brachytherapy source can be described by defining an energy correction factor kQ for brachytherapy in the same manner as in existing dosimetry protocols which incorporates volume averaging and radiation field distortion by the detector. Solid phantom materials were identified which allow precise positioning of a detector together with small correctable deviations from absorbed dose to water. Recommendations for the selection of detectors and phantom materials are being developed for different measurements in brachytherapy. Conclusion: The introduction of kQ for brachytherapy sources may allow more systematic and comparable dose measurements. In principle, the corrections can be verified or even determined by measurement in a water phantom and comparison with dose distributions calculated using the TG43 dosimetry formalism. Project is supported by DIN Deutsches Institut fuer Normung.« less
78 FR 29247 - Contractor Legal Management Requirements; Acquisition Regulations; Correction
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-20
... DEPARTMENT OF ENERGY 48 CFR Part 952 RIN 1990-AA37 Contractor Legal Management Requirements; Acquisition Regulations; Correction AGENCY: Department of Energy. ACTION: Final rule; correction. SUMMARY: The... (78 FR 25795). In this document, DOE revised existing regulations covering contractor legal management...
Correction of beam-beam effects in luminosity measurement in the forward region at CLIC
NASA Astrophysics Data System (ADS)
Lukić, S.; Božović-Jelisavčić, I.; Pandurović, M.; Smiljanić, I.
2013-05-01
Procedures for correcting the beam-beam effects in luminosity measurements at CLIC at 3 TeV center-of-mass energy are described and tested using Monte Carlo simulations. The angular counting loss due to the combined Beamstrahlung and initial-state radiation effects is corrected based on the reconstructed velocity of the collision frame of the Bhabha scattering. The distortion of the luminosity spectrum due to the initial-state radiation is corrected by deconvolution. At the end, the counting bias due to the finite calorimeter energy resolution is numerically corrected. To test the procedures, BHLUMI Bhabha event generator, and Guinea-Pig beam-beam simulation were used to generate the outgoing momenta of Bhabha particles in the bunch collisions at CLIC. The systematic effects of the beam-beam interaction on the luminosity measurement are corrected with precision of 1.4 permille in the upper 5% of the energy, and 2.7 permille in the range between 80 and 90% of the nominal center-of-mass energy.
NASA Astrophysics Data System (ADS)
Prastowo, S. H. B.; Supriadi, B.; Bahri, S.; Ridlo, Z. R.
2018-04-01
This research discussed about the correction of Stark Effect on Tritium atoms in the first excited state with relativistic conditions. The approach used to solve this Stark Effect correction was the perturbation theory which was from time independent degenerate perturbation theory to second-order correction. The Stark Effect on the excited state made the spectrum energy polarization of Tritium which was included in the isotope of hydrogen with an electron moving around the nucleus with high velocity. Hence, the relativistic correction affected the spectrum energy shift. Tritium was a radioactive material having half-time 12,3 years and relatively safe. The Tritium application was a material for the manufacture of nuclear battery. The most effective external electric field that should give to Tritium was 108 V/mith the total correction energy that was 0,97398557 × 10-21 Joule. Therefore, its effect reduced the binding energy between electron and nucleus, and increased the power of Tritium Betavoltaics Battery.
Optics Corrections with LOCO in the Fermilab Booster
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tan, Cheng-Yang; Prost, Lionel; Seiya, Kiyomi
2016-06-01
The optics of the Fermilab Booster has been corrected with LOCO (Linear Optics from Closed Orbits). However, the first corrections did not show any improvement in capture efficiency at injection. A detailed analysis of the results showed that the problem lay in the MADX optics file. Both the quadrupole and chromatic strengths were originally set as constants independent of beam energy. However, careful comparison between the measured and calculated tunes and chromatcity show that these strengths are energy dependent. After the MADX model was modified with these new energy dependent strengths, the LOCO corrected lattice has been applied to Booster.more » The effect of the corrected lattice will be discussed here.« less
TLD postal dose intercomparison for megavoltage units in Poland.
Izewska, J; Gajewski, R; Gwiazdowska, B; Kania, M; Rostkowska, J
1995-08-01
The aim of the TLD pilot study was to investigate and to reduce the uncertainties involved in the measurements of absorbed dose and to improve the consistency in dose determination in the regional radiotherapy centres in Poland. The intercomparison was organized by the SSDL. It covered absorbed dose measurements under reference conditions for Co-60, high energy X-rays and electron beams. LiF powder type MT-N was used for the irradiations and read with the Harshaw TLD reader model 2000B/2000C. The TLD system was set up and an analysis of the factors influencing the accuracy of absorbed dose measurements with TL-detectors was performed to evaluate and minimize the measurement uncertainty. A fading not exceeding 2% in 12 weeks was found. The relative energy correction factor did not exceed 3% for X-rays in the range 4-15 MV, and 4% for electron beams between 6 and 20 MeV. A total of 34 beams was checked. Deviation of +/- 3.5% stated and evaluated dose was considered acceptable for photons and +/- 5% for electron beams. The results for Co-60, high energy X-rays and electron beams showed that there were two, three and no centres, respectively, beyond acceptance levels. The sources of errors for all deviations out of this range were thoroughly investigated, discussed and corrected, however two deviations remained unexplained. The pilot study resulted in an improvement of the accuracy and consistency of dosimetry in Poland.
Essers, M; van Battum, L; Heijmen, B J
2001-11-01
In vivo dosimetry using thermoluminiscence detectors (TLD) is routinely performed in our institution to determine dose inhomogeneities in the match line region during chest wall irradiation. However, TLDs have some drawbacks: online in vivo dosimetry cannot be performed; generally, doses delivered by the contributing fields are not measured separately; measurement analysis is time consuming. To overcome these problems, the Joined Field Detector (JFD-5), a detector for match line in vivo dosimetry based on diodes, has been developed. This detector and its characteristics are presented. The JFD-5 is a linear array of 5 p-type diodes. The middle three diodes, used to measure the dose in the match line region, are positioned at 5-mm intervals. The outer two diodes, positioned at 3-cm distance from the central diode, are used to measure the dose in the two contributing fields. For three JFD-5 detectors, calibration factors for different energies, and sensitivity correction factors for non-standard field sizes, patient skin temperature, and oblique incidence have been determined. The accuracy of penumbra and match line dose measurements has been determined in phantom studies and in vivo. Calibration factors differ significantly between diodes and between photon and electron beams. However, conversion factors between energies can be applied. The correction factor for temperature is 0.35%/ degrees C, and for oblique incidence 2% at maximum. The penumbra measured with the JFD-5 agrees well with film and linear diode array measurements. JFD-5 in vivo match line dosimetry reproducibility was 2.0% (1 SD) while the agreement with TLD was 0.999+/-0.023 (1 SD). The JFD-5 can be used for accurate, reproducible, and fast on-line match line in vivo dosimetry.
High-energy electrons from the muon decay in orbit: Radiative corrections
DOE Office of Scientific and Technical Information (OSTI.GOV)
Szafron, Robert; Czarnecki, Andrzej
2015-12-07
We determine the Ο(α) correction to the energy spectrum of electrons produced in the decay of muons bound in atoms. We focus on the high-energy end of the spectrum that constitutes a background for the muon-electron conversion and will be precisely measured by the upcoming experiments Mu2e and COMET. As a result, the correction suppresses the background by about 20%.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-24
... Conservation Program: Energy Conservation Standards for Distribution Transformers; Correction AGENCY: Office of... standards for distribution transformers. It was recently discovered that values in certain tables of the...,'' including distribution transformers. The Energy Policy Act of 1992 (EPACT 1992), Public Law 102-486, amended...
NASA Astrophysics Data System (ADS)
Sarangapani, R.; Jose, M. T.; Srinivasan, T. K.; Venkatraman, B.
2017-07-01
Methods for the determination of efficiency of an aged high purity germanium (HPGe) detector for gaseous sources have been presented in the paper. X-ray radiography of the detector has been performed to get detector dimensions for computational purposes. The dead layer thickness of HPGe detector has been ascertained from experiments and Monte Carlo computations. Experimental work with standard point and liquid sources in several cylindrical geometries has been undertaken for obtaining energy dependant efficiency. Monte Carlo simulations have been performed for computing efficiencies for point, liquid and gaseous sources. Self absorption correction factors have been obtained using mathematical equations for volume sources and MCNP simulations. Self-absorption correction and point source methods have been used to estimate the efficiency for gaseous sources. The efficiencies determined from the present work have been used to estimate activity of cover gas sample of a fast reactor.
On thermal corrections to near-threshold annihilation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Seyong; Laine, M., E-mail: skim@sejong.ac.kr, E-mail: laine@itp.unibe.ch
2017-01-01
We consider non-relativistic ''dark'' particles interacting through gauge boson exchange. At finite temperature, gauge exchange is modified in many ways: virtual corrections lead to Debye screening; real corrections amount to frequent scatterings of the heavy particles on light plasma constituents; mixing angles change. In a certain temperature and energy range, these effects are of order unity. Taking them into account in a resummed form, we estimate the near-threshold spectrum of kinetically equilibrated annihilating TeV scale particles. Weakly bound states are shown to 'melt' below freeze-out, whereas with attractive strong interactions, relevant e.g. for gluinos, bound states boost the annihilation ratemore » by a factor 4 ... 80 with respect to the Sommerfeld estimate, thereby perhaps helping to avoid overclosure of the universe. Modestly non-degenerate dark sector masses and a way to combine the contributions of channels with different gauge and spin structures are also discussed.« less
Energy considerations in the Community Atmosphere Model (CAM)
Williamson, David L.; Olson, Jerry G.; Hannay, Cécile; ...
2015-06-30
An error in the energy formulation in the Community Atmosphere Model (CAM) is identified and corrected. Ten year AMIP simulations are compared using the correct and incorrect energy formulations. Statistics of selected primary variables all indicate physically insignificant differences between the simulations, comparable to differences with simulations initialized with rounding sized perturbations. The two simulations are so similar mainly because of an inconsistency in the application of the incorrect energy formulation in the original CAM. CAM used the erroneous energy form to determine the states passed between the parameterizations, but used a form related to the correct formulation for themore » state passed from the parameterizations to the dynamical core. If the incorrect form is also used to determine the state passed to the dynamical core the simulations are significantly different. In addition, CAM uses the incorrect form for the global energy fixer, but that seems to be less important. The difference of the magnitude of the fixers using the correct and incorrect energy definitions is very small.« less
Resistivity Correction Factor for the Four-Probe Method: Experiment II
NASA Astrophysics Data System (ADS)
Yamashita, Masato; Yamaguchi, Shoji; Nishii, Toshifumi; Kurihara, Hiroshi; Enjoji, Hideo
1989-05-01
Experimental verification of the theoretically derived resistivity correction factor F is presented. Factor F can be applied to a system consisting of a disk sample and a four-probe array. Measurements are made on isotropic graphite disks and crystalline ITO films. Factor F can correct the apparent variations of the data and lead to reasonable resistivities and sheet resistances. Here factor F is compared to other correction factors; i.e. FASTM and FJIS.
Rice evapotranspiration at the field and canopy scales under water-saving irrigation
NASA Astrophysics Data System (ADS)
Liu, Xiaoyin; Xu, Junzeng; Yang, Shihong; Zhang, Jiangang
2018-04-01
Evapotranspiration (ET) is an important process of land surface water and thermal cycling, with large temporal and spatial variability. To reveal the effect of water-saving irrigation (WSI) on rice ET at different spatial scales and understand the cross spatial scale difference, rice ET under WSI condition at canopy (ETCML) and field scale (ETEC) were measured simultaneously by mini-lysimeter and eddy covariance (EC) in the rice season of 2014. To overcome the shortage of energy balance deficit by EC system, and evaluate the influence of energy balance closure degree on ETEC, ETEC was corrected as {ET}_{EC}^{*} by energy balance closure correction according to the evaporative fraction. Seasonal average daily ETEC, {ET}_{EC}^{*} and ETCML of rice under WSI practice were estimated as 3.12, 4.03 and 4.35 mm day-1, smaller than the values reported in flooded paddy fields. Daily ETEC, {ET}_{EC}^{*} and ETCML varied in a similar trends and reached the maximum in late tillering, then decreased along with the crop growth in late season. The value of ETEC was much lower than ETCML, and was frequently 1-2 h lagged behind ETCML. It indicated that the energy balance deficit resulted in underestimation of crop ET by EC system. The corrected value of {ET}_{EC}^{*} matched ETCML much better than ETEC, with a smaller RMSE (0.086 mm h-1) and higher R 2 (0.843) and IOA (0.961). The time lapse between {ET}_{EC}^{*} and ETCML was mostly shortened to less than 0.5 h. The multiple stepwise regression analysis indicated that net radiation ( R n) is the dominant factor for rice ET, and soil moisture ( θ) is another significant factor ( p < 0.01) in WSI rice fields. The difference between ETCML and {ET}_{EC}^{*} ({ET}_{CML} - {ET}_{EC}^{*}) were significantly ( p < 0.05) correlated with R n, air temperature ( T a), and air vapor pressure deficit ( D), and its partial correlation coefficients to R n and T a were slightly greater than D. Thus, R n, T a and D are important variables for understanding the spatial scale effect of rice ET in WSI fields, and for its cross scale conversion.
Rayleigh, Compton and K-shell radiative resonant Raman scattering in 83Bi for 88.034 keV γ-rays
NASA Astrophysics Data System (ADS)
Kumar, Sanjeev; Sharma, Veena; Mehta, D.; Singh, Nirmal
2007-11-01
The Rayleigh, Compton and K-shell radiative resonant Raman scattering cross-sections for the 88.034 keV γ-rays have been measured in the 83Bi (K-shell binding energy = 90.526 keV) element. The measurements have been performed at 130° scattering angle using reflection-mode geometrical arrangement involving the 109Cd radioisotope as photon source and an LEGe detector. Computer simulations were exercised to determine distributions of the incident and emission angles, which were further used in evaluation of the absorption corrections for the incident and emitted photons in the target. The measured cross-sections for the Rayleigh scattering are compared with the modified form-factors (MFs) corrected for the anomalous-scattering factors (ASFs) and the S-matrix calculations; and those for the Compton scattering are compared with the Klein-Nishina cross-sections corrected for the non-relativistic Hartree-Fock incoherent scattering function S(x, Z). The ratios of the measured KL2, KL3, KM and KN2,3 radiative resonant Raman scattering cross-sections are found to be in general agreement with those of the corresponding measured fluorescence transition probabilities.
The effect of economic factors and energy efficiency programs on residential electricity consumption
NASA Astrophysics Data System (ADS)
Sakai, Mihoko
Many countries have implemented policies to correct market and behavioral failures that lead to inefficient energy use. It is important to know what factors and policies can effectively overcome such failures and improve energy efficiency; however, a comprehensive analysis has been difficult because of data limitations. Using state scores compiled by American organizations recently, and adopting fixed-effects regression models, I analyze the joint impacts of relevant factors and policy programs on residential electricity consumption in each U.S. state. The empirical results reveal that increases in electricity price have small and negative effects, and increases in personal income have positive effects on residential electricity sales per capita (a measure of energy efficiency). The results suggest that it may take time for economic factors to affect electricity sales. The effects of personal income suggest the difficulty of controlling residential electricity consumption; however, they also imply that there is some room in households to reduce electricity use. The study also finds that programs and budgets of several policies seem to be associated with electricity sales. The estimates from a model including interaction terms suggest the importance of including multiple policies when analyzing and designing policies to address electricity efficiency. The results also imply the possibility of rebound effects of some policies, whereby improvements in energy efficiency lead to increases in energy consumption due to the associated lower per unit cost. Future studies should analyze both short-term and long-term effects of economic factors and policies, based on improved and accumulated time series and panel data, in order to design more effective policies for improving residential electricity efficiency.
Finite-size corrections to the excitation energy transfer in a massless scalar interaction model
NASA Astrophysics Data System (ADS)
Maeda, Nobuki; Yabuki, Tetsuo; Tobita, Yutaka; Ishikawa, Kenzo
2017-05-01
We study the excitation energy transfer (EET) for a simple model in which a massless scalar particle is exchanged between two molecules. We show that a finite-size effect appears in EET by the interaction energy due to overlapping of the quantum waves in a short time interval. The effect generates finite-size corrections to Fermi's golden rule and modifies EET probability from the standard formula in the Förster mechanism. The correction terms come from transition modes outside the resonance energy region and enhance EET probability substantially.
Development of 1D Liner Compression Code for IDL
NASA Astrophysics Data System (ADS)
Shimazu, Akihisa; Slough, John; Pancotti, Anthony
2015-11-01
A 1D liner compression code is developed to model liner implosion dynamics in the Inductively Driven Liner Experiment (IDL) where FRC plasmoid is compressed via inductively-driven metal liners. The driver circuit, magnetic field, joule heating, and liner dynamics calculations are performed at each time step in sequence to couple these effects in the code. To obtain more realistic magnetic field results for a given drive coil geometry, 2D and 3D effects are incorporated into the 1D field calculation through use of correction factor table lookup approach. Commercial low-frequency electromagnetic fields solver, ANSYS Maxwell 3D, is used to solve the magnetic field profile for static liner condition at various liner radius in order to derive correction factors for the 1D field calculation in the code. The liner dynamics results from the code is verified to be in good agreement with the results from commercial explicit dynamics solver, ANSYS Explicit Dynamics, and previous liner experiment. The developed code is used to optimize the capacitor bank and driver coil design for better energy transfer and coupling. FRC gain calculations are also performed using the liner compression data from the code for the conceptual design of the reactor sized system for fusion energy gains.
Guo, Yang; Riplinger, Christoph; Becker, Ute; Liakos, Dimitrios G; Minenkov, Yury; Cavallo, Luigi; Neese, Frank
2018-01-07
In this communication, an improved perturbative triples correction (T) algorithm for domain based local pair-natural orbital singles and doubles coupled cluster (DLPNO-CCSD) theory is reported. In our previous implementation, the semi-canonical approximation was used and linear scaling was achieved for both the DLPNO-CCSD and (T) parts of the calculation. In this work, we refer to this previous method as DLPNO-CCSD(T 0 ) to emphasize the semi-canonical approximation. It is well-established that the DLPNO-CCSD method can predict very accurate absolute and relative energies with respect to the parent canonical CCSD method. However, the (T 0 ) approximation may introduce significant errors in absolute energies as the triples correction grows up in magnitude. In the majority of cases, the relative energies from (T 0 ) are as accurate as the canonical (T) results of themselves. Unfortunately, in rare cases and in particular for small gap systems, the (T 0 ) approximation breaks down and relative energies show large deviations from the parent canonical CCSD(T) results. To address this problem, an iterative (T) algorithm based on the previous DLPNO-CCSD(T 0 ) algorithm has been implemented [abbreviated here as DLPNO-CCSD(T)]. Using triples natural orbitals to represent the virtual spaces for triples amplitudes, storage bottlenecks are avoided. Various carefully designed approximations ease the computational burden such that overall, the increase in the DLPNO-(T) calculation time over DLPNO-(T 0 ) only amounts to a factor of about two (depending on the basis set). Benchmark calculations for the GMTKN30 database show that compared to DLPNO-CCSD(T 0 ), the errors in absolute energies are greatly reduced and relative energies are moderately improved. The particularly problematic case of cumulene chains of increasing lengths is also successfully addressed by DLPNO-CCSD(T).
NASA Astrophysics Data System (ADS)
Guo, Yang; Riplinger, Christoph; Becker, Ute; Liakos, Dimitrios G.; Minenkov, Yury; Cavallo, Luigi; Neese, Frank
2018-01-01
In this communication, an improved perturbative triples correction (T) algorithm for domain based local pair-natural orbital singles and doubles coupled cluster (DLPNO-CCSD) theory is reported. In our previous implementation, the semi-canonical approximation was used and linear scaling was achieved for both the DLPNO-CCSD and (T) parts of the calculation. In this work, we refer to this previous method as DLPNO-CCSD(T0) to emphasize the semi-canonical approximation. It is well-established that the DLPNO-CCSD method can predict very accurate absolute and relative energies with respect to the parent canonical CCSD method. However, the (T0) approximation may introduce significant errors in absolute energies as the triples correction grows up in magnitude. In the majority of cases, the relative energies from (T0) are as accurate as the canonical (T) results of themselves. Unfortunately, in rare cases and in particular for small gap systems, the (T0) approximation breaks down and relative energies show large deviations from the parent canonical CCSD(T) results. To address this problem, an iterative (T) algorithm based on the previous DLPNO-CCSD(T0) algorithm has been implemented [abbreviated here as DLPNO-CCSD(T)]. Using triples natural orbitals to represent the virtual spaces for triples amplitudes, storage bottlenecks are avoided. Various carefully designed approximations ease the computational burden such that overall, the increase in the DLPNO-(T) calculation time over DLPNO-(T0) only amounts to a factor of about two (depending on the basis set). Benchmark calculations for the GMTKN30 database show that compared to DLPNO-CCSD(T0), the errors in absolute energies are greatly reduced and relative energies are moderately improved. The particularly problematic case of cumulene chains of increasing lengths is also successfully addressed by DLPNO-CCSD(T).
Huy, Ngo Quang; Binh, Do Quang
2014-12-01
This work suggests a method for determining the activities of cylindrical radioactive samples. The self-attenuation factor was applied for providing the self-absorption correction of gamma rays in the sample material. The experimental measurement of a (238)U reference sample and the calculation using the MCNP5 code allow obtaining the semi-empirical formulae of detecting efficiencies for the gamma energies ranged from 185 to 1764keV. These formulae were used to determine the activities of the (238)U, (226)Ra, (232)Th, (137)Cs and (40)K nuclides in the IAEA RGU-1, IAEA-434, IAEA RGTh-1, IAEA-152 and IAEA RGK-1 radioactive standards. The coincidence summing corrections for gamma rays in the (238)U and (232)Th series were applied. The activities obtained in this work were in good agreement with the reference values. Copyright © 2014 Elsevier Ltd. All rights reserved.
The potential for short rotation energy forestry on restored landfill caps.
Nixon, D J; Stephens, W; Tyrrel, S F; Brierley, E D
2001-05-01
This review examines the potential for producing biomass on restored landfills using willow and poplar species in short rotation energy forestry. In southern England, the potential production may be about 20 t ha(-1) of dry stem wood annually. However, actual yields are likely to be constrained by detrimental soil conditions, including shallow depth, compaction, low water holding capacity and poor nutritional status. These factors will affect plant growth by causing drought, waterlogging, poor soil aeration and nutritional deficiencies. Practical solutions to these problems include the correct placement and handling of the agricultural cap material, soil amelioration using tillage and the addition of organic matter (such as sewage sludge), irrigation (possibly using landfill leachate), the installation of drainage and the application of inorganic fertilizers. The correct choice of species and clone, along with good site management are also essential if economically viable yields are to be obtained. Further investigations are required to determine the actual yields that can be obtained on landfill sites using a range of management inputs.
10 CFR 1705.08 - Appeals from correction denials.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 4 2014-01-01 2014-01-01 false Appeals from correction denials. 1705.08 Section 1705.08 Energy DEFENSE NUCLEAR FACILITIES SAFETY BOARD PRIVACY ACT § 1705.08 Appeals from correction denials. (a... in writing. This appeal should be directed to The Chairman, Defense Nuclear Facilities Safety Board...
10 CFR 1705.08 - Appeals from correction denials.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 4 2012-01-01 2012-01-01 false Appeals from correction denials. 1705.08 Section 1705.08 Energy DEFENSE NUCLEAR FACILITIES SAFETY BOARD PRIVACY ACT § 1705.08 Appeals from correction denials. (a... in writing. This appeal should be directed to The Chairman, Defense Nuclear Facilities Safety Board...
10 CFR 1705.07 - Requests for correction of records.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 4 2013-01-01 2013-01-01 false Requests for correction of records. 1705.07 Section 1705.07 Energy DEFENSE NUCLEAR FACILITIES SAFETY BOARD PRIVACY ACT § 1705.07 Requests for correction of..., Defense Nuclear Facilities Safety Board, 625 Indiana Avenue, NW., Suite 700, Washington, DC 20004. The...
10 CFR 1705.08 - Appeals from correction denials.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 4 2013-01-01 2013-01-01 false Appeals from correction denials. 1705.08 Section 1705.08 Energy DEFENSE NUCLEAR FACILITIES SAFETY BOARD PRIVACY ACT § 1705.08 Appeals from correction denials. (a... in writing. This appeal should be directed to The Chairman, Defense Nuclear Facilities Safety Board...
10 CFR 1705.07 - Requests for correction of records.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 4 2012-01-01 2012-01-01 false Requests for correction of records. 1705.07 Section 1705.07 Energy DEFENSE NUCLEAR FACILITIES SAFETY BOARD PRIVACY ACT § 1705.07 Requests for correction of..., Defense Nuclear Facilities Safety Board, 625 Indiana Avenue, NW., Suite 700, Washington, DC 20004. The...
10 CFR 1705.07 - Requests for correction of records.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 4 2014-01-01 2014-01-01 false Requests for correction of records. 1705.07 Section 1705.07 Energy DEFENSE NUCLEAR FACILITIES SAFETY BOARD PRIVACY ACT § 1705.07 Requests for correction of..., Defense Nuclear Facilities Safety Board, 625 Indiana Avenue, NW., Suite 700, Washington, DC 20004. The...
10 CFR 1705.08 - Appeals from correction denials.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 4 2010-01-01 2010-01-01 false Appeals from correction denials. 1705.08 Section 1705.08 Energy DEFENSE NUCLEAR FACILITIES SAFETY BOARD PRIVACY ACT § 1705.08 Appeals from correction denials. (a... in writing. This appeal should be directed to The Chairman, Defense Nuclear Facilities Safety Board...
10 CFR 1705.07 - Requests for correction of records.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 4 2010-01-01 2010-01-01 false Requests for correction of records. 1705.07 Section 1705.07 Energy DEFENSE NUCLEAR FACILITIES SAFETY BOARD PRIVACY ACT § 1705.07 Requests for correction of..., Defense Nuclear Facilities Safety Board, 625 Indiana Avenue, NW., Suite 700, Washington, DC 20004. The...
10 CFR 1705.07 - Requests for correction of records.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 4 2011-01-01 2011-01-01 false Requests for correction of records. 1705.07 Section 1705.07 Energy DEFENSE NUCLEAR FACILITIES SAFETY BOARD PRIVACY ACT § 1705.07 Requests for correction of..., Defense Nuclear Facilities Safety Board, 625 Indiana Avenue, NW., Suite 700, Washington, DC 20004. The...
10 CFR 1705.08 - Appeals from correction denials.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 4 2011-01-01 2011-01-01 false Appeals from correction denials. 1705.08 Section 1705.08 Energy DEFENSE NUCLEAR FACILITIES SAFETY BOARD PRIVACY ACT § 1705.08 Appeals from correction denials. (a... in writing. This appeal should be directed to The Chairman, Defense Nuclear Facilities Safety Board...
NASA Astrophysics Data System (ADS)
Jiang, Fulin; Tang, Jie; Fu, Dinfa; Huang, Jianping; Zhang, Hui
2018-04-01
Multistage stress-strain curve correction based on an instantaneous friction factor was studied for axisymmetric uniaxial hot compression of 7150 aluminum alloy. Experimental friction factors were calculated based on continuous isothermal axisymmetric uniaxial compression tests at various deformation parameters. Then, an instantaneous friction factor equation was fitted by mathematic analysis. After verification by comparing single-pass flow stress correction with traditional average friction factor correction, the instantaneous friction factor equation was applied to correct multistage stress-strain curves. The corrected results were reasonable and validated by multistage relative softening calculations. This research provides a broad potential for implementing axisymmetric uniaxial compression in multistage physical simulations and friction optimization in finite element analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Voigts-Rhetz, P von; Czarnecki, D; Anton, M
Purpose: Alanine dosimeters are often used for in-vivo dosimetry purposes in radiation therapy. In a Monte Carlo study the influence of 20 different surrounding/phantom materials for alanine dosimeters was investigated. The investigations were performed in high-energy photon beams, covering the whole range from {sup 60}Co up to 25 MV-X. The aim of the study is the introduction of a perturbation correction k{sub env} for alanine dosimeters accounting for the environmental material. Methods: The influence of different surrounding materials on the response of alanine dosimeters was investigated with Monte Carlo simulations using the EGSnrc code. The photon source was adapted withmore » BEAMnrc to a {sup 60}Co unit and an Elekta (E{sub nom}=6, 10, 25 MV-X) linear accelerator. Different tissue-equivalent materials ranging from cortical bone to lung were investigated. In addition to available phantom materials, some material compositions were taken and scaled to different electron densities. The depth of the alanine detectors within the different phantom materials corresponds to 5 cm depth in water, i.e. the depth is scaled according to the electron density (n{sub e}/n{sub e,w}) of the corresponding phantom material. The dose was scored within the detector volume once for an alanine/paraffin mixture and once for a liquid water voxel. The relative response, the ratio of the absorbed dose to alanine to the absorbed dose to water, was calculated and compared to the corresponding ratio under reference conditions. Results: For each beam quality the relative response r and the correction factor for the environment kenv was calculated. k{sub env}=0.9991+0.0049 *((n{sub e}/n{sub e,w})−0.7659){sup 3} Conclusion: A perturbation correction factor k{sub env} accounting for the phantom environment has been introduced. The response of the alanine dosimeter can be considered independent of the surrounding material for relative electron densities (n{sub e}/n{sub e,w}) between 1 and 1.4. For denser materials such as bone or much less dense surroundings such as lung, a small correction would be appropriate.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-05
... Conservation Program: Energy Conservation Standards for Small Electric Motors; Correction AGENCY: Office of... standards for small electric motors, which was published on March 9, 2010. In that final rule, the U.S... titled ``Energy Conservation Standards for Small Electric Motors.'' 75 FR 10874. Since the publication of...
Evaluation and comparison of absorbed dose for electron beams by LiF and diamond dosimeters
NASA Astrophysics Data System (ADS)
Mosia, G. J.; Chamberlain, A. C.
2007-09-01
The absorbed dose response of LiF and diamond thermoluminescent dosimeters (TLDs), calibrated in 60Co γ-rays, has been determined using the MCNP4B Monte Carlo code system in mono-energetic megavoltage electron beams from 5 to 20 MeV. Evaluation of the dose responses was done against the dose responses of published works by other investigators. Dose responses of both dosimeters were compared to establish if any relation exists between them. The dosimeters were irradiated in a water phantom with the centre of their top surfaces (0.32×0.32 cm 2), placed at dmax perpendicular to the radiation beam on the central axis. For LiF TLD, dose responses ranged from 0.945±0.017 to 0.997±0.011. For the diamond TLD, the dose response ranged from 0.940±0.017 to 1.018±0.011. To correct for dose responses by both dosimeters, energy correction factors were generated from dose response results of both TLDs. For LiF TLD, these correction factors ranged from 1.003 up to 1.058 and for diamond TLD the factors ranged from 0.982 up to 1.064. The results show that diamond TLDs can be used in the place of the well-established LiF TLDs and that Monte Carlo code systems can be used in dose determinations for radiotherapy treatment planning.
CI+MBPT calculations of Ar I energies, g factors, and transition line strengths
NASA Astrophysics Data System (ADS)
Savukov, I. M.
2018-03-01
Excited states of noble gas atoms present certain challenges to atomic theory for several reasons: first, relativistic effects are important and LS coupling is not optimal; second, energy intervals can be quite small, leading to strong mixing of states; third, many-body perturbation theory for hole states does not converge well. Previously, some attempts were made to solve this problem, using for example the all-order coupled-cluster approach and particle-hole configuration-interaction many-body perturbation theory (CI-MBPT) with modified denominators. However, while these approaches were promising, the accuracy was still limited. In this paper, we calculate Ar I energies, g factors, and transition amplitudes using ab initio CI-MBPT with eight valence electrons to avoid the problem of slow convergence of MBPT due to strong interaction between 3p and 3s states. We also included in CI many dominant states obtained by double excitations of the ground state configuration. Thus perturbation corrections were needed only for 1s, 2s, 2p core electrons non-included in valence-valence CI, which are quite small. We found that energy, g factors, and electric dipole matrix elements are in reasonable agreement with experiments. It is noteworthy that the theory agreed well with accurately measured g factors. Experimental oscillator strengths have large uncertainty, so in some cases we made a comparison with average values.
The QCD form factor of heavy quarks at NNLO
NASA Astrophysics Data System (ADS)
Gluza, J.; Mitov, A.; Moch, S.; Riemann, T.
2009-07-01
We present an analytical calculation of the two-loop QCD corrections to the electromagnetic form factor of heavy quarks. The two-loop contributions to the form factor are reduced to linear combinations of master integrals, which are computed through higher orders in the parameter of dimensional regularization epsilon = (4-D)/2. Our result includes all terms of order epsilon at two loops and extends the previous literature. We apply the exponentiation of the heavy-quark form factor to derive new improved three-loop expansions in the high-energy limit. We also discuss the implications for predictions of massive n-parton amplitudes based on massless results in the limit, where the quark mass is small compared to all kinematical invariants.
NASA Technical Reports Server (NTRS)
Huang, K.-N.; Aoyagi, M.; Mark, H.; Chen, M. H.; Crasemann, B.
1976-01-01
Electron binding energies in neutral atoms have been calculated relativistically, with the requirement of complete relaxation. Hartree-Fock-Slater wave functions served as zeroth-order eigenfunctions to compute the expectation of the total Hamiltonian. A first-order correction to the local approximation was thus included. Quantum-electrodynamic corrections were made. For all elements with atomic numbers ranging from 2 to 106, the following quantities are listed: total energies, electron kinetic energies, electron-nucleus potential energies, electron-electron potential energies consisting of electrostatic and Breit interaction (magnetic and retardation) terms, and vacuum polarization energies. Binding energies including relaxation are listed for all electrons in all atoms over the indicated range of atomic numbers. A self-energy correction is included for the 1s, 2s, and 2p(1/2) levels. Results for selected atoms are compared with energies calculated by other methods and with experimental values.
2013-01-01
Background The extent to which psychosocial and diet behavior factors affect dietary self-report remains unclear. We examine the contribution of these factors to measurement error of self-report. Methods In 450 postmenopausal women in the Women’s Health Initiative Observational Study doubly labeled water and urinary nitrogen were used as biomarkers of objective measures of total energy expenditure and protein. Self-report was captured from food frequency questionnaire (FFQ), four day food record (4DFR) and 24 hr. dietary recall (24HR). Using regression calibration we estimated bias of self-reported dietary instruments including psychosocial factors from the Stunkard-Sorenson Body Silhouettes for body image perception, the Crowne-Marlowe Social Desirability Scale, and the Three Factor Eating Questionnaire (R-18) for cognitive restraint for eating, uncontrolled eating, and emotional eating. We included a diet behavior factor on number of meals eaten at home using the 4DFR. Results Three categories were defined for each of the six psychosocial and diet behavior variables (low, medium, high). Participants with high social desirability scores were more likely to under-report on the FFQ for energy (β = -0.174, SE = 0.054, p < 0.05) and protein intake (β = -0.142, SE = 0.062, p < 0.05) compared to participants with low social desirability scores. Participants consuming a high percentage of meals at home were less likely to under-report on the FFQ for energy (β = 0.181, SE = 0.053, p < 0.05) and protein (β = 0.127, SE = 0.06, p < 0.05) compared to participants consuming a low percentage of meals at home. In the calibration equations combining FFQ, 4DFR, 24HR with age, body mass index, race, and the psychosocial and diet behavior variables, the six psychosocial and diet variables explained 1.98%, 2.24%, and 2.15% of biomarker variation for energy, protein, and protein density respectively. The variations explained are significantly different between the calibration equations with or without the six psychosocial and diet variables for protein density (p = 0.02), but not for energy (p = 0.119) or protein intake (p = 0.077). Conclusions The addition of psychosocial and diet behavior factors to calibration equations significantly increases the amount of total variance explained for protein density and their inclusion would be expected to strengthen the precision of calibration equations correcting self-report for measurement error. Trial registration ClinicalTrials.gov identifier: NCT00000611 PMID:23679960
Mossavar-Rahmani, Yasmin; Tinker, Lesley F; Huang, Ying; Neuhouser, Marian L; McCann, Susan E; Seguin, Rebecca A; Vitolins, Mara Z; Curb, J David; Prentice, Ross L
2013-05-16
The extent to which psychosocial and diet behavior factors affect dietary self-report remains unclear. We examine the contribution of these factors to measurement error of self-report. In 450 postmenopausal women in the Women's Health Initiative Observational Study doubly labeled water and urinary nitrogen were used as biomarkers of objective measures of total energy expenditure and protein. Self-report was captured from food frequency questionnaire (FFQ), four day food record (4DFR) and 24 hr. dietary recall (24HR). Using regression calibration we estimated bias of self-reported dietary instruments including psychosocial factors from the Stunkard-Sorenson Body Silhouettes for body image perception, the Crowne-Marlowe Social Desirability Scale, and the Three Factor Eating Questionnaire (R-18) for cognitive restraint for eating, uncontrolled eating, and emotional eating. We included a diet behavior factor on number of meals eaten at home using the 4DFR. Three categories were defined for each of the six psychosocial and diet behavior variables (low, medium, high). Participants with high social desirability scores were more likely to under-report on the FFQ for energy (β = -0.174, SE = 0.054, p < 0.05) and protein intake (β = -0.142, SE = 0.062, p < 0.05) compared to participants with low social desirability scores. Participants consuming a high percentage of meals at home were less likely to under-report on the FFQ for energy (β = 0.181, SE = 0.053, p < 0.05) and protein (β = 0.127, SE = 0.06, p < 0.05) compared to participants consuming a low percentage of meals at home. In the calibration equations combining FFQ, 4DFR, 24HR with age, body mass index, race, and the psychosocial and diet behavior variables, the six psychosocial and diet variables explained 1.98%, 2.24%, and 2.15% of biomarker variation for energy, protein, and protein density respectively. The variations explained are significantly different between the calibration equations with or without the six psychosocial and diet variables for protein density (p = 0.02), but not for energy (p = 0.119) or protein intake (p = 0.077). The addition of psychosocial and diet behavior factors to calibration equations significantly increases the amount of total variance explained for protein density and their inclusion would be expected to strengthen the precision of calibration equations correcting self-report for measurement error. ClinicalTrials.gov identifier: NCT00000611.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Calderon, E; Siergiej, D
2014-06-01
Purpose: Output factor determination for small fields (less than 20 mm) presents significant challenges due to ion chamber volume averaging and diode over-response. Measured output factor values between detectors are known to have large deviations as field sizes are decreased. No set standard to resolve this difference in measurement exists. We observed differences between measured output factors of up to 14% using two different detectors. Published Monte Carlo derived correction factors were used to address this challenge and decrease the output factor deviation between detectors. Methods: Output factors for Elekta's linac-based stereotactic cone system were measured using the EDGE detectormore » (Sun Nuclear) and the A16 ion chamber (Standard Imaging). Measurements conditions were 100 cm SSD (source to surface distance) and 1.5 cm depth. Output factors were first normalized to a 10.4 cm × 10.4 cm field size using a daisy-chaining technique to minimize the dependence of field size on detector response. An equation expressing the relation between published Monte Carlo correction factors as a function of field size for each detector was derived. The measured output factors were then multiplied by the calculated correction factors. EBT3 gafchromic film dosimetry was used to independently validate the corrected output factors. Results: Without correction, the deviation in output factors between the EDGE and A16 detectors ranged from 1.3 to 14.8%, depending on cone size. After applying the calculated correction factors, this deviation fell to 0 to 3.4%. Output factors determined with film agree within 3.5% of the corrected output factors. Conclusion: We present a practical approach to applying published Monte Carlo derived correction factors to measured small field output factors for the EDGE and A16 detectors. Using this method, we were able to decrease the percent deviation between both detectors from 14.8% to 3.4% agreement.« less
de Souza, Vanessa K; Wales, David J
2006-02-10
On short time scales an underlying Arrhenius temperature dependence of the diffusion constant can be extracted from the fragile, super-Arrhenius diffusion of a binary Lennard-Jones mixture. This Arrhenius diffusion is related to the true super-Arrhenius behavior by a factor that depends on the average angle between steps in successive time windows. The correction factor accounts for the fact that on average, successive displacements are negatively correlated, and this effect can therefore be linked directly with the higher apparent activation energy for diffusion at low temperature.
Results on the neutron energy distribution measurements at the RECH-1 Chilean nuclear reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aguilera, P., E-mail: paguilera87@gmail.com; Romero-Barrientos, J.; Universidad de Chile, Dpto. de Física, Facultad de Ciencias, Las Palmeras 3425, Nuñoa, Santiago
2016-07-07
Neutron activations experiments has been perform at the RECH-1 Chilean Nuclear Reactor to measure its neutron flux energy distribution. Samples of pure elements was activated to obtain the saturation activities for each reaction. Using - ray spectroscopy we identify and measure the activity of the reaction product nuclei, obtaining the saturation activities of 20 reactions. GEANT4 and MCNP was used to compute the self shielding factor to correct the cross section for each element. With the Expectation-Maximization algorithm (EM) we were able to unfold the neutron flux energy distribution at dry tube position, near the RECH-1 core. In this work,more » we present the unfolding results using the EM algorithm.« less
WE-E-18A-06: To Remove Or Not to Remove: Comfort Pads From Beneath Neonates for Radiography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, X; Baad, M; Reiser, I
2014-06-15
Purpose: To obtain an analytical empirical formula for the photon dose source term in forward direction from bremsstrahlung generated from laser-plasma accelerated electron beams in aluminum solid targets, with electron-plasma temperatures in the 10–100 keV energy range, and to calculate transmission factors for iron, aluminum, methacrylate, lead and concrete and air, materials most commonly found in vacuum chamber labs. Methods: Bremsstrahlung fluence is calculated from the convolution of thin-target bremsstrahlung spectrum for monoenergetic electrons and the relativistic Maxwell-Juettner energy distribution for the electron-plasma. Unattenuatted dose in tissue is calculated by integrating the photon spectrum with the mass-energy absorption coefficient. Formore » the attenuated dose, energy dependent absorption coefficient, build-up factors and finite shielding correction factors were also taken into account. For the source term we use a modified formula from Hayashi et al., and we fitted the proportionality constant from experiments with the aid of the previously calculated transmission factors. Results: The forward dose has a quadratic dependence on electron-plasma temperature: 1 joule of effective laser energy transferred to the electrons at 1 m in vacuum yields 0,72 Sv per MeV squared of electron-plasma temperature. Air strongly filters the softer part of the photon spectrum and reduce the dose to one tenth in the first centimeter. Exponential higher energy tail of maxwellian spectrum contributes mainly to the transmitted dose. Conclusion: A simple formula for forward photon dose from keV range temperature plasma is obtained, similar to those found in kilovoltage x-rays but with higher dose per dissipated electron energy, due to thin target and absence of filtration.« less
Effects of heavy sea quarks at low energies.
Bruno, Mattia; Finkenrath, Jacob; Knechtli, Francesco; Leder, Björn; Sommer, Rainer
2015-03-13
We present a factorization formula for the dependence of light hadron masses and low energy hadronic scales on the mass M of a heavy quark: apart from an overall mass-independent factor Q, ratios such as r_{0}(M)/r_{0}(0) are computable in perturbation theory at large M. The perturbation theory part is stable concerning different loop orders. Our nonperturbative Monte Carlo results obtained in a model calculation, where a doublet of heavy quarks is decoupled, match quantitatively to the perturbative prediction. Upon taking ratios of different hadronic scales at the same mass, the perturbative function drops out and the ratios are given by the decoupled theory up to M^{-2} corrections. We verify-in the continuum limit-that the sea quark effects of quarks with masses around the charm mass are very small in such ratios.
NASA Astrophysics Data System (ADS)
Kilcrease, D. P.; Brookes, S.
2013-12-01
The modeling of NLTE plasmas requires the solution of population rate equations to determine the populations of the various atomic levels relevant to a particular problem. The equations require many cross sections for excitation, de-excitation, ionization and recombination. A simple and computational fast way to calculate electron collisional excitation cross-sections for ions is by using the plane-wave Born approximation. This is essentially a high-energy approximation and the cross section suffers from the unphysical problem of going to zero near threshold. Various remedies for this problem have been employed with varying degrees of success. We present a correction procedure for the Born cross-sections that employs the Elwert-Sommerfeld factor to correct for the use of plane waves instead of Coulomb waves in an attempt to produce a cross-section similar to that from using the more time consuming Coulomb Born approximation. We compare this new approximation with other, often employed correction procedures. We also look at some further modifications to our Born Elwert procedure and its combination with Y.K. Kim's correction of the Coulomb Born approximation for singly charged ions that more accurately approximate convergent close coupling calculations.
Dispersion- and Exchange-Corrected Density Functional Theory for Sodium Ion Hydration.
Soniat, Marielle; Rogers, David M; Rempe, Susan B
2015-07-14
A challenge in density functional theory is developing functionals that simultaneously describe intermolecular electron correlation and electron delocalization. Recent exchange-correlation functionals address those two issues by adding corrections important at long ranges: an atom-centered pairwise dispersion term to account for correlation and a modified long-range component of the electron exchange term to correct for delocalization. Here we investigate how those corrections influence the accuracy of binding free energy predictions for sodium-water clusters. We find that the dual-corrected ωB97X-D functional gives cluster binding energies closest to high-level ab initio methods (CCSD(T)). Binding energy decomposition shows that the ωB97X-D functional predicts the smallest ion-water (pairwise) interaction energy and larger multibody contributions for a four-water cluster than most other functionals - a trend consistent with CCSD(T) results. Also, ωB97X-D produces the smallest amounts of charge transfer and the least polarizable waters of the density functionals studied, which mimics the lower polarizability of CCSD. When compared with experimental binding free energies, however, the exchange-corrected CAM-B3LYP functional performs best (error <1 kcal/mol), possibly because of its parametrization to experimental formation enthalpies. For clusters containing more than four waters, "split-shell" coordination must be considered to obtain accurate free energies in comparison with experiment.
Sergiievskyi, Volodymyr P; Jeanmairet, Guillaume; Levesque, Maximilien; Borgis, Daniel
2014-06-05
Molecular density functional theory (MDFT) offers an efficient implicit-solvent method to estimate molecule solvation free-energies, whereas conserving a fully molecular representation of the solvent. Even within a second-order approximation for the free-energy functional, the so-called homogeneous reference fluid approximation, we show that the hydration free-energies computed for a data set of 500 organic compounds are of similar quality as those obtained from molecular dynamics free-energy perturbation simulations, with a computer cost reduced by 2-3 orders of magnitude. This requires to introduce the proper partial volume correction to transform the results from the grand canonical to the isobaric-isotherm ensemble that is pertinent to experiments. We show that this correction can be extended to 3D-RISM calculations, giving a sound theoretical justification to empirical partial molar volume corrections that have been proposed recently.
10 CFR 26.41 - Audits and corrective action.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 1 2014-01-01 2014-01-01 false Audits and corrective action. 26.41 Section 26.41 Energy NUCLEAR REGULATORY COMMISSION FITNESS FOR DUTY PROGRAMS Program Elements § 26.41 Audits and corrective action. (a) General. Each licensee and other entity who is subject to this subpart is responsible for the...
10 CFR 26.41 - Audits and corrective action.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 1 2013-01-01 2013-01-01 false Audits and corrective action. 26.41 Section 26.41 Energy NUCLEAR REGULATORY COMMISSION FITNESS FOR DUTY PROGRAMS Program Elements § 26.41 Audits and corrective action. (a) General. Each licensee and other entity who is subject to this subpart is responsible for the...
10 CFR 26.41 - Audits and corrective action.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 1 2012-01-01 2012-01-01 false Audits and corrective action. 26.41 Section 26.41 Energy NUCLEAR REGULATORY COMMISSION FITNESS FOR DUTY PROGRAMS Program Elements § 26.41 Audits and corrective action. (a) General. Each licensee and other entity who is subject to this subpart is responsible for the...
10 CFR 26.41 - Audits and corrective action.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 1 2010-01-01 2010-01-01 false Audits and corrective action. 26.41 Section 26.41 Energy NUCLEAR REGULATORY COMMISSION FITNESS FOR DUTY PROGRAMS Program Elements § 26.41 Audits and corrective action. (a) General. Each licensee and other entity who is subject to this subpart is responsible for the...
10 CFR 26.41 - Audits and corrective action.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 1 2011-01-01 2011-01-01 false Audits and corrective action. 26.41 Section 26.41 Energy NUCLEAR REGULATORY COMMISSION FITNESS FOR DUTY PROGRAMS Program Elements § 26.41 Audits and corrective action. (a) General. Each licensee and other entity who is subject to this subpart is responsible for the...
10 CFR 1304.109 - Requests for correction of records.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 4 2014-01-01 2014-01-01 false Requests for correction of records. 1304.109 Section 1304.109 Energy NUCLEAR WASTE TECHNICAL REVIEW BOARD PRIVACY ACT OF 1974 § 1304.109 Requests for correction... Act Officer; U.S. Nuclear Waste Technical Review Board; 2300 Clarendon Blvd., Suite 1300; Arlington...
10 CFR 1304.109 - Requests for correction of records.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 4 2011-01-01 2011-01-01 false Requests for correction of records. 1304.109 Section 1304.109 Energy NUCLEAR WASTE TECHNICAL REVIEW BOARD PRIVACY ACT OF 1974 § 1304.109 Requests for correction... Act Officer; U.S. Nuclear Waste Technical Review Board; 2300 Clarendon Blvd., Suite 1300; Arlington...
10 CFR 1304.109 - Requests for correction of records.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 4 2010-01-01 2010-01-01 false Requests for correction of records. 1304.109 Section 1304.109 Energy NUCLEAR WASTE TECHNICAL REVIEW BOARD PRIVACY ACT OF 1974 § 1304.109 Requests for correction... Act Officer; U.S. Nuclear Waste Technical Review Board; 2300 Clarendon Blvd., Suite 1300; Arlington...
10 CFR 1304.109 - Requests for correction of records.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 4 2012-01-01 2012-01-01 false Requests for correction of records. 1304.109 Section 1304.109 Energy NUCLEAR WASTE TECHNICAL REVIEW BOARD PRIVACY ACT OF 1974 § 1304.109 Requests for correction... Act Officer; U.S. Nuclear Waste Technical Review Board; 2300 Clarendon Blvd., Suite 1300; Arlington...
10 CFR 1304.109 - Requests for correction of records.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 4 2013-01-01 2013-01-01 false Requests for correction of records. 1304.109 Section 1304.109 Energy NUCLEAR WASTE TECHNICAL REVIEW BOARD PRIVACY ACT OF 1974 § 1304.109 Requests for correction... Act Officer; U.S. Nuclear Waste Technical Review Board; 2300 Clarendon Blvd., Suite 1300; Arlington...
Celler, Anna; Piwowarska-Bilska, Hanna; Shcherbinin, Sergey; Uribe, Carlos; Mikolajczak, Renata; Birkenfeld, Bozena
2014-01-01
Dead-time (DT) effects rarely cause problems in diagnostic single-photon emission computed tomography (SPECT) studies; however, in post-radionuclide-therapy imaging, DT can be substantial. Therefore, corrections may be necessary if quantitative images are used in image-based dosimetry or for evaluation of therapy outcomes. This task is particularly challenging if low-energy collimators are used. Our goal was to design a simple method to determine the dead-time correction factor (DTCF) without the need for phantom experiments and complex calculations. Planar and SPECT/CT scans of a water phantom containing a 70 ml bottle filled with lutetium-177 (Lu) were acquired over 60 days. Two small Lu markers were used in all scans. The DTCF based on the ratio of observed to true count rates measured over the entire spectrum and using photopeak primary photons only was estimated for phantom (DT present) and marker (no DT) scans. In addition, variations in counts in SPECT projections (potentially caused by varying bremsstrahlung and scatter) were investigated. For count rates that were about two-fold higher than typically seen in post-therapy Lu scans, the maximum DTCF reached a level of about 17%. The DTCF values determined directly from the phantom experiments using the total energy spectrum and photopeak counts only were equal to 13 and 16%, respectively. They were closely matched by those from the proposed marker-based method, which uses only two energy windows and measures photopeak primary photons (15-17%). A simple, marker-based method allowing for determination of the DTCF in high-activity Lu imaging studies has been proposed and validated using phantom experiments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williamson, David L.; Olson, Jerry G.; Hannay, Cécile
An error in the energy formulation in the Community Atmosphere Model (CAM) is identified and corrected. Ten year AMIP simulations are compared using the correct and incorrect energy formulations. Statistics of selected primary variables all indicate physically insignificant differences between the simulations, comparable to differences with simulations initialized with rounding sized perturbations. The two simulations are so similar mainly because of an inconsistency in the application of the incorrect energy formulation in the original CAM. CAM used the erroneous energy form to determine the states passed between the parameterizations, but used a form related to the correct formulation for themore » state passed from the parameterizations to the dynamical core. If the incorrect form is also used to determine the state passed to the dynamical core the simulations are significantly different. In addition, CAM uses the incorrect form for the global energy fixer, but that seems to be less important. The difference of the magnitude of the fixers using the correct and incorrect energy definitions is very small.« less
Quantum Critical Point revisited by the Dynamical Mean Field Theory
NASA Astrophysics Data System (ADS)
Xu, Wenhu; Kotliar, Gabriel; Tsvelik, Alexei
Dynamical mean field theory is used to study the quantum critical point (QCP) in the doped Hubbard model on a square lattice. The QCP is characterized by a universal scaling form of the self energy and a spin density wave instability at an incommensurate wave vector. The scaling form unifies the low energy kink and the high energy waterfall feature in the spectral function, while the spin dynamics includes both the critical incommensurate and high energy antiferromagnetic paramagnons. We use the frequency dependent four-point correlation function of spin operators to calculate the momentum dependent correction to the electron self energy. Our results reveal a substantial difference with the calculations based on the Spin-Fermion model which indicates that the frequency dependence of the the quasiparitcle-paramagnon vertices is an important factor. The authors are supported by Center for Computational Design of Functional Strongly Correlated Materials and Theoretical Spectroscopy under DOE Grant DE-FOA-0001276.
Hempler, Daniela; Schmidt, Martin U; van de Streek, Jacco
2017-08-01
More than 600 molecular crystal structures with correct, incorrect and uncertain space-group symmetry were energy-minimized with dispersion-corrected density functional theory (DFT-D, PBE-D3). For the purpose of determining the correct space-group symmetry the required tolerance on the atomic coordinates of all non-H atoms is established to be 0.2 Å. For 98.5% of 200 molecular crystal structures published with missed symmetry, the correct space group is identified; there are no false positives. Very small, very symmetrical molecules can end up in artificially high space groups upon energy minimization, although this is easily detected through visual inspection. If the space group of a crystal structure determined from powder diffraction data is ambiguous, energy minimization with DFT-D provides a fast and reliable method to select the correct space group.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gu, Z.; Ching, W.Y.
Based on the Sterne-Inkson model for the self-energy correction to the single-particle energy in the local-density approximation (LDA), we have implemented an approximate energy-dependent and [bold k]-dependent [ital GW] correction scheme to the orthogonalized linear combination of atomic orbital-based local-density calculation for insulators. In contrast to the approach of Jenkins, Srivastava, and Inkson, we evaluate the on-site exchange integrals using the LDA Bloch functions throughout the Brillouin zone. By using a [bold k]-weighted band gap [ital E][sub [ital g
Alternative formulation of explicitly correlated third-order Møller-Plesset perturbation theory
NASA Astrophysics Data System (ADS)
Ohnishi, Yu-ya; Ten-no, Seiichiro
2013-09-01
The second-order wave operator in the explicitly correlated wave function theory has been newly defined as an extension of the conventional s- and p-wave (SP) ansatz (also referred to as the FIXED amplitude ansatz) based on the linked-diagram theorem. The newly defined second-order wave operator has been applied to the calculation of the F12 correction to the third-order many-body perturbation (MP3) energy. In addition to this new wave operator, the F12 correction with the conventional first-order wave operator has been derived and calculated. Among three components of the MP3 correlation energy, the particle ladder contribution, which has shown the slowest convergence with respect to the basis set size, is fairly ameliorated by employing these F12 corrections. Both the newly defined and conventional formalisms of the F12 corrections exhibit a similar recovery of over 90% of the complete basis set limit of the particle ladder contribution of the MP3 correlation energy with a triple-zeta quality basis set for the neon atom, while the amount is about 75% without the F12 correction. The corrections to the ring term are small but the corrected energy has shown similar recovery as the particle ladder term. The hole ladder term has shown a rapid convergence even without the F12 corrections. Owing to these balanced recoveries, the deviation of the total MP3 correlation energy from the complete basis set limit has been calculated to be about 1 kcal/mol with the triple-zeta quality basis set, which is more than five times smaller than the error without the F12 correction.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-24
... Program: Test Procedures for Residential Clothes Washers; Correction AGENCY: Office of Energy Efficiency... final rule establishing new and amended test procedures for residential clothes washers, published in... Energy (DOE) erroneously referenced the new test procedure, rather than the currently effective test...
78 FR 54566 - Energy Labeling Rule
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-05
... FEDERAL TRADE COMMISSION 16 CFR Part 305 RIN 3084-AB03 Energy Labeling Rule AGENCY: Federal Trade Commission. ACTION: Final rule; correction. SUMMARY: The Federal Trade Commission published a final rule on July 23, 2013 revising its Energy Labeling Rule. This document makes a technical correction to the...
Correcting coils in end magnets of accelerators
NASA Astrophysics Data System (ADS)
Kassab, L. R.; Gouffon, P.
1998-05-01
We present an empirical investigation of the correcting coils behavior used to homogenize the field distribution of the race-track microtron accelerator end magnets. These end magnets belong to the second stage of the 30.0 MeV cw electron accelerator under construction at IFUSP, the race-track microtron booster, in which the beam energy is raised from 1.97 to 5.1 MeV. The correcting coils are attached to the pole faces and are based on the inhomogeneities of the magnetic field measured. The performance of these coils, when operating the end magnets with currents that differ by +/-10% from the one used in the mappings that originated the coils copper leads, is presented. For one of the magnets, adjusting conveniently the current of the correcting coils makes it possible to homogenize field distributions of different intensities, once their shapes are practically identical to those that originated the coils. For the other one, the shapes are changed and the coils are less efficient. This is related to intrinsic factors that determine the inhomogeneities. However, we obtained uniformity of 0.001% in both cases.
The new view of hydrophobic free energy.
Baldwin, Robert L
2013-04-17
In the new view, hydrophobic free energy is measured by the work of solute transfer of hydrocarbon gases from vapor to aqueous solution. Reasons are given for believing that older values, measured by solute transfer from a reference solvent to water, are not quantitatively correct. The hydrophobic free energy from gas-liquid transfer is the sum of two opposing quantities, the cavity work (unfavorable) and the solute-solvent interaction energy (favorable). Values of the interaction energy have been found by simulation for linear alkanes and are used here to find the cavity work, which scales linearly with molar volume, not accessible surface area. The hydrophobic free energy is the dominant factor driving folding as judged by the heat capacity change for transfer, which agrees with values for solvating hydrocarbon gases. There is an apparent conflict with earlier values of hydrophobic free energy from studies of large-to-small mutations and an explanation is given. Copyright © 2013 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
Falco, Maria Daniela; D'Andrea, Marco; Strigari, Lidia; D'Alessio, Daniela; Quagliani, Francesco; Santoni, Riccardo; Bosco, Alessia Lo
2012-08-01
During radiological interventional procedures (RIP) the skin of a patient under examination may undergo a prolonged x-ray exposure, receiving a dose as high as 5 Gy in a single session. This paper describes the use of the OneDose(TM) cable-free system based on p-type MOSFET detectors to determine the entrance skin dose (ESD) at selected points during RIP. At first, some dosimetric characteristics of the detector, such as reproducibility, linearity, and fading, have been investigated using a C-arc as a source of radiation. The reference setting (RS) was: 80 kV energy, 40 cm × 40 cm field of view (FOV), current-time product of 50 mAs and source to skin distance (SSD) of 50 cm. A calibrated PMX III solid state detector was used as the reference detector and Gafchromic(®) films have been used as an independent dosimetric system to test the entire procedure. A calibration factor for the RS and correction factors as functions of tube voltage and FOV size have been determined. Reproducibility ranged from 4% at low doses (around 10 cGy as measured by the reference detector) to about 1% for high doses (around 2 Gy). The system response was found to be linear with respect to both dose measured with the PMX III and tube voltage. The fading test has shown that the maximum deviation from the optimal reading conditions (3 min after a single irradiation) was 9.1% corresponding to four irradiations in one hour read 3 min after the last exposure. The calibration factor in the RS has shown that the system response at the kV energy range is about four times larger than in the MV energy range. A fifth order and fourth order polynomial functions were found to provide correction factors for tube voltage and FOV size, respectively, in measurement settings different than the RS. ESDs measured with the system after applying the proper correction factors agreed within one standard deviation (SD) with the corresponding ESDs measured with the reference detector. The ESDs measured with Gafchromic(®) films were in agreement within one SD compared to the ESDs measured using the OneDose(TM) system, as well. The global uncertainty associated to the OneDose(TM) system established in our experiments, ranged from 7% to 10%, depending on the duration of the RIP due to fading. These values are much lower than the uncertainty commonly accepted for general diagnostic practices (20%) and of about the same size of the uncertainty recommended for practices with high risk of deterministic side effects (7%). The OneDose(TM) system has shown a high sensitivity in the kV energy range and has been found capable of measuring the entrance skin dose in RIP.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Prashant; Harbola, Manoj K.; Johnson, Duane D.
Here, this work constitutes a comprehensive and improved account of electronic-structure and mechanical properties of silicon-nitride (more » $${\\rm Si}_{3}$$ $${\\rm N}_{4}$$ ) polymorphs via van Leeuwen and Baerends (LB) exchange-corrected local density approximation (LDA) that enforces the exact exchange potential asymptotic behavior. The calculated lattice constant, bulk modulus, and electronic band structure of $${\\rm Si}_{3}$$ $${\\rm N}_{4}$$ polymorphs are in good agreement with experimental results. We also show that, for a single electron in a hydrogen atom, spherical well, or harmonic oscillator, the LB-corrected LDA reduces the (self-interaction) error to exact total energy to ~10%, a factor of three to four lower than standard LDA, due to a dramatically improved representation of the exchange-potential.« less
Hawking radiation of charged Dirac particles from a Kerr-Newman black hole
NASA Astrophysics Data System (ADS)
Zhou, Shiwei; Liu, Wenbiao
2008-05-01
Charged Dirac particles’ Hawking radiation from a Kerr-Newman black hole is calculated using Damour-Ruffini’s method. When energy conservation and the backreaction of particles to the space-time are considered, the emission spectrum is not purely thermal anymore. The leading term is exactly the Boltzman factor, and the deviation from the purely thermal spectrum can bring some information out, which can be treated as an explanation to the information loss paradox. The result can also be treated as a quantum-corrected radiation temperature, which is dependent on the black hole background and the radiation particle’s energy, angular momentum, and charge.
Damage Identification of Piles Based on Vibration Characteristics
Zhang, Xiaozhong; Yao, Wenjuan; Chen, Bo; Liu, Dewen
2014-01-01
A method of damage identification of piles was established by using vibration characteristics. The approach focused on the application of the element strain energy and sensitive modals. A damage identification equation of piles was deduced using the structural vibration equation. The equation contained three major factors: change rate of element modal strain energy, damage factor of pile, and sensitivity factor of modal damage. The sensitive modals of damage identification were selected by using sensitivity factor of modal damage firstly. Subsequently, the indexes for early-warning of pile damage were established by applying the change rate of strain energy. Then the technology of computational analysis of wavelet transform was used to damage identification for pile. The identification of small damage of pile was completely achieved, including the location of damage and the extent of damage. In the process of identifying the extent of damage of pile, the equation of damage identification was used in many times. Finally, a stadium project was used as an example to demonstrate the effectiveness of the proposed method of damage identification for piles. The correctness and practicability of the proposed method were verified by comparing the results of damage identification with that of low strain test. The research provided a new way for damage identification of piles. PMID:25506062
Improved multidimensional semiclassical tunneling theory.
Wagner, Albert F
2013-12-12
We show that the analytic multidimensional semiclassical tunneling formula of Miller et al. [Miller, W. H.; Hernandez, R.; Handy, N. C.; Jayatilaka, D.; Willets, A. Chem. Phys. Lett. 1990, 172, 62] is qualitatively incorrect for deep tunneling at energies well below the top of the barrier. The origin of this deficiency is that the formula uses an effective barrier weakly related to the true energetics but correctly adjusted to reproduce the harmonic description and anharmonic corrections of the reaction path at the saddle point as determined by second order vibrational perturbation theory. We present an analytic improved semiclassical formula that correctly includes energetic information and allows a qualitatively correct representation of deep tunneling. This is done by constructing a three segment composite Eckart potential that is continuous everywhere in both value and derivative. This composite potential has an analytic barrier penetration integral from which the semiclassical action can be derived and then used to define the semiclassical tunneling probability. The middle segment of the composite potential by itself is superior to the original formula of Miller et al. because it incorporates the asymmetry of the reaction barrier produced by the known reaction exoergicity. Comparison of the semiclassical and exact quantum tunneling probability for the pure Eckart potential suggests a simple threshold multiplicative factor to the improved formula to account for quantum effects very near threshold not represented by semiclassical theory. The deep tunneling limitations of the original formula are echoed in semiclassical high-energy descriptions of bound vibrational states perpendicular to the reaction path at the saddle point. However, typically ab initio energetic information is not available to correct it. The Supporting Information contains a Fortran code, test input, and test output that implements the improved semiclassical tunneling formula.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saperstein, E. E., E-mail: saper@mbslab.kiae.ru; Tolokonnikov, S. V.
Recent results obtained on the basis of the self-consistent theory of finite Fermi systems by employing the energy density functional proposed by Fayans and his coauthors are surveyed. These results are compared with the predictions of Skyrme–Hartree–Fock theory involving several popular versions of the Skyrme energy density functional. Spherical nuclei are predominantly considered. The charge radii of even and odd nuclei and features of low-lying 2{sup +} excitations in semimagic nuclei are discussed briefly. The single-particle energies ofmagic nuclei are examined inmore detail with allowance for corrections to mean-field theory that are induced by particle coupling to low-lying collective surfacemore » excitations (phonons). The importance of taking into account, in this problem, nonpole (tadpole) diagrams, which are usually disregarded, is emphasized. The spectroscopic factors of magic and semimagic nuclei are also considered. In this problem, only the surface term stemming from the energy dependence induced in the mass operator by the exchange of surface phonons is usually taken into account. The volume contribution associated with the energy dependence initially present in the mass operator within the self-consistent theory of finite Fermi systems because of the exchange of high-lying particle–hole excitations is also included in the spectroscopic factor. The results of the first studies that employed the Fayans energy density functional for deformed nuclei are also presented.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-02
... DEPARTMENT OF ENERGY 10 CFR Parts 429 and 430 [Docket No. EERE-2010-BT-CE-0014] RIN 1904-AC23 Energy Conservation Program: Certification, Compliance, and Enforcement for Consumer Products and Commercial and Industrial Equipment; Correction Correction In rule document 2011-10401 appearing on pages...
Corrective responses in human food intake identified from an analysis of 7-d food-intake records2
Bray, George A; Flatt, Jean-Pierre; Volaufova, Julia; DeLany, James P; Champagne, Catherine M
2009-01-01
Background We tested the hypothesis that ad libitum food intake shows corrective responses over periods of 1–5 d. Design This was a prospective study of food intake in women. Methods Two methods, a weighed food intake and a measured food intake, were used to determine daily nutrient intake during 2 wk in 20 women. Energy expenditure with the use of doubly labeled water was done contemporaneously with the weighed food-intake record. The daily deviations in macronutrient and energy intake from the average 7-d values were compared with the deviations observed 1, 2, 3, 4, and 5 d later to estimate the corrective responses. Results Both methods of recording food intake gave similar patterns of macronutrient and total energy intakes and for deviations from average intakes. The intraindividual CVs for energy intake ranged from ±12% to ±47% with an average of ±25%. Reported energy intake was 85.5–95.0% of total energy expenditure determined by doubly labeled water. Significant corrective responses were observed in food intakes with a 3- to 4-d lag that disappeared when data were randomized within each subject. Conclusions Human beings show corrective responses to deviations from average energy and macronutrient intakes with a lag time of 3–4 d, but not 1–2 d. This suggests that short-term studies may fail to recognize important signals of food-intake regulation that operate over several days. These corrective responses probably play a crucial role in bringing about weight stability. PMID:19064509
Nessler, Ian J; Litman, Jacob M; Schnieders, Michael J
2016-11-09
First principles prediction of the structure, thermodynamics and solubility of organic molecular crystals, which play a central role in chemical, material, pharmaceutical and engineering sciences, challenges both potential energy functions and sampling methodologies. Here we calculate absolute crystal deposition thermodynamics using a novel dual force field approach whose goal is to maintain the accuracy of advanced multipole force fields (e.g. the polarizable AMOEBA model) while performing more than 95% of the sampling in an inexpensive fixed charge (FC) force field (e.g. OPLS-AA). Absolute crystal sublimation/deposition phase transition free energies were determined using an alchemical path that grows the crystalline state from a vapor reference state based on sampling with the OPLS-AA force field, followed by dual force field thermodynamic corrections to change between FC and AMOEBA resolutions at both end states (we denote the three step path as AMOEBA/FC). Importantly, whereas the phase transition requires on the order of 200 ns of sampling per compound, only 5 ns of sampling was needed for the dual force field thermodynamic corrections to reach a mean statistical uncertainty of 0.05 kcal mol -1 . For five organic compounds, the mean unsigned error between direct use of AMOEBA and the AMOEBA/FC dual force field path was only 0.2 kcal mol -1 and not statistically significant. Compared to experimental deposition thermodynamics, the mean unsigned error for AMOEBA/FC (1.4 kcal mol -1 ) was more than a factor of two smaller than uncorrected OPLS-AA (3.2 kcal mol -1 ). Overall, the dual force field thermodynamic corrections reduced condensed phase sampling in the expensive force field by a factor of 40, and may prove useful for protein stability or binding thermodynamics in the future.
Air slab-correction for Γ-ray attenuation measurements
NASA Astrophysics Data System (ADS)
Mann, Kulwinder Singh
2017-12-01
Gamma (γ)-ray shielding behaviour (GSB) of a material can be ascertained from its linear attenuation coefficient (μ, cm-1). Narrow-beam transmission geometry is required for μ-measurement. In such measurements, a thin slab of the material has to insert between point-isotropic γ-ray source and detector assembly. The accuracy in measurements requires that sample's optical thickness (OT) remain below 0.5 mean free path (mfp). Sometimes it is very difficult to produce thin slab of sample (absorber), on the other hand for thick absorber, i.e. OT >0.5 mfp, the influence of the air displaced by it cannot be ignored during μ-measurements. Thus, for a thick sample, correction factor has been suggested which compensates the air present in the transmission geometry. The correction factor has been named as an air slab-correction (ASC). Six samples of low-Z engineering materials (cement-black, clay, red-mud, lime-stone, cement-white and plaster-of-paris) have been selected for investigating the effect of ASC on μ-measurements at three γ-ray energies (661.66, 1173.24, 1332.50 keV). The measurements have been made using point-isotropic γ-ray sources (Cs-137 and Co-60), NaI(Tl) detector and multi-channel-analyser coupled with a personal computer. Theoretical values of μ have been computed using a GRIC2-toolkit (standardized computer programme). Elemental compositions of the samples were measured with Wavelength Dispersive X-ray Fluorescence (WDXRF) analyser. Inter-comparison of measured and computed μ-values, suggested that the application of ASC helps in precise μ-measurement for thick samples of low-Z materials. Thus, this hitherto widely ignored ASC factor is recommended to use in similar γ-ray measurements.
NASA Astrophysics Data System (ADS)
Yoon, Jihyung; Heins, David; Zhao, Xiaodong; Sanders, Mary; Zhang, Rui
2017-12-01
More and more advanced radiotherapy techniques have been adopted for post-mastectomy radiotherapies (PMRT). Patient dose reconstruction is challenging for these advanced techniques because they increase the low out-of-field dose area while the accuracy of out-of-field dose calculations by current commercial treatment planning systems (TPSs) is poor. We aim to measure and model the out-of-field radiation doses from various advanced PMRT techniques. PMRT treatment plans for an anthropomorphic phantom were generated, including volumetric modulated arc therapy with standard and flattening-filter-free photon beams, mixed beam therapy, 4-field intensity modulated radiation therapy (IMRT), and tomotherapy. We measured doses in the phantom where the TPS calculated doses were lower than 5% of the prescription dose using thermoluminescent dosimeters (TLD). The TLD measurements were corrected by two additional energy correction factors, namely out-of-beam out-of-field (OBOF) correction factor K OBOF and in-beam out-of-field (IBOF) correction factor K IBOF, which were determined by separate measurements using an ion chamber and TLD. A simple analytical model was developed to predict out-of-field dose as a function of distance from the field edge for each PMRT technique. The root mean square discrepancies between measured and calculated out-of-field doses were within 0.66 cGy Gy-1 for all techniques. The IBOF doses were highly scattered and should be evaluated case by case. One can easily combine the measured out-of-field dose here with the in-field dose calculated by the local TPS to reconstruct organ doses for a specific PMRT patient if the same treatment apparatus and technique were used.
Absorbed dose-to-water protocol applied to synchrotron-generated x-rays at very high dose rates
NASA Astrophysics Data System (ADS)
Fournier, P.; Crosbie, J. C.; Cornelius, I.; Berkvens, P.; Donzelli, M.; Clavel, A. H.; Rosenfeld, A. B.; Petasecca, M.; Lerch, M. L. F.; Bräuer-Krisch, E.
2016-07-01
Microbeam radiation therapy (MRT) is a new radiation treatment modality in the pre-clinical stage of development at the ID17 Biomedical Beamline of the European synchrotron radiation facility (ESRF) in Grenoble, France. MRT exploits the dose volume effect that is made possible through the spatial fractionation of the high dose rate synchrotron-generated x-ray beam into an array of microbeams. As an important step towards the development of a dosimetry protocol for MRT, we have applied the International Atomic Energy Agency’s TRS 398 absorbed dose-to-water protocol to the synchrotron x-ray beam in the case of the broad beam irradiation geometry (i.e. prior to spatial fractionation into microbeams). The very high dose rates observed here mean the ion recombination correction factor, k s , is the most challenging to quantify of all the necessary corrections to apply for ionization chamber based absolute dosimetry. In the course of this study, we have developed a new method, the so called ‘current ramping’ method, to determine k s for the specific irradiation and filtering conditions typically utilized throughout the development of MRT. Using the new approach we deduced an ion recombination correction factor of 1.047 for the maximum ESRF storage ring current (200 mA) under typical beam spectral filtering conditions in MRT. MRT trials are currently underway with veterinary patients at the ESRF that require additional filtering, and we have estimated a correction factor of 1.025 for these filtration conditions for the same ESRF storage ring current. The protocol described herein provides reference dosimetry data for the associated Treatment Planning System utilized in the current veterinary trials and anticipated future human clinical trials.
Björk, P; Knöös, T; Nilsson, P
2000-11-01
The aim of the present study is to examine the validity of using silicon semiconductor detectors in degraded electron beams with a broad energy spectrum and a wide angular distribution. A comparison is made with diamond detector measurements, which is the dosimeter considered to give the best results provided that dose rate effects are corrected for. Two-dimensional relative absorbed dose distributions in electron beams (6-20 MeV) for intraoperative radiation therapy (IORT) are measured in a water phantom. To quantify deviations between the detectors, a dose comparison tool that simultaneously examines the dose difference and distance to agreement (DTA) is used to evaluate the results in low- and high-dose gradient regions, respectively. Uncertainties of the experimental measurement setup (+/- 1% and +/- 0.5 mm) are taken into account by calculating a composite distribution that fails this dose-difference and DTA acceptance limit. Thus, the resulting area of disagreement should be related to differences in detector performance. The dose distributions obtained with the diode are generally in very good agreement with diamond detector measurements. The buildup region and the dose falloff region show good agreement with increasing electron energy, while the region outside the radiation field close to the water surface shows an increased difference with energy. The small discrepancies in the composite distributions are due to several factors: (a) variation of the silicon-to-water collision stopping-power ratio with electron energy, (b) a more pronounced directional dependence for diodes than for diamonds, and (c) variation of the electron fluence perturbation correction factor with depth. For all investigated treatment cones and energies, the deviation is within dose-difference and DTA acceptance criteria of +/- 3% and +/- 1 mm, respectively. Therefore, p-type silicon diodes are well suited, in the sense that they give results in close agreement with diamond detectors, for practical measurements of relative absorbed dose distributions in degraded electron beams used for IORT.
Brahmam, G.N.V.; Vijayaraghavan, K.
2011-01-01
The prevalence of chronic energy deficiency (CED) among one-third of the Indian population is attributed to inadequacy of consumption of nutrients. However, considering the complexity of diets among Indians, the relationship between a particular dietary pattern and the nutritional status of the population has not been established so far. A community-based cross-sectional study was undertaken to assess estimates, at district level, of diet and nutritional status in Orissa State, India. Factor analysis was used for exploring the existence of consumption pattern of food and nutrients and their relationship with the nutritional status of rural adult population. Data on 2,864 adult men and 3,525 adult women in Orissa state revealed that there exists six patterns among food-groups explaining 59% of the total variation and three patterns among nutrients that explain 73% of the total variation among both adult men and women. The discriminant function analysis revealed that, overall, 53% of the men were correctly classified as either with chronic energy deficiency (CED) or without CED. Similarly, overall, 54% of the women were correctly classified as either with CED or without CED. The sensitivity of the model was 65% for both men and women, and the specificity was 46% and 41% respectively for men and women. In the case of classification of overweight/obesity, the prediction of the model was about 75% among both men and women, along with high sensitivity. Using factor analysis, the dietary patterns were identified from the food and nutrient intake data. There exists a strong relationship between the dietary patterns and the nutritional status of rural adults. These results will help identify the community people with CED and help planners formulate nutritional interventions accordingly. PMID:21957671
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yuan-Zhu; Wang, Hao; Zhang, Shuai
2017-02-10
GRB 160625B is an extremely bright outburst with well-monitored afterglow emission. The geometry-corrected energy is high, up to ∼5.2 × 10{sup 52} erg or even ∼8 × 10{sup 52} erg, rendering it the most energetic GRB prompt emission recorded so far. We analyzed the time-resolved spectra of the prompt emission and found that in some intervals there were likely thermal-radiation components and the high energy emission was characterized by significant cutoff. The bulk Lorentz factors of the outflow material are estimated accordingly. We found out that the Lorentz factors derived in the thermal-radiation model are consistent with the luminosity-Lorentz factormore » correlation found in other bursts, as well as in GRB 090902B for the time-resolved thermal-radiation components, while the spectral cutoff model yields much lower Lorentz factors that are in tension with the constraints set by the electron pair Compton scattering process. We then suggest that these spectral cutoffs are more likely related to the particle acceleration process and that one should be careful in estimating the Lorentz factors if the spectrum cuts at a rather low energy (e.g., ∼tens of MeV). The nature of the central engine has also been discussed, and a stellar-mass black hole is favored.« less
Dose measurement in heterogeneous phantoms with an extrapolation chamber
NASA Astrophysics Data System (ADS)
Deblois, Francois
A hybrid phantom-embedded extrapolation chamber (PEEC) made of Solid Water(TM) and bone-equivalent material was used for determining absolute dose in a bone-equivalent phantom irradiated with clinical radiation beams (cobalt-60 gamma rays; 6 and 18 MV x-rays; and 9 and 15 MeV electrons). The dose was determined with the Spencer-Attix cavity theory, using ionization gradient measurements and an indirect determination of the chamber air-mass through measurements of chamber capacitance. The air gaps used were between 2 and 3 mm and the sensitive air volume of the extrapolation chamber was remotely controlled through the motion of the motorized piston with a precision of +/-0.0025 mm. The collected charge was corrected for ionic recombination and diffusion in the chamber air volume following the standard two-voltage technique. Due to the hybrid chamber design, correction factors accounting for scatter deficit and electrode composition were determined and applied in the dose equation to obtain dose data for the equivalent homogeneous bone phantom. Correction factors for graphite electrodes were calculated with Monte Carlo techniques and the calculated results were verified through relative air cavity dose measurements for three different polarizing electrode materials: graphite, steel, and brass in conjunction with a graphite collecting electrode. Scatter deficit, due mainly to loss of lateral scatter in the hybrid chamber, reduces the dose to the air cavity in the hybrid PEEC in comparison with full bone PEEC from 0.7 to ˜2% depending on beam quality and energy. In megavoltage photon and electron beams, graphite electrodes do not affect the dose measurement in the Solid Water(TM) PEEC but decrease the cavity dose by up to 5% in the bone-equivalent PEEC even for very thin graphite electrodes (<0.0025 cm). The collecting electrode material in comparison with the polarizing electrode material has a larger effect on the electrode correction factor; the thickness of thin electrodes, on the other hand, has a negligible effect on dose determination. The uncalibrated hybrid PEEC is an accurate and absolute device for measuring the dose directly in bone material in conjunction with appropriate correction factors determined with Monte Carlo techniques.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sufian, Raza Sabbir; de Teramond, Guy F.; Brodsky, Stanley J.
We present a comprehensive analysis of the space-like nucleon electromagnetic form factors and their flavor decomposition within the framework of light-front holographic QCD. We show that the inclusion of the higher Fock componentsmore » $$|{qqqq\\bar{q}}$$ has a significant effect on the spin-flip elastic Pauli form factor and almost zero effect on the spin-conserving Dirac form factor. We present light-front holographic QCD results for the proton and neutron form factors at any momentum transfer range, including asymptotic predictions, and show that our results agree with the available experimental data with high accuracy. In order to correctly describe the Pauli form factor we need an admixture of a five quark state of about 30$$\\%$$ in the proton and about 40$$\\%$$ in the neutron. We also extract the nucleon charge and magnetic radii and perform a flavor decomposition of the nucleon electromagnetic form factors. The free parameters needed to describe the experimental nucleon form factors are very few: two parameters for the probabilities of higher Fock states for the spin-flip form factor and a phenomenological parameter $r$, required to account for possible SU(6) spin-flavor symmetry breaking effects in the neutron, whereas the Pauli form factors are normalized to the experimental values of the anomalous magnetic moments. As a result, the covariant spin structure for the Dirac and Pauli nucleon form factors prescribed by AdS$$_5$$ semiclassical gravity incorporates the correct twist scaling behavior from hard scattering and also leads to vector dominance at low energy.« less
Sufian, Raza Sabbir; de Teramond, Guy F.; Brodsky, Stanley J.; ...
2017-01-10
We present a comprehensive analysis of the space-like nucleon electromagnetic form factors and their flavor decomposition within the framework of light-front holographic QCD. We show that the inclusion of the higher Fock componentsmore » $$|{qqqq\\bar{q}}$$ has a significant effect on the spin-flip elastic Pauli form factor and almost zero effect on the spin-conserving Dirac form factor. We present light-front holographic QCD results for the proton and neutron form factors at any momentum transfer range, including asymptotic predictions, and show that our results agree with the available experimental data with high accuracy. In order to correctly describe the Pauli form factor we need an admixture of a five quark state of about 30$$\\%$$ in the proton and about 40$$\\%$$ in the neutron. We also extract the nucleon charge and magnetic radii and perform a flavor decomposition of the nucleon electromagnetic form factors. The free parameters needed to describe the experimental nucleon form factors are very few: two parameters for the probabilities of higher Fock states for the spin-flip form factor and a phenomenological parameter $r$, required to account for possible SU(6) spin-flavor symmetry breaking effects in the neutron, whereas the Pauli form factors are normalized to the experimental values of the anomalous magnetic moments. As a result, the covariant spin structure for the Dirac and Pauli nucleon form factors prescribed by AdS$$_5$$ semiclassical gravity incorporates the correct twist scaling behavior from hard scattering and also leads to vector dominance at low energy.« less
NASA Astrophysics Data System (ADS)
Reed, Joshua L.
Permanent implants of low-energy photon-emitting brachytherapy sources are used to treat a variety of cancers. Individual source models must be separately characterized due to their unique geometry, materials, and radionuclides, which all influence their dose distributions. Thermoluminescent dosimeters (TLDs) are often used for dose measurements around low-energy photon-emitting brachytherapy sources. TLDs are typically calibrated with higher energy sources such as 60Co, which requires a correction for the change in the response of the TLDs as a function of photon energy. These corrections have historically been based on TLD response to x ray bremsstrahlung spectra instead of to brachytherapy sources themselves. This work determined the TLD intrinsic energy dependence for 125I and 103Pd sources relative to 60Co, which allows for correction of TLD measurements of brachytherapy sources with factors specific to their energy spectra. Traditional brachytherapy sources contain mobile internal components and large amounts of high-Z material such as radio-opaque markers and titanium encapsulations. These all contribute to perturbations and uncertainties in the dose distribution around the source. The CivaString is a new elongated 103Pd brachytherapy source with a fixed internal geometry, polymer encapsulation, and lengths ranging from 1 to 6 cm, which offers advantages over traditional source designs. This work characterized the CivaString source and the results facilitated the formal approval of this source for use in clinical treatments. Additionally, the accuracy of a superposition technique for dose calculation around the sources with lengths >1 cm was verified. Advances in diagnostic techniques are paving the way for focal brachytherapy in which the dose is intentionally modulated throughout the target volume to focus on subvolumes that contain cancer cells. Brachytherapy sources with variable longitudinal strength (VLS) are a promising candidate for use in focal brachytherapy treatments given their customizable activity distributions, although they are not yet commercially available. This work characterized five prototype VLS sources, developed methods for clinical calibration and verification of these sources, and developed an analytical dose calculation algorithm that scales with both source length and VLS.
Perturbation theory corrections to the two-particle reduced density matrix variational method.
Juhasz, Tamas; Mazziotti, David A
2004-07-15
In the variational 2-particle-reduced-density-matrix (2-RDM) method, the ground-state energy is minimized with respect to the 2-particle reduced density matrix, constrained by N-representability conditions. Consider the N-electron Hamiltonian H(lambda) as a function of the parameter lambda where we recover the Fock Hamiltonian at lambda=0 and we recover the fully correlated Hamiltonian at lambda=1. We explore using the accuracy of perturbation theory at small lambda to correct the 2-RDM variational energies at lambda=1 where the Hamiltonian represents correlated atoms and molecules. A key assumption in the correction is that the 2-RDM method will capture a fairly constant percentage of the correlation energy for lambda in (0,1] because the nonperturbative 2-RDM approach depends more significantly upon the nature rather than the strength of the two-body Hamiltonian interaction. For a variety of molecules we observe that this correction improves the 2-RDM energies in the equilibrium bonding region, while the 2-RDM energies at stretched or nearly dissociated geometries, already highly accurate, are not significantly changed. At equilibrium geometries the corrected 2-RDM energies are similar in accuracy to those from coupled-cluster singles and doubles (CCSD), but at nonequilibrium geometries the 2-RDM energies are often dramatically more accurate as shown in the bond stretching and dissociation data for water and nitrogen. (c) 2004 American Institute of Physics.
Guidez, Emilie B; Gordon, Mark S
2015-03-12
The modeling of dispersion interactions in density functional theory (DFT) is commonly performed using an energy correction that involves empirically fitted parameters for all atom pairs of the system investigated. In this study, the first-principles-derived dispersion energy from the effective fragment potential (EFP) method is implemented for the density functional theory (DFT-D(EFP)) and Hartree-Fock (HF-D(EFP)) energies. Overall, DFT-D(EFP) performs similarly to the semiempirical DFT-D corrections for the test cases investigated in this work. HF-D(EFP) tends to underestimate binding energies and overestimate intermolecular equilibrium distances, relative to coupled cluster theory, most likely due to incomplete accounting for electron correlation. Overall, this first-principles dispersion correction yields results that are in good agreement with coupled-cluster calculations at a low computational cost.
On the wall perturbation correction for a parallel-plate NACP-02 chamber in clinical electron beams.
Zink, K; Wulff, J
2011-02-01
In recent years, several Monte Carlo studies have been published concerning the perturbation corrections of a parallel-plate chamber in clinical electron beams. In these studies, a strong depth dependence of the relevant correction factors (p(wall) and P(cav)) for depth beyond the reference depth is recognized and it has been shown that the variation with depth is sensitive to the choice of the chamber's effective point of measurement. Recommendations concerning the positioning of parallel-plate ionization chambers in clinical electron beams are not the same for all current dosimetry protocols. The IAEA TRS-398 as well as the IPEM protocol and the German protocol DIN 6800-2 interpret the depth of measurement within the phantom as the water equivalent depth, i.e., the nonwater equivalence of the entrance window has to be accounted for by shifting the chamber by an amount deltaz. This positioning should ensure that the primary electrons traveling from the surface of the water phantom through the entrance window to the chamber's reference point sustain the same energy loss as the primary electrons in the undisturbed phantom. The objective of the present study is the determination of the shift deltaz for a NACP-02 chamber and the calculation of the resulting wall perturbation correction as a function of depth. Moreover, the contributions of the different chamber walls to the wall perturbation correction are identified. The dose and fluence within the NACP-02 chamber and a wall-less air cavity is calculated using the Monte Carlo code EGSnrc in a water phantom at different depths for different clinical electron beams. In order to determine the necessary shift to account for the nonwater equivalence of the entrance window, the chamber is shifted in steps deltaz around the depth of measurement. The optimal shift deltaz is determined from a comparison of the spectral fluence within the chamber and the bare cavity. The wall perturbation correction is calculated as the ratio between doses for the complete chamber and a wall-less air cavity. The high energy part of the fluence spectra within the chamber strongly varies even with small chamber shifts, allowing the determination of deltaz within micrometers. For the NACP-02 chamber a shift deltaz = -0.058 cm results. This value is independent of the energy of the primary electrons as well as of the depth within the phantom and it is in good agreement with the value recommended in the German dosimetry protocol. Applying this shift, the calculated wall perturbation correction as a function of depth is varying less than 1% from zero up to the half value depth R50 for electron energies in the range of 6-21 MeV. The remaining depth dependence can mainly be attributed to the scatter properties of the entrance window. When neglecting the nonwater equivalence of the entrance window, the variation of p(wall) with depth is up to 10% and more, especially for low electron energies. The variation of the wall perturbation correction for the NACP-02 chamber in clinical electron beams strongly depends on the positioning of the chamber. Applying a shift deltaz = -0.058 cm toward the focus ensures that the primary electron spectrum within the chamber bears the largest resemblance to the fluence of a wall-less cavity. Hence, the influence of the chamber walls on the perturbation correction can be separated out and the residual variation of p(wall) with depth is minimized.
Macro-microscopic mass formulae and nuclear mass predictions
NASA Astrophysics Data System (ADS)
Royer, G.; Guilbaud, M.; Onillon, A.
2010-12-01
Different mass formulae derived from the liquid drop model and the pairing and shell energies of the Thomas-Fermi model have been studied and compared. They include or not the diffuseness correction to the Coulomb energy, the charge exchange correction term, the curvature energy, different forms of the Wigner term and powers of the relative neutron excess I=(N-Z)/A. Their coefficients have been determined by a least square fitting procedure to 2027 experimental atomic masses (G. Audi et al. (2003) [1]). The Coulomb diffuseness correction Z/A term or the charge exchange correction Z/A term plays the main role to improve the accuracy of the mass formula. The Wigner term and the curvature energy can also be used separately but their coefficients are very unstable. The different fits lead to a surface energy coefficient of around 17-18 MeV. A large equivalent rms radius ( r=1.22-1.24 fm) or a shorter central radius may be used. An rms deviation of 0.54 MeV can be reached between the experimental and theoretical masses. The remaining differences come probably mainly from the determination of the shell and pairing energies. Mass predictions of selected expressions have been compared to 161 new experimental masses and the correct agreement allows to provide extrapolations to masses of 656 selected exotic nuclei.
49 CFR 325.79 - Application of correction factors.
Code of Federal Regulations, 2014 CFR
2014-10-01
... microphone location point and the microphone target point is 60 feet (18.3 m) and that the measurement area... vehicle would be 87 dB(A), calculated as follows: 88 dB(A)Uncorrected average of readings −3 dB(A)Distance correction factor +2 dB(A)Ground surface correction factor _____ 87 dB(A)Corrected reading ...
49 CFR 325.79 - Application of correction factors.
Code of Federal Regulations, 2013 CFR
2013-10-01
... microphone location point and the microphone target point is 60 feet (18.3 m) and that the measurement area... vehicle would be 87 dB(A), calculated as follows: 88 dB(A)Uncorrected average of readings −3 dB(A)Distance correction factor +2 dB(A)Ground surface correction factor _____ 87 dB(A)Corrected reading ...
49 CFR 325.79 - Application of correction factors.
Code of Federal Regulations, 2012 CFR
2012-10-01
... microphone location point and the microphone target point is 60 feet (18.3 m) and that the measurement area... vehicle would be 87 dB(A), calculated as follows: 88 dB(A)Uncorrected average of readings −3 dB(A)Distance correction factor +2 dB(A)Ground surface correction factor _____ 87 dB(A)Corrected reading ...
O'Brien, D J; León-Vintró, L; McClean, B
2016-01-01
The use of radiotherapy fields smaller than 3 cm in diameter has resulted in the need for accurate detector correction factors for small field dosimetry. However, published factors do not always agree and errors introduced by biased reference detectors, inaccurate Monte Carlo models, or experimental errors can be difficult to distinguish. The aim of this study was to provide a robust set of detector-correction factors for a range of detectors using numerical, empirical, and semiempirical techniques under the same conditions and to examine the consistency of these factors between techniques. Empirical detector correction factors were derived based on small field output factor measurements for circular field sizes from 3.1 to 0.3 cm in diameter performed with a 6 MV beam. A PTW 60019 microDiamond detector was used as the reference dosimeter. Numerical detector correction factors for the same fields were derived based on calculations from a geant4 Monte Carlo model of the detectors and the Linac treatment head. Semiempirical detector correction factors were derived from the empirical output factors and the numerical dose-to-water calculations. The PTW 60019 microDiamond was found to over-respond at small field sizes resulting in a bias in the empirical detector correction factors. The over-response was similar in magnitude to that of the unshielded diode. Good agreement was generally found between semiempirical and numerical detector correction factors except for the PTW 60016 Diode P, where the numerical values showed a greater over-response than the semiempirical values by a factor of 3.7% for a 1.1 cm diameter field and higher for smaller fields. Detector correction factors based solely on empirical measurement or numerical calculation are subject to potential bias. A semiempirical approach, combining both empirical and numerical data, provided the most reliable results.
Many-body effects and ultraviolet renormalization in three-dimensional Dirac materials
NASA Astrophysics Data System (ADS)
Throckmorton, Robert E.; Hofmann, Johannes; Barnes, Edwin; Das Sarma, S.
2015-09-01
We develop a theory for electron-electron interaction-induced many-body effects in three-dimensional Weyl or Dirac semimetals, including interaction corrections to the polarizability, electron self-energy, and vertex function, up to second order in the effective fine-structure constant of the Dirac material. These results are used to derive the higher-order ultraviolet renormalization of the Fermi velocity, effective coupling, and quasiparticle residue, revealing that the corrections to the renormalization group flows of both the velocity and coupling counteract the leading-order tendencies of velocity enhancement and coupling suppression at low energies. This in turn leads to the emergence of a critical coupling above which the interaction strength grows with decreasing energy scale. In addition, we identify a range of coupling strengths below the critical point in which the Fermi velocity varies nonmonotonically as the low-energy, noninteracting fixed point is approached. Furthermore, we find that while the higher-order correction to the flow of the coupling is generally small compared to the leading order, the corresponding correction to the velocity flow carries an additional factor of the Dirac cone flavor number (the multiplicity of electron species, e.g. ground-state valley degeneracy arising from the band structure) relative to the leading-order result. Thus, for materials with a larger multiplicity, the regime of velocity nonmonotonicity is reached for modest values of the coupling strength. This is in stark contrast to an approach based on a large-N expansion or the random phase approximation (RPA), where higher-order corrections are strongly suppressed for larger values of the Dirac cone multiplicity. This suggests that perturbation theory in the coupling constant (i.e., the loop expansion) and the RPA/large-N expansion are complementary in the sense that they are applicable in different parameter regimes of the theory. We show how our results for the ultraviolet renormalization of quasiparticle properties can be tested experimentally through measurements of quantities such as the optical conductivity or dielectric function (with carrier density or temperature acting as the scale being varied to induce the running coupling). Although experiments typically access the finite-density regime, we show that our zero-density results still capture clear many-body signatures that should be visible at higher temperatures even in real systems with disorder and finite doping.
Thermal corrections to the Casimir energy in a general weak gravitational field
NASA Astrophysics Data System (ADS)
Nazari, Borzoo
2016-12-01
We calculate finite temperature corrections to the energy of the Casimir effect of a two conducting parallel plates in a general weak gravitational field. After solving the Klein-Gordon equation inside the apparatus, mode frequencies inside the apparatus are obtained in terms of the parameters of the weak background. Using Matsubara’s approach to quantum statistical mechanics gravity-induced thermal corrections of the energy density are obtained. Well-known weak static and stationary gravitational fields are analyzed and it is found that in the low temperature limit the energy of the system increases compared to that in the zero temperature case.
Exchange enhancement of the electron g-factor in a two-dimensional semimetal in HgTe quantum wells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bovkun, L. S., E-mail: bovkun@ipmras.ru; Krishtopenko, S. S.; Zholudev, M. S.
The exchange enhancement of the electron g-factor in perpendicular magnetic fields to 12 T in HgTe/CdHgTe quantum wells 20 nm wide with a semimetal band structure is studied. The electron effective mass and g-factor at the Fermi level are determined by analyzing the temperature dependence of the amplitude of Shubnikov–de Haas oscillation in weak fields and near odd Landau-level filling factors ν ≤ 9. The experimental values are compared with theoretical calculations performed in the one-electron approximation using the eight-band kp Hamiltonian. The found dependence of g-factor enhancement on the electron concentration is explained by changes in the contributions ofmore » hole- and electron-like states to exchange corrections to the Landau-level energies in the conduction band.« less
Aligning the magnetic field of a linear induction accelerator with a low-energy electron beam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clark, J.C.; Deadrick, F.J.; Kallman, J.S.
1989-03-10
The Experimental Test Accelerator II (ETA-II) linear induction accelerator at Lawrence Livermore National Laboratory uses a solenoid magnet in each acceleration cell to focus and transport an electron beam over the length of the accelerator. To control growth of the corkscrew mode the magnetic field must be precisely aligned over the full length of the accelerate. Concentric with each solenoid magnet is sine/cosmic-wound correction coil to steer the beam and correct field errors. A low-energy electron probe traces the central flux line through the accelerator referenced to a mechanical axis that is defined by a copropagating laser beam. Correction coilsmore » are activated to force the central flux line to cross the mechanical axis at the end of each acceleration cell. The ratios of correction coil currents determined by the low-energy electron probe are then kept fixed to correct for field errors during normal operation with an accelerated beam. We describe the construction of the low-energy electron probe and report the results of experiments we conducted to measure magnetic alignment with and without the correction coils activated. 5 refs., 3 figs.« less
NASA Astrophysics Data System (ADS)
Xing, Wei; Shi, Deheng; Zhang, Jicai; Sun, Jinfeng; Zhu, Zunlue
2018-05-01
This paper calculates the potential energy curves of 21 Λ-S and 42 Ω states, which arise from the first two dissociation asymptotes of the CO+ cation. The calculations are conducted using the complete active space self-consistent field method, which is followed by the valence internally contracted multireference configuration interaction approach with the Davidson correction. To improve the reliability and accuracy of the potential energy curves, core-valence correlation and scalar relativistic corrections, as well as the extrapolation of potential energies to the complete basis set limit are taken into account. The spectroscopic parameters and vibrational levels are determined. The spin-orbit coupling effect on the spectroscopic parameters and vibrational levels is evaluated. To better study the transition probabilities, the transition dipole moments are computed. The Franck-Condon factors and Einstein coefficients of some emissions are calculated. The radiative lifetimes are determined for a number of vibrational levels of several states. The transitions between different Λ-S states are evaluated. Spectroscopic routines for observing these states are proposed. The spectroscopic parameters, vibrational levels, transition dipole moments, and transition probabilities reported in this paper can be considered to be very reliable and can be used as guidelines for detecting these states in an appropriate spectroscopy experiment, especially for the states that were very difficult to observe or were not detected in previous experiments.
Radiative corrections to the quark masses in the ferromagnetic Ising and Potts field theories
NASA Astrophysics Data System (ADS)
Rutkevich, Sergei B.
2017-10-01
We consider the Ising Field Theory (IFT), and the 3-state Potts Field Theory (PFT), which describe the scaling limits of the two-dimensional lattice q-state Potts model with q = 2, and q = 3, respectively. At zero magnetic field h = 0, both field theories are integrable away from the critical point, have q degenerate vacua in the ferromagnetic phase, and q (q - 1) particles of the same mass - the kinks interpolating between two different vacua. Application of a weak magnetic field induces confinement of kinks into bound states - the "mesons" (for q = 2 , 3) consisting predominantly of two kinks, and "baryons" (for q = 3), which are essentially the three-kink excitations. The kinks in the confinement regime are also called "the quarks". We review and refine the Form Factor Perturbation Theory (FFPT), adapting it to the analysis of the confinement problem in the limit of small h, and apply it to calculate the corrections to the kink (quark) masses induced by the multi-kink fluctuations caused by the weak magnetic field. It is shown that the subleading third-order ∼h3 correction to the kink mass vanishes in the IFT. The leading second order ∼h2 correction to the kink mass in the 3-state PFT is estimated by truncation the infinite form factor expansion at the first term representing contribution of the two-kink fluctuations into the kink self-energy.
NASA Astrophysics Data System (ADS)
King, Lewis C.; van den Bergh, Jeroen C. J. M.
2018-04-01
In the version of this Analysis originally published, the value of the pessimistic EROI for the geothermal energy source in Table 1 was incorrectly given as 14:1; it should have read 9:1. This has now been corrected in all versions of the Analysis.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-30
... Planning Area (WPA) in the Gulf of Mexico; Correction AGENCY: Bureau of Ocean Energy Management (BOEM), Interior. ACTION: Notice; correction. SUMMARY: The Bureau of Ocean Energy Management published a notice... DEPARTMENT OF THE INTERIOR Bureau of Ocean Energy Management Notice of Availability of the...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-16
... Conservation Program: Energy Conservation Standards for Certain External Power Supplies; Correction AGENCY... external power supplies to re-insert a table that had been inadvertently deleted by a technical amendment... standards for all Class A external power supplies to meet. DATES: This correction is effective April 16...
On the Correct Formulation of the Law of the External Photoelectric Effect
NASA Astrophysics Data System (ADS)
Kalanov, Temur Z.
2017-01-01
The critical and correct scientific analysis of the generally accepted theory of the external photoelectric effect is proposed. The methodological basis for the analysis is the unity of formal logic and of rational dialectics. It is shown that Einstein's formulation of the law of the photoelectric effect is not free from the following objection. The terms of Einstein's formula characterize the quantitative determinacy (i.e., energy) which belongs and is related to the different material objects: ``photon'', ``electron in metal'', and ``electron not in metal''. This signifies that Einstein's formula represents violation of the formal-logical laws of identity and absence (lack) of contradiction. The correct mathematical formulation of the law of the external photoelectric effect within the framework of the system approach is proposed. The correct formulation represents the proportion by relative increments of the energy of the incident photon and the energy of the emitted electron. The proportion describes the linear relationship between the energy of the incident photon and the energy of the emitted electron.
Solar energy system performance evaluaton: Seasonal report for Solaron-Akron, Akron, Ohio
NASA Technical Reports Server (NTRS)
1980-01-01
The operational and thermal performance of the solar energy system by Solaron Corporation is described. The system was designed to provide an 1940 square foot floor area with space heating and domestic hot water for a dual-level single family residence in Akron, Ohio. The solar energy system uses air as the heat transport medium, has a 546 square foot flat plate collector array subsystem, a 270 cubic foot rock thermal storage bin subsystem, a domestic hot water preheat tank, pumps, controls and transport lines. In general, the performance of the Solaron Akron solar energy system was somewhat difficult to assess for the November 1978 through October 1979 time period. The problems relating to the control systems, various solar energy leakages, air flow correction factors and instrumentation cause a significant amount of subjectivity to be involved in the performance assessment for this solar energy system. Had these problems not been present, it is felt that this system would have exhibited a resonably high level of measured performance.
Lineshape analysis of coherent multidimensional optical spectroscopy using incoherent light
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ulness, Darin J.; Turner, Daniel B., E-mail: dturner@nyu.edu
2015-06-07
Coherent two-dimensional electronic spectroscopy using incoherent (noisy) light, I{sup (4)} 2D ES, holds intriguing challenges and opportunities. One challenge is to determine how I{sup (4)} 2D ES compares to femtosecond 2D ES. Here, we merge the sophisticated energy-gap Hamiltonian formalism that is often used to model femtosecond 2D ES with the factorized time-correlation formalism that is needed to describe I{sup (4)} 2D ES. The analysis reveals that in certain cases the energy-gap Hamiltonian is insufficient to model the spectroscopic technique correctly. The results using a modified energy-gap Hamiltonian show that I{sup (4)} 2D ES can reveal detailed lineshape information, but,more » contrary to prior reports, does not reveal dynamics during the waiting time.« less
Investigation of EBT2 and EBT3 films for proton dosimetry in the 4-20 MeV energy range.
Reinhardt, S; Würl, M; Greubel, C; Humble, N; Wilkens, J J; Hillbrand, M; Mairani, A; Assmann, W; Parodi, K
2015-03-01
Radiochromic films such as Gafchromic EBT2 or EBT3 films are widely used for dose determination in radiation therapy because they offer a superior spatial resolution compared to any other digital dosimetric 2D detector array. The possibility to detect steep dose gradients is not only attractive for intensity-modulated radiation therapy with photons but also for intensity-modulated proton therapy. Their characteristic dose rate-independent response makes radiochromic films also attractive for dose determination in cell irradiation experiments using laser-driven ion accelerators, which are currently being investigated as future medical ion accelerators. However, when using these films in ion beams, the energy-dependent dose response in the vicinity of the Bragg peak has to be considered. In this work, the response of these films for low-energy protons is investigated. To allow for reproducible and background-free irradiation conditions, the films were exposed to mono-energetic protons from an electrostatic accelerator, in the 4-20 MeV energy range. For comparison, irradiation with clinical photons was also performed. It turned out that in general, EBT2 and EBT3 films show a comparable performance. For example, dose-response curves for photons and protons with energies as low as 11 MeV show almost no differences. However, corrections are required for proton energies below 11 MeV. Care has to be taken when correction factors are related to an average LET from depth-dose measurements, because only the dose-averaged LET yields similar results as obtained in mono-energetic measurements.
Schmid, Rochus; Basting, Daniel
2005-03-24
Experimental evidence suggests that the energy of activation for the first homolytic Ga-C bond fission of GaMe3 of Ea = 249 kJ/mol, measured by Jacko and Price in a hot-wall tube reactor, is affected by surface catalytic effects. In this contribution, the rate constant for this crucial step in the gas-phase pyrolysis of GaMe3 has been calculated by variational transition state theory. By a basis set extrapolation on the MP2/cc-pVXZ level and a correlation correction from CCSD(T)/cc-pVDZ level, a theoretical "best estimate" for the bond energy of Delta H(289K) = 327.2 kJ/mol was derived. For the VTST calculation on the B3LYP/cc-pVDZ level, the energies were corrected to reproduce this bond energy. Partition functions of the transitional modes were approximated by a hindered rotor approximation to be valid along the whole reaction coordinate defined by the Ga-C bond length. On the basis of the canonical transition state theory, reaction rates were determined using the maxima of the free energy Delta G++. An Arrhenius-type rate law was fitted to these rate constants, yielding an apparent energy of activation of Ea = 316.7 kJ/mol. The preexponential factor A = 3.13 x 10(16) 1/s is an order of magnitude larger than the experimental results because of a larger release of entropy at the transition state as compared to that of the unknown surface catalyzed mechanism.
Spatio-temporal distribution of energy radiation from low frequency tremor
NASA Astrophysics Data System (ADS)
Maeda, T.; Obara, K.
2007-12-01
Recent fine-scale hypocenter locations of low frequency tremors (LFTs) estimated by cross-correlation technique (Shelly et al. 2006; Maeda et al. 2006) and new finding of very low frequency earthquake (Ito et al. 2007) suggest that these slow events occur at the plate boundary associated with slow slip events (Obara and Hirose, 2006). However, the number of tremor detected by above technique is limited since continuous tremor waveforms are too complicated. Although an envelope correlation method (ECM) (Obara, 2002) enables us to locate epicenters of LFT without arrival time picks, however, ECM fails to locate LFTs precisely especially on the most active stage of tremor activity because of the low-correlation of envelope amplitude. To reveal total energy release of LFT, here we propose a new method for estimating the location of LFTs together with radiated energy from the tremor source by using envelope amplitude. The tremor amplitude observed at NIED Hi-net stations in western Shikoku simply decays in proportion to the reciprocal of the source-receiver distance after the correction of site- amplification factor even though the phases of the tremor are very complicated. So, we model the observed mean square envelope amplitude by time-dependent energy radiation with geometrical spreading factor. In the model, we do not have origin time of the tremor since we assume that the source of the tremor continuously radiates the energy. Travel-time differences between stations estimated by the ECM technique also incorporated in our locating algorithm together with the amplitude information. Three-component 1-hour Hi-net velocity continuous waveforms with a pass-band of 2-10 Hz are used for the inversion after the correction of site amplification factors at each station estimated by coda normalization method (Takahashi et al. 2005) applied to normal earthquakes in the region. The source location and energy are estimated by applying least square inversion to the 1-min window iteratively. As a first application of our method, we estimated the spatio-temporal distribution of energy radiation for 2006 May episodic tremor and slip event occurred in western Shikoku, Japan, region. Tremor location and their radiated energy are estimated for every 1 minute. We counted the number of located LFTs and summed up their total energy at each grid having 0.05-degree spacing at each day to figure out the spatio-temporal distribution of energy release of tremors. The resultant spatial distribution of radiated energy is concentrated at a specific region. Additionally, we see the daily change of released energy, both of location and amount, which corresponds to the migration of tremor activity. The spatio-temporal distribution of energy radiation of tremors is in good agreement with a spatio-temporal slip distribution of slow slip event estimated from Hi-net tiltmeter record (Hirose et al. 2007). This suggests that small continuous tremors occur associated with a rupture process of slow slip.
Lin, Xiaodong; Zhao, Liangcai; Tang, Shengli; Zhou, Qi; Lin, Qiuting; Li, Xiaokun; Zheng, Hong; Gao, Hongchang
2016-11-03
The fibroblast growth factors (FGFs) family shows a great potential in the treatment of diabetes, but little attention is paid to basic FGF (bFGF). In this study, to explore the metabolic effects of bFGF on diabetes, metabolic changes in serum and feces were analyzed in the normal rats, the streptozocin (STZ)-induced diabetic rats and the bFGF-treated diabetic rats using a 1 H nuclear magnetic resonance (NMR)-based metabolomic approach. Interestingly, bFGF treatment significantly decreased glucose, lipid and low density lipoprotein/very low density lipoprotein (LDL/VLDL) levels in serum of diabetic rats. Moreover, bFGF treatment corrected diabetes-induced reductions in citrate, lactate, choline, glycine, creatine, histidine, phenylalanine, tyrosine and glutamine in serum. Fecal propionate was significantly increased after bFGF treatment. Correlation analysis shows that glucose, lipid and LDL/VLDL were significantly negatively correlated with energy metabolites (citrate, creatine and lactate) and amino acids (alanine, glycine, histidine, phenylalanine, tyrosine and glutamine). In addition, a weak but significant correlation was observed between fecal propionate and serum lipid (R = -0.35, P = 0.046). Based on metabolic correlation and pathway analysis, therefore, we suggest that the glucose and lipid lowering effects of bFGF in the STZ-induced diabetic rats may be achieved by activating microbial metabolism, increasing energy metabolism and correcting amino acid metabolism.
NASA Astrophysics Data System (ADS)
Charles, P. H.; Crowe, S. B.; Kairn, T.; Knight, R.; Hill, B.; Kenny, J.; Langton, C. M.; Trapp, J. V.
2014-03-01
To obtain accurate Monte Carlo simulations of small radiation fields, it is important model the initial source parameters (electron energy and spot size) accurately. However recent studies have shown that small field dosimetry correction factors are insensitive to these parameters. The aim of this work is to extend this concept to test if these parameters affect dose perturbations in general, which is important for detector design and calculating perturbation correction factors. The EGSnrc C++ user code cavity was used for all simulations. Varying amounts of air between 0 and 2 mm were deliberately introduced upstream to a diode and the dose perturbation caused by the air was quantified. These simulations were then repeated using a range of initial electron energies (5.5 to 7.0 MeV) and electron spot sizes (0.7 to 2.2 FWHM). The resultant dose perturbations were large. For example 2 mm of air caused a dose reduction of up to 31% when simulated with a 6 mm field size. However these values did not vary by more than 2 % when simulated across the full range of source parameters tested. If a detector is modified by the introduction of air, one can be confident that the response of the detector will be the same across all similar linear accelerators and the Monte Carlo modelling of each machine is not required.
Reduced partition function ratios of iron and oxygen in goethite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blanchard, M.; Dauphas, N.; Hu, M. Y.
2015-02-01
First-principles calculations based on the density functional theory (DFT) with or without the addition of a Hubbard U correction, are performed on goethite in order to determine the iron and oxygen reduced partition function ratios (beta-factors). The calculated iron phonon density of states (pDOS), force constant and beta-factor are compared with reevaluated experimental beta-factors obtained from Nuclear Resonant Inelastic X-ray Scattering (NRIXS) measurements. The reappraisal of old experimental data is motivated by the erroneous previous interpretation of the low- and high-energy ends of the NRIXS spectrum of goethite and jarosite samples (Dauphas et al., 2012). Here the NRIXS data aremore » analyzed using the SciPhon software that corrects for non-constant baseline. New NRIXS measurements also demonstrate the reproducibility of the results. Unlike for hematite and pyrite, a significant discrepancy remains between DFT, NRIXS and the existing Mossbauer-derived data. Calculations suggest a slight overestimation of the NRIXS signal possibly related to the baseline definition. The intrinsic features of the samples studied by NRIXS and Mossbauer spectroscopy may also contribute to the discrepancy (e. g., internal structural and/or chemical defects, microstructure, surface contribution). As for oxygen, DFT results indicate that goethite and hematite have similar beta-factors, which suggests almost no fractionation between the two minerals at equilibrium.« less
Walthouwer, Michel Jean Louis; Oenema, Anke; Candel, Math; Lechner, Lilian; de Vries, Hein
2015-04-01
Eating in moderation, i.e. the attempt to monitor and limit the intake of energy-dense foods, is a promising strategy in the prevention of weight gain. The purpose of this study was to examine which psychosocial factors derived from the I-Change Model (ICM) were associated with eating in moderation, and whether these factors differed between adults with a correct (aware) or incorrect (unaware) perception of their dietary behaviour. This study used a longitudinal design with measurements at baseline (N = 483) and six-month follow-up (N = 379). Eating in moderation was defined as the average daily energy intake from energy-dense food products and was measured by a validated food frequency questionnaire. Linear regression analyses were used to assess the associations between the ICM factors and eating in moderation. The moderating role of awareness was examined by including interactions between awareness and the ICM factors in the regression analyses using the pick-a-point approach to further examine the associations for aware and unaware participants. Participants who were aware of their dietary behaviour had a significantly lower average daily energy intake compared to those who were unaware. Eating in moderation was predicted by awareness, risk perception, social influence and intention. Among the aware participants, eating in moderation was predicted by risk perception, attitude, social influence and intention. Among the unaware participants, only risk perception and self-efficacy were significantly associated with eating in moderation. Our findings show that psychosocial factors may only predict eating in moderation when people are aware of their risk behaviour. Therefore, interventions aimed at promoting complex behaviours, such as eating in moderation, should first focus on improving individuals' awareness of their risk behaviour before targeting motivational factors. Copyright © 2014 Elsevier Ltd. All rights reserved.
Freitas, M C; De Corte, F
1994-01-01
As part of a recent study on the environmental effects caused by the operation of a coal-fired power station at Sines, Portugal, k0-based instrumental neutron activation analysis (INAA) was used for the determination of the lanthanides (and also of tantalum and uranium) in plant leaves and lichens. In view of the accuracy and sensitivity of the determinations, it was advantageous to make use of a low-energy photon detector (LEPD). To begin with, in the present article, a survey is given of the former developments leading to user-friendly procedures for detection efficiency calibration of the LEPD and for correction for true-coincidence (cascade summing) effects. As a continuation of this, computer coincidence correction factors are now tabulated for the relevant low-energetic gamma-rays of the analytically interesting lanthanide, tantalum, and uranium radionuclides. Also the 140.5-keV line of 99Mo/99mTc is included, molybdenum being the comparator chosen when counting using an LEPD.
Resonance treatment using pin-based pointwise energy slowing-down method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Sooyoung, E-mail: csy0321@unist.ac.kr; Lee, Changho, E-mail: clee@anl.gov; Lee, Deokjung, E-mail: deokjung@unist.ac.kr
A new resonance self-shielding method using a pointwise energy solution has been developed to overcome the drawbacks of the equivalence theory. The equivalence theory uses a crude resonance scattering source approximation, and assumes a spatially constant scattering source distribution inside a fuel pellet. These two assumptions cause a significant error, in that they overestimate the multi-group effective cross sections, especially for {sup 238}U. The new resonance self-shielding method solves pointwise energy slowing-down equations with a sub-divided fuel rod. The method adopts a shadowing effect correction factor and fictitious moderator material to model a realistic pointwise energy solution. The slowing-down solutionmore » is used to generate the multi-group cross section. With various light water reactor problems, it was demonstrated that the new resonance self-shielding method significantly improved accuracy in the reactor parameter calculation with no compromise in computation time, compared to the equivalence theory.« less
A precise measurement of 180 GeV muon energy losses in iron
Amaral, P.
2001-05-28
The energy loss spectrum of 180 GeV muons has been measured with the 5.6 m long finely segmented Module 0 of the ATLAS hadron Tile Calorimeter at the CERN SPS. The differential probability dP/dv per radiation length of a fractional energy loss v = ΔΕ μ/Ε μ has been measured in the range 0.025 ≤ v ≤ 0.97; it is compared with theoretical predictions for energy losses due to bremsstrahlung, production of electron-positron pairs, and energetic knock-on electrons. The iron elastic form factor correction Δmore » $$el\\atop{Fe}$$ = 1.63 ± 0.17 stat ± 0.23 Syst ± $$0.20\\atop{0.14}$$ theor to muon bremsstrahlung in the region of no screening of the nucleus by atomic electrons has been measured for the first time, and is compared with different theoretical predictions.« less
Quantifying highly efficient incoherent energy transfer in perylene-based multichromophore arrays.
Webb, James E A; Chen, Kai; Prasad, Shyamal K K; Wojciechowski, Jonathan P; Falber, Alexander; Thordarson, Pall; Hodgkiss, Justin M
2016-01-21
Multichromophore perylene arrays were designed and synthesized to have extremely efficient resonance energy transfer. Using broadband ultrafast photoluminescence and transient absorption spectroscopies, transfer timescales of approximately 1 picosecond were resolved, corresponding to efficiencies of up to 99.98%. The broadband measurements also revealed spectra corresponding to incoherent transfer between localized states. Polarization resolved spectroscopy was used to measure the dipolar angles between donor and acceptor chromophores, thereby enabling geometric factors to be fixed when assessing the validity of Förster theory in this regime. Förster theory was found to predict the correct magnitude of transfer rates, with measured ∼2-fold deviations consistent with the breakdown of the point-dipole approximation at close approach. The materials presented, along with the novel methods for quantifying ultrahigh energy transfer efficiencies, will be valuable for applications demanding extremely efficient energy transfer, including fluorescent solar concentrators, optical gain, and photonic logic devices.
Calibration of neutron detectors on the Joint European Torus.
Batistoni, Paola; Popovichev, S; Conroy, S; Lengar, I; Čufar, A; Abhangi, M; Snoj, L; Horton, L
2017-10-01
The present paper describes the findings of the calibration of the neutron yield monitors on the Joint European Torus (JET) performed in 2013 using a 252 Cf source deployed inside the torus by the remote handling system, with particular regard to the calibration of fission chambers which provide the time resolved neutron yield from JET plasmas. The experimental data obtained in toroidal, radial, and vertical scans are presented. These data are first analysed following an analytical approach adopted in the previous neutron calibrations at JET. In this way, a calibration function for the volumetric plasma source is derived which allows us to understand the importance of the different plasma regions and of different spatial profiles of neutron emissivity on fission chamber response. Neutronics analyses have also been performed to calculate the correction factors needed to derive the plasma calibration factors taking into account the different energy spectrum and angular emission distribution of the calibrating (point) 252 Cf source, the discrete positions compared to the plasma volumetric source, and the calibration circumstances. All correction factors are presented and discussed. We discuss also the lessons learnt which are the basis for the on-going 14 MeV neutron calibration at JET and for ITER.
Proportional crosstalk correction for the segmented clover at iThemba LABS
NASA Astrophysics Data System (ADS)
Bucher, T. D.; Noncolela, S. P.; Lawrie, E. A.; Dinoko, T. R. S.; Easton, J. L.; Erasmus, N.; Lawrie, J. J.; Mthembu, S. H.; Mtshali, W. X.; Shirinda, O.; Orce, J. N.
2017-11-01
Reaching new depths in nuclear structure investigations requires new experimental equipment and new techniques of data analysis. The modern γ-ray spectrometers, like AGATA and GRETINA are now built of new-generation segmented germanium detectors. These most advanced detectors are able to reconstruct the trajectory of a γ-ray inside the detector. These are powerful detectors, but they need careful characterization, since their output signals are more complex. For instance for each γ-ray interaction that occurs in a segment of such a detector additional output signals (called proportional crosstalk), falsely appearing as an independent (often negative) energy depositions, are registered on the non-interacting segments. A failure to implement crosstalk correction results in incorrectly measured energies on the segments for two- and higher-fold events. It affects all experiments which rely on the recorded segment energies. Furthermore incorrectly recorded energies on the segments cause a failure to reconstruct the γ-ray trajectories using Compton scattering analysis. The proportional crosstalk for the iThemba LABS segmented clover was measured and a crosstalk correction was successfully implemented. The measured crosstalk-corrected energies show good agreement with the true γ-ray energies independent on the number of hit segments and an improved energy resolution for the segment sum energy was obtained.
Performance test and image correction of CMOS image sensor in radiation environment
NASA Astrophysics Data System (ADS)
Wang, Congzheng; Hu, Song; Gao, Chunming; Feng, Chang
2016-09-01
CMOS image sensors rival CCDs in domains that include strong radiation resistance as well as simple drive signals, so it is widely applied in the high-energy radiation environment, such as space optical imaging application and video monitoring of nuclear power equipment. However, the silicon material of CMOS image sensors has the ionizing dose effect in the high-energy rays, and then the indicators of image sensors, such as signal noise ratio (SNR), non-uniformity (NU) and bad point (BP) are degraded because of the radiation. The radiation environment of test experiments was generated by the 60Co γ-rays source. The camera module based on image sensor CMV2000 from CMOSIS Inc. was chosen as the research object. The ray dose used for the experiments was with a dose rate of 20krad/h. In the test experiences, the output signals of the pixels of image sensor were measured on the different total dose. The results of data analysis showed that with the accumulation of irradiation dose, SNR of image sensors decreased, NU of sensors was enhanced, and the number of BP increased. The indicators correction of image sensors was necessary, as it was the main factors to image quality. The image processing arithmetic was adopt to the data from the experiences in the work, which combined local threshold method with NU correction based on non-local means (NLM) method. The results from image processing showed that image correction can effectively inhibit the BP, improve the SNR, and reduce the NU.
Improving Lidar Turbulence Estimates for Wind Energy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Newman, Jennifer F.; Clifton, Andrew; Churchfield, Matthew J.
2016-10-06
Remote sensing devices (e.g., lidars) are quickly becoming a cost-effective and reliable alternative to meteorological towers for wind energy applications. Although lidars can measure mean wind speeds accurately, these devices measure different values of turbulence intensity (TI) than an instrument on a tower. In response to these issues, a lidar TI error reduction model was recently developed for commercially available lidars. The TI error model first applies physics-based corrections to the lidar measurements, then uses machine-learning techniques to further reduce errors in lidar TI estimates. The model was tested at two sites in the Southern Plains where vertically profiling lidarsmore » were collocated with meteorological towers. This presentation primarily focuses on the physics-based corrections, which include corrections for instrument noise, volume averaging, and variance contamination. As different factors affect TI under different stability conditions, the combination of physical corrections applied in L-TERRA changes depending on the atmospheric stability during each 10-minute time period. This stability-dependent version of L-TERRA performed well at both sites, reducing TI error and bringing lidar TI estimates closer to estimates from instruments on towers. However, there is still scatter evident in the lidar TI estimates, indicating that there are physics that are not being captured in the current version of L-TERRA. Two options are discussed for modeling the remainder of the TI error physics in L-TERRA: machine learning and lidar simulations. Lidar simulations appear to be a better approach, as they can help improve understanding of atmospheric effects on TI error and do not require a large training data set.« less
Energy density in the Maxwell-Chern-Simons theory
NASA Astrophysics Data System (ADS)
Wesolowski, Denne; Hosotani, Yutaka; Chakravarty, Sumantra
1994-12-01
A two-dimensional nonrelativistic fermion system coupled to both electromagnetic gauge fields and Chern-Simons gauge fields is analyzed. Polarization tensors relevant in the quantum Hall effect and anyon superconductivity are obtained as simple closed integrals and are evaluated numerically for all momenta and frequencies. The correction to the energy density is evaluated in the random phase approximation (RPA) by summing an infinite series of ring diagrams. It is found that the correction has significant dependence on the particle number density. In the context of anyon superconductivity, the energy density relative to the mean field value is minimized at a hole concentration per lattice plaquette (0.05-0.06)(pca/ħ)2 where pc and a are the momentum cutoff and lattice constant, respectively. At the minimum the correction is about -5% to -25%, depending on the ratio 2mwc/p2c where wc is the frequency cutoff. In the Jain-Fradkin-Lopez picture of the fractional quantum Hall effect the RPA correction to the energy density is very large. It diverges logarithmically as the cutoff is removed, implying that corrections beyond RPA become important at large momentum and frequency.
NASA Astrophysics Data System (ADS)
Zink, Frank Edward
The detection and classification of pulmonary nodules is of great interest in chest radiography. Nodules are often indicative of primary cancer, and their detection is particularly important in asymptomatic patients. The ability to classify nodules as calcified or non-calcified is important because calcification is a positive indicator that the nodule is benign. Dual-energy methods offer the potential to improve both the detection and classification of nodules by allowing the formation of material-selective images. Tissue-selective images can improve detection by virtue of the elimination of obscuring rib structure. Bone -selective images are essentially calcium images, allowing classification of the nodule. A dual-energy technique is introduced which uses a computed radiography system to acquire dual-energy chest radiographs in a single-exposure. All aspects of the dual-energy technique are described, with particular emphasis on scatter-correction, beam-hardening correction, and noise-reduction algorithms. The adaptive noise-reduction algorithm employed improves material-selective signal-to-noise ratio by up to a factor of seven with minimal sacrifice in selectivity. A clinical comparison study is described, undertaken to compare the dual-energy technique to conventional chest radiography for the tasks of nodule detection and classification. Observer performance data were collected using the Free Response Observer Characteristic (FROC) method and the bi-normal Alternative FROC (AFROC) performance model. Results of the comparison study, analyzed using two common multiple observer statistical models, showed that the dual-energy technique was superior to conventional chest radiography for detection of nodules at a statistically significant level (p < .05). Discussion of the comparison study emphasizes the unique combination of data collection and analysis techniques employed, as well as the limitations of comparison techniques in the larger context of technology assessment.
A Multidimensional B-Spline Correction for Accurate Modeling Sugar Puckering in QM/MM Simulations.
Huang, Ming; Dissanayake, Thakshila; Kuechler, Erich; Radak, Brian K; Lee, Tai-Sung; Giese, Timothy J; York, Darrin M
2017-09-12
The computational efficiency of approximate quantum mechanical methods allows their use for the construction of multidimensional reaction free energy profiles. It has recently been demonstrated that quantum models based on the neglect of diatomic differential overlap (NNDO) approximation have difficulty modeling deoxyribose and ribose sugar ring puckers and thus limit their predictive value in the study of RNA and DNA systems. A method has been introduced in our previous work to improve the description of the sugar puckering conformational landscape that uses a multidimensional B-spline correction map (BMAP correction) for systems involving intrinsically coupled torsion angles. This method greatly improved the adiabatic potential energy surface profiles of DNA and RNA sugar rings relative to high-level ab initio methods even for highly problematic NDDO-based models. In the present work, a BMAP correction is developed, implemented, and tested in molecular dynamics simulations using the AM1/d-PhoT semiempirical Hamiltonian for biological phosphoryl transfer reactions. Results are presented for gas-phase adiabatic potential energy surfaces of RNA transesterification model reactions and condensed-phase QM/MM free energy surfaces for nonenzymatic and RNase A-catalyzed transesterification reactions. The results show that the BMAP correction is stable, efficient, and leads to improvement in both the potential energy and free energy profiles for the reactions studied, as compared with ab initio and experimental reference data. Exploration of the effect of the size of the quantum mechanical region indicates the best agreement with experimental reaction barriers occurs when the full CpA dinucleotide substrate is treated quantum mechanically with the sugar pucker correction.
Hotplate precipitation gauge calibrations and field measurements
NASA Astrophysics Data System (ADS)
Zelasko, Nicholas; Wettlaufer, Adam; Borkhuu, Bujidmaa; Burkhart, Matthew; Campbell, Leah S.; Steenburgh, W. James; Snider, Jefferson R.
2018-01-01
First introduced in 2003, approximately 70 Yankee Environmental Systems (YES) hotplate precipitation gauges have been purchased by researchers and operational meteorologists. A version of the YES hotplate is described in Rasmussen et al. (2011; R11). Presented here is testing of a newer version of the hotplate; this device is equipped with longwave and shortwave radiation sensors. Hotplate surface temperature, coefficients describing natural and forced convective sensible energy transfer, and radiative properties (longwave emissivity and shortwave reflectance) are reported for two of the new-version YES hotplates. These parameters are applied in a new algorithm and are used to derive liquid-equivalent accumulations (snowfall and rainfall), and these accumulations are compared to values derived by the internal algorithm used in the YES hotplates (hotplate-derived accumulations). In contrast with R11, the new algorithm accounts for radiative terms in a hotplate's energy budget, applies an energy conversion factor which does not differ from a theoretical energy conversion factor, and applies a surface area that is correct for the YES hotplate. Radiative effects are shown to be relatively unimportant for the precipitation events analyzed. In addition, this work documents a 10 % difference between the hotplate-derived and new-algorithm-derived accumulations. This difference seems consistent with R11's application of a hotplate surface area that deviates from the actual surface area of the YES hotplate and with R11's recommendation for an energy conversion factor that differs from that calculated using thermodynamic theory.
NASA Technical Reports Server (NTRS)
Gould, R. J.
1979-01-01
Higher-order electromagnetic processes involving particles at ultrahigh energies are discussed, with particular attention given to Compton scattering with the emission of an additional photon (double Compton scattering). Double Compton scattering may have significance in the interaction of a high-energy electron with the cosmic blackbody photon gas. At high energies the cross section for double Compton scattering is large, though this effect is largely canceled by the effects of radiative corrections to ordinary Compton scattering. A similar cancellation takes place for radiative pair production and the associated radiative corrections to the radiationless process. This cancellation is related to the well-known cancellation of the infrared divergence in electrodynamics.
NASA Astrophysics Data System (ADS)
Husain, Riyasat; Ghodke, A. D.
2017-08-01
Estimation and correction of the optics errors in an operational storage ring is always vital to achieve the design performance. To achieve this task, the most suitable and widely used technique, called linear optics from closed orbit (LOCO) is used in almost all storage ring based synchrotron radiation sources. In this technique, based on the response matrix fit, errors in the quadrupole strengths, beam position monitor (BPM) gains, orbit corrector calibration factors etc. can be obtained. For correction of the optics, suitable changes in the quadrupole strengths can be applied through the driving currents of the quadrupole power supplies to achieve the desired optics. The LOCO code has been used at the Indus-2 storage ring for the first time. The estimation of linear beam optics errors and their correction to minimize the distortion of linear beam dynamical parameters by using the installed number of quadrupole power supplies is discussed. After the optics correction, the performance of the storage ring is improved in terms of better beam injection/accumulation, reduced beam loss during energy ramping, and improvement in beam lifetime. It is also useful in controlling the leakage in the orbit bump required for machine studies or for commissioning of new beamlines.
NASA Astrophysics Data System (ADS)
Williams, Robert W.; Schlücker, Sebastian; Hudson, Bruce S.
2008-01-01
A scaled quantum mechanical harmonic force field (SQMFF) corrected for anharmonicity is obtained for the 23 K L-alanine crystal structure using van der Waals corrected periodic boundary condition density functional theory (DFT) calculations with the PBE functional. Scale factors are obtained with comparisons to inelastic neutron scattering (INS), Raman, and FT-IR spectra of polycrystalline L-alanine at 15-23 K. Calculated frequencies for all 153 normal modes differ from observed frequencies with a standard deviation of 6 wavenumbers. Non-bonded external k = 0 lattice modes are included, but assignments to these modes are presently ambiguous. The extension of SQMFF methodology to lattice modes is new, as are the procedures used here for providing corrections for anharmonicity and van der Waals interactions in DFT calculations on crystals. First principles Born-Oppenheimer molecular dynamics (BOMD) calculations are performed on the L-alanine crystal structure at a series of classical temperatures ranging from 23 K to 600 K. Corrections for zero-point energy (ZPE) are estimated by finding the classical temperature that reproduces the mean square displacements (MSDs) measured from the diffraction data at 23 K. External k = 0 lattice motions are weakly coupled to bonded internal modes.
Kilcrease, D. P.; Brookes, S.
2013-08-19
The modeling of NLTE plasmas requires the solution of population rate equations to determine the populations of the various atomic levels relevant to a particular problem. The equations require many cross sections for excitation, de-excitation, ionization and recombination. Additionally, a simple and computational fast way to calculate electron collisional excitation cross-sections for ions is by using the plane-wave Born approximation. This is essentially a high-energy approximation and the cross section suffers from the unphysical problem of going to zero near threshold. Various remedies for this problem have been employed with varying degrees of success. We present a correction procedure formore » the Born cross-sections that employs the Elwert–Sommerfeld factor to correct for the use of plane waves instead of Coulomb waves in an attempt to produce a cross-section similar to that from using the more time consuming Coulomb Born approximation. We compare this new approximation with other, often employed correction procedures. Furthermore, we also look at some further modifications to our Born Elwert procedure and its combination with Y.K. Kim's correction of the Coulomb Born approximation for singly charged ions that more accurately approximate convergent close coupling calculations.« less
Rui, Huan; Artigas, Pablo; Roux, Benoît
2016-01-01
The Na+/K+-pump maintains the physiological K+ and Na+ electrochemical gradients across the cell membrane. It operates via an 'alternating-access' mechanism, making iterative transitions between inward-facing (E1) and outward-facing (E2) conformations. Although the general features of the transport cycle are known, the detailed physicochemical factors governing the binding site selectivity remain mysterious. Free energy molecular dynamics simulations show that the ion binding sites switch their binding specificity in E1 and E2. This is accompanied by small structural arrangements and changes in protonation states of the coordinating residues. Additional computations on structural models of the intermediate states along the conformational transition pathway reveal that the free energy barrier toward the occlusion step is considerably increased when the wrong type of ion is loaded into the binding pocket, prohibiting the pump cycle from proceeding forward. This self-correcting mechanism strengthens the overall transport selectivity and protects the stoichiometry of the pump cycle. DOI: http://dx.doi.org/10.7554/eLife.16616.001 PMID:27490484
García-Garduño, Olivia A; Rodríguez-Ávila, Manuel A; Lárraga-Gutiérrez, José M
2018-01-01
Silicon-diode-based detectors are commonly used for the dosimetry of small radiotherapy beams due to their relatively small volumes and high sensitivity to ionizing radiation. Nevertheless, silicon-diode-based detectors tend to over-respond in small fields because of their high density relative to water. For that reason, detector-specific beam correction factors ([Formula: see text]) have been recommended not only to correct the total scatter factors but also to correct the tissue maximum and off-axis ratios. However, the application of [Formula: see text] to in-depth and off-axis locations has not been studied. The goal of this work is to address the impact of the correction factors on the calculated dose distribution in static non-conventional photon beams (specifically, in stereotactic radiosurgery with circular collimators). To achieve this goal, the total scatter factors, tissue maximum, and off-axis ratios were measured with a stereotactic field diode for 4.0-, 10.0-, and 20.0-mm circular collimators. The irradiation was performed with a Novalis® linear accelerator using a 6-MV photon beam. The detector-specific correction factors were calculated and applied to the experimental dosimetry data for in-depth and off-axis locations. The corrected and uncorrected dosimetry data were used to commission a treatment planning system for radiosurgery planning. Various plans were calculated with simulated lesions using the uncorrected and corrected dosimetry. The resulting dose calculations were compared using the gamma index test with several criteria. The results of this work presented important conclusions for the use of detector-specific beam correction factors ([Formula: see text] in a treatment planning system. The use of [Formula: see text] for total scatter factors has an important impact on monitor unit calculation. On the contrary, the use of [Formula: see text] for tissue-maximum and off-axis ratios has not an important impact on the dose distribution calculation by the treatment planning system. This conclusion is only valid for the combination of treatment planning system, detector, and correction factors used in this work; however, this technique can be applied to other treatment planning systems, detectors, and correction factors.
Non-cancellation of electroweak logarithms in high-energy scattering
Manohar, Aneesh V.; Shotwell, Brian; Bauer, Christian W.; ...
2015-01-01
We study electroweak Sudakov corrections in high energy scattering, and the cancellation between real and virtual Sudakov corrections. Numerical results are given for the case of heavy quark production by gluon collisions involving the rates gg→t¯t, b¯b, t¯bW, t¯tZ, b¯bZ, t¯tH, b¯bH. Gauge boson virtual corrections are related to real transverse gauge boson emission, and Higgs virtual corrections to Higgs and longitudinal gauge boson emission. At the LHC, electroweak corrections become important in the TeV regime. At the proposed 100TeV collider, electroweak interactions enter a new regime, where the corrections are very large and need to be resummed.
On the two-loop virtual QCD corrections to Higgs boson pair production in the standard model
Degrassi, Giuseppe; Giardino, Pier Paolo; Gröber, Ramona
2016-07-21
Here, we compute the next-to-leading order virtual QCD corrections to Higgs-pair production via gluon fusion. We also present analytic results for the two-loop contributions to the spin-0 and spin-2 form factors in the amplitude. The reducible contributions, given by the double-triangle diagrams, are evaluated exactly while the two-loop irreducible diagrams are evaluated by an asymptotic expansion in heavy top-quark mass up to and including terms of O(1/mmore » $$8\\atop{t}$$). We estimate that mass effects can reduce the hadronic cross section by at most 10 %, assuming that the finite top-quark mass effects are of similar size in the entire range of partonic energies.« less
Sum-rule corrections: a route to error cancellations in correlation matrix renormalisation theory
NASA Astrophysics Data System (ADS)
Liu, C.; Liu, J.; Yao, Y. X.; Wang, C. Z.; Ho, K. M.
2017-03-01
We recently proposed the correlation matrix renormalisation (CMR) theory to efficiently and accurately calculate ground state total energy of molecular systems, based on the Gutzwiller variational wavefunction (GWF) to treat the electronic correlation effects. To help reduce numerical complications and better adapt the CMR to infinite lattice systems, we need to further refine the way to minimise the error originated from the approximations in the theory. This conference proceeding reports our recent progress on this key issue, namely, we obtained a simple analytical functional form for the one-electron renormalisation factors, and introduced a novel sum-rule correction for a more accurate description of the intersite electron correlations. Benchmark calculations are performed on a set of molecules to show the reasonable accuracy of the method.
Kocaoglu, Bike; Moschonis, George; Dimitriou, Maria; Kolotourou, Maria; Keskin, Yasar; Sur, Haydar; Hayran, Osman; Manios, Yannis
2005-01-01
Background It is widely accepted that the development of atherosclerosis starts at an early age. However, there are very few studies evaluating the prevalence of the common clinical and behavioral cardiovascular disease (CVD) risk factors among children, especially in developing countries. The aim of the present cross-sectional survey was to evaluate the distribution of blood lipid profile and various behavioral (i.e. dietary habits, physical activity status) factors related to CVD risk and its relationships to paternal (PEL) and maternal educational level (MEL) among primary schoolchildren in Turkey. Methods In three major metropolises in Turkey (Istanbul, Ankara and Izmir), a random sample of 1044 children aged 12 and 13 years old was examined. ANOVA was applied to evaluate the tested hypothesis, after correcting for multiple comparisons (Tukey correction). Results After controlling for energy and fat intake, physical activity status and Body Mass Index (BMI), it was found that mostly PEL had a significant positive effect for most of the subgroups examined (Lower vs. Higher and Medium vs. Higher) on TC and HDL-cholesterol and a negative effect on TC/HDL ratio for both genders. Furthermore, both boys and girls with higher PEL and MEL were found to have higher energy intake derived from fat and protein than their counterparts with Medium and Lower PEL and MEL, while the opposite was observed for the percentage of energy derived from carbohydrates. Conclusions Our study provides indications for a possible association between an adverse lipid profile, certain dietary patterns and Higher PEL and MEL among schoolchildren in Turkey. These findings underline the possible role of social status, indicated by the degree of education of both parents, in developing certain health behaviors and health indices among Turkish children and provide some guidance for Public Health Policy. PMID:15693995
Second-order electron self-energy loop-after-loop correction for low- Z hydrogen-like ions
NASA Astrophysics Data System (ADS)
Goidenko, Igor; Labzowsky, Leonti; Plunien, Günter; Soff, Gerhard
2005-07-01
The second-order electron self-energy loop-after-loop correction is investigated for hydrogen-like ions in the region of low nuclear charge numbers Z. Both irreducible and reducible parts of this correction are evaluated for the 1s1/2-state within the Fried-Yennie gauge. We confirm the result obtained first by Mallampalli and Sapirstein. The reducible part of this correction is evaluated numerically for the first time and it is consistent with the corresponding analytical αZ-expansion.
Amended Results for Hard X-Ray Emission by Non-thermal Thick Target Recombination in Solar Flares
NASA Astrophysics Data System (ADS)
Reep, J. W.; Brown, J. C.
2016-06-01
Brown & Mallik and the corresponding corrigendum Brown et al. presented expressions for non-thermal recombination (NTR) in the collisionally thin- and thick-target regimes, claiming that the process could account for a substantial part of the hard X-ray continuum in solar flares usually attributed entirely to thermal and non-thermal bremsstrahlung (NTB). However, we have found the thick-target expression to become unphysical for low cut-offs in the injected electron energy spectrum. We trace this to an error in the derivation, derive a corrected version that is real-valued and continuous for all photon energies and cut-offs, and show that, for thick targets, Brown et al. overestimated NTR emission at small photon energies. The regime of small cut-offs and large spectral indices involve large (reducing) correction factors but in some other thick-target parameter regimes NTR/NTB can still be of the order of unity. We comment on the importance of these results to flare and microflare modeling and spectral fitting. An empirical fit to our results shows that the peak NTR contribution comprises over half of the hard X-ray signal if δ ≳ 6{≤ft(\\tfrac{{E}0c}{4{keV}}\\right)}0.4.
Dose heterogeneity correction for low-energy brachytherapy sources using dual-energy CT images
NASA Astrophysics Data System (ADS)
Mashouf, S.; Lechtman, E.; Lai, P.; Keller, B. M.; Karotki, A.; Beachey, D. J.; Pignol, J. P.
2014-09-01
Permanent seed implant brachytherapy is currently used for adjuvant radiotherapy of early stage prostate and breast cancer patients. The current standard for calculation of dose around brachytherapy sources is based on the AAPM TG-43 formalism, which generates the dose in a homogeneous water medium. Recently, AAPM TG-186 emphasized the importance of accounting for tissue heterogeneities. We have previously reported on a methodology where the absorbed dose in tissue can be obtained by multiplying the dose, calculated by the TG-43 formalism, by an inhomogeneity correction factor (ICF). In this work we make use of dual energy CT (DECT) images to extract ICF parameters. The advantage of DECT over conventional CT is that it eliminates the need for tissue segmentation as well as assignment of population based atomic compositions. DECT images of a heterogeneous phantom were acquired and the dose was calculated using both TG-43 and TG-43 × \\text{ICF} formalisms. The results were compared to experimental measurements using Gafchromic films in the mid-plane of the phantom. For a seed implant configuration of 8 seeds spaced 1.5 cm apart in a cubic structure, the gamma passing score for 2%/2 mm criteria improved from 40.8% to 90.5% when ICF was applied to TG-43 dose distributions.
Correct folding of an α-helix and a β-hairpin using a polarized 2D torsional potential
Gao, Ya; Li, Yongxiu; Mou, Lirong; Lin, Bingbing; Zhang, John Z. H.; Mei, Ye
2015-01-01
A new modification to the AMBER force field that incorporates the coupled two-dimensional main chain torsion energy has been evaluated for the balanced representation of secondary structures. In this modified AMBER force field (AMBER032D), the main chain torsion energy is represented by 2-dimensional Fourier expansions with parameters fitted to the potential energy surface generated by high-level quantum mechanical calculations of small peptides in solution. Molecular dynamics simulations are performed to study the folding of two model peptides adopting either α-helix or β-hairpin structures. Both peptides are successfully folded into their native structures using an AMBER032D force field with the implementation of a polarization scheme (AMBER032Dp). For comparison, simulations using a standard AMBER03 force field with and without polarization, as well as AMBER032D without polarization, fail to fold both peptides successfully. The correction to secondary structure propensity in the AMBER03 force field and the polarization effect are critical to folding Trpzip2; without these factors, a helical structure is obtained. This study strongly suggests that this new force field is capable of providing a more balanced preference for helical and extended conformations. The electrostatic polarization effect is shown to be indispensable to the growth of secondary structures. PMID:26039188
Ab initio DFT+U study of He atom incorporation into UO(2) crystals.
Gryaznov, Denis; Heifets, Eugene; Kotomin, Eugene
2009-09-07
We present and discuss results of the density functional theory (DFT) for perfect UO(2) crystals with He atoms in octahedral interstitial positions therein. We have calculated basic bulk crystal properties and He incorporation energies into the low temperature anti-ferromagnetic UO(2) phase using several exchange-correlation functionals within the spin-polarized local density (LDA) and generalized gradient (GGA) approximations. In all DFT calculations we included the on-site correlation corrections using the Hubbard model (DFT+U approach). We analysed a potential crystalline symmetry reduction from tetragonal down to orthorhombic structure and confirmed the presence of the Jahn-Teller effect in a perfect UO(2). We discuss also the problem of a conducting electronic state arising when He is placed into a tetragonal antiferromagnetic phase of UO(2) commonly used in defect modelling. Consequently, we found a specific monoclinic lattice distortion which allowed us to restore the semiconducting state and properly estimate He incorporation energies. Unlike the bulk properties, the He incorporation energy strongly depends on several factors, including the supercell size, the use of spin polarization, the exchange-correlation functionals and on-site correlation corrections. We compare our results for the He incorporation with the previous shell model and ab initio DFT calculations.
Response functions for neutron skyshine analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gui, A.A.; Shultis, J.K.; Faw, R.E.
1997-02-01
Neutron and associated secondary photon line-beam response functions (LBRFs) for point monodirectional neutron sources are generated using the MCNP Monte Carlo code for use in neutron skyshine analysis employing the integral line-beam method. The LBRFs are evaluated at 14 neutron source energies ranging from 0.01 to 14 MeV and at 18 emission angles from 1 to 170 deg, as measured from the source-to-detector axis. The neutron and associated secondary photon conical-beam response functions (CBRFs) for azimuthally symmetric neutron sources are also evaluated at 13 neutron source energies in the same energy range and at 13 polar angles of source collimationmore » from 1 to 89 deg. The response functions are approximated by an empirical three-parameter function of the source-to-detector distance. These response function approximations are available for a source-to-detector distance up to 2,500 m and, for the first time, give dose equivalent responses that are required for modern radiological assessments. For the CBRFs, ground correction factors for neutrons and secondary photons are calculated and also approximated by empirical formulas for use in air-over-ground neutron skyshine problems with azimuthal symmetry. In addition, simple procedures are proposed for humidity and atmospheric density corrections.« less
Govender, Ashriti; Ferré, Daniel Curulla; Niemantsverdriet, J W Hans
2012-04-23
The thermodynamics and kinetics of the surface hydrogenation of adsorbed atomic carbon to methane, following the reaction sequence C+4H(-->/<--)CH+3H(-->/<--)CH(2)+2H(-->/<--)CH(3)+H(-->/<--)CH(4), are studied on Fe(100) by means of density functional theory. An assessment is made on whether the adsorption energies and overall energy profile are affected when zero-point energy (ZPE) corrections are included. The C, CH and CH(2) species are most stable at the fourfold hollow site, while CH(3) prefers the twofold bridge site. Atomic hydrogen is adsorbed at both the twofold bridge and fourfold hollow sites. Methane is physisorbed on the surface and shows neither orientation nor site preference. It is easily desorbed to the gas phase once formed. The incorporation of ZPE corrections has a very slight, if any, effect on the adsorption energies and does not alter the trends with regards to the most stable adsorption sites. The successive addition of hydrogen to atomic carbon is endothermic up to the addition of the third hydrogen atom resulting in the methyl species, but exothermic in the final hydrogenation step, which leads to methane. The overall methanation reaction is endothermic when starting from atomic carbon and hydrogen on the surface. Zero-point energy corrections are rarely provided in the literature. Since they are derived from C-H bonds with characteristic vibrations on the order of 2500-3000 cm(-1), the equivalent ZPE of 1/2 hν is on the order of 0.2-0.3 eV and its effect on adsorption energy can in principle be significant. Particularly in reactions between CH(x) and H, the ZPE correction is expected to be significant, as additional C-H bonds are formed. In this instance, the methanation reaction energy of +0.77 eV increased to +1.45 eV with the inclusion of ZPE corrections, that is, less favourable. Therefore, it is crucial to include ZPE corrections when reporting reactions involving hydrogen-containing species. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Binder, Kyle Edwin
The U.S. energy sector has undergone continuous change in the regulatory, technological, and market environments. These developments show no signs of slowing. Accordingly, it is imperative that energy market regulators and participants develop a strong comprehension of market dynamics and the potential implications of their actions. This dissertation contributes to a better understanding of the past, present, and future of U.S. energy market dynamics and interactions with policy. Advancements in multivariate time series analysis are employed in three related studies of the electric power sector. Overall, results suggest that regulatory changes have had and will continue to have important implications for the electric power sector. The sector, however, has exhibited adaptability to past regulatory changes and is projected to remain resilient in the future. Tests for constancy of the long run parameters in a vector error correction model are applied to determine whether relationships among coal inventories in the electric power sector, input prices, output prices, and opportunity costs have remained constant over the past 38 years. Two periods of instability are found, the first following railroad deregulation in the U.S. and the second corresponding to a number of major regulatory changes in the electric power and natural gas sectors. Relationships among Renewable Energy Credit prices, electricity prices, and natural gas prices are estimated using a vector error correction model. Results suggest that Renewable Energy Credit prices do not completely behave as previously theorized in the literature. Potential reasons for the divergence between theory and empirical evidence are the relative immaturity of current markets and continuous institutional intervention. Potential impacts of future CO2 emissions reductions under the Clean Power Plan on economic and energy sector activity are estimated. Conditional forecasts based on an outlined path for CO2 emissions are developed from a factor-augmented vector autoregressive model for a large dataset. Unconditional and conditional forecasts are compared for U.S. industrial production, real personal income, and estimated factors. Results suggest that economic growth will be slower under the Clean Power Plan than it would otherwise; however, CO2 emissions reductions and economic growth can be achieved simultaneously.
NASA Astrophysics Data System (ADS)
Kurková, Dana; Judas, Libor
2018-05-01
Gamma and X-ray energy spectra measured with semiconductor detectors suffer from various distortions, one of them being so-called "tailing" caused by an incomplete charge collection. Using the Hecht equation, a response matrix of size 321 × 321 was constructed which was used to correct the effect of incomplete charge collection. The correction matrix was constructed analytically for an arbitrary energy bin and the size of the energy bin thus defines the width of the spectral window. The correction matrix can be applied separately from other possible spectral corrections or it can be incorporated into an already existing response matrix of the detector. The correction was tested and its adjustable parameters were optimized on the line spectra of 57Co measured with a cadmium telluride (CdTe) detector in a spectral range from 0 up to 160 keV. The best results were obtained when the values of the free path of holes were spread over a range from 0.4 to 1.0 cm and weighted by a Gauss function. The model with the optimized parameter values was then used to correct the line spectra of 152Eu in a spectral range from 0 up to 530 keV. An improvement in the energy resolution at full width at half maximum from 2.40 % ± 0.28 % to 0.96 % ± 0.28 % was achieved at 344.27 keV. Spectra of "narrow spectrum series" beams, N120, N150, N200, N250 and N300, generated with tube voltages of 120 kV, 150 kV, 200 kV, 250 kV and 300 kV respectively, and measured with the CdTe detector, were corrected in the spectral range from 0 to 160 keV (N120 and N150) and from 0 to 530 keV (N200, N250, N300). All the measured spectra correspond both qualitatively and quantitatively to the available reference data after the correction. To obtain better correspondence between N150, N200, N250 and N300 spectra and the reference data, lower values of the free paths of holes (range from 0.16 to 0.65 cm) were used for X-ray spectra correction, which suggests energy dependence of the phenomenon.
Nagy, Péter R; Kállay, Mihály
2017-06-07
An improved algorithm is presented for the evaluation of the (T) correction as a part of our local natural orbital (LNO) coupled-cluster singles and doubles with perturbative triples [LNO-CCSD(T)] scheme [Z. Rolik et al., J. Chem. Phys. 139, 094105 (2013)]. The new algorithm is an order of magnitude faster than our previous one and removes the bottleneck related to the calculation of the (T) contribution. First, a numerical Laplace transformed expression for the (T) fragment energy is introduced, which requires on average 3 to 4 times fewer floating point operations with negligible compromise in accuracy eliminating the redundancy among the evaluated triples amplitudes. Second, an additional speedup factor of 3 is achieved by the optimization of our canonical (T) algorithm, which is also executed in the local case. These developments can also be integrated into canonical as well as alternative fragmentation-based local CCSD(T) approaches with minor modifications. As it is demonstrated by our benchmark calculations, the evaluation of the new Laplace transformed (T) correction can always be performed if the preceding CCSD iterations are feasible, and the new scheme enables the computation of LNO-CCSD(T) correlation energies with at least triple-zeta quality basis sets for realistic three-dimensional molecules with more than 600 atoms and 12 000 basis functions in a matter of days on a single processor.
Long-range-corrected Rung 3.5 density functional approximations
NASA Astrophysics Data System (ADS)
Janesko, Benjamin G.; Proynov, Emil; Scalmani, Giovanni; Frisch, Michael J.
2018-03-01
Rung 3.5 functionals are a new class of approximations for density functional theory. They provide a flexible intermediate between exact (Hartree-Fock, HF) exchange and semilocal approximations for exchange. Existing Rung 3.5 functionals inherit semilocal functionals' limitations in atomic cores and density tails. Here we address those limitations using range-separated admixture of HF exchange. We present three new functionals. LRC-ωΠLDA combines long-range HF exchange with short-range Rung 3.5 ΠLDA exchange. SLC-ΠLDA combines short- and long-range HF exchange with middle-range ΠLDA exchange. LRC-ωΠLDA-AC incorporates a combination of HF, semilocal, and Rung 3.5 exchange in the short range, based on an adiabatic connection. We test these in a new Rung 3.5 implementation including up to analytic fourth derivatives. LRC-ωΠLDA and SLC-ΠLDA improve atomization energies and reaction barriers by a factor of 8 compared to the full-range ΠLDA. LRC-ωΠLDA-AC brings further improvement approaching the accuracy of standard long-range corrected schemes LC-ωPBE and SLC-PBE. The new functionals yield highest occupied orbital energies closer to experimental ionization potentials and describe correctly the weak charge-transfer complex of ethylene and dichlorine and the hole-spin distribution created by an Al defect in quartz. This study provides a framework for more flexible range-separated Rung 3.5 approximations.
2017-01-01
An improved algorithm is presented for the evaluation of the (T) correction as a part of our local natural orbital (LNO) coupled-cluster singles and doubles with perturbative triples [LNO-CCSD(T)] scheme [Z. Rolik et al., J. Chem. Phys. 139, 094105 (2013)]. The new algorithm is an order of magnitude faster than our previous one and removes the bottleneck related to the calculation of the (T) contribution. First, a numerical Laplace transformed expression for the (T) fragment energy is introduced, which requires on average 3 to 4 times fewer floating point operations with negligible compromise in accuracy eliminating the redundancy among the evaluated triples amplitudes. Second, an additional speedup factor of 3 is achieved by the optimization of our canonical (T) algorithm, which is also executed in the local case. These developments can also be integrated into canonical as well as alternative fragmentation-based local CCSD(T) approaches with minor modifications. As it is demonstrated by our benchmark calculations, the evaluation of the new Laplace transformed (T) correction can always be performed if the preceding CCSD iterations are feasible, and the new scheme enables the computation of LNO-CCSD(T) correlation energies with at least triple-zeta quality basis sets for realistic three-dimensional molecules with more than 600 atoms and 12 000 basis functions in a matter of days on a single processor. PMID:28576082
Self-diffusion in MgO--a density functional study.
Runevall, Odd; Sandberg, Nils
2011-08-31
Density functional theory calculations have been performed to study self-diffusion in magnesium oxide, a model material for a wide range of ionic compounds. Formation energies and entropies of Schottky defects and divacancies were obtained by means of total energy and phonon calculations in supercell configurations. Transition state theory was used to estimate defect migration rates, with migration energies taken from static calculations, and the corresponding frequency factors estimated from the phonon spectrum. In all static calculations we corrected for image effects using either a multipole expansion or an extrapolation to the low concentration limit. It is shown that both methods give similar results. The results for self-diffusion of Mg and O confirm the previously established picture, namely that in materials of nominal purity, Mg diffuses extrinsically by a single vacancy mechanism, while O diffuses intrinsically by a divacancy mechanism. Quantitatively, the current results are in very good agreement with experiments concerning O diffusion, while for Mg the absolute diffusion rate is generally underestimated by a factor of 5-10. The reason for this discrepancy is discussed.
Relativistic Corrections to the Properties of the Alkali Fluorides
NASA Technical Reports Server (NTRS)
Dyall, Kenneth G.; Partridge, Harry
1993-01-01
Relativistic corrections to the bond lengths, dissociation energies and harmonic frequencies of KF, RbF and CsF have been obtained at the self-consistent field level by dissociating to ions. The relativistic corrections to the bond lengths, harmonic frequencies and dissociation energies to the ions are very small, due to the ionic nature of these molecules and the similarity of the relativistic and nonrelativistic ionic radii.
NASA Astrophysics Data System (ADS)
Liu, Jing-Jing; Liu, Dong-Mei
2018-06-01
Based on the p-f shell-model, we discuss and calculate β--decay half-lives of neutron-rich nuclei, with a consideration of shell and pair effects, the decay energy, and the nucleon numbers. According to the linear response theory model, we study the effect of electron screening on the electron energy, beta-decay threshold energy, and the antineutrino energy loss rate by β--decay of some iron isotopes. We find that the electron screening antineutrino energy loss rates increase by about two orders of magnitude due to the shell effects and the pairing effect. Beta-decay rates with Q-value corrections due to strong electron screening are higher than those without the Q-value corrections by more than two orders of magnitude. Our conclusions may be helpful for the research on numerical simulations of the cooling of stars.
Resistivity Correction Factor for the Four-Probe Method: Experiment III
NASA Astrophysics Data System (ADS)
Yamashita, Masato; Nishii, Toshifumi; Kurihara, Hiroshi; Enjoji, Hideo; Iwata, Atsushi
1990-04-01
Experimental verification of the theoretically derived resistivity correction factor F is presented. Factor F is applied to a system consisting of a rectangular parallelepiped sample and a square four-probe array. Resistivity and sheet resistance measurements are made on isotropic graphites and crystalline ITO films. Factor F corrects experimental data and leads to reasonable resistivity and sheet resistance.
Breast tissue decomposition with spectral distortion correction: A postmortem study
Ding, Huanjun; Zhao, Bo; Baturin, Pavlo; Behroozi, Farnaz; Molloi, Sabee
2014-01-01
Purpose: To investigate the feasibility of an accurate measurement of water, lipid, and protein composition of breast tissue using a photon-counting spectral computed tomography (CT) with spectral distortion corrections. Methods: Thirty-eight postmortem breasts were imaged with a cadmium-zinc-telluride-based photon-counting spectral CT system at 100 kV. The energy-resolving capability of the photon-counting detector was used to separate photons into low and high energy bins with a splitting energy of 42 keV. The estimated mean glandular dose for each breast ranged from 1.8 to 2.2 mGy. Two spectral distortion correction techniques were implemented, respectively, on the raw images to correct the nonlinear detector response due to pulse pileup and charge-sharing artifacts. Dual energy decomposition was then used to characterize each breast in terms of water, lipid, and protein content. In the meantime, the breasts were chemically decomposed into their respective water, lipid, and protein components to provide a gold standard for comparison with dual energy decomposition results. Results: The accuracy of the tissue compositional measurement with spectral CT was determined by comparing to the reference standard from chemical analysis. The averaged root-mean-square error in percentage composition was reduced from 15.5% to 2.8% after spectral distortion corrections. Conclusions: The results indicate that spectral CT can be used to quantify the water, lipid, and protein content in breast tissue. The accuracy of the compositional analysis depends on the applied spectral distortion correction technique. PMID:25281953
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gearhart, A; Peterson, T; Johnson, L
2015-06-15
Purpose: To evaluate the impact of the exceptional energy resolution of germanium detectors for preclinical SPECT in comparison to conventional detectors. Methods: A cylindrical water phantom was created in GATE with a spherical Tc-99m source in the center. Sixty-four projections over 360 degrees using a pinhole collimator were simulated. The same phantom was simulated using air instead of water to establish the true reconstructed voxel intensity without attenuation. Attenuation correction based on the Chang method was performed on MLEM reconstructed images from the water phantom to determine a quantitative measure of the effectiveness of the attenuation correction. Similarly, a NEMAmore » phantom was simulated, and the effectiveness of the attenuation correction was evaluated. Both simulations were carried out using both NaI detectors with an energy resolution of 10% FWHM and Ge detectors with an energy resolution of 1%. Results: Analysis shows that attenuation correction without scatter correction using germanium detectors can reconstruct a small spherical source to within 3.5%. Scatter analysis showed that for standard sized objects in a preclinical scanner, a NaI detector has a scatter-to-primary ratio between 7% and 12.5% compared to between 0.8% and 1.5% for a Ge detector. Preliminary results from line profiles through the NEMA phantom suggest that applying attenuation correction without scatter correction provides acceptable results for the Ge detectors but overestimates the phantom activity using NaI detectors. Due to the decreased scatter, we believe that the spillover ratio for the air and water cylinders in the NEMA phantom will be lower using germanium detectors compared to NaI detectors. Conclusion: This work indicates that the superior energy resolution of germanium detectors allows for less scattered photons to be included within the energy window compared to traditional SPECT detectors. This may allow for quantitative SPECT without implementing scatter correction, reducing uncertainties introduced by scatter correction algorithms. Funding provided by NIH/NIBIB grant R01EB013677; Todd Peterson, Ph.D., has had a research contract with PHDs Co., Knoxville, TN.« less
10 CFR 1008.10 - Action in response to a request for correction or amendment of records.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 4 2011-01-01 2011-01-01 false Action in response to a request for correction or amendment of records. 1008.10 Section 1008.10 Energy DEPARTMENT OF ENERGY (GENERAL PROVISIONS) RECORDS MAINTAINED ON INDIVIDUALS (PRIVACY ACT) Requests for Access or Amendment § 1008.10 Action in response to a...
10 CFR 1008.10 - Action in response to a request for correction or amendment of records.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 4 2012-01-01 2012-01-01 false Action in response to a request for correction or amendment of records. 1008.10 Section 1008.10 Energy DEPARTMENT OF ENERGY (GENERAL PROVISIONS) RECORDS MAINTAINED ON INDIVIDUALS (PRIVACY ACT) Requests for Access or Amendment § 1008.10 Action in response to a...
76 FR 70918 - Energy Conservation Program: Test Procedures for Residential Clothes Washers
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-16
... DEPARTMENT OF ENERGY 10 CFR Parts 429 and 430 [Docket No. EERE-2010-BT-TP-0021] RIN 1904-AC08 Energy Conservation Program: Test Procedures for Residential Clothes Washers Correction In proposed rule document 2011-28543 appearing on pages 69870-69893 in the issue of November 9, 2011, make the following correction: On page 69870, in the first...
Can small field diode correction factors be applied universally?
Liu, Paul Z Y; Suchowerska, Natalka; McKenzie, David R
2014-09-01
Diode detectors are commonly used in dosimetry, but have been reported to over-respond in small fields. Diode correction factors have been reported in the literature. The purpose of this study is to determine whether correction factors for a given diode type can be universally applied over a range of irradiation conditions including beams of different qualities. A mathematical relation of diode over-response as a function of the field size was developed using previously published experimental data in which diodes were compared to an air core scintillation dosimeter. Correction factors calculated from the mathematical relation were then compared those available in the literature. The mathematical relation established between diode over-response and the field size was found to predict the measured diode correction factors for fields between 5 and 30 mm in width. The average deviation between measured and predicted over-response was 0.32% for IBA SFD and PTW Type E diodes. Diode over-response was found to be not strongly dependent on the type of linac, the method of collimation or the measurement depth. The mathematical relation was found to agree with published diode correction factors derived from Monte Carlo simulations and measurements, indicating that correction factors are robust in their transportability between different radiation beams. Copyright © 2014. Published by Elsevier Ireland Ltd.
Quantum corrections to the stress-energy tensor in thermodynamic equilibrium with acceleration
NASA Astrophysics Data System (ADS)
Becattini, F.; Grossi, E.
2015-08-01
We show that the stress-energy tensor has additional terms with respect to the ideal form in states of global thermodynamic equilibrium in flat spacetime with nonvanishing acceleration and vorticity. These corrections are of quantum origin and their leading terms are second order in the gradients of the thermodynamic fields. Their relevant coefficients can be expressed in terms of correlators of the stress-energy tensor operator and the generators of the Lorentz group. With respect to previous assessments, we find that there are more second-order coefficients and that all thermodynamic functions including energy density receive acceleration and vorticity dependent corrections. Notably, also the relation between ρ and p , that is, the equation of state, is affected by acceleration and vorticity. We have calculated the corrections for a free real scalar field—both massive and massless—and we have found that they increase, particularly for a massive field, at very high acceleration and vorticity and very low temperature. Finally, these nonideal terms depend on the explicit form of the stress-energy operator, implying that different stress-energy tensors of the scalar field—canonical or improved—are thermodynamically inequivalent.
Whittleton, Sarah R; Otero-de-la-Roza, A; Johnson, Erin R
2017-02-14
Accurate energy ranking is a key facet to the problem of first-principles crystal-structure prediction (CSP) of molecular crystals. This work presents a systematic assessment of B86bPBE-XDM, a semilocal density functional combined with the exchange-hole dipole moment (XDM) dispersion model, for energy ranking using 14 compounds from the first five CSP blind tests. Specifically, the set of crystals studied comprises 11 rigid, planar compounds and 3 co-crystals. The experimental structure was correctly identified as the lowest in lattice energy for 12 of the 14 total crystals. One of the exceptions is 4-hydroxythiophene-2-carbonitrile, for which the experimental structure was correctly identified once a quasi-harmonic estimate of the vibrational free-energy contribution was included, evidencing the occasional importance of thermal corrections for accurate energy ranking. The other exception is an organic salt, where charge-transfer error (also called delocalization error) is expected to cause the base density functional to be unreliable. Provided the choice of base density functional is appropriate and an estimate of temperature effects is used, XDM-corrected density-functional theory is highly reliable for the energetic ranking of competing crystal structures.
New Precision Limit on the Strange Vector Form Factors of the Proton
Ahmed, Z.; Allada, K.; Aniol, K. A.; ...
2012-03-01
The parity-violating cross-section asymmetry in the elastic scattering of polarized electrons from unpolarized protons has been measured at a four-momentum transfer squared Q 2 = 0.624 GeV 2 and beam energy E b = 3.48 GeV to be A PV = -23.80 ± 0.78 (stat) ± 0.36 (syst) parts per million. This result is consistent with zero contribution of strange quarks to the combination of electric and magnetic form factors G E s + 0.517 G M s = 0.003 ± 0.010 (stat) ± 0.004 (syst) ± 0.009 (ff), where the third error is due to the limits of precisionmore » on the electromagnetic form factors and radiative corrections. With this measurement, the world data on strange contributions to nucleon form factors are seen to be consistent with zero and not more than a few percent of the proton form factors.« less
Limitations of silicon diodes for clinical electron dosimetry.
Song, Haijun; Ahmad, Munir; Deng, Jun; Chen, Zhe; Yue, Ning J; Nath, Ravinder
2006-01-01
This work investigates the relevance of several factors affecting the response of silicon diode dosemeters in depth-dose scans of electron beams. These factors are electron energy, instantaneous dose rate, dose per pulse, photon/electron dose ratio and electron scattering angle (directional response). Data from the literature and our own experiments indicate that the impact of these factors may be up to +/-15%. Thus, the different factors would have to cancel out perfectly at all depths in order to produce true depth-dose curves. There are reports of good agreement between depth-doses measured with diodes and ionisation chambers. However, our measurements with a Scantronix electron field detector (EFD) diode and with a plane-parallel ionisation chamber show discrepancies both in the build-up and in the low-dose regions, with a ratio up to 1.4. Moreover, the absolute sensitivity of two diodes of the same EFD model was found to differ by a factor of 3, and this ratio was not constant but changed with depth between 5 and 15% in the low-dose regions of some clinical electron beams. Owing to these inhomogeneities among diodes even of the same model, corrections for each factor would have to be diode-specific and beam-specific. All these corrections would have to be determined using parallel plane chambers, as recommended by AAPM TG-25, which would be unrealistic in clinical practice. Our conclusion is that in general diodes are not reliable in the measurement of depth-dose curves of clinical electron beams.
Shooting string holography of jet quenching at RHIC and LHC
Ficnar, Andrej; Gubser, Steven S.; Gyulassy, Miklos
2014-10-13
We derive a new formula for jet energy loss using finite endpoint momentum shooting strings initial conditions in SYM plasmas to overcome the difficulties of previous falling string holographic scenarios. We apply the new formula to compute the nuclear modification factor R AA and the elliptic flow parameter v 2 of light hadrons at RHIC and LHC. We show furthermore that Gauss–Bonnet quadratic curvature corrections to the AdS 5 geometry improve the agreement with the recent data.
Shooting string holography of jet quenching at RHIC and LHC
NASA Astrophysics Data System (ADS)
Ficnar, Andrej; Gubser, Steven S.; Gyulassy, Miklos
2014-11-01
We derive a new formula for jet energy loss using finite endpoint momentum shooting strings initial conditions in SYM plasmas to overcome the difficulties of previous falling string holographic scenarios. We apply the new formula to compute the nuclear modification factor RAA and the elliptic flow parameter v2 of light hadrons at RHIC and LHC. We show furthermore that Gauss-Bonnet quadratic curvature corrections to the AdS5 geometry improve the agreement with the recent data.
van Aggelen, Helen; Verstichel, Brecht; Bultinck, Patrick; Van Neck, Dimitri; Ayers, Paul W; Cooper, David L
2011-02-07
Variational second order density matrix theory under "two-positivity" constraints tends to dissociate molecules into unphysical fractionally charged products with too low energies. We aim to construct a qualitatively correct potential energy surface for F(3)(-) by applying subspace energy constraints on mono- and diatomic subspaces of the molecular basis space. Monoatomic subspace constraints do not guarantee correct dissociation: the constraints are thus geometry dependent. Furthermore, the number of subspace constraints needed for correct dissociation does not grow linearly with the number of atoms. The subspace constraints do impose correct chemical properties in the dissociation limit and size-consistency, but the structure of the resulting second order density matrix method does not exactly correspond to a system of noninteracting units.
Energy dependence of lithium fluoride dosemeter for high energy electrons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Antoku, S.; Sunayashiki, T.; Takeoka, S.
1973-11-01
A lithium fluoride and a Fricke dosemeter have been exposed simultaneously to /sup 60/Co gamma -rays and 10, 20, and 30 MeV electrons to study the energy dependence of the lithium fluoride dosemeter for high-energy electrons, with particular reference to possible significant reductions in the sensitivity of LiF phosphors for electrons as compared with /sup 60/Co gamma - rays. In the present study, the direct comparison excluded errors resulting from uncertainties about ion recombination and conversion factors from roentgens to rads for ionization chambers. The dosemeters were exposed to approximately 5000 rads of each radiation at the appropriate peak depthmore » in a water phantom. Corrections for the supra-linear response for LiF were made using a dose response curve for /sup 60/Co gamma -rays. The three types of LiF phosphor examined did not exhibit any energy dependence for electrons compared with /sup 60/Co gamma - rays. Within the statistical uncertainty (~3%) for the experiment. (UK)« less
NASA Astrophysics Data System (ADS)
Dolotovskii, I. V.; Dolotovskaya, N. V.; Larin, E. A.
2018-05-01
The article presents the architecture and content of a specialized analytical system for monitoring operational conditions, planning of consumption and generation of energy resources, long-term planning of production activities and development of a strategy for the development of the energy complex of gas processing enterprises. A compositional model of structured data on the equipment of the main systems of the power complex is proposed. The correctness of the use of software modules and the database of the analytical system is confirmed by comparing the results of measurements on the equipment of the electric power system and simulation at the operating gas processing plant. A high accuracy in the planning of consumption of fuel and energy resources has been achieved (the error does not exceed 1%). Information and program modules of the analytical system allow us to develop a strategy for improving the energy complex in the face of changing technological topology and partial uncertainty of economic factors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yingchen; Tan, Jin; Krad, Ibrahim
Power system frequency needs to be maintained close to its nominal value at all times to successfully balance load and generation and maintain system reliability. Adequate primary frequency response and secondary frequency response are the primary forces to correct an energy imbalance at the second-to-minute level. As wind energy becomes a larger portion of the world's energy portfolio, there is an increased need for wind to provide frequency response. This paper addresses one of the major concerns about using wind for frequency regulation: the unknown factor of the interaction between primary and secondary reserves. The lack of a commercially availablemore » tool to model this has limited the energy industry's understanding of when the depletion of primary reserves will impact the performance of secondary response or vice versa. This paper investigates the issue by developing a multi-area frequency response integration tool with combined primary and secondary capabilities. The simulation is conducted in close coordination with economical energy scheduling scenarios to ensure credible simulation results.« less
Tedgren, Asa Carlsson; Hedman, Angelica; Grindborg, Jan-Erik; Carlsson, Gudrun Alm
2011-10-01
High energy photon beams are used in calibrating dosimeters for use in brachytherapy since absorbed dose to water can be determined accurately and with traceability to primary standards in such beams, using calibrated ion chambers and standard dosimetry protocols. For use in brachytherapy, beam quality correction factors are needed, which include corrections for differences in mass energy absorption properties between water and detector as well as variations in detector response (intrinsic efficiency) with radiation quality, caused by variations in the density of ionization (linear energy transfer (LET) -distributions) along the secondary electron tracks. The aim of this work was to investigate experimentally the detector response of LiF:Mg,Ti thermoluminescent dosimeters (TLD) for photon energies below 1 MeV relative to (60)Co and to address discrepancies between the results found in recent publications of detector response. LiF:Mg,Ti dosimeters of formulation MTS-N Poland were irradiated to known values of air kerma free-in-air in x-ray beams at tube voltages 25-250 kV, in (137)Cs- and (60)Co-beams at the Swedish Secondary Standards Dosimetry Laboratory. Conversions from air kerma free-in-air into values of mean absorbed dose in the dosimeters in the actual irradiation geometries were made using EGSnrc Monte Carlo simulations. X-ray energy spectra were measured or calculated for the actual beams. Detector response relative to that for (60)Co was determined at each beam quality. An increase in relative response was seen for all beam qualities ranging from 8% at tube voltage 25 kV (effective energy 13 keV) to 3%-4% at 250 kV (122 keV effective energy) and (137)Cs with a minimum at 80 keV effective energy (tube voltage 180 kV). The variation with effective energy was similar to that reported by Davis et al. [Radiat. Prot. Dosim. 106, 33-43 (2003)] with our values being systematically lower by 2%-4%. Compared to the results by Nunn et al. [Med. Phys. 35, 1861-1869 (2008)], the relative detector response as a function of effective energy differed in both shape and magnitude. This could be explained by the higher maximum read-out temperature (350 °C) used by Nunn et al. [Med. Phys. 35, 1861-1869 (2008)], allowing light emitted from high-temperature peaks with a strong LET dependence to be registered. Use of TLD-100 by Davis et al. [Radiat. Prot. Dosim. 106, 33-43 (2003)] with a stronger super-linear dose response compared to MTS-N was identified as causing the lower relative detector response in this work. Both careful dosimetry and strict protocols for handling the TLDs are required to reach solid experimental data on relative detector response. This work confirms older findings that an over-response relative to (60)Co exists for photon energies below 200-300 keV. Comparison with the results from the literature indicates that using similar protocols for annealing and read-out, dosimeters of different makes (TLD-100, MTS-N) differ in relative detector response. Though universality of the results has not been proven and further investigation is needed, it is anticipated that with the use of strict protocols for annealing and read-out, it will be possible to determine correction factors that can be used to reduce uncertainties in dose measurements around brachytherapy sources at photon energies where primary standards for absorbed dose to water are not available.
77 FR 54573 - Agency Information Collection; Correction
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-05
... DEPARTMENT OF ENERGY Agency Information Collection; Correction AGENCY: U.S. Department of Energy... document in the Federal Register of August 24, 2012, announcing the submission of an information request to... notice. FOR FURTHER INFORMATION CONTACT: Requests for additional information or copies of the information...
Neutron Capture and the Antineutrino Yield from Nuclear Reactors.
Huber, Patrick; Jaffke, Patrick
2016-03-25
We identify a new, flux-dependent correction to the antineutrino spectrum as produced in nuclear reactors. The abundance of certain nuclides, whose decay chains produce antineutrinos above the threshold for inverse beta decay, has a nonlinear dependence on the neutron flux, unlike the vast majority of antineutrino producing nuclides, whose decay rate is directly related to the fission rate. We have identified four of these so-called nonlinear nuclides and determined that they result in an antineutrino excess at low energies below 3.2 MeV, dependent on the reactor thermal neutron flux. We develop an analytic model for the size of the correction and compare it to the results of detailed reactor simulations for various real existing reactors, spanning 3 orders of magnitude in neutron flux. In a typical pressurized water reactor the resulting correction can reach ∼0.9% of the low energy flux which is comparable in size to other, known low-energy corrections from spent nuclear fuel and the nonequilibrium correction. For naval reactors the nonlinear correction may reach the 5% level by the end of cycle.
Unexpected bias in NIST 4πγ ionization chamber measurements.
Unterweger, M P; Fitzgerald, R
2012-09-01
In January of 2010, it was discovered that the source holder used for calibrations in the NIST 4πγ ionization chamber (IC) has not been stable. The positioning ring that determines the height of the sample in the reentrant tube of the IC has slowly shifted during 35 years of use. This has led to a slow change in the calibration factors for the various radionuclides measured by this instrument. The changes are dependent on γ-ray energy and the time the IC was calibrated for a given radionuclide. A review of the historic data with regard to when the calibrations were done has enabled us to approximate the magnitude of the changes with time. This requires a number of assumptions, and corresponding uncertainty components, including whether the changes in height were gradual or in steps as will be shown in drawings of sample holder. For calibrations the changes in calibration factors have been most significant for low energy gamma emitters such as (133)Xe, (241)Am, (125)I and (85)Kr. The corrections to previous calibrations can be approximated and the results corrected with an increase in the overall uncertainty. At present we are recalibrating the IC based on new primary measurements of the radionuclides measured on the IC. Likewise we have been calibrating a new automated ionization-chamber system. A bigger problem is the significant number of half-life results NIST has published over the last 35 years that are based on IC measurements. The effect on half-life is largest for long-lived radionuclei, especially low-energy γ-ray emitters. This presentation will review our results and recommend changes in values and/or uncertainties. Any recommendation for withdrawal of any results will also be undertaken. Published by Elsevier Ltd.
Kinetic Energy Corrections for Slip-Stick Behavior in Brittle Adhesives
NASA Technical Reports Server (NTRS)
Macon, David J.; Anderson, Greg L.; McCool, Alex (Technical Monitor)
2001-01-01
Fracture mechanics is the study of the failure of a body that contains a flaw. In the energy balance approach to fracture mechanics, contributions from the external work and elastic strain energy are accounted for but rarely are corrections for the kinetic energy given. Under slip-stick conditions, part of the external work is expended as kinetic energy. The magnitude of this kinetic energy depends upon the shape of the crack. A specimen with a blunt crack will fail at a high load and the crack will catastrophically travel through the material until the kinetic energy is dissipated. Material with a sharp crack will fail at a lower load but will still be catastrophic in nature. A kinetic term is incorporated into the energy balance approach. This term accounts for the velocity of the crack after failure and how far the crack travels before arresting. This correction makes the shape of the initiation crack irrelevant. When applied to data generated by tapered double cantilever beam specimens under slip-stick conditions, the scatter in the measured critical strain energy release rate is significantly reduced.
Energy shadowing correction of ultrasonic pulse-echo records by digital signal processing
NASA Technical Reports Server (NTRS)
Kishonio, D.; Heyman, J. S.
1985-01-01
A numerical algorithm is described that enables the correction of energy shadowing during the ultrasonic testing of bulk materials. In the conventional method, an ultrasonic transducer transmits sound waves into a material that is immersed in water so that discontinuities such as defects can be revealed when the waves are reflected and then detected and displayed graphically. Since a defect that lies behind another defect is shadowed in that it receives less energy, the conventional method has a major drawback. The algorithm normalizes the energy of the incoming wave by measuring the energy of the waves reflected off the water/air interface. The algorithm is fast and simple enough to be adopted for real time applications in industry. Images of material defects with the shadowing corrections permit more quantitative interpretation of the material state.
β-particle energy-summing correction for β-delayed proton emission measurements
Meisel, Z.; del Santo, M.; Crawford, H. L.; ...
2016-11-14
One common approach to studying β-delayed proton emission is to measure the energy of the emitted proton and corresponding nuclear recoil in a double-sided silicon-strip detector (DSSD) after implanting the β-delayed proton-emitting (βp) nucleus. However, in order to extract the proton-decay energy, the measured energy must be corrected for the additional energy implanted in the DSSD by the β-particle emitted from the βp nucleus, an effect referred to here as β-summing. Here, we present an approach to determine an accurate correction for β-summing. Our method relies on the determination of the mean implantation depth of the βp nucleus within themore » DSSD by analyzing the shape of the total (proton + recoil + β) decay energy distribution shape. We validate this approach with other mean implantation depth measurement techniques that take advantage of energy deposition within DSSDs upstream and downstream of the implantation DSSD.« less
van de Streek, Jacco; Neumann, Marcus A
2014-12-01
In 2010 we energy-minimized 225 high-quality single-crystal (SX) structures with dispersion-corrected density functional theory (DFT-D) to establish a quantitative benchmark. For the current paper, 215 organic crystal structures determined from X-ray powder diffraction (XRPD) data and published in an IUCr journal were energy-minimized with DFT-D and compared to the SX benchmark. The on average slightly less accurate atomic coordinates of XRPD structures do lead to systematically higher root mean square Cartesian displacement (RMSCD) values upon energy minimization than for SX structures, but the RMSCD value is still a good indicator for the detection of structures that deserve a closer look. The upper RMSCD limit for a correct structure must be increased from 0.25 Å for SX structures to 0.35 Å for XRPD structures; the grey area must be extended from 0.30 to 0.40 Å. Based on the energy minimizations, three structures are re-refined to give more precise atomic coordinates. For six structures our calculations provide the missing positions for the H atoms, for five structures they provide corrected positions for some H atoms. Seven crystal structures showed a minor error for a non-H atom. For five structures the energy minimizations suggest a higher space-group symmetry. For the 225 SX structures, the only deviations observed upon energy minimization were three minor H-atom related issues. Preferred orientation is the most important cause of problems. A preferred-orientation correction is the only correction where the experimental data are modified to fit the model. We conclude that molecular crystal structures determined from powder diffraction data that are published in IUCr journals are of high quality, with less than 4% containing an error in a non-H atom.
van de Streek, Jacco; Neumann, Marcus A.
2014-01-01
In 2010 we energy-minimized 225 high-quality single-crystal (SX) structures with dispersion-corrected density functional theory (DFT-D) to establish a quantitative benchmark. For the current paper, 215 organic crystal structures determined from X-ray powder diffraction (XRPD) data and published in an IUCr journal were energy-minimized with DFT-D and compared to the SX benchmark. The on average slightly less accurate atomic coordinates of XRPD structures do lead to systematically higher root mean square Cartesian displacement (RMSCD) values upon energy minimization than for SX structures, but the RMSCD value is still a good indicator for the detection of structures that deserve a closer look. The upper RMSCD limit for a correct structure must be increased from 0.25 Å for SX structures to 0.35 Å for XRPD structures; the grey area must be extended from 0.30 to 0.40 Å. Based on the energy minimizations, three structures are re-refined to give more precise atomic coordinates. For six structures our calculations provide the missing positions for the H atoms, for five structures they provide corrected positions for some H atoms. Seven crystal structures showed a minor error for a non-H atom. For five structures the energy minimizations suggest a higher space-group symmetry. For the 225 SX structures, the only deviations observed upon energy minimization were three minor H-atom related issues. Preferred orientation is the most important cause of problems. A preferred-orientation correction is the only correction where the experimental data are modified to fit the model. We conclude that molecular crystal structures determined from powder diffraction data that are published in IUCr journals are of high quality, with less than 4% containing an error in a non-H atom. PMID:25449625
Atomic scale study of surface orientations and energies of Ti 2 O 3 crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gu, Meng; Wang, Zhiguo; Wang, Chongmin
2017-10-30
For nanostructured particles, the faceting planes and their terminating chemical species are two critical factors that govern the chemical behavior of the particle. The surface atomistic structure and termination of the Ti2O3 crystals were analyzed using atomic-scale aberration-corrected scanning transmission electron microscopy (STEM) combining with density functional theory (DFT) calculations. STEM imaging reveals that the Ti2O3 crystal are most often faceted along (001), (012), (-114) and (1-20) planes. DFT calculation indicates that the (012) surface with TiO-termination have the lowest cleavage energy and correspondingly the lowest surface energy, indicating that (012) will be the most stable and prevalent surfaces inmore » Ti2O3 nanocrystals. These observations provide insights for exploring the interfacial process involving Ti2O3 nanoparticles.« less
Robert, Mark E; Linthicum, Fred H
2016-01-01
Profile count method for estimating cell number in sectioned tissue applies a correction factor for double count (resulting from transection during sectioning) of count units selected to represent the cell. For human spiral ganglion cell counts, we attempted to address apparent confusion between published correction factors for nucleus and nucleolus count units that are identical despite the role of count unit diameter in a commonly used correction factor formula. We examined a portion of human cochlea to empirically derive correction factors for the 2 count units, using 3-dimensional reconstruction software to identify double counts. The Neurotology and House Histological Temporal Bone Laboratory at University of California at Los Angeles. Using a fully sectioned and stained human temporal bone, we identified and generated digital images of sections of the modiolar region of the lower first turn of cochlea, identified count units with a light microscope, labeled them on corresponding digital sections, and used 3-dimensional reconstruction software to identify double-counted count units. For 25 consecutive sections, we determined that double-count correction factors for nucleus count unit (0.91) and nucleolus count unit (0.92) matched the published factors. We discovered that nuclei and, therefore, spiral ganglion cells were undercounted by 6.3% when using nucleolus count units. We determined that correction factors for count units must include an element for undercounting spiral ganglion cells as well as the double-count element. We recommend a correction factor of 0.91 for the nucleus count unit and 0.98 for the nucleolus count unit when using 20-µm sections. © American Academy of Otolaryngology—Head and Neck Surgery Foundation 2015.
Energy-energy correlation in electron-positron annihilation at NNLL + NNLO accuracy
NASA Astrophysics Data System (ADS)
Tulipánt, Zoltán; Kardos, Adam; Somogyi, Gábor
2017-11-01
We present the computation of energy-energy correlation in e^+e^- collisions in the back-to-back region at next-to-next-to-leading logarithmic accuracy matched with the next-to-next-to-leading order perturbative prediction. We study the effect of the fixed higher-order corrections in a comparison of our results to LEP and SLC data. The next-to-next-to-leading order correction has a sizable impact on the extracted value of α S(M_Z), hence its inclusion is mandatory for a precise measurement of the strong coupling using energy-energy correlation.
NASA Astrophysics Data System (ADS)
Saiful Huq, M.; Andreo, Pedro; Song, Haijun
2001-11-01
The International Atomic Energy Agency (IAEA TRS-398) and the American Association of Physicists in Medicine (AAPM TG-51) have published new protocols for the calibration of radiotherapy beams. These protocols are based on the use of an ionization chamber calibrated in terms of absorbed dose to water in a standards laboratory's reference quality beam. This paper compares the recommendations of the two protocols in two ways: (i) by analysing in detail the differences in the basic data included in the two protocols for photon and electron beam dosimetry and (ii) by performing measurements in clinical photon and electron beams and determining the absorbed dose to water following the recommendations of the two protocols. Measurements were made with two Farmer-type ionization chambers and three plane-parallel ionization chamber types in 6, 18 and 25 MV photon beams and 6, 8, 10, 12, 15 and 18 MeV electron beams. The Farmer-type chambers used were NE 2571 and PTW 30001, and the plane-parallel chambers were a Scanditronix-Wellhöfer NACP and Roos, and a PTW Markus chamber. For photon beams, the measured ratios TG-51/TRS-398 of absorbed dose to water Dw ranged between 0.997 and 1.001, with a mean value of 0.999. The ratios for the beam quality correction factors kQ were found to agree to within about +/-0.2% despite significant differences in the method of beam quality specification for photon beams and in the basic data entering into kQ. For electron beams, dose measurements were made using direct ND,w calibrations of cylindrical and plane-parallel chambers in a 60Co gamma-ray beam, as well as cross-calibrations of plane-parallel chambers in a high-energy electron beam. For the direct ND,w calibrations the ratios TG-51/TRS-398 of absorbed dose to water Dw were found to lie between 0.994 and 1.018 depending upon the chamber and electron beam energy used, with mean values of 0.996, 1.006, and 1.017, respectively, for the cylindrical, well-guarded and not well-guarded plane-parallel chambers. The Dw ratios measured for the cross-calibration procedures varied between 0.993 and 0.997. The largest discrepancies for electron beams between the two protocols arise from the use of different data for the perturbation correction factors pwall and pdis of cylindrical and plane-parallel chambers, all in 60Co. A detailed analysis of the reasons for the discrepancies is made which includes comparing the formalisms, correction factors and the quantities in the two protocols.
Goodsitt, Mitchell M.; Shenoy, Apeksha; Shen, Jincheng; Howard, David; Schipper, Matthew J.; Wilderman, Scott; Christodoulou, Emmanuel; Chun, Se Young; Dewaraja, Yuni K.
2014-01-01
Purpose: To evaluate a three-equation three-unknown dual-energy quantitative CT (DEQCT) technique for determining region specific variations in bone spongiosa composition for improved red marrow dose estimation in radionuclide therapy. Methods: The DEQCT method was applied to 80/140 kVp images of patient-simulating lumbar sectional body phantoms of three sizes (small, medium, and large). External calibration rods of bone, red marrow, and fat-simulating materials were placed beneath the body phantoms. Similar internal calibration inserts were placed at vertebral locations within the body phantoms. Six test inserts of known volume fractions of bone, fat, and red marrow were also scanned. External-to-internal calibration correction factors were derived. The effects of body phantom size, radiation dose, spongiosa region segmentation granularity [single (∼17 × 17 mm) region of interest (ROI), 2 × 2, and 3 × 3 segmentation of that single ROI], and calibration method on the accuracy of the calculated volume fractions of red marrow (cellularity) and trabecular bone were evaluated. Results: For standard low dose DEQCT x-ray technique factors and the internal calibration method, the RMS errors of the estimated volume fractions of red marrow of the test inserts were 1.2–1.3 times greater in the medium body than in the small body phantom and 1.3–1.5 times greater in the large body than in the small body phantom. RMS errors of the calculated volume fractions of red marrow within 2 × 2 segmented subregions of the ROIs were 1.6–1.9 times greater than for no segmentation, and RMS errors for 3 × 3 segmented subregions were 2.3–2.7 times greater than those for no segmentation. Increasing the dose by a factor of 2 reduced the RMS errors of all constituent volume fractions by an average factor of 1.40 ± 0.29 for all segmentation schemes and body phantom sizes; increasing the dose by a factor of 4 reduced those RMS errors by an average factor of 1.71 ± 0.25. Results for external calibrations exhibited much larger RMS errors than size matched internal calibration. Use of an average body size external-to-internal calibration correction factor reduced the errors to closer to those for internal calibration. RMS errors of less than 30% or about 0.01 for the bone and 0.1 for the red marrow volume fractions would likely be satisfactory for human studies. Such accuracies were achieved for 3 × 3 segmentation of 5 mm slice images for: (a) internal calibration with 4 times dose for all size body phantoms, (b) internal calibration with 2 times dose for the small and medium size body phantoms, and (c) corrected external calibration with 4 times dose and all size body phantoms. Conclusions: Phantom studies are promising and demonstrate the potential to use dual energy quantitative CT to estimate the spatial distributions of red marrow and bone within the vertebral spongiosa. PMID:24784380
Thermalization Time Bounds for Pauli Stabilizer Hamiltonians
NASA Astrophysics Data System (ADS)
Temme, Kristan
2017-03-01
We prove a general lower bound to the spectral gap of the Davies generator for Hamiltonians that can be written as the sum of commuting Pauli operators. These Hamiltonians, defined on the Hilbert space of N-qubits, serve as one of the most frequently considered candidates for a self-correcting quantum memory. A spectral gap bound on the Davies generator establishes an upper limit on the life time of such a quantum memory and can be used to estimate the time until the system relaxes to thermal equilibrium when brought into contact with a thermal heat bath. The bound can be shown to behave as {λ ≥ O(N^{-1} exp(-2β overline{ɛ}))}, where {overline{ɛ}} is a generalization of the well known energy barrier for logical operators. Particularly in the low temperature regime we expect this bound to provide the correct asymptotic scaling of the gap with the system size up to a factor of N -1. Furthermore, we discuss conditions and provide scenarios where this factor can be removed and a constant lower bound can be proven.
NASA Astrophysics Data System (ADS)
Kim, Go-Un; Seo, Kyong-Hwan
2018-01-01
A key physical factor in regulating the performance of Madden-Julian oscillation (MJO) simulation is examined by using 26 climate model simulations from the World Meteorological Organization's Working Group for Numerical Experimentation/Global Energy and Water Cycle Experiment Atmospheric System Study (WGNE and MJO-Task Force/GASS) global model comparison project. For this, intraseasonal moisture budget equation is analyzed and a simple, efficient physical quantity is developed. The result shows that MJO skill is most sensitive to vertically integrated intraseasonal zonal wind convergence (ZC). In particular, a specific threshold value of the strength of the ZC can be used as distinguishing between good and poor models. An additional finding is that good models exhibit the correct simultaneous convection and large-scale circulation phase relationship. In poor models, however, the peak circulation response appears 3 days after peak rainfall, suggesting unfavorable coupling between convection and circulation. For an improving simulation of the MJO in climate models, we propose that this delay of circulation in response to convection needs to be corrected in the cumulus parameterization scheme.
Establishing a NORM based radiation calibration facility.
Wallace, J
2016-05-01
An environmental radiation calibration facility has been constructed by the Radiation and Nuclear Sciences unit of Queensland Health at the Forensic and Scientific Services Coopers Plains campus in Brisbane. This facility consists of five low density concrete pads, spiked with a NORM source, to simulate soil and effectively provide a number of semi-infinite uniformly distributed sources for improved energy response calibrations of radiation equipment used in NORM measurements. The pads have been sealed with an environmental epoxy compound to restrict radon loss and so enhance the quality of secular equilibrium achieved. Monte Carlo models (MCNP),used to establish suitable design parameters and identify appropriate geometric correction factors linking the air kerma measured above these calibration pads to that predicted for an infinite plane using adjusted ICRU53 data, are discussed. Use of these correction factors as well as adjustments for cosmic radiation and the impact of surrounding low levels of NORM in the soil, allows for good agreement between the radiation fields predicted and measured above the pads at both 0.15 m and 1 m. Copyright © 2016 Elsevier Ltd. All rights reserved.
Hard diffraction in the QCD dipole picture
NASA Astrophysics Data System (ADS)
Bialas, A.; Peschanski, R.
1996-02-01
Using the QCD dipole picture of the BFKL pomeron, the gluon contribution to the cross-section for single diffractive dissociation in deep-inelastic high-energy scattering is calculated. The resulting contribution to the proton diffractive structure function integrated over t is given in terms of relevant variables, xP, Q2, and β = {x Bj}/{x P}. It factorizes into an explicit x P-dependent Hard Pomeron flux factor and structure function. The lux factor is found to have substantial logarithmic corrections which may account for the recent measurements of the Pomeron intercept in this process. The triple Pomeron coupling is shown to be strongly enhanced by the resummation of leading logs. The obtained pattern of scaling violation at small β is similar to that for F2 at small xBj.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jia, Yu; Kavli Institute for Theoretical Physics China, Chinese Academy of Sciences, Beijing 100190
We study the first-order relativistic correction to the associated production of J/{psi} with light hadrons at B factory experiments at {radical}(s)=10.58 GeV, in the context of nonrelativistic QCD (NRQCD) factorization. We employ a strategy for NRQCD expansion that slightly deviates from the orthodox doctrine, in that the matching coefficients are not truly of a ''short-distance'' nature, but explicitly depend upon physical kinematic variables rather than partonic ones. Our matching method, with validity guaranteed by the Gremm-Kapustin relation, is particularly suited for the inclusive quarkonium production and decay processes with involved kinematics, exemplified by the process e{sup +}e{sup -}{yields}J/{psi}+gg considered inmore » this work. Despite some intrinsic ambiguity affiliated with the order-v{sup 2} NRQCD matrix element, if we choose its value as what has been extracted from a recent Cornell-potential-model-based analysis, including the relative order-v{sup 2} effect is found to increase the lowest-order prediction for the integrated J/{psi} cross section by about 30%, and exert a modest impact on J/{psi} energy, angular and polarization distributions except near the very upper end of the J/{psi} energy. The order-v{sup 2} contribution to the energy spectrum becomes logarithmically divergent at the maximum of J/{psi} energy. A consistent analysis may require that these large end-point logarithms be resummed to all orders in {alpha}{sub s}.« less
Resonant Inverse Compton Scattering Spectra from Highly Magnetized Neutron Stars
NASA Astrophysics Data System (ADS)
Wadiasingh, Zorawar; Baring, Matthew G.; Gonthier, Peter L.; Harding, Alice K.
2018-02-01
Hard, nonthermal, persistent pulsed X-ray emission extending between 10 and ∼150 keV has been observed in nearly 10 magnetars. For inner-magnetospheric models of such emission, resonant inverse Compton scattering of soft thermal photons by ultrarelativistic charges is the most efficient production mechanism. We present angle-dependent upscattering spectra and pulsed intensity maps for uncooled, relativistic electrons injected in inner regions of magnetar magnetospheres, calculated using collisional integrals over field loops. Our computations employ a new formulation of the QED Compton scattering cross section in strong magnetic fields that is physically correct for treating important spin-dependent effects in the cyclotron resonance, thereby producing correct photon spectra. The spectral cutoff energies are sensitive to the choices of observer viewing geometry, electron Lorentz factor, and scattering kinematics. We find that electrons with energies ≲15 MeV will emit most of their radiation below 250 keV, consistent with inferred turnovers for magnetar hard X-ray tails. More energetic electrons still emit mostly below 1 MeV, except for viewing perspectives sampling field-line tangents. Pulse profiles may be singly or doubly peaked dependent on viewing geometry, emission locale, and observed energy band. Magnetic pair production and photon splitting will attenuate spectra to hard X-ray energies, suppressing signals in the Fermi-LAT band. The resonant Compton spectra are strongly polarized, suggesting that hard X-ray polarimetry instruments such as X-Calibur, or a future Compton telescope, can prove central to constraining model geometry and physics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Czarnecki, D; Voigts-Rhetz, P von; Zink, K
2016-06-15
Purpose: The impact of removing the flattening filter on absolute dosimetry based on IAEA’s TPR-398 and AAPM’s TG-51 was investigated in this study using Monte Carlo simulations. Methods: The EGSnrc software package was used for all Monte Carlo simulations performed in this work. Five different ionization chambers and nine linear accelerator heads have been modeled according to technical drawings. To generate a flattening filter free radiation field the flattening filter was replaced by a 2 mm thick aluminum layer. Dose calculation in a water phantom were performed to calculate the beam quality correction factor k{sub Q} as a function ofmore » the beam quality specifiers %dd(10){sub x}, TPR{sub 20,10} and mean photon and electron energies at the point of measurement in photon fields with (WFF) and without flattening filter (FFF). Results: The beam quality correction factor as a function of %dd(10){sub x} differs systematically between FFF and WFF beams for all investigated ionization chambers. The largest difference of 1.8% was observed for the largest investigated Farmer-type ionization chamber with a sensitive volume of 0.69 cm{sup 3}. For ionization chambers with a smaller nominal sensitive volume (0.015 – 0.3 cm{sup 3}) the deviation was less than 0.4% between WFF and FFF beams for %dd(10){sub x} > 62%. The specifier TPR{sub 20,10} revealed only a good correlation between WFF and FFF beams (< 0.3%) for low energies. Conclusion: The results confirm that %dd(10){sub x} is a suitable beam quality specifier for FFF beams with an acceptable bias. The deviation depends on the volume of the ionization chamber. Using %dd(10){sub x} to predict k{sub Q} for a large volume chamber in a FFF photon field may lead to not acceptable errors according to the results of this study. This bias may be caused by the volume effect due to the inhomogeneous photon fields of FFF linear accelerators.« less
Reis, C Q M; Nicolucci, P
2016-02-01
The purpose of this study was to investigate Monte Carlo-based perturbation and beam quality correction factors for ionization chambers in photon beams using a saving time strategy with PENELOPE code. Simulations for calculating absorbed doses to water using full spectra of photon beams impinging the whole water phantom and those using a phase-space file previously stored around the point of interest were performed and compared. The widely used NE2571 ionization chamber was modeled with PENELOPE using data from the literature in order to calculate absorbed doses to the air cavity of the chamber. Absorbed doses to water at reference depth were also calculated for providing the perturbation and beam quality correction factors for that chamber in high energy photon beams. Results obtained in this study show that simulations with phase-space files appropriately stored can be up to ten times shorter than using a full spectrum of photon beams in the input-file. Values of kQ and its components for the NE2571 ionization chamber showed good agreement with published values in the literature and are provided with typical statistical uncertainties of 0.2%. Comparisons to kQ values published in current dosimetry protocols such as the AAPM TG-51 and IAEA TRS-398 showed maximum percentage differences of 0.1% and 0.6% respectively. The proposed strategy presented a significant efficiency gain and can be applied for a variety of ionization chambers and clinical photon beams. Copyright © 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Renaud, James, E-mail: james.renaud@mail.mcgill.ca; Seuntjens, Jan; Sarfehnia, Arman
Purpose: In this work, the authors describe an electron sealed water calorimeter (ESWcal) designed to directly measure absorbed dose to water in clinical electron beams and its use to derive electron beam quality conversion factors for two ionization chamber types. Methods: A functioning calorimeter prototype was constructed in-house and used to obtain reproducible measurements in clinical accelerator-based 6, 9, 12, 16, and 20 MeV electron beams. Corrections for the radiation field perturbation due to the presence of the glass calorimeter vessel were calculated using Monte Carlo (MC) simulations. The conductive heat transfer due to dose gradients and nonwater materials wasmore » also accounted for using a commercial finite element method software package. Results: The relative combined standard uncertainty on the ESWcal dose was estimated to be 0.50% for the 9–20 MeV beams and 1.00% for the 6 MeV beam, demonstrating that the development of a water calorimeter-based standard for electron beams over such a wide range of clinically relevant energies is feasible. The largest contributor to the uncertainty was the positioning (Type A, 0.10%–0.40%) and its influence on the perturbation correction (Type B, 0.10%–0.60%). As a preliminary validation, measurements performed with the ESWcal in a 6 MV photon beam were directly compared to results derived from the National Research Council of Canada (NRC) photon beam standard water calorimeter. These two independent devices were shown to agree well within the 0.43% combined relative uncertainty of the ESWcal for this beam type and quality. Absorbed dose electron beam quality conversion factors were measured using the ESWcal for the Exradin A12 and PTW Roos ionization chambers. The photon-electron conversion factor, k{sub ecal}, for the A12 was also experimentally determined. Nonstatistically significant differences of up to 0.7% were found when compared to the calculation-based factors listed in the AAPM’s TG-51 protocol. General agreement between the relative electron energy dependence of the PTW Roos data measured in this work and a recent MC-based study are also shown. Conclusions: This is the first time that water calorimetry has been successfully used to measure electron beam quality conversion factors for energies as low as 6 MeV (R{sub 50} = 2.25 cm)« less
Superconducting qubit in a waveguide cavity with a coherence time approaching 0.1 ms
NASA Astrophysics Data System (ADS)
Rigetti, Chad; Gambetta, Jay M.; Poletto, Stefano; Plourde, B. L. T.; Chow, Jerry M.; Córcoles, A. D.; Smolin, John A.; Merkel, Seth T.; Rozen, J. R.; Keefe, George A.; Rothwell, Mary B.; Ketchen, Mark B.; Steffen, M.
2012-09-01
We report a superconducting artificial atom with a coherence time of T2*=92 μs and energy relaxation time T1=70 μs. The system consists of a single Josephson junction transmon qubit on a sapphire substrate embedded in an otherwise empty copper waveguide cavity whose lowest eigenmode is dispersively coupled to the qubit transition. We attribute the factor of four increase in the coherence quality factor relative to previous reports to device modifications aimed at reducing qubit dephasing from residual cavity photons. This simple device holds promise as a robust and easily produced artificial quantum system whose intrinsic coherence properties are sufficient to allow tests of quantum error correction.
Cosmic Strings Stabilized by Quantum Fluctuations
NASA Astrophysics Data System (ADS)
Weigel, H.
2017-03-01
Fermion quantum corrections to the energy of cosmic strings are computed. A number of rather technical tools are needed to formulate this correction, and isospin and gauge invariance are employed to verify consistency of these tools. These corrections must also be included when computing the energy of strings that are charged by populating fermion bound states in its background. It is found that charged strings are dynamically stabilized in theories similar to the standard model of particle physics.
Two-photon exchange correction to the hyperfine splitting in muonic hydrogen
NASA Astrophysics Data System (ADS)
Tomalak, Oleksandr
2017-12-01
We reevaluate the Zemach, recoil and polarizability corrections to the hyperfine splitting in muonic hydrogen expressing them through the low-energy proton structure constants and obtain the precise values of the Zemach radius and two-photon exchange (TPE) contribution. The uncertainty of TPE correction to S energy levels in muonic hydrogen of 105 ppm exceeds the ppm accuracy level of the forthcoming 1S hyperfine splitting measurements at PSI, J-PARC and RIKEN-RAL.
NASA Astrophysics Data System (ADS)
Zherebtsov, O. M.; Shabaev, V. M.; Yerokhin, V. A.
2000-12-01
Third-order interelectronic-interaction correction to the energies of (1 s) 22 s and (1 s) 22 p1/2 states of high- Z lithiumlike ions is evaluated within the Breit approximation in the range 20⩽ Z⩽100. The calculation is carried out using both the relativistic configuration-interaction method and perturbation theory. The correction is shown to be important for the comparison of theory and experiment.
Centrality categorization for Rp (d)+A in high-energy collisions
NASA Astrophysics Data System (ADS)
Adare, A.; Aidala, C.; Ajitanand, N. N.; Akiba, Y.; Al-Bataineh, H.; Alexander, J.; Angerami, A.; Aoki, K.; Apadula, N.; Aramaki, Y.; Atomssa, E. T.; Averbeck, R.; Awes, T. C.; Azmoun, B.; Babintsev, V.; Bai, M.; Baksay, G.; Baksay, L.; Barish, K. N.; Bassalleck, B.; Basye, A. T.; Bathe, S.; Baublis, V.; Baumann, C.; Bazilevsky, A.; Belikov, S.; Belmont, R.; Bennett, R.; Bhom, J. H.; Blau, D. S.; Bok, J. S.; Boyle, K.; Brooks, M. L.; Buesching, H.; Bumazhnov, V.; Bunce, G.; Butsyk, S.; Campbell, S.; Caringi, A.; Chen, C.-H.; Chi, C. Y.; Chiu, M.; Choi, I. J.; Choi, J. B.; Choudhury, R. K.; Christiansen, P.; Chujo, T.; Chung, P.; Chvala, O.; Cianciolo, V.; Citron, Z.; Cole, B. A.; Conesa Del Valle, Z.; Connors, M.; Csanád, M.; Csörgő, T.; Dahms, T.; Dairaku, S.; Danchev, I.; Das, K.; Datta, A.; David, G.; Dayananda, M. K.; Denisov, A.; Deshpande, A.; Desmond, E. J.; Dharmawardane, K. V.; Dietzsch, O.; Dion, A.; Donadelli, M.; Drapier, O.; Drees, A.; Drees, K. A.; Durham, J. M.; Durum, A.; Dutta, D.; D'Orazio, L.; Edwards, S.; Efremenko, Y. V.; Ellinghaus, F.; Engelmore, T.; Enokizono, A.; En'yo, H.; Esumi, S.; Fadem, B.; Fields, D. E.; Finger, M.; Finger, M.; Fleuret, F.; Fokin, S. L.; Fraenkel, Z.; Frantz, J. E.; Franz, A.; Frawley, A. D.; Fujiwara, K.; Fukao, Y.; Fusayasu, T.; Garishvili, I.; Glenn, A.; Gong, H.; Gonin, M.; Goto, Y.; Granier de Cassagnac, R.; Grau, N.; Greene, S. V.; Grim, G.; Grosse Perdekamp, M.; Gunji, T.; Gustafsson, H.-Å.; Haggerty, J. S.; Hahn, K. I.; Hamagaki, H.; Hamblen, J.; Han, R.; Hanks, J.; Haslum, E.; Hayano, R.; He, X.; Heffner, M.; Hemmick, T. K.; Hester, T.; Hill, J. C.; Hohlmann, M.; Holzmann, W.; Homma, K.; Hong, B.; Horaguchi, T.; Hornback, D.; Huang, S.; Ichihara, T.; Ichimiya, R.; Ikeda, Y.; Imai, K.; Inaba, M.; Isenhower, D.; Ishihara, M.; Issah, M.; Ivanischev, D.; Iwanaga, Y.; Jacak, B. V.; Jia, J.; Jiang, X.; Jin, J.; Johnson, B. M.; Jones, T.; Joo, K. S.; Jouan, D.; Jumper, D. S.; Kajihara, F.; Kamin, J.; Kang, J. H.; Kapustinsky, J.; Karatsu, K.; Kasai, M.; Kawall, D.; Kawashima, M.; Kazantsev, A. V.; Kempel, T.; Khanzadeev, A.; Kijima, K. M.; Kikuchi, J.; Kim, A.; Kim, B. I.; Kim, D. J.; Kim, E.-J.; Kim, Y.-J.; Kinney, E.; Kiss, Á.; Kistenev, E.; Kleinjan, D.; Kochenda, L.; Komkov, B.; Konno, M.; Koster, J.; Král, A.; Kravitz, A.; Kunde, G. J.; Kurita, K.; Kurosawa, M.; Kwon, Y.; Kyle, G. S.; Lacey, R.; Lai, Y. S.; Lajoie, J. G.; Lebedev, A.; Lee, D. M.; Lee, J.; Lee, K. B.; Lee, K. S.; Leitch, M. J.; Leite, M. A. L.; Li, X.; Lichtenwalner, P.; Liebing, P.; Linden Levy, L. A.; Liška, T.; Liu, H.; Liu, M. X.; Love, B.; Lynch, D.; Maguire, C. F.; Makdisi, Y. I.; Malik, M. D.; Manko, V. I.; Mannel, E.; Mao, Y.; Masui, H.; Matathias, F.; McCumber, M.; McGaughey, P. L.; McGlinchey, D.; Means, N.; Meredith, B.; Miake, Y.; Mibe, T.; Mignerey, A. C.; Miki, K.; Milov, A.; Mitchell, J. T.; Mohanty, A. K.; Moon, H. J.; Morino, Y.; Morreale, A.; Morrison, D. P.; Moukhanova, T. V.; Murakami, T.; Murata, J.; Nagamiya, S.; Nagle, J. L.; Naglis, M.; Nagy, M. I.; Nakagawa, I.; Nakamiya, Y.; Nakamura, K. R.; Nakamura, T.; Nakano, K.; Nam, S.; Newby, J.; Nguyen, M.; Nihashi, M.; Nouicer, R.; Nyanin, A. S.; Oakley, C.; O'Brien, E.; Oda, S. X.; Ogilvie, C. A.; Oka, M.; Okada, K.; Onuki, Y.; Orjuela Koop, J. D.; Oskarsson, A.; Ouchida, M.; Ozawa, K.; Pak, R.; Pantuev, V.; Papavassiliou, V.; Park, I. H.; Park, S. K.; Park, W. J.; Pate, S. F.; Pei, H.; Peng, J.-C.; Pereira, H.; Perepelitsa, D.; Peressounko, D. Yu.; Petti, R.; Pinkenburg, C.; Pisani, R. P.; Proissl, M.; Purschke, M. L.; Qu, H.; Rak, J.; Ravinovich, I.; Read, K. F.; Rembeczki, S.; Reygers, K.; Riabov, V.; Riabov, Y.; Richardson, E.; Roach, D.; Roche, G.; Rolnick, S. D.; Rosati, M.; Rosen, C. A.; Rosendahl, S. S. E.; Ružička, P.; Sahlmueller, B.; Saito, N.; Sakaguchi, T.; Sakashita, K.; Samsonov, V.; Sano, S.; Sato, T.; Sawada, S.; Sedgwick, K.; Seele, J.; Seidl, R.; Seto, R.; Sharma, D.; Shein, I.; Shibata, T.-A.; Shigaki, K.; Shimomura, M.; Shoji, K.; Shukla, P.; Sickles, A.; Silva, C. L.; Silvermyr, D.; Silvestre, C.; Sim, K. S.; Singh, B. K.; Singh, C. P.; Singh, V.; Slunečka, M.; Soltz, R. A.; Sondheim, W. E.; Sorensen, S. P.; Sourikova, I. V.; Stankus, P. W.; Stenlund, E.; Stoll, S. P.; Sugitate, T.; Sukhanov, A.; Sziklai, J.; Takagui, E. M.; Taketani, A.; Tanabe, R.; Tanaka, Y.; Taneja, S.; Tanida, K.; Tannenbaum, M. J.; Tarafdar, S.; Taranenko, A.; Themann, H.; Thomas, D.; Thomas, T. L.; Togawa, M.; Toia, A.; Tomášek, L.; Torii, H.; Towell, R. S.; Tserruya, I.; Tsuchimoto, Y.; Vale, C.; Valle, H.; van Hecke, H. W.; Vazquez-Zambrano, E.; Veicht, A.; Velkovska, J.; Vértesi, R.; Virius, M.; Vrba, V.; Vznuzdaev, E.; Wang, X. R.; Watanabe, D.; Watanabe, K.; Watanabe, Y.; Wei, F.; Wei, R.; Wessels, J.; White, S. N.; Winter, D.; Woody, C. L.; Wright, R. M.; Wysocki, M.; Yamaguchi, Y. L.; Yamaura, K.; Yang, R.; Yanovich, A.; Ying, J.; Yokkaichi, S.; You, Z.; Young, G. R.; Younus, I.; Yushmanov, I. E.; Zajc, W. A.; Zhou, S.; Phenix Collaboration
2014-09-01
High-energy proton- and deuteron-nucleus collisions provide an excellent tool for studying a wide array of physics effects, including modifications of parton distribution functions in nuclei, gluon saturation, and color neutralization and hadronization in a nuclear environment, among others. All of these effects are expected to have a significant dependence on the size of the nuclear target and the impact parameter of the collision, also known as the collision centrality. In this article, we detail a method for determining centrality classes in p (d)+A collisions via cuts on the multiplicity at backward rapidity (i.e., the nucleus-going direction) and for determining systematic uncertainties in this procedure. For d +Au collisions at √sNN =200 GeV we find that the connection to geometry is confirmed by measuring the fraction of events in which a neutron from the deuteron does not interact with the nucleus. As an application, we consider the nuclear modification factors Rp (d)+A, for which there is a bias in the measured centrality-dependent yields owing to auto correlations between the process of interest and the backward-rapidity multiplicity. We determine the bias-correction factors within this framework. This method is further tested using the hijing Monte Carlo generator. We find that for d +Au collisions at √sNN =200 GeV, these bias corrections are small and vary by less than 5% (10%) up to pT=10 (20) GeV/c. In contrast, for p +Pb collisions at √sNN =5.02 TeV we find that these bias factors are an order of magnitude larger and strongly pT dependent, likely attributable to the larger effect of multiparton interactions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garza, Jorge; Nichols, Jeffrey A.; Dixon, David A.
2000-05-08
The Krieger, Li, and Iafrate approximation to the optimized effective potential including the self-interaction correction for density functional theory has been implemented in a molecular code, NWChem, that uses Gaussian functions to represent the Kohn and Sham spin-orbitals. The differences between the implementation of the self-interaction correction in codes where planewaves are used with an optimized effective potential are discussed. The importance of the localization of the spin-orbitals to maximize the exchange-correlation of the self-interaction correction is discussed. We carried out exchange-only calculations to compare the results obtained with these approximations, and those obtained with the local spin density approximation,more » the generalized gradient approximation and Hartree-Fock theory. Interesting results for the energy difference (GAP) between the highest occupied molecular orbital, HOMO, and the lowest unoccupied molecular orbital, LUMO, (spin-orbital energies of closed shell atoms and molecules) using the optimized effective potential and the self-interaction correction have been obtained. The effect of the diffuse character of the basis set on the HOMO and LUMO eigenvalues at the various levels is discussed. Total energies obtained with the optimized effective potential and the self-interaction correction show that the exchange energy with these approximations is overestimated and this will be an important topic for future work. (c) 2000 American Institute of Physics.« less
Campbell, John M.; Wackeroth, Doreen; Zhou, Jia
2016-11-29
Electroweak (EW) corrections can be enhanced at high energies due to the soft or collinear radiation of virtual and real W and Z bosons that result in Sudakov-like corrections of the form αmore » $$l\\atop{W}$$log n(Q 2/M2$$\\atop{W,Z}$$), where α W=α/(4π sin 2θ W) and n ≤ 2l-1. The inclusion of EW corrections in predictions for hadron colliders is, therefore, especially important when searching for signals of possible new physics in distributions probing the kinematic regime Q 2>>M$$2\\atop{V}$$. Next-to-leading order (NLO) EW corrections should also be taken into account when their size [O(α)] is comparable to that of QCD corrections at next-to-next-to-leading order (NNLO) [O(α$$2\\atop{s}$$)]. To this end, we have implemented the NLO weak corrections to the neutral-current Drell-Yan process, top-quark pair production and dijet production in the parton-level Monte Carlo program MCFM. This enables a combined study with the corresponding QCD corrections at NLO and NNLO. We provide both the full NLO weak corrections and their Sudakov approximation since the latter is often used for a fast evaluation of weak effects at high energies and can be extended to higher orders. Finally, with both the exact and approximate results at hand, the validity of the Sudakov approximation can be readily quantified.« less
High-resolution retinal imaging through open-loop adaptive optics
NASA Astrophysics Data System (ADS)
Li, Chao; Xia, Mingliang; Li, Dayu; Mu, Quanquan; Xuan, Li
2010-07-01
Using the liquid crystal spatial light modulator (LC-SLM) as the wavefront corrector, an open-loop adaptive optics (AO) system for fundus imaging in vivo is constructed. Compared with the LC-SLM closed-loop AO system, the light energy efficiency is increased by a factor of 2, which is helpful for the safety of fundus illumination in vivo. In our experiment, the subjective accommodation method is used to precorrect the defocus aberration, and three subjects with different myopia 0, -3, and -5 D are tested. Although the residual wavefront error after correction cannot to detected, the fundus images adequately demonstrate that the imaging system reaches the resolution of a single photoreceptor cell through the open-loop correction. Without dilating and cyclopleging the eye, the continuous imaging for 8 s is recorded for one of the subjects.
Sum-rule corrections: A route to error cancellations in correlation matrix renormalisation theory
Liu, C.; Liu, J.; Yao, Y. X.; ...
2017-01-16
Here, we recently proposed the correlation matrix renormalisation (CMR) theory to efficiently and accurately calculate ground state total energy of molecular systems, based on the Gutzwiller variational wavefunction (GWF) to treat the electronic correlation effects. To help reduce numerical complications and better adapt the CMR to infinite lattice systems, we need to further refine the way to minimise the error originated from the approximations in the theory. This conference proceeding reports our recent progress on this key issue, namely, we obtained a simple analytical functional form for the one-electron renormalisation factors, and introduced a novel sum-rule correction for a moremore » accurate description of the intersite electron correlations. Benchmark calculations are performed on a set of molecules to show the reasonable accuracy of the method.« less
Sum-rule corrections: A route to error cancellations in correlation matrix renormalisation theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, C.; Liu, J.; Yao, Y. X.
Here, we recently proposed the correlation matrix renormalisation (CMR) theory to efficiently and accurately calculate ground state total energy of molecular systems, based on the Gutzwiller variational wavefunction (GWF) to treat the electronic correlation effects. To help reduce numerical complications and better adapt the CMR to infinite lattice systems, we need to further refine the way to minimise the error originated from the approximations in the theory. This conference proceeding reports our recent progress on this key issue, namely, we obtained a simple analytical functional form for the one-electron renormalisation factors, and introduced a novel sum-rule correction for a moremore » accurate description of the intersite electron correlations. Benchmark calculations are performed on a set of molecules to show the reasonable accuracy of the method.« less
NASA Technical Reports Server (NTRS)
Au, C. K.
1989-01-01
The Breit correction only accounts for part of the transverse photon exchange correction in the calculation of the energy levels in helium Rydberg states. The remaining leading corrections are identified and each is expressed in an effective potential form. The relevance to the Casimir correction potential in various limits is also discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pederson, Mark R., E-mail: mark.pederson@science.doe.gov
2015-02-14
A recent modification of the Perdew-Zunger self-interaction-correction to the density-functional formalism has provided a framework for explicitly restoring unitary invariance to the expression for the total energy. The formalism depends upon construction of Löwdin orthonormalized Fermi-orbitals which parametrically depend on variational quasi-classical electronic positions. Derivatives of these quasi-classical electronic positions, required for efficient minimization of the self-interaction corrected energy, are derived and tested, here, on atoms. Total energies and ionization energies in closed-shell singlet atoms, where correlation is less important, using the Perdew-Wang 1992 Local Density Approximation (PW92) functional, are in good agreement with experiment and non-relativistic quantum-Monte-Carlo results albeitmore » slightly too low.« less
Izewska, Joanna; Georg, Dietmar; Bera, Pranabes; Thwaites, David; Arib, Mehenna; Saravi, Margarita; Sergieva, Katia; Li, Kaibao; Yip, Fernando Garcia; Mahant, Ashok Kumar; Bulski, Wojciech
2007-07-01
A strategy for national TLD audit programmes has been developed by the International Atomic Energy Agency (IAEA). It involves progression through three sequential dosimetry audit steps. The first step audits are for the beam output in reference conditions for high-energy photon beams. The second step audits are for the dose in reference and non-reference conditions on the beam axis for photon and electron beams. The third step audits involve measurements of the dose in reference, and non-reference conditions off-axis for open and wedged symmetric and asymmetric fields for photon beams. Through a co-ordinated research project the IAEA developed the methodology to extend the scope of national TLD auditing activities to more complex audit measurements for regular fields. Based on the IAEA standard TLD holder for high-energy photon beams, a TLD holder was developed with horizontal arm to enable measurements 5cm off the central axis. Basic correction factors were determined for the holder in the energy range between Co-60 and 25MV photon beams. New procedures were developed for the TLD irradiation in hospitals. The off-axis measurement methodology for photon beams was tested in a multi-national pilot study. The statistical distribution of dosimetric parameters (off-axis ratios for open and wedge beam profiles, output factors, wedge transmission factors) checked in 146 measurements was 0.999+/-0.012. The methodology of TLD audits in non-reference conditions with a modified IAEA TLD holder has been shown to be feasible.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Donaghue, J; Gajdos, S
Purpose: To determine the correction factor of the correspondence factor for the Standard Imaging IVB 1000 well chamber for commissioning of Elekta’s Leipzig and Valencia skin applicators. Methods: The Leipzig and Valencia applicators are designed to treat small skin lesions by collimating irradiation to the treatment area. Published output factors are used to calculate dose rates for clinical treatments. To validate onsite applicators, a correspondence factor (CFrev) is measured and compared to published values. The published CFrev is based on well chamber model SI HDR 1000 Plus. The CFrev is determined by correlating raw values of the source calibration setupmore » (Rcal,raw) and values taken when each applicator is mounted on the same well chamber with an adapter (Rapp,raw). The CFrev is calculated by using the equation CFrev =Rapp,raw/Rcal,raw. The CFrev was measured for each applicator in both the SI HDR 1000 Plus and the SI IVB 1000. A correction factor, CFIVB for the SI IVB 1000 was determined by finding the ratio of CFrev (SI IVB 1000) and CFrev (SI HDR 1000 Plus). Results: The average correction factors at dwell position 1121 were found to be 1.073, 1.039, 1.209, 1.091, and 1.058 for the Valencia V2, Valencia V3, Leipzig H1, Leipzig H2, and Leipzig H3 respectively. There were no significant variations in the correction factor for dwell positions 1119 through 1121. Conclusion: By using the appropriate correction factor, the correspondence factors for the Leipzig and Valencia surface applicators can be validated with the Standard Imaging IVB 1000. This allows users to correlate their measurements with the Standard Imaging IVB 1000 to the published data. The correction factor is included in the equation for the CFrev as follows: CFrev= Rapp,raw/(CFIVB*Rcal,raw). Each individual applicator has its own correction factor, so care must be taken that the appropriate factor is used.« less
NASA Astrophysics Data System (ADS)
Alam, Md. Mehboob; Deur, Killian; Knecht, Stefan; Fromager, Emmanuel
2017-11-01
The extrapolation technique of Savin [J. Chem. Phys. 140, 18A509 (2014)], which was initially applied to range-separated ground-state-density-functional Hamiltonians, is adapted in this work to ghost-interaction-corrected (GIC) range-separated ensemble density-functional theory (eDFT) for excited states. While standard extrapolations rely on energies that decay as μ-2 in the large range-separation-parameter μ limit, we show analytically that (approximate) range-separated GIC ensemble energies converge more rapidly (as μ-3) towards their pure wavefunction theory values (μ → +∞ limit), thus requiring a different extrapolation correction. The purpose of such a correction is to further improve on the convergence and, consequently, to obtain more accurate excitation energies for a finite (and, in practice, relatively small) μ value. As a proof of concept, we apply the extrapolation method to He and small molecular systems (viz., H2, HeH+, and LiH), thus considering different types of excitations such as Rydberg, charge transfer, and double excitations. Potential energy profiles of the first three and four singlet Σ+ excitation energies in HeH+ and H2, respectively, are studied with a particular focus on avoided crossings for the latter. Finally, the extraction of individual state energies from the ensemble energy is discussed in the context of range-separated eDFT, as a perspective.
Payne, Abby-Jo; Li, Shi; Dayneko, Sergey V; Risko, Chad; Welch, Gregory C
2017-09-21
Correction for 'An unsymmetrical non-fullerene acceptor: synthesis via direct heteroarylation, self-assembly, and utility as a low energy absorber in organic photovoltaic cells' by Abby-Jo Payne et al., Chem. Commun., 2017, 53, 10168-10171.
Nucleation theory - Is replacement free energy needed?. [error analysis of capillary approximation
NASA Technical Reports Server (NTRS)
Doremus, R. H.
1982-01-01
It has been suggested that the classical theory of nucleation of liquid from its vapor as developed by Volmer and Weber (1926) needs modification with a factor referred to as the replacement free energy and that the capillary approximation underlying the classical theory is in error. Here, the classical nucleation equation is derived from fluctuation theory, Gibb's result for the reversible work to form a critical nucleus, and the rate of collision of gas molecules with a surface. The capillary approximation is not used in the derivation. The chemical potential of small drops is then considered, and it is shown that the capillary approximation can be derived from thermodynamic equations. The results show that no corrections to Volmer's equation are needed.
Casey, Kevin E.; Alvarez, Paola; Kry, Stephen F.; Howell, Rebecca M.; Lawyer, Ann; Followill, David
2013-01-01
Purpose: The aim of this work was to create a mailable phantom with measurement accuracy suitable for Radiological Physics Center (RPC) audits of high dose-rate (HDR) brachytherapy sources at institutions participating in National Cancer Institute-funded cooperative clinical trials. Optically stimulated luminescence dosimeters (OSLDs) were chosen as the dosimeter to be used with the phantom. Methods: The authors designed and built an 8 × 8 × 10 cm3 prototype phantom that had two slots capable of holding Al2O3:C OSLDs (nanoDots; Landauer, Glenwood, IL) and a single channel capable of accepting all 192Ir HDR brachytherapy sources in current clinical use in the United States. The authors irradiated the phantom with Nucletron and Varian 192Ir HDR sources in order to determine correction factors for linearity with dose and the combined effects of irradiation energy and phantom characteristics. The phantom was then sent to eight institutions which volunteered to perform trial remote audits. Results: The linearity correction factor was kL = (−9.43 × 10−5 × dose) + 1.009, where dose is in cGy, which differed from that determined by the RPC for the same batch of dosimeters using 60Co irradiation. Separate block correction factors were determined for current versions of both Nucletron and Varian 192Ir HDR sources and these vendor-specific correction factors differed by almost 2.6%. For the Nucletron source, the correction factor was 1.026 [95% confidence interval (CI) = 1.023–1.028], and for the Varian source, it was 1.000 (95% CI = 0.995–1.005). Variations in lateral source positioning up to 0.8 mm and distal/proximal source positioning up to 10 mm had minimal effect on dose measurement accuracy. The overall dose measurement uncertainty of the system was estimated to be 2.4% and 2.5% for the Nucletron and Varian sources, respectively (95% CI). This uncertainty was sufficient to establish a ±5% acceptance criterion for source strength audits under a formal RPC audit program. Trial audits of four Nucletron sources and four Varian sources revealed an average RPC-to-institution dose ratio of 1.000 (standard deviation = 0.011). Conclusions: The authors have created an OSLD-based 192Ir HDR brachytherapy source remote audit tool which offers sufficient dose measurement accuracy to allow the RPC to establish a remote audit program with a ±5% acceptance criterion. The feasibility of the system has been demonstrated with eight trial audits to date. PMID:24320455
Optimized digital filtering techniques for radiation detection with HPGe detectors
NASA Astrophysics Data System (ADS)
Salathe, Marco; Kihm, Thomas
2016-02-01
This paper describes state-of-the-art digital filtering techniques that are part of GEANA, an automatic data analysis software used for the GERDA experiment. The discussed filters include a novel, nonlinear correction method for ballistic deficits, which is combined with one of three shaping filters: a pseudo-Gaussian, a modified trapezoidal, or a modified cusp filter. The performance of the filters is demonstrated with a 762 g Broad Energy Germanium (BEGe) detector, produced by Canberra, that measures γ-ray lines from radioactive sources in an energy range between 59.5 and 2614.5 keV. At 1332.5 keV, together with the ballistic deficit correction method, all filters produce a comparable energy resolution of 1.61 keV FWHM. This value is superior to those measured by the manufacturer and those found in publications with detectors of a similar design and mass. At 59.5 keV, the modified cusp filter without a ballistic deficit correction produced the best result, with an energy resolution of 0.46 keV. It is observed that the loss in resolution by using a constant shaping time over the entire energy range is small when using the ballistic deficit correction method.
Request for Correction 10008 Endangerment Findings for Greenhouse Gases
Request for correction by Peabody Energy Company for the EPA to correct temperature data in Endangerment and Cause or Contribute Findings for Greenhouse Gases under Section 202(a) of the Clean Air Act
NASA Astrophysics Data System (ADS)
Li, Guo; Rangel, Tonatiuh; Liu, Zhenfei; Cooper, Valentino; Neaton, Jeffrey
Using density functional theory with model self-energy corrections, we calculate the adsorption energetics and geometry, and the energy level alignment of benzenediamine (BDA) molecules adsorbed on Au(111) surfaces. Our calculations show that linear structures of BDA, stabilized via hydrogen bonds between amine groups, are energetically more favorable than monomeric phases. Moreover, our self-energy-corrected calculations of energy level alignment show that the highest occupied molecular orbital energy of the BDA linear structure is deeper relative to the Fermi level relative to the isolated monomer and agrees well with the values measured with photoemission spectroscopy. This work supported by DOE.
80 and 100 Meter Wind Energy Resource Potential for the United States (Poster)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elliott, D.; Schwartz, M.; Haymes, S.
Accurate information about the wind potential in each state is required for federal and state policy initiatives that will expand the use of wind energy in the United States. The National Renewable Energy Laboratory (NREL) and AWS Truewind have collaborated to produce the first comprehensive new state-level assessment of wind resource potential since 1993. The estimates are based on high-resolution maps of predicted mean annual wind speeds for the contiguous 48 states developed by AWS Truewind. These maps, at spatial resolution of 200 meters and heights of 60 to 100 meters, were created with a mesoscale-microscale modeling technique and adjustedmore » to reduce errors through a bias-correction procedure involving data from more than 1,000 measurement masts. NREL used the capacity factor maps to estimate the wind energy potential capacity in megawatts for each state by capacity factor ranges. The purpose of this presentation is to (1) inform state and federal policy makers, regulators, developers, and other stakeholders on the availability of the new wind potential information that may influence development, (2) inform the audience of how the new information was derived, and (3) educate the audience on how the information should be interpreted in developing state and federal policy initiatives.« less
75 FR 5536 - Pipeline Safety: Control Room Management/Human Factors, Correction
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-03
... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration 49 CFR Parts...: Control Room Management/Human Factors, Correction AGENCY: Pipeline and Hazardous Materials Safety... following correcting amendments: PART 192--TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE: MINIMUM...
NASA Astrophysics Data System (ADS)
Gendelis, S.; Jakovičs, A.
2010-01-01
Numerical mathematical modelling of the indoor thermal conditions and of the energy losses for separate rooms is an important part of the analysis of the heat-exchange balance and energy efficiency in buildings. The measurements of heat transfer coefficients for bounding structures, the air-tightness tests and thermographic diagnostics done for a building allow the influence of those factors to be predicted more correctly in developed numerical models. The temperature distribution and airflows in a typical room (along with the heat losses) were calculated for different heater locations and solar radiation (modelled as a heat source) through the window, as well as various pressure differences between the openings in opposite walls. The airflow velocities and indoor temperature, including its gradient, were also analysed as parameters of thermal comfort conditions. The results obtained show that all of the listed factors have an important influence on the formation of thermal comfort conditions and on the heat balance in a room.
NASA Astrophysics Data System (ADS)
Cipolla, Sam J.
2011-11-01
In this new version of ISICS, called ISICS2011, a few omissions and incorrect entries in the built-in file of electron binding energies have been corrected; operational situations leading to un-physical behavior have been identified and flagged. New version program summaryProgram title: ISICS2011 Catalogue identifier: ADDS_v5_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADDS_v5_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 6011 No. of bytes in distributed program, including test data, etc.: 130 587 Distribution format: tar.gz Programming language: C Computer: 80486 or higher-level PCs Operating system: WINDOWS XP and all earlier operating systems Classification: 16.7 Catalogue identifier of previous version: ADDS_v4_0 Journal reference of previous version: Comput. Phys. Commun. 180 (2009) 1716. Does the new version supersede the previous version?: Yes Nature of problem: Ionization and X-ray production cross section calculations for ion-atom collisions. Solution method: Numerical integration of form factor using a logarithmic transform and Gaussian quadrature, plus exact integration limits. Reasons for new version: General need for higher precision in output format for projectile energies; some built-in binding energies needed correcting; some anomalous results occur due to faulty read-in data or calculated parameters becoming un-physical; erroneous calculations could result for the L and M shells when restricted K-shell options are inadvertently chosen; to achieve general compatibility with ISICSoo, a companion C++ version that is portable to Linux and MacOS platforms, has been submitted for publication in the CPC Program Library approximately at the same time as this present new standalone version of ISICS [1]. Summary of revisions: The format field for projectile energies in the output has been expanded from two to four decimal places in order to distinguish between closely spaced energy values. There were a few entries in the executable binding energy file that needed correcting; K shell of Eu, M shells of Zn, M1 shell of Kr. The corrected values were also entered in the ENERGY.DAT file. In addition, an alternate data file of binding energies is included, called ENERGY_GW.DAT, which is more up-to-date [2]. Likewise, an alternate atomic parameters data file is now included, called FLOURE_JC.DAT, which is more up-to-date [3] fluorescence yields for the K and L shells and Coster-Kronig parameters for the L shell. Both data files can be read in using the -f usage option. To do this, the original energy file should be renamed and saved (e.g., ENERGY_BB.DAT) and the new file (ENERGY_GW.DAT ) should be duplicated as ENERGY.DAT to be read in using the -f option. Similarly for reading in an alternate FLOURE.DAT file. As with previous versions, the user can also simply input different values of any input quantity by invoking the "specify your own parameters" option from the main menu. You can also use this option to simply check the values of the built-in values of the parameters. If it still happens that a zero binding energy for a particular sub-shell is read in, the program will not completely abort, but will calculate results for the other sub-shells while setting the affected sub-shell output to zero. In calculating the Coulomb deflection factor, if the quantity inside the radical sign of the parameter z z=√{(1} becomes zero or negative, to prevent the program from aborting, the PWBA cross sections are still calculated while the ECPSSR cross sections are set to zero. This situation can happen for very low energy collisions, such as were noticed for helium ions on copper at energies of E⩽11.2 keV. It was observed during the engineering of ISICSoo [1] that erroneous calculations could result for the L- and M-shell cases when restricted K-shell R or HSR scaling options were inappropriately chosen. The program has now been fixed so that these inappropriate options are ignored for the L and M shells. In the previous versions, the usage for inputting a batch data file was incorrectly stated in the Users Manual as -Bxxx; the correct designation is -Fxxx, or alternatively, -Ixxx, as indicated on the usage screen in running the program. A revised Users Manual is also available. Restrictions: The consumed CPU time increases with the atomic shell (K, L, M), but execution is still very fast. Running time: This depends on which shell and the number of different energies to be used in the calculation. The running time is not significantly changed from the previous version.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barrett, J C; Karmanos Cancer Institute McLaren-Macomb, Clinton Township, MI; Knill, C
Purpose: To determine small field correction factors for PTW’s microDiamond detector in Elekta’s Gamma Knife Model-C unit. These factors allow the microDiamond to be used in QA measurements of output factors in the Gamma Knife Model-C; additionally, the results also contribute to the discussion on the water equivalence of the relatively-new microDiamond detector and its overall effectiveness in small field applications. Methods: The small field correction factors were calculated as k correction factors according to the Alfonso formalism. An MC model of the Gamma Knife and microDiamond was built with the EGSnrc code system, using BEAMnrc and DOSRZnrc user codes.more » Validation of the model was accomplished by simulating field output factors and measurement ratios for an available ABS plastic phantom and then comparing simulated results to film measurements, detector measurements, and treatment planning system (TPS) data. Once validated, the final k factors were determined by applying the model to a more waterlike solid water phantom. Results: During validation, all MC methods agreed with experiment within the stated uncertainties: MC determined field output factors agreed within 0.6% of the TPS and 1.4% of film; and MC simulated measurement ratios matched physically measured ratios within 1%. The final k correction factors for the PTW microDiamond in the solid water phantom approached unity to within 0.4%±1.7% for all the helmet sizes except the 4 mm; the 4 mm helmet size over-responded by 3.2%±1.7%, resulting in a k factor of 0.969. Conclusion: Similar to what has been found in the Gamma Knife Perfexion, the PTW microDiamond requires little to no corrections except for the smallest 4 mm field. The over-response can be corrected via the Alfonso formalism using the correction factors determined in this work. Using the MC calculated correction factors, the PTW microDiamond detector is an effective dosimeter in all available helmet sizes. The authors would like to thank PTW (Friedberg, Germany) for providing the PTW microDiamond detector for this research.« less
Verma, Prakash; Bartlett, Rodney J
2016-07-21
Core excitation energies are computed with time-dependent density functional theory (TD-DFT) using the ionization energy corrected exchange and correlation potential QTP(0,0). QTP(0,0) provides C, N, and O K-edge spectra to about an electron volt. A mean absolute error (MAE) of 0.77 and a maximum error of 2.6 eV is observed for QTP(0,0) for many small molecules. TD-DFT based on QTP (0,0) is then used to describe the core-excitation spectra of the 22 amino acids. TD-DFT with conventional functionals greatly underestimates core excitation energies, largely due to the significant error in the Kohn-Sham occupied eigenvalues. To the contrary, the ionization energy corrected potential, QTP(0,0), provides excellent approximations (MAE of 0.53 eV) for core ionization energies as eigenvalues of the Kohn-Sham equations. As a consequence, core excitation energies are accurately described with QTP(0,0), as are the core ionization energies important in X-ray photoionization spectra or electron spectroscopy for chemical analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muir, B; McEwen, M; Belec, J
2016-06-15
Purpose: To investigate small field dosimetry measurements and associated uncertainties when conical applicators are used to shape treatment fields from two different accelerating systems. Methods: Output factor measurements are made in water in beams from the CyberKnife radiosurgery system, which uses conical applicators to shape fields from a (flattening filter-free) 6 MV beam, and in a 6 MV beam from the Elekta Precise linear accelerator (with flattening filter) with BrainLab external conical applicators fitted to shape the field. The measurements use various detectors: (i) an Exradin A16 ion chamber, (ii) two Exradin W1 plastic scintillation detectors, (iii) a Sun Nuclearmore » Edge diode, and (iv) two PTW microDiamond synthetic diamond detectors. Profiles are used for accurate detector positioning and to specify field size (FWHM). Output factor measurements are corrected with detector specific correction factors taken from the literature where available and/or from Monte Carlo simulations using the EGSnrc code system. Results: Differences in measurements of up to 1.7% are observed with a given detector type in the same beam (i.e., intra-detector variability). Corrected results from different detectors in the same beam (inter-detector differences) show deviations up to 3 %. Combining data for all detectors and comparing results from the two accelerators results in a 5.9% maximum difference for the smallest field sizes (FWHM=5.2–5.6 mm), well outside the combined uncertainties (∼1% for the smallest beams) and/or differences among detectors. This suggests that the FWHM of a measured profile is not a good specifier to compare results from different small fields with the same nominal energy. Conclusion: Large differences in results for both intra-detector variability and inter-detector differences suggest potentially high uncertainties in detector-specific correction factors. Differences between the results measured in circular fields from different accelerating systems provide insight into sources of variability in small field dosimetric measurements reported in the literature.« less
The impact of water temperature on the measurement of absolute dose
NASA Astrophysics Data System (ADS)
Islam, Naveed Mehdi
To standardize reference dosimetry in radiation therapy, Task Group 51 (TG 51) of American Association of Physicist's in Medicine (AAPM) recommends that dose calibration measurements be made in a water tank at a depth of 10 cm and at a reference geometry. Methodologies are provided for calculating various correction factors to be applied in calculating the absolute dose. However the protocol does not specify the water temperature to be used. In practice, the temperature of water during dosimetry may vary considerably between independent sessions and different centers. In this work the effect of water temperature on absolute dosimetry has been investigated. Density of water varies with temperature, which in turn may impact the beam attenuation and scatter properties. Furthermore, due to thermal expansion or contraction air volume inside the chamber may change. All of these effects can result in a change in the measurement. Dosimetric measurements were made using a Farmer type ion chamber on a Varian Linear Accelerator for 6 MV and 23 MV photon energies for temperatures ranging from 10 to 40 °C. A thermal insulation was designed for the water tank in order to maintain relatively stable temperature over the duration of the experiment. Dose measured at higher temperatures were found to be consistently higher by a very small magnitude. Although the differences in dose were less than the uncertainty in each measurement, a linear regression of the data suggests that the trend is statistically significant with p-values of 0.002 and 0.013 for 6 and 23 MV beams respectively. For a 10 degree difference in water phantom temperatures, which is a realistic deviation across clinics, the final calculated reference dose can differ by 0.24% or more. To address this effect, first a reference temperature (e.g.22 °C) can be set as the standard; subsequently a correction factor can be implemented for deviations from this reference. Such a correction factor is expected to be of similar magnitude as existing TG 51 recommended correction factors.
NASA Astrophysics Data System (ADS)
Swanpalmer, John; Johansson, Karl-Axel
2011-11-01
In the late 1970s, Johansson et al (1978 Int. Symp. National and International Standardization of Radiation Dosimetry (Atlanta 1977) vol 2 (Vienna: IAEA) pp 243-70) reported experimentally determined displacement correction factors (pdis) for cylindrical ionization chamber dosimetry in 60Co and high-energy photon beams. These pdis factors have been implemented and are currently in use in a number of dosimetry protocols. However, the accuracy of these factors has recently been questioned by Wang and Rogers (2009a Phys. Med. Biol. 54 1609-20), who performed Monte Carlo simulations of the experiments performed by Johansson et al. They reported that the inaccuracy of the pdis factors originated from the normalization procedure used by Johansson et al. In their experiments, Johansson et al normalized the measured depth-ionization curves at the depth of maximum ionization for each of the different ionization chambers. In this study, we experimentally investigated the effect of air cavity size of cylindrical ionization chambers in a PMMA phantom and 60Co γ-beam. Two different pairs of air-filled cylindrical ionization chambers were used. The chambers in each pair had identical construction and materials but different air cavity volume (diameter). A 20 MeV electron beam was utilized to determine the ratio of the mass of air in the cavity of the two chambers in each pair. This ratio of the mass of air in each pair was then used to compare the ratios of the ionizations obtained at different depths in the PMMA phantom and 60Co γ-beam using the two pairs of chambers. The diameter of the air cavity of cylindrical ionization chambers influences both the depth at which the maximum ionization is observed and the ionization per unit mass of air at this depth. The correction determined at depths of 50 mm and 100 mm is smaller than the correction currently used in many dosimetry protocols. The results presented here agree with the findings of Wang and Rogers' Monte Carlo simulations and show that the normalization procedure employed by Johansson et al is not correct.
Experimental validation of a multi-energy x-ray adapted scatter separation method
NASA Astrophysics Data System (ADS)
Sossin, A.; Rebuffel, V.; Tabary, J.; Létang, J. M.; Freud, N.; Verger, L.
2016-12-01
Both in radiography and computed tomography (CT), recently emerged energy-resolved x-ray photon counting detectors enable the identification and quantification of individual materials comprising the inspected object. However, the approaches used for these operations require highly accurate x-ray images. The accuracy of the images is severely compromised by the presence of scattered radiation, which leads to a loss of spatial contrast and, more importantly, a bias in radiographic material imaging and artefacts in CT. The aim of the present study was to experimentally evaluate a recently introduced partial attenuation spectral scatter separation approach (PASSSA) adapted for multi-energy imaging. For this purpose, a prototype x-ray system was used. Several radiographic acquisitions of an anthropomorphic thorax phantom were performed. Reference primary images were obtained via the beam-stop (BS) approach. The attenuation images acquired from PASSSA-corrected data showed a substantial increase in local contrast and internal structure contour visibility when compared to uncorrected images. A substantial reduction of scatter induced bias was also achieved. Quantitatively, the developed method proved to be in relatively good agreement with the BS data. The application of the proposed scatter correction technique lowered the initial normalized root-mean-square error (NRMSE) of 45% between the uncorrected total and the reference primary spectral images by a factor of 9, thus reducing it to around 5%.
Measurement of LYSO Intrinsic Light Yield Using Electron Excitation
NASA Astrophysics Data System (ADS)
Turtos, Rosana Martinez; Gundacker, Stefan; Pizzichemi, Marco; Ghezzi, Alessio; Pauwels, Kristof; Auffray, Etiennette; Lecoq, Paul; Paganoni, Marco
2016-04-01
The determination of the intrinsic light yield (LYint) of scintillating crystals, i.e. number of optical photons created per amount of energy deposited, constitutes a key factor in order to characterize and optimize their energy and time resolution. However, until now measurements of this quantity are affected by large uncertainties and often rely on corrections for bulk absorption and surface/edge state. The novel idea presented in this contribution is based on the confinement of the scintillation emission in the central upper part of a 10 mm cubic crystal using a 1.5 MeV electron beam with diameter of 1 mm. A black non-reflective pinhole aligned with the excitation point is used to fix the light extraction solid angle (narrower than total reflection angle), which then sets a light cone travel path through the crystal. The final number of photoelectrons detected using a Hamamatsu R2059 photomultiplier tube (PMT) was corrected for the extraction solid angle, the Fresnel reflection coefficient and quantum efficiency (QE) of the PMT. The total number of optical photons produced per energy deposited was found to be 40000 ph/MeV ± 9% (syst) ±3% (stat) for LYSO. Simulations using Geant4 were successfully compared to light output measurements of 2 × 2 mm2 section crystals with lengths of 5-30 mm, in order to validate the light transport model and set a limit on Light Transfer Efficiency estimations.
Real application of BIM in the engineering system design for energy management
NASA Astrophysics Data System (ADS)
Pelipenko, Alexey; Gogina, Elena
2017-10-01
In the article, the information modelling technology (BIM) that is gaining popularity in Russia and in the world, is considered. Its growing relevance relates to many factors: first, attention to this technology by the local and federal authorities; Secondly, with the desire to improve the quality of design documentation, to obtain the correct volumes of materials and equipment; Thirdly, with the tendency to create “smart” cities and, as a result, the rational use of energy resources. Within the framework of this article, on an example of an urban infrastructure object, the pros and cons of this technology were considered. As a facility, a local wastewater treatment plant was chosen. The stages of creating an information model on the available documentation are described: 4 main milestones that need to be implemented. In addition, further possible ways of using the model are described. Presented are the pros and cons of using this technology. Among the main advantages is the possibility of using this information model in the operation of treatment plants and further obtaining actual data for monitoring the condition of equipment and, therefore, controlling the consumable resources; At an early stage, a reduction in the number of mutual intersections of engineering systems; Obtaining the correct specifications. The results of the work described in the article can be used in the following areas: utilities, energy management, design and construction.
An analysis of the ArcCHECK-MR diode array's performance for ViewRay quality assurance.
Ellefson, Steven T; Culberson, Wesley S; Bednarz, Bryan P; DeWerd, Larry A; Bayouth, John E
2017-07-01
The ArcCHECK-MR diode array utilizes a correction system with a virtual inclinometer to correct the angular response dependencies of the diodes. However, this correction system cannot be applied to measurements on the ViewRay MR-IGRT system due to the virtual inclinometer's incompatibility with the ViewRay's multiple simultaneous beams. Additionally, the ArcCHECK's current correction factors were determined without magnetic field effects taken into account. In the course of performing ViewRay IMRT quality assurance with the ArcCHECK, measurements were observed to be consistently higher than the ViewRay TPS predictions. The goals of this study were to quantify the observed discrepancies and test whether applying the current factors improves the ArcCHECK's accuracy for measurements on the ViewRay. Gamma and frequency analysis were performed on 19 ViewRay patient plans. Ion chamber measurements were performed at a subset of diode locations using a PMMA phantom with the same dimensions as the ArcCHECK. A new method for applying directionally dependent factors utilizing beam information from the ViewRay TPS was developed in order to analyze the current ArcCHECK correction factors. To test the current factors, nine ViewRay plans were altered to be delivered with only a single simultaneous beam and were measured with the ArcCHECK. The current correction factors were applied using both the new and current methods. The new method was also used to apply corrections to the original 19 ViewRay plans. It was found the ArcCHECK systematically reports doses higher than those actually delivered by the ViewRay. Application of the current correction factors by either method did not consistently improve measurement accuracy. As dose deposition and diode response have both been shown to change under the influence of a magnetic field, it can be concluded the current ArcCHECK correction factors are invalid and/or inadequate to correct measurements on the ViewRay system. © 2017 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keyser, Matthew A
Present-day thermal management systems for battery electric vehicles are inadequate in limiting the maximum temperature rise of the battery during extreme fast charging. If the battery thermal management system is not designed correctly, the temperature of the cells could reach abuse temperatures and potentially send the cells into thermal runaway. Furthermore, the cell and battery interconnect design needs to be improved to meet the lifetime expectations of the consumer. Each of these aspects is explored and addressed as well as outlining where the heat is generated in a cell, the efficiencies of power and energy cells, and what type ofmore » battery thermal management solutions are available in today's market. Thermal management is not a limiting condition with regard to extreme fast charging, but many factors need to be addressed especially for future high specific energy density cells to meet U.S. Department of Energy cost and volume goals.« less
Enabling fast charging - Battery thermal considerations
NASA Astrophysics Data System (ADS)
Keyser, Matthew; Pesaran, Ahmad; Li, Qibo; Santhanagopalan, Shriram; Smith, Kandler; Wood, Eric; Ahmed, Shabbir; Bloom, Ira; Dufek, Eric; Shirk, Matthew; Meintz, Andrew; Kreuzer, Cory; Michelbacher, Christopher; Burnham, Andrew; Stephens, Thomas; Francfort, James; Carlson, Barney; Zhang, Jiucai; Vijayagopal, Ram; Hardy, Keith; Dias, Fernando; Mohanpurkar, Manish; Scoffield, Don; Jansen, Andrew N.; Tanim, Tanvir; Markel, Anthony
2017-11-01
Battery thermal barriers are reviewed with regards to extreme fast charging. Present-day thermal management systems for battery electric vehicles are inadequate in limiting the maximum temperature rise of the battery during extreme fast charging. If the battery thermal management system is not designed correctly, the temperature of the cells could reach abuse temperatures and potentially send the cells into thermal runaway. Furthermore, the cell and battery interconnect design needs to be improved to meet the lifetime expectations of the consumer. Each of these aspects is explored and addressed as well as outlining where the heat is generated in a cell, the efficiencies of power and energy cells, and what type of battery thermal management solutions are available in today's market. Thermal management is not a limiting condition with regard to extreme fast charging, but many factors need to be addressed especially for future high specific energy density cells to meet U.S. Department of Energy cost and volume goals.
Free-air ionization chamber, FAC-IR-300, designed for medium energy X-ray dosimetry
NASA Astrophysics Data System (ADS)
Mohammadi, S. M.; Tavakoli-Anbaran, H.; Zeinali, H. Z.
2017-01-01
The primary standard for X-ray photons is based on parallel-plate free-air ionization chamber (FAC). Therefore, the Atomic Energy Organization of Iran (AEOI) is tried to design and build the free-air ionization chamber, FAC-IR-300, for low and medium energy X-ray dosimetry. The main aim of the present work is to investigate specification of the FAC-IR-300 ionization chamber and design it. FAC-IR-300 dosimeter is composed of two parallel plates, a high voltage (HV) plate and a collector plate, along with a guard electrode that surrounds the collector plate. The guard plate and the collector were separated by an air gap. For obtaining uniformity in the electric field distribution, a group of guard strips was used around the ionization chamber. These characterizations involve determining the exact dimensions of the ionization chamber by using Monte Carlo simulation and introducing correction factors.
Atomic scale study of surface orientations and energies of Ti 2O 3 crystals
Gu, Meng; Wang, Zhiguo; Wang, Chongmin; ...
2017-11-01
For nanostructured particles, the faceting planes and their terminating chemical species are two critical factors that govern their chemical behavior. In this paper, the surface atomistic structure and termination of Ti 2O 3 crystals were analyzed using atomic-scale aberration-corrected scanning transmission electron microscopy (STEM) combined with density functional theory (DFT) calculations. STEM imaging reveals that the Ti 2O 3 crystals are most often faceted along (001), (012), (-114), and (1–20) planes. The DFT calculation indicates that the (012) surface with TiO-termination has the lowest cleavage energy and correspondingly the lowest surface energy, indicating that (012) will be the most stablemore » and prevalent surfaces in Ti 2O 3 nanocrystals. Finally, these observations provide insights for exploring the interfacial process involving Ti 2O 3 nanoparticles.« less
NASA Astrophysics Data System (ADS)
Prikner, K.
Using reference models of the daytime and night ionosphere of geomagnetic mid-latitudes in a quiescent period in summer, autumn and winter, the seasonal variation of ULF frequency characteristics of amplitude and energy correction factors of the ionosphere - vertical reflexibility, transmissibility and absorption, are studied. The existence of two frequency bands within the ULF range with different properties of ionospheric wave filtration is pointed out: (a) continuous band f of less than 0.1 to 0.2 Hz with the mirror effect of the ionosphere with respect to the incident wave, but with small ionospheric absorption of wave energy; and (b) a Hz band of greater than 0.2 Hz with resonance frequency windows and wave emissions with a sharply defined frequency structure. The seasonal variation from summer to winter indicates a decrease in wave energy absorption in the ionosphere and a slight displacement of the resonances towards higher frequencies.
NASA Astrophysics Data System (ADS)
Prikner, K.
Using reference models of the daytime and night ionosphere of geomagnetic mid-latitudes in a quiescent period in summer, autumn and winter, the seasonal variation of ULF frequency characteristics of amplitude and energy correction factors of the ionosphere - vertical reflexibility, transmissibility, are studied. The existence of two frequency bands within the ULF range with different properties of ionospheric wave filtration is pointed out: (1) continuous band f 0.1-0.2 Hz with the mirror effect of the ionosphere with respect to the incident wave, but with small ionospheric absorption of wave energy; (2) the f 0.2 Hz band with resonance frequency windows and wave emissions with a sharply defined frequency structure. The seasonal variation from summer to winter indicates a decrease in wave energy absorption in the ionosphere and a slight displacement of the resonances towards higher frequencies.
NASA Astrophysics Data System (ADS)
Singh, B.; Goel, S.
2015-03-01
This paper presents a grid interfaced solar photovoltaic (SPV) energy system with a novel adaptive harmonic detection control for power quality improvement at ac mains under balanced as well as unbalanced and distorted supply conditions. The SPV energy system is capable of compensation of linear and nonlinear loads with the objectives of load balancing, harmonics elimination, power factor correction and terminal voltage regulation. The proposed control increases the utilization of PV infrastructure and brings down its effective cost due to its other benefits. The adaptive harmonic detection control algorithm is used to detect the fundamental active power component of load currents which are subsequently used for reference source currents estimation. An instantaneous symmetrical component theory is used to obtain instantaneous positive sequence point of common coupling (PCC) voltages which are used to derive inphase and quadrature phase voltage templates. The proposed grid interfaced PV energy system is modelled and simulated in MATLAB Simulink and its performance is verified under various operating conditions.
Exciton Energy Transfer from Halide Terminated Nanocrystals to Graphene in Solar Photovoltaics
NASA Astrophysics Data System (ADS)
Ajayi, Obafunso; Abramson, Justin; Anderson, Nicholas; Owen, Jonathan; Zhao, Yue; Kim, Phillip; Gesuele, Felice; Wong, Chee Wei
2011-03-01
Graphene, a zero-gap semiconductor, has been identified as an ideal electrode for nanocrystal solar cell photovoltaic applications due to its high carrier mobility. Further advances in efficient current extraction are required towards this end. We investigate the resonant energy transfer dynamics between photoexcited nanocrystals and graphene, where the energy transfer rate is characterized by the fluorescent quenching of the quantum dots in the presence of graphene. Energy transfer has been shown to have a d -4 dependence on the nanocrystal distance from the graphene surface, with a correction due to blinking statistics. We investigate this relationship with single and few layer graphene. We study halide-terminated CdSe quantum dots; where the absence of the insulating outershell improves the electronic coupling of the donor-acceptor system leads to improved electron transfer. We observe quenching of the halide terminated nanocrystals on graphene, with the quenching factor ρ defined as IQ /IG (the relative intensities on quartz and graphene).
Method for the depth corrected detection of ionizing events from a co-planar grids sensor
De Geronimo, Gianluigi [Syosset, NY; Bolotnikov, Aleksey E [South Setauket, NY; Carini, Gabriella [Port Jefferson, NY
2009-05-12
A method for the detection of ionizing events utilizing a co-planar grids sensor comprising a semiconductor substrate, cathode electrode, collecting grid and non-collecting grid. The semiconductor substrate is sensitive to ionizing radiation. A voltage less than 0 Volts is applied to the cathode electrode. A voltage greater than the voltage applied to the cathode is applied to the non-collecting grid. A voltage greater than the voltage applied to the non-collecting grid is applied to the collecting grid. The collecting grid and the non-collecting grid are summed and subtracted creating a sum and difference respectively. The difference and sum are divided creating a ratio. A gain coefficient factor for each depth (distance between the ionizing event and the collecting grid) is determined, whereby the difference between the collecting electrode and the non-collecting electrode multiplied by the corresponding gain coefficient is the depth corrected energy of an ionizing event. Therefore, the energy of each ionizing event is the difference between the collecting grid and the non-collecting grid multiplied by the corresponding gain coefficient. The depth of the ionizing event can also be determined from the ratio.
NASA Astrophysics Data System (ADS)
Zhou, Dan; Wang, Kedong; Li, Xue
2018-07-01
This study calculates the potential energy curves of 18 Λ-S and 50 Ω states, which arise from the C(3Pg) + P+(3Pg) dissociation channel of the CP+ cation. The calculations are made using the CASSCF method, followed by the icMRCI approach with the Davidson correction. Core-valence correlation and scalar relativistic corrections, as well as extrapolation to the complete basis set limit are included. The transition dipole moments are computed for 25 pairs of Λ-S states. The spin-orbit coupling effect on the spectroscopic and vibrational properties is evaluated. The Franck-Condon factors and Einstein coefficients of emissions are calculated. Radiative lifetimes are obtained for several vibrational levels of some states. The transitions are evaluated and spectroscopic measurement schemes for observing these Λ-S states are proposed. The potential energy curves, spectroscopic constants, vibrational levels, transition dipole moments, and transition probabilities reported in this paper can be considered to be very accurate and reliable. Because no experimental observations are currently available, the results obtained here can be used as guidelines for the detection of these states in appropriate spectroscopy experiments, in particular for observations in stellar atmospheres and in interstellar space.
On basis set superposition error corrected stabilization energies for large n-body clusters.
Walczak, Katarzyna; Friedrich, Joachim; Dolg, Michael
2011-10-07
In this contribution, we propose an approximate basis set superposition error (BSSE) correction scheme for the site-site function counterpoise and for the Valiron-Mayer function counterpoise correction of second order to account for the basis set superposition error in clusters with a large number of subunits. The accuracy of the proposed scheme has been investigated for a water cluster series at the CCSD(T), CCSD, MP2, and self-consistent field levels of theory using Dunning's correlation consistent basis sets. The BSSE corrected stabilization energies for a series of water clusters are presented. A study regarding the possible savings with respect to computational resources has been carried out as well as a monitoring of the basis set dependence of the approximate BSSE corrections. © 2011 American Institute of Physics
Pauling, Linus; Kamb, Barclay
1986-01-01
An earlier discussion [Pauling, L. (1947) J. Am. Chem. Soc. 69, 542] of observed bond lengths in elemental metals with correction for bond number and resonance energy led to a set of single-bond metallic radii with values usually somewhat less than the corresponding values obtained from molecules and complex ions. A theory of resonating covalent bonds has now been developed that permits calculation of the number of resonance structures per atom and of the effective resonance energy per bond. With this refined method of correcting the observed bond lengths for the effect of resonance energy, a new set of single-bond covalent radii, in better agreement with values from molecules and complex ions, has been constructed. PMID:16593698
Quantum Kramers model: Corrections to the linear response theory for continuous bath spectrum
NASA Astrophysics Data System (ADS)
Rips, Ilya
2017-01-01
Decay of the metastable state is analyzed within the quantum Kramers model in the weak-to-intermediate dissipation regime. The decay kinetics in this regime is determined by energy exchange between the unstable mode and the stable modes of thermal bath. In our previous paper [Phys. Rev. A 42, 4427 (1990), 10.1103/PhysRevA.42.4427], Grabert's perturbative approach to well dynamics in the case of the discrete bath [Phys. Rev. Lett. 61, 1683 (1988), 10.1103/PhysRevLett.61.1683] has been extended to account for the second order terms in the classical equations of motion (EOM) for the stable modes. Account of the secular terms reduces EOM for the stable modes to those of the forced oscillator with the time-dependent frequency (TDF oscillator). Analytic expression for the characteristic function of energy loss of the unstable mode has been derived in terms of the generating function of the transition probabilities for the quantum forced TDF oscillator. In this paper, the approach is further developed and applied to the case of the continuous frequency spectrum of the bath. The spectral density functions of the bath of stable modes are expressed in terms of the dissipative properties (the friction function) of the original bath. They simplify considerably for the one-dimensional systems, when the density of phonon states is constant. Explicit expressions for the fourth order corrections to the linear response theory result for the characteristic function of the energy loss and its cumulants are obtained for the particular case of the cubic potential with Ohmic (Markovian) dissipation. The range of validity of the perturbative approach in this case is determined (γ /ωb<0.26 ), which includes the turnover region. The dominant correction to the linear response theory result is associated with the "work function" and leads to reduction of the average energy loss and its dispersion. This reduction increases with the increasing dissipation strength (up to ˜10 % ) within the range of validity of the approach. We have also calculated corrections to the depopulation factor and the escape rate for the quantum and for the classical Kramers models. Results for the classical escape rate are in very good agreement with the numerical simulations for high barriers. The results can serve as an additional proof of the robustness and accuracy of the linear response theory.
Quantum Kramers model: Corrections to the linear response theory for continuous bath spectrum.
Rips, Ilya
2017-01-01
Decay of the metastable state is analyzed within the quantum Kramers model in the weak-to-intermediate dissipation regime. The decay kinetics in this regime is determined by energy exchange between the unstable mode and the stable modes of thermal bath. In our previous paper [Phys. Rev. A 42, 4427 (1990)PLRAAN1050-294710.1103/PhysRevA.42.4427], Grabert's perturbative approach to well dynamics in the case of the discrete bath [Phys. Rev. Lett. 61, 1683 (1988)PRLTAO0031-900710.1103/PhysRevLett.61.1683] has been extended to account for the second order terms in the classical equations of motion (EOM) for the stable modes. Account of the secular terms reduces EOM for the stable modes to those of the forced oscillator with the time-dependent frequency (TDF oscillator). Analytic expression for the characteristic function of energy loss of the unstable mode has been derived in terms of the generating function of the transition probabilities for the quantum forced TDF oscillator. In this paper, the approach is further developed and applied to the case of the continuous frequency spectrum of the bath. The spectral density functions of the bath of stable modes are expressed in terms of the dissipative properties (the friction function) of the original bath. They simplify considerably for the one-dimensional systems, when the density of phonon states is constant. Explicit expressions for the fourth order corrections to the linear response theory result for the characteristic function of the energy loss and its cumulants are obtained for the particular case of the cubic potential with Ohmic (Markovian) dissipation. The range of validity of the perturbative approach in this case is determined (γ/ω_{b}<0.26), which includes the turnover region. The dominant correction to the linear response theory result is associated with the "work function" and leads to reduction of the average energy loss and its dispersion. This reduction increases with the increasing dissipation strength (up to ∼10%) within the range of validity of the approach. We have also calculated corrections to the depopulation factor and the escape rate for the quantum and for the classical Kramers models. Results for the classical escape rate are in very good agreement with the numerical simulations for high barriers. The results can serve as an additional proof of the robustness and accuracy of the linear response theory.
Higher-Order Binding Corrections to the Lamb Shift
NASA Astrophysics Data System (ADS)
Pachucki, K.
1993-08-01
In this work a new analytical method for calculating the one-loop self-energy correction to the Lamb shift is presented in detail. The technique relies on division into the low and the high energy parts. The low energy part is calculated using the multipole expansion and the high energy part is calculated by expanding the Dirac-Coulomb propagator in powers of the Coulomb field. The obtained results are in agreement with those previously known, but are more accurate. A new theoretical value of the Lamb shift is also given.
Improving Core Strength to Prevent Injury
ERIC Educational Resources Information Center
Oliver, Gretchen D.; Adams-Blair, Heather R.
2010-01-01
Regardless of the sport or skill, it is essential to have correct biomechanical positioning, or postural control, in order to maximize energy transfer. Correct postural control requires a strong, stable core. A strong and stable core allows one to transfer energy effectively as well as reduce undue stress. An unstable or weak core, on the other…
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-12
... DEPARTMENT OF ENERGY DOE Response to Recommendation 2012-2 of the Defense Nuclear Facilities Safety Board, Hanford Tank Farms Flammable Gas Safety Strategy; Correction AGENCY: Department of Energy... Facilities Safety Board, Hanford Tank Farms Flammable Gas Safety Strategy. This document corrects an error in...
Nonperturbative theory for the dispersion self-energy of atoms
NASA Astrophysics Data System (ADS)
Thiyam, Priyadarshini; Persson, C.; Brevik, I.; Sernelius, Bo E.; Boström, Mathias
2014-11-01
We go beyond the approximate series expansions used in the dispersion theory of finite-size atoms. We demonstrate that a correct, and nonperturbative, theory dramatically alters the dispersion self-energies of atoms. The nonperturbed theory gives as much as 100 % corrections compared to the traditional series-expanded theory for the smaller noble gas atoms.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-07
... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-678] In the Matter of Certain Energy Drink Products; Notice of Issuance of a Corrected General Exclusion Order AGENCY: U.S. International Trade Commission. ACTION: Notice. SUMMARY: Notice is hereby given that the U.S. International Trade...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-06
... for Residential Furnaces and Boilers (Standby Mode and Off Mode); Correction AGENCY: Office of Energy... Consumer Products: Test Procedures for Residential Furnaces and Boilers. This correction provides the... page 56339, in the third column after ``2. E- mail:'' the e-mail address should read `` FurnaceBoiler...
10 CFR 9.69 - Notices of correction or dispute.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 1 2010-01-01 2010-01-01 false Notices of correction or dispute. 9.69 Section 9.69 Energy NUCLEAR REGULATORY COMMISSION PUBLIC RECORDS Privacy Act Regulations Determinations and Appeals § 9.69... 30 working days thereof, advise all prior recipients of the affected record whose identity can be...