Science.gov

Sample records for energy cyclotron autoresonance

  1. Final report to US Department of Energy: Cyclotron autoresonance accelerator for electron beam dry scrubbing of flue gases

    SciTech Connect

    Hirshfield, J.L.

    2001-05-25

    Several designs have been built and operated of microwave cyclotron autoresonance accelerators (CARA's) with electron beam parameters suitable for remediation of pollutants in flue gas emissions from coal-burning power plants. CARA designs have also been developed with a TW-level 10.6 micron laser driver for electron acceleration from 50 to 100 MeV, and with UHF drivers for proton acceleration to over 500 MeV. Dose requirements for reducing SO2, NOx, and particulates in flue gas emissions to acceptable levels have been surveyed, and used to optimize the design of an electron beam source to deliver this dose.

  2. Cyclotron autoresonance maser in the millimeter region

    NASA Astrophysics Data System (ADS)

    Nikolov, N. A.; Spasovski, I. P.; Kostov, K. G.; Velichkov, J. N.; Spasov, V. A.

    1990-06-01

    This paper investigates the optimal experimental conditions for a cyclotron autoresonance maser (CARM) regime realized by a nonadiabatic magnetic beam pumping in the millimeter wavelength region. In the experiment, a Blumline-type accelerator with a voltage up to 650 kV and maximal current up to 10 kA is used to generate a hollow beam with a pulse duration of 30 ns. The electron beam, emitted from a graphite cathode with a 10-mm diameter, propagates in a cylindrical drift tube of 56 mm diam and a length of 500 mm. The external magnetic field B, provided by a solenoidal magnet, is homogeneous along the drift tube up to a distance of 300 mm from the cathode. The experiment demonstrated the generation of microwave radiation in the time interval from 0.0016 to 0.0023 sec after the switch-on of the external magnetic field. Two maxima of the output microwave power (8 and 10 MW) at a wavelength of 5 and 5.5 mm, respectively, were observed.

  3. Cyclotron Auto-Resonance Accelerator for environmental applications

    NASA Astrophysics Data System (ADS)

    Jiang, Yong; Shchelkunov, Sergey V.; Hirshfield, Jay L.

    2017-03-01

    A MW-level CW electron beam source for environmental remediation based on extensions of the scientifically-proven Cyclotron Auto-Resonance Accelerator, dubbed CARA, is described here. CARA is distinguished by its exceptionally high RF-to-beam efficiency, by its production of a self-scanning beam, and by its proportionately lower specific power loading on a beam output window. Its environmental applications include sterilization, flue gas and waste water treatment.

  4. Nonlinear analysis of a large-orbit coaxial-waveguide cyclotron autoresonance maser amplifier

    SciTech Connect

    Ouyang Zhengbiao; Zhang Shichang

    2007-10-01

    Nonlinear simulations are presented to analyze the influences of the electron beam and the magnetic field parameters on the output power of a large-orbit coaxial-waveguide cyclotron autoresonance maser (CARM) amplifier. It is found that the guiding-center spread of the relativistic electrons has negligible impact on the output power due to the small field change felt by the large-orbit electrons. The electron-beam velocity spread and energy spread substantially decrease the output power, because these spreads directly affect the beam-wave interaction through the Doppler term and the relativistic cyclotron frequency term in the cyclotron resonance condition. However, this adverse effect may be offset by properly tapering the operating magnetic field. The output power is sensitive to both the slope and the amplitude of the tapered magnetic field. Nonlinear simulation demonstrates the feasibility that a large-orbit coaxial-waveguide CARM amplifier can be expected to provide output power with several megawatts, ultrahigh gain, and good bandwidth in the millimeter and submillimeter wavelength ranges.

  5. Experimental Research on the Laser Cyclotron Auto-Resonance Accelerator “LACARA”

    SciTech Connect

    Marshall, T C

    2008-11-11

    The Laser Cyclotron Auto-Resonant Accelerator LACARA has successfully operated this year. Results are summarized, an interpretation of operating data is provided in the body of the report, and recommendations are made how the experiment should be carried forward. The Appendix A contains a description of the LACARA apparatus, currently installed at the Accelerator Test Facility, Brookhaven National Laboratory. This report summarizes the project, extending over three grant-years.

  6. MM-wave cyclotron auto-resonance maser for plasma heating

    NASA Astrophysics Data System (ADS)

    Ceccuzzi, S.; Dattoli, G.; Di Palma, E.; Doria, A.; Gallerano, G. P.; Giovenale, E.; Mirizzi, F.; Spassovsky, I.; Ravera, G. L.; Surrenti, V.; Tuccillo, A. A.

    2014-02-01

    Heating and Current Drive systems are of outstanding relevance in fusion plasmas, magnetically confined in tokamak devices, as they provide the tools to reach, sustain and control burning conditions. Heating systems based on the electron cyclotron resonance (ECRH) have been extensively exploited on past and present machines DEMO, and the future reactor will require high frequencies. Therefore, high power (≥1MW) RF sources with output frequency in the 200 - 300 GHz range would be necessary. A promising source is the so called Cyclotron Auto-Resonance Maser (CARM). Preliminary results of the conceptual design of a CARM device for plasma heating, carried out at ENEA-Frascati will be presented together with the planned R&D development.

  7. MM-wave cyclotron auto-resonance maser for plasma heating

    SciTech Connect

    Ceccuzzi, S.; Ravera, G. L.; Tuccillo, A. A.; Dattoli, G.; Di Palma, E.; Doria, A.; Gallerano, G. P.; Giovenale, E.; Spassovsky, I.; Surrenti, V.; Mirizzi, F.

    2014-02-12

    Heating and Current Drive systems are of outstanding relevance in fusion plasmas, magnetically confined in tokamak devices, as they provide the tools to reach, sustain and control burning conditions. Heating systems based on the electron cyclotron resonance (ECRH) have been extensively exploited on past and present machines DEMO, and the future reactor will require high frequencies. Therefore, high power (≥1MW) RF sources with output frequency in the 200 - 300 GHz range would be necessary. A promising source is the so called Cyclotron Auto-Resonance Maser (CARM). Preliminary results of the conceptual design of a CARM device for plasma heating, carried out at ENEA-Frascati will be presented together with the planned R and D development.

  8. The Design of a 100 GHz CARM (Cyclotron Auto-Resonance Maser) Oscillator Experiment

    DTIC Science & Technology

    1988-09-14

    2364. (Radio Engng. Electron. Phys., 21, 78-73). 5) Ginzburg , N. S., Zarnitsyna, I. G., and Nusinovich, G. S., 1981, Theory of relativistic cyclotron...An efficient Doppler-shifted electron-cyclotron maser oscillator. Int J. Electron., 53, 555-57 1. 7) Bratman, V. L., Ginzburg , N. S., Nusinovich, G...1386-1389. (Sov. Tech. Phys. Lett., 8, 596-597). 12) Botvinnik, I. E., Bratman, V. L., Volkov, A. B., Ginzburg , N. S, Denisov, G. G., Kol’chugin, B

  9. Asymptotic analysis of the model of gyromagnetic autoresonance

    NASA Astrophysics Data System (ADS)

    Kalyakin, L. A.

    2017-02-01

    The system of ordinary differential equations that in a specific case describes the cyclotron motion of a charged particle in an electromagnetic wave is considered. The capture of the particle into autoresonance when its energy undergoes a significant change is studied. The main result is a description of the capture domain, which is the set of initial points in the phase plane where the resonance trajectories start. This description is obtained in the asymptotic approximation with respect to the small parameter that in this problem corresponds to the amplitude of the electromagnetic wave.

  10. On the possibility of the autoresonant motion of an electron in a slow electromagnetic wave

    SciTech Connect

    Milantiev, V.P.

    1994-12-31

    By autoresonant motion one usually means the motion when the condition of cyclotron resonance of gyrating particle with electromagnetic wave is conserved during all the time of the motion in spite of the relativistic mass increase. Such a motion takes place only in the case of vacuum wave, when the phase velocity {nu}{sub p} is equal to the speed of light in a vacuum C. Otherwise autoresonance is impossible, and energy of the particle oscillates in time. The authors now discuss the possibility of the autoresonance in a slow electromagnetic wave ({nu}{sub p} < c) propagating along the straight lines of the external magnetic field. It turns out that the autoresonant regime of the motion in a slow electromagnetic wave possible if some rather restrictive relations between the electric drift velocity and the phase velocity of wave take place. It depends also on the polarization of wave. The general case of the elliptical polarization is considered. The optimal regime corresponds to the wave with linear polarization in the direction of the constant electric field. For this case the calculations show that energy of the particle can unlimitedly increase (or decrease). The rate of acceleration can be even larger than in the case of vacuum wave. Radiation forces will restrict this process.

  11. Low energy cyclotron for radiocarbon dating

    SciTech Connect

    Welch, J.J.

    1985-01-01

    The author built and tested a low energy cyclotron for radiocarbon dating similar to a conventional mass spectrometer. These tests clearly show that with the addition of a conventional ion source, the low energy cyclotron can perform the extremely high sensitivity /sup 14/C measurements that are now done at accelerator facilities. The author found that no significant background is present when the cyclotron is tuned to accelerate /sup 14/C negative ions and the transmission efficiency is adequate to perform radiocarbon dating on milligram samples of carbon. The internal ion source used did not produce sufficient current to detect /sup 14/C directly at modern concentrations. The author shows how a conventional carbon negative ion source located outside the cyclotron magnet, would produce sufficient beam and provide for quick sample changing to make radiocarbon dating milligram samples with a modest laboratory instrument feasible.

  12. Effect of polarization and focusing on laser pulse driven auto-resonant particle acceleration

    SciTech Connect

    Sagar, Vikram; Sengupta, Sudip; Kaw, Predhiman

    2014-04-15

    The effect of laser polarization and focusing is theoretically studied on the final energy gain of a particle in the Auto-resonant acceleration scheme using a finite duration laser pulse with Gaussian shaped temporal envelope. The exact expressions for dynamical variables viz. position, momentum, and energy are obtained by analytically solving the relativistic equation of motion describing particle dynamics in the combined field of an elliptically polarized finite duration pulse and homogeneous static axial magnetic field. From the solutions, it is shown that for a given set of laser parameters viz. intensity and pulse length along with static magnetic field, the energy gain by a positively charged particle is maximum for a right circularly polarized laser pulse. Further, a new scheme is proposed for particle acceleration by subjecting it to the combined field of a focused finite duration laser pulse and static axial magnetic field. In this scheme, the particle is initially accelerated by the focused laser field, which drives the non-resonant particle to second stage of acceleration by cyclotron Auto-resonance. The new scheme is found to be efficient over two individual schemes, i.e., auto-resonant acceleration and direct acceleration by focused laser field, as significant particle acceleration can be achieved at one order lesser values of static axial magnetic field and laser intensity.

  13. Low energy cyclotron for radiocarbon dating

    SciTech Connect

    Welch, J.J.

    1984-12-01

    The measurement of naturally occurring radioisotopes whose half lives are less than a few hundred million years but more than a few years provides information about the temporal behavior of geologic and climatic processes, the temporal history of meteoritic bodies as well as the production mechanisms of these radioisotopes. A new extremely sensitive technique for measuring these radioisotopes at tandem Van de Graaff and cyclotron facilities has been very successful though the high cost and limited availability have been discouraging. We have built and tested a low energy cyclotron for radiocarbon dating similar in size to a conventional mass spectrometer. These tests clearly show that with the addition of a conventional ion source, the low energy cyclotron can perform the extremely high sensitivity /sup 14/C measurements that are now done at accelerator facilities. We found that no significant background is present when the cyclotron is tuned to accelerate /sup 14/C negative ions and the transmission efficiency is adequate to perform radiocarbon dating on milligram samples of carbon. The internal ion source used did not produce sufficient current to detect /sup 14/C directly at modern concentrations. We show how a conventional carbon negative ion source, located outside the cyclotron magnet, would produce sufficient beam and provide for quick sampling to make radiocarbon dating milligram samples with a modest laboratory instrument feasible.

  14. The Sagdeev pseudopotential approach to autoresonance effect

    NASA Astrophysics Data System (ADS)

    Akbari-Moghanjoughi, M.

    2017-08-01

    In this paper, a theoretical model of the autoresonance effect based on the pseudoparticle oscillation in a classical potential well is presented. The underlying connection between the autoresonance effect and the shock wave generation in fluid dynamics is revealed and effects of different parameters such as the potential, damping, external force amplitude, and frequency variation on the phase-locking effect are examined. We use the full nonlinear energy spectrum of oscillations in order to selectively choose our start frequency for the autoresonance effect to occur. We also use an exponential chirping mechanism instead of the linear one which is usually employed. We believe that the former chirping mechanism is a more natural way of energy injection into the dynamical system and provides a more effective approach with sufficient control on the phase locking stability and duration. It is shown that the double sweeping of both driving force magnitude and frequency leads to dense large amplitude wave packets which we call autoexcitons. These entities may be useful in instantaneous energy transport in fluids and heating of plasmas. The autoresonance effect with exponential chirping and variable force amplitude is shown to be effective for weakly nonlinear Helmholtz and Duffing oscillators as well as fully nonlinear Sagdeev potential of electron-ion plasma hydrodynamic models. The occurrence of phase locking and autoexciton formation is studied for driven ion acoustic waves in terms of different plasma parameters and equation of state of ion fluid.

  15. TG wave autoresonant control of plasma temperature

    SciTech Connect

    Kabantsev, A. A. Driscoll, C. F.

    2015-06-29

    The thermal correction term in the Trivelpiece-Gould (TG) wave’s frequency has been used to accurately control the temperature of electron plasma, by applying a swept-frequency continuous drive autoresonantly locked in balance with the cyclotron cooling. The electron temperature can be either “pegged” at a desired value (by constant drive frequency); or varied cyclically (following the tailored frequency course), with rates limited by the cooling time (on the way down) and by chosen drive amplitude (on the way up)

  16. Breakdown of autoresonance due to separatrix crossing in dissipative systems: From Josephson junctions to the three-wave problem.

    PubMed

    Chacón, Ricardo

    2008-12-01

    Optimal energy amplification via autoresonance in dissipative systems subjected to separatrix crossings is discussed through the universal model of a damped driven pendulum. Analytical expressions of the autoresonance responses and forces as well as the associated adiabatic invariants for the phase space regions separated by the underlying separatrix are derived from the energy-based theory of autoresonance. Additionally, applications to a single Josephson junction, topological solitons in Frenkel-Kontorova chains, as well as to the three-wave problem in dissipative media are discussed in detail from the autoresonance analysis.

  17. FEL's with bragg reflection resonators: cyclotron auto resonance masers versus ubitrons

    SciTech Connect

    Bratman, V.L.; Denisov, G.G.; Ginzburg, N.S.; Petelin, M.I.

    1983-03-01

    FEL's based on the stimulated undulator radiation (ubitrons) are compared with those based on the stimulated cyclotron radiation (cyclotron autoresonance masers (CARM's)). If the high-current accelerators are used as electron injectors, then from the viewpoint of simplicity of oscillatory electron energy pumping, criticality with respect to electron velocity dispersion, and efficiency, CARM's seem to be more effective than ubitrons at mm and sbmm waves. For such HF generators, resonators based on selective Bragg reflection of electromagnetic waves in corrugated metallic tubes are most attractive. CARM's of this type yield 6 MW at a 4 mm wavelength and 10 MW at a 2 mm wavelength in the single-mode regime.

  18. Performance of Variable Energy Cyclotron Centre superconducting cyclotron liquid nitrogen distribution system

    NASA Astrophysics Data System (ADS)

    Pal, Gautam; Nandi, Chinmay; Bhattacharyya, Tamal Kumar; Chakrabarti, Alok

    2014-01-01

    The liquid nitrogen distribution at Variable Energy Cyclotron Centre, Kolkata, India K500 superconducting cyclotron uses parallel branches to cool the thermal shield of helium vessel housing the superconducting coil and the cryopanels. Liquid nitrogen is supplied to the thermal shields from a pressurised liquid nitrogen dewar. Direct measurement of flow is quite difficult and seldom used in an operational cryogenic system. The total flow and heat load of the liquid nitrogen system was estimated indirectly by continuous measurement of level in the liquid nitrogen tanks. A mathematical model was developed to evaluate liquid nitrogen flow in the parallel branches. The model was used to generate flow distribution for different settings and the total flow was compared with measured data.

  19. Potential of cyclotron based accelerators for energy production and transmutation

    SciTech Connect

    Stammbach, T.; Adam, S.; Fitze, H.R.

    1995-10-01

    PSI operates a 590 MeV-cyclotron facility for high intensity proton beams for the production of intense beams of pions and muons. The facility, commissioned in 1974, has been partially upgraded and is now operated routinely at a beam current of 1 mA, which corresponds to a beam power of 0.6 MW. At this current, the beam losses in the cyclotron are about 0.02%. By the end of 1995 the authors expect to have 1.5 mA of protons. Extensive theoretical investigations on beam current limitations in isochronous cyclotrons were undertaken. They show that the longitudinal space charge effects dominate. Based on their experience the authors present a preliminary design of a cyclotron scheme that could produce a 10 MW beam as a driver for an {open_quotes}energy amplifier{close_quotes} as proposed by C. Rubbia and his collaborators. The expected efficiency for the conversion of AC into beam power would be about 50% (for the RF-systems only). The beam losses in the cyclotron are expected to be a few {mu}A, leading to a tolerable activation level.

  20. Autoresonant control of drift waves

    NASA Astrophysics Data System (ADS)

    Shagalov, A. G.; Rasmussen, J. Juul; Naulin, V.

    2017-03-01

    The control of nonlinear drift waves in a magnetized plasmas column has been investigated. The studies are based on the Hasegawa–Mima model, which is solved on a disk domain with radial inhomogeneity of the plasma density. The system is forced by a rotating potential with varying frequency defined on the boundary. To excite and control the waves we apply the autoresonant effect, taking place when the amplitude of the forcing exceeds a threshold value and the waves are phase-locked with the forcing. We demonstrate that the autoresonant approach is applicable for excitation of a range of steady nonlinear waves of the lowest azimuthal mode numbers and for controlling their amplitudes and phases. We also demonstrate the excitation of zonal flows (m = 0 modes), which are controlled via the forced modes.

  1. Autoresonance of coupled nonlinear waves

    SciTech Connect

    Yaakobi, Oded; Friedland, Lazar

    2011-01-04

    Resonant three-wave interactions (R3WIs) and their dynamical counterpart, three-oscillator interactions (R3OIs) play a fundamental role in many fields of physics. Consequently, controlling R3WI/R3OIs is an important goal of both basic and applied physics research. We have developed new control schemes based on a recent approach of wave autoresonance. This approach is based on the intrinsic property of many nonlinear waves and oscillations to stay in resonance (phase-lock) even when parameters of the system vary in time and/or space. We review autoresonance in several new coupled wave systems including externally driven R3OI systems and multidimensional R3WIs. Particularly, we have focused on autoresonant stimulated Raman scattering in nonuniform plasmas. This research comprises an important step toward understanding of adiabatic synchronization of nonlinear waves in space-time varying media with a potential of many new applications in plasma physics and related fields, such as fluid dynamics, nonlinear optics, and acoustics.

  2. Autoresonant Dynamics of Optical Guided Waves

    SciTech Connect

    Barak, Assaf; Lamhot, Yuval; Segev, Mordechai; Friedland, Lazar

    2009-09-18

    We study, theoretically and experimentally, autoresonant dynamics of optical waves in a spatially chirped nonlinear directional coupler. We show that adiabatic passage through a linear resonance in a weakly coupled light-wave system yields a sharp threshold transition to nonlinear phase locking and amplification to predetermined amplitudes. This constitutes the first observation of autoresonance phenomena in optics.

  3. Autoresonant Excitation of Antiproton Plasmas

    NASA Astrophysics Data System (ADS)

    Andresen, G. B.; Ashkezari, M. D.; Baquero-Ruiz, M.; Bertsche, W.; Bowe, P. D.; Butler, E.; Carpenter, P. T.; Cesar, C. L.; Chapman, S.; Charlton, M.; Fajans, J.; Friesen, T.; Fujiwara, M. C.; Gill, D. R.; Hangst, J. S.; Hardy, W. N.; Hayden, M. E.; Humphries, A. J.; Hurt, J. L.; Hydomako, R.; Jonsell, S.; Madsen, N.; Menary, S.; Nolan, P.; Olchanski, K.; Olin, A.; Povilus, A.; Pusa, P.; Robicheaux, F.; Sarid, E.; Silveira, D. M.; So, C.; Storey, J. W.; Thompson, R. I.; van der Werf, D. P.; Wurtele, J. S.; Yamazaki, Y.

    2011-01-01

    We demonstrate controllable excitation of the center-of-mass longitudinal motion of a thermal antiproton plasma using a swept-frequency autoresonant drive. When the plasma is cold, dense, and highly collective in nature, we observe that the entire system behaves as a single-particle nonlinear oscillator, as predicted by a recent theory. In contrast, only a fraction of the antiprotons in a warm plasma can be similarly excited. Antihydrogen was produced and trapped by using this technique to drive antiprotons into a positron plasma, thereby initiating atomic recombination.

  4. Self-consistent simulation of an electron beam for a new autoresonant x-ray generator based on TE 102 rectangular mode

    NASA Astrophysics Data System (ADS)

    Dugar-Zhabon, V. D.; Orozco, E. A.; Herrera, A. M.

    2016-02-01

    The space cyclotron autoresonance interaction of an electron beam with microwaves of TE 102 rectangular mode is simulated. It is shown that in these conditions the beam electrons can achieve energies which are sufficient to generate hard x-rays. The physical model consists of a rectangular cavity fed by a magnetron oscillator through a waveguide with a ferrite isolator, an iris window and a system of dc current coils which generates an axially symmetric magnetic field. The 3D magnetic field profile is that which maintains the electron beam in the space autoresonance regime. To simulate the beam dynamics, a full self-consistent electromagnetic particle-in-cell code is developed. It is shown that the injected 12keV electron beam of 0.5A current is accelerated to energy of 225keV at a distance of an order of 17cm by 2.45GHz standing microwave field with amplitude of 14kV/cm.

  5. Autoresonance versus localization in weakly coupled oscillators

    NASA Astrophysics Data System (ADS)

    Kovaleva, Agnessa; Manevitch, Leonid I.

    2016-04-01

    We study formation of autoresonance (AR) in a two-degree of freedom oscillator array including a nonlinear (Duffing) oscillator (the actuator) weakly coupled to a linear attachment. Two classes of systems are studied. In the first class of systems, a periodic force with constant (resonance) frequency is applied to a nonlinear oscillator (actuator) with slowly time-decreasing stiffness. In the systems of the second class a nonlinear time-invariant oscillator is subjected to an excitation with slowly increasing frequency. In both cases, the attached linear oscillator and linear coupling are time-invariant, and the system is initially engaged in resonance. This paper demonstrates that in the systems of the first type AR in the nonlinear actuator entails oscillations with growing amplitudes in the linear attachment while in the system of the second type energy transfer from the nonlinear actuator is insufficient to excite high-energy oscillations of the attachment. It is also shown that a slow change of stiffness may enhance the response of the actuator and make it sufficient to support oscillations with growing energy in the attachment even beyond the linear resonance. Explicit asymptotic approximations of the solutions are obtained. Close proximity of the derived approximations to exact (numerical) results is demonstrated.

  6. Cyclotrons with fast variable and/or multiple energy extraction

    NASA Astrophysics Data System (ADS)

    Baumgarten, C.

    2013-10-01

    We discuss the possibility in principle of stripping extraction in combination with reverse bends in isochronous separate-sector cyclotrons (and/or fixed field alternating gradient accelerators). If one uses reverse bends between the sectors (instead of or in combination with drifts) and places stripper foils at the sector exit edges, the stripped beam has a reduced bending radius and it should be able to leave the cyclotron within the range of the valley—even if the beam is stripped at less than full energy. We are especially interested in stripping of H2+, as it doubles the charge to mass ratio of the ions. However the method could be applied to other ions or ionized molecules as well. For the production of proton beams by stripping extraction of an H2+ beam, we discuss possible designs for three types of machines: First, a low-energy cyclotron for the simultaneous production of several beams at multiple energies—for instance 15, 30, and 70 MeV—thus allowing beam delivery on several isotope production targets. In this case it can be an advantage to have a strong energy dependence of the direction of the extracted beam. Second, we consider a fast variable-energy proton machine for cancer therapy that should allow extraction (of the complete beam) at all energies in the range of about 70 MeV to about 250 MeV into the same beam line. Third, we consider a high-intensity high-energy machine, where the main design goals are extraction with low losses, low activation of components, and high reliability. Especially if such a machine is considered for an accelerator driven system (ADS), this extraction mechanism has advantages: Beam trips by the failure of electrostatic elements could be avoided and the turn separation would be less critical, which allows operation at lower main cavity voltages. This would in turn reduce the number of rf trips. The price that has to be paid for these advantages is an increase in size and/or field strength compared to proton machines

  7. Autoresonant four-wave mixing in optical fibers

    SciTech Connect

    Yaakobi, O.; Friedland, L.

    2010-08-15

    A theory of autoresonant four-wave mixing in tapered fibers is developed in application to optical parametric amplification (OPA). In autoresonance, the interacting waves (two pump waves, a signal, and an idler) stay phase-locked continuously despite variation of system parameters (spatial tapering). This spatially extended phase-locking allows complete pump depletion in the system and uniform amplification spectrum in a wide frequency band. Different aspects of autoresonant OPA are described including the automatic initial phase-locking, conditions for autoresonant transition, stability, and spatial range of the autoresonant interaction.

  8. Precision phase control for the radio frequency system of K500 superconducting cyclotron at Variable Energy Cyclotron Centre, Kolkata

    SciTech Connect

    Som, Sumit; Ghosh, Surajit; Seth, Sudeshna; Mandal, Aditya; Paul, Saikat; Roy, Suprakash

    2013-11-15

    Variable Energy Cyclotron Centre (VECC) has commissioned K500 Superconducting cyclotron (SCC) based on MSU and Texas A and M university cyclotrons. The radio frequency (RF) system of SCC has been commissioned with the stringent requirement of various RF parameters. The three-phase RF system of Superconducting cyclotron has been developed in the frequency range 9–27 MHz with amplitude and phase stability of 100 ppm and ±0.1°, respectively. The phase control system has the option to change the relative phase difference between any two RF cavities and maintain the phase stability within ±0.1° during round-the-clock cyclotron operation. The said precision phase loop consists of both analogue In-phase/Quadrature modulator to achieve faster response and also Direct Digital Synthesis based phase shifter to achieve wide dynamic range as well. This paper discusses detail insights into the various issues of phase control for the K500 SCC at VECC, Kolkata.

  9. Performance of the beam chamber vacuum system of K = 500 cyclotron at Variable Energy Cyclotron Centre Kolkata.

    PubMed

    Pal, Gautam; DuttaGupta, Anjan; Chakrabarti, Alok

    2014-07-01

    The beam chamber of Variable Energy Cyclotron Centre, Kolkata's K = 500 superconducting cyclotron is pumped by liquid helium cooled cryopanel with liquid nitrogen cooled radiation shield. Performance of the vacuum system was evaluated by cooling the cryopanel assembly with liquid nitrogen and liquid helium. Direct measurement of beam chamber pressure is quite difficult because of space restrictions and the presence of high magnetic field. Pressure gauges were placed away from the beam chamber. The beam chamber pressure was evaluated using a Monte Carlo simulation software for vacuum system and compared with measurements. The details of the vacuum system, measurements, and estimation of pressure of the beam chamber are described in this paper.

  10. Electron cyclotron emission imaging and applications in magnetic fusion energy

    NASA Astrophysics Data System (ADS)

    Tobias, Benjamin John

    Energy production through the burning of fossil fuels is an unsustainable practice. Exponentially increasing energy consumption and dwindling natural resources ensure that coal and gas fueled power plants will someday be a thing of the past. However, even before fuel reserves are depleted, our planet may well succumb to disastrous side effects, namely the build up of carbon emissions in the environment triggering world-wide climate change and the countless industrial spills of pollutants that continue to this day. Many alternatives are currently being developed, but none has so much promise as fusion nuclear energy, the energy of the sun. The confinement of hot plasma at temperatures in excess of 100 million Kelvin by a carefully arranged magnetic field for the realization of a self-sustaining fusion power plant requires new technologies and improved understanding of fundamental physical phenomena. Imaging of electron cyclotron radiation lends insight into the spatial and temporal behavior of electron temperature fluctuations and instabilities, providing a powerful diagnostic for investigations into basic plasma physics and nuclear fusion reactor operation. This dissertation presents the design and implementation of a new generation of Electron Cyclotron Emission Imaging (ECEI) diagnostics on toroidal magnetic fusion confinement devices, or tokamaks, around the world. The underlying physics of cyclotron radiation in fusion plasmas is reviewed, and a thorough discussion of millimeter wave imaging techniques and heterodyne radiometry in ECEI follows. The imaging of turbulence and fluid flows has evolved over half a millennium since Leonardo da Vinci's first sketches of cascading water, and applications for ECEI in fusion research are broad ranging. Two areas of physical investigation are discussed in this dissertation: the identification of poloidal shearing in Alfven eigenmode structures predicted by hybrid gyrofluid-magnetohydrodynamic (gyrofluid-MHD) modeling, and

  11. Peculiarities of charged particle dynamics under cyclotron resonance conditions

    SciTech Connect

    Moiseev, S. S.; Buts, V. A.; Erokhin, N. S.

    2016-08-15

    Peculiarities of the dynamics of charged particles interacting with electromagnetic radiation under nearly autoresonance conditions are analyzed. In particular, analysis of nonlinear cyclotron resonances shows that their widths increase when the autoresonance conditions are approached. In this case, however, the distance between nonlinear resonances increases even faster, due to which nonlinear resonances do not overlap and, accordingly, regimes with dynamic chaos do not occur. According to calculations, the dynamics of charged particles under the autoresonance conditions is very sensitive to fluctuations, the effect of which can be anomalously large and lead to superdiffusion. It is shown that, under the autoresonance conditions, particle dynamics on small time intervals can differ significantly from that on large time intervals. This effect is most pronounced in the presence of fluctuations in the system.

  12. Autoresonance

    NASA Astrophysics Data System (ADS)

    Fajans, J.; Friedland, L.

    A weakly-driven pendulum cannot be strongly excited by a fixed frequency drive. The only way to strongly excite the pendulum is to use a drive whose frequency decreases with time. Feedback is often used to control the rate at which the frequency decreases. Feedback need not be employed, however, the drive frequency can simply be swept downwards. With this method, the drive strength must exceed a threshold proportional to the sweep rate raised to the 3/4 power. This threshold has been discovered only recently, and holds for a very broad class of driven nonlinear oscillators. The threshold may explain the abundance of 3:2 resonances and sparsity of 2:1 resonances observed between the orbital periods of Neptune and the Plutinos (Pluto and many of the Kuiper Belt objects), and has been extensively investigated in the Diocotron and other systems in single-species plasmas.

  13. Multidimensional, autoresonant three-wave interactions

    SciTech Connect

    Yaakobi, O.; Friedland, L.

    2008-10-15

    The theory of autoresonant three-wave interactions is generalized to more than one space and/or time variation of the background medium. In the most general case, the three waves propagate in a four-dimensional (4D) slowly space-time varying background, with an embedded 3D linear resonance hypersurface, where the linear frequency and wave-vector matching conditions of the three waves are satisfied exactly. The autoresonance in the system is the result of weak nonlinear frequency shifts and nonuniformity in the problem and is manifested by satisfaction of the nonlinear resonance conditions in an extended region of space-time adjacent to the resonance surface despite the variation of the background. The threshold condition for autoresonance is found and further discussed in application to stimulated Raman scattering in a 1D, time-dependent plasma case. Asymptotic description of the autoresonant waves far away from the resonance surface is obtained. The theory is illustrated and tested in 2D numerical simulatio0008.

  14. Variations of cyclotron line energy with luminosity in accreting X-ray pulsars

    SciTech Connect

    Nishimura, Osamu

    2014-01-20

    I develop a new model for changes of cyclotron line energy with luminosity based on changes in polar cap dimensions and the direction of photon propagation as well as a shock height. In X0115+63 and V0332+53, the fundamental cyclotron line energy has been observed to decrease with increasing luminosity. This phenomenon has been interpreted as a change of a shock height with luminosity. However, the rates of the observed changes are quite different, in which the line energy in V0332+53 varies slowly with luminosity compared with that in X0115+63. I demonstrate that a new model successfully reproduces the changes of the fundamental cyclotron line energies with luminosity in both X0115+63 and V0332+53. On the other hand, the cyclotron line energies in Her X–1, GX301–2, and GX304–1 were reported to increase with increasing luminosity. I discuss the positive correlation between the cyclotron line energy and luminosity based on changes in a beam pattern for Her X–1, GX301–2, and GX304–1. In addition, I discuss how a switch of the predominant, observed emission region from pole1 to pole2 influences cyclotron line energy for GX304–1 and A0535+26.

  15. A small low energy cyclotron for radioisotope measurements

    SciTech Connect

    Bertsche, K.J.

    1989-11-01

    Direct detection of {sup 14}C by accelerator mass spectrometry has proved to be a much more sensitive method for radiocarbon dating than the decay counting method invented earlier by Libby. A small cyclotron (the cyclotrino'') was proposed for direct detection of radiocarbon in 1980. This combined the suppression of background through the use of negative ions, which had been used effectively in tandem accelerators, with the high intrinsic mass resolution of a cyclotron. Development of a small electrostatically-focused cyclotron for use as a mass spectrometer was previously reported but the sensitivity needed for detection of {sup 14}C at natural abundance was not achieved. The major contributions of this work are the integration of a high current external ion source with a small flat-field, electrostatically-focused cyclotron to comprise a system capable of measuring {sup 14}C at natural levels, and the analysis of ion motion in such a cyclotron, including a detailed analysis of phase bunching and its effect on mass resolution. A high current cesium sputter negative ion source generates a beam of carbon ions which is pre-separated with a Wien filter and is transported to the cyclotron via a series of electrostatic lenses. Beam is injected radially into the cyclotron using electrostatic deflectors and an electrostatic mirror. Axial focusing is entirely electrostatic. A microchannel plate detector is used with a phase-grated output. In its present form the system is capable of improving the sensitivity of detecting {sup 14}C in some biomedical experiments by a factor of 10{sup 4}. Modifications are discussed which could bring about an additional factor of 100 in sensitivity, which is important for archaeological and geological applications. Possibilities for measurements of other isotopes, such as {sup 3}H, and {sup 10}Be, and {sup 26}Al, are discussed. 70 refs.

  16. Ion source and low energy injection line for a central region model cyclotron

    SciTech Connect

    Zhang Tianjue; Li Zhenguo; Lu Yinlong; Wei Sumin; Cai Hongru; Ge Tao; Wu Longcheng; Pan Gaofeng; Yao Hongjuan; Kuo, T.; Yuan, D.

    2008-02-15

    At CIAE, a 100 MeV H{sup -} cyclotron (CYCIAE-100) is under design and construction. A central region model (CRM) cyclotron was built for various experimental verifications for the CYCIAE-100 project and for research and development of high current injection to accelerate milliampere H{sup -} beam. The H{sup -} multicusp source built in 2003 has been improved recently to make the source operation more stable. A new injection line for axial low energy high current injection has been designed and constructed for the CRM cyclotron.

  17. Control of autoresonance in mechanical and physical models

    NASA Astrophysics Data System (ADS)

    Kovaleva, A.

    2017-03-01

    Autoresonant energy transfer has been considered as one of the most effective methods of excitation and control of high-energy oscillations for a broad range of physical and engineering systems. Nonlinear time-invariant feedback control provides effective self-tuning and self-adaptation mechanisms targeted at preserving resonance oscillations under variations of the system parameters but its implementation may become extremely complicated. A large class of systems can avoid nonlinear feedback, still producing the required state due to time-variant feed-forward frequency control. This type of control in oscillator arrays employs an intrinsic property of a nonlinear oscillator to vary both its amplitude and the frequency when the driving frequency changes. This paper presents a survey of recently published and new results studying possibilities and limitations of time-variant frequency control in nonlinear oscillator arrays. This article is part of the themed issue 'Horizons of cybernetical physics'.

  18. Autoresonant magnetization switching by spin-orbit torques

    NASA Astrophysics Data System (ADS)

    Go, Gyungchoon; Lee, Seung-Jae; Lee, Kyung-Jin

    2017-05-01

    Autoresonance is a self-sustained resonance mechanism due to a driving force whose frequency monotonically varies with time. We theoretically show that the autoresonance mechanism allows an efficient switching of perpendicular magnetization by spin-orbit spin-transfer torques. We find that a threshold current for the autoresonant switching can be much smaller than that of conventional spin-orbit torque switching driven by a DC current. Moreover, the suggested scheme allows fully deterministic switching without the help of any external field.

  19. Cyclotron laboratory of the Institute for Nuclear Research and Nuclear Energy

    NASA Astrophysics Data System (ADS)

    Tonev, D.; Goutev, N.; Georgiev, L. S.

    2016-06-01

    An accelerator laboratory is presently under construction in Sofia at the Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences. The laboratory will use a TR24 type of cyclotron, which provides a possibility to accelerate a proton beam with an energy of 15 to 24 MeV and current of up to 0.4 mA. An accelerator with such parameters allows to produce a large variety of radioisotopes for development of radiopharmaceuticals. The most common radioisotopes that could be produced with such a cyclotron are PET isotopes like: 11C, 13N, 15O, 18F, 124I, 64Cu, 68Ge/68Ga, and SPECT isotopes like: 123I, 111In, 67Ga, 57Co, 99m Tc. Our aim is to use the cyclotron facility for research in the fields of radiopharmacy, radiochemistry, radiobiology, nuclear physics, solid state physics, applied research, new materials and for education in all these fields including nuclear energy. The building of the laboratory will be constructed nearby the Institute for Nuclear Research and Nuclear Energy and the cyclotron together with all the equipment needed will be installed there.

  20. Antihydrogen formation by autoresonant excitation of antiproton plasmas

    NASA Astrophysics Data System (ADS)

    Bertsche, William Alan; Andresen, G. B.; Ashkezari, M. D.; Baquero-Ruiz, M.; Bowe, P. D.; Carpenter, P. T.; Butler, E.; Cesar, C. L.; Chapman, S. F.; Charlton, M.; Eriksson, S.; Fajans, J.; Friesen, T.; Fujiwara, M. C.; Gill, D. R.; Gutierrez, A.; Hangst, J. S.; Hardy, W. N.; Hayano, R. S.; Hayden, M. E.; Humphries, A. J.; Hurt, J. L.; Hydomako, R.; Jonsell, S.; Kurchaninov, L.; Madsen, N.; Menary, S.; Nolan, P.; Olchanski, K.; Olin, A.; Povilus, A.; Pusa, P.; Robicheaux, F.; Sarid, E.; Silveira, D. M.; So, C.; Storey, J. W.; Thompson, R. I.; Werf, D. P. van der; Wurtele, J. S.; Yamazaki, Y.

    In efforts to trap antihydrogen, a key problem is the vast disparity between the neutral trap energy scale (˜ 50 \\upmueV), and the energy scales associated with plasma confinement and space charge ( 1 eV). In order to merge charged particle species for direct recombination, the larger energy scale must be overcome in a manner that minimizes the initial antihydrogen kinetic energy. This issue motivated the development of a novel injection technique utilizing the inherent nonlinear nature of particle oscillations in our traps. We demonstrated controllable excitation of the center-of-mass longitudinal motion of a thermal antiproton plasma using a swept-frequency autoresonant drive. When the plasma is cold, dense and highly collective in nature, we observe that the entire system behaves as a single-particle nonlinear oscillator, as predicted by a recent theory. In contrast, only a fraction of the antiprotons in a warm or tenuous plasma can be similarly excited. Antihydrogen was produced and trapped by using this technique to drive antiprotons into a positron plasma, thereby initiating atomic recombination. The nature of this injection overcomes some of the difficulties associated with matching the energies of the charged species used to produce antihydrogen.

  1. Antihydrogen formation by autoresonant excitation of antiproton plasmas

    NASA Astrophysics Data System (ADS)

    Bertsche, William Alan; Andresen, G. B.; Ashkezari, M. D.; Baquero-Ruiz, M.; Bowe, P. D.; Carpenter, P. T.; Butler, E.; Cesar, C. L.; Chapman, S. F.; Charlton, M.; Eriksson, S.; Fajans, J.; Friesen, T.; Fujiwara, M. C.; Gill, D. R.; Gutierrez, A.; Hangst, J. S.; Hardy, W. N.; Hayano, R. S.; Hayden, M. E.; Humphries, A. J.; Hurt, J. L.; Hydomako, R.; Jonsell, S.; Kurchaninov, L.; Madsen, N.; Menary, S.; Nolan, P.; Olchanski, K.; Olin, A.; Povilus, A.; Pusa, P.; Robicheaux, F.; Sarid, E.; Silveira, D. M.; So, C.; Storey, J. W.; Thompson, R. I.; Werf, D. P. van der; Wurtele, J. S.; Yamazaki, Y.

    2012-12-01

    In efforts to trap antihydrogen, a key problem is the vast disparity between the neutral trap energy scale (˜ 50 \\upmueV), and the energy scales associated with plasma confinement and space charge ( 1 eV). In order to merge charged particle species for direct recombination, the larger energy scale must be overcome in a manner that minimizes the initial antihydrogen kinetic energy. This issue motivated the development of a novel injection technique utilizing the inherent nonlinear nature of particle oscillations in our traps. We demonstrated controllable excitation of the center-of-mass longitudinal motion of a thermal antiproton plasma using a swept-frequency autoresonant drive. When the plasma is cold, dense and highly collective in nature, we observe that the entire system behaves as a single-particle nonlinear oscillator, as predicted by a recent theory. In contrast, only a fraction of the antiprotons in a warm or tenuous plasma can be similarly excited. Antihydrogen was produced and trapped by using this technique to drive antiprotons into a positron plasma, thereby initiating atomic recombination. The nature of this injection overcomes some of the difficulties associated with matching the energies of the charged species used to produce antihydrogen.

  2. Cyclotron Road at Berkeley Lab – U.S. Department of Energy

    SciTech Connect

    Kuhl, Kendra; Weitekamp, Raymond; Lehmann, Marcus; Cave, Etosha; Gur, Ilan; Lounis, Sebastien

    2016-05-05

    The Department of Energy is testing a new model for clean energy research and development (R&D) through a program called Cyclotron Road. The goal is to support scientific R&D that is still too risky for private‐sector investment, and too applied for academia. Participants receive the time, space and capital to pursue their research and the support to find viable pathways to the market.

  3. Cyclotron Road at Berkeley Lab – U.S. Department of Energy

    ScienceCinema

    Kuhl, Kendra; Weitekamp, Raymond; Lehmann, Marcus; Cave, Etosha; Gur, Ilan; Lounis, Sebastien

    2016-07-12

    The Department of Energy is testing a new model for clean energy research and development (R&D) through a program called Cyclotron Road. The goal is to support scientific R&D that is still too risky for private‐sector investment, and too applied for academia. Participants receive the time, space and capital to pursue their research and the support to find viable pathways to the market.

  4. Energy transfer between energetic ring current H(+) and O(+) by electromagnetic ion cyclotron waves

    NASA Technical Reports Server (NTRS)

    Thorne, Richard M.; Horne, Richard B.

    1994-01-01

    Electromagnetic ion cyclotron (EMIC) waves in the frequency range below the helium gyrofrequency can be excited in the equatorial region of the outer magnetosphere by cyclotron resonant instability with anisotropic ring current H(+) ions. As the unducted waves propagate to higher latitudes, the wave normal should become highly inclined to the ambient magnetic field. Under such conditions, wave energy can be absorbed by cyclotron resonant interactions with ambient O(+), leading to ion heating perpendicular to the ambient magnetic field. Resonant wave absorption peaks in the vicinity of the bi-ion frequency and the second harmonic of the O(+) gyrofrequrency. This absorption should mainly occur at latitudes between 10 deg and 30 deg along auroral field lines (L is greater than or equal to 7) in the postnoon sector. The concomitant ion heating perpendicular to the ambient magnetic field can contribute to the isotropization and geomagnetic trapping of collapsed O(+) ion conics (or beams) that originate from a low-altitude ionospheric source region. During geomagnetic storms when the O(+) content of the magnetosphere is significantly enhanced, the absorption of EMIC waves should become more efficient, and it may contribute to the observed acceleration of O(+) ions of ionospheric origin up to ring current energies.

  5. Energy transfer between energetic ring current H(+) and O(+) by electromagnetic ion cyclotron waves

    NASA Technical Reports Server (NTRS)

    Thorne, Richard M.; Horne, Richard B.

    1994-01-01

    Electromagnetic ion cyclotron (EMIC) waves in the frequency range below the helium gyrofrequency can be excited in the equatorial region of the outer magnetosphere by cyclotron resonant instability with anisotropic ring current H(+) ions. As the unducted waves propagate to higher latitudes, the wave normal should become highly inclined to the ambient magnetic field. Under such conditions, wave energy can be absorbed by cyclotron resonant interactions with ambient O(+), leading to ion heating perpendicular to the ambient magnetic field. Resonant wave absorption peaks in the vicinity of the bi-ion frequency and the second harmonic of the O(+) gyrofrequrency. This absorption should mainly occur at latitudes between 10 deg and 30 deg along auroral field lines (L is greater than or equal to 7) in the postnoon sector. The concomitant ion heating perpendicular to the ambient magnetic field can contribute to the isotropization and geomagnetic trapping of collapsed O(+) ion conics (or beams) that originate from a low-altitude ionospheric source region. During geomagnetic storms when the O(+) content of the magnetosphere is significantly enhanced, the absorption of EMIC waves should become more efficient, and it may contribute to the observed acceleration of O(+) ions of ionospheric origin up to ring current energies.

  6. ARRONAX, a high-energy and high-intensity cyclotron for nuclear medicine.

    PubMed

    Haddad, Ferid; Ferrer, Ludovic; Guertin, Arnaud; Carlier, Thomas; Michel, Nathalie; Barbet, Jacques; Chatal, Jean-François

    2008-07-01

    This study was aimed at establishing a list of radionuclides of interest for nuclear medicine that can be produced in a high-intensity and high-energy cyclotron. We have considered both therapeutic and positron emission tomography radionuclides that can be produced using a high-energy and a high-intensity cyclotron such as ARRONAX, which will be operating in Nantes (France) by the end of 2008. Novel radionuclides or radionuclides of current limited availability have been selected according to the following criteria: emission of positrons, low-energy beta or alpha particles, stable or short half-life daughters, half-life between 3 h and 10 days or generator-produced, favourable dosimetry, production from stable isotopes with reasonable cross sections. Three radionuclides appear well suited to targeted radionuclide therapy using beta ((67)Cu, (47)Sc) or alpha ((211)At) particles. Positron emitters allowing dosimetry studies prior to radionuclide therapy ((64)Cu, (124)I, (44)Sc), or that can be generator-produced ((82)Rb, (68)Ga) or providing the opportunity of a new imaging modality ((44)Sc) are considered to have a great interest at short term whereas (86)Y, (52)Fe, (55)Co, (76)Br or (89)Zr are considered to have a potential interest at middle term. Several radionuclides not currently used in routine nuclear medicine or not available in sufficient amount for clinical research have been selected for future production. High-energy, high-intensity cyclotrons are necessary to produce some of the selected radionuclides and make possible future clinical developments in nuclear medicine. Associated with appropriate carriers, these radionuclides will respond to a maximum of unmet clinical needs.

  7. Autoresonant vibro-impact system with electromagnetic excitation

    NASA Astrophysics Data System (ADS)

    Sokolov, I. J.; Babitsky, V. I.; Halliwell, N. A.

    2007-12-01

    Vibration is often used to improve the performance of material handling, processing or separation machinery. Linear suspension and sinusoidal motion of moving parts are usually employed in the design of these machines. A typical example would be vibrating screens used to grade gravel in sand and gravel extracting systems. A dramatic improvement in performance can be achieved if nonlinear suspension, with limiters to provide a vibro-impact motion, can be established. Unfortunately, effective vibro-impact resonant behaviour cannot be sustained in practice with traditional forced excitation due to the system sensitivity to small changes in load. Effective vibro-impact regimes, however, can now be achieved using the concept of autoresonant systems. An electromagnetic drive actuator is a simple and reliable means of vibration excitation. Importantly, this drive allows for an expansion of the autoresonant approach towards high-power applications. This paper introduces a novel autoresonant machine design, which has been developed for this type of actuator. Autoresonant operation is demonstrated using an experimental rig of vibro-impact shale shaker with electromagnetic actuator.

  8. Transmission improvement options via local energy degradation at a cyclotron driven ocular tumor treatment facility

    NASA Astrophysics Data System (ADS)

    Gerbershagen, Alexander; Hrbacek, Jan; Ijpes, Dennis; Schippers, Jacobus Maarten

    2017-06-01

    The goal of this work is to increase the beam transmission from the cyclotron to the patient location of ocular tumor treatment facility Optis 2 at the Paul Scherrer Institute and thus to reduce the patient treatment times. The examined options for such transmission increase were the installation of local degraders in the patient treatment room and modification of the energy selection collimator settings. The experiments have shown that an improvement of the beam transmission is possible to achieve, however on a cost of an increase in lateral or distal penumbra of the beam. The benefits and drawbacks of the examined options are discussed.

  9. A new and simple calibration-independent method for measuring the beam energy of a cyclotron.

    PubMed

    Gagnon, Katherine; Jensen, Mikael; Thisgaard, Helge; Publicover, Julia; Lapi, Suzanne; McQuarrie, Steve A; Ruth, Thomas J

    2011-01-01

    This work recommends a new and simple-to-perform method for measuring the beam energy of an accelerator. The proposed method requires the irradiation of two monitor foils interspaced by an energy degrader. The primary advantage of the proposed method, which makes this method unique from previous energy evaluation strategies that employ the use of monitor foils, is that this method is independent of the detector efficiency calibration. This method was evaluated by performing proton activation of (nat)Cu foils using both a cyclotron and a tandem Van de Graaff accelerator. The monitor foil activities were read using a dose calibrator set to an arbitrary calibration setting. Excellent agreement was noted between the nominal and measured proton energies.

  10. Long-term change in the cyclotron line energy in Her X-1

    NASA Astrophysics Data System (ADS)

    Staubert, Rüdiger

    2016-04-01

    We investigate the long-term evolution in the centroid energy of the Cyclotron Resonance Scattering Feature (CRSF) in the spectrum of the binary X-ray pulsar Her X-1. After the discovery in 1976 by the MPE/AIT balloon telescope HEXE, the line feature was confirmed by several other instruments, establishing the centroid energy at around 35 keV, thereby providing the first direct measure of the B-filed strength of a neutron star at a few 10^12 Gauss. Between 1991 and 1993 an upward jump by ~7 keV occurred, first noted by BATSE and soon confirmed by RXTE and Beppo/SAX. Since then a systematic effort to monitor the cyclotron line energy E_cyc with all available instruments has led to two further discoveries: 1) E_cyc correlates positively with the X-ray luminosity (this feature is now found in four more binary X-ray pulsars). 2) Over the last 20 years the (flux normalized) E_cyc in Her X-1 has decayed by ~5 keV, down to 36.5 keV in August 2015. Her X-1 is the first and so far the only source showing such a variation. We will discuss possible physical scenarios relevant for accretion mounds/columns on highly magnetized neutron stars.

  11. Flat-top acceleration system for the variable-energy multiparticle AVF cyclotron

    NASA Astrophysics Data System (ADS)

    Fukuda, Mitsuhiro; Kurashima, Satoshi; Okumura, Susumu; Miyawaki, Nobumasa; Agematsu, Takashi; Nakamura, Yoshiteru; Nara, Takayuki; Ishibori, Ikuo; Yoshida, Kenichi; Yokota, Watalu; Arakawa, Kazuo; Kumata, Yukio; Fukumoto, Yasushi; Saito, Katsuhiko

    2003-04-01

    A flat-top acceleration system appropriate to minimization of energy spread in an ion beam was investigated for the JAERI AVF cyclotron. A combination of the fundamental- and the fifth-harmonic voltages to obtain a homogeneous energy gain distribution of accelerated particles is ideally suited to a variable-energy multiparticle cyclotron using acceleration harmonics of 1, 2, and 3. The flat topping of the energy gain distribution using the fifth harmonics has the advantages of minimizing amplifier power, reducing power dissipation in a resonator, and increasing the energy gain per turn. The flat-top acceleration system was designed to reduce the energy spread to 0.02%, which fulfills a beam focusing condition for production of a microbeam with a beam spot diameter of 1 μm. Tolerable fluctuations of acceleration voltages, required to achieve the energy spread of 0.02%, were 2.0×10-4 for the fundamental voltage and 1.0×10-3 for the fifth-harmonic voltage. Both fundamental- and fifth-harmonic phases were required to be stabilized within 0.2 rf degrees. The tolerance of the magnetic excitation was 1.9×10-5. In order to enhance compactness of the flat-topping cavity and to make a substantial saving of the amplifier power, optimum geometric parameters of the flat-topping cavity were determined by a cold model test and a calculation using the MAFIA code. A full range of the fifth-harmonic frequency, 55-110 MHz, was covered by the flat-top system, which enables us to apply the flat-top acceleration to a wide range of energy.

  12. The Cyclotron radioisotopes production facility of the Argentinean Atomic Energy Commission (CNEA)

    NASA Astrophysics Data System (ADS)

    Strangis, S. R.; Maslat, G. J.

    2001-12-01

    A Cyclotron facility for radioisotopes production has been in operation in the Atomic Center Ezeiza since 1994. An H- 42 MeV Cyclotron, two target vaults, three hot-cells and a radiochemistry laboratory are dedicated for routinely production of 201Tl and FDG. A 123Xe target station is being currently constructed in a third target vault under an IAEA support project. The Cyclotron is a CP42 H- model, which was refurbished in Karlsruhe, Germany. This CP42 has a few added improvements, which make it one of the best of its class. The improvements included a source vacuum lock and a precise position control. The original variable energy extractor was also changed. The new one extracts the beam through another port than the original, which was selected for better beam quality for 25 MeV to 42 MeV. Recent improvements to the central region increased the internal beam available for acceleration, reaching a maximum of more than 400 μA. An external current in excess of 200 μA is also routinely achievable. Very high vacuum and very efficient and reliable RF system must be maintained to increase this limit. In addition, beam current limitations due to axial space charge effects in terms of vertical aperture and axial betatron frequencies will be discussed. The target systems are being improved for higher beam current. A new modern PC control software coupled to the original electronic control system will be described here. This program simplifies and fastens the operator tasks, providing also more information for diagnostics.

  13. Continued decay in the cyclotron line energy in Hercules X-1

    NASA Astrophysics Data System (ADS)

    Staubert, R.; Klochkov, D.; Vybornov, V.; Wilms, J.; Harrison, F. A.

    2016-05-01

    The centroid energy Ecyc of the cyclotron line in the spectrum of the binary X-ray pulsar Her X-1 has been found to decrease with time on a time scale of a few tens of years - surprisingly short in astrophysical terms. This was found for the pulse phase-averaged line centroid energy using observational data from various X-ray satellites over the time period 1996 to 2012, establishing a reduction of ~4 keV. Here we report on the result of a new observation by NuSTAR performed in August 2015. The earlier results are confirmed and strengthened with respect to both the dependence of Ecyc on flux (it is still present after 2006) and the dependence on time: the long-term decay continued with the same rate, corresponding to a reduction of ~5 keV in 20 yr.

  14. Heating of ions to superthermal energies in the topside ionosphere by electrostatic ion cyclotron waves

    NASA Technical Reports Server (NTRS)

    Ungstrup, E.; Klumpar, D. M.; Heikkila, W. J.

    1979-01-01

    The soft particle spectrometer on the Isis 2 spacecraft occasionally observes fluxes of ions moving upward out of the ionosphere in the vicinity of the auroral oval. These ion fluxes are characterized by a sharp pitch angle distribution usually peaked at an angle somewhat greater than 90 deg, indicative of particles heated to a large transverse temperature in a narrow range below the spacecraft. The observations are interpreted in terms of electrostatic ion cyclotron waves, which heat the ions to superthermal energies transverse to the earth's magnetic field. When the transverse energy increases, the repulsive force of the earth's magnetic field, proportional to the particle magnetic moment, repels the particles away from the earth.

  15. Electron cyclotron resonance ion source plasma characterization by energy dispersive x-ray imaging

    NASA Astrophysics Data System (ADS)

    Rácz, R.; Mascali, D.; Biri, S.; Caliri, C.; Castro, G.; Galatà, A.; Gammino, S.; Neri, L.; Pálinkás, J.; Romano, F. P.; Torrisi, G.

    2017-07-01

    Pinhole and CCD based quasi-optical x-ray imaging technique was applied to investigate the plasma of an electron cyclotron resonance ion source (ECRIS). Spectrally integrated and energy resolved images were taken from an axial perspective. The comparison of integrated images taken of argon plasma highlights the structural changes affected by some ECRIS setting parameters, like strength of the axial magnetic confinement, RF frequency and microwave power. Photon counting analysis gives precise intensity distribution of the x-ray emitted by the argon plasma and by the plasma chamber walls. This advanced technique points out that the spatial positions of the electron losses are strongly determined by the kinetic energy of the electrons themselves to be lost and also shows evidences how strongly the plasma distribution is affected by slight changes in the RF frequency.

  16. Heating of ions to superthermal energies in the topside ionosphere by electrostatic ion cyclotron waves

    NASA Technical Reports Server (NTRS)

    Ungstrup, E.; Klumpar, D. M.; Heikkila, W. J.

    1979-01-01

    The soft particle spectrometer on the Isis 2 spacecraft occasionally observes fluxes of ions moving upward out of the ionosphere in the vicinity of the auroral oval. These ion fluxes are characterized by a sharp pitch angle distribution usually peaked at an angle somewhat greater than 90 deg, indicative of particles heated to a large transverse temperature in a narrow range below the spacecraft. The observations are interpreted in terms of electrostatic ion cyclotron waves, which heat the ions to superthermal energies transverse to the earth's magnetic field. When the transverse energy increases, the repulsive force of the earth's magnetic field, proportional to the particle magnetic moment, repels the particles away from the earth.

  17. Implementation of EPICS based vacuum control system for variable energy cyclotron centre, Kolkata.

    PubMed

    Roy, Anindya; Bhole, R B; Nandy, Partha P; Yadav, R C; Pal, Sarbajit; Roy, Amitava

    2015-03-01

    The vacuum system of the Room Temperature (K = 130) Cyclotron of Variable Energy Cyclotron Centre is comprised of vacuum systems of main machine and Beam Transport System. The vacuum control system is upgraded to a PLC based Automated system from the initial relay based Manual system. The supervisory control of the vacuum system is implemented in Experimental Physics and Industrial Control System (EPICS). An EPICS embedded ARM based vacuum gauge controller is developed to mitigate the requirement of vendor specific gauge controller for gauges and also for seamless integration of the gauge controllers with the control system. A set of MS-Windows ActiveX components with embedded EPICS Channel Access interface are developed to build operator interfaces with less complex programming and to incorporate typical Windows feature, e.g., user authentication, file handling, better fonts, colors, mouse actions etc. into the operator interfaces. The control parameters, monitoring parameters, and system interlocks of the system are archived in MySQL based EPICS MySQL Archiver developed indigenously. In this paper, we describe the architecture, the implementation details, and the performance of the system.

  18. Implementation of EPICS based vacuum control system for variable energy cyclotron centre, Kolkata

    NASA Astrophysics Data System (ADS)

    Roy, Anindya; Bhole, R. B.; Nandy, Partha P.; Yadav, R. C.; Pal, Sarbajit; Roy, Amitava

    2015-03-01

    The vacuum system of the Room Temperature (K = 130) Cyclotron of Variable Energy Cyclotron Centre is comprised of vacuum systems of main machine and Beam Transport System. The vacuum control system is upgraded to a PLC based Automated system from the initial relay based Manual system. The supervisory control of the vacuum system is implemented in Experimental Physics and Industrial Control System (EPICS). An EPICS embedded ARM based vacuum gauge controller is developed to mitigate the requirement of vendor specific gauge controller for gauges and also for seamless integration of the gauge controllers with the control system. A set of MS-Windows ActiveX components with embedded EPICS Channel Access interface are developed to build operator interfaces with less complex programming and to incorporate typical Windows feature, e.g., user authentication, file handling, better fonts, colors, mouse actions etc. into the operator interfaces. The control parameters, monitoring parameters, and system interlocks of the system are archived in MySQL based EPICS MySQL Archiver developed indigenously. In this paper, we describe the architecture, the implementation details, and the performance of the system.

  19. Implementation of EPICS based vacuum control system for variable energy cyclotron centre, Kolkata

    SciTech Connect

    Roy, Anindya Bhole, R. B.; Nandy, Partha P.; Yadav, R. C.; Pal, Sarbajit; Roy, Amitava

    2015-03-15

    The vacuum system of the Room Temperature (K = 130) Cyclotron of Variable Energy Cyclotron Centre is comprised of vacuum systems of main machine and Beam Transport System. The vacuum control system is upgraded to a PLC based Automated system from the initial relay based Manual system. The supervisory control of the vacuum system is implemented in Experimental Physics and Industrial Control System (EPICS). An EPICS embedded ARM based vacuum gauge controller is developed to mitigate the requirement of vendor specific gauge controller for gauges and also for seamless integration of the gauge controllers with the control system. A set of MS-Windows ActiveX components with embedded EPICS Channel Access interface are developed to build operator interfaces with less complex programming and to incorporate typical Windows feature, e.g., user authentication, file handling, better fonts, colors, mouse actions etc. into the operator interfaces. The control parameters, monitoring parameters, and system interlocks of the system are archived in MySQL based EPICS MySQL Archiver developed indigenously. In this paper, we describe the architecture, the implementation details, and the performance of the system.

  20. Modeling of autoresonant control of a parametrically excited screen machine

    NASA Astrophysics Data System (ADS)

    Abolfazl Zahedi, S.; Babitsky, Vladimir

    2016-10-01

    Modelling of nonlinear dynamic response of a screen machine described by the nonlinear coupled differential equations and excited by the system of autoresonant control is presented. The displacement signal of the screen is fed to the screen excitation directly by means of positive feedback. Negative feedback is used to fix the level of screen amplitude response within the expected range. The screen is anticipated to vibrate with a parametric resonance and the excitation, stabilization and control response of the system are studied in the stable mode. Autoresonant control is thoroughly investigated and output tracking is reported. The control developed provides the possibility of self-tuning and self-adaptation mechanisms that allow the screen machine to maintain a parametric resonant mode of oscillation under a wide range of uncertainty of mass and viscosity.

  1. Manipulating internal energy of protonated biomolecules in electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry.

    PubMed

    Guo, Xinghua; Duursma, Marc C; Kistemaker, Piet G; Nibbering, Nico M M; Vekey, Karoly; Drahos, Laszlo; Heeren, Ron M A

    2003-06-01

    The internal energy of protonated leucine enkephalin has been manipulated in electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry with two newly designed pump-probe experiments. Blackbody infrared radiation was applied to pump an ion population into a well-defined internal energy distribution below the dissociation threshold. Following this pumping stage, the internal energy distribution was probed using on-resonance collisional activation to dissociate the ions. These pump-probe experiments were carried out in two different ways: (a) using on-resonance collisional activation with variable kinetic energies to dissociate the ions at a constant initial ion temperature (determining the precursor ion survival percentage as a function of kinetic energy) and (b) using on-resonance collisional activation with a constant kinetic energy to dissociate the ions at variable initial ion temperatures (to investigate the ion survival yield-initial ion temperature dependence). Using this approach, a detailed study of the effects of the initial ion temperature, the probing kinetic energy and the internal energy loss rate on the effective conversion efficiency of (laboratory-frame) kinetic energy to internal energy was conducted. This conversion efficiency was found to be dependent on the initial ion temperature. Depending on the experimental conditions the conversion efficiency (for collisions with argon) was estimated to be about 4.0 +/- 1.7%, which agrees with that obtained from a theoretical modeling. Finally, the reconstructed curves of the ion survival yield versus the mode of the (final) total internal energy distribution of the activated ion population (after pump and probe events) at different pump-probe conditions reveal the internal energy content of the activated ions. Copyright 2003 John Wiley & Sons, Ltd.

  2. Considerations, measurements and logistics associated with low-energy cyclotron decommissioning

    SciTech Connect

    Sunderland, J. J.; Erdahl, C. E.; Bender, B. R.; Sensoy, L.; Watkins, G. L.

    2012-12-19

    The University of Iowa's 20-year-old 17 MeV Scanditronix cyclotron underwent decommissioning in the summer of 2011. To satisfy local, state and federal regulations defining removal, transportation and long-term safe and environmentally secure disposal of the 22 ton activated cyclotron, a series of nuclear spectroscopic measurements were performed to characterize the nature and extent of proton and neutron activation of the 22-ton cyclotron, its associated targets, and the concrete wall that was demolished to remove the old cyclotron. Neutron activation of the concrete wall was minimal and below exempt concentrations resulting in standard landfill disposal. The cyclotron assessment revealed the expected array of short and medium-lived radionuclides. Subsequent calculations suggest that meaningful levels residual activity will have decayed virtually to background after 15 years, with the total residual activity of the entire cyclotron dropping below 37 MBq (1 mCi).

  3. Evidence for an Evolving Cyclotron Line Energy in 4U 1538-522

    NASA Astrophysics Data System (ADS)

    Britton Hemphill, Paul; Rothschild, Richard E.; Fuerst, Felix; Grinberg, Victoria; Klochkov, Dmitry; Kretschmar, Peter; Pottschmidt, Katja; Staubert, Rüdiger; Wilms, Joern

    2016-04-01

    In this talk, I present results from a comprehensive analysis of the existing RXTE, INTEGRAL, and Suzaku data for the high-mass X-ray binary 4U 1538-522. This persistent X-ray pulsar has a clearly-detected cyclotron resonance scattering feature (CRSF), which appears to have increased in energy over the past decade, from approximately 20-21 keV as measured by RXTE in 1996-2004 to ~22-23 keV as found in the 2012 Suzaku observation. This spectral feature is the only direct measurement of the neutron star's magnetic field strength, and its behavior can be used to track the conditions in the accretion mound near the neutron star surface. Our analysis finds that the increased CRSF energy is especially prominent in spectra from the peak of the main pulse, which suggests that the physical origin of this shift in energy may be restricted to a single magnetic pole, possibly indicating some reconfiguration of the structure of the accretion mound not reflected in the other spectral parameters. I will discuss the analysis and some implications of this result, especially in the context of work by Staubert et al. (2015, A&A 572, 119), which unveiled a secular trend in the CRSF energy of the prototypical CRSF source, Hercules X-1.

  4. An electron cyclotron resonance ion source based low energy ion beam platform

    SciTech Connect

    Sun, L. T.; Shang, Y.; Ma, B. H.; Zhang, X. Z.; Feng, Y. C.; Li, X. X.; Wang, H.; Guo, X. H.; Song, M. T.; Zhao, H. Y.; Zhang, Z. M.; Zhao, H. W.; Xie, D. Z.

    2008-02-15

    To satisfy the requirements of surface and atomic physics study in the field of low energy multiple charge state ion incident experiments, a low energy (10 eV/q-20 keV/q) ion beam platform is under design at IMP. A simple test bench has been set up to test the ion beam deceleration systems. Considering virtues such as structure simplicity, easy handling, compactness, cost saving, etc., an all-permanent magnet ECRIS LAPECR1 [Lanzhou all-permanent magnet electron cyclotron resonance (ECR) ion source No. 1] working at 14.5 GHz has been adopted to produce intense medium and low charge state ion beams. LAPECR1 source has already been ignited. Some intense low charge state ion beams have been produced on it, but the first test also reveals that many problems are existing on the ion beam transmission line. The ion beam transmission mismatches result in the depressed performance of LAPECR1, which will be discussed in this paper. To obtain ultralow energy ion beam, after being analyzed by a double-focusing analyzer magnet, the selected ion beam will be further decelerated by two afocal deceleration lens systems, which is still under design. This design has taken into consideration both ions slowing down and also ion beam focusing. In this paper, the conceptual design of deceleration system will be discussed.

  5. Design of coupled cavity with energy modulated electron cyclotron resonance ion source for materials irradiation research

    NASA Astrophysics Data System (ADS)

    Wang, Z.; Chen, J. E.; Kang, M. L.; Lu, Y. R.; Xia, W. L.; Gao, S. L.; Guo, Z. Y.; Liu, G.; Peng, S. X.; Ren, H. T.; Yan, X. Q.; Zhao, J.; Zhu, K.

    2012-05-01

    The surface topography of samples after irradiation with heavy ions, protons, and helium ions based on accelerators is an important issue in the study of materials irradiation. We have coupled the separated function radio frequency quadrupole (SFRFQ) electrodes and the traditional RFQ electrodes into a single cavity that can provide a 0.8 MeV helium beam for our materials irradiation project. The higher accelerating efficiency has been verified by the successful commissioning of the prototype SFRFQ cavity. An energy modulated electron cyclotron resonance (ECR) ion source can achieve a well-bunched beam by loading a sine wave voltage onto the extracted electrodes. Bunching is achieved without the need for an external bunch cavity, which can substantially reduce the cost of the system and the length of the beam line. The coupled RFQ-SFRFQ with an energy modulated ECR ion source will lead to a more compact accelerator system. The conceptual design of this novel structure is presented in this paper.

  6. The effect of electron beams on cyclotron maser emission excited by lower-energy cutoffs

    NASA Astrophysics Data System (ADS)

    Zhao, G. Q.; Feng, H. Q.; Wu, D. J.

    2016-05-01

    Electron-cyclotron maser (ECM) is one of the most important emission mechanisms in astrophysics and can be excited efficiently by lower-energy cutoffs of power-law electrons. These non-thermal electrons probably propagate as a directed collimated beam along ambient magnetic fields. This paper investigates the ECM, in which the effect of electron beams is emphasized. Results show the dependence of emission properties of the ECM on the beam feature. The maximum growth rate of the extraordinary mode (X2) rapidly decreases as the beam momentum increases, while the growth rate of the ordinary mode (O1) changes slightly. In particular, the ordinary mode can overcome the extraordinary mode and becomes the fastest growth mode once the beam momentum is large enough. This research presents an extension of the conventional studies on ECM driven by lower-energy cutoffs and may be helpful to understand better the emission process of solar type I radio bursts, which are dominated by the ordinary mode emission.

  7. The effect of electron beams on cyclotron maser emission excited by lower-energy cutoffs

    SciTech Connect

    Zhao, G. Q.; Feng, H. Q.; Wu, D. J.

    2016-05-15

    Electron-cyclotron maser (ECM) is one of the most important emission mechanisms in astrophysics and can be excited efficiently by lower-energy cutoffs of power-law electrons. These non-thermal electrons probably propagate as a directed collimated beam along ambient magnetic fields. This paper investigates the ECM, in which the effect of electron beams is emphasized. Results show the dependence of emission properties of the ECM on the beam feature. The maximum growth rate of the extraordinary mode (X2) rapidly decreases as the beam momentum increases, while the growth rate of the ordinary mode (O1) changes slightly. In particular, the ordinary mode can overcome the extraordinary mode and becomes the fastest growth mode once the beam momentum is large enough. This research presents an extension of the conventional studies on ECM driven by lower-energy cutoffs and may be helpful to understand better the emission process of solar type I radio bursts, which are dominated by the ordinary mode emission.

  8. Autoresonance Cooling of Ions in an Electrostatic Ion Beam Trap

    NASA Astrophysics Data System (ADS)

    Gangwar, R. K.; Saha, K.; Heber, O.; Rappaport, M. L.; Zajfman, D.

    2017-09-01

    Autoresonance (AR) cooling of a bunch of ions oscillating inside an electrostatic ion beam trap is demonstrated for the first time. The relatively wide initial longitudinal velocity distribution is reduced by at least an order of magnitude using AR acceleration and ramping forces. The hot ions escaping the bunch are not lost from the system but continue to oscillate in the trap outside of the bunch and may be further cooled by successive AR processes. Ion-ion collisions inside the bunch close to the turning points in the trap's mirrors contribute to the thermalization of the ions. This cooling method can be applied to any mass and any charge.

  9. Luminosity-dependent changes of the cyclotron line energy and spectral hardness in Cepheus X-4

    NASA Astrophysics Data System (ADS)

    Vybornov, V.; Klochkov, D.; Gornostaev, M.; Postnov, K.; Sokolova-Lapa, E.; Staubert, R.; Pottschmidt, K.; Santangelo, A.

    2017-05-01

    Context. X-ray spectra of accreting pulsars are generally observed to vary with their X-ray luminosity. In particular, the hardness of the X-ray continuum is found to depend on luminosity. In a few sources, the correlation between the energy of the cyclotron resonance scattering feature (CRSF) and the luminosity is clear. Different types (signs) of the correlation are believed to reflect different accretion modes. Aims: We analyse two NuSTAR observations of the transient accreting pulsar Cep X-4 during its 2014 outburst. Our analysis is focused on a detailed investigation of the dependence of the CRSF energy and of the spectral hardness on X-ray luminosity, especially on short timescales. Methods: To investigate the spectral changes as a function of luminosity within each of the two observations, we used the intrinsic variability of the source on the timescale of individual pulse cycles (tens of seconds), the so-called pulse-to-pulse variability. Results: We find that the NuSTAR spectrum of Cep X-4 contains two CRSFs: the fundamental line at 30 keV and its harmonic at 55 keV. We find for the first time that the energy of the fundamental CRSF increases and the continuum becomes harder with increasing X-ray luminosity not only between the two observations, that is, on the long timescale, but also within an individual observation, on the timescale of a few tens of seconds. We investigate these dependencies in detail including their non-linearity. We discuss a possible physical interpretation of the observed behaviour in the frame of a simple one-dimensional model of the polar emitting region with a collisionless shock formed in the infalling plasma near the neutron star surface. With this model, we are able to reproduce the observed variations of the continuum hardness ratio and of the CRSF energy with luminosity.

  10. Parametric autoresonant excitation of the nonlinear Schrödinger equation.

    PubMed

    Friedland, L; Shagalov, A G

    2016-10-01

    Parametric excitation of autoresonant solutions of the nonlinear Schrodinger (NLS) equation by a chirped frequency traveling wave is discussed. Fully nonlinear theory of the process is developed based on Whitham's averaged variational principle and its predictions verified in numerical simulations. The weakly nonlinear limit of the theory is used to find the threshold on the amplitude of the driving wave for entering the autoresonant regime. It is shown that above the threshold, a flat (spatially independent) NLS solution can be fully converted into a traveling wave. A simplified, few spatial harmonics expansion approach is also developed for studying this nonlinear mode conversion process, allowing interpretation as autoresonant interaction within triads of spatial harmonics.

  11. NuSTAR discovery of a luminosity dependent cyclotron line energy in Vela X-1

    SciTech Connect

    Fürst, Felix; Grefenstette, Brian W.; Harrison, Fiona; Madsen, Kristin K.; Walton, Dominic J.; Pottschmidt, Katja; Wilms, Jörn; Tomsick, John A.; Boggs, Steven E.; Craig, William W.; Bachetti, Matteo; Christensen, Finn E.; Hailey, Charles J.; Miller, Jon M.; Stern, Daniel; Zhang, William

    2014-01-10

    We present NuSTAR observations of Vela X-1, a persistent, yet highly variable, neutron star high-mass X-ray binary (HMXB). Two observations were taken at similar orbital phases but separated by nearly a year. They show very different 3-79 keV flux levels as well as strong variability during each observation, covering almost one order of magnitude in flux. These observations allow, for the first time ever, investigations on kilo-second time-scales of how the centroid energies of cyclotron resonant scattering features (CRSFs) depend on flux for a persistent HMXB. We find that the line energy of the harmonic CRSF is correlated with flux, as expected in the sub-critical accretion regime. We argue that Vela X-1 has a very narrow accretion column with a radius of around 0.4 km that sustains a Coulomb interaction dominated shock at the observed luminosities of L {sub x} ∼ 3 × 10{sup 36} erg s{sup –1}. Besides the prominent harmonic line at 55 keV the fundamental line around 25 keV is clearly detected. We find that the strengths of the two CRSFs are anti-correlated, which we explain by photon spawning. This anti-correlation is a possible explanation for the debate about the existence of the fundamental line. The ratio of the line energies is variable with time and deviates significantly from 2.0, also a possible consequence of photon spawning, which changes the shape of the line. During the second observation, Vela X-1 showed a short off-state in which the power-law softened and a cut-off was no longer measurable. It is likely that the source switched to a different accretion regime at these low mass accretion rates, explaining the drastic change in spectral shape.

  12. Outburst of GX304-1 Monitored with INTEGRAL: Positive Correlation Between the Cyclotron Line Energy and Flux

    NASA Technical Reports Server (NTRS)

    Klochkov, D.; Doroshenko, V.; Santangelo, A.; Staubert, R.; Ferrigno, C.; Kretschmar, P.; Caballero, I.; Wilms, J.; Kreykenbohm, I.; Pottschmidt, I.; hide

    2012-01-01

    Context. X-ray spectra of many accreting pulsars exhibit significant variations as a function of flux and thus of mass accretion rate. In some of these pulsars, the centroid energy of the cyclotron line(s), which characterizes the magnetic field strength at the site of the X-ray emission, has been found to vary systematically with flux. Aims. GX304-1 is a recently established cyclotron line source with a line energy around 50 keV. Since 2009, the pulsar shows regular outbursts with the peak flux exceeding one Crab. We analyze the INTEGRAL observations of the source during its outburst in January-February 2012. Methods. The observations covered almost the entire outburst, allowing us to measure the source's broad-band X-my spectrum at different flux levels. We report on the variations in the spectral parameters with luminosity and focus on the variations in the cyclotron line. Results. The centroid energy of the line is found to be positively correlated with the luminosity. We interpret this result as a manifestation of the local sub-Eddington (sub-critical) accretion regime operating in the source.

  13. High intensity electron cyclotron resonance proton source for low energy high intensity proton accelerator.

    PubMed

    Roychowdhury, P; Chakravarthy, D P

    2009-12-01

    Electron cyclotron resonance (ECR) proton source at 50 keV, 50 mA has been designed, developed, and commissioned for the low energy high intensity proton accelerator (LEHIPA). Plasma characterization of this source has been performed. ECR plasma was generated with 400-1100 W of microwave power at 2.45 GHz, with hydrogen as working gas. Microwave was fed in the plasma chamber through quartz window. Plasma density and temperature was studied under various operating conditions, such as microwave power and gas pressure. Langmuir probe was used for plasma characterization using current voltage variation. The typical hydrogen plasma density and electron temperature measured were 7x10(11) cm(-3) and 6 eV, respectively. The total ion beam current of 42 mA was extracted, with three-electrode extraction geometry, at 40 keV of beam energy. The extracted ion current was studied as a function of microwave power and gas pressure. Depending on source pressure and discharge power, more than 30% total gas efficiency was achieved. The optimization of the source is under progress to meet the requirement of long time operation. The source will be used as an injector for continuous wave radio frequency quadrupole, a part of 20 MeV LEHIPA. The required rms normalized emittance of this source is less than 0.2 pi mm mrad. The simulated value of normalized emittance is well within this limit and will be measured shortly. This paper presents the study of plasma parameters, first beam results, and the status of ECR proton source.

  14. High intensity electron cyclotron resonance proton source for low energy high intensity proton accelerator

    SciTech Connect

    Roychowdhury, P.; Chakravarthy, D. P.

    2009-12-15

    Electron cyclotron resonance (ECR) proton source at 50 keV, 50 mA has been designed, developed, and commissioned for the low energy high intensity proton accelerator (LEHIPA). Plasma characterization of this source has been performed. ECR plasma was generated with 400-1100 W of microwave power at 2.45 GHz, with hydrogen as working gas. Microwave was fed in the plasma chamber through quartz window. Plasma density and temperature was studied under various operating conditions, such as microwave power and gas pressure. Langmuir probe was used for plasma characterization using current voltage variation. The typical hydrogen plasma density and electron temperature measured were 7x10{sup 11} cm{sup -3} and 6 eV, respectively. The total ion beam current of 42 mA was extracted, with three-electrode extraction geometry, at 40 keV of beam energy. The extracted ion current was studied as a function of microwave power and gas pressure. Depending on source pressure and discharge power, more than 30% total gas efficiency was achieved. The optimization of the source is under progress to meet the requirement of long time operation. The source will be used as an injector for continuous wave radio frequency quadrupole, a part of 20 MeV LEHIPA. The required rms normalized emittance of this source is less than 0.2 {pi} mm mrad. The simulated value of normalized emittance is well within this limit and will be measured shortly. This paper presents the study of plasma parameters, first beam results, and the status of ECR proton source.

  15. Using Single-Particle Motion Simulation to Optimize Coil Parameters for Inducing Autoresonant Heating in the PFRC

    NASA Astrophysics Data System (ADS)

    Liu, Jackey; Cohen, Samuel; Glasser, Alan H.; Barth, Ido; PFRC Team

    2015-11-01

    The heating of ions confined in a field-reversed configuration (FRC) equilibrium magnetic geometry subject to a small-amplitude, odd-parity rotating magnetic field (RMF) has previously been observed in single-particle Hamiltonian simulations. We consider a form of the autoresonance method to provide added heating capabilities. Two coils encircling the FRC were added near the X-points of the FRC, co-axial with the major axis; these may be used to add oscillating components, primarily to the axial field, stiffening or relaxing the field, shortening or lengthening the x-point distance. Various parameters of the simulations were modified, including the positions of the coils along the axis, the amplitude and frequency of the oscillations, as well as other FRC parameters to determine whether autoresonant heating is a feasible method for increasing ion heating. This work was support, in part, by DOE contract DE-AC02-09CH11466 and the Princeton Environmental Institute. This work is supported by the department of energy contract DE-AC02-09CH11466 as well as the Princeton Environmental Institute.

  16. 88-Inch Cyclotron newsletter

    SciTech Connect

    Stokstad, R.

    1987-02-01

    Activities at the 88-Inch Cyclotron are discussed. Increased beam time demand and operation of the ECR source and cyclotron are reported. Experimental facility improvements are reported, including improvements to the High Energy Resolution Array and to the Recoil Atom Mass Analyzer, a new capture beamline, development of a low background counting facility. Other general improvements are reported that relate to the facility computer network and electronics pool. Approved heavy nuclei research is briefly highlighted. Also listed are the beams accelerated by the cyclotron. (LEW)

  17. CLOVERLEAF CYCLOTRON

    DOEpatents

    McMillan, E.M.; Judd, D.L.

    1959-02-01

    A cyclotron is presented embodying a unique magnetic field configuration, which configuration increases in intensity with radius and therefore compensates for the reltivistic mass effect, the field having further convolutions productive of axial stability in the particle beam. By reconciling the seemingly opposed requirements of mass increase compensation on one hand and anial stability on the other, the production of extremely high current particle beams in the relativistie energy range is made feasible. Certain further advantages inhere in the invention, notably an increase in the usable magnet gap, simplified and more efficient extraction of the beam from the accelerator, and ready adaptation to the use of multiply phased excitation as contrasted with the single phased systems herstofore utilized. General

  18. Averaged variational principle for autoresonant Bernstein-Greene-Kruskal modes

    SciTech Connect

    Khain, P.; Friedland, L.

    2010-10-15

    Whitham's averaged variational principle is applied in studying dynamics of formation of autoresonant (continuously phase-locked) Bernstein-Greene-Kruskal (BGK) modes in a plasma driven by a chirped frequency ponderomotive wave. A flat-top electron velocity distribution is used as a model allowing a variational formulation within the water bag theory. The corresponding Lagrangian, averaged over the fast phase variable yields evolution equations for the slow field variables, allows uniform description of all stages of excitation of driven-chirped BGK modes, and predicts modulational stability of these nonlinear phase-space structures. Numerical solutions of the system of slow variational equations are in good agreement with Vlasov-Poisson simulations.

  19. Cyclotron Institute Upgrade Project

    SciTech Connect

    Clark, Henry; Yennello, Sherry; Tribble, Robert

    2014-08-26

    The Cyclotron Institute at Texas A&M University has upgraded its accelerator facilities to extend research capabilities with both stable and radioactive beams. The upgrade is divided into three major tasks: (1) re-commission the K-150 (88”) cyclotron, couple it to existing beam lines to provide intense stable beams into the K-500 experimental areas and use it as a driver to produce radioactive beams; (2) develop light ion and heavy ion guides for stopping radioactive ions created with the K-150 beams; and (3) transport 1+ ions from the ion guides into a charge-breeding electron-cyclotron-resonance ion source (CB-ECR) to produce highly-charged radioactive ions for acceleration in the K-500 cyclotron. When completed, the upgraded facility will provide high-quality re-accelerated secondary beams in a unique energy range in the world.

  20. Effect of high energy electrons on H- production and destruction in a high current DC negative ion source for cyclotron

    NASA Astrophysics Data System (ADS)

    Onai, M.; Etoh, H.; Aoki, Y.; Shibata, T.; Mattei, S.; Fujita, S.; Hatayama, A.; Lettry, J.

    2016-02-01

    Recently, a filament driven multi-cusp negative ion source has been developed for proton cyclotrons in medical applications. In this study, numerical modeling of the filament arc-discharge source plasma has been done with kinetic modeling of electrons in the ion source plasmas by the multi-cusp arc-discharge code and zero dimensional rate equations for hydrogen molecules and negative ions. In this paper, main focus is placed on the effects of the arc-discharge power on the electron energy distribution function and the resultant H- production. The modelling results reasonably explains the dependence of the H- extraction current on the arc-discharge power in the experiments.

  1. Effect of high energy electrons on H⁻ production and destruction in a high current DC negative ion source for cyclotron.

    PubMed

    Onai, M; Etoh, H; Aoki, Y; Shibata, T; Mattei, S; Fujita, S; Hatayama, A; Lettry, J

    2016-02-01

    Recently, a filament driven multi-cusp negative ion source has been developed for proton cyclotrons in medical applications. In this study, numerical modeling of the filament arc-discharge source plasma has been done with kinetic modeling of electrons in the ion source plasmas by the multi-cusp arc-discharge code and zero dimensional rate equations for hydrogen molecules and negative ions. In this paper, main focus is placed on the effects of the arc-discharge power on the electron energy distribution function and the resultant H(-) production. The modelling results reasonably explains the dependence of the H(-) extraction current on the arc-discharge power in the experiments.

  2. Measurements of plasma bremsstrahlung and plasma energy density produced by electron cyclotron resonance ion source plasmas

    NASA Astrophysics Data System (ADS)

    Noland, Jonathan David

    2011-12-01

    The goal of this dissertation was to gain an understanding on the relative importance of microwave power, neutral pressure, and magnetic field configuration on the behavior of the hot electrons within an Electron Cyclotron Resonance Ion Source (ECRIS) plasma. This was carried out through measurement of plasma bremsstrahlung with both NaI(Tl) (hv > 30 keV) and CdTe (2 keV < hv < 70 keV) x-ray detectors, and through measurement of the plasma energy density with a diamagnetic loop placed around the plasma chamber. We also examined the anisotropy in x-ray power by simultaneously measuring the x-ray spectra in two orthogonal directions: radially and axially, using NaI(Tl) detectors. We have seen that for a 6.4 GHz ECRIS, both the x-ray power produced by confined electrons and the plasma energy density behave logarithmically with microwave power. The x-ray flux created by electrons lost from the plasma, however, does not saturate. Thus, the small increase in plasma density that occurred at high microwave powers (> 150 W on a 6.4 GHz ECRIS) was accompanied by a large increase in total x-ray power. We suggest that the saturation of x-ray power and plasma energy density was due to rf-induced pitch-angle scattering of the electrons. X-ray power and plasma energy density were also shown to saturate with neutral pressure, and to increase nearly linearly as the gradient of the magnetic field in the resonance zone was decreased. All of these findings were in agreement with the theoretical models describing ECRIS plasmas. We have discussed the use of a diamagnetic loop as a means of exploring various plasma time scales on a relative basis. Specifically, we focused much of our attention on studying how changing ion source parameters, such as microwave power and neutral pressure, would effect the rise and decay of the integrated diamagnetic signal, which can be related to plasma energy density. We showed that increasing microwave power lowers the e-fold times at both the leading

  3. Radiation reaction effect on laser driven auto-resonant particle acceleration

    SciTech Connect

    Sagar, Vikram; Sengupta, Sudip; Kaw, P. K.

    2015-12-15

    The effects of radiation reaction force on laser driven auto-resonant particle acceleration scheme are studied using Landau-Lifshitz equation of motion. These studies are carried out for both linear and circularly polarized laser fields in the presence of static axial magnetic field. From the parametric study, a radiation reaction dominated region has been identified in which the particle dynamics is greatly effected by this force. In the radiation reaction dominated region, the two significant effects on particle dynamics are seen, viz., (1) saturation in energy gain by the initially resonant particle and (2) net energy gain by an initially non-resonant particle which is caused due to resonance broadening. It has been further shown that with the relaxation of resonance condition and with optimum choice of parameters, this scheme may become competitive with the other present-day laser driven particle acceleration schemes. The quantum corrections to the Landau-Lifshitz equation of motion have also been taken into account. The difference in the energy gain estimates of the particle by the quantum corrected and classical Landau-Lifshitz equation is found to be insignificant for the present day as well as upcoming laser facilities.

  4. Measurement of effect of electron cyclotron heating in a tandem mirror plasma using a semiconductor detector array and an electrostatic energy analyzer

    SciTech Connect

    Minami, R. Imai, T.; Kariya, T.; Numakura, T.; Uehara, M.; Tsumura, K.; Ebashi, Y.; Kajino, S.; Endo, Y.; Nakashima, Y.

    2016-11-15

    Temporally and spatially resolved soft x-ray and end-loss-electron analyses of the electron cyclotron heated plasmas are carried out by using a semiconductor detector array and an electrostatic energy analyzer in the GAMMA 10 tandem mirror. The flux and the energy spectrum of the end loss electrons are measured by a multi-grid energy analyzer. Recently, the electron cyclotron heating power modulation experiments have been started in order to generate and control the high heat flux and to make the edge localized mode-like intermittent heat load pattern for the divertor simulation studies by the use of these detectors for electron properties.

  5. Measurement of effect of electron cyclotron heating in a tandem mirror plasma using a semiconductor detector array and an electrostatic energy analyzer

    NASA Astrophysics Data System (ADS)

    Minami, R.; Imai, T.; Kariya, T.; Numakura, T.; Uehara, M.; Tsumura, K.; Ebashi, Y.; Kajino, S.; Endo, Y.; Nakashima, Y.

    2016-11-01

    Temporally and spatially resolved soft x-ray and end-loss-electron analyses of the electron cyclotron heated plasmas are carried out by using a semiconductor detector array and an electrostatic energy analyzer in the GAMMA 10 tandem mirror. The flux and the energy spectrum of the end loss electrons are measured by a multi-grid energy analyzer. Recently, the electron cyclotron heating power modulation experiments have been started in order to generate and control the high heat flux and to make the edge localized mode-like intermittent heat load pattern for the divertor simulation studies by the use of these detectors for electron properties.

  6. Positive correlation between the cyclotron line energy and luminosity in sub-critical X-ray pulsars: Doppler effect in the accretion channel

    NASA Astrophysics Data System (ADS)

    Mushtukov, Alexander A.; Tsygankov, Sergey S.; Serber, Alexander V.; Suleimanov, Valery F.; Poutanen, Juri

    2015-12-01

    Cyclotron resonance scattering features observed in the spectra of some X-ray pulsars show significant changes of the line centroid energy with the pulsar luminosity. Whereas for bright sources above the so-called critical luminosity, these variations are established to be connected with the appearance of the high-accretion column above the neutron star surface, at low, sub-critical luminosities the nature of the variations (but with the opposite sign) has not been discussed widely. We argue here that the cyclotron line is formed when the radiation from a hotspot propagates through the plasma falling with a mildly relativistic velocity on to the neutron star surface. The position of the cyclotron resonance is determined by the Doppler effect. The change of the cyclotron line position in the spectrum with luminosity is caused by variations of the velocity profile in the line-forming region affected by the radiation pressure force. The presented model has several characteristic features: (i) the line centroid energy is positively correlated with the luminosity; (ii) the line width is positively correlated with the luminosity as well; (iii) the position and the width of the cyclotron absorption line are variable over the pulse phase; (iv) the line has a more complicated shape than widely used Lorentzian or Gaussian profiles; (v) the phase-resolved cyclotron line centroid energy and the width are negatively and positively correlated with the pulse intensity, respectively. The predictions of the proposed theory are compared with the variations of the cyclotron line parameters in the X-ray pulsar GX 304-1 over a wide range of sub-critical luminosities as seen by the INTEGRAL observatory.

  7. Plasma-Sheath Instability in Hall Thrusters Due to Periodic Modulation of the Energy of Secondary Electrons in Cyclotron Motion

    SciTech Connect

    Sydorenko, D.; Smolyakov, A.; Kaganovich, I.; Raitses, Y.

    2008-04-23

    Particle-in-cell simulation of Hall thruster plasmas reveals a plasma-sheath instability manifesting itself as a rearrangement of the plasma sheath near the thruster channel walls accompanied by a sudden change of many discharge parameters. The instability develops when the sheath current as a function of the sheath voltage is in the negative conductivity regime. The major part of the sheath current is produced by beams of secondary electrons counter-streaming between the walls. The negative conductivity is the result of nonlinear dependence of beam-induced secondary electron emission on the plasma potential. The intensity of such emission is defined by the beam energy. The energy of the beam in crossed axial electric and radial magnetic fields is a quasi-periodical function of the phase of cyclotron rotation, which depends on the radial profile of the potential and the thruster channel width. There is a discrete set of stability intervals determined by the final phase of the cyclotron rotation of secondary electrons. As a result, a small variation of the thruster channel width may result in abrupt changes of plasma parameters if the plasma state jumps from one stability interval to another.

  8. Development of High Power CARM (Cyclotron Auto-Resonance Maser) Oscillators

    DTIC Science & Technology

    1989-03-14

    Hicks Rd. Rolling Meadows, Illinois 60008 Attn: Dr. Gunter Dohler 1 copy Oak Ridge National Laboratory P.O. Box Y Mail Stop 3 Building 9201 -2 Oak ...efficiency for optimized A can be presented on an F - y plot 4 similar to the plot used to characterize the gyrotron [3]. TI’e laiau.eter " defined in...UNCLASSIFIED Approved for public release; distribution 2 0 DECASS C a - n’ ’.O RAD %C SC E D unlimited. 4 P-P-ORM, NO ORCA% Z.A ON% PEPO5T N _jMBER S 5

  9. Experimental Observations of Microwave Emission from a 35 GHz Cyclotron Autoresonant Maser

    DTIC Science & Technology

    1990-07-27

    beam to corkscrew about the axis with a specific amount of perpendicular velocity. Having received sufficient perpendicular velocity, the beam .xits the...power input to the crystal is shown in figure 2-13 and is treated as linear on the log - log scale. The calibration equation corresponding to the...power values rise linearly (on the log ordinate) to some point of saturation and then begin an oscillatory motion, consistent with numer- ical simulation

  10. Anomalous autoresonance threshold for chirped-driven Korteweg-de-Vries waves.

    PubMed

    Friedland, L; Shagalov, A G; Batalov, S V

    2015-10-01

    Large amplitude traveling waves of the Korteweg-de-Vries (KdV) equation can be excited and controlled by a chirped frequency driving perturbation. The process involves capturing the wave into autoresonance (a continuous nonlinear synchronization) with the drive by passage through the linear resonance in the problem. The transition to autoresonance has a sharp threshold on the driving amplitude. In all previously studied autoresonant problems the threshold was found via a weakly nonlinear theory and scaled as α(3/4),α being the driving frequency chirp rate. It is shown that this scaling is violated in a long wavelength KdV limit because of the increased role of the nonlinearity in the problem. A fully nonlinear theory describing the phenomenon and applicable to all wavelengths is developed.

  11. Detection of electron energy distribution function anisotropy in a magnetized electron cyclotron resonance plasma by using a directional Langmuir probe

    SciTech Connect

    Shikama, T. Hasuo, M.; Kitaoka, H.

    2014-07-15

    Anisotropy in the electron energy distribution function (EEDF) in an electron cyclotron resonance plasma with magnetized electrons and weakly magnetized ions is experimentally investigated using a directional Langmuir probe. Under an assumption of independent EEDFs in the directions parallel and perpendicular to the magnetic field, the directional variation of the EEDF is evaluated. In the measured EEDFs, a significantly large population density of electrons with energies larger than 30 eV is found in one of the cross-field directions depending on the magnetic field direction. With the aid of an electron trajectory calculation, it is suggested that the observed anisotropic electrons originate from the EEDF anisotropy and the cross-field electron drift.

  12. The Swift-BAT monitoring reveals a long-term decay of the cyclotron line energy in Vela X-1

    NASA Astrophysics Data System (ADS)

    La Parola, V.; Cusumano, G.; Segreto, A.; D'Aì, A.

    2016-11-01

    We study the behaviour of the cyclotron resonant scattering feature (CRSF) of the high-mass X-ray binary Vela X-1 using the long-term hard X-ray monitoring performed by the Burst Alert Telescope (BAT) on board Swift. High-statistics, intensity-selected spectra were built along 11 years of BAT survey. While the fundamental line is not revealed, the second harmonic of the CRSF can be clearly detected in all the spectra, at an energy varying between ˜53 and ˜58 keV, directly correlated with the luminosity. We have further investigated the evolution of the CRSF in time, by studying the intensity-selected spectra built along four 33-month time intervals along the survey. For the first time, we find in this source a secular variation in the CRSF energy: independent of the source luminosity, the CRSF second harmonic energy decreases by ˜0.36 keV yr-1 between the first and the third time intervals, corresponding to an apparent decay of the magnetic field of ˜3 × 1010 G yr-1. The intensity-cyclotron energy pattern is consistent between the third and the last time intervals. A possible interpretation for this decay could be the settling of an accreted mound that produces either a distortion of the poloidal magnetic field on the polar cap or a geometrical displacement of the line forming region. This hypothesis seems supported by the correspondence between the rate of the line shift per unit accreted mass and the mass accreted on the polar cap per unit area in Vela X-1 and Her X-1, respectively.

  13. All-magnetic extraction for cyclotron beam reacceleration

    DOEpatents

    Hudson, E.D.; Mallory, M.L.

    1975-07-22

    An isochronous cyclotron can be modified to provide an initial electron stripping stage, a complete acceleration of the stripped ions through the cyclotron to a first energy state, means for returning the ions to an intermediate cyclotron orbit through a second stripping stage, further acceleration of the now higher energy stripped ions through the cyclotron to their final energy, and final extraction of the ions from the cyclotron. (auth)

  14. Low energy cyclotron production of multivalent transition metals for PET imaging and therapy

    NASA Astrophysics Data System (ADS)

    Avila-Rodriguez, Miguel Angel

    Recent advances in high-resolution tomographs for small animals require the production of nonconventional long-lived positron emitters to label novel radiopharmaceuticals for PET-based molecular imaging. Radioisotopes with an appropriate half life to match the kinetics of slow biological processes will allow to researchers to study the phamacokinetics of PET ligands over several hours, or even days, on the same animal, with the injection of a single dose. In addition, radionuclides with a suitable half life can potentially be distributed from a central production site making them available in PET facilities that lack an in-house cyclotron. In the last few years there has been a growing interest in the use of PET ligands labeled with radiometals, particularly isotopes of copper, yttrium and zirconium. Future clinical applications of these tracers will require them to be produced reliably and efficiently. This thesis work deals with implementing and optimizing the production of the multivalent transition metals 61,64Cu, 86Y and 89Zr for molecular PET imaging and therapy. Our findings in the production of these radionuclides at high specific activity on an 11 MeV proton-only cyclotron are presented. Local applications of these tracers, including Cu-ATSM for in vivo quantification of hypoxia, synthesis of targeted radiopharmaceuticals using activated esters of DOTA, and a novel development of positron emitting resin microspheres, are also be discussed. As a result of this thesis work, metallic radionuclides are now efficiently produced on a weekly basis in sufficient quality and quantity for collaborating scientists at UW-Madison and external users in other Universities across the country.

  15. A preliminary area survey of neutron radiation levels associated with the NASA variable energy cyclotron horizontal neutron delivery system

    NASA Technical Reports Server (NTRS)

    Roberts, W. K.; Leonard, R. F.

    1976-01-01

    The 25 MeV deuteron beam from the NASA variable energy cyclotron incident on a thick beryllium target will deliver a tissue neutron dose rate of 2.14 rad micron A-min at a source to skin distance of 125 cm. A neutron survey of the existing hallways with various shielding configurations made during operating of the horizontal neutron delivery system indicates that minimal amounts of additional neutron shielding material are required to provide a low level radiation environment within a self-contained neutron therapy control station. Measurements also indicate that the primary neutron distribution delivered by a planned vertical delivery system will be minimally perturbed by neutrons backscattered from the floor.

  16. Fishbones in Joint European Torus plasmas with high ion-cyclotron-resonance-heated fast ions energy content

    SciTech Connect

    Nabais, F.; Borba, D.; Mantsinen, M.; Nave, M.F.F.; Sharapov, S.E.; Joint

    2005-10-01

    In Joint European Torus (JET) [P. J. Lomas, Plasma Phys. Controled Fusion 31, 1481 (1989)], discharges with ion cyclotron resonance heating only, low-density plasmas and high fast ions energy contents provided a scenario where fishbones behavior has been observed to be related with sawtooth activity: Crashes of monster sawteeth abruptly changed the type of observed fishbones from low-frequency fishbones [B. Coppi and F. Porcelli, Phys. Rev. Lett. 57, 2272 (1986)] to high-frequency fishbones [L. Chen, R. White, and M. Rosenbluth, Phys. Rev. Lett. 52, 1122 (1984)]. During periods between crashes, the type of observed fishbones gradually changed in the opposite way. Two new fishbones regimes have been observed in intermediate stages: Fishbones bursts covering both high and low frequencies and low amplitude bursts of both types occurring simultaneously. Both sawtooth and fishbones behavior have been explained using a variational formalism.

  17. Clinical Trial with Sodium (99m)Tc-Pertechnetate Produced by a Medium-Energy Cyclotron: Biodistribution and Safety Assessment in Patients with Abnormal Thyroid Function.

    PubMed

    Selivanova, Svetlana V; Lavallée, Éric; Senta, Helena; Caouette, Lyne; McEwan, Alexander J B; Guérin, Brigitte; Lecomte, Roger; Turcotte, Éric

    2017-05-01

    A single-site prospective open-label clinical study with cyclotron-produced sodium (99m)Tc-pertechnetate ((99m)Tc-NaTcO4) was performed in patients with indications for a thyroid scan to demonstrate the clinical safety and diagnostic efficacy of the drug and to confirm its equivalence with conventional (99m)Tc-NaTcO4 eluted from a generator. Methods:(99m)Tc-NaTcO4 was produced from enriched (100)Mo (99.815%) with a cyclotron (24 MeV; 2 h of irradiation) or supplied by a commercial manufacturer (bulk vial eluted from a generator). Eleven patients received 325 ± 29 (mean ± SD) MBq of the cyclotron-produced (99m)Tc-NaTcO4, whereas the age- and sex-matched controls received a comparable amount of the generator-derived tracer. Whole-body and thyroid planar images were obtained for each participant. In addition to the standard-energy window (140.5 keV ± 7.5%), data were acquired in lower-energy (117 keV ± 10%) and higher-energy (170 keV ± 10%) windows. Vital signs and hematologic and biochemical parameters were monitored before and after tracer administration. Results: Cyclotron-produced (99m)Tc-NaTcO4 showed organ and whole-body distributions identical to those of conventional (99m)Tc-NaTcO4 and was well tolerated. All images led to a clear final diagnosis. The fact that the number of counts in the higher-energy window was significantly higher for cyclotron-produced (99m)Tc-NaTcO4 did not influence image quality in the standard-energy window. Image definition in the standard-energy window with cyclotron-produced (99m)Tc was equivalent to that with generator-eluted (99m)Tc and had no particular features allowing discrimination between the (99m)Tc production methods. Conclusion: The systemic distribution, clinical safety, and imaging efficacy of cyclotron-produced (99m)Tc-NaTcO4 in humans provide supporting evidence for the use of this tracer as an equivalent for generator-eluted (99m)Tc-NaTcO4 in routine clinical practice. © 2017 by the Society of Nuclear Medicine

  18. Monte Carlo simulation to evaluate the contamination in an energy modulated carbon ion beam for hadron therapy delivered by cyclotron

    NASA Astrophysics Data System (ADS)

    Morone, M. Cristina; Calabretta, Luciano; Cuttone, Giacomo; Fiorini, Francesca

    2008-11-01

    Protons and carbon ion beams for hadron therapy can be delivered by cyclotrons with a fixed energy. In order to treat patients, an energy degrader along the beam line will be used to match the particle range with the target depth. Fragmentation reactions of carbon ions inside the degrader material could introduce a small amount of unwanted contaminants to the beam, giving additional dose to the patient out of the target volume. A simulation study using the FLUKA Monte Carlo code has been carried out by considering three different materials as the degrader. Two situations have been studied: a realistic one, lowering the carbon beam energy from 300 MeV/n to 220 MeV/n, corresponding to a range of 10 cm in water, and the worst possible case, lowering the carbon energy to 50 MeV/n, corresponding to the millimeter range. The main component of the contaminant is represented by alpha particles and protons, with a typical momentum after the degrader greater than that of the primary beam, and can be eliminated by the action of a momentum analyzing system and slits, and by a second thin absorber. The residual component of fragments reaching the patient is negligible with respect to the fragment quantity generated by the primary beam inside the patient before arriving at the end of the target volume.

  19. Measurement of the high energy component of the x-ray spectra in the VENUS electron cyclotron resonance ion source

    SciTech Connect

    Leitner, D.; Benitez, J. Y.; Lyneis, C. M.; Todd, D. S.; Ropponen, T.; Ropponen, J.; Koivisto, H.; Gammino, S.

    2008-03-15

    High performance electron cyclotron resonance (ECR) ion sources, such as VENUS (Versatile ECR for NUclear Science), produce large amounts of x-rays. By studying their energy spectra, conclusions can be drawn about the electron heating process and the electron confinement. In addition, the bremsstrahlung from the plasma chamber is partly absorbed by the cold mass of the superconducting magnet, adding an extra heat load to the cryostat. Germanium or NaI detectors are generally used for x-ray measurements. Due to the high x-ray flux from the source, the experimental setup to measure bremsstrahlung spectra from ECR ion sources is somewhat different from that for the traditional nuclear physics measurements these detectors are generally used for. In particular, the collimation and background shielding can be problematic. In this paper, we will discuss the experimental setup for such a measurement, the energy calibration and background reduction, the shielding of the detector, and collimation of the x-ray flux. We will present x-ray energy spectra and cryostat heating rates depending on various ion source parameters, such as confinement fields, minimum B-field, rf power, and heating frequency.

  20. Electron cyclotron resonance acceleration of electrons to relativistic energies by a microwave field in a mirror trap

    SciTech Connect

    Sergeichev, K. F.; Karfidov, D. M.; Lukina, N. A.

    2007-06-15

    Results are presented from experiments on the acceleration of electrons by a 2.45-GHz microwave field in an adiabatic mirror trap under electron cyclotron resonance conditions, the electric and wave vectors of the wave being orthogonal to the trap axis. At a microwave electric field of {>=}10 V/cm and air pressures of 10{sup -6}-10{sup -4} Torr (the experiments were also performed with helium and argon), a self-sustained discharge was initiated in which a fraction of plasma electrons were accelerated to energies of 0.3-0.5 MeV. After the onset of instability, the acceleration terminated; the plasma decayed; and the accelerated electrons escaped toward the chamber wall, causing the generation of X-ray emission. Estimates show that electrons can be accelerated to the above energies only in the regime of self-phased interaction with the microwave field, provided that the electrons with a relativistically increased mass penetrate into the region with a higher magnetic field. It is shown that the negative-mass instability also can contribute to electron acceleration. The dynamic friction of the fast electrons by neutral particles in the drift space between the resonance zones does not suppress electron acceleration, so the electrons pass into a runaway regime. Since the air molecules excited by relativistic runaway electrons radiate primarily in the red spectral region, this experiment can be considered as a model of high-altitude atmospheric discharges, known as 'red sprites.'.

  1. Time evolution of endpoint energy of Bremsstrahlung spectra and ion production from an electron cyclotron resonance ion source

    SciTech Connect

    Tarvainen, Ollie; Ropponen, Tommi; Jones, Peter; Kalvas, Taneli

    2008-01-01

    Electron cyclotron resonance ion sources (ECRIS) are used to produce high charge state heavy ion beams for the use of nuclear and materials science, for instance. The most powerful ECR ion sources today are superconducting. One of the problems with superconducting ECR ion sources is the use of high radio frequency (RF) power which results in bremsstrahlung radiation adding an extra heat load to the cryostat. In order to understand the electron heating process and timescales in the ECR plasma, time evolution measurement of ECR bremsstrahlung was carried out. In the measurements JYFL 14 GHz ECRIS was operated in a pulsed mode and bremsstrahlung data from several hundred RF pulses was recorded. Time evolution of ion production was also studied and compared to one of the electron heating theories. To analyze the measurement data at C++ program was developed. Endpoint energies of the bremsstrahlung spectra as a function of axial magnetic field strength, pressure and RF power are presented and ion production timescales obtained from the measurements are compared to bremsstrahlung emission timescales and one of the stochastic heating theories.

  2. ECR (Electron Cyclotron Resonance) ion sources for cyclotrons

    SciTech Connect

    Lyneis, C.M.

    1986-10-01

    In the last decade ECR (Electron Cyclotron Resonance) ion sources have evolved from a single large, power consuming, complex prototype into a variety of compact, simple, reliable, efficient, high performance sources of high charge state ions for accelerators and atomic physics. The coupling of ECR sources to cyclotrons has resulted in significant performance gains in energy, intensity, reliability, and variety of ion species. Seven ECR sources are in regular operation with cyclotrons and numerous other projects are under development or in the planning stag. At least four laboratories have ECR sources dedicated for atomic physics research and other atomic physics programs share ECR sources with cyclotrons. An ECR source is now installed on the injector for the CERN SPS synchrotron to accelerate O/sup 8 +/ to relativistic energies. A project is underway at Argonne to couple an ECR source to a superconducting heavy-ion linac. Although tremendous progress has been made, the field of ECR sources is still a relatively young technology and there is still the potential for further advances both in source development and understanding of the plasma physics. The development of ECR sources is reviewed. The important physics mechanisms which come into play in the operation of ECR Sources are discussed, along with various models for charge state distributions (CSD). The design and performance of several ECR sources are compared. The 88-Inch Cyclotron and the LBL ECR is used as an example of cyclotron+ECR operation. The future of ECR sources is considered.

  3. BEST medical radioisotope production cyclotrons

    SciTech Connect

    Sabaiduc, Vasile; Milton, Bruce; Suthanthiran, Krishnan; Johnson, Richard R.; Gelbart, W. Z.

    2013-04-19

    Best Cyclotron Systems Inc (BCSI) is currently developing 14 MeV, 25 MeV, 35MeV and 70MeV cyclotrons for radioisotope production and research applications as well as the entire spectrum of targets and nuclear synthesis modules for the production of Positron Emission Tomography (PET), Single Photon Emission Computed Tomography (SPECT) and radiation therapy isotopes. The company is a subsidiary of Best Medical International, renowned in the field of medical instrumentation and radiation therapy. All cyclotrons have external negative hydrogen ion sources, four radial sectors with two dees in opposite valleys, cryogenic vacuum system and simultaneous beam extraction on opposite lines. The beam intensity ranges from 400 {mu}A to 1000 {mu}A, depending on the cyclotron energy and application.

  4. BEST medical radioisotope production cyclotrons

    NASA Astrophysics Data System (ADS)

    Sabaiduc, Vasile; Milton, Bruce; Suthanthiran, Krishnan; Gelbart, W. Z.; Johnson, Richard R.

    2013-04-01

    Best Cyclotron Systems Inc (BCSI) is currently developing 14 MeV, 25 MeV, 35MeV and 70MeV cyclotrons for radioisotope production and research applications as well as the entire spectrum of targets and nuclear synthesis modules for the production of Positron Emission Tomography (PET), Single Photon Emission Computed Tomography (SPECT) and radiation therapy isotopes. The company is a subsidiary of Best Medical International, renowned in the field of medical instrumentation and radiation therapy. All cyclotrons have external negative hydrogen ion sources, four radial sectors with two dees in opposite valleys, cryogenic vacuum system and simultaneous beam extraction on opposite lines. The beam intensity ranges from 400 μA to 1000 μA, depending on the cyclotron energy and application [1].

  5. FEL on slow cyclotron wave

    SciTech Connect

    Silivra, A.

    1995-12-31

    A physical mechanism of interaction of fast electromagnetic wave with slow cyclotron wave of relativistic electron beam in a FEL with helical wiggler field is described. It is shown that: (1) interaction is possible for both group of steady state electron trajectories (2) positive gain is achieved within certain interval of guide field strength (3) operation wavelength for group 1 trajectories ({Omega}{sub 0}/{gamma} < k{omega}{upsilon}{parallel}) is shorter than for the conventional FEL synchronism. A nonlinear analysis shows that efficiency of slow cyclotron FEL is restricted mainly by a breakdown of a single electron synchronism due to dependence of (modified) electron cyclotron frequency on an energy of electron. Nevertheless, as numerical simulation shows, typical efficiency of 15 % order is achieved in millimeter wavelength band for the midrelativistic ({gamma}= 3 {divided_by} 4) slow cyclotron wave FEL. Tapering of magnetic field results in a substantial increase of efficiency.

  6. Initial experiments with the Nevis Cyclotron, the Brookhaven Cosmotron, the Brookhaven AGS and their effects on high energy physics

    SciTech Connect

    Lindenbaum, S.J.

    1988-01-01

    The first experiment at the Nevis Cyclotron by Bernardini, Booth and Lindenbaum demonstrated that nuclear stars are produced by a nucleon-nucleon cascade within the nucleon. This solved a long standing problem in Cosmic rays and made it clear that where they overlap cosmic ray investigation would not be competitive with accelerator investigations. The initial experiments at the Brookhaven Cosmotron by Lindenbaum and Yuan demonstrated that low energy pion nucleon scattering and pion production were unexpectedly mostly due to excitation of the isotopic spin = angular momentum = 3/2 isobaric state of the nucleon. This contradicted the Fermi statistical theory and led to the Isobar model proposed by the author and a collaborator. The initial experiments at the AGS by the author and collaborators demonstrated that the Pomeronchuck Theorem would not come true till at least several hundred GeV. These scattering experiments led to the development of the ''On-line Computer Technique'' by the author and collaborators which is now the almost universal technique in high energy physics. The first accomplishment which flowed from this technique led to contradiction of the Regge pole theory as a dynamical asymptotic theory, by the author and collaborators. The first critical experimental proof of the forward dispersion relation in strong interactions was accomplished by the author and collaborators. They were then used as a crystal ball to predict that ''Asymptopia''---the theoretically promised land where all asymptotic theorems come true---would not be reached till at least 25,000 BeV and probably not before 1,000,000 BeV. 26 refs., 11 figs., 2 tabs.

  7. Autoresonant control of nonlinear mode in ultrasonic transducer for machining applications.

    PubMed

    Babitsky, V I; Astashev, V K; Kalashnikov, A N

    2004-04-01

    Experiments conducted in several countries have shown that the improvement of machining quality can be promoted through conversion of the cutting process into one involving controllable high-frequency vibration at the cutting zone. This is achieved through the generation and maintenance of ultrasonic vibration of the cutting tool to alter the fracture process of work-piece material cutting to one in which loading of the materials at the tool tip is incremental, repetitive and controlled. It was shown that excitation of the high-frequency vibro-impact mode of the tool-workpiece interaction is the most effective way of ultrasonic influence on the dynamic characteristics of machining. The exploitation of this nonlinear mode needs a new method of adaptive control for excitation and stabilisation of ultrasonic vibration known as autoresonance. An approach has been developed to design an autoresonant ultrasonic cutting unit as an oscillating system with an intelligent electronic feedback controlling self-excitation in the entire mechatronic system. The feedback produces the exciting force by means of transformation and amplification of the motion signal. This allows realisation for robust control of fine resonant tuning to bring the nonlinear high Q-factor systems into technological application. The autoresonant control provides the possibility of self-tuning and self-adaptation mechanisms for the system to keep the nonlinear resonant mode of oscillation under unpredictable variation of load, structure and parameters. This allows simple regulation of intensity of the process whilst keeping maximum efficiency at all times. An autoresonant system with supervisory computer control was developed, tested and used for the control of the piezoelectric transducer during ultrasonically assisted cutting. The system has been developed as combined analog-digital, where analog devices process the control signal, and parameters of the devices are controlled digitally by computer. The

  8. Production of [15O]Water at Low-Energy Proton Cyclotrons

    SciTech Connect

    Powell, James; O'Neil, James P.

    2005-12-12

    We report a simple system for producing [15O]H2O from nitrogen-15 in a nitrogen/hydrogen gas target with recycling of the target nitrogen, allowing production on low-energy proton-only accelerators with minimal consumption of isotopically enriched nitrogen-15. The radiolabeled water is separated from the target gas and radiolytically produced ammonia by temporary freezing in a small trap at -40 C.

  9. Development of Compact Electron Cyclotron Resonance Ion Source with Permanent Magnets for High-Energy Carbon-Ion Therapy

    NASA Astrophysics Data System (ADS)

    Muramatsu, M.; Kitagawa, A.; Iwata, Y.; Hojo, S.; Sakamoto, Y.; Sato, S.; Ogawa, Hirotsugu; Yamada, S.; Ogawa, Hiroyuki; Yoshida, Y.; Ueda, T.; Miyazaki, H.; Drentje, A. G.

    2008-11-01

    Heavy-ion cancer treatment is being carried out at the Heavy Ion Medical Accelerator in Chiba (HIMAC) with 140 to 400 MeV/n carbon ions at National Institute of Radiological Sciences (NIRS) since 1994. At NIRS, more than 4,000 patients have been treated, and the clinical efficiency of carbon ion radiotherapy has been demonstrated for many diseases. A more compact accelerator facility for cancer therapy is now being constricted at the Gunma University. In order to reduce the size of the injector (consists of ion source, low-energy beam transport and post-accelerator Linac include these power supply and cooling system), an ion source requires production of highly charged carbon ions, lower electric power for easy installation of the source on a high-voltage platform, long lifetime and easy operation. A compact Electron Cyclotron Resonance Ion Source (ECRIS) with all permanent magnets is one of the best types for this purpose. An ECRIS has advantage for production of highly charged ions. A permanent magnet is suitable for reduce the electric power and cooling system. For this, a 10 GHz compact ECRIS with all permanent magnets (Kei2-source) was developed. The maximum mirror magnetic fields on the beam axis are 0.59 T at the extraction side and 0.87 T at the gas-injection side, while the minimum B strength is 0.25 T. These parameters have been optimized for the production of C4+ based on experience at the 10 GHz NIRS-ECR ion source. The Kei2-source has a diameter of 320 mm and a length of 295 mm. The beam intensity of C4+ was obtained to be 618 eμA under an extraction voltage of 30 kV. Outline of the heavy ion therapy and development of the compact ion source for new facility are described in this paper.

  10. Commercial compact cyclotrons in the 90`s

    SciTech Connect

    Milton, B.F.

    1995-09-01

    Cyclotrons continue to be efficient accelerators for radio-isotope production. In recent years, developments in the accelerator technology have greatly increased the practical beam current in these machines while also improving the overall system reliability. These developments combined with the development of new isotopes for medicine and industry, and a retiring of older machines indicate a strong future for commercial cyclotrons. In this paper the authors will survey recent developments in the areas of cyclotron technology, as they relate to the new generation of commercial cyclotrons. Design criteria for the different types of commercial cyclotrons will be presented, with reference to those demands that differ from those in a research oriented cyclotron project. The authors also discuss the possibility of systems designed for higher energies and capable of extracted beam currents of up to 2.0 mA.

  11. Anomalous momentum and energy transfer rates for electrostatic ion-cyclotron turbulence in downward auroral-current regions of the Earth's magnetosphere. III

    SciTech Connect

    Jasperse, John R.; Basu, Bamandas; Lund, Eric J.; Grossbard, Neil

    2010-06-15

    Recently, a new multimoment fluid theory was developed for inhomogeneous, nonuniformly magnetized plasma in the guiding-center and gyrotropic approximation that includes the effect of electrostatic, turbulent, wave-particle interactions (see Jasperse et al. [Phys. Plasmas 13, 072903 (2006); ibid.13, 112902 (2006)]). In the present paper, which is intended as a sequel, it is concluded from FAST satellite data that the electrostatic ion-cyclotron turbulence that appears is due to the operation of an electron, bump-on-tail-driven ion-cyclotron instability for downward currents in the long-range potential region of the Earth's magnetosphere. Approximate closed-form expressions for the anomalous momentum and energy transfer rates for the ion-cyclotron turbulence are obtained. The turbulent, inhomogeneous, nonuniformly magnetized, multimoment fluid theory given above, in the limit of a turbulent, homogeneous, uniformly magnetized, quasisteady plasma, yields the well-known formula for the anomalous resistivity given by Gary and Paul [Phys. Rev. Lett. 26, 1097 (1971)] and Tange and Ichimaru [J. Phys. Soc. Jpn. 36, 1437 (1974)].

  12. Autoresonant-spectrometric determination of the residual gas composition in the ALPHA experiment apparatus.

    PubMed

    Amole, C; Ashkezari, M D; Baquero-Ruiz, M; Bertsche, W; Butler, E; Capra, A; Cesar, C L; Chapman, S; Charlton, M; Eriksson, S; Fajans, J; Friesen, T; Fujiwara, M C; Gill, D R; Gutierrez, A; Hangst, J S; Hardy, W N; Hayden, M E; Isaac, C A; Jonsell, S; Kurchaninov, L; Little, A; Madsen, N; McKenna, J T K; Menary, S; Napoli, S C; Nolan, P; Olchanski, K; Olin, A; Povilus, A; Pusa, P; Rasmussen, C Ø; Robicheaux, F; Sarid, E; Silveira, D M; Stracka, S; So, C; Thompson, R I; Turner, M; van der Werf, D P; Wurtele, J S; Zhmoginov, A

    2013-06-01

    Knowledge of the residual gas composition in the ALPHA experiment apparatus is important in our studies of antihydrogen and nonneutral plasmas. A technique based on autoresonant ion extraction from an electrostatic potential well has been developed that enables the study of the vacuum in our trap. Computer simulations allow an interpretation of our measurements and provide the residual gas composition under operating conditions typical of those used in experiments to produce, trap, and study antihydrogen. The methods developed may also be applicable in a range of atomic and molecular trap experiments where Penning-Malmberg traps are used and where access is limited.

  13. Non-Markovian autoresonant dynamics of tunneling from discrete to continuum modes

    SciTech Connect

    Barak, Assaf; Segev, Mordechai

    2011-09-15

    We study the autoresonant dynamics of a discrete level coupled to a continuum, and show that passing adiabatically through a linear resonance, above a well-defined threshold, yields a transition to nonlinear phase locking and linear non-Markovian decay to the continuum. This process results in broadening of the population of the continuum modes beyond its natural linewidth. This concept can be employed to alter spontaneous emission, where driving an atom into phase locking with continuum modes will yield the emission of short pulses.

  14. Autoresonant-spectrometric determination of the residual gas composition in the ALPHA experiment apparatus

    NASA Astrophysics Data System (ADS)

    Amole, C.; Ashkezari, M. D.; Baquero-Ruiz, M.; Bertsche, W.; Butler, E.; Capra, A.; Cesar, C. L.; Chapman, S.; Charlton, M.; Eriksson, S.; Fajans, J.; Friesen, T.; Fujiwara, M. C.; Gill, D. R.; Gutierrez, A.; Hangst, J. S.; Hardy, W. N.; Hayden, M. E.; Isaac, C. A.; Jonsell, S.; Kurchaninov, L.; Little, A.; Madsen, N.; McKenna, J. T. K.; Menary, S.; Napoli, S. C.; Nolan, P.; Olchanski, K.; Olin, A.; Povilus, A.; Pusa, P.; Rasmussen, C. Ø.; Robicheaux, F.; Sarid, E.; Silveira, D. M.; Stracka, S.; So, C.; Thompson, R. I.; Turner, M.; van der Werf, D. P.; Wurtele, J. S.; Zhmoginov, A.

    2013-06-01

    Knowledge of the residual gas composition in the ALPHA experiment apparatus is important in our studies of antihydrogen and nonneutral plasmas. A technique based on autoresonant ion extraction from an electrostatic potential well has been developed that enables the study of the vacuum in our trap. Computer simulations allow an interpretation of our measurements and provide the residual gas composition under operating conditions typical of those used in experiments to produce, trap, and study antihydrogen. The methods developed may also be applicable in a range of atomic and molecular trap experiments where Penning-Malmberg traps are used and where access is limited.

  15. Autoresonant Transition in the Presence of Noise and Self-Fields

    SciTech Connect

    Barth, I.; Friedland, L.; Sarid, E.; Shagalov, A. G.

    2009-10-09

    A sharp threshold for resonant capture of an ensemble of trapped particles driven by chirped frequency oscillations is analyzed. It is shown that at small temperatures T, the capture probability versus driving amplitude is a smoothed step function with the step location and width scaling as alpha{sup 3/4} (alpha being the chirp rate) and (alphaT){sup 1/2}, respectively. Strong repulsive self-fields reduce the width of the threshold considerably, as the ensemble forms a localized autoresonant macroparticle.

  16. Autoresonances of m=2 diocotron oscillations in non-neutral electron plasmas.

    PubMed

    Gomberoff, K; Higaki, H; Kaga, C; Ito, K; Okamoto, H

    2016-10-01

    The existence of autoresonances for m=2 diocotron oscillations of non-neutral electron plasmas in a uniform magnetic field was predicted by particle-in-cell simulations and it was confirmed in experiments. The obtained results show clear deviations from the standard threshold amplitude dependence on the sweep rate. The threshold amplitude approaches a constant at a lower sweep rate when there is a damping force. It was also found that the aspect ratio for the oval cross section of the confined plasma can be controlled by the frequency of the externally applied driving force.

  17. Autoresonances of m =2 diocotron oscillations in non-neutral electron plasmas

    NASA Astrophysics Data System (ADS)

    Gomberoff, K.; Higaki, H.; Kaga, C.; Ito, K.; Okamoto, H.

    2016-10-01

    The existence of autoresonances for m =2 diocotron oscillations of non-neutral electron plasmas in a uniform magnetic field was predicted by particle-in-cell simulations and it was confirmed in experiments. The obtained results show clear deviations from the standard threshold amplitude dependence on the sweep rate. The threshold amplitude approaches a constant at a lower sweep rate when there is a damping force. It was also found that the aspect ratio for the oval cross section of the confined plasma can be controlled by the frequency of the externally applied driving force.

  18. Electron cyclotron harmonic wave acceleration

    NASA Technical Reports Server (NTRS)

    Karimabadi, H.; Menyuk, C. R.; Sprangle, P.; Vlahos, L.

    1987-01-01

    A nonlinear analysis of particle acceleration in a finite bandwidth, obliquely propagating electromagnetic cyclotron wave is presented. It has been suggested by Sprangle and Vlahos in 1983 that the narrow bandwidth cyclotron radiation emitted by the unstable electron distribution inside a flaring solar loop can accelerate electrons outside the loop by the interaction of a monochromatic wave propagating along the ambient magnetic field with the ambient electrons. It is shown here that electrons gyrating and streaming along a uniform, static magnetic field can be accelerated by interacting with the fundamental or second harmonic of a monochromatic, obliquely propagating cyclotron wave. It is also shown that the acceleration is virtually unchanged when a wave with finite bandwidth is considered. This acceleration mechanism can explain the observed high-energy electrons in type III bursts.

  19. Electron cyclotron harmonic wave acceleration

    NASA Technical Reports Server (NTRS)

    Karimabadi, H.; Menyuk, C. R.; Sprangle, P.; Vlahos, L.

    1987-01-01

    A nonlinear analysis of particle acceleration in a finite bandwidth, obliquely propagating electromagnetic cyclotron wave is presented. It has been suggested by Sprangle and Vlahos in 1983 that the narrow bandwidth cyclotron radiation emitted by the unstable electron distribution inside a flaring solar loop can accelerate electrons outside the loop by the interaction of a monochromatic wave propagating along the ambient magnetic field with the ambient electrons. It is shown here that electrons gyrating and streaming along a uniform, static magnetic field can be accelerated by interacting with the fundamental or second harmonic of a monochromatic, obliquely propagating cyclotron wave. It is also shown that the acceleration is virtually unchanged when a wave with finite bandwidth is considered. This acceleration mechanism can explain the observed high-energy electrons in type III bursts.

  20. Radioisotopic Purity of Sodium Pertechnetate 99mTc Produced with a Medium-Energy Cyclotron: Implications for Internal Radiation Dose, Image Quality, and Release Specifications.

    PubMed

    Selivanova, Svetlana V; Lavallée, Éric; Senta, Helena; Caouette, Lyne; Sader, Jayden A; van Lier, Erik J; Zyuzin, Alexander; van Lier, Johan E; Guérin, Brigitte; Turcotte, Éric; Lecomte, Roger

    2015-10-01

    Cyclotron production of 99mTc is a promising route to supply 99mTc radiopharmaceuticals. Higher 99mTc yields can be obtained with medium-energy cyclotrons in comparison to those dedicated to PET isotope production. To take advantage of this capability, evaluation of the radioisotopic purity of 99mTc produced at medium energy (20-24 MeV) and its impact on image quality and dosimetry was required. Thick 100Mo (99.03% and 99.815%) targets were irradiated with incident energies of 20, 22, and 24 MeV for 2 or 6 h. The targets were processed to recover an effective thickness corresponding to approximately 5-MeV energy loss, and the resulting sodium pertechnetate 99mTc was assayed for chemical, radiochemical, and radionuclidic purity. Radioisotopic content in final formulation was quantified using γ-ray spectrometry. The internal radiation dose for 99mTc-pertechnetate was calculated on the basis of experimentally measured values and biokinetic data in humans. Planar and SPECT imaging were performed using thin capillary and water-filled Jaszczak phantoms. Extracted sodium pertechnetate 99mTc met all provisional quality standards. The formulated solution for injection had a pH of 5.0-5.5, contained greater than 98% of radioactivity in the form of pertechnetate ion, and was stable for at least 24 h after formulation. Radioisotopic purity of 99mTc produced with 99.03% enriched 100Mo was greater than 99.0% decay corrected to the end of bombardment (EOB). The radioisotopic purity of 99mTc produced with 99.815% enriched 100Mo was 99.98% or greater (decay corrected to the EOB). The estimated dose increase relative to 99mTc without any radionuclidic impurities was below 10% for sodium pertechnetate 99mTc produced from 99.03% 100Mo if injected up to 6 h after the EOB. For 99.815% 100Mo, the increase in effective dose was less than 2% at 6 h after the EOB and less than 4% at 15 h after the EOB when the target was irradiated at an incident energy of 24 MeV. Image spatial resolution

  1. Recent development and progress of IBA cyclotrons

    NASA Astrophysics Data System (ADS)

    Kleeven, W.; Abs, M.; Delvaux, J. L.; Forton, E.; Jongen, Y.; Medeiros Romao, L.; Nactergal, B.; Nuttens, V.; Servais, T.; Vanderlinden, T.; Zaremba, S.

    2011-12-01

    Several cyclotron development projects were recently realized by Ion Beam Applications S.A. (IBA). This contribution presents three of them: (i) the intensity enhancement of the Cyclone 30 cyclotron, a machine mainly used for the production of SPECT isotopes. This project is related with the increased demand for 201Tl because of the shortage of Mo/Tc generators from nuclear reactors, (ii) development of a new versatile multiple-particle K = 30 isotope-production cyclotron (the Cyclone 30XP) being able to accelerate H -, D - and also α-particles. The α-beam of this cyclotron will allow the production of new therapeutic isotopes (e.g. 211At) and (iii) commissioning of the Cyclone 70 cyclotron installed for Arronax in France. This machine is similar to the C30XP but provides higher energy ( K = 70) and allows research on new types of medical isotopes.

  2. Experimental and computational study of autoresonant injection of antiprotons into positron plasma in antihydrogen production

    NASA Astrophysics Data System (ADS)

    So, Chukman; Wurtele, Jonathan; Fajans, Joel; Friedland, Lazar; Bertsche, William

    2012-10-01

    The injection of antiprotons into positron plasma during antihydrogen synthesis in ALPHA is simulated numerically and compared with experimental measurements. The antiprotons and positrons are initially confined in adjacent axial potential wells in a nested Penning-Malmberg trap. The antiproton plasma is excited autoresonantly and partially injected into the adjacent positron plasma, creating antihydrogen. The excitation and injection process is modeled numerically with a hybrid code in which the antiproton plasma responds to the autoresonant drive fully dynamically, and the positrons respond quasi-statically. The strong axial magnetic field suppresses radial transport on the timescales of interest. The antiproton plasma is thus assumed to consist of concentric cylindrical tubes within which antiprotons move only in the axial direction, and the evolution of the phase space distributions in each tube obeys a one-dimensional Vlasov equation. The antiproton self-field is obtained by solving the Poisson equation in two-dimensions, thereby coupling the tubes. Alternative injection schemes and the effect of varying antiproton number and temperature are also examined.

  3. A low background-rate detector for ions in the 5 to 50 keV energy range to be used for radioisotope dating with a small cyclotron

    SciTech Connect

    Friedman, P.G.

    1986-11-25

    Accelerator mass spectrometry in tandem Van de Graaff accelerators has proven successful for radioisotope dating small samples. We are developing a 20 cm diameter 30 to 40 keV cyclotron dedicated to high-sensitivity radioisotope dating, initially for /sup 14/C. At this energy, range and dE/dx methods of particle identification are impossible. Thus arises the difficult problem of reliably detecting 30 to 40 keV /sup 14/C at 10/sup -2/ counts/sec in the high background environment of the cyclotron, where lower energy ions, electrons, and photons bombard the detector at much higher rates. We have developed and tested an inexpensive, generally useful ion detector that allows dark-count rates below 10/sup -4/ counts/sec and excellent background suppression. With the cyclotron tuned near the /sup 13/CH background peak, to the frequency for /sup 14/C, the detector suppresses the background to 6 x 10/sup -4/ counts/sec. For each /sup 14/C ion the detectors grazing-incidence Al/sub 2/O/sub 3/ conversion dynode emits about 20 secondary electrons, which are independently multiplied in separate pores of a microchannel plate. The output signal is proportional to the number of secondary electrons, allowing pulse-height discrimination of background. We have successfully tested the detector with positive /sup 12/C, /sup 23/Na, /sup 39/K, /sup 41/K, /sup 85/Rb, /sup 87/Rb, and /sup 133/Cs at 5 to 40 keV, and with 36 keV negative /sup 12/C and /sup 13/CH. It should detect ions and neutrals of all species, at energies above 5 keV, with good efficiency and excellent background discrimination. Counting efficiency and background discrimination improve with higher ion energy. The detector can be operated at least up to 2 x 10/sup -7/ Torr and be repeatedly exposed to air. The maximum rate is 10/sup 6.4/ ions/sec in pulse counting mode and 10/sup 9.7/ ions/sec in current integrating mode.

  4. Cyclotron resonance absorption in ionospheric plasma

    NASA Astrophysics Data System (ADS)

    Villalon, Elena

    1991-04-01

    The mode conversion of ordinary polarized electromagnetic waves into electrostatic cyclotron waves in the inhomogeneous ionospheric plasma is investigated. Near resonance the warm plasma dispersion relation is a function of the angle theta between the geomagnetic field and the density gradient and of the wave frequency omega, which lies between the electron cyclotron frequency and its doubling. The differential equations describing the electric field amplitudes near the plasma resonance are studied, including damping at the second gyroharmonic. The energy transmission coefficients and power absorbed by the cyclotron waves are calculated. The vertical penetration of the plasma wave amplitudes is estimated using a WKB analysis of the wave equation.

  5. Radial and poloidal particle and energy fluxes in a turbulent non-Ohmic plasma: An ion-cyclotron resonance heating case

    SciTech Connect

    Pometescu, N.; Weyssow, B.

    2007-02-15

    The combined effect of the turbulence and of the external radio-frequency heating on the radial and poloidal components of the ion particle and energy fluxes in magnetically confined plasma is analyzed analytically from the drift kinetic equation. These two components of the transport are derived in terms of the thermodynamic forces and of correlations of fluctuating quantities using the methodology of neoclassical transport theory based on the tokamak standard model of confining magnetic field. The ion cyclotron heating is specifically considered since, to first order, the electron dynamics may be neglected. The formalism is applied to different types of instabilities in order to quantify the role of the heating versus turbulence on the transport.

  6. Effect of high energy electrons on H{sup −} production and destruction in a high current DC negative ion source for cyclotron

    SciTech Connect

    Onai, M. Fujita, S.; Hatayama, A.; Etoh, H.; Aoki, Y.; Shibata, T.; Mattei, S.; Lettry, J.

    2016-02-15

    Recently, a filament driven multi-cusp negative ion source has been developed for proton cyclotrons in medical applications. In this study, numerical modeling of the filament arc-discharge source plasma has been done with kinetic modeling of electrons in the ion source plasmas by the multi-cusp arc-discharge code and zero dimensional rate equations for hydrogen molecules and negative ions. In this paper, main focus is placed on the effects of the arc-discharge power on the electron energy distribution function and the resultant H{sup −} production. The modelling results reasonably explains the dependence of the H{sup −} extraction current on the arc-discharge power in the experiments.

  7. NACA Researcher Examines the Cyclotron

    NASA Image and Video Library

    1951-02-21

    Researcher James Blue examines the new cyclotron at the National Advisory Committee for Aeronautics (NACA) Lewis Flight Propulsion Laboratory. Researchers at NACA Lewis began postulating about the use of atomic power for propulsion immediately after World War II. The NACA concentrated its efforts on the study of high temperature materials and heat transfer since it did not have access to the top secret fission information. The military studied the plausibility of nuclear propulsion for aircraft in the late 1940s. The military program was cancelled after four years without any breakthroughs, but the Atomic Energy Commission took on the effort in 1951. The NACA Lewis laboratory was expanding its nuclear-related research during this period. In 1948, Lewis engineers were assigned to the Oak Ridge National Laboratory to obtain expertise in high temperature heat transfer and advanced materials technology. The following year a new 80-person Nuclear Reactor Division was created, and an in-house nuclear school was established to train these researchers. The cyclotron was built behind the Materials and Structures Laboratory to support thermodynamic and materials research for both nuclear aircraft and nuclear rockets. The original NACA Lewis cyclotron was used to accelerate two kinds of particles. To better match the space radiation environment, the cyclotron was later modified to accelerate particles of the newly-discovered Van Allen radiation belts.

  8. The superconducting separated orbit cyclotron tritron

    SciTech Connect

    Trinks, U.; Assmann, W.; Dietl, L.; Hinderer, H.J.; Korner, A; Platzer, A.; Rehm, B.; Rieger, K.; Riess, C.; Savoy, R.

    1985-10-01

    At the Munich Accelerator Laboratory a booster for the existing MP-tandem-the Tritron - is under construction for acceleration of heavy ions to specific energies up to 21 MeV/u. The Tritron/sup +/ is a separated orbit cyclotron similar to the SOC but with the magnets and cavities both superconducting. The Tritron fits well into the existing laboratory. It is projected to be a prototype to demonstrate the feasibility of this type of cyclotron, which may be suited to overcome the limits of the conventional cyclotron concept. First, there are no axial focusing problems. Secondly, there is no crossing of resonances in the betatron frequency diagram, and thirdly, there are no injection and extraction problems. Thus continuous ion beams of high intensity and high quality with energies up to about 1 GeV/u seem within reach by connecting several separated orbit cyclotrons with increasing radii in series.

  9. Simulations of ion cyclotron anisotropy instabilities in the terrestrial magnetosheath

    NASA Technical Reports Server (NTRS)

    Gary, S. P.; Winske, Dan

    1993-01-01

    Enhanced transverse magnetic fluctuations observed below the proton cyclotron frequency in the terrestrial magnetosheath have been identified as due to the proton cyclotron and helium cyclotron instabilities driven by the T-perpendicular greater than T-parallel condition of the sheath ions. One-dimensional hybrid computer simulations are used here to examine the nonlinear properties of these two growing modes at relatively weak fluctuation energies and for wave vectors parallel to the background magnetic field. Second-order theory predicts fluctuating magnetic field energies at saturation of the proton cyclotron anisotropy instability in semiquantitative agreement with the simulation results. Introduction of the helium component enhances the wave-particle exchange rate for proton anisotropy reduction by that instability, thereby reducing the saturation energy of that mode. The simulations demonstrate that wave-particle interactions by the proton cyclotron and helium cyclotron instabilities lead to the anticorrelation observed by Anderson and Fuselier (1993).

  10. Energetic Particle Modes: example of Autoresonance and Superradiance in fusion plasmas

    NASA Astrophysics Data System (ADS)

    Zonca, Fulvio; Chen, Liu

    2013-10-01

    Energetic Particle Modes (EPM) are resonant non-normal modes born out of the shear Alfvén wave (SAW) continuous spectrum when the energetic particle (EP) drive overcomes continuum damping in nonuniform fusion plasmas. Their nonlinear evolution is characterized by radially convective amplification of the EPM wave-packet and secular EP radial transports. Here, we demonstrate that EPM-EP phase locking is an example of Autoresonance in fusion plasmas; and that the corresponding EPM-EP nonlinear dynamics has interesting analogies with Superradiance. These complex nonlinear behaviors are described, in a simple yet practically relevant limiting case, by a complex Nonlinear Schrödinger Equation. Research support: ITER-CN, US DoE Grants and EURATOM/ENEA Contract of Association.

  11. Low energy cyclotron production and separation of yttrium-86 for evaluation of monoclonal antibody pharmacokinetics and dosimetry

    SciTech Connect

    Shoner, S.; Link, J.; Krohn, K.; Schlyer, D.

    1999-06-01

    Although an excellent radionuclide for application to systemic isotopic therapy when complexed to various monoclonal antibodies, the lack of photon emission from yttrium-90 makes the determination of the pharmacokinetics and dosimetry of the resultant radiopharmaceutical difficult. The introduction of the positron-emitting radionuclide yttrium-86 (T{sub 1/2}=14.7&hthinsp;h,&hthinsp;{beta}{sup +}=33{percent}) provides the non-invasive quantitation for the biodistribution of the chelated complex. The yttrium-86 radionuclide is produced at Memorial Sloan-Kettering using the CS-15 cyclotron via the (p,n) nuclear reaction on an enriched strontium-86 target. The separation is effectively achieved through a combination of solvent extraction and ion exchange chromatography. Once investigational new drug approval has been received, the mixed nuclides, Y-90 and Y-86, are to be used to formulate the HuM195 labeled monoclonal antibody, a radiopharmaceutical under active investigation against hematopoietic progenitor cells. {copyright} {ital 1999 American Institute of Physics.}

  12. Development of a compact electron-cyclotron-resonance ion source for high-energy carbon-ion therapy

    NASA Astrophysics Data System (ADS)

    Muramatsu, M.; Kitagawa, A.; Sakamoto, Y.; Sato, S.; Sato, Y.; Ogawa, Hirotsugu; Yamada, S.; Ogawa, Hiroyuki; Yoshida, Y.; Drentje, A. G.

    2005-11-01

    Ion sources for medical facilities should have characteristics of easy maintenance, low electric power consumption, good stability, and long operation time without problems (one year or longer). For this, a 10GHz compact electron-cyclotron-resonance ion source with all-permanent magnets (Kei2 source) was developed. The maximum mirror magnetic fields on the beam axis are 0.59T at the extraction side and 0.87T at the gas-injection side, while the minimum B strength is 0.25T. These parameters have been optimized for the production of C4+ based on the experience at the 10GHz NIRS-ECR ion source and a previous prototype compact source (Kei source). The Kei2 source has a diameter of 320mm and a length of 295mm. The beam intensity of C4+ was obtained to be 530μA under an extraction voltage of 40kV. The beam stability was better than 6% at C4+ of 280μA during 90h with no adjustment of the operation parameters. The details of the design and beam tests of the source are described in this paper.

  13. Measurement of the high energy component of the x-ray spectra in the VENUS electron cyclotron resonance ion source (abstract only)

    SciTech Connect

    Leitner, D.; Benitez, J. Y.; Lyneis, C. M.; Todd, D. S.; Ropponen, T.; Ropponen, J.; Koivisto, H.; Gammino, S.

    2008-02-15

    High performance electron cyclotron resonance (ECR) ion sources, such as VENUS (versatile ECR for nuclear science), produce large amounts of x rays. By studying their energy spectra, conclusions can be drawn about the electron heating process and the electron confinement. In addition, the bremsstrahlung from the plasma chamber is partly absorbed by the cold mass of the superconducting magnet adding an extra heat load to the cryostat. Germanium or NaI detectors are generally used for x-ray measurements. Due to the high x-ray flux from the source, the experimental setup to measure bremsstrahlung spectra from ECR ion sources is somewhat different than for the traditional nuclear physics measurements these detectors are generally used for. In particular, the collimation and background shielding can be problematic. In this paper we will discuss the experimental setup for such a measurement, the energy calibration and background reduction, the shielding of the detector, and collimation of the x-ray flux. We will present x-ray energy spectra and cryostat heating rates in dependence of various ion source parameters such as confinement fields, minimum B-field, rf power, and heating frequency.

  14. Swift/BAT measurements of the cyclotron line energy decay in the accreting neutron star Hercules X-1: indication of an evolution of the magnetic field?

    NASA Astrophysics Data System (ADS)

    Klochkov, D.; Staubert, R.; Postnov, K.; Wilms, J.; Rothschild, R. E.; Santangelo, A.

    2015-06-01

    Context. The magnetic field is a crucial ingredient of neutron stars. It governs the physics of accretion and of the resulting high-energy emission in accreting pulsars. Studies of the cyclotron resonant scattering features (CRSFs) seen as absorption lines in the X-ray spectra of the pulsars permit direct measurements of the field strength. Aims: From an analysis of a number of pointed observations with different instruments, the energy of CRSF, Ecyc, has recently been found to decay in Her X-1 , which is one of the best-studied accreting pulsars. We present our analysis of a homogeneous and almost uninterrupted monitoring of the line energy with Swift/BAT. Methods: We analyzed the archival Swift/BAT observations of Her X-1 from 2005 to 2014. The data were used to measure the CRSF energy averaged over several months. Results: The analysis confirms the long-term decay of the line energy. The downward trend is highly significant and consistent with the trend measured with the pointed observations: dEcyc/ dt ~ -0.3 keV per year. Conclusions: The decay of Ecyc either indicates a local evolution of the magnetic field structure in the polar regions of the neutron star or a geometrical displacement of the line-forming region due to long-term changes in the structure of the X-ray emitting region. The shortness of the observed timescale of the decay, -Ecyc/Ėcyc ~ 100 yr, suggests that trend reversals and/or jumps of the line energy might be observed in the future.

  15. TRIUMF cyclotron vacuum system refurbishing

    NASA Astrophysics Data System (ADS)

    Sekachev, I.

    2008-03-01

    The cyclotron at TRIUMF was commissioned to full energy in 1974. The volume of the cyclotron vacuum tank is about 100 m3 and it operates at 5×10-8 Torr pressure during beam production. The pumping is mainly based on a Phillips B-20 cryogenerator (Stirling cycle 4-cylinder engine). The cryogenerator supplies helium gas at 16 K and 70 K to cryopanels in the tank. The decreasing reliability of the B-20 and demanding maintenance requirements triggered the decision to completely overhaul or replace the cryogenerator. Replacement with the LINDE-1630 helium refrigerator was found to be the most attractive (technically and economically) option. The details of the proposal with installation of the helium refrigerator and with a continuous flow liquid nitrogen shield cooling system are presented.

  16. A room temperature electron cyclotron resonance ion source for the DC-110 cyclotron

    SciTech Connect

    Efremov, A. Bogomolov, S.; Lebedev, A.; Loginov, V.; Yazvitsky, N.

    2014-02-15

    The project of the DC-110 cyclotron facility to provide applied research in the nanotechnologies (track pore membranes, surface modification of materials, etc.) has been designed by the Flerov Laboratory of Nuclear Reactions of the Joint Institute for Nuclear Research (Dubna). The facility includes the isochronous cyclotron DC-110 for accelerating the intensive Ar, Kr, Xe ion beams with 2.5 MeV/nucleon fixed energy. The cyclotron is equipped with system of axial injection and ECR ion source DECRIS-5, operating at the frequency of 18 GHz. This article reviews the design and construction of DECRIS-5 ion source along with some initial commissioning results.

  17. Cyclotron Line Measurements with INTEGRAL

    NASA Technical Reports Server (NTRS)

    Pottschmidt, K.; Kreykenbohm, I.; Caballero, I.; Fritz, S.; Schoenherr, G.; Kretschmar, P.; Wilms, J.; McBride, V. A.; Suchy, S.; Rothschild, R. E.

    2008-01-01

    Due to its broadband energy coverage, INTEGRAL has made important contributions to observing and interpreting cyclotron lines, which are present in the 10-100 keV range of a sample of accreting pulsars. In these systems photons with energies fulfilling the resonance condition inelastically Compton scatter off electrons quantized in the accretion column above the neutron star's magnetic pole(s). This process gives rise to the broad, absorption-like lines or 'cyclotron resonant scattering features' (CRSF). The observed lines allow to directly measure the B-fields of these sources, resulting in values of a few times 1E12G. In this overview I will present recent highlights regarding CRSF observations as well as discuss current ideas and models for the physical conditions in the accretion column. Among the former are the stability of the spectrum of Vela X-1 during giant flares in 2003, the observation of three cyclotron lines during the 2004 outburst of V0332+53, the confirmation of the fundamental line at approximately 45 keV during a 2005 normal outburst of A0535-26, and the simultaneous detection of the two lines in the dipping source 4U 1907+09 (for which also a torque reversal was detected for the first time). Through these and other observations it has become increasingly apparent that two types of observations can potentially be used to constrain the accretion column geometry: the determination of energy ratios for multiple harmonic lines (only two sources with greater than 2 lines are known), was well as the evolution of the fundamental line centroid, which, for different sources, may or may not be correlated with flux. Furthermore, first steps have been taken away from the usual phenomenological description of the lines, towards a physical approach based on self-consistent CRSF modeling. Initial applications are presented.

  18. Cyclotron Line Measurements with INTEGRAL

    NASA Technical Reports Server (NTRS)

    Pottschmidt, K.; Kreykenbohm, I.; Caballero, I.; Fritz, S.; Schoenherr, G.; Kretschmar, P.; Wilms, J.; McBride, V. A.; Suchy, S.; Rothschild, R. E.

    2008-01-01

    Due to its broadband energy coverage, INTEGRAL has made important contributions to observing and interpreting cyclotron lines, which are present in the 10-100 keV range of a sample of accreting pulsars. In these systems photons with energies fulfilling the resonance condition inelastically Compton scatter off electrons quantized in the accretion column above the neutron star's magnetic pole(s). This process gives rise to the broad, absorption-like lines or 'cyclotron resonant scattering features' (CRSF). The observed lines allow to directly measure the B-fields of these sources, resulting in values of a few times 1E12G. In this overview I will present recent highlights regarding CRSF observations as well as discuss current ideas and models for the physical conditions in the accretion column. Among the former are the stability of the spectrum of Vela X-1 during giant flares in 2003, the observation of three cyclotron lines during the 2004 outburst of V0332+53, the confirmation of the fundamental line at approximately 45 keV during a 2005 normal outburst of A0535-26, and the simultaneous detection of the two lines in the dipping source 4U 1907+09 (for which also a torque reversal was detected for the first time). Through these and other observations it has become increasingly apparent that two types of observations can potentially be used to constrain the accretion column geometry: the determination of energy ratios for multiple harmonic lines (only two sources with greater than 2 lines are known), was well as the evolution of the fundamental line centroid, which, for different sources, may or may not be correlated with flux. Furthermore, first steps have been taken away from the usual phenomenological description of the lines, towards a physical approach based on self-consistent CRSF modeling. Initial applications are presented.

  19. Cyclotron resonance cooling by strong laser field

    SciTech Connect

    Tagcuhi, Toshihiro; Mima, Kunioka

    1995-12-31

    Reduction of energy spread of electron beam is very important to increase a total output radiation power in free electron lasers. Although several cooling systems of particle beams such as a stochastic cooling are successfully operated in the accelerator physics, these cooling mechanisms are very slow and they are only applicable to high energy charged particle beams of ring accelerators. We propose here a new concept of laser cooling system by means of cyclotron resonance. Electrons being in cyclotron motion under a strong magnetic field can resonate with circular polarized electromagnetic field, and the resonance take place selectively depending on the velocity of the electrons. If cyclotron frequency of electrons is equal to the frequency of the electromagnetic field, they absorb the electromagnetic field energy strongly, but the other electrons remain unchanged. The absorbed energy will be converted to transverse kinetic energy, and the energy will be dumped into the radiation energy through bremastrahlung. To build a cooling system, we must use two laser beams, where one of them is counter-propagating and the other is co-propagating with electron beam. When the frequency of the counter-propagating laser is tuned with the cyclotron frequency of fast electrons and the co-propagating laser is tuned with the cyclotron frequency of slow electrons, the energy of two groups will approach and the cooling will be achieved. We solve relativistic motions of electrons with relativistic radiation dumping force, and estimate the cooling rate of this mechanism. We will report optimum parameters for the electron beam cooling system for free electron lasers.

  20. Peroxidation of the dried thin film of lipid by high-energy alpha particles from a cyclotron

    SciTech Connect

    Agarwal, S.; Chatterjee, S.N.

    1984-11-01

    High-energy ..cap alpha.. particles produced a dose-dependent linear increase in different lipid peroxidation products (e.g., malondialdehyde (MDA), conjugated dienes, and hydroperoxides) in the dried thin film state. An inverse dose-rate effect was observed when the dose rate was varied by changing either the ..cap alpha..-particle fluence rate or the ..cap alpha..-particle energy. The antioxidants ..cap alpha..-tocopherol and butylated hydroxytoluene (BHT) suppressed the ..cap alpha..-particle-induced lipid peroxidation in the dried thin film state, and in this respect ..cap alpha..-tocopherol was found superior to BHT. It was found that ..cap alpha..-tocopherol was equally efficient in inhibiting lipid peroxidations by ..cap alpha.. particles and ultraviolet light.

  1. The neutronic design and performance of the Indiana University Cyclotron Facility (IUCF) Low Energy Neutron Source (LENS)

    NASA Astrophysics Data System (ADS)

    Lavelle, Christopher M.

    Neutron scattering research is performed primarily at large-scale facilities. However, history has shown that smaller scale neutron scattering facilities can play a useful role in education and innovation while performing valuable materials research. This dissertation details the design and experimental validation of the LENS TMR as an example for a small scale accelerator driven neutron source. LENS achieves competitive long wavelength neutron intensities by employing a novel long pulse mode of operation, where the neutron production target is irradiated on a time scale comparable to the emission time of neutrons from the system. Monte Carlo methods have been employed to develop a design for optimal production of long wavelength neutrons from the 9Be(p,n) reaction at proton energies ranging from 7 to 13 MeV proton energy. The neutron spectrum was experimentally measured using time of flight, where it is found that the impact of the long pulse mode on energy resolution can be eliminated at sub-eV neutron energies if the emission time distribution of neutron from the system is known. The emission time distribution from the TMR system is measured using a time focussed crystal analyzer. Emission time of the fundamental cold neutron mode is found to be consistent with Monte Carlo results. The measured thermal neutron spectrum from the water reflector is found to be in agreement with Monte Carlo predictions if the scattering kernels employed are well established. It was found that the scattering kernels currently employed for cryogenic methane are inadequate for accurate prediction of the cold neutron intensity from the system. The TMR and neutronic modeling have been well characterized and the source design is flexible, such that it is possible for LENS to serve as an effective test bed for future work in neutronic development. Suggestions for improvements to the design that would allow increased neutron flux into the instruments are provided.

  2. Spatial cyclotron damping

    NASA Technical Reports Server (NTRS)

    Olson, C. L.

    1970-01-01

    To examine spatial electron cyclotron damping in a uniform Vlasov plasma, it is noted that the plasma response to a steady-state transverse excitation consists of several terms (dielectric-pole, free-streaming, and branch-cut), but that the cyclotron-damped pole term is the dominant term for z l = c/w sub ce provided (w sub pe/w sub ce) squared (c/a) is much greater than 1. If the latter inequality does not hold, then the free-streaming and branch-cut terms persist well past z = c/w sub ce as w sub 1 approaches w sub ce, making experimental measurement of cyclotron damping essentially impossible. Considering only (w sub pe/w sub ce) squared (c/a) is much greater than 1, it is shown how collisional effects should be estimated and how a finite-width excitation usually has little effect on the cyclotron-damped part of the response. Criteria is established concerning collisional damping, measurable damping length sizes, and allowed uncertainty in the magnetic field Beta. Results of numerical calculations, showing the regions in the appropriate parameter spaces that meet these criteria, are presented. From these results, one can determine the feasibility of, or propose parameter values for, an experiment designed to measure spatial cyclotron damping. It is concluded that the electron temperature T sub e should be at least 1 ev., and preferably 10 ev. or higher, for a successful experiment.

  3. Cyclotron Provides Neutron Therapy for Cancer Patients

    NASA Image and Video Library

    1978-01-21

    A cancer patient undergoes treatment in the Neutron Therapy Treatment Facility, or Cylotron, at the National Aeronautics and Space Administration (NASA) Lewis Research Center. After World War II Lewis researchers became interested in nuclear energy for propulsion. The focused their efforts on thermodynamics and strength of materials after radiation. In 1950 an 80-person Nuclear Reactor Division was created, and a cyclotron was built behind the Materials and Structures Laboratory. An in-house nuclear school was established to train these researchers in their new field. NASA cancelled its entire nuclear program in January 1973, just as the cyclotron was about to resume operations after a major upgrade. In 1975 the Cleveland Clinic Foundation partnered with NASA Lewis to use the cyclotron for a new type of radiation treatment for cancer patients. The cyclotron split beryllium atoms which caused neutrons to be released. The neutrons were streamed directly at the patient’s tumor. The facility had a dual-beam system that could target the tumor both vertically and horizontally. Over the course of five years, the cyclotron was used to treat 1200 patients. It was found to be particularly effective on salivary gland, prostrate, and other tumors. It was not as successful with tumors of the central nervous system. The program was terminated in 1980 as the Clinic began concentrating on non-radiation treatments.

  4. Cyclotron Lines in Accreting Neutron Star Spectra

    NASA Astrophysics Data System (ADS)

    Wilms, Jörn; Schönherr, Gabriele; Schmid, Julia; Dauser, Thomas; Kreykenbohm, Ingo

    2009-05-01

    Cyclotron lines are formed through transitions of electrons between discrete Landau levels in the accretion columns of accreting neutron stars with strong (1012 G) magnetic fields. We summarize recent results on the formation of the spectral continuum of such systems, describe recent advances in the modeling of the lines based on a modification of the commonly used Monte Carlo approach, and discuss new results on the dependence of the measured cyclotron line energy from the luminosity of transient neutron star systems. Finally, we show that Simbol-X will be ideally suited to build and improve the observational database of accreting and strongly magnetized neutron stars.

  5. Design and development of a radio frequency quadrupole linac postaccelerator for the Variable Energy Cyclotron Center rare ion beam project.

    PubMed

    Dechoudhury, S; Naik, V; Mondal, M; Chatterjee, A; Pandey, H K; Mandi, T K; Bandyopadhyay, A; Karmakar, P; Bhattacharjee, S; Chouhan, P S; Ali, S; Srivastava, S C L; Chakrabarti, A

    2010-02-01

    A four-rod type heavy-ion radio frequency quadrupole (RFQ) linac has been designed, constructed, and tested for the rare ion beam (RIB) facility project at VECC. Designed for cw operation, this RFQ is the first postaccelerator in the RIB beam line. It will accelerate A/q < or = 14 heavy ions coming from the ion source to the energy of around 100 keV/u for subsequent acceleration in a number of Interdigital H-Linac. Operating at a resonance frequency of 37.83 MHz, maximum intervane voltage of around 54 kV will be needed to achieve the final energy over a vane length of 3.12 m for a power loss of 35 kW. In the first beam tests, transmission efficiency of about 90% was measured at the QQ focus after the RFQ for O(5+) beam. In this article the design of the RFQ including the effect of vane modulation on the rf characteristics and results of beam tests will be presented.

  6. A 2.45 GHz electron cyclotron resonance proton ion source and a dual-lens low energy beam transporta)

    NASA Astrophysics Data System (ADS)

    Zhang, W. H.; Ma, H. Y.; Yang, Y.; Wu, Q.; Zhang, X. Z.; Wang, H.; Ma, B. H.; Feng, Y. C.; Fang, X.; Guo, J. W.; Cao, Y.; Li, X. X.; Zhu, Y. H.; Li, J. Y.; Sha, S.; Lu, W.; Lin, S. H.; Guo, X. H.; Zhao, H. Y.; Sun, L. T.; Xie, D. Z.; Peng, S. X.; Liu, Z. W.; Zhao, H. W.

    2012-02-01

    The structure and preliminary commissioning results of a new 2.45 GHz ECR proton ion source and a dual-lens low energy beam transport (LEBT) system are presented in this paper. The main magnetic field of the ion source is provided by a set of permanent magnets with two small electro-solenoid magnets at the injection and the extraction to fine tune the magnetic field for better microwave coupling. A 50 keV pulsed proton beam extracted by a three-electrode mechanism passes through the LEBT system of length of 1183 mm. This LEBT consists of a diagnosis chamber, two Glaser lenses, two steering magnets, and a final beam defining cone. A set of inner permanent magnetic rings is embedded in each of the two Glaser lenses to produce a flatter axial-field to reduce the lens aberrations.

  7. A 2.45 GHz electron cyclotron resonance proton ion source and a dual-lens low energy beam transport

    SciTech Connect

    Zhang, W. H.; Ma, H. Y.; Wu, Q.; Zhang, X. Z.; Wang, H.; Ma, B. H.; Feng, Y. C.; Fang, X.; Guo, J. W.; Li, X. X.; Zhu, Y. H.; Li, J. Y.; Guo, X. H.; Zhao, H. Y.; Sun, L. T.; Xie, D. Z.; Liu, Z. W.; Zhao, H. W.; Yang, Y.; Cao, Y.; and others

    2012-02-15

    The structure and preliminary commissioning results of a new 2.45 GHz ECR proton ion source and a dual-lens low energy beam transport (LEBT) system are presented in this paper. The main magnetic field of the ion source is provided by a set of permanent magnets with two small electro-solenoid magnets at the injection and the extraction to fine tune the magnetic field for better microwave coupling. A 50 keV pulsed proton beam extracted by a three-electrode mechanism passes through the LEBT system of length of 1183 mm. This LEBT consists of a diagnosis chamber, two Glaser lenses, two steering magnets, and a final beam defining cone. A set of inner permanent magnetic rings is embedded in each of the two Glaser lenses to produce a flatter axial-field to reduce the lens aberrations.

  8. Inflation and cyclotron motion

    NASA Astrophysics Data System (ADS)

    Greensite, Jeff

    2017-01-01

    We consider, in the context of a braneworld cosmology, the motion of the Universe coupled to a four-form gauge field, with constant field strength, defined in higher dimensions. It is found, under rather general initial conditions, that in this situation there is a period of exponential inflation combined with cyclotron motion in the inflaton field space. The main effect of the cyclotron motion is that slow roll conditions on the inflaton potential, which are typically necessary for exponential inflation, can be evaded. There are Landau levels associated with the four-form gauge field, and these correspond to quantum excitations of the inflaton field satisfying unconventional dispersion relations.

  9. The Warsaw K=160 cyclotron

    NASA Astrophysics Data System (ADS)

    Choinski, J.; Miszczak, J.; Sura, J.

    2001-12-01

    The overview of the Warsaw cyclotron facility is presented. The facility consists of K=160 cyclotron, 10 GHz ECR ion source, and several experimental stations. The cyclotron is of compact design with 2 straight dees. A yearly operation time is about 2900 hours on an average for the past few years. The cyclotron can deliver beams up to Ar with energy up to 10 MeV/amu to the experimental area. Experimental stations are: 1) The multidetector OSIRIS II, allows the study of exotic nuclei in the double magic 100Sn region. The experimental set-up consists of 8 HPGe detectors equipped with charged particle 4π multiplicity filter SiBall, 50 elements BGO γ-rays multiplicity filter, 4 sector polarimeter and electron conversion detector system. 2) CUDAC-Coulomb Universal Detector Scattering Chamber-an array of PIN-diodes in connection with HPGe detectors and the computer data analysis package GOSIA, maintained by the Laboratory allows investigation the Coulomb Excitation (COULEX) reactions. 3) IGISOL or Helium-jet transport system opened investigation of the reaction products by means of the online mass separator with ion-guide system. The system uses the Scandinavian-type mass separator built in INR Świerk, Poland. 4) Giant Dipole Resonance studies using experimental set-up JANOSIK developed for the detection of high-energy photons emitted in heavy-ion collisions. The set-up consists of a large NaI(Tl) detector (25 cm×29 cm) surrounded by shields: passive lead shield, active anticoincidence plastic shield and LiH shield to absorb neutrons, and a multiplicity filter of 32 small scintillator detectors (BaF2 and NaI(Tl)). 5) Laser spectroscopy stand now in test phase. The laser spectroscopy group at HIL has completed an equipment consisting of Argon ion Laser Innova 400-25W in all lines and coherent Ring Laser 669-21 as well as atomic beam apparatus.

  10. New superconducting cyclotron driven scanning proton therapy systems

    NASA Astrophysics Data System (ADS)

    Klein, Hans-Udo; Baumgarten, Christian; Geisler, Andreas; Heese, Jürgen; Hobl, Achim; Krischel, Detlef; Schillo, Michael; Schmidt, Stefan; Timmer, Jan

    2005-12-01

    Since one and a half decades ACCEL is investing in development and engineering of state of the art particle-therapy systems. A new medical superconducting 250 MeV proton cyclotron with special focus on the present and future beam requirements of fast scanning treatment systems has been designed. The first new ACCEL medical proton cyclotron is under commissioning at PSI for their PROSCAN proton therapy facility having undergone successful factory tests especially of the closed loop cryomagnetic system. The second cyclotron is part of ACCEL's integrated proton therapy system for Europe's first clinical center, RPTC in Munich. The cyclotron, the energy selection system, the beamline as well as the four gantries and patient positioners have been installed. The scanning system and major parts of the control software have already been tested. We will report on the concept of ACCEL's superconducting cyclotron driven scanning proton therapy systems and the current status of the commissioning work at PSI and RPTC.

  11. Cyclotron resonance effects on stochastic acceleration of light ionospheric ions

    NASA Technical Reports Server (NTRS)

    Singh, N.; Schunk, R. W.; Sojka, J. J.

    1982-01-01

    The production of energetic ions with conical pitch angle distributions along the auroral field lines is a subject of considerable current interest. There are several theoretical treatments showing the acceleration (heating) of the ions by ion cyclotron waves. The quasi-linear theory predicts no acceleration when the ions are nonresonant. In the present investigation, it is demonstrated that the cyclotron resonances are not crucial for the transverse acceleration of ions by ion cyclotron waves. It is found that transverse energization of ionospheric ions, such as He(+), He(++), O(++), and O(+), is possible by an Electrostatic Hydrogen Cyclotron (EHC) wave even in the absence of cyclotron resonance. The mechanism of acceleration is the nonresonant stochastic heating. However, when there are resonant ions both the total energy gain and the number of accelerated ions increase with increasing parallel wave number.

  12. Some calculations of the resonator in INR cyclotron

    SciTech Connect

    Zhang, J.; Liu, X.L.

    1985-10-01

    Some calculation methods of the resonator parameters with single dee and two coaxial transmission lines in INR variable-energy cyclotron were described. Also calculated and experimental results have been compared with the original one (two dee system).

  13. Cyclotron Research and Applications

    SciTech Connect

    Mach, Rostislav

    2010-01-05

    The twenty years old cyclotron U-120M was upgraded for R and D and Production of Radiopharmaceuticals. R and D on short-lived Radiopharmaceuticals production is done at this accelerator. These Radiopharmaceuticals are eventually delivered to nearby hospitals. Development of new diagnostic radiopharmaceuticals is also pursued at the facility. your paper.

  14. Lawrence's Legacy : Seaborg's Cyclotron - The 88-Inch Cyclotron turns 40

    NASA Astrophysics Data System (ADS)

    McMahan, Margaret; Clark, David

    2003-04-01

    In 1958, Sputnik had recently been launched by the Russians, leading to worry in Congress and increased funding for science and technology. Ernest Lawrence was director of the "Rad Lab" at Berkeley. Another Nobel Prize winner, Glenn Seaborg, was Associate Laboratory Director and Director of the Nuclear Chemistry Division. In this atmosphere, Lawrence was phoned by commissioners of the Atomic Energy Commission and asked what they could do for Seaborg, "because he did such a fine job of setting up the chemistry for extracting plutonium from spent reactor fuel" [1]. In this informal way, the 90-Inch (eventually 88-Inch) Cyclotron became a line item in the federal budget at a cost of 3M (later increased to 5M). The 88-Inch Cyclotron achieved first internal beam on Dec. 12, 1961 and first external beam in May 1962. Forty years later it is still going strong. Pieced together from interviews with the retirees who built it, Rad Lab reports and archives from the Seaborg and Lawrence collections, the story of its design and construction - on-time and under-budget - provides a glimpse into the early days of big science. [1] remarks made by Elmer Kelly, "Physicist-in-charge' of the project on the occasion of the 40th anniversary celebration.

  15. Design Study Of Cyclotron Magnet With Permanent Magnet

    SciTech Connect

    Kim, Hyun Wook; Chai, Jong Seo

    2011-06-01

    Low energy cyclotrons for Positron emission tomography (PET) have been wanted for the production of radio-isotopes after 2002. In the low energy cyclotron magnet design, increase of magnetic field between the poles is needed to make a smaller size of magnet and decrease power consumption. The Permanent magnet can support this work without additional electric power consumption in the cyclotron. In this paper the study of cyclotron magnet design using permanent magnet is shown and also the comparison between normal magnet and the magnet which is designed with permanent magnet is shown. Maximum energy of proton is 8 MeV and RF frequency is 79.3 MHz. 3D CAD design was done by CATIA P3 V5 R18 and the All field calculations had been performed by OPERA-3D TOSCA. The self-made beam dynamics program OPTICY is used for making isochronous field and other calculations.

  16. Design Study Of Cyclotron Magnet With Permanent Magnet

    NASA Astrophysics Data System (ADS)

    Kim, Hyun Wook; Chai, Jong Seo

    2011-06-01

    Low energy cyclotrons for Positron emission tomography (PET) have been wanted for the production of radio-isotopes after 2002. In the low energy cyclotron magnet design, increase of magnetic field between the poles is needed to make a smaller size of magnet and decrease power consumption. The Permanent magnet can support this work without additional electric power consumption in the cyclotron. In this paper the study of cyclotron magnet design using permanent magnet is shown and also the comparison between normal magnet and the magnet which is designed with permanent magnet is shown. Maximum energy of proton is 8 MeV and RF frequency is 79.3 MHz. 3D CAD design was done by CATIA P3 V5 R18 [1] and the All field calculations had been performed by OPERA-3D TOSCA [2]. The self-made beam dynamics program OPTICY [3] is used for making isochronous field and other calculations.

  17. Shielding design of the Mayo Clinic Scottsdale cyclotron vault

    NASA Astrophysics Data System (ADS)

    Riper, Kenneth A. Van; Metzger, Robert L.; Nelson, Kevin

    2017-09-01

    Mayo Clinic Scottsdale (Scottsdale, Arizona) is building a cyclotron vault containing a cyclotron with adjacent targets and a beam line leading to an external target. The targets are irradiated by high energy (15 to 16.5 MeV) protons for the production of radioisotopes. We performed Monte Carlo radiation transport simulations to calculate the radiation dose outside of the vault during irradiation of the cyclotron and external targets. We present the Monte Carlo model including the geometry, sources, and variance reduction methods. Mesh tallies surrounding the vault show the external dose rate is within acceptable limits.

  18. Physics of Cyclotron Resonance Scattering Features

    NASA Astrophysics Data System (ADS)

    Sschoenherr, Gabriele; Schwarm, Fritz-Walter; Falkner, Sebastian; Dauser, Thomas; Pottschmidt, Katja; Kretschmar, Peter; Klochkov, Dmitry; Ferrigno, Carlo; Britton Hemphill, Paul; Wilms, Joern

    2016-04-01

    Cyclotron resonant scattering features (short: cyclotron lines) are sensitive tracers of the physics of the accretion columns and mounds of X-ray pulsars. They form by interaction of X-ray photons with magnetically quantized electrons in the accreted plasma close to the neutron star. Such lines have been observed as absorption-like features for about 20 X-ray pulsars. Their energies provide a direct measure of the magnetic field strength in the line-forming region. By detailed modelling of the lines and of their parameter dependencies we can further decipher the physical conditions in the accretion column. For instance the fact that the complex scattering cross sections have a strong angle-dependence relates the phase-resolved cyclotron line shapes to parameters that constrain the systems’ still poorly understood geometry. Modelling the physics of cyclotron lines to a degree that allows for detailed and solid comparison to data therefore provides a unique access also to a better understanding of the overall picture of magnetically accreting neutron star systems.

  19. Single-electron detection and spectroscopy via relativistic cyclotron radiation

    SciTech Connect

    Asner, D. M.; Bradley, R. F.; de Viveiros, L.; Doe, P. J.; Fernandes, J. L.; Fertl, M.; Finn, E. C.; Formaggio, J. A.; Furse, D.; Jones, A. M.; Kofron, J. N.; LaRoque, B. H.; Leber, M.; McBride, E. L.; Miller, M. L.; Mohanmurthy, P.; Monreal, B.; Oblath, N. S.; Robertson, R. G. H.; Rosenberg, L. J.; Rybka, G.; Rysewyk, D.; Sternberg, M. G.; Tedeschi, J. R.; Thummler, T.; VanDevender, B. A.; Woods, N. L.

    2015-04-20

    Since 1897, we've understood that accelerating charges must emit electromagnetic radiation. Cyclotron radiation, the particular form of radiation emitted by an electron orbiting in a magnetic field, was first derived in 1904. Despite the simplicity of this concept, and the enormous utility of electron spectroscopy in nuclear and particle physics, single-electron cyclotron radiation has never been observed directly. We demonstrate single-electron detection in a novel radiofrequency spec- trometer. Here, we observe the cyclotron radiation emitted by individual magnetically-trapped electrons that are produced with mildly-relativistic energies by a gaseous radioactive source. The relativistic shift in the cyclotron frequency permits a precise electron energy measurement. Precise beta electron spectroscopy from gaseous radiation sources is a key technique in modern efforts to measure the neutrino mass via the tritium decay endpoint, and this work demonstrates a fundamentally new approach to precision beta spectroscopy for future neutrino mass experiments.

  20. Single-electron detection and spectroscopy via relativistic cyclotron radiation

    SciTech Connect

    Asner, David M.; Bradley, Rich; De Viveiros Souza Filho, Luiz A.; Doe, Peter J.; Fernandes, Justin L.; Fertl, M.; Finn, Erin C.; Formaggio, Joseph; Furse, Daniel L.; Jones, Anthony M.; Kofron, Jared N.; LaRoque, Benjamin; Leber, Michelle; MCBride, Lisa; Miller, M. L.; Mohanmurthy, Prajwal T.; Monreal, Ben; Oblath, Noah S.; Robertson, R. G. H.; Rosenberg, Leslie; Rybka, Gray; Rysewyk, Devyn M.; Sternberg, Michael G.; Tedeschi, Jonathan R.; Thummler, Thomas; VanDevender, Brent A.; Woods, N. L.

    2015-04-01

    It has been understood since 1897 that accelerating charges should emit electromagnetic radiation. Cyclotron radiation, the particular form of radiation emitted by an electron orbiting in a magnetic field, was first derived in 1904. Despite the simplicity of this concept, and the enormous utility of electron spectroscopy in nuclear and particle physics, single-electron cyclotron radiation has never been observed directly. Here we demonstrate single-electron detection in a novel radiofrequency spectrometer. We observe the cyclotron radiation emitted by individual electrons that are produced with mildly-relativistic energies by a gaseous radioactive source and are magnetically trapped. The relativistic shift in the cyclotron frequency permits a precise electron energy measurement. Precise beta electron spectroscopy from gaseous radiation sources is a key technique in modern efforts to measure the neutrino mass via the tritium decay endpoint, and this work is a proof-of-concept for future neutrino mass experiments using this technique.

  1. Single-electron detection and spectroscopy via relativistic cyclotron radiation

    DOE PAGES

    Asner, D. M.; Bradley, R. F.; de Viveiros, L.; ...

    2015-04-20

    Since 1897, we've understood that accelerating charges must emit electromagnetic radiation. Cyclotron radiation, the particular form of radiation emitted by an electron orbiting in a magnetic field, was first derived in 1904. Despite the simplicity of this concept, and the enormous utility of electron spectroscopy in nuclear and particle physics, single-electron cyclotron radiation has never been observed directly. We demonstrate single-electron detection in a novel radiofrequency spec- trometer. Here, we observe the cyclotron radiation emitted by individual magnetically-trapped electrons that are produced with mildly-relativistic energies by a gaseous radioactive source. The relativistic shift in the cyclotron frequency permits a precisemore » electron energy measurement. Precise beta electron spectroscopy from gaseous radiation sources is a key technique in modern efforts to measure the neutrino mass via the tritium decay endpoint, and this work demonstrates a fundamentally new approach to precision beta spectroscopy for future neutrino mass experiments.« less

  2. Cyclotrons and positron emitting radiopharmaceuticals

    SciTech Connect

    Wolf, A.P.; Fowler, J.S.

    1984-01-01

    The state of the art of Positron Emission Tomography (PET) technology as related to cyclotron use and radiopharmaceutical production is reviewed. The paper discusses available small cyclotrons, the positron emitters which can be produced and the yields possible, target design, and radiopharmaceutical development and application. 97 refs., 12 tabs. (ACR)

  3. Undergraduate Education with the Rutgers 12-Inch Cyclotron

    NASA Astrophysics Data System (ADS)

    Koeth, Timothy W.

    The Rutgers 12-Inch Cyclotron is a research grade accelerator dedicated to undergraduate education. From its inception, it has been intended for instruction and has been designed to demonstrate classic beam physics phenomena and provides students hands on experience with accelerator technology. The cyclotron is easily reconfigured, allowing experiments to be designed and performed within one academic semester. Our cyclotron offers students the opportunity to operate an accelerator and directly observe many fundamental beam physics concepts, including axial and radial betatron motion, destructive resonances, weak and azimuthally varying field (AVF) focusing schemes, RF and DEE voltage effects, diagnostic techniques, and perform low energy nuclear reactions. This paper emphasizes the unique beam physics measurements and beam manipulations capable at the Rutgers 12-Inch Cyclotron.

  4. Design study of electron cyclotron resonance-ion plasma accelerator for heavy ion cancer therapy

    SciTech Connect

    Inoue, T. Sugimoto, S.; Sasai, K.; Hattori, T.

    2014-02-15

    Electron Cyclotron Resonance-Ion Plasma Accelerator (ECR-IPAC) device, which theoretically can accelerate multiple charged ions to several hundred MeV with short acceleration length, has been proposed. The acceleration mechanism is based on the combination of two physical principles, plasma electron ion adiabatic ejection (PLEIADE) and Gyromagnetic Autoresonance (GYRAC). In this study, we have designed the proof of principle machine ECR-IPAC device and simulated the electromagnetic field distribution generating in the resonance cavity. ECR-IPAC device consisted of three parts, ECR ion source section, GYRAC section, and PLEIADE section. ECR ion source section and PLEIADE section were designed using several multi-turn solenoid coils and sextupole magnets, and GYRAC section was designed using 10 turns coil. The structure of ECR-IPAC device was the cylindrical shape, and the total length was 1024 mm and the maximum diameter was 580 mm. The magnetic field distribution, which maintains the stable acceleration of plasma, was generated on the acceleration center axis throughout three sections. In addition, the electric field for efficient acceleration of electrons was generated in the resonance cavity by supplying microwave of 2.45 GHz.

  5. Design study of electron cyclotron resonance-ion plasma accelerator for heavy ion cancer therapy.

    PubMed

    Inoue, T; Hattori, T; Sugimoto, S; Sasai, K

    2014-02-01

    Electron Cyclotron Resonance-Ion Plasma Accelerator (ECR-IPAC) device, which theoretically can accelerate multiple charged ions to several hundred MeV with short acceleration length, has been proposed. The acceleration mechanism is based on the combination of two physical principles, plasma electron ion adiabatic ejection (PLEIADE) and Gyromagnetic Autoresonance (GYRAC). In this study, we have designed the proof of principle machine ECR-IPAC device and simulated the electromagnetic field distribution generating in the resonance cavity. ECR-IPAC device consisted of three parts, ECR ion source section, GYRAC section, and PLEIADE section. ECR ion source section and PLEIADE section were designed using several multi-turn solenoid coils and sextupole magnets, and GYRAC section was designed using 10 turns coil. The structure of ECR-IPAC device was the cylindrical shape, and the total length was 1024 mm and the maximum diameter was 580 mm. The magnetic field distribution, which maintains the stable acceleration of plasma, was generated on the acceleration center axis throughout three sections. In addition, the electric field for efficient acceleration of electrons was generated in the resonance cavity by supplying microwave of 2.45 GHz.

  6. Design study of electron cyclotron resonance-ion plasma accelerator for heavy ion cancer therapy

    NASA Astrophysics Data System (ADS)

    Inoue, T.; Hattori, T.; Sugimoto, S.; Sasai, K.

    2014-02-01

    Electron Cyclotron Resonance-Ion Plasma Accelerator (ECR-IPAC) device, which theoretically can accelerate multiple charged ions to several hundred MeV with short acceleration length, has been proposed. The acceleration mechanism is based on the combination of two physical principles, plasma electron ion adiabatic ejection (PLEIADE) and Gyromagnetic Autoresonance (GYRAC). In this study, we have designed the proof of principle machine ECR-IPAC device and simulated the electromagnetic field distribution generating in the resonance cavity. ECR-IPAC device consisted of three parts, ECR ion source section, GYRAC section, and PLEIADE section. ECR ion source section and PLEIADE section were designed using several multi-turn solenoid coils and sextupole magnets, and GYRAC section was designed using 10 turns coil. The structure of ECR-IPAC device was the cylindrical shape, and the total length was 1024 mm and the maximum diameter was 580 mm. The magnetic field distribution, which maintains the stable acceleration of plasma, was generated on the acceleration center axis throughout three sections. In addition, the electric field for efficient acceleration of electrons was generated in the resonance cavity by supplying microwave of 2.45 GHz.

  7. Ion cyclotron resonance cell

    DOEpatents

    Weller, R.R.

    1995-02-14

    An ion cyclotron resonance cell is disclosed having two adjacent sections separated by a center trapping plate. The first section is defined by the center trapping plate, a first end trapping plate, and excitation and detector electrodes. The second section includes a second end trapping plate spaced apart from the center plate, a mirror, and an analyzer. The analyzer includes a wavelength-selective light detector, such as a detector incorporating an acousto-optical device (AOD) and a photodetector. One or more ion guides, grounded plates with holes for the ion beam, are positioned within the vacuum chamber of the mass spectrometer between the ion source and the cell. After ions are trapped and analyzed by ion cyclotron resonance techniques in the first section, the ions of interest are selected according to their mass and passed into the second section for optical spectroscopic studies. The trapped ions are excited by light from a laser and caused thereby to fluoresce. The fluorescent light emitted by the excited ions is reflected by the mirror and directed onto the detector. The AOD is scanned, and the photodetector output is recorded and analyzed. The ions remain in the second section for an extended period, enabling multiple studies to be carried out on the same ensemble of ions. 5 figs.

  8. Ion cyclotron resonance cell

    DOEpatents

    Weller, Robert R.

    1995-01-01

    An ion cyclotron resonance cell having two adjacent sections separated by a center trapping plate. The first section is defined by the center trapping plate, a first end trapping plate, and excitation and detector electrodes. The second section includes a second end trapping plate spaced apart from the center plate, a mirror, and an analyzer. The analyzer includes a wavelength-selective light detector, such as a detector incorporating an acousto-optical device (AOD) and a photodetector. One or more ion guides, grounded plates with holes for the ion beam, are positioned within the vacuum chamber of the mass spectrometer between the ion source and the cell. After ions are trapped and analyzed by ion cyclotron resonance techniques in the first section, the ions of interest are selected according to their mass and passed into the second section for optical spectroscopic studies. The trapped ions are excited by light from a laser and caused thereby to fluoresce. The fluorescent light emitted by the excited ions is reflected by the mirror and directed onto the detector. The AOD is scanned, and the photodetector output is recorded and analyzed. The ions remain in the second section for an extended period, enabling multiple studies to be carried out on the same ensemble of ions.

  9. New magnet pole shape for isochronous cyclotrons

    SciTech Connect

    Thorn, C.E.; Chasman, C.; Baltz, A.J.

    1981-06-01

    A new design has been developed for shaping pole tips to produce the radially increasing fields required for isochronous cyclotrons. The conventional solid hillpoles are replaced by poles mounted over a small secondary gap which tapers radially from maximum at the magnet edge to zero near the center. Field measurements with a model magnet and calculations with the code TRIM show an increase in field at the edge of the magnet without the usual corresponding large increase in fringing, and a radial field shape more nearly field independent than for conventional hills. The flying hills have several advantages for variable energy multiparticle cyclotrons: (1) a large reduction in the power dissipated by isochronizing trim coils; (2) a more constant shape and magnitude flutter factor, eliminating flutter coils and increasing the operating range; and (3) a sharper fall-off of the fringe field, simplifying beam extraction. 6 figures.

  10. New magnet pole shape for isochronous cyclotrons

    SciTech Connect

    Thorn, C.E.; Chasman, C.; Baltz, A.J.

    1981-01-01

    A new design has been developed for shaping pole tips to produce the radially increasing fields required for isochronous cyclotrons. The conventional solid hill poles are replaced by poles mounted over a small secondary gap which tapers radially from maximum at the magnet edge to zero near the center. Field measurements with a model magnet and calculations with the code TRIM show an increase in field at the edge of the magnet without the usual corresponding large increase in fringing, and a radial field shape more nearly field independent than for conventional hills. The flying hills have several advantages for variable energy multiparticle cyclotrons: (1) a large reduction in the power dissipated by isochronizing trim coils; (2) a more constant shape and magnitude flutter factor, eliminating flutter coils and increasing the operating range; and (3) a sharper fall-off of the fringe field, simplifying beam extraction.

  11. Ion Cyclotron Heating on Proto-MPEX

    NASA Astrophysics Data System (ADS)

    Goulding, R. H.; Caughman, J. B. O.; Rapp, J.; Biewer, T. M.; Campbell, I. H.; Caneses, J. F.; Kafle, N.; Ray, H. B.; Showers, M. A.; Piotrowicz, P. A.

    2016-10-01

    Ion cyclotron heating will be used on Proto-MPEX (Prototype Material Plasma Exposure eXperiment) to increase heat flux to the target, to produce varying ion energies without substrate biasing, and to vary the extent of the magnetic pre-sheath for the case of a tilted target. A 25 cm long, 9 cm diameter dual half-turn helical ion cyclotron antenna has been installed in the device located at the magnetic field maximum. It couples power to ions via single pass damping of the slow wave at the fundamental resonance, and operates with ω 0.8ωci at the antenna location. It is designed to operate at power levels up to 30 kW, with a later 200 kW upgrade planned. Near term experiments include measuring RF loading at low power as a function of frequency and antenna gap. The plasma is generated by a helicon plasma source that has achieved ne > 5 ×1019m-3 operating with deuterium, as measured downstream from the ion cyclotron antenna location. Measurements will be compared with 1-D and 2-D models of RF coupling. The latest results will be presented. This manuscript has been authored by UT-Battelle, LLC, under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy.

  12. Analysis of gamma-ray burst spectra with cyclotron lines

    NASA Technical Reports Server (NTRS)

    Kargatis, Vincent; Liang, Edison P.

    1992-01-01

    Motivated by the recent developments in the cyclotron resonance upscattering of soft photons or CUSP model of Gamma Ray Burst (GBR) continuum spectra, we revisit a select database of GRBs with credible cyclotron absorption features. We measure the break energy of the continuum, the slope below the break and deduce the soft photon energy or the electron beam Lorentz factor cutoff. We study the correlation (or lack of) between various parameters in the context of the CUSP model. One surprise result is that there appears to be marginal correlation between the break energy and the spectral index below the break.

  13. Ion source and injection line for high intensity medical cyclotron

    SciTech Connect

    Jia, XianLu Guan, Fengping; Yao, Hongjuan; Zhang, TianJue; Yang, Jianjun; Song, Guofang; Ge, Tao; Qin, Jiuchang

    2014-02-15

    A 14 MeV high intensity compact cyclotron, CYCIAE-14, was built at China Institute of Atomic Energy (CIAE). An injection system based on the external H− ion source was used on CYCIAE-14 so as to provide high intensity beam, while most positron emission tomography cyclotrons adopt internal ion source. A beam intensity of 100 μA/14 MeV was extracted from the cyclotron with a small multi-cusp H− ion source (CIAE-CH-I type) and a short injection line, which the H− ion source of 3 mA/25 keV H− beam with emittance of 0.3π mm mrad and the injection line of with only 1.2 m from the extraction of ion source to the medial plane of the cyclotron. To increase the extracted beam intensity of the cyclotron, a new ion source (CIAE-CH-II type) of 9.1 mA was used, with maximum of 500 μA was achieved from the cyclotron. The design and test results of the ion source and injection line optimized for high intensity acceleration will be given in this paper.

  14. Initial Operation of CIAE medically used cyclotron

    NASA Astrophysics Data System (ADS)

    Fan, Mingwu; Zhang, Tainjue

    1997-05-01

    CIAE medically used cyclotron is a 30 MeV fixed, isochronous field and fixed RF frequency machine with high -H beam intensity. -H beams with energy variable were obtained in December 1994 up to 0.4 mA. Two years operation has proved the design and manufacture successfully. The mapping results of magnetic field has shown the magnet perfect that would ensure the high intensity beam accelerated to the final energy. Now 7 medically useful isotopes were produced, e. g. thallium-201, cobalt-57, gallium-67, iodine-123 have been supplied for hospitals.

  15. Helium cyclotron resonance within the earth's magnetosphere

    SciTech Connect

    Mauk, B.H.; McIlwain, C.E.; McPherron, R.L.

    1981-01-01

    A histogram of electromagnetic Alfven/ion cyclotron wave frequencies, sampled within the geostationary enviroment and normalized by the equatorial proton cyclotron frequency, shows a dramatic gap centered near the helium (He/sup +/) cyclotron frequency. Also, strongly cyclotron phase bunched helium ions (20--200 eV) have been observed directly within the vicinity of wave environments. These observations are interpreted as resulting from the absorption of the waves through cyclotron resonance by cool ambient populations of helium ions.

  16. EC-5 fifth international workshop on electron cyclotron emission and electron cyclotron heating

    SciTech Connect

    Prater, R.; Lohr, J.

    1985-12-31

    This report contains papers on the following topics: electron cyclotron emission measurements; electron cyclotron emission theory; electron cyclotron heating; gyrotron development; and ECH systems and waveguide development. These paper have been indexed separately elsewhere. (LSP).

  17. Cyclotron Production of Medical Radioisotopes

    SciTech Connect

    Avila-Rodriguez, M. A.; Zarate-Morales, A.; Flores-Moreno, A.

    2010-08-04

    The cyclotron production of radioisotopes for medical applications is gaining increased significance in diagnostic molecular imaging techniques such as PET and SPECT. In this regard, radioisotope production has never been easier or more convenient until de introduction of compact medical cyclotrons in the last few decades, which allowed the use of short-lived radioisotopes in in vivo nuclear medicine studies on a routine basis. This review outlines some general considerations about the production of radioisotopes using charged particle accelerators.

  18. Calculation of cyclotron rf systems

    NASA Astrophysics Data System (ADS)

    Van Genderen, W.; Van Der Heide, J. A.; Bräutigam, W.

    1987-08-01

    An approximate calculation of the characteristic properties of resonators for cyclotron rf systems is described. Formulas for the characteristic impedence of line segments are evaluated and an approximation for a dee-dummy dee system is given. A computer program has been written which also takes into account the capacity due to line discontinuities. The computed resonance frequency for cyclotrons in Eindhoven and Jülich agrees within 5% with experimental data. The power consumption is also computed and analyzed.

  19. Method and apparatus for preventing cyclotron breakdown in partially evacuated waveguide

    SciTech Connect

    Moeller, C P

    1987-08-18

    It is an object of this invention to provide a method and apparatus for preventing cyclotron breakdown in a partially evacuated waveguide used to insert microwave energy for electron cyclotron heating in a plasma magnetic confinement device. An electrostatic field is applied along a section of such a waveguide in order to run seed electrons into the wall of the waveguide.

  20. Radiation effects testing at the 88-inch cyclotron at LBNL

    SciTech Connect

    McMahan, Margaret A.; Koga, Rokotura

    2001-10-09

    The effects of ionizing particles on sensitive microelectronics is an important component of the design of systems as diverse as satellites and space probes, detectors for high energy physics experiments and even internet server farms. Understanding the effects of radiation on human cells is an equally important endeavor directed towards future manned missions in space and towards cancer therapy. At the 88-Inch Cyclotron at the Berkeley Laboratory, facilities are available for radiation effects testing (RET) with heavy ions and with protons. The techniques for doing these measurements and the advantages of using a cyclotron will be discussed, and the Cyclotron facilities will be compared with other facilities worldwide. RET of the same part at several facilities of varying beam energy can provide tests of the simple models used in this field and elucidate the relative importance of atomic and nuclear effects. The results and implications of such measurements will be discussed.

  1. Heavy ion cocktail beams at the 88 inch Cyclotron

    SciTech Connect

    Leitner, Daniela; McMahan, Margaret A.; Argento, David; Gimpel, Thomas; Guy, Aran; Morel, James; Siero, Christine; Thatcher, Ray; Lyneis, Claude M.

    2002-09-03

    Cyclotrons in combination with ECR ion sources provide the ability to accelerate ''cocktails'' of ions. A cocktail is a mixture of ions of near-identical mass-to-charge (m/q) ratio. The different ions cannot be separated by the injector mass-analyzing magnet and are tuned out of the ion source together. The cyclotron then is utilized as a mass analyzer by shifting the accelerating frequency. This concept was developed soon after the first ECR ion source became operational at the 88-Inch Cyclotron and has since become a powerful tool in the field of heavy ion radiation effects testing. Several different ''cocktails'' at various energies are available at the 88-Inch cyclotron for radiation effect testing, covering a broad range of linear energy transfer and penetration depth. Two standard heavy ion cocktails at 4.5 MeV/nucleon and 10 MeV/nucleon have been developed over the years containing ions from boron to bismuth. Recently, following requests for higher penetration depths, a 15MeV/nucleon heavy ion cocktail has been developed. Up to nine different metal and gaseous ion beams at low to very high charge states are tuned out of the ion source simultaneously and injected together into the cyclotron. It is therefore crucial to balance the ion source very carefully to provide sufficient intensities throughout the cocktail. The paper describes the set-up and tuning of the ion source for the various heavy ion cocktails.

  2. Review of Cyclotrons for the Production of Radioactive Isotopes for Medical and Industrial Applications

    NASA Astrophysics Data System (ADS)

    Schmor, Paul

    2011-02-01

    Radioactive isotopes are used in a wide range of medical, biological, environmental and industrial applications. Cyclotrons are the primary tool for producing the shorter-lived, proton-rich radioisotopes currently used in a variety of medical applications. Although the primary use of the cyclotron-produced short-lived radioisotopes is in PET/CT (positron emission tomography/computed tomography) and SPECT (single photon emission computed tomography) diagnostic medical procedures, cyclotrons are also producing longer-lived isotopes for therapeutic procedures as well as for other industrial and applied science applications. Commercial suppliers of cyclotrons are responding by providing a range of cyclotrons in the energy range of 3-70MeV for the differing needs of the various applications. These cyclotrons generally have multiple beams servicing multiple targets. This review article presents some of the applications of the radioisotopes and provides a comparison of some of the capabilities of the various current cyclotrons. The use of nuclear medicine and the number of cyclotrons supplying the needed isotopes are increasing. It is expected that there will soon be a new generation of small "tabletop" cyclotrons providing patient doses on demand.

  3. Experimental Investigations of the Internal Energy of Molecules Evaporated via Laser-induced Acoustic Desorption into a Fourier-transform Ion Cyclotron Resonance Mass Spectrometer (LIAD/FT-ICR)

    PubMed Central

    Shea, Ryan C.; Petzold, Christopher J.; Liu, Ji-ang; Kenttämaa, Hilkka I.

    2008-01-01

    The internal energy of neutral gas-phase organic and biomolecules, evaporated by means of laser-induced acoustic desorption (LIAD) into a Fourier-transform ion cyclotron resonance mass spectrometer (FT-ICR), was investigated through several experimental approaches. The desorbed molecules were demonstrated not to undergo degradation during the desorption process by collecting LIAD-evaporated molecules and subjecting them to analysis by electrospray ionization/quadrupole ion trap mass spectrometry. Previously established gas-phase basicity (GB) values were remeasured for LIAD-evaporated organic molecules and biomolecules with the use of the bracketing method. No endothermic reactions were observed. The remeasured basicity values are in close agreement with the values reported in the literature. The amount of internal energy deposited during LIAD is concluded to be less than a few kcal/mol. Chemical ionization with a series of proton transfer reagents was employed to obtain a breakdown curve for a protonated dipeptide, val-pro, evaporated by LIAD. Comparison of this breakdown curve with a previously published analogous curve obtained by using substrate-assisted laser desorption (SALD) to evaporate the peptide suggests that the molecules evaporated via LIAD have less internal energy than those evaporated via SALD. PMID:17263513

  4. Electron cyclotron heating in TMX-Upgrade

    SciTech Connect

    Stallard, B.W.; Hooper, E.B. Jr.

    1981-01-01

    TMX-Upgrade, an improved tandem mirror experiment under construction at LLNL, will use electron cyclotron resonance heating (ECRH) to create thermal barriers and to increase the center cell ion confining potential. Gyrotron oscillators (200 kW, 28 GHz) supply the heating power for the potential confined electron (fundamental heating) and the mirror-confined electrons (harmonic heating) in the thermal barriers. Important issues are temperature limitation and microstability for the hot electrons. Off-midplane heating can control anisotropy-driven microstability. Spacially restricting heating offers the possibility of temperature control by limiting the energy for resonant interaction.

  5. Evolution of the axial electron cyclotron maser instability, with applications to solar microwave spikes

    NASA Technical Reports Server (NTRS)

    Vlahos, Loukas; Sprangle, Phillip

    1987-01-01

    The nonlinear evolution of cyclotron radiation from streaming and gyrating electrons in an external magnetic field is analyzed. The nonlinear dynamics of both the fields and the particles are treated fully relativistically and self-consistently. The model includes a background plasma and electrostatic effects. The analytical and numerical results show that a substantial portion of the beam particle energy can be converted to electromagnetic wave energy at frequencies far above the electron cyclotron frequency. In general, the excited radiation can propagate parallel to the magnetic field and, hence, escape gyrothermal absorption at higher cyclotron harmonics. The high-frequency Doppler-shifted cyclotron instability can have saturation efficiencies far higher than those associated with well-known instabilities of the electron cyclotron maser type. Although the analysis is general, the possibility of using this model to explain the intense radio emission observed from the sun is explored in detail.

  6. Electromagnetic ion cyclotron waves observed near the oxygen cyclotron frequency by ISEE 1 and 2

    NASA Technical Reports Server (NTRS)

    Fraser, B. J.; Samson, J. C.; Hu, Y. D.; Mcpherron, R. L.; Russell, C. T.

    1992-01-01

    The first results of observations of ion cyclotron waves by the elliptically orbiting ISEE 1 and 2 pair of spacecraft are reported. The most intense waves (8 nT) were observed in the outer plasmasphere where convection drift velocities were largest and the Alfven velocity was a minimum. Wave polarization is predominantly left-handed with propagation almost parallel to the ambient magnetic field, and the spectral slot and polarization reversal predicted by cold plasma propagation theory are identified in the wave data. Computations of the experimental wave spectra during the passage through the plasmapause show that the spectral slots relate to the local plasma parameters, possibly suggesting an ion cyclotron wave growth source near the spacecraft. A regular wave packet structure seen over the first 30 min of the event is attributed to the modulation of this energy source by the Pc 5 waves seen at the same time.

  7. The electron-cyclotron maser for astrophysical application

    NASA Astrophysics Data System (ADS)

    Treumann, Rudolf A.

    2006-08-01

    The electron-cyclotron maser is a process that generates coherent radiation from plasma. In the last two decades, it has gained increasing attention as a dominant mechanism of producing high-power radiation in natural high-temperature magnetized plasmas. Originally proposed as a somewhat exotic idea and subsequently applied to include non-relativistic plasmas, the electron-cyclotron maser was considered as an alternative to turbulent though coherent wave-wave interaction which results in radio emission. However, when it was recognized that weak relativistic corrections had to be taken into account in the radiation process, the importance of the electron-cyclotron maser rose to the recognition it deserves. Here we review the theory and application of the electron-cyclotron maser to the directly accessible plasmas in our immediate terrestrial and planetary environments. In situ access to the radiating plasmas has turned out to be crucial in identifying the conditions under which the electron-cyclotron maser mechanism is working. Under extreme astrophysical conditions, radiation from plasmas may provide a major energy loss; however, for generating the powerful radiation in which the electron-cyclotron maser mechanism is capable, the plasma must be in a state where release of susceptible amounts of energy in the form of radiation is favorable. Such conditions are realized when the plasma is unable to digest the available free energy that is imposed from outside and stored in its particle distribution. The lack of dissipative processes is a common property of collisionless plasmas. When, in addition, the plasma density becomes so low that the amount of free energy per particle is large, direct emission becomes favorable. This can be expressed as negative absorption of the plasma which, like in conventional masers, leads to coherent emission even though no quantum correlations are involved. The physical basis of this formal analogy between a quantum maser and the

  8. RF cavity design for KIRAMS-430 superconducting cyclotron

    NASA Astrophysics Data System (ADS)

    Jung, In Su; Hong, Bong Hwan; Kang, Joonsun; Kim, Hyun Wook; Kim, Chang Hyeuk; Kwon, Key Ho

    2015-03-01

    The Korea Heavy Ion Medical Accelerator (KHIMA) has developed a superconducting cyclotron for the carbon therapy, which is called KIRAMS-430. The cyclotron is designed to accelerate only 12C6+ ions up to the energy of 430 MeV/u. It uses two normal conducting RF cavities. The RF frequency is about 70.76 MHz. The nominal dee voltage is 70 kV at the center and 160 kV at the extraction. The RF cavity was designed with 4 stems by using CST microwave studio (MWS). In this paper, we represent the simulation results and the optimized design of the RF cavity for the KIRAMS-430.

  9. Single-Electron Detection and Spectroscopy via Relativistic Cyclotron Radiation.

    PubMed

    Asner, D M; Bradley, R F; de Viveiros, L; Doe, P J; Fernandes, J L; Fertl, M; Finn, E C; Formaggio, J A; Furse, D; Jones, A M; Kofron, J N; LaRoque, B H; Leber, M; McBride, E L; Miller, M L; Mohanmurthy, P; Monreal, B; Oblath, N S; Robertson, R G H; Rosenberg, L J; Rybka, G; Rysewyk, D; Sternberg, M G; Tedeschi, J R; Thümmler, T; VanDevender, B A; Woods, N L

    2015-04-24

    It has been understood since 1897 that accelerating charges must emit electromagnetic radiation. Although first derived in 1904, cyclotron radiation from a single electron orbiting in a magnetic field has never been observed directly. We demonstrate single-electron detection in a novel radio-frequency spectrometer. The relativistic shift in the cyclotron frequency permits a precise electron energy measurement. Precise beta electron spectroscopy from gaseous radiation sources is a key technique in modern efforts to measure the neutrino mass via the tritium decay end point, and this work demonstrates a fundamentally new approach to precision beta spectroscopy for future neutrino mass experiments.

  10. Use of cyclotrons in medicine

    NASA Astrophysics Data System (ADS)

    Qaim, S. M.

    2004-10-01

    Cyclotrons are versatile ion-accelerating machines which find many applications in medicine. In this short review their use in hadron therapy is briefly discussed. Proton therapy is gaining significance because of its capability to treat deep-lying tumours. A strong area of application of cyclotrons involves the production of short-lived neutron deficient radiotracers for use in emission tomography, especially positron emission tomography. This fast and quantitative in vivo diagnostic technique is being increasingly used in neurology, cardiology and oncology. Besides routine patient care, considerable interdisciplinary work on development of new positron emitters is under way. A short account of those efforts is given. The use of cyclotrons in the production of radionuclides for internal radiotherapy is also briefly described.

  11. Simultaneous observations of electrostatic oxygen cyclotron waves and ion conics

    NASA Technical Reports Server (NTRS)

    Kintner, P. M.; Scales, W.; Vago, J.; Arnoldy, R.; Garbe, G.; Moore, T.

    1989-01-01

    A sounding rocket launched to 927 km apogee during an auroral substorm encountered regions of large quasi-static electric fields (not greater than 400 mV/m), ion conics (up to 700 eV maximum observed energy), and fluctuating electric fields near the oxygen cyclotron frequency. Since the fluctuating electric fields frequently exhibited spectral peaks just above the local oxygen cyclotron frequency, and since the fluctuating electric fields were linearly polarized, they are positively identified as electrostatic oxygen cyclotron waves (EOCW). The maximum amplitude of the EOCW was about 5 mV/m rms. The EOCW closely correlated with the presence of ion conics. Because of the relatively low amplitude of the EOCW and their relatively low coherence, it cannot be concluded that they are solely responsible for the production of the ion conics.

  12. Electron cyclotron thruster new modeling results preparation for initial experiments

    NASA Technical Reports Server (NTRS)

    Hooper, E. Bickford

    1993-01-01

    The following topics are discussed: a whistler-based electron cyclotron resonance heating (ECRH) thruster; cross-field coupling in the helicon approximation; wave propagation; wave structure; plasma density; wave absorption; the electron distribution function; isothermal and adiabatic plasma flow; ECRH thruster modeling; a PIC code model; electron temperature; electron energy; and initial experimental tests. The discussion is presented in vugraph form.

  13. The Origin of Narrow Band Cyclotron Wave Emissions Called Chorus

    NASA Astrophysics Data System (ADS)

    Skoug, Ruth Marie

    1995-01-01

    On May 6, 1993, a sounding rocket experiment designed to study microburst electron precipitation was launched from Poker Flat, Alaska, into a morningside auroral event. This was the first sounding rocket to simultaneously detect microburst electrons and associated very low frequency (VLF) waves. Both microbursts and narrow band VLF chorus (risers) were observed throughout the flight. Waves and electron bursts were observed in association with each other, but no one-to-one correlations were seen between the two phenomena. The association between waves and particles suggests that both phenomena may be produced by a wave -particle interaction. This dissertation discusses the design of the VLF wave antenna, a magnetic search coil, and the analysis of data from this instrument. The data are compared to chorus production theories to determine the source location and mechanism of the observed waves. In this work, the observed chorus emissions are interpreted in terms of a cyclotron resonance interaction. This is the first comprehensive test of the cyclotron resonance theory applied to chorus associated with microburst precipitation. The frequency range of the risers and the observed electron energy range agree with those required to satisfy the cyclotron resonance condition. Using a criterion derived from the conservation of energy during an interaction, it is determined that a cold plasma cyclotron resonance interaction could have produced only the lower frequency portions of the observed chorus risers. We present an extension of the cyclotron resonance theory which uses a warm plasma model of the wave-particle interaction. This model assumes a two-component plasma, with an isotropic cold component and a bi-Maxwellian warm component. The addition of the warm component produces sufficient changes in the wave dispersion relation that the interaction can produce the highest frequencies observed in our data set. As predicted by theory, an anisotropic plasma is required to

  14. Status of the Cyclotron Institute Upgrade Project

    NASA Astrophysics Data System (ADS)

    Melconian, Dan

    2016-09-01

    The Texas A&M University Re-accelerated EXotics (T-REX) project, an upgrade to the Cyclotron Institute, will provide high-quality re-accelerated secondary beams of a unique energy range and the ability to provide primary beams to two experiments concurrently. The upgrade is nearing completion of its three major tasks: re-commissioning of the existing K150 cyclotron; construction of light- and heavy-ion guide transport systems; and charge-boosting the K150 RIB for re-acceleration using the K500 cyclotron. The light-ion guide transport system will utilize the high intensity (>= 10 μ A) proton beam from the K150 to produce rare ions via fusion-evapouration reactions or proton-induced fission fragments. These ions will be transported to an ECR charge breeder prior to injection in the K500. The heavy-ion guide will use deep inelastic, transfer and fragmentation reactions using the up to 25 MeV/u primary beams from the K150. The products will be separated by a superconducting solenoid and collected in a large gas-catcher, after which a multi-RFQ system will transport the RIB to any of: the charge-breeder and K500; the TAMU Penning Trap beamline; or an MR-TOF for beam analysis. The status of the T-REX upgrade and an overview of its capabilities will be presented Supported by DOE Grant Number DE-FG03-93ER40773 and the Robert A. Welch Foundation Grant Number H-A-0098.

  15. Optimization of production yields, radionuclidic purity and hotcell shielding of SPECT and PET radionuclides produced by proton irradiation in variable energy 30 MeV cyclotrons--Part 67Ga.

    PubMed

    Adam-Rebeles, R; Van den Winkel, P; De Vis, L

    2007-09-01

    Optimization of the production parameters (incident and exit proton energy, thickness of the (68)Zn target layer, decay time to start chemical processing of an irradiated target after the end of bombardment) and of the thickness of the lead shield of the processing hotcell for the cyclotron production of (67)Ga by the (68)Zn(p,2n) threshold reaction are accomplished by powerful divide et impera and binary search algorithms with the Pharmacopoeia radionuclidic purity of the (67)Ga-citrate radiopharmaceutical at a reference time and the locally accepted dose rate level for the controlled area as boundary conditions. Two sets of equations are presented (one associated with the maximum production rate, the other with the use of a minimum target layer thickness) that allow the expression of the optimized production parameters, the radionuclide yields satisfying the Pharmacopoeia requirements at the start of distribution and the necessary shielding as a function of the required activity at the start of distribution and of the maximum allowable beam current on target.

  16. The NSCL cyclotron gas stopper - Entering commissioning

    NASA Astrophysics Data System (ADS)

    Schwarz, S.; Bollen, G.; Chouhan, S.; Das, J. J.; Green, M.; Magsig, C.; Morrissey, D. J.; Ottarson, J.; Sumithrarachchi, C.; Villari, A. C. C.; Zeller, A.

    2016-06-01

    Linear gas stopping cells have been used successfully at NSCL to slow down ions produced by projectile fragmentation from the 100 MeV/u to the keV energy range. These 'stopped beams' have first been used for low-energy high precision experiments and more recently for NSCLs re-accelerator ReA. A gas-filled reverse cyclotron is currently under construction by the NSCL to complement the existing stopping cells: Due to its extended stopping length, efficient stopping and fast extraction is expected even for light and medium-mass ions, which are difficult to thermalize in linear gas cells. The device is based on a 2.6 T maximum-field cyclotron-type magnet to confine the injected beam while it is slowed down in ≈100 mbar of LN2-temperature helium gas. Once thermalized, the beam will be transported to the center of the device by a traveling-wave RF-carpet system, extracted along the symmetry axis with an ion conveyor and miniature RF-carpets, and accelerated to a few tens of keV of energy for delivery to the users. The superconducting magnet has been constructed on a 60 kV platform and energized to its nominal field strength. The magnet's two cryostats use 3 cryo-refrigerators each and liquid-nitrogen cooled thermal shields to cool the coil pair to superconductivity. This concept, chosen not to have to rely on external liquid helium, has been working well. Measurements of axial and radial field profiles confirm the field calculations. The individual RF-ion guiding components for low-energy ion transport through the device have been tested successfully. The beam stopping chamber with its 0.9 m-diameter RF carpet system and the ion extraction system are being prepared for installation inside the magnet for low-energy ion transport tests.

  17. Use of cyclotrons in medical research: Past, present, future

    NASA Astrophysics Data System (ADS)

    Smathers, James B.; Myers, Lee T.

    1985-05-01

    The use of cyclotrons in medical research started in the late 1930s with the most prominent use being neutron irradiation in cancer therapy. Due to a lack of understanding of the biological effect of neutrons, the results were less than encouraging. In the 1940s and 1950s, small cyclotrons were used for isotope production and in the mid 60s, the biological effect of neutrons was more thoroughly studied, with the result that a second trial of neutron therapy was initiated at Hammersmith Hospital, England. Concurrent with this, work on the use of high energy charged particles, initially protons and alphas, was initiated in Sweden and Russia and at Harvard and Berkeley. The English success in neutron therapy led to some pilot studies in the USA using physics cyclotrons of various energies and targets. These results in turn lead to the present series of machines presently being installed at M.D. Anderson Hospital (42 MeV), Seattle (50 MeV) and UCLA (46 MeV). The future probably bodes well for cyclotrons at the two extremes of the energy range. For nuclear medicine the shift is away from the use of multiple isotopes, which requires a large range of particles and energies to 11C, 13N, 15O, and 18F, which can be incorporated in metabolic specific compounds and be made with small 8-10 MeV p+ "table top" cyclotrons. For tumor therapy machines of 60 MeV or so will probably be the choice for the future, as they allow the treatment of deep seated tumors with neutrons and the charged particles have sufficient range to allow the treatment of ocular tumors.

  18. Status of ECR (Electron Cyclotron Resonance) source technology

    SciTech Connect

    Lyneis, C.M.

    1987-03-01

    ECR (Electron Cyclotron Resonance) ion sources are now in widespread use for the production of high quality multiply charged ion beams for accelerators and atomic physics experiments, and industrial applications are being explored. Several general characteristics of ECR sources explain their widespread acceptance. For use with cyclotrons which require CW multiply charged ion beams, the ECR source has many advantages over heavy-ion PIG sources. Most important is the ability to produce higher charge states at useful intensities for nuclear physics experiments. Since the maximum energy set by the bending limit of a cyclotron scales with the square of the charge state, the installation of ECR sources on cyclotrons has provided an economical path to raise the energy. Another characteristic of ECR sources is that the discharge is produced without cathodes, so that only the source material injected into an ECR source is consumed. As a result, ECR sources can be operated continuously for periods of weeks without interruption. Techniques have been developed in the last few years, which allow these sources to produce beams from solid materials. The beam emittance from ECR sources is in the range of 50 to 200 ..pi.. mm-mrad at 10 kV. The principles of ECR ion sources are discussed, and present and future ECR sources are reviewed.

  19. Magnetic system of a superconducting separated-sector cyclotron for hadron therapy

    NASA Astrophysics Data System (ADS)

    Smirnov, V. L.; Vorozhtsov, S. B.

    2017-07-01

    The development of a cyclotron magnetic system based on superconducting sector magnets is discussed. The cyclotron is conceived as a booster accelerator of a source of 12C6+ ions with energy of 400MeV/nucleon for the purposes of hadron therapy. The results of preliminary investigations aimed at developing such a facility have been reported in our previous papers. In this paper, we consider various configurations of the booster's magnetic system for various field levels. We also analyze the effects of the positions and shapes of superconducting coils on the magnetic field and select the optimum configuration for the cyclotron's magnetic system.

  20. Experiments on ion cyclotron damping at the deuterium fourth harmonic in DIII-D

    SciTech Connect

    Pinsker, R.I.; Petty, C.C.; Baity, F.W.; Bernabei, S.; Greenough, N.; Heidbrink, W.W.; Mau, T.K.; Porkolab, M.

    1999-05-01

    Absorption of fast Alfven waves by the energetic ions of an injected beam is evaluated in the DIII-D tokamak. Ion cyclotron resonance absorption at the fourth harmonic of the deuteron cyclotron frequency is observed with deuterium neutral beam injection (f = 60 MHz, B{sub T} = 1.9 T). Enhanced D-D neutron rates are evidence of absorption at the Doppler-shifted cyclotron resonance. Characteristics of global energy confinement provide further proof of substantial beam acceleration by the rf. In many cases, the accelerated deuterons cause temporary stabilization of the sawtooth (monster sawteeth), at relatively low rf power levels of {approximately}1 MW.

  1. Space-charge compensation measurements in electron cyclotron resonance ion source low energy beam transport lines with a retarding field analyzer

    SciTech Connect

    Winklehner, D.; Leitner, D. Cole, D.; Machicoane, G.; Tobos, L.

    2014-02-15

    In this paper we describe the first systematic measurement of beam neutralization (space charge compensation) in the ECR low energy transport line with a retarding field analyzer, which can be used to measure the potential of the beam. Expected trends for the space charge compensation levels such as increase with residual gas pressure, beam current, and beam density could be observed. However, the overall levels of neutralization are consistently low (<60%). The results and the processes involved for neutralizing ion beams are discussed for conditions typical for ECR injector beam lines. The results are compared to a simple theoretical beam plasma model as well as simulations.

  2. Digital control in LLRF system for CYCIAE-100 cyclotron

    NASA Astrophysics Data System (ADS)

    Yin, Zhiguo; Fu, Xiaoliang; Ji, Bin; Zhang, Tianjue; Wang, Chuan

    2016-05-01

    As a driven accelerator, the CYCIAE-100 cyclotron is designed by China Institute of Atomic Energy for the Beijing Radio Ion-beam Facility project. The cyclotron RF system is designed to use two RF power sources of 100 kW to drive two half-wavelength cavities respectively. Two Dee accelerating electrodes are kept separately from each other inside the cyclotron, while their accelerating voltages are maintained in phase by the efforts of LLRF control. An analog-digital hybrid LLRF system has been developed to achieve cavity tuning control, dee voltage amplitude and phase stabilization etc. The analog subsystems designs are focused on RF signal up/down conversion, tuning control, and dee voltage regulation. The digital system provides an RF signal source, aligns the cavity phases and maintains a Finite State Machine. The digital parts combine with the analog functions to provide the LLRF control. A brief system hardware introduction will be given in this paper, followed by the review of several major characteristics of the digital control in the 100 MeV cyclotron LLRF system. The commissioning is also introduced, and most of the optimization during the process was done by changing the digital parts.

  3. Nonlinear analysis of a relativistic beam-plasma cyclotron instability

    NASA Technical Reports Server (NTRS)

    Sprangle, P.; Vlahos, L.

    1986-01-01

    A self-consistent set of nonlinear and relativistic wave-particle equations are derived for a magnetized beam-plasma system interacting with electromagnetic cyclotron waves. In particular, the high-frequency cyclotron mode interacting with a streaming and gyrating electron beam within a background plasma is considered in some detail. This interaction mode may possibly find application as a high-power source of coherent short-wavelength radiation for laboratory devices. The background plasma, although passive, plays a central role in this mechanism by modifying the dielectric properties in which the magnetized electron beam propagates. For a particular choice of the transverse beam velocity (i.e., the speed of light divided by the relativistic mass factor), the interaction frequency equals the nonrelativistic electron cyclotron frequency times the relativistic mass factor. For this choice of transverse beam velocity the detrimental effects of a longitudinal beam velocity spread is virtually removed. Power conversion efficiencies in excess of 18 percent are both analytically calculated and obtained through numerical simulations of the wave-particle equations. The quality of the electron beam, degree of energy and pitch angle spread, and its effect on the beam-plasma cyclotron instability is studied.

  4. Modification of the bulk properties of the porous poly(lactide-co-glycolide) scaffold by irradiation with a cyclotron ion beam with high energy for its application in tissue engineering.

    PubMed

    Woo, Jung Hoon; Kim, Do Yeon; Jo, Seong Yeun; Kang, Hyunki; Noh, Insup

    2009-08-01

    Understanding the bulk properties of a prefabricated scaffold for handling and degradation during cell culture may be advantageous to its application in tissue engineering. Modification of the bulk properties of the porous poly(lactide-co-glycolide) (PLGA) scaffold was performed by irradiation with a high energy cyclotron proton ion beam. The porous PLGA scaffolds were fabricated in advance by the gas-foaming method by employing ammonium bicarbonate particles as porogens. Irradiation with ion beams was performed with 40 MeV for 3, 6 and 9 min on the scaffolds at a distance of 30 cm from the beam exit to the scaffold surface. The bulk area of the ion beam-treated PLGA scaffold apparently demonstrated no color changes when observed with a digital camera. The chemical structures of the untreated samples seemed to be kept well when analyzed by both Fourier transformed infrared but a subtle change was observed in its x-ray photoelectron spectroscopy. The results of in vitro tissue culture with smooth muscle cells for up to 4 weeks also demonstrated no significant difference in terms of its handling stability during cell culture and cellular behavior between the untreated PLGA scaffolds and the ion beam-treated ones. However, significant changes were observed in its molecular weight as measured by gel permeation chromatography, indicating a significant reduction of its molecular weights. These results of in vitro tests and GPC measurements indicated that while bulk modification of the scaffold was processed, its handling was stable during in vitro cell culture for up to 4 weeks.

  5. Cyclotron Production of Technetium-99m

    NASA Astrophysics Data System (ADS)

    Gagnon, Katherine M.

    Technetium-99m (99mTc) has emerged as the most widely used radionuclide in medicine and is currently obtained from a 99Mo/ 99mTc generator system. At present, there are only a handful of ageing reactors worldwide capable of producing large quantities of the parent isotope, 99Mo, and owing to the ever growing shutdown periods for maintenance and repair of these ageing reactors, the reliable supply 99mTc has been compromised in recent years. With an interest in alternative strategies for producing this key medical isotope, this thesis focuses on several technical challenges related to the direct cyclotron production of 99mTc via the 100Mo(p,2n)99mTc reaction. In addition to evaluating the 100Mo(p,2n)99mTc and 100Mo(p,x)99Mo reactions, this work presented the first experimental evaluation of the 100Mo(p,2n) 99gTc excitation function in the range of 8-18 MeV. Thick target calculations suggested that large quantities of cyclotron-produced 99mTc may be possible. For example, a 6 hr irradiation at 500 μA with an energy window of 18→10 MeV is expected to yield 1.15 TBq of 99mTc. The level of coproduced 99gTc contaminant was found to be on par with the current 99Mo/99mTc generator standard eluted with a 24 hr frequency. Highly enriched 100Mo was required as the target material for 99mTc production and a process for recycling of this expensive material is presented. An 87% recovery yield is reported, including metallic target preparation, irradiation, 99mTc extraction, molybdate isolation, and finally hydrogen reduction to the metal. Further improvements are expected with additional optimization experiments. A method for forming structurally stable metallic molybdenum targets has also been developed. These targets are capable of withstanding more than a kilowatt of beam power and the reliable production and extraction of Curie quantities of 99mTc has been demonstrated. With the end-goal of using the cyclotron-produced 99mTc clinically, the quality of the cyclotron

  6. Method and apparatus for ion cyclotron spectrometry

    DOEpatents

    Dahl, David A [Idaho Falls, ID; Scott, Jill R [Idaho Falls, ID; McJunkin, Timothy R [Idaho Falls, ID

    2010-08-17

    An ion cyclotron spectrometer may include a vacuum chamber that extends at least along a z-axis and means for producing a magnetic field within the vacuum chamber so that a magnetic field vector is generally parallel to the z-axis. The ion cyclotron spectrometer may also include means for producing a trapping electric field within the vacuum chamber that includes at least a first section that induces a first magnetron effect that increases a cyclotron frequency of an ion and at least a second section that induces a second magnetron effect that decreases the cyclotron frequency of an ion. The cyclotron frequency changes induced by the first and second magnetron effects substantially cancel one another so that an ion traversing the at least first and second sections will experience no net change in cyclotron frequency.

  7. Future cyclotron systems: An industrial perspective

    SciTech Connect

    Stevenson, N.R.; Dickie, W.J.

    1995-09-01

    The use of commercial cyclotron systems for the production of radioisotopes continues to grow on a world-wide scale. Improvements in technology have significantly increased the production capabilities of modern cyclotron-based isotope production facilities. In particular, the change to negative ion acceleration and new high power systems have resulted in dramatic improvements in reliability, increases in capacity, and decreases in personnel radiation dose. As more and more older machines are retired, decisions regarding their replacement are made based on several factors including the market`s potential and the cyclotron system`s abilities. Taking the case of the recently upgraded TR30 cyclotron at TRIUMF/Nordion, the authors investigate the requirements industrial/medical users are likely to impose on future commercial cyclotron systems and the impact this will have on cyclotron technology by the end of the century.

  8. A simple electron cyclotron resonance ion sourcea)

    NASA Astrophysics Data System (ADS)

    Welton, R. F.; Moran, T. F.; Feeney, R. K.; Thomas, E. W.

    1996-04-01

    A simple, all permanent magnet, 2.45 GHz electron cyclotron resonance ion source has been developed for the production of stable beams of low charge state ions from gaseous feed materials. The source can produce ˜1 mA of low energy (3 kV) singly charged ion current in the 10-4 Torr pressure range. The source can also be operated in a more efficient low-pressure mode at an order of magnitude lower pressure. In this latter range, for example, the ionization efficiency of Ar is estimated to be 1% with charge states up to Ar8+ present. Operation in the low-pressure mode requires low power input (˜20 W). These features make the source especially suited for use with small accelerator systems for a number of applications including ion implantation, mass spectrometry, and atomic collision experiments where multiply charged ions are desirable. Design details and performance characteristics of the source are presented.

  9. Global Simulation of Electromagnetic Ion Cyclotron Waves

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Gamayunov, K.; Gallagher, D. L.; Kozyra, J. U.

    2007-01-01

    It is well known that the effects of electromagnetic ion cyclotron (EMIC) waves on ring current (RC) ion and radiation belt (RB) electron dynamics strongly depend on such particle/wave characteristics as the phase-space distribution function, frequency, wave-normal angle, wave energy, and the form of wave spectral energy density. The consequence is that accurate modeling of EMIC waves and RC particles requires robust inclusion of the interdependent dynamics of wave growth/damping, wave propagation, and particles. Such a self-consistent model is being progressively developed by Khazanov et al. [2002 - 2007]. This model is based on a system of coupled kinetic equations for the RC and EMIC wave power spectral density along with the ray tracing equations. We will discuss the recent progress in understanding EMIC waves formation mechanisms in the inner magnetosphere. This problem remains unsettled in spite of many years of experimental and theoretical studies. Modern satellite observations by CRRES, Polar and Cluster still do not reveal the whole picture experimentally since they do not stay long enough in the generation region to give a full account of all the spatio-temporal structure of EMIC waves. The complete self-consistent theory taking into account all factors significant for EMIC waves generation remains to be developed. Several mechanisms are discussed with respect to formation of EMIC waves, among them are nonlinear modification of the ionospheric reflection by precipitating energetic protons, modulation of ion-cyclotron instability by long-period (Pc3/4) pulsations, reflection of waves from layers of heavy-ion gyroresonances, and nonlinearities of wave generation process. We show that each of these mechanisms have their attractive features and explains certain part experimental data but any of them, if taken alone, meets some difficulties when compared to observations. We conclude that development of a refined nonlinear theory and further correlated analysis

  10. Global Simulation of Electromagnetic Ion Cyclotron Waves

    NASA Technical Reports Server (NTRS)

    Khazanov, George V.; Gallagher, D. L.; Kozyra, J. U.

    2007-01-01

    It is very well known that the effects of electromagnetic ion cyclotron (EMIC) waves on ring current (RC) ion and radiation belt (RB) electron dynamics strongly depend on such particle/wave characteristics as the phase-space distribution function, frequency, wave-normal angle, wave energy, and the form of wave spectral energy density. The consequence is that accurate modeling of EMIC waves and RC particles requires robust inclusion of the interdependent dynamics of wave growth/damping, wave propagation, and particles. Such a self-consistent model is being progressively developed by Khazanov et al. This model is based on a system of coupled kinetic equations for the RC and EMIC wave power spectral density along with the ray tracing equations. We will discuss the recent progress in understanding EMIC waves formation mechanisms in the inner magnetosphere. This problem remains unsettled in spite of many years of experimental and theoretical studies. Modern satellite observations by CRRES, Polar and Cluster still do not reveal the whole picture experimentally since they do not stay long enough in the generation region to give a full account of all the spatio-temporal structure of EMIC waves. The complete self-consistent theory taking into account all factors significant for EMIC waves generation remains to be developed. Several mechanisms are discussed with respect to formation of EMIC waves, among them are nonlinear modification of the ionospheric reflection by precipitating energetic protons, modulation of ion-cyclotron instability by long-period (Pc3/4) pulsations, reflection of waves from layers of heavy-ion gyroresonances, and nonlinearities of wave generation process. We show that each of these mechanisms have their attractive features and explains certain part experimental data but any of them, if taken alone, meets some difficulties when compared to observations. We conclude that development of a refined nonlinear theory and further correlated analysis of modern

  11. Global Simulation of Electromagnetic Ion Cyclotron Waves

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Gamayunov, K.; Gallagher, D. L.; Kozyra, J. U.

    2007-01-01

    It is well known that the effects of electromagnetic ion cyclotron (EMIC) waves on ring current (RC) ion and radiation belt (RB) electron dynamics strongly depend on such particle/wave characteristics as the phase-space distribution function, frequency, wave-normal angle, wave energy, and the form of wave spectral energy density. The consequence is that accurate modeling of EMIC waves and RC particles requires robust inclusion of the interdependent dynamics of wave growth/damping, wave propagation, and particles. Such a self-consistent model is being progressively developed by Khazanov et al. [2002 - 2007]. This model is based on a system of coupled kinetic equations for the RC and EMIC wave power spectral density along with the ray tracing equations. We will discuss the recent progress in understanding EMIC waves formation mechanisms in the inner magnetosphere. This problem remains unsettled in spite of many years of experimental and theoretical studies. Modern satellite observations by CRRES, Polar and Cluster still do not reveal the whole picture experimentally since they do not stay long enough in the generation region to give a full account of all the spatio-temporal structure of EMIC waves. The complete self-consistent theory taking into account all factors significant for EMIC waves generation remains to be developed. Several mechanisms are discussed with respect to formation of EMIC waves, among them are nonlinear modification of the ionospheric reflection by precipitating energetic protons, modulation of ion-cyclotron instability by long-period (Pc3/4) pulsations, reflection of waves from layers of heavy-ion gyroresonances, and nonlinearities of wave generation process. We show that each of these mechanisms have their attractive features and explains certain part experimental data but any of them, if taken alone, meets some difficulties when compared to observations. We conclude that development of a refined nonlinear theory and further correlated analysis

  12. Global Simulation of Electromagnetic Ion Cyclotron Waves

    NASA Astrophysics Data System (ADS)

    Khazanov, G. V.; Gamayunov, K. V.; Gallagher, D. L.; Kozyra, J. U.

    2007-12-01

    It is well known that the effects of electromagnetic ion cyclotron (EMIC) waves on ring current (RC) ion and radiation belt (RB) electron dynamics strongly depend on such particle/wave characteristics as the phase-space distribution function, frequency, wave-normal angle, wave energy, and the form of wave spectral energy density. The consequence is that accurate modeling of EMIC waves and RC particles requires robust inclusion of the interdependent dynamics of wave growth/damping, wave propagation, and particles. Such a self-consistent model is being progressively developed by Khazanov et al. [2002 - 2007]. This model is based on a system of coupled kinetic equations for the RC and EMIC wave power spectral density along with the ray tracing equations. We will discuss the recent progress in understanding EMIC waves formation mechanisms in the inner magnetosphere. This problem remains unsettled in spite of many years of experimental and theoretical studies. Modern satellite observations by CRRES, Polar and Cluster still do not reveal the whole picture experimentally since they do not stay long enough in the generation region to give a full account of all the spatio-temporal structure of EMIC waves. The complete self-consistent theory taking into account all factors significant for EMIC waves generation remains to be developed. Several mechanisms are discussed with respect to formation of EMIC waves, among them are nonlinear modification of the ionospheric reflection by precipitating energetic protons, modulation of ion-cyclotron instability by long-period (Pc3/4) pulsations, reflection of waves from layers of heavy-ion gyroresonances, and nonlinearities of wave generation process. We show that each of these mechanisms have their attractive features and explains certain part experimental data but any of them, if taken alone, meets some difficulties when compared to observations. We conclude that development of a refined nonlinear theory and further correlated analysis

  13. Dynamic regimes of cyclotron instability in the afterglow mode of minimum-B electron cyclotron resonance ion source plasma

    NASA Astrophysics Data System (ADS)

    Mansfeld, D.; Izotov, I.; Skalyga, V.; Tarvainen, O.; Kalvas, T.; Koivisto, H.; Komppula, J.; Kronholm, R.; Laulainen, J.

    2016-04-01

    The paper is concerned with the dynamic regimes of cyclotron instabilities in non-equilibrium plasma of a minimum-B electron cyclotron resonance ion source operated in pulsed mode. The instability appears in decaying ion source plasma shortly (1-10 ms) after switching off the microwave radiation of the klystron, and manifests itself in the form of powerful pulses of electromagnetic emission associated with precipitation of high-energy electrons along the magnetic field lines. Recently it was shown that this plasma instability causes perturbations of the extracted ion current, which limits the performance of the ion source and generates strong bursts of bremsstrahlung emission. In this article we present time-resolved diagnostics of electromagnetic emission bursts related to cyclotron instability in the decaying plasma. The temporal resolution is sufficient to study the fine structure of the dynamic spectra of the electromagnetic emission at different operating regimes of the ion source. It was found that at different values of magnetic field and heating power the dynamic spectra demonstrate common features: Decreasing frequency from burst to burst and an always falling tone during a single burst of instability. The analysis has shown that the instability is driven by the resonant interaction of hot electrons, distributed between the electron cyclotron resonance (ECR) zone and the trap center, with slow extraordinary wave propagation quasi-parallel with respect to the external magnetic field.

  14. Infra red active modes due to coupling of cyclotron excitation and LO phonons in polar semiconductor

    NASA Astrophysics Data System (ADS)

    Agrawal, Ratna; Dubey, Swati; Ghosh, S.

    2013-06-01

    Effects of free carrier concentration, external magnetic field and Callen effective charge on infra red active modes in a polar semiconductor have been analytically investigated using simple harmonic oscillator model. Callen effective charge considerably enhances reflectivity and shifts minima towards lower values of energy. Presence of magnetic field leads towards the coupling of collective cyclotron excitations with LO phonon giving rise to maximum reflectivity whereas cyclotron resonance absorption results into minimum reflectivity.

  15. Status of the Berkeley small cyclotron AMS (accelerator mass spectrometry) project

    SciTech Connect

    Bertsche, K.J.; Friedman, P.G.; Morris, D.E.; Muller, R.A.; Welch, J.J.

    1987-04-01

    A small, low-energy cyclotron has been designed and built at Berkeley for direct detection dating of /sup 14/C. The system combines the use of a negative ion source to reject /sup 14/N with the high resolution of a cyclotron to reject other background ions. In order to allow the dating of old and small samples, the present system incorporates a high-current external ion source and injection beamline. The system is expected to be operational by mid-1987.

  16. Emittance improvement of the electron cyclotron resonance high intensity light ion source proton beam by gas injection in the low energy beam transport

    NASA Astrophysics Data System (ADS)

    Beauvais, P.-Y.; Ferdinand, R.; Gobin, R.; Lagniel, J. M.; Leroy, P.-A.; Celona, L.; Ciavola, G.; Gammino, S.; Pottin, B.; Sherman, J.

    2000-03-01

    SILHI is the ECR high intensity light ion source studied in France at C.E.A. Saclay. This is the source for the injector of the high intensity proton injector prototype developed by a CNRS-IN2P3 collaboration. 80 mA at 95 keV beams with a rms normalized r-r' emittance lower than 0.3 π mm mrad and a proton fraction better than 85% are currently produced. Recently, it has been found that the injection in the low energy beam transport of a buffer gas had a strong effect on the emittance measured 1 m downstream of the focusing solenoid. By adding several gases (H2, N2, Ar, Kr), improvements as great as a factor of 3 have been observed. The emittance has been measured by means of an r-r' emittance measurement unit equipped with a sampling hole and a wire profile monitor, both moving across the beam. Simultaneously, the space charge compensation factor is measured using a four-grid analyzer unit. In this article all results of these experiments are presented and discussed. A first explanation of the emittance reduction phenomenon and possible consequences on the injector operation is given.

  17. Cyclotron resonance in topological insulators: non-relativistic effects

    NASA Astrophysics Data System (ADS)

    Tabert, C. J.; Carbotte, J. P.

    2015-09-01

    The low-energy Hamiltonian used to describe the dynamics of the helical Dirac fermions on the surface of a topological insulator contains a subdominant non-relativistic (Schrödinger) contribution. This term can have an important effect on some properties while having no effect on others. The Hall plateaus retain the same relativistic quantization as the pure Dirac case. The height of the universal interband background conductivity is unaltered, but its onset is changed. However, the non-relativistic term leads directly to particle-hole asymmetry. It also splits the interband magneto-optical lines into doublets. Here, we find that, while the shape of the semiclassical cyclotron resonance line is unaltered, the cyclotron frequency and its optical spectral weight are changed. There are significant differences in both of these quantities for a fixed value of chemical potential or fixed doping away from charge neutrality depending on whether the Fermi energy lies in the valence or conduction band.

  18. Multi-Species Test of Ion Cyclotron Resonance Heating at High Altitudes

    NASA Technical Reports Server (NTRS)

    Persoon, A. M.; Peterson, W. K.; Andre, M.; Chang, T.; Gurnett, D. A.; Retterer, J. M.; Crew, G. B.

    1997-01-01

    Observations of ion distributions and plasma waves obtained by the Dynamics Explorer 1 satellite in the high-altitude, nightside auroral zone are used to study ion energization for three ion species. A number of theoretical models have been proposed to account for the transverse heating of these ion populations. One of these, the ion cyclotron resonance heating (ICRH) mechanism, explains ion conic formation through ion cyclotron resonance with broadband electromagnetic wave turbulence in the vicinity of the characteristic ion cyclotron frequency. The cyclotron resonant heating of the ions by low- frequency electromagnetic waves is an important energy source for the transport of ions from the ionosphere to the magnetosphere. In this paper we test the applicability of the ICRH mechanism to three simultaneously heated and accelerated ion species by modelling the ion conic formation in terms of a resonant wave-particle interaction in which the ions extract energy from the portion of the broadband electromagnetic wave spectrum which includes the ion cyclotron frequency. Using a Monte Carlo technique we evaluate the ion heating produced by the electromagnetic turbulence at low frequencies and find that the wave amplitudes near the ion cyclotron frequencies are sufficient to explain the observed ion energies.

  19. Multi-Species Test of Ion Cyclotron Resonance Heating at High Altitudes

    NASA Technical Reports Server (NTRS)

    Persoon, A. M.; Peterson, W. K.; Andre, M.; Chang, T.; Gurnett, D. A.; Retterer, J. M.; Crew, G. B.

    1997-01-01

    Observations of ion distributions and plasma waves obtained by the Dynamics Explorer 1 satellite in the high-altitude, nightside auroral zone are used to study ion energization for three ion species. A number of theoretical models have been proposed to account for the transverse heating of these ion populations. One of these, the ion cyclotron resonance heating (ICRH) mechanism, explains ion conic formation through ion cyclotron resonance with broadband electromagnetic wave turbulence in the vicinity of the characteristic ion cyclotron frequency. The cyclotron resonant heating of the ions by low-frequency electromagnetic waves is an important energy source for the transport of ions from the ionosphere to the magnetosphere. In this paper we test the applicability of the ICRH mechanism to three simultaneously heated and accelerated ion species by modelling the ion conic formation in terms of a resonant wave-particle interaction in which the ions extract energy from the portion of the broadband electromagnetic wave spectrum which includes the ion cyclotron frequency. Using a Monte Carlo technique we evaluate the ion heating produced by the electromagnetic turbulence at low frequencies and find that the wave amplitudes near the ion cyclotron frequencies are sufficient to explain the observed ion energies.

  20. Modern compact accelerators of cyclotron type for medical applications

    NASA Astrophysics Data System (ADS)

    Smirnov, V.; Vorozhtsov, S.

    2016-09-01

    Ion beam therapy and hadron therapy are types of external beam radiotherapy. Recently, the vast majority of patients have been treated with protons and carbon ions. Typically, the types of accelerators used for therapy were cyclotrons and synchrocyclotrons. It is intuitively clear that a compact facility fits best to a hospital environment intended for particle therapy and medical diagnostics. Another criterion for selection of accelerators to be mentioned in this article is application of superconducting technology to the magnetic system design of the facility. Compact isochronous cyclotrons, which accelerate protons in the energy range 9-30 MeV, have been widely used for production of radionuclides. Energy of 230 MeV has become canonical for all proton therapy accelerators. Similar application of a carbon beam requires ion energy of 430 MeV/u. Due to application of superconducting coils the magnetic field in these machines can reach 4-5 T and even 9 T in some cases. Medical cyclotrons with an ironless or nearly ironless magnetic system that have a number of advantages over the classical accelerators are in the development stage. In this work an attempt is made to describe some conceptual and technical features of modern accelerators under consideration. The emphasis is placed on the magnetic and acceleration systems along with the beam extraction unit, which are very important from the point of view of the facility compactness and compliance with the strict medical requirements.

  1. Vlasov Simulations of Ladder Climbing and Autoresonant Acceleration of Langmuir Waves

    NASA Astrophysics Data System (ADS)

    Hara, Kentaro; Barth, Ido; Kaminski, Erez; Dodin, Ilya; Fisch, Nathaniel

    2016-10-01

    The energy of plasma waves can be moved up and down the spectrum using chirped modulations of plasma parameters, which can be driven by external fields. Depending on the discreteness of the wave spectrum, this phenomenon is called ladder climbing (LC) or autroresonant acceleration (AR) of plasmons, and was first proposed by Barth et al. based on a linear fluid model. Here, we report a demonstration of LC/AR from first principles using fully nonlinear Vlasov simulations of collisionless bounded plasma. We show that, in agreement to the basic theory, plasmons survive substantial transformations of the spectrum and are destroyed only when their wave numbers become large enough to trigger Landau damping. The work was supported by the NNSA SSAA Program through DOE Research Grant No. DE-NA0002948 and the DTRA Grant No. HDTRA1-11-1-0037.

  2. Cyclotron in the Materials and Stresses Building

    NASA Image and Video Library

    1976-11-21

    Researchers check the cyclotron in the Materials and Stresses Building at the National Aeronautics and Space Administration (NASA) Lewis Research Center. The Materials and Stresses Building, built in 1949, contained a number of laboratories to test the strength, diffusion, and other facets of materials. The materials could be subjected to high temperatures, high stresses, corrosion, irradiation, and hot gasses. The Physics of Solids Laboratory included a cyclotron, cloud chamber, helium cryostat, and metallurgy cave. The cyclotron was built in the early 1950s to test the effects of radiation on different materials so that the proper materials could be used to construct a nuclear aircraft engine and other components. By the late 1950s, the focus had shifted to similar studies for rockets. NASA cancelled its entire nuclear program in January 1973, and the cyclotron was mothballed. In 1975 the Cleveland Clinic Foundation partnered with NASA Lewis to use the cyclotron to treat cancer patients with a new type of radiation therapy. The cyclotron split beryllium atoms which caused neutrons to be released. The neutrons were streamed directly at the patient’s tumor. Over the course of five years, the cyclotron was used to treat 1200 patients. The program was terminated in 1980 as the Clinic shifted its efforts to concentrate on non-radiation treatments. The Lewis cyclotron was mothballed for a number of years before being demolished.

  3. Electron cyclotron emissions from an electron cyclotron heated discharge in ISX-B

    SciTech Connect

    Elder, G.B.

    1983-01-01

    Observation of the electron cyclotron emissions (ECE) is especially effective when studying the effects of electron cyclotron heating (ECH). Two detectors were built to observe the optically thin third harmonic radiation from ISX B during the recent 28 GHz ECH experiments carried on at Oak Ridge National Laboratory. These detectors supplemented existing detectors at the fundamental frequency and at the second harmonic frequency. Observations of the three frequencies during and after the ECH was pulsed into the plasma showed an unexpected rise in their intensity, occurring after the ECH pulse was over. This rise lasted for many tens of milliseconds, well beyond estimates of the electron energy confinement time. The rise in the third harmonic intensity was frequently to an intensity 100 times greater than the pre-ECH intensity. The fundamental frequency and the second harmonic had a much milder change in their intensities. The rises were seen to depend critically on the density of the plasma and the length of the ECH pulse but only weakly on the pre-ECH temperature. A computer code that predicts the ECE from an electron distribution in ISX-B, taking into a account the effect of the plasma's dielectric response to the emissions from a single electron, was developed.

  4. K-130 Cyclotron vacuum system

    NASA Astrophysics Data System (ADS)

    Yadav, R. C.; Bhattacharya, S.; Bhole, R. B.; Roy, Anindya; Pal, Sarbajit; Mallik, C.; Bhandari, R. K.

    2012-11-01

    The vacuum system for K-130 cyclotron has been operational since 1977. It consists of two sub-systems, main vacuum system and beam line vacuum system. The main vacuum system is designed to achieve and maintain vacuum of about 1 × 10-6 mbar inside the 23 m3 volume of acceleration chamber comprising the Resonator tank and the Dee tank. The beam line vacuum system is required for transporting the extracted beam with minimum loss. These vacuum systems consist of diffusion pumps backed by mechanical pumps like roots and rotary pumps. The large vacuum pumps and valves of the cyclotron vacuum system were operational for more than twenty five years. In recent times, problems of frequent failures and maintenance were occurring due to aging and lack of appropriate spares. Hence, modernisation of the vacuum systems was taken up in order to ensure a stable high voltage for radio frequency system and the extraction system. This is required for efficient acceleration and transportation of high intensity ion beam. The vacuum systems have been upgraded by replacing several pumps, valves, gauges and freon units. The relay based control system for main vacuum system has also been replaced by PLC based state of the art control system. The upgraded control system enables inclusion of additional operational logics and safety interlocks into the system. The paper presents the details of the vacuum system and describes the modifications carried out for improving the performance and reliability of the vacuum system.

  5. Nonlinear Fundamental and Harmonic Cyclotron Resonant Scattering of Radiation Belt Ultra-Relativistic Electrons by Oblique Monochromatic EMIC Waves

    NASA Astrophysics Data System (ADS)

    Wang, G.; Su, Z.; Zheng, H.

    2016-12-01

    Cyclotron resonant scattering by electromagnetic ion cyclotron (EMIC) waves has been considered to be responsible for the rapid loss of radiation belt high-energy electrons. Recent studies have revealed the nonlinear character of cyclotron resonance with parallel-propagating EMIC waves. Here we investigate the fundamental and harmonic cyclotron resonance between radiation belt ultra-relativistic electrons and oblique monochromatic EMIC waves. We show that both fundamental and harmonic cyclotron resonance can exhibit significant nonlinearity for oblique EMIC waves. Higher wave obliquity allows stronger nonlinearity of harmonic resonance but weaker nonlinearity of fundamental resonance. The total transport coefficients of nonlinear resonances are found to deviate significantly from the quasi-linear predication. Increase of wave obliquity tends to reduce, to some extent, the difference between nonlinear and quasi-linear transport coefficients. These results suggest that the nonlinear resonant scattering even by oblique EMIC waves should be taken into account in future radiation belt modeling.

  6. Ion cyclotron heating experiments in magnetosphere plasma device RT-1

    SciTech Connect

    Nishiura, M. Yoshida, Z.; Yano, Y.; Kawazura, Y.; Saitoh, H.; Yamasaki, M.; Mushiake, T.; Kashyap, A.; Takahashi, N.; Nakatsuka, M.; Fukuyama, A.

    2015-12-10

    The ion cyclotron range of frequencies (ICRF) heating with 3 MHz and ∼10 kW is being prepared in RT-1. The operation regime for electron cyclotron resonance (ECR) heating is surveyed as the target plasmas. ECRH with 8.2 GHz and ∼50 kW produces the plasmas with high energy electrons in the range of a few ten keV, but the ions still remain cold at a few ten eV. Ion heating is expected to access high ion beta state and to change the aspect of plasma confinement theoretically. The ICRF heating is applied to the target plasma as an auxiliary heating. The preliminary result of ICRF heating is reported.

  7. Kinetic friction attributed to enhanced radiation by cyclotron maser instability

    NASA Technical Reports Server (NTRS)

    Yoon, Peter H.; Wu, C. S.

    1991-01-01

    Along the auroral field lines, a fraction of the energetic electrons injected from the magnetotail is reflected by the earth's convergent geomagnetic field. The reflected loss-cone electrons are unstable with respect to the cyclotron maser instability, resulting in the auroral kilometric radiation. This paper investigates the kinetic friction force exerted on the energetic electrons by the enhanced radiation field. It is found that the enhanced radiation results in a deceleration of reflected electrons, thereby providing an effective resistivity. In addition, the rate of decrease (increase) of effective perpendicular (parallel) kinetic temperatures is also evaluated. The analysis is carried out over various physical parameters such as the degree of loss cone, average particle energy, and the ratio of plasma frequency to cyclotron frequency.

  8. Ion cyclotron heating experiments in magnetosphere plasma device RT-1

    NASA Astrophysics Data System (ADS)

    Nishiura, M.; Yoshida, Z.; Yano, Y.; Kawazura, Y.; Saitoh, H.; Yamasaki, M.; Mushiake, T.; Kashyap, A.; Takahashi, N.; Nakatsuka, M.; Fukuyama, A.

    2015-12-01

    The ion cyclotron range of frequencies (ICRF) heating with 3 MHz and ˜10 kW is being prepared in RT-1. The operation regime for electron cyclotron resonance (ECR) heating is surveyed as the target plasmas. ECRH with 8.2 GHz and ˜50 kW produces the plasmas with high energy electrons in the range of a few ten keV, but the ions still remain cold at a few ten eV. Ion heating is expected to access high ion beta state and to change the aspect of plasma confinement theoretically. The ICRF heating is applied to the target plasma as an auxiliary heating. The preliminary result of ICRF heating is reported.

  9. Kinetic friction attributed to enhanced radiation by cyclotron maser instability

    NASA Technical Reports Server (NTRS)

    Yoon, Peter H.; Wu, C. S.

    1991-01-01

    Along the auroral field lines, a fraction of the energetic electrons injected from the magnetotail is reflected by the earth's convergent geomagnetic field. The reflected loss-cone electrons are unstable with respect to the cyclotron maser instability, resulting in the auroral kilometric radiation. This paper investigates the kinetic friction force exerted on the energetic electrons by the enhanced radiation field. It is found that the enhanced radiation results in a deceleration of reflected electrons, thereby providing an effective resistivity. In addition, the rate of decrease (increase) of effective perpendicular (parallel) kinetic temperatures is also evaluated. The analysis is carried out over various physical parameters such as the degree of loss cone, average particle energy, and the ratio of plasma frequency to cyclotron frequency.

  10. Cluster Observation Of Ion And Electron Cyclotron Waves Near Magnetopause

    NASA Astrophysics Data System (ADS)

    Silin, I.; Panov, E. V.

    2012-12-01

    We examine observations of electromagnetic ion cyclotron (EMIC) and electron cyclotron waves by Cluster spacecraft during a magnetopause transition near polar cusp region. The waves appear to be generated locally, on the magnetospheric side of the magnetopause current layer, due to large particle temperature anisotropy (T⊥}/T{∥ >3 for all ions and T⊥}/T{∥ ˜ 1.3 for electrons) and large plasma beta (0.5 < β < 10). The compact configuration of Cluster spacecraft and high-resolution electromagnetic field data allowed us to measure the wave vectors k by two independent methods: the wave-telescope and the polarization methods. Such measurements are essential for estimation of minimum energies of particles scattered by EMIC waves via cyclotron resonance. The results show good agreement with linear dispersion theory. The EMIC waves propagate along the magnetic field with frequencies near 1 Hz, wavelength of 260 km at speeds of ˜ 500 km/s. We discuss the implications of these results for the particle diffusion coefficients and minimum resonant scattering energies.

  11. RF control hardware design for CYCIAE-100 cyclotron

    NASA Astrophysics Data System (ADS)

    Yin, Zhiguo; Fu, Xiaoliang; Ji, Bin; Zhao, Zhenlu; Zhang, Tianjue; Li, Pengzhan; Wei, Junyi; Xing, Jiansheng; Wang, Chuan

    2015-11-01

    The Beijing Radioactive Ion-beam Facility project is being constructed by BRIF division of China Institute of Atomic Energy. In this project, a 100 MeV high intensity compact proton cyclotron is built for multiple applications. The first successful beam extraction of CYCIAE-100 cyclotron was done in the middle of 2014. The extracted proton beam energy is 100 MeV and the beam current is more than 20 μA. The RF system of the CYCIAE-100 cyclotron includes two half-wavelength cavities, two 100 kW tetrode amplifiers and power transmission line systems (all above are independent from each other) and two sets of Low Level RF control crates. Each set of LLRF control includes an amplitude control unit, a tuning control unit, a phase control unit, a local Digital Signal Process control unit and an Advanced RISC Machines based EPICS IOC unit. These two identical LLRF control crates share one common reference clock and take advantages of modern digital technologies (e.g. DSP and Direct Digital Synthesizer) to achieve closed loop voltage and phase regulations of the dee-voltage. In the beam commission, the measured dee-voltage stability of RF system is better than 0.1% and phase stability is better than 0.03°. The hardware design of the LLRF system will be reviewed in this paper.

  12. Quench analysis of a novel compact superconducting cyclotron

    NASA Astrophysics Data System (ADS)

    Ghosh, Sundeep; Dutta Gupta, Anjan; Kanti Dey, Malay; Pal, Gautam

    2017-02-01

    Design and analysis of a compact superconducting cyclotron dedicated for medical applications in the fields of nuclear medicine and therapy is presently being pursued in our organization. The novelty of this cyclotron lies in the fact that it does not consist of any iron-pole. The cyclotron magnet will be made of a set of NbTi coils comprising of solenoid and sector coils which are housed in two halves on either sides of the median plane. The average magnetic field is 1.74 T and the maximum extraction energy is 25 MeV, which is sufficient for production of 99mTc from Mo. In this paper, quench analyses of the coils have been discussed in details considering adiabatic condition. The entire cryostat magnet along with coils, formers and support links were modelled for the quench simulation. Self and mutual inductances of all the coils were obtained from a separate magnetic analysis and used in the simulation. Parametric analyses were carried out with different quench initiation energy at various critical locations on the coil surface. The corresponding quench behaviour, i.e. maximum temperature rise, maximum voltage and current decay in each of the coils have been studied.

  13. Status of a compact electron cyclotron resonance ion source for National Institute of Radiological Sciences-930 cyclotron.

    PubMed

    Hojo, S; Katagiri, K; Nakao, M; Sugiura, A; Muramatsu, M; Noda, A; Okada, T; Takahashi, Y; Komiyama, A; Honma, T; Noda, K

    2014-02-01

    The Kei-source is a compact electron cyclotron resonance ion source using only permanent magnets and a frequency of 10 GHz. It was developed at the National Institute of Radiological Sciences (NIRS) for producing C(4+) ions oriented for high-energy carbon therapy. It has also been used as an ion source for the NIRS-930 cyclotron. Its microwave band region for the traveling-wave-tube amplifier and maximum output power are 8-10 GHz and 350 W, respectively. Since 2006, it has provided various ion beams such as proton, deuteron, carbon, oxygen, and neon with sufficient intensity (200 μA for proton and deuteron, 50 μA for C(4+), for example) and good stability for radioisotope production, tests of radiation damage, and basic research experiments. Its horizontal and vertical emittances were measured using a screen monitor and waist-scan. The present paper reports the current status of the Kei-source.

  14. Cyclotrons: From Science to Human Health

    NASA Astrophysics Data System (ADS)

    Craddock, Michael

    2011-04-01

    Lawrence's invention of the cyclotron, whose 80th anniversary we have just celebrated, not only revolutionized nuclear physics, but proved the starting point for a whole variety of recirculating accelerators, from the smallest microtron to the largest synchrotron, that have had an enormous impact in almost every branch of science and in several areas of medicine and industry. Cyclotrons themselves have proved remarkably adaptable, incorporating a variety of new ideas and technologies over the years: frequency modulation, edge focusing, AG focusing, separate magnet sectors, axial and azimuthal injection, ring geometries, stripping extraction, superconducting magnets and rf...... Even FFAGs, those most complex members of the cyclotron (fixed-magnetic-field) family, are making a comeback. Currently there are more than 50 medium or large cyclotrons around the world devoted to research. These provide intense primary beams of protons or stable ions, and correspondingly intense secondary beams of neutrons, pions, muons and radioactive ions, for experiments in nuclear, particle and condensed-matter physics, and in the materials and life sciences. Far outnumbering these, however, are the 800 or so small and medium cyclotrons used to produce radioisotopes for medical and other purposes. In addition, a rapidly growing number of 230-MeV proton cyclotrons are being built for cancer therapy -12 brought into operation since 1998 and as many more in the works. Altogether, cyclotrons are flourishing!

  15. High Power Cyclotrons for Accelerator Driven System (ADS)

    NASA Astrophysics Data System (ADS)

    Calabretta, Luciano

    2012-03-01

    We present an accelerator module based on a injector cyclotron and a Superconducting Ring Cyclotron (SRC) able to accelerate H2+ molecules. H2+ molecules are extracted from the SRC stripping the binding electron by a thin carbon foil. The SRC will be able to deliver proton beam with maximum energy of 800 MeV and a maximum power of 8 MW. This module is forecasted for the DAEdALUS (Decay At rest Experiment for δcp At Laboratory for Underground Science) experiment, which is a neutrino experiment proposed by groups of MIT and Columbia University. Extensive beam dynamics studies have been carrying out in the last two years and proved the feasibility of the design. The use of H2+ molecules beam has three main advantages: 1) it reduces the space charge effects, 2) because of stripping extraction, it simplifies the extraction process w.r.t. single turn extraction and 3) we can extract more than one beam out of one SRC. A suitable upgraded version of the cyclotron module able to deliver up to 10MW beam is proposed to drive ADS. The accelerator system which is presented, consists of having three accelerators modules. Each SRC is equipped with two extraction systems delivering two beams each one with a power up to 5 MW. Each accelerator module, feeds both the two reactors at the same time. The three accelerators modules assure to maintain continuity in functioning of the two reactors. In normal operation, all the three accelerators module will deliver 6.6 MW each one, just in case one of the three accelerator module will be off, due to a fault or maintenance, the other two modules are pushed at maximum power of 10 MW. The superconducting magnetic sector of the SRC, as well as the normal conducting sector of the injector cyclotron, is calculated with the TOSCA module of OPERA3D. Here the main features of the injector cyclotron, of the SRC and the beam dynamic along the cyclotrons are presented.

  16. Influence of injection beam emittance on beam transmission efficiency in a cyclotron

    NASA Astrophysics Data System (ADS)

    Kurashima, Satoshi; Kashiwagi, Hirotsugu; Miyawaki, Nobumasa; Yoshida, Ken-Ichi; Okumura, Susumu

    2014-02-01

    The JAEA AVF cyclotron accelerates various kinds of high-energy ion beams for research in biotechnology and materials science. Beam intensities of an ion species of the order of 10-9-10-6 ampere are often required for various experiments performed sequentially over a day. To provide ion beams with sufficient intensity and stability, an operator has to retune an ion source in a short time. However, the beam intensity downstream of the cyclotron rarely increases in proportion to the intensity at the ion source. To understand the cause of this beam behavior, transmission efficiencies of a 12C5+ beam from an electron cyclotron resonance ion source to the cyclotron were measured for various conditions of the ion source. Moreover, a feasible region for acceleration in the emittance of the injection beam was clarified using a transverse-acceptance measuring system. We confirmed that the beam emittance and profile were changed depending on the condition of the ion source and that matching between the beam emittance and the acceptance of the cyclotron was degraded. However, after fine-tuning to improve the matching, beam intensity downstream of the cyclotron increased.

  17. Characterization of electron cyclotron resonance hydrogen plasmas

    SciTech Connect

    Outten, C.A. . Dept. of Nuclear Engineering); Barbour, J.C.; Wampler, W.R. )

    1990-01-01

    Electron cyclotron resonance (ECR) plasmas yield low energy and high ion density plasmas. The characteristics downstream of an ECR hydrogen plasma were investigated as a function of microwave power and magnetic field. A fast-injection Langmuir probe and a carbon resistance probe were used to determine plasma potential (V{sub p}), electron density (N{sub e}), electron temperature (T{sub e}), ion energy (T{sub i}), and ion fluence. Langmuir probe results showed that at 17 cm downstream from the ECR chamber the plasma characteristics are approximately constant across the center 7 cm of the plasma for 50 Watts of absorbed power. These results gave V{sub p} = 30 {plus minus} 5 eV, N{sub e} = 1 {times} 10{sup 8} cm{sup {minus}3}, and T{sub e} = 10--13 eV. In good agreement with the Langmuir probe results, carbon resistance probes have shown that T{sub i} {le} 50 eV. Also, based on hydrogen chemical sputtering of carbon, the hydrogen (ion and energetic neutrals) fluence rate was determined to be 1 {times} 10{sup 16}/cm{sup 2}-sec. at a pressure of 1 {times} 10{sup {minus}4} Torr and for 50 Watts of absorbed power. 19 refs.

  18. Electron cyclotron resonance plasma photosa)

    NASA Astrophysics Data System (ADS)

    Rácz, R.; Biri, S.; Pálinkás, J.

    2010-02-01

    In order to observe and study systematically the plasma of electron cyclotron resonance (ECR) ion sources (ECRIS) we made a high number of high-resolution visible light plasma photos and movies in the ATOMKI ECRIS Laboratory. This required building the ECR ion source into an open ECR plasma device, temporarily. An 8MP digital camera was used to record photos of plasmas made from Ne, Ar, and Kr gases and from their mixtures. We studied and recorded the effect of ion source setting parameters (gas pressure, gas composition, magnetic field, and microwave power) to the shape, color, and structure of the plasma. The analysis of the photo series gave us many qualitative and numerous valuable physical information on the nature of ECR plasmas.

  19. Electron cyclotron resonance plasma photos.

    PubMed

    Rácz, R; Biri, S; Pálinkás, J

    2010-02-01

    In order to observe and study systematically the plasma of electron cyclotron resonance (ECR) ion sources (ECRIS) we made a high number of high-resolution visible light plasma photos and movies in the ATOMKI ECRIS Laboratory. This required building the ECR ion source into an open ECR plasma device, temporarily. An 8MP digital camera was used to record photos of plasmas made from Ne, Ar, and Kr gases and from their mixtures. We studied and recorded the effect of ion source setting parameters (gas pressure, gas composition, magnetic field, and microwave power) to the shape, color, and structure of the plasma. The analysis of the photo series gave us many qualitative and numerous valuable physical information on the nature of ECR plasmas.

  20. Electron cyclotron resonance plasma photos

    SciTech Connect

    Racz, R.; Palinkas, J.; Biri, S.

    2010-02-15

    In order to observe and study systematically the plasma of electron cyclotron resonance (ECR) ion sources (ECRIS) we made a high number of high-resolution visible light plasma photos and movies in the ATOMKI ECRIS Laboratory. This required building the ECR ion source into an open ECR plasma device, temporarily. An 8MP digital camera was used to record photos of plasmas made from Ne, Ar, and Kr gases and from their mixtures. We studied and recorded the effect of ion source setting parameters (gas pressure, gas composition, magnetic field, and microwave power) to the shape, color, and structure of the plasma. The analysis of the photo series gave us many qualitative and numerous valuable physical information on the nature of ECR plasmas.

  1. Superthermal electron distribution measurements from polarized electron cyclotron emission

    SciTech Connect

    Luce, T.C.; Efthimion, P.C.; Fisch, N.J.

    1988-06-01

    Measurements of the superthermal electron distribution can be made by observing the polarized electron cyclotron emission. The emission is viewed along a constant magnetic field surface. This simplifies the resonance condition and gives a direct correlation between emission frequency and kinetic energy of the emitting electron. A transformation technique is formulated which determines the anisotropy of the distribution and number density of superthermals at each energy measured. The steady-state distribution during lower hybrid current drive and examples of the superthermal dynamics as the runaway conditions is varied are presented for discharges in the PLT tokamak. 15 refs., 8 figs.

  2. Cyclotron production of Ac-225 for targeted alpha therapy.

    PubMed

    Apostolidis, C; Molinet, R; McGinley, J; Abbas, K; Möllenbeck, J; Morgenstern, A

    2005-03-01

    The feasibility of producing Ac-225 by proton irradiation of Ra-226 in a cyclotron through the reaction Ra-226(p,2n)Ac-225 has been experimentally demonstrated for the first time. Proton energies were varied from 8.8 to 24.8 MeV and cross-sections were determined by radiochemical analysis of reaction yields. Maximum yields were reached at incident proton energies of 16.8 MeV. Radiochemical separation of Ac-225 from the irradiated target yielded a product suitable for targeted alpha therapy of cancer.

  3. A Suzaku View of Cyclotron Line Sources and Candidates

    NASA Technical Reports Server (NTRS)

    Pottschmidt, K.; Suchy, S.; Rivers, E.; Rothschild, R. E.; Marcu, D. M.; Barragan, L.; Kuehnel, M.; Fuerst, F.; Schwarm, F.; Kreykenbohm, I.; Wilms, J.; Schoenherr, G.; Caballero, I.; Camero-Arranz, A.; Bodaghee, A.; Doroshenko, V.; Klochkov, D.; Santangelo, A.; Staubert, R.; Kretschmar, P.; Wilson-Hodge, C.; Finger, M. H.; Terada, Y.

    2012-01-01

    Seventeen accreting neutron star pulsars, mostly high mass X-ray binaries with half of them Be-type transients, are known to exhibit Cyclotron Resonance Scattering Features (CRSFs) in their X-ray spectra, with characteristic line energies from 10 to 60 keY. To date about two thirds of them, plus a few similar systems without known CRSFs, have been observed with Suzaku. We present an overview of results from these observations, including the discovery of a CRSF in the transient IA1118-61 and pulse phase resolved spectroscopy of OX 301-2. These observations allow for the determination of cyclotron line parameters to an unprecedented degree of accuracy within a moderate amount of observing time. This is important since these parameters vary - e.g., with orbital phase, pulse phase, or luminosity - depending on the geometry of the magnetic field of the pulsar and the properties of the accretion column at the magnetic poles. We briefly introduce a spectral model for CRSFs that is currently being developed and that for the first time is based on these physical properties. In addition to cyclotron line measurements, selected highlights from the Suzaku analyses include dip and flare studies, e.g., of 4U 1907+09 and Vela X-I, which show clumpy wind effects (like partial absorption and/or a decrease in the mass accretion rate supplied by the wind) and may also display magnetospheric gating effects.

  4. Converting an AEG Cyclotron to H- Acceleration and Extraction

    NASA Astrophysics Data System (ADS)

    Ramsey, Fred; Carroll, Lewis; Rathmann, Tom; Huenges, Ernst; Bechtold, Matthias Mentler Volker

    2009-03-01

    Clinical Trials are under way to evaluate agents labeled with the nuclide 225Ac and its decay product 213Bi, in targeted alpha-immuno-therapy [1]. 225Ac can be produced on a medium-energy cyclotron via the nuclear reaction 226Ra(p,n)225Ac. To demonstrate proof-of-principle, a vintage AEG cyclotron, Model E33 [2], with an internal target, had been employed in a pilot production program at the Technical University of Munich (TUM). To enhance production capability and further support the clinical studies, the TUM facility has recently been refurbished and upgraded, adding a new external beam-line, automated target irradiation and transport systems, new laboratories, hot cells, etc. [3]. An improved high-power rotating target has been built and installed [4]. The AEG cyclotron itself has also been modified and upgraded to accelerate and extract H- ions. We have designed, built, and tested a new axial Penning-type ion source which is optimized for the production of H- ions. The ion source has continued to evolve through experiment and experience. Steady improvements in materials and mechanics have led to enhanced source stability, life-time, and H- production. We have also designed and built a precision H- charge-exchange beam-extraction system which is equipped with a vacuum lock. To fit within the tight mechanical constraint imposed by the narrow magnet gap, the system incorporates a novel chain-drive foil holder and foil-changer mechanism. The reconfigured cyclotron system has now been in operation for more than 1 year. Three long-duration target irradiations have been conducted. The most recent bombardment ran 160 continuous hours at a beam on target of ˜80 microamperes for a total yield of ˜70 milli-curies of 225Ac.

  5. A REFLECTION MODEL FOR THE CYCLOTRON LINES IN THE SPECTRA OF X-RAY PULSARS

    SciTech Connect

    Poutanen, Juri; Mushtukov, Alexander A.; Tsygankov, Sergey S.; Nagirner, Dmitrij I.; Suleimanov, Valery F.; Doroshenko, Victor; Lutovinov, Alexander A.

    2013-11-10

    Cyclotron resonance scattering features observed in the spectra of some X-ray pulsars show significant changes of the line energy with the pulsar luminosity. At high luminosities, these variations are often associated with the onset and growth of the accretion column, which is believed to be the origin of the observed emission and of the cyclotron lines. However, this scenario inevitably implies a large gradient of the magnetic field strength within the line-forming region, which makes the formation of the observed line-like features problematic. Moreover, the observed variation of the cyclotron line energy is much smaller than could be anticipated for the corresponding luminosity changes. We argue here that a more physically realistic situation is that the cyclotron line forms when the radiation emitted by the accretion column is reflected from the neutron star surface, where the gradient of the magnetic field strength is significantly smaller. Here we develop a reflection model and apply it to explain the observed variations of the cyclotron line energy in a bright X-ray pulsar V 0332+53 over a wide range of luminosities.

  6. Method and apparatuses for ion cyclotron spectrometry

    DOEpatents

    Dahl, David A [Idaho Falls, ID; Scott, Jill R [Idaho Falls, ID; McJunkin, Timothy R [Idaho Falls, ID

    2012-03-06

    An ion cyclotron spectrometer may include a vacuum chamber that extends at least along a z-axis and means for producing a magnetic field within the vacuum chamber so that a magnetic field vector is generally parallel to the z-axis. The ion cyclotron spectrometer may also include means for producing a trapping electric field within the vacuum chamber. The trapping electric field may comprise a field potential that, when taken in cross-section along the z-axis, includes at least one section that is concave down and at least one section that is concave up so that ions traversing the field potential experience a net magnetron effect on a cyclotron frequency of the ions that is substantially equal to zero. Other apparatuses and a method for performing ion cyclotron spectrometry are also disclosed herein.

  7. Development of a Medical Cyclotron Production Facility

    SciTech Connect

    Allen, Danny R.

    2003-08-26

    Development of a Cyclotron manufacturing facility begins with a business plan. Geographics, the size and activity of the medical community, the growth potential of the modality being served, and other business connections are all considered. This business used the customer base established by NuTech, Inc., an independent centralized nuclear pharmacy founded by Danny Allen. With two pharmacies in operation in Tyler and College Station and a customer base of 47 hospitals and clinics the existing delivery system and pharmacist staff is used for the cyclotron facility. We then added cyclotron products to contracts with these customers to guarantee a supply. We partnered with a company in the process of developing PET imaging centers. We then built an independent imaging center attached to the cyclotron facility to allow for the use of short-lived isotopes.

  8. Development of a Medical Cyclotron Production Facility

    NASA Astrophysics Data System (ADS)

    Allen, Danny R.

    2003-08-01

    Development of a Cyclotron manufacturing facility begins with a business plan. Geographics, the size and activity of the medical community, the growth potential of the modality being served, and other business connections are all considered. This business used the customer base established by NuTech, Inc., an independent centralized nuclear pharmacy founded by Danny Allen. With two pharmacies in operation in Tyler and College Station and a customer base of 47 hospitals and clinics the existing delivery system and pharmacist staff is used for the cyclotron facility. We then added cyclotron products to contracts with these customers to guarantee a supply. We partnered with a company in the process of developing PET imaging centers. We then built an independent imaging center attached to the cyclotron facility to allow for the use of short-lived isotopes.

  9. SU-E-T-388: Estimating the Radioactivity Inventory of a Cyclotron Based Pencil Beam Proton Therapy Facility

    SciTech Connect

    Langen, K; Chen, S

    2014-06-01

    Purpose: Parts of the cyclotron and energy degrader are incidentally activated by protons lost during the acceleration and transport of protons for radiation therapy. An understanding of the radioactive material inventory is needed when regulatory requirements are assessed. Methods: First, the tumor dose and volume is used to determine the required energy deposition. For spot scanning, the tumor length along the beam path determines the number of required energy layers. For each energy layer the energy deposition per proton can be calculated from the residual proton range within the tumor. Assuming a typical layer weighting, an effective energy deposition per proton can then be calculated. The total number of required protons and the number of protons per energy layer can then be calculated. For each energy layer, proton losses in the energy degrader are calculated separately since its transmission efficiency, and hence the amount of protons lost, is energy dependent. The degrader efficiency also determines the number of protons requested from the cyclotron. The cyclotron extraction efficiency allows a calculation of the proton losses within the cyclotron. The saturation activity induced in the cyclotron and the degrader is equal to the production rate R for isotopes whose half-life is shorter that the projected cyclotron life time. R can be calculated from the proton loss rate and published production cross sections. Results: About 1/3 of the saturation activity is produced in the cyclotron and 2/3 in the energy degrader. For a projected case mix and a patient load of 1100 fractions per week at 1.8 Gy per fraction a combined activity of 180 mCi was estimated at saturation. Conclusion: Calculations were used to support to application of a radioactive materials license for the possession of 200 mCi of activity for isotopes with atomic numbers ranging from 1-83.

  10. Building 211 cyclotron characterization survey report

    SciTech Connect

    1998-03-30

    The Building 211 Cyclotron Characterization Survey includes an assessment of the radioactive and chemical inventory of materials stored within the facility; an evaluation of the relative distribution of accelerator-produced activation products within various cyclotron components and adjacent structures; measurement of the radiation fields throughout the facility; measurement and assessment of internal and external radioactive surface contamination on various equipment, facility structures, and air-handling systems; and an assessment of lead (Pb) paint and asbestos hazards within the facility.

  11. Linear and nonlinear physics of the magnetoacoustic cyclotron instability of fusion-born ions in relation to ion cyclotron emission

    SciTech Connect

    Carbajal, L. Cook, J. W. S.; Dendy, R. O.; Chapman, S. C.

    2014-01-15

    The magnetoacoustic cyclotron instability (MCI) probably underlies observations of ion cyclotron emission (ICE) from energetic ion populations in tokamak plasmas, including fusion-born alpha-particles in JET and TFTR [Dendy et al., Nucl. Fusion 35, 1733 (1995)]. ICE is a potential diagnostic for lost alpha-particles in ITER; furthermore, the MCI is representative of a class of collective instabilities, which may result in the partial channelling of the free energy of energetic ions into radiation, and away from collisional heating of the plasma. Deep understanding of the MCI is thus of substantial practical interest for fusion, and the hybrid approximation for the plasma, where ions are treated as particles and electrons as a neutralising massless fluid, offers an attractive way forward. The hybrid simulations presented here access MCI physics that arises on timescales longer than can be addressed by fully kinetic particle-in-cell simulations and by analytical linear theory, which the present simulations largely corroborate. Our results go further than previous studies by entering into the nonlinear stage of the MCI, which shows novel features. These include stronger drive at low cyclotron harmonics, the re-energisation of the alpha-particle population, self-modulation of the phase shift between the electrostatic and electromagnetic components, and coupling between low and high frequency modes of the excited electromagnetic field.

  12. Rotatable superconducting cyclotron adapted for medical use

    DOEpatents

    Blosser, Henry G.; Johnson, David A.; Riedel, Jack; Burleigh, Richard J.

    1985-01-01

    A superconducting cyclotron (10) rotatable on a support structure (11) in an arc of about 180.degree. around a pivot axis (A--A) and particularly adapted for medical use is described. The rotatable support structure (13, 15) is balanced by being counterweighted (14) so as to allow rotation of the cyclotron and a beam (12), such as a subparticle (neutron) or atomic particle beam, from the cyclotron in the arc around a patient. Flexible hose (25) is moveably attached to the support structure for providing a liquified gas which is supercooled to near 0.degree. K. to an inlet means (122) to a chamber (105) around superconducting coils (101, 102). The liquid (34) level in the cyclotron is maintained approximately half full so that rotation of the support structure and cyclotron through the 180.degree. can be accomplished without spilling the liquid from the cyclotron. With the coils vertically oriented, each turn of the winding is approximately half immersed in liquid (34) and half exposed to cold gas and adequate cooling to maintain superconducting temperatures in the section of coil above the liquid level is provided by the combination of cold gas/vapor and by the conductive flow of heat along each turn of the winding from the half above the liquid to the half below.

  13. Cyclotron resonance in InAs/AlSb quantum wells in magnetic fields up to 45 T

    SciTech Connect

    Spirin, K. E. Krishtopenko, S. S.; Sadofyev, Yu. G.; Drachenko, O.; Helm, M.; Teppe, F.; Knap, W.; Gavrilenko, V. I.

    2015-12-15

    Electron cyclotron resonance in InAs/AlSb heterostructures with quantum wells of various widths in pulsed magnetic fields up to 45 T are investigated. Our experimental cyclotron energies are in satisfactory agreement with the results of theoretical calculations performed using the eight-band kp Hamiltonian. The shift of the cyclotron resonance (CR) line, which corresponds to the transition from the lowest Landau level to the low magnetic-field region, is found upon varying the electron concentration due to the negative persistent photoconductivity effect. It is shown that the observed shift of the CR lines is associated with the finite width of the density of states at the Landau levels.

  14. Observation of Ion Cyclotron Heating in a Fast-flowing Plasma for an Advanced Plasma Thruster

    NASA Astrophysics Data System (ADS)

    Ando, Akira; Hatanaka, Motoi; Shibata, Masaki; Tobari, Hiroyuki; Hattori, Kunihiko; Inutake, Masaaki

    2004-11-01

    In the Variable Specific Impulse Magnetoplasma Rocket (VASIMR) project in NASA, the combined system of the ion cyclotron heating and the magnetic nozzle is proposed to control a ratio of specific impulse to thrust at constant power. In order to establish the advanced plasma thruster, experiments of an ion heating and plasma acceleration by a magnetic nozzle are performed in a fast-flowing plasma in the HITOP device. A fast-flowing He plasma is produced by Magneto-Plasma-Dynamic Arcjet (MPDA) operated with an externally-applied magnetic field up to 1kG. RF waves with an ion cyclotron range of frequency (f=20-300kHz) is excited by a helically-wound antenna located downstream of the MPDA. Increases of an ion temperature and plasma stored energy measured by a diamagnetic coil clearly observed during the RF pulse. The heating efficiency is compared for various magnetic field configurations and strengths. There appears no indication of cyclotron resonance in a high density plasma where the ratio of ion cyclotron frequency to ion-ion collision one is below unity, because an ion-ion collisional effect is dominant. When the density becomes low and the ratio of ion cyclotron frequency to ion-ion collision one becomes high, features of ion cyclotron resonance are clearly appeared. The optimum magnetic field strength for the ion heating is slightly lower than that of the cyclotron resonance, which is caused by the Doppler effect due to the fast-flowing plasma. An ion energy distribution function is measured at a magnetic nozzle region by an electrostatic analyzer and increase of the parallel velocity is also observed.

  15. Ernest Orlando Lawrence (1901-1958), Cyclotron and Medicine

    SciTech Connect

    Chu, William T.

    2005-09-01

    On August 8, 2001, Lawrence Berkeley National Laboratory celebrated the centennial of the birth of its founder (and namesake), Ernest Orlando Lawrence. For the occasion, many speeches were given and old speeches were remembered. We recall the words of the late Luis Alvarez, a Nobel Laureate and one of the Lawrence's closest colleagues: ''Lawrence will always be remembered as the inventor of the cyclotron, but more importantly, he should be remembered as the inventor of the modern way of doing science''. J. L. Heilbron and R. W. Seidel, in the introduction of their book, ''Lawrence and His Laboratory'' stated, ''The motives and mechanisms that shaped the growth of the Laboratory helped to force deep changes in the scientific estate and in the wider society. In the entrepreneurship of its founder, Ernest Orlando Lawrence, these motives, mechanisms, and changes came together in a tight focus. He mobilized great and small philanthropists, state and local governments, corporations, and plutocrats, volunteers and virtuosos. The work they supported, from astrophysics and atomic bombs, from radiochemistry to nuclear medicine, shaped the way we observe, control, and manipulate our environment.'' Indeed, all over the civilized world, the ways we do science changed forever after Lawrence built his famed Radiation Laboratory. In this editorial, we epitomize his legacy of changing the way we do medicine, thereby affecting the health and well being of all humanity. This year marks the 75th anniversary of the invention of the cyclotron by Ernest Orlando Lawrence at the University of California at Berkeley. Lawrence conceived the idea of the cyclotron early in 1929 after reading an article by Rolf Wideroe on high-energy accelerators. In the spring of 1930 one of his students, Nels Edlefsen, constructed two crude models of a cyclotron. Later in the fall of the same year, another student, M. Stanley Livingston, constructed a 13-cm diameter model that had all the features of early

  16. Optimization of beam dump shielding for K-130 cyclotron at VECC.

    PubMed

    Chatterjee, S; Banerjee, K; Pandit, Deepak; Roy, Pratap; Bandyopadhyay, T; Ravishankar, R; Bhattacharya, C; Bhattacharya, S; Datta, D; Banerjee, S R

    2017-10-01

    A compact and efficient beam dump shield has been designed using Monte Carlo simulation code FLUKA to facilitate low background measurement of neutron and gamma rays using K130 cyclotron at Variable Energy Cyclotron Centre, Kolkata (VECC). Iron, lead and high density Polyethylene (HDPE) were considered in the design of the beam dump shield. Representative FLUKA simulation results have been validated using in-beam experiment performed on the same beam dump constituents. Experimental neutron and gamma-rays energy spectra have been found to be in fair agreement with the simulation results. Activation of various beam dump shield components were also carried out. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. A storage ring for the JULIC cyclotron

    NASA Astrophysics Data System (ADS)

    Martin, S. A.; Prasuhn, D.; Schott, W.; Wiedner, C. A.

    1985-05-01

    The storage ring COSY is planned to provide higher intensity and resolution for nuclear structure experiments using the light heavy ion beams (p, d, τ, α) of the JULIC cyclotron and the magnet spectrograph BIG KARL. The ring contains the measuring target of BIG KARL as an internal target, two rf cavities for compensating the mean energy loss in the target and providing additional acceleration of the stored beam and an e --cooling section. In the recirculator mode, i.e., without e --cooling, a luminosity of L = 3.64 × 10 30 particles/(cm 2 s) is obtained for an experiment with 41 MeV protons and a 50 μg/cm 212C target at a spectrograph resolution p/d p = 10 4 and 100% duty factor. This corresponds to a gain in L of 546.5 in comparison with the same experiment without a storage ring. In the recirculator mode with acceleration L = 1.17 × 10 32 p/(cm 2 s) and 98.8% duty factor results for 1500 MeV protons on the same target at the same resolution. Using e --cooling L and the feasible p/d p can be enhanced, however, at a reduced duty factor.

  18. Two Dimensional Synthetic Electron Cyclotron Emission Imaging

    NASA Astrophysics Data System (ADS)

    Shi, Lei; Valeo, Ernest J.; Tobias, Benjamin J.; Kramer, Gerrit J.; Liu, Chang; Tang, William M.

    2016-10-01

    Electron Cyclotron Emission (ECE) has been widely used as a measurement of the electron temperature profile in magnetically confined plasmas. The ECE Imaging (ECEI) system provides additional vertical resolutions, and is used to measure the electron temperature fluctuations. The vertical resolution is typically a few centi-meters which is sometimes comparable to the vertical wave length of the underlying fluctuations. The ray-tracing technique used in most synthetic ECE codes to determine the origin and spatial extent of the ECE radiations is not accurate when the refraction and diffraction due to the fluctuations are important. In this presentation, we introduce a new synthetic ECEI code which solves the wave propagation up to the 2nd order of the WKB approximation, and provides full 2D information of the ECE source. We'll show that when the ECE frequency is near the cutoff, the refraction due to the fluctuations is important. A ``trapping'' of the ECE source by the density fluctuations is identified, and is potentially useful for determining the cross phase between electron temperature and density fluctuations. The new formalism is also used to study the Runaway Electrons contribution to the ECE signal, and provides insights to the measured ECE spectrum on DIII-D. This work has been funded by the US Department of Energy under Contract Number DE-AC02-09CH11466.

  19. Electron Cyclotron Emissions from AN Electron Cyclotron Heated Discharge in Isx-B

    NASA Astrophysics Data System (ADS)

    Elder, Gerald Blaine

    1983-09-01

    Observation of the electron cyclotron emissions (ECE) at both optically thick and optically thin frequencies can be a very useful tool in studying the behavior of the electron distribution. It is especially effective when studying the effects of electron cyclotron heating (ECH). Two detectors were built to observe the optically thin third harmonic radiation from ISX-B during the recent 28 GHz ECH experiments carried on at Oak Ridge National Laboratory. These detectors supplemented existing detectors at the fundamental frequency and at the second harmonic frequency. Observations of the three frequencies during and after the ECH was pulsed into the plasma showed an unexpected rise in their intensity, occurring after the ECH pulse was over. This rise lasted for many tens of milliseconds, well beyond estimates of the electron energy confinement time. The rise in the third harmonic intensity was frequently to an intensity 100 times greater than the pre-ECH intensity. The fundamental frequency and the second harmonic had a much milder change in their intensities. The rises were seen to depend critically on the density of the plasma and the length of the ECH pulse but only weakly on the pre-ECH temperature. A computer code which predicts the ECE from an electron distribution in ISX-B, taking into account the effect of the plasma's dielectric response to the emissions from a single electron, is developed. This code is the result of combining a ray tracing technique with the emissions from a single dressed test particle and summing over the electron distribution. The code confirms the sensitivity of the third harmonic emissions to small changes in the electron distribution. A Fokker-Planck code is combined with the emission code to predict the evolution of the ECE from a perturbed electron distribution. The codes clearly show that the rises in the emissions observed by the three detectors can be reasonably explained by consideration of the effect of pitch angle scattering

  20. Assessment of the neutron dose field around a biomedical cyclotron: FLUKA simulation and experimental measurements.

    PubMed

    Infantino, Angelo; Cicoria, Gianfranco; Lucconi, Giulia; Pancaldi, Davide; Vichi, Sara; Zagni, Federico; Mostacci, Domiziano; Marengo, Mario

    2016-12-01

    In the planning of a new cyclotron facility, an accurate knowledge of the radiation field around the accelerator is fundamental for the design of shielding, the protection of workers, the general public and the environment. Monte Carlo simulations can be very useful in this process, and their use is constantly increasing. However, few data have been published so far as regards the proper validation of Monte Carlo simulation against experimental measurements, particularly in the energy range of biomedical cyclotrons. In this work a detailed model of an existing installation of a GE PETtrace 16.5MeV cyclotron was developed using FLUKA. An extensive measurement campaign of the neutron ambient dose equivalent H(∗)(10) in marked positions around the cyclotron was conducted using a neutron rem-counter probe and CR39 neutron detectors. Data from a previous measurement campaign performed by our group using TLDs were also re-evaluated. The FLUKA model was then validated by comparing the results of high-statistics simulations with experimental data. In 10 out of 12 measurement locations, FLUKA simulations were in agreement within uncertainties with all the three different sets of experimental data; in the remaining 2 positions, the agreement was with 2/3 of the measurements. Our work allows to quantitatively validate our FLUKA simulation setup and confirms that Monte Carlo technique can produce accurate results in the energy range of biomedical cyclotrons. Copyright © 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  1. Transport induced by ion cyclotron range of frequencies waves

    SciTech Connect

    Zhang, Debing Xu, Yingfeng; Wang, Shaojie

    2014-11-15

    The Vlasov equation, which includes the effect of the ion cyclotron range of frequencies (ICRF) waves, can be written as the Fokker-Planck equation which describes the quasilinear transport in phase space by using the Lie-transform method. The radial transport fluxes of particle, energy and parallel momentum driven by ICRF waves in the slab geometry have been derived. The results show that the ICRF-induced radial redistributions of particle, energy and parallel momentum are driven by the inhomogeneity in energy of the equilibrium distribution function, and related to the correlation between the excursion in the real space and the excursion in energy. For the case with strong asymmetry of k{sub y} spectrum, the ICRF-induced radial transport driven by the energy inhomogeneity dominates the ICRF-induced radial transport driven by the spatial inhomogeneity.

  2. Recycling and recommissioning a used biomedical cyclotron

    NASA Astrophysics Data System (ADS)

    Carroll, L. R.; Ramsey, F.; Armbruster, J.; Montenero, M.

    2001-07-01

    Biomedical Cyclotrons have a very long life, but there eventually comes a time when any piece of equipment has to be retired from service. From time to time, we have the opportunity to help find new homes for used cyclotrons which, with relatively modest overhaul and refurbishment, can have many additional years of productive service, and thus represent a very valuable asset. The reasons for retiring a cyclotron vary, of course, but in our experience it is often due to an institution's changing priorities or changing needs, rather than the due to any fundamental age-related deficiency in the cyclotron itself. In this paper we will report on the relocation and successful restoration of a used TCC CP-42 cyclotron, which was moved from M.D. Anderson Hospital in Houston to Denton, Texas in early 1998, where it is presently being used for R&D and commercial production of biomedical isotopes. Ownership of the machine has been transferred to the University of North Texas; facility, manpower, and operational resources are provided by International Isotopes, Inc.

  3. Resonance of relativistic electrons with electromagnetic ion cyclotron waves

    DOE PAGES

    Denton, R. E.; Jordanova, V. K.; Bortnik, J.

    2015-06-29

    Relativistic electrons have been thought to more easily resonate with electromagnetic ion cyclotron EMIC waves if the total density is large. We show that, for a particular EMIC mode, this dependence is weak due to the dependence of the wave frequency and wave vector on the density. A significant increase in relativistic electron minimum resonant energy might occur for the H band EMIC mode only for small density, but no changes in parameters significantly decrease the minimum resonant energy from a nominal value. The minimum resonant energy depends most strongly on the thermal velocity associated with the field line motionmore » of the hot ring current protons that drive the instability. High density due to a plasmasphere or plasmaspheric plume could possibly lead to lower minimum resonance energy by causing the He band EMIC mode to be dominant. We demonstrate these points using parameters from a ring current simulation.« less

  4. Resonance of relativistic electrons with electromagnetic ion cyclotron waves

    SciTech Connect

    Denton, R. E.; Jordanova, V. K.; Bortnik, J.

    2015-06-29

    Relativistic electrons have been thought to more easily resonate with electromagnetic ion cyclotron EMIC waves if the total density is large. We show that, for a particular EMIC mode, this dependence is weak due to the dependence of the wave frequency and wave vector on the density. A significant increase in relativistic electron minimum resonant energy might occur for the H band EMIC mode only for small density, but no changes in parameters significantly decrease the minimum resonant energy from a nominal value. The minimum resonant energy depends most strongly on the thermal velocity associated with the field line motion of the hot ring current protons that drive the instability. High density due to a plasmasphere or plasmaspheric plume could possibly lead to lower minimum resonance energy by causing the He band EMIC mode to be dominant. We demonstrate these points using parameters from a ring current simulation.

  5. Benchmark experiments for cyclotron-based neutron source for BNCT.

    PubMed

    Yonai, S; Itoga, T; Baba, M; Nakamura, T; Yokobori, H; Tahara, Y

    2004-11-01

    In the previous study, we found the feasibility of a cyclotron-based BNCT using the Ta(p,n) neutrons at 90 degrees bombarded by 50 MeV protons, and the iron, AlF(3), Al and (6)LiF moderators by simulations using the MCNPX code. In order to validate the simulations to realize the cyclotron-based BNCT, we measured the epithermal neutron energy spectrum passing through the moderators with our new spectrometer consisting of a (3)He gas counter covered with a silicon rubber loaded with (nat)B and polyethylene moderator and the depth distribution of the reaction rates of (197)Au(n,gamma)(198)Au in an acrylic phantom set behind the rear surface of the moderators. The measured results were compared with the calculations using the MCNPX code. We obtained the good agreement between the calculations and measurements within approximately 10% for the neutron energy spectra and within approximately 20% for the depth distribution of the reaction rates of (197)Au(n,gamma)(198)Au in the phantom. The comparison clarified a good accuracy of the calculation of the neutron energy spectrum passing through the moderator and the thermalization in a phantom. These experimental results will be a good benchmark data to evaluate the accuracy of the calculation code.

  6. The variable cyclotron line of GX 301-2

    NASA Astrophysics Data System (ADS)

    Kreykenbohm, I.; Wilms, J.; Coburn, W.; Kuster, M.; Rothschild, R. E.; Heindl, W. A.; Kretschmar, P.; Staubert, R.

    2004-06-01

    We present a 200 ksec observation of the High Mass X-ray Binary GX 301-2 taken in 2000 November with the Rossi X-ray Timing Explorer during the pre-periastron flare and the actual periastron passage of the neutron star. To model the spectrum we use a power law with the Fermi Dirac cutoff and a cyclotron line at higher energies plus either a reflection component or a heavily absorbed partial covering component. Although completely different, both models describe the data equally well. Phase resolved spectra show that the energy and the depth of the cyclotron resonant scattering feature vary strongly with pulse phase: It is deepest in the fall of the main pulse, the rise of the secondary pulse, and the pulse minimum in-between with τC~0.3. In the other phase bins the line is much less deep with τC~0.1. The energy of the line correlates strongly with its depth and varies by 25 % from 30.1 keV in the fall of the secondary pulse to 37.9 keV in the fall of the main pulse.

  7. RF physics of ICWC discharge at high cyclotron harmonics

    SciTech Connect

    Lyssoivan, A.; Van Eester, D.; Wauters, T.; Vervier, M.; Van Schoor, M.; Bobkov, V.; Rohde, V.; Schneider, P.; Douai, D.; Kogut, D.; Kreter, A.; Möller, S.; Philipps, V.; Sergienko, G.; Moiseenko, V.; Noterdaeme, J.-M.; Collaboration: TEXTOR Team; ASDEX Upgrade Team

    2014-02-12

    Recent experiments on Ion Cyclotron Wall Conditioning (ICWC) performed in tokamaks TEXTOR and ASDEX Upgrade with standard ICRF antennas operated at fixed frequencies but variable toroidal magnetic field demonstrated rather contrasting parameters of ICWC discharge in scenarios with on-axis fundamental ion cyclotron resonance (ICR) for protons,ω=ω{sub H+}, and with its high cyclotron harmonics (HCH), ω=10ω{sub cH+}⋅ HCH scenario: very high antenna coupling to low density RF plasmas (P{sub pl}≈0.9P{sub RF-G}) and low energy Maxwellian distribution of CX hydrogen atoms with temperature T{sub H}≈350 eV. Fundamental ICR: lower antenna-plasma coupling efficiency (by factor of about 1.5 times) and generation of high energy non-Maxwellian CX hydrogen atoms (with local energy E{sub ⊥H} ≥1.0 keV). In the present paper, we analyze the obtained experimental results numerically using (i) newly developed 0-D transport code describing the process of plasma production with electron and ion collisional ionization in helium-hydrogen gas mixture and (ii) earlier developed 1-D Dispersion Relation Solver accounting for finite temperature effects and collision absorption mechanisms for all plasma species in addition to conventionally examined Landau/TTPM damping for electrons and cyclotron absorption for ions. The numerical study of plasma production in helium with minor hydrogen content in low and high toroidal magnetic fields is presented. The investigation of the excitation, conversion and absorption of plasma waves as function of B{sub T}-field suggests that only fast waves (FW) may give a crucial impact on antenna coupling and characteristics of the ICWC discharge using standard poloidally polarized ICRF antennas designed to couple RF power mainly to FW. The collisional (non-resonant) absorption by electrons and ions and IC absorption by resonant ions of minor concentration in low T{sub e} plasmas is studied at fundamental ICR and its high harmonics.

  8. mA beam acceleration efforts on 100 MeV H- cyclotron at CIAE

    NASA Astrophysics Data System (ADS)

    Zhang, Tianjue; An, Shizhong; Lv, Yinlong; Ge, Tao; Jia, Xianlu; Ji, Bin; Yin, Zhiguo; Pan, Gaofeng; Cao, Lei; Guan, Fengping; Yang, Jianjun; Li, Zhenguo; Zhao, Zhenlu; Wu, Longcheng; Zhang, He; Wang, Jingfeng; Zhang, Yiwang; Liu, Jingyuan; Li, Shiqiang; Lu, Xiaotong; Liu, Zhenwei; Li, Yaoqian; Guo, Juanjuan; Cao, Xuelong; Guan, Leilei; Wang, Fei; Wang, Yang; Yang, Guang; Zhang, Suping; Hou, Shigang; Wang, Feng

    2017-09-01

    Various technologies for high current compact H- cyclotron have been developed at CIAE since 1990s. A 375 μA proton beam was extracted from a 30 MeV compact H- cyclotron CYCIAE-30 at the end of 1994. A central region model cyclotron CYCIAE-CRM was developed for the design verification of a 100 MeV high current compact H- cyclotron CYCIAE-100. It is also a 10 MeV proton machine as a prototype for PET application. A 430 μA beam was achieved in 2009. The first beam was extracted from the CYCIAE-100 cyclotron on July 4, 2014, the operation stability has been improved and beam current has been increased gradually. A 1.1 mA proton beam was measured on the internal target in July 2016. The effort for an increasing of proton beam has continued till now. In this paper, the effort on several aspects for mA beam development will be presented, including the multi-cusp source, buncher, matching from the energy of the injected beam, vertical beam line and central region, beam loading of the RF system and instrumentation for beam diagnostics etc.

  9. The beam commissioning of BRIF and future cyclotron development at CIAE

    NASA Astrophysics Data System (ADS)

    Zhang, Tianjue; Yang, Jianjun

    2016-06-01

    As an upgrade project of the existing HI-13 tandem accelerator facility, the Beijing Radioactive Ion-beam Facility (BRIF) is being constructed in China Institute of Atomic Energy (CIAE). This project consists of an 100 MeV proton compact cyclotron, a two-stage ISOL system, a superconducting linac booster and various experimental terminals. The beam commissioning of the cyclotron was launched by the end of 2013 and on July 4, 2014 the first 100 MeV proton beam was received on a temporary target which was positioned at the outlet of the cyclotron. The beam current was stably maintained at above 25 μA for about 9 h on July 25, 2014 and the cyclotron is now ready for providing CW proton beam on target-source for RIB production. The beam current is expected to be increased to 200-500 μA in the coming years. The installation of the ISOL system is finished and the stable ion beam test shows it can reach a mass resolution better than 10,000. It is expected to generate dozens of RIB by 100 MeV proton beam. In addition, this paper also introduces the recent progress of the pre-study of an 800 MeV, 3-4 MW separate-sector proton cyclotron, which is aimed to provide high power proton beam for various applications, such as neutron and neutrino physics, proton radiography and nuclear data measurement and ADS system.

  10. Nonlinear sub-cyclotron resonance as a formation mechanism for gaps in banded chorus

    DOE PAGES

    Fu, Xiangrong; Guo, Zehua; Dong, Chuanfei; ...

    2015-05-14

    An interesting characteristic of magnetospheric chorus is the presence of a frequency gap at ω ≃ 0.5Ωe, where Ωe is the electron cyclotron angular frequency. Recent chorus observations sometimes show additional gaps near 0.3Ωe and 0.6Ωe. Here we present a novel nonlinear mechanism for the formation of these gaps using Hamiltonian theory and test particle simulations in a homogeneous, magnetized, collisionless plasma. We find that an oblique whistler wave with frequency at a fraction of the electron cyclotron frequency can resonate with electrons, leading to effective energy exchange between the wave and particles.

  11. Improving cancer treatment with cyclotron produced radionuclides

    SciTech Connect

    Larson, S.M. Finn, R.D.

    1992-08-04

    This report describes the author's continuing long term goal of promoting nuclear medicine applications by improving the scientific basis for tumor diagnosis treatment and treatment follow-up based on the use of cyclotron produced radiotracers in oncology. The program has 3 interactive components: Radiochemistry /Cyclotron; Pharmacology; and Immunology. An essential strategy is as follows: novel radionuclides and radiotracers developed in the Radiochemistry/Cyclotron section under the DOE grant during the 1989--1992 grant period, will be employed in the Pharmacology and Immunology sections of the DOE grant during the 1992--1995 grant period. The development of novel radionuclides and tracers is of course useful in and of itself, but their utility is greatly enhanced by the interaction with the immunology and pharmacology components of the program.

  12. The electromagnetic ion cyclotron beam anisotropy instability

    NASA Technical Reports Server (NTRS)

    Peter Gary, S.; Schriver, David

    1987-01-01

    Electromagnetic instabilities driven by an anisotropic, relatively cool ion beam are studied for the case in which both the beam and the instabilities propagate parallel or antiparallel to a uniform magnetic field. At modest beam-core relative drift speeds, sufficiently large perpendicular-to-parallel beam temperature ratios and sufficiently large plasma beta, the mode of fastest growth rate is the ion cyclotron beam anisotropy instability. Because the right-hand polarized waves observed upstream of slow shocks in the earth's magnetotail can lead to the appropriate beam anisotropy, the ion cyclotron instability may be present and account for the left-hand polarized magnetic waves observed there. Also, because of its relatively low phase speed, the ion cyclotron beam anisotropy instability may provide the scattering necessary for ion Fermi acceleration at slow shocks of sufficiently high plasma beta.

  13. Neutron measurements in the vicinity of a self-shielded PET cyclotron.

    PubMed

    Hertel, N E; Shannon, M P; Wang, Z-L; Valenzano, M P; Mengesha, W; Crowe, Ronald J

    2004-01-01

    The radionuclides used in positron emission tomography (PET) are short-lived and generally must be produced on site using a cyclotron. A common end product of the nuclear reactions used to produce the PET radionuclides is neutron radiation. These neutrons could potentially contribute to the annual effective dose received by hospital personnel. A Bonner sphere spectrometer was used to measure neutron energy spectra at three locations near a self-shielded PET cyclotron. This cyclotron accelerates protons to 11 MeV. The neutron measurements reported were made during the production of 18F via the 18O(p,n)18F reaction (Q = -2.4 MeV). Neutron spectra were obtained with the BUMS unfolding code and converted to dose equivalent rates.

  14. Absorption and emission of extraordinary-mode electromagnetic waves near cyclotron frequency in nonequilibrium plasmas

    NASA Technical Reports Server (NTRS)

    Wu, C. S.; Lin, C. S.; Wong, H. K.; Tsai, S. T.; Zhou, R. L.

    1981-01-01

    An investigation is presented of two cases: (1) weakly relativistic electrons with a loss-cone type distribution, and (2) electrons with a drift velocity parallel to the ambient magnetic field. Numerical computations are given for physical parameters close to those in the polar region of the earth magnetosphere and laboratory experiments, with attention to the fast extraordinary-mode radiation whose frequency is near that of the electron cyclotron frequency. The fast extraordinary mode can escape from a strong field region to the weaker field region and may therefore be measured outside the plasma. It is found that the X mode radiation can be amplified by means of a cyclotron maser effect when the electrons have a loss-cone distribution, and it is concluded that, when the electron energy is sufficiently high, the X mode cutoff frequency may be lower than the cyclotron frequency.

  15. Superconducting Accelerating Structure for High-Current Cyclotrons for Accelerator-Driven Subcritical Fission

    NASA Astrophysics Data System (ADS)

    Pogue, Nathaniel; McIntyre, Peter; Sattarov, Akhdiyor

    2011-10-01

    An accelerator driven molten salt fission core is being designed to provide reliable power by subcritical nuclear fission for the next few millennia. Fission is driven by proton beams from a flux-coupled stack of three high-current cyclotrons. A key innovation in attaining the needed beam current and efficiency is a superconducting Niobium rf accelerating cavity that can accelerate bunches in the 200 orbits uniformly. The unique design allows for several cavities to be stacked, and also provides uniform acceleration and eliminates higher order modes in the cyclotron. The design and properties of the superconducting cavity will increase the efficiency of the cyclotron and the overall energy amplification from the molten salt core by an order of magnitude compared to conventional designs.

  16. Results from the Project 8 phase-1 cyclotron radiation emission spectroscopy detector

    NASA Astrophysics Data System (ADS)

    Ashtari Esfahani, A.; Böser, S.; Claessens, C.; de Viveiros, L.; Doe, P. J.; Doeleman, S.; Fertl, M.; Finn, E. C.; Formaggio, J. A.; Guigue, M.; Heeger, K. M.; Jones, A. M.; Kazkaz, K.; LaRoque, B. H.; Machado, E.; Monreal, B.; Nikkel, J. A.; Oblath, N. S.; Robertson, R. G. H.; Rosenberg, L. J.; Rybka, G.; Saldaña, L.; Slocum, P. L.; Tedeschi, J. R.; Thümmler, T.; Vandevender, B. A.; Wachtendonk, M.; Weintroub, J.; Young, A.; Zayas, E.

    2017-09-01

    The Project 8 collaboration seeks to measure the absolute neutrino mass scale by means of precision spectroscopy of the beta decay of tritium. Our technique, cyclotron radiation emission spectroscopy, measures the frequency of the radiation emitted by electrons produced by decays in an ambient magnetic field. Because the cyclotron frequency is inversely proportional to the electron’s Lorentz factor, this is also a measurement of the electron’s energy. In order to demonstrate the viability of this technique, we have assembled and successfully operated a prototype system, which uses a rectangular waveguide to collect the cyclotron radiation from internal conversion electrons emitted from a gaseous 83m Kr source. Here we present the main design aspects of the first phase prototype, which was operated during parts of 2014 and 2015. We will also discuss the procedures used to analyze these data, along with the features which have been observed and the performance achieved to date.

  17. Neutron Beams from Deuteron Breakup at the 88-Inch Cyclotron at Lawrence Berkeley National Laboratory

    SciTech Connect

    McMahan, M.A.; Ahle, L.; Bleuel, D.L.; Bernstein, L.; Braquest, B.R.; Cerny, J.; Heilbronn, L.H.; Jewett, C.C.; Thompson, I.; Wilson, B.

    2007-07-31

    Accelerator-based neutron sources offer many advantages, in particular tunability of the neutron beam in energy and width to match the needs of the application. Using a recently constructed neutron beam line at the 88-Inch Cyclotron at LBNL, tunable high-intensity sources of quasi-monoenergetic and broad spectrum neutrons from deuteron breakup are under development for a variety of applications.

  18. Tomsk Polytechnic University cyclotron as a source for neutron based cancer treatment

    SciTech Connect

    Lisin, V. A.; Bogdanov, A. V.; Golovkov, V. M.; Sukhikh, L. G.; Verigin, D. A.; Musabaeva, L. I.

    2014-02-15

    In this paper we present our cyclotron based neutron source with average energy 6.3 MeV generated during the 13.6 MeV deuterons interactions with beryllium target, neutron field dosimetry, and dosimetry of attendant gamma fields. We also present application of our neutron source for cancer treatment.

  19. Electrostatic electron cyclotron harmonic instability near Ganymede

    NASA Astrophysics Data System (ADS)

    Tripathi, A. K.; Singhal, R. P.; Singh, K. P.; Singh, O. N.

    2014-08-01

    Jupiter's moon—Ganymede—is the largest satellite in our solar system. Galileo spacecraft made six close flybys to explore Ganymede. More information was acquired about particle population, magnetic field and plasma waves during these encounters. In this paper, our aim is to study the generation of electrostatic electron cyclotron harmonic (ECH) emissions in the vicinity of Ganymede using the observed particle data. The calculated ECH wave's growth rates are analyzed in the light of observations of plasma waves along the path of Galileo near Ganymede. Dispersion relation for electrostatic mode is solved to obtain the temporal growth rates. A new electron distribution function, fitted to distribution observed near Ganymede, is used in the calculations. A parametric study is performed to evaluate the effect of loss-cone angle and the ratio of plasma to gyro-frequency on growth rates. It is found that ECH waves growth rates generally decrease as the loss-cone angle is increased. However, the ratio plasma to gyro-frequency has almost no effect on the growth rates. These parameters vary considerably along the Galileo trajectory near Ganymede. This is the first study which relates the occurrence of ECH waves with the particle and magnetic field data in the vicinity of Ganymede. The study of ECH wave growth rate near Ganymede is important for the calculation of pitch angle scattering rates of low-energy electrons and their subsequent precipitation into the thin atmosphere of Ganymede producing ultraviolet emissions. Results of the present study may also be relevant for the upcoming JUNO and JUICE missions to Jupiter.

  20. Glow plasma trigger for electron cyclotron resonance ion sources.

    PubMed

    Vodopianov, A V; Golubev, S V; Izotov, I V; Nikolaev, A G; Oks, E M; Savkin, K P; Yushkov, G Yu

    2010-02-01

    Electron cyclotron resonance ion sources (ECRISs) are particularly useful for nuclear, atomic, and high energy physics, as unique high current generators of multicharged ion beams. Plasmas of gas discharges in an open magnetic trap heated by pulsed (100 micros and longer) high power (100 kW and higher) high-frequency (greater than 37.5 GHz) microwaves of gyrotrons is promising in the field of research in the development of electron cyclotron resonance sources for high charge state ion beams. Reaching high ion charge states requires a decrease in gas pressure in the magnetic trap, but this method leads to increases in time, in which the microwave discharge develops. The gas breakdown and microwave discharge duration becomes greater than or equal to the microwave pulse duration when the pressure is decreased. This makes reaching the critical plasma density initiate an electron cyclotron resonance (ECR) discharge during pulse of microwave gyrotron radiation with gas pressure lower than a certain threshold. In order to reduce losses of microwave power, it is necessary to shorten the time of development of the ECR discharge. For fast triggering of ECR discharge under low pressure in an ECRIS, we initially propose to fill the magnetic trap with the plasmas of auxiliary pulsed discharges in crossed ExB fields. The glow plasma trigger of ECR based on a Penning or magnetron discharge has made it possible not only to fill the trap with plasma with density of 10(12) cm(-3), required for a rapid increase in plasma density and finally for ECR discharge ignition, but also to initially heat the plasma electrons to T(e) approximately = 20 eV.

  1. Single-turn extraction from a K110 AVF cyclotron by flat-top acceleration

    NASA Astrophysics Data System (ADS)

    Kurashima, Satoshi; Miyawaki, Nobumasa; Okumura, Susumu; Ishibori, Ikuo; Nara, Takayuki; Agematsu, Takashi; Yoshida, Ken-ichi; Yokota, Watalu; Nakamura, Yoshiteru; Arakawa, Kazuo; Fukuda, Mitsuhiro

    2009-03-01

    Single-turn extraction from the Japan Atomic Energy Agency AVF cyclotron with a K number of 110 using a flat-top (FT) acceleration system has been achieved to reduce the energy spread of an ion beam for microbeam formation with energy up to hundreds of MeV and to increase extraction efficiency from the cyclotron. In order to generate a FT waveform voltage using the fifth-harmonic frequency on a dee electrode, a FT resonator was designed using MAFIA code to achieve downsizing and low power consumption. The FT resonator, coupled to the main resonator through a coupling capacitor, covered the full range of the fifth harmonic frequency from 55 to 110 MHz. Various ion beams, accelerated using different acceleration harmonic modes of h =1 and 2, such as 220 MeV C125+ (h=2), 260 MeV N20e7+ (h =2), and 45 MeV H+ (h =1), were developed by FT acceleration. A clear turn separation of the beam bunches was successfully observed at the extraction region of the large-scale AVF cyclotron with number of revolutions greater than 200. As a result, high extraction efficiency (over 95%) from the cyclotron was achieved. Single-turn extraction was confirmed by counting the number of beam bunches out of the cyclotron for an injected beam pulsed by a beam chopping system in the injection line. The energy spread of the 260 MeV N20e7+ beam was measured using an analyzing magnet, and we verified a reduction in the energy spread from ΔE /E=0.1% to 0.05% by single-turn extraction after FT acceleration.

  2. Single-turn extraction from a K110 AVF cyclotron by flat-top acceleration.

    PubMed

    Kurashima, Satoshi; Miyawaki, Nobumasa; Okumura, Susumu; Ishibori, Ikuo; Nara, Takayuki; Agematsu, Takashi; Yoshida, Ken-ichi; Yokota, Watalu; Nakamura, Yoshiteru; Arakawa, Kazuo; Fukuda, Mitsuhiro

    2009-03-01

    Single-turn extraction from the Japan Atomic Energy Agency AVF cyclotron with a K number of 110 using a flat-top (FT) acceleration system has been achieved to reduce the energy spread of an ion beam for microbeam formation with energy up to hundreds of MeV and to increase extraction efficiency from the cyclotron. In order to generate a FT waveform voltage using the fifth-harmonic frequency on a dee electrode, a FT resonator was designed using MAFIA code to achieve downsizing and low power consumption. The FT resonator, coupled to the main resonator through a coupling capacitor, covered the full range of the fifth harmonic frequency from 55 to 110 MHz. Various ion beams, accelerated using different acceleration harmonic modes of h=1 and 2, such as 220 MeV (12)C(5+) (h=2), 260 MeV (20)Ne(7+) (h=2), and 45 MeV H(+) (h=1), were developed by FT acceleration. A clear turn separation of the beam bunches was successfully observed at the extraction region of the large-scale AVF cyclotron with number of revolutions greater than 200. As a result, high extraction efficiency (over 95%) from the cyclotron was achieved. Single-turn extraction was confirmed by counting the number of beam bunches out of the cyclotron for an injected beam pulsed by a beam chopping system in the injection line. The energy spread of the 260 MeV (20)Ne(7+) beam was measured using an analyzing magnet, and we verified a reduction in the energy spread from DeltaE/E=0.1% to 0.05% by single-turn extraction after FT acceleration.

  3. Single-turn extraction from a K110 AVF cyclotron by flat-top acceleration

    SciTech Connect

    Kurashima, Satoshi; Miyawaki, Nobumasa; Okumura, Susumu; Ishibori, Ikuo; Nara, Takayuki; Agematsu, Takashi; Yoshida, Ken-ichi; Yokota, Watalu; Nakamura, Yoshiteru; Arakawa, Kazuo; Fukuda, Mitsuhiro

    2009-03-15

    Single-turn extraction from the Japan Atomic Energy Agency AVF cyclotron with a K number of 110 using a flat-top (FT) acceleration system has been achieved to reduce the energy spread of an ion beam for microbeam formation with energy up to hundreds of MeV and to increase extraction efficiency from the cyclotron. In order to generate a FT waveform voltage using the fifth-harmonic frequency on a dee electrode, a FT resonator was designed using MAFIA code to achieve downsizing and low power consumption. The FT resonator, coupled to the main resonator through a coupling capacitor, covered the full range of the fifth harmonic frequency from 55 to 110 MHz. Various ion beams, accelerated using different acceleration harmonic modes of h=1 and 2, such as 220 MeV {sup 12}C{sup 5+} (h=2), 260 MeV {sup 20}Ne{sup 7+} (h=2), and 45 MeV H{sup +} (h=1), were developed by FT acceleration. A clear turn separation of the beam bunches was successfully observed at the extraction region of the large-scale AVF cyclotron with number of revolutions greater than 200. As a result, high extraction efficiency (over 95%) from the cyclotron was achieved. Single-turn extraction was confirmed by counting the number of beam bunches out of the cyclotron for an injected beam pulsed by a beam chopping system in the injection line. The energy spread of the 260 MeV {sup 20}Ne{sup 7+} beam was measured using an analyzing magnet, and we verified a reduction in the energy spread from {delta}E/E=0.1% to 0.05% by single-turn extraction after FT acceleration.

  4. Electron-cyclotron-resonance ion sources (review)

    SciTech Connect

    Golovanivskii, K.S.; Dougar-Jabon, V.D.

    1992-01-01

    The physical principles are described and a brief survey of the present state is given of ion sources based on electron-cyclotron heating of plasma in a mirror trap. The characteristics of ECR sources of positive and negative ions used chiefly in accelerator technology are presented. 20 refs., 10 figs., 3 tabs.

  5. Tokamak startup with electron cyclotron heating

    SciTech Connect

    Holly, D J; Prager, S C; Shepard, D A; Sprott, J C

    1980-04-01

    Experiments are described in which the startup voltage in a tokamak is reduced by approx. 60% by the use of a modest amount of electron cyclotron resonance heating power for preionization. A 50% reduction in volt-second requirement and impurity reflux are also observed.

  6. Ion-cyclotron instability in magnetic mirrors

    SciTech Connect

    Pearlstein, L.D.

    1987-02-02

    This report reviews the role of ion-cyclotron frequency instability in magnetic mirrors. The modes discussed here are loss-cone or anisotropy driven. The discussion includes quasilinear theory, explosive instabilities of 3-wave interaction and non-linear Landau damping, and saturation due to non-linear orbits. (JDH)

  7. Cyclotron-based neutron source for BNCT

    SciTech Connect

    Mitsumoto, T.; Yajima, S.; Tsutsui, H.; Ogasawara, T.; Fujita, K.; Tanaka, H.; Sakurai, Y.; Maruhashi, A.

    2013-04-19

    Kyoto University Research Reactor Institute (KURRI) and Sumitomo Heavy Industries, Ltd. (SHI) have developed a cyclotron-based neutron source for Boron Neutron Capture Therapy (BNCT). It was installed at KURRI in Osaka prefecture. The neutron source consists of a proton cyclotron named HM-30, a beam transport system and an irradiation and treatment system. In the cyclotron, H- ions are accelerated and extracted as 30 MeV proton beams of 1 mA. The proton beams is transported to the neutron production target made by a beryllium plate. Emitted neutrons are moderated by lead, iron, aluminum and calcium fluoride. The aperture diameter of neutron collimator is in the range from 100 mm to 250 mm. The peak neutron flux in the water phantom is 1.8 Multiplication-Sign 109 neutrons/cm{sup 2}/sec at 20 mm from the surface at 1 mA proton beam. The neutron source have been stably operated for 3 years with 30 kW proton beam. Various pre-clinical tests including animal tests have been done by using the cyclotron-based neutron source with {sup 10}B-p-Borono-phenylalanine. Clinical trials of malignant brain tumors will be started in this year.

  8. Stability of the Electron Cyclotron Resonance

    NASA Astrophysics Data System (ADS)

    Asch, Joachim; Bourget, Olivier; Meresse, Cédric

    2015-12-01

    We consider the magnetic AC Stark effect for the quantum dynamics of a single particle in the plane under the influence of an oscillating homogeneous electric and a constant perpendicular magnetic field. We prove that the electron cyclotron resonance is insensitive to impurity potentials.

  9. Currents driven by electron cyclotron waves

    SciTech Connect

    Karney, C.F.F.; Fisch, N.J.

    1981-07-01

    Certain aspects of the generation of steady-state currents by electron cyclotron waves are explored. A numerical solution of the Fokker-Planck equation is used to verify the theory of Fisch and Boozer and to extend their results into the nonlinear regime. Relativistic effects on the current generated are discussed. Applications to steady-state tokamak reactors are considered.

  10. Design of the shielding wall of a cyclotron room and the activation interpretation using the Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Jang, D. G.; Kim, J. M.; Kim, J. H.

    2017-01-01

    Medical cyclotron is mainly a facility used for producing radiopharmaceutical products, which secondarily generate high energy radiation when producing a radiopharmaceutical product. In this study, the intention is that the reductions in spatial dose rate for the radiation generated when cyclotron is operated and the absorbed dose rate, according to the width of shielding wall, will be analyzed. The simulation planned targetry and protons of 16.5 MeV, 60μA through a Monte Carlo simulation, and as a result of the simulation, it has been found through an analysis that a concrete shielding wall of 200 cm is needed, according to the absorbed dose rate of the shielding wall thickness of cyclotron, and the concrete gives an external exposure level of 1 μSv/hr after 19 years of cyclotron operation as it is activated by the nuclear reaction of cyclotron. When taking into account the mechanical life span of cyclotron, it is deemed necessary to develop additional shielding and a low activation material.

  11. Nonresonant interactions of electromagnetic ion cyclotron waves with relativistic electrons

    NASA Astrophysics Data System (ADS)

    Chen, Lunjin; Thorne, Richard M.; Bortnik, Jacob; Zhang, Xiao-Jia

    2016-10-01

    The dynamics of relativistic electrons traveling through a parallel-propagating, monochromatic electromagnetic ion cyclotron (EMIC) wave in the Earth's dipole field are investigated via test particle simulations. Both resonant and nonresonant responses in electron pitch angle are considered, and the differences between the two are highlighted. Nonresonant electrons, with energies below the minimum resonant energy down to hundreds of keV, are scattered stochastically in pitch angle and can be scattered into the atmospheric loss cone. The nonresonant effect is attributed to the spatial edge associated with EMIC wave packets. A condition for effective nonresonant response is also provided. This effect is excluded from current quasi-linear theory and can be a potentially important loss mechanism of relativistic and subrelativistic electrons in the radiation belts.

  12. Characteristics of surface sterilization using electron cyclotron resonance plasma

    NASA Astrophysics Data System (ADS)

    Yonesu, Akira; Hara, Kazufumi; Nishikawa, Tatsuya; Hayashi, Nobuya

    2016-07-01

    The characteristics of surface sterilization using electron cyclotron resonance (ECR) plasma were investigated. High-energy electrons and oxygen radicals were observed in the ECR zone using electric probe and optical emission spectroscopic methods. A biological indicator (BI), Geobacillus stearothermophilus, containing 1 × 106 spores was sterilized in 120 s by exposure to oxygen discharges while maintaining a temperature of approximately 55 °C at the BI installation position. Oxygen radicals and high-energy electrons were found to be the sterilizing species in the ECR region. It was demonstrated that the ECR plasma could be produced in narrow tubes with an inner diameter of 5 mm. Moreover, sterilization tests confirmed that the spores present inside the narrow tube were successfully inactivated by ECR plasma irradiation.

  13. Response of thermal ions to electromagnetic ion cyclotron waves

    NASA Technical Reports Server (NTRS)

    Anderson, B. J.; Fuselier, S. A.

    1994-01-01

    Electromagnetic ion cyclotron waves generated by 10 - 50 keV protons in the Earth's equatorial magnetosphere will interact with the ambient low-energy ions also found in this region. We examine H(+) and He(+) distribution functions from approx. equals 1 to 160 eV using the Hot Plasma Composition Experiment instrument on AMPTE/CCE to investigate the thermal ion response to the waves. A total of 48 intervals were chosen on the basis of electromagnetic ion cyclotron (EMIC) wave activity: 24 with prevalent EMIC waves and 24 with no EMIC waves observed on the orbit. There is a close correlation between EMIC waves and perpendicular heated ion distributions. For protons the perpendicular temperature increase is modest, about 5 eV, and is always observed at 90 deg pitch angles. This is consistent with a nonresonant interaction near the equator. By contrast, He(+) temperatures during EMIC wave events averaged 35 eV and sometimes exceeded 100 eV, indicating stronger interaction with the waves. Furthermore, heated He(+) ions have X-type distributions with maximum fluxes occurring at pitch angles intermediate between field-aligned and perpendicular directions. The X-type He(+) distributions are consistent with a gyroresonant interaction off the equator. The concentration of He(+) relative to H(+) is found to correlate with EMIC wave activity, but it is suggested that the preferential heating of He(+) accounts for the apparent increase in relative He(+) concentration by increasing the proportion of He(+) detected by the ion instrument.

  14. Response of thermal ions to electromagnetic ion cyclotron waves

    NASA Astrophysics Data System (ADS)

    Anderson, B. J.; Fuselier, S. A.

    1994-10-01

    Electromagnetic ion cyclotron waves generated by 10 - 50 keV protons in the Earth's equatorial magnetosphere will interact with the ambient low-energy ions also found in this region. We examine H(+) and He(+) distribution functions from approx. equals 1 to 160 eV using the Hot Plasma Composition Experiment instrument on AMPTE/CCE to investigate the thermal ion response to the waves. A total of 48 intervals were chosen on the basis of electromagnetic ion cyclotron (EMIC) wave activity: 24 with prevalent EMIC waves and 24 with no EMIC waves observed on the orbit. There is a close correlation between EMIC waves and perpendicular heated ion distributions. For protons the perpendicular temperature increase is modest, about 5 eV, and is always observed at 90 deg pitch angles. This is consistent with a nonresonant interaction near the equator. By contrast, He(+) temperatures during EMIC wave events averaged 35 eV and sometimes exceeded 100 eV, indicating stronger interaction with the waves. Furthermore, heated He(+) ions have X-type distributions with maximum fluxes occurring at pitch angles intermediate between field-aligned and perpendicular directions. The X-type He(+) distributions are consistent with a gyroresonant interaction off the equator. The concentration of He(+) relative to H(+) is found to correlate with EMIC wave activity, but it is suggested that the preferential heating of He(+) accounts for the apparent increase in relative He(+) concentration by increasing the proportion of He(+) detected by the ion instrument.

  15. Response of thermal ions to electromagnetic ion cyclotron waves

    NASA Technical Reports Server (NTRS)

    Anderson, B. J.; Fuselier, S. A.

    1994-01-01

    Electromagnetic ion cyclotron waves generated by 10 - 50 keV protons in the Earth's equatorial magnetosphere will interact with the ambient low-energy ions also found in this region. We examine H(+) and He(+) distribution functions from approx. equals 1 to 160 eV using the Hot Plasma Composition Experiment instrument on AMPTE/CCE to investigate the thermal ion response to the waves. A total of 48 intervals were chosen on the basis of electromagnetic ion cyclotron (EMIC) wave activity: 24 with prevalent EMIC waves and 24 with no EMIC waves observed on the orbit. There is a close correlation between EMIC waves and perpendicular heated ion distributions. For protons the perpendicular temperature increase is modest, about 5 eV, and is always observed at 90 deg pitch angles. This is consistent with a nonresonant interaction near the equator. By contrast, He(+) temperatures during EMIC wave events averaged 35 eV and sometimes exceeded 100 eV, indicating stronger interaction with the waves. Furthermore, heated He(+) ions have X-type distributions with maximum fluxes occurring at pitch angles intermediate between field-aligned and perpendicular directions. The X-type He(+) distributions are consistent with a gyroresonant interaction off the equator. The concentration of He(+) relative to H(+) is found to correlate with EMIC wave activity, but it is suggested that the preferential heating of He(+) accounts for the apparent increase in relative He(+) concentration by increasing the proportion of He(+) detected by the ion instrument.

  16. Nonlinear decay of electromagnetic ion cyclotron waves in the magnetosphere

    SciTech Connect

    Gomberoff, L.; Gratton, F.T.; Gnavi, G.

    1995-02-01

    The authors study the parametric decays of left-hand polarized electromagnetic ion cyclotron waves, propagating parallel to the external magnetic field, in the magnetosphere. They show that the presence of He{sup +} ions and a mixed population of thermal and hot protons give rise to new wave couplings. These couplings lead to a number of new instabilities. Some of the instabilities involve sound waves carried mainly by the He{sup +} ions, which can be very efficient in heating up the bulk of the He{sup +} ions via Landau damping. Other instabilities involve the branch of the left-hand polarized electromagnetic ion cyclotron waves which has a resonance at the He{sup +} ion gyrofrequency. These instabilities can also play a role in the energy transfer from the pump wave to the He{sup +} ions through resonance absorption, preferably in the direction perpendicular to the external magnetic field. The new couplings give rise to several types of parametric instabilities such as ordinary decay instabilities, beat wave instabilities, and modulational instabilities. There are also couplings where the pump wave decays into the two electromagnetic sideband waves. 42 refs., 10 figs.

  17. Superconducting Ring Cyclotron for Riken RI Beam Factory in Japan

    NASA Astrophysics Data System (ADS)

    Okuno, H.; Dantsuka, T.; Yamada, K.; Kase, M.; Maie, T.; Kamigaito, O.

    2010-04-01

    Since 1997, RIKEN Nishina Center has been constructing the Radioactive Isotope Beam Factory (RIBF) and succeeded in beam commissioning of its accelerator complex at the end of 2006. The world's first superconducting ring cyclotron (SRC) is the final booster in the RIBF accelerator complex which is able to accelerate all-element heavy ions to a speed of about 70% of the velocity of light. The ring cyclotron consists of 6 major superconducting sector magnets with a maximum field of 3.8 T. The total stored energy is 235 MJ, and its overall sizes are 19 m diameter, 8 m height and 8,300 tons. The magnet system assembly was completed in August 2005, and successfully reached the maximum field in November 2005. The first beam was extracted at the end of 2006 and the first uranium beam was extracted in March 2007. However operation of the helium refrigerator was not satisfactory although the commissioning of SRC was successful. Operation was stopped every two month due to degradation of its cooling power. In February 2008 the reason of the degradation was revealed to be oil contamination. Operation of the cryogenic system was restarted from August 2008 after hard task to clean up the helium refrigerator and to add oil separators to the compressor. After restoration long-term steady operation to keep the magnet superconducting continued for about 8 months with no sign of degradation of cooling capacity.

  18. A study of density in electron-cyclotron-resonance plasma

    SciTech Connect

    Uhm, H.S.; Lee, P.H.; Kim, Y.I.; Kim, J.H.; Chang, H.Y.

    1995-08-01

    A theory is developed for the density profile of low-temperature plasmas confined by applied magnetic field and an experiment of the electron-cyclotron-resonance (ECR) plasma is conducted to compare the theoretical prediction and experimental measurements. Due to a large electron mobility along the magnetic field, electrons move quickly out of the system, leaving ions behind and building a space charge potential, which leads to the ambipolar diffusion of ions. In a steady-state condition, the plasma generation by ionization of neutral molecules is in balance with plasma loss due to the diffusion, leading to the electron temperature equation, which is expressed in terms of the plasma size, chamber pressure, and the ionization energy and cross section of neutrals. The power balance condition leads to the plasma density equation, which is also expressed in terms of the electron temperature, the input microwave power and the chamber pressure. It is shown that the plasma density increases, reaches its peak and decreases, as the chamber pressure increases from a small value (0.1 mTorr). These simple expressions of electron temperature and density provide a scaling law of ECR plasma in terms of system parameters. After carrying out an experimental observation, it is concluded that the theoretical predictions of the electron temperature and plasma density agree remarkably well with experimental data. A large-volume plasma generated by the electron-cyclotron-resonance (ECR) mechanism plays a pivotal role in the plasma processing, including thin-film depositions and plasma etching technologies.

  19. Electron cyclotron harmonic resonances in high-frequency heating of the ionosphere

    SciTech Connect

    Kuo, Spencer P.

    2013-09-15

    Electron acceleration by upper hybrid waves under cyclotron harmonic resonance interaction is studied. Theory is formulated; the analytical solutions in the second and fourth harmonic cyclotron resonance cases are obtained, and in the third harmonic case, a first order differential equation governing the evolution of the electron energy is derived. The theory is applied for explaining the generation of artificial ionization layers observed in high-frequency (HF) ionospheric heating experiments. The upper hybrid waves are assumed to be excited parametrically by the O-mode HF heating wave. As the decay mode is the lower hybrid wave, the excited upper hybrid waves have wavelengths ranging from 0.25 to 0.5 m, which are short enough to effectively incorporate the finite Larmour radius effect for the harmonic cyclotron resonance interactions as well as have a frequency bandwidth of about 20 kHz, which provides an altitude region of about 10 km for continuous harmonic cyclotron resonance interaction between electrons and descending waves in the slightly inhomogeneous geomagnetic field. The numerical results on electron acceleration show that electron fluxes with energies larger than 14 eV are generated in the three harmonic cases. These energetic electrons cause impact ionizations, which are descending to form artificial ionization layers at the bottom of the ionospheric F region.

  20. Design study of a 9 MeV compact cyclotron system for PET

    NASA Astrophysics Data System (ADS)

    Lee, Byeong-No; Shin, Seung-Wook; Song, Hoseung; Kim, Hyun-Wook; Chai, Jong-Seo

    2013-06-01

    A cyclotron is an accelerator which can be applied to both cancer diagnosis and treatment. Among commercially sold cyclotrons, the major energy is used for positron emission tomography (PET) ranges from 10 to 20 MeV. In this research, 9 MeV compact cyclotron for PET was designed. The research was conducted on the response cross section and the yield for the energy distribution to decide the design features. Also, it was determined the specifications on the basis of the fluoro-deoxy-glucose (FDG) maximum dose. The machine, which has a 20 uA beam current, is designed to be installed in small-to-medium-sized hospitals in local cities because of its relatively light weight (6 tons). This compact cyclotron, which provides 9-MeV proton beams, is composed of a azimuthally varying field (AVF) electromagnet, 83-MHz RF systems with a 20 kW amplifier, a panning ion gauge (PIG) type ion-source for negative hydrogen, and a double-stage high-vacuum system. The basic model design was done by using 3-D CAD program, CATIA and all the field calculations were performed using commercial electromagnetic field analysis code, OPERA-3D TOSCA. From this research, we expect a time reduction for FDG production, a decrease of radioactive exposure for workers, and an equipment cost reduction.

  1. Microwave and particle beam sources and directed energy concepts; Proceedings of the Meeting, Los Angeles, CA, Jan. 16-20, 1989

    SciTech Connect

    Brandt, H.E.

    1989-01-01

    The present conference discusses nonlinear mode-competition effects on low-gain FEL oscillator efficiency, high-power travelling-wave amplifier experiments, the operation of a multi-GW relativistic klystron amplifier, turbutron spectra, the linear theory of transvertron microwave sources, novel gigatron technologies for microwave power devices, a preliminary cusptron amplifier, proposed injection-locking of a long-pulse relativistic magnetron, phase-locking demonstrations of a high power vircator, and the initial operation of a Cherenkov cyclotron autoresonance maser. Also discussed are tunable microwigglers for FELs, decoy discrimination using ground-based high-power microwaves, curved electromagnetic missiles, acoustic and electromagnetic bullets, spiral line recirculating induction accelerators, the transport of intense, high-brightness H(-) beams, the stability of compact recirculating accelerators, volume production of hydrogen negative ions, processes in a Li negative-ion source, electrostatic accelerators for negative ion beams, and intense neutralized beams.

  2. Fourier Transform Ion Cyclotron Resonance Mass Spectrometry at the Cyclotron Frequency

    NASA Astrophysics Data System (ADS)

    Nagornov, Konstantin O.; Kozhinov, Anton N.; Tsybin, Yury O.

    2017-02-01

    The phenomenon of ion cyclotron resonance allows for determining mass-to-charge ratio, m/z, of an ensemble of ions by means of measurements of their cyclotron frequency, ω c . In Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS), the ω c quantity is usually unavailable for direct measurements: the resonant state is located close to the reduced cyclotron frequency (ω+), whereas the ω c and the corresponding m/z values may be calculated via theoretical derivation from an experimental estimate of the ω+ quantity. Here, we describe an experimental observation of a new resonant state, which is located close to the ω c frequency and is established because of azimuthally-dependent trapping electric fields of the recently developed ICR cells with narrow aperture detection electrodes. We show that in mass spectra, peaks close to ω+ frequencies can be reduced to negligible levels relative to peaks close to ω c frequencies. Due to reduced errors with which the ω c quantity is obtained, the new resonance provides a means of cyclotron frequency measurements with precision greater than that achieved when ω+ frequency peaks are employed. The described phenomenon may be considered for a development into an FT-ICR MS technology with increased mass accuracy for applications in basic research, life, and environmental sciences.

  3. Fourier Transform Ion Cyclotron Resonance Mass Spectrometry at the Cyclotron Frequency.

    PubMed

    Nagornov, Konstantin O; Kozhinov, Anton N; Tsybin, Yury O

    2017-04-01

    The phenomenon of ion cyclotron resonance allows for determining mass-to-charge ratio, m/z, of an ensemble of ions by means of measurements of their cyclotron frequency, ω c . In Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS), the ω c quantity is usually unavailable for direct measurements: the resonant state is located close to the reduced cyclotron frequency (ω+), whereas the ω c and the corresponding m/z values may be calculated via theoretical derivation from an experimental estimate of the ω+ quantity. Here, we describe an experimental observation of a new resonant state, which is located close to the ω c frequency and is established because of azimuthally-dependent trapping electric fields of the recently developed ICR cells with narrow aperture detection electrodes. We show that in mass spectra, peaks close to ω+ frequencies can be reduced to negligible levels relative to peaks close to ω c frequencies. Due to reduced errors with which the ω c quantity is obtained, the new resonance provides a means of cyclotron frequency measurements with precision greater than that achieved when ω+ frequency peaks are employed. The described phenomenon may be considered for a development into an FT-ICR MS technology with increased mass accuracy for applications in basic research, life, and environmental sciences. Graphical Abstract ᅟ.

  4. The mirror and ion cyclotron anisotropy instabilities

    NASA Technical Reports Server (NTRS)

    Gary, S. P.

    1992-01-01

    The linear dispersion equation for fully electromagnetic waves and instabilities at arbitrary directions of propagation relative to a background magnetic field B(0) in a homogeneous Vlasov plasma is solved numerically for bi-Maxwellian particle distributions. For isotropic plasmas the dispersion and damping of the three modes below the proton cyclotron frequency are studied as functions of Beta(i) and T(e)/T(i). The transport ratios of helicity, cross-helicity, Alfven ratio, compressibility, and parallel compressibility are defined. Under the condition that the proton temperature perpendicular to B(0) is greater than the parallel temperature, the growth rates and transport ratios of the mirror instability and the ion cyclotron anisotropy instability are examined and compared. Both the proton parallel compressibility and the proton Alfven ratio are significantly different for the two growing modes.

  5. Electrostatic ion cyclotron velocity shear instability

    NASA Technical Reports Server (NTRS)

    Lemons, D. S.; Winske, D.; Gary, S. P.

    1992-01-01

    A local electrostatic dispersion equation is derived for a shear flow perpendicular to an ambient magnetic field, which includes all kinetic effects and involves only one important parameter. The dispersion equation is cast in the form of Gordeyev integrals and is solved numerically. Numerical solutions indicate that an ion cyclotron instability is excited. The instability occurs roughly at multiples of the ion cyclotron frequency (modified by the shear), with the growth rate or the individual harmonics overlapping in the wavenumber. At large values of the shear parameter, the instability is confined to long wavelengths, but at smaller shear, a second distinct branch at shorter wavelengths also appears. The properties of the instability obtained are compared with those obtained in the nonlocal limit by Ganguli et al. (1985, 1988).

  6. Ion cyclotron waves observed near the plasmapause

    NASA Technical Reports Server (NTRS)

    Fraser, B. J.; Samson, J. C.; Mcpherron, R. L.; Russell, C. T.

    1986-01-01

    Pc2 electromagnetic ion cyclotron waves at 0.1 Hz, near the oxygen cyclotron frequency, have been observed by ISEE-1 and -2 between L = 7.6 - 5.8 on an inbound near equatorial pass in the dusk sector. The waves occurred in a thick plasmapause of width about 1 earth radius and penetrated about 1 earth radius into the plasmasphere. Wave onset was accompanied by significant increases in the thermal (0-100 eV) He(+) and the warm (0.1-16 keV/e) O(+) and He(+) heavy ion populations. Wave polarization is predominantly left-handed with propagation almost parallel to the ambient magnetic field, and the spectral slot and polarization reversal predicted by multicomponent cold plasma propagation theory are identified in the wave data. The results are considered as an example of wave-particle interactions occurring during the outer plasmasphere refilling process at the time of the substorm recovery phase.

  7. Xe/+/ -induced ion-cyclotron harmonic waves

    NASA Astrophysics Data System (ADS)

    Jones, D.

    Xenon ion sources on an ejectable package separated from the main payload during the flights of Porcupine rockets F3 and F4 which were launched from Kiruna, Sweden on March 19 and 31, 1979, respectively. The effects of the xenon ion beam, detected by the LF (f less than 16 kHz) wideband electric field experiment and analyzed by using a sonograph, are discussed. Particular attention is given to the stimulation of the ion-cyclotron harmonic waves which are usually linked to the local proton gyro-frequency, but are sometimes related to half that frequency. It was found that in a plasma dominated by O(+) ions, a small amount (1-10%) of protons could cause an effect such that the O(+) cyclotron harmonic waves are set up by the hydrogen ions, the net result being the observation of harmonic emissions separated by the hydrogen ion gyro frequency.

  8. Developments for 230 MeV superconducting cyclotrons for proton therapy and proton irradiation

    NASA Astrophysics Data System (ADS)

    Zhang, Tianjue; Wang, Chuan; Li, Ming; Cui, Tao; Yin, Zhiguo; Ji, Bin; Lv, Yinlong; Guan, Fengping; Ge, Tao; Xing, Jiansheng; Yang, Jianjun; Jia, Xianlu; Yin, Meng; Zhang, Suping; Cao, Xuelong; An, Shizhong; Wei, Sumin; Lin, Jun; Cao, Lei; Zhang, Dongsheng; Hou, Shigang; Wang, Feng; Gong, Pengfei

    2017-09-01

    There are very strong demands for mid-energy proton machine in recent years due to the surging cancer patients and fast progress of the space science in China. For the applications of proton therapy and proton irradiation, the energy range of proton beam is usually from 200 MeV to 250 MeV, or even higher for astronavigation. Based on the R&D starting from 2009, a construction project of a 230 MeV superconducting cyclotron (CYCIAE-230) has been launched recently at China Institute of Atomic Energy (CIAE). It was started in Jan 2015, for the program of proton therapy and space science launched by China National Nuclear Corporation (CNNC). In this paper, the designs for the superconducting (SC) cyclotron and its key components, including the main magnet, SC coils, internal ion source and central region, extraction system, etc, and the construction progress of the machine CYCIAE-230 will be presented.

  9. Nonlinear electron acceleration by oblique whistler waves: Landau resonance vs. cyclotron resonance

    SciTech Connect

    Artemyev, A. V.; Agapitov, O. V.; Krasnoselskikh, V. V.; Mourenas, D.

    2013-12-15

    This paper is devoted to the study of the nonlinear interaction of relativistic electrons and high amplitude strongly oblique whistler waves in the Earth's radiation belts. We consider electron trapping into Landau and fundamental cyclotron resonances in a simplified model of dipolar magnetic field. Trapping into the Landau resonance corresponds to a decrease of electron equatorial pitch-angles, while trapping into the first cyclotron resonance increases electron equatorial pitch-angles. For 100 keV electrons, the energy gained due to trapping is similar for both resonances. For electrons with smaller energy, acceleration is more effective when considering the Landau resonance. Moreover, trapping into the Landau resonance is accessible for a wider range of initial pitch-angles and initial energies in comparison with the fundamental resonance. Thus, we can conclude that for intense and strongly oblique waves propagating in the quasi-electrostatic mode, the Landau resonance is generally more important than the fundamental one.

  10. Radiation Sources at Electron Cyclotron Harmonic Frequencies.

    DTIC Science & Technology

    1983-01-28

    KEY WORDS (Continue on reverse side it necesear and Identify by block number) Radiation source, electron cyclotron frequency, gyrotron, travelling ...investigation of gyrotron devices operating in cylindrical geometry. Specific topics include an analysis of oscillations in a gyrotron travelling wave...amplifier, the study of the effects of velocity spread and wall resistivity on gain and bandwidth in a gyrotron travell - ing wave amplifier, an

  11. Cyclotron Wave Electrostatic and Parametric Amplifiers.

    DTIC Science & Technology

    2008-02-15

    Plasma Physics Division GEORGE EwEI.• Georgia Tech Research Institute Atlanta, Georgia, 30332 February 28, 1997 Approved for public release...and transmitted to the external circuit load. Thus, as far as the input resonator is concerned, noises of the electron gun on the fast cyclotron wave...characteristics of CWESA. Engineering the permanent magnet system is often the most challenging part CWESA design at ISTOK. The plane cathode electron gun

  12. Improving cancer treatment with cyclotron produced radionuclides

    SciTech Connect

    Larson, S.M.; Finn, R.D.

    1992-08-04

    Our goal is to improve the scientific basis for tumor diagnosis, treatment and treatment follow-up based on the use of cyclotron produced radiotracers in oncology. The grant includes 3 interactive components: Radiochemistry/Cyclotron; Pharmacology; and Immunology. The radiochemistry group seeks to develop innovative cyclotron targetry, radiopharmaceuticals, and radiolabeled antibodies, which are then used to assess important unanswered questions in tumor pharmacology and immunology. Examples include selected positron emitting radionuclides, such as Iodine-124, and Ga-66; I-124, I-123, I-131 labeled iododeoxyuridine, C-11 colchicine, and antimetabolites, like C-11 methotrexate; and radiolabeled antibodies, 3F8, M195, A33, and MRK16 for application in the pharmacology and immunology projects. The pharmacology program studies tumor resistance to chemotherapy, particularly the phenomenon of multidrug resistance and the relationship between tumor uptake and retention and the tumor response for anti-metabolite drugs. The immunology program studies the physiology of antibody localization at the tissue level as the basis for novel approaches to improving tumor localization such as through the use of an artificial lymphatic system which mechanically reduces intratumoral pressures in tumors in vivo. Quantitative imaging approaches based on PET and SPECT in radioimmunotherapy are studied to give greater insight into the physiology of tumor localization and dosimetry.

  13. Cyclotron Requirements for Multi-disciplinary Programs

    NASA Astrophysics Data System (ADS)

    Armbruster, John M.

    2009-03-01

    As time has passed, the various Cyclotron programs have changed over the years. In the "early" times of Cyclotron operations, the emphasis was on a more single sided approach such as Clinical or Research or Production. However, as time passed, the disciplines became more interconnected until today, it is unusual to have a Cyclotron and only have a single program unless it is pure production. More and more, especially in public areas such as Universities or Health Centers, you are seeing programs that do all three types of disciplines: Production; Clinical or Patient Diagnostics and/or Treatment; and Research, either in the development and manufacture of new Radio-Isotopes, new Diagnostic or Therapeutic Compound Development, or Clinical Research involving subject testing. While all three of these disciplines have some common requirements, they also have some very different requirements that may be completely counterproductive to other requirements. For a program where all three disciplines are required to be successful, it is necessary come up with some sort of compromise that meets all the various requirements. During this talk, we will try to identify some of these different requirements for the various disciplines and how these could impact the other disciplines. We will also discuss ideas for some possible compromises that might reduce the conflict between the various disciplines.

  14. Transparency of Magnetized Plasma at Cyclotron Frequency

    SciTech Connect

    G. Shvets; J.S. Wurtele

    2002-03-14

    Electromagnetic radiation is strongly absorbed by a magnetized plasma if the radiation frequency equals the cyclotron frequency of plasma electrons. It is demonstrated that absorption can be completely canceled in the presence of a magnetostatic field of an undulator or a second radiation beam, resulting in plasma transparency at the cyclotron frequency. This effect is reminiscent of the electromagnetically induced transparency (EIT) of the three-level atomic systems, except that it occurs in a completely classical plasma. Unlike the atomic systems, where all the excited levels required for EIT exist in each atom, this classical EIT requires the excitation of the nonlocal plasma oscillation. The complexity of the plasma system results in an index of refraction at the cyclotron frequency that differs from unity. Lagrangian description was used to elucidate the physics and enable numerical simulation of the plasma transparency and control of group and phase velocity. This control naturally leads to applications for electromagnetic pulse compression in the plasma and electron/ion acceleration.

  15. Discovery of Cyclotron Resonance Features in the Soft Gamma Repeater SGR 1806-20

    NASA Technical Reports Server (NTRS)

    Ibrahim, Alaa I.; Safi-Harb, Samar; Swank, Jean H.; Parke, William; Zane, Silvia; Turolla, Roberto

    2002-01-01

    We report evidence of cyclotron resonance features from the Soft Gamma Repeater SGR 1806-20 in outburst, detected with the Rossi X-ray Timing Explorer in the spectrum of a long, complex precursor that preceded a strong burst. The features consist of a narrow 5.0 keV absorption line with modulation near its second and third harmonics (at 11.2 keV and 17.5 keV respectively). The line features are transient and are detected in the harder part of the precursor. The 5.0 keV feature is strong, with an equivalent width of approx. 500 eV and a narrow width of less than 0.4 keV. Interpreting the features as electron cyclotron lines in the context of accretion models leads to a large mass-radius ratio (M/R greater than 0.3 solar mass/km) that is inconsistent with neutron stars or that requires a low (5-7) x 10(exp 11) G magnetic field that is unlikely for SGRs. The line widths are also narrow compared with those of electron cyclotron resonances observed so far in X-ray pulsars. In the magnetar picture, the features are plausibly explained as ion cyclotron resonances in an ultra-strong magnetic field that have recently been predicted from magnetar candidates. In this view, the 5.0 keV feature is consistent with a proton cyclotron fundamental whose energy and width are close to model predictions. The line energy would correspond to a surface magnetic field of 1.0 x 10(exp 15) G for SGR 1806-20, in good agreement with that inferred from the spin-down measure in the source.

  16. Discovery of Cyclotron Resonance Features in the Soft Gamma Repeater SGR 1806-20

    NASA Technical Reports Server (NTRS)

    Ibrahim, A. I.; Safi-Harb, Samar; Swank, Jean H.; Parke, William; Zane, Silvia; Turolla, Roberto; White, Nicholas E. (Technical Monitor)

    2002-01-01

    We report evidence for cyclotron resonance features from the Soft Gamma Repeater SCR 1806-20 in outburst, detected with the Rossi X-ray Timing Explorer in the spectrum of a long, complex precursor that preceded a strong burst. The features consist of a narrow 5.0 keV absorption line with modulation near its second and third harmonics (at 11.2 keV and 17.5 keV respectively). The line features are transient and are detected in the harder part of the precursor. The 5.0 keV feature is strong, with an equivalent width of approx. 500 eV, and a narrow width of < 0.4 keV. Interpreting the features as electron cyclotron lines in the context of accretion models leads to a large mass-radius ratio (M/R > 0.3 Solar Mass/km) that is inconsistent with neutron stars, or requires a low (5 - 7) x 10(exp 11) G magnetic field that is unlikely for SGRs. The line widths are also narrow compared to those of electron cyclotron resonances observed so far in X-ray pulsars. In the magnetar picture, the features are plausibly explained as ion cyclotron resonances in an ultra-strong magnetic field, which have recently been predicted from magnetar candidates. In this view, the 5.0 keV feature is consistent with a proton cyclotron fundamental whose energy and width are close to model predictions. The line energy would correspond to a surface magnetic field of 1.0 x 10(exp 15) G for SGR 1806-20, in good agreement with that inferred from the spin-down measure in the source.

  17. Geometric analysis of phase bunching in the central region of cyclotron

    NASA Astrophysics Data System (ADS)

    Miyawaki, Nobumasa; Fukuda, Mitsuhiro; Kurashima, Satoshi; Kashiwagi, Hirotsugu; Okumura, Susumu; Arakawa, Kazuo; Kamiya, Tomihiro

    2013-07-01

    An optimum condition for realizing phase bunching in the central region of a cyclotron was quantitatively clarified by a simplified geometric trajectory analysis of charged particles from the first to the second acceleration gap. The phase bunching performance was evaluated for a general case of a cyclotron. The phase difference of incident particles at the second acceleration gap depends on the combination of four parameters: the acceleration harmonic number h, the span angle θD of the dee electrode, the span angle θF from the first to the second acceleration gap, the ratio RV of the peak acceleration voltage between the cyclotron and ion source. Optimum values of θF for phase bunching were limited by the relationship between h and θD, which is 90°/h+θD/2≤θF≤180°/h+θD/2, and sin θF>0. The phase difference with respect to the reference particle at the second acceleration gap is minimized for voltage-ratios between two and four for an initial phase difference within 40 RF degrees. Although the slope of the first acceleration gap contributes to the RF phase at which the particles reach the second acceleration gap, phase bunching was not affected. An orbit simulation of the AVF cyclotron at the Japan Atomic Energy Agency verifies the evaluation based on geometric analysis.

  18. Simulation on the electronic wave packet cyclotron motion in a Weyl semimetal slab.

    PubMed

    Yao, Haibo; Zhu, Mingfeng; Jiang, Liwei; Zheng, Yisong

    2017-04-20

    We perform a numerical simulation on the time evolution of an electronic wave packet in a Weyl semimetal (WSM) slab driven by a magnetic field. We find that the evolution trajectory of the wave packet depends sensitively on its initial spin state. Only with initial spin state identical to that of the Fermi arc state at the surface it localized, does the wave packet evolution demonstrate the characteristic cyclotron orbit of WSM previously predicted from a semiclassical viewpoint. By analyzing the eigen-expansion of the electronic wave packet, we find the chiral Landau levels (LLs) of the WSM slab, as ingredients of the wave packet, to be responsible for establishing the characteristic WSM cyclotron orbit. In contrast, the nonchiral LLs contribute irregular oscillations to the wave packet evolution, going against the formation of a well-defined cyclotron orbit. In addition, the tilted magnetic field does not affect the motion of the electronic wave packet along the Fermi arcs in the momentum space. It does, however, alter the evolution trajectory of the electronic wave packet in real space and spin space. Finally, the energy disalignment of the Weyl nodes results in a 3D cyclotron orbit in real space.

  19. Simulation on the electronic wave packet cyclotron motion in a Weyl semimetal slab

    NASA Astrophysics Data System (ADS)

    Yao, Haibo; Zhu, Mingfeng; Jiang, Liwei; Zheng, Yisong

    2017-04-01

    We perform a numerical simulation on the time evolution of an electronic wave packet in a Weyl semimetal (WSM) slab driven by a magnetic field. We find that the evolution trajectory of the wave packet depends sensitively on its initial spin state. Only with initial spin state identical to that of the Fermi arc state at the surface it localized, does the wave packet evolution demonstrate the characteristic cyclotron orbit of WSM previously predicted from a semiclassical viewpoint. By analyzing the eigen-expansion of the electronic wave packet, we find the chiral Landau levels (LLs) of the WSM slab, as ingredients of the wave packet, to be responsible for establishing the characteristic WSM cyclotron orbit. In contrast, the nonchiral LLs contribute irregular oscillations to the wave packet evolution, going against the formation of a well-defined cyclotron orbit. In addition, the tilted magnetic field does not affect the motion of the electronic wave packet along the Fermi arcs in the momentum space. It does, however, alter the evolution trajectory of the electronic wave packet in real space and spin space. Finally, the energy disalignment of the Weyl nodes results in a 3D cyclotron orbit in real space.

  20. Precipitation of Relativistic Electrons by Electromagnetic Ion Cyclotron (EMIC) Waves

    NASA Astrophysics Data System (ADS)

    Denton, R. E.

    2015-12-01

    We use the electromagnetic ion cyclotron (EMIC) wave fields produced in a two dimensional hybrid code simulation (full dynamics particle ions, but inertialess fluid electrons) in dipole geometry in order to investigate the effect of magnetospheric EMIC waves on relativistic electrons. The plane of the simulation includes variation in the L shell direction and along magnetic field lines. Relativistic test particle electrons are inserted into the simulation when the wave fields are near their maximum amplitude. These electrons can be scattered into the loss cone so that they precipitate into the ionosphere. We find the effective pitch angle diffusion coefficient and probability of precipitation using these test particles. The pitch angle diffusion coefficients are largest for relativistic energies greater than 2 MeV, though they may be substantial for lower energies. The probability of precipitation is highest for low energy particles at small initial equatorial pitch angle. For high initial equatorial pitch angles, the probability of precipitation increases greatly with respect to particle energy. Starting from an isotropic pitch angle distribution of relativistic electrons with a Gaussian spread in the relativistic momentum, we find only a small drop in the probability of precipitation during 13 s time as the particle energy decreases. But that result depends on the initial pitch angle distribution. Starting with a distribution of particles steeply peaked at 90° initial equatorial pitch angle, the probability of precipitation would be greater for high-energy particles. We will discuss the mechanism of pitch angle scattering.

  1. A simple electron cyclotron resonance ion source (abstract)a)

    NASA Astrophysics Data System (ADS)

    Welton, R. F.; Moran, T. F.; Feeney, R. K.; Thomas, E. W.

    1996-03-01

    A simple, all permanent magnet, 2.45 GHz electron cyclotron resonance ion source has been developed for the production of stable beams of low charge state ions from gaseous feed materials. The source can produce ˜1 mA of low energy (3 kV) singly charged ion current in the 10-4 Torr pressure range. The source can also be operated in a more efficient low-pressure mode at an order of magnitude lower pressure. In this latter range, for example, the ionization efficiency of Ar is estimated to be 1% with charge states up to Ar8+ present. Operation in the low-pressure mode requires low power input (˜20 W). These features make the source especially suited for use with small accelerator systems for a number of applications including ion implantation, mass spectrometry, and atomic collision experiments where multiply charged ions are desirable. Design details and performance characteristics of the source are presented.

  2. Cyclotron resonance maser experiment in a nondispersive waveguide

    SciTech Connect

    Jerby, E.; Shahadi, A.; Drori, R.

    1996-06-01

    A cyclotron-resonance maser (CRM) oscillator experiment in which a spiraling electron beam interacts with a transverse electromagnetic wave in a nondispersive waveguide is presented. The experiment employs a low-energy low-current electron beam in a two-wire (Lecher type) waveguide. The microwave output frequency is tuned in this experiment by the axial magnetic field in the range 3.5--6.0 GHz. A second harmonic emission is observed at {approximately}7 GHz. CRM theory shows that in a free-space TEM-mode interaction, the gain might be canceled due to the equal and opposite effects of the axial (Weibel) and the azimuthal bunching mechanisms. This balance is violated in the large transverse velocity regime (V{sub {perpendicular}} {much_gt} V{sub z}) in which the experiment operates. The tunability measurements of the CRM oscillator experiment in the nondispersive waveguide are discussed in view of the CRM theory.

  3. Project 8: Towards cyclotron radiation emission spectroscopy on tritium

    NASA Astrophysics Data System (ADS)

    Fertl, Martin; Project 8 Collaboration

    2017-01-01

    Project 8 aims to determine the neutrino mass by making a precise measurement of the beta decay of molecular tritium (Q = 18.6 keV) using the recently demonstrated the technique of cyclotron radiation emission spectroscopy (CRES). We report on results for calibration measurements performed with Kr-83m in a gas cell that fulfills the stringent requirements for a measurement using tritium: cryogenic operation, safe tritium handling, a non-magnetic design, and a good microwave guide performance. The phased program that allows Project 8 to probe the neutrino mass range accessible using molecular tritium is described. Major financial support by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics to the University of Washington under Award Number DE-FG02-97ER41020 is acknowledged

  4. Ring Current Ion Coupling with Electromagnetic Ion Cyclotron Waves

    NASA Technical Reports Server (NTRS)

    Khazanov, George V.

    2002-01-01

    A new ring current global model has been developed for the first time that couples the system of two kinetic equations: one equation describes the ring current (RC) ion dynamic, and another equation describes wave evolution of electromagnetic ion cyclotron waves (EMIC). The coupled model is able to simulate, for the first time self-consistently calculated RC ion kinetic and evolution of EMIC waves that propagate along geomagnetic field lines and reflect from the ionosphere. Ionospheric properties affect the reflection index through the integral Pedersen and Hall coductivities. The structure and dynamics of the ring current proton precipitating flux regions, intensities of EMIC, global RC energy balance, and some other parameters will be studied in detail for the selected geomagnetic storms. The space whether aspects of RC modelling and comparison with the data will also be discussed.

  5. Ring Current Ion Coupling with Electromagnetic Ion Cyclotron Waves

    NASA Technical Reports Server (NTRS)

    Khazanov. G. V.; Gamayunov, K. V.; Jordanova, V. K.; Six, N. Frank (Technical Monitor)

    2002-01-01

    A new ring current global model has been developed that couples the system of two kinetic equations: one equation describes the ring current (RC) ion dynamic, and another equation describes wave evolution of electromagnetic ion cyclotron waves (EMIC). The coupled model is able to simulate, for the first time self-consistently calculated RC ion kinetic and evolution of EMIC waves that propagate along geomagnetic field lines and reflect from the ionosphere. Ionospheric properties affect the reflection index through the integral Pedersen and Hall conductivities. The structure and dynamics of the ring current proton precipitating flux regions, intensities of EMIC global RC energy balance, and some other parameters will be studied in detail for the selected geomagnetic storms.

  6. Excitation of Electron Cyclotron Harmonic Waves in Earth's Magnetotail

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaojia

    This dissertation investigates the generation mechanism, spatial distribution and characteristics of electrostatic electron cyclotron harmonic (ECH) waves under different plasma sheet conditions, and quantifies the role of these waves in producing the diffuse aurora. THEMIS observations from five magnetotail seasons, along with ray-tracing, and electron diffusion codes have been utilized towards that goal. By modeling the wave growth and quasi-linear pitch-angle diffusion of electrons with realistic parameters for the magnetic field, loss-cone distribution and wave intensity (obtained from observations as a function of magnetotail location), we estimate the loss-cone fill ratio and the contribution of auroral energy flux from wave-induced electron precipitation. We conclude that ECH waves are the dominant driver of electron precipitation in the middle to outer magnetotail.

  7. Parametric Instabilities of Electron Cyclotron Waves in Plasmas.

    DTIC Science & Technology

    1980-03-01

    tokamaks eg. PLT. In the EBT, the electron cyclotron pump of finite wavenumber 1% decays into two Bernstein modes at the second harmonic cyclotron...convective threshold with finite k, is -200 W/ . For large tokamaks , the convective threshold for various decay channels turns out to be >200 KW/cu 2...efforts on the electron cyclotron heating of large devices, eg., Elmo bumpy torus, tokamak and mirrors. In the Elmo 1bumpy torus (EBT) the microwaves

  8. THE Be/X-RAY BINARY SWIFT J1626.6-5156 AS A VARIABLE CYCLOTRON LINE SOURCE

    SciTech Connect

    DeCesar, Megan E.; Miller, M. Coleman; Boyd, Patricia T.; Pottschmidt, Katja; Wilms, Joern; Suchy, Slawomir

    2013-01-01

    Swift J1626.6-5156 is a Be/X-ray binary that was in outburst from 2005 December until 2008 November. We have examined Rossi X-ray Timing Explorer/Proportional Counter Array (PCA) and High Energy X-ray Timing Explorer spectra of three long observations of this source taken early in its outburst, when the PCA 2-20 keV count rate was >70 counts s{sup -1} PCU{sup -1}, as well as several combined observations from different stages of the outburst. The spectra are best fit with an absorbed cutoff power law with a {approx}6.4 keV iron emission line and a Gaussian optical depth absorption line at {approx}10 keV. We present strong evidence that this absorption-like feature is a cyclotron resonance scattering feature, making Swift J1626.6-5156 a new candidate cyclotron line source. The redshifted energy of {approx}10 keV implies a magnetic field strength of {approx}8.6(1 + z) Multiplication-Sign 10{sup 11} G in the region of the accretion column close to the magnetic poles where the cyclotron line is produced. Analysis of phase-averaged spectra spanning the duration of the outburst suggests a possible positive correlation between the fundamental cyclotron energy and source luminosity. Phase-resolved spectroscopy from a long observation reveals a variable cyclotron line energy, with phase dependence similar to a variety of other pulsars, as well as the first harmonic of the fundamental cyclotron line.

  9. The Michigan State University Cyclotron Laboratory: Its Early Years

    NASA Astrophysics Data System (ADS)

    Austin, Sam M.

    2016-01-01

    The Michigan State University Cyclotron Laboratory was founded in 1958 and over the years grew in stature, becoming the highest-ranked university-based program in nuclear science. Its K50 cyclotron had unmatched capability as a light-ion accelerator and helped to define what a modern cyclotron could do to advance our understanding of nuclei. This paper describes the first twenty years of the Cyclotron Laboratory's evolution and gives some insight into the cultural characteristics of the laboratory, and of its early members, that led it to thrive.

  10. Observations of multiharmonic ion cyclotron waves due to inverse ion cyclotron damping in the northern magnetospheric cusp

    NASA Astrophysics Data System (ADS)

    Slapak, R.; Gunell, H.; Hamrin, M.

    2017-01-01

    We present a case study of inverse ion cyclotron damping taking place in the northern terrestrial magnetospheric cusp, exciting waves at the ion cyclotron frequency and its harmonics. The ion cyclotron waves are primarily seen as peaks in the magnetic-field spectral densities. The corresponding peaks in the electric-field spectral densities are not as profound, suggesting a background electric field noise or other processes of wave generation causing the electric spectral densities to smoothen out more compared to the magnetic counterpart. The required condition for inverse ion cyclotron damping is a velocity shear in the magnetic field-aligned ion bulk flow, and this condition is often naturally met for magnetosheath influx in the northern magnetospheric cusp, just as in the presented case. We note that some ion cyclotron wave activity is present in a few similar shear events in the southern cusp, which indicates that other mechanisms generating ion cyclotron waves may also be present during such conditions.

  11. Cyclotron resonance in plasma flow

    SciTech Connect

    Artemyev, A. V.; Agapitov, O. V.; Krasnoselskikh, V. V.

    2013-12-15

    This paper is devoted to the mechanism of particle acceleration via resonant interaction with the electromagnetic circular wave propagating along the inhomogeneous background magnetic field in the presence of a plasma flow. We consider the system where the plasma flow velocity is large enough to change the direction of wave propagation in the rest frame. This system mimics a magnetic field configuration typical for inner structure of a quasi-parallel shock wave. We consider conditions of gyroresonant interaction when the force corresponding to an inhomogeneity of the background magnetic field is compensated by the Lorentz force of the wave-magnetic field. The wave-amplitude is assumed to be about 10% of the background magnetic field. We show that particles can gain energy if kv{sub sw}>ω>kv{sub sw}−Ω{sub c} where k is the wave number, v{sub sw} is a plasma flow velocity, and ω and Ω{sub c} are the wave frequency and the particle gyrofrequency, respectively. This mechanism of acceleration resembles the gyrosurfing mechanism, but the effect of the electrostatic field is replaced by the effect of the magnetic field inhomogeneity.

  12. Toward a System-Based Approach to Electromagnetic Ion Cyclotron Waves in Earth's Magnetosphere

    NASA Astrophysics Data System (ADS)

    Gamayunov, K. V.; Engebretson, M. J.; Rassoul, H.

    2015-12-01

    We consider a nonlinear wave energy cascade from the low frequency range into the higher frequency domain of electromagnetic ion cyclotron (EMIC) wave generation as a possible source of seed fluctuations for EMIC wave growth due to the ion cyclotron instability in Earth's magnetosphere. The theoretical analysis shows that energy cascade from the Pc 4-5 frequency range (2-22 mHz) into the range of Pc 1-2 pulsations (0.1-5 Hz) is able to supply the level of seed fluctuations that guarantees growth of EMIC waves up to an observable level during one pass through the near equatorial region where the ion cyclotron instability takes place. We also analyze magnetic field data from the Polar and Van Allen Probes spacecraft to test this nonlinear mechanism. We restrict our analysis to magnetic spectra only. We do not analyze the third-order moment for total energy of the magnetic and velocity fluctuations, but judge whether a nonlinear energy cascade is present or whether it is not by only analyzing the appearance of power-law distributions in the low frequency part of the magnetic field spectra. While the power-law spectrum alone does not guarantee that a nonlinear cascade is present, the power-law distribution is a strong indication of the possible development of a nonlinear cascade. Our data analysis shows that a nonlinear energy cascade is indeed observed in both the outer and inner magnetosphere, and EMIC waves are growing from this nonthermal background. All the analyzed data are in good agreement with the theoretical model presented in this study. Overall, the results of this study support a nonlinear energy cascade in Earth's magnetosphere as a mechanism which is responsible for supplying seed fluctuating energy in the higher frequency domain where EMIC waves grow due to the ion cyclotron instability. Keywords: nonlinear energy cascade, ultra low frequency waves, electromagnetic ion cyclotron waves, seed fluctuationsAcknowledgments: This paper is based upon work

  13. High intensity proton beam transportation through fringe field of 70 MeV compact cyclotron to beam line targets

    NASA Astrophysics Data System (ADS)

    Zhang, Xu; Li, Ming; Wei, Sumin; Xing, Jiansheng; Hu, Yueming; Johnson, Richard R.; Piazza, Leandro; Ryjkov, Vladimir

    2016-06-01

    From the stripping points, the high intensity proton beam of a compact cyclotron travels through the fringe field area of the machine to the combination magnet. Starting from there the beams with various energy is transferred to the switching magnet for distribution to the beam line targets. In the design of the extraction and transport system for the compact proton cyclotron facilities, such as the 70 MeV in France and the 100 MeV in China, the space charge effect as the beam crosses the fringe field has not been previously considered; neither has the impact on transverse beam envelope coupled from the longitudinal direction. Those have been concerned much more with the higher beam-power because of the beam loss problem. In this paper, based on the mapping data of 70 MeV cyclotron including the fringe field by BEST Cyclotron Inc (BEST) and combination magnet field by China Institute of Atomic Energy (CIAE), the beam extraction and transport are investigated for the 70 MeV cyclotron used on the SPES project at Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Legnaro (INFN-LNL). The study includes the space charge effect and longitudinal and transverse coupling mentioned above, as well as the matching of beam optics using the beam line for medical isotope production as an example. In addition, the designs of the ±45° switching magnets and the 60° bending magnet for the extracted beam with the energy from 35 MeV to 70 MeV have been made. Parts of the construction and field measurements of those magnets have been done as well. The current result shows that, the design considers the complexity of the compact cyclotron extraction area and fits the requirements of the extraction and transport for high intensity proton beam, especially at mA intensity levels.

  14. Evidence for cyclotron absorption from spectral features in gamma-ray bursts seen with Ginga

    NASA Technical Reports Server (NTRS)

    Murakami, T.; Fujii, M.; Hayashida, K.; Itoh, M.; Nishimura, J.

    1988-01-01

    New observations by the gamma-ray burst detector on board the Ginga satellite, which has two well-calibrated detectors covering a wide energy range of 1.5 to 375 keV, are reported. The spectral features obtained are consistent with first and second cyclotron harmonics. This finding is taken as strong evidence for the magnetized neutron star model of gamma-ray bursts.

  15. SPES: A new cyclotron-based facility for research and applications with high-intensity beams

    NASA Astrophysics Data System (ADS)

    Maggiore, M.; Campo, D.; Antonini, P.; Lombardi, A.; Manzolaro, M.; Andrighetto, A.; Monetti, A.; Scarpa, D.; Esposito, J.; Silvestrin, L.

    2017-06-01

    In 2016, Laboratori Nazionali di Legnaro (Italy) started the commissioning of a new accelerator facility based on a high-power cyclotron able to deliver proton beams up to 70 MeV of energy and 700 μA current. Such a machine is the core of the Selective Production of Exotic Species (SPES) project whose main goal is to provide exotics beam for nuclear and astrophysics research and to deliver high-intensity proton beams for medical applications and neutrons generator.

  16. Ray-tracing study of electron-cyclotron heating in toroidal geometry

    SciTech Connect

    Kritz, A.H.; Hsuan, H.; Goldfinger, R.C.; Batchelor, D.B.

    1983-03-01

    TORAY, a ray-tracing code has been developed to study electron-cyclotron heating and current drive in toroidal geometry. Ray patterns are initiated similar to those of an actual antenna and a full graphics package has been developed for displaying the behavior of the rays. We study the interplay of the plasma and wave parameters in order to establish which parameters are most important in determining the energy deposition.

  17. Experimental observation of acoustic emissions generated by a pulsed proton beam from a hospital-based clinical cyclotron

    SciTech Connect

    Jones, Kevin C.; Solberg, Timothy D.; Avery, Stephen; Vander Stappen, François; Janssens, Guillaume; Prieels, Damien; Bawiec, Christopher R.; Lewin, Peter A.; Sehgal, Chandra M.

    2015-12-15

    Purpose: To measure the acoustic signal generated by a pulsed proton spill from a hospital-based clinical cyclotron. Methods: An electronic function generator modulated the IBA C230 isochronous cyclotron to create a pulsed proton beam. The acoustic emissions generated by the proton beam were measured in water using a hydrophone. The acoustic measurements were repeated with increasing proton current and increasing distance between detector and beam. Results: The cyclotron generated proton spills with rise times of 18 μs and a maximum measured instantaneous proton current of 790 nA. Acoustic emissions generated by the proton energy deposition were measured to be on the order of mPa. The origin of the acoustic wave was identified as the proton beam based on the correlation between acoustic emission arrival time and distance between the hydrophone and proton beam. The acoustic frequency spectrum peaked at 10 kHz, and the acoustic pressure amplitude increased monotonically with increasing proton current. Conclusions: The authors report the first observation of acoustic emissions generated by a proton beam from a hospital-based clinical cyclotron. When modulated by an electronic function generator, the cyclotron is capable of creating proton spills with fast rise times (18 μs) and high instantaneous currents (790 nA). Measurements of the proton-generated acoustic emissions in a clinical setting may provide a method for in vivo proton range verification and patient monitoring.

  18. Experimental observation of acoustic emissions generated by a pulsed proton beam from a hospital-based clinical cyclotron.

    PubMed

    Jones, Kevin C; Vander Stappen, François; Bawiec, Christopher R; Janssens, Guillaume; Lewin, Peter A; Prieels, Damien; Solberg, Timothy D; Sehgal, Chandra M; Avery, Stephen

    2015-12-01

    To measure the acoustic signal generated by a pulsed proton spill from a hospital-based clinical cyclotron. An electronic function generator modulated the IBA C230 isochronous cyclotron to create a pulsed proton beam. The acoustic emissions generated by the proton beam were measured in water using a hydrophone. The acoustic measurements were repeated with increasing proton current and increasing distance between detector and beam. The cyclotron generated proton spills with rise times of 18 μs and a maximum measured instantaneous proton current of 790 nA. Acoustic emissions generated by the proton energy deposition were measured to be on the order of mPa. The origin of the acoustic wave was identified as the proton beam based on the correlation between acoustic emission arrival time and distance between the hydrophone and proton beam. The acoustic frequency spectrum peaked at 10 kHz, and the acoustic pressure amplitude increased monotonically with increasing proton current. The authors report the first observation of acoustic emissions generated by a proton beam from a hospital-based clinical cyclotron. When modulated by an electronic function generator, the cyclotron is capable of creating proton spills with fast rise times (18 μs) and high instantaneous currents (790 nA). Measurements of the proton-generated acoustic emissions in a clinical setting may provide a method for in vivo proton range verification and patient monitoring.

  19. Electron Cyclotron Maser Emissions from Evolving Fast Electron Beams

    NASA Astrophysics Data System (ADS)

    Tang, J. F.; Wu, D. J.; Chen, L.; Zhao, G. Q.; Tan, C. M.

    2016-05-01

    Fast electron beams (FEBs) are common products of solar active phenomena. Solar radio bursts are an important diagnostic tool for understanding FEBs and the solar plasma environment in which they propagate along solar magnetic fields. In particular, the evolution of the energy spectrum and velocity distribution of FEBs due to the interaction with the ambient plasma and field during propagation can significantly influence the efficiency and properties of their emissions. In this paper, we discuss the possible evolution of the energy spectrum and velocity distribution of FEBs due to energy loss processes and the pitch-angle effect caused by magnetic field inhomogeneity, and we analyze the effects of the evolution on electron-cyclotron maser (ECM) emission, which is one of the most important mechanisms for producing solar radio bursts by FEBs. Our results show that the growth rates all decrease with the energy loss factor Q, but increase with the magnetic mirror ratio σ as well as with the steepness index δ. Moreover, the evolution of FEBs can also significantly influence the fastest growing mode and the fastest growing phase angle. This leads to the change of the polarization sense of the ECM emission. In particular, our results also reveal that an FEB that undergoes different evolution processes will generate different types of ECM emission. We believe the present results to be very helpful for a more comprehensive understanding of the dynamic spectra of solar radio bursts.

  20. Electron cyclotron emission diagnostics on KSTAR tokamak

    SciTech Connect

    Jeong, S. H.; Lee, K. D.; Kwon, M.; Kogi, Y.; Kawahata, K.; Nagayama, Y.; Mase, A.

    2010-10-15

    A new electron cyclotron emission (ECE) diagnostics system was installed for the Second Korea Superconducting Tokamak Advanced Research (KSTAR) campaign. The new ECE system consists of an ECE collecting optics system, an overmode circular corrugated waveguide system, and 48 channel heterodyne radiometer with the frequency range of 110-162 GHz. During the 2 T operation of the KSTAR tokamak, the electron temperatures as well as its radial profiles at the high field side were measured and sawtooth phenomena were also observed. We also discuss the effect of a window on in situ calibration.

  1. Electron Cyclotron Heating on DIII-D

    SciTech Connect

    Prater, R.; Petty, C.C.

    2005-10-15

    Electron cyclotron heating (ECH) has proved to be a very flexible system for heating applications in DIII-D. The outstanding characteristics of ECH - controllable heating location, a high degree of localization of the power, ability to heat without introducing particles, and ability to heat only the electron fluid - have been used in a wide variety of experiments to study wave physics and transport, to control magnetohydrodynamic activity, and to improve discharges. These characteristics along with relatively easy coupling to the plasma make ECH a valuable resource for both heating and instability control in burning plasmas.

  2. [Electron cyclotron resonance (ECR) plasma film deposition

    SciTech Connect

    1999-04-01

    During the third quarter of 1995, an electron cyclotron resonance (ECR) plasma film deposition facility was constructed at the University of New Mexico. This work was conducted in support of the Los Alamos/Tycom CRADA agreement to pursue methods of improving drill bit lifetime. Work in the fourth quarter will center on the coating of drill bits and the treating and testing of various test samples. New material systems as well as treatment techniques will be attempted during this period. The following is a brief description of the various subsystems of the film deposition facility. Particular emphasis is placed on the slotted waveguide system as requested.

  3. Method of enhancing cyclotron beam intensity

    DOEpatents

    Hudson, Ed D.; Mallory, Merrit L.

    1977-01-01

    When an easily ionized support gas such as xenon is added to the cold cathode in sources of the Oak Ridge Isochronous Cyclotron, large beam enhancements are produced. For example, .sup.20 Ne.sup.7+ is increased from 0.05 enA to 27 enA, and .sup.16 O.sup.5+ intensities in excess of 35 e.mu.A have been extracted for periods up to 30 minutes. Approximately 0.15 cc/min of the easily ionized support gas is supplied to the ion source through a separate gas feed line and the primary gas flow is reduced by about 30%.

  4. Cavity QED of the graphene cyclotron transition.

    PubMed

    Hagenmüller, David; Ciuti, Cristiano

    2012-12-28

    We investigate theoretically the cavity quantum electrodynamics of the cyclotron transition for Dirac fermions in graphene. We show that the ultrastrong coupling regime characterized by a vacuum Rabi frequency comparable or even larger than the transition frequency can be obtained for high enough filling factors of the graphene Landau levels. Important qualitative differences occur with respect to the corresponding physics of massive electrons in a semiconductor quantum well. In particular, an instability for the ground state analogous to the one occurring in the Dicke model is predicted for an increasing value of the electron density.

  5. Observations of correlated broadband electrostatic noise and electron-cyclotron emissions in the plasma sheet. Technical report

    SciTech Connect

    Roeder, J.L.; Angelopoulos, V.; Baumjohann, W.; Anderson, R.R.

    1991-11-15

    Electric field wave observations in the central plasma sheet of the earth's magnetosphere show the correlated occurrence of broadband electrostatic noise and electrostatic electron cyclotron harmonic emissions. A model is proposed in which the broadband emissions are electron acoustic waves generated by an observed low energy electron beam, and the cyclotron emissions are generated by the hot electron loss cone instability. The high degree of correlation between the two emissions is provided in the model by the presence of the cold electron beam population, which allows both of the plasma instabilities to grow.

  6. The nonlinear theory of slow-wave electron cyclotron masers with inclusion of the beam velocity spread

    SciTech Connect

    Kong, Ling-Bao; Wang, Hong-Yu; Hou, Zhi-Ling; Jin, Hai-Bo; Du, Chao-Hai

    2013-12-15

    The nonlinear theory of slow-wave electron cyclotron masers (ECM) with an initially straight electron beam is developed. The evolution equation of the nonlinear beam electron energy is derived. The numerical studies of the slow-wave ECM efficiency with inclusion of Gaussian beam velocity spread are presented. It is shown that the velocity spread reduces the interaction efficiency. -- Highlights: •The theory of slow-wave electron cyclotron masers is considered. •The calculation of efficiency under the resonance condition is presented. •The efficiency under Gaussian velocity spreads has been obtained.

  7. Radio frequency cavity analysis, measurement, and calibration of absolute Dee voltage for K-500 superconducting cyclotron at VECC, Kolkata

    NASA Astrophysics Data System (ADS)

    Som, Sumit; Seth, Sudeshna; Mandal, Aditya; Paul, Saikat; Duttagupta, Anjan

    2013-02-01

    Variable Energy Cyclotron Centre has commissioned a K-500 superconducting cyclotron for various types of nuclear physics experiments. The 3-phase radio-frequency system of superconducting cyclotron has been developed in the frequency range 9-27 MHz with amplitude and phase stability of 100 ppm and ±0.20, respectively. The analysis of the RF cavity has been carried out using 3D Computer Simulation Technology (CST) Microwave Studio code and various RF parameters and accelerating voltages ("Dee" voltage) are calculated from simulation. During the RF system commissioning, measurement of different RF parameters has been done and absolute Dee voltage has been calibrated using a CdTe X-ray detector along with its accessories and known X-ray source. The present paper discusses about the measured data and the simulation result.

  8. Radio frequency cavity analysis, measurement, and calibration of absolute Dee voltage for K-500 superconducting cyclotron at VECC, Kolkata.

    PubMed

    Som, Sumit; Seth, Sudeshna; Mandal, Aditya; Paul, Saikat; Duttagupta, Anjan

    2013-02-01

    Variable Energy Cyclotron Centre has commissioned a K-500 superconducting cyclotron for various types of nuclear physics experiments. The 3-phase radio-frequency system of superconducting cyclotron has been developed in the frequency range 9-27 MHz with amplitude and phase stability of 100 ppm and ±0.2(0), respectively. The analysis of the RF cavity has been carried out using 3D Computer Simulation Technology (CST) Microwave Studio code and various RF parameters and accelerating voltages ("Dee" voltage) are calculated from simulation. During the RF system commissioning, measurement of different RF parameters has been done and absolute Dee voltage has been calibrated using a CdTe X-ray detector along with its accessories and known X-ray source. The present paper discusses about the measured data and the simulation result.

  9. Experimental observation of nonlinear effects upon the excitation of large-amplitude cyclotron waves in a plasma

    SciTech Connect

    Zaleskii, Y.G.; Zinchenko, V.I.; Nazarov, N.I.; Demchenko, V.V.

    1982-04-05

    A diamagnetic current flowing across the magnetic field has been detected in a system of a rotating electron beam and a plasma. This current is caused by the rf pressure of a packet of cyclotron waves excited in the plasma. The current flow is accompanied by intense electromagnetic emission from the plasma and by the appearance of electrons with a large transverse energy.

  10. Cyclotrons and FFAG Accelerators as Drivers for ADS

    DOE PAGES

    Calabretta, Luciano; Méot, François

    2015-01-01

    Our review summarizes projects and studies on circular accelerators proposed for driving subcritical reactors. The early isochronous cyclotron cascades, proposed about 20 years ago, and the evolution of these layouts up to the most recent solutions or designs based on cyclotrons and fixed field alternating gradient accelerators, are reported. Additionally, the newest ideas and their prospects for development are discussed.

  11. Cyclotrons and FFAG Accelerators as Drivers for ADS

    SciTech Connect

    Calabretta, Luciano; Méot, François

    2015-01-01

    Our review summarizes projects and studies on circular accelerators proposed for driving subcritical reactors. The early isochronous cyclotron cascades, proposed about 20 years ago, and the evolution of these layouts up to the most recent solutions or designs based on cyclotrons and fixed field alternating gradient accelerators, are reported. Additionally, the newest ideas and their prospects for development are discussed.

  12. Gas phase ion - molecule reactions studied by Fourier transform ion cyclotron resonance mass spectrometry

    SciTech Connect

    Ross, C.W. III.

    1993-01-01

    Intrinsic thermodynamic information of molecules can easily be determined in the low pressure FT/ICR mass spectrometer. The gas phase basicity of two carbenes were measured by isolating the protonated carbene ion and reacting it with neutral reference compounds by the bracketing method. A fundamentally new-dimensional FT/ICR/MS experiment, SWIM (stored waveform ion modulation) 2D-FT/ICR MS/MS, is described. Prior encodement of the second dimension by use of two identical excitation waveforms separated by a variable delay period is replaced by a new encodement in which each row of the two-dimensional data array is obtained by use of a single stored excitation waveform whose frequency-domain magnitude spectrum is a sinusoid whose frequency increases from one row to the next. In the two-dimensional mass spectrum, the conventional one-dimensional FT/ICR mass spectrum appears along the diagonal, and each off-diagonal peak corresponds to an ion-neutral reaction whose ionic components may be identified by horizontal and vertical projections to the diagonal spectrum. All ion-molecule reactions in a gaseous mixture may be identified from a single 2D-FT/ICR MS/MS experiment, without any prior knowledge of the system. In some endoergic reactions there is a minimum energy threshold that must overcome for a reaction to occur. Hence, a simple sinusoidal modulation of parent ion cyclotron radius leads to a clipped sinusoidal signal of the product ion abundance in the second dimension, which upon Fourier transformation produces signals with harmonic and combination ion cyclotron resonance frequencies. Moreover, ion-molecule reaction rates may vary directly within kinetic energy rather than cyclotron radius. With SWIM, it is possible to tailor the excitation profile so as to produce a sinusoidal modulation of ion kinetic energy as a function of cyclotron frequency.

  13. Ion cyclotron emission studies: Retrospects and prospects

    NASA Astrophysics Data System (ADS)

    Gorelenkov, N. N.

    2016-05-01

    Ion cyclotron emission (ICE) studies emerged in part from the papers by A.B. Mikhailovskii published in the 1970s. Among the discussed subjects were electromagnetic compressional Alfvénic cyclotron instabilities with the linear growth rate √ {n_α /n_e } driven by fusion products, -particles which draw a lot of attention to energetic particle physics. The theory of ICE excited by energetic particles was significantly advanced at the end of the 20th century motivated by first DT experiments on TFTR and subsequent JET experimental studies which we highlight. More recently ICE theory was advanced by detailed theoretical and experimental studies on spherical torus (ST) fusion devices where the instability signals previously indistinguishable in high aspect ratio tokamaks due to high toroidal magnetic field became the subjects of experiments. We discuss further prospects of ICE theory applications for future burning plasma (BP) experiments such as those to be conducted in ITER device in France, where neutron and gamma rays escaping the plasma create extremely challenging conditions fusion alpha particle diagnostics.

  14. Ion cyclotron emission studies: Retrospects and prospects

    SciTech Connect

    Gorelenkov, N. N.

    2016-06-05

    Ion cyclotron emission (ICE) studies emerged in part from the papers by A.B. Mikhailovskii published in the 1970s. Among the discussed subjects were electromagnetic compressional Alfv,nic cyclotron instabilities with the linear growth rate similar ~ √(nα/ne) driven by fusion products, -particles which draw a lot of attention to energetic particle physics. The theory of ICE excited by energetic particles was significantly advanced at the end of the 20th century motivated by first DT experiments on TFTR and subsequent JET experimental studies which we highlight. Recently ICE theory was advanced by detailed theoretical and experimental studies on spherical torus (ST) fusion devices where the instability signals previously indistinguishable in high aspect ratio tokamaks due to high toroidal magnetic field became the subjects of experiments. Finally, we discuss prospects of ICE theory applications for future burning plasma (BP) experiments such as those to be conducted in ITER device in France, where neutron and gamma rays escaping the plasma create extremely challenging conditions fusion alpha particle diagnostics.

  15. Ion cyclotron emission studies: Retrospects and prospects

    SciTech Connect

    Gorelenkov, N. N.

    2016-06-05

    Ion cyclotron emission (ICE) studies emerged in part from the papers by A.B. Mikhailovskii published in the 1970s. Among the discussed subjects were electromagnetic compressional Alfv,nic cyclotron instabilities with the linear growth rate similar ~ √(nα/ne) driven by fusion products, -particles which draw a lot of attention to energetic particle physics. The theory of ICE excited by energetic particles was significantly advanced at the end of the 20th century motivated by first DT experiments on TFTR and subsequent JET experimental studies which we highlight. Recently ICE theory was advanced by detailed theoretical and experimental studies on spherical torus (ST) fusion devices where the instability signals previously indistinguishable in high aspect ratio tokamaks due to high toroidal magnetic field became the subjects of experiments. Finally, we discuss prospects of ICE theory applications for future burning plasma (BP) experiments such as those to be conducted in ITER device in France, where neutron and gamma rays escaping the plasma create extremely challenging conditions fusion alpha particle diagnostics.

  16. Ion cyclotron emission studies: Retrospects and prospects

    DOE PAGES

    Gorelenkov, N. N.

    2016-06-05

    Ion cyclotron emission (ICE) studies emerged in part from the papers by A.B. Mikhailovskii published in the 1970s. Among the discussed subjects were electromagnetic compressional Alfv,nic cyclotron instabilities with the linear growth rate similar ~ √(nα/ne) driven by fusion products, -particles which draw a lot of attention to energetic particle physics. The theory of ICE excited by energetic particles was significantly advanced at the end of the 20th century motivated by first DT experiments on TFTR and subsequent JET experimental studies which we highlight. Recently ICE theory was advanced by detailed theoretical and experimental studies on spherical torus (ST) fusionmore » devices where the instability signals previously indistinguishable in high aspect ratio tokamaks due to high toroidal magnetic field became the subjects of experiments. Finally, we discuss prospects of ICE theory applications for future burning plasma (BP) experiments such as those to be conducted in ITER device in France, where neutron and gamma rays escaping the plasma create extremely challenging conditions fusion alpha particle diagnostics.« less

  17. Cyclotron Resonances in Electron Cloud Dynamics

    SciTech Connect

    Celata, C M; Furman, M A; Vay, J L; Grote, D P; Ng, J T; Pivi, M F; Wang, L F

    2009-05-05

    A new set of resonances for electron cloud dynamics in the presence of a magnetic field has been found. For short beam bunch lengths and low magnetic fields where l{sub b} << 2{pi}{omega}{sub c}, (l{sub b} = bunch duration, {omega}{sub c} = non-relativistic cyclotron frequency) resonances between the bunch frequency and harmonics of the cyclotron frequency cause an increase in the electron cloud density in narrow ranges of magnetic field near the resonances. For ILC parameters the increase in the density is up to a factor {approx} 3, and the spatial distribution of the electrons is broader near resonances, lacking the well-defined density 'stripes' of multipactoring found for non-resonant cases. Simulations with the 2D computer code POSINST, as well as a single-particle tracking code, were used to elucidate the physics of the dynamics. The resonances are expected to affect the electron cloud dynamics in the fringe fields of conventional lattice magnets and in wigglers, where the magnetic fields are low. Results of the simulations, the reason for the bunch-length dependence, and details of the dynamics will be discussed.

  18. Cyclotron Resonances in Electron Cloud Dynamics

    SciTech Connect

    Celata, C. M.; Furman, Miguel A.; Vay, J.-L.; Ng, J. S.T.; Grote, D. P.; Pivi, M. T. F.; Wang, L. F.

    2009-04-29

    A new set of resonances for electron cloud dynamics in the presence of a magnetic field has been found. For short beam bunch lengths and low magnetic fields where lb<< 2pi c/omega c (with lb = bunch length, omega c = non-relativistic cyclotron frequency) resonances between the bunch frequency and harmonics of the electron cyclotron frequency cause an increase in the electron cloud density in narrow ranges of magnetic field near the resonances. For ILC parameters the increase in the density is up to a factor ~;;3, and the spatial distribution of the electrons is broader near resonances, lacking the well-defined vertical density"stripes" found for non-resonant cases. Simulations with the 2D computer code POSINST, as well as a single-particle tracking code, were used to elucidate the physics of the dynamics. The existence of the resonances has been confirmed in experiments at PEP-II. The resonances are expected to affect the electron cloud dynamics in the fringe fields of conventional lattice magnets and in wigglers, where the magnetic fields are low. Results of the simulations and experimental observations, the reason for the bunch-length dependence, and details of the dynamics are discussed here.

  19. Ion Cyclotron Waves in the VASIMR

    NASA Astrophysics Data System (ADS)

    Brukardt, M. S.; Bering, E. A.; Chang-Diaz, F. R.; Squire, J. P.; Longmier, B.

    2008-12-01

    The Variable Specific Impulse Magnetoplasma Rocket is an electric propulsion system under development at Ad Astra Rocket Company that utilizes several processes of ion acceleration and heating that occur in the Birkeland currents of an auroral arc system. Among these processes are parallel electric field acceleration, lower hybrid resonance heating, and ion cyclotron resonance heating. The VASIMR is capable of laboratory simulation of electromagnetic ion cyclotron wave heating during a single pass of the plasma through the resonance region. The plasma is generated by a helicon discharge of about 25 kW then passes through an RF booster stage that shoots left hand polarized slow mode waves from the high field side of the resonance. This paper will focus on the upgrades to the VX-200 test model over the last year. After summarizing the VX- 50 and VX-100 results, the new data from the VX-200 model will be presented. Lastly, the changes to the VASIMR experiment due to Ad Astra Rocket Company's new facility in Webster, Texas will also be discussed, including the possibility of collaborative experiments at the new facility.

  20. Loss cone-driven cyclotron maser instability

    NASA Astrophysics Data System (ADS)

    Lee, Sang-Yun; Yi, Sibaek; Lim, Dayeh; Kim, Hee-Eun; Seough, Jungjoon; Yoon, Peter H.

    2013-11-01

    The weakly (or mildly) relativistic cyclotron maser instability has been successfully applied to explain the Earth's auroral kilometric radiation and other radio sources in nature and laboratory. Among the most important physical parameters that determine the instability criteria is the ratio of plasma-to-electron cyclotron frequencies, ωp/Ω. It is therefore instructive to consider how the normalized maximum growth rate, γmax/Ω, varies as a function of ωp/Ω. Although many authors have already discussed this problem, in order to complete the analysis, one must also understand how the radiation emission angle corresponding to the maximum growth, θmax, scales with ωp/Ω, since the propagation angle determines the radiation beaming pattern. Also, the behavior of the frequency corresponding to the maximum growth rate at each harmonic, (ωmax-sΩ)/Ω, where s=1,2,3,ċ , as a function of ωp/Ωis of importance for a complete understanding of the maser excitation. The present paper computes these additional quantities for the first time, making use of a model loss cone electron distribution function.

  1. Electrostatic ion cyclotron velocity shear instability

    SciTech Connect

    Lemons, D.S.; Winske, D.; Gary, S.P. )

    1992-12-01

    An electrostatic ion cyclotron instability driven by sheared velocity flow perpendicular to a uniform magnetic field is investigated in the local approximation. The dispersion equation, which includes all kinetic effects and involves only one important parameter, is cast in the form of Gordeyev integrals and solved numerically. The instability occurs roughly at multiples of the ion cyclotron frequency (but modified by the shear) with the growth rate of the individual harmonics overlapping in wavenumber. At small values of the shear parameter, the instability exists in two branches, one at long wavelength, [kappa][rho][sub i] [approximately] 0.5, and one at short wavelength, [kappa][rho][sub i] > 1.5 ([kappa][rho][sub i] is the wavenumber normalized to the ion gyroradius). At larger values of the shear parameter only the longer wavelength branch persists. The growth rate of the long wavelength mode, maximized over wavenumber and frequency, increases monotonically with the shear parameter. Properties of the instability are compared to those of Ganguli et al. obtained in the nonlocal limit.

  2. Superconducting magnet for K-500 cyclotron at VECC, Kolkata

    NASA Astrophysics Data System (ADS)

    Saha, Subimal; Choudhury, Jayanta; Pal, Gautam; Hajra, D. P.; Dey, R.; Sur, Amitava; Bhandari, R. K.

    2009-06-01

    K-500 superconducting cyclotron is in the advanced stage of commissioning at VECC, Kolkata. Superconducting magnet is one of the major and critical component of the cyclotron. It has been successfully fabricated, installed, cooled down to 4.2 K by interfacing with LHe plant and energized to its rated current on 30th April, 2005 producing magnetic field of 4.8 T at median plane of cyclotron. The superconducting magnet (stored energy of 22MJ) consists of two coils (α and β), which were wound on a sophisticated coil winding machine set-up at VECC. The superconducting cable used for winding the coils is multi filamentary composite superconducting wire (1.29 mm diameter) having 500 filaments of 40 μm diameter Nb-Ti in copper matrix which is embedded in OFHC grade copper channel (2.794 mm × 4.978 mm) for cryogenic stability. The basic structure of coil consists of layer type helical winding on a SS bobbin of 1475 mm ID × 1930 mm OD × 1170 mm height. The bobbin was afterwards closed by SS sheet to form the LHe chamber. The total weight of the coil with bobbin was about 6 tonne and the total length of the superconducting cable wound was about 35 km. Winding was done at very high tension (2000 PSI) and close tolerance to restrict the movement of conductor and coil during energization. After coil winding, all four coils (two each on upper and lower half of median plane of cyclotron) were banded by aluminium strip (2.7 mm × 5 mm) at higher tension (20,000 PSI) to give more compressive force after cool down to 4.2 K for restricting the movement of coil while energizing and thereby eliminating the chances of quench during ramping of current. After completion of coil winding by October, 2003, cryostat assembly was taken up in house. The assembly of cryostat (13 tonne) with support links (9 Nos.) refrigeration port, instrumentation port, helium vapour cooled current loads, etc. was completed by June, 2004. Meanwhile assembly of magnet frame was taken up and the cryostat

  3. Nonlinear sub-cyclotron resonance as a formation mechanism for gaps in banded chorus

    SciTech Connect

    Fu, Xiangrong; Guo, Zehua; Dong, Chuanfei; Gary, S. Peter

    2015-05-14

    An interesting characteristic of magnetospheric chorus is the presence of a frequency gap at ω ≃ 0.5Ωe, where Ωe is the electron cyclotron angular frequency. Recent chorus observations sometimes show additional gaps near 0.3Ωe and 0.6Ωe. Here we present a novel nonlinear mechanism for the formation of these gaps using Hamiltonian theory and test particle simulations in a homogeneous, magnetized, collisionless plasma. We find that an oblique whistler wave with frequency at a fraction of the electron cyclotron frequency can resonate with electrons, leading to effective energy exchange between the wave and particles.

  4. Stability of drift-cyclotron loss-cone waves in H-mode plasmas

    SciTech Connect

    Farmer, W. A.; Morales, G. J.

    2016-05-24

    The drift-cyclotron loss-cone mode was first studied in mirror machines. In such devices, particles with small pitch angles are not confined, creating a hole in the velocity distribution function that is a source of free energy and leads to micro-instabilities in the cyclotron-range of frequencies. In the edge region of tokamak devices operating under H-mode conditions, ion loss also occurs. In this case, gradient drift carries ions moving opposite to the plasma current preferentially into the divertor, creating a one-sided loss cone. A simple analysis shows that for the quiescent H-mode plasmas in DIII-D the critical gradient for instability is exceeded within 2 cm of the separatrix, and the maximum growth rate at the separatrix is 3×107 s-1.

  5. Observation of ion-cyclotron-frequency mode-conversion flow drive in tokamak plasmas.

    PubMed

    Lin, Y; Rice, J E; Wukitch, S J; Greenwald, M J; Hubbard, A E; Ince-Cushman, A; Lin, L; Porkolab, M; Reinke, M L; Tsujii, N

    2008-12-05

    Strong toroidal flow (Vphi) and poloidal flow (Vtheta) have been observed in D-3He plasmas with ion cyclotron range of frequencies (ICRF) mode-conversion (MC) heating on the Alcator C-Mod tokamak. The toroidal flow scales with the rf power Prf (up to 30 km/s per MW), and is significantly larger than that in ICRF minority heated plasmas at the same rf power or stored energy. The central Vphi responds to Prf faster than the outer regions, and the Vphi(r) profile is broadly peaked for r/a < or =0.5. Localized (0.3 < or = r/a < or =0.5) Vtheta appears when Prf > or =1.5 MW and increases with power (up to 0.7 km/s per MW). The experimental evidence together with numerical wave modeling suggests a local flow drive source due to the interaction between the MC ion cyclotron wave and 3He ions.

  6. Cyclotron instability in the afterglow mode of minimum-B ECRIS

    SciTech Connect

    Izotov, I. Mansfeld, D.; Kalvas, T.; Koivisto, H.; Komppula, J.; Kronholm, R.; Laulainen, J.; Tarvainen, O.; Skalyga, V.

    2016-02-15

    It was shown recently that cyclotron instability in non-equilibrium plasma of a minimum-B electron cyclotron resonance ion source (ECRIS) causes perturbation of the extracted ion current and generation of strong bursts of bremsstrahlung emission, which limit the performance of the ion source. The present work is devoted to the dynamic regimes of plasma instability in ECRIS operated in pulsed mode. Instability develops in decaying plasma shortly after heating microwaves are switched off and manifests itself in the form of powerful pulses of electromagnetic emission associated with precipitation of high energy electrons. Time-resolved measurements of microwave emission bursts are presented. It was found that even in various gases (helium and oxygen were studied) and at different values of magnetic field and heating power, the dynamic spectra demonstrate common features: decreasing frequency within a single burst as well as from one burst to another.

  7. Cyclotron instability in the afterglow mode of minimum-B ECRIS

    NASA Astrophysics Data System (ADS)

    Izotov, I.; Kalvas, T.; Koivisto, H.; Komppula, J.; Kronholm, R.; Laulainen, J.; Mansfeld, D.; Skalyga, V.; Tarvainen, O.

    2016-02-01

    It was shown recently that cyclotron instability in non-equilibrium plasma of a minimum-B electron cyclotron resonance ion source (ECRIS) causes perturbation of the extracted ion current and generation of strong bursts of bremsstrahlung emission, which limit the performance of the ion source. The present work is devoted to the dynamic regimes of plasma instability in ECRIS operated in pulsed mode. Instability develops in decaying plasma shortly after heating microwaves are switched off and manifests itself in the form of powerful pulses of electromagnetic emission associated with precipitation of high energy electrons. Time-resolved measurements of microwave emission bursts are presented. It was found that even in various gases (helium and oxygen were studied) and at different values of magnetic field and heating power, the dynamic spectra demonstrate common features: decreasing frequency within a single burst as well as from one burst to another.

  8. Neutron spectrometry in a PET cyclotron with a Bonner sphere system.

    PubMed

    Fernández, F; Amgarou, K; Domingo, C; García, M J; Quincoces, G; Martí-Climent, J M; Méndez, R; Barquero, R

    2007-01-01

    Positron emission tomography (PET) is a non-invasive medical imaging technique normally used for diagnostic purposes to determine the location and concentration of physiologically active compounds in a human body. An unshielded cyclotron is used for PET at the Clinica Universitaria de Navarra to produce short-lived positron emitting radionuclides ((15)O, (13)N, (11)C and (18)F) by bombarding appropriate target material with proton or deuteron beams with energies up to 18 and 9 MeV, respectively. Subsequent nuclear reactions may generate undesirable neutrons that should be evaluated and controlled. In this study, the neutron measurements performed with an active and a passive Bonner sphere systems at different locations outside and inside the cyclotron vault during operation have been presented. The neutron spectrum at each location was determined with an unfolding code developed by the authors.

  9. Nonlinear wave-particle resonant interaction in the radiation belts: Landau resonance vs. fundamental cyclotron resonance

    NASA Astrophysics Data System (ADS)

    Krasnoselskikh, V.; Artemyev, A.; Agapitov, O. V.; Mourenas, D.

    2013-12-01

    We present selected THEMIS observations of highly-oblique and large amplitude chorus waves at medium latitudes. The major part of observed waves propagates at nearly-electrostatic mode with normal angles close to resonance cone. We use test particle simulations and analytical theory to estimate efficiency of nonlinear particle acceleration by these waves via Landau and fundamental cyclotron resonances. We show that trapping into the Landau resonance corresponds to a decrease of electron equatorial pitch-angles, while trapping into the first cyclotron resonance increases electron equatorial pitch-angles. For 100 keV electrons, the energy gain is larger for the trapping due to Landau resonance. Moreover, trapping into the Landau resonance is accessible for a wider range of initial pitch-angles in comparison with the fundamental resonance.

  10. Stability of drift-cyclotron loss-cone waves in H-mode plasmas

    SciTech Connect

    Farmer, W. A.; Morales, G. J.

    2016-05-24

    The drift-cyclotron loss-cone mode was first studied in mirror machines. In such devices, particles with small pitch angles are not confined, creating a hole in the velocity distribution function that is a source of free energy and leads to micro-instabilities in the cyclotron-range of frequencies. In the edge region of tokamak devices operating under H-mode conditions, ion loss also occurs. In this case, gradient drift carries ions moving opposite to the plasma current preferentially into the divertor, creating a one-sided loss cone. A simple analysis shows that for the quiescent H-mode plasmas in DIII-D the critical gradient for instability is exceeded within 2 cm of the separatrix, and the maximum growth rate at the separatrix is 3×107 s-1.

  11. Stability of drift-cyclotron loss-cone waves in H-mode plasmas

    DOE PAGES

    Farmer, W. A.; Morales, G. J.

    2016-05-24

    The drift-cyclotron loss-cone mode was first studied in mirror machines. In such devices, particles with small pitch angles are not confined, creating a hole in the velocity distribution function that is a source of free energy and leads to micro-instabilities in the cyclotron-range of frequencies. In the edge region of tokamak devices operating under H-mode conditions, ion loss also occurs. In this case, gradient drift carries ions moving opposite to the plasma current preferentially into the divertor, creating a one-sided loss cone. A simple analysis shows that for the quiescent H-mode plasmas in DIII-D the critical gradient for instability ismore » exceeded within 2 cm of the separatrix, and the maximum growth rate at the separatrix is 3×107 s-1.« less

  12. Investigation for the vertical focusing enhancement of compact cyclotron by asymmetrical shimming bar

    NASA Astrophysics Data System (ADS)

    Zhang, Tianjue; Wang, Chuan; Zhong, Junqing; Yao, Hongjuan

    2011-12-01

    CYCIAE-100, a 100 MeV H - cyclotron under construction at China Institute of Atomic Energy (CIAE), is an AVF compact cyclotron. With energy above 70 MeV, the straight-edge sector magnet, instead of the spiral one normally used for AVF cyclotrons in this case, is still used to simplify the engineering procedures. The vertical focusing is likely not strong enough at the outer region and the Walkinshaw resonance may occur, if either the permeability decreasing tolerance in large scale pure iron castings and forgings, or the fabrication tolerance during the magnet construction, are seriously excessive. Theoretical investigation and numerical simulation results presented in this paper show that this kind of risk could be avoided by using a set of specially designed asymmetrical shimming bars between the pole edge and dummy Dee of the RF cavity at the outer region. In this way, the vertical focusing at outer radius region will increase substantially. This investigation provides a protective measure for the main magnet construction of CYCIAE-100.

  13. Excitation of Alfven Cyclotron Instability by charged fusion products in tokamaks

    SciTech Connect

    Gorelenkov, N.N.; Cheng, C.Z.

    1994-08-01

    The spectrum of ion cyclotron emission (ICE) observed in tokamak experiments shows narrow peaks at multiples of the edge cyclotron frequency of background ions. A possible mechanism of ICE based on the fast Alfven Cyclotron Instability (ACI) resonantly excited by high energy charged products ({alpha}-particles or protons) is studied here. The two-dimensional ACI eigenmode structure and eigenfrequency are obtained in the large tokamak aspect ratio limit. The ACI is excited via wave-particle resonances in phase space by tapping the fast ion velocity space free energy. The instability growth rates are computed perturbatively from the perturbed fast particle distribution function, which is obtained by integrating the high frequency gyrokinetic equation along the particle orbit. Numerical examples of ACI growth rates are presented for TFTR plasmas. The fast ion distribution function is assumed to be singular in pitch angle near the plasma edge. The results are employed to understand the ICE in Deuterium-Deuterium (DD) and Deuterium-tritium (DT) tokamak experiments.

  14. A cyclotron resonance model of VLF chorus emissions detected during electron microburst precipitation

    NASA Astrophysics Data System (ADS)

    Skoug, R. M.; Datta, S.; McCarthy, M. P.; Parks, G. K.

    1996-10-01

    VLF chorus, consisting of narrowband rising frequency emissions, has often been observed in association with microburst electron precipitation. We present the first simultaneous rocket observations of these two phenomena, with emphasis on understanding the source of the VLF emissions. The rocket experiment was launched on May 6, 1993, from Poker Flat, Alaska (L=5.6). In this work, the observed 1-4 kHz chorus emissions are interpreted in terms of a cyclotron resonance interaction. The frequency range of the risers and the observed electron energy range agree with those required for this interaction. Using a criterion derived from the conservation of energy during an interaction, it is shown that a cold plasma cyclotron resonance interaction can produce the lower-frequency portions of the observed chorus risers, from ~1000 Hz to ~2500 Hz, while a warm plasma model is required to produce frequencies >2500 Hz. The warm plasma model assumes a two-component plasma, with an isotropic cold component and a bi-Maxwellian warm component. The effect of the warm component is to change the wave dispersion relation, allowing the production of the higher-frequency risers. A portion of the anisotropy required to produce the high-frequency emissions can also be provided by a loss cone distribution. The chorus source is estimated from this cyclotron resonance theory to be located near the equatorial plane.

  15. Study of the new return yoke for the upgraded Superconducting Cyclotron of INFN-LNS

    NASA Astrophysics Data System (ADS)

    Calanna, A.; Calabretta, L.; Rifuggiato, D.; Gallo, G.; Costa, G.; Allegra, L.; Russo, A. D.; D'Agostino, G.

    2017-07-01

    The LNS Superconducting Cyclotron (CS) has been working for 20 years making a wide range of ions and energies available. Many experiments are performed each year. In the near future a major upgrade is planned. This will allow to overcome the major limitation of the CS, which is the beam power delivered to the users, that at present does not exceed 100 W. In the new version of the CS, the extracted beam power will be increased up to a factor 100. This improvement will be reached extracting by stripping a specific set of light ions and energies extracted by stripping. Nevertheless, the extraction through the two electrostatic deflectors, providing a beam power limited to 100 W, will be also maintained to fulfil the users requests. The new design could strongly affect the beam dynamics. The iron yoke penetrations do not respect the three folds symmetry of our cyclotron and have a complex shape, due to the double extraction methods and all services entrances. This inhomogeneity produces unwanted field harmonics, which have to be reduced as much as possible to avoid beam precession or second order effects. Here the study accomplished to minimize the perturbation of the non- three fold field symmetry using the current sheet approximation (CSA) is presented, along with the state-of-art configuration of the updated cyclotron.

  16. Generation of the jovian radio emission by the maser cyclotron instability: first lessons from JUNO

    NASA Astrophysics Data System (ADS)

    Louarn, Philippe; Allegrini, Frederic; Kurth, WilliamS.; Valek, Philips. W.; McComas, Dave; Bagenal, Fran; Bolton, Scott; Connerney, John; Ebert, Robert W.; Levin, Steven; Szalay, Jamey; Wilson, Robert; Zink, Jenna; André, Nicolas; Imai, Masafumi

    2017-04-01

    Using JUNO plasma and wave observations (JADE and Waves instruments), the scenario for the generation of jovian auroral radio emissions are analyzed. The sources of radiation are identified by localized intensifications of the radio flux at frequencies close to the electron gyrofrequency. Not surprisingly, it is shown that the cyclotron maser instability is perfectly adapted to the plasma conditions prevailing in the radio sources. However, it appears that different forms of activation of the cyclotron maser are observed. For radiation at hectometric wavelengths (one of the main emissions), pronounced loss-cones in the electron distribution functions are likely the source of free energy. The sources would be extended over several thousand km in directions traverse to the magnetic field. The applications of the theory reveals that sufficient growth rates are obtained from the distributions functions that are actually measured by JADE. This differs from the Earth scenario for which 'trapped' distribution functions drive the maser. More localized sources are also observed, possibly linked to local acceleration process. These examples may present analogies with the 'Earth' scenario, with other forms of free energy than the loss-cone. A first lesson of these direct in-situ JADE and RPWS observations is thus to confirm the maser cyclotron scenario with, however, conditions for the wave amplification and detailed maser processes that appear to be different than at Earth.

  17. Design of a superconducting beam transport channel and beam dynamics for a strong-focusing cyclotron

    NASA Astrophysics Data System (ADS)

    Badgley, Karie Elizabeth

    There is an increasing interest in high power proton accelerators for use as neutron and muon sources, accelerator driven systems (ADS) for nuclear waste transmutation, high energy physics, medical physics, nuclear physics, and medical isotope production. Accelerating high current beams has a number of challenges; including avoiding harmful resonance crossing, space charge effects and, specific to cyclotrons, sufficient turn separation at injection and extraction. The Accelerator Research Laboratory at Texas A&M University is developing a high-power strong-focusing cyclotron with two main technologies to overcome these challenges. The first is a superconducting RF cavity to provide the energy gain required for fully separated turns. The second is the use of superconducting beam transport channels within the sectors of the cyclotron to provide strong-focusing with alternating focusing and defocusing quadrupoles. A method has been developed to find the equilibrium spiral orbit through the cyclotron which maintains isochronicity. The isochronous spiral orbit was then used to perform full linear optics calculations. The strengths of the quadrupoles were adjusted to hold the horizontal and vertical betatron tunes constant per turn to avoid resonance crossing. Particle tracking was performed with a modified MAD-X-PTC code and Synergia to provide a framework for future space charge studies. Magnetic modeling was performed on a 2D cross section of the beam transport channel. The wire locations were adjusted to reduce the higher order multipoles and a good field region was obtained at 70% of the beam pipe aperture with multipoles less than 10-4 . The 2D model was also used to determine the required current density needed to produce the quadrupole gradients. MgB2 superconducting wire was chosen as it meets all the field and current requirements and can operate at a reduced cryogenic cost. A winding mandrel was also designed and fabricated which minimized the bend radius for

  18. Cyclotrons and positron emission tomography radiopharmaceuticals for clinical imaging.

    PubMed

    Saha, G B; MacIntyre, W J; Go, R T

    1992-07-01

    Positron emission tomography (PET) requires positron-emitting radionuclides that emit 511-keV photons detectable by PET imagers. Positron-emitting radionuclides are commonly produced in charged particle accelerators, eg, linear accelerators or cyclotrons. The most widely available radiopharmaceuticals for PET imaging are carbon-11-, nitrogen-13-, and oxygen-15-labeled compounds, many of which, either in their normal state or incorporated in other compounds, serve as physiological tracers. Other useful PET radiopharmaceuticals include fluorine-18-, bromine-75-, gallium-68 (68Ga)-, rubidium-82 (82Rb)-, and copper-62 (62Cu)-labeled compounds. Many positron emitters have short half-lives and thus require on-site cyclotrons for application, and others (68Ga, 82Rb, and 62Cu) are available from radionuclides generators using relatively long-lived parent radionuclides. This review is divided into two sections: cyclotrons and PET radiopharmaceuticals for clinical imaging. In the cyclotron section, the principle of operation of the cyclotron, types of cyclotrons, medical cyclotrons, and production of radionuclides are discussed. In the section on PET radiopharmaceuticals, the synthesis and clinical use of PET radiopharmaceuticals are described.

  19. Observation of increased ion cyclotron resonance signal duration through electric field perturbations.

    PubMed

    Kaiser, Nathan K; Bruce, James E

    2005-09-15

    Ion motion in Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) is complex and the subject of ongoing theoretical and experimental studies. Two predominant pathways for the loss of ICR signals are thought to include damping of cyclotron motion, in which ions lose kinetic energy and radially damp toward the center of the ICR cell, and dephasing of ion coherence, in which ions of like cyclotron frequency become distributed out of phase at similar cyclotron radii. Both mechanisms result in the loss of induced ion image current in FTICR-MS measurements and are normally inseparable during time-domain signal analysis. For conventional ICR measurements which take advantage of ion ensembles, maximization of the ion population size and density can produce the desired effect of increasing phase coherence of ions during cyclotron motion. However, this approach also presents the risk of coalescence of ion packets of similar frequencies. In general, ICR researchers in the past have lacked the tools necessary to distinguish or independently control dephasing and damping mechanisms for ICR signal loss. Nonetheless, the ability to impart greater phase coherence of ions in ICR measurements will allow significant advances in FTICR-MS research by improving the current understanding of ICR signal loss contributions of dephasing and damping of ion ensembles, increasing overall time-domain signal length, and possibly, resulting in more routine ultrahigh resolution measurements. The results presented here demonstrate the ability to employ a high density electron beam to perturb electric fields within the ICR cell during detection of cyclotron motion, in an approach we call electron-promoted ion coherence (EPIC). As such, EPIC reduces ICR signal degradation through loss of phase coherence, and much longer time-domain signals can be obtained. Our results demonstrate that time-domain signals can be extended by more than a factor of 4 with the implementation of EPIC, as

  20. Plume properties measurement of an Electron Cyclotron Resonance Accelerator

    NASA Astrophysics Data System (ADS)

    Correyero, Sara; Vialis, Theo; Jarrige, Julien; Packan, Denis

    2016-09-01

    Some emergent technologies for Electric Propulsion, such as the Electron Cyclotron Resonance Accelerator (ECRA), include magnetic nozzles to guide and expand the plasma. The advantages of this concept are well known: wall-plasma contact is avoided, it provides a current-free plume, it can allow to control thrust by modifying the magnetic field geometry, etc. However, their industrial application requires the understanding of the physical mechanisms involved, such as the electron thermodynamics at the plasma plume expansion, which is crucial to determine propulsive performances. This work presents a detailed characterization of the plasma plume axial profile in an ECR plasma thruster developed at ONERA. Langmuir, emissive, Faraday and ion energy probes are used to measure the electric potential space evolution, the current and electron energy distribution function in the plume, from the near field to the far field. The experimental results are compared with a quasi-1D (paraxial) steady-state kinetic model of a quasineutral collisionless magnetized plasma which is able to determine consistently the axial evolution of the electric potential and the electron and ion distribution functions with their associated properties.

  1. Electron Cyclotron Resonances in Electron Cloud Dynamics

    SciTech Connect

    Celata, Christine; Celata, C.M.; Furman, Miguel A.; Vay, J.-L.; Yu, Jennifer W.

    2008-06-25

    We report a previously unknown resonance for electron cloud dynamics. The 2D simulation code"POSINST" was used to study the electron cloud buildup at different z positions in the International Linear Collider positron damping ring wiggler. An electron equilibrium density enhancement of up to a factor of 3 was found at magnetic field values for which the bunch frequency is an integral multiple of the electron cyclotron frequency. At low magnetic fields the effects of the resonance are prominent, but when B exceeds ~;;(2 pi mec/(elb)), with lb = bunch length, effects of the resonance disappear. Thus short bunches and low B fields are required for observing the effect. The reason for the B field dependence, an explanation of the dynamics, and the results of the 2D simulations and of a single-particle tracking code used to elucidate details of the dynamics are discussed.

  2. Electron Cyclotron Emission Diagnostics on ITER

    NASA Astrophysics Data System (ADS)

    Ellis, Richard; Austin, Max; Phillips, Perry; Rowan, William; Beno, Joseph; Auroua, Abelhamid; Feder, Russell; Patel, Ashish; Hubbard, Amanda; Pandya, Hitesh

    2010-11-01

    Electron cyclotron emission (ECE) will be employed on ITER to measure the radial profile of electron temperature and non thermal features of the electron distribution as well as measurements of ELMs, magnetic islands, high frequency instabilities, and turbulence. There are two quasioptical systems, designed with Gaussian beam analysis. One view is radial, primarily for temperature profile measurement, the other views at a small angle to radial for measuring non-thermal emission. Radiation is conducted to by a long corrugated waveguide to a multichannel Michelson interferometer which provides wide wavelength coverage but limited time response as well as two microwave radiometers which cover the fundamental and second harmonic ECE and provide excellent time response. Measurements will be made in both X and O mode. In-situ calibration is provided by a novel hot calibration source. We discuss spatial resolution and the implications for physics studies.

  3. Cyclotron maser using the anomalous Doppler effect

    NASA Astrophysics Data System (ADS)

    Didenko, A. N.; Borisov, A. R.; Fomenko, G. P.; Shlapakovskii, A. S.; Shtein, Iu. G.

    1983-11-01

    The operation of an anomalous-Doppler-effect cyclotron-resonance maser using a waveguide partially filled with dielectric as the slow-wave system is reported. The device investigated is similar to that of Didenko et al. (1983) and comprises a 300-mm-long 50-mm-o.d. 30-mm-i.d. waveguide with fabric-laminate dielectric, located 150 mm from the cathode in a 500-mm-long region of uniform 0-20-kG magnetic field, and a coaxial magnetic-insulation gun producing a 13-mm-i.d. 25-mm-o.d. hollow electron beam. Radiation at 12 + or - 1 mm wavelength and optimum power 20 MW is observed using hot-carrier detectors, with a clear peak in the power-versus-magnetic-field curve at about 6.4 kG.

  4. Folded waveguide coupler for ion cyclotron heating

    SciTech Connect

    Owens, T.L.; Chen, G.L.

    1986-01-01

    A new type of waveguide coupler for plasma heating in the ion cyclotron range of frequencies is described. The coupler consists of a series of interleaved metallic vanes within a rectangular enclosure analogous to a wide rectangular waveguide that has been ''folded'' several times. At the mouth of the coupler, a plate is attached which contains coupling apertures in each fold or every other fold of the waveguide, depending upon the wavenumber spectrum desired. This plate serves primarily as a wave field polarizer that converts coupler fields to the polarization of the fast magnetosonic wave within the plasma. Theoretical estimates indicate that the folded waveguide is capable of high-efficiency, multimegawatt operation into a plasma. Bench tests have verified the predicted field structure within the waveguide in preparation for high-power tests on the Radio Frequency Test Facility at the Oak Ridge National Laboratory.

  5. Electron cyclotron resonance (ECR) ion sources

    SciTech Connect

    Jongen, Y.

    1984-05-01

    Starting with the pioneering work of R. Geller and his group in Grenoble (France), at least 14 ECR sources have been built and tested during the last five years. Most of those sources have been extremely successful, providing intense, stable and reliable beams of highly charged ions for cyclotron injection or atomic physics research. However, some of the operational features of those sources disagreed with commonly accepted theories on ECR source operation. To explain the observed behavior of actual sources, it was found necessary to refine some of the crude ideas we had about ECR sources. Some of those new propositions are explained, and used to make some extrapolations on the possible future developments in ECR sources.

  6. Ionospheric modification at twice the electron cyclotron frequency.

    PubMed

    Djuth, F T; Pedersen, T R; Gerken, E A; Bernhardt, P A; Selcher, C A; Bristow, W A; Kosch, M J

    2005-04-01

    In 2004, a new transmission band was added to the HAARP high-frequency ionospheric modification facility that encompasses the second electron cyclotron harmonic at altitudes between approximately 220 and 330 km. Initial observations indicate that greatly enhanced airglow occurs whenever the transmission frequency approximately matches the second electron cyclotron harmonic at the height of the upper hybrid resonance. This is the reverse of what happens at higher electron cyclotron harmonics. The measured optical emissions confirm the presence of accelerated electrons in the plasma.

  7. Accelerators for hadrontherapy: From Lawrence cyclotrons to linacs

    NASA Astrophysics Data System (ADS)

    Amaldi, U.; Bonomi, R.; Braccini, S.; Crescenti, M.; Degiovanni, A.; Garlasché, M.; Garonna, A.; Magrin, G.; Mellace, C.; Pearce, P.; Pittà, G.; Puggioni, P.; Rosso, E.; Verdú Andrés, S.; Wegner, R.; Weiss, M.; Zennaro, R.

    2010-08-01

    Hadrontherapy with protons and carbon ions is a fast developing methodology in radiation oncology. The accelerators used and planned for this purpose are reviewed starting from the cyclotrons used in the thirties. As discussed in the first part of this paper, normal and superconducting cyclotrons are still employed, together with synchrotrons, for proton therapy while for carbon ion therapy synchrotrons have been till now the only option. The latest developments concern a superconducting cyclotron for carbon ion therapy, fast-cycling high frequency linacs and 'single room' proton therapy facilities. These issues are discussed in the second part of the paper by underlining the present challenges, in particular the treatment of moving organs.

  8. ECR Ion Source for a High-Brightness Cyclotron

    NASA Astrophysics Data System (ADS)

    Comeaux, Justin; McIntyre, Peter; Assadi, Saeed

    2011-10-01

    New technology is being developed for high-brightness, high-current cyclotrons with performance benefits for accelerator-driven subcritical fission power, medical isotope production, and proton beam cancer therapy. This paper describes the design for a 65 kV electron cyclotron resonance (ECR) ion source that will provide high-brightness beam for injection into the cyclotron. The ion source is modeled closely upon the one that is used at the Paul Scherrer Institute. Modifications are being made to provide enhanced brightness and compatibility for higher-current operation.

  9. Improving cancer treatment with cyclotron produced radionuclides. Progress report

    SciTech Connect

    Larson, S.M.; Finn, R.D.

    1993-11-01

    This report describes our continuing long term goal of promoting nuclear medicine applications by improving the scientific basis for tumor diagnosis, treatment and treatment follow-up based on the use of cyclotron produced radiotracers in oncology. The program includes 3 interactive components: Radiochemistry/Cyclotron; Pharmacology; and Immunology. An essential strategy is as follows: novel radionuclides and radiotracers developed in the Radiochemistry/Cyclotron section will be employed in the Pharmacology and Immunology sections during the next year. The development of novel radionuclides and tracers is of course useful in and of itself, but their utility is greatly enhanced by the interaction with the immunology and pharmacology components of the program.

  10. Radiation Monitoring System of 30 MeV Cyclotron

    NASA Astrophysics Data System (ADS)

    Lee, Jin-Woo; Hur, Min-Goo; Jeong, Gyosung; Kim, Jongil

    2017-09-01

    A state-of-the-art radiation monitoring system was implemented at KAERI for a 30-MeV cyclotron. This system consists of several types of radiation measuring systems for ambient dose equivalent rate measurements of outside photon and neutron areas as well as inside the cyclotron, and monitors the alpha and beta particulates released from a stack, as well as the results of worker contamination at the portal of the cyclotron. In addition, an automatic alarm system is also mounted if there are alarms in the measuring systems.

  11. Cyclotron Maser Emission - Stars, Planets and Laboratory

    NASA Astrophysics Data System (ADS)

    Vorgul, Irena

    2010-11-01

    X-ray and radio observations of active stars over many years have shown that they frequently generate X-ray bursts that are quickly followed by radio bursts. In many cases the radio bursts are highly polarised. More recently, the star CU Virginis has been found to exhibit pulsar-like behaviour. In both these situations we believe that the radio emission can be best explained by a cyclotron maser type instability initiated by electron beams funnelling down converging magnetic field configurations typical of a dipole magnetic topology. Just such a geometry also exists in the Earth's auroral zone and so our model can explain the Earth's auroral kilometric radiation (AKR). Via a similar process, all the gas giant/magnetised planets in the solar system also emit radio emission. We have established a laboratory-based facility that has verified many of the details of our original theoretical description. The experiment has demonstrated, for example, that an electron beam entering a strongly converging magnetic field geometry does indeed produce a ``horse-shoe'' (or crescent-shaped) distribution in velocity space. It is the generation of this horse-shoe distribution, also observed in the Earth's auroral zone, which is vital for our theoretical model. It leads to a population inversion in the perpendicular velocity distribution and generation of electromagnetic waves close to the cyclotron frequency. We will discuss recent developments in the theory and simulation of the instability and relate these to the laboratory, space and astrophysical observations. The research was supported by UK Engineering and Physical Sciences Research Council. The input of R.A. Cairns, R. Bingham, B.J. Kellett and the experimental and computer modelling team at Strathclyde University, Glasgow is gratefully acknowledged.

  12. Laser desorption studies of high mass biomolecules in Fourier-transform ion cyclotron resonance mass spectrometry.

    PubMed Central

    Solouki, T; Russell, D H

    1992-01-01

    Matrix-assisted laser desorption ionization is used to obtain Fourier-transform ion cyclotron resonance mass spectra of model peptides (e.g., gramicidin S, angiotensin I, renin substrate, melittin, and bovine insulin). Matrix-assisted laser desorption ionization yields ions having appreciable kinetic energies. Two methods for trapping the high kinetic energy ions are described: (i) the ion signal for [M+H]+ ions is shown to increase with increasing trapping voltages, and (ii) collisional relaxation is used for the detection of [M+H]+ ions of bovine insulin. Images PMID:1378614

  13. Performance optimization of H(-) multicusp ion source for KIRAMS-30 cyclotron.

    PubMed

    Kang, Kun Uk; An, Dong Hyun; Chang, Hong Suk; Chai, Jong Seo

    2008-02-01

    KIRAMS-30 cyclotron has been developed and implemented for radio isotope production. For the purpose of producing negative hydrogen ions and low energy beam injection to the central region of KIRAMS-30, 10 mA H(-) multicusp ion source with beam kinetic energies in the 20-30 keV range and the normalized 4 rms emittance less than 1 mm mrad was installed. The optimized ion source operating condition is presented and the correlation between the extracted beam current and ion source parameters is described for the performance enhancement of the ion source.

  14. Drude weight, cyclotron resonance, and the Dicke model of graphene cavity QED.

    PubMed

    Chirolli, Luca; Polini, Marco; Giovannetti, Vittorio; MacDonald, Allan H

    2012-12-28

    The unique optoelectronic properties of graphene make this two-dimensional material an ideal platform for fundamental studies of cavity quantum electrodynamics in the strong-coupling regime. The celebrated Dicke model of cavity quantum electrodynamics can be approximately realized in this material when the cyclotron transition of its 2D massless Dirac fermion carriers is nearly resonant with a cavity photon mode. We develop the theory of strong matter-photon coupling in this circumstance, emphasizing the essential role of a dynamically generated matter energy term that is quadratic in the photon field and absent in graphene's low-energy Dirac model.

  15. Cyclotron Lines: From Magnetic Field Strength Estimators to Geometry Tracers in Neutron Stars

    NASA Astrophysics Data System (ADS)

    Maitra, Chandreyee

    2017-09-01

    With forty years since the discovery of the first cyclotron line in Her X-1, there have been remarkable advancements in the field related to the study of the physics of accreting neutron stars - cyclotron lines have been a major torchbearer in this regard, from being the only direct estimator of the magnetic field strength, a tracer of accretion geometry and an indicator of the emission beam in these systems. The main flurry of activities have centred around studying the harmonic separations, luminosity dependence, pulse phase dependence and more recently, the shapes of the line and the trend for long-term evolution in the line energy. This article visits the important results related to cyclotron lines since its discovery and reviews their significance. An emphasis is laid on pulse phase resolved spectroscopy and the important clues a joint timing and spectral study in this context can provide, to build a complete picture for the physics of accretion and hence X-ray emission in accreting neutron stars.

  16. Overview of the future upgrade of the INFN-LNS superconducting cyclotron

    NASA Astrophysics Data System (ADS)

    Calabretta, Luciano; Calanna, Alessandra; Cuttone, Giacomo; D'Agostino, Grazia; Rifuggiato, Danilo; Domenico Russo, Antonio

    2017-06-01

    The LNS Superconducting Cyclotron, named “Ciclotrone Superconduttore” (CS), has been in operation for more than 20 years. A wide range of ion species from hydrogen to lead, with energy in the range 10 to 80 AMeV, have been delivered to users. The maximum beam power is limited to 100 W due to the beam dissipation on the electrostatic deflectors. To fulfil the demand of users aiming at studying rare processes in nuclear physics, an upgrade of the cyclotron is necessarily intended to increase the intensity of ion beams with mass lower than 40 a.m.u. up to a power 10 kW. This will be achieved by means of extraction by stripping. This solution needs to replace the cryostat including the superconducting coils. The present capability of the cyclotron will be maintained, i.e. all the ion species allowed by the operating diagram will be available, being extracted by electrostatic extraction. In addition to the high power beams for nuclear physics, it will be possible to produce medical radioisotopes like 211At using an internal target.

  17. Development of the RF cavity for the SKKUCY-9 compact cyclotron

    NASA Astrophysics Data System (ADS)

    Shin, Seungwook; Lee, Jongchul; LEE, Byeong-No; Ha, Donghyup; Namgoong, Ho; Chai, Jongseo

    2015-09-01

    A 9 MeV compact cyclotron, named SKKUCY-9, for a radiopharmaceutical compound especially fludeoxyglucose (FDG) production for a positron emission tomography (PET) machine was developed at Sungkyunkwan University. H- ions which are produced from a Penning Ionization Gauge(PIG) ion source, travel through a normal conducting radio frequency (RF) cavity which operates at 83.2 MHz for an acceleration and electro-magnet for a beam focusing until the ions acquire energy of about 9 MeV. For installation at a small local hospital, our SKKUCY-9 cyclotron is developed to be compact and light-weight, comparable to conventional medical purpose cyclotrons. For compactness, we adapted a deep valley and large angle hill type for the electro-magnet design. Normally a RF cavity is installed inside of the empty space of the magnet valley region, which is extremely small in our case. We faced problems such as difficulties of installing the RF cavity, low Q-value. Despite of those difficulties, a compact RF cavity and its system including a RF power coupler to feed amplified RF power to the RF cavity and a fine tuner to compensate RF frequency variations was successfully developed and tested.

  18. Numerical simulation of ions acceleration and extraction in cyclotron DC-110

    NASA Astrophysics Data System (ADS)

    Samsonov, E. V.; Gikal, B. N.; Borisov, O. N.; Ivanenko, I. A.

    2014-03-01

    In Flerov's Laboratory of Nuclear Reactions of JINR in the framework of project "Beta" a cyclotron complex for a wide range of applied research in nanotechnology (track membranes, surface modification, etc.) is created. The complex includes a dedicated heavy-ion cyclotron DC-110, which yields intense beams of accelerated ions Ar, Kr and Xe with a fixed energy of 2.5 MeV/A. The cyclotron is equipped with external injection on the base of ECR ion source, a spiral inflector and the system of ions extraction consisting of an electrostatic deflector and a passive magnetic channel. The results of calculations of the beam dynamics in measured magnetic field from the exit of spiral inflector to correcting magnet located outside the accelerator vacuum chamber are presented. It is shown that the design parameters of ion beams at the entrance of correcting magnet will be obtained using false channel, which is a copy of the passive channel, located on the opposite side of the magnetic system. Extraction efficiency of ions will reach 75%.

  19. Progress in theory and simulation of ion cyclotron emission from magnetic confinement fusion plasmas

    NASA Astrophysics Data System (ADS)

    Dendy, Richard; Chapman, Ben; Chapman, Sandra; Cook, James; Reman, Bernard; McClements, Ken; Carbajal, Leopoldo

    2016-10-01

    Suprathermal ion cyclotron emission (ICE) is detected from all large tokamak and stellarator plasmas. Its frequency spectrum has narrow peaks at sequential cyclotron harmonics of the energetic ion population (fusion-born or neutral beam-injected) at the outer edge of the plasma. ICE was the first collective radiative instability driven by confined fusion-born ions observed in deuterium-tritium plasmas in JET and TFTR, and the magnetoacoustic cyclotron instability is the most likely emission mechanism. Contemporary ICE measurements are taken at very high sampling rates from the LHD stellarator and from the conventional aspect ratio KSTAR tokamak. A correspondingly advanced modelling capability for the ICE emission mechanism has been developed using 1D3V PIC and hybrid-PIC codes, supplemented by analytical theory. These kinetic codes simulate the self-consistent full orbit dynamics of energetic and thermal ions, together with the electric and magnetic fields and the electrons. We report recent progress in theory and simulation that addresses: the scaling of ICE intensity with energetic particle density; the transition between super-Alfvénic and sub-Alfvénic regimes for the collectively radiating particles; and the rapid time evolution that is seen for some ICE measurements. This work was supported in part by the RCUK Energy Programme [Grant Number EP/I501045] and by Euratom.

  20. Influence of static electron beam`s self-fields on the cyclotron-undulator resonance

    SciTech Connect

    Rozanov, N.E.; Golub, Yu.Ya. |

    1995-12-31

    When undulators with a leading magnetic field B are used, the regime of double resonance is possible in which an undulator period is equal to an electron cyclotron wavelength. In the vicinity of this resonance an amplitude of particle oscillations in the undulator strongly depends on a difference between B and a resonant value of the leading magnetic field. Consequently, it is important to investigate a role of self-fields of the electron beam, in particular, due to its influence on the electron cyclotron wavelength. At the paper analytically and by numerical simulation the influence of the static fields of the annular electron beam on its dynamics in the axisymmetrical magnetic undulator with the leading magnetic field in the vicinity of the cyclotron-undulator resonance is investigated. It is shown that the value of the resonant magnetic field is changed with the rise of beam`s current. A shift of the resonant magnetic field may be both to larger values of B and to smaller ones, when different values of beam and waveguide radii, beam energy and undulator period are considered. A width of the resonance (on B - scale) is increased with the beam current.

  1. Accurate Monte Carlo modeling of cyclotrons for optimization of shielding and activation calculations in the biomedical field

    NASA Astrophysics Data System (ADS)

    Infantino, Angelo; Marengo, Mario; Baschetti, Serafina; Cicoria, Gianfranco; Longo Vaschetto, Vittorio; Lucconi, Giulia; Massucci, Piera; Vichi, Sara; Zagni, Federico; Mostacci, Domiziano

    2015-11-01

    Biomedical cyclotrons for production of Positron Emission Tomography (PET) radionuclides and radiotherapy with hadrons or ions are widely diffused and established in hospitals as well as in industrial facilities and research sites. Guidelines for site planning and installation, as well as for radiation protection assessment, are given in a number of international documents; however, these well-established guides typically offer analytic methods of calculation of both shielding and materials activation, in approximate or idealized geometry set up. The availability of Monte Carlo codes with accurate and up-to-date libraries for transport and interactions of neutrons and charged particles at energies below 250 MeV, together with the continuously increasing power of nowadays computers, makes systematic use of simulations with realistic geometries possible, yielding equipment and site specific evaluation of the source terms, shielding requirements and all quantities relevant to radiation protection. In this work, the well-known Monte Carlo code FLUKA was used to simulate two representative models of cyclotron for PET radionuclides production, including their targetry; and one type of proton therapy cyclotron including the energy selection system. Simulations yield estimates of various quantities of radiological interest, including the effective dose distribution around the equipment, the effective number of neutron produced per incident proton and the activation of target materials, the structure of the cyclotron, the energy degrader, the vault walls and the soil. The model was validated against experimental measurements and comparison with well-established reference data. Neutron ambient dose equivalent H*(10) was measured around a GE PETtrace cyclotron: an average ratio between experimental measurement and simulations of 0.99±0.07 was found. Saturation yield of 18F, produced by the well-known 18O(p,n)18F reaction, was calculated and compared with the IAEA recommended

  2. A line-of-sight electron cyclotron emission receiver for electron cyclotron resonance heating feedback control of tearing modes

    SciTech Connect

    Oosterbeek, J. W.; Buerger, A.; Westerhof, E.; Baar, M. R. de; Berg, M. A. van den; Bongers, W. A.; Graswinckel, M. F.; Hennen, B. A.; Kruijt, O. G.; Thoen, J.; Heidinger, R.; Korsholm, S. B.; Leipold, F.; Nielsen, S. K.

    2008-09-15

    An electron cyclotron emission (ECE) receiver inside the electron cyclotron resonance heating (ECRH) transmission line has been brought into operation. The ECE is extracted by placing a quartz plate acting as a Fabry-Perot interferometer under an angle inside the electron cyclotron wave (ECW) beam. ECE measurements are obtained during high power ECRH operation. This demonstrates the successful operation of the diagnostic and, in particular, a sufficient suppression of the gyrotron component preventing it from interfering with ECE measurements. When integrated into a feedback system for the control of plasma instabilities this line-of-sight ECE diagnostic removes the need to localize the instabilities in absolute coordinates.

  3. Preliminary production of 211At at the Texas A&M University Cyclotron Institute.

    PubMed

    Martin, Thomas Michael; Bhakta, Vihar; Al-Harbi, Abeer; Hackemack, Michael; Tabacaru, Gabriel; Tribble, Robert; Shankar, Sriram; Akabani, Gamal

    2014-07-01

    A feasibility study for the production of the alpha particle-emitting radionuclide At was performed at the Texas A&M University Cyclotron Institute as part of the Interdisciplinary Radioisotope Production and Radiochemistry Program. The mission of this program centers upon the production of radionuclides for use in diagnostic and therapeutic nuclear medicine with the primary focus on development of novel therapeutic strategies. As a first step in establishing this program, two goals were outlined: (i) verify production of At and compare results to published data, and (ii) evaluate shielding and radiological safety issues for large-scale implementation using an external target. The radionuclide At was produced via the Bi (α, 2n) At reaction using the K500 cyclotron. Two experiments were conducted, using beam energies of 27.8 MeV and 25.3 MeV, respectively. The resulting yields for At were found to be 36.0 MBq μA h and 12.4 MBq μA h, respectively, which fall within the range of published yield data. Strategies for increasing absolute yield and production efficiency were also evaluated, which focused chiefly on using a new target designed for use with the K150 cyclotron, which will enable the use of a higher beam current. Finally, neutron and gamma dose rates during production were evaluated by using the Monte Carlo code MCNPX. It was determined that a simple structure consisting of 4-in thick borated polyethylene will reduce the neutron dose rate within the cyclotron production vault by approximately a factor of 2, thereby decreasing activation of equipment.

  4. Converting an AEG Cyclotron to H{sup -} Acceleration and Extraction

    SciTech Connect

    Ramsey, Fred; Carroll, Lewis; Rathmann, Tom; Huenges, Ernst; Bechtold, Matthias Mentler Volker

    2009-03-10

    Clinical Trials are under way to evaluate agents labeled with the nuclide {sup 225}Ac and its decay product {sup 213}Bi, in targeted alpha-immuno-therapy. {sup 225}Ac can be produced on a medium-energy cyclotron via the nuclear reaction {sup 226}Ra(p,n){sup 225}Ac. To demonstrate proof-of-principle, a vintage AEG cyclotron, Model E33, with an internal target, had been employed in a pilot production program at the Technical University of Munich (TUM). To enhance production capability and further support the clinical studies, the TUM facility has recently been refurbished and upgraded, adding a new external beam-line, automated target irradiation and transport systems, new laboratories, hot cells, etc.. An improved high-power rotating target has been built and installed. The AEG cyclotron itself has also been modified and upgraded to accelerate and extract H{sup -} ions. We have designed, built, and tested a new axial Penning-type ion source which is optimized for the production of H{sup -} ions. The ion source has continued to evolve through experiment and experience. Steady improvements in materials and mechanics have led to enhanced source stability, life-time, and H{sup -} production. We have also designed and built a precision H{sup -} charge-exchange beam-extraction system which is equipped with a vacuum lock. To fit within the tight mechanical constraint imposed by the narrow magnet gap, the system incorporates a novel chain-drive foil holder and foil-changer mechanism. The reconfigured cyclotron system has now been in operation for more than 1 year. Three long-duration target irradiations have been conducted. The most recent bombardment ran 160 continuous hours at a beam on target of {approx}80 microamperes for a total yield of {approx}70 milli-curies of {sup 225}Ac.

  5. Radiation levels in cyclotron-radiochemistry facility measured by a novel comprehensive computerized monitoring system

    NASA Astrophysics Data System (ADS)

    Mishani, E.; Lifshits, N.; Osavistky, A.; Kaufman, J.; Ankry, N.; Tal, N.; Chisin, R.

    1999-04-01

    Radiation levels in a cyclotron-radiochemistry facility were measured during the production of commonly used PET radiopharmaceuticals by a comprehensive computerized monitoring system. The system consists of three major components: on-line radiation monitoring channels, an area control unit, and a gas waste management unit. During production the radiation levels were measured in the cyclotron vault, inside automatic chemistry production and research shielded cells, in the radiochemistry room, in the gas waste decay tank, in the chimney filters, and at the top of the cells chimney. Each detector was calibrated in a known radiation field, and a special detector dead time correction was performed in order to achieve detected signal-to-radiation linearity for the Geiger tubes located in the radiochemistry production and research cells. During production of C-11 and O-15 PET radiopharmaceuticals, high radiation levels were measured in the gas waste decay tank (240 and 80 mR/h, respectively). In contrast, the radiation levels at the chimney filters and at the top of the cells chimney did not exceed the International Atomic Energy Agency (IAEA) Drive Air Concentration (DAC) recommended for C-11 or O-15. During production of FDG, high radiation levels were measured at the chimney filters, however the radiation level at the top of the chimney (3.7 μCi/m 3) did not exceed the F-18 DAC recommendation (27 μCi/m 3). Low radiation levels of approximately 0.5-1 mR/h were measured in the radiochemistry room during production of PET radiopharmaceuticals. In the cyclotron vault, 2 min after bombardment the radiation levels at 2 m from the cyclotron decreased to 1-2 mR/h. The addition of a gas waste decay system to computerized monitoring channels located near each strategic point of the site allows for a comprehensive survey of the radiochemical processes.

  6. High power Ion Cyclotron Resonance Heating (ICRH) in JET

    SciTech Connect

    Jacquinot, J.

    1988-01-01

    Ion Cyclotron Resonance Heating (ICRH) powers of up to 17 MW have been coupled to JET limiter plasmas. The plasma stored energy has reached 7 MJ with 13 MW of RF in 5 MA discharges with Z/sub eff/ = 2. When I/sub p//B/sub /phi// = 1 MA/T the stored energy can be 50% greater than the Goldston L mode scaling. This is due to transient stabilisation of sawteeth (up to 3 s) and to a significant energy content in the minority particles accelerated by RF (up to 30% of the total stored energy). Central temperatures of T/sub e/ - 11 keV and T/sub i/ = 8 keV have been reached with RF alone. (He/sup 3/)D fusion experiments have given a 60 kW fusion yield (fusion rate of 2 /times/ 10/sup 16/ s/sup /minus/1/ in the form of energetic fast particles (14.7 MeV(H), 3.6 MeV(He/sup 4/)) in agreement with modelling. When transposing the same calculation to a (D)T scenario, Q is predicted to be between 0.l2 and 0.8 using plasma parameters already achieved. For the first time, a peaked density profile generated by pellet injection could be reheated and sustained by ICRF for 1.2 s. Electron heat transport in the central region is reduced by a factor 2 to 3. The fusion product n/sub io//tau//sub E/T/sub io/ reaches 2.2 /times/ 10/sup 20/ m/sup /minus/3//center dot/s/center dot/kev in 3 MA discharges which is a factor of 2.3 times larger than with normal density profile. 18 refs., 13 figs., 3 tabs.

  7. Intensity limitations in compact H{sup minus} cyclotrons

    SciTech Connect

    Baartman, R.A.

    1995-12-31

    At TRIUMF, we have demonstrated 2.5 mA in a compact H{sup -} cyclotron. It is worthwhile to explore possibility of going to even higher intensity. In small cyclotrons, vertical focusing vanishes at the center. The space charge tune shift further reduces vertical focusing, thus determining an upper limit on instantaneous current. Limit on average current is of course also dependent upon phase acceptance, but this can be made quite large in an H{sup -} cyclotron. Longitudinal space charge on the first turn can reduce the phase acceptance as well. For finite ion source brightness, another limit comes from bunching efficiency in presence of space charge forces. We present methods of calculating and optimizing these limits. In particular, we show that it is possible to achieve 10mA in a 50 MeV compact H{sup -} cyclotron.

  8. Cyclotrons for clinical and biomedical research with PET

    SciTech Connect

    Wolf, A.P.

    1987-01-01

    The purpose of this commentary is to present some background material on cyclotrons and other particle accelerators particularly with a view toward the considerations behind acquiring and installing such a machine for purely clinical and/or biomedical research use.

  9. Vacuum Control Systems of the Cyclotrons in VECC, Kolkata

    NASA Astrophysics Data System (ADS)

    Roy, Anindya; Akhtar, Javed; Yadav, R. C.; Bhole, R. B.; Pal, Sarbajit; Sarkar, D.; Bhandari, R. K.

    2012-11-01

    VECC has undertaken the modernization of the K-130 Room Temperature Cyclotron (RTC) (operational since 1978) and commissioning of K-500 Superconducting Cyclotron (SCC) at present. The control system of RTC vacuum system has been upgraded to Programmable Logic Controller (PLC) based automated system from relay based manual system. A distributed PLC based system is under installation for SCC vacuum system. The requirement of high vacuum in both the cyclotrons (1×10-6 mbar for RTC and 5 × 10-8 mbar SCC) imposes the reliable local and remote operation of all vacuum components and instrumentation. The design and development of the vacuum control system of two cyclotrons using the Experimental Physics and Industrial Control System (EPICS) distributed real-time software tools are presented.

  10. PET computer programs for use with the 88-inch cyclotron

    SciTech Connect

    Gough, R.A.; Chlosta, L.

    1981-06-01

    This report describes in detail several offline programs written for the PET computer which provide an efficient data management system to assist with the operation of the 88-Inch Cyclotron. This function includes the capability to predict settings for all cyclotron and beam line parameters for all beams within the present operating domain of the facility. The establishment of a data base for operational records is also described from which various aspects of the operating history can be projected.

  11. Upstream proton cyclotron waves at Venus near solar maximum

    NASA Astrophysics Data System (ADS)

    Delva, M.; Bertucci, C.; Volwerk, M.; Lundin, R.; Mazelle, C.; Romanelli, N.

    2015-01-01

    magnetometer data of Venus Express are analyzed for the occurrence of waves at the proton cyclotron frequency in the spacecraft frame in the upstream region of Venus, for conditions of rising solar activity. The data of two Venus years up to the time of highest sunspot number so far (1 Mar 2011 to 31 May 2012) are studied to reveal the properties of the waves and the interplanetary magnetic field (IMF) conditions under which they are observed. In general, waves generated by newborn protons from exospheric hydrogen are observed under quasi- (anti)parallel conditions of the IMF and the solar wind velocity, as is expected from theoretical models. The present study near solar maximum finds significantly more waves than a previous study for solar minimum, with an asymmetry in the wave occurrence, i.e., mainly under antiparallel conditions. The plasma data from the Analyzer of Space Plasmas and Energetic Atoms instrument aboard Venus Express enable analysis of the background solar wind conditions. The prevalence of waves for IMF in direction toward the Sun is related to the stronger southward tilt of the heliospheric current sheet for the rising phase of Solar Cycle 24, i.e., the "bashful ballerina" is responsible for asymmetric background solar wind conditions. The increase of the number of wave occurrences may be explained by a significant increase in the relative density of planetary protons with respect to the solar wind background. An exceptionally low solar wind proton density is observed during the rising phase of Solar Cycle 24. At the same time, higher EUV increases the ionization in the Venus exosphere, resulting in higher supply of energy from a higher number of newborn protons to the wave. We conclude that in addition to quasi- (anti)parallel conditions of the IMF and the solar wind velocity direction, the higher relative density of Venus exospheric protons with respect to the background solar wind proton density is the key parameter for the higher number of

  12. Broadband terahertz-power extracting by using electron cyclotron maser.

    PubMed

    Pan, Shi; Du, Chao-Hai; Qi, Xiang-Bo; Liu, Pu-Kun

    2017-08-04

    Terahertz applications urgently require high performance and room temperature terahertz sources. The gyrotron based on the principle of electron cyclotron maser is able to generate watt-to-megawatt level terahertz radiation, and becomes an exceptional role in the frontiers of energy, security and biomedicine. However, in normal conditions, a terahertz gyrotron could generate terahertz radiation with high efficiency on a single frequency or with low efficiency in a relatively narrow tuning band. Here a frequency tuning scheme for the terahertz gyrotron utilizing sequentially switching among several whispering-gallery modes is proposed to reach high performance with broadband, coherence and high power simultaneously. Such mode-switching gyrotron has the potential of generating broadband radiation with 100-GHz-level bandwidth. Even wider bandwidth is limited by the frequency-dependent effective electrical length of the cavity. Preliminary investigation applies a pre-bunched circuit to the single-mode wide-band tuning. Then, more broadband sweeping is produced by mode switching in great-range magnetic tuning. The effect of mode competition, as well as critical engineering techniques on frequency tuning is discussed to confirm the feasibility for the case close to reality. This multi-mode-switching scheme could make gyrotron a promising device towards bridging the so-called terahertz gap.

  13. A Michelson Interferometer for Electron Cyclotron Emission Measurements on EAST

    NASA Astrophysics Data System (ADS)

    Liu, Yong; Stefan, Schmuck; Zhao, Hailin; John, Fessey; Paul, Trimble; Liu, Xiang; Zhu, Zeying; Zang, Qing; Hu, Liqun

    2016-12-01

    A Michelson interferometer, on loan from EFDA-JET (Culham, United Kingdom) has recently been commissioned on the experimental advanced superconducting tokamak (EAST, ASIPP, Hefei, China). Following a successful in-situ absolute calibration the instrument is able to measure the electron cyclotron emission (ECE) spectrum, from 80 GHz to 350 GHz in extraordinary mode (X-mode) polarization, with high accuracy. This allows the independent determination of the electron temperature profile from observation of the second harmonic ECE and the possible identification of non-Maxwellian features by comparing higher harmonic emission with numerical simulations. The in-situ calibration results are presented together with the initial measured temperature profiles. These measurements are then discussed and compared with other independent temperature profile measurements. This paper also describes the main hardware features of the diagnostic and the associated commissioning test results. supported by National Natural Science Foundation of China (Nos. 11405211, 11275233), and the National Magnetic Confinement Fusion Science Program of China (Nos. 2013GB106002, 2015GB101000), and the RCUK Energy Programme (No. EP/I501045), partly supported by the JSPS-NRF-NSFC A3 Foresight Program in the Field of Plasma Physics (NSFC: No. 11261140328)

  14. Multi-harmonic electron cyclotron instabilities. [diffuse electron aurora

    NASA Technical Reports Server (NTRS)

    Ashour-Abdalla, M.; Kennel, C. F.

    1978-01-01

    The reported investigation constitutes an extension of studies conducted by Ashour-Abdalla and Kennel (1975, 1976, 1978) with respect to a basic plasma model of Young et al. (1973). The model involves a combination of a cold Maxwellian background plasma, a hot plasma, and a 'loss cone' type of free energy source. Previous results on the first cyclotron harmonic bands are extended to multiharmonics. The significance of the obtained relations is discussed and tentative conclusions are presented. Given that the spatial growth rates of the convective modes are comparable, and that simultaneous nonconvective instability (NCI) is possible, it is concluded that multiharmonic emissions ought to be a common feature of the magnetospheric electrostatic wave observations. Since the volume of parameter space for which the first harmonic is NCI, and the volume for which the convective first harmonic mode has significant spatial growth rates, exceed those for the higher harmonics, first harmonic waves should be the most commonly observed and the higher harmonics should usually be accompanied by the first harmonic.

  15. Electron-cyclotron maser and solar microwave millisecond spike emission

    NASA Technical Reports Server (NTRS)

    Li, Hong-Wei; Li, Chun-Sheng; Fu, Qi-Jun

    1986-01-01

    An intense solar microwave millisecond spike emission (SMMSE) event was observed on May 16, 1981 by Zhao and Jin at Beijing Observatory. The peak flux density of the spikes is high to 5 x 100,000 s.f.u. and the corresponding brightness temperature (BT) reaches approx. 10 to the 15th K. In order to explain the observed properties of SMMSE, it is proposed that a beam of electrons with energy of tens KeV injected from the acceleration region downwards into an emerging magnetic arch forms so-called hollow beam distribution and causes electron-cyclotron maser (ECM) instability. The growth rate of second harmonic X-mode is calculated and its change with time is deduced. It is shown that the saturation time of ECM is t sub s approx. equals 0.42 ms and only at last short stage (delta t less than 0.2 t sub s) the growth rate decreases to zero rather rapidly. So a SMMSE with very high BT will be produced if the ratio of number density of nonthermal electrons to that of background electrons, n sub s/n sub e, is larger than 4 x .00001.

  16. Ring Current-Electromagnetic Ion Cyclotron Waves Coupling

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.

    2005-01-01

    The effect of Electromagnetic Ion Cyclotron (EMIC) waves, generated by ion temperature anisotropy in Earth s ring current (RC), is the best known example of wave- particle interaction in the magnetosphere. Also, there is much controversy over the importance of EMIC waves on RC depletion. Under certain conditions, relativistic electrons, with energies 21 MeV, can be removed from the outer radiation belt (RB) by EMIC wave scattering during a magnetic storm. That is why the calculation of EMIC waves must be a very critical part of the space weather studies. The new RC model that we have developed and present for the first time has several new features that we have combine together in a one single model: (a) several lower frequency cold plasma wave modes are taken into account; (b) wave tracing of these wave has been incorporated in the energy EMIC wave equation; (c) no assumptions regarding wave shape spectra have been made; (d) no assumptions regarding the shape of particle distribution have been made to calculate the growth rate; (e) pitch-angle, energy, and mix diffusions are taken into account together for the first time; (f) the exact loss-cone RC analytical solution has been found and coupled with bounce-averaged numerical solution of kinetic equation; (g) the EMIC waves saturation due to their modulation instability and LHW generation are included as an additional factor that contributes to this process; and (h) the hot ions were included in the real part of dielectric permittivity tensor. We compare our theoretical results with the different EMIC waves models as well as RC experimental data.

  17. Ring Current-Electromagnetic Ion Cyclotron Waves Coupling

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.

    2005-01-01

    The effect of Electromagnetic Ion Cyclotron (EMIC) waves, generated by ion temperature anisotropy in Earth s ring current (RC), is the best known example of wave- particle interaction in the magnetosphere. Also, there is much controversy over the importance of EMIC waves on RC depletion. Under certain conditions, relativistic electrons, with energies 21 MeV, can be removed from the outer radiation belt (RB) by EMIC wave scattering during a magnetic storm. That is why the calculation of EMIC waves must be a very critical part of the space weather studies. The new RC model that we have developed and present for the first time has several new features that we have combine together in a one single model: (a) several lower frequency cold plasma wave modes are taken into account; (b) wave tracing of these wave has been incorporated in the energy EMIC wave equation; (c) no assumptions regarding wave shape spectra have been made; (d) no assumptions regarding the shape of particle distribution have been made to calculate the growth rate; (e) pitch-angle, energy, and mix diffusions are taken into account together for the first time; (f) the exact loss-cone RC analytical solution has been found and coupled with bounce-averaged numerical solution of kinetic equation; (g) the EMIC waves saturation due to their modulation instability and LHW generation are included as an additional factor that contributes to this process; and (h) the hot ions were included in the real part of dielectric permittivity tensor. We compare our theoretical results with the different EMIC waves models as well as RC experimental data.

  18. Electron-cyclotron heating in the Constance 2 mirror experiment

    SciTech Connect

    Mauel, Michael E.

    1982-09-01

    Electron cyclotron heating of a highly-ionized plasma in mirror geometry is investigated. The experimental diagnosis of the electron energy distribution and the comparison of the results of this diagnosis with a two dimensional, time-dependent Fokker-Planck simulation are accomplished in four steps. (1) First, the power balance of the heated and unheated Constance 2 plasma is analyzed experimentally. It is concluded that the heated electrons escape the mirror at a rate dominated by a combination of the influx of cool electrons from outside the mirror and the increased loss rate of the ions. (2) The microwave parameters at the resonance zones are then calculated by cold-plasma ray tracing. High N/sub parallel/ waves are launched and for these waves, strong first-pass absorption is predicted. The absorption strength is qualitatively checked in the experiment by surrounding the plasma with non-reflecting liners. (3) A simplified quasilinear theory including the effect of N/sub parallel/ is developed to model the electrons. An analytic expression is derived for the RF-induced pump-out of the magnetically-confined warm electrons. Results of the Fokker-Planck simulations show the development of the electron energy distribution for several plasma conditions and verify the scaling of the analytic expression for RF-induced diffusion into the loss cone. (4) Sample x-ray and endloss data are presented, and the overall comparison between the simulation and experiment is discussed. The x-ray signals indicate that, for greater RF power, the hot electrondensity increases more rapidly than its temperature. The time history of the endloss data, illustrating RF-enhancement, suggests the predicted scaling for warm-electron pump-out. Finally, a comparison between the measured and predicted energy distribution shows that the bulk, warm and hot components of the heated Constance 2 electrons are indeed reproduced by the simulation.

  19. Optimization of zirconium-89 production in IBA Cyclone 18/9 cyclotron with COSTIS solid target system

    NASA Astrophysics Data System (ADS)

    Dabkowski, A. M.; Paisey, S. J.; Spezi, E.; Chester, J.; Marshall, C.

    2017-05-01

    Zirconium-89 is a promising radionuclide in the development of new immuno-PET agents for in vivo imaging of cancerous tumours and radioimmunotherapy (RIT) planning. Besides the convenient half-life of 78.4 h, 89Zr has a beta plus emission rate of 23% and a low maximum energy of 0.9 MeV, delivering good spatial resolution as a result of short positron range in tissue (around 1 mm). Cyclotron production for the radiometal of 89Zr was investigated to find optimal conditions according to results of FLUKA code Monte Carlo modelling of irradiation processes, nuclear reactions and target design. This was followed by reasonably detailed experimental validation (making cyclotron productions for expected high product yield and low impurities levels followed by activity measurements, spectra acquisitions and chemical separation procedures), in which the strategies developed by computer models were carried out in the IBA Cyclone 18/9 cyclotron, permitting a comparison of the predicted and actual yields of 89Zr and isotopic by-products (impurities). Once the in silica model was validated experimentally, then optimal method of the radiometal production in the cyclotron was developed.

  20. Useful technique for analysis and control of the acceleration beam phase in the azimuthally varying field cyclotron

    NASA Astrophysics Data System (ADS)

    Kurashima, Satoshi; Yuyama, Takahiro; Miyawaki, Nobumasa; Kashiwagi, Hirotsugu; Okumura, Susumu; Fukuda, Mitsuhiro

    2010-03-01

    We have developed a new technique for analysis and control of the acceleration beam phase in the cyclotron. In this technique, the beam current pattern at a fixed radius r is measured by slightly scanning the acceleration frequency in the cyclotron. The acceleration beam phase is obtained by analyzing symmetry of the current pattern. Simple procedure to control the acceleration beam phase by changing coil currents of a few trim coils was established. The beam phase width is also obtained by analyzing gradient of the decreasing part of the current pattern. We verified reliability of this technique with 260 MeV N20e7+ beams which were accelerated on different tuning condition of the cyclotron. When the acceleration beam phase was around 0°, top of the energy gain of cosine wave, and the beam phase width was about 6° in full width at half maximum, a clear turn pattern of the beam was observed with a differential beam probe in the extraction region. Beam phase widths of ion beams at acceleration harmonics of h =1 and h =2 were estimated without beam cutting by phase-defining slits. We also calculated the beam phase widths roughly from the beam current ratio between the injected beam and the accelerated beam in the cyclotron without operating the beam buncher. Both beam phase widths were almost the same for h =1, while phase compressions by a factor of about 3 were confirmed for h =2.

  1. Nonlinear fundamental and harmonic cyclotron resonant scattering of radiation belt ultrarelativistic electrons by oblique monochromatic EMIC waves

    NASA Astrophysics Data System (ADS)

    Wang, Geng; Su, Zhenpeng; Zheng, Huinan; Wang, Yuming; Zhang, Min; Wang, Shui

    2017-02-01

    Cyclotron resonant scattering by electromagnetic ion cyclotron (EMIC) waves has been considered to be responsible for the rapid loss of radiation belt high-energy electrons. For parallel-propagating EMIC waves, the nonlinear character of cyclotron resonance has been revealed in recent studies. Here we present the first study on the nonlinear fundamental and harmonic cyclotron resonant scattering of radiation belt ultrarelativistic electrons by oblique EMIC waves on the basis of test particle simulations. Higher wave obliquity produces stronger nonlinearity of harmonic resonances but weaker nonlinearity of fundamental resonance. Compared to the quasi-linear prediction, these nonlinear resonances yield a more rapid loss of electrons over a wider pitch angle range. In the quasi-linear regime, the ultrarelativistic electrons are lost in the equatorial pitch angle range αeq<75°, nearly independent of wave normal angle ψ. In contrast, the upper pitch angle cutoff of nonlinear losses tends to increase with the wave normal angle increasing, which is about αeq=82° at ψ = 0° and αeq>87.5° at ψ = 20° and 40°. At the resonant pitch angles αeq<75°, the difference between quasi-linear and nonlinear loss timescales tends to decrease with the wave normal angle increasing. At ψ = 0° and 20°, the nonlinear electron loss timescale is 10% shorter than the quasi-linear prediction; at ψ = 40°, the difference in loss timescales is reduced to <5%.

  2. Useful technique for analysis and control of the acceleration beam phase in the azimuthally varying field cyclotron

    SciTech Connect

    Kurashima, Satoshi; Yuyama, Takahiro; Miyawaki, Nobumasa; Kashiwagi, Hirotsugu; Okumura, Susumu; Fukuda, Mitsuhiro

    2010-03-15

    We have developed a new technique for analysis and control of the acceleration beam phase in the cyclotron. In this technique, the beam current pattern at a fixed radius r is measured by slightly scanning the acceleration frequency in the cyclotron. The acceleration beam phase is obtained by analyzing symmetry of the current pattern. Simple procedure to control the acceleration beam phase by changing coil currents of a few trim coils was established. The beam phase width is also obtained by analyzing gradient of the decreasing part of the current pattern. We verified reliability of this technique with 260 MeV {sup 20}Ne{sup 7+} beams which were accelerated on different tuning condition of the cyclotron. When the acceleration beam phase was around 0 deg., top of the energy gain of cosine wave, and the beam phase width was about 6 deg. in full width at half maximum, a clear turn pattern of the beam was observed with a differential beam probe in the extraction region. Beam phase widths of ion beams at acceleration harmonics of h=1 and h=2 were estimated without beam cutting by phase-defining slits. We also calculated the beam phase widths roughly from the beam current ratio between the injected beam and the accelerated beam in the cyclotron without operating the beam buncher. Both beam phase widths were almost the same for h=1, while phase compressions by a factor of about 3 were confirmed for h=2.

  3. Correlation electron cyclotron emission diagnostic in TCV

    NASA Astrophysics Data System (ADS)

    Fontana, M.; Porte, L.; Molina Cabrera, P.

    2017-08-01

    The correlation electron cyclotron emission diagnostic of tokamak à configuration variable has recently been upgraded. It now has the choice of three lines of sight: two horizontal lines placed on the low field side of the vessel, perpendicular to the magnetic field, and a dual-axis steerable antenna. The polarization of the radiation collected by the latter can be rotated using a universal polarizer situated in the transmission line. This line is also shared with a reflectometry system, allowing simultaneous measurements of temperature and density fluctuations in the same plasma volumes. When using this line, it is possible to choose between two dedicated front ends characterized by different local oscillator frequencies, adding flexibility in the choice of the plasma region to be studied. The intermediate frequency section is now equipped with six frequency tunable YIG filters allowing the study of turbulence properties in a wide range of radial positions. When studying fluctuations over the whole video bandwidth, the minimum detectable fluctuation level is δ Te/Te˜0.5 % . The new system has been used to measure electron temperature fluctuations over a large fraction of the plasma profiles in a series of plasmas with triangularity varying from 0.6 to -0.6 but comparable collisionality profiles.

  4. 30-cm electron cyclotron plasma generator

    NASA Technical Reports Server (NTRS)

    Goede, Hank

    1987-01-01

    Experimental results on the development of a 30-cm-diam electron cyclotron resonance plasma generator are presented. This plasma source utilizes samarium-cobalt magnets and microwave power at a frequency of 4.9 GHz to produce a uniform plasma with densities of up to 3 x 10 to the 11th/cu cm in a continuous fashion. The plasma generator contains no internal structures, and is thus inherently simple in construction and operation and inherently durable. The generator was operated with two different magnetic geometries. One used the rare-earth magnets arranged in an axial line cusp configuration, which directly showed plasma production taking place near the walls of the generator where the electron temperature was highest but with the plasma density peaking in the central low B-field regions. The second configuration had magnets arranged to form azimuthal line cusps with approximately closed electron drift surfaces; this configuration showed an improved electrical efficiency of about 135 eV/ion.

  5. Fourier transform ion cyclotron resonance mass spectrometry

    NASA Astrophysics Data System (ADS)

    Marshall, Alan G.

    1998-06-01

    As for Fourier transform infrared (FT-IR) interferometry and nuclear magnetic resonance (NMR) spectroscopy, the introduction of pulsed Fourier transform techniques revolutionized ion cyclotron resonance mass spectrometry: increased speed (factor of 10,000), increased sensitivity (factor of 100), increased mass resolution (factor of 10,000-an improvement not shared by the introduction of FT techniques to IR or NMR spectroscopy), increased mass range (factor of 500), and automated operation. FT-ICR mass spectrometry is the most versatile technique for unscrambling and quantifying ion-molecule reaction kinetics and equilibria in the absence of solvent (i.e., the gas phase). In addition, FT-ICR MS has the following analytically important features: speed (~1 second per spectrum); ultrahigh mass resolution and ultrahigh mass accuracy for analysis of mixtures and polymers; attomole sensitivity; MSn with one spectrometer, including two-dimensional FT/FT-ICR/MS; positive and/or negative ions; multiple ion sources (especially MALDI and electrospray); biomolecular molecular weight and sequencing; LC/MS; and single-molecule detection up to 108 Dalton. Here, some basic features and recent developments of FT-ICR mass spectrometry are reviewed, with applications ranging from crude oil to molecular biology.

  6. Fourth generation electron cyclotron resonance ion sources.

    PubMed

    Lyneis, Claude M; Leitner, D; Todd, D S; Sabbi, G; Prestemon, S; Caspi, S; Ferracin, P

    2008-02-01

    The concepts and technical challenges related to developing a fourth generation electron cyclotron resonance (ECR) ion source with a rf frequency greater than 40 GHz and magnetic confinement fields greater than twice B(ECR) will be explored in this article. Based on the semiempirical frequency scaling of ECR plasma density with the square of operating frequency, there should be significant gains in performance over current third generation ECR ion sources, which operate at rf frequencies between 20 and 30 GHz. While the third generation ECR ion sources use NbTi superconducting solenoid and sextupole coils, the new sources will need to use different superconducting materials, such as Nb(3)Sn, to reach the required magnetic confinement, which scales linearly with rf frequency. Additional technical challenges include increased bremsstrahlung production, which may increase faster than the plasma density, bremsstrahlung heating of the cold mass, and the availability of high power continuous wave microwave sources at these frequencies. With each generation of ECR ion sources, there are new challenges to be mastered, but the potential for higher performance and reduced cost of the associated accelerator continues to make this a promising avenue for development.

  7. Cyclotron-based effects on plant gravitropism

    NASA Astrophysics Data System (ADS)

    Kordyum, E.; Sobol, M.; Kalinina, Ia.; Bogatina, N.; Kondrachuk, A.

    Primary roots exhibit positive gravitropism and grow in the direction of the gravitational vector, while shoots respond negatively and grow opposite to the gravitational vector. We first demonstrated that the use of a weak combined magnetic field (CMF), which is comprised of a permanent magnetic field and an alternating magnetic field with the frequency resonance of the cyclotron frequency of calcium ions, can change root gravitropism from a positive direction to negative direction. Two-day-old cress seedlings were gravistimulated in a chamber that was placed into a μ-metal shield where this CMF was created. Using this "new model" of a root gravitropic response, we have studied some of its components including the movement of amyloplasts-statoliths in root cap statocytes and the distribution of Ca 2+ ions in the distal elongation zone during gravistimulation. Unlike results from the control, amyloplasts did not sediment in the distal part of a statocyte, and more Ca 2+ accumulation was observed in the upper side of a gravistimulated root for seedlings treated with the CMF. For plants treated with the CMF, it appears that a root gravitropic reaction occurs by a normal physiological process resulting in root bending although in the opposite direction. These results support the hypothesis that both the amyloplasts in the root cap statocytes and calcium are important signaling components in plant gravitropism.

  8. Fullerenes in electron cyclotron resonance ion sources

    SciTech Connect

    Biri, S.; Fekete, E.; Kitagawa, A.; Muramatsu, M.; Janossy, A.; Palinkas, J.

    2006-03-15

    Fullerene plasmas and beams have been produced in our electron cyclotron resonance ion sources (ECRIS) originally designed for other purposes. The ATOMKI-ECRIS is a traditional ion source with solenoid mirror coils to generate highly charged ions. The variable frequencies NIRS-KEI-1 and NIRS-KEI-2 are ECR ion sources built from permanent magnets and specialized for the production of carbon beams. The paper summarizes the experiments and results obtained by these facilities with fullerenes. Continuous effort has been made to get the highest C{sub 60} beam intensities. Surprisingly, the best result was obtained by moving the C{sub 60} oven deep inside the plasma chamber, very close to the resonance zone. Record intensity singly and doubly charged fullerene beams were obtained (600 and 1600 nA, respectively) at lower C{sub 60} material consumption. Fullerene derivatives were also produced. We mixed fullerenes with other plasmas (N, Fe) with the aim of making new materials. Nitrogen encapsulated fullerenes (mass: 720+14=734) were successfully produced. In the case of iron, two methods (ferrocene, oven) were tested. Molecules with mass of 720+56=776 were detected in the extracted beam spectra.

  9. The Oak Ridge Isochronous Cyclotron Refurbishment Project

    SciTech Connect

    Mendez, II, Anthony J; Ball, James B; Dowling, Darryl T; Mosko, Sigmund W; Tatum, B Alan

    2011-01-01

    The Oak Ridge Isochronous Cyclotron (ORIC) has been in operation for nearly fifty years at the Oak Ridge National Laboratory (ORNL). Presently, it serves as the driver accelerator for the ORNL Holifield Radioactive Ion Beam Facility (HRIBF), where radioactive ion beams are produced using the Isotope Separation Online (ISOL) technique for post-acceleration by the 25URC tandem electrostatic accelerator. Operability and reliability of ORIC are critical issues for the success of HRIBF and have presented increasingly difficult operational challenges for the facility in recent years. In February 2010, a trim coil failure rendered ORIC inoperable for several months. This presented HRIBF with the opportunity to undertake various repairs and maintenance upgrades aimed at restoring the full functionality of ORIC and improving the reliability to a level better than what had been typical over the previous decade. In this paper, we present details of these efforts, including the replacement of the entire trim coil set and measurements of their radial field profile. Comparison of measurements and operating tune parameters with setup code predictions will also be presented.

  10. Analysis of x-ray spectrum obtained in electron cyclotron resonance x-ray source

    SciTech Connect

    Baskaran, R.; Selvakumaran, T.S.; Sunil Sunny, C.

    2006-03-15

    The analysis of the x-ray spectrum obtained in electron cyclotron resonance (ECR) x-ray source is carried out. Assuming single-particle motion, the electron acceleration and its final energy are calculated for TE{sub 111} cylindrical cavity field and uniform external dc magnetic field. In the calculation, initial coordinates of 40 000 electrons were uniformly selected over the central plane of the cavity using random number generator. The final energy of each electron when it hits the wall is stored and the electron energy distribution is obtained. Using the general purpose Monte Carlo N-particle transport code version 4A, the geometry of the ECR x-ray source is modeled. The x-ray energy spectrum is calculated for the geometry model and the numerically calculated electron energy distribution. The calculated x-ray spectrum is compared with the experimentally measured x-ray spectrum.

  11. High-frequency conductivity of multilayer graphene and graphite under the conditions of quantum cyclotron resonance

    NASA Astrophysics Data System (ADS)

    Kozlov, I. V.; Medina Pantoja, J. C.

    2014-06-01

    The conductivity tensor of a layered conductor with the Dirac-type energy spectrum of charge carriers placed in a quantizing magnetic field under the condition of normal skin-effect is investigated using the method of quantum kinetic equation. It is shown that under the cyclotron resonance conditions there appear high-temperature quantum oscillations of conductivity, which are weakly sensitive to thermal broadening of the Fermi level. We present the expressions for the classical and high-temperature contributions to the conductivity tensor which determine the conductivity in the range of not too low temperatures where the Shubnikov-de Haas oscillations are vanishing.

  12. Production of large resonant plasma volumes in microwave electron cyclotron resonance ion sources

    DOEpatents

    Alton, Gerald D.

    1998-01-01

    Microwave injection methods for enhancing the performance of existing electron cyclotron resonance (ECR) ion sources. The methods are based on the use of high-power diverse frequency microwaves, including variable-frequency, multiple-discrete-frequency, and broadband microwaves. The methods effect large resonant "volume" ECR regions in the ion sources. The creation of these large ECR plasma volumes permits coupling of more microwave power into the plasma, resulting in the heating of a much larger electron population to higher energies, the effect of which is to produce higher charge state distributions and much higher intensities within a particular charge state than possible in present ECR ion sources.

  13. Coupled operation of the Oak Ridge isochronous cyclotron and the 25 MV tandem

    SciTech Connect

    Lord, R.S.; Ball, J.B.; Beckers, R.M.; Cleary, T.P.; Hudson, E.D.; Ludemann, C.A.; Martin, J.A.; Milner, W.T.; Mosko, S.W.; Ziegler, N.F.

    1981-01-01

    Coupled operation of the 25 MV tandem and the Oak Ridge Isochronous Cyclotron (ORIC) was achieved on January 27, 1981. A beam of 38 MeV /sup 16/O/sup 2 +/ was injected into ORIC, stripped to 8/sup +/ and accelerated to 324 MeV. Shortly afterwards, the energy was increased to the maximum design value of 25 MeV/amu (400 MeV). A spectrum taken of the scattering of this beam from a thin /sup 208/Pb target in the broad range spectrograh exhibited a resolution of 115 keV (FWHM). Performance of the system was in close agreement with that predicted from calculations.

  14. Design of the flat-top acceleration system for the JAERI AVF cyclotron

    NASA Astrophysics Data System (ADS)

    Kurashima, S.; Fukuda, M.; Nakamura, Y.; Nara, T.; Agematsu, T.; Ishibori, I.; Tamura, H.; Yokota, W.; Okumura, S.; Arakawa, K.; Kumata, Y.; Fukumoto, Y.

    2001-12-01

    A flat-top acceleration system for the JAERI AVF cyclotron has been designed. The fifth harmonic of the fundamental frequency is used to obtain uniform energy gain. To determine optimum parameters of the flat-top system, a cold model test was carried out and flat-top waveforms of the voltages were observed successfully in the whole range of the fundamental frequency. An rf power required for generating a flat-top dee voltage of 30 kV was estimated to be about 1 kW. The design of the flat-top cavity is being modified using the MAFIA code.

  15. X-ray-spectroscopy analysis of electron-cyclotron-resonance ion-source plasmas

    SciTech Connect

    Santos, J. P.; Martins, M. C.; Parente, F.; Costa, A. M.; Marques, J. P.; Indelicato, P.

    2010-12-15

    Analysis of x-ray spectra emitted by highly charged ions in an electron-cyclotron-resonance ion source (ECRIS) may be used as a tool to estimate the charge-state distribution (CSD) in the source plasma. For that purpose, knowledge of the electron energy distribution in the plasma, as well as the most important processes leading to the creation and de-excitation of ionic excited states are needed. In this work we present a method to estimate the ion CSD in an ECRIS through the analysis of the x-ray spectra emitted by the plasma. The method is applied to the analysis of a sulfur ECRIS plasma.

  16. Quasilinear theory of the ordinary-mode electron-cyclotron resonance in plasmas

    SciTech Connect

    Arunasalam, V.; Efthimion, P.C.; Hosea, J.C.; Hsuan, H.; Taylor, G.

    1983-11-01

    A coupled set of equations, one describing the time evolution of the ordinary-mode wave energy and the other describing the time evolution of the electron distribution function is presented. The wave damping is mainly determined by T/sub parallel/ while the radiative equilibrium is mainly an equipartition with T/sub perpendicular/. The time rate of change of T/sub perpendicular/, T/sub parallel/, particle (N/sub 0/), and current (J/sub parellel/) densities are examined for finite k/sub parallel/ electron-cyclotron-resonance heating of plasmas.

  17. An analytical approach of thermodynamic behavior in a gas target system on a medical cyclotron.

    PubMed

    Jahangiri, Pouyan; Zacchia, Nicholas A; Buckley, Ken; Bénard, François; Schaffer, Paul; Martinez, D Mark; Hoehr, Cornelia

    2016-01-01

    An analytical model has been developed to study the thermo-mechanical behavior of gas targets used to produce medical isotopes, assuming that the system reaches steady-state. It is based on an integral analysis of the mass and energy balance of the gas-target system, the ideal gas law, and the deformation of the foil. The heat transfer coefficients for different target bodies and gases have been calculated. Excellent agreement is observed between experiments performed at TRIUMF's 13 MeV cyclotron and the model. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. First results of an auxiliary electron cyclotron resonance heating experiment in the GDT magnetic mirror

    NASA Astrophysics Data System (ADS)

    Bagryansky, P. A.; Kovalenko, Yu. V.; Savkin, V. Ya.; Solomakhin, A. L.; Yakovlev, D. V.

    2014-08-01

    The axially symmetric magnetic mirror device gas-dynamic trap (GDT, Budker Institute, Novosibirsk) has recently demonstrated a tangible increase in plasma electron temperature. According to laser scattering, a value of 0.4 keV has been achieved (a twofold increase). In addition to standard machine operation, utilizing a 5 MW neutral beam injection, a newly installed electron cyclotron resonance heating (ECRH) system was employed (54.5 GHz, 0.4 MW). The reported progress in electron temperature, along with previous experiments, which demonstrated plasma confinement at beta as high as 60%, is a significant advancement towards an energy efficient fusion neutron source based on GDT physics.

  19. Production of large resonant plasma volumes in microwave electron cyclotron resonance ion sources

    DOEpatents

    Alton, G.D.

    1998-11-24

    Microwave injection methods are disclosed for enhancing the performance of existing electron cyclotron resonance (ECR) ion sources. The methods are based on the use of high-power diverse frequency microwaves, including variable-frequency, multiple-discrete-frequency, and broadband microwaves. The methods effect large resonant ``volume`` ECR regions in the ion sources. The creation of these large ECR plasma volumes permits coupling of more microwave power into the plasma, resulting in the heating of a much larger electron population to higher energies, the effect of which is to produce higher charge state distributions and much higher intensities within a particular charge state than possible in present ECR ion sources. 5 figs.

  20. Demonstration of effective control of fast-ion-stabilized sawteeth by electron-cyclotron current drive.

    PubMed

    Lennholm, M; Eriksson, L-G; Turco, F; Bouquey, F; Darbos, C; Dumont, R; Giruzzi, G; Jung, M; Lambert, R; Magne, R; Molina, D; Moreau, P; Rimini, F; Segui, J-L; Song, S; Traisnel, E

    2009-03-20

    In a tokamak plasma, sawtooth oscillations in the central temperature, caused by a magnetohydrodynamic instability, can be partially stabilized by fast ions. The resulting less frequent sawtooth crashes can trigger unwanted magnetohydrodynamic activity. This Letter reports on experiments showing that modest electron-cyclotron current drive power, with the deposition positioned by feedback control of the injection angle, can reliably shorten the sawtooth period in the presence of ions with energies >or=0.5 MeV. Certain surprising elements of the results are evaluated qualitatively in terms of existing theory.

  1. Demonstration of Effective Control of Fast-Ion-Stabilized Sawteeth by Electron-Cyclotron Current Drive

    SciTech Connect

    Lennholm, M.; Eriksson, L.-G.; Turco, F; Bouquey, F.; Darbos, C.; Dumont, R.; Giruzzi, G.; Jung, M.; Lambert, R.; Magne, R.; Molina, D.; Moreau, P.; Rimini, F.; Segui, J-L.; Song, S.; Traisnel, E.

    2009-03-20

    In a tokamak plasma, sawtooth oscillations in the central temperature, caused by a magnetohydrodynamic instability, can be partially stabilized by fast ions. The resulting less frequent sawtooth crashes can trigger unwanted magnetohydrodynamic activity. This Letter reports on experiments showing that modest electron-cyclotron current drive power, with the deposition positioned by feedback control of the injection angle, can reliably shorten the sawtooth period in the presence of ions with energies {>=}0.5 MeV. Certain surprising elements of the results are evaluated qualitatively in terms of existing theory.

  2. Measurements of the fast electron bremsstrahlung emission during electron cyclotron resonance heating in the HL-2A tokamak

    SciTech Connect

    Zhang, Y. P.; Liu, Yi; Song, X. Y.; Yuan, G. L.; Chen, W.; Ji, X. Q.; Ding, X. T.; Yang, J. W.; Zhou, J.; Li, X.; Yang, Q. W.; Duan, X. R.; Pan, C. H.; Liu, Y.

    2010-10-15

    A fast electron bremsstrahlung (FEB) diagnostic technique based on cadmium telluride (CdTe) detector has been developed recently in the HL-2A tokamak for measurements of the temporal evolution of FEB emission in the energy range of 10-200 keV. With a perpendicular viewing into the plasma on the equatorial plane, the hard x-ray spectra with eight different energy channels are measured. The discrimination of the spectra is implemented by an accurate spectrometry. The system also makes use of fast digitization and software signal processing technology. An ambient environment of neutrons, gammas, and magnetic disturbance requires careful shielding. During electron cyclotron resonance heating, the generation of fast electrons and the oscillations of electron fishbone (e-fishbone) have been found. Using the FEB measurement system, it has been experimentally identified that the mode strongly correlates with the electron cyclotron resonance heating produced fast electrons with 30-70 keV.

  3. Inverse ion-cyclotron damping and excitation of multiharmonic ion-cyclotron waves in the northern magnetospheric cusp

    NASA Astrophysics Data System (ADS)

    Slapak, Rikard; Gunell, Herbert; Hamrin, Maria

    2017-04-01

    We have investigated a case of inverse ion-cyclotron damping taking place in the northern terrestrial magnetospheric cusp, exciting waves at the ion-cyclotron frequency and its harmonics. Magnetosheath influx in the cusps and the effect of convection and magnetic mirroring give rise to parallel velocity shears, dvallel/dx\\perp, often associated with instabilities in the plasma and corresponding ion-cyclotron waves, whose evolution is described by a damping factor. This damping factor depends on, for example, the wave numbers and the velocity shear itself and can under certain conditions be negative, hence describing inverse damping (or wave growth). However, an additional required condition for inverse ion-cyclotron damping is a velocity shear in the magnetic field-aligned ion-bulk flow, and this condition is only met for magnetosheath influx in the northern cusp, as oppose to the southern cusp. The ion-cyclotron waves are primarily seen as peaks in the magnetic-field spectral densities, as presented by Slapak et al., [GRL (2016), doi:10.1002/2016GL071680]. The corresponding peaks in the electric-field spectral densities are not as profound, suggesting a background electric field noise or other processes of wave generation causing the electric spectral densities to smoothen out more compared to the magnetic counterpart. We note that some ion-cyclotron wave activity is present in a few similar shear events in the southern cusp, which indicates that other mechanisms generating ion-cyclotron waves may also be present during such conditions.

  4. Design of RF system for CYCIAE-230 superconducting cyclotron

    NASA Astrophysics Data System (ADS)

    Yin, Zhiguo; Ji, Bin; Fu, Xiaoliang; Cao, Xuelong; Zhao, Zhenlu; Zhang, Tinajue

    2017-05-01

    The CYCIAE230 is a low-current, compact superconducting cyclotron designed for proton therapy. The Radio Frequency system consists of four RF cavities and applies second harmonic to accelerate beams. The driving power for the cavity system is estimated to be approximately 150 kW. The LLRF controller is a self-made device developed and tested at low power using a small-scale cavity model. In this paper, the resonator systems of an S.C. cyclotron in history are reviewed. Contrary to those RF systems, the cavities of the CYCIAE230 cyclotron connect two opposite dees. Two high-power RF windows are included in the system. Each window carries approximately 75 kW RF power from the driver to the cavities. Thus, the RF system for the CY-CIAE230 cyclotron is operated in driven push-pull mode. The two-way amplifier-coupler-cavity systems are operated with approximately the same amount of RF power but 180° out of phase compared with each other. The design, as well as the technical advantage and limitations of this operating mode, of the CYCIAE230 cyclotron RF system is analyzed.

  5. Cyclotron targets and production technologies used for radiopharmaceuticals in NPI

    NASA Astrophysics Data System (ADS)

    Fišer, M.; Kopička, K.; Hradilek, P.; Hanč, P.; Lebeda, O.; Pánek, J.; Vognar, M.

    2003-01-01

    This paper deals with some technical aspects of the development and production of cyclotronmade radiopharmaceuticals (excluding PET). In this field, nuclear chemistry and pharmacy are in a close contact; therefore, requirements of the both should be taken into account. The principles of cyclotron targetry, separation/recovery of materials and synthesis of active substances are given, as well as issues connected with formulation of pharmaceutical forms. As the radiopharmaceuticals should fulfil the requirements on in vivo preparations, there exist a variety of demands pertaining to Good Manufacturing Practice (GMP) concept, which is also briefly discussed. A typical production chain is presented and practical examples of real technologies based on cyclotron-made radionuclides are given as they have been used in Nuclear Physics Institute of CAS (NPI). Special attention is devoted to the technology of enriched cyclotron targets. Frequently used medicinal products employing cyclotron-produced active substances are characterised (Rb/Kr generators, 123I-labelled MIBG, OIH and MAB's). The cyclotron produced radioactive implants for transluminal coronary angioplasty (radioactive stents) are introduced as an example of a medical device developed for therapeutic application.

  6. Cyclotron-based of plant gravisensing

    NASA Astrophysics Data System (ADS)

    Kordyum, E.; Kalinina, Ia.; Bogatina, N.; Kondrachuk, A.

    Roots exhibit positive gravitropism they grow in the direction of a gravitational vector while shoots respond negatively and grow opposite to a gravitational vector We first demonstrated the inversion of roots gravitropism from positive to negative one under gravistimulation in the weak combined magnetic field WCMF consisted of permanent magnetic field PMF with the magnitude of order of 50 mu T and altering magnetic field AMF with the 6 mu T magnitude and a frequency of 32 Hz It was found that the effect of inversion has a resonance nature It means that in the interval of frequencies 1-45 Hz inversion of root gravitropism occurs only at frequency 32 Hz 2-3-day old cress seedlings were gravistimulated in moist chambers which are placed in mu -metal shields Inside mu -metal shields combined magnetic fields have been created The magnitude of magnetic fields was measured by a flux-gate magnetometer Experiments were performed in darkness at temperature 20 pm 1 0 C We measured the divergence angle of a growing root from its horizontal position After 1 h of gravistimulation in the WCMF we observed negative gravitropism of cress roots i e they grow in the opposite direction to a gravitational vector Frequency of 32 Hz for the magnitude of the PMF applied formally corresponds to cyclotron frequency of Ca 2 ions This indicates possible participation of calcium ions in root gravitropism There are many evidences of resonance effects of the WCMF on the biological processes that involve Ca 2 but the nature of

  7. Characteristics of heat flux and electromagnetic electron-cyclotron instabilities driven by solar wind electrons

    NASA Astrophysics Data System (ADS)

    Saeed, Sundas; Sarfraz, M.; Yoon, P. H.; Qureshi, M. N. S.

    2017-01-01

    In-situ observations reveal the existence of electron velocity distribution function in the solar wind, where the net distribution can be modeled by a combination of core, halo and strahl. These components often possess a relative drift and with respective temperature anisotropies. The relative drift between the core and halo components leads to heat flux (HF) instability, while temperature anisotropies drive electromagnetic electron-cyclotron (EMEC) instability. These instabilities have been separately studied in the literature, but for the first time, the present study combines both unstable modes in the presence of two free energy sources, namely, excessive parallel pressure and excessive perpendicular temperature. Heat flux instability (which is a left-hand circularly polarized mode) is effectively similar to electron firehose instability, except that the free energy is provided by net relative drift among two component electrons in the background of protons. The heat flux instability is discussed here along with (the right-hand polarized) EMEC instability driven by temperature anisotropy. The unstable heat flux mode is conventionally termed the "whistler" heat flux instability, but it is actually polarized in the opposite sense to the whistler wave. Electromagnetic electron-cyclotron mode, on the other hand, reduces to the proper whistler wave in the absence of free energy source. The present combined analysis clarifies the polarization characteristics of these two modes in an unambiguous manner.

  8. Ion cyclotron range of frequencies heating of plasma with small impurity production

    DOEpatents

    Ohkawa, Tihiro

    1987-01-01

    Plasma including plasma ions is magnetically confined by a magnetic field. The plasma has a defined outer surface and is intersected by resonance surfaces of respective common ion cyclotron frequency of a predetermined species of plasma ions moving in the magnetic field. A radio frequency source provides radio frequency power at a radio frequency corresponding to the ion cyclotron frequency of the predetermined species of plasma ions moving in the field at a respective said resonance surface. RF launchers coupled to the radio frequency source radiate radio frequency energy at the resonance frequency onto the respective resonance surface within the plasma from a plurality of locations located outside the plasma at such respective distances from the intersections of the respective resonance surface and the defined outer surface and at such relative phases that the resulting interference pattern provides substantially null net radio frequency energy over regions near and including substantial portions of the intersections relative to the radio frequency energy provided thereby at other portions of the respective resonance surface within the plasma.

  9. Ion heating in the field-reversed configuration (FRC) by rotating magnetic fields (RMF) near cyclotron resonance

    SciTech Connect

    Samuel A. Cohen; Alan H. Glasser

    2000-07-20

    The trajectories of ions confined in a Solovev FRC equilibrium magnetic geometry and heated with a small-amplitude, odd-parity rotating magnetic field, have been studied with a Hamiltonian computer code. When the RMF frequency is in the ion-cyclotron range, explosive heating occurs. Higher-energy ions are found to have betatron-type orbits, preferentially localized near the FRC midplane. These results are relevant to a compact magnetic-fusion-reactor design.

  10. A CYCLOTRON CONCEPT TO SUPPORT ISOTOPE PRODUCTION FOR SCIENCE AND MEDICAL APPLICATIONS

    SciTech Connect

    Egle, Brian; Mirzadeh, Saed; Tatum, B Alan; Varma, Venugopal Koikal; Bradley, Eric Craig; Burgess, Thomas W; Aaron, W Scott; Binder, Jeffrey L; Beene, James R; Saltmarsh, Michael John

    2013-01-01

    In August of 2009, the Nuclear Science Advisory Committee (NSAC) recommended a variable-energy, high-current multi-particle accelerator for the production of medical radioisotopes. The Oak Ridge National Laboratory is developing a technical concept for a 70 MeV dual-extraction multi-particle cyclotron that will meet the needs identified in the NSAC report. The cyclotron, which will be located at the Holifield Radioactive Ion Beam Facility (HRIBF), will operate on a 24/7 basis and will provide approximately 6000 hours per year of quality beam time for both the production R&D and production of medical and industrial radioisotopes. The proposed cyclotron will be capable of accelerating dual beams of 30 to 70 MeV H at up to 750 A, and up to 50 A of 15-35 MeV D , 35 MeV H2, and 70 MeV -particles. In dual-extraction H mode, a total of 750 A of 70 MeV protons will be provided simultaneously to both HRIBF and Isotope Production Facility. The isotope facility will consist of two target stations: a 2 water-cooled station and a 4 water-cooled high-energy-beam research station. The multi-particle capability and high beam power will enable research into new regimes of accelerator-produced radioisotopes, such as 225Ac, 211At, 68Ge, and 7B. The capabilities of the accelerator will enable the measurement of excitation functions, thick target yield measurements, research in high-power-target design, and will support fundamental research in nuclear and radiochemistry.

  11. Enriched xenon-124 for the production of high purity iodine-123 using a CP-42 cyclotron

    SciTech Connect

    Graham, D.; Trevena, I.C.; Webster, B.; Williams, D.

    1984-01-01

    The preferred production route for I-123 is that employing the I-127 (p,5n) reaction. This reaction requires energies beyond the capabilities of compact industrial cyclotrons. The possibility of using the reactions Xe-124 (p,2n)Cs-123 ..-->.. Xe-123..-->.. I-123, and Xe-124 (p,pn)Xe-123 ..-->.. I-123 was investigated using xenon containing 50% Xe-124. Three xenon gas targets were evaluated on an external beamline of the CP-42 cyclotron installed at TRIUMF in Vancouver. Two of these targets performed routinely with beam currents of 75..mu..A and one of these has been tested satisfactorily with natural xenon with a beam current of 150..mu..A. The targets have been relatively thin, about 1-2 MeV, with an incident proton energy of 24-26 MeV. The maximum production from a single run has been 1.1Ci I-123 at the end of chemical processing. I-125 is formed from Xe-126 present in the target gas. Because the half life of Xe-125 is 17h compared with 2h for Xe-123, the I-125 content is dependant upon the length of the irradiation and time that the target gas is allowed to decay prior to processing. With optimum timing, the I-125 content is less than 0.2% at the end of processing. I-123 is washed from the target with dilute base. Since 50% Xe-124 costs about U.S.$130/ml, processing procedures and equipment design must ensure negligible losses. This demonstration of a route for the production of I-123 will enable those with access to a compact cyclotron with an external beamline to produce ''(p,5n)'' quality I-123 using a Xe-124 gas target.

  12. A potential cyclotron line signature in low-luminosity X-ray sources

    NASA Technical Reports Server (NTRS)

    Nelson, Robert W.; Wang, John C. L.; Salpeter, E. E.; Wasserman, Ira

    1995-01-01

    Estimates indicate there may be greater than or approximately equal to 10(exp 3) low-luminosity X-ray pulsars (L less than or approximately equal to 10(exp 34) ergs/s) in the Galaxy undergoing 'low-state' wind accretion in Be/X-ray binary systems, and approximately 10(exp 8)-10(exp 9) isolated neutron stars which may be accreting directly from the interstellar medium. Despite their low effective temperatures (kT(sub e) less than or approximately equal to 300 eV), low-luminosity accreting neutron stars with magnetic fields B approximately (0.7-7) x 10(exp 12) G could emit a substantial fraction (0.5%-5%) of their total luminosity in a moderately broadened (Epsilon/delta Epsilon approximately 2-4) cyclotron emission line which peaks in the energy range approximately 5-20 keV. The bulk of the thermal emission from these stars will be in the extreme ultraviolet/soft X-ray regime. In sharp contrast, the nonthermal cyclotron component predicted here will not be strongly absorbed, and consequently it may be the only distinguishing signature for the bulk of these low-luminosity sources. We propose a search for this cyclotron emission feature in long pointed observations of the newly discovered candidate isolated neutron star MS 0317.7-6477, and the Be/X-ray transient pulsar 4U 0115+63 in its quiescent state. We note that an emission-like feature similar to the one we predict here has been reported in the energy spectrum of the unusual X-ray pulsar 1E 2259+586.

  13. A potential cyclotron line signature in low-luminosity X-ray sources

    NASA Technical Reports Server (NTRS)

    Nelson, Robert W.; Wang, John C. L.; Salpeter, E. E.; Wasserman, Ira

    1995-01-01

    Estimates indicate there may be greater than or approximately equal to 10(exp 3) low-luminosity X-ray pulsars (L less than or approximately equal to 10(exp 34) ergs/s) in the Galaxy undergoing 'low-state' wind accretion in Be/X-ray binary systems, and approximately 10(exp 8)-10(exp 9) isolated neutron stars which may be accreting directly from the interstellar medium. Despite their low effective temperatures (kT(sub e) less than or approximately equal to 300 eV), low-luminosity accreting neutron stars with magnetic fields B approximately (0.7-7) x 10(exp 12) G could emit a substantial fraction (0.5%-5%) of their total luminosity in a moderately broadened (Epsilon/delta Epsilon approximately 2-4) cyclotron emission line which peaks in the energy range approximately 5-20 keV. The bulk of the thermal emission from these stars will be in the extreme ultraviolet/soft X-ray regime. In sharp contrast, the nonthermal cyclotron component predicted here will not be strongly absorbed, and consequently it may be the only distinguishing signature for the bulk of these low-luminosity sources. We propose a search for this cyclotron emission feature in long pointed observations of the newly discovered candidate isolated neutron star MS 0317.7-6477, and the Be/X-ray transient pulsar 4U 0115+63 in its quiescent state. We note that an emission-like feature similar to the one we predict here has been reported in the energy spectrum of the unusual X-ray pulsar 1E 2259+586.

  14. External beam's nozzle design for the CRC cyclotron PIXE/PIGE

    NASA Astrophysics Data System (ADS)

    Choi, Yeon-Gyeong; Kim, Yu-Seok

    2015-02-01

    Recently, 13-MeV proton cyclotrons have been applied to non-destructive trace element analytical techniques, such as proton-induced X-ray emission (PIXE) and proton-induced gamma-ray emission (PIGE). A new extended beam line has been designed for PIXE/PIGE measurements in order to deliver protons to the target with minimal losses, thus reducing secondary radiation. A target chamber for PIXE/PIGE measurements is installed at the end of the extended beam line, and the beam size may be optimized by using a series of collimators that are located in front of the target. The optimized proton beam, with low currents (˜nA) for PIXE/PIGE experiments, requires a small beam size with variable energies from ˜10 keV to 3 MeV. Based on the ionization cross-section curve, a 3-MeV proton beam has been determined to be suitable for PIXE/PIGE measurements. Therefore, the 13-MeV protons extracted from the cyclotron must be reduced to 3 MeV, and this is achieved through the incorporation of an energy degrader. The appropriate thickness of the energy degrader has been estimated by using the stopping range in matter (SRIM) program. Also, suitable materials must be used for the construction of the collimator and the energy degrader in order to meet the requirements of low neutron activation due to the application of protons. In this study, we evaluated a number of suitable materials with low neutron yields and with little energy spread as the beam passes through the energy degrader and collimator. The appropriate thickness of the energy degrader for the reduction of the proton energy from 13 MeV to 3 MeV was determined using the SRIM code. Also, the neutron yield at the nozzle was estimated using the MCNPX code.

  15. Issues in the analysis and interpretation of cyclotron lines in gamma ray bursts

    NASA Technical Reports Server (NTRS)

    Lamb, D. Q.

    1992-01-01

    The Bayesian approach is discussed to establishing the existence of lines, the importance of observing multiple cyclotron harmonics in determining physical parameters from the lines, and evidence from cyclotron lines of neutron star rotation.

  16. 75 FR 48939 - National Superconducting Cyclotron Laboratory of Michigan State University; Notice of Decision on...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-12

    ... International Trade Administration National Superconducting Cyclotron Laboratory of Michigan State University... pursuant to Section 6(c) of the Educational, Scientific, and Cultural Materials Importation Act of 1966...., NW., Washington, DC. Docket Number: 10-043. Applicant: National Superconducting Cyclotron Laboratory...

  17. Status report on the design and construction of the Superconducting Source for Ions at the National Superconducting Cyclotron Laboratory/Michigan State University

    SciTech Connect

    Zavodszky, P.A.; Arend, B.; Cole, D.; DeKamp, J.; Machicoane, G.; Marti, F.; Miller, P.; Moskalik, J.; Ottarson, J.; Vincent, J.; Zeller, A.; Kazarinov, N.Yu.

    2006-03-15

    A status report of the design and fabrication of a new, fully superconducting electron cyclotron resonance ion source will be presented. The Superconducting Source for Ions (SuSI) first will operate at 18+14.5 GHz microwave frequencies. A short description of the magnet structure and the injection and extraction hardware will be presented. Several innovative solutions are described, which will allow maximum flexibility in tuning SuSI in order to match the acceptance of the coupled cyclotrons. Details of an ultrahigh temperature inductive oven construction are given as well as a description of the low-energy beam transport line.

  18. Spectra and Neutron Dosimetry Inside a PET Cyclotron Vault Room

    SciTech Connect

    Vega-Carrillo, Hector Rene; Mendez, Roberto; Iniguez, Maria Pilar; Marti-Climent, Joseph; Penuelas, Ivan; Barquero, Raquel

    2006-09-08

    The neutron field around a PET cyclotron was investigated during 18F radioisotope production with an 18 MeV proton beam. Pairs of thermoluminescent dosemeters, TLD600 and TLD700, were used as thermal neutron detector inside a Bonner Spheres Spectrometer to measure the neutron spectra at three different positions inside the cyclotron's vault room. Neutron spectra were also determined by Monte Carlo calculations. The hardest spectrum was observed in front of cyclotron target and the softest was noticed at the antipode of target. Neutron doses derived from the measured spectra vary between 11 and 377 mSv/{mu}A-h of proton integrated current, Doses were also measured with a single-moderator remmeter, with an active thermal neutron detector, whose response in affected by the radiation field in the vault room.

  19. Design study of the KIRAMS-430 superconducting cyclotron magnet

    NASA Astrophysics Data System (ADS)

    Kim, Hyun Wook; Kang, Joonsun; Hong, Bong Hwan; Jung, In Su

    2016-07-01

    Design study of superconducting cyclotron magnet for the carbon therapy was performed at the Korea Institute of Radiological and Medical Science (KIRAMS). The name of this project is The Korea Heavy Ion Medical Accelerator (KHIMA) project and a fixed frequency cyclotron with four spiral sector magnet was one of the candidate for the accelerator type. Basic parameters of the cyclotron magnet and its characteristics were studied. The isochronous magnetic field which can guide the 12C6+ ions up to 430 MeV/u was designed and used for the single particle tracking simulation. The isochronous condition of magnetic field was achieved by optimization of sector gap and width along the radius. Operating range of superconducting coil current was calculated and changing of the magnetic field caused by mechanical deformations of yokes was considered. From the result of magnetic field design, structure of the magnet yoke was planned.

  20. Alfven ion-cyclotron heating of ionospheric O(+) ions

    NASA Technical Reports Server (NTRS)

    Winglee, R. M.; Sydora, R. D.; Ashour-Abdalla, M.

    1988-01-01

    Transversely heated ionospheric ions, in particular O(+) ions, are often observed flowing upward along auroral field lines. Currents observed in association with the transversely heated ions can drive shear Alfven waves and electrostatic ion-cyclotron waves unstable which can, in turn, be resonantly absorbed by the ions to produce the heating. Particle simulations are used to examine self-consistently the excitation of these waves and the associated heating. It is shown that the growth of the electrostatic ion-cyclotron waves quickly becomes suppressed as the ions become heated and the dominant wave fields are those of the shear Alfven wave. The resultant transverse ion heating is larger and faster than that produced by solely electrostatic ion-cyclotron wave heating. Due to trapping of ions by the shear Alfven wave, the temperature of the O(+) ions remains comparable to that of the H(+) ions.

  1. Cyclotron motion of a charged particle with anisotropic mass

    NASA Astrophysics Data System (ADS)

    Ciftja, Orion; Livingston, Victoria; Thomas, Elsa

    2017-05-01

    The cyclotron motion of a charged particle subject to a uniform magnetic field is thoroughly described in many classical physics textbooks. Although the assumption of a particle with isotropic mass is taken for granted in classical physics, a key concept in condensed matter physics is that of particles with an effective anisotropic mass, such as electrons in the context of band structure studies of solids. Since some exposure to the concept of anisotropic mass is important within the framework of classical physics, here we consider the cyclotron motion of a charged particle with anisotropic mass in the presence of a uniform magnetic field. The exact solution of this problem exposes a broad audience of readers to concepts in condensed matter physics that are rarely mentioned within the framework of classical physics. Key ideas on the topic are illustrated in a pedagogical way by considering specific examples that show how an anisotropic mass modifies the cyclotron motion of a charged particle.

  2. The next generation of electron cyclotron emission imaging diagnostics (invited).

    PubMed

    Zhang, P; Domier, C W; Liang, T; Kong, X; Tobias, B; Shen, Z; Luhmann, N C; Park, H; Classen, I G J; van de Pol, M J; Donné, A J H; Jaspers, R

    2008-10-01

    A 128 channel two-dimensional electron cyclotron emission imaging system collects time-resolved 16x8 images of T(e) profiles and fluctuations on the TEXTOR tokamak. Electron cyclotron emission imaging (ECEI) is undergoing significant changes which promise to revolutionize and extend its capabilities far beyond what has been achieved to date. These include the development of a minilens array configuration with increased sensitivity antennas, a new local oscillator pumping scheme, enhanced electron cyclotron resonance heating shielding, and a highly flexible optical design with vertical zoom capability. Horizontal zoom and spot size (rf bandwidth) capabilities are also being developed with new ECEI electronics. An interface module is under development to remotely control all key features of the new ECEI instrument, many of which can be changed during a plasma discharge for maximum flexibility.

  3. The next generation of electron cyclotron emission imaging diagnostics (invited)

    SciTech Connect

    Zhang, P.; Domier, C. W.; Liang, T.; Kong, X.; Tobias, B.; Shen, Z.; Luhmann, N. C. Jr.; Park, H.; Classen, I. G. J.; Pol, M. J. van de; Donne, A. J. H.; Jaspers, R.

    2008-10-15

    A 128 channel two-dimensional electron cyclotron emission imaging system collects time-resolved 16x8 images of T{sub e} profiles and fluctuations on the TEXTOR tokamak. Electron cyclotron emission imaging (ECEI) is undergoing significant changes which promise to revolutionize and extend its capabilities far beyond what has been achieved to date. These include the development of a minilens array configuration with increased sensitivity antennas, a new local oscillator pumping scheme, enhanced electron cyclotron resonance heating shielding, and a highly flexible optical design with vertical zoom capability. Horizontal zoom and spot size (rf bandwidth) capabilities are also being developed with new ECEI electronics. An interface module is under development to remotely control all key features of the new ECEI instrument, many of which can be changed during a plasma discharge for maximum flexibility.

  4. Proton and helium cyclotron anisotropy instability thresholds in the magnetosheath

    NASA Technical Reports Server (NTRS)

    Gary, S. Peter; Convery, Patrick D.; Denton, Richard E.; Fuselier, Stephen A.; Anderson, Brian J.

    1994-01-01

    Both the protons and the helium ions of the terrestrial magnetosheath typically display T (sub perpendicular) greater than T (sub parallel), where perpendicular to and parallel to denote directions perpendicular and parallel to the background magnetic field. Observations of the highly compressed magnetosheath show an inverse correlation between these ion temperature anisotropies and the parallel proton beta. Computer simulations have demonstrated that these correlations are due to wave-particle scattering by electromagnetic ion cyclotron anisotropy instabilities. These correlations correspond to linear theory thresholds of the proton cyclotron and the helium cyclotron instabilities. This paper uses linear Vlasov theory and the assumption of a constant maximum growth rate to obtain closed-form expressions for these thresholds as a function of the relative helium density and the parallel proton beta in a parameter model of the magnetosheath.

  5. Generation of Electron Cyclotron Harmonic waves around the Moon

    NASA Astrophysics Data System (ADS)

    Katayama, Y.; Kojima, H.; Saito, Y.; Kasahara, Y.; Omura, Y.; Yamamoto, T.; Yokota, S.; Nishino, M. N.; Hashimoto, K.; Ono, T.; Tsunakawa, H.

    2012-12-01

    The study of the electron cyclotron harmonic(ECH) waves has been extensively made in the view point of the magnetospheric physics as well as the microscopic wave-particle interaction. The Japanese lunar satellite Kaguya provides another observation of the ECH waves around the moon. The interaction between the moon and space plasmas results in the generation of the ECH waves. We performed the detailed data analyses using the plasma wave data observed by the Kaguya as well as the linear dispersion analyses. First of all we found the close relation of the ECH wave observation and the magnetic anomaly of the night side of the moon. In order to examine the generation condition of the ECH waves, we consult the Kaguya electron data. The data show that the importance of the coexistence of of electron loss cone velocity distribution and low energy electron beams. The loss cone velocity distribution can be formed by the mirror force at the magnetic anomaly on the surface of the moon. The low energy electron beam can be realized by the acceleration due to the negative potential of the moon surface on the night side. We then assume these two kinds of electron distribution are essential to excite ECH waves. However the loss cone distribution and low energy beam are observed not only in the magnetosphere but also in the wake region, where ECH waves are not observed. This means some parametric dependence of the ECH wave generation even under the coexistence of the electron loss cone distribution and low energy electron beam. In order to make clear the parametric condition of the ECH waves around the moon, we calculate the linear growth rate by solving the kinetic plasma dispersion relation using the realistic plasma parameters of the lobe, plasma sheet and wake regions based on the KAGUYA observation. In the linear dispersion analysis, we assumed hot electrons and cold electrons, and the former have loss cone distribution and the latter has drift velocity which equivalent

  6. Distribution of thermal neutron flux around a PET cyclotron.

    PubMed

    Ogata, Yoshimune; Ishigure, Nobuhito; Mochizuki, Shingo; Ito, Kengo; Hatano, Kentaro; Abe, Junichiro; Miyahara, Hiroshi; Masumoto, Kazuyoshi; Nakamura, Hajime

    2011-05-01

    The number of positron emission tomography (PET) examinations has greatly increased world-wide. Since positron emission nuclides for the PET examinations have short half-lives, they are mainly produced using on-site cyclotrons. During the production of the nuclides, significant quantities of neutrons are generated from the cyclotrons. Neutrons have potential to activate the materials around the cyclotrons and cause exposure to the staff. To investigate quantities and distribution of the thermal neutrons, thermal neutron fluxes were measured around a PET cyclotron in a laboratory associating with a hospital. The cyclotron accelerates protons up to 18 MeV, and the mean particle current is 20 μA. The neutron fluxes were measured during both 18F production and C production. Gold foils and thermoluminescent dosimeter (TLD) badges were used to measure the neutron fluxes. The neutron fluxes in the target box averaged 9.3 × 10(6) cm(-2) s(-1) and 1.7 × 10(6) cm(-2) s(-1) during 18F and 11C production, respectively. Those in the cyclotron room averaged 4.1 × 10(5) cm(-2) s(-1) and 1.2 × 10(5) cm(-2) s(-1), respectively. Those outside the concrete wall shielding were estimated as being equal to or less than ∼3 cm s, which corresponded to 0.1 μSv h(-1) in effective dose. The neutron fluxes outside the concrete shielding were confirmed to be quite low compared to the legal limit.

  7. DIII-D Electron Cyclotron Heating System Status and Upgrades

    DOE PAGES

    Cengher, Mirela; Lohr, John; Gorelov, Yuri; ...

    2016-06-23

    The DIII-D Electron Cyclotron Heating (ECH) system consists of six 110 GHz gyrotrons with corrugated coaxial 31.75 mm waveguide transmission lines and steerable launching mirrors. The system has been gradually updated, leading to increased experimental flexibility and a high system reliability of 91% in the past year. Operationally, the gyrotrons can generate up to a total of 4.8 MW of rf power for pulses up to 5 seconds. The maximum ECH energy injected into the DIII-D is 16.6 MJ. The HE1,1 mode content is over 85% for all the lines, and the transmission coefficient is better than -1.1 dB formore » all the transmission lines, close to the theoretical value. A new depressed collector gyrotron was recently installed and was injecting up to 640 kW of power into the plasma during 2014-2015 tokamak operations. Four dual waveguide launchers, which can steer the RF beams ±20 degrees poloidally and toroidally, are used for real-time neoclassical tearing mode control and suppression. The launchers now have increased poloidal scanning speed and beam positioning accuracy of ~±2 mm at the plasma center. Two more gyrotrons are expected to be installed and operational in 2015- 2016. The first is a repaired 110 GHz, 1 MW gyrotron that had a gun failure after more than 11 years of operation at DIII-D. The second is a newly designed depressed collector tube in the 1.5 MW class, operating at 117.5 GHz, manufactured by Communications and Power Industries (CPI).« less

  8. DIII-D Electron Cyclotron Heating System Status and Upgrades

    SciTech Connect

    Cengher, Mirela; Lohr, John; Gorelov, Yuri; Torrezan, Antonio; Ponce, Dan; Chen, Xi; Moeller, Charles

    2016-06-23

    The DIII-D Electron Cyclotron Heating (ECH) system consists of six 110 GHz gyrotrons with corrugated coaxial 31.75 mm waveguide transmission lines and steerable launching mirrors. The system has been gradually updated, leading to increased experimental flexibility and a high system reliability of 91% in the past year. Operationally, the gyrotrons can generate up to a total of 4.8 MW of rf power for pulses up to 5 seconds. The maximum ECH energy injected into the DIII-D is 16.6 MJ. The HE1,1 mode content is over 85% for all the lines, and the transmission coefficient is better than -1.1 dB for all the transmission lines, close to the theoretical value. A new depressed collector gyrotron was recently installed and was injecting up to 640 kW of power into the plasma during 2014-2015 tokamak operations. Four dual waveguide launchers, which can steer the RF beams ±20 degrees poloidally and toroidally, are used for real-time neoclassical tearing mode control and suppression. The launchers now have increased poloidal scanning speed and beam positioning accuracy of ~±2 mm at the plasma center. Two more gyrotrons are expected to be installed and operational in 2015- 2016. The first is a repaired 110 GHz, 1 MW gyrotron that had a gun failure after more than 11 years of operation at DIII-D. The second is a newly designed depressed collector tube in the 1.5 MW class, operating at 117.5 GHz, manufactured by Communications and Power Industries (CPI).

  9. Theoretical determination of electron temperature in electron-cyclotron plasmas

    SciTech Connect

    Uhm, H.S.; Lee, P.H.; Kim, Y.I.; Kim, J.H.; Chang, H.Y.

    1995-12-31

    A basic theory of the plasma electron temperature in ECR plasmas has been reported in recent studies in connection with application to the plasma etching technologies. However, the previous theoretical study of the ECR plasmas is primitive and ad hoc. The authors therefore develop a theory for plasmas generated by the electron-cyclotron-resonance (ECR) mechanism and an experiment is conducted to compare the theoretical prediction and experimental measurements. Due to a large electron mobility along the magnetic field, electrons move quickly out of the system, leaving ions behind and building a space charge potential, which leads to the ambipolar diffusion of ions. In a steady-state condition, the plasma generation by ionization of neutral molecules is in balance with plasma loss due to the diffusion, leading to the electron temperature equation, which is expressed in terms of the plasma size, chamber pressure, and the ionization energy and cross section of neutrals. The electron temperature decreases as the chamber pressure increases. Based on the ambipolar diffusion of ions, a self-consistent theory of the plasma density profile is developed. The power balance condition leads to the plasma density equation, which is also expressed in terms of the electron temperature, the input microwave power and the chamber pressure. It is shown that the plasma density increases, reaches its peak and decreases, as the chamber pressure increases from a small value (0.1 mTorr). After carrying out an experimental observation, it is concluded that the theoretical predictions of the electron temperature and plasma density agree remarkably well with experimental data.

  10. Technological issues of ion cyclotron heating of fusion plasmas

    SciTech Connect

    Hwang, D.Q.; Fortgang, C.M.

    1985-07-01

    With the recent promising results of plasma heating using electromagnetic waves (EM waves) in the ion cyclotron range of frequency (ICRF) on the Princeton Large Torus (PLT) tokamak the feasibility of employing ICRF heating to a reactor-like magnetic confinement device is increasing. The high power ICRF experiments funded on JET (Joint European Torus in England) and JT-60 (in Japan) will have rf source power in the range of 10-30 MW. The time scale for the duration of the RF pulse will range from seconds up to steady-state. The development of new RF components that can transmit and launch such high power, long pulse length, EM waves in a plasma environment is a major technological task. In general, the technology issues may be divided into two categories. The first category concerns the region where the plasma comes in contact with the wave launchers. The problems here are dominated by plasmamaterial interaction, heat deposition by the plasma onto the wave launcher, and erosion of the launcher material. It is necessary to minimize the heat deposition from the plasma, the losses of the RF wave energy in the structure, and to prevent sputtering of the antenna components. A solution involves a combined design using special materials and optimal shaping of the Faraday shield (the electrostatic shields which can be used both for an EM wave polarization adjustment and as a particle shield for the launcher). Recent studies by PPPL and McDonnell Douglas Corp. on the Faraday shield designs will be discussed. The second important area where technology development will be necessary is the transmission of high power RF waves through a gas/vacuum interface region. In the past, the vacuum feedthrough has been the bottle neck which prevented high power operation of the PLT antenna.

  11. Backward wave cyclotron-maser emission in the auroral magnetosphere.

    PubMed

    Speirs, D C; Bingham, R; Cairns, R A; Vorgul, I; Kellett, B J; Phelps, A D R; Ronald, K

    2014-10-10

    In this Letter, we present theory and particle-in-cell simulations describing cyclotron radio emission from Earth's auroral region and similar phenomena in other astrophysical environments. In particular, we find that the radiation, generated by a down-going electron horseshoe distribution is due to a backward-wave cyclotron-maser emission process. The backward wave nature of the radiation contributes to upward refraction of the radiation that is also enhanced by a density inhomogeneity. We also show that the radiation is preferentially amplified along the auroral oval rather than transversely. The results are in agreement with recent Cluster observations.

  12. A 600 MeV cyclotron for radioactive beam production

    SciTech Connect

    Clark, D.J.

    1993-05-17

    The magnetic field design for a 600 MeV proton cyclotron is described. The cyclotron has a single stage, a normal conducting magnet coil and a 9.8 m outside yoke diameter. It has 8 sectors, with a transition to 4 sectors in the center region. The magnetic field design was done using 1958 Harwell rectangular ridge system measurements and was compared with recent 3-dimensional field calculations with the program TOSCA at NSCL. The center region 4--8 sector transition focussing was also checked with TOSCA.

  13. N-bursty emission from Uranus: A cyclotron maser source?

    NASA Technical Reports Server (NTRS)

    Curran, D. B.; Menietti, J. D.

    1993-01-01

    Ray tracing studies of RX-mode emission from the north polar regions of Uranus indicate that the n-bursty radio emission may have a source along field lines with footprints near the northern magnetic pole (perhaps in the cusp), but not necessarily associated with regions of strong UV emission. This is in contrast with similar studies for the Uranus nightside smooth radio emission, which are believed to be due to the cyclotron maser instability. Source regions can be found for both hollow and filled emission cones and for frequencies well above the local gyrofreuquency implying that mechanisms other than the cyclotron maser mechanism may be operating.

  14. Electron cyclotron emission diagnostics on the large helical device

    NASA Astrophysics Data System (ADS)

    Nagayama, Y.; Kawahata, K.; England, A.; Ito, Y.; Bretz, N.; McCarthy, M.; Taylor, G.; Doane, J.; Ikezi, H.; Edlington, T.; Tomas, J.

    1999-01-01

    The electron cyclotron emission (ECE) diagnostic system is installed on the large helical device (LHD). The system includes the following instruments: a heterodyne radiometer, a Michelson spectrometer, and a grating polychromator. A 63.5 mm corrugated waveguide system is fully utilized. Large collection optics and notch filters at the frequency of the LHD electron cyclotron heating (ECH) were developed for this system. In addition to these filters, the rectangular waveguide notch filters, the ECE measurement with the radiometer has been successfully performed during the ECH.

  15. Fluid equations in the presence of electron cyclotron current drive

    NASA Astrophysics Data System (ADS)

    Jenkins, Thomas G.; Kruger, Scott E.

    2012-12-01

    Two-fluid equations, which include the physics imparted by an externally applied radiofrequency source near electron cyclotron resonance, are derived in their extended magnetohydrodynamic forms using the formalism of Hegna and Callen [Phys. Plasmas 16, 112501 (2009)]. The equations are compatible with the closed fluid/drift-kinetic model developed by Ramos [Phys. Plasmas 17, 082502 (2010); 18, 102506 (2011)] for fusion-relevant regimes with low collisionality and slow dynamics, and they facilitate the development of advanced computational models for electron cyclotron current drive-induced suppression of neoclassical tearing modes.

  16. Cyclotron modes of a multi-species ion plasma

    SciTech Connect

    Sarid, E.; Anderegg, F.; Driscoll, C. F.

    1995-04-15

    Cyclotron modes varying as exp(il{theta}), with l=1, 2 and 3, have been observed in an unneutralized Mg ion plasma. The l=1 mode is observed to be down-shifted from the corresponding cyclotron frequency, while the l{>=}2 modes are found to be up-shifted. Good agreement is found between the observed down-shifts of the l=1 modes of Mg{sup +} and Mg{sup ++} and the predictions of a multi-species cold plasma theory. The down-shifts depend on the composition and size of the plasma, and the relative abundance of each ion can thus be determined.

  17. Electron cyclotron heating experiments on the DIII-D tokamak

    SciTech Connect

    Prater, R.; Austin, M.E.; Bernabei, S.

    1998-01-01

    Initial experiments on heating and current drive using second harmonic electron cyclotron heating (ECH) are being performed on the DIII-D tokamak using the new 110 GHz ECH system. Modulation of the ECH power in the frequency range 50 to 300 Hz and detection of the temperature perturbation by ECE diagnostics is used to validate the location of the heating. This technique also determines an upper bound on the width of the deposition profile. Analysis of electron cyclotron current drive indicates that up to 0.17 MA of central current is driven, resulting in a negative loop voltage near the axis.

  18. Fluid equations in the presence of electron cyclotron current drive

    SciTech Connect

    Jenkins, Thomas G.; Kruger, Scott E.

    2012-12-15

    Two-fluid equations, which include the physics imparted by an externally applied radiofrequency source near electron cyclotron resonance, are derived in their extended magnetohydrodynamic forms using the formalism of Hegna and Callen [Phys. Plasmas 16, 112501 (2009)]. The equations are compatible with the closed fluid/drift-kinetic model developed by Ramos [Phys. Plasmas 17, 082502 (2010); 18, 102506 (2011)] for fusion-relevant regimes with low collisionality and slow dynamics, and they facilitate the development of advanced computational models for electron cyclotron current drive-induced suppression of neoclassical tearing modes.

  19. Electron cyclotron current drive efficiency in general tokamak geometry

    SciTech Connect

    Lin-Liu, Y. R.; Chan, V. S.; Prater, R.

    2003-01-01

    Green's-function techniques are used to calculate electron cyclotron current drive (ECCD) efficiency in general tokamak geometry in the low-collisionality regime. Fully relativistic electron dynamics is employed in the theoretical formulation. The high-velocity collision model is used to model Coulomb collisions and a simplified quasi-linear rf diffusion operator describes wave-particle interactions. The approximate analytic solutions which are benchmarked with a widely used ECCD model, facilitate time-dependent simulations of tokamak operational scenarios using the non-inductive current drive of electron cyclotron waves.

  20. NuSTAR Discovery of a Cyclotron Line in KS 1947+300

    NASA Technical Reports Server (NTRS)

    Furst, Felix; Pottschmidt, Katja; Wilms, Jorn; Kennea, Jamie; Bachetti, Matteo; Bellm, Eric; Boggs, Steven E.; Chakrabarty, Deepto; Christensen, Finn E.; Craig, William W.; Hailey, Charles J.; Harrison, Fiona; Stern, Daniel; Tomsick, John A.; Walton, Dominic J.; Zhang, William

    2014-01-01

    We present a spectral analysis of three simultaneous Nuclear Spectroscopy Telescope Array and Swift/XRT observations of the transient Be-neutron star binary KS 1947+300 taken during its outburst in 2013/2014. These broadband observations were supported by Swift/XRTmonitoring snapshots every three days, which we use to study the evolution of the spectrum over the outburst.We find strong changes of the power-law photon index, which shows a weak trend of softening with increasing X-ray flux. The neutron star shows very strong pulsations with a period of P ˜ [almost equal to] 18.8 s. The 0.8-79 keV broadband spectrum can be described by a power law with an exponential cutoff and a blackbody component at low energies. During the second observation we detect a cyclotron resonant scattering feature at 12.5 keV, which is absent in the phase-averaged spectra of observations 1 and 3. Pulse phase-resolved spectroscopy reveals that the strength of the feature changes strongly with pulse phase and is most prominent during the broad minimum of the pulse profile. At the same phases the line also becomes visible in the first and third observation at the same energy. This discovery implies that KS 1947+300 has a magnetic field strength of B ˜ [almost equal to] 1.1 × 1012(1 + z) G, which is at the lower end of known cyclotron line sources.

  1. Evaluation of thallium-201 production in INER's compact cyclotron based on excitation functions

    NASA Astrophysics Data System (ADS)

    Sheu, R. J.; Jiang, S. H.; Duh, T. S.

    2003-12-01

    The production of Thallium-201 via the 203Tl(p,3n) 201Pb→ 201Tl process in the compact cyclotron TR30/15 of the Institute of Nuclear Energy Research (INER) was evaluated based on excitation functions. This study involves a selection of a series of parameters including proton energy, target thickness, and irradiation time that will maximize the yield of the product and minimize the radioactive impurities. The excitation functions of the 203Tl(p, xn)Pb reactions have been calculated by using the ALICE-91 and FLUKA codes, respectively. Their results were compared with that recommended in the IAEA-TECDOC-1211 report. The discrepancies among them were identified and the resulting effects on the integral yields were discussed. Based on the recommended nuclear data, a user-friendly program has been developed to estimate the activities of the product and impurities during the production process of 201Tl in INER's compact cyclotron (INERCC). This helps in understanding the effects of various parameters selected in the production process. The results reveal that the current status of the production process of 201Tl in INERCC appears to be quite optimal and the production yield is close to its theoretical prediction.

  2. A strong-focusing 800 MeV cyclotron for high-current applications

    NASA Astrophysics Data System (ADS)

    Pogue, N.; Assadi, S.; Badgley, K.; Comeaux, J.; Kellams, J.; McInturff, A.; McIntyre, P.; Sattarov, A.

    2013-04-01

    A superconducting strong-focusing cyclotron (SFC) is being developed for high-current applications. It incorporates four innovations. Superconducting quarter-wave cavities are used to provide >20 MV/turn acceleration. The orbit separation is thereby opened so that bunch-bunch interactions between successive orbits are eliminated. Quadrapole focusing channels are incorporated within the sectors so that alternating-gradient strong-focusing transport is maintained throughout. Dipole windings on the inner and outer orbits provide enhanced control for injection and extraction of bunches. Finally each sector magnet is configured as a flux-coupled stack of independent apertures, so that any desired number of independent cyclotrons can be integrated within a common footprint. Preliminary simulations indicate that each SFC should be capable of accelerating 10 mA CW to 800 MeV with very low loss and >50% energy efficiency. A primary motivation for SFC is as a proton driver for accelerator-driven subcritical fission in a molten salt core. The cores are fueled solely with the transuranics from spent nuclear fuel from a conventional nuclear power plant. The beams from one SFC stack would destroy all of the transuranics and long-lived fission products that are produced by a GWe reactor [1]. This capability offers the opportunity to close the nuclear fuel cycle and provide a path to green nuclear energy.

  3. Enhancement of beam pulse controllability for a single-pulse formation system of a cyclotron

    SciTech Connect

    Kurashima, Satoshi Miyawaki, Nobumasa; Kashiwagi, Hirotsugu; Okumura, Susumu; Taguchi, Mitsumasa; Fukuda, Mitsuhiro

    2015-07-15

    The single-pulse formation technique using a beam chopping system consisting of two types of high-voltage beam kickers was improved to enhance the quality and intensity of the single-pulse beam with a pulse interval over 1 μs at the Japan Atomic Energy Agency cyclotron facility. A contamination rate of neighboring beam bunches in the single-pulse beam was reduced to less than 0.1%. Long-term purification of the single pulse beam was guaranteed by the well-controlled magnetic field stabilization system for the cyclotron magnet. Reduction of the multi-turn extraction number for suppressing the neighboring beam bunch contamination was achieved by restriction of a beam phase width and precise optimization of a particle acceleration phase. In addition, the single-pulse beam intensity was increased by a factor of two or more by a combination of two types of beam bunchers using sinusoidal and saw-tooth voltage waveforms. Provision of the high quality intense single-pulse beam contributed to improve the accuracy of experiments for investigation of scintillation light time-profile and for neutron energy measurement by a time-of-flight method.

  4. Coherent and Tunable Terahertz Radiation from Graphene Surface Plasmon Polarirons Excited by Cyclotron Electron Beam

    NASA Astrophysics Data System (ADS)

    Zhao, Tao; Gong, Sen; Hu, Min; Zhong, Renbin; Liu, Diwei; Chen, Xiaoxing; Zhang, Ping; Wang, Xinran; Zhang, Chao; Wu, Peiheng; Liu, Shenggang

    2015-11-01

    Terahertz (THz) radiation can revolutionize modern science and technology. To this date, it remains big challenges to develop intense, coherent and tunable THz radiation sources that can cover the whole THz frequency region either by means of only electronics (both vacuum electronics and semiconductor electronics) or of only photonics (lasers, for example, quantum cascade laser). Here we present a mechanism which can overcome these difficulties in THz radiation generation. Due to the natural periodicity of 2π of both the circular cylindrical graphene structure and cyclotron electron beam (CEB), the surface plasmon polaritions (SPPs) dispersion can cross the light line of dielectric, making transformation of SPPs into radiation immediately possible. The dual natural periodicity also brings significant excellences to the excitation and the transformation. The fundamental and hybrid SPPs modes can be excited and transformed into radiation. The excited SPPs propagate along the cyclotron trajectory together with the beam and gain energy from the beam continuously. The radiation density is enhanced over 300 times, up to 105 W/cm2. The radiation frequency can be widely tuned by adjusting the beam energy or chemical potential. This mechanism opens a way for developing desired THz radiation sources to cover the whole THz frequency regime.

  5. Coherent and Tunable Terahertz Radiation from Graphene Surface Plasmon Polarirons Excited by Cyclotron Electron Beam

    PubMed Central

    Zhao, Tao; Gong, Sen; Hu, Min; Zhong, Renbin; Liu, Diwei; Chen, Xiaoxing; Zhang, Ping; Wang, Xinran; Zhang, Chao; Wu, Peiheng; Liu, Shenggang

    2015-01-01

    Terahertz (THz) radiation can revolutionize modern science and technology. To this date, it remains big challenges to develop intense, coherent and tunable THz radiation sources that can cover the whole THz frequency region either by means of only electronics (both vacuum electronics and semiconductor electronics) or of only photonics (lasers, for example, quantum cascade laser). Here we present a mechanism which can overcome these difficulties in THz radiation generation. Due to the natural periodicity of 2π of both the circular cylindrical graphene structure and cyclotron electron beam (CEB), the surface plasmon polaritions (SPPs) dispersion can cross the light line of dielectric, making transformation of SPPs into radiation immediately possible. The dual natural periodicity also brings significant excellences to the excitation and the transformation. The fundamental and hybrid SPPs modes can be excited and transformed into radiation. The excited SPPs propagate along the cyclotron trajectory together with the beam and gain energy from the beam continuously. The radiation density is enhanced over 300 times, up to 105 W/cm2. The radiation frequency can be widely tuned by adjusting the beam energy or chemical potential. This mechanism opens a way for developing desired THz radiation sources to cover the whole THz frequency regime. PMID:26525516

  6. Electron acceleration by Z-mode waves associated with cyclotron maser instability

    SciTech Connect

    Lee, K. H.; Lee, L. C.; Omura, Y.

    2012-12-15

    We demonstrate by a particle simulation that Z-mode waves generated by the cyclotron maser instability can lead to a significant acceleration of energetic electrons. In the particle simulation, the initial electron ring distribution leads to the growth of Z-mode waves, which then accelerate and decelerate the energetic ring electrons. The initial ring distribution evolves into an X-like pattern in momentum space, which can be related to the electron diffusion curves. The peak kinetic energy of accelerated electrons can reach 3 to 6 times the initial kinetic energy. We further show that the acceleration process is related to the 'nonlinear resonant trapping' in phase space, and the test-particle calculations indicate that the maximum electron energy gain {Delta}{epsilon}{sub max} is proportional to B{sub w}{sup 0.57}, where B{sub w} is the wave magnetic field.

  7. Evolution of ion cyclotron instability in the plasma convection system of the magnetosphere

    NASA Technical Reports Server (NTRS)

    Kaye, S. M.; Kivelson, M. G.; Southwood, D. J.

    1979-01-01

    In the present paper, Liouville's theorem is used in combination with approximate, but extremely accurate, expressions which reflect the invariance of the magnetic moment and the longitudinal invariant to determine analytically the evolution of an adiabatically convecting energetic particle distribution. Features of the convecting distribution, reproduced by this model, include positive pitch angle anisotropy, regions in velocity space where the nonmonotonic perpendicular energy distribution is greater than zero, and the energy dependence of the degree of particle injection. The energy dependence of the injection yields upper and lower cutoffs to the distribution within the plasmasphere, and only an upper cutoff outside. This approach is used to study the evolution of ion cyclotron waves in a convecting particle distribution.

  8. Effective dose to immuno-PET patients due to metastable impurities in cyclotron produced zirconium-89

    NASA Astrophysics Data System (ADS)

    Alfuraih, Abdulrahman; Alzimami, Khalid; Ma, Andy K.; Alghamdi, Ali; Al Jammaz, Ibrahim

    2014-11-01

    Immuno-PET is a nuclear medicine technique that combines positron emission tommography (PET) with radio-labeled monoclonal antibodies (mAbs) for tumor characterization and therapy. Zirconium-89 (89Zr) is an emerging radionuclide for immuno-PET imaging. Its long half-life (78.4 h) gives ample time for the production, the administering and the patient uptake of the tagged radiopharmaceutical. Furthermore, the nuclides will remain in the tumor cells after the mAbs are catabolized so that time series studies are possible without incurring further administration of radiopharmarceuticals. 89Zr can be produced in medical cyclotrons by bombarding an yttrium-89 (89Y) target with a proton beam through the 89Y(p,n)89Zr reaction. In this study, we estimated the effective dose to the head and neck cancer patients undergoing 89Zr-based immune-PET procedures. The production of 89Zr and the impurities from proton irradiation of the 89Y target in a cyclotron was calculated with the Monte Carlo code MCNPX and the nuclear reaction code TALYS. The cumulated activities of the Zr isotopes were derived from real patient data in literature and the effective doses were estimated using the MIRD specific absorbed fraction formalism. The estimated effective dose from 89Zr is 0.5±0.2 mSv/MBq. The highest organ dose is 1.8±0.2 mSv/MBq in the liver. These values are in agreement with those reported in literature. The effective dose from 89mZr is about 0.2-0.3% of the 89Zr dose in the worst case. Since the ratio of 89mZr to 89Zr depends on the cooling time as well as the irradiation details, contaminant dose estimation is an important aspect in optimizing the cyclotron irradiation geometry, energy and time.

  9. Parametrically Unstable Alfven-cyclotron Waves and Wave--Particle Interactions in the Solar Corona and Solar Wind

    SciTech Connect

    Maneva, Y. G.; Marsch, E.; Araneda, J. A.

    2009-04-26

    We consider the parametric instabilities of large-amplitude Alfven/ion-cyclotron waves and the consequent wave-particle interactions, and discuss their importance for modelling the evolution of ion velocity distribution functions in the tenuous and collisionless plasma of a coronal hole and the fast solar wind. We perform 1D hybrid simulations to study the nonlinear evolution of the parametric instabilities by analyzing the simulation results in terms of microinstabilities and discussing the influence of both Landau and cyclotron resonances on the evolution of the ion distributions. We demonstrate the origin of a relative drift between the protons and alpha particles, show the related anisotropic ion heating and follow the simultaneous proton beam formation. Finally, we focus on the development and evolution of both electromagnetic and acoustic micro-turbulence and present indications for an inverse energy cascade from shorter to longer wavelengths.

  10. Detection of cyclotron resonance scattering feature in high-mass X-ray binary pulsar SMC X-2

    NASA Astrophysics Data System (ADS)

    Jaisawal, Gaurava K.; Naik, Sachindra

    2016-09-01

    We report broad-band spectral properties of the high-mass X-ray binary pulsar SMC X-2 by using three simultaneous Nuclear Spectroscopy Telescope Array and Swift/XRT observations during its 2015 outburst. The pulsar was significantly bright, reaching a luminosity up to as high as ˜5.5 × 1038 erg s-1 in 1-70 keV range. Spin period of the pulsar was estimated to be 2.37 s. Pulse profiles were found to be strongly luminosity dependent. The 1-70 keV energy spectrum of the pulsar was well described with three different continuum models such as (i) negative and positive power law with exponential cutoff, (ii) Fermi-Dirac cutoff power law and (iii) cutoff power-law models. Apart from the presence of an iron line at ˜6.4 keV, a model independent absorption like feature at ˜27 keV was detected in the pulsar spectrum. This feature was identified as a cyclotron absorption line and detected for the first time in this pulsar. Corresponding magnetic field of the neutron star was estimated to be ˜2.3 × 1012 G. The cyclotron line energy showed a marginal negative dependence on the luminosity. The cyclotron line parameters were found to be variable with pulse phase and interpreted as due to the effect of emission geometry or complicated structure of the pulsar magnetic field.

  11. Electron-cyclotron-heating experiments in tokamaks and stellarators

    SciTech Connect

    England, A.C.

    1983-01-01

    This paper reviews the application of high-frequency microwave radiation to plasma heating near the electron-cyclotron frequency in tokamaks and stellarators. Successful plasma heating by microwave power has been demonstrated in numerous experiments. Predicted future technological developments and current theoretical understanding suggest that a vigorous program in plasma heating will continue to yield promising results.

  12. Cyclotron Resonance of Electrons Trapped in a Microwave Cavity

    ERIC Educational Resources Information Center

    Elmore, W. C.

    1975-01-01

    Describes an experiment in which the free-electron cyclotron resonance of electrons trapped in a microwave cavity by a Penning trap is observed. The experiment constitutes an attractive alternative to one of the Gardner-Purcell variety. (Author/GS)

  13. Cyclotron maser emission of auroral Z mode radiation

    NASA Technical Reports Server (NTRS)

    Melrose, D. B.; Hewitt, R. G.; Dulk, G. A.

    1983-01-01

    Results are presented suggesting that loss cone driven cyclotron maser emission by upgoing electrons, closely analogous to auroral kilometric radiation (AKR), may be the mechanism behind the observed Z mode radiation. With this hypothesis, the lack of a strong correlation between the Z mode radiation and AKR is not surprising; the ray paths for the X mode and the Z mode are markedly different, with the former directed upward and the latter downward. In addition, it is expected that the generation of the Z mode will be favored only in regions where the ratio of the plasma frequency to the electron cyclotron frequency is greater than or approximately equal to 0.3, that is, where the X mode radiation is suppressed. If the fraction of the radiation generated that crosses the cyclotron layer is large, then the argument in favor of the loss cone driven cyclotron maser as the source of the observed Z mode radiation is a strong one. The spatial growth rates are fairly large in comparison with those for the X mode, and there seems to be little doubt that Z mode radiation should be generated under conditions that differ only slightly from those for the generation of X mode radiation in AKR.

  14. Parametric decay of an electromagnetic wave near electron cyclotron harmonics

    SciTech Connect

    Istomin, Y.N.; Leyser, T.B.

    1995-06-01

    A system of equations describing the nonlinear coupling of high frequency electron Bernstein (EB) and upper hybrid (UH) waves near harmonics of the electron cyclotron frequency with low frequency lower hybrid (LH) waves in a homogeneous, weakly magnetized, and weakly collisional plasma is derived. The EB and UH modes are described by a single second order equation, taking into account the interaction with low frequency density fluctuations. The ponderomotive force of the high frequency oscillations increases near the cyclotron harmonics due to the resonance with the electron motion. The obtained equations are used to study the parametric decay of an infinite wavelength electromagnetic pump wave into EB or UH waves and LH waves. The threshold electric fields are sufficiently low to be exceeded in high frequency ionospheric modification experiments. However, the instability cannot be excited for pump frequencies near the cyclotron harmonics. For the decay into EB waves, the resulting forbidden frequency range depends on the harmonic number in a power law manner, consistent with observations of stimulated electromagnetic emissions in ionospheric modification experiments. Further, for sufficiently high pump electric fields the instability is also suppressed, when the frequency mismatch around the eigenfrequencies at which the interaction can occur is of the order of the frequency separation between the EB and UH modes near the cyclotron harmonics. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  15. Cyclotron targetry for production of short-lived positron emitters

    SciTech Connect

    Schlyer, D.J.

    1989-01-01

    The basic concepts of cyclotron target design are presented along with the relevant practical experience gained by workers in this field over the years. Results are presented from several recent studies on the temperature and density distribution inside gas and liquid targets. 5 refs., 3 figs.

  16. An intense alpha ion source for INRS cyclotron

    SciTech Connect

    Chen Ling,-xing; Chen Mao-bei

    1985-10-01

    An intense PIG alpha source for INRS has been developed with low arc power and low gas flow. Generally, the alpha yield of the new source is twice as much as the old one. The structure and character of the source and its experimental results both on the bench and cyclotron are described in this paper.

  17. Maryland University sectored isochronous cyclotron (MUSIC): Progress report No. 35

    SciTech Connect

    Not Available

    1986-10-29

    Efforts are reported on the installation and checkout of cyclotron components which had been previously fabricated. Final integration of subsystems and major systems leading to internal beam tests is reported near completion. Progress is reported in relation to control system components, focus and steering magnet design, and rf system testing. (LEW)

  18. Cyclotron waves in a non-neutral plasma column

    SciTech Connect

    Dubin, Daniel H. E.

    2013-04-15

    A kinetic theory of linear electrostatic plasma waves with frequencies near the cyclotron frequency {Omega}{sub c{sub s}} of a given plasma species s is developed for a multispecies non-neutral plasma column with general radial density and electric field profiles. Terms in the perturbed distribution function up to O(1/{Omega}{sub c{sub s}{sup 2}}) are kept, as are the effects of finite cyclotron radius r{sub c} up to O(r{sub c}{sup 2}). At this order, the equilibrium distribution is not Maxwellian if the plasma temperature or rotation frequency is not uniform. For r{sub c}{yields}0, the theory reproduces cold-fluid theory and predicts surface cyclotron waves propagating azimuthally. For finite r{sub c}, the wave equation predicts that the surface wave couples to radially and azimuthally propagating Bernstein waves, at locations where the wave frequency equals the local upper hybrid frequency. The equation also predicts a second set of Bernstein waves that do not couple to the surface wave, and therefore have no effect on the external potential. The wave equation is solved both numerically and analytically in the WKB approximation, and analytic dispersion relations for the waves are obtained. The theory predicts that both types of Bernstein wave are damped at resonances, which are locations where the Doppler-shifted wave frequency matches the local cyclotron frequency as seen in the rotating frame.

  19. Ion cyclotron waves below the proton gyrofrequency in the magnetosphere

    SciTech Connect

    Gomberoff, L.; Molina, M.

    1985-02-01

    A numerical comparison between the linear theory of ion-cyclotron waves below the proton gyrofrequency and the data recorded on board the GEOS satellites is made. It is shown that the experimental data are in good agreement with the theory.

  20. Silicon meets cyclotron: muon spin resonance of organosilicon radicals.

    PubMed

    West, Robert; Samedov, Kerim; Percival, Paul W

    2014-07-21

    Muons, generated at a high-powered cyclotron, can capture electrons to form muonium atoms. Muon spin resonance spectra can be recorded for organosilyl radicals obtained by addition of muonium atoms to silylenes and silenes. We present a brief summary of progress in this new area since the first such experiments were reported in 2008.