Sample records for energy density physics

  1. Multireference Density Functional Theory with Generalized Auxiliary Systems for Ground and Excited States.

    PubMed

    Chen, Zehua; Zhang, Du; Jin, Ye; Yang, Yang; Su, Neil Qiang; Yang, Weitao

    2017-09-21

    To describe static correlation, we develop a new approach to density functional theory (DFT), which uses a generalized auxiliary system that is of a different symmetry, such as particle number or spin, from that of the physical system. The total energy of the physical system consists of two parts: the energy of the auxiliary system, which is determined with a chosen density functional approximation (DFA), and the excitation energy from an approximate linear response theory that restores the symmetry to that of the physical system, thus rigorously leading to a multideterminant description of the physical system. The electron density of the physical system is different from that of the auxiliary system and is uniquely determined from the functional derivative of the total energy with respect to the external potential. Our energy functional is thus an implicit functional of the physical system density, but an explicit functional of the auxiliary system density. We show that the total energy minimum and stationary states, describing the ground and excited states of the physical system, can be obtained by a self-consistent optimization with respect to the explicit variable, the generalized Kohn-Sham noninteracting density matrix. We have developed the generalized optimized effective potential method for the self-consistent optimization. Among options of the auxiliary system and the associated linear response theory, reformulated versions of the particle-particle random phase approximation (pp-RPA) and the spin-flip time-dependent density functional theory (SF-TDDFT) are selected for illustration of principle. Numerical results show that our multireference DFT successfully describes static correlation in bond dissociation and double bond rotation.

  2. Fifth International Conference on High Energy Density Physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beg, Farhat

    The Fifth International Conference on High Energy Density Physics (ICHED 2015) was held in the Catamaran Hotel in San Diego from August 23-27, 2015. This meeting was the fifth in a series which began in 2008 in conjunction with the April meeting of the American Physical Society (APS). The main goal of this conference has been to bring together researchers from all fields of High Energy Density Science (HEDS) into one, unified meeting.

  3. Dark Energy and Key Physical Parameters of Clusters of Galaxies

    NASA Astrophysics Data System (ADS)

    Chernin, A. D.; Bisnovatyi-Kogan, G. S.

    We discuss the physics of clusters of galaxies embedded in the cosmic dark energy background and show that 1) the halo cut-off radius of a cluster like the Virgo cluster is practically, if not exactly, equal to the zero-gravity radius at which the dark matter gravity is balanced by the dark energy antigravity; 2) the halo averaged density is equal to two densities of dark energy; 3) the halo edge (cut-off) density is the dark energy density with a numerical factor of the unity order slightly depending on the halo profile.

  4. Dark energy and key physical parameters of clusters of galaxies

    NASA Astrophysics Data System (ADS)

    Bisnovatyi-Kogan, G. S.; Chernin, A. D.

    2012-04-01

    We study physics of clusters of galaxies embedded in the cosmic dark energy background. Under the assumption that dark energy is described by the cosmological constant, we show that the dynamical effects of dark energy are strong in clusters like the Virgo cluster. Specifically, the key physical parameters of the dark mater halos in clusters are determined by dark energy: (1) the halo cut-off radius is practically, if not exactly, equal to the zero-gravity radius at which the dark matter gravity is balanced by the dark energy antigravity; (2) the halo averaged density is equal to two densities of dark energy; (3) the halo edge (cut-off) density is the dark energy density with a numerical factor of the unity order slightly depending on the halo profile. The cluster gravitational potential well in which the particles of the dark halo (as well as galaxies and intracluster plasma) move is strongly affected by dark energy: the maximum of the potential is located at the zero-gravity radius of the cluster.

  5. Propulsion Physics Under the Changing Density Field Model

    NASA Technical Reports Server (NTRS)

    Robertson, Glen A.

    2011-01-01

    To grow as a space faring race, future spaceflight systems will requires new propulsion physics. Specifically a propulsion physics model that does not require mass ejection without limiting the high thrust necessary to accelerate within or beyond our solar system and return within a normal work period or lifetime. In 2004 Khoury and Weltman produced a density dependent cosmology theory they called Chameleon Cosmology, as at its nature, it is hidden within known physics. This theory represents a scalar field within and about an object, even in the vacuum. Whereby, these scalar fields can be viewed as vacuum energy fields with definable densities that permeate all matter; having implications to dark matter/energy with universe acceleration properties; implying a new force mechanism for propulsion physics. Using Chameleon Cosmology, the author has developed a new propulsion physics model, called the Changing Density Field (CDF) Model. This model relates to density changes in these density fields, where the density field density changes are related to the acceleration of matter within an object. These density changes in turn change how an object couples to the surrounding density fields. Whereby, thrust is achieved by causing a differential in the coupling to these density fields about an object. Since the model indicates that the density of the density field in an object can be changed by internal mass acceleration, even without exhausting mass, the CDF model implies a new propellant-less propulsion physics model

  6. Density-functional theory for internal magnetic fields

    NASA Astrophysics Data System (ADS)

    Tellgren, Erik I.

    2018-01-01

    A density-functional theory is developed based on the Maxwell-Schrödinger equation with an internal magnetic field in addition to the external electromagnetic potentials. The basic variables of this theory are the electron density and the total magnetic field, which can equivalently be represented as a physical current density. Hence, the theory can be regarded as a physical current density-functional theory and an alternative to the paramagnetic current density-functional theory due to Vignale and Rasolt. The energy functional has strong enough convexity properties to allow a formulation that generalizes Lieb's convex analysis formulation of standard density-functional theory. Several variational principles as well as a Hohenberg-Kohn-like mapping between potentials and ground-state densities follow from the underlying convex structure. Moreover, the energy functional can be regarded as the result of a standard approximation technique (Moreau-Yosida regularization) applied to the conventional Schrödinger ground-state energy, which imposes limits on the maximum curvature of the energy (with respect to the magnetic field) and enables construction of a (Fréchet) differentiable universal density functional.

  7. High Energy Density Physics and Exotic Acceleration Schemes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cowan, T.; /General Atomics, San Diego; Colby, E.

    2005-09-27

    The High Energy Density and Exotic Acceleration working group took as our goal to reach beyond the community of plasma accelerator research with its applications to high energy physics, to promote exchange with other disciplines which are challenged by related and demanding beam physics issues. The scope of the group was to cover particle acceleration and beam transport that, unlike other groups at AAC, are not mediated by plasmas or by electromagnetic structures. At this Workshop, we saw an impressive advancement from years past in the area of Vacuum Acceleration, for example with the LEAP experiment at Stanford. And wemore » saw an influx of exciting new beam physics topics involving particle propagation inside of solid-density plasmas or at extremely high charge density, particularly in the areas of laser acceleration of ions, and extreme beams for fusion energy research, including Heavy-ion Inertial Fusion beam physics. One example of the importance and extreme nature of beam physics in HED research is the requirement in the Fast Ignitor scheme of inertial fusion to heat a compressed DT fusion pellet to keV temperatures by injection of laser-driven electron or ion beams of giga-Amp current. Even in modest experiments presently being performed on the laser-acceleration of ions from solids, mega-amp currents of MeV electrons must be transported through solid foils, requiring almost complete return current neutralization, and giving rise to a wide variety of beam-plasma instabilities. As keynote talks our group promoted Ion Acceleration (plenary talk by A. MacKinnon), which historically has grown out of inertial fusion research, and HIF Accelerator Research (invited talk by A. Friedman), which will require impressive advancements in space-charge-limited ion beam physics and in understanding the generation and transport of neutralized ion beams. A unifying aspect of High Energy Density applications was the physics of particle beams inside of solids, which is proving to be a very important field for diverse applications such as muon cooling, fusion energy research, and ultra-bright particle and radiation generation with high intensity lasers. We had several talks on these and other subjects, and many joint sessions with the Computational group, the EM Structures group, and the Beam Generation group. We summarize our groups' work in the following categories: vacuum acceleration schemes; ion acceleration; particle transport in solids; and applications to high energy density phenomena.« less

  8. Associations Between Dietary Energy Density in Mothers and Growth of Breastfeeding Infants During the First 4 Months of Life.

    PubMed

    Moradi, Maedeh; Maracy, Mohammad R; Esmaillzadeh, Ahmad; Surkan, Pamela J; Azadbakht, Leila

    2018-05-31

    Despite the overwhelming impact of dietary energy density on the quality of the entire diet, no research has investigated dietary energy density among lactating mothers. Hence, the present study was undertaken to assess the influence of maternal dietary energy density during lactation on infant growth. Three hundred healthy lactating mother-infant pairs were enrolled in the study. Detailed demographic information and dietary intake data were collected from the lactating mothers. Anthropometric features such as infant weight, height, and head circumference at birth and 2 and 4 months and mother's pregnancy and postpartum weight and height were derived from health center records. Data on physical activity were reported using the International Physical Activity Questionnaire. After adjusting for confounding variables, infant weight, length, weight-for-height, and head circumference at birth, 2 months, and 4 months did not show significant differences among four dietary energy density categories (all p values > 0.01). Our study showed no association among quartiles of dietary energy density among lactating mothers and infant weight, length, weight-for-height, and head circumference growth by 2 and 4 months of age.

  9. Subsystem functional and the missing ingredient of confinement physics in density functionals.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Armiento, Rickard Roberto; Mattsson, Ann Elisabet; Hao, Feng

    2010-08-01

    The subsystem functional scheme is a promising approach recently proposed for constructing exchange-correlation density functionals. In this scheme, the physics in each part of real materials is described by mapping to a characteristic model system. The 'confinement physics,' an essential physical ingredient that has been left out in present functionals, is studied by employing the harmonic-oscillator (HO) gas model. By performing the potential {yields} density and the density {yields} exchange energy per particle mappings based on two model systems characterizing the physics in the interior (uniform electron-gas model) and surface regions (Airy gas model) of materials for the HO gases,more » we show that the confinement physics emerges when only the lowest subband of the HO gas is occupied by electrons. We examine the approximations of the exchange energy by several state-of-the-art functionals for the HO gas, and none of them produces adequate accuracy in the confinement dominated cases. A generic functional that incorporates the description of the confinement physics is needed.« less

  10. Axial deformed solution of the Skyrme-Hartree-Fock-Bogolyubov equations using the transformed harmonic oscillator Basis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perez, R. Navarro; Schunck, N.; Lasseri, R.

    2017-03-09

    HFBTHO is a physics computer code that is used to model the structure of the nucleus. It is an implementation of the nuclear energy Density Functional Theory (DFT), where the energy of the nucleus is obtained by integration over space of some phenomenological energy density, which is itself a functional of the neutron and proton densities. In HFBTHO, the energy density derives either from the zero-range Dkyrme or the finite-range Gogny effective two-body interaction between nucleons. Nuclear superfluidity is treated at the Hartree-Fock-Bogoliubov (HFB) approximation, and axial-symmetry of the nuclear shape is assumed. This version is the 3rd release ofmore » the program; the two previous versions were published in Computer Physics Communications [1,2]. The previous version was released at LLNL under GPL 3 Open Source License and was given release code LLNL-CODE-573953.« less

  11. AlGaN UV LED and Photodiodes Radiation Hardness and Space Qualifications and Their Applications in Space Science and High Energy Density Physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, K. X.

    2011-05-31

    This presentation provides an overview of robust, radiation hard AlGaN optoelectronic devices and their applications in space exploration & high energy density physics. Particularly, deep UV LED and deep UV photodiodes are discussed with regard to their applications, radiation hardness and space qualification. AC charge management of UV LED satellite payload instruments, which were to be launched in late 2012, is covered.

  12. The cosmological constant and dark energy

    NASA Astrophysics Data System (ADS)

    Peebles, P. J.; Ratra, Bharat

    2003-04-01

    Physics welcomes the idea that space contains energy whose gravitational effect approximates that of Einstein’s cosmological constant, Λ; today the concept is termed dark energy or quintessence. Physics also suggests that dark energy could be dynamical, allowing for the arguably appealing picture of an evolving dark-energy density approaching its natural value, zero, and small now because the expanding universe is old. This would alleviate the classical problem of the curious energy scale of a millielectron volt associated with a constant Λ. Dark energy may have been detected by recent cosmological tests. These tests make a good scientific case for the context, in the relativistic Friedmann-Lemaître model, in which the gravitational inverse-square law is applied to the scales of cosmology. We have well-checked evidence that the mean mass density is not much more than one-quarter of the critical Einstein de Sitter value. The case for detection of dark energy is not yet as convincing but still serious; we await more data, which may be derived from work in progress. Planned observations may detect the evolution of the dark-energy density; a positive result would be a considerable stimulus for attempts at understanding the microphysics of dark energy. This review presents the basic physics and astronomy of the subject, reviews the history of ideas, assesses the state of the observational evidence, and comments on recent developments in the search for a fundamental theory.

  13. A Web 2.0 Interface to Ion Stopping Power and Other Physics Routines for High Energy Density Physics Applications

    NASA Astrophysics Data System (ADS)

    Stoltz, Peter; Veitzer, Seth

    2008-04-01

    We present a new Web 2.0-based interface to physics routines for High Energy Density Physics applications. These routines include models for ion stopping power, sputtering, secondary electron yields and energies, impact ionization cross sections, and atomic radiated power. The Web 2.0 interface allows users to easily explore the results of the models before using the routines within other codes or to analyze experimental results. We discuss how we used various Web 2.0 tools, including the Python 2.5, Django, and the Yahoo User Interface library. Finally, we demonstrate the interface by showing as an example the stopping power algorithms researchers are currently using within the Hydra code to analyze warm, dense matter experiments underway at the Neutralized Drift Compression Experiment facility at Lawrence Berkeley National Laboratory.

  14. ICF Annual Report 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Correll, D

    The continuing objective of Lawrence Livermore National Laboratory's (LLNL's) Inertial Confinement Fusion (ICF) Program is the demonstration of thermonuclear fusion ignition and energy gain in the laboratory and to support the nuclear weapons program in its use of ICF facilities. The underlying theme of all ICF activities as a science research and development program is the Department of Energy's (DOE's) Defense Programs (DP) science-based Stockpile Stewardship Program (SSP). The mission of the US Inertial Fusion Program is twofold: (1) to address high-energy-density physics issues for the SSP and (2) to develop a laboratory microfusion capability for defense and energy applications.more » In pursuit of this mission, the ICF Program has developed a state-of-the-art capability to investigate high-energy-density physics in the laboratory. The near-term goals pursued by the ICF Program in support of its mission are demonstrating fusion ignition in the laboratory and expanding the Program's capabilities in high-energy-density science. The National Ignition Facility (NIF) project is a cornerstone of this effort.« less

  15. Precision Crystal Calorimeters in High Energy Physics

    ScienceCinema

    Ren-Yuan Zhu

    2017-12-09

    Precision crystal calorimeters traditionally play an important role in high energy physics experiments. In the last two decades, it faces a challenge to maintain its precision in a hostile radiation environment. This paper reviews the performance of crystal calorimeters constructed for high energy physics experiments and the progress achieved in understanding crystal’s radiation damage as well as in developing high quality scintillating crystals for particle physics. Potential applications of new generation scintillating crystals of high density and high light yield, such as LSO and LYSO, in particle physics experiments is also discussed.

  16. Functional renormalization group and Kohn-Sham scheme in density functional theory

    NASA Astrophysics Data System (ADS)

    Liang, Haozhao; Niu, Yifei; Hatsuda, Tetsuo

    2018-04-01

    Deriving accurate energy density functional is one of the central problems in condensed matter physics, nuclear physics, and quantum chemistry. We propose a novel method to deduce the energy density functional by combining the idea of the functional renormalization group and the Kohn-Sham scheme in density functional theory. The key idea is to solve the renormalization group flow for the effective action decomposed into the mean-field part and the correlation part. Also, we propose a simple practical method to quantify the uncertainty associated with the truncation of the correlation part. By taking the φ4 theory in zero dimension as a benchmark, we demonstrate that our method shows extremely fast convergence to the exact result even for the highly strong coupling regime.

  17. Electron dynamics in high energy density plasma bunch generation driven by intense picosecond laser pulse

    NASA Astrophysics Data System (ADS)

    Li, M.; Yuan, T.; Xu, Y. X.; Luo, S. N.

    2018-05-01

    When an intense picosecond laser pulse is loaded upon a dense plasma, a high energy density plasma bunch, including electron bunch and ion bunch, can be generated in the target. We simulate this process through one-dimensional particle-in-cell simulation and find that the electron bunch generation is mainly due to a local high energy density electron sphere originated in the plasma skin layer. Once generated the sphere rapidly expands to compress the surrounding electrons and induce high density electron layer, coupled with that, hot electrons are efficiently triggered in the local sphere and traveling in the whole target. Under the compressions of light pressure, forward-running and backward-running hot electrons, a high energy density electron bunch generates. The bunch energy density is as high as TJ/m3 order of magnitude in our conditions, which is significant in laser driven dynamic high pressure generation and may find applications in high energy density physics.

  18. Physics Division progress report, January 1, 1984-September 30, 1986

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keller, W.E.

    1987-10-01

    This report provides brief accounts of significant progress in development activities and research results achieved by Physics Division personnel during the period January 1, 1984, through September 31, 1986. These efforts are representative of the three main areas of experimental research and development in which the Physics Division serves Los Alamos National Laboratory's and the Nation's needs in defense and basic sciences: (1) defense physics, including the development of diagnostic methods for weapons tests, weapon-related high-energy-density physics, and programs supporting the Strategic Defense Initiative; (2) laser physics and applications, especially to high-density plasmas; and (3) fundamental research in nuclear andmore » particle physics, condensed-matter physics, and biophysics. Throughout the report, emphasis is placed on the design, construction, and application of a variety of advanced, often unique, instruments and instrument systems that maintain the Division's position at the leading edge of research and development in the specific fields germane to its mission. A sampling of experimental systems of particular interest would include the relativistic electron-beam accelerator and its applications to high-energy-density plasmas; pulsed-power facilities; directed energy weapon devices such as free-electron lasers and neutral-particle-beam accelerators; high-intensity ultraviolet and x-ray beam lines at the National Synchrotron Light Source (at Brookhaven National Laboratory); the Aurora KrF ultraviolet laser system for projected use as an inertial fusion driver; antiproton physics facility at CERN; and several beam developments at the Los Alamos Meson Physics Facility for studying nuclear, condensed-matter, and biological physics, highlighted by progress in establishing the Los Alamos Neutron Scattering Center.« less

  19. Dynamics of a spherically symmetric inhomogeneous coupled dark energy model with coupling term proportional to non relatvistic matter

    NASA Astrophysics Data System (ADS)

    Izquierdo, Germán; Blanquet-Jaramillo, Roberto C.; Sussman, Roberto A.

    2018-01-01

    The quasi-local scalar variables approach is applied to a spherically symmetric inhomogeneous Lemaître-Tolman-Bondi metric containing a mixture of non-relativistic cold dark matter and coupled dark energy with constant equation of state. The quasi-local coupling term considered is proportional to the quasi-local cold dark matter energy density and a quasi-local Hubble factor-like scalar via a coupling constant α . The autonomous numerical system obtained from the evolution equations is classified for different choices of the free parameters: the adiabatic constant of the dark energy w and α . The presence of a past attractor in a non-physical region of the energy densities phase-space of the system makes the coupling term non physical when the energy flows from the matter to the dark energy in order to avoid negative values of the dark energy density in the past. On the other hand, if the energy flux goes from dark energy to dark matter, the past attractor lies in a physical region. The system is also numerically solved for some interesting initial profiles leading to different configurations: an ever expanding mixture, a scenario where the dark energy is completely consumed by the non-relativistic matter by means of the coupling term, a scenario where the dark energy disappears in the inner layers while the outer layers expand as a mixture of both sources, and, finally, a structure formation toy model scenario, where the inner shells containing the mixture collapse while the outer shells expand.

  20. Impact of Pb content on the physical parameters of Se-Te-Pb system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anjali,; Sharma, Raman; Thakur, Nagesh

    2015-05-15

    In the present study, we have investigated the impact of Pb content on the physical parameters in Se-Te-Pb system via average coordination number, constraints, the fraction of floppy modes, cross-linking density, lone pairs electrons, heat of atomization, mean bond energy, cohesive energy and electronegativity. The bulk samples have been prepared by using melt quenching technique. X-ray diffraction pattern of various samples indicates the amorphous nature of investigated glassy alloys. It is observed that average coordination number, average number of constraints and cross-linking density increase with Pb content. However, lone-pair electrons, floppy modes, average heat of atomization, cohesive energy and meanmore » bond energy are found to decrease with Pb atomic percentage.« less

  1. The role of nanomaterials in redox-based supercapacitors for next generation energy storage devices.

    PubMed

    Zhao, Xin; Sánchez, Beatriz Mendoza; Dobson, Peter J; Grant, Patrick S

    2011-03-01

    The development of more efficient electrical storage is a pressing requirement to meet future societal and environmental needs. This demand for more sustainable, efficient energy storage has provoked a renewed scientific and commercial interest in advanced capacitor designs in which the suite of experimental techniques and ideas that comprise nanotechnology are playing a critical role. Capacitors can be charged and discharged quickly and are one of the primary building blocks of many types of electrical circuit, from microprocessors to large-sale power supplies, but usually have relatively low energy storage capability when compared with batteries. The application of nanostructured materials with bespoke morphologies and properties to electrochemical supercapacitors is being intensively studied in order to provide enhanced energy density without comprising their inherent high power density and excellent cyclability. In particular, electrode materials that exploit physical adsorption or redox reactions of electrolyte ions are foreseen to bridge the performance disparity between batteries with high energy density and capacitors with high power density. In this review, we present some of the novel nanomaterial systems applied for electrochemical supercapacitors and show how material morphology, chemistry and physical properties are being tailored to provide enhanced electrochemical supercapacitor performance.

  2. Modeling Laboratory Astrophysics Experiments in the High-Energy-Density Regime Using the CRASH Radiation-Hydrodynamics Model

    NASA Astrophysics Data System (ADS)

    Grosskopf, M. J.; Drake, R. P.; Trantham, M. R.; Kuranz, C. C.; Keiter, P. A.; Rutter, E. M.; Sweeney, R. M.; Malamud, G.

    2012-10-01

    The radiation hydrodynamics code developed by the Center for Radiative Shock Hydrodynamics (CRASH) at the University of Michigan has been used to model experimental designs for high-energy-density physics campaigns on OMEGA and other high-energy laser facilities. This code is an Eulerian, block-adaptive AMR hydrodynamics code with implicit multigroup radiation transport and electron heat conduction. CRASH model results have shown good agreement with a experimental results from a variety of applications, including: radiative shock, Kelvin-Helmholtz and Rayleigh-Taylor experiments on the OMEGA laser; as well as laser-driven ablative plumes in experiments by the Astrophysical Collisionless Shocks Experiments with Lasers (ACSEL), collaboration. We report a series of results with the CRASH code in support of design work for upcoming high-energy-density physics experiments, as well as comparison between existing experimental data and simulation results. This work is funded by the Predictive Sciences Academic Alliances Program in NNSA-ASC via grant DEFC52- 08NA28616, by the NNSA-DS and SC-OFES Joint Program in High-Energy-Density Laboratory Plasmas, grant number DE-FG52-09NA29548, and by the National Laser User Facility Program, grant number DE-NA0000850.

  3. The role of nanomaterials in redox-based supercapacitors for next generation energy storage devices

    NASA Astrophysics Data System (ADS)

    Zhao, Xin; Sánchez, Beatriz Mendoza; Dobson, Peter J.; Grant, Patrick S.

    2011-03-01

    The development of more efficient electrical storage is a pressing requirement to meet future societal and environmental needs. This demand for more sustainable, efficient energy storage has provoked a renewed scientific and commercial interest in advanced capacitor designs in which the suite of experimental techniques and ideas that comprise nanotechnology are playing a critical role. Capacitors can be charged and discharged quickly and are one of the primary building blocks of many types of electrical circuit, from microprocessors to large-sale power supplies, but usually have relatively low energy storage capability when compared with batteries. The application of nanostructured materials with bespoke morphologies and properties to electrochemical supercapacitors is being intensively studied in order to provide enhanced energy density without comprising their inherent high power density and excellent cyclability. In particular, electrode materials that exploit physical adsorption or redox reactions of electrolyte ions are foreseen to bridge the performance disparity between batteries with high energy density and capacitors with high power density. In this review, we present some of the novel nanomaterial systems applied for electrochemical supercapacitors and show how material morphology, chemistry and physical properties are being tailored to provide enhanced electrochemical supercapacitor performance.

  4. Ground-state-entanglement bound for quantum energy teleportation of general spin-chain models

    NASA Astrophysics Data System (ADS)

    Hotta, Masahiro

    2013-03-01

    Many-body quantum systems in the ground states have zero-point energy due to the uncertainty relation. In many cases, the system in the ground state accompanies spatially entangled energy density fluctuation via the noncommutativity of the energy density operators, though the total energy takes a fixed value, i.e., the lowest eigenvalue of the Hamiltonian. Quantum energy teleportation (QET) is a protocol for the extraction of the zero-point energy out of one subsystem using information of a remote measurement of another subsystem. From an operational viewpoint of protocol users, QET can be regarded as an effective rapid energy transportation without breaking all physical laws, including causality and local energy conservation. In the protocol, the ground-state entanglement plays a crucial role. In this paper, we show analytically for a general class of spin-chain systems that the entanglement entropy is lower bounded by a positive quadratic function of the teleported energy between the regions of a QET protocol. This supports a general conjecture that ground-state entanglement is an evident physical resource for energy transportation in the context of QET. The result may also deepen our understanding of the energy density fluctuation in condensed-matter systems from a perspective of quantum information theory.

  5. Spin-Multiplet Components and Energy Splittings by Multistate Density Functional Theory.

    PubMed

    Grofe, Adam; Chen, Xin; Liu, Wenjian; Gao, Jiali

    2017-10-05

    Kohn-Sham density functional theory has been tremendously successful in chemistry and physics. Yet, it is unable to describe the energy degeneracy of spin-multiplet components with any approximate functional. This work features two contributions. (1) We present a multistate density functional theory (MSDFT) to represent spin-multiplet components and to determine multiplet energies. MSDFT is a hybrid approach, taking advantage of both wave function theory and density functional theory. Thus, the wave functions, electron densities and energy density-functionals for ground and excited states and for different components are treated on the same footing. The method is illustrated on valence excitations of atoms and molecules. (2) Importantly, a key result is that for cases in which the high-spin components can be determined separately by Kohn-Sham density functional theory, the transition density functional in MSDFT (which describes electronic coupling) can be defined rigorously. The numerical results may be explored to design and optimize transition density functionals for configuration coupling in multiconfigurational DFT.

  6. Magnetic exchange couplings from constrained density functional theory: an efficient approach utilizing analytic derivatives.

    PubMed

    Phillips, Jordan J; Peralta, Juan E

    2011-11-14

    We introduce a method for evaluating magnetic exchange couplings based on the constrained density functional theory (C-DFT) approach of Rudra, Wu, and Van Voorhis [J. Chem. Phys. 124, 024103 (2006)]. Our method shares the same physical principles as C-DFT but makes use of the fact that the electronic energy changes quadratically and bilinearly with respect to the constraints in the range of interest. This allows us to use coupled perturbed Kohn-Sham spin density functional theory to determine approximately the corrections to the energy of the different spin configurations and construct a priori the relevant energy-landscapes obtained by constrained spin density functional theory. We assess this methodology in a set of binuclear transition-metal complexes and show that it reproduces very closely the results of C-DFT. This demonstrates a proof-of-concept for this method as a potential tool for studying a number of other molecular phenomena. Additionally, routes to improving upon the limitations of this method are discussed. © 2011 American Institute of Physics

  7. Monochromatic radiography of high energy density physics experiments on the MAGPIE generator.

    PubMed

    Hall, G N; Burdiak, G C; Suttle, L; Stuart, N H; Swadling, G F; Lebedev, S V; Smith, R A; Patankar, S; Suzuki-Vidal, F; de Grouchy, P; Harvey-Thompson, A J; Bennett, M; Bland, S N; Pickworth, L; Skidmore, J

    2014-11-01

    A monochromatic X-ray backlighter based on Bragg reflection from a spherically bent quartz crystal has been developed for the MAGPIE pulsed power generator at Imperial College (1.4 MA, 240 ns) [I. H. Mitchell et al., Rev. Sci. Instrum. 67, 1533 (2005)]. This instrument has been used to diagnose high energy density physics experiments with 1.865 keV radiation (Silicon He-α) from a laser plasma source driven by a ∼7 J, 1 ns pulse from the Cerberus laser. The design of the diagnostic, its characterisation and performance, and initial results in which the instrument was used to radiograph a shock physics experiment on MAGPIE are discussed.

  8. Effects of Differing Energy Dependences in Three Level-Density Models on Calculated Cross Sections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fu, C.Y.

    2000-07-15

    Three level-density formalisms commonly used for cross-section calculations are examined. Residual nuclides in neutron interaction with {sup 58}Ni are chosen to quantify the well-known differences in the energy dependences of the three formalisms. Level-density parameters for the Gilbert and Cameron model are determined from experimental information. Parameters for the back-shifted Fermi-gas and generalized superfluid models are obtained by fitting their level densities at two selected energies for each nuclide to those of the Gilbert and Cameron model, forcing the level densities of the three models to be as close as physically allowed. The remaining differences are in their energy dependencesmore » that, it is shown, can change the calculated cross sections and particle emission spectra significantly, in some cases or energy ranges by a factor of 2.« less

  9. Magnetic Reconnection in Extreme Astrophysical Environments

    NASA Astrophysics Data System (ADS)

    Uzdensky, Dmitri

    Magnetic reconnection is a fundamental plasma physics process of breaking ideal-MHD's frozen-in constraints on magnetic field connectivity and of dramatic rearranging of the magnetic topol-ogy, which often leads to a violent release of the free magnetic energy. Reconnection has long been acknowledged to be of great importance in laboratory plasma physics (magnetic fusion) and in space and solar physics (responsible for solar flares and magnetospheric substorms). In addition, its importance in Astrophysics has been increasingly recognized in recent years. However, due to a great diversity of astrophysical environments, the fundamental physics of astrophysical magnetic reconnection can be quite different from that of the traditional recon-nection encountered in the solar system. In particular, environments like the solar corona and the magnetosphere are characterized by relatively low energy densities, where the plasma is ad-equately described as a mixture of electrons and ions whose numbers are conserved and where the dissipated magnetic energy basically stays with the plasma. In contrast, in many high-energy astrophysical phenomena the energy density is so large that photons play as important a role as electrons and ions and, in particular, radiation pressure and radiative cooling become dominant. In this talk I focus on the most extreme case of high-energy-density astrophysical reconnec-tion — reconnection of magnetar-strength (1014 - 1015 Gauss) magnetic fields, important for giant flares in soft-gamma repeaters (SGRs), and for rapid magnetic energy release in either the central engines or in the relativistic jets of Gamma Ray Bursts (GRBs). I outline the key relevant physical processes and present a new theoretical picture of magnetic reconnection in these environments. The corresponding magnetic energy density is so enormous that, when suddenly released, it inevitably heats the plasma to relativistic temperatures, resulting in co-pious production of electron-positron pairs. The pairs make the reconnection layer optically thick, efficiently trapping gamma-ray photons and ensuring a local thermodynamic equilibrium between the radiation and the plasma. The plasma pressure inside the layer is then dominated by the radiation and pair pressure. At the same time, the timescale for radiation diffusion across the layer may still be much shorter than the global Alfven transit time along the layer, and hence the effects of radiative cooling on the thermodynamics of the layer need to be taken into account. In other words, the reconnection problem in this regime necessarily becomes a radiative transfer problem. In addition, the extremely high pair density, set by the local ther-modynamic equilibrium essentially independently of the upstream plasma density, can make the reconnection layer highly collisional, thereby justifying the use of resistive MHD (with Spitzer and Compton resistivities). The presence of all these processes calls for a substantial revision of our traditional physical picture of reconnection when applied to these environments. I will de-scribe how the corresponding new theory of reconnection of magnetar-strength magnetic fields ought to be constructed and will conclude by discussing its observational consequences and the prospects for future research.

  10. Method to produce durable pellets at lower energy consumption using high moisture corn stover and a corn starch binder in a flat die pellet mill

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tumuluru, Jaya Shankar; Conner, Craig C.; Hoover, Amber N.

    Biomass from plants can serve as an alternative renewable energy resources for energy production. Low densities of 40–60 kg/m3 for ground lignocellulosic biomass like corn stover limit its operation for energy purposes. The common drawbacks are inefficient transportation, a bigger storage foot print, and handling problems. Densification of biomass using pellet mill helps to overcome these limitations. This study helps to understand the effect of binder on high moisture biomass with a focus on the quality (density and durability), the pelleting efficiency and the specific energy consumption of its pelleting process. Raw corn stover was pelleted at high moisture ofmore » 33% (w.b.) at both varying preheating temperatures and binder percentage. The die speed of the pellet mill was set at 60Hz. The pellets produced were analyzed and showed higher moisture content. They were further dried in a laboratory oven at 70°C for 3-4 hr bringing the pellet moisture to <9%. The dried pellets were evaluated for their physical properties like unit, bulk and tapped density, and durability. Furthermore, the results indicated increasing the binder percentage to 4% improved the physical properties of the pellets and reduced the specific energy consumption. Higher binder addition of 4% reduced the feedstock moisture loss during pelleting to <4%, which can be due reduced residence time of the material in the die. On the other hand the physical properties like density and durability improved significantly with binder addition. At 4% binder and 33% feedstock moisture content, the bulk density and durability values observed were >510 kg/m3 and >98% and the percent fines generation has reduced to <3%. Also at these conditions the specific energy consumption was reduced by about 30-40% compared no binder pelleting test.« less

  11. Method to produce durable pellets at lower energy consumption using high moisture corn stover and a corn starch binder in a flat die pellet mill

    DOE PAGES

    Tumuluru, Jaya Shankar; Conner, Craig C.; Hoover, Amber N.

    2016-06-15

    Biomass from plants can serve as an alternative renewable energy resources for energy production. Low densities of 40–60 kg/m3 for ground lignocellulosic biomass like corn stover limit its operation for energy purposes. The common drawbacks are inefficient transportation, a bigger storage foot print, and handling problems. Densification of biomass using pellet mill helps to overcome these limitations. This study helps to understand the effect of binder on high moisture biomass with a focus on the quality (density and durability), the pelleting efficiency and the specific energy consumption of its pelleting process. Raw corn stover was pelleted at high moisture ofmore » 33% (w.b.) at both varying preheating temperatures and binder percentage. The die speed of the pellet mill was set at 60Hz. The pellets produced were analyzed and showed higher moisture content. They were further dried in a laboratory oven at 70°C for 3-4 hr bringing the pellet moisture to <9%. The dried pellets were evaluated for their physical properties like unit, bulk and tapped density, and durability. Furthermore, the results indicated increasing the binder percentage to 4% improved the physical properties of the pellets and reduced the specific energy consumption. Higher binder addition of 4% reduced the feedstock moisture loss during pelleting to <4%, which can be due reduced residence time of the material in the die. On the other hand the physical properties like density and durability improved significantly with binder addition. At 4% binder and 33% feedstock moisture content, the bulk density and durability values observed were >510 kg/m3 and >98% and the percent fines generation has reduced to <3%. Also at these conditions the specific energy consumption was reduced by about 30-40% compared no binder pelleting test.« less

  12. FROM THE HISTORY OF PHYSICS: The physics of a thermonuclear explosion of a normal-density liquefied deuterium sphere (On the impossibility of a spherically symmetric thermonuclear explosion in liquid deuterium at normal density)

    NASA Astrophysics Data System (ADS)

    Marchuk, Gurii I.; Imshennik, Vladimir S.; Basko, Mikhail M.

    2009-03-01

    The hydrodynamic problem of a thermonuclear explosion in a sphere of normal-density liquid deuterium was solved (Institute for Physics and Power Engineering, Obninsk) in 1952-1954 in the framework of the Soviet Atomic Project. The principal result was that the explosion shockwave in deuterium strongly decayed because of radiation energy loss and nonlocal energy release by fast neutrons. At that time, this negative result implied in essence that the straightforward approach to creating a thermonuclear weapon was in fact a blind alley. This paper describes a numerical solution to the stated problem, obtained with the modern DEIRA code developed for numerical modeling of inertially confined fusion. Detailed numerical calculations have confirmed the above 'historic' result and shed additional light on the physical causes of the detonation wave decay. The most pernicious factor is the radiation energy loss due to the combined effect of bremsstrahlung and the inverse Compton scattering of the emitted photons on the hot electrons. The impact of energy transfer by fast neutrons — which was already quite adequately accounted for in the above-cited historical work — is less significant. We present a more rigorous (compared to that of the 1950s) study of the role of inverse Compton scattering for which, in particular, an independent analytic estimate is obtained.

  13. Proton elastic scattering from stable and unstable nuclei - Extraction of nuclear densities

    NASA Astrophysics Data System (ADS)

    Sakaguchi, H.; Zenihiro, J.

    2017-11-01

    Progress in proton elastic scattering at intermediate energies to determine nuclear density distributions is reviewed. After challenges of about 15 years to explain proton elastic scattering and associated polarization phenomena at intermediate energies, we have reached to some conclusions regarding proton elastic scattering as a means of obtaining nuclear densities. During this same period, physics of unstable nuclei has become of interest, and the density distributions of protons and neutrons play more important roles in unstable nuclei, since the differences in proton and neutron numbers and densities are expected to be significant. As such, proton elastic scattering experiments at intermediate energies using the inverse kinematic method have started to determine density distributions of unstable nuclei. In the region of unstable nuclei, we are confronted with a new problem when attempting to find proton and neutron densities separately from elastic proton scattering data, since electron scattering data for unstable nuclei are not presently available. We introduce a new means of determining proton and neutron densities separately by double-energy proton elastic scattering at intermediate energies.

  14. Correlation of physical properties with molecular structure for some dicyclic hydrocarbons having high thermal-energy release per unit volume

    NASA Technical Reports Server (NTRS)

    Wise, P H; Serijan, K T; Goodman, I A

    1951-01-01

    As part of a program to study the correlation between molecular structure and physical properties of high-density hydrocarbons, the net heats of combustion, melting points, boiling points, densities, and kinematic viscosities of some hydrocarbons in the 2-n-alkylbiphenyl, 1,1-diphenylalkane, diphenylalkane, 1,1-dicyclohexylalkane, and dicyclohexylalkane series are presented.

  15. Density Functional Methods for Shock Physics and High Energy Density Science

    NASA Astrophysics Data System (ADS)

    Desjarlais, Michael

    2017-06-01

    Molecular dynamics with density functional theory has emerged over the last two decades as a powerful and accurate framework for calculating thermodynamic and transport properties with broad application to dynamic compression, high energy density science, and warm dense matter. These calculations have been extensively validated against shock and ramp wave experiments, are a principal component of high-fidelity equation of state generation, and are having wide-ranging impacts on inertial confinement fusion, planetary science, and shock physics research. In addition to thermodynamic properties, phase boundaries, and the equation of state, one also has access to electrical conductivity, thermal conductivity, and lower energy optical properties. Importantly, all these properties are obtained within the same theoretical framework and are manifestly consistent. In this talk I will give a brief history and overview of molecular dynamics with density functional theory and its use in calculating a wide variety of thermodynamic and transport properties for materials ranging from ambient to extreme conditions and with comparisons to experimental data. I will also discuss some of the limitations and difficulties, as well as active research areas. Sandia is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  16. LETTERS AND COMMENTS: Energy in one-dimensional linear waves in a string

    NASA Astrophysics Data System (ADS)

    Burko, Lior M.

    2010-09-01

    We consider the energy density and energy transfer in small amplitude, one-dimensional waves on a string and find that the common expressions used in textbooks for the introductory physics with calculus course give wrong results for some cases, including standing waves. We discuss the origin of the problem, and how it can be corrected in a way appropriate for the introductory calculus-based physics course.

  17. Impact of physical activity on energy balance, food intake and choice in normal weight and obese children in the setting of acute social stress: a randomized controlled trial.

    PubMed

    Horsch, Antje; Wobmann, Marion; Kriemler, Susi; Munsch, Simone; Borloz, Sylvie; Balz, Alexandra; Marques-Vidal, Pedro; Borghini, Ayala; Puder, Jardena J

    2015-02-19

    Psychological stress negatively influences food intake and food choices, thereby contributing to the development of childhood obesity. Physical activity can also moderate eating behavior and influence calorie intake. However, it is unknown if acute physical activity influences food intake and overall energy balance after acute stress exposure in children. We therefore investigated the impact of acute physical activity on overall energy balance (food intake minus energy expenditure), food intake, and choice in the setting of acute social stress in normal weight (NW) and overweight/obese (OW/OB) children as well as the impact of psychological risk factors. After receiving written consent from their parents, 26 NW (BMI < 90(th) percentile) and 24 7-to 11-year-old OW (n = 5)/OB (n = 19, BMI ≥ 90(th) percentile) children were randomly allocated using computer-generated numbers (1:1, after stratification for weight status) to acute moderate physical or to sedentary activity for 30 min. Afterwards, all children were exposed to an acute social stressor. Children and their parents completed self-report questionnaires. At the end of the stressor, children were allowed to eat freely from a range of 12 different foods (6 sweet/6 salty; each of low/high caloric density). Energy balance, food intake/choice and obesity-related psychological risk factors were assessed. Lower overall energy balance (p = 0.019) and a decreased choice of low density salty foods (p < 0.001) in NW children compared with OW/OB children was found after acute moderate physical activity but not sedentary activity. Independent of their allocation, OW/OB children ate more high density salty foods (104 kcal (34 to 173), p = 0.004) following stress. They scored higher on impulsive behavior (p = 0.005), restrained eating (p < 0.001) and parental corporal punishment (p = 0.03), but these psychological factors were not related to stress-induced food intake/choice. Positive parenting tended to be related to lower intake of sweet high density food (-132 kcal, -277 to 2, p = 0.054). In the setting of stress, acute moderate physical activity can address energy balance in children, a benefit which is especially pronounced in the OW/OB. Positive parenting may act as a protective factor preventing stress-induced eating of comfort food. clinicaltrials.gov NCT01693926 The study was a pilot study of a project funded by the Swiss National Science Foundation (CRSII3_147673).

  18. Ultra-stiff metallic glasses through bond energy density design.

    PubMed

    Schnabel, Volker; Köhler, Mathias; Music, Denis; Bednarcik, Jozef; Clegg, William J; Raabe, Dierk; Schneider, Jochen M

    2017-07-05

    The elastic properties of crystalline metals scale with their valence electron density. Similar observations have been made for metallic glasses. However, for metallic glasses where covalent bonding predominates, such as metalloid metallic glasses, this relationship appears to break down. At present, the reasons for this are not understood. Using high energy x-ray diffraction analysis of melt spun and thin film metallic glasses combined with density functional theory based molecular dynamics simulations, we show that the physical origin of the ultrahigh stiffness in both metalloid and non-metalloid metallic glasses is best understood in terms of the bond energy density. Using the bond energy density as novel materials design criterion for ultra-stiff metallic glasses, we are able to predict a Co 33.0 Ta 3.5 B 63.5 short range ordered material by density functional theory based molecular dynamics simulations with a high bond energy density of 0.94 eV Å -3 and a bulk modulus of 263 GPa, which is 17% greater than the stiffest Co-B based metallic glasses reported in literature.

  19. Ultra-High Intensity Magnetic Field Generation in Dense Plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fisch, Nathaniel J.

    2014-01-08

    The main objective of this grant proposal was to explore the efficient generation of intense currents. Whereas the efficient generation of electric current in low-­energy-­density plasma has occupied the attention of the magnetic fusion community for several decades, scant attention has been paid to carrying over to high-­energy-­density plasma the ideas for steady-­state current drive developed for low-­energy-­density plasma, or, for that matter, to inventing new methodologies for generating electric current in high-­energy-­density plasma. What we proposed to do was to identify new mechanisms to accomplish current generation, and to assess the operation, physics, and engineering basis of new formsmore » of current drive in regimes appropriate for new fusion concepts.« less

  20. Graphene, a material for high temperature devices – intrinsic carrier density, carrier drift velocity, and lattice energy

    PubMed Central

    Yin, Yan; Cheng, Zengguang; Wang, Li; Jin, Kuijuan; Wang, Wenzhong

    2014-01-01

    Heat has always been a killing matter for traditional semiconductor machines. The underlining physical reason is that the intrinsic carrier density of a device made from a traditional semiconductor material increases very fast with a rising temperature. Once reaching a temperature, the density surpasses the chemical doping or gating effect, any p-n junction or transistor made from the semiconductor will fail to function. Here, we measure the intrinsic Fermi level (|EF| = 2.93 kBT) or intrinsic carrier density (nin = 3.87 × 106 cm−2K−2·T2), carrier drift velocity, and G mode phonon energy of graphene devices and their temperature dependencies up to 2400 K. Our results show intrinsic carrier density of graphene is an order of magnitude less sensitive to temperature than those of Si or Ge, and reveal the great potentials of graphene as a material for high temperature devices. We also observe a linear decline of saturation drift velocity with increasing temperature, and identify the temperature coefficients of the intrinsic G mode phonon energy. Above knowledge is vital in understanding the physical phenomena of graphene under high power or high temperature. PMID:25044003

  1. The Potential Energy Density in Transverse String Waves Depends Critically on Longitudinal Motion

    ERIC Educational Resources Information Center

    Rowland, David R.

    2011-01-01

    The question of the correct formula for the potential energy density in transverse waves on a taut string continues to attract attention (e.g. Burko 2010 "Eur. J. Phys." 31 L71), and at least three different formulae can be found in the literature, with the classic text by Morse and Feshbach ("Methods of Theoretical Physics" pp 126-127) stating…

  2. [Research in theoretical nuclear physics]. [Annual progress report, July 1992--June 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kapusta, J.I.

    1993-12-31

    The main subject of research was the physics of matter at energy densities greater than 0.15 GeV/fm{sup 3}. Theory encompasses the relativistic many-body/quantum field theory aspects of QCD and the electroweak interactions at these high energy densities, both in and out of thermal equilibrium. Applications range from neutron stars/pulsars to QCD and electroweak phase transitions in the early universe, from baryon number violation in cosmology to the description of nucleus-nucleus collisions at CERN and at Brookhaven. Recent activity to understand the properties of matter at energy densities where the electroweak W and Z boson degrees of freedom are important ismore » reported. This problem has applications to cosmology and has the potential to explain the baryon asymmetry produced in the big bang at energies where the particle degrees of freedom will soon be experimentally, probed. This problem is interesting for nuclear physics because of the techniques used in many-body, physics of nuclei and the quark-gluon plasma may be extended to this new problem. The was also interested in problems related to multiparticle production. This includes work on production of particles in heavy-ion collisions, the small x part, of the nuclear and hadron wave function, and multiparticle production induced by instantons in weakly coupled theories. These problems have applications in the heavy ion program at RHIC and the deep inelastic scattering experiments at HERA.« less

  3. Magnetic Reconnection in Extreme Astrophysical Environments

    NASA Astrophysics Data System (ADS)

    Uzdensky, Dmitri A.

    2011-10-01

    Magnetic reconnection is a fundamental plasma physics process in which ideal-MHD's frozen-in constraints are broken and the magnetic field topology is dramatically re-arranged, which often leads to a violent release of the free magnetic energy. Most of the magnetic reconnection research done to date has been motivated by the applications to systems such as the solar corona, Earth's magnetosphere, and magnetic confinement devices for thermonuclear fusion. These environments have relatively low energy densities and the plasma is adequately described as a mixture of equal numbers of electrons and ions and where the dissipated magnetic energy always stays with the plasma. In contrast, in this paper I would like to introduce a different, new direction of research—reconnection in high energy density radiative plasmas, in which photons play as important a role as electrons and ions; in particular, in which radiation pressure and radiative cooling become dominant factors in the pressure and energy balance. This research is motivated in part by rapid theoretical and experimental advances in High Energy Density Physics, and in part by several important problems in modern high-energy astrophysics. I first discuss some astrophysical examples of high-energy-density reconnection and then identify the key physical processes that distinguish them from traditional reconnection. Among the most important of these processes are: special-relativistic effects; radiative effects (radiative cooling, radiation pressure, and radiative resistivity); and, at the most extreme end—QED effects, including pair creation. The most notable among the astrophysical applications are situations involving magnetar-strength fields (1014-1015 G, exceeding the quantum critical field B ∗≃4×1013 G). The most important examples are giant flares in soft gamma repeaters (SGRs) and magnetic models of the central engines and relativistic jets of Gamma Ray Bursts (GRBs). The magnetic energy density in these environments is so high that, when it is suddenly released, the plasma is heated to ultra-relativistic temperatures. As a result, electron-positron pairs are created in copious quantities, dressing the reconnection layer in an optically thick pair coat, thereby trapping the photons. The plasma pressure inside the layer is then dominated by the combined radiation and pair pressure. At the same time, the timescale for radiation diffusion across the layer may, under some conditions, still be shorter than the global (along the layer) Alfvén transit time, and hence radiative cooling starts to dominate the thermodynamics of the problem. The reconnection problem then becomes essentially a radiative transfer problem. In addition, the high pair density makes the reconnection layer highly collisional, independent of the upstream plasma density, and hence radiative resistive MHD applies. The presence of all these processes calls for a substantial revision of our traditional physical picture of reconnection when applied to these environments and thus opens a new frontier in reconnection research.

  4. Probing the scale of new physics by Advanced LIGO/VIRGO

    NASA Astrophysics Data System (ADS)

    Dev, P. S. Bhupal; Mazumdar, A.

    2016-05-01

    We show that if the new physics beyond the standard model is associated with a first-order phase transition around 107- 108 GeV , the energy density stored in the resulting stochastic gravitational waves and the corresponding peak frequency are within the projected final sensitivity of the advanced LIGO/VIRGO detectors. We discuss some possible new physics scenarios that could arise at such energies, and in particular, the consequences for Peccei-Quinn and supersymmetry breaking scales.

  5. Dark energy in the dark ages

    NASA Astrophysics Data System (ADS)

    Linder, Eric V.

    2006-08-01

    Non-negligible dark energy density at high redshifts would indicate dark energy physics distinct from a cosmological constant or "reasonable" canonical scalar fields. Such dark energy can be constrained tightly through investigation of the growth of structure, with limits of ≲2% of total energy density at z ≫ 1 for many models. Intermediate dark energy can have effects distinct from its energy density; the dark ages acceleration can be constrained to last less than 5% of a Hubble e-fold time, exacerbating the coincidence problem. Both the total linear growth, or equivalently σ8, and the shape and evolution of the nonlinear mass power spectrum for z < 2 (using the Linder-White nonlinear mapping prescription) provide important windows. Probes of growth, such as weak gravitational lensing, can interact with supernovae and CMB distance measurements to scan dark energy behavior over the entire range z = 0-1100.

  6. Quest for a universal density functional: the accuracy of density functionals across a broad spectrum of databases in chemistry and physics.

    PubMed

    Peverati, Roberto; Truhlar, Donald G

    2014-03-13

    Kohn-Sham density functional theory is in principle an exact formulation of quantum mechanical electronic structure theory, but in practice we have to rely on approximate exchange-correlation (xc) functionals. The objective of our work has been to design an xc functional with broad accuracy across as wide an expanse of chemistry and physics as possible, leading--as a long-range goal--to a functional with good accuracy for all problems, i.e. a universal functional. To guide our path towards that goal and to measure our progress, we have developed-building on earlier work of our group-a set of databases of reference data for a variety of energetic and structural properties in chemistry and physics. These databases include energies of molecular processes, such as atomization, complexation, proton addition and ionization; they also include molecular geometries and solid-state lattice constants, chemical reaction barrier heights, and cohesive energies and band gaps of solids. For this paper, we gather many of these databases into four comprehensive databases, two with 384 energetic data for chemistry and solid-state physics and another two with 68 structural data for chemistry and solid-state physics, and we test two wave function methods and 77 density functionals (12 Minnesota meta functionals and 65 others) in a consistent way across this same broad set of data. We especially highlight the Minnesota density functionals, but the results have broader implications in that one may see the successes and failures of many kinds of density functionals when they are all applied to the same data. Therefore, the results provide a status report on the quest for a universal functional.

  7. Understanding limiting factors in thick electrode performance as applied to high energy density Li-ion batteries

    DOE PAGES

    Du, Zhijia; Wood, David L.; Daniel, Claus; ...

    2017-02-09

    We present that increasing electrode thickness, thus increasing the volume ratio of active materials, is one effective method to enable the development of high energy density Li-ion batteries. In this study, an energy density versus power density optimization of LiNi 0.8Co 0.15Al 0.05O 2 (NCA)/graphite cell stack was conducted via mathematical modeling. The energy density was found to have a maximum point versus electrode thickness (critical thickness) at given discharging C rates. The physics-based factors that limit the energy/power density of thick electrodes were found to be increased cell polarization and underutilization of active materials. The latter is affected bymore » Li-ion diffusion in active materials and Li-ion depletion in the electrolyte phase. Based on those findings, possible approaches were derived to surmount the limiting factors. Finally, the improvement of the energy–power relationship in an 18,650 cell was used to demonstrate how to optimize the thick electrode parameters in cell engineering.« less

  8. Laser-driven strong magnetostatic fields with applications to charged beam transport and magnetized high energy-density physics

    NASA Astrophysics Data System (ADS)

    Santos, J. J.; Bailly-Grandvaux, M.; Ehret, M.; Arefiev, A. V.; Batani, D.; Beg, F. N.; Calisti, A.; Ferri, S.; Florido, R.; Forestier-Colleoni, P.; Fujioka, S.; Gigosos, M. A.; Giuffrida, L.; Gremillet, L.; Honrubia, J. J.; Kojima, S.; Korneev, Ph.; Law, K. F. F.; Marquès, J.-R.; Morace, A.; Mossé, C.; Peyrusse, O.; Rose, S.; Roth, M.; Sakata, S.; Schaumann, G.; Suzuki-Vidal, F.; Tikhonchuk, V. T.; Toncian, T.; Woolsey, N.; Zhang, Z.

    2018-05-01

    Powerful nanosecond laser-plasma processes are explored to generate discharge currents of a few 100 kA in coil targets, yielding magnetostatic fields (B-fields) in excess of 0.5 kT. The quasi-static currents are provided from hot electron ejection from the laser-irradiated surface. According to our model, which describes the evolution of the discharge current, the major control parameter is the laser irradiance Ilasλlas2 . The space-time evolution of the B-fields is experimentally characterized by high-frequency bandwidth B-dot probes and proton-deflectometry measurements. The magnetic pulses, of ns-scale, are long enough to magnetize secondary targets through resistive diffusion. We applied it in experiments of laser-generated relativistic electron transport through solid dielectric targets, yielding an unprecedented 5-fold enhancement of the energy-density flux at 60 μm depth, compared to unmagnetized transport conditions. These studies pave the ground for magnetized high-energy density physics investigations, related to laser-generated secondary sources of radiation and/or high-energy particles and their transport, to high-gain fusion energy schemes, and to laboratory astrophysics.

  9. Imaging at an x-ray absorption edge using free electron laser pulses for interface dynamics in high energy density systems [Resonant phase contrast imaging for interface physics

    DOE PAGES

    Beckwith, M. A.; Jiang, S.; Schropp, A.; ...

    2017-05-01

    Tuning the energy of an x-ray probe to an absorption line or edge can provide material-specific measurements that are particularly useful for interfaces. Simulated hard x-ray images above the Fe K-edge are presented to examine ion diffusion across an interface between Fe 2O 3 and SiO 2 aerogel foam materials. The simulations demonstrate the feasibility of such a technique for measurements of density scale lengths near the interface with submicron spatial resolution. A proof-of-principle experiment is designed and performed at the Linac coherent light source facility. Preliminary data show the change of the interface after shock compression and heating withmore » simultaneous fluorescence spectra for temperature determination. Here, the results provide the first demonstration of using x-ray imaging at an absorption edge as a diagnostic to detect ultrafast phenomena for interface physics in high-energy-density systems.« less

  10. Statistical physics inspired energy-efficient coded-modulation for optical communications.

    PubMed

    Djordjevic, Ivan B; Xu, Lei; Wang, Ting

    2012-04-15

    Because Shannon's entropy can be obtained by Stirling's approximation of thermodynamics entropy, the statistical physics energy minimization methods are directly applicable to the signal constellation design. We demonstrate that statistical physics inspired energy-efficient (EE) signal constellation designs, in combination with large-girth low-density parity-check (LDPC) codes, significantly outperform conventional LDPC-coded polarization-division multiplexed quadrature amplitude modulation schemes. We also describe an EE signal constellation design algorithm. Finally, we propose the discrete-time implementation of D-dimensional transceiver and corresponding EE polarization-division multiplexed system. © 2012 Optical Society of America

  11. Computational study of hot electron generation and energy transport in intense laser produced hot dense matter

    NASA Astrophysics Data System (ADS)

    Mishra, Rohini

    Present ultra high power lasers are capable of producing high energy density (HED) plasmas, in controlled way, with a density greater than solid density and at a high temperature of keV (1 keV ˜ 11,000,000° K). Matter in such extreme states is particularly interesting for (HED) physics such as laboratory studies of planetary and stellar astrophysics, laser fusion research, pulsed neutron source etc. To date however, the physics in HED plasma, especially, the energy transport, which is crucial to realize applications, has not been understood well. Intense laser produced plasmas are complex systems involving two widely distinct temperature distributions and are difficult to model by a single approach. Both kinetic and collisional process are equally important to understand an entire process of laser-solid interaction. By implementing atomic physics models, such as collision, ionization, and radiation damping, self consistently, in state-of-the-art particle-in-cell code (PICLS) has enabled to explore the physics involved in the HED plasmas. Laser absorption, hot electron transport, and isochoric heating physics in laser produced hot dense plasmas are studied with a help of PICLS simulations. In particular, a novel mode of electron acceleration, namely DC-ponderomotive acceleration, is identified in the super intense laser regime which plays an important role in the coupling of laser energy to a dense plasma. Geometric effects on hot electron transport and target heating processes are examined in the reduced mass target experiments. Further, pertinent to fast ignition, laser accelerated fast electron divergence and transport in the experiments using warm dense matter (low temperature plasma) is characterized and explained.

  12. Energy density and energy flow of plasmonic waves in bilayer graphene

    NASA Astrophysics Data System (ADS)

    Moradi, Afshin

    2017-07-01

    The propagation of plasmonic waves in bilayer graphene is studied based on the classical electrodynamics. The interactions between conduction electrons confined to move on the surface of each layer are taken into account via the two-dimensional linearized hydrodynamic model. The energy theorem of electrodynamics is cast in a form which yields expressions for energy density and energy flow of p-polarized surface plasmon polariton waves in bilayer graphene. Numerical results show that the presence of two layers causes the appearance of two branches in the dispersion relation that introduce alterations in the physical behavior of the energy, power flow and the energy transport velocity, in comparison with the results of monolayer graphene.

  13. Bone density and young athletic women. An update.

    PubMed

    Nichols, David L; Sanborn, Charlotte F; Essery, Eve V

    2007-01-01

    High-school girls and collegiate women have tremendous opportunities to participate in athletic teams. Young girls are also playing in club and select teams at an early age and often, year-round. There are many benefits for participating in sport and physical activity on both the physical and mental health of girls and women. Decreased risk for heart disease and diabetes mellitus, along with improved self-esteem and body-image, were among the first reported benefits of regular physical activity. In addition, sport participation and physical activity is also associated with bone health. Athletes have a greater bone mineral density compared with non-active and physically active females. The increase in bone mass should reduce the risk of fragility fractures in later life. There appears to be a window of opportunity during the development of peak bone mass in which the bone is especially responsive to weight-bearing physical activity. Impact loading sports such as gymnastics, rugby or volleyball tend to produce a better overall osteogenic response than sports without impact loading such as cycling, rowing and swimming. Relatively little is known about the impact of retiring from athletics on bone density. It appears that former athletes continue to have a higher bone density than non-athletes; however, the rate of bone loss appears to be similar in the femoral neck. The positive impact of sports participation on bone mass can be tempered by nutritional and hormonal status. It is not known whether female athletes need additional calcium compared with the general female population. Due to the increased energy expenditure of exercise and/or the pressure to obtain an optimal training bodyweight, some female athletes may develop low energy availability or an eating disorder and subsequently amenorrhoea and a loss of bone mineral density. The three inter-related clinical disorders are referred to as the 'female athlete triad'. This article presents a review of the relationship between sports training and bone health, specifically bone mineral density, in young athletic women.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiménez, Jose Beltrán; Heisenberg, Lavinia; Olmo, Gonzalo J., E-mail: jose.beltran@uclouvain.be, E-mail: Lavinia.Heisenberg@unige.ch, E-mail: gonzalo.olmo@csic.es

    We generalize the ultraviolet sector of gravitation via a Born-Infeld action using lessons from massive gravity. The theory contains all of the elementary symmetric polynomials and is treated in the Palatini formalism. We show how the connection can be solved algebraically to be the Levi-Civita connection of an effective metric. The non-linearity of the algebraic equations yields several branches, one of which always reduces to General Relativity at low curvatures. We explore in detail a minimal version of the theory, for which we study solutions in the presence of a perfect fluid with special attention to the cosmological evolution. Inmore » vacuum we recover Ricci-flat solutions, but also an additional physical solution corresponding to an Einstein space. The existence of two physical branches remains for non-vacuum solutions and, in addition, the branch that connects to the Einstein space in vacuum is not very sensitive to the specific value of the energy density. For the branch that connects to the General Relativity limit we generically find three behaviours for the Hubble function depending on the equation of state of the fluid, namely: either there is a maximum value for the energy density that connects continuously with vacuum, or the energy density can be arbitrarily large but the Hubble function saturates and remains constant at high energy densities, or the energy density is unbounded and the Hubble function grows faster than in General Relativity. The second case is particularly interesting because it could offer an interesting inflationary epoch even in the presence of a dust component. Finally, we discuss the possibility of avoiding certain types of singularities within the minimal model.« less

  15. Electronic Zero-Point Oscillations in the Strong-Interaction Limit of Density Functional Theory.

    PubMed

    Gori-Giorgi, Paola; Vignale, Giovanni; Seidl, Michael

    2009-04-14

    The exchange-correlation energy in Kohn-Sham density functional theory can be expressed exactly in terms of the change in the expectation of the electron-electron repulsion operator when, in the many-electron Hamiltonian, this same operator is multiplied by a real parameter λ varying between 0 (Kohn-Sham system) and 1 (physical system). In this process, usually called adiabatic connection, the one-electron density is kept fixed by a suitable local one-body potential. The strong-interaction limit of density functional theory, defined as the limit λ→∞, turns out to be like the opposite noninteracting Kohn-Sham limit (λ→0) mathematically simpler than the physical (λ = 1) case and can be used to build an approximate interpolation formula between λ→0 and λ→∞ for the exchange-correlation energy. Here we extend the systematic treatment of the λ→∞ limit [Phys. Rev. A 2007, 75, 042511] to the next leading term, describing zero-point oscillations of strictly correlated electrons, with numerical examples for small spherical atoms. We also propose an improved approximate functional for the zero-point term and a revised interpolation formula for the exchange-correlation energy satisfying more exact constraints.

  16. Why Density Dependent Propulsion?

    NASA Technical Reports Server (NTRS)

    Robertson, Glen A.

    2011-01-01

    In 2004 Khoury and Weltman produced a density dependent cosmology theory they call the Chameleon, as at its nature, it is hidden within known physics. The Chameleon theory has implications to dark matter/energy with universe acceleration properties, which implies a new force mechanism with ties to the far and local density environment. In this paper, the Chameleon Density Model is discussed in terms of propulsion toward new propellant-less engineering methods.

  17. Energy Density in Aligned Nanowire Arrays Irradiated with Relativistic Intensities: Path to Terabar Pressure Plasmas

    NASA Astrophysics Data System (ADS)

    Rocca, J.; Bargsten, C.; Hollinger, R.; Shylaptsev, V.; Wang, S.; Rockwood, A.; Wang, Y.; Keiss, D.; Capeluto, M.; Kaymak, V.; Pukhov, A.; Tommasini, R.; London, R.; Park, J.

    2016-10-01

    Ultra-high-energy-density (UHED) plasmas, characterized by energy densities >1 x 108 J cm-3 and pressures greater than a gigabar are encountered in the center of stars and in inertial confinement fusion capsules driven by the world's largest lasers. Similar conditions can be obtained with compact, ultra-high contrast, femtosecond lasers focused to relativistic intensities onto aligned nanowire array targets. Here we report the measurement of the key physical process in determining the energy density deposited in high aspect ratio nanowire array plasmas: the energy penetration. By monitoring the x-ray emission from buried Co tracer segments in Ni nanowire arrays irradiated at an intensity of 4 x 1019 W cm-2, we demonstrate energy penetration depths of several μm, leading to UHED plasmas of that size. Relativistic 3D particle-in-cell-simulations validated by these measurements predict that irradiation of nanostructures at increased intensity will lead to a virtually unexplored extreme UHED plasma regime characterized by energy densities in excess of 8 x 1010 J cm-3, equivalent to a pressure of 0.35 Tbar. This work was supported by the Fusion Energy Program, Office of Science of the U.S Department of Energy, and by the Defense Threat Reduction Agency.

  18. Thermodynamic neutral density: A new physically-based, energy-constrained, materially conserved neutral density variable for quantifying mixing and tracking water masses in the ocean

    NASA Astrophysics Data System (ADS)

    Tailleux, R.

    2016-02-01

    A new materially-conserved quasi-neutral density variable has been constructed, called thermodynamic neutral density. It is composed of two parts. The first part is the Lorenz reference density entering Lorenz theory of available potential energy, which can be interpreted as the potential density of a fluid parcel referenced to the pressure it would have in Lorenz reference state of minimum potential energy. The second part is an empirical correction for pressure, which can be suitably chosen to make thermodynamic neutral density a very good approximation of Jackett and McDougall (1997) neutral density over most of the ocean water masses for which the latter is defined. Thermodynamic neutral density possesses many advantages over the empirically constructed Jackett and McDougall (1997) neutral density: 1) it is physically-based; 2) it is easily computed using fast and efficient methods for arbitrary states of the ocean, not just the present state, using the recently developed methodology by Saenz et al. (2015); 3) it is exactly neutral in a state of rest, and approximately neutral in the present ocean; 4) it is exactly materially conserved (it is a function of salinity and potential temperature only) and not plagued by unphysical nonmaterial effects, so can be used unambiguously to define and diagnose diapycnal and isopycnal mixing; 5) it is based on available potential energy, and therefore is the most suitable variable to discuss the energy cost of adiabatic stirring; 6) it is the variable that should be used to define the isopycnal and diapycnal directions in rotated diffusion tensor, as it can be shown that using the directions defined by the local neutral tangent plane as currently done causes spurious destruction of water masses. References: J. A. Saenz, R. Tailleux, E.D. Butler, G.O. Hughes, and K.I.C. Oliver, 2015: Estimating Lorenz's reference state in an ocean with a nonlinear equation of state for seawater. J. Phys. Oceanogr., 45, 1242—1257

  19. Lightning under water: Diverse reactive environments and evidence of synergistic effects for material treatment and activation

    NASA Astrophysics Data System (ADS)

    Levchenko, Igor; Bazaka, Kateryna; Baranov, Oleg; Sankaran, R. Mohan; Nomine, Alexandre; Belmonte, Thierry; Xu, Shuyan

    2018-06-01

    This focused review aims to reveal and illustrate some unique features of processes triggered by high-density energy applied to liquids and gas-liquid interfaces and to highlight a wide spectrum of their technological applications capable of producing various advantageous effects, ranging from nanosynthesis to biological and medical applications. Plasma, electric discharges, laser, and ultrasound power effects were selected as representative examples of high-density energy and liquid interactions, yet the available possibilities are not limited by these quite different types of power and thus the reader could extrapolate the outlined features and effects to other kinds of powerful impacts. The basic physical mechanisms are briefly reviewed with the aim to familiarize the readers with the potential capabilities of high-density energy processes in liquids. These will be of direct interest to researchers tasked with the development, optimization, and characterization of processes and highly reactive environments for highly controlled transformation of matter in abiotic and biological systems. It could also be highly useful for under- and post-graduate students specializing in the related fields and general physical audience involved in various plasma, materials, energy conversion, and other concurrent research activities.

  20. Correlation between physical properties and ultrasonic relaxation parameters in transition metal tellurite glasses

    NASA Astrophysics Data System (ADS)

    Abd El-Moneim, A.

    2003-07-01

    The correlation between activation energy of ultrasonic relaxation process through the temperature range from 140 to 300 K and some physical properties has been investigated in pure TeO 2 and transition metal TeO 2-V 2O 5 and TeO 2-MoO 3 glasses according to Bridge and Patel's theory. The oxygen density (loss centers), number of two-well systems, hopping distance and mechanical relaxation time have been calculated in these glasses from the data of density, bulk modulus and stretching force constant of the glass. It has been found that the acoustic activation energy increased linearly with both the oxygen density and the number of two-well systems. The correlation between the acoustic activation energy and bulk modulus was achieved through the stretching force constant of the network and other structural parameters. Moreover, the experimental values of activation energy (V) agree well with those calculated from an empirical equation presented in this study in the form V=2.9×10 -7 F( F/ K) 3.37, where F is the stretching force constant of the glass and K is the experimental bulk modulus.

  1. Nanoscale temperature mapping in operating microelectronic devices

    DOE PAGES

    Mecklenburg, Matthew; Hubbard, William A.; White, E. R.; ...

    2015-02-05

    We report that modern microelectronic devices have nanoscale features that dissipate power nonuniformly, but fundamental physical limits frustrate efforts to detect the resulting temperature gradients. Contact thermometers disturb the temperature of a small system, while radiation thermometers struggle to beat the diffraction limit. Exploiting the same physics as Fahrenheit’s glass-bulb thermometer, we mapped the thermal expansion of Joule-heated, 80-nanometer-thick aluminum wires by precisely measuring changes in density. With a scanning transmission electron microscope (STEM) and electron energy loss spectroscopy (EELS), we quantified the local density via the energy of aluminum’s bulk plasmon. Rescaling density to temperature yields maps with amore » statistical precision of 3 kelvin/hertz ₋1/2, an accuracy of 10%, and nanometer-scale resolution. Lastly, many common metals and semiconductors have sufficiently sharp plasmon resonances to serve as their own thermometers.« less

  2. Laser-driven strong magnetostatic fields with applications to charged beam transport and magnetized high energy-density physics

    NASA Astrophysics Data System (ADS)

    Santos, Joao

    2017-10-01

    Powerful laser-plasma processes are explored to generate discharge currents of a few 100 kA in coil targets, yielding magnetostatic fields (B-fields) in the kTesla range. The B-fields are measured by proton-deflectometry and high-frequency bandwidth B-dot probes. According to our modeling, the quasi-static currents are provided from hot electron ejection from the laser-irradiated surface, accounting for the space charge neutralization and the plasma magnetization. The major control parameter is the laser irradiance Iλ2 . The B-fields ns-scale is long enough to magnetize secondary targets through resistive diffusion. We applied it in experiments of laser-generated relativistic electron transport into solid dielectric targets, yielding an unprecedented enhancement of a factor 5 on the energy-density flux at 60 µm depth, compared to unmagnetized transport conditions. These studies pave the ground for magnetized high-energy density physics investigations, related to laser-generated secondary sources of radiation and/or high-energy particles and their transport, to high-gain fusion energy schemes and to laboratory astrophysics. We acknowledge funding from French National Agency for Research (ANR), Grant TERRE ANR-2011-BS04-014, and from EUROfusion Consortium, European Union's Horizon 2020 research and innovation programme, Grant 633053.

  3. Social Determinants and Poor Diet Quality of Energy-Dense Diets of Australian Young Adults

    PubMed Central

    Allman-Farinelli, Margaret

    2017-01-01

    This research aimed to determine the diet quality and socio-demographic determinants by level of energy-density of diets of Australian young adults. Secondary analysis of the Australian National Nutrition and Physical Activity Survey-2011/2012 for adults aged 18–34 years (n = 2397) was conducted. Diet was assessed by 24-h recalls. Dietary energy-density was calculated as dietary energy/grams of food (kJ/g) and the Healthy-Eating-Index-for-Australians (HEIFA-2013) was used to assess diet quality (highest score = 100). Dietary energy-density was examined with respect to diet quality and sociodemographic determinants including gender, highest tertiary-education attainment, country-of-birth, age, income, and socio-economic-index-for-area (SEIFA). Higher dietary energy-density was associated with lower diet quality scores (β = −3.71, t (2394) = −29.29, p < 0.0001) and included fewer fruits and vegetables, and more discretionary foods. The mean dietary energy-density was 7.7 kJ/g and 7.2 kJ/g for men and women, respectively. Subpopulations most at risk of consuming high energy-dense diets included those with lower education, Australian and English-speaking countries of birth, and men with low income and women from areas of lower socio-economic status. Young adults reporting low energy-dense diets had higher quality diets. Intensive efforts are needed to reduce the high energy-density of young adults’ diets, and should ensure they include populations of lower socio-economic status. PMID:28974029

  4. Social Determinants and Poor Diet Quality of Energy-Dense Diets of Australian Young Adults.

    PubMed

    Grech, Amanda; Rangan, Anna; Allman-Farinelli, Margaret

    2017-10-01

    This research aimed to determine the diet quality and socio-demographic determinants by level of energy-density of diets of Australian young adults. Secondary analysis of the Australian National Nutrition and Physical Activity Survey-2011/2012 for adults aged 18-34 years ( n = 2397) was conducted. Diet was assessed by 24-h recalls. Dietary energy-density was calculated as dietary energy/grams of food (kJ/g) and the Healthy-Eating-Index-for-Australians (HEIFA-2013) was used to assess diet quality (highest score = 100). Dietary energy-density was examined with respect to diet quality and sociodemographic determinants including gender, highest tertiary-education attainment, country-of-birth, age, income, and socio-economic-index-for-area (SEIFA). Higher dietary energy-density was associated with lower diet quality scores (β = -3.71, t (2394) = -29.29, p < 0.0001) and included fewer fruits and vegetables, and more discretionary foods. The mean dietary energy-density was 7.7 kJ/g and 7.2 kJ/g for men and women, respectively. Subpopulations most at risk of consuming high energy-dense diets included those with lower education, Australian and English-speaking countries of birth, and men with low income and women from areas of lower socio-economic status. Young adults reporting low energy-dense diets had higher quality diets. Intensive efforts are needed to reduce the high energy-density of young adults' diets, and should ensure they include populations of lower socio-economic status.

  5. PHYSICS OF OUR DAYS: Dark energy and universal antigravitation

    NASA Astrophysics Data System (ADS)

    Chernin, A. D.

    2008-03-01

    Universal antigravitation, a new physical phenomenon discovered astronomically at distances of 5 to 8 billion light years, manifests itself as cosmic repulsion that acts between distant galaxies and overcomes their gravitational attraction, resulting in the accelerating expansion of the Universe. The source of the antigravitation is not galaxies or any other bodies of nature but a previously unknown form of mass/energy that has been termed dark energy. Dark energy accounts for 70 to 80% of the total mass and energy of the Universe and, in macroscopic terms, is a kind of continuous medium that fills the entire space of the Universe and is characterized by positive density and negative pressure. With its physical nature and microscopic structure unknown, dark energy is among the most critical challenges fundamental science faces in the twenty-first century.

  6. Handling Density Conversion in TPS.

    PubMed

    Isobe, Tomonori; Mori, Yutaro; Takei, Hideyuki; Sato, Eisuke; Tadano, Kiichi; Kobayashi, Daisuke; Tomita, Tetsuya; Sakae, Takeji

    2016-01-01

    Conversion from CT value to density is essential to a radiation treatment planning system. Generally CT value is converted to the electron density in photon therapy. In the energy range of therapeutic photon, interactions between photons and materials are dominated with Compton scattering which the cross-section depends on the electron density. The dose distribution is obtained by calculating TERMA and kernel using electron density where TERMA is the energy transferred from primary photons and kernel is a volume considering spread electrons. Recently, a new method was introduced which uses the physical density. This method is expected to be faster and more accurate than that using the electron density. As for particle therapy, dose can be calculated with CT-to-stopping power conversion since the stopping power depends on the electron density. CT-to-stopping power conversion table is also called as CT-to-water-equivalent range and is an essential concept for the particle therapy.

  7. Correlation energy for elementary bosons: Physics of the singularity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shiau, Shiue-Yuan, E-mail: syshiau@mail.ncku.edu.tw; Combescot, Monique; Chang, Yia-Chung, E-mail: yiachang@gate.sinica.edu.tw

    2016-04-15

    We propose a compact perturbative approach that reveals the physical origin of the singularity occurring in the density dependence of correlation energy: like fermions, elementary bosons have a singular correlation energy which comes from the accumulation, through Feynman “bubble” diagrams, of the same non-zero momentum transfer excitations from the free particle ground state, that is, the Fermi sea for fermions and the Bose–Einstein condensate for bosons. This understanding paves the way toward deriving the correlation energy of composite bosons like atomic dimers and semiconductor excitons, by suggesting Shiva diagrams that have similarity with Feynman “bubble” diagrams, the previous elementary bosonmore » approaches, which hide this physics, being inappropriate to do so.« less

  8. Determination of thermal physical properties of alkali fluoride/carbonate eutectic molten salt

    NASA Astrophysics Data System (ADS)

    An, Xue-Hui; Cheng, Jin-Hui; Su, Tao; Zhang, Peng

    2017-06-01

    Molten salts used in high temperatures are more and more interested in the CSP for higher energy conversion efficiency. Thermal physical properties are the basic engineering data of thermal hydraulic calculation and safety analysis. Therefore, the thermophysical performances involving density, specific heat capacity, viscosity and thermal conductivity of FLiNaK, (LiNaK)2CO3 and LiF(NaK)2CO3 molten salts are experimentally determined and through comparison the general rules can be summarized. Density measurement was performed on the basis of Archimedes theory; specific heat capacity was measured using the DSC technique; viscosity was tested based on the rotating method; and the thermal conductivity was gained by laser flash method with combination of the density, specific heat capacity and thermal diffusivity through a formula. Finally, the energy storage capacity and figures of merit are calculated to evaluate their feasibility as TES and HFT media. The results show that FLiNaK has the largest energy storage capacity and best heat transfer performance, LiF(NaK)2CO3 is secondary, and (LiNaK)2CO3 has the smallest.

  9. Physical condition for elimination of ambiguity in conditionally convergent lattice sums

    NASA Astrophysics Data System (ADS)

    Young, K.

    1987-02-01

    The conditional convergence of the lattice sum defining the Madelung constant gives rise to an ambiguity in its value. It is shown that this ambiguity is related, through a simple and universal integral, to the average charge density on the crystal surface. The physically correct value is obtained by setting the charge density to zero. A simple and universally applicable formula for the Madelung constant is derived as a consequence. It consists of adding up dipole-dipole energies together with a nontrivial correction term.

  10. Nano-sized Mo- and Nb-doped TiO2 as anode materials for high energy and high power hybrid Li-ion capacitors.

    PubMed

    Bauer, Dustin; Roberts, Alexander J; Matsumi, Noriyoshi; Darr, Jawwad A

    2017-05-12

    Nano-sized Mo-doped titania (Mo 0.1 Ti 0.9 O 2 ) and Nb-doped titania (Nb 0.25 Ti 0.75 O 2 ) were directly synthesized via a continuous hydrothermal flow synthesis process. Materials characterization was conducted using physical techniques such as transmission electron microscopy, powder x-ray diffraction, x-ray photoelectron spectroscopy, Brunauer-Emmett-Teller specific surface area measurements and energy dispersive x-ray spectroscopy. Hybrid Li-ion supercapacitors were made with either a Mo-doped or Nb-doped TiO 2 negative electrode material and an activated carbon (AC) positive electrode. Cells were evaluated using electrochemical testing (cyclic voltammetry, constant charge discharge cycling). The hybrid Li-ion capacitors showed good energy densities at moderate power densities. When cycled in the potential window 0.5-3.0 V, the Mo 0.1 Ti 0.9 O 2 /AC hybrid supercapacitor showed the highest energy densities of 51 Wh kg -1 at a power of 180 W kg -1 with energy densities rapidly declining with increasing applied specific current. In comparison, the Nb 0.25 Ti 0.75 O 2 /AC hybrid supercapacitor maintained its energy density of 45 Wh kg -1 at 180 W kg -1 better, showing 36 Wh g -1 at 3200 W kg -1 , which is a very promising mix of high energy and power densities. Reducing the voltage window to the range 1.0-3.0 V led to an increase in power density, with the Mo 0.1 Ti 0.9 O 2 /AC hybrid supercapacitor giving energy densities of 12 Wh kg -1 and 2.5 Wh kg -1 at power densities of 6700 W kg -1 and 14 000 W kg -1 , respectively.

  11. Nano-sized Mo- and Nb-doped TiO2 as anode materials for high energy and high power hybrid Li-ion capacitors

    NASA Astrophysics Data System (ADS)

    Bauer, Dustin; Roberts, Alexander J.; Matsumi, Noriyoshi; Darr, Jawwad A.

    2017-05-01

    Nano-sized Mo-doped titania (Mo0.1Ti0.9O2) and Nb-doped titania (Nb0.25Ti0.75O2) were directly synthesized via a continuous hydrothermal flow synthesis process. Materials characterization was conducted using physical techniques such as transmission electron microscopy, powder x-ray diffraction, x-ray photoelectron spectroscopy, Brunauer-Emmett-Teller specific surface area measurements and energy dispersive x-ray spectroscopy. Hybrid Li-ion supercapacitors were made with either a Mo-doped or Nb-doped TiO2 negative electrode material and an activated carbon (AC) positive electrode. Cells were evaluated using electrochemical testing (cyclic voltammetry, constant charge discharge cycling). The hybrid Li-ion capacitors showed good energy densities at moderate power densities. When cycled in the potential window 0.5-3.0 V, the Mo0.1Ti0.9O2/AC hybrid supercapacitor showed the highest energy densities of 51 Wh kg-1 at a power of 180 W kg-1 with energy densities rapidly declining with increasing applied specific current. In comparison, the Nb0.25Ti0.75O2/AC hybrid supercapacitor maintained its energy density of 45 Wh kg-1 at 180 W kg-1 better, showing 36 Wh g-1 at 3200 W kg-1, which is a very promising mix of high energy and power densities. Reducing the voltage window to the range 1.0-3.0 V led to an increase in power density, with the Mo0.1Ti0.9O2/AC hybrid supercapacitor giving energy densities of 12 Wh kg-1 and 2.5 Wh kg-1 at power densities of 6700 W kg-1 and 14 000 W kg-1, respectively.

  12. Infrared lessons for ultraviolet gravity: the case of massive gravity and Born-Infeld

    NASA Astrophysics Data System (ADS)

    Beltrán Jiménez, Jose; Heisenberg, Lavinia; Olmo, Gonzalo J.

    2014-11-01

    We generalize the ultraviolet sector of gravitation via a Born-Infeld action using lessons from massive gravity. The theory contains all of the elementary symmetric polynomials and is treated in the Palatini formalism. We show how the connection can be solved algebraically to be the Levi-Civita connection of an effective metric. The non-linearity of the algebraic equations yields several branches, one of which always reduces to General Relativity at low curvatures. We explore in detail a minimal version of the theory, for which we study solutions in the presence of a perfect fluid with special attention to the cosmological evolution. In vacuum we recover Ricci-flat solutions, but also an additional physical solution corresponding to an Einstein space. The existence of two physical branches remains for non-vacuum solutions and, in addition, the branch that connects to the Einstein space in vacuum is not very sensitive to the specific value of the energy density. For the branch that connects to the General Relativity limit we generically find three behaviours for the Hubble function depending on the equation of state of the fluid, namely: either there is a maximum value for the energy density that connects continuously with vacuum, or the energy density can be arbitrarily large but the Hubble function saturates and remains constant at high energy densities, or the energy density is unbounded and the Hubble function grows faster than in General Relativity. The second case is particularly interesting because it could offer an interesting inflationary epoch even in the presence of a dust component. Finally, we discuss the possibility of avoiding certain types of singularities within the minimal model.

  13. Gentlest ascent dynamics for calculating first excited state and exploring energy landscape of Kohn-Sham density functionals.

    PubMed

    Li, Chen; Lu, Jianfeng; Yang, Weitao

    2015-12-14

    We develop the gentlest ascent dynamics for Kohn-Sham density functional theory to search for the index-1 saddle points on the energy landscape of the Kohn-Sham density functionals. These stationary solutions correspond to excited states in the ground state functionals. As shown by various examples, the first excited states of many chemical systems are given by these index-1 saddle points. Our novel approach provides an alternative, more robust way to obtain these excited states, compared with the widely used ΔSCF approach. The method can be easily generalized to target higher index saddle points. Our results also reveal the physical interest and relevance of studying the Kohn-Sham energy landscape.

  14. Energy density and stress: A new approach to teaching electromagnetism

    NASA Astrophysics Data System (ADS)

    Herrmann, F.

    1989-08-01

    By introducing the electromagnetic field in the customary way, ideas are promoted that do not correspond to those of contemporary physics: on the one hand, ideas that stem from pre-Maxwellian times when interactions were still conceived as actions at a distance and, on the other hand, ideas that can be understood only from the point of view that the electromagnetic field is carried by a medium. A part of a course in electromagnetism is sketched in which, from the beginning, the electromagnetic field is presented as a system in its own right and the local quantities energy density and stress are put into the foreground. In this way, justice is done to the views of modern physics and, moreover, the field becomes conceptually simpler.

  15. Semilocal density functional obeying a strongly tightened bound for exchange

    PubMed Central

    Sun, Jianwei; Perdew, John P.; Ruzsinszky, Adrienn

    2015-01-01

    Because of its useful accuracy and efficiency, density functional theory (DFT) is one of the most widely used electronic structure theories in physics, materials science, and chemistry. Only the exchange-correlation energy is unknown, and needs to be approximated in practice. Exact constraints provide useful information about this functional. The local spin-density approximation (LSDA) was the first constraint-based density functional. The Lieb–Oxford lower bound on the exchange-correlation energy for any density is another constraint that plays an important role in the development of generalized gradient approximations (GGAs) and meta-GGAs. Recently, a strongly and optimally tightened lower bound on the exchange energy was proved for one- and two-electron densities, and conjectured for all densities. In this article, we present a realistic “meta-GGA made very simple” (MGGA-MVS) for exchange that respects this optimal bound, which no previous beyond-LSDA approximation satisfies. This constraint might have been expected to worsen predicted thermochemical properties, but in fact they are improved over those of the Perdew–Burke–Ernzerhof GGA, which has nearly the same correlation part. MVS exchange is however radically different from that of other GGAs and meta-GGAs. Its exchange enhancement factor has a very strong dependence upon the orbital kinetic energy density, which permits accurate energies even with the drastically tightened bound. When this nonempirical MVS meta-GGA is hybridized with 25% of exact exchange, the resulting global hybrid gives excellent predictions for atomization energies, reaction barriers, and weak interactions of molecules. PMID:25561554

  16. Semilocal density functional obeying a strongly tightened bound for exchange.

    PubMed

    Sun, Jianwei; Perdew, John P; Ruzsinszky, Adrienn

    2015-01-20

    Because of its useful accuracy and efficiency, density functional theory (DFT) is one of the most widely used electronic structure theories in physics, materials science, and chemistry. Only the exchange-correlation energy is unknown, and needs to be approximated in practice. Exact constraints provide useful information about this functional. The local spin-density approximation (LSDA) was the first constraint-based density functional. The Lieb-Oxford lower bound on the exchange-correlation energy for any density is another constraint that plays an important role in the development of generalized gradient approximations (GGAs) and meta-GGAs. Recently, a strongly and optimally tightened lower bound on the exchange energy was proved for one- and two-electron densities, and conjectured for all densities. In this article, we present a realistic "meta-GGA made very simple" (MGGA-MVS) for exchange that respects this optimal bound, which no previous beyond-LSDA approximation satisfies. This constraint might have been expected to worsen predicted thermochemical properties, but in fact they are improved over those of the Perdew-Burke-Ernzerhof GGA, which has nearly the same correlation part. MVS exchange is however radically different from that of other GGAs and meta-GGAs. Its exchange enhancement factor has a very strong dependence upon the orbital kinetic energy density, which permits accurate energies even with the drastically tightened bound. When this nonempirical MVS meta-GGA is hybridized with 25% of exact exchange, the resulting global hybrid gives excellent predictions for atomization energies, reaction barriers, and weak interactions of molecules.

  17. Energy penetration into arrays of aligned nanowires irradiated with relativistic intensities: Scaling to terabar pressures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bargsten, Clayton; Hollinger, Reed; Capeluto, Maria Gabriela

    Ultrahigh-energy density (UHED) matter, characterized by energy densities >1 × 10 8 J cm –3 and pressures greater than a gigabar, is encountered in the center of stars and inertial confinement fusion capsules driven by the world’s largest lasers. Similar conditions can be obtained with compact, ultrahigh contrast, femtosecond lasers focused to relativistic intensities onto targets composed of aligned nanowire arrays. We report the measurement of the key physical process in determining the energy density deposited in high-aspect-ratio nanowire array plasmas: the energy penetration. By monitoring the x-ray emission from buried Co tracer segments in Ni nanowire arrays irradiated atmore » an intensity of 4 × 10 19 W cm –2, we demonstrate energy penetration depths of several micrometers, leading to UHED plasmas of that size. As a result, relativistic three-dimensional particle-in-cell simulations, validated by these measurements, predict that irradiation of nanostructures at intensities of >1 × 10 22 W cm –2 will lead to a virtually unexplored extreme UHED plasma regime characterized by energy densities in excess of 8 × 10 10 J cm –3, equivalent to a pressure of 0.35 Tbar.« less

  18. Energy Penetration into Arrays of Aligned Nanowires Irradiated with Relativistic Intensities: Scaling to Terabar Pressures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bargsten, Clayton; Hollinger, Reed; Capeluto, Maria Gabriela

    Ultra-high-energy-density (UHED) matter, characterized by energy densities > 1 x 10 8 J cm -3 and pressures greater than a gigabar, is encountered in the center of stars and in inertial confinement fusion capsules driven by the world’s largest lasers. Similar conditions can be obtained with compact, ultra-high contrast, femtosecond lasers focused to relativistic intensities onto targets composed of aligned nanowire arrays. Here we report the measurement of the key physical process in determining the energy density deposited in high aspect ratio nanowire array plasmas: the energy penetration. By monitoring the x-ray emission from buried Co tracer segments in Nimore » nanowire arrays irradiated at an intensity of 4 x 10 19 W cm -2, we demonstrate energy penetration depths of several μm, leading to UHED plasmas of that size. Relativistic 3D particle-in-cell-simulations, validated by these measurements, predict that irradiation of nanostructures at intensities of > 1 x 10 22 W cm -2 will lead to a virtually unexplored extreme UHED plasma regime characterized by energy densities in excess of 8 x 10 10 J cm -3, equivalent to a pressure of 0.35 Tbar.« less

  19. Energy penetration into arrays of aligned nanowires irradiated with relativistic intensities: Scaling to terabar pressures

    DOE PAGES

    Bargsten, Clayton; Hollinger, Reed; Capeluto, Maria Gabriela; ...

    2017-01-11

    Ultrahigh-energy density (UHED) matter, characterized by energy densities >1 × 10 8 J cm –3 and pressures greater than a gigabar, is encountered in the center of stars and inertial confinement fusion capsules driven by the world’s largest lasers. Similar conditions can be obtained with compact, ultrahigh contrast, femtosecond lasers focused to relativistic intensities onto targets composed of aligned nanowire arrays. We report the measurement of the key physical process in determining the energy density deposited in high-aspect-ratio nanowire array plasmas: the energy penetration. By monitoring the x-ray emission from buried Co tracer segments in Ni nanowire arrays irradiated atmore » an intensity of 4 × 10 19 W cm –2, we demonstrate energy penetration depths of several micrometers, leading to UHED plasmas of that size. As a result, relativistic three-dimensional particle-in-cell simulations, validated by these measurements, predict that irradiation of nanostructures at intensities of >1 × 10 22 W cm –2 will lead to a virtually unexplored extreme UHED plasma regime characterized by energy densities in excess of 8 × 10 10 J cm –3, equivalent to a pressure of 0.35 Tbar.« less

  20. Energy penetration into arrays of aligned nanowires irradiated with relativistic intensities: Scaling to terabar pressures.

    PubMed

    Bargsten, Clayton; Hollinger, Reed; Capeluto, Maria Gabriela; Kaymak, Vural; Pukhov, Alexander; Wang, Shoujun; Rockwood, Alex; Wang, Yong; Keiss, David; Tommasini, Riccardo; London, Richard; Park, Jaebum; Busquet, Michel; Klapisch, Marcel; Shlyaptsev, Vyacheslav N; Rocca, Jorge J

    2017-01-01

    Ultrahigh-energy density (UHED) matter, characterized by energy densities >1 × 10 8 J cm -3 and pressures greater than a gigabar, is encountered in the center of stars and inertial confinement fusion capsules driven by the world's largest lasers. Similar conditions can be obtained with compact, ultrahigh contrast, femtosecond lasers focused to relativistic intensities onto targets composed of aligned nanowire arrays. We report the measurement of the key physical process in determining the energy density deposited in high-aspect-ratio nanowire array plasmas: the energy penetration. By monitoring the x-ray emission from buried Co tracer segments in Ni nanowire arrays irradiated at an intensity of 4 × 10 19 W cm -2 , we demonstrate energy penetration depths of several micrometers, leading to UHED plasmas of that size. Relativistic three-dimensional particle-in-cell simulations, validated by these measurements, predict that irradiation of nanostructures at intensities of >1 × 10 22 W cm -2 will lead to a virtually unexplored extreme UHED plasma regime characterized by energy densities in excess of 8 × 10 10 J cm -3 , equivalent to a pressure of 0.35 Tbar.

  1. Energy penetration into arrays of aligned nanowires irradiated with relativistic intensities: Scaling to terabar pressures

    PubMed Central

    Bargsten, Clayton; Hollinger, Reed; Capeluto, Maria Gabriela; Kaymak, Vural; Pukhov, Alexander; Wang, Shoujun; Rockwood, Alex; Wang, Yong; Keiss, David; Tommasini, Riccardo; London, Richard; Park, Jaebum; Busquet, Michel; Klapisch, Marcel; Shlyaptsev, Vyacheslav N.; Rocca, Jorge J.

    2017-01-01

    Ultrahigh-energy density (UHED) matter, characterized by energy densities >1 × 108 J cm−3 and pressures greater than a gigabar, is encountered in the center of stars and inertial confinement fusion capsules driven by the world’s largest lasers. Similar conditions can be obtained with compact, ultrahigh contrast, femtosecond lasers focused to relativistic intensities onto targets composed of aligned nanowire arrays. We report the measurement of the key physical process in determining the energy density deposited in high-aspect-ratio nanowire array plasmas: the energy penetration. By monitoring the x-ray emission from buried Co tracer segments in Ni nanowire arrays irradiated at an intensity of 4 × 1019 W cm−2, we demonstrate energy penetration depths of several micrometers, leading to UHED plasmas of that size. Relativistic three-dimensional particle-in-cell simulations, validated by these measurements, predict that irradiation of nanostructures at intensities of >1 × 1022 W cm−2 will lead to a virtually unexplored extreme UHED plasma regime characterized by energy densities in excess of 8 × 1010 J cm−3, equivalent to a pressure of 0.35 Tbar. PMID:28097218

  2. Orthogonality of embedded wave functions for different states in frozen-density embedding theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zech, Alexander; Wesolowski, Tomasz A.; Aquilante, Francesco

    2015-10-28

    Other than lowest-energy stationary embedded wave functions obtained in Frozen-Density Embedding Theory (FDET) [T. A. Wesolowski, Phys. Rev. A 77, 012504 (2008)] can be associated with electronic excited states but they can be mutually non-orthogonal. Although this does not violate any physical principles — embedded wave functions are only auxiliary objects used to obtain stationary densities — working with orthogonal functions has many practical advantages. In the present work, we show numerically that excitation energies obtained using conventional FDET calculations (allowing for non-orthogonality) can be obtained using embedded wave functions which are strictly orthogonal. The used method preserves the mathematicalmore » structure of FDET and self-consistency between energy, embedded wave function, and the embedding potential (they are connected through the Euler-Lagrange equations). The orthogonality is built-in through the linearization in the embedded density of the relevant components of the total energy functional. Moreover, we show formally that the differences between the expectation values of the embedded Hamiltonian are equal to the excitation energies, which is the exact result within linearized FDET. Linearized FDET is shown to be a robust approximation for a large class of reference densities.« less

  3. Modeling the Plasmasphere

    NASA Technical Reports Server (NTRS)

    Gallagher, Dennis L

    1998-01-01

    The plasmasphere has often been considered one of the more boring regions in the magnetosphere. Its low energy plasma doesn't begin to compete against the free sources of energy available in the ring current, auroral zone, or plasma sheet. Its best known feature is its relatively highly density, archived as a result of prolonged accumulation of ionospheric outflow onto corotating flux tubes. On second look, however, the plasmasphere can be found to exhibit a remarkable influence on its more energetic cousins and display convection behavior indicative of physical processes acting throughout the magnetosphere for which we have no explanation. Plasmaspheric plasma densities and composition of heavy ions are particularly sensitive to heating by processes active in the ionosphere and all along field lines. Wave propagation and instabilities, collisional losses in the ring current, and heat transport from superthermal electrons are all equally sensitive to dense, heavy plasmaspheric densities and density gradients. It is in this context that we seek to characterize plasmaspheric populations using event based, empirical, and physical modeling methods. The modeling approaches, the challenges, and some of the results of these efforts will be presented.

  4. Impact of the Hall effect on high-energy-density plasma jets.

    PubMed

    Gourdain, P-A; Seyler, C E

    2013-01-04

    Using a 1-MA, 100 ns-rise-time pulsed power generator, radial foil configurations can produce strongly collimated plasma jets. The resulting jets have electron densities on the order of 10(20) cm(-3), temperatures above 50 eV and plasma velocities on the order of 100 km/s, giving Reynolds numbers of the order of 10(3), magnetic Reynolds and Péclet numbers on the order of 1. While Hall physics does not dominate jet dynamics due to the large particle density and flow inside, it strongly impacts flows in the jet periphery where plasma density is low. As a result, Hall physics affects indirectly the geometrical shape of the jet and its density profile. The comparison between experiments and numerical simulations demonstrates that the Hall term enhances the jet density when the plasma current flows away from the jet compared to the case where the plasma current flows towards it.

  5. Calf muscle density is independently associated with physical function in overweight and obese older adults.

    PubMed

    Scott, David; Shore-Lorenti, Catherine; McMillan, Lachlan B; Mesinovic, Jakub; Clark, Ross A; Hayes, Alan; Sanders, Kerrie M; Duque, Gustavo; Ebeling, Peter R

    2018-03-01

    To determine whether associations of calf muscle density with physical function are independent of other determinants of functional decline in overweight and obese older adults. This was a secondary analysis of a cross-sectional study of 85 community-dwelling overweight and obese adults (mean±SD age 62.8±7.9 years; BMI 32.3±6.1 kg/m2; 58% women). Peripheral quantitative computed tomography assessed mid-calf muscle density (66% tibial length) and dual-energy X-ray absorptiometry determined visceral fat area. Fasting glucose, Homeostatic Model Assessment of Insulin Resistance (HOMA-IR) and C-reactive protein (CRP) were analysed. Physical function assessments included hand grip and knee extension strength, balance path length (computerised posturography), stair climb test, Short Physical Performance Battery (SPPB) and self-reported falls efficacy (Modified Falls Efficacy Scale; M-FES). Visceral fat area, not muscle density, was independently associated with CRP and fasting glucose (B=0.025; 95% CI 0.009-0.042 and B=0.009; 0.001-0.017, respectively). Nevertheless, higher muscle density was independently associated with lower path length and stair climb time, and higher SPPB and M-FES scores (all P⟨0.05). Visceral fat area, fasting glucose and CRP did not mediate these associations. Higher calf muscle density predicts better physical function in overweight and obese older adults independent of insulin resistance, visceral adiposity or inflammation.

  6. REVIEWS OF TOPICAL PROBLEMS: Cosmic vacuum

    NASA Astrophysics Data System (ADS)

    Chernin, Artur D.

    2001-11-01

    Recent observational studies of distant supernovae have suggested the existence of cosmic vacuum whose energy density exceeds the total density of all the other energy components in the Universe. The vacuum produces the field of antigravity that causes the cosmological expansion to accelerate. It is this accelerated expansion that has been discovered in the observations. The discovery of cosmic vacuum radically changes our current understanding of the present state of the Universe. It also poses new challenges to both cosmology and fundamental physics. Why is the density of vacuum what it is? Why do the densities of the cosmic energy components differ in exact value but agree in order of magnitude? On the other hand, the discovery made at large cosmological distances of hundreds and thousands Mpc provides new insights into the dynamics of the nearby Universe, the motions of galaxies in the local volume of 10 - 20 Mpc where the cosmological expansion was originally discovered.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sahu, Sivabrata, E-mail: siva1987@iopb.res.in; Parashar, S. K. S., E-mail: sksparashar@yahoo.com; Rout, G. C., E-mail: gcr@iopb.res.in

    We address here a tight-binding theoretical model calculation for AA-stacked bi-layer graphene taking into account of a biased potential between two layers to study the density of states and the band dispersion within the total Brillouin zone. We have calculated the electronic Green’s function for electron operator corresponding to A and B sub lattices by Zubarev’s Green’s function technique from which the electronic density of states and the electron band energy dispersion are calculated. The numerically computed density of states and band energy dispersions are investigated by tuning the biased potential to exhibit the band gap by varying the differentmore » physical parameters.« less

  8. Physical mechanism of resistance switching in the co-doped RRAM

    NASA Astrophysics Data System (ADS)

    Yang, Jin; Dai, Yuehua; Lu, Shibin; Jiang, Xianwei; Wang, Feifei; Chen, Junning

    2017-01-01

    The physical mechanism of the resistance switching for RRAM with co-doped defects (Ag and oxygen vacancy) is studied based on the first principle calculations and the simulation tool VASP. The interaction energy, formation energy and density of states of Ag and oxygen vacancy defect (VO) are calculated. The calculated results reveal that the co-doped system is more stable than the system only doped either Ag or VO defect and the impurity energy levels in the band gap are contributed by Ag and VO defects. The obtained partial charge density confirmed further that the clusters are obvious in the direction of Ag to Hf ions, which means that it is Ag but VO plays a role of conductive paths. For the formation mechanism, the modified electron affinity and the partial charge density difference are calculated. The results show that the ability of electron donors of Ag is stronger than VO In conclusion, the conductivity of the physical mechanism of resistance switching in the co-doped system mainly depends on the doped Ag. Project supported by the National Natural Science Foundation of China (No. 61376106), the Research Foundation of Education Bureau of Anhui Province, China (Nos. KJ2015A276, KJ2016A574, KJ2014A208), and the Special Foundation for Young Scientists of Hefei Normal University (No. 2015rcjj02).

  9. Physical activity for prevention of osteoporosis in patients with severe haemophilia on long-term prophylaxis.

    PubMed

    Khawaji, M; Astermark, J; Akesson, K; Berntorp, E

    2010-05-01

    Physical activity has been considered as an important factor for bone density and as a factor facilitating prevention of osteoporosis. Bone density has been reported to be reduced in haemophilia. To examine the relation between different aspects of physical activity and bone mineral density (BMD) in patients with severe haemophilia on long-term prophylaxis. The study group consisted of 38 patients with severe haemophilia (mean age 30.5 years). All patients received long-term prophylaxis to prevent bleeding. The bone density (BMD g cm(-2)) of the total body, lumbar spine, total hip, femoral neck and trochanter was measured by dual energy X-ray absorptiometry. Physical activity was assessed using the self-report Modifiable Activity Questionnaire, an instrument which collects information about leisure and occupational activities for the prior 12 months. There was only significant correlation between duration and intensity of vigorous physical activity and bone density at lumber spine L1-L4; for duration (r = 0.429 and P = 0.020) and for intensity (r = 0.430 and P = 0.019); whereas no significant correlation between all aspects of physical activity and bone density at any other measured sites. With adequate long-term prophylaxis, adult patients with haemophilia are maintaining bone mass, whereas the level of physical activity in terms of intensity and duration play a minor role. These results may support the proposition that the responsiveness to mechanical strain is probably more important for bone mass development in children and during adolescence than in adults and underscores the importance of early onset prophylaxis.

  10. Effective scheme for partitioning covalent bonds in density-functional embedding theory: From molecules to extended covalent systems.

    PubMed

    Huang, Chen; Muñoz-García, Ana Belén; Pavone, Michele

    2016-12-28

    Density-functional embedding theory provides a general way to perform multi-physics quantum mechanics simulations of large-scale materials by dividing the total system's electron density into a cluster's density and its environment's density. It is then possible to compute the accurate local electronic structures and energetics of the embedded cluster with high-level methods, meanwhile retaining a low-level description of the environment. The prerequisite step in the density-functional embedding theory is the cluster definition. In covalent systems, cutting across the covalent bonds that connect the cluster and its environment leads to dangling bonds (unpaired electrons). These represent a major obstacle for the application of density-functional embedding theory to study extended covalent systems. In this work, we developed a simple scheme to define the cluster in covalent systems. Instead of cutting covalent bonds, we directly split the boundary atoms for maintaining the valency of the cluster. With this new covalent embedding scheme, we compute the dehydrogenation energies of several different molecules, as well as the binding energy of a cobalt atom on graphene. Well localized cluster densities are observed, which can facilitate the use of localized basis sets in high-level calculations. The results are found to converge faster with the embedding method than the other multi-physics approach ONIOM. This work paves the way to perform the density-functional embedding simulations of heterogeneous systems in which different types of chemical bonds are present.

  11. Relationships among diet, physical activity, and dual plane dual-energy X-ray absorptiometry bone outcomes in pre-pubertalgirls.

    PubMed

    Ren, Jie; Brann, Lynn S; Bruening, Kay S; Scerpella, Tamara A; Dowthwaite, Jodi N

    2017-12-01

    In pre-pubertal girls, nutrient intakes and non-aquatic organized activity were evaluated as factors in vertebral body bone mass, structure, and strength. Activity, vitamin B 12 , and dietary fiber predicted bone outcomes most consistently. Exercise and vitamin B 12 appear beneficial, whereas high fiber intake appears to be adverse for vertebral body development. Childhood development sets the baseline for adult fracture risk. Most studies evaluate development using postero-anterior (PA) dual-energy X-ray absorptiometry (DXA) areal bone mineral density, bone mineral content, and bone mineral apparent density. In a prior analysis, we demonstrated that PA DXA reflects posterior element properties, rather than vertebral body fracture sites, such that loading is associated with subtle differences in vertebral body geometry, not 3D density. The current analysis is restricted to pre-pubertal girls, for a focused exploration of key nutrient intakes and physical activity as factors in dual plane indices of vertebral body geometry, density, and strength. This cross-sectional analysis used paired PA and supine lateral (LAT) lumbar spine DXA scans to assess "3D" vertebral body bone mineral apparent density (PALATBMAD), "3D" index of structural strength in axial compression (PALATIBS), and fracture risk index (PALATFRI). Diet data were collected using the Youth/Adolescent Questionnaire (YAQ, 1995); organized physical activity was recorded via calendar-based form. Pearson correlations and backward stepwise multiple linear regression analyzed associations among key nutrients, physical activity, and bone outcomes. After accounting for activity and key covariates, fiber, unsupplemented vitamin B 12 , zinc, carbohydrate, vitamin C, unsupplemented magnesium, and unsupplemented calcium intake explained significant variance for one or more bone outcomes (p < 0.05). After adjustment for influential key nutrients and covariates, activity exposure was associated with postero-anterior (PA) areal bone mineral density, PA bone mineral content, PA width, lateral (LAT) BMC, "3D" bone cross-sectional area (coronal plane), "3D" PALATIBS, and PALATFRI benefits (p < 0.05). Physical activity, fiber intake, and unsupplemented B 12 intake appear to influence vertebral body bone mass, density, geometry, and strength in well-nourished pre-pubertal girls; high fiber intakes may adversely affect childhood vertebral body growth.

  12. Modeling Laser-Driven Laboratory Astrophysics Experiments Using the CRASH Code

    NASA Astrophysics Data System (ADS)

    Grosskopf, Michael; Keiter, P.; Kuranz, C. C.; Malamud, G.; Trantham, M.; Drake, R.

    2013-06-01

    Laser-driven, laboratory astrophysics experiments can provide important insight into the physical processes relevant to astrophysical systems. The radiation hydrodynamics code developed by the Center for Radiative Shock Hydrodynamics (CRASH) at the University of Michigan has been used to model experimental designs for high-energy-density laboratory astrophysics campaigns on OMEGA and other high-energy laser facilities. This code is an Eulerian, block-adaptive AMR hydrodynamics code with implicit multigroup radiation transport and electron heat conduction. The CRASH model has been used on many applications including: radiative shocks, Kelvin-Helmholtz and Rayleigh-Taylor experiments on the OMEGA laser; as well as laser-driven ablative plumes in experiments by the Astrophysical Collisionless Shocks Experiments with Lasers (ACSEL) collaboration. We report a series of results with the CRASH code in support of design work for upcoming high-energy-density physics experiments, as well as comparison between existing experimental data and simulation results. This work is funded by the Predictive Sciences Academic Alliances Program in NNSA-ASC via grant DEFC52- 08NA28616, by the NNSA-DS and SC-OFES Joint Program in High-Energy-Density Laboratory Plasmas, grant number DE-FG52-09NA29548, and by the National Laser User Facility Program, grant number DE-NA0000850.

  13. Ultra-bright γ-ray flashes and dense attosecond positron bunches from two counter-propagating laser pulses irradiating a micro-wire target.

    PubMed

    Li, Han-Zhen; Yu, Tong-Pu; Hu, Li-Xiang; Yin, Yan; Zou, De-Bin; Liu, Jian-Xun; Wang, Wei-Quan; Hu, Shun; Shao, Fu-Qiu

    2017-09-04

    We propose a novel scheme to generate ultra-bright ultra-short γ-ray flashes and high-energy-density attosecond positron bunches by using multi-dimensional particle-in-cell simulations with quantum electrodynamics effects incorporated. By irradiating a 10 PW laser pulse with an intensity of 10 23 W/cm 2 onto a micro-wire target, surface electrons are dragged-out of the micro-wire and are effectively accelerated to several GeV energies by the laser ponderomotive force, forming relativistic attosecond electron bunches. When these electrons interact with the probe pulse from the other side, ultra-short γ-ray flashes are emitted with an ultra-high peak brightness of 1.8 × 10 24 photons s -1 mm -2 mrad -2 per 0.1%BW at 24 MeV. These photons propagate with a low divergence and collide with the probe pulse, triggering the Breit-Wheeler process. Dense attosecond e - e + pair bunches are produced with the positron energy density as high as 10 17 J/m 3 and number of 10 9 . Such ultra-bright ultra-short γ-ray flashes and secondary positron beams may have potential applications in fundamental physics, high-energy-density physics, applied science and laboratory astrophysics.

  14. Cosmic distribution of highly ionized metals and their physical conditions in the EAGLE simulations

    NASA Astrophysics Data System (ADS)

    Rahmati, Alireza; Schaye, Joop; Crain, Robert A.; Oppenheimer, Benjamin D.; Schaller, Matthieu; Theuns, Tom

    2016-06-01

    We study the distribution and evolution of highly ionized intergalactic metals in the Evolution and Assembly of Galaxies and their Environment (EAGLE) cosmological, hydrodynamical simulations. EAGLE has been shown to reproduce a wide range of galaxy properties while its subgrid feedback was calibrated without considering gas properties. We compare the predictions for the column density distribution functions (CDDFs) and cosmic densities of Si IV, C IV, N V, O VI and Ne VIII absorbers with observations at redshift z = 0 to ˜6 and find reasonable agreement, although there are some differences. We show that the typical physical densities of the absorbing gas increase with column density and redshift, but decrease with the ionization energy of the absorbing ion. The typical metallicity increases with both column density and time. The fraction of collisionally ionized metal absorbers increases with time and ionization energy. While our results show little sensitivity to the presence or absence of AGN feedback, increasing/decreasing the efficiency of stellar feedback by a factor of 2 substantially decreases/increases the CDDFs and the cosmic densities of the metal ions. We show that the impact of the efficiency of stellar feedback on the CDDFs and cosmic densities is largely due to its effect on the metal production rate. However, the temperatures of the metal absorbers, particularly those of strong O VI, are directly sensitive to the strength of the feedback.

  15. Performance of bent-crystal x-ray microscopes for high energy density physics research

    DOE PAGES

    Schollmeier, Marius S.; Geissel, Matthias; Shores, Jonathon E.; ...

    2015-05-29

    We present calculations for the field of view (FOV), image fluence, image monochromaticity, spectral acceptance, and image aberrations for spherical crystal microscopes, which are used as self-emission imaging or backlighter systems at large-scale high energy density physics facilities. Our analytic results are benchmarked with ray-tracing calculations as well as with experimental measurements from the 6.151 keV backlighter system at Sandia National Laboratories. Furthermore, the analytic expressions can be used for x-ray source positions anywhere between the Rowland circle and object plane. We discovered that this enables quick optimization of the performance of proposed but untested, bent-crystal microscope systems to findmore » the best compromise between FOV, image fluence, and spatial resolution for a particular application.« less

  16. Material engineering to fabricate rare earth erbium thin films for exploring nuclear energy sources

    NASA Astrophysics Data System (ADS)

    Banerjee, A.; Abhilash, S. R.; Umapathy, G. R.; Kabiraj, D.; Ojha, S.; Mandal, S.

    2018-04-01

    High vacuum evaporation and cold-rolling techniques to fabricate thin films of the rare earth lanthanide-erbium have been discussed in this communication. Cold rolling has been used for the first time to successfully fabricate films of enriched and highly expensive erbium metal with areal density in the range of 0.5-1.0 mg/cm2. The fabricated films were used as target materials in an advanced nuclear physics experiment. The experiment was designed to investigate isomeric states in the heavy nuclei mass region for exploring physics related to nuclear energy sources. The films fabricated using different techniques varied in thickness as well as purity. Methods to fabricate films with thickness of the order of 0.9 mg/cm2 were different than those of 0.4 mg/cm2 areal density. All the thin films were characterized using multiple advanced techniques to accurately ascertain levels of contamination as well as to determine their exact surface density. Detailed fabrication methods as well as characterization techniques have been discussed.

  17. Activation energy and energy density: a bioenergetic framework for assessing soil organic matter stability

    NASA Astrophysics Data System (ADS)

    Williams, E. K.; Plante, A. F.

    2017-12-01

    The stability and cycling of natural organic matter depends on the input of energy needed to decompose it and the net energy gained from its decomposition. In soils, this relationship is complicated by microbial enzymatic activity which decreases the activation energies associated with soil organic matter (SOM) decomposition and by chemical and physical protection mechanisms which decreases the concentrations of the available organic matter substrate and also require additional energies to overcome for decomposition. In this study, we utilize differential scanning calorimetry and evolved CO2 gas analysis to characterize differences in the energetics (activation energy and energy density) in soils that have undergone degradation in natural (bare fallow), field (changes in land-use), chemical (acid hydrolysis), and laboratory (high temperature incubation) experimental conditions. We will present this data in a novel conceptual framework relating these energy dynamics to organic matter inputs, decomposition, and molecular complexity.

  18. Determination of bulk and interface density of states in metal oxide semiconductor thin-film transistors by using capacitance-voltage characteristics

    NASA Astrophysics Data System (ADS)

    Wei, Xixiong; Deng, Wanling; Fang, Jielin; Ma, Xiaoyu; Huang, Junkai

    2017-10-01

    A physical-based straightforward extraction technique for interface and bulk density of states in metal oxide semiconductor thin film transistors (TFTs) is proposed by using the capacitance-voltage (C-V) characteristics. The interface trap density distribution with energy has been extracted from the analysis of capacitance-voltage characteristics. Using the obtained interface state distribution, the bulk trap density has been determined. With this method, for the interface trap density, it is found that deep state density nearing the mid-gap is approximately constant and tail states density increases exponentially with energy; for the bulk trap density, it is a superposition of exponential deep states and exponential tail states. The validity of the extraction is verified by comparisons with the measured current-voltage (I-V) characteristics and the simulation results by the technology computer-aided design (TCAD) model. This extraction method uses non-numerical iteration which is simple, fast and accurate. Therefore, it is very useful for TFT device characterization.

  19. Cosmological constant problem and renormalized vacuum energy density in curved background

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kohri, Kazunori; Matsui, Hiroki, E-mail: kohri@post.kek.jp, E-mail: matshiro@post.kek.jp

    The current vacuum energy density observed as dark energy ρ{sub dark}≅ 2.5×10{sup −47} GeV{sup 4} is unacceptably small compared with any other scales. Therefore, we encounter serious fine-tuning problem and theoretical difficulty to derive the dark energy. However, the theoretically attractive scenario has been proposed and discussed in literature: in terms of the renormalization-group (RG) running of the cosmological constant, the vacuum energy density can be expressed as ρ{sub vacuum}≅ m {sup 2} H {sup 2} where m is the mass of the scalar field and rather dynamical in curved spacetime. However, there has been no rigorous proof to derivemore » this expression and there are some criticisms about the physical interpretation of the RG running cosmological constant. In the present paper, we revisit the RG running effects of the cosmological constant and investigate the renormalized vacuum energy density in curved spacetime. We demonstrate that the vacuum energy density described by ρ{sub vacuum}≅ m {sup 2} H {sup 2} appears as quantum effects of the curved background rather than the running effects of cosmological constant. Comparing to cosmological observational data, we obtain an upper bound on the mass of the scalar fields to be smaller than the Planck mass, m ∼< M {sub Pl}.« less

  20. Development of advanced polymer nanocomposite capacitors

    NASA Astrophysics Data System (ADS)

    Mendoza, Miguel

    The current development of modern electronics has driven the need for new series of energy storage devices with higher energy density and faster charge/discharge rate. Batteries and capacitors are two of the most widely used energy storage devices. Compared with batteries, capacitors have higher power density and significant higher charge/discharge rate. Therefore, high energy density capacitors play a significant role in modern electronic devices, power applications, space flight technologies, hybrid electric vehicles, portable defibrillators, and pulse power applications. Dielectric film capacitors represent an exceptional alternative for developing high energy density capacitors due to their high dielectric constants, outstanding breakdown voltages, and flexibility. The implementation of high aspect ratio dielectric inclusions such as nanowires into polymer capacitors could lead to further enhancement of its energy density. Therefore, this research effort is focused on the development of a new series of dielectric capacitors composed of nanowire reinforced polymer matrix composites. This concept of nanocomposite capacitors combines the extraordinary physical and chemical properties of the one-dimension (1D) nanoceramics and high dielectric strength of polymer matrices, leading to a capacitor with improved dielectric properties and energy density. Lead-free sodium niobate (NaNbO3) and lead-containing lead magnesium niobate-lead titanate (0.65PMN-0.35PT) nanowires were synthesized following hydrothermal and sol-gel approaches, respectively. The as-prepared nanowires were mixed with a polyvinylidene fluoride (PVDF) matrix using solution-casting method for nanocomposites fabrication. The dielectric constants and breakdown voltages of the NaNbO3/PVDF and 0.65PMN-0.35PT/PVDF nanocomposites were measured under different frequency ranges and temperatures in order to determine their maximum energy (J/cm3) and specific (J/g) densities. The electrical properties of the synthesized nanoceramics were compared with commercially available barium titanate (BaTiO3) and lead zirconate titanate Pb(ZrxTi1-x)O3 powders embedded into a PVDF matrix. The resulting dielectric film capacitors represent an excellent alternative energy storage device for future high energy density applications.

  1. Strongly-Perturbed Non-Equilibrium Gas Physics Model for the Paraxial Diode Transport Cell

    DTIC Science & Technology

    2003-06-01

    species and energy flow is critical to the plasma chemistry . The new model’s slight underestimate of the electron density may be a consequence of the...beam physics and plasma chemistry allows the modeling of intense charged-particle beam transport environments such as the paraxial diode gas cell

  2. Mild cognitive impairment is associated with poor physical function but not bone structure or density in late adulthood: findings from the Hertfordshire cohort study.

    PubMed

    Patel, A; Jameson, K A; Edwards, M H; Ward, K; Gale, C R; Cooper, C; Dennison, Elaine M

    2018-04-24

    This study investigated the association between mild cognitive impairment (MCI) and physical function and bone health in older adults. MCI was associated with poor physical performance but not bone mineral density or bone microarchitecture. Cross-sectional study to investigate the association between mild cognitive impairment (MCI) and physical performance, and bone health, in a community-dwelling cohort of older adults. Cognitive function of 222 men and 221 women (mean age 75.5 and 75.8 years in men and women, respectively) was assessed by the Strawbridge questionnaire and Mini Mental State Exam (MMSE). Participants underwent dual-energy X-ray absorptiometry (DXA), peripheral-quantitative computed tomography (pQCT) and high-resolution peripheral-quantitative computed tomography (HR-pQCT) scans to assess their bone density, strength and microarchitecture. Their physical function was assessed and a physical performance (PP) score was recorded. In the study, 11.8% of women and 8.1% of men were cognitively impaired on the MMSE (score < 24). On the Strawbridge questionnaire, 24% of women were deemed cognitively impaired compared to 22.3% of men. Cognitive impairment on the Strawbridge questionnaire was associated with poorer physical performance score in men but not in women in the unadjusted analysis. MMSE < 24 was strongly associated with the risk of low physical performance in men (OR 12.9, 95% CI 1.67, 99.8, p = 0.01). Higher MMSE score was associated with better physical performance in both sexes. Poorer cognitive function, whether assessed by the Strawbridge questionnaire, or by MMSE score, was not associated with bone density, shape or microarchitecture, in either sex. MCI in older adults was associated with poor physical performance, but not bone density, shape or microarchitecture.

  3. Probing nuclear symmetry energy at high densities using pion, kaon, eta and photon productions in heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Xiao, Zhi-Gang; Yong, Gao-Chan; Chen, Lie-Wen; Li, Bao-An; Zhang, Ming; Xiao, Guo-Qing; Xu, Nu

    2014-02-01

    The high-density behavior of nuclear symmetry energy is among the most uncertain properties of dense neutron-rich matter. Its accurate determination has significant ramifications in understanding not only the reaction dynamics of heavy-ion reactions, especially those induced by radioactive beams, but also many interesting phenomena in astrophysics, such as the explosion mechanism of supernova and the properties of neutron stars. The heavy-ion physics community has devoted much effort during the last few years to constrain the high-density symmetry using various probes. In particular, the / ratio has been most extensively studied both theoretically and experimentally. All models have consistently predicted qualitatively that the / ratio is a sensitive probe of the high-density symmetry energy especially with beam energies near the pion production threshold. However, the predicted values of the / ratio are still quite model dependent mostly because of the complexity of modeling pion production and reabsorption dynamics in heavy-ion collisions, leading to currently still controversial conclusions regarding the high-density behavior of nuclear symmetry energy from comparing various model calculations with available experimental data. As more / data become available and a deeper understanding about the pion dynamics in heavy-ion reactions is obtained, more penetrating probes, such as the K +/ K 0 ratio, meson and high-energy photons are also being investigated or planned at several facilities. Here, we review some of our recent contributions to the community effort of constraining the high-density behavior of nuclear symmetry energy in heavy-ion collisions. In addition, the status of some worldwide experiments for studying the high-density symmetry energy, including the HIRFL-CSR external target experiment (CEE) are briefly introduced.

  4. Effects of snack consumption for 8 weeks on energy intake and body weight.

    PubMed

    Viskaal-van Dongen, M; Kok, F J; de Graaf, C

    2010-02-01

    Consumption of snacks might contribute to the obesity epidemic. It is not clear how the moment of consumption and energy density of snacks can influence the compensatory response to consumption of snacks in the long term. To investigate the effects of snack consumption for 8 weeks on changes in body weight, emphasizing on moment of consumption and energy density. In total, 16 men and 66 women (mean age 21.9 years (s.d. 0.3 year), mean body mass index 20.7 kg m(-2) (s.d. 0.2 kg m(-2))) were randomly assigned to one of four parallel groups in a 2 x 2 design: snacks consumed with or between meals and snacks having a low (<4 kJ g(-1)) or high (>12 kJ g(-1)) energy density. For 8 weeks, subjects consumed mandatory snacks that provided 25% of energy requirements on each day. Body weight, body composition, physical activity level (PAL) and energy intake were measured in week 1 and week 8. There were no differences in changes in body weight between the four groups. Moment of consumption (P=0.7), energy density (P=0.8) and interaction (P=0.09) did not influence body weight. Similarly, there were no differences in changes in body composition, PAL and energy intake between the four groups. Body weight after 8 weeks of snack consumption was not affected by moment of consumption and energy density of snacks. This finding suggests that consuming snacks that are high or low in energy density does not necessarily contribute to weight gain. Healthy, nonobese young adults may be able to maintain a normal body weight through an accurate compensation for the consumption of snacks.

  5. Development of Fast and Reliable Free-Energy Density Functional Methods for Simulations of Dense Plasmas from Cold- to Hot-Temperature Regimes

    NASA Astrophysics Data System (ADS)

    Karasiev, V. V.

    2017-10-01

    Free-energy density functional theory (DFT) is one of the standard tools in high-energy-density physics used to determine the fundamental properties of dense plasmas, especially in cold and warm regimes when quantum effects are essential. DFT is usually implemented via the orbital-dependent Kohn-Sham (KS) procedure. There are two challenges of conventional implementation: (1) KS computational cost becomes prohibitively expensive at high temperatures; and (2) ground-state exchange-correlation (XC) functionals do not take into account the XC thermal effects. This talk will address both challenges and report details of the formal development of new generalized gradient approximation (GGA) XC free-energy functional which bridges low-temperature (ground state) and high-temperature (plasma) limits. Recent progress on development of functionals for orbital-free DFT as a way to address the second challenge will also be discussed. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  6. (?) The Air Force Geophysics Laboratory: Aeronomy, aerospace instrumentation, space physics, meteorology, terrestrial sciences and optical physics

    NASA Astrophysics Data System (ADS)

    McGinty, A. B.

    1982-04-01

    Contents: The Air Force Geophysics Laboratory; Aeronomy Division--Upper Atmosphere Composition, Middle Atmosphere Effects, Atmospheric UV Radiation, Satellite Accelerometer Density Measurement, Theoretical Density Studies, Chemical Transport Models, Turbulence and Forcing Functions, Atmospheric Ion Chemistry, Energy Budget Campaign, Kwajalein Reference Atmospheres, 1979, Satellite Studies of the Neutral Atmosphere, Satellite Studies of the Ionosphere, Aerospace Instrumentation Division--Sounding Rocket Program, Satellite Support, Rocket and Satellite Instrumentation; Space Physics Division--Solar Research, Solar Radio Research, Environmental Effects on Space Systems, Solar Proton Event Studies, Defense Meteorological Satellite Program, Ionospheric Effects Research, Spacecraft Charging Technology; Meteorology Division--Cloud Physics, Ground-Based Remote-Sensing Techniques, Mesoscale Observing and Forecasting, Design Climatology, Aircraft Icing Program, Atmospheric Dynamics; Terrestrial Sciences Division--Geodesy and Gravity, Geokinetics; Optical Physics Division--Atmospheric Transmission, Remote Sensing, INfrared Background; and Appendices.

  7. From Swords to Plowshares: The US/Russian Collaboration in High Energy Density Physics Using Pulsed Power

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Younger, S.M.; Fowler, C.M.; Lindemuth, I.

    1999-03-15

    Since 1992, the All-Russian Scientific Research Institute of Experimental Physics and the Los Alamos National Laboratory, the institutes that designed the first nuclear weapons of the Soviet Union and the US, respectively, have been working together in fundamental research related to pulsed power and high energy density science. This collaboration has enabled scientists formerly engaged in weapons activities to redirect their attention to peaceful pursuits of wide benefit to the technical community. More than thirty joint experiments have been performed at Sarov and Los Alamos in areas as diverse as solid state physics in high magnetic fields, fusion plasma formation,more » isentropic compression of noble gases, and explosively driven-high current generation technology. Expanding on the introductory comments of the conference plenary presentation, this paper traces the origins of this collaboration and briefly reviews the scientific accomplishments. Detailed reports of the scientific accomplishments can be found in other papers in these proceedings and in other publications.« less

  8. ICF quarterly report January - March 1997 volume 7, number 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murray, J

    The National Ignition Facility Project The mission of the National Ignition Facility (NIF) is to produce ignition and modest energy gain in inertial confinement fusion (ICF) targets. Achieving these goals will maintain U.S. world leadership in ICF and will directly benefit the U.S. Department of Energy (DOE) missions in national security, science and technology, energy resources, and industrial competitiveness. Development and operation of the NIF are consistent with DOE goals for environmental quality, openness to the community, and nuclear nonproliferation and arms control. Although the primary mission of inertial fusion is for defense applications, inertial fusion research will provide criticalmore » information for the development of inertial fusion energy. The NIF, under construction at Lawrence Livermore National Laboratory (LLNL), is a cornerstone of the DOE's science-based Stockpile Stewardship Program for addressing high-energy-density physics issues in the absence of nuclear weapons testing. In pursuit of this mission, the DOE's Defense Programs has developed a state-of-the-art capability with the NIF to investigate high-energy-density physics in the laboratory with a microfusion capability for defense and energy applications. As a Strategic System Acquisition, the NIF Project has a separate and disciplined reporting chain to DOE as shown below.« less

  9. Physical Theory of Voltage Fade in Lithium- and Manganese-Rich Transition Metal Oxides

    DOE PAGES

    Rinaldo, Steven G.; Gallagher, Kevin G.; Long, Brandon R.; ...

    2015-03-04

    Lithium- and manganese-rich (LMR) transition metal oxide cathodes are of interest for lithium-ion battery applications due to their increased energy density and decreased cost. However, the advantages in energy density and cost are offset, in part, due to the phenomena of voltage fade. Specifically, the voltage profiles (voltage as a function of capacity) of LMR cathodes transform from a high energy configuration to a lower energy configuration as they are repeatedly charged (Li removed) and discharged (Li inserted). Here, we propose a physical model of voltage fade that accounts for the emergence of a low voltage Li phase due tomore » the introduction of transition metal ion defects within a parent Li phase. The phenomenological model was re-cast in a general form and experimental LMR charge profiles were de-convoluted to extract the evolutionary behavior of various components of LMR capacitance profiles. Evolution of the voltage fade component was found to follow a universal growth curve with a maximal voltage fade capacity of ≈ 20% of the initial total capacity.« less

  10. Cosmic vacuum energy decay and creation of cosmic matter.

    PubMed

    Fahr, Hans-Jörg; Heyl, Michael

    2007-09-01

    In the more recent literature on cosmological evolutions of the universe, the cosmic vacuum energy has become a nonrenouncable ingredient. The cosmological constant Lambda, first invented by Einstein, but later also rejected by him, presently experiences an astonishing revival. Interestingly enough, it acts like a constant vacuum energy density would also do. Namely, it has an accelerating action on cosmic dynamics, without which, as it appears, presently obtained cosmological data cannot be conciliated with theory. As we are going to show in this review, however, the concept of a constant vacuum energy density is unsatisfactory for very basic reasons because it would claim for a physical reality that acts upon spacetime and matter dynamics without itself being acted upon by spacetime or matter.

  11. Symmetry Parameter Constraints from a Lower Bound on Neutron-matter Energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tews, Ingo; Lattimer, James M.; Ohnishi, Akira

    We propose the existence of a lower bound on the energy of pure neutron matter (PNM) on the basis of unitary-gas considerations. We discuss its justification from experimental studies of cold atoms as well as from theoretical studies of neutron matter. We demonstrate that this bound results in limits to the density-dependent symmetry energy, which is the difference between the energies of symmetric nuclear matter and PNM. In particular, this bound leads to a lower limit to the volume symmetry energy parameter S {sub 0}. In addition, for assumed values of S {sub 0} above this minimum, this bound impliesmore » both upper and lower limits to the symmetry energy slope parameter L , which describes the lowest-order density dependence of the symmetry energy. A lower bound on neutron-matter incompressibility is also obtained. These bounds are found to be consistent with both recent calculations of the energies of PNM and constraints from nuclear experiments. Our results are significant because several equations of state that are currently used in astrophysical simulations of supernovae and neutron star mergers, as well as in nuclear physics simulations of heavy-ion collisions, have symmetry energy parameters that violate these bounds. Furthermore, below the nuclear saturation density, the bound on neutron-matter energies leads to a lower limit to the density-dependent symmetry energy, which leads to upper limits to the nuclear surface symmetry parameter and the neutron-star crust–core boundary. We also obtain a lower limit to the neutron-skin thicknesses of neutron-rich nuclei. Above the nuclear saturation density, the bound on neutron-matter energies also leads to an upper limit to the symmetry energy, with implications for neutron-star cooling via the direct Urca process.« less

  12. Symmetry Parameter Constraints from a Lower Bound on Neutron-matter Energy

    NASA Astrophysics Data System (ADS)

    Tews, Ingo; Lattimer, James M.; Ohnishi, Akira; Kolomeitsev, Evgeni E.

    2017-10-01

    We propose the existence of a lower bound on the energy of pure neutron matter (PNM) on the basis of unitary-gas considerations. We discuss its justification from experimental studies of cold atoms as well as from theoretical studies of neutron matter. We demonstrate that this bound results in limits to the density-dependent symmetry energy, which is the difference between the energies of symmetric nuclear matter and PNM. In particular, this bound leads to a lower limit to the volume symmetry energy parameter S 0. In addition, for assumed values of S 0 above this minimum, this bound implies both upper and lower limits to the symmetry energy slope parameter L ,which describes the lowest-order density dependence of the symmetry energy. A lower bound on neutron-matter incompressibility is also obtained. These bounds are found to be consistent with both recent calculations of the energies of PNM and constraints from nuclear experiments. Our results are significant because several equations of state that are currently used in astrophysical simulations of supernovae and neutron star mergers, as well as in nuclear physics simulations of heavy-ion collisions, have symmetry energy parameters that violate these bounds. Furthermore, below the nuclear saturation density, the bound on neutron-matter energies leads to a lower limit to the density-dependent symmetry energy, which leads to upper limits to the nuclear surface symmetry parameter and the neutron-star crust-core boundary. We also obtain a lower limit to the neutron-skin thicknesses of neutron-rich nuclei. Above the nuclear saturation density, the bound on neutron-matter energies also leads to an upper limit to the symmetry energy, with implications for neutron-star cooling via the direct Urca process.

  13. Nonlocal heat transport and improved target design for x-ray heating studies at x-ray free electron lasers

    NASA Astrophysics Data System (ADS)

    Hoidn, Oliver; Seidler, Gerald T.

    2018-01-01

    The extremely high-power densities and short durations of single pulses of x-ray free electron lasers (XFELs) have opened new opportunities in atomic physics, where complex excitation-relaxation chains allow for high ionization states in atomic and molecular systems, and in dense plasma physics, where XFEL heating of solid-density targets can create unique dense states of matter having temperatures on the order of the Fermi energy. We focus here on the latter phenomena, with special emphasis on the problem of optimum target design to achieve high x-ray heating into the warm dense matter (WDM) state. We report fully three-dimensional simulations of the incident x-ray pulse and the resulting multielectron relaxation cascade to model the spatial energy density deposition in multicomponent targets, with particular focus on the effects of nonlocal heat transport due to the motion of high energy photoelectrons and Auger electrons. We find that nanoscale high-Z /low-Z multicomponent targets can give much improved energy density deposition in lower-Z materials, with enhancements reaching a factor of 100. This has three important benefits. First, it greatly enlarges the thermodynamic parameter space in XFEL x-ray heating studies of lower-Z materials. Second, it allows the use of higher probe photon energies, enabling higher-information content x-ray diffraction (XRD) measurements such as in two-color XFEL operations. Third, while this is merely one step toward optimization of x-ray heating target design, the demonstration of the importance of nonlocal heat transport establishes important common ground between XFEL-based x-ray heating studies and more traditional laser plasma methods.

  14. Implementation of a 3D halo neutral model in the TRANSP code and application to projected NSTX-U plasmas

    NASA Astrophysics Data System (ADS)

    Medley, S. S.; Liu, D.; Gorelenkova, M. V.; Heidbrink, W. W.; Stagner, L.

    2016-02-01

    A 3D halo neutral code developed at the Princeton Plasma Physics Laboratory and implemented for analysis using the TRANSP code is applied to projected National Spherical Torus eXperiment-Upgrade (NSTX-U plasmas). The legacy TRANSP code did not handle halo neutrals properly since they were distributed over the plasma volume rather than remaining in the vicinity of the neutral beam footprint as is actually the case. The 3D halo neutral code uses a ‘beam-in-a-box’ model that encompasses both injected beam neutrals and resulting halo neutrals. Upon deposition by charge exchange, a subset of the full, one-half and one-third beam energy components produce first generation halo neutrals that are tracked through successive generations until an ionization event occurs or the descendant halos exit the box. The 3D halo neutral model and neutral particle analyzer (NPA) simulator in the TRANSP code have been benchmarked with the Fast-Ion D-Alpha simulation (FIDAsim) code, which provides Monte Carlo simulations of beam neutral injection, attenuation, halo generation, halo spatial diffusion, and photoemission processes. When using the same atomic physics database, TRANSP and FIDAsim simulations achieve excellent agreement on the spatial profile and magnitude of beam and halo neutral densities and the NPA energy spectrum. The simulations show that the halo neutral density can be comparable to the beam neutral density. These halo neutrals can double the NPA flux, but they have minor effects on the NPA energy spectrum shape. The TRANSP and FIDAsim simulations also suggest that the magnitudes of beam and halo neutral densities are relatively sensitive to the choice of the atomic physics databases.

  15. Implementation of a 3D halo neutral model in the TRANSP code and application to projected NSTX-U plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Medley, S. S.; Liu, D.; Gorelenkova, M. V.

    2016-01-12

    A 3D halo neutral code developed at the Princeton Plasma Physics Laboratory and implemented for analysis using the TRANSP code is applied to projected National Spherical Torus eXperiment-Upgrade (NSTX-U plasmas). The legacy TRANSP code did not handle halo neutrals properly since they were distributed over the plasma volume rather than remaining in the vicinity of the neutral beam footprint as is actually the case. The 3D halo neutral code uses a 'beam-in-a-box' model that encompasses both injected beam neutrals and resulting halo neutrals. Upon deposition by charge exchange, a subset of the full, one-half and one-third beam energy components producemore » first generation halo neutrals that are tracked through successive generations until an ionization event occurs or the descendant halos exit the box. The 3D halo neutral model and neutral particle analyzer (NPA) simulator in the TRANSP code have been benchmarked with the Fast-Ion D-Alpha simulation (FIDAsim) code, which provides Monte Carlo simulations of beam neutral injection, attenuation, halo generation, halo spatial diffusion, and photoemission processes. When using the same atomic physics database, TRANSP and FIDAsim simulations achieve excellent agreement on the spatial profile and magnitude of beam and halo neutral densities and the NPA energy spectrum. The simulations show that the halo neutral density can be comparable to the beam neutral density. These halo neutrals can double the NPA flux, but they have minor effects on the NPA energy spectrum shape. The TRANSP and FIDAsim simulations also suggest that the magnitudes of beam and halo neutral densities are relatively sensitive to the choice of the atomic physics databases.« less

  16. Gravitational particle production in inflation. A fresh look

    NASA Astrophysics Data System (ADS)

    Yajnik, Urjit A.

    1990-01-01

    Gravitational production of energy density in the case of a minimally coupled scalar field is treated using quantum field theory in curved spacetime. We calculate 0> of the produced particles. The results for the massless case can be applied to gravitons, but an unphysically large contribution is found from wavelengths longer than the horizon size. Gravitons of wavelengths smaller that the horizon give rise to energy density ϱgrav~H4 (H being the Hubble constant during inflation). In the case of a light scalar of mass m≪H the long wavelengths contribute ϱm~H5/m, which too can become unphysically large for sufficiently small m. We also discuss how this energy density subsequently evolves. Address after August 1989: Physics Department, Indian Institute of Technology, Bombay 400 076, India.

  17. Genarris: Random generation of molecular crystal structures and fast screening with a Harris approximation

    NASA Astrophysics Data System (ADS)

    Li, Xiayue; Curtis, Farren S.; Rose, Timothy; Schober, Christoph; Vazquez-Mayagoitia, Alvaro; Reuter, Karsten; Oberhofer, Harald; Marom, Noa

    2018-06-01

    We present Genarris, a Python package that performs configuration space screening for molecular crystals of rigid molecules by random sampling with physical constraints. For fast energy evaluations, Genarris employs a Harris approximation, whereby the total density of a molecular crystal is constructed via superposition of single molecule densities. Dispersion-inclusive density functional theory is then used for the Harris density without performing a self-consistency cycle. Genarris uses machine learning for clustering, based on a relative coordinate descriptor developed specifically for molecular crystals, which is shown to be robust in identifying packing motif similarity. In addition to random structure generation, Genarris offers three workflows based on different sequences of successive clustering and selection steps: the "Rigorous" workflow is an exhaustive exploration of the potential energy landscape, the "Energy" workflow produces a set of low energy structures, and the "Diverse" workflow produces a maximally diverse set of structures. The latter is recommended for generating initial populations for genetic algorithms. Here, the implementation of Genarris is reported and its application is demonstrated for three test cases.

  18. A study of physical and optical absorption spectra of VO2+ ions in potassium and sodium oxide borate glasses

    NASA Astrophysics Data System (ADS)

    Srinivas, G.; Ramesh, B.; Kumar, J. Siva; Shareefuddin, Md.; Chary, M. N.; Sayanna, R.

    2016-05-01

    Spectroscopic and physical properties of V2O5 doped mixed alkali borate glasses are investigated. Borate glasses containing fixed concentrations of alkaline earth oxides (MgO and BaO) and alkali oxides (K2O and Na2O) were changes and are prepared by melt quenching technique. The values of ri, rp, Rm, αm molar volume and Λth increase and oxygen packing density, density and dopant ion concentration decrease with increasing of K2O content. As a result there shall be an increase in the disorder of the glass network. The optical band gap energies, Urbach energy, boron-boron separation,refractive index, dielectric constant, electronic polarizability and reflection loss values are varies nonlinearly with the K2O content which manifests the mixed alkali effect.

  19. Momentum transport and nonlocality in heat-flux-driven magnetic reconnection in high-energy-density plasmas.

    PubMed

    Liu, Chang; Fox, William; Bhattacharjee, Amitava; Thomas, Alexander G R; Joglekar, Archis S

    2017-10-01

    Recent theory has demonstrated a novel physics regime for magnetic reconnection in high-energy-density plasmas where the magnetic field is advected by heat flux via the Nernst effect. Here we elucidate the physics of the electron dissipation layer in this regime. Through fully kinetic simulation and a generalized Ohm's law derived from first principles, we show that momentum transport due to a nonlocal effect, the heat-flux-viscosity, provides the dissipation mechanism for magnetic reconnection. Scaling analysis, and simulations show that the reconnection process comprises a magnetic field compression stage and quasisteady reconnection stage, and the characteristic width of the current sheet in this regime is several electron mean-free paths. These results show the important interplay between nonlocal transport effects and generation of anisotropic components to the distribution function.

  20. Novel high-energy physics studies using intense lasers and plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leemans, Wim P.; Bulanov, Stepan; Esarey, Eric

    2015-06-29

    In the framework of the project “Novel high-energy physics studies using intense lasers and plasmas” we conducted the study of ion acceleration and “flying mirrors” with high intensity lasers in order to develop sources of ion beams and high frequency radiation for different applications. Since some schemes of laser ion acceleration are also considered a good source of “flying mirrors”, we proposed to investigate the mechanisms of “mirror” formation. As a result we were able to study the laser ion acceleration from thin foils and near critical density targets. We identified several fundamental factors limiting the acceleration in the RPAmore » regime and proposed the target design to compensate these limitations. In the case of near critical density targets, we developed a concept for the laser driven ion source for the hadron therapy. Also we studied the mechanism of “flying mirror” generation during the intense laser interaction with thin solid density targets. As for the laser-based positron creation and capture we initially proposed to study different regimes of positron beam generation and positron beam cooling. Since the for some of these schemes a good quality electron beam is required, we studied the generation of ultra-low emittance electron beams. In order to understand the fundamental physics of high energy electron beam interaction with high intensity laser pulses, which may affect the efficient generation of positron beams, we studied the radiation reaction effects.« less

  1. First-Principles Prediction of Densities of Amorphous Materials: The Case of Amorphous Silicon

    NASA Astrophysics Data System (ADS)

    Furukawa, Yoritaka; Matsushita, Yu-ichiro

    2018-02-01

    A novel approach to predict the atomic densities of amorphous materials is explored on the basis of Car-Parrinello molecular dynamics (CPMD) in density functional theory. Despite the determination of the atomic density of matter being crucial in understanding its physical properties, no first-principles method has ever been proposed for amorphous materials until now. We have extended the conventional method for crystalline materials in a natural manner and pointed out the importance of the canonical ensemble of the total energy in the determination of the atomic densities of amorphous materials. To take into account the canonical distribution of the total energy, we generate multiple amorphous structures with several different volumes by CPMD simulations and average the total energies at each volume. The density is then determined as the one that minimizes the averaged total energy. In this study, this approach is implemented for amorphous silicon (a-Si) to demonstrate its validity, and we have determined the density of a-Si to be 4.1% lower and its bulk modulus to be 28 GPa smaller than those of the crystal, which are in good agreement with experiments. We have also confirmed that generating samples through classical molecular dynamics simulations produces a comparable result. The findings suggest that the presented method is applicable to other amorphous systems, including those for which experimental knowledge is lacking.

  2. Local existence of solutions to the Euler-Poisson system, including densities without compact support

    NASA Astrophysics Data System (ADS)

    Brauer, Uwe; Karp, Lavi

    2018-01-01

    Local existence and well posedness for a class of solutions for the Euler Poisson system is shown. These solutions have a density ρ which either falls off at infinity or has compact support. The solutions have finite mass, finite energy functional and include the static spherical solutions for γ = 6/5. The result is achieved by using weighted Sobolev spaces of fractional order and a new non-linear estimate which allows to estimate the physical density by the regularised non-linear matter variable. Gamblin also has studied this setting but using very different functional spaces. However we believe that the functional setting we use is more appropriate to describe a physical isolated body and more suitable to study the Newtonian limit.

  3. Foam-lined hohlraums at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Thomas, Cliff

    2017-10-01

    Indirect drive inertial confinement fusion (ICF) is made difficult by hohlraum wall motion, laser backscatter, x-ray preheat, high-energy electrons, and specular reflection of the incident laser (i.e. glint). To mitigate, we line the hohlraum with a low-density metal foam, or tamper, whose properties can be readily engineered (opacity, density, laser absorption, ion-acoustic damping, etc.). We motivate the use of low-density foams for these purposes, discuss their development, and present initial findings. Importantly, we demonstrate that we can fabricate a 200-500 um thick liner at densities of 10-100 mg/cm3 that could extend the capabilities of existing physics platforms. The goal of this work is to increase energy coupled to the capsule, and maximize the yield available to science missions at the National Ignition Facility. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  4. Talbot-Lau x-ray interferometry for high energy density plasma diagnostic.

    PubMed

    Stutman, D; Finkenthal, M

    2011-11-01

    High resolution density diagnostics are difficult in high energy density laboratory plasmas (HEDLP) experiments due to the scarcity of probes that can penetrate above solid density plasmas. Hard x-rays are one possible probe for such dense plasmas. We study the possibility of applying an x-ray method recently developed for medical imaging, differential phase-contrast with Talbot-Lau interferometers, for the diagnostic of electron density and small-scale hydrodynamic instabilities in HEDLP experiments. The Talbot method uses micro-periodic gratings to measure the refraction and ultra-small angle scatter of x-rays through an object and is attractive for HEDLP diagnostic due to its capability to work with incoherent and polychromatic x-ray sources such as the laser driven backlighters used for HEDLP radiography. Our paper studies the potential of the Talbot method for HEDLP diagnostic, its adaptation to the HEDLP environment, and its extension of high x-ray energy using micro-periodic mirrors. The analysis is illustrated with experimental results obtained using a laboratory Talbot interferometer. © 2011 American Institute of Physics

  5. Cosmic Acceleration, Dark Energy, and Fundamental Physics

    NASA Astrophysics Data System (ADS)

    Turner, Michael S.; Huterer, Dragan

    2007-11-01

    A web of interlocking observations has established that the expansion of the Universe is speeding up and not slowing, revealing the presence of some form of repulsive gravity. Within the context of general relativity the cause of cosmic acceleration is a highly elastic ( p˜-ρ), very smooth form of energy called “dark energy” accounting for about 75% of the Universe. The “simplest” explanation for dark energy is the zero-point energy density associated with the quantum vacuum; however, all estimates for its value are many orders-of-magnitude too large. Other ideas for dark energy include a very light scalar field or a tangled network of topological defects. An alternate explanation invokes gravitational physics beyond general relativity. Observations and experiments underway and more precise cosmological measurements and laboratory experiments planned for the next decade will test whether or not dark energy is the quantum energy of the vacuum or something more exotic, and whether or not general relativity can self consistently explain cosmic acceleration. Dark energy is the most conspicuous example of physics beyond the standard model and perhaps the most profound mystery in all of science.

  6. Insights into neutrino decoupling gleaned from considerations of the role of electron mass

    NASA Astrophysics Data System (ADS)

    Grohs, E.; Fuller, George M.

    2017-10-01

    We present calculations showing how electron rest mass influences entropy flow, neutrino decoupling, and Big Bang Nucleosynthesis (BBN) in the early universe. To elucidate this physics and especially the sensitivity of BBN and related epochs to electron mass, we consider a parameter space of rest mass values larger and smaller than the accepted vacuum value. Electromagnetic equilibrium, coupled with the high entropy of the early universe, guarantees that significant numbers of electron-positron pairs are present, and dominate over the number of ionization electrons to temperatures much lower than the vacuum electron rest mass. Scattering between the electrons-positrons and the neutrinos largely controls the flow of entropy from the plasma into the neutrino seas. Moreover, the number density of electron-positron-pair targets can be exponentially sensitive to the effective in-medium electron mass. This entropy flow influences the phasing of scale factor and temperature, the charged current weak-interaction-determined neutron-to-proton ratio, and the spectral distortions in the relic neutrino energy spectra. Our calculations show the sensitivity of the physics of this epoch to three separate effects: finite electron mass, finite-temperature quantum electrodynamic (QED) effects on the plasma equation of state, and Boltzmann neutrino energy transport. The ratio of neutrino to plasma-component energy scales manifests in Cosmic Microwave Background (CMB) observables, namely the baryon density and the radiation energy density, along with the primordial helium and deuterium abundances. Our results demonstrate how the treatment of in-medium electron mass (i.e., QED effects) could translate into an important source of uncertainty in extracting neutrino and beyond-standard-model physics limits from future high-precision CMB data.

  7. Simulations of beam-matter interaction experiments at the CERN HiRadMat facility and prospects of high-energy-density physics research.

    PubMed

    Tahir, N A; Burkart, F; Shutov, A; Schmidt, R; Wollmann, D; Piriz, A R

    2014-12-01

    In a recent publication [Schmidt et al., Phys. Plasmas 21, 080701 (2014)], we reported results on beam-target interaction experiments that have been carried out at the CERN HiRadMat (High Radiation to Materials) facility using extended solid copper cylindrical targets that were irradiated with a 440-GeV proton beam delivered by the Super Proton Synchrotron (SPS). On the one hand, these experiments confirmed the existence of hydrodynamic tunneling of the protons that leads to substantial increase in the range of the protons and the corresponding hadron shower in the target, a phenomenon predicted by our previous theoretical investigations [Tahir et al., Phys. Rev. ST Accel. Beams 25, 051003 (2012)]. On the other hand, these experiments demonstrated that the beam heated part of the target is severely damaged and is converted into different phases of high energy density (HED) matter, as suggested by our previous theoretical studies [Tahir et al., Phys. Rev. E 79, 046410 (2009)]. The latter confirms that the HiRadMat facility can be used to study HED physics. In the present paper, we give details of the numerical simulations carried out to understand the experimental measurements. These include the evolution of the physical parameters, for example, density, temperature, pressure, and the internal energy in the target, during and after the irradiation. This information is important in order to determine the region of the HED phase diagram that can be accessed in such experiments. These simulations have been done using the energy deposition code fluka and a two-dimensional hydrodynamic code, big2, iteratively.

  8. Plasmon modes of bilayer molybdenum disulfide: a density functional study

    NASA Astrophysics Data System (ADS)

    Torbatian, Z.; Asgari, R.

    2017-11-01

    We explore the collective electronic excitations of bilayer molybdenum disulfide (MoS2) using density functional theory together with random phase approximation. The many-body dielectric function and electron energy-loss spectra are calculated using an ab initio based model involving material-realistic physical properties. The electron energy-loss function of the bilayer MoS2 system is found to be sensitive to either electron or hole doping and this is due to the fact that the Kohn-Sham band dispersions are not symmetric for energies above and below the zero Fermi level. Three plasmon modes are predicted, a damped high-energy mode, one optical mode (in-phase mode) for which the plasmon dispersion exhibits \\sqrt q in the long wavelength limit originating from low-energy electron scattering and finally a highly damped acoustic mode (out-of-phase mode).

  9. The dark side of cosmology: dark matter and dark energy.

    PubMed

    Spergel, David N

    2015-03-06

    A simple model with only six parameters (the age of the universe, the density of atoms, the density of matter, the amplitude of the initial fluctuations, the scale dependence of this amplitude, and the epoch of first star formation) fits all of our cosmological data . Although simple, this standard model is strange. The model implies that most of the matter in our Galaxy is in the form of "dark matter," a new type of particle not yet detected in the laboratory, and most of the energy in the universe is in the form of "dark energy," energy associated with empty space. Both dark matter and dark energy require extensions to our current understanding of particle physics or point toward a breakdown of general relativity on cosmological scales. Copyright © 2015, American Association for the Advancement of Science.

  10. n-dimensional isotropic Finch-Skea stars

    NASA Astrophysics Data System (ADS)

    Chilambwe, Brian; Hansraj, Sudan

    2015-02-01

    We study the impact of dimension on the physical properties of the Finch-Skea astrophysical model. It is shown that a positive definite, monotonically decreasing pressure and density are evident. A decrease in stellar radius emerges as the order of the dimension increases. This is accompanied by a corresponding increase in energy density. The model continues to display the necessary qualitative features inherent in the 4-dimensional Finch-Skea star and the conformity to the Walecka theory is preserved under dimensional increase. The causality condition is always satisfied for all dimensions considered resulting in the proposed models demonstrating a subluminal sound speed throughout the interior of the distribution. Moreover, the pressure and density decrease monotonically outwards from the centre and a pressure-free hypersurface exists demarcating the boundary of the perfect-fluid sphere. Since the study of the physical conditions is performed graphically, it is necessary to specify certain constants in the model. Reasonable values for such constants are arrived at on examining the behaviour of the model at the centre and demanding the satisfaction of all elementary conditions for physical plausibility. Finally two constants of integration are settled on matching of our solutions with the appropriate Schwarzschild-Tangherlini exterior metrics. Furthermore, the solution admits a barotropic equation of state despite the higher dimension. The compactification parameter as well as the density variation parameter are also computed. The models satisfy the weak, strong and dominant energy conditions in the interior of the stellar configuration.

  11. Effect of oxalic acid pretreatment of wood chips on manufacturing medium-density fiberboard

    Treesearch

    Xianjun Li; Zhiyong Cai; Eric Horn; Jerrold E. Winandy

    2011-01-01

    The main objective of this study was to evaluate the effect of oxalic acid (OA) wood chips pretreatment prior to refining, which is done to reduce energy used during the refining process. Selected mechanical and physical performances of medium-density fiberboard (MDF) – internal bonding (IB), modulus of elasticity (MOE), modulus of rupture (MOR), water absorption (WA)...

  12. Activated carbons derived from coconut shells as high energy density cathode material for Li-ion capacitors

    PubMed Central

    Jain, Akshay; Aravindan, Vanchiappan; Jayaraman, Sundaramurthy; Kumar, Palaniswamy Suresh; Balasubramanian, Rajasekhar; Ramakrishna, Seeram; Madhavi, Srinivasan; Srinivasan, M. P.

    2013-01-01

    In this manuscript, a dramatic increase in the energy density of ~ 69 Wh kg−1 and an extraordinary cycleability ~ 2000 cycles of the Li-ion hybrid electrochemical capacitors (Li-HEC) is achieved by employing tailored activated carbon (AC) of ~ 60% mesoporosity derived from coconut shells (CS). The AC is obtained by both physical and chemical hydrothermal carbonization activation process, and compared to the commercial AC powders (CAC) in terms of the supercapacitance performance in single electrode configuration vs. Li. The Li-HEC is fabricated with commercially available Li4Ti5O12 anode and the coconut shell derived AC as cathode in non-aqueous medium. The present research provides a new routine for the development of high energy density Li-HEC that employs a mesoporous carbonaceous electrode derived from bio-mass precursors. PMID:24141527

  13. Analysis of a piezoelectric bimorph plate with a central-attached mass as an energy harvester.

    PubMed

    Jiang, Shunong; Hu, Yuantai

    2007-07-01

    This article analyzes the performance of a piezoelectric energy harvester in the flexural mode for scavenging ambient vibration energy. The energy harvester consists of a piezoelectric bimorph plate with a central-attached mass. The linear piezoelectricity theory is applied to evaluate the performance dependence upon the physical and geometrical parameters of the model bimorph plate. The analytical solution for the flexural motion of the piezoelectric bimorph plate energy harvester shows that the output power density increases initially, reaches a maximum, then decreases monotonically with the increasing load impedance, which is normalized by a parameter that is a simple combination of the physical and geometrical parameters of the scavenging structure, the bimorph plate, and the frequency of the ambient vibration, underscoring the importance for the load circuit to have the impedance desirable by the scavenging structure. The numerical results illustrate the considerably enhanced performances by adjusting the physical and geometrical parameters of the scavenging structure.

  14. Linking the micro and macro: L-H transition dynamics and threshold physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malkov, M. A., E-mail: mmalkov@ucsd.edu; Diamond, P. H.; Miki, K.

    2015-03-15

    The links between the microscopic dynamics and macroscopic threshold physics of the L → H transition are elucidated. Emphasis is placed on understanding the physics of power threshold scalings, and especially on understanding the minimum in the power threshold as a function of density P{sub thr} (n). By extending a numerical 1D model to evolve both electron and ion temperatures, including collisional coupling, we find that the decrease in P{sub thr} (n) along the low-density branch is due to the combination of an increase in collisional electron-to-ion energy transfer and an increase in the heating fraction coupled to the ions.more » Both processes strengthen the edge diamagnetic electric field needed to lock in the mean electric field shear for the L→H transition. The increase in P{sub thr} (n) along the high-density branch is due to the increase with ion collisionality of damping of turbulence-driven shear flows. Turbulence driven shear flows are needed to trigger the transition by extracting energy from the turbulence. Thus, we identify the critical transition physics components of the separatrix ion heat flux and the zonal flow excitation. The model reveals a power threshold minimum in density scans as a crossover between the threshold decrease supported by an increase in heat fraction received by ions (directly or indirectly, from electrons) and a threshold increase, supported by the rise in shear flow damping. The electron/ion heating mix emerges as important to the transition, in that it, together with electron-ion coupling, regulates the edge diamagnetic electric field shear. The importance of possible collisionless electron-ion heat transfer processes is explained.« less

  15. FY14 LLNL OMEGA Experimental Programs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heeter, R. F.; Fournier, K. B.; Baker, K.

    In FY14, LLNL’s High-Energy-Density Physics (HED) and Indirect Drive Inertial Confinement Fusion (ICF-ID) programs conducted several campaigns on the OMEGA laser system and on the EP laser system, as well as campaigns that used the OMEGA and EP beams jointly. Overall these LLNL programs led 324 target shots in FY14, with 246 shots using just the OMEGA laser system, 62 shots using just the EP laser system, and 16 Joint shots using Omega and EP together. Approximately 31% of the total number of shots (62 OMEGA shots, 42 EP shots) shots supported the Indirect Drive Inertial Confinement Fusion Campaign (ICF-ID).more » The remaining 69% (200 OMEGA shots and 36 EP shots, including the 16 Joint shots) were dedicated to experiments for High- Energy-Density Physics (HED). Highlights of the various HED and ICF campaigns are summarized in the following reports.« less

  16. Momentum transport and nonlocality in heat-flux-driven magnetic reconnection in high-energy-density plasmas

    DOE PAGES

    Liu, Chang; Fox, William; Bhattacharjee, Amitava; ...

    2017-10-06

    Recent theory has demonstrated a novel physics regime for magnetic reconnection in high-energy-density plasmas where the magnetic field is advected by heat flux via the Nernst effect. In this paper, we elucidate the physics of the electron dissipation layer in this regime. Through fully kinetic simulation and a generalized Ohm's law derived from first principles, we show that momentum transport due to a nonlocal effect, the heat-flux-viscosity, provides the dissipation mechanism for magnetic reconnection. Scaling analysis, and simulations show that the reconnection process comprises a magnetic field compression stage and quasisteady reconnection stage, and the characteristic width of the currentmore » sheet in this regime is several electron mean-free paths. Finally, these results show the important interplay between nonlocal transport effects and generation of anisotropic components to the distribution function.« less

  17. FY15 LLNL OMEGA Experimental Programs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heeter, R. F.; Baker, K. L.; Barrios, M. A.

    In FY15, LLNL’s High-Energy-Density Physics (HED) and Indirect Drive Inertial Confinement Fusion (ICF-ID) programs conducted several campaigns on the OMEGA laser system and on the EP laser system, as well as campaigns that used the OMEGA and EP beams jointly. Overall these LLNL programs led 468 target shots in FY15, with 315 shots using just the OMEGA laser system, 145 shots using just the EP laser system, and 8 Joint shots using Omega and EP together. Approximately 25% of the total number of shots (56 OMEGA shots and 67 EP shots, including the 8 Joint shots) supported the Indirect Drivemore » Inertial Confinement Fusion Campaign (ICF-ID). The remaining 75% (267 OMEGA shots and 86 EP shots) were dedicated to experiments for High-Energy-Density Physics (HED). Highlights of the various HED and ICF campaigns are summarized in the following reports.« less

  18. Accurate Semilocal Density Functional for Condensed-Matter Physics and Quantum Chemistry.

    PubMed

    Tao, Jianmin; Mo, Yuxiang

    2016-08-12

    Most density functionals have been developed by imposing the known exact constraints on the exchange-correlation energy, or by a fit to a set of properties of selected systems, or by both. However, accurate modeling of the conventional exchange hole presents a great challenge, due to the delocalization of the hole. Making use of the property that the hole can be made localized under a general coordinate transformation, here we derive an exchange hole from the density matrix expansion, while the correlation part is obtained by imposing the low-density limit constraint. From the hole, a semilocal exchange-correlation functional is calculated. Our comprehensive test shows that this functional can achieve remarkable accuracy for diverse properties of molecules, solids, and solid surfaces, substantially improving upon the nonempirical functionals proposed in recent years. Accurate semilocal functionals based on their associated holes are physically appealing and practically useful for developing nonlocal functionals.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bezák, Viktor, E-mail: bezak@fmph.uniba.sk

    Quantum theory of the non-harmonic oscillator defined by the energy operator proposed by Yurke and Buks (2006) is presented. Although these authors considered a specific problem related to a model of transmission lines in a Kerr medium, our ambition is not to discuss the physical substantiation of their model. Instead, we consider the problem from an abstract, logically deductive, viewpoint. Using the Yurke–Buks energy operator, we focus attention on the imaginary-time propagator. We derive it as a functional of the Mehler kernel and, alternatively, as an exact series involving Hermite polynomials. For a statistical ensemble of identical oscillators defined bymore » the Yurke–Buks energy operator, we calculate the partition function, average energy, free energy and entropy. Using the diagonal element of the canonical density matrix of this ensemble in the coordinate representation, we define a probability density, which appears to be a deformed Gaussian distribution. A peculiarity of this probability density is that it may reveal, when plotted as a function of the position variable, a shape with two peaks located symmetrically with respect to the central point.« less

  20. Association of ACTN3 polymorphisms with BMD, and physical fitness of elderly women.

    PubMed

    Min, Seok-Ki; Lim, Seung-Taek; Kim, Chang-Sun

    2016-10-01

    [Purpose] Association of ACTN3 polymorphism with bone mineral density and the physical fitness of elderly women is still unclear. Therefore, this study investigated the association between ACTN3 genotype and bone mineral density, and the physical fitness of elderly women. [Subjects and Methods] Sixty-eight elderly women (67.38 ± 3.68 years) were recruited at a Seongbuk-Gu (Seoul, Korea) Medical Service Public Health Center. Measurements of physical fitness included muscle strength, muscle endurance, flexibility, agility, balance and VO 2 max. Bone mineral density (BMD), upper limb muscle mass, lower limb muscle mass, percent body fat and body fat mass for the entire body were measured by dual-energy X-ray absorptiometry and an analyzer. Genotyping for the ACTN3 R577X (rs1815739) polymorphism was performed using the TaqMan approach. [Results] ACTN3 gene distribution of subjects were in the Hardy-Weinberg equilibrium (p=0.694). The relative bone mineral density trunk, pelvis and spine differed significantly among the ACTN3 genotypes. There were no significant differences among bone mineral densities of the head, arms, legs, ribs and total, but the RR genotype tended to be higher than other genotypes. Physical fitness was not significantly different among the ACTN3 genotypes. [Conclusion] These results suggest that ACTN3 gene polymorphisms could be used as one of the genetic determinants of bone mass in elderly women, and in particular, they indicate that individuals with the RR genotype have higher BMD and bone mineral composition.

  1. Effects of ultrasound energy density on the non-thermal pasteurization of chocolate milk beverage.

    PubMed

    Monteiro, Sara H M C; Silva, Eric Keven; Alvarenga, Verônica O; Moraes, Jeremias; Freitas, Mônica Q; Silva, Márcia C; Raices, Renata S L; Sant'Ana, Anderson S; Meireles, M Angela A; Cruz, Adriano G

    2018-04-01

    This study presents the emerging high-intensity ultrasound (HIUS) processing as a non-thermal alternative to high-temperature short-time pasteurization (HTST). Chocolate milk beverage (CMB) was subjected to different ultrasound energy densities (0.3-3.0 kJ/cm 3 ), as compared to HTST pasteurization (72 °C/15 s) aimed to verify the effect of the HIUS processing on the microbiological and physicochemical characteristics of the beverage. The application of HIUS at an energy density of 3.0 kJ/cm 3 was able to reduce 3.56 ± 0.02 logarithmic cycles in the total aerobic counts. In addition, the ultrasound energy density affected the physical properties of the beverage as the size distribution of fat globule and rheological behavior, as well as the chemical properties such as antioxidant activity, ACE inhibitory activity, fatty acid profile, and volatile profile. In general, the different energetic densities used as a non-thermal method of pasteurization of CMB were more effective when compared to the conventional pasteurization by HTST, since they improved the microbiological and physicochemical quality, besides preserving the bioactive compounds and the nutritional quality of the product. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Influence of nutrition and lifestyle on bone mineral density in children from adoptive and biological families.

    PubMed

    Cvijetic, Selma; Baric, Irena Colic; Satalic, Zvonimir; Keser, Irena; Bobic, Jasminka

    2014-01-01

    The precise contributions of hereditary and environmental factors to bone density are not known. We compared lifestyle predictors of bone density among adopted and biological children. The study comprised 18 adopted children (mean [SD] age, 14.0 [4.1] years) with their non-biological parents and 17 children with their biological parents. Bone mineral density (BMD; g/cm(2)) was measured at the lumbar spine, total femur, and distal radius. Nutritional intake was assessed by food frequency questionnaire. Information on smoking and physical activity was obtained by questionnaire. Intakes of all nutrients, corrected for energy intake, and all lifestyle characteristics except sleep duration were similar in biological children and their parents. As compared with their parents, adopted children had significantly different energy, protein, and calcium intakes and physical activity levels. In a regression model, BMD z scores of adopted children and their parents were significantly inversely associated at the spine and total femur, whereas BMD z scores of biological children and their parents were significantly positively associated at all measurement sites. The greatest proportion of total variance in BMD was accounted for by calcium intake among adopted children and by parental BMD among biological children. For some lifestyle characteristics and nutrient intakes, the differences between parents and children were more obvious among adoptive families than among biological families. The most important lifestyle predictor of bone density was calcium intake.

  3. Additions and improvements to the high energy density physics capabilities in the FLASH code

    NASA Astrophysics Data System (ADS)

    Lamb, D. Q.; Flocke, N.; Graziani, C.; Tzeferacos, P.; Weide, K.

    2016-10-01

    FLASH is an open source, finite-volume Eulerian, spatially adaptive radiation magnetohydrodynamics code that has the capabilities to treat a broad range of physical processes. FLASH performs well on a wide range of computer architectures, and has a broad user base. Extensive high energy density physics (HEDP) capabilities have been added to FLASH to make it an open toolset for the academic HEDP community. We summarize these capabilities, emphasizing recent additions and improvements. In particular, we showcase the ability of FLASH to simulate the Faraday Rotation Measure produced by the presence of magnetic fields; and proton radiography, proton self-emission, and Thomson scattering diagnostics with and without the presence of magnetic fields. We also describe several collaborations with the academic HEDP community in which FLASH simulations were used to design and interpret HEDP experiments. This work was supported in part at the University of Chicago by the DOE NNSA ASC through the Argonne Institute for Computing in Science under field work proposal 57789; and the NSF under Grant PHY-0903997.

  4. Chemical Bonding and Thermodynamics in Superconductivity and Superfluidity

    NASA Astrophysics Data System (ADS)

    Love, Peter

    2012-05-01

    Superconductivity and superfluidity are physical states that occur in a variety of chemical and physical systems. These physical states share a common type of real, or virtual, chemical bonding. Each of the systems discussed herein contain at least one real, or effective, coordinate covalent bond. This is formed from an electron pair donor species and an electron pair acceptor species. When the electronegativity difference between the electron pair donor and acceptor species is sufficiently small, the resultant coordinate covalent bond density can be substantial. If delocalized, this bond density can result in a significant increase in the electron pair orbital volume relative to that of the parent species, and an increase in the valence shell orbital entropy. In terms of the normalized Gibbs-Helmholtz equation, this results in a concomitant decrease in free energy of the delocalized electronic system. A decrease in free energy to negative values can support a boson state, and superconductivity. A clear example of these principles is the occurrence of superconductivity in the ceramic material, MgB2. These generalizations apply to superconducting elements, high temperature superconductors, superconducting alloys, and equivalently to superfluid 4He.

  5. Proton and neutron density distributions at supranormal density in low- and medium-energy heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Stone, J. R.; Danielewicz, P.; Iwata, Y.

    2017-07-01

    Background: The distribution of protons and neutrons in the matter created in heavy-ion collisions is one of the main points of interest for the collision physics, especially at supranormal densities. These distributions are the basis for predictions of the density dependence of the symmetry energy and the density range that can be achieved in a given colliding system. We report results of the first systematic simulation of proton and neutron density distributions in central heavy-ion collisions within the beam energy range of Ebeam≤800 MeV /nucl . The symmetric 40Ca+40Ca , 48Ca+48Ca , 100Sn+100Sn , and 120Sn+120Sn and asymmetric 40Ca+48Ca and 100Sn+120Sn systems were chosen for the simulations. Purpose: We simulate development of proton and neutron densities and asymmetries as a function of initial state, beam energy, and system size in the selected collisions in order to guide further experiments pursuing the density dependence of the symmetry energy. Methods: The Boltzmann-Uhlenbeck-Uehling (pBUU) transport model with four empirical models for the density dependence of the symmetry energy was employed. Results of simulations using pure Vlasov dynamics were added for completeness. In addition, the time-dependent Hartree-Fock (TDHF) model, with the SV-bas Skyrme interaction, was used to model the heavy-ion collisions at Ebeam≤40 MeV /nucl . Maximum proton and neutron densities ρpmax and ρnmax, reached in the course of a collision, were determined from the time evolution of ρp and ρn. Results: The highest total densities predicted at Ebeam=800 MeV /nucl . were of the order of ˜2.5 ρ0 (ρ0=0.16 fm-3 ) for both Sn and Ca systems. They were found to be only weakly dependent on the initial conditions, beam energy, system size, and a model of the symmetry energy. The proton-neutron asymmetry δ =(ρnmax-ρpmax) /(ρnmax+ρpmax) at maximum density does depend, though, on these parameters. The highest value of δ found in all systems and at all investigated beam energies was ˜0.17 . Conclusions: We find that the initial state, beam energy, system size, and a symmetry energy model affect very little the maximum proton and neutron densities, but have a subtle impact on the proton-neutron asymmetry. Most importantly, the variations in the proton-neutron asymmetry at maximum densities are related at most at 50% level to the details in the symmetry energy at supranormal density. The reminder is due to the details in the symmetry energy at subnormal densities and proton and neutron distributions in the initial state. This result brings to the forefront the need for a proper initialization of the nuclei in the simulation, but also brings up the question of microscopy, such as shell effects, that affect initial proton and neutron densities, but cannot be consistently incorporated into semiclassical transport models.

  6. Electron correlation in the interacting quantum atoms partition via coupled-cluster lagrangian densities.

    PubMed

    Holguín-Gallego, Fernando José; Chávez-Calvillo, Rodrigo; García-Revilla, Marco; Francisco, Evelio; Pendás, Ángel Martín; Rocha-Rinza, Tomás

    2016-07-15

    The electronic energy partition established by the Interacting Quantum Atoms (IQA) approach is an important method of wavefunction analyses which has yielded valuable insights about different phenomena in physical chemistry. Most of the IQA applications have relied upon approximations, which do not include either dynamical correlation (DC) such as Hartree-Fock (HF) or external DC like CASSCF theory. Recently, DC was included in the IQA method by means of HF/Coupled-Cluster (CC) transition densities (Chávez-Calvillo et al., Comput. Theory Chem. 2015, 1053, 90). Despite the potential utility of this approach, it has a few drawbacks, for example, it is not consistent with the calculation of CC properties different from the total electronic energy. To improve this situation, we have implemented the IQA energy partition based on CC Lagrangian one- and two-electron orbital density matrices. The development presented in this article is tested and illustrated with the H2 , LiH, H2 O, H2 S, N2 , and CO molecules for which the IQA results obtained under the consideration of (i) the CC Lagrangian, (ii) HF/CC transition densities, and (iii) HF are critically analyzed and compared. Additionally, the effect of the DC in the different components of the electronic energy in the formation of the T-shaped (H2 )2 van der Waals cluster and the bimolecular nucleophilic substitution between F(-) and CH3 F is examined. We anticipate that the approach put forward in this article will provide new understandings on subjects in physical chemistry wherein DC plays a crucial role like molecular interactions along with chemical bonding and reactivity. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  7. The National Ignition Facility Status and Plans for Laser Fusion and High Energy Density Experimental Studies

    NASA Astrophysics Data System (ADS)

    Wuest, Craig R.

    2001-03-01

    The National Ignition Facility (NIF) currently under construction at the University of California Lawrence Livermore National Laboratory is 192-beam, 1.8 Megajoule, 500 Terawatt, 351 nm laser for inertial confinement fusion and high energy density experimental studies. NIF is being built by the Department of Energy and the National Nuclear Security Agency to provide an experimental test bed for the US Stockpile Stewardship Program to ensure the country’s nuclear deterrent without underground nuclear testing. The experimental program for NIF will encompass a wide range of physical phenomena from fusion energy production to materials science. Of the roughly 700 shots available per year, about 10% of the shots will be dedicated to basic science research. Additionally, most of the shots on NIF will be conducted in unclassified configurations that will allow participation from the greater scientific community in planned applied physics experiments. This presentation will provide a look at the status of the construction project as well as a description of the scientific uses of NIF. NIF is currently scheduled to provide first light in 2004 and will be completed in 2008. This work was performed under the auspices of the U.S. Department of Energy by University of California Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.

  8. An investigation of student understanding of classical ideas related to quantum mechanics: Potential energy diagrams and spatial probability density

    NASA Astrophysics Data System (ADS)

    Stephanik, Brian Michael

    This dissertation describes the results of two related investigations into introductory student understanding of ideas from classical physics that are key elements of quantum mechanics. One investigation probes the extent to which students are able to interpret and apply potential energy diagrams (i.e., graphs of potential energy versus position). The other probes the extent to which students are able to reason classically about probability and spatial probability density. The results of these investigations revealed significant conceptual and reasoning difficulties that students encounter with these topics. The findings guided the design of instructional materials to address the major problems. Results from post-instructional assessments are presented that illustrate the impact of the curricula on student learning.

  9. A conformally flat realistic anisotropic model for a compact star

    NASA Astrophysics Data System (ADS)

    Ivanov, B. V.

    2018-04-01

    A physically realistic stellar model with a simple expression for the energy density and conformally flat interior is found. The relations between the different conditions are used without graphic proofs. It may represent a real pulsar.

  10. Objectively measured physical activity and bone strength in 9-year-old boys and girls.

    PubMed

    Sardinha, Luís B; Baptista, Fátima; Ekelund, Ulf

    2008-09-01

    The purpose of this work was to analyze the relationship between intensity and duration of physical activity and composite indices of femoral neck strength and bone-mineral content of the femoral neck, lumbar spine, and total body. Physical activity was assessed by accelerometry in 143 girls and 150 boys (mean age: 9.7 years). Measurement of bone-mineral content, femoral neck bone-mineral density, femoral neck width, hip axis length, and total body fat-free mass was performed with dual-energy radiograph absorptiometry. Compressive [(bone-mineral density x femoral neck width/weight)] and bending strength [(bone-mineral density x femoral neck width(2))/(hip axis length x weight)] express the forces that the femoral neck has to withstand in weight bearing, whereas impact strength [(bone-mineral density x femoral neck width x hip axis length)/(height x weight)] expresses the energy that the femoral neck has to absorb in an impact from standing height. Analysis of covariance (fat-free mass and age adjusted) showed differences between boys and girls of approximately 9% for compressive, 10% for bending, and 9% for impact strength. Stepwise regression analysis using time spent at sedentary, light, moderate, and vigorous physical activity as predictors revealed that vigorous physical activity explained 5% to 9% of femoral neck strength variable variance in both genders, except for bending strength in boys, and approximately 1% to 3% of total body and femoral neck bone-mineral content variance. Vigorous physical activity was then used to categorize boys and girls into quartiles. Pairwise comparison indicated that boys in the third and fourth quartiles (accumulation of >26 minutes/day) demonstrated higher compressive (11%-12%), bending (10%), and impact (14%) strength than boys in the first quartile. In girls, comparison revealed a difference between the fourth (accumulation of >25 minutes/day) and first quartiles for bending strength (11%). We did not observe any relationship between physical activity and lumbar spine strength. Femoral neck strength is higher in boys than girls. Vigorous intensity emerged as the main physical activity predictor of femoral neck strength but did not explain gender differences. Daily vigorous physical activity for at least approximately 25 minutes seems to improve femoral neck bone health in children.

  11. Resolving Rapid Variation in Energy for Particle Transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haut, Terry Scot; Ahrens, Cory Douglas; Jonko, Alexandra

    2016-08-23

    Resolving the rapid variation in energy in neutron and thermal radiation transport is needed for the predictive simulation capability in high-energy density physics applications. Energy variation is difficult to resolve due to rapid variations in cross sections and opacities caused by quantized energy levels in the nuclei and electron clouds. In recent work, we have developed a new technique to simultaneously capture slow and rapid variations in the opacities and the solution using homogenization theory, which is similar to multiband (MB) and to the finite-element with discontiguous support (FEDS) method, but does not require closure information. We demonstrated the accuracymore » and efficiency of the method for a variety of problems. We are researching how to extend the method to problems with multiple materials and the same material but with different temperatures and densities. In this highlight, we briefly describe homogenization theory and some results.« less

  12. From Lawson to Burning Plasmas: a Multi-Fluid Approach

    NASA Astrophysics Data System (ADS)

    Guazzotto, Luca; Betti, Riccardo

    2017-10-01

    The Lawson criterion, easily compared to experimental parameters, gives the value for the triple product of plasma density, temperature and energy confinement time needed for the plasma to ignite. Lawson's inaccurate assumptions of 0D geometry and single-fluid plasma model were improved in recent work, where 1D geometry and multi-fluid (ions, electrons and alphas) physics were included in the model, accounting for physical equilibration times and different energy confinement times between species. A much more meaningful analysis than Lawson's for current and future experiment would be expressed in terms of burning plasma state (Q=5, where Q is the ratio between fusion power and heating power). Minimum parameters for reaching Q=5 are calculated based on experimental profiles for density and temperatures and can immediately be compared with experimental performance by defining a no-alpha pressure. This is done in terms of the pressure that the plasma needs to reach for breakeven once the alpha heating has been subtracted from the energy balance. These calculations can be applied to current experiments and future burning-plasma devices. DE-FG02-93ER54215.

  13. Momentum transport and non-local transport in heat-flux-driven magnetic reconnection in HEDP

    NASA Astrophysics Data System (ADS)

    Liu, Chang; Fox, Will; Bhattacharjee, Amitava

    2016-10-01

    Strong magnetic fields are readily generated in high-energy-density plasmas and can affect the heat confinement properties of the plasma. Magnetic reconnection can in turn be important as an inverse process, which destroys or reconfigures the magnetic field. Recent theory has demonstrated a novel physics regime for reconnection in high-energy-density plasmas where the magnetic field is advected into the reconnection layer by plasma heat flux via the Nernst effect. In this work we elucidate the physics of the electron dissipation layer in this heat-flux-driven regime. Through fully kinetic simulation and a new generalized Ohm's law, we show that momentum transport due to the heat-flux-viscosity effect provides the dissipation mechanism to allow magnetic field line reconnection. Scaling analysis and simulations show that the characteristic width of the current sheet in this regime is several electron mean-free-paths. These results additionally show a coupling between non-local transport and momentum transport, which in turn affects the dynamics of the magnetic field. This work was supported by the U.S. Department of Energy under Contract No. DE-SC0008655.

  14. A unified physical model of Seebeck coefficient in amorphous oxide semiconductor thin-film transistors

    NASA Astrophysics Data System (ADS)

    Lu, Nianduan; Li, Ling; Sun, Pengxiao; Banerjee, Writam; Liu, Ming

    2014-09-01

    A unified physical model for Seebeck coefficient was presented based on the multiple-trapping and release theory for amorphous oxide semiconductor thin-film transistors. According to the proposed model, the Seebeck coefficient is attributed to the Fermi-Dirac statistics combined with the energy dependent trap density of states and the gate-voltage dependence of the quasi-Fermi level. The simulation results show that the gate voltage, energy disorder, and temperature dependent Seebeck coefficient can be well described. The calculation also shows a good agreement with the experimental data in amorphous In-Ga-Zn-O thin-film transistor.

  15. The Equation of State and Optical Conductivity of Warm Dense He and H2

    NASA Astrophysics Data System (ADS)

    Brygoo, Stephanie; Eggert, Jon H.; Loubeyre, Paul; McWilliams, Ryan S.; Hicks, Damien G.; Celliers, Peter M.; Boehly, Tom R.; Jeanloz, Raymond; Collins, Gilbert W.

    2007-06-01

    The determination of the equations of state of helium and hydrogen at very high density is an important problem at the frontier between condensed matter physics and plasma physics with important implications for planetary physics. Due to the limitations of the conventional techniques for reaching extreme densities(static or single shock compression), there are almost no data for the deep interior states of Jupiter. We present here shock compression measurements of helium and hydrogen, precompressed in diamond anvil cells up to 3ρliquid. We report the shock pressure, density and reflectivity up to 2 Mbar for helium and up to 1 Mbar for hydrogen. The data are compared to equations of state models used for astrophysical applications and to recent first principles calculations. This work was performed under the auspices of the U.S. Department of Energy (DOE) by the University of California, Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48.

  16. Triple modifier effect on physical, optical and structural properties of boro tellurite zinc lithium glasses

    NASA Astrophysics Data System (ADS)

    Naresh, P.; Srinivasu, D.; Narsimlu, N.; Ch. Srinivas, Kavitha, B.; Deshpandhe, Uday; Kumar, K. Siva

    2018-05-01

    To investigate physical, optical and structural properties of glass samples of the Quaternary system (60-x)B2O3-xTeO2-10ZnO-30Li2O with x=0,5,10,15, and 20 mol% were prepared by conventional melt quenching technique. XRD confirmed the amorphous nature of all samples. Physical parameters like density, molar volume, Oxygen packing density and etc. calculated. Density of glass samples increased with the increase of TeO2 concentration due to the replacement of lighter B2O3 with heavier TeO2. Optical properties has studied with the help of UV-Visible spectra. Cut off wavelength is increases whereas Eopt and Urbache energies is decreased except intermediate mole fraction of TeO2 at which the triple modifier effect can be observed. Fourier Transform Infrared spectroscopy reveals that the network consists of TeO3 and TeO6 structural units along with BO3 and BO4 units.

  17. Holographic reconstruction of scalar fields in extended Kaluza-Klein cosmology

    NASA Astrophysics Data System (ADS)

    Korunur, Murat

    2018-01-01

    In recent years, many studies have been conducted to reconstruct the physical properties of scalar fields by establishing a connection between some energy densities and a scalar field of dark energies. In this paper, using the extended five-dimensional (5D) Kaluza-Klein model, we establish a correspondence among modified holographic dark energy and the tachyon, K-essence and dilaton scalar-field models. We also graphically illustrate the evolution of the equation-of-state parameter versus time.

  18. Reciprocity in directed networks

    NASA Astrophysics Data System (ADS)

    Yin, Mei; Zhu, Lingjiong

    2016-04-01

    Reciprocity is an important characteristic of directed networks and has been widely used in the modeling of World Wide Web, email, social, and other complex networks. In this paper, we take a statistical physics point of view and study the limiting entropy and free energy densities from the microcanonical ensemble, the canonical ensemble, and the grand canonical ensemble whose sufficient statistics are given by edge and reciprocal densities. The sparse case is also studied for the grand canonical ensemble. Extensions to more general reciprocal models including reciprocal triangle and star densities will likewise be discussed.

  19. Connection formulas for thermal density functional theory

    DOE PAGES

    Pribram-Jones, A.; Burke, K.

    2016-05-23

    We show that the adiabatic connection formula of ground-state density functional theory relates the correlation energy to a coupling-constant integral over a purely potential contribution, and is widely used to understand and improve approximations. The corresponding formula for thermal density functional theory is cast as an integral over temperatures instead, ranging upward from the system's physical temperature. We also show how to relate different correlation components to each other, either in terms of temperature or coupling-constant integrations. Lastly, we illustrate our results on the uniform electron gas.

  20. Analysis of Electronic Densities and Integrated Doses in Multiform Glioblastomas Stereotactic Radiotherapy

    NASA Astrophysics Data System (ADS)

    Barón-Aznar, C.; Moreno-Jiménez, S.; Celis, M. A.; Lárraga-Gutiérrez, J. M.; Ballesteros-Zebadúa, P.

    2008-08-01

    Integrated dose is the total energy delivered in a radiotherapy target. This physical parameter could be a predictor for complications such as brain edema and radionecrosis after stereotactic radiotherapy treatments for brain tumors. Integrated Dose depends on the tissue density and volume. Using CT patients images from the National Institute of Neurology and Neurosurgery and BrainScansoftware, this work presents the mean density of 21 multiform glioblastomas, comparative results for normal tissue and estimated integrated dose for each case. The relationship between integrated dose and the probability of complications is discussed.

  1. Recent developments in LIBXC - A comprehensive library of functionals for density functional theory

    NASA Astrophysics Data System (ADS)

    Lehtola, Susi; Steigemann, Conrad; Oliveira, Micael J. T.; Marques, Miguel A. L.

    2018-01-01

    LIBXC is a library of exchange-correlation functionals for density-functional theory. We are concerned with semi-local functionals (or the semi-local part of hybrid functionals), namely local-density approximations, generalized-gradient approximations, and meta-generalized-gradient approximations. Currently we include around 400 functionals for the exchange, correlation, and the kinetic energy, spanning more than 50 years of research. Moreover, LIBXC is by now used by more than 20 codes, not only from the atomic, molecular, and solid-state physics, but also from the quantum chemistry communities.

  2. An explosion model for the formation of the radio halo of NGC 891

    NASA Astrophysics Data System (ADS)

    You, Jun-han; Allen, R. J.; Hu, Fu-xing

    1987-06-01

    The explosion model for the formation of the radio halo of NGC 891 proposed here are mainly based on two physical assumptions: a) the relativistic electrons belong to two families, a halo family and a disk family: the disk family originating in supernova events throughout the disk and the halo family, in a violent explosion of the galactic nucleus in the distant past. b) Energy equipartition, that is, the magnetic energy density be proportional to the number density of stars. On these two assumptions, the main observed features of the radio halo of NGC 891 can be satisfactorily explained.

  3. An explosion model for the formation of the radio halo of NGC 891

    NASA Astrophysics Data System (ADS)

    You, Jun-Han; Allen, R. J.; Hu, Fu-Xing

    1986-06-01

    The explosion model for the formation of the radio halo of NGC 891 proposed here is mainly based on two physical assumptions: (1) the relativistic electrons belong to two families, a halo family and a disk family, the disk family originating in supernova events throughout the disk, and the halo family in a violent explosion of the galactic nucleus in the distant past; and (2) energy equipartition, where the magnetic energy density is proportional to the number density of stars. On these two assumptions, the main observed features of the radio halo of NGC 891 can be satisfactorily explained.

  4. The first principles study of elastic and thermodynamic properties of ZnSe

    NASA Astrophysics Data System (ADS)

    Khatta, Swati; Kaur, Veerpal; Tripathi, S. K.; Prakash, Satya

    2018-05-01

    The elastic and thermodynamic properties of ZnSe are investigated using thermo_pw package implemented in Quantum espresso code within the framework of density functional theory. The pseudopotential method within the local density approximation is used for the exchange-correlation potential. The physical parameters of ZnSe bulk modulus and shear modulus, anisotropy factor, Young's modulus, Poisson's ratio, Pugh's ratio and Frantsevich's ratio are calculated. The sound velocity and Debye temperature are obtained from elastic constant calculations. The Helmholtz free energy and internal energy of ZnSe are also calculated. The results are compared with available theoretical calculations and experimental data.

  5. Development and Application of Low Energy X-Ray and Electron Physics.

    DTIC Science & Technology

    1981-01-01

    measured and theoretical photoionization cross section data (including those measured in this laboratory). In 1975, a detailed set of tables of these...available reported (to 1980) experimental and theoretical photoionization cross section data have been compiled and reviewed particularly for the low energy...orbital dimensions, the current theoretical partial photoionization cross section calculations have been applied to yield oscillator densities which permit

  6. Deficits in distal radius bone strength, density and microstructure are associated with forearm fractures in girls: an HR-pQCTstudy

    PubMed Central

    Määttä, M.; Macdonald, H. M.; Mulpuri, K.

    2016-01-01

    Summary Forearm fractures are common during growth. We studied bone strength in youth with a recent forearm fracture. In girls, suboptimal bone strength was associated with fractures. In boys, poor balance and physical inactivity may lead to fractures. Prospective studies will confirm these relationships and identify targets for prevention strategies. Introduction The etiology of pediatric forearm fractures is unclear. Thus, we examined distal radius bone strength, microstructure, and density in children and adolescents with a recent low- or moderate-energy forearm fracture and those without forearm fractures. Methods We assessed the non-dominant (controls) and non-fractured (cases) distal radius (7 % site) using high-resolution peripheral quantitative computed tomography (HR-pQCT) (Scanco Medical AG) in 270 participants (girls: cases n=47, controls n=61 and boys: cases n=88, controls n=74) aged 8–16 years. We assessed standard anthropometry, maturity, body composition (dual energy X-ray absorptiometry (DXA), Hologic QDR 4500 W) physical activity, and balance. We fit sex-specific logistic regression models for each bone outcome adjusting for maturity, ethnicity, height, and percent body fat. Results In girls, impaired bone strength (failure load, ultimate stress) and a high load-to-strength ratio were associated with low-energy fractures (odds ratios (OR) 2.8–4.3). Low total bone mineral density (Tt.BMD), bone volume ratio, trabecular thickness, and cortical BMD and thickness were also associated with low-energy fractures (ORs 2.0–7.0). In boys, low Tt.BMD, but not bone strength, was associated with low-energy fractures (OR=1.8). Boys with low-energy fractures had poor balance and higher percent body fat compared with controls (p<0.05). Boys with fractures (both types) were less active than controls (p<0.05). Conclusions Forearm fracture etiology appears to be sex-specific. In girls, deficits in bone strength are associated with fractures. In boys, a combination of poor balance, excess body fat, and low physical activity may lead to fractures. Prospective studies are needed to confirm these relationships and clarify targets for prevention strategies. PMID:25572041

  7. Spin formalism and applications to new physics searches

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haber, H.E.

    1994-12-01

    An introduction to spin techniques in particle physics is given. Among the topics covered are: helicity formalism and its applications to the decay and scattering of spin-1/2 and spin-1 particles, techniques for evaluating helicity amplitudes (including projection operator methods and the spinor helicity method), and density matrix techniques. The utility of polarization and spin correlations for untangling new physics beyond the Standard Model at future colliders such as the LHC and a high energy e{sup +}e{sup {minus}} linear collider is then considered. A number of detailed examples are explored including the search for low-energy supersymmetry, a non-minimal Higgs boson sector,more » and new gauge bosons beyond the W{sup {+-}} and Z.« less

  8. Association of ACTN3 polymorphisms with BMD, and physical fitness of elderly women

    PubMed Central

    Min, Seok-Ki; Lim, Seung-Taek; Kim, Chang-Sun

    2016-01-01

    [Purpose] Association of ACTN3 polymorphism with bone mineral density and the physical fitness of elderly women is still unclear. Therefore, this study investigated the association between ACTN3 genotype and bone mineral density, and the physical fitness of elderly women. [Subjects and Methods] Sixty-eight elderly women (67.38 ± 3.68 years) were recruited at a Seongbuk-Gu (Seoul, Korea) Medical Service Public Health Center. Measurements of physical fitness included muscle strength, muscle endurance, flexibility, agility, balance and VO2max. Bone mineral density (BMD), upper limb muscle mass, lower limb muscle mass, percent body fat and body fat mass for the entire body were measured by dual-energy X-ray absorptiometry and an analyzer. Genotyping for the ACTN3 R577X (rs1815739) polymorphism was performed using the TaqMan approach. [Results] ACTN3 gene distribution of subjects were in the Hardy-Weinberg equilibrium (p=0.694). The relative bone mineral density trunk, pelvis and spine differed significantly among the ACTN3 genotypes. There were no significant differences among bone mineral densities of the head, arms, legs, ribs and total, but the RR genotype tended to be higher than other genotypes. Physical fitness was not significantly different among the ACTN3 genotypes. [Conclusion] These results suggest that ACTN3 gene polymorphisms could be used as one of the genetic determinants of bone mass in elderly women, and in particular, they indicate that individuals with the RR genotype have higher BMD and bone mineral composition. PMID:27821924

  9. High-energy side-peak emission of exciton-polariton condensates in high density regime

    PubMed Central

    Horikiri, Tomoyuki; Yamaguchi, Makoto; Kamide, Kenji; Matsuo, Yasuhiro; Byrnes, Tim; Ishida, Natsuko; Löffler, Andreas; Höfling, Sven; Shikano, Yutaka; Ogawa, Tetsuo; Forchel, Alfred; Yamamoto, Yoshihisa

    2016-01-01

    In a standard semiconductor laser, electrons and holes recombine via stimulated emission to emit coherent light, in a process that is far from thermal equilibrium. Exciton-polariton condensates–sharing the same basic device structure as a semiconductor laser, consisting of quantum wells coupled to a microcavity–have been investigated primarily at densities far below the Mott density for signatures of Bose-Einstein condensation. At high densities approaching the Mott density, exciton-polariton condensates are generally thought to revert to a standard semiconductor laser, with the loss of strong coupling. Here, we report the observation of a photoluminescence sideband at high densities that cannot be accounted for by conventional semiconductor lasing. This also differs from an upper-polariton peak by the observation of the excitation power dependence in the peak-energy separation. Our interpretation as a persistent coherent electron-hole-photon coupling captures several features of this sideband, although a complete understanding of the experimental data is lacking. A full understanding of the observations should lead to a development in non-equilibrium many-body physics. PMID:27193700

  10. Direct Laser Writing of Low-Density Interdigitated Foams for Plasma Drive Shaping [Direct Laser Writing of Low Density Nanostitched Foams for Plasma Drive Shaping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oakdale, James S.; Smith, Raymond F.; Forien, Jean -Baptiste

    Monolithic porous bulk materials have many promising applications ranging from energy storage and catalysis to high energy density physics. High resolution additive manufacturing techniques, such as direct laser writing via two photon polymerization (DLW-TPP), now enable the fabrication of highly porous microlattices with deterministic morphology control. In this work, DLW-TPP is used to print millimeter-sized foam reservoirs (down to 0.06 g cm –3) with tailored density-gradient profiles, where density is varied by over an order of magnitude (for instance from 0.6 to 0.06 g cm –3) along a length of <100 µm. Taking full advantage of this technology, however, ismore » a multiscale materials design problem that requires detailed understanding of how the different length scales, from the molecular level to the macroscopic dimensions, affect each other. The design of these 3D-printed foams is based on the brickwork arrangement of 100 × 100 × 16 µm 3 log-pile blocks constructed from sub-micrometer scale features. A block-to-block interdigitated stitching strategy is introduced for obtaining high density uniformity at all length scales. Lastly, these materials are used to shape plasma-piston drives during ramp-compression of targets under high energy density conditions created at the OMEGA Laser Facility.« less

  11. Direct Laser Writing of Low-Density Interdigitated Foams for Plasma Drive Shaping [Direct Laser Writing of Low Density Nanostitched Foams for Plasma Drive Shaping

    DOE PAGES

    Oakdale, James S.; Smith, Raymond F.; Forien, Jean -Baptiste; ...

    2017-09-27

    Monolithic porous bulk materials have many promising applications ranging from energy storage and catalysis to high energy density physics. High resolution additive manufacturing techniques, such as direct laser writing via two photon polymerization (DLW-TPP), now enable the fabrication of highly porous microlattices with deterministic morphology control. In this work, DLW-TPP is used to print millimeter-sized foam reservoirs (down to 0.06 g cm –3) with tailored density-gradient profiles, where density is varied by over an order of magnitude (for instance from 0.6 to 0.06 g cm –3) along a length of <100 µm. Taking full advantage of this technology, however, ismore » a multiscale materials design problem that requires detailed understanding of how the different length scales, from the molecular level to the macroscopic dimensions, affect each other. The design of these 3D-printed foams is based on the brickwork arrangement of 100 × 100 × 16 µm 3 log-pile blocks constructed from sub-micrometer scale features. A block-to-block interdigitated stitching strategy is introduced for obtaining high density uniformity at all length scales. Lastly, these materials are used to shape plasma-piston drives during ramp-compression of targets under high energy density conditions created at the OMEGA Laser Facility.« less

  12. Conceptual design of a 15-TW pulsed-power accelerator for high-energy-density–physics experiments

    DOE PAGES

    Spielman, R. B.; Froula, D. H.; Brent, G.; ...

    2017-06-21

    We have developed a conceptual design of a 15-TW pulsed-power accelerator based on the linear-transformer-driver (LTD) architecture described by Stygar [W. A. Stygar et al., Phys. Rev. ST Accel. Beams 18, 110401 (2015)]. The driver will allow multiple, high-energy-density experiments per day in a university environment and, at the same time, will enable both fundamental and integrated experiments that are scalable to larger facilities. In this design, many individual energy storage units (bricks), each composed of two capacitors and one switch, directly drive the target load without additional pulse compression. Ten LTD modules in parallel drive the load. Each modulemore » consists of 16 LTD cavities connected in series, where each cavity is powered by 22 bricks connected in parallel. This design stores up to 2.75 MJ and delivers up to 15 TW in 100 ns to the constant-impedance, water-insulated radial transmission lines. The transmission lines in turn deliver a peak current as high as 12.5 MA to the physics load. To maximize its experimental value and flexibility, the accelerator is coupled to a modern, multibeam laser facility (four beams with up to 5 kJ in 10 ns and one beam with up to 2.6 kJ in 100 ps or less) that can provide auxiliary heating of the physics load. The lasers also enable advanced diagnostic techniques such as x-ray Thomson scattering and multiframe and three-dimensional radiography. In conclusion, the coupled accelerator-laser facility will be the first of its kind and be capable of conducting unprecedented high-energy-density-physics experiments.« less

  13. Conceptual design of a 15-TW pulsed-power accelerator for high-energy-density–physics experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spielman, R. B.; Froula, D. H.; Brent, G.

    We have developed a conceptual design of a 15-TW pulsed-power accelerator based on the linear-transformer-driver (LTD) architecture described by Stygar [W. A. Stygar et al., Phys. Rev. ST Accel. Beams 18, 110401 (2015)]. The driver will allow multiple, high-energy-density experiments per day in a university environment and, at the same time, will enable both fundamental and integrated experiments that are scalable to larger facilities. In this design, many individual energy storage units (bricks), each composed of two capacitors and one switch, directly drive the target load without additional pulse compression. Ten LTD modules in parallel drive the load. Each modulemore » consists of 16 LTD cavities connected in series, where each cavity is powered by 22 bricks connected in parallel. This design stores up to 2.75 MJ and delivers up to 15 TW in 100 ns to the constant-impedance, water-insulated radial transmission lines. The transmission lines in turn deliver a peak current as high as 12.5 MA to the physics load. To maximize its experimental value and flexibility, the accelerator is coupled to a modern, multibeam laser facility (four beams with up to 5 kJ in 10 ns and one beam with up to 2.6 kJ in 100 ps or less) that can provide auxiliary heating of the physics load. The lasers also enable advanced diagnostic techniques such as x-ray Thomson scattering and multiframe and three-dimensional radiography. In conclusion, the coupled accelerator-laser facility will be the first of its kind and be capable of conducting unprecedented high-energy-density-physics experiments.« less

  14. Does Habitual Physical Activity Increase the Sensitivity of the Appetite Control System? A Systematic Review.

    PubMed

    Beaulieu, Kristine; Hopkins, Mark; Blundell, John; Finlayson, Graham

    2016-12-01

    It has been proposed that habitual physical activity improves appetite control; however, the evidence has never been systematically reviewed. To examine whether appetite control (e.g. subjective appetite, appetite-related peptides, food intake) differs according to levels of physical activity. Medline, Embase and SPORTDiscus were searched for articles published between 1996 and 2015, using keywords pertaining to physical activity, appetite, food intake and appetite-related peptides. Articles were included if they involved healthy non-smoking adults (aged 18-64 years) participating in cross-sectional studies examining appetite control in active and inactive individuals; or before and after exercise training in previously inactive individuals. Of 77 full-text articles assessed, 28 studies (14 cross-sectional; 14 exercise training) met the inclusion criteria. Appetite sensations and absolute energy intake did not differ consistently across studies. Active individuals had a greater ability to compensate for high-energy preloads through reductions in energy intake, in comparison with inactive controls. When physical activity level was graded across cross-sectional studies (low, medium, high, very high), a significant curvilinear effect on energy intake (z-scores) was observed. Methodological issues existed concerning the small number of studies, lack of objective quantification of food intake, and various definitions used to define active and inactive individuals. Habitually active individuals showed improved compensation for the energy density of foods, but no consistent differences in appetite or absolute energy intake, in comparison with inactive individuals. This review supports a J-shaped relationship between physical activity level and energy intake. Further studies are required to confirm these findings. CRD42015019696.

  15. Inorganic scintillating materials and scintillation detectors

    PubMed Central

    YANAGIDA, Takayuki

    2018-01-01

    Scintillation materials and detectors that are used in many applications, such as medical imaging, security, oil-logging, high energy physics and non-destructive inspection, are reviewed. The fundamental physics understood today is explained, and common scintillators and scintillation detectors are introduced. The properties explained here are light yield, energy non-proportionality, emission wavelength, energy resolution, decay time, effective atomic number and timing resolution. For further understanding, the emission mechanisms of scintillator materials are also introduced. Furthermore, unresolved problems in scintillation phenomenon are considered, and my recent interpretations are discussed. These topics include positive hysteresis, the co-doping of non-luminescent ions, the introduction of an aimed impurity phase, the excitation density effect and the complementary relationship between scintillators and storage phosphors. PMID:29434081

  16. Evaluating energy efficient strategies and product quality for distillers' dried grains with solubles (DDGS) in dry-grind ethanol plants

    NASA Astrophysics Data System (ADS)

    Lan, Tian

    The drying of distillers dried grains with solubles (DDGS), a coproduct of dry-grind corn processing to ethanol utilizes about 30% of the total energy required for the production of a liter of fuel ethanol. Therefore, improving DDGS drying energy efficiency could have significant impact on the economics of the dry-grind corn-to-ethanol process. Drying process improvements must take account into the effects of various drying strategies on the final quality of DDGS which is primarily utilized as a feed ingredient. Previous studies in the literature have shown that physical and chemical properties of DDGS vary according to the ratio of the two primarily feed streams, wet distillers grains (WDG) and condensed distillers solubles (CDS) which make up DDGS. Extensive research using plant-scale and bench-scale experiments have been conducted on the effect of process variables (ratios of WDG, CDS and DDGS add-back) during drying on the physical and chemical properties of DDGS. However, these investigations did not correlate the product characteristics data to drying efficiency. Additionally, it cannot be clearly determined from the literature on DDGS drying that processes used in the industry are optimized for both product quality and energy efficiency. A bench-scale rotary drum dryer heated by an electrically powered heat gun was used to investigate the effects of WDG, CDS and add-back ratios on both energy efficiency, drying performance and DDGS physical and chemical properties. A two stage drying process with the bench-scale rotary dryer was used to simulate the drying of DDGS using ICM (ICM, Inc., Colwich, KS) dry-grind process technology for DDGS drying which uses two rotary drum dryers in series. Effects of drying process variables, CDS content (0, 10, 20 and 40% by mass) and percent DDGS add-back (0, 20, 40 and 60% by mass) on energy performance and product quality were determined. Sixteen different drying strategies based on drying process variable ratios were tested and the response variables were measured which included energy performance (specific power consumption, energy efficiency, drying efficiency, drying rate), physical properties [particle size distribution (PSD), geometric mean particle size (dwg), bulk density, tapped bulk density, true density, color, compressibility index (CI), Hausner ratio (HR)], and chemical properties [acid detergent fiber (ADF), neutral detergent fiber (NDF), oil, crude protein, starch, ash, etc]. The results of the bench-scale study were also compared with data from a previous plant-scale DDGS production process investigation that used similar drying strategies. Results from the experiments indicated that among all 16 drying strategies, the 10% CDS content and 60% DDGS add-back strategy achieved the least specific power consumption (SPC) while the 40% CDS content and 20% DDGS add-back strategy had the highest SPC. The energy efficiency and drying efficiency of the bench-scale data in both drying stage I and drying stage II presented similar trends as process parameters changed. The highest energy and drying efficiencies were achieved in strategies with 10% CDS content while the lowest were in strategies with 40% CDS content. A comparison of the energy and drying efficiencies for the bench-scale strategies conducted in this study with those of similar plant-scale strategies from a previous study showed a similar trend in the data for drying stage 1, even though the actual numbers were quite different for the two experimental scales. On average, the energy and drying efficiencies for the bench-scale study was 40% less than the corresponding plant-scale strategy. CDS content had the most influence on the energy performance during DDGS drying, while percent DDGS add-back had more impact on the SPC given a constant CDS content level. By comparing both the physical properties, bulk density in particular which relates to logistics, and energy performance data, the drying strategy with 20% CDS and 60% add-back performed the best. Therefore, it is not surprising why this is the strategy used by ICM drying process technology for DDGS. The particle size (dwg) and particle size distribution (PSD) of DDGS varied with the drying strategies; by varying CDS content and percent DDGS add-back. It was determined that the percent DDGS add-back had no effect on either PSD or dgw. Under the same drying strategy, drying stage I always had a higher drying rate than stage II. Also, the drying curves under the same CDS content showed similar shapes. As CDS content increased, the color of DDGS became darker; both DDGS bulk density and tapped bulk density increased. In addition, CI and HR values decreased, ADF and NDF contents decreased and oil and ash contents increased with increased CDS content. Changes in percent DDGS add-back had a negligible effect on the DDGS chemical composition. Overall, the physical and chemical composition analysis of DDGS for both bench-scale and plant-scale studies followed similar trends.

  17. Strain controlled ferromagnetic-ferrimagnetic transition and vacancy formation energy of defective graphene.

    PubMed

    Zhang, Yajun; Sahoo, Mpk; Wang, Jie

    2016-09-23

    Single vacancy (SV)-induced magnetism in graphene has attracted much attention motivated by its potential in achieving new functionalities. However, a much higher vacancy formation energy limits its direct application in electronic devices and the dependency of spin interaction on the strain is unclear. Here, through first-principles density-functional theory calculations, we investigate the possibility of strain engineering towards lowering vacancy formation energy and inducing new magnetic states in defective graphene. It is found that the SV-graphene undergoes a phase transition from an initial ferromagnetic state to a ferrimagnetic state under a biaxial tensile strain. At the same time, the biaxial tensile strain significantly lowers the vacancy formation energy. The charge density, density of states and band theory successfully identify the origin and underlying physics of the transition. The predicted magnetic phase transition is attributed to the strain driven spin flipping at the C-atoms nearest to the SV-site. The magnetic semiconducting graphene induced by defect and strain engineering suggests an effective way to modulate both spin and electronic degrees of freedom in future spintronic devices.

  18. Electromagnetic potentials basis for energy density and power flux

    NASA Astrophysics Data System (ADS)

    Puthoff, H. E.

    2016-09-01

    In rounding out the education of students in advanced courses in applied electromagnetics it is incumbent on us as mentors to raise issues that encourage appreciation of certain subtle aspects that are often overlooked during first exposure to the field. One of these has to do with the interplay between fields and potentials, with the latter often seen as just a convenient mathematical artifice useful in solving Maxwell’s equations. Nonetheless, to those practiced in application it is well understood that various alternatives in the use of fields and potentials are available within electromagnetic (EM) theory for the definitions of energy density, momentum transfer, EM stress-energy tensor, and so forth. Although the various options are all compatible with the basic equations of electrodynamics (e.g., Maxwell’s equations, Lorentz force law, gauge invariance), nonetheless certain alternative formulations lend themselves to being seen as preferable to others with regard to the transparency of their application to physical problems of interest. Here we argue for the transparency of an energy density/power flux option based on the EM potentials alone.

  19. Physical Properties of Nyamplung Oil (Calophyllum inophyllum L) for Biodiesel Production

    NASA Astrophysics Data System (ADS)

    Dewang, Syamsir; Suriani; Hadriani, Siti; Bannu; Abdullah, B.

    2017-05-01

    Worldwide energy crisis due to the too high of energy consumption causes the people trying to find alternative energy to support energy requirements. The use of energy from environmentally friendly plant-based materials into an effort to assist communities in sufficient of national energy needs. Some processing of Nyamplung (Calophyllum inophyllum L) oil production is drying and pressing to produce crude oil. Degumming process is then performed to remove the sap contained in the oil. The next process is to remove free fatty acids (FFA) below 2% that can cause corrosion on the machine when in use. The results performed of the density properties quality to produce oil that appropriate with the international standards by time variation of catalyst. The result was obtained the density value of 0.92108 gr/cm3 at the time of 3 hours by trans-esterification process, and the best yield value was measured at 98.2% in 2 hours stirring of transesterification.

  20. Diet, physical activity, and bone density in soldiers before and after deployment.

    PubMed

    Carlson, Ashley R; Smith, Martha A; McCarthy, Mary S

    2013-01-01

    To investigate diet, physical activity, and bone mineral density (BMD) in combat service support Soldiers before and after deployment, and to determine if any components of diet or physical activity impacted BMD. Fifty-three Soldiers participated in the study. The BMD of the femoral neck and lumbar spine were measured using dual-energy x-ray absorptiometry. Diet was assessed using the Block Food Frequency Questionnaire. Physical activity was assessed using the Baecke Habitual Physical Activity Questionnaire. The BMD of the spine (0.79%; P=.03) increased significantly during deployment. Reported physical activity at work (-10.76%; P=.01) decreased and vitamin K intake increased (37.21%; P=.01). Soldiers did not meet the dietary reference intake for vitamin D and exceeded the dietary reference intakes for all other nutrients. No significant relationships were observed between change in diet or physical activity and change in BMD. Due to the small sample size, we could not determine if deployment impacted BMD, diet, or physical activity in combat service support Soldiers. Future research should focus on investigating the association between lower levels of physical activity, inadequate diet, and decreased BMD in larger military populations.

  1. Heating efficiency evaluation with mimicking plasma conditions of integrated fast-ignition experiment.

    PubMed

    Fujioka, Shinsuke; Johzaki, Tomoyuki; Arikawa, Yasunobu; Zhang, Zhe; Morace, Alessio; Ikenouchi, Takahito; Ozaki, Tetsuo; Nagai, Takahiro; Abe, Yuki; Kojima, Sadaoki; Sakata, Shohei; Inoue, Hiroaki; Utsugi, Masaru; Hattori, Shoji; Hosoda, Tatsuya; Lee, Seung Ho; Shigemori, Keisuke; Hironaka, Youichiro; Sunahara, Atsushi; Sakagami, Hitoshi; Mima, Kunioki; Fujimoto, Yasushi; Yamanoi, Kohei; Norimatsu, Takayoshi; Tokita, Shigeki; Nakata, Yoshiki; Kawanaka, Junji; Jitsuno, Takahisa; Miyanaga, Noriaki; Nakai, Mitsuo; Nishimura, Hiroaki; Shiraga, Hiroyuki; Nagatomo, Hideo; Azechi, Hiroshi

    2015-06-01

    A series of experiments were carried out to evaluate the energy-coupling efficiency from heating laser to a fuel core in the fast-ignition scheme of laser-driven inertial confinement fusion. Although the efficiency is determined by a wide variety of complex physics, from intense laser plasma interactions to the properties of high-energy density plasmas and the transport of relativistic electron beams (REB), here we simplify the physics by breaking down the efficiency into three measurable parameters: (i) energy conversion ratio from laser to REB, (ii) probability of collision between the REB and the fusion fuel core, and (iii) fraction of energy deposited in the fuel core from the REB. These three parameters were measured with the newly developed experimental platform designed for mimicking the plasma conditions of a realistic integrated fast-ignition experiment. The experimental results indicate that the high-energy tail of REB must be suppressed to heat the fuel core efficiently.

  2. The first experiments on the national ignition facility

    NASA Astrophysics Data System (ADS)

    Landen, O. L.; Glenzer, S.; Froula, D.; Dewald, E.; Suter, L. J.; Schneider, M.; Hinkel, D.; Fernandez, J.; Kline, J.; Goldman, S.; Braun, D.; Celliers, P.; Moon, S.; Robey, H.; Lanier, N.; Glendinning, G.; Blue, B.; Wilde, B.; Jones, O.; Schein, J.; Divol, L.; Kalantar, D.; Campbell, K.; Holder, J.; McDonald, J.; Niemann, C.; MacKinnon, A.; Collins, R.; Bradley, D.; Eggert, J.; Hicks, D.; Gregori, G.; Kirkwood, R.; Niemann, C.; Young, B.; Foster, J.; Hansen, F.; Perry, T.; Munro, D.; Baldis, H.; Grim, G.; Heeter, R.; Hegelich, B.; Montgomery, D.; Rochau, G.; Olson, R.; Turner, R.; Workman, J.; Berger, R.; Cohen, B.; Kruer, W.; Langdon, B.; Langer, S.; Meezan, N.; Rose, H.; Still, B.; Williams, E.; Dodd, E.; Edwards, J.; Monteil, M.-C.; Stevenson, M.; Thomas, B.; Coker, R.; Magelssen, G.; Rosen, P.; Stry, P.; Woods, D.; Weber, S.; Alvarez, S.; Armstrong, G.; Bahr, R.; Bourgade, J.-L.; Bower, D.; Celeste, J.; Chrisp, M.; Compton, S.; Cox, J.; Constantin, C.; Costa, R.; Duncan, J.; Ellis, A.; Emig, J.; Gautier, C.; Greenwood, A.; Griffith, R.; Holdner, F.; Holtmeier, G.; Hargrove, D.; James, T.; Kamperschroer, J.; Kimbrough, J.; Landon, M.; Lee, D.; Malone, R.; May, M.; Montelongo, S.; Moody, J.; Ng, E.; Nikitin, A.; Pellinen, D.; Piston, K.; Poole, M.; Rekow, V.; Rhodes, M.; Shepherd, R.; Shiromizu, S.; Voloshin, D.; Warrick, A.; Watts, P.; Weber, F.; Young, P.; Arnold, P.; Atherton, L.; Bardsley, G.; Bonanno, R.; Borger, T.; Bowers, M.; Bryant, R.; Buckman, S.; Burkhart, S.; Cooper, F.; Dixit, S.; Erbert, G.; Eder, D.; Ehrlich, B.; Felker, B.; Fornes, J.; Frieders, G.; Gardner, S.; Gates, C.; Gonzalez, M.; Grace, S.; Hall, T.; Haynam, C.; Heestand, G.; Henesian, M.; Hermann, M.; Hermes, G.; Huber, S.; Jancaitis, K.; Johnson, S.; Kauffman, B.; Kelleher, T.; Kohut, T.; Koniges, A. E.; Labiak, T.; Latray, D.; Lee, A.; Lund, D.; Mahavandi, S.; Manes, K. R.; Marshall, C.; McBride, J.; McCarville, T.; McGrew, L.; Menapace, J.; Mertens, E.; Munro, D.; Murray, J.; Neumann, J.; Newton, M.; Opsahl, P.; Padilla, E.; Parham, T.; Parrish, G.; Petty, C.; Polk, M.; Powell, C.; Reinbachs, I.; Rinnert, R.; Riordan, B.; Ross, G.; Robert, V.; Tobin, M.; Sailors, S.; Saunders, R.; Schmitt, M.; Shaw, M.; Singh, M.; Spaeth, M.; Stephens, A.; Tietbohl, G.; Tuck, J.; van Wonterghem, B.; Vidal, R.; Wegner, P.; Whitman, P.; Williams, K.; Winward, K.; Work, K.; Wallace, R.; Nobile, A.; Bono, M.; Day, B.; Elliott, J.; Hatch, D.; Louis, H.; Manzenares, R.; O'Brien, D.; Papin, P.; Pierce, T.; Rivera, G.; Ruppe, J.; Sandoval, D.; Schmidt, D.; Valdez, L.; Zapata, K.; MacGowan, B.; Eckart, M.; Hsing, W.; Springer, P.; Hammel, B.; Moses, E.; Miller, G.

    2006-06-01

    A first set of shock propagation, laser-plasma interaction, hohlraum energetics and hydrodynamic experiments have been performed using the first 4 beams of the National Ignition Facility (NIF), in support of indirect drive Inertial Confinement Fusion (ICF) and High Energy Density Physics.

  3. Understanding the Relativistic Generalization of Density Functional Theory (DFT) and Completing it in Practice

    NASA Astrophysics Data System (ADS)

    Bagayoko, Diola

    In 2014, 50 years following the introduction of density functional theory (DFT), a rigorous understanding of it was published [AIP Advances, 4, 127104 (2014)]. This understanding included necessary steps ab initio electronic structure calculations have to take if their results are to possess the full physical content of DFT. These steps guarantee the fulfillment of conditions of validity of DFT; not surprisingly, they have led to accurate descriptions of several dozens of semiconductors, from first principle, without invoking derivative discontinuity or self-interaction correction. This presentation shows the mathematically and physically rigorous understanding of the relativistic extension of DFT by Rajagopal and Callaway {Phys. Rev. B 7, 1912 (1973)]. As in the non-relativistic case, the attainment of the absolute minima of the occupied energies is a necessary condition for the corresponding current density to be that of the ground state of the system and for computational results to agree with corresponding, experimental ones. Acknowledgments:This work was funded in part by the US National Science Foundation [NSF, Award Nos. EPS-1003897, NSF (2010-2015)-RII-SUBR, and HRD-1002541], the US Department of Energy, National Nuclear Security Administration (NNSA, Award No. DE-NA0002630), LaSPACE, and LONI-SUBR.

  4. Progress Towards the Development of a Traveling Wave Direct Energy Converter for Aneutronic Fusion Propulsion Applications

    NASA Technical Reports Server (NTRS)

    Tarditi, A. G.; Chap, A.; Wolinsky, J.; Scott, J. H.

    2015-01-01

    A coordinated experimental and theory/simulation effort has been carried out to investigate the physics of the Traveling Wave Direct Energy Converter (TWDEC), a scheme that has been proposed in the past for the direct conversion into electricity of the kinetic energy of an ion beam generated from fusion reactions. This effort has been focused in particular on the TWDEC process in the high density beam regime, thus accounting for the ion beam expansion due to its space charge.

  5. Anti-Ferroelectric Ceramics for High Energy Density Capacitors.

    PubMed

    Chauhan, Aditya; Patel, Satyanarayan; Vaish, Rahul; Bowen, Chris R

    2015-11-25

    With an ever increasing dependence on electrical energy for powering modern equipment and electronics, research is focused on the development of efficient methods for the generation, storage and distribution of electrical power. In this regard, the development of suitable dielectric based solid-state capacitors will play a key role in revolutionizing modern day electronic and electrical devices. Among the popular dielectric materials, anti-ferroelectrics (AFE) display evidence of being a strong contender for future ceramic capacitors. AFE materials possess low dielectric loss, low coercive field, low remnant polarization, high energy density, high material efficiency, and fast discharge rates; all of these characteristics makes AFE materials a lucrative research direction. However, despite the evident advantages, there have only been limited attempts to develop this area. This article attempts to provide a focus to this area by presenting a timely review on the topic, on the relevant scientific advancements that have been made with respect to utilization and development of anti-ferroelectric materials for electric energy storage applications. The article begins with a general introduction discussing the need for high energy density capacitors, the present solutions being used to address this problem, and a brief discussion of various advantages of anti-ferroelectric materials for high energy storage applications. This is followed by a general description of anti-ferroelectricity and important anti-ferroelectric materials. The remainder of the paper is divided into two subsections, the first of which presents various physical routes for enhancing the energy storage density while the latter section describes chemical routes for enhanced storage density. This is followed by conclusions and future prospects and challenges which need to be addressed in this particular field.

  6. Anti-Ferroelectric Ceramics for High Energy Density Capacitors

    PubMed Central

    Chauhan, Aditya; Patel, Satyanarayan; Vaish, Rahul; Bowen, Chris R.

    2015-01-01

    With an ever increasing dependence on electrical energy for powering modern equipment and electronics, research is focused on the development of efficient methods for the generation, storage and distribution of electrical power. In this regard, the development of suitable dielectric based solid-state capacitors will play a key role in revolutionizing modern day electronic and electrical devices. Among the popular dielectric materials, anti-ferroelectrics (AFE) display evidence of being a strong contender for future ceramic capacitors. AFE materials possess low dielectric loss, low coercive field, low remnant polarization, high energy density, high material efficiency, and fast discharge rates; all of these characteristics makes AFE materials a lucrative research direction. However, despite the evident advantages, there have only been limited attempts to develop this area. This article attempts to provide a focus to this area by presenting a timely review on the topic, on the relevant scientific advancements that have been made with respect to utilization and development of anti-ferroelectric materials for electric energy storage applications. The article begins with a general introduction discussing the need for high energy density capacitors, the present solutions being used to address this problem, and a brief discussion of various advantages of anti-ferroelectric materials for high energy storage applications. This is followed by a general description of anti-ferroelectricity and important anti-ferroelectric materials. The remainder of the paper is divided into two subsections, the first of which presents various physical routes for enhancing the energy storage density while the latter section describes chemical routes for enhanced storage density. This is followed by conclusions and future prospects and challenges which need to be addressed in this particular field. PMID:28793694

  7. The Influence of AN Interacting Vacuum Energy on the Gravitational Collapse of a Star Fluid

    NASA Astrophysics Data System (ADS)

    Campos, M.

    2014-02-01

    To explain the accelerated expansion of the universe, models with interacting dark components has been considered in the literature. Generally, the dark energy component is physically interpreted as the vacuum energy. However, at the other side of the same coin, the influence of the vacuum energy in the gravitational collapse is a topic of scientific interest. Based in a simple assumption on the collapsed rate of the matter fluid density that is altered by the inclusion of a vacuum energy component that interacts with the matter fluid, we study the final fate of the collapse process.

  8. Optimization of constrained density functional theory

    NASA Astrophysics Data System (ADS)

    O'Regan, David D.; Teobaldi, Gilberto

    2016-07-01

    Constrained density functional theory (cDFT) is a versatile electronic structure method that enables ground-state calculations to be performed subject to physical constraints. It thereby broadens their applicability and utility. Automated Lagrange multiplier optimization is necessary for multiple constraints to be applied efficiently in cDFT, for it to be used in tandem with geometry optimization, or with molecular dynamics. In order to facilitate this, we comprehensively develop the connection between cDFT energy derivatives and response functions, providing a rigorous assessment of the uniqueness and character of cDFT stationary points while accounting for electronic interactions and screening. In particular, we provide a nonperturbative proof that stable stationary points of linear density constraints occur only at energy maxima with respect to their Lagrange multipliers. We show that multiple solutions, hysteresis, and energy discontinuities may occur in cDFT. Expressions are derived, in terms of convenient by-products of cDFT optimization, for quantities such as the dielectric function and a condition number quantifying ill definition in multiple constraint cDFT.

  9. Modeling of the thermal physical process and study on the reliability of linear energy density for selective laser melting

    NASA Astrophysics Data System (ADS)

    Xiang, Zhaowei; Yin, Ming; Dong, Guanhua; Mei, Xiaoqin; Yin, Guofu

    2018-06-01

    A finite element model considering volume shrinkage with powder-to-dense process of powder layer in selective laser melting (SLM) is established. Comparison between models that consider and do not consider volume shrinkage or powder-to-dense process is carried out. Further, parametric analysis of laser power and scan speed is conducted and the reliability of linear energy density as a design parameter is investigated. The results show that the established model is an effective method and has better accuracy allowing for the temperature distribution, and the length and depth of molten pool. The maximum temperature is more sensitive to laser power than scan speed. The maximum heating rate and cooling rate increase with increasing scan speed at constant laser power and increase with increasing laser power at constant scan speed as well. The simulation results and experimental result reveal that linear energy density is not always reliable using as a design parameter in the SLM.

  10. Adsorption behavior of COF2 and CF4 gas on the MoS2 monolayer doped with Ni: A first-principles study

    NASA Astrophysics Data System (ADS)

    Li, Yi; Zhang, Xiaoxing; Chen, Dachang; Xiao, Song; Tang, Ju

    2018-06-01

    CF4 and COF2 are the two main decomposition products of fluorocarbon gas insulating medium. We explored the gas sensing properties of Ni-MoS2 to CF4 and COF2 based on the density functional theory calculations. The adsorption energy, charge transfer, density of states and electron density difference have been discussed. It was found that the interaction between COF2 molecule and Ni-MoS2 is strong, and the adsorption energy is 0.723 eV. Ni-MoS2 acts as the electron donor and transfers some electrons to COF2 molecule during the interaction. The adsorption energy of CF4 on Ni-MoS2 is lower than that of COF2, and the interaction between them belongs to physical adsorption. Ni-MoS2 has the potential to be used as a gas sensor for COF2 detection using in the field of gas insulated switchgear on-line monitoring.

  11. Phantom stars and topology change

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeBenedictis, Andrew; Garattini, Remo; Lobo, Francisco S. N.

    2008-11-15

    In this work, we consider time-dependent dark-energy star models, with an evolving parameter {omega} crossing the phantom divide {omega}=-1. Once in the phantom regime, the null energy condition is violated, which physically implies that the negative radial pressure exceeds the energy density. Therefore, an enormous negative pressure in the center may, in principle, imply a topology change, consequently opening up a tunnel and converting the dark-energy star into a wormhole. The criteria for this topology change are discussed and, in particular, we consider a Casimir energy approach involving quasilocal energy difference calculations that may reflect or measure the occurrence ofmore » a topology change. We denote these exotic geometries consisting of dark-energy stars (in the phantom regime) and phantom wormholes as phantom stars. The final product of this topological change, namely, phantom wormholes, have far-reaching physical and cosmological implications, as in addition to being used for interstellar shortcuts, an absurdly advanced civilization may manipulate these geometries to induce closed timelike curves, consequently violating causality.« less

  12. Space-Charge Effect on Residual Energy Under Intense Ultrashort Pulse Laser

    NASA Astrophysics Data System (ADS)

    Chen, Shi-gang; Wang, You-qin; Nie, Xiaebo

    1996-12-01

    Can the space-charge effect reduce the above-threshold-ionization (ATI) energy? This problem is analyzed by using the technique of multiple-time-scale perturbation. As the optical frequency is much larger than the plasma frequency, the space-charge effect is then reduced to the ponderomotive effect. It is found that the ponderomotive effect on residual energy is great as half plasma period is larger than pulse length, however, it cannot reduce the ATI energy over the whole density range. The relevant experiments are analyzed. Their results support our conclusions. Finally, it is pointed out that for a given pulse laser there may be a density range available for optical field ionization x-ray laser over which only the ATI heating plays role. The project supported by the National Natural Science Foundation of China and the Science Foundation of the Chinese Academy of Engineering Physics

  13. First-Principles and Thermodynamic Simulation of Elastic Stress Effect on Energy of Hydrogen Dissolution in Alpha Iron

    NASA Astrophysics Data System (ADS)

    Rakitin, M. S.; Mirzoev, A. A.; Mirzaev, D. A.

    2018-04-01

    Mobile hydrogen, when dissolving in metals, redistributes due to the density gradients and elastic stresses, and enables destruction processes or phase transformations in local volumes of a solvent metal. It is rather important in solid state physics to investigate these interactions. The first-principle calculations performed in terms of the density functional theory, are used for thermodynamic simulation of the elastic stress effect on the energy of hydrogen dissolution in α-Fe crystal lattice. The paper presents investigations of the total energy of Fe-H system depending on the lattice parameter. As a result, the relation is obtained between the hydrogen dissolution energy and stress. A good agreement is shown between the existing data and simulation results. The extended equation is suggested for the chemical potential of hydrogen atom in iron within the local stress field. Two parameters affecting the hydrogen distribution are compared, namely local stress and phase transformations.

  14. Scoping study for compact high-field superconducting net energy tokamaks

    NASA Astrophysics Data System (ADS)

    Mumgaard, R. T.; Greenwald, M.; Freidberg, J. P.; Wolfe, S. M.; Hartwig, Z. S.; Brunner, D.; Sorbom, B. N.; Whyte, D. G.

    2016-10-01

    The continued development and commercialization of high temperature superconductors (HTS) may enable the construction of compact, net-energy tokamaks. HTS, in contrast to present generation low temperature superconductors, offers improved performance in high magnetic fields, higher current density, stronger materials, higher temperature operation, and simplified assembly. Using HTS along with community-consensus confinement physics (H98 =1) may make it possible to achieve net-energy (Q>1) or burning plasma conditions (Q>5) in DIII-D or ASDEX-U sized, conventional aspect ratio tokamaks. It is shown that, by operating at high plasma current and density enabled by the high magnetic field (B>10T), the required triple products may be achieved at plasma volumes under 20m3, major radii under 2m, with external heating powers under 40MW. This is at the scale of existing devices operated by laboratories, universities and companies. The trade-offs in the core heating, divertor heat exhaust, sustainment, stability, and proximity to known plasma physics limits are discussed in the context of the present tokamak experience base and the requirements for future devices. The resulting HTS-based design space is compared and contrasted to previous studies on high-field copper experiments with similar missions. The physics exploration conducted with such HTS devices could decrease the real and perceived risks of ITER exploitation, and aid in quickly developing commercially-applicable tokamak pilot plants and reactors.

  15. Synthesis and Performance Characterization of a Nanocomposite Ternary Thermite: Al/Fe2O3/SiO2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prentice, D; Pantoya, M L; Clapsaddle, B J

    2005-02-04

    Making solid energetic materials requires the physical mixing of solid fuels and oxidizers or the incorporation of fuel and oxidizing moieties into a single molecule. The former are referred to as composite energetic materials (i.e., thermites, propellants, pyrotechnics) and the latter are deemed monomolecular energetic materials (i.e., explosives). Mass diffusion between the fuel and oxidizer is the rate controlling step for composite reactions while bond breaking and chemical kinetics control monomolecular reactions. Although composites have higher energy densities than monomolecular species, they release that energy over a longer period of time because diffusion controlled reactions are considerably slower than chemistrymore » controlled reactions. Conversely, monomolecular species exhibit greater power due to more rapid kinetics than physically mixed energetics. Reducing the diffusion distance between fuel and oxidizer species within an energetic composite would enhance the reaction rate. Recent advances in nanotechnology have spurred the development of nano-scale fuel and oxidizer particles that can be combined into a composite and effectively reduce diffusion distances to nano-scale dimensions or less. These nanocomposites have the potential to deliver the best of both worlds: high energy density of the physically mixed composite with the high power of the monomolecular species. Toward this end, researchers at Lawrence Livermore National Laboratory (LLNL) developed nano-particle synthesis techniques, based on sol-gel chemistry, for the production of thermite nanocomposites.« less

  16. Elliptic flow from Coulomb interaction and low density elastic scattering

    NASA Astrophysics Data System (ADS)

    Sun, Yuliang; Li, Qingfeng; Wang, Fuqiang

    2018-04-01

    In high energy heavy ion collisions and interacting cold atom systems, large elliptic flow anisotropies have been observed. For the large opacity (ρ σ L ˜103 ) of the latter hydrodynamics is a natural consequence, but for the small opacity (ρ σ L ˜1 ) of the former the hydrodynamic description is questionable. To shed light onto the situation, we simulate the expansion of a low density argon ion (or atom) system, initially trapped in an elliptical region, under the Coulomb interaction (or elastic scattering). Significant elliptic anisotropy is found in both cases, and the anisotropy depends on the initial spatial eccentricity and the density of the system. The results may provide insights into the physics of anisotropic flow in high energy heavy ion collisions and its role in the study of quantum chromodynamics.

  17. Resolving the 180-degree ambiguity in vector magnetic field measurements: The 'minimum' energy solution

    NASA Technical Reports Server (NTRS)

    Metcalf, Thomas R.

    1994-01-01

    I present a robust algorithm that resolves the 180-deg ambiguity in measurements of the solar vector magnetic field. The technique simultaneously minimizes both the divergence of the magnetic field and the electric current density using a simulated annealing algorithm. This results in the field orientation with approximately minimum free energy. The technique is well-founded physically and is simple to implement.

  18. Coordinated Research Program in Pulsed Power Physics.

    DTIC Science & Technology

    1984-12-20

    heated array of Inductive energy storage is attractive in pulsed power 375-/am-diameter thoriated tungsten filaments. At a flia- applications because of...control system electrostatical- ly. It is positioned 0.6 cm above the control grid. The grids and cathode are connected to external power supplies through...energy storage density becomes even larger (by a factor of - 10). One should note that these comparisons do not account for power supplies , cooling

  19. The Gum nebula

    NASA Technical Reports Server (NTRS)

    Brandt, J. C.

    1972-01-01

    The distance from the sun to the center of the star, Gamma Velorium, is determined in an effort to draw a physical model and identify the ionized energy source of the Gum nebula. The distance is calculated from the local hydrogen density of radio astronomy studies and the hydrogen measure.

  20. C-field cosmological models: revisited

    NASA Astrophysics Data System (ADS)

    Yadav, Anil Kumar; Tawfiq Ali, Ahmad; Ray, Saibal; Rahaman, Farook; Hossain Sardar, Iftikar

    2016-12-01

    We investigate plane symmetric spacetime filled with perfect fluid in the C-field cosmology of Hoyle and Narlikar. A new class of exact solutions has been obtained by considering the creation field C as a function of time only. To get the deterministic solution, it has been assumed that the rate of creation of matter-energy density is proportional to the strength of the existing C-field energy density. Several physical aspects and geometrical properties of the models are discussed in detail, especially showing that some of our solutions of C-field cosmology are free from singularity in contrast to the Big Bang cosmology. A comparative study has been carried out between two models, one singular and the other nonsingular, by contrasting the behaviour of the physical parameters. We note that the model in a unique way represents both the features of the accelerating as well as decelerating universe depending on the parameters and thus seems to provide glimpses of the oscillating or cyclic model of the universe without invoking any other agent or theory in allowing cyclicity.

  1. The Impact of the Nuclear Equation of State in Core Collapse Supernovae

    NASA Astrophysics Data System (ADS)

    Baird, M. L.; Lentz, E. J.; Hix, W. R.; Mezzacappa, A.; Messer, O. E. B.; Liebendoerfer, M.; TeraScale Supernova Initiative Collaboration

    2005-12-01

    One of the key ingredients to the core collapse supernova mechanism is the physics of matter at or near nuclear density. Included in simulations as part of the Equation of State (EOS), nuclear repulsion experienced at high densities are responsible for the bounce shock, which initially causes the outer envelope of the supernova to expand, as well as determining the structure of the newly formed proto-neutron star. Recent years have seen renewed interest in this fundamental piece of supernova physics, resulting in several promising candidate EOS parameterizations. We will present the impact of these variations in the nuclear EOS using spherically symmetric, Newtonian and General Relativistic neutrino transport simulations of stellar core collapse and bounce. This work is supported in part by SciDAC grants to the TeraScale Supernovae Initiative from the DOE Office of Science High Energy, Nuclear, and Advanced Scientific Computing Research Programs. Oak Ridge National Laboratory is managed by UT-Battelle, LLC, for U.S. Department of Energy under contract DEAC05-00OR22725

  2. A study of physical and optical absorption spectra of VO{sup 2+} ions in potassium and sodium oxide borate glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Srinivas, G., E-mail: srinu123g@gmail.com; Ramesh, B.; Kumar, J. Siva

    2016-05-23

    Spectroscopic and physical properties of V{sub 2}O{sub 5} doped mixed alkali borate glasses are investigated. Borate glasses containing fixed concentrations of alkaline earth oxides (MgO and BaO) and alkali oxides (K{sub 2}O and Na{sub 2}O) were changes and are prepared by melt quenching technique. The values of r{sub i}, r{sub p}, R{sub m}, α{sub m} molar volume and Λ{sub th} increase and oxygen packing density, density and dopant ion concentration decrease with increasing of K{sub 2}O content. As a result there shall be an increase in the disorder of the glass network. The optical band gap energies, Urbach energy, boron-boronmore » separation,refractive index, dielectric constant, electronic polarizability and reflection loss values are varies nonlinearly with the K{sub 2}O content which manifests the mixed alkali effect.« less

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rebolini, Elisa, E-mail: rebolini@lct.jussieu.fr; Toulouse, Julien, E-mail: julien.toulouse@upmc.fr; Savin, Andreas, E-mail: savin@lct.jussieu.fr

    We present a study of the variation of total energies and excitation energies along a range-separated adiabatic connection. This connection links the non-interacting Kohn–Sham electronic system to the physical interacting system by progressively switching on the electron–electron interactions whilst simultaneously adjusting a one-electron effective potential so as to keep the ground-state density constant. The interactions are introduced in a range-dependent manner, first introducing predominantly long-range, and then all-range, interactions as the physical system is approached, as opposed to the conventional adiabatic connection where the interactions are introduced by globally scaling the standard Coulomb interaction. Reference data are reported for themore » He and Be atoms and the H{sub 2} molecule, obtained by calculating the short-range effective potential at the full configuration-interaction level using Lieb's Legendre-transform approach. As the strength of the electron–electron interactions increases, the excitation energies, calculated for the partially interacting systems along the adiabatic connection, offer increasingly accurate approximations to the exact excitation energies. Importantly, the excitation energies calculated at an intermediate point of the adiabatic connection are much better approximations to the exact excitation energies than are the corresponding Kohn–Sham excitation energies. This is particularly evident in situations involving strong static correlation effects and states with multiple excitation character, such as the dissociating H{sub 2} molecule. These results highlight the utility of long-range interacting reference systems as a starting point for the calculation of excitation energies and are of interest for developing and analyzing practical approximate range-separated density-functional methodologies.« less

  4. A New Approach to Monte Carlo Simulations in Statistical Physics

    NASA Astrophysics Data System (ADS)

    Landau, David P.

    2002-08-01

    Monte Carlo simulations [1] have become a powerful tool for the study of diverse problems in statistical/condensed matter physics. Standard methods sample the probability distribution for the states of the system, most often in the canonical ensemble, and over the past several decades enormous improvements have been made in performance. Nonetheless, difficulties arise near phase transitions-due to critical slowing down near 2nd order transitions and to metastability near 1st order transitions, and these complications limit the applicability of the method. We shall describe a new Monte Carlo approach [2] that uses a random walk in energy space to determine the density of states directly. Once the density of states is known, all thermodynamic properties can be calculated. This approach can be extended to multi-dimensional parameter spaces and should be effective for systems with complex energy landscapes, e.g., spin glasses, protein folding models, etc. Generalizations should produce a broadly applicable optimization tool. 1. A Guide to Monte Carlo Simulations in Statistical Physics, D. P. Landau and K. Binder (Cambridge U. Press, Cambridge, 2000). 2. Fugao Wang and D. P. Landau, Phys. Rev. Lett. 86, 2050 (2001); Phys. Rev. E64, 056101-1 (2001).

  5. Weighted-density functionals for cavity formation and dispersion energies in continuum solvation models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sundararaman, Ravishankar; Gunceler, Deniz; Arias, T. A.

    2014-10-07

    Continuum solvation models enable efficient first principles calculations of chemical reactions in solution, but require extensive parametrization and fitting for each solvent and class of solute systems. Here, we examine the assumptions of continuum solvation models in detail and replace empirical terms with physical models in order to construct a minimally-empirical solvation model. Specifically, we derive solvent radii from the nonlocal dielectric response of the solvent from ab initio calculations, construct a closed-form and parameter-free weighted-density approximation for the free energy of the cavity formation, and employ a pair-potential approximation for the dispersion energy. We show that the resulting modelmore » with a single solvent-independent parameter: the electron density threshold (n c), and a single solvent-dependent parameter: the dispersion scale factor (s 6), reproduces solvation energies of organic molecules in water, chloroform, and carbon tetrachloride with RMS errors of 1.1, 0.6 and 0.5 kcal/mol, respectively. We additionally show that fitting the solvent-dependent s 6 parameter to the solvation energy of a single non-polar molecule does not substantially increase these errors. Parametrization of this model for other solvents, therefore, requires minimal effort and is possible without extensive databases of experimental solvation free energies.« less

  6. Weighted-density functionals for cavity formation and dispersion energies in continuum solvation models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sundararaman, Ravishankar; Gunceler, Deniz; Arias, T. A.

    2014-10-07

    Continuum solvation models enable efficient first principles calculations of chemical reactions in solution, but require extensive parametrization and fitting for each solvent and class of solute systems. Here, we examine the assumptions of continuum solvation models in detail and replace empirical terms with physical models in order to construct a minimally-empirical solvation model. Specifically, we derive solvent radii from the nonlocal dielectric response of the solvent from ab initio calculations, construct a closed-form and parameter-free weighted-density approximation for the free energy of the cavity formation, and employ a pair-potential approximation for the dispersion energy. We show that the resulting modelmore » with a single solvent-independent parameter: the electron density threshold (n{sub c}), and a single solvent-dependent parameter: the dispersion scale factor (s{sub 6}), reproduces solvation energies of organic molecules in water, chloroform, and carbon tetrachloride with RMS errors of 1.1, 0.6 and 0.5 kcal/mol, respectively. We additionally show that fitting the solvent-dependent s{sub 6} parameter to the solvation energy of a single non-polar molecule does not substantially increase these errors. Parametrization of this model for other solvents, therefore, requires minimal effort and is possible without extensive databases of experimental solvation free energies.« less

  7. Z pinches as intense x-ray sources for high-energy density physics applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matzen, M.K.

    1997-05-01

    Fast Z-pinch implosions can efficiently convert the stored electrical energy in a pulsed-power accelerator into x rays. These x rays are produced when an imploding cylindrical plasma, driven by the magnetic field pressure associated with very large axial currents, stagnates upon the cylindrical axis of symmetry. On the Saturn pulsed-power accelerator [R. B. Spielman {ital et al.}, in {ital Proceedings of the 2nd International Conference on Dense Z Pinches}, Laguna Beach, CA, 1989, edited by N. R. Pereira, J. Davis, and N. Rostoker (American Institute of Physics, New York, 1989), p. 3] at Sandia National Laboratories, for example, currents ofmore » 6{endash}8 MA with a rise time of less than 50 ns are driven through cylindrically symmetric loads, producing implosion velocities as high as 10{sup 8}cm/s and x-ray energies exceeding 400 kJ. Hydromagnetic Rayleigh{endash}Taylor instabilities and cylindrical load symmetry are critical, limiting factors in determining the assembled plasma densities and temperatures, and thus in the x-ray energies and pulse widths that can be produced on these accelerators. In recent experiments on the Saturn accelerator, these implosion nonuniformities have been minimized by using wire arrays with as many as 192 wires. Increasing the wire number produced significant improvements in the pinched plasma quality, reproducibility, and x-ray output power. X-ray pulse widths of less than 5 ns and peak powers of 75{plus_minus}10TW have been achieved with arrays of 120 tungsten wires. Similar loads have recently been fielded on the Particle Beam Fusion Accelerator (PBFA II), producing x-ray energies in excess of 1.8 MJ at powers in excess of 160 TW. These intense x-ray sources offer the potential for performing many new basic physics and fusion-relevant experiments. {copyright} {ital 1997 American Institute of Physics.}« less

  8. Molecular Electron Density Theory: A Modern View of Reactivity in Organic Chemistry.

    PubMed

    Domingo, Luis R

    2016-09-30

    A new theory for the study of the reactivity in Organic Chemistry, named Molecular Electron Density Theory (MEDT), is proposed herein. MEDT is based on the idea that while the electron density distribution at the ground state is responsible for physical and chemical molecular properties, as proposed by the Density Functional Theory (DFT), the capability for changes in electron density is responsible for molecular reactivity. Within MEDT, the reactivity in Organic Chemistry is studied through a rigorous quantum chemical analysis of the changes of the electron density as well as the energies associated with these changes along the reaction path in order to understand experimental outcomes. Studies performed using MEDT allow establishing a modern rationalisation and to gain insight into molecular mechanisms and reactivity in Organic Chemistry.

  9. Analysis of Electronic Densities and Integrated Doses in Multiform Glioblastomas Stereotactic Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baron-Aznar, C.; Moreno-Jimenez, S.; Celis, M. A.

    2008-08-11

    Integrated dose is the total energy delivered in a radiotherapy target. This physical parameter could be a predictor for complications such as brain edema and radionecrosis after stereotactic radiotherapy treatments for brain tumors. Integrated Dose depends on the tissue density and volume. Using CT patients images from the National Institute of Neurology and Neurosurgery and BrainScan(c) software, this work presents the mean density of 21 multiform glioblastomas, comparative results for normal tissue and estimated integrated dose for each case. The relationship between integrated dose and the probability of complications is discussed.

  10. Accuracy of electron densities obtained via Koopmans-compliant hybrid functionals

    NASA Astrophysics Data System (ADS)

    Elmaslmane, A. R.; Wetherell, J.; Hodgson, M. J. P.; McKenna, K. P.; Godby, R. W.

    2018-04-01

    We evaluate the accuracy of electron densities and quasiparticle energy gaps given by hybrid functionals by directly comparing these to the exact quantities obtained from solving the many-electron Schrödinger equation. We determine the admixture of Hartree-Fock exchange to approximate exchange-correlation in our hybrid functional via one of several physically justified constraints, including the generalized Koopmans' theorem. We find that hybrid functionals yield strikingly accurate electron densities and gaps in both exchange-dominated and correlated systems. We also discuss the role of the screened Fock operator in the success of hybrid functionals.

  11. Two-step hydrothermal synthesis of NiCo2S4/Co9S8 nanorods on nickel foam for high energy density asymmetric supercapacitors

    NASA Astrophysics Data System (ADS)

    Xu, Rui; Lin, Jianming; Wu, Jihuai; Huang, Miaoliang; Fan, Leqing; Chen, Hongwei; He, Xin; Wang, Yiting; Xu, Zedong

    2018-03-01

    It is still a huge challenge to obtain a high-energy-density asymmetric supercapacitors and develop an active electrode material with excellent electrochemical characteristics. Although NiCo2S4 has been considered as one of the promising positive electrode materials for asymmetric supercapacitors, the electrochemical performance of the NiCo2S4-based positive electrodes is still relatively low and cannot meet the demand in the devices. Herein, NiCo2S4/Co9S8 nanorods with a large capacitance are synthesized via a simple two-step hydrothermal treatment. A high-performance asymmetric supercapacitor operating at 1.6 V is successfully assembled using the NiCo2S4/Co9S8 nanorods as positive electrode and activated carbon as negative electrode in 3 M KOH aqueous electrolyte, which demonstrates a fairly high energy density of 49.6 Wh kg-1 at a power density of 123 W kg-1, an excellent capacitance of 0.91 F cm-2 (139.42 F g-1) at current density of 1 mA cm-2 as well as a remarkable cycling stability due to the high physical strength, the large specific surface area, and the good conductivity for NiCo2S4/Co9S8 nanorods and the brilliant synergistic effect for NiCo2S4 and Co9S8 electrode materials. The as-prepared NiCo2S4/Co9S8 nanorods open up a new platform as positive electrode material for high-energy-density asymmetric supercapacitors in energy-storage.

  12. Novel Physical Model for DC Partial Discharge in Polymeric Insulators

    NASA Astrophysics Data System (ADS)

    Andersen, Allen; Dennison, J. R.

    The physics of DC partial discharge (DCPD) continues to pose a challenge to researchers. We present a new physically-motivated model of DCPD in amorphous polymers based on our dual-defect model of dielectric breakdown. The dual-defect model is an extension of standard static mean field theories, such as the Crine model, that describe avalanche breakdown of charge carriers trapped on uniformly distributed defect sites. It assumes the presence of both high-energy chemical defects and low-energy thermally-recoverable physical defects. We present our measurements of breakdown and DCPD for several common polymeric materials in the context of this model. Improved understanding of DCPD and how it relates to eventual dielectric breakdown is critical to the fields of spacecraft charging, high voltage DC power distribution, high density capacitors, and microelectronics. This work was supported by a NASA Space Technology Research Fellowship.

  13. Nuclear Computational Low Energy Initiative (NUCLEI)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reddy, Sanjay K.

    This is the final report for University of Washington for the NUCLEI SciDAC-3. The NUCLEI -project, as defined by the scope of work, will develop, implement and run codes for large-scale computations of many topics in low-energy nuclear physics. Physics to be studied include the properties of nuclei and nuclear decays, nuclear structure and reactions, and the properties of nuclear matter. The computational techniques to be used include Quantum Monte Carlo, Configuration Interaction, Coupled Cluster, and Density Functional methods. The research program will emphasize areas of high interest to current and possible future DOE nuclear physics facilities, including ATLAS andmore » FRIB (nuclear structure and reactions, and nuclear astrophysics), TJNAF (neutron distributions in nuclei, few body systems, and electroweak processes), NIF (thermonuclear reactions), MAJORANA and FNPB (neutrino-less double-beta decay and physics beyond the Standard Model), and LANSCE (fission studies).« less

  14. Porosity and thickness effect of porous silicon layer on photoluminescence spectra

    NASA Astrophysics Data System (ADS)

    Husairi, F. S.; Eswar, K. A.; Guliling, Muliyadi; Khusaimi, Z.; Rusop, M.; Abdullah, S.

    2018-05-01

    The porous silicon nanostructures was prepared by electrochemical etching of p-type silicon wafer. Porous silicon prepared by using different current density and fix etching time with assistance of halogen lamp. The physical structure of porous silicon measured by the parameters used which know as experimental factor. In this work, we select one of those factors to correlate which optical properties of porous silicon. We investigated the surface morphology by using Surface Profiler (SP) and photoluminescence using Photoluminescence (PL) spectrometer. Different physical characteristics of porous silicon produced when current density varied. Surface profiler used to measure the thickness of porous and the porosity calculated using mass different of silicon. Photoluminescence characteristics of porous silicon depend on their morphology because the size and distribution of pore its self will effect to their exciton energy level. At J=30 mA/cm2 the shorter wavelength produced and it followed the trend of porosity with current density applied.

  15. Matter under extreme conditions experiments at the Linac Coherent Light Source

    DOE PAGES

    Glenzer, S. H.; Fletcher, L. B.; Galtier, E.; ...

    2015-12-10

    The Matter in Extreme Conditions end station at the Linac Coherent Light Source (LCLS) is a new tool enabling accurate pump-probe measurements for studying the physical properties of matter in the high-energy density physics regime. This instrument combines the world’s brightest x-ray source, the LCLS x-ray beam, with high-power lasers consisting of two nanosecond Nd:glass laser beams and one short-pulse Ti:sapphire laser. These lasers produce short-lived states of matter with high pressures, high temperatures or high densities with properties that are important for applications in nuclear fusion research, laboratory astrophysics and the development of intense radiation sources. In the firstmore » experiments, we have performed highly accurate x-ray diffraction and x-ray Thomson scattering techniques on shock-compressed matter resolving the transition from compressed solid matter to a co-existence regime and into the warm dense matter state. Furthermore, these complex charged-particle systems are dominated by strong correlations and quantum effects. They exist in planetary interiors and laboratory experiments, e.g., during high-power laser interactions with solids or the compression phase of inertial confinement fusion implosions. Applying record peak brightness X rays resolves the ionic interactions at atomic (Ångstrom) scale lengths and measure the static structure factor, which is a key quantity for determining equation of state data and important transport coefficients. Simultaneously, spectrally resolved measurements of plasmon features provide dynamic structure factor information that yield temperature and density with unprecedented precision at micron-scale resolution in dynamic compression experiments. This set of studies demonstrates our ability to measure fundamental thermodynamic properties that determine the state of matter in the high-energy density physics regime.« less

  16. Determination of the nuclear level densities and radiative strength function for 43 nuclei in the mass interval 28≤A≤200

    NASA Astrophysics Data System (ADS)

    Knezevic, David; Jovancevic, Nikola; Sukhovoj, Anatoly M.; Mitsyna, Ludmila V.; Krmar, Miodrag; Cong, Vu D.; Hambsch, Franz-Josef; Oberstedt, Stephan; Revay, Zsolt; Stieghorst, Christian; Dragic, Aleksandar

    2018-03-01

    The determination of nuclear level densities and radiative strength functions is one of the most important tasks in low-energy nuclear physics. Accurate experimental values of these parameters are critical for the study of the fundamental properties of nuclear structure. The step-like structure in the dependence of the level densities p on the excitation energy of nuclei Eex is observed in the two-step gamma cascade measurements for nuclei in the 28 ≤ A ≤ 200 mass region. This characteristic structure can be explained only if a co-existence of quasi-particles and phonons, as well as their interaction in a nucleus, are taken into account in the process of gamma-decay. Here we present a new improvement to the Dubna practical model for the determination of nuclear level densities and radiative strength functions. The new practical model guarantees a good description of the available intensities of the two step gamma cascades, comparable to the experimental data accuracy.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wright, Alan F.; Modine, Normand A.

    We show scaling results for materials of interest in Sandia Radiation-Effects and High-Energy-Density-Physics Mission Areas. Each timing is from a self-consistent calculation for bulk material. Two timings are given: (1) walltime for the construction of the CR exchange operator (Exchange-Operator) and (2) walltime for everything else (non-Exchange-Operator).

  18. Free-energy analysis of the electron-density fluctuation in the quantum-mechanical/molecular-mechanical simulation combined with the theory of energy representation.

    PubMed

    Matubayasi, Nobuyuki; Takahashi, Hideaki

    2012-01-28

    The relationship is investigated for QM/MM (quantum-mechanical/molecular-mechanical) systems between the fluctuations of the electronic state of the QM subsystem and of the solvation effect due to the QM-MM interaction. The free-energy change due to the electron-density fluctuation around its average is highlighted, and is evaluated through an approximate functional formulated in terms of distribution functions of the many-body coupling (pairwise non-additive) part of the QM-MM interaction energy. A set of QM/MM simulations are conducted in MM water solvent for QM water solute in ambient and supercritical conditions and for QM glycine solute in the neutral and zwitterionic forms. The variation of the electronic distortion energy of the QM solute in the course of QM/MM simulation is then shown to be compensated by the corresponding variation of the free energy of solvation. The solvation free energy conditioned by the electronic distortion energy is further analyzed with its components. It is found that the many-body contribution is essentially equal between the free energy and the average sum of solute-solvent interaction energy. © 2012 American Institute of Physics

  19. Staging and laser acceleration of ions in underdense plasma

    NASA Astrophysics Data System (ADS)

    Ting, Antonio; Hafizi, Bahman; Helle, Michael; Chen, Yu-Hsin; Gordon, Daniel; Kaganovich, Dmitri; Polyanskiy, Mikhail; Pogorelsky, Igor; Babzien, Markus; Miao, Chenlong; Dover, Nicholas; Najmudin, Zulfikar; Ettlinger, Oliver

    2017-03-01

    Accelerating ions from rest in a plasma requires extra considerations because of their heavy mass. Low phase velocity fields or quasi-electrostatic fields are often necessary, either by operating above or near the critical density or by applying other slow wave generating mechanisms. Solid targets have been a favorite and have generated many good results. High density gas targets have also been reported to produce energetic ions. It is interesting to consider acceleration of ions in laser-driven plasma configurations that will potentially allow continuous acceleration in multiple consecutive stages. The plasma will be derived from gaseous targets, producing plasma densities slightly below the critical plasma density (underdense) for the driving laser. Such a plasma is experimentally robust, being repeatable and relatively transparent to externally injected ions from a previous stage. When optimized, multiple stages of this underdense laser plasma acceleration mechanism can progressively accelerate the ions to a high final energy. For a light mass ion such as the proton, relativistic velocities could be reached, making it suitable for further acceleration by high phase velocity plasma accelerators to energies appropriate for High Energy Physics applications. Negatively charged ions such as antiprotons could be similarly accelerated in this multi-staged ion acceleration scheme.

  20. Mechanical properties in crumple-formed paper derived materials subjected to compression.

    PubMed

    Hanaor, D A H; Flores Johnson, E A; Wang, S; Quach, S; Dela-Torre, K N; Gan, Y; Shen, L

    2017-06-01

    The crumpling of precursor materials to form dense three dimensional geometries offers an attractive route towards the utilisation of minor-value waste materials. Crumple-forming results in a mesostructured system in which mechanical properties of the material are governed by complex cross-scale deformation mechanisms. Here we investigate the physical and mechanical properties of dense compacted structures fabricated by the confined uniaxial compression of a cellulose tissue to yield crumpled mesostructuring. A total of 25 specimens of various densities were tested under compression. Crumple formed specimens exhibited densities in the range 0.8-1.3 g cm -3 , and showed high strength to weight characteristics, achieving ultimate compressive strength values of up to 200 MPa under both quasi-static and high strain rate loading conditions and deformation energy that compares well to engineering materials of similar density. The materials fabricated in this work and their mechanical attributes demonstrate the potential of crumple-forming approaches in the fabrication of novel energy-absorbing materials from low-cost precursors such as recycled paper. Stiffness and toughness of the materials exhibit density dependence suggesting this forming technique further allows controllable impact energy dissipation rates in dynamic applications.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akkelin, S.V.; Sinyukov, Yu.M.

    A method allowing analysis of the overpopulation of phase space in heavy ion collisions in a model-independent way is proposed within the hydrodynamic approach. It makes it possible to extract a chemical potential of thermal pions at freeze-out, irrespective of the form of freeze-out (isothermal) hypersurface in Minkowski space and transverse flows on it. The contributions of resonance (with masses up to 2 GeV) decays to spectra, interferometry volumes, and phase-space densities are calculated and discussed in detail. The estimates of average phase-space densities and chemical potentials of thermal pions are obtained for SPS and RHIC energies. They demonstrate thatmore » multibosonic phenomena at those energies might be considered as a correction factor rather than as a significant physical effect. The analysis of the evolution of the pion average phase-space density in chemically frozen hadron systems shows that it is almost constant or slightly increases with time while the particle density and phase-space density at each space point decreases rapidly during the system's expansion. We found that, unlike the particle density, the average phase-space density has no direct link to the freeze-out criterion and final thermodynamic parameters, being connected rather to the initial phase-space density of hadronic matter formed in relativistic nucleus-nucleus collisions.« less

  2. Perturbation theory corrections to the two-particle reduced density matrix variational method.

    PubMed

    Juhasz, Tamas; Mazziotti, David A

    2004-07-15

    In the variational 2-particle-reduced-density-matrix (2-RDM) method, the ground-state energy is minimized with respect to the 2-particle reduced density matrix, constrained by N-representability conditions. Consider the N-electron Hamiltonian H(lambda) as a function of the parameter lambda where we recover the Fock Hamiltonian at lambda=0 and we recover the fully correlated Hamiltonian at lambda=1. We explore using the accuracy of perturbation theory at small lambda to correct the 2-RDM variational energies at lambda=1 where the Hamiltonian represents correlated atoms and molecules. A key assumption in the correction is that the 2-RDM method will capture a fairly constant percentage of the correlation energy for lambda in (0,1] because the nonperturbative 2-RDM approach depends more significantly upon the nature rather than the strength of the two-body Hamiltonian interaction. For a variety of molecules we observe that this correction improves the 2-RDM energies in the equilibrium bonding region, while the 2-RDM energies at stretched or nearly dissociated geometries, already highly accurate, are not significantly changed. At equilibrium geometries the corrected 2-RDM energies are similar in accuracy to those from coupled-cluster singles and doubles (CCSD), but at nonequilibrium geometries the 2-RDM energies are often dramatically more accurate as shown in the bond stretching and dissociation data for water and nitrogen. (c) 2004 American Institute of Physics.

  3. Improved continuum lowering calculations in screened hydrogenic model with l-splitting for high energy density systems

    NASA Astrophysics Data System (ADS)

    Ali, Amjad; Shabbir Naz, G.; Saleem Shahzad, M.; Kouser, R.; Aman-ur-Rehman; Nasim, M. H.

    2018-03-01

    The energy states of the bound electrons in high energy density systems (HEDS) are significantly affected due to the electric field of the neighboring ions. Due to this effect bound electrons require less energy to get themselves free and move into the continuum. This phenomenon of reduction in potential is termed as ionization potential depression (IPD) or the continuum lowering (CL). The foremost parameter to depict this change is the average charge state, therefore accurate modeling for CL is imperative in modeling atomic data for computation of radiative and thermodynamic properties of HEDS. In this paper, we present an improved model of CL in the screened hydrogenic model with l-splitting (SHML) proposed by G. Faussurier and C. Blancard, P. Renaudin [High Energy Density Physics 4 (2008) 114] and its effect on average charge state. We propose the level charge dependent calculation of CL potential energy and inclusion of exchange and correlation energy in SHML. By doing this, we made our model more relevant to HEDS and free from CL empirical parameter to the plasma environment. We have implemented both original and modified model of SHML in our code named OPASH and benchmark our results with experiments and other state-of-the-art simulation codes. We compared our results of average charge state for Carbon, Beryllium, Aluminum, Iron and Germanium against published literature and found a very reasonable agreement between them.

  4. Dark energy in the environments of the Local Group, the M 81 group, and the CenA group: the normalized Hubble diagram

    NASA Astrophysics Data System (ADS)

    Teerikorpi, P.; Chernin, A. D.; Karachentsev, I. D.; Valtonen, M. J.

    2008-05-01

    Context: Type Ia supernova observations on scales of thousands of Mpc show that the global expansion of the universe is accelerated by antigravity produced by the enigmatic dark energy contributing 3/4 of the total energy of the universe. Aims: Does antigravity act on small scales as well as large? As a continuation of our efforts to answer this crucial question we combine high accuracy observations of the galaxy flows around the Local Group and the nearby M 81 and CenA groups to observe the effect of the dark energy density on local scales of a few Mpc. Methods: We use an analytical model to describe non-uniform static space-time regions around galaxy groups. In this context it is useful to present the Hubble flow in a normalized Hubble diagram V/Hv Rv vs. r/R_v, where the vacuum Hubble constant Hv depends only on the cosmological vacuum density and the zero-gravity distance Rv depends on the vacuum density and on the mass of the galaxy group. We have prepared the normalized Hubble diagrams for the LG, M 81 and CenA group environments for different values of the assumed vacuum energy density, using a total of about 150 galaxies, for almost all of which the distances have been measured by the HST. Results: The normalized Hubble diagram, where we identify dynamically different regions, is in agreement with the standard vacuum density (Ωv = 0.77~h_70-2), the out-flow of galaxies clearly being controlled by the minimum energy condition imposed by the central mass plus the vacuum density. A high vacuum density 1.6~h_70-2 violates the minimum energy limit, while a low density 0.1~h_70-2 leaves the start of the Hubble flow around 1-2 Mpc with the slope close to the global value obscure. We also consider the subtle relation of the zero-gravity radius Rv to the zero-velocity distance R0 appearing in the usual retarded expansion around a mass M: in a vacuum-dominated flat universe R0 ≈ 0.76 R_v. Conclusions: The normalized Hubble diagram appears to be a good way to present and analyze physically different regions around mass clumps embedded in cosmological vacuum. The most natural interpretation of the diagram is that the local density of the dark energy is approximately equal to the density known from studies on global scales.

  5. Solid H2 in the interstellar medium

    NASA Astrophysics Data System (ADS)

    Füglistaler, A.; Pfenniger, D.

    2018-06-01

    Context. Condensation of H2 in the interstellar medium (ISM) has long been seen as a possibility, either by deposition on dust grains or thanks to a phase transition combined with self-gravity. H2 condensation might explain the observed low efficiency of star formation and might help to hide baryons in spiral galaxies. Aims: Our aim is to quantify the solid fraction of H2 in the ISM due to a phase transition including self-gravity for different densities and temperatures in order to use the results in more complex simulations of the ISM as subgrid physics. Methods: We used molecular dynamics simulations of fluids at different temperatures and densities to study the formation of solids. Once the simulations reached a steady state, we calculated the solid mass fraction, energy increase, and timescales. By determining the power laws measured over several orders of magnitude, we extrapolated to lower densities the higher density fluids that can be simulated with current computers. Results: The solid fraction and energy increase of fluids in a phase transition are above 0.1 and do not follow a power law. Fluids out of a phase transition are still forming a small amount of solids due to chance encounters of molecules. The solid mass fraction and energy increase of these fluids are linearly dependent on density and can easily be extrapolated. The timescale is below one second, the condensation can be considered instantaneous. Conclusions: The presence of solid H2 grains has important dynamic implications on the ISM as they may be the building blocks for larger solid bodies when gravity is included. We provide the solid mass fraction, energy increase, and timescales for high density fluids and extrapolation laws for lower densities.

  6. Quantification of breast density with spectral mammography based on a scanned multi-slit photon-counting detector: a feasibility study.

    PubMed

    Ding, Huanjun; Molloi, Sabee

    2012-08-07

    A simple and accurate measurement of breast density is crucial for the understanding of its impact in breast cancer risk models. The feasibility to quantify volumetric breast density with a photon-counting spectral mammography system has been investigated using both computer simulations and physical phantom studies. A computer simulation model involved polyenergetic spectra from a tungsten anode x-ray tube and a Si-based photon-counting detector has been evaluated for breast density quantification. The figure-of-merit (FOM), which was defined as the signal-to-noise ratio of the dual energy image with respect to the square root of mean glandular dose, was chosen to optimize the imaging protocols, in terms of tube voltage and splitting energy. A scanning multi-slit photon-counting spectral mammography system has been employed in the experimental study to quantitatively measure breast density using dual energy decomposition with glandular and adipose equivalent phantoms of uniform thickness. Four different phantom studies were designed to evaluate the accuracy of the technique, each of which addressed one specific variable in the phantom configurations, including thickness, density, area and shape. In addition to the standard calibration fitting function used for dual energy decomposition, a modified fitting function has been proposed, which brought the tube voltages used in the imaging tasks as the third variable in dual energy decomposition. For an average sized 4.5 cm thick breast, the FOM was maximized with a tube voltage of 46 kVp and a splitting energy of 24 keV. To be consistent with the tube voltage used in current clinical screening exam (∼32 kVp), the optimal splitting energy was proposed to be 22 keV, which offered a FOM greater than 90% of the optimal value. In the experimental investigation, the root-mean-square (RMS) error in breast density quantification for all four phantom studies was estimated to be approximately 1.54% using standard calibration function. The results from the modified fitting function, which integrated the tube voltage as a variable in the calibration, indicated a RMS error of approximately 1.35% for all four studies. The results of the current study suggest that photon-counting spectral mammography systems may potentially be implemented for an accurate quantification of volumetric breast density, with an RMS error of less than 2%, using the proposed dual energy imaging technique.

  7. Microscopic theory of energy dissipation and decoherence in open systems: A quantum Fermi's golden rule

    NASA Astrophysics Data System (ADS)

    Taj, D.; Iotti, R. C.; Rossi, F.

    2009-11-01

    We shall revisit the conventional adiabatic or Markov approximation, which — contrary to the semiclassical case- does not preserve the positive-definite character of the corresponding density matrix, thus leading to highly non-physical results. To overcome this serious limitation, originally addressed by Davies and co-workers almost three decades ago, we shall propose an alternative more general adiabatic procedure, able to provide a reliable/robust treatment of energy-dissipation and dephasing processes in electronic quantum devices. Unlike standard master-equation formulations, our procedure guarantees a positive evolution for a variety of physical subsystem (including the common partial trace), and quantum scattering rates are well defined even for subsystems with internal structure/ continuous energy spectrum. We shall compare the proposed Markov dissipation model with the conventional one also through basic simulations of energy-relaxation versus decoherence channels in prototypical semiconductor nanodevices.

  8. A hundred years with the cosmological constant

    NASA Astrophysics Data System (ADS)

    Grøn, Øyvind G.

    2018-07-01

    The main points in the history of the cosmological constant are briefly discussed. As a conceptual background, useful for teaching of physics at an elementary college and university level, Newton’s theory formulated locally in terms of the Poisson equation is presented, and it is shown how it is modified by the introduction of the cosmological constant. The different physical interpretations of the cosmological constant, as introduced by Einstein in 1917 and interpreted by Lemaître in 1934, are presented. Energy conservation in an expanding universe dominated by vacuum energy is discussed. The connection between the cosmological constant and the quantum mechanical vacuum energy is mentioned, together with the problem that a quantum mechanical calculation of the density of the vacuum energy gives a vastly too large value of the cosmological constant. The article is concluded by reviewing a solution of this problem that was presented on May 11, 2017.

  9. High-Energy-Density-Physics Studies for Inertial Confinement Fusion Applications

    NASA Astrophysics Data System (ADS)

    Hu, S. X.

    2017-10-01

    Accurate knowledge of the static, transport, and optical properties of high-energy-density (HED) plasmas is essential for reliably designing and understanding inertial confinement fusion (ICF) implosions. In the warm-dense-matter regime routinely accessed by low-adiabat ICF implosions, many-body strong-coupling and quantum electron degeneracy effects play an important role in determining plasma properties. The past several years have witnessed intense efforts to assess the importance of the microphysics of ICF targets, both theoretically and experimentally. On the theory side, first-principles methods based on quantum mechanics have been applied to investigate the properties of warm, dense plasmas. Specifically, self-consistent investigations have recently been performed on the equation of state, thermal conductivity, and opacity of a variety of ICF ablators such as polystyrene (CH), beryllium, carbon, and silicon over a wide range of densities and temperatures. In this talk, we will focus on the most-recent progress on these ab initio HED physics studies, which generally result in favorable comparisons with experiments. Upon incorporation into hydrocodes for ICF simulations, these first-principles ablator-plasma properties have produced significant differences over traditional models in predicting 1-D target performance of ICF implosions on OMEGA and direct-drive-ignition designs for the National Ignition Facility. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944. *In collaboration with L. A. Collins, T. R. Boehly, G. W. Collins, J. D. Kress, and V. N. Goncharov.

  10. Physics of spacecraft-based interplanetary dust collection by impact into low-density media

    NASA Technical Reports Server (NTRS)

    Anderson, William W.; Ahrens, T. J.

    1994-01-01

    A spacecraft encountering an interplanetary dust particle (IDP) at a relative velocity of several kilometers per second may be used to capture that particle for in situ analysis or for analysis upon Earth return. In this paper we study the impact of a dust particle into a low-density medium (i.e., a foam) such that the foam dissipates the kinetic energy of impact over a sufficient distance to stop the particle without destroying it.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pribram-Jones, A.; Burke, K.

    We show that the adiabatic connection formula of ground-state density functional theory relates the correlation energy to a coupling-constant integral over a purely potential contribution, and is widely used to understand and improve approximations. The corresponding formula for thermal density functional theory is cast as an integral over temperatures instead, ranging upward from the system's physical temperature. We also show how to relate different correlation components to each other, either in terms of temperature or coupling-constant integrations. Lastly, we illustrate our results on the uniform electron gas.

  12. Proton and Ion Acceleration using Multi-kJ Lasers

    NASA Astrophysics Data System (ADS)

    Wilks, S. C.; Ma, T.; Kemp, A. J.; Tabak, M.; Link, A. J.; Haefner, C.; Hermann, M. R.; Mariscal, D. A.; Rubenchik, S.; Sterne, P.; Kim, J.; McGuffey, C.; Bhutwala, K.; Beg, F.; Wei, M.; Kerr, S. M.; Sentoku, Y.; Iwata, N.; Norreys, P.; Sevin, A.

    2017-10-01

    Short (<50 ps) laser pulses are capable of accelerating protons and ions from solid (or dense gas jet) targets as demonstrated by a number of laser facilities around the world in the past 20 years accelerating protons to between 1 and 100 MeV, depending on specific laser parameters. Over this time, a distinct scaling with energy has emerged that shows a trend towards increasing maximum accelerated proton (ion) energy with increasing laser energy. We consider the physical basis underlying this scaling, and use this to estimate future results when multi-kJ laser systems begin operating in this new high energy regime. In particular, we consider the effects of laser prepulse, intensity, energy, and pulse length on the number and energy of the ions, as well as target size and composition. We also discuss potential uses of these ion beams in High Energy Density Physics Experiments. This work was performed under the auspices of the U.S. Department of Energy (DOE) by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and funded by the LLNL LDRD program under tracking code 17-ERD-039.

  13. High moisture corn stover pelleting in a flat die pellet mill fitted with a 6 mm die: physical properties and specific energy consumption

    DOE PAGES

    Tumuluru, Jaya Shankar

    2015-06-15

    The quality and specific energy consumption (SEC) of the biomass pellets produced depend upon pelleting process conditions. The present study includes understanding the effect of feedstock moisture in the range of 28–38% (wet basis [w.b.]) and preheating in the range of 30–110°C at two die speeds of 40 and 60 Hz on the physical properties and SEC. A flat die pellet mill fitted with a 6 mm die was used in the present study. The physical properties of pellets such as moisture content, unit, bulk and tapped density, durability, and expansion ratio and SEC of the pelleting process are measured.more » The results indicate that the pellets produced have durability values in the range of 87–98%, and unit bulk and tapped density in the range of 670–1100, 375–575, and 420–620 kg/m³. Increasing the feedstock moisture content from 33% to 38% (w.b) decreased the unit, bulk and tapped density by about 30–40%. Increasing feedstock moisture content increased the expansion ratio and decreased the density values. A higher feedstock moisture content of 38% (w.b.) and higher preheating temperature of 110°C resulted in lower density and a higher expansion ratio, which can be attributed to flash off of moisture as the material extrudes out of the die. The SEC was in the range of 75–275 kWh/ton. Higher feedstock moisture content of 38% (w.b.) and a lower die speed of 40 Hz increased the SEC, whereas lower to medium preheating temperature (30–70°C), medium feedstock moisture content of 33% (w.b.), and a higher die speed of 60 Hz minimized the SEC to <100 kWh/ton.« less

  14. Physics objectives of PI3 spherical tokamak program

    NASA Astrophysics Data System (ADS)

    Howard, Stephen; Laberge, Michel; Reynolds, Meritt; O'Shea, Peter; Ivanov, Russ; Young, William; Carle, Patrick; Froese, Aaron; Epp, Kelly

    2017-10-01

    Achieving net energy gain with a Magnetized Target Fusion (MTF) system requires the initial plasma state to satisfy a set of performance goals, such as particle inventory (1021 ions), sufficient magnetic flux (0.3 Wb) to confine the plasma without MHD instability, and initial energy confinement time several times longer than the compression time. General Fusion (GF) is now constructing Plasma Injector 3 (PI3) to explore the physics of reactor-scale plasmas. Energy considerations lead us to design around an initial state of Rvessel = 1 m. PI3 will use fast coaxial helicity injection via a Marshall gun to create a spherical tokamak plasma, with no additional heating. MTF requires solenoid-free startup with no vertical field coils, and will rely on flux conservation by a metal wall. PI3 is 5x larger than SPECTOR so is expected to yield magnetic lifetime increase of 25x, while peak temperature of PI3 is expected to be similar (400-500 eV) Physics investigations will study MHD activity and the resistive and convective evolution of current, temperature and density profiles. We seek to understand the confinement physics, radiative loss, thermal and particle transport, recycling and edge physics of PI3.

  15. Ground-state densities from the Rayleigh-Ritz variation principle and from density-functional theory.

    PubMed

    Kvaal, Simen; Helgaker, Trygve

    2015-11-14

    The relationship between the densities of ground-state wave functions (i.e., the minimizers of the Rayleigh-Ritz variation principle) and the ground-state densities in density-functional theory (i.e., the minimizers of the Hohenberg-Kohn variation principle) is studied within the framework of convex conjugation, in a generic setting covering molecular systems, solid-state systems, and more. Having introduced admissible density functionals as functionals that produce the exact ground-state energy for a given external potential by minimizing over densities in the Hohenberg-Kohn variation principle, necessary and sufficient conditions on such functionals are established to ensure that the Rayleigh-Ritz ground-state densities and the Hohenberg-Kohn ground-state densities are identical. We apply the results to molecular systems in the Born-Oppenheimer approximation. For any given potential v ∈ L(3/2)(ℝ(3)) + L(∞)(ℝ(3)), we establish a one-to-one correspondence between the mixed ground-state densities of the Rayleigh-Ritz variation principle and the mixed ground-state densities of the Hohenberg-Kohn variation principle when the Lieb density-matrix constrained-search universal density functional is taken as the admissible functional. A similar one-to-one correspondence is established between the pure ground-state densities of the Rayleigh-Ritz variation principle and the pure ground-state densities obtained using the Hohenberg-Kohn variation principle with the Levy-Lieb pure-state constrained-search functional. In other words, all physical ground-state densities (pure or mixed) are recovered with these functionals and no false densities (i.e., minimizing densities that are not physical) exist. The importance of topology (i.e., choice of Banach space of densities and potentials) is emphasized and illustrated. The relevance of these results for current-density-functional theory is examined.

  16. Communication: Near-locality of exchange and correlation density functionals for 1- and 2-electron systems

    NASA Astrophysics Data System (ADS)

    Sun, Jianwei; Perdew, John P.; Yang, Zenghui; Peng, Haowei

    2016-05-01

    The uniform electron gas and the hydrogen atom play fundamental roles in condensed matter physics and quantum chemistry. The former has an infinite number of electrons uniformly distributed over the neutralizing positively charged background, and the latter only one electron bound to the proton. The uniform electron gas was used to derive the local spin density approximation to the exchange-correlation functional that undergirds the development of the Kohn-Sham density functional theory. We show here that the ground-state exchange-correlation energies of the hydrogen atom and many other 1- and 2-electron systems are modeled surprisingly well by a different local spin density approximation (LSDA0). LSDA0 is constructed to satisfy exact constraints but agrees surprisingly well with the exact results for a uniform two-electron density in a finite, curved three-dimensional space. We also apply LSDA0 to excited or noded 1-electron densities, where it works less well. Furthermore, we show that the localization of the exact exchange hole for a 1- or 2-electron ground state can be measured by the ratio of the exact exchange energy to its optimal lower bound.

  17. Enhanced Constraints for Accurate Lower Bounds on Many-Electron Quantum Energies from Variational Two-Electron Reduced Density Matrix Theory.

    PubMed

    Mazziotti, David A

    2016-10-07

    A central challenge of physics is the computation of strongly correlated quantum systems. The past ten years have witnessed the development and application of the variational calculation of the two-electron reduced density matrix (2-RDM) without the wave function. In this Letter we present an orders-of-magnitude improvement in the accuracy of 2-RDM calculations without an increase in their computational cost. The advance is based on a low-rank, dual formulation of an important constraint on the 2-RDM, the T2 condition. Calculations are presented for metallic chains and a cadmium-selenide dimer. The low-scaling T2 condition will have significant applications in atomic and molecular, condensed-matter, and nuclear physics.

  18. Enhanced Constraints for Accurate Lower Bounds on Many-Electron Quantum Energies from Variational Two-Electron Reduced Density Matrix Theory

    NASA Astrophysics Data System (ADS)

    Mazziotti, David A.

    2016-10-01

    A central challenge of physics is the computation of strongly correlated quantum systems. The past ten years have witnessed the development and application of the variational calculation of the two-electron reduced density matrix (2-RDM) without the wave function. In this Letter we present an orders-of-magnitude improvement in the accuracy of 2-RDM calculations without an increase in their computational cost. The advance is based on a low-rank, dual formulation of an important constraint on the 2-RDM, the T 2 condition. Calculations are presented for metallic chains and a cadmium-selenide dimer. The low-scaling T 2 condition will have significant applications in atomic and molecular, condensed-matter, and nuclear physics.

  19. Random-Phase Approximation Methods

    NASA Astrophysics Data System (ADS)

    Chen, Guo P.; Voora, Vamsee K.; Agee, Matthew M.; Balasubramani, Sree Ganesh; Furche, Filipp

    2017-05-01

    Random-phase approximation (RPA) methods are rapidly emerging as cost-effective validation tools for semilocal density functional computations. We present the theoretical background of RPA in an intuitive rather than formal fashion, focusing on the physical picture of screening and simple diagrammatic analysis. A new decomposition of the RPA correlation energy into plasmonic modes leads to an appealing visualization of electron correlation in terms of charge density fluctuations. Recent developments in the areas of beyond-RPA methods, RPA correlation potentials, and efficient algorithms for RPA energy and property calculations are reviewed. The ability of RPA to approximately capture static correlation in molecules is quantified by an analysis of RPA natural occupation numbers. We illustrate the use of RPA methods in applications to small-gap systems such as open-shell d- and f-element compounds, radicals, and weakly bound complexes, where semilocal density functional results exhibit strong functional dependence.

  20. Riemannian geometry of thermodynamics and systems with repulsive power-law interactions.

    PubMed

    Ruppeiner, George

    2005-07-01

    A Riemannian geometric theory of thermodynamics based on the postulate that the curvature scalar R is proportional to the inverse free energy density is used to investigate three-dimensional fluid systems of identical classical point particles interacting with each other via a power-law potential energy gamma r(-alpha) . Such systems are useful in modeling melting transitions. The limit alpha-->infinity corresponds to the hard sphere gas. A thermodynamic limit exists only for short-range (alpha>3) and repulsive (gamma>0) interactions. The geometric theory solutions for given alpha>3 , gamma>0 , and any constant temperature T have the following properties: (1) the thermodynamics follows from a single function b (rho T(-3/alpha) ) , where rho is the density; (2) all solutions are equivalent up to a single scaling constant for rho T(-3/alpha) , related to gamma via the virial theorem; (3) at low density, solutions correspond to the ideal gas; (4) at high density there are solutions with pressure and energy depending on density as expected from solid state physics, though not with a Dulong-Petit heat capacity limit; (5) for 33.7913 a phase transition is required to go between these regimes; (7) for any alpha>3 we may include a first-order phase transition, which is expected from computer simulations; and (8) if alpha-->infinity, the density approaches a finite value as the pressure increases to infinity, with the pressure diverging logarithmically in the density difference.

  1. The Colour of the Noble Metals.

    ERIC Educational Resources Information Center

    Poole, R. T.

    1983-01-01

    Examines the physical basis for colors of noble metals (copper, silver, gold) developed from energy conservation/quantum mechanical view of free electron photoabsorption. Describes production of absorption edges produced by change in density of occupied valence electron states in the d-band, which allows stronger absorption in the visible photon…

  2. Physical-Mechanisms Based Reliability Analysis For Emerging Technologies

    DTIC Science & Technology

    2017-05-05

    irradiation is great- ly enhanced by biasing the...devices during irradiation and/or applying high field stress be- fore irradiation . The resulting defect energy distributions were evaluated after... irradiation and/or high field stress via low-frequency noise measurements. Significant increases were observed in acceptor densities for defects with

  3. Numerical investigation of kinetic turbulence in relativistic pair plasmas - I. Turbulence statistics

    NASA Astrophysics Data System (ADS)

    Zhdankin, Vladimir; Uzdensky, Dmitri A.; Werner, Gregory R.; Begelman, Mitchell C.

    2018-02-01

    We describe results from particle-in-cell simulations of driven turbulence in collisionless, magnetized, relativistic pair plasma. This physical regime provides a simple setting for investigating the basic properties of kinetic turbulence and is relevant for high-energy astrophysical systems such as pulsar wind nebulae and astrophysical jets. In this paper, we investigate the statistics of turbulent fluctuations in simulations on lattices of up to 10243 cells and containing up to 2 × 1011 particles. Due to the absence of a cooling mechanism in our simulations, turbulent energy dissipation reduces the magnetization parameter to order unity within a few dynamical times, causing turbulent motions to become sub-relativistic. In the developed stage, our results agree with predictions from magnetohydrodynamic turbulence phenomenology at inertial-range scales, including a power-law magnetic energy spectrum with index near -5/3, scale-dependent anisotropy of fluctuations described by critical balance, lognormal distributions for particle density and internal energy density (related by a 4/3 adiabatic index, as predicted for an ultra-relativistic ideal gas), and the presence of intermittency. We also present possible signatures of a kinetic cascade by measuring power-law spectra for the magnetic, electric and density fluctuations at sub-Larmor scales.

  4. Extension of many-body theory and approximate density functionals to fractional charges and fractional spins.

    PubMed

    Yang, Weitao; Mori-Sánchez, Paula; Cohen, Aron J

    2013-09-14

    The exact conditions for density functionals and density matrix functionals in terms of fractional charges and fractional spins are known, and their violation in commonly used functionals has been shown to be the root of many major failures in practical applications. However, approximate functionals are designed for physical systems with integer charges and spins, not in terms of the fractional variables. Here we develop a general framework for extending approximate density functionals and many-electron theory to fractional-charge and fractional-spin systems. Our development allows for the fractional extension of any approximate theory that is a functional of G(0), the one-electron Green's function of the non-interacting reference system. The extension to fractional charge and fractional spin systems is based on the ensemble average of the basic variable, G(0). We demonstrate the fractional extension for the following theories: (1) any explicit functional of the one-electron density, such as the local density approximation and generalized gradient approximations; (2) any explicit functional of the one-electron density matrix of the non-interacting reference system, such as the exact exchange functional (or Hartree-Fock theory) and hybrid functionals; (3) many-body perturbation theory; and (4) random-phase approximations. A general rule for such an extension has also been derived through scaling the orbitals and should be useful for functionals where the link to the Green's function is not obvious. The development thus enables the examination of approximate theories against known exact conditions on the fractional variables and the analysis of their failures in chemical and physical applications in terms of violations of exact conditions of the energy functionals. The present work should facilitate the calculation of chemical potentials and fundamental bandgaps with approximate functionals and many-electron theories through the energy derivatives with respect to the fractional charge. It should play an important role in developing accurate approximate density functionals and many-body theory.

  5. Effects of caloric restriction with varying energy density and aerobic exercise on weight change and satiety in young female adults.

    PubMed

    Song, Sae Won; Bae, Yoon Jung; Lee, Dae Taek

    2010-10-01

    This study examines the combined effects of caloric restriction on body composition, blood lipid, and satiety in slightly overweight women by varying food density and aerobic exercise. Twenty-three women were randomly assigned to one of two groups for a four-week weight management program: the high-energy density diet plus exercise (HDE: n = 12, 22 ± 2 yrs, 65 ± 7 kg, 164 ± 5 cm, 35 ± 4 % fat) and low-energy density diet plus exercise (LDE: n = 11, 22 ± 1 yrs, 67 ± 7 kg, 161 ± 2 cm, 35 ± 4 % fat) groups. Subjects maintained a low-calorie diet (1,500 kcal/day) during the program. Isocaloric (483 ± 26 for HDE, 487 ± 27 kcal for LDE) but different weight (365 ± 68 for HDE, 814 ± 202 g for LDE) of lunch was provided. After lunch, they biked at 60% of maximum capacity for 40 minutes, five times per week. The hunger level was scaled (1: extremely hungry; 9: extremely full) at 17:30 each day. Before and after the program, the subjects' physical characteristics were measured, and fasting blood samples were drawn. The daily energy intake was 1,551 ± 259 for HDE and 1,404 ± 150 kcal for LDE (P > 0.05). After four weeks, the subjects' weights and % fat decreased for both LDE (-1.9 kg and -1.5%, P < 0.05) and HDE (-1.6 kg and -1.4%, respectively, P < 0.05). The hunger level was significantly higher for HDE (2.46 ± 0.28) than for LDE (3.10 ± 0.26) (P < 0.05). The results suggest that a low-energy density diet is more likely to be tolerated than a high-energy density diet for a weight management program combining a low-calorie diet and exercise, mainly because of a reduced hunger sensation.

  6. On propagation of energy flux in de Sitter spacetime

    NASA Astrophysics Data System (ADS)

    Hoque, Sk Jahanur; Virmani, Amitabh

    2018-04-01

    In this paper, we explore propagation of energy flux in the future Poincaré patch of de Sitter spacetime. We present two results. First, we compute the flux integral of energy using the symplectic current density of the covariant phase space approach on hypersurfaces of constant radial physical distance. Using this computation we show that in the tt-projection, the integrand in the energy flux expression on the cosmological horizon is same as that on the future null infinity. This suggests that propagation of energy flux in de Sitter spacetime is sharp. Second, we relate our energy flux expression in tt-projection to a previously obtained expression using the Isaacson stress-tensor approach.

  7. Characterization of drinking water treatment sludge after ultrasound treatment.

    PubMed

    Zhou, Zhiwei; Yang, Yanling; Li, Xing; Zhang, Yang; Guo, Xuan

    2015-05-01

    Ultrasonic technology alone or the combination of ultrasound with alkaline or thermal hydrolysis as pretreatment for anaerobic digestion of activated sludge has been extensively documented. However, there are few reports on ultrasound as pretreatment of drinking water treatment sludge (DWTS), and thereby the characteristic variability of sonicated DWTS has not been fully examined. This research presents a lab-scale study on physical, chemical and biological characteristics of a DWTS sample collected from a water plant after ultrasonic treatment via a bath/probe sonoreactor. By doing this work, we provide implications for using ultrasound as pretreatment of enhanced coagulation of recycling sludge, and for the conditioning of water and wastewater mixed sludge by ultrasound combined with polymers. Our results indicate that the most vigorous DWTS disintegration quantified by particles' size reduction and organic solubilization is achieved with 5 W/ml for 30 min ultra-sonication (specific energy of 1590 kWh/kg TS). The Brunauer, Emmett and Teller (BET) specific surface area of sonicated DWTS flocs increase as ultra-sonication prolongs at lower energy densities (0.03 and 1 W/ml), while decrease as ultra-sonication prolongs at higher energy densities (3 and 5 W/ml). Additionally, the pH and zeta potential of sonicated DWTS slightly varies under all conditions observed. A shorter sonication with higher energy density plays a more effective role in restraining microbial activity than longer sonication with lower energy density. Copyright © 2015. Published by Elsevier B.V.

  8. Extracting physical quantities from BES data

    NASA Astrophysics Data System (ADS)

    Fox, Michael; Field, Anthony; Schekochihin, Alexander; van Wyk, Ferdinand; MAST Team

    2015-11-01

    We propose a method to extract the underlying physical properties of turbulence from measurements, thereby facilitating quantitative comparisons between theory and experiment. Beam Emission Spectroscopy (BES) diagnostics record fluctuating intensity time series, which are related to the density field in the plasma through Point-Spread Functions (PSFs). Assuming a suitable form for the correlation function of the underlying turbulence, analytical expressions are derived that relate the correlation parameters of the intensity field: the radial and poloidal correlation lengths and wavenumbers, the correlation time and the fluctuation amplitude, to the equivalent correlation properties of the density field. In many cases, the modification caused by the PSFs is substantial enough to change conclusions about physics. Our method is tested by applying PSFs to the ``real'' density field, generated by non-linear gyrokinetic simulations of MAST, to create synthetic turbulence data, from which the method successfully recovers the correlation function of the ``real'' density field. This method is applied to BES data from MAST to determine the scaling of the 2D structure of the ion-scale turbulence with equilibrium parameters, including the ExB flow shear. Work funded by the Euratom research and training programme 2014-2018 under grant agreement No 633053 and from the RCUK Energy Programme [grant number EP/I501045].

  9. Physical and absorption properties of titanium nanoparticles incorporated into zinc magnesium phosphate glass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ismail, S.F.; Sahar, M.R., E-mail: mrahim057@gmail.com; Ghoshal, S.K.

    We report the influences of Titania (TiO{sub 2}) nanoparticles (NPs) on the physical and optical properties of melt quench synthesized zinc magnesium phosphate glasses. Five glass samples with composition (42 − x)P{sub 2}O{sub 5}–50ZnO–8MgO–xTiO{sub 2}, where x = 0, 1, 2, 3, 4 mol% are prepared and characterized. XRD pattern verified the amorphous nature of all samples. TEM images manifested the growth of Ti NPs of average size ≈ 5.78 nm. TiO{sub 2} NP concentration dependent variation in the physical properties including glass density, molar volume, molar refractivity, electronic polarizability and ionic packing density are determined. The values of glassmore » refractive indices, density and ionic packing density are increased with the increase of TiO{sub 2} NP contents. Conversely, the Urbach energy, direct and indirect optical band gap are found to decrease with the increase of TiO{sub 2} NP concentration. These glass compositions may be potential for various solid state devices including laser. - Highlights: • TiO{sub 2} NP embedded self-cleaning phosphate glass are synthesized for the first time. • Well dispersed and uniform sized TiO{sub 2} NPs are grown. • Absorption spectra revealed prominent peak in the UV region. • TiO{sub 2} NPs strongly influenced the physical and absorption features of synthesized glasses. • The effects of TiO{sub 2} NPs on the physical and optical properties of these glasses are determined.« less

  10. Understanding density functional theory (DFT) and completing it in practice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bagayoko, Diola

    2014-12-15

    We review some salient points in the derivation of density functional theory (DFT) and of the local density approximation (LDA) of it. We then articulate an understanding of DFT and LDA that seems to be ignored in the literature. We note the well-established failures of many DFT and LDA calculations to reproduce the measured energy gaps of finite systems and band gaps of semiconductors and insulators. We then illustrate significant differences between the results from self consistent calculations using single trial basis sets and those from computations following the Bagayoko, Zhao, and Williams (BZW) method, as enhanced by Ekuma andmore » Franklin (BZW-EF). Unlike the former, the latter calculations verifiably attain the absolute minima of the occupied energies, as required by DFT. These minima are one of the reasons for the agreement between their results and corresponding, experimental ones for the band gap and a host of other properties. Further, we note predictions of DFT BZW-EF calculations that have been confirmed by experiment. Our subsequent description of the BZW-EF method ends with the application of the Rayleigh theorem in the selection, among the several calculations the method requires, of the one whose results have a full, physics content ascribed to DFT. This application of the Rayleigh theorem adds to or completes DFT, in practice, to preserve the physical content of unoccupied, low energy levels. Discussions, including implications of the method, and a short conclusion follow the description of the method. The successive augmentation of the basis set in the BZW-EF method, needed for the application of the Rayleigh theorem, is also necessary in the search for the absolute minima of the occupied energies, in practice.« less

  11. Energy Budget of Forming Clumps in Numerical Simulations of Collapsing Clouds

    NASA Astrophysics Data System (ADS)

    Camacho, Vianey; Vázquez-Semadeni, Enrique; Ballesteros-Paredes, Javier; Gómez, Gilberto C.; Fall, S. Michael; Mata-Chávez, M. Dolores

    2016-12-01

    We analyze the physical properties and energy balance of density enhancements in two SPH simulations of the formation, evolution, and collapse of giant molecular clouds. In the simulations, no feedback is included, so all motions are due either to the initial decaying turbulence or to gravitational contraction. We define clumps as connected regions above a series of density thresholds. The resulting full set of clumps follows the generalized energy equipartition relation, {σ }v/{R}1/2\\propto {{{Σ }}}1/2, where {σ }v is the velocity dispersion, R is the “radius,” and Σ is the column density. We interpret this as a natural consequence of gravitational contraction at all scales rather than virial equilibrium. Nevertheless, clumps with low Σ tend to show a large scatter around equipartition. In more than half of the cases, this scatter is dominated by external turbulent compressions that assemble the clumps rather than by small-scale random motions that would disperse them. The other half does actually disperse. Moreover, clump sub-samples selected by means of different criteria exhibit different scalings. Sub-samples with narrow Σ ranges follow Larson-like relations, although characterized by their respective values of Σ. Finally, we find that (I) clumps lying in filaments tend to appear sub-virial, (II) high-density cores (n≥slant {10}5 cm3) that exhibit moderate kinetic energy excesses often contain sink (“stellar”) particles and the excess disappears when the stellar mass is taken into account in the energy balance, and (III) cores with kinetic energy excess but no stellar particles are truly in a state of dispersal.

  12. Density and temperature characterization of long-scale length, near-critical density controlled plasma produced from ultra-low density plastic foam

    PubMed Central

    Chen, S. N.; Iwawaki, T.; Morita, K.; Antici, P.; Baton, S. D.; Filippi, F.; Habara, H.; Nakatsutsumi, M.; Nicolaï , P.; Nazarov, W.; Rousseaux, C.; Starodubstev, M.; Tanaka, K. A.; Fuchs, J.

    2016-01-01

    The ability to produce long-scale length (i.e. millimeter scale-length), homogeneous plasmas is of interest in studying a wide range of fundamental plasma processes. We present here a validated experimental platform to create and diagnose uniform plasmas with a density close or above the critical density. The target consists of a polyimide tube filled with an ultra low-density plastic foam where it was heated by x-rays, produced by a long pulse laser irradiating a copper foil placed at one end of the tube. The density and temperature of the ionized foam was retrieved by using x-ray radiography and proton radiography was used to verify the uniformity of the plasma. Plasma temperatures of 5–10 eV and densities around 1021 cm−3 are measured. This well-characterized platform of uniform density and temperature plasma is of interest for experiments using large-scale laser platforms conducting High Energy Density Physics investigations. PMID:26923471

  13. Effective homogeneity of the exchange-correlation and non-interacting kinetic energy functionals under density scaling.

    PubMed

    Borgoo, Alex; Teale, Andrew M; Tozer, David J

    2012-01-21

    Correlated electron densities, experimental ionisation potentials, and experimental electron affinities are used to investigate the homogeneity of the exchange-correlation and non-interacting kinetic energy functionals of Kohn-Sham density functional theory under density scaling. Results are presented for atoms and small molecules, paying attention to the influence of the integer discontinuity and the choice of the electron affinity. For the exchange-correlation functional, effective homogeneities are highly system-dependent on either side of the integer discontinuity. By contrast, the average homogeneity-associated with the potential that averages over the discontinuity-is generally close to 4/3 when the discontinuity is computed using positive affinities for systems that do bind an excess electron and negative affinities for those that do not. The proximity to 4/3 becomes increasingly pronounced with increasing atomic number. Evaluating the discontinuity using a zero affinity in systems that do not bind an excess electron instead leads to effective homogeneities on the electron abundant side that are close to 4/3. For the non-interacting kinetic energy functional, the effective homogeneities are less system-dependent and the effect of the integer discontinuity is less pronounced. Average values are uniformly below 5/3. The study provides information that may aid the development of improved exchange-correlation and non-interacting kinetic energy functionals. © 2012 American Institute of Physics

  14. Committee Opinion No. 702 Summary: Female Athlete Triad.

    PubMed

    2017-06-01

    The female athlete triad is a medical condition observed in physically active females involving three components: 1) low energy availability with or without disordered eating, 2) menstrual dysfunction, and 3) low bone density. An individual does not need to show clinical manifestations of all three components of the female athlete triad simultaneously to be affected by the condition. Consequences of these clinical conditions may not be completely reversible, so prevention, early diagnosis, and intervention are critical. All athletes are at risk of the female athlete triad, regardless of body build or sport. All active females should be assessed for components of the triad and further evaluation should be performed if one or more components are identified. The obstetrician-gynecologist has the opportunity to screen athletes for components of the female athlete triad at comprehensive visits for preventive care. Using the menstrual cycle as a vital sign is a useful tool for identifying athletes at risk of female athlete triad and should be an integral part of the preparticipatory sports physical. The goal of treatment for those diagnosed with female athlete triad is restoration of regular menses as a clinical marker of reestablishment of energy balance and enhancement of bone mineral density. The female athlete triad is a result of energy imbalance; thus, adjusting the energy expenditure and energy availability is the main intervention. Pharmacologic treat-ment may be considered when nonpharmacologic treatment has failed. A team approach involving the patient, obstetrician-gynecologist, sports nutritionist, coaches, parents, and mental health care provider, if indicated, is optimal.

  15. Committee Opinion No.702: Female Athlete Triad.

    PubMed

    2017-06-01

    The female athlete triad is a medical condition observed in physically active females involving three components: 1) low energy availability with or without disordered eating, 2) menstrual dysfunction, and 3) low bone density. An individual does not need to show clinical manifestations of all three components of the female athlete triad simultaneously to be affected by the condition. Consequences of these clinical conditions may not be completely reversible, so prevention, early diagnosis, and intervention are critical. All athletes are at risk of the female athlete triad, regardless of body build or sport. All active females should be assessed for components of the triad and further evaluation should be performed if one or more components are identified. The obstetrician-gynecologist has the opportunity to screen athletes for components of the female athlete triad at comprehensive visits for preventive care. Using the menstrual cycle as a vital sign is a useful tool for identifying athletes at risk of female athlete triad and should be an integral part of the preparticipatory sports physical. The goal of treatment for those diagnosed with female athlete triad is restoration of regular menses as a clinical marker of reestablishment of energy balance and enhancement of bone mineral density. The female athlete triad is a result of energy imbalance; thus, adjusting the energy expenditure and energy availability is the main intervention. Pharmacologic treat-ment may be considered when nonpharmacologic treatment has failed. A team approach involving the patient, obstetrician-gynecologist, sports nutritionist, coaches, parents, and mental health care provider, if indicated, is optimal.

  16. Initial solubility & density evaluation of Non-Aqueous system of amino acid salts for CO2 capture: potassium prolinate blended with ethanol and ethylene glycol

    NASA Astrophysics Data System (ADS)

    Murshid, Ghulam; Garg, Sahil

    2018-05-01

    Amine scrubbing is the state of the art technology for CO2 capture, and solvent selection can significantly reduce the capital and energy cost of the process. Higher energy requirement for aqueous amine based CO2 removal process is still a most important downside preventive its industrial deployment. Therefore, in this study, novel non-aqueous based amino acid salt system consisting of potassium prolinate, ethanol and ethylene glycol has been studied. This work presents initial CO2 solubility study and important physical properties i.e. density of the studied solvent system. Previous work showed that non-aqueous system of potassium prolinate and ethanol has good absorption rates and requires lower energy for solvent regeneration. However, during regeneration, solvent loss issues were found due to lower boiling point of the ethanol. Therefore, ethylene glycol was added into current studied system for enhancing the overall boiling point of the system. The good initial CO2 solubility and low density of studied solvent system offers several advantages as compared to conventional amine solutions.

  17. The Casimir effect

    NASA Astrophysics Data System (ADS)

    Lang, Andrew Stuart

    1998-12-01

    This thesis contains several quantum field theoretic calculations using both the massless scalar field and the electromagnetic field. The main result being the calculation of the expectation of the energy density in the vacuum region for the geometry in which half of space is filled by a non- dispersive dielectric of constant susceptibility and the other half of space is vacuum. As we approach the surface of the dielectric the expectation of the energy density is found to diverge. In the final Chapter of this dissertation we prove that, under physically reasonable conditions, the quantum field theory representations for certain current models of dispersive dielectrics remain the same as that for the free electromagnetic field in vacuum. This is good news for the theories discussed.

  18. Proceedings of the twelfth target fabrication specialists` meeting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1999-04-01

    Research in fabrication for inertial confinement fusion (ICF) comprises at least three broad categories: targets for high energy density physics on existing drivers, ignition capsule fabrication, and cryogenic fuel layer formation. The latter two are being pursued primarily for the National Ignition Facility (NIF). Scientists from over 14 laboratories, universities, and businesses contributed over 100 papers on all aspects of ICF target fabrication. The NIF is well along in construction and photos of poured concrete and exposed steel added to the technical excitement. It was clear from the meeting that there has been significant progress toward the fabrication of anmore » ignition target for NIF and that new techniques are resulting in higher quality targets for high energy density research.« less

  19. Ground State of the Universe and the Cosmological Constant. A Nonperturbative Analysis.

    PubMed

    Husain, Viqar; Qureshi, Babar

    2016-02-12

    The physical Hamiltonian of a gravity-matter system depends on the choice of time, with the vacuum naturally identified as its ground state. We study the expanding Universe with scalar field in the volume time gauge. We show that the vacuum energy density computed from the resulting Hamiltonian is a nonlinear function of the cosmological constant and time. This result provides a new perspective on the relation between time, the cosmological constant, and vacuum energy.

  20. Development of a Hampton University Program for Novel Breast Cancer Imaging and Therapy Research

    DTIC Science & Technology

    2015-06-01

    student ( Nanda Karthik) involved…. Should be able to give you some text!]. Aim 2 Develop and test a practical method for application of a magnetic field ...a Department of Energy (DOE) nuclear physics research facility operated by Jefferson Science Associates LLC. Jefferson Lab resources for this...minimally affected by breast density because of the higher energy photons of 99mTc. In a recent study that included patients who had inconclusive

  1. Separating Dark Physics from Physical Darkness: Minimalist Modified Gravity vs. Dark Energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huterer, Dragan; Linder, Eric V.

    The acceleration of the cosmic expansion may be due to a new component of physical energy density or a modification of physics itself. Mapping the expansion of cosmic scales and the growth of large scale structure in tandem can provide insights to distinguish between the two origins. Using Minimal Modified Gravity (MMG) - a single parameter gravitational growth index formalism to parameterize modified gravity theories - we examine the constraints that cosmological data can place on the nature of the new physics. For next generation measurements combining weak lensing, supernovae distances, and the cosmic microwave background we can extend themore » reach of physics to allow for fitting gravity simultaneously with the expansion equation of state, diluting the equation of state estimation by less than 25percent relative to when general relativity is assumed, and determining the growth index to 8percent. For weak lensing we examine the level of understanding needed of quasi- and nonlinear structure formation in modified gravity theories, and the trade off between stronger precision but greater susceptibility to bias as progressively more nonlinear information is used.« less

  2. Separating dark physics from physical darkness: Minimalist modified gravity versus dark energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huterer, Dragan; Linder, Eric V.

    The acceleration of the cosmic expansion may be due to a new component of physical energy density or a modification of physics itself. Mapping the expansion of cosmic scales and the growth of large scale structure in tandem can provide insights to distinguish between the two origins. Using Minimal Modified Gravity (MMG) - a single parameter gravitational growth index formalism to parametrize modified gravity theories - we examine the constraints that cosmological data can place on the nature of the new physics. For next generation measurements combining weak lensing, supernovae distances, and the cosmic microwave background we can extend themore » reach of physics to allow for fitting gravity simultaneously with the expansion equation of state, diluting the equation of state estimation by less than 25% relative to when general relativity is assumed, and determining the growth index to 8%. For weak lensing we examine the level of understanding needed of quasi- and nonlinear structure formation in modified gravity theories, and the trade off between stronger precision but greater susceptibility to bias as progressively more nonlinear information is used.« less

  3. A high density field reversed configuration (FRC) target for magnetized target fusion: First internal profile measurements of a high density FRC

    NASA Astrophysics Data System (ADS)

    Intrator, T.; Zhang, S. Y.; Degnan, J. H.; Furno, I.; Grabowski, C.; Hsu, S. C.; Ruden, E. L.; Sanchez, P. G.; Taccetti, J. M.; Tuszewski, M.; Waganaar, W. J.; Wurden, G. A.

    2004-05-01

    Magnetized target fusion (MTF) is a potentially low cost path to fusion, intermediate in plasma regime between magnetic and inertial fusion energy. It requires compression of a magnetized target plasma and consequent heating to fusion relevant conditions inside a converging flux conserver. To demonstrate the physics basis for MTF, a field reversed configuration (FRC) target plasma has been chosen that will ultimately be compressed within an imploding metal liner. The required FRC will need large density, and this regime is being explored by the FRX-L (FRC-Liner) experiment. All theta pinch formed FRCs have some shock heating during formation, but FRX-L depends further on large ohmic heating from magnetic flux annihilation to heat the high density (2-5×1022m-3), plasma to a temperature of Te+Ti≈500 eV. At the field null, anomalous resistivity is typically invoked to characterize the resistive like flux dissipation process. The first resistivity estimate for a high density collisional FRC is shown here. The flux dissipation process is both a key issue for MTF and an important underlying physics question.

  4. Physics, mathematics and numerics of particle adsorption on fluid interfaces

    NASA Astrophysics Data System (ADS)

    Schmuck, Markus; Pavliotis, Grigorios A.; Kalliadasis, Serafim

    2012-11-01

    We study two arbitrary immiscible fuids where one phase contains small particles of the size of the interface and smaller. We primarily focus on charge-free particles with wetting characteristics described by the contact angle formed at the interface between the two phases and the particles. Based on the experimental observation that particles are adsorbed on the interface to reduce the interfacial energy and hence the surface tension as well, we formulate a free-energy functional that accounts for these physical effects. Using elements from calculus of variations and formal gradient flow theory, we derive partial differential equations describing the location of the interface and the density of the particles in the fluid phases. Via numerical experiments we analyse the time evolution of the surface tension, the particle concentration, and the free energy over time and reflect basic experimentally observed phenomena.

  5. Electron density modification in ionospheric E layer by inserting fine dust particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Misra, Shikha, E-mail: shikhamish@gmail.com; Mishra, S. K.

    2015-02-15

    In this paper, we have developed the kinetics of E-region ionospheric plasma comprising of fine dust grains and shown that the electron density in E-layer can purposely be reduced/enhanced up to desired level by inserting fine dust particles of appropriate physical/material properties; this may certainly be promising for preferred rf-signal processing through these layers. The analytical formulation is based on average charge theory and includes the number and energy balance of the plasma constituents along with charge balance over dust particles. The effect of varying number density, work function, and photo-efficiency of dust particles on ionospheric plasma density at differentmore » altitude in E-layer has been critically examined and presented graphically.« less

  6. Control of quasi-monoenergetic electron beams from laser-plasma accelerators with adjustable shock density profile

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsai, Hai-En; Swanson, Kelly K.; Barber, Sam K.

    The injection physics in a shock-induced density down-ramp injector was characterized, demonstrating precise control of a laser-plasma accelerator (LPA). Using a jet-blade assembly, experiments systematically v aried the shock injector profile, including shock angle, shock position, up-ramp width, and acceleration length. Our work demonstrates that beam energy, energy spread, and pointing can be controlled by adjusting these parameters. As a result, an electron beam that was highly tunable from 25 to 300 MeV with 8% energy spread (ΔE FWHM/E), 1.5 mrad divergence, and 0.35 mrad pointing fluctuation was produced. Particle-in-cell simulation characterized how variation in the shock angle and up-rampmore » width impacted the injection process. This highly controllable LPA represents a suitable, compact electron beam source for LPA applications such as Thomson sources and free-electron lasers.« less

  7. Control of quasi-monoenergetic electron beams from laser-plasma accelerators with adjustable shock density profile

    DOE PAGES

    Tsai, Hai-En; Swanson, Kelly K.; Barber, Sam K.; ...

    2018-04-13

    The injection physics in a shock-induced density down-ramp injector was characterized, demonstrating precise control of a laser-plasma accelerator (LPA). Using a jet-blade assembly, experiments systematically v aried the shock injector profile, including shock angle, shock position, up-ramp width, and acceleration length. Our work demonstrates that beam energy, energy spread, and pointing can be controlled by adjusting these parameters. As a result, an electron beam that was highly tunable from 25 to 300 MeV with 8% energy spread (ΔE FWHM/E), 1.5 mrad divergence, and 0.35 mrad pointing fluctuation was produced. Particle-in-cell simulation characterized how variation in the shock angle and up-rampmore » width impacted the injection process. This highly controllable LPA represents a suitable, compact electron beam source for LPA applications such as Thomson sources and free-electron lasers.« less

  8. Control of quasi-monoenergetic electron beams from laser-plasma accelerators with adjustable shock density profile

    NASA Astrophysics Data System (ADS)

    Tsai, Hai-En; Swanson, Kelly K.; Barber, Sam K.; Lehe, Remi; Mao, Hann-Shin; Mittelberger, Daniel E.; Steinke, Sven; Nakamura, Kei; van Tilborg, Jeroen; Schroeder, Carl; Esarey, Eric; Geddes, Cameron G. R.; Leemans, Wim

    2018-04-01

    The injection physics in a shock-induced density down-ramp injector was characterized, demonstrating precise control of a laser-plasma accelerator (LPA). Using a jet-blade assembly, experiments systematically varied the shock injector profile, including shock angle, shock position, up-ramp width, and acceleration length. Our work demonstrates that beam energy, energy spread, and pointing can be controlled by adjusting these parameters. As a result, an electron beam that was highly tunable from 25 to 300 MeV with 8% energy spread (ΔEFWHM/E), 1.5 mrad divergence, and 0.35 mrad pointing fluctuation was produced. Particle-in-cell simulation characterized how variation in the shock angle and up-ramp width impacted the injection process. This highly controllable LPA represents a suitable, compact electron beam source for LPA applications such as Thomson sources and free-electron lasers.

  9. Topological energy storage of work generated by nanomotors.

    PubMed

    Weysser, Fabian; Benzerara, Olivier; Johner, Albert; Kulić, Igor M

    2015-01-28

    Most macroscopic machines rely on wheels and gears. Yet, rigid gears are entirely impractical on the nano-scale. Here we propose a more useful method to couple any rotary engine to any other mechanical elements on the nano- and micro-scale. We argue that a rotary molecular motor attached to an entangled polymer energy storage unit, which together form what we call the "tanglotron" device, is a viable concept that can be experimentally implemented. We derive the torque-entanglement relationship for a tanglotron (its "equation of state") and show that it can be understood by simple statistical mechanics arguments. We find that a typical entanglement at low packing density costs around 6kT. In the high entanglement regime, the free energy diverges logarithmically close to a maximal geometric packing density. We outline several promising applications of the tanglotron idea and conclude that the transmission, storage and back-conversion of topological entanglement energy are not only physically feasible but also practical for a number of reasons.

  10. Freestanding Gold/Graphene-Oxide/Manganese Oxide Microsupercapacitor Displaying High Areal Energy Density.

    PubMed

    Morag, Ahiud; Becker, James Y; Jelinek, Raz

    2017-07-10

    Microsupercapacitors are touted as one of the promising "next frontiers" in energy-storage research and applications. Despite their potential, significant challenges still exist in terms of physical properties and electrochemical performance, particularly attaining high energy density, stability, ease of synthesis, and feasibility of large-scale production. We present new freestanding microporous electrodes comprising self-assembled scaffold of gold and reduced graphene oxide (rGO) nanowires coated with MnO 2 . The electrodes exhibited excellent electrochemical characteristics, particularly superior high areal capacitance. Moreover, the freestanding Au/rGO scaffold also served as the current collector, obviating the need for an additional electrode support required in most reported supercapacitors, thus enabling low volume and weight devices with a high overall device specific energy. Stacked symmetrical solid-state supercapacitors were fabricated using the Au/rGO/MnO 2 electrodes in parallel configurations showing the advantage of using freestanding electrodes in the fabrication of low-volume devices. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Additions and improvements to the high energy density physics capabilities in the FLASH code

    NASA Astrophysics Data System (ADS)

    Lamb, D.; Bogale, A.; Feister, S.; Flocke, N.; Graziani, C.; Khiar, B.; Laune, J.; Tzeferacos, P.; Walker, C.; Weide, K.

    2017-10-01

    FLASH is an open-source, finite-volume Eulerian, spatially-adaptive radiation magnetohydrodynamics code that has the capabilities to treat a broad range of physical processes. FLASH performs well on a wide range of computer architectures, and has a broad user base. Extensive high energy density physics (HEDP) capabilities exist in FLASH, which make it a powerful open toolset for the academic HEDP community. We summarize these capabilities, emphasizing recent additions and improvements. We describe several non-ideal MHD capabilities that are being added to FLASH, including the Hall and Nernst effects, implicit resistivity, and a circuit model, which will allow modeling of Z-pinch experiments. We showcase the ability of FLASH to simulate Thomson scattering polarimetry, which measures Faraday due to the presence of magnetic fields, as well as proton radiography, proton self-emission, and Thomson scattering diagnostics. Finally, we describe several collaborations with the academic HEDP community in which FLASH simulations were used to design and interpret HEDP experiments. This work was supported in part at U. Chicago by DOE NNSA ASC through the Argonne Institute for Computing in Science under FWP 57789; DOE NNSA under NLUF Grant DE-NA0002724; DOE SC OFES Grant DE-SC0016566; and NSF Grant PHY-1619573.

  12. A journey from nuclear criticality methods to high energy density radflow experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Urbatsch, Todd James

    Los Alamos National Laboratory is a nuclear weapons laboratory supporting our nation's defense. In support of this mission is a high energy-density physics program in which we design and execute experiments to study radiationhydrodynamics phenomena and improve the predictive capability of our largescale multi-physics software codes on our big-iron computers. The Radflow project’s main experimental effort now is to understand why we haven't been able to predict opacities on Sandia National Laboratory's Z-machine. We are modeling an increasing fraction of the Z-machine's dynamic hohlraum to find multi-physics explanations for the experimental results. Further, we are building an entirely different opacitymore » platform on Lawrence Livermore National Laboratory's National Ignition Facility (NIF), which is set to get results early 2017. Will the results match our predictions, match the Z-machine, or give us something entirely different? The new platform brings new challenges such as designing hohlraums and spectrometers. The speaker will recount his history, starting with one-dimensional Monte Carlo nuclear criticality methods in graduate school, radiative transfer methods research and software development for his first 16 years at LANL, and, now, radflow technology and experiments. Who knew that the real world was more than just radiation transport? Experiments aren't easy, but they sure are fun.« less

  13. A wave model test bed study for wave energy resource characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Zhaoqing; Neary, Vincent S.; Wang, Taiping

    This paper presents a test bed study conducted to evaluate best practices in wave modeling to characterize energy resources. The model test bed off the central Oregon Coast was selected because of the high wave energy and available measured data at the site. Two third-generation spectral wave models, SWAN and WWIII, were evaluated. A four-level nested-grid approach—from global to test bed scale—was employed. Model skills were assessed using a set of model performance metrics based on comparing six simulated wave resource parameters to observations from a wave buoy inside the test bed. Both WWIII and SWAN performed well at themore » test bed site and exhibited similar modeling skills. The ST4 package with WWIII, which represents better physics for wave growth and dissipation, out-performed ST2 physics and improved wave power density and significant wave height predictions. However, ST4 physics tended to overpredict the wave energy period. The newly developed ST6 physics did not improve the overall model skill for predicting the six wave resource parameters. Sensitivity analysis using different wave frequencies and direction resolutions indicated the model results were not sensitive to spectral resolutions at the test bed site, likely due to the absence of complex bathymetric and geometric features.« less

  14. Galactic Cosmic Ray Event-Based Risk Model (GERM) Code

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Plante, Ianik; Ponomarev, Artem L.; Kim, Myung-Hee Y.

    2013-01-01

    This software describes the transport and energy deposition of the passage of galactic cosmic rays in astronaut tissues during space travel, or heavy ion beams in patients in cancer therapy. Space radiation risk is a probability distribution, and time-dependent biological events must be accounted for physical description of space radiation transport in tissues and cells. A stochastic model can calculate the probability density directly without unverified assumptions about shape of probability density function. The prior art of transport codes calculates the average flux and dose of particles behind spacecraft and tissue shielding. Because of the signaling times for activation and relaxation in the cell and tissue, transport code must describe temporal and microspatial density of functions to correlate DNA and oxidative damage with non-targeted effects of signals, bystander, etc. These are absolutely ignored or impossible in the prior art. The GERM code provides scientists data interpretation of experiments; modeling of beam line, shielding of target samples, and sample holders; and estimation of basic physical and biological outputs of their experiments. For mono-energetic ion beams, basic physical and biological properties are calculated for a selected ion type, such as kinetic energy, mass, charge number, absorbed dose, or fluence. Evaluated quantities are linear energy transfer (LET), range (R), absorption and fragmentation cross-sections, and the probability of nuclear interactions after 1 or 5 cm of water equivalent material. In addition, a set of biophysical properties is evaluated, such as the Poisson distribution for a specified cellular area, cell survival curves, and DNA damage yields per cell. Also, the GERM code calculates the radiation transport of the beam line for either a fixed number of user-specified depths or at multiple positions along the Bragg curve of the particle in a selected material. The GERM code makes the numerical estimates of basic physical and biophysical quantities of high-energy protons and heavy ions that have been studied at the NASA Space Radiation Laboratory (NSRL) for the purpose of simulating space radiation biological effects. In the first option, properties of monoenergetic beams are treated. In the second option, the transport of beams in different materials is treated. Similar biophysical properties as in the first option are evaluated for the primary ion and its secondary particles. Additional properties related to the nuclear fragmentation of the beam are evaluated. The GERM code is a computationally efficient Monte-Carlo heavy-ion-beam model. It includes accurate models of LET, range, residual energy, and straggling, and the quantum multiple scattering fragmentation (QMSGRG) nuclear database.

  15. Center for Advanced Power and Energy Research (CAPEC)

    DTIC Science & Technology

    2015-01-01

    discharge (DCD). A glow discharge at a low ambient density becomes Corona discharge at the elevated ambient pressure condition. The thermal plasma actuator...Elisson and Kogelschlatz [9] has identified that the discharge consists of two distinct positive Corona streamers and diffusion modes. Enloe et al...4 2.3 Physics-Base Discharge Modeling

  16. Nutrition quality of extraction mannan residue from palm kernel cake on brolier chicken

    NASA Astrophysics Data System (ADS)

    Tafsin, M.; Hanafi, N. D.; Kejora, E.; Yusraini, E.

    2018-02-01

    This study aims to find out the nutrient residue of palm kernel cake from mannan extraction on broiler chicken by evaluating physical quality (specific gravity, bulk density and compacted bulk density), chemical quality (proximate analysis and Van Soest Test) and biological test (metabolizable energy). Treatment composed of T0 : palm kernel cake extracted aquadest (control), T1 : palm kernel cake extracted acetic acid (CH3COOH) 1%, T2 : palm kernel cake extracted aquadest + mannanase enzyme 100 u/l and T3 : palm kernel cake extracted acetic acid (CH3COOH) 1% + enzyme mannanase 100 u/l. The results showed that mannan extraction had significant effect (P<0.05) in improving the quality of physical and numerically increase the value of crude protein and decrease the value of NDF (Neutral Detergent Fiber). Treatments had highly significant influence (P<0.01) on the metabolizable energy value of palm kernel cake residue in broiler chickens. It can be concluded that extraction with aquadest + enzyme mannanase 100 u/l yields the best nutrient quality of palm kernel cake residue for broiler chicken.

  17. Eight new Milky Way companions discovered in first-year Dark Energy Survey data

    DOE PAGES

    Bechtol, K.

    2015-06-30

    We report the discovery of eight new Milky Way companions inmore » $$\\sim 1800\\;{\\mathrm{deg}}^{2}$$ of optical imaging data collected during the first year of the Dark Energy Survey (DES). Each system is identified as a statistically significant over-density of individual stars consistent with the expected isochrone and luminosity function of an old and metal-poor stellar population. The objects span a wide range of absolute magnitudes (MV from $-2.2$ to $$-7.4\\;\\mathrm{mag}$$), physical sizes ($$10-170\\;\\mathrm{pc}$$), and heliocentric distances ($$30-330\\;\\mathrm{kpc}$$). Based on the low surface brightnesses, large physical sizes, and/or large Galactocentric distances of these objects, several are likely to be new ultra-faint satellite galaxies of the Milky Way and/or Magellanic Clouds. We introduce a likelihood-based algorithm to search for and characterize stellar over-densities, as well as identify stars with high satellite membership probabilities. As a result, we also present completeness estimates for detecting ultra-faint galaxies of varying luminosities, sizes, and heliocentric distances in the first-year DES data.« less

  18. Energy decomposition analysis of the interactions in adduct ions of acetophenone and Na+, NH4+ and H+ in the gas phase

    NASA Astrophysics Data System (ADS)

    Sugimura, Natsuhiko; Igarashi, Yoko; Aoyama, Reiko; Shibue, Toshimichi

    2017-09-01

    The physical origins of the interactions in the acetophenone cation adducts [M+Na]+, [M+NH4]+, and [M+H]+ were explored by localized molecular orbital-energy decomposition analysis and density functional theory. The analyses highlighted the differences in the interactions in the three adduct ions. Electrostatic energy was important in [M+Na]+ and there was little change in the acetophenone orbital shape. Both electrostatic and polarization energy were important in [M+NH4]+, and a considerable change in the orbital shape occurred to maximize the strength of the hydrogen bond. Polarization energy was the major attractive force in [M+H]+.

  19. Electrostatic solvation free energies of charged hard spheres using molecular dynamics with density functional theory interactions

    DOE PAGES

    Duignan, Timothy T.; Baer, Marcel D.; Schenter, Gregory K.; ...

    2017-07-26

    Determining the solvation free energies of single ions in water is one of the most fundamental problems in physical chemistry and yet many unresolved questions remain. In particular, the ability to decompose the solvation free energy into simple and intuitive contributions will have important implications for models of electrolyte solution. In this paper, we provide definitions of the various types of single ion solvation free energies based on different simulation protocols. We calculate solvation free energies of charged hard spheres using density functional theory interaction potentials with molecular dynamics simulation and isolate the effects of charge and cavitation, comparing tomore » the Born (linear response) model. We show that using uncorrected Ewald summation leads to unphysical values for the single ion solvation free energy and that charging free energies for cations are approximately linear as a function of charge but that there is a small non-linearity for small anions. The charge hydration asymmetry for hard spheres, determined with quantum mechanics, is much larger than for the analogous real ions. Finally, this suggests that real ions, particularly anions, are significantly more complex than simple charged hard spheres, a commonly employed representation.« less

  20. Electrostatic solvation free energies of charged hard spheres using molecular dynamics with density functional theory interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duignan, Timothy T.; Baer, Marcel D.; Schenter, Gregory K.

    Determining the solvation free energies of single ions in water is one of the most fundamental problems in physical chemistry and yet many unresolved questions remain. In particular, the ability to decompose the solvation free energy into simple and intuitive contributions will have important implications for models of electrolyte solution. In this paper, we provide definitions of the various types of single ion solvation free energies based on different simulation protocols. We calculate solvation free energies of charged hard spheres using density functional theory interaction potentials with molecular dynamics simulation and isolate the effects of charge and cavitation, comparing tomore » the Born (linear response) model. We show that using uncorrected Ewald summation leads to unphysical values for the single ion solvation free energy and that charging free energies for cations are approximately linear as a function of charge but that there is a small non-linearity for small anions. The charge hydration asymmetry for hard spheres, determined with quantum mechanics, is much larger than for the analogous real ions. Finally, this suggests that real ions, particularly anions, are significantly more complex than simple charged hard spheres, a commonly employed representation.« less

  1. Electrostatic solvation free energies of charged hard spheres using molecular dynamics with density functional theory interactions

    NASA Astrophysics Data System (ADS)

    Duignan, Timothy T.; Baer, Marcel D.; Schenter, Gregory K.; Mundy, Chistopher J.

    2017-10-01

    Determining the solvation free energies of single ions in water is one of the most fundamental problems in physical chemistry and yet many unresolved questions remain. In particular, the ability to decompose the solvation free energy into simple and intuitive contributions will have important implications for models of electrolyte solution. Here, we provide definitions of the various types of single ion solvation free energies based on different simulation protocols. We calculate solvation free energies of charged hard spheres using density functional theory interaction potentials with molecular dynamics simulation and isolate the effects of charge and cavitation, comparing to the Born (linear response) model. We show that using uncorrected Ewald summation leads to unphysical values for the single ion solvation free energy and that charging free energies for cations are approximately linear as a function of charge but that there is a small non-linearity for small anions. The charge hydration asymmetry for hard spheres, determined with quantum mechanics, is much larger than for the analogous real ions. This suggests that real ions, particularly anions, are significantly more complex than simple charged hard spheres, a commonly employed representation.

  2. MN15-L: A New Local Exchange-Correlation Functional for Kohn-Sham Density Functional Theory with Broad Accuracy for Atoms, Molecules, and Solids.

    PubMed

    Yu, Haoyu S; He, Xiao; Truhlar, Donald G

    2016-03-08

    Kohn-Sham density functional theory is widely used for applications of electronic structure theory in chemistry, materials science, and condensed-matter physics, but the accuracy depends on the quality of the exchange-correlation functional. Here, we present a new local exchange-correlation functional called MN15-L that predicts accurate results for a broad range of molecular and solid-state properties including main-group bond energies, transition metal bond energies, reaction barrier heights, noncovalent interactions, atomic excitation energies, ionization potentials, electron affinities, total atomic energies, hydrocarbon thermochemistry, and lattice constants of solids. The MN15-L functional has the same mathematical form as a previous meta-nonseparable gradient approximation exchange-correlation functional, MN12-L, but it is improved because we optimized it against a larger database, designated 2015A, and included smoothness restraints; the optimization has a much better representation of transition metals. The mean unsigned error on 422 chemical energies is 2.32 kcal/mol, which is the best among all tested functionals, with or without nonlocal exchange. The MN15-L functional also provides good results for test sets that are outside the training set. A key issue is that the functional is local (no nonlocal exchange or nonlocal correlation), which makes it relatively economical for treating large and complex systems and solids. Another key advantage is that medium-range correlation energy is built in so that one does not need to add damped dispersion by molecular mechanics in order to predict accurate noncovalent binding energies. We believe that the MN15-L functional should be useful for a wide variety of applications in chemistry, physics, materials science, and molecular biology.

  3. The nature of three-body interactions in DFT: Exchange and polarization effects

    NASA Astrophysics Data System (ADS)

    Hapka, Michał; Rajchel, Łukasz; Modrzejewski, Marcin; Schäffer, Rainer; Chałasiński, Grzegorz; Szcześniak, Małgorzata M.

    2017-08-01

    We propose a physically motivated decomposition of density functional theory (DFT) 3-body nonadditive interaction energies into the exchange and density-deformation (polarization) components. The exchange component represents the effect of the Pauli exclusion in the wave function of the trimer and is found to be challenging for density functional approximations (DFAs). The remaining density-deformation nonadditivity is less dependent upon the DFAs. Numerical demonstration is carried out for rare gas atom trimers, Ar2-HX (X = F, Cl) complexes, and small hydrogen-bonded and van der Waals molecular systems. None of the tested semilocal, hybrid, and range-separated DFAs properly accounts for the nonadditive exchange in dispersion-bonded trimers. By contrast, for hydrogen-bonded systems, range-separated DFAs achieve a qualitative agreement to within 20% of the reference exchange energy. A reliable performance for all systems is obtained only when the monomers interact through the Hartree-Fock potential in the dispersion-free Pauli blockade scheme. Additionally, we identify the nonadditive second-order exchange-dispersion energy as an important but overlooked contribution in force-field-like dispersion corrections. Our results suggest that range-separated functionals do not include this component, although semilocal and global hybrid DFAs appear to imitate it in the short range.

  4. High-energy Gamma Rays from the Milky Way: Three-dimensional Spatial Models for the Cosmic-Ray and Radiation Field Densities in the Interstellar Medium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Porter, T. A.; Moskalenko, I. V.; Jóhannesson, G., E-mail: tporter@stanford.edu

    High-energy γ -rays of interstellar origin are produced by the interaction of cosmic-ray (CR) particles with the diffuse gas and radiation fields in the Galaxy. The main features of this emission are well understood and are reproduced by existing CR propagation models employing 2D galactocentric cylindrically symmetrical geometry. However, the high-quality data from instruments like the Fermi Large Area Telescope reveal significant deviations from the model predictions on few to tens of degrees scales, indicating the need to include the details of the Galactic spiral structure and thus requiring 3D spatial modeling. In this paper, the high-energy interstellar emissions frommore » the Galaxy are calculated using the new release of the GALPROP code employing 3D spatial models for the CR source and interstellar radiation field (ISRF) densities. Three models for the spatial distribution of CR sources are used that are differentiated by their relative proportion of input luminosity attributed to the smooth disk or spiral arms. Two ISRF models are developed based on stellar and dust spatial density distributions taken from the literature that reproduce local near- to far-infrared observations. The interstellar emission models that include arms and bulges for the CR source and ISRF densities provide plausible physical interpretations for features found in the residual maps from high-energy γ -ray data analysis. The 3D models for CR and ISRF densities provide a more realistic basis that can be used for the interpretation of the nonthermal interstellar emissions from the Galaxy.« less

  5. Propulsion Physics Using the Chameleon Density Model

    NASA Technical Reports Server (NTRS)

    Robertson, Glen A.

    2011-01-01

    To grow as a space faring race, future spaceflight systems will require a new theory of propulsion. Specifically one that does not require mass ejection without limiting the high thrust necessary to accelerate within or beyond our solar system and return within a normal work period or lifetime. The Chameleon Density Model (CDM) is one such model that could provide new paths in propulsion toward this end. The CDM is based on Chameleon Cosmology a dark matter theory; introduced by Khrouy and Weltman in 2004. Chameleon as it is hidden within known physics, where the Chameleon field represents a scalar field within and about an object; even in the vacuum. The CDM relates to density changes in the Chameleon field, where the density changes are related to matter accelerations within and about an object. These density changes in turn change how an object couples to its environment. Whereby, thrust is achieved by causing a differential in the environmental coupling about an object. As a demonstration to show that the CDM fits within known propulsion physics, this paper uses the model to estimate the thrust from a solid rocket motor. Under the CDM, a solid rocket constitutes a two body system, i.e., the changing density of the rocket and the changing density in the nozzle arising from the accelerated mass. Whereby, the interactions between these systems cause a differential coupling to the local gravity environment of the earth. It is shown that the resulting differential in coupling produces a calculated value for the thrust near equivalent to the conventional thrust model used in Sutton and Ross, Rocket Propulsion Elements. Even though imbedded in the equations are the Universe energy scale factor, the reduced Planck mass and the Planck length, which relates the large Universe scale to the subatomic scale.

  6. Dual- and Multi-Energy CT: Principles, Technical Approaches, and Clinical Applications

    PubMed Central

    Leng, Shuai; Yu, Lifeng; Fletcher, Joel G.

    2015-01-01

    In x-ray computed tomography (CT), materials having different elemental compositions can be represented by identical pixel values on a CT image (ie, CT numbers), depending on the mass density of the material. Thus, the differentiation and classification of different tissue types and contrast agents can be extremely challenging. In dual-energy CT, an additional attenuation measurement is obtained with a second x-ray spectrum (ie, a second “energy”), allowing the differentiation of multiple materials. Alternatively, this allows quantification of the mass density of two or three materials in a mixture with known elemental composition. Recent advances in the use of energy-resolving, photon-counting detectors for CT imaging suggest the ability to acquire data in multiple energy bins, which is expected to further improve the signal-to-noise ratio for material-specific imaging. In this review, the underlying motivation and physical principles of dual- or multi-energy CT are reviewed and each of the current technical approaches is described. In addition, current and evolving clinical applications are introduced. © RSNA, 2015 PMID:26302388

  7. An extended hybrid density functional (X3LYP) with improved descriptions of nonbond interactions and thermodynamic properties of molecular systems.

    PubMed

    Xu, Xin; Zhang, Qingsong; Muller, Richard P; Goddard, William A

    2005-01-01

    We derive here the form for the exact exchange energy density for a density that decays with Gaussian-type behavior at long range. This functional is intermediate between the B88 and the PW91 exchange functionals. Using this modified functional to match the form expected for Gaussian densities, we propose the X3LYP extended functional. We find that X3LYP significantly outperforms Becke three parameter Lee-Yang-Parr (B3LYP) for describing van der Waals and hydrogen bond interactions, while performing slightly better than B3LYP for predicting heats of formation, ionization potentials, electron affinities, proton affinities, and total atomic energies as validated with the extended G2 set of atoms and molecules. Thus X3LYP greatly enlarges the field of applications for density functional theory. In particular the success of X3LYP in describing the water dimer (with R(e) and D(e) within the error bars of the most accurate determinations) makes it an excellent candidate for predicting accurate ligand-protein and ligand-DNA interactions. (c) 2005 American Institute of Physics.

  8. Numerical Investigation of Statistical Turbulence Effects on Beam Propagation through 2-D Shear Mixing Layer

    DTIC Science & Technology

    2010-03-01

    instrumental in helping me refine my grid and flow profile to produce my investigation flow field. Dr. Brooks and Dr. Grismer helped me by getting me current ...wavelength of the source and changes in the index of refraction from density changes in the medium. They are directly attributed to three physical phenomenon...Turbulence arises from injection of energy into the fluid causing the motion to become unstable. This source of this energy injection is usually

  9. 7TH International Symposium: Nanostructure: Physics and Technology

    DTIC Science & Technology

    1999-01-01

    within the density functional theory [8]. The Hamiltonian (fit and/H 4 for spin 4" and spin 4. electrons, respectively) is given by: fi) - i2--V[ + E,(r...population of higher energy levels by electrons with spin -1/2. This results in increased polarization of luminescence which may exceed 50% (see curve 1 in...that higher energy lines quench at high field. In addition a change in the linewidth of the emission is found for high electric fields. Introduction

  10. Next generation laser for Inertial Confinement Fusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marshall, C.D.; Beach, J.; Bibeau, C.

    1997-07-18

    We are in the process of developing and building the ``Mercury`` laser system as the first in a series of a new generation of diode-pumped solid-state Inertial Confinement Fusion (ICF) lasers at LLNL. Mercury will be the first integrated demonstration of a scalable laser architecture compatible with advanced high energy density (HED) physics applications. Primary performance goals include 10% efficiencies at 10 Hz and a 1-10 ns pulse with 1{omega} energies of 100 J and with 2{omega}/3{omega} frequency conversion.

  11. Inertial Confinement Fusion as an Extreme Example of Dynamic Compression

    NASA Astrophysics Data System (ADS)

    Moses, E.

    2013-06-01

    Initiating and controlling thermonuclear burn at the national ignition facility (NIF) will require the manipulation of matter to extreme energy densities. We will discuss recent advances in both controlling the dynamic compression of ignition targets and our understanding of the physical states and processes leading to ignition. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory in part under Contract W-7405-Eng-48 and in part under Contract DE-AC52-07NA27344.

  12. Implementation of a Mechanochemical Model for Dynamic Brittle Fracture in SIERRA

    DTIC Science & Technology

    2014-08-01

    equations of state could be used in the future.† The energy associated with the deviatoric deformation is taken to be eiso(L ∗) = µ tr [ (L∗)2 ] (33...internal state variable can also be found in the book by Holzapfel.9 In the types of damage models considered by Kachanov, the energy density equation is...13b) The dimensions of K are: [K] = 1 [Time][ Stress ] . (14) The specific choice of equations 13 contain two physically questionable features,

  13. Characterizing optical chirality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bliokh, Konstantin Y.; Advanced Science Institute, RIKEN, Wako-shi, Saitama 351-0198; Nori, Franco

    We examine the recently introduced measure of chirality of a monochromatic optical field [Y. Tang and A. E. Cohen, Phys. Rev. Lett. 104, 163901 (2010)] using the momentum (plane-wave) representation and helicity basis. Our analysis clarifies the physical meaning of the measure of chirality and unveils its close relation to the polarization helicity, spin angular momentum, energy density, and Poynting energy flow. We derive the operators of the optical chirality and of the corresponding chiral momentum, which acquire remarkably simple forms in the helicity representation.

  14. Density distribution function of a self-gravitating isothermal compressible turbulent fluid in the context of molecular clouds ensembles

    NASA Astrophysics Data System (ADS)

    Donkov, Sava; Stefanov, Ivan Z.

    2018-03-01

    We have set ourselves the task of obtaining the probability distribution function of the mass density of a self-gravitating isothermal compressible turbulent fluid from its physics. We have done this in the context of a new notion: the molecular clouds ensemble. We have applied a new approach that takes into account the fractal nature of the fluid. Using the medium equations, under the assumption of steady state, we show that the total energy per unit mass is an invariant with respect to the fractal scales. As a next step we obtain a non-linear integral equation for the dimensionless scale Q which is the third root of the integral of the probability distribution function. It is solved approximately up to the leading-order term in the series expansion. We obtain two solutions. They are power-law distributions with different slopes: the first one is -1.5 at low densities, corresponding to an equilibrium between all energies at a given scale, and the second one is -2 at high densities, corresponding to a free fall at small scales.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Jianwei; Yang, Zenghui; Peng, Haowei

    The uniform electron gas and the hydrogen atom play fundamental roles in condensed matter physics and quantum chemistry. The former has an infinite number of electrons uniformly distributed over the neutralizing positively charged background, and the latter only one electron bound to the proton. The uniform electron gas was used to derive the local spin density approximation to the exchange-correlation functional that undergirds the development of the Kohn-Sham density functional theory. We show here that the ground-state exchange-correlation energies of the hydrogen atom and many other 1- and 2-electron systems are modeled surprisingly well by a different local spin densitymore » approximation (LSDA0). LSDA0 is constructed to satisfy exact constraints but agrees surprisingly well with the exact results for a uniform two-electron density in a finite, curved three-dimensional space. We also apply LSDA0 to excited or noded 1-electron densities, where it works less well. Furthermore, we show that the localization of the exact exchange hole for a 1- or 2-electron ground state can be measured by the ratio of the exact exchange energy to its optimal lower bound.« less

  16. The AGORA High-resolution Galaxy Simulations Comparison Project II: Isolated disk test

    DOE PAGES

    Kim, Ji-hoon; Agertz, Oscar; Teyssier, Romain; ...

    2016-12-20

    Using an isolated Milky Way-mass galaxy simulation, we compare results from 9 state-of-the-art gravito-hydrodynamics codes widely used in the numerical community. We utilize the infrastructure we have built for the AGORA High-resolution Galaxy Simulations Comparison Project. This includes the common disk initial conditions, common physics models (e.g., radiative cooling and UV background by the standardized package Grackle) and common analysis toolkit yt, all of which are publicly available. Subgrid physics models such as Jeans pressure floor, star formation, supernova feedback energy, and metal production are carefully constrained across code platforms. With numerical accuracy that resolves the disk scale height, wemore » find that the codes overall agree well with one another in many dimensions including: gas and stellar surface densities, rotation curves, velocity dispersions, density and temperature distribution functions, disk vertical heights, stellar clumps, star formation rates, and Kennicutt-Schmidt relations. Quantities such as velocity dispersions are very robust (agreement within a few tens of percent at all radii) while measures like newly-formed stellar clump mass functions show more significant variation (difference by up to a factor of ~3). Systematic differences exist, for example, between mesh-based and particle-based codes in the low density region, and between more diffusive and less diffusive schemes in the high density tail of the density distribution. Yet intrinsic code differences are generally small compared to the variations in numerical implementations of the common subgrid physics such as supernova feedback. Lastly, our experiment reassures that, if adequately designed in accordance with our proposed common parameters, results of a modern high-resolution galaxy formation simulation are more sensitive to input physics than to intrinsic differences in numerical schemes.« less

  17. The AGORA High-resolution Galaxy Simulations Comparison Project II: Isolated disk test

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Ji-hoon; Agertz, Oscar; Teyssier, Romain

    Using an isolated Milky Way-mass galaxy simulation, we compare results from 9 state-of-the-art gravito-hydrodynamics codes widely used in the numerical community. We utilize the infrastructure we have built for the AGORA High-resolution Galaxy Simulations Comparison Project. This includes the common disk initial conditions, common physics models (e.g., radiative cooling and UV background by the standardized package Grackle) and common analysis toolkit yt, all of which are publicly available. Subgrid physics models such as Jeans pressure floor, star formation, supernova feedback energy, and metal production are carefully constrained across code platforms. With numerical accuracy that resolves the disk scale height, wemore » find that the codes overall agree well with one another in many dimensions including: gas and stellar surface densities, rotation curves, velocity dispersions, density and temperature distribution functions, disk vertical heights, stellar clumps, star formation rates, and Kennicutt-Schmidt relations. Quantities such as velocity dispersions are very robust (agreement within a few tens of percent at all radii) while measures like newly-formed stellar clump mass functions show more significant variation (difference by up to a factor of ~3). Systematic differences exist, for example, between mesh-based and particle-based codes in the low density region, and between more diffusive and less diffusive schemes in the high density tail of the density distribution. Yet intrinsic code differences are generally small compared to the variations in numerical implementations of the common subgrid physics such as supernova feedback. Lastly, our experiment reassures that, if adequately designed in accordance with our proposed common parameters, results of a modern high-resolution galaxy formation simulation are more sensitive to input physics than to intrinsic differences in numerical schemes.« less

  18. THE AGORA HIGH-RESOLUTION GALAXY SIMULATIONS COMPARISON PROJECT. II. ISOLATED DISK TEST

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Ji-hoon; Agertz, Oscar; Teyssier, Romain

    Using an isolated Milky Way-mass galaxy simulation, we compare results from nine state-of-the-art gravito-hydrodynamics codes widely used in the numerical community. We utilize the infrastructure we have built for the AGORA High-resolution Galaxy Simulations Comparison Project. This includes the common disk initial conditions, common physics models (e.g., radiative cooling and UV background by the standardized package Grackle) and common analysis toolkit yt, all of which are publicly available. Subgrid physics models such as Jeans pressure floor, star formation, supernova feedback energy, and metal production are carefully constrained across code platforms. With numerical accuracy that resolves the disk scale height, wemore » find that the codes overall agree well with one another in many dimensions including: gas and stellar surface densities, rotation curves, velocity dispersions, density and temperature distribution functions, disk vertical heights, stellar clumps, star formation rates, and Kennicutt–Schmidt relations. Quantities such as velocity dispersions are very robust (agreement within a few tens of percent at all radii) while measures like newly formed stellar clump mass functions show more significant variation (difference by up to a factor of ∼3). Systematic differences exist, for example, between mesh-based and particle-based codes in the low-density region, and between more diffusive and less diffusive schemes in the high-density tail of the density distribution. Yet intrinsic code differences are generally small compared to the variations in numerical implementations of the common subgrid physics such as supernova feedback. Our experiment reassures that, if adequately designed in accordance with our proposed common parameters, results of a modern high-resolution galaxy formation simulation are more sensitive to input physics than to intrinsic differences in numerical schemes.« less

  19. Grinding energy and physical properties of chopped and hammer-milled barley, wheat, oat, and canola straws

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J.S. Tumuluru; L.G. Tabil; Y. Song

    2014-01-01

    In the present study, specific energy for grinding and physical properties of wheat, canola, oat and barley straw grinds were investigated. The initial moisture content of the straw was about 0.13–0.15 (fraction total mass basis). Particle size reduction experiments were conducted in two stages: (1) a chopper without a screen, and (2) a hammer mill using three screen sizes (19.05, 25.4, and 31.75 mm). The lowest grinding energy (1.96 and 2.91 kWh t-1) was recorded for canola straw using a chopper and hammer mill with 19.05-mm screen size, whereas the highest (3.15 and 8.05 kWh t-1) was recorded for barleymore » and oat straws. The physical properties (geometric mean particle diameter, bulk, tapped and particle density, and porosity) of the chopped and hammer-milled wheat, barley, canola, and oat straw grinds measured were in the range of 0.98–4.22 mm, 36–80 kg m-3, 49–119 kg m-3, 600–1220 kg m-3, and 0.9–0.96, respectively. The average mean particle diameter was highest for the chopped wheat straw (4.22-mm) and lowest for the canola grind (0.98-mm). The canola grinds produced using the hammer mill (19.05-mm screen size) had the highest bulk and tapped density of about 80 and 119 kg m-3; whereas, the wheat and oat grinds had the lowest of about 58 and 88–90 kg m-3. The results indicate that the bulk and tapped densities are inversely proportional to the particle size of the grinds. The flow properties of the grinds calculated are better for chopped straws compared to hammer milled using smaller screen size (19.05 mm).« less

  20. Understanding Solar Coronal Heating through Atomic and Plasma Physics Experiments

    NASA Astrophysics Data System (ADS)

    Savin, Daniel Wolf; Arthanayaka, Thusitha; Bose, Sayak; Hahn, Michael; Beiersdorfer, Peter; Brown, Gregory V.; Gekelman, Walter; Vincena, Steve

    2017-08-01

    Recent solar observations suggest that the Sun's corona is heated by Alfven waves that dissipate at unexpectedly low heights in the corona. These observations raise a number of questions. Among them are the problems of accurately quantifying the energy flux of the waves and that of describing the physical mechanism that leads to the wave damping. We are performing laboratory experiments to address both of these issues.The energy flux depends on the electron density, which can be measured spectroscopically. However, spectroscopic density diagnostics have large uncertainties, because they depend sensitively on atomic collisional excitation, de-excitation, and radiative transition rates for multiple atomic levels. Essentially all of these data come from theory and have not been experimentally validated. We are conducting laboratory experiments using the electron beam ion trap (EBIT) at Lawrence Livermore National Laboratory that will provide accurate empirical calibrations for spectroscopic density diagnostics and which will also help to guide theoretical calculations.The observed rapid wave dissipation is likely due to inhomogeneities in the plasma that drive flows and currents at small length scales where energy can be more efficiently dissipated. This may take place through gradients in the Alfvén speed along the magnetic field, which causes wave reflection and generates turbulence. Alternatively, gradients in the Alfvén speed across the field can lead to dissipation through phase-mixing. Using the Large Plasma Device (LAPD) at the University of California Los Angeles, we are studying both of these dissipation mechanisms in the laboratory in order to understand their potential roles in coronal heating.

  1. Understanding Solar Coronal Heating through Atomic and Plasma Physics Experiments

    NASA Astrophysics Data System (ADS)

    Savin, Daniel Wolf; Arthanayaka, Thusitha; Beiersdorfer, Peter; Brown, Gregory V.; Gekelman, Walter; Hahn, Michael; Vincena, Steve

    2017-06-01

    Recent solar observations suggest that the Sun's corona is heated by Alfven waves that dissipate at unexpectedly low heights in the corona. These observations raise a number of questions. Among them are the problems of accurately quantifying the energy flux of the waves and that of describing the physical mechanism that leads to the wave damping. We are performing laboratory experiments to address both of these issues.The energy flux depends on the electron density, which can be measured spectroscopically. However, spectroscopic density diagnostics have large uncertainties, because they depend sensitively on atomic collisional excitation, de-excitation, and radiative transition rates for multiple atomic levels. Essentially all of these data come from theory and have not been experimentally validated. We are conducting laboratory experiments using the electron beam ion trap (EBIT) at Lawrence Livermore National Laboratory that will provide accurate empirical calibrations for spectroscopic density diagnostics and which will also help to guide theoretical calculations.The observed rapid wave dissipation is likely due to inhomogeneities in the plasma that drive flows and currents at small length scales where energy can be more efficiently dissipated. This may take place through gradients in the Alfven speed along the magnetic field, which causes wave reflection and generates turbulence. Alternatively, gradients in the Alfven speed across the field can lead to dissipation through phase-mixing. Using the Large Plasma Device (LAPD) at the University of California Los Angeles, we are studying both of these dissipation mechanisms in the laboratory in order to understand their potential roles in coronal heating.

  2. Physical performance in relation to body composition and bone mineral density in healthy, overweight, and obese postmenopausal women.

    PubMed

    Shin, Hyehyung; Liu, Pei-Yang; Panton, Lynn B; Ilich, Jasminka Z

    2014-01-01

    Diminished physical performance can be detrimental among the older adults, causing falls and subsequent fractures, loss of independence, and increased morbidity and mortality rates. Therefore, it is important to maintain functional ability from the early onset of aging. The purpose of this study was to investigate the relationship between physical performance measures and body composition (bone, fat, and lean mass) in healthy, overweight and obese, early postmenopausal white women. A total of 97 participants aged 56.0 (4.4) years (mean (SD)) with body mass index of 31.0 (4.6) kg/m(2) were included. Weight and height were recorded and 3 days of dietary records and physical activity were collected. Dual-energy x-ray absorptiometry measurements for body composition and bone mineral density were performed. Fasting blood samples were used for serum 25-hydroxy vitamin D (25OHD) analysis. Measures of physical performance included handgrip strength, 8-meter walking speed, one-leg-stance time, 8-foot Timed Get-Up-and-Go Test, and chair sit-to-stand test. Results showed that higher lean mass was related to better physical performance on items assessing body strength, including handgrip (r ranged from 0.22 to 0.25, P < .05) while higher body fat was related to the poorer physical performance in each of the assessed measures. Bone mineral density of the forearm was positively related to the handgrip strength (r = 0.207, P < .05). In regression analyses (controlled for age, weight, height, serum 25OHD status, calcium intake, physical activity, and smoking), fat mass of the lower extremities was inversely related to walking speed, one-leg-stance time, and Get-Up-and-Go measures, all crucial for mobility (r(2) = 0.13-0.23, P < .05). Overall, higher fat and lower lean mass was related to poorer physical performance, while forearm bone mineral density was related to the handgrip strength only. Further investigation may be beneficial for a better understanding of how body composition may prevent decline in physical performance among overweight/obese, mid-age, and older women.

  3. Bianchi type-VIh string cloud cosmological models with bulk viscosity

    NASA Astrophysics Data System (ADS)

    Tripathy, Sunil K.; Behera, Dipanjali

    2010-11-01

    String cloud cosmological models are studied using spatially homogeneous and anisotropic Bianchi type VIh metric in the frame work of general relativity. The field equations are solved for massive string cloud in presence of bulk viscosity. A general linear equation of state of the cosmic string tension density with the proper energy density of the universe is considered. The physical and kinematical properties of the models have been discussed in detail and the limits of the anisotropic parameter responsible for different phases of the universe are explored.

  4. Fabrication and characterisation of phantom material made of Tannin-added Rhizophora spp. particleboards for photon and electron beams

    NASA Astrophysics Data System (ADS)

    Yusof, M. F. Mohd; Hamid, P. N. K. Abd; Tajuddin, A. A.; Hashim, R.; Bauk, S.; Isa, N. Mohd; Isa, M. J. Md

    2017-05-01

    Particleboards made of Rhizophora spp. with addition of tannin adhesive were fabricated at target density of 1.0 g/cm3. The physical and mechanical properties of the particleboards including internal bond strength (IB) and modulus of rupture (MOR) were measured based on Japanese Industrial Standards (JIS A-5908). The characterisation of the particleboards including the effective atomic number, CT number and relative electron density were determined and compared to water. The mass attenuation coefficient of the particleboards were measured and compared to the calculated value of water using photon cross-section database (XCOM). The results showed that the physical and mechanical properties of the particleboards complied with Type 13 and 18 of JIS A-5908. The values of effective atomic number, CT number and relative electron density were also close to the value of water. The value of mass attenuation coefficients of the particleboards showed good agreement with water (XCOM) at low and high energy photon indicated by the χ2 values.

  5. Quantification of breast density with spectral mammography based on a scanned multi-slit photon-counting detector: A feasibility study

    PubMed Central

    Ding, Huanjun; Molloi, Sabee

    2012-01-01

    Purpose A simple and accurate measurement of breast density is crucial for the understanding of its impact in breast cancer risk models. The feasibility to quantify volumetric breast density with a photon-counting spectral mammography system has been investigated using both computer simulations and physical phantom studies. Methods A computer simulation model involved polyenergetic spectra from a tungsten anode x-ray tube and a Si-based photon-counting detector has been evaluated for breast density quantification. The figure-of-merit (FOM), which was defined as the signal-to-noise ratio (SNR) of the dual energy image with respect to the square root of mean glandular dose (MGD), was chosen to optimize the imaging protocols, in terms of tube voltage and splitting energy. A scanning multi-slit photon-counting spectral mammography system has been employed in the experimental study to quantitatively measure breast density using dual energy decomposition with glandular and adipose equivalent phantoms of uniform thickness. Four different phantom studies were designed to evaluate the accuracy of the technique, each of which addressed one specific variable in the phantom configurations, including thickness, density, area and shape. In addition to the standard calibration fitting function used for dual energy decomposition, a modified fitting function has been proposed, which brought the tube voltages used in the imaging tasks as the third variable in dual energy decomposition. Results For an average sized breast of 4.5 cm thick, the FOM was maximized with a tube voltage of 46kVp and a splitting energy of 24 keV. To be consistent with the tube voltage used in current clinical screening exam (~ 32 kVp), the optimal splitting energy was proposed to be 22 keV, which offered a FOM greater than 90% of the optimal value. In the experimental investigation, the root-mean-square (RMS) error in breast density quantification for all four phantom studies was estimated to be approximately 1.54% using standard calibration function. The results from the modified fitting function, which integrated the tube voltage as a variable in the calibration, indicated a RMS error of approximately 1.35% for all four studies. Conclusions The results of the current study suggest that photon-counting spectral mammography systems may potentially be implemented for an accurate quantification of volumetric breast density, with an RMS error of less than 2%, using the proposed dual energy imaging technique. PMID:22771941

  6. Final Report on DTRA Basic Research Project #BRCALL08-Per3-C-2-0006 "High-Z Non-Equilibrium Physics and Bright X-ray Sources with New Laser Targets"

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Colvin, Jeffrey D.

    This project had two major goals. Final Goal: obtain spectrally resolved, absolutely calibrated x-ray emission data from uniquely uniform mm-scale near-critical-density high-Z plasmas not in local thermodynamic equilibrium (LTE) to benchmark modern detailed atomic physics models. Scientific significance: advance understanding of non-LTE atomic physics. Intermediate Goal: develop new nano-fabrication techniques to make suitable laser targets that form the required highly uniform non-LTE plasmas when illuminated by high-intensity laser light. Scientific significance: advance understanding of nano-science. The new knowledge will allow us to make x-ray sources that are bright at the photon energies of most interest for testing radiation hardening technologies,more » the spectral energy range where current x-ray sources are weak. All project goals were met.« less

  7. Growth of Cosmic Structure: Probing Dark Energy Beyond Expansion

    DOE PAGES

    Huterer, Dragan; Kirkby, David; Bean, Rachel; ...

    2014-03-15

    The quantity and quality of cosmic structure observations have greatly accelerated in recent years, and further leaps forward will be facilitated by imminent projects. These will enable us to map the evolution of dark and baryonic matter density fluctuations over cosmic history. The way that these fluctuations vary over space and time is sensitive to several pieces of fundamental physics: the primordial perturbations generated by GUT-scale physics; neutrino masses and interactions; the nature of dark matter and dark energy. We focus on the last of these here: the ways that combining probes of growth with those of the cosmic expansionmore » such as distance-redshift relations will pin down the mechanism driving the acceleration of the Universe.« less

  8. Growth of Cosmic Structure: Probing Dark Energy Beyond Expansion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huterer, Dragan; Kirkby, David; Bean, Rachel

    The quantity and quality of cosmic structure observations have greatly accelerated in recent years, and further leaps forward will be facilitated by imminent projects. These will enable us to map the evolution of dark and baryonic matter density fluctuations over cosmic history. The way that these fluctuations vary over space and time is sensitive to several pieces of fundamental physics: the primordial perturbations generated by GUT-scale physics; neutrino masses and interactions; the nature of dark matter and dark energy. We focus on the last of these here: the ways that combining probes of growth with those of the cosmic expansionmore » such as distance-redshift relations will pin down the mechanism driving the acceleration of the Universe.« less

  9. How accurate are the parametrized correlation energies of the uniform electron gas?

    NASA Astrophysics Data System (ADS)

    Bhattarai, Puskar; Patra, Abhirup; Shahi, Chandra; Perdew, John P.

    2018-05-01

    Density functional approximations to the exchange-correlation energy are designed to be exact for an electron gas of uniform density parameter rs and relative spin polarization ζ , requiring a parametrization of the correlation energy per electron ɛc(rs,ζ ) . We consider three widely used parametrizations [J. P. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981), 10.1103/PhysRevB.23.5048 or PZ81, S. H. Vosko, L. Wilk, and M. Nusair, Can. J. Phys. 58, 1200 (1980), 10.1139/p80-159 or VWN80, and J. P. Perdew and Y. Wang, Phys. Rev. B 45, 13244 (1992), 10.1103/PhysRevB.45.13244 or PW92] that interpolate the quantum Monte Carlo (QMC) correlation energies of Ceperley-Alder [Phys. Rev. Lett. 45, 566 (1980), 10.1103/PhysRevLett.45.566], while extrapolating them to known high-(rs→0 ) and low- (rs→∞ ) density limits. For the physically important range 0.5 ≤rs≤20 , they agree closely with one another, with differences of 0.01 eV (0.5%) or less between the latter two. The density parameter interpolation (DPI), designed to predict these energies by interpolation between the known high- and low-density limits, with almost no other input (and none for ζ =0 ), is also reasonably close, both in its original version and with corrections for ζ ≠0 . Moreover, the DPI and PW92 at rs=0.5 are very close to the high-density expansion. The larger discrepancies with the QMC of Spink et al. [Phys. Rev. B 88, 085121 (2013), 10.1103/PhysRevB.88.085121], of order 0.1 eV (5%) at rs=0.5 , are thus surprising, suggesting that the constraint-based PW92 and VWN80 parametrizations are more accurate than the QMC for rs<2 . For rs>2 , however, the QMC of Spink et al. confirms the dependence upon relative spin polarization predicted by the parametrizations.

  10. Some Fundamental Issues in Ground-State Density Functional Theory: A Guide for the Perplexed.

    PubMed

    Perdew, John P; Ruzsinszky, Adrienn; Constantin, Lucian A; Sun, Jianwei; Csonka, Gábor I

    2009-04-14

    Some fundamental issues in ground-state density functional theory are discussed without equations: (1) The standard Hohenberg-Kohn and Kohn-Sham theorems were proven for a Hamiltonian that is not quite exact for real atoms, molecules, and solids. (2) The density functional for the exchange-correlation energy, which must be approximated, arises from the tendency of electrons to avoid one another as they move through the electron density. (3) In the absence of a magnetic field, either spin densities or total electron density can be used, although the former choice is better for approximations. (4) "Spin contamination" of the determinant of Kohn-Sham orbitals for an open-shell system is not wrong but right. (5) Only to the extent that symmetries of the interacting wave function are reflected in the spin densities should those symmetries be respected by the Kohn-Sham noninteracting or determinantal wave function. Functionals below the highest level of approximations should however sometimes break even those symmetries, for good physical reasons. (6) Simple and commonly used semilocal (lower-level) approximations for the exchange-correlation energy as a functional of the density can be accurate for closed systems near equilibrium and yet fail for open systems of fluctuating electron number. (7) The exact Kohn-Sham noninteracting state need not be a single determinant, but common approximations can fail when it is not. (8) Over an open system of fluctuating electron number, connected to another such system by stretched bonds, semilocal approximations make the exchange-correlation energy and hole-density sum rule too negative. (9) The gap in the exact Kohn-Sham band structure of a crystal underestimates the real fundamental gap but may approximate the first exciton energy in the large-gap limit. (10) Density functional theory is not really a mean-field theory, although it looks like one. The exact functional includes strong correlation, and semilocal approximations often overestimate the strength of static correlation through their semilocal exchange contributions. (11) Only under rare conditions can excited states arise directly from a ground-state theory.

  11. Exact near-onset analysis of the spin-density-wave instability in ferromagnetic superconductors: The linearly polarized state

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, C.

    1984-09-01

    Using an approach similar to Abvikosov's theory of the vortex state near H/sub c/2, we have performed an exact, near-onset analysis of a spin-density-wave instability leading to the ''linearly polarized state'' of Greenside et al. in ferromagnetic superconductors. The approach is based on a generalized Ginzburg-Landau theory for such materials, as formulated by Blount and Varma. Two models have been considered. In the (..cap alpha..,..beta..) model, where the bulk magnetic energy is taken to be (1/2)..cap alpha../sub m/M/sup 2/+(1/4)..beta../sub m/M/sup 4/, we find the transition to be second order, and obtain explicit formulas for various physical quantities to leading ordermore » in the deviation from onset. We have also rigorously analyzed the most favored spatial structure just below onset, among all possibilities allowed by the instability, and have concluded that a plane-wave-like structure is favored in a physical limit considered. In the (..cap alpha..,..gamma..) model, where the bulk magnetic energy is taken to be (1/2)..cap alpha../sub m/M/sup 2/+(1/6)..gamma../sub m/M/sup 6/ as is supported by recent experiments for ErRh/sub 4/B/sub 4/, we find the transition to be first order. This approach is then confined to an unphysical branch, which does not permit us to calculate various physical quantities on the physical branch.« less

  12. Energetic investigation of the adsorption process of CH4, C2H6 and N2 on activated carbon: Numerical and statistical physics treatment

    NASA Astrophysics Data System (ADS)

    Ben Torkia, Yosra; Ben Yahia, Manel; Khalfaoui, Mohamed; Al-Muhtaseb, Shaheen A.; Ben Lamine, Abdelmottaleb

    2014-01-01

    The adsorption energy distribution (AED) function of a commercial activated carbon (BDH-activated carbon) was investigated. For this purpose, the integral equation is derived by using a purely analytical statistical physics treatment. The description of the heterogeneity of the adsorbent is significantly clarified by defining the parameter N(E). This parameter represents the energetic density of the spatial density of the effectively occupied sites. To solve the integral equation, a numerical method was used based on an adequate algorithm. The Langmuir model was adopted as a local adsorption isotherm. This model is developed by using the grand canonical ensemble, which allows defining the physico-chemical parameters involved in the adsorption process. The AED function is estimated by a normal Gaussian function. This method is applied to the adsorption isotherms of nitrogen, methane and ethane at different temperatures. The development of the AED using a statistical physics treatment provides an explanation of the gas molecules behaviour during the adsorption process and gives new physical interpretations at microscopic levels.

  13. PREFACE: High Energy Particle Physics Workshop (HEPPW2015)

    NASA Astrophysics Data System (ADS)

    Cornell, Alan S.; Mellado, B.

    2015-10-01

    The motivation for this workshop began with the discovery of the Higgs boson three years ago, and the realisation that many problems remain in particle physics, such as why there is more matter than anti-matter, better determining the still poorly measured parameters of the strong force, explaining possible sources for dark matter, naturalness etc. While the newly discovered Higgs boson seems to be compatible with the Standard Model, current experimental accuracy is far from providing a definitive statement with regards to the nature of this new particle. There is a lot of room for physics beyond the Standard Model to emerge in the exploration of the Higgs boson. Recent measurements in high-energy heavy ion collisions at the LHC have shed light on the complex dynamics that govern high-density quark-gluon interactions. An array of results from the ALICE collaboration have been highlighted in a recent issue of CERN courier. The physics program of high-energy heavy ion collisions promises to further unveil the intricacies of high-density quark-gluon plasma physics. The great topicality of high energy physics research has also seen a rapid increase in the number of researchers in South Africa pursuing such studies, both experimentally through the ATLAS and ALICE colliders at CERN, and theoretically. Young researchers and graduate students largely populate these research groups, with little experience in presenting their work, and few support structures (to their knowledge) to share experiences with. Whilst many schools and workshops have sought to educate these students on the theories and tools they will need to pursue their research, few have provided them with a platform to present their work. As such, this workshop discussed the various projects being pursued by graduate students and young researchers in South Africa, enabling them to develop networks for future collaboration and discussion. The workshop took place at the iThemba Laboratories - North facility, in Gauteng, from the 11th to the 13th of February 2015, where excellent conference facilities with outdoors and indoor tea areas for discussions and interactions were provided, along with a state-of-the-art remote access to the conference venue such that those who were unable to attend the workshop in person could also be present. The laboratory is located next door to the Wits Professional Development Hub (on the corner of Jan Smuts Avenue and Empire Road), which provided the catering for this workshop. A morning plenary session, followed 15+10 minute presentations, was the format across our three days. The topics covered being in high-energy theory and phenomenology (heavy ions, pp, ep, ee collisions), ATLAS physics and ALICE physics. The workshop website is http://hep.wits.ac.za/HEPPW2015.php

  14. Frozen Fractals all Around: Solar flares, Ampere’s Law, and the Search for Units in Scale-Free Processes.

    NASA Astrophysics Data System (ADS)

    McAteer, R. T. James

    2015-08-01

    My soul is spiraling in frozen fractals all around, And one thought crystallizes like an icy blast, I'm never going back, the past is in the past.Elsa, from Disney’s Frozen, characterizes two fundamental aspects of scale-free processes in Nature: fractals are everywhere in space; fractals can be used to probe changes in time. Self-Organized Criticality provides a powerful set of tools to study scale-free processes. It connects spatial fractals (more generically, multifractals) to temporal evolution. The drawback is that this usually results in scale-free, unit-less, indices, which can be difficult to connect to everyday physics. Here, I show a novel method that connects one of the most powerful SOC tools - the wavelet transform modulus maxima approach to calculating multifractality - to one of the most powerful equations in all of physics - Ampere’s law. In doing so I show how the multifractal spectra can be expressed in terms of current density, and how current density can then be used for the prediction of future energy release from such a system.Our physical understanding of the solar magnetic field structure, and hence our ability to predict solar activity, is limited by the type of data currently available. I show that the multifractal spectrum provides a powerful physical connection between the details of photospheric magnetic gradients of current data and the coronal magnetic structure. By decomposing Ampere’s law and comparing it to the wavelet transform modulus maximum method, I show how the scale-free Holder exponent provides a direct measure of current density across all relevant sizes. The prevalence of this current density across various scales is connected to its stability in time, and hence to the ability of the magnetic structure to store and then release energy. Hence (spatial) multifractals inform us of (future) solar activity.Finally I discuss how such an approach can be used in any study of scale-free processes, and highlight the necessary key steps in identifying the nature of the mother wavelet to ensuring the viability of this powerful connection.

  15. Magnetohydrodynamics of atmospheric transients. IV - Nonplane two-dimensional analyses of energy conversion and magnetic field evolution. [during corona following solar flare

    NASA Technical Reports Server (NTRS)

    Wu, S. T.; Nakagawa, Y.; Han, S. M.; Dryer, M.

    1982-01-01

    The evolution of the magnetic field and the manner of conversion of thermal energy into different forms in the corona following a solar flare are investigated by means of a nonplane magnetohydrodynamic (MHD) analysis. All three components of magnetic field and velocity are treated in a physically self-consistent manner, with all physical variables as functions of time (t) and two spatial coordinates (r, theta). The difference arising from the initial magnetic field, either twisted (force-free) or non-twisted (potential), is demonstrated. Consideration is given to two initial field topologies (open vs. closed). The results demonstrate that the conversion of magnetic energy is faster for the case of the initially twisted (force-free) field than for the initially untwisted (potential) field. In addition, the twisted field is found to produce a complex structure of the density enhancements.

  16. A tensorial description of particle perception in black-hole physics

    NASA Astrophysics Data System (ADS)

    Barbado, Luis C.; Barceló, Carlos; Garay, Luis J.; Jannes, G.

    2016-09-01

    In quantum field theory in curved backgrounds, one typically distinguishes between objective, tensorial quantities such as the renormalized stress-energy tensor (RSET) and subjective, nontensorial quantities such as Bogoliubov coefficients which encode perception effects associated with the specific trajectory of a detector. In this work, we propose a way to treat both objective and subjective notions on an equal tensorial footing. For that purpose, we define a new tensor which we will call the perception renormalized stress-energy tensor (PeRSET). The PeRSET is defined as the subtraction of the RSET corresponding to two different vacuum states. Based on this tensor, we can define perceived energy densities and fluxes. The PeRSET helps us to have a more organized and systematic understanding of various results in the literature regarding quantum field theory in black hole spacetimes. We illustrate the physics encoded in this tensor by working out various examples of special relevance.

  17. Analysis of stress fields and elastic energies in the vicinity of nanograin boundaries using the disclination approach

    NASA Astrophysics Data System (ADS)

    Sukhanov, Ivan I.; Ditenberg, Ivan A.

    2017-12-01

    The paper provides a theoretical analysis of elastic stresses and elastic energy distribution in nanostructured metal materials in the vicinity of nanograin boundaries with a high partial disclination density. The analysis demonstrates the stress field distribution in disclination grain boundary configurations as a function of nanograin size, taking into account the superposition of these stresses in screening the disclination pile-ups. It is found that the principal stress tensor components reach maximum values only in disclination planes P ≈ E/25 and that the stress gradients peak at nodal points ∂P/∂x ≈ 0.08E nm-1. The shear stress components are localized within the physical grain size, and the specific elastic energy distribution for such configurations reveals characteristic local maxima which can be the cause for physical broadening of nanograin boundaries.

  18. The Laser Mega-Joule : LMJ & PETAL status and Program Overview

    NASA Astrophysics Data System (ADS)

    Miquel, J.-L.; Lion, C.; Vivini, P.

    2016-03-01

    The laser Megajoule (LMJ), developed by the French Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), will be a cornerstone of the French Simulation Program, which combines improvement of physics models, high performance numerical simulation, and experimental validation. The LMJ facility is under construction at CEA CESTA near Bordeaux and will provide the experimental capabilities to study High-Energy Density Physics (HEDP). One of its goals is to obtain ignition and burn of DT-filled capsules imploded, through indirect drive scheme, inside rugby-shape hohlraum. The PETAL project consists in the addition of one short-pulse (ps) ultra-high-power, high-energy beam (kJ) to the LMJ facility. PETAL will offer a combination of a very high intensity multi-petawatt beam, synchronized with the nanosecond beams of the LMJ. This combination will expand the LMJ experimental field on HEDP. This paper presents an update of LMJ & PETAL status, together with the development of the overall program including targets, plasma diagnostics and simulation tools.

  19. The development of extraterrestrial civilizations and physical laws

    NASA Astrophysics Data System (ADS)

    Troitskii, V. S.

    Consideration is given to the limiting characteristics of extraterrestrial civilizations as allowed by physical laws, and to the possible pathways and levels of development of such civilizations. The concept of an extraterrestrial civilization is defined in terms of the exchange of information, energy and matter both within a community of intelligent beings and between the community and its environment. The possible characteristics of such a civilization are then examined, including amount of populated space, population and population density, energy requirements and supply, information content, transportation capacity and lifetimes, and it is shown that the space occupiable by an extraterrestrial civilization is limited to the space around its star, due to the finite velocity of transport processes. The development of a type II civilization, making use of energy on the order of that put out by its star, is then examined, and constraints on energy production in such a civilization making impossible the establishment of an omnidirectional radio beacon detectable throughout the Galaxy are pointed out.

  20. Energy principle for excitations in plasmas with counterstreaming electron flows

    NASA Astrophysics Data System (ADS)

    Kumar, Atul; Shukla, Chandrasekhar; Das, Amita; Kaw, Predhiman

    2018-05-01

    A relativistic electron beam propagating through plasma induces a return electron current in the system. Such a system of interpenetrating forward and return electron current is susceptible to a host of instabilities. The physics of such instabilities underlies the conversion of the flow kinetic energy to the electromagnetic field energy. Keeping this in view, an energy principle analysis has been enunciated in this paper. Such analyses have been widely utilized earlier in the context of conducting fluids described by MHD model [I. B. Bernstein et al., Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 244(1236), 17-40 (1958)]. Lately, such an approach has been employed for the electrostatic two stream instability for the electron beam plasma system [C. N. Lashmore-Davies, Physics of Plasmas 14(9), 092101 (2007)]. In contrast, it has been shown here that even purely growing mode like Weibel/current filamentation instability for the electron beam plasma system is amenable to such a treatment. The treatment provides an understanding of the energetics associated with the growing mode. The growth rate expression has also been obtained from it. Furthermore, it has been conclusively demonstrated in this paper that for identical values of S4=∑αn0 αv0α 2/n0γ0 α, the growth rate is higher when the counterstreaming beams are symmetric (i.e. S3 = ∑αn0αv 0α/n0γ0α = 0) compared to the case when the two beams are asymmetric (i.e. when S3 is finite). Here, v 0α, n0α and γ0α are the equilibrium velocity, electron density and the relativistic factor for the electron species `α' respectively and n0 = ∑αn0α is the total electron density. Particle - In - Cell simulations have been employed to show that the saturated amplitude of the field energy is also higher in the symmetric case.

  1. Source-Free Exchange-Correlation Magnetic Fields in Density Functional Theory.

    PubMed

    Sharma, S; Gross, E K U; Sanna, A; Dewhurst, J K

    2018-03-13

    Spin-dependent exchange-correlation energy functionals in use today depend on the charge density and the magnetization density: E xc [ρ, m]. However, it is also correct to define the functional in terms of the curl of m for physical external fields: E xc [ρ,∇ × m]. The exchange-correlation magnetic field, B xc , then becomes source-free. We study this variation of the theory by uniquely removing the source term from local and generalized gradient approximations to the functional. By doing so, the total Kohn-Sham moments are improved for a wide range of materials for both functionals. Significantly, the moments for the pnictides are now in good agreement with experiment. This source-free method is simple to implement in all existing density functional theory codes.

  2. Langmuir Probe Measurements in an Inductively Coupled Ar/CF4 Plasmas

    NASA Technical Reports Server (NTRS)

    Rao, M. V. V. S.; Meyyappan, M.; Sharma, S. P.; Arnold, James O. (Technical Monitor)

    2000-01-01

    Technological advancement in the microelectronics industry requires an understanding of the physical and chemical processes occurring in plasmas of fluorocarbon gases, such as carbon tetrafluoride (CF4) which is commonly used as an etchant, and their mixtures to optimize various operating parameters. In this paper we report data on electron number density (ne), electron temperature'(Te), electron energy distribution function (EEDF), mean electron energy, ion number density (ni), and plasma potential (Vp) measured by using Langmuir probe in an inductively coupled 13.56 MHz radio frequency plasmas generated in 50%Ar:50%CF4 mixture in the GEC cell. The probe data were recorded at various radial positions providing radial profiles of these plasma parameters at 10-50 mTorr pressures and 200 W and 300 W of RF power. Present measurements indicate that the electron and ion number densities increase with increase in pressure and power. Whereas the plasma potential and electron temperature decrease with increase in pressure, and they weakly depend on RF power. The radial profiles exhibit that the electron and ion number densities and the plasma potential peak at the center of the plasma with an exponential fall away from it, while the electron temperature has a minimum at the center and it increases steadily towards the electrode edge. The EEDFs have a characteristic drop near the low energy end at all pressures and pressures and their shapes represent non-Maxwellian plasma and exhibit more like Druyvesteyn energy distribution.v

  3. Fluorescent Fe K Emission from High Density Accretion Disks

    NASA Astrophysics Data System (ADS)

    Bautista, Manuel; Mendoza, Claudio; Garcia, Javier; Kallman, Timothy R.; Palmeri, Patrick; Deprince, Jerome; Quinet, Pascal

    2018-06-01

    Iron K-shell lines emitted by gas closely orbiting black holes are observed to be grossly broadened and skewed by Doppler effects and gravitational redshift. Accordingly, models for line profiles are widely used to measure the spin (i.e., the angular momentum) of astrophysical black holes. The accuracy of these spin estimates is called into question because fitting the data requires very high iron abundances, several times the solar value. Meanwhile, no plausible physical explanation has been proffered for why these black hole systems should be so iron rich. The most likely explanation for the super-solar iron abundances is a deficiency in the models, and the leading candidate cause is that current models are inapplicable at densities above 1018 cm-3. We study the effects of high densities on the atomic parameters and on the spectral models for iron ions. At high densities, Debye plasma can affect the effective atomic potential of the ions, leading to observable changes in energy levels and atomic rates with respect to the low density case. High densities also have the effec of lowering energy the atomic continuum and reducing the recombination rate coefficients. On the spectral modeling side, high densities drive level populations toward a Boltzman distribution and very large numbers of excited atomic levels, typically accounted for in theoretical spectral models, may contribute to the K-shell spectrum.

  4. Characterizing the γ-ray long-term variability of PKS 2155-304 with H.E.S.S. and Fermi-LAT

    NASA Astrophysics Data System (ADS)

    H.E.S.S. Collaboration; Abdalla, H.; Abramowski, A.; Aharonian, F.; Ait Benkhali, F.; Akhperjanian, A. G.; Andersson, T.; Angüner, E. O.; Arrieta, M.; Aubert, P.; Backes, M.; Balzer, A.; Barnard, M.; Becherini, Y.; Becker Tjus, J.; Berge, D.; Bernhard, S.; Bernlöhr, K.; Blackwell, R.; Böttcher, M.; Boisson, C.; Bolmont, J.; Bordas, P.; Bregeon, J.; Brun, F.; Brun, P.; Bryan, M.; Bulik, T.; Capasso, M.; Carr, J.; Casanova, S.; Cerruti, M.; Chakraborty, N.; Chalme-Calvet, R.; Chaves, R. C. G.; Chen, A.; Chevalier, J.; Chrétien, M.; Colafrancesco, S.; Cologna, G.; Condon, B.; Conrad, J.; Cui, Y.; Davids, I. D.; Decock, J.; Degrange, B.; Deil, C.; Devin, J.; deWilt, P.; Dirson, L.; Djannati-Ataï, A.; Domainko, W.; Donath, A.; Drury, L. O.'C.; Dubus, G.; Dutson, K.; Dyks, J.; Edwards, T.; Egberts, K.; Eger, P.; Ernenwein, J.-P.; Eschbach, S.; Farnier, C.; Fegan, S.; Fernandes, M. V.; Fiasson, A.; Fontaine, G.; Förster, A.; Funk, S.; Füßling, M.; Gabici, S.; Gajdus, M.; Gallant, Y. A.; Garrigoux, T.; Giavitto, G.; Giebels, B.; Glicenstein, J. F.; Gottschall, D.; Goyal, A.; Grondin, M.-H.; Hadasch, D.; Hahn, J.; Haupt, M.; Hawkes, J.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hervet, O.; Hinton, J. A.; Hofmann, W.; Hoischen, C.; Holler, M.; Horns, D.; Ivascenko, A.; Jacholkowska, A.; Jamrozy, M.; Janiak, M.; Jankowsky, D.; Jankowsky, F.; Jingo, M.; Jogler, T.; Jouvin, L.; Jung-Richardt, I.; Kastendieck, M. A.; Katarzyński, K.; Katz, U.; Kerszberg, D.; Khélifi, B.; Kieffer, M.; King, J.; Klepser, S.; Klochkov, D.; Kluźniak, W.; Kolitzus, D.; Komin, Nu.; Kosack, K.; Krakau, S.; Kraus, M.; Krayzel, F.; Krüger, P. P.; Laffon, H.; Lamanna, G.; Lau, J.; Lees, J.-P.; Lefaucheur, J.; Lefranc, V.; Lemière, A.; Lemoine-Goumard, M.; Lenain, J.-P.; Leser, E.; Lohse, T.; Lorentz, M.; Liu, R.; López-Coto, R.; Lypova, I.; Marandon, V.; Marcowith, A.; Mariaud, C.; Marx, R.; Maurin, G.; Maxted, N.; Mayer, M.; Meintjes, P. J.; Meyer, M.; Mitchell, A. M. W.; Moderski, R.; Mohamed, M.; Mohrmann, L.; Morå, K.; Moulin, E.; Murach, T.; de Naurois, M.; Niederwanger, F.; Niemiec, J.; Oakes, L.; O'Brien, P.; Odaka, H.; Öttl, S.; Ohm, S.; Ostrowski, M.; Oya, I.; Padovani, M.; Panter, M.; Parsons, R. D.; Pekeur, N. W.; Pelletier, G.; Perennes, C.; Petrucci, P.-O.; Peyaud, B.; Piel, Q.; Pita, S.; Poon, H.; Prokhorov, D.; Prokoph, H.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raab, S.; Reimer, A.; Reimer, O.; Renaud, M.; de los Reyes, R.; Rieger, F.; Romoli, C.; Rosier-Lees, S.; Rowell, G.; Rudak, B.; Rulten, C. B.; Sahakian, V.; Salek, D.; Sanchez, D. A.; Santangelo, A.; Sasaki, M.; Schlickeiser, R.; Schüssler, F.; Schulz, A.; Schwanke, U.; Schwemmer, S.; Settimo, M.; Seyffert, A. S.; Shafi, N.; Shilon, I.; Simoni, R.; Sol, H.; Spanier, F.; Spengler, G.; Spies, F.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Stinzing, F.; Stycz, K.; Sushch, I.; Tavernet, J.-P.; Tavernier, T.; Taylor, A. M.; Terrier, R.; Tibaldo, L.; Tiziani, D.; Tluczykont, M.; Trichard, C.; Tuffs, R.; Uchiyama, Y.; van der Walt, D. J.; van Eldik, C.; van Rensburg, C.; van Soelen, B.; Vasileiadis, G.; Veh, J.; Venter, C.; Viana, A.; Vincent, P.; Vink, J.; Voisin, F.; Völk, H. J.; Vuillaume, T.; Wadiasingh, Z.; Wagner, S. J.; Wagner, P.; Wagner, R. M.; White, R.; Wierzcholska, A.; Willmann, P.; Wörnlein, A.; Wouters, D.; Yang, R.; Zabalza, V.; Zaborov, D.; Zacharias, M.; Zdziarski, A. A.; Zech, A.; Zefi, F.; Ziegler, A.; Żywucka, N.

    2017-02-01

    Studying the temporal variability of BL Lac objects at the highest energies provides unique insights into the extreme physical processes occurring in relativistic jets and in the vicinity of super-massive black holes. To this end, the long-term variability of the BL Lac object PKS 2155-304 is analyzed in the high (HE, 100 MeV < E < 300 GeV) and very high energy (VHE, E > 200 GeV) γ-ray domain. Over the course of 9 yr of H.E.S.S. observations the VHE light curve in the quiescent state is consistent with a log-normal behavior. The VHE variability in this state is well described by flicker noise (power-spectral-density index ) on timescales larger than one day. An analysis of 5.5 yr of HE Fermi-LAT data gives consistent results (, on timescales larger than 10 days) compatible with the VHE findings. The HE and VHE power spectral densities show a scale invariance across the probed time ranges. A direct linear correlation between the VHE and HE fluxes could neither be excluded nor firmly established. These long-term-variability properties are discussed and compared to the red noise behavior (β 2) seen on shorter timescales during VHE-flaring states. The difference in power spectral noise behavior at VHE energies during quiescent and flaring states provides evidence that these states are influenced by different physical processes, while the compatibility of the HE and VHE long-term results is suggestive of a common physical link as it might be introduced by an underlying jet-disk connection.

  5. Energy level alignment and quantum conductance of functionalized metal-molecule junctions: Density functional theory versus GW calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Chengjun; Markussen, Troels; Thygesen, Kristian S., E-mail: thygesen@fysik.dtu.dk

    We study the effect of functional groups (CH{sub 3}*4, OCH{sub 3}, CH{sub 3}, Cl, CN, F*4) on the electronic transport properties of 1,4-benzenediamine molecular junctions using the non-equilibrium Green function method. Exchange and correlation effects are included at various levels of theory, namely density functional theory (DFT), energy level-corrected DFT (DFT+Σ), Hartree-Fock and the many-body GW approximation. All methods reproduce the expected trends for the energy of the frontier orbitals according to the electron donating or withdrawing character of the substituent group. However, only the GW method predicts the correct ordering of the conductance amongst the molecules. The absolute GWmore » (DFT) conductance is within a factor of two (three) of the experimental values. Correcting the DFT orbital energies by a simple physically motivated scissors operator, Σ, can bring the DFT conductances close to experiments, but does not improve on the relative ordering. We ascribe this to a too strong pinning of the molecular energy levels to the metal Fermi level by DFT which suppresses the variation in orbital energy with functional group.« less

  6. Intermittency in the Helimak, a simple magnetic torus

    NASA Astrophysics Data System (ADS)

    Taylor, E. I.; Rowan, W. L.; Gentle, K. W.; Horton, W.; Bernard, T.

    2017-10-01

    Irregularly-spaced, large-amplitude bursts are observed in the Helimak plasma turbulence with sufficient definition to investigate their physical basis and possibly improve understanding of the induced particle transport. The Helimak is an experimental realization of a sheared cylindrical slab that generates and heats a plasma with microwaves and confines it in a helical magnetic field. Although it is MHD stable, the plasma is always in a nonlinearly saturated state of microturbulence. The intermittency in this turbulence manifests itself in highly skewed PDFs of the normalized electron density. Cross-conditional averaging exposes large amplitude structures propagating down the density gradient at a few hundred meters per second. Introduction of a radial electric field via bias plates appears to suppress these intermittent transport events (ITEs) for Er pointing down the density gradient. In addition, the cross-conditionally averaged waveforms are relatively unchanged as connection length is varied. Within certain regimes, our measurements are consistent with the predictions of a stochastic model that represents the plasma fluctuations as a random sequence of burst events. Furthermore, we attempt to gain insight into the physical origin of these ITEs by searching for similar statistical behavior in fluid and gyrokinetic simulations. This material is based upon work supported by the U.S. Department of Energy Office of Science, Office of Fusion Energy Sciences under Award Number DE-FG02- 04ER5476.

  7. Supercritical Fuel Pyrolysis

    DTIC Science & Technology

    2007-05-28

    be supercritical fluids . These temperatures and pressures will also cause the fuel to undergo pyrolytic reactions, which have the potential of forming...physical properties, supercritical fluids have highly variable densities, no surface tension, and transport properties (i.e., mass, energy, and momentum...are very dependent on pressure, chemical reaction rates in supercritical fluids can be highly pressure-dependent [6-9]. The kinetic reaction rate

  8. Quasiparticle interference, quasiparticle interactions, and the origin of the charge density wave in 2 H – NbSe 2

    DOE PAGES

    Arguello, C. J.; Rosenthal, E. P.; Andrade, E. F.; ...

    2015-01-21

    We show that a small number of intentionally introduced defects can be used as a spectroscopic tool to amplify quasiparticle interference in 2H-NbSe₂ that we measure by scanning tunneling spectroscopic imaging. We show, from the momentum and energy dependence of the quasiparticle interference, that Fermi surface nesting is inconsequential to charge density wave formation in 2H-NbSe₂. We demonstrate that, by combining quasiparticle interference data with additional knowledge of the quasiparticle band structure from angle resolved photoemission measurements, one can extract the wave vector and energy dependence of the important electronic scattering processes thereby obtaining direct information both about the fermiologymore » and the interactions. In 2H-NbSe₂, we use this combination to confirm that the important near-Fermi-surface electronic physics is dominated by the coupling of the quasiparticles to soft mode phonons at a wave vector different from the charge density wave ordering wave vector.« less

  9. Molecular properties via a subsystem density functional theory formulation: a common framework for electronic embedding.

    PubMed

    Höfener, Sebastian; Gomes, André Severo Pereira; Visscher, Lucas

    2012-01-28

    In this article, we present a consistent derivation of a density functional theory (DFT) based embedding method which encompasses wave-function theory-in-DFT (WFT-in-DFT) and the DFT-based subsystem formulation of response theory (DFT-in-DFT) by Neugebauer [J. Neugebauer, J. Chem. Phys. 131, 084104 (2009)] as special cases. This formulation, which is based on the time-averaged quasi-energy formalism, makes use of the variation Lagrangian techniques to allow the use of non-variational (in particular: coupled cluster) wave-function-based methods. We show how, in the time-independent limit, we naturally obtain expressions for the ground-state DFT-in-DFT and WFT-in-DFT embedding via a local potential. We furthermore provide working equations for the special case in which coupled cluster theory is used to obtain the density and excitation energies of the active subsystem. A sample application is given to demonstrate the method. © 2012 American Institute of Physics

  10. Quasiparticle interference, quasiparticle interactions, and the origin of the charge density wave in 2H-NbSe2.

    PubMed

    Arguello, C J; Rosenthal, E P; Andrade, E F; Jin, W; Yeh, P C; Zaki, N; Jia, S; Cava, R J; Fernandes, R M; Millis, A J; Valla, T; Osgood, R M; Pasupathy, A N

    2015-01-23

    We show that a small number of intentionally introduced defects can be used as a spectroscopic tool to amplify quasiparticle interference in 2H-NbSe2 that we measure by scanning tunneling spectroscopic imaging. We show, from the momentum and energy dependence of the quasiparticle interference, that Fermi surface nesting is inconsequential to charge density wave formation in 2H-NbSe2. We demonstrate that, by combining quasiparticle interference data with additional knowledge of the quasiparticle band structure from angle resolved photoemission measurements, one can extract the wave vector and energy dependence of the important electronic scattering processes thereby obtaining direct information both about the fermiology and the interactions. In 2H-NbSe2, we use this combination to confirm that the important near-Fermi-surface electronic physics is dominated by the coupling of the quasiparticles to soft mode phonons at a wave vector different from the charge density wave ordering wave vector.

  11. Favre-Averaged Turbulence Statistics in Variable Density Mixing of Buoyant Jets

    NASA Astrophysics Data System (ADS)

    Charonko, John; Prestridge, Kathy

    2014-11-01

    Variable density mixing of a heavy fluid jet with lower density ambient fluid in a subsonic wind tunnel was experimentally studied using Particle Image Velocimetry and Planar Laser Induced Fluorescence to simultaneously measure velocity and density. Flows involving the mixing of fluids with large density ratios are important in a range of physical problems including atmospheric and oceanic flows, industrial processes, and inertial confinement fusion. Here we focus on buoyant jets with coflow. Results from two different Atwood numbers, 0.1 (Boussinesq limit) and 0.6 (non-Boussinesq case), reveal that buoyancy is important for most of the turbulent quantities measured. Statistical characteristics of the mixing important for modeling these flows such as the PDFs of density and density gradients, turbulent kinetic energy, Favre averaged Reynolds stress, turbulent mass flux velocity, density-specific volume correlation, and density power spectra were also examined and compared with previous direct numerical simulations. Additionally, a method for directly estimating Reynolds-averaged velocity statistics on a per-pixel basis is extended to Favre-averages, yielding improved accuracy and spatial resolution as compared to traditional post-processing of velocity and density fields.

  12. Normal Bone Microstructure and Density But Worse Physical Function in Older Women Treated with Selective Serotonin Reuptake Inhibitors, a Cross-Sectional Population-Based Study.

    PubMed

    Larsson, Berit; Mellström, Dan; Johansson, Lisa; Nilsson, Anna G; Lorentzon, Mattias; Sundh, Daniel

    2018-05-05

    Depression in the elderly is today often treated with selective serotonin reuptake inhibitors (SSRIs) because of their favorable adverse effect profile. However, treatment with SSRIs is associated with increased risk of fractures. Whether this increased risk depends on reduced bone strength or increased fall risk due to reduced physical function is not certain. The aim was therefore to investigate if treatment with SSRIs is associated with impaired bone microstructure, bone density, or physical function in older women. From an ongoing population-based study, 1057 women (77.7 ± 1.5 years) were included. Validated questionnaires were used to assess information regarding medical history, medications, smoking, mental and physical health, and physical activity. Physical function was measured using clinically used tests: timed up and go, walking speed, grip strength, chair stand test, and one leg standing. Bone mineral density (BMD) was measured at the hip and spine with dual-energy X-ray absorptiometry (Hologic Discovery A). Bone geometry and microstructure were measured at the ultradistal and distal (14%) site of radius and tibia using high-resolution peripheral quantitative computed tomography (HR-pQCT; XtremeCT). Treatment with SSRIs was associated with higher BMD at the femoral neck, total hip, and lumbar spine, whereas no associations were found for any HR-pQCT-derived measurements. The use of SSRIs was associated with lower grip strength, walking speed, and fewer chair stand rises. These associations were valid also after adjustments for known risk factors for falls. Treatment with SSRIs was, independently of covariates, associated with worse physical function without any signs of inferior bone geometry and microstructure.

  13. Recent Progress on Ferroelectric Polymer-Based Nanocomposites for High Energy Density Capacitors: Synthesis, Dielectric Properties, and Future Aspects.

    PubMed

    Prateek; Thakur, Vijay Kumar; Gupta, Raju Kumar

    2016-04-13

    Dielectric polymer nanocomposites are rapidly emerging as novel materials for a number of advanced engineering applications. In this Review, we present a comprehensive review of the use of ferroelectric polymers, especially PVDF and PVDF-based copolymers/blends as potential components in dielectric nanocomposite materials for high energy density capacitor applications. Various parameters like dielectric constant, dielectric loss, breakdown strength, energy density, and flexibility of the polymer nanocomposites have been thoroughly investigated. Fillers with different shapes have been found to cause significant variation in the physical and electrical properties. Generally, one-dimensional and two-dimensional nanofillers with large aspect ratios provide enhanced flexibility versus zero-dimensional fillers. Surface modification of nanomaterials as well as polymers adds flavor to the dielectric properties of the resulting nanocomposites. Nowadays, three-phase nanocomposites with either combination of fillers or polymer matrix help in further improving the dielectric properties as compared to two-phase nanocomposites. Recent research has been focused on altering the dielectric properties of different materials while also maintaining their superior flexibility. Flexible polymer nanocomposites are the best candidates for application in various fields. However, certain challenges still present, which can be solved only by extensive research in this field.

  14. From instinct to intellect: the challenge of maintaining healthy weight in the modern world.

    PubMed

    Peters, J C; Wyatt, H R; Donahoo, W T; Hill, J O

    2002-05-01

    The global obesity epidemic is being driven in large part by a mismatch between our environment and our metabolism. Human physiology developed to function within an environment where high levels of physical activity were needed in daily life and food was inconsistently available. For most of mankind's history, physical activity has 'pulled' appetite so that the primary challenge to the physiological system for body weight control was to obtain sufficient energy intake to prevent negative energy balance and body energy loss. The current environment is characterized by a situation whereby minimal physical activity is required for daily life and food is abundant, inexpensive, high in energy density and widely available. Within this environment, food intake 'pushes' the system, and the challenge to the control system becomes to increase physical activity sufficiently to prevent positive energy balance. There does not appear to be a strong drive to increase physical activity in response to excess energy intake and there appears to be only a weak adaptive increase in resting energy expenditure in response to excess energy intake. In the modern world, the prevailing environment constitutes a constant background pressure that promotes weight gain. We propose that the modern environment has taken body weight control from an instinctual (unconscious) process to one that requires substantial cognitive effort. In the current environment, people who are not devoting substantial conscious effort to managing body weight are probably gaining weight. It is unlikely that we would be able to build the political will to undo our modern lifestyle, to change the environment back to one in which body weight control again becomes instinctual. In order to combat the growing epidemic we should focus our efforts on providing the knowledge, cognitive skills and incentives for controlling body weight and at the same time begin creating a supportive environment to allow better management of body weight.

  15. Probing the Physics of Burning DT Capsules Using Gamma-ray Diagnostics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayes-Sterbenz, Anna Catherine; Hale, Gerald M.; Jungman, Gerard

    2015-02-01

    The Gamma Reaction History (GRH) diagnostic developed and lead by the Los Alamos National Laboratory GRH Team is used to determine the bang time and burn width of imploded inertial confinement fusion capsules at the National Ignition Facility. The GRH team is conceptualizing and designing a new Gamma-­to-Electron Magnetic Spectrometer (GEMS), that would be capable of an energy resolution ΔE/E~3-­5%. In this whitepaper we examine the physics that could be explored by the combination of these two gamma-ray diagnostics, with an emphasis on the sensitivity needed for measurements. The main areas that we consider are hydrodynamical mixing, ablator areal densitymore » and density profile, and temporal variations of the density of the cold fuel and the ablator during the DT burn of the capsule.« less

  16. Quantum Fluctuations in Quasi-One-Dimensional Dipolar Bose-Einstein Condensates

    NASA Astrophysics Data System (ADS)

    Edler, D.; Mishra, C.; Wächtler, F.; Nath, R.; Sinha, S.; Santos, L.

    2017-08-01

    Recent experiments have revealed that beyond-mean-field corrections are much more relevant in weakly interacting dipolar condensates than in their nondipolar counterparts. We show that in quasi-one-dimensional geometries quantum corrections in dipolar and nondipolar condensates are strikingly different due to the peculiar momentum dependence of the dipolar interactions. The energy correction of the condensate presents not only a modified density dependence, but it may even change from attractive to repulsive at a critical density due to the surprising role played by the transversal directions. The anomalous quantum correction translates into a strongly modified physics for quantum-stabilized droplets and dipolar solitons. Moreover, and for similar reasons, quantum corrections of three-body correlations, and hence of three-body losses, are strongly modified by the dipolar interactions. This intriguing physics can be readily probed in current experiments with magnetic atoms.

  17. QCD equation of state at nonzero chemical potential: continuum results with physical quark masses at order μ 2

    NASA Astrophysics Data System (ADS)

    Borsányi, Sz.; Endrődi, G.; Fodor, Z.; Katz, S. D.; Krieg, S.; Ratti, C.; Szabó, K. K.

    2012-08-01

    We determine the equation of state of QCD for nonzero chemical potentials via a Taylor expansion of the pressure. The results are obtained for N f = 2 + 1 flavors of quarks with physical masses, on various lattice spacings. We present results for the pressure, interaction measure, energy density, entropy density, and the speed of sound for small chemical potentials. At low temperatures we compare our results with the Hadron Resonance Gas model. We also express our observables along trajectories of constant entropy over particle number. A simple parameterization is given (the Matlab/Octave script parameterization.m, submitted to the arXiv along with the paper), which can be used to reconstruct the observables as functions of T and μ, or as functions of T and S/N.

  18. Quantum Fluctuations in Quasi-One-Dimensional Dipolar Bose-Einstein Condensates.

    PubMed

    Edler, D; Mishra, C; Wächtler, F; Nath, R; Sinha, S; Santos, L

    2017-08-04

    Recent experiments have revealed that beyond-mean-field corrections are much more relevant in weakly interacting dipolar condensates than in their nondipolar counterparts. We show that in quasi-one-dimensional geometries quantum corrections in dipolar and nondipolar condensates are strikingly different due to the peculiar momentum dependence of the dipolar interactions. The energy correction of the condensate presents not only a modified density dependence, but it may even change from attractive to repulsive at a critical density due to the surprising role played by the transversal directions. The anomalous quantum correction translates into a strongly modified physics for quantum-stabilized droplets and dipolar solitons. Moreover, and for similar reasons, quantum corrections of three-body correlations, and hence of three-body losses, are strongly modified by the dipolar interactions. This intriguing physics can be readily probed in current experiments with magnetic atoms.

  19. Early and current physical activity: relationship with intima-media thickness and metabolic variables in adulthood

    PubMed Central

    Lima, Manoel C. S.; Barbosa, Maurício F.; Diniz, Tiego A.; Codogno, Jamile S.; Freitas, Ismael F.; Fernandes, Rômulo A.

    2014-01-01

    Background: It is unclear whether early physical activity has a greater influence on intima-media thickness and metabolic variables than current physical activity. Objective: To analyze the relationship between current and early physical activity, metabolic variables, and intima-media thickness measures in adults. Method: The sample was composed of 55 healthy subjects of both sexes (33 men and 22 women). Total body fat and trunk fat were estimated by dual-energy X-ray absorptiometry. Carotid and femoral intima-media thickness were measured using a Doppler ultrasound device. A 12-hour fasting blood sample collection was taken (fasting glucose and lipid profile). Early physical activity was assessed through face-to-face interview, and the current physical activity was assessed by pedometer (Digi-Walker Yamax, SW200), which was used for a period of seven days. Results: Current physical activity was negatively related to total cholesterol (rho=-0.31), while early physical activity was negatively related to triglycerides (rho=-0.42), total cholesterol (rho=-0.28), very low density lipoprotein (rho=-0.44), and carotid intima-media thickness (rho=-0.50). In the multivariate model, subjects engaged in sports activities during early life had lower values of very low density lipoprotein (b=-8.74 [b=-16.1; -1.47]) and carotid intima-media thickness (b=-0.17 [95%CI: -0.28; -0.05]). Conclusion: Early 95%CI physical activity has a significant influence on carotid intima-media thickness, regardless of the current physical activity. PMID:25372009

  20. Early and current physical activity: relationship with intima-media thickness and metabolic variables in adulthood.

    PubMed

    Lima, Manoel C S; Barbosa, Maurício F; Diniz, Tiego A; Codogno, Jamile S; Freitas Júnior, Ismael F; Fernandes, Rômulo A

    2014-01-01

    It is unclear whether early physical activity has a greater influence on intima-media thickness and metabolic variables than current physical activity. To analyze the relationship between current and early physical activity, metabolic variables, and intima-media thickness measures in adults. The sample was composed of 55 healthy subjects of both sexes (33 men and 22 women). Total body fat and trunk fat were estimated by dual-energy X-ray absorptiometry. Carotid and femoral intima-media thickness were measured using a Doppler ultrasound device. A 12-hour fasting blood sample collection was taken (fasting glucose and lipid profile). Early physical activity was assessed through face-to-face interview, and the current physical activity was assessed by pedometer (Digi-Walker Yamax, SW200), which was used for a period of seven days. Current physical activity was negatively related to total cholesterol (rho=-0.31), while early physical activity was negatively related to triglycerides (rho=-0.42), total cholesterol (rho=-0.28), very low density lipoprotein (rho=-0.44), and carotid intima-media thickness (rho=-0.50). In the multivariate model, subjects engaged in sports activities during early life had lower values of very low density lipoprotein (b=-8.74 [b95%CI=-16.1; -1.47]) and carotid intima-media thickness (b=-0.17 [95%CI: -0.28; -0.05]). Early 95%CI physical activity has a significant influence on carotid intima-media thickness, regardless of the current physical activity.

  1. A 21st Century Frontier for Discovery: The Physics of the Universe. A Strategic Plan for Federal Research at the Intersection of Physics and Astronomy

    DTIC Science & Technology

    2004-02-01

    the aggregation of matter (both dark and baryonic ) via application of this “3-D mass tomography” can place strong constraints on the nature of the...is Dark Matter ? 20 Question 2. What is the Nature of Dark Energy? 23 Question 3. How Did the Universe Begin? 25 Question 4. Did Einstein Have the... Matter at Exceedingly High Density and Temperature? 41 Question 9. Are There Additional Space-Time Dimensions? 43 Question 10. How Were the

  2. Some physical and mechanical properties of recycled polyurethane foam blends

    NASA Astrophysics Data System (ADS)

    Bledzki, A. K.; Zicans, J.; Merijs Meri, R.; Kardasz, D.

    2008-09-01

    Blends of secondary rigid polyurethane foams (RPUFs) with soft polyurethane foams (SPUFs) were investigated. The effect of SPUF content and its chemical nature on some physical and mechanical properties of the blends was evaluated. Owing to the stronger intermolecular interaction and higher values of cohesion energy, the blends of RPUFs with polyester SPUFs showed higher mechanical properties than those with polyether SPUFs. The density, hardness, ultimate strength, and the tensile, shear, and flexural moduli increased, while the impact toughness, ultimate elongation, and damping characteristics decreased with increasing RPUF content in the blends.

  3. The total energy-momentum tensor for electromagnetic fields in a dielectric

    NASA Astrophysics Data System (ADS)

    Crenshaw, Michael E.

    2017-08-01

    Radiation pressure is an observable consequence of optically induced forces on materials. On cosmic scales, radiation pressure is responsible for the bending of the tails of comets as they pass near the sun. At a much smaller scale, optically induced forces are being investigated as part of a toolkit for micromanipulation and nanofabrication technology [1]. A number of practical applications of the mechanical effects of light-matter interaction are discussed by Qiu, et al. [2]. The promise of the nascent nanophotonic technology for manufacturing small, low-power, high-sensitivity sensors and other devices has likely motivated the substantial current interest in optical manipulation of materials at the nanoscale, see, for example, Ref. [2] and the references therein. While substantial progress toward optical micromanipulation has been achieved, e.g. optical tweezers [1], in this report we limit our consideration to the particular issue of optically induced forces on a transparent dielectric material. As a matter of electromagnetic theory, these forces remain indeterminate and controversial. Due to the potential applications in nanotechnology, the century-old debate regarding these forces, and the associated momentums, has ramped up considerably in the physics community. The energy-momentum tensor is the centerpiece of conservation laws for the unimpeded, inviscid, incompressible flow of non-interacting particles in the continuum limit in an otherwise empty volume. The foundations of the energy-momentum tensor and the associated tensor conservation theory come to electrodynamics from classical continuum dynamics by applying the divergence theorem to a Taylor series expansion of a property density field of a continuous flow in an otherwise empty volume. The dust tensor is a particularly simple example of an energy-momentum tensor that deals with particles of matter in the continuum limit in terms of the mass density ρm, energy density ρmc 2 , and momentum density ρmv. Newtonian fluids can behave very much like dust with the same energy-momentum tensor. The energy and momentum conservation properties of light propagating in the vacuum were long-ago cast in the energy-momentum tensor formalism in terms of the electromagnetic energy density and electromagnetic momentum density. However, extrapolating the tensor theory of energy-momentum conservation for propagation of light in the vacuum to propagation of light in a simple linear dielectric medium has proven to be problematic and controversial. A dielectric medium is not "otherwise empty" and it is typically assumed that optically induced forces accelerate and decelerate nanoscopic material constituents of the dielectric. The corresponding material energy-momentum tensor is added to the electromagnetic energy-momentum tensor to form the total energy-momentum tensor, thereby ensuring that the total energy and the total momentum of the thermodynamically closed system remain constant in time.

  4. Bones of contention: bone mineral density recovery in celiac disease--a systematic review.

    PubMed

    Grace-Farfaglia, Patricia

    2015-05-07

    Metabolic bone disease is a frequent co-morbidity in newly diagnosed adults with celiac disease (CD), an autoimmune disorder triggered by the ingestion of dietary gluten. This systematic review of studies looked at the efficacy of the gluten-free diet, physical activity, nutrient supplementation, and bisphosphonates for low bone density treatment. Case control and cohort designs were identified from PubMed and other academic databases (from 1996 to 2015) that observed newly diagnosed adults with CD for at least one year after diet treatment using the dual-energy x-ray absorptiometry (DXA) scan. Only 20 out of 207 studies met the inclusion criteria. Methodological quality was assessed using the Strengthening of the Reporting of Observational Studies in Epidemiology (STROBE) statement checklist. Gluten-free diet adherence resulted in partial recovery of bone density by one year in all studies, and full recovery by the fifth year. No treatment differences were observed between the gluten-free diet alone and diet plus bisphosphonates in one study. For malnourished patients, supplementation with vitamin D and calcium resulted in significant improvement. Evidence for the impact of physical activity on bone density was limited. Therapeutic strategies aimed at modifying lifestyle factors throughout the lifespan should be studied.

  5. Nanoparticle-Mediated Physical Exfoliation of Aqueous-Phase Graphene for Fabrication of Three-Dimensionally Structured Hybrid Electrodes.

    PubMed

    Lee, Younghee; Choi, Hojin; Kim, Min-Sik; Noh, Seonmyeong; Ahn, Ki-Jin; Im, Kyungun; Kwon, Oh Seok; Yoon, Hyeonseok

    2016-01-27

    Monodispersed polypyrrole (PPy) nanospheres were physically incorporated as guest species into stacked graphene layers without significant property degradation, thereby facilitating the formation of unique three-dimensional hybrid nanoarchitecture. The electrochemical properties of the graphene/particulate PPy (GPPy) nanohybrids were dependent on the sizes and contents of the PPy nanospheres. The nanohybrids exhibited optimum electrochemical performance in terms of redox activity, charge-transfer resistance, and specific capacitance at an 8:1 PPy/graphite (graphene precursor) weight ratio. The packing density of the alternately stacked nanohybrid structure varied with the nanosphere content, indicating the potential for high volumetric capacitance. The nanohybrids also exhibited good long-term cycling stability because of a structural synergy effect. Finally, fabricated nanohybrid-based flexible all-solid state capacitor cells exhibited good electrochemical performance in an acidic electrolyte with a maximum energy density of 8.4 Wh kg(-1) or 1.9 Wh L(-1) at a maximum power density of 3.2 kW kg(-1) or 0.7 kW L(-1); these performances were based on the mass or packing density of the electrode materials.

  6. Physical properties and microstructure study of stainless steel 316L alloy fabricated by selective laser melting

    NASA Astrophysics Data System (ADS)

    Islam, Nurul Kamariah Md Saiful; Harun, Wan Sharuzi Wan; Ghani, Saiful Anwar Che; Omar, Mohd Asnawi; Ramli, Mohd Hazlen; Ismail, Muhammad Hussain

    2017-12-01

    Selective Laser Melting (SLM) demonstrates the 21st century's manufacturing infrastructure in which powdered raw material is melted by a high energy focused laser, and built up layer-by-layer until it forms three-dimensional metal parts. SLM process involves a variation of process parameters which affects the final material properties. 316L stainless steel compacts through the manipulation of building orientation and powder layer thickness parameters were manufactured by SLM. The effect of the manipulated parameters on the relative density and dimensional accuracy of the 316L stainless steel compacts, which were in the as-build condition, were experimented and analysed. The relationship between the microstructures and the physical properties of fabricated 316L stainless steel compacts was investigated in this study. The results revealed that 90° building orientation has higher relative density and dimensional accuracy than 0° building orientation. Building orientation was found to give more significant effect in terms of dimensional accuracy, and relative density of SLM compacts compare to build layer thickness. Nevertheless, the existence of large number and sizes of pores greatly influences the low performances of the density.

  7. Nanoparticle-Mediated Physical Exfoliation of Aqueous-Phase Graphene for Fabrication of Three-Dimensionally Structured Hybrid Electrodes

    PubMed Central

    Lee, Younghee; Choi, Hojin; Kim, Min-Sik; Noh, Seonmyeong; Ahn, Ki-Jin; Im, Kyungun; Kwon, Oh Seok; Yoon, Hyeonseok

    2016-01-01

    Monodispersed polypyrrole (PPy) nanospheres were physically incorporated as guest species into stacked graphene layers without significant property degradation, thereby facilitating the formation of unique three-dimensional hybrid nanoarchitecture. The electrochemical properties of the graphene/particulate PPy (GPPy) nanohybrids were dependent on the sizes and contents of the PPy nanospheres. The nanohybrids exhibited optimum electrochemical performance in terms of redox activity, charge-transfer resistance, and specific capacitance at an 8:1 PPy/graphite (graphene precursor) weight ratio. The packing density of the alternately stacked nanohybrid structure varied with the nanosphere content, indicating the potential for high volumetric capacitance. The nanohybrids also exhibited good long-term cycling stability because of a structural synergy effect. Finally, fabricated nanohybrid-based flexible all–solid state capacitor cells exhibited good electrochemical performance in an acidic electrolyte with a maximum energy density of 8.4 Wh kg−1 or 1.9 Wh L−1 at a maximum power density of 3.2 kW kg−1 or 0.7 kW L−1; these performances were based on the mass or packing density of the electrode materials. PMID:26813878

  8. A journey from nuclear criticality methods to high energy density radflow experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Urbatsch, Todd James

    Los Alamos National Laboratory is a nuclear weapons laboratory supporting our nation's defense. In support of this mission is a high energy-density physics program in which we design and execute experiments to study radiationhydrodynamics phenomena and improve the predictive capability of our largescale multi-physics software codes on our big-iron computers. The Radflow project’s main experimental effort now is to understand why we haven't been able to predict opacities on Sandia National Laboratory's Z-machine. We are modeling an increasing fraction of the Z-machine's dynamic hohlraum to find multi-physics explanations for the experimental results. Further, we are building an entirely different opacitymore » platform on Lawrence Livermore National Laboratory's National Ignition Facility (NIF), which is set to get results early 2017. Will the results match our predictions, match the Z-machine, or give us something entirely different? The new platform brings new challenges such as designing hohlraums and spectrometers. The speaker will recount his history, starting with one-dimensional Monte Carlo nuclear criticality methods in graduate school, radiative transfer methods research and software development for his first 16 years at LANL, and, now, radflow technology and experiments. Who knew that the real world was more than just radiation transport? Experiments aren't easy and they are as saturated with politics as a presidential election, but they sure are fun.« less

  9. Bone mineral density in relation to body mass index among young women: a prospective cohort study.

    PubMed

    Elgán, Carina; Fridlund, Bengt

    2006-08-01

    To identify important predictors among lifestyle behaviours and physiological factors of bone mineral density (BMD) in relation to body mass index (BMI) among young women over a 2-year period. DESIGN, SAMPLE AND MEASUREMENTS: Data were collected in 1999 and 2001. Healthy young women (n=152) completed a questionnaire. BMD measurements were performed by DEXA in the calcaneus. The women were subdivided into three categories according to baseline BMI. Baseline bodyweight explained 25% of the variability in BMD at follow-up in the BMI<19 category, and high physical activity seemed to hinder BMD development. In the BMI>24 category, a difference in time spent outdoors during winter between baseline and follow-up was the single most important factor for BMD levels. Overweight women with periods of amenorrhoea had lower BMD than overweight women without such periods. Predictors and lifestyle behaviours associated with BMD are likely to be based on women of normal weight. BMI should be considered when advising on physical activity, since high physical activity seems to impair BMD development among underweight young women, possibly due to energy imbalance. Among overweight women, sleep satisfaction is the greatest predictor associated with BMD change and may indicate better bone formation conditions. Energy balance and sleep quality may be prerequisites of bone health and should be considered in prevention.

  10. High-Temperature Phase Change Materials (PCM) Candidates for Thermal Energy Storage (TES) Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gomez, J. C.

    2011-09-01

    It is clearly understood that lower overall costs are a key factor to make renewable energy technologies competitive with traditional energy sources. Energy storage technology is one path to increase the value and reduce the cost of all renewable energy supplies. Concentrating solar power (CSP) technologies have the ability to dispatch electrical output to match peak demand periods by employing thermal energy storage (TES). Energy storage technologies require efficient materials with high energy density. Latent heat TES systems using phase change material (PCM) are useful because of their ability to charge and discharge a large amount of heat from amore » small mass at constant temperature during a phase transformation like melting-solidification. PCM technology relies on the energy absorption/liberation of the latent heat during a physical transformation. The main objective of this report is to provide an assessment of molten salts and metallic alloys proposed as candidate PCMs for TES applications, particularly in solar parabolic trough electrical power plants at a temperature range from 300..deg..C to 500..deg.. C. The physical properties most relevant for PCMs service were reviewed from the candidate selection list. Some of the PCM candidates were characterized for: chemical stability with some container materials; phase change transformation temperatures; and latent heats.« less

  11. Development and testing of a pulsed helium ion source for probing materials and warm dense matter studies

    NASA Astrophysics Data System (ADS)

    Ji, Q.; Seidl, P. A.; Waldron, W. L.; Takakuwa, J. H.; Friedman, A.; Grote, D. P.; Persaud, A.; Barnard, J. J.; Schenkel, T.

    2016-02-01

    The neutralized drift compression experiment was designed and commissioned as a pulsed, linear induction accelerator to drive thin targets to warm dense matter (WDM) states with peak temperatures of ˜1 eV using intense, short pulses (˜1 ns) of 1.2 MeV lithium ions. At that kinetic energy, heating a thin target foil near the Bragg peak energy using He+ ions leads to more uniform energy deposition of the target material than Li+ ions. Experiments show that a higher current density of helium ions can be delivered from a plasma source compared to Li+ ions from a hot plate type ion source. He+ beam pulses as high as 200 mA at the peak and 4 μs long were measured from a multi-aperture 7-cm-diameter emission area. Within ±5% variation, the uniform beam area is approximately 6 cm across. The accelerated and compressed pulsed ion beams can be used for materials studies and isochoric heating of target materials for high energy density physics experiments and WDM studies.

  12. Development and testing of a pulsed helium ion source for probing materials and warm dense matter studies.

    PubMed

    Ji, Q; Seidl, P A; Waldron, W L; Takakuwa, J H; Friedman, A; Grote, D P; Persaud, A; Barnard, J J; Schenkel, T

    2016-02-01

    The neutralized drift compression experiment was designed and commissioned as a pulsed, linear induction accelerator to drive thin targets to warm dense matter (WDM) states with peak temperatures of ∼1 eV using intense, short pulses (∼1 ns) of 1.2 MeV lithium ions. At that kinetic energy, heating a thin target foil near the Bragg peak energy using He(+) ions leads to more uniform energy deposition of the target material than Li(+) ions. Experiments show that a higher current density of helium ions can be delivered from a plasma source compared to Li(+) ions from a hot plate type ion source. He(+) beam pulses as high as 200 mA at the peak and 4 μs long were measured from a multi-aperture 7-cm-diameter emission area. Within ±5% variation, the uniform beam area is approximately 6 cm across. The accelerated and compressed pulsed ion beams can be used for materials studies and isochoric heating of target materials for high energy density physics experiments and WDM studies.

  13. Development and testing of a pulsed helium ion source for probing materials and warm dense matter studies

    DOE PAGES

    Ji, Q.; Seidl, P. A.; Waldron, W. L.; ...

    2015-11-12

    In this paper, the neutralized drift compression experiment was designed and commissioned as a pulsed, linear induction accelerator to drive thin targets to warm dense matter (WDM) states with peak temperatures of ~1 eV using intense, short pulses (~1 ns) of 1.2 MeV lithium ions. At that kinetic energy, heating a thin target foil near the Bragg peak energy using He + ions leads to more uniform energy deposition of the target material than Li + ions. Experiments show that a higher current density of helium ions can be delivered from a plasma source compared to Li + ions frommore » a hot plate type ion source. He + beam pulses as high as 200 mA at the peak and 4 μs long were measured from a multi-aperture 7-cm-diameter emission area. Within ±5% variation, the uniform beam area is approximately 6 cm across. Finally, the accelerated and compressed pulsed ion beams can be used for materials studies and isochoric heating of target materials for high energy density physics experiments and WDM studies.« less

  14. Accelerating the design of solar thermal fuel materials through high throughput simulations.

    PubMed

    Liu, Yun; Grossman, Jeffrey C

    2014-12-10

    Solar thermal fuels (STF) store the energy of sunlight, which can then be released later in the form of heat, offering an emission-free and renewable solution for both solar energy conversion and storage. However, this approach is currently limited by the lack of low-cost materials with high energy density and high stability. In this Letter, we present an ab initio high-throughput computational approach to accelerate the design process and allow for searches over a broad class of materials. The high-throughput screening platform we have developed can run through large numbers of molecules composed of earth-abundant elements and identifies possible metastable structures of a given material. Corresponding isomerization enthalpies associated with the metastable structures are then computed. Using this high-throughput simulation approach, we have discovered molecular structures with high isomerization enthalpies that have the potential to be new candidates for high-energy density STF. We have also discovered physical principles to guide further STF materials design through structural analysis. More broadly, our results illustrate the potential of using high-throughput ab initio simulations to design materials that undergo targeted structural transitions.

  15. Physical mechanisms of timing jitter in photon detection by current-carrying superconducting nanowires

    NASA Astrophysics Data System (ADS)

    Sidorova, Mariia; Semenov, Alexej; Hübers, Heinz-Wilhelm; Charaev, Ilya; Kuzmin, Artem; Doerner, Steffen; Siegel, Michael

    2017-11-01

    We studied timing jitter in the appearance of photon counts in meandering nanowires with different fractional amount of bends. Intrinsic timing jitter, which is the probability density function of the random time delay between photon absorption in current-carrying superconducting nanowire and appearance of the normal domain, reveals two different underlying physical mechanisms. In the deterministic regime, which is realized at large photon energies and large currents, jitter is controlled by position-dependent detection threshold in straight parts of meanders. It decreases with the increase in the current. At small photon energies, jitter increases and its current dependence disappears. In this probabilistic regime jitter is controlled by Poisson process in that magnetic vortices jump randomly across the wire in areas adjacent to the bends.

  16. Contributions of solar wind and micrometeoroids to molecular hydrogen in the lunar exosphere

    NASA Astrophysics Data System (ADS)

    Hurley, Dana M.; Cook, Jason C.; Retherford, Kurt D.; Greathouse, Thomas; Gladstone, G. Randall; Mandt, Kathleen; Grava, Cesare; Kaufmann, David; Hendrix, Amanda; Feldman, Paul D.; Pryor, Wayne; Stickle, Angela; Killen, Rosemary M.; Stern, S. Alan

    2017-02-01

    We investigate the density and spatial distribution of the H2 exosphere of the Moon assuming various source mechanisms. Owing to its low mass, escape is non-negligible for H2. For high-energy source mechanisms, a high percentage of the released molecules escape lunar gravity. Thus, the H2 spatial distribution for high-energy release processes reflects the spatial distribution of the source. For low energy release mechanisms, the escape rate decreases and the H2 redistributes itself predominantly to reflect a thermally accommodated exosphere. However, a small dependence on the spatial distribution of the source is superimposed on the thermally accommodated distribution in model simulations, where density is locally enhanced near regions of higher source rate. For an exosphere accommodated to the local surface temperature, a source rate of 2.2 g s-1 is required to produce a steady state density at high latitude of 1200 cm-3. Greater source rates are required to produce the same density for more energetic release mechanisms. Physical sputtering by solar wind and direct delivery of H2 through micrometeoroid bombardment can be ruled out as mechanisms for producing and liberating H2 into the lunar exosphere. Chemical sputtering by the solar wind is the most plausible as a source mechanism and would require 10-50% of the solar wind H+ inventory to be converted to H2 to account for the observations.

  17. Contributions of Solar Wind and Micrometeoroids to Molecular Hydrogen in the Lunar Exosphere

    NASA Technical Reports Server (NTRS)

    Hurley, Dana M.; Cook, Jason C.; Retherford, Kurt D.; Greathouse, Thomas; Gladstone, G. Randall; Mandt, Kathleen; Grava, Cesare; Kaufmann, David; Hendrix, Amanda; Feldman, Paul D.; hide

    2016-01-01

    We investigate the density and spatial distribution of the H2 exosphere of the Moon assuming various source mechanisms. Owing to its low mass, escape is non-negligible for H2. For high-energy source mechanisms, a high percentage of the released molecules escape lunar gravity. Thus, the H2 spatial distribution for high-energy release processes reflects the spatial distribution of the source. For low energy release mechanisms, the escape rate decreases and the H2 redistributes itself predominantly to reflect a thermally accommodated exosphere. However, a small dependence on the spatial distribution of the source is superimposed on the thermally accommodated distribution in model simulations, where density is locally enhanced near regions of higher source rate. For an exosphere accommodated to the local surface temperature, a source rate of 2.2 g s-1 is required to produce a steady state density at high latitude of 1200 cm-3. Greater source rates are required to produce the same density for more energetic release mechanisms. Physical sputtering by solar wind and direct delivery of H2 through micrometeoroid bombardment can be ruled out as mechanisms for producing and liberating H2 into the lunar exosphere. Chemical sputtering by the solar wind is the most plausible as a source mechanism and would require 10-50 of the solar wind H+ inventory to be converted to H2 to account for the observations.

  18. Asymmetric (1+1)-dimensional hydrodynamics in high-energy collisions

    NASA Astrophysics Data System (ADS)

    Bialas, A.; Peschanski, R.

    2011-05-01

    The possibility that particle production in high-energy collisions is a result of two asymmetric hydrodynamic flows is investigated using the Khalatnikov form of the (1+1)-dimensional approximation of hydrodynamic equations. The general solution is discussed and applied to the physically appealing “generalized in-out cascade” where the space-time and energy-momentum rapidities are equal at initial temperature but boost invariance is not imposed. It is demonstrated that the two-bump structure of the entropy density, characteristic of the asymmetric input, changes easily into a single broad maximum compatible with data on particle production in symmetric processes. A possible microscopic QCD interpretation of asymmetric hydrodynamics is proposed.

  19. Hybrid fibers made of molybdenum disulfide, reduced graphene oxide, and multi-walled carbon nanotubes for solid-state, flexible, asymmetric supercapacitors.

    PubMed

    Sun, Gengzhi; Zhang, Xiao; Lin, Rongzhou; Yang, Jian; Zhang, Hua; Chen, Peng

    2015-04-07

    One of challenges existing in fiber-based supercapacitors is how to achieve high energy density without compromising their rate stability. Owing to their unique physical, electronic, and electrochemical properties, two-dimensional (2D) nanomaterials, e.g., molybdenum disulfide (MoS2 ) and graphene, have attracted increasing research interest and been utilized as electrode materials in energy-related applications. Herein, by incorporating MoS2 and reduced graphene oxide (rGO) nanosheets into a well-aligned multi-walled carbon nanotube (MWCNT) sheet followed by twisting, MoS2 -rGO/MWCNT and rGO/MWCNT fibers are fabricated, which can be used as the anode and cathode, respectively, for solid-state, flexible, asymmetric supercapacitors. This fiber-based asymmetric supercapacitor can operate in a wide potential window of 1.4 V with high Coulombic efficiency, good rate and cycling stability, and improved energy density. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. The Influence on Population Weight Gain and Obesity of the Macronutrient Composition and Energy Density of the Food Supply.

    PubMed

    Crino, Michelle; Sacks, Gary; Vandevijvere, Stefanie; Swinburn, Boyd; Neal, Bruce

    2015-03-01

    Rates of overweight and obesity have increased dramatically in all regions of the world over the last few decades. Almost all of the world's population now has ubiquitous access to low-cost, but highly-processed, energy-dense, nutrient-poor food products. These changes in the food supply, rather than decreases in physical activity, are most likely the primary driver of population weight gain and obesity. To-date, the majority of prevention efforts focus on personalised approaches targeting individuals. Population-wide food supply interventions addressing sodium and trans fat reduction have proven highly effective and comparable efforts are now required to target obesity. The evidence suggests that strategies focusing upon reducing the energy density and portion size of foods will be more effective than those targeting specific macronutrients. Government leadership, clearly specified targets, accountability and transparency will be the key to achieving the food supply changes required to address the global obesity epidemic.

  1. Cosmic archaeology with gravitational waves from cosmic strings

    NASA Astrophysics Data System (ADS)

    Cui, Yanou; Lewicki, Marek; Morrissey, David E.; Wells, James D.

    2018-06-01

    Cosmic strings are generic cosmological predictions of many extensions of the standard model of particle physics, such as a U (1 )' symmetry-breaking phase transition in the early Universe or remnants of superstring theory. Unlike other topological defects, cosmic strings can reach a scaling regime that maintains a small fixed fraction of the total energy density of the Universe from a very early epoch until today. If present, they will oscillate and generate gravitational waves with a frequency spectrum that imprints the dominant sources of total cosmic energy density throughout the history of the Universe. We demonstrate that current and future gravitational wave detectors, such as LIGO and LISA, could be capable of measuring the frequency spectrum of gravitational waves from cosmic strings and discerning the energy composition of the Universe at times well before primordial nucleosynthesis and the cosmic microwave background where standard cosmology has yet to be tested. This work establishes a benchmark case that gravitational waves may provide an unprecedented, powerful tool for probing the evolutionary history of the very early Universe.

  2. Piezoelectric-nanowire-enabled power source for driving wireless microelectronics.

    PubMed

    Xu, Sheng; Hansen, Benjamin J; Wang, Zhong Lin

    2010-10-19

    Harvesting energy from irregular/random mechanical actions in variable and uncontrollable environments is an effective approach for powering wireless mobile electronics to meet a wide range of applications in our daily life. Piezoelectric nanowires are robust and can be stimulated by tiny physical motions/disturbances over a range of frequencies. Here, we demonstrate the first chemical epitaxial growth of PbZr(x)Ti(1-x)O(3) (PZT) nanowire arrays at 230 °C and their application as high-output energy converters. The nanogenerators fabricated using a single array of PZT nanowires produce a peak output voltage of ~0.7 V, current density of 4 μA cm(-2) and an average power density of 2.8 mW cm(-3). The alternating current output of the nanogenerator is rectified, and the harvested energy is stored and later used to light up a commercial laser diode. This work demonstrates the feasibility of using nanogenerators for powering mobile and even personal microelectronics.

  3. Semilocal Exchange Energy Functional for Two-Dimensional Quantum Systems: A Step Beyond Generalized Gradient Approximations.

    PubMed

    Jana, Subrata; Samal, Prasanjit

    2017-06-29

    Semilocal density functionals for the exchange-correlation energy of electrons are extensively used as they produce realistic and accurate results for finite and extended systems. The choice of techniques plays a crucial role in constructing such functionals of improved accuracy and efficiency. An accurate and efficient semilocal exchange energy functional in two dimensions is constructed by making use of the corresponding hole which is derived based on the density matrix expansion. The exchange hole involved is localized under the generalized coordinate transformation and satisfies all the relevant constraints. Comprehensive testing and excellent performance of the functional is demonstrated versus exact exchange results. The accuracy of results obtained by using the newly constructed functional is quite remarkable as it substantially reduces the errors present in the local and nonempirical exchange functionals proposed so far for two-dimensional quantum systems. The underlying principles involved in the functional construction are physically appealing and hold promise for developing range separated and nonlocal exchange functionals in two dimensions.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wieser, Patti; Hopkins, David

    The DOE Princeton Plasma Physics Laboratory (PPPL) collaborates to develop fusion as a safe, clean and abundant energy source for the future. This video discusses PPPL's research and development on plasma, the fourth state of matter. In this simulation of plasma turbulence inside PPPL's National Spherical Torus Experiment, the colorful strings represent higher and lower electron density in turbulent plasma as it circles around a donut-shaped fusion reactor; red and orange are higher density. This image is among those featured in the slide show, "Plasmas are Hot and Fusion is Cool," a production of PPPL and the Princeton University Broadcastmore » Center.« less

  5. Quark matter droplets in neutron stars

    NASA Technical Reports Server (NTRS)

    Heiselberg, H.; Pethick, C. J.; Staubo, E. F.

    1993-01-01

    We show that, for physically reasonable bulk and surface properties, the lowest energy state of dense matter consists of quark matter coexisting with nuclear matter in the presence of an essentially uniform background of electrons. We estimate the size and nature of spatial structure in this phase, and show that at the lowest densities the quark matter forms droplets embedded in nuclear matter, whereas at higher densities it can exhibit a variety of different topologies. A finite fraction of the interior of neutron stars could consist of matter in this new phase, which would provide new mechanisms for glitches and cooling.

  6. Diet and waist-to-hip ratio: important predictors of lipoprotein levels in sedentary and active young men with no evidence of cardiovascular disease.

    PubMed

    Mansfield, E; McPherson, R; Koski, K G

    1999-11-01

    Healthy, young men were studied to determine the relationship of energy and nutrient intake and physical activity to concentrations of plasma lipoprotein and cholesteryl ester transfer protein. A cross-sectional study compared active and sedentary male subjects (17 to 35 years old) with no personal or family history of coronary heart disease. Participants kept 20-day food and activity journals. Individual intakes of energy, protein, carbohydrate, fat, saturated fat, monounsaturated fatty acids, polyunsaturated fatty acids, dietary fiber, and alcohol were evaluated. Measurements of blood lipids (total cholesterol and triglycerides, high- and low-density lipoprotein cholesterol); apolipoproteins; cholesteryl ester transfer protein; anthropometric variables (body mass index, waist-to-hip ratio, percentage of body fat); and aerobic capacity were taken during fall and spring data collection periods. SUBJECT SELECTION: Subjects were selected on the basis of normal blood lipid levels, absence of underlying disease, and willingness to comply with their current level of physical activity for the duration of the study. Minimal sample size for statistical power was 12 men per group: 12 of 15 subjects who exercised and 13 of 15 subjects who were sedentary completed all phases of the study. Statistical analyses consisted of 2-way analysis of variance (activity level and season). Pearson product moment correlations and multiple regression analyses were conducted to assess whether energy and nutrient intakes, physical activity status, and/or anthropometric variables predicted plasma concentrations of lipids and apolipoproteins. Lower waist-to-hip ratio, and not specifically activity level, was associated with higher levels of high-density lipoprotein cholesterol (HDL-C) and lower levels of low-density lipoprotein cholesterol (LDL-C). Dietary intake of saturated and monounsaturated fats and alcohol predicted changes in some apolipoprotein and lipoprotein levels. Use of waist-to-hip ratio in the primary prevention of coronary heart disease is a simple and cost-effective measure to predict development of abnormal lipoprotein profiles in young men. Specific dietary recommendations include adoption of a heart-healthy diet with emphasis on monounsaturated fatty acids (10% to 12% of energy or one third of total fat intake) and the suggestion that small amounts of alcohol (< 3 drinks per week) may, indeed, be beneficial. Because alcohol and waist-to-hip ratio were both important predictors of LDL-C level, even in active young men, the consumption of low levels of alcohol may be beneficial only if waist-to-hip ratio is maintained within the healthful range by achieving an appropriate balance of physical activity and macronutrient intake.

  7. Next-generation laser for Inertial Confinement Fusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marshall, C.D.; Deach, R.J.; Bibeau, C.

    1997-09-29

    We report on the progress in developing and building the Mercury laser system as the first in a series of a new generation of diode- pumped solid-state Inertial Confinement Fusion (ICF) lasers at Lawrence Livermore National Laboratory (LLNL). Mercury will be the first integrated demonstration of a scalable laser architecture compatible with advanced high energy density (HED) physics applications. Primary performance goals include 10% efficiencies at 10 Hz and a 1-10 ns pulse with 1 omega energies of 100 J and with 2 omega/3 omega frequency conversion.

  8. The Richtmyer-Meshkov Instability on a Circular Interface in Magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Black, Wolfgang; Maxon, W. Curtis; Denissen, Nicholas; McFarland, Jacob

    2017-11-01

    Hydrodynamic instabilities (HI) are ubiquitous in high energy density (HED) applications such as astrophysics, thermonuclear weapons, and inertial fusion. In these systems, fluid mixing is encouraged by the HI which can reduce the energy yield and eventually drive the system to equilibrium. The Richtmyer-Meshkov (RM) instability is one such HI and is created when a perturbed interface between a density gradient is impulsively accelerated. The physics can be complicated one step further by the inclusion of Magnetohydrodynamics (MHD), where HED systems experience the effects of magnetic and electric fields. These systems provide unique challenges and as such can be used to validate hydrodynamic codes capable of predicting HI. The work presented here will outline efforts to study the RMI in MHD for a circular interface utilizing the hydrocode FLAG, developed at Los Alamos National Laboratory.

  9. Isochoric heating and strong blast wave formation driven by fast electrons in solid-density targets

    NASA Astrophysics Data System (ADS)

    Santos, J. J.; Vauzour, B.; Touati, M.; Gremillet, L.; Feugeas, J.-L.; Ceccotti, T.; Bouillaud, R.; Deneuville, F.; Floquet, V.; Fourment, C.; Hadj-Bachir, M.; Hulin, S.; Morace, A.; Nicolaï, Ph; d'Oliveira, P.; Reau, F.; Samaké, A.; Tcherbakoff, O.; Tikhonchuk, V. T.; Veltcheva, M.; Batani, D.

    2017-10-01

    We experimentally investigate the fast (< 1 {ps}) isochoric heating of multi-layer metallic foils and subsequent high-pressure hydrodynamics induced by energetic electrons driven by high-intensity, high-contrast laser pulses. The early-time temperature profile inside the target is measured from the streaked optical pyrometry of the target rear side. This is further characterized from benchmarked simulations of the laser-target interaction and the fast electron transport. Despite a modest laser energy (< 1 {{J}}), the early-time high pressures and associated gradients launch inwards a strong compression wave developing over ≳ 10 ps into a ≈ 140 {Mbar} blast wave, according to hydrodynamic simulations, consistent with our measurements. These experimental and numerical findings pave the way to a short-pulse-laser-based platform dedicated to high-energy-density physics studies.

  10. Thermal relics: Do we know their abundances

    NASA Technical Reports Server (NTRS)

    Kamionkowski, Marc; Turner, Michael S.

    1990-01-01

    The relic abundance of a particle species that was once in thermal equilibrium in the expanding Universe depends upon a competition between the annihilation rate of the species and the expansion rate of the Universe. Assuming that the Universe is radiation dominated at early times the relic abundance is easy to compute and well known. At times earlier than about 1 sec after the bang there is little or no evidence that the Universe had to be radiation dominated, although that is the simplest and standard assumption. Because early-Universe relics are of such importance both to particle physics and to cosmology, three nonstandard possibilities are considered in detail for the Universe at the time a species' abundance froze in: energy density dominated by shear (i.e., anisotropic expansion), energy density dominated by some other nonrelativistic species, and energy density dominated by the kinetic energy of the scalar field that sets the gravitational constant in a Brans-Dicke-Jordan cosmological mode. In the second case the relic abundance is less than the standard value, while in the other two cases it can be enhanced by a significant factor. Two other more exotic possibilities for enhancing the relic abundance of a species are also mentioned--a larger value of Newton's constant at early times (e.g., as might occur in superstring or Kaluza-Klein theories) or a component of the energy density at early times with a very stiff equation of state (p greater than rho/3), e.g., a scalar field phi with potential V(phi) = Beta /phi/ (exp n) with n greater than 4. Results have implications for dark matter searches and searches for particle relics in general.

  11. THE PHYSICS OF ELEMENTARY PARTICLES AND FIELDS: Neutrino Oscillation Induced by Chiral Phase Transition

    NASA Astrophysics Data System (ADS)

    Mu, Cheng-Fu; Sun, Gao-Feng; Zhuang, Peng-Fei

    2009-03-01

    Electric charge neutrality provides a relationship between chiral dynamics and neutrino propagation in compact stars. Due to the sudden drop of the electron density at thefirst-order chiral phase transition, the oscillation for low energy neutrinos is significant and can be regarded as a signature of chiral symmetry restoration in the core of compact stars.

  12. From "~" to Precision Science: Cosmology from 1995 to 2025

    NASA Astrophysics Data System (ADS)

    Kamionkowski, Marc; Spergel, David N.

    2016-01-01

    Over the past decade and a half, astronomical measurements, primarily of fluctuations in the cosmic microwave background, have transformed cosmology from an order-of-magnitude game into a paragon of precision science. From these measurements has emerged a 6-parameter cosmological "standard model": a flat universe filled with dark matter and dark energy and seeded by a nearly scale-invariant spectrum of Gaussian random-phase density perturbations. The striking resemblance between these perturbations and those expected from inflation motivates the search for a unique "B-mode" signature of inflation in the polarization of the cosmic microwave background. While the fluctuation spectrum is close to scale invariant, WMAP, Planck and ground-based CMB experiments now have strong evidence for a departure from scale invariance in primordial perturbations. This suggests, in simple models of inflation that these B modes should be within striking distance within the next 5-10 years. The advent of a new generation of galaxy surveys will, over similar timescales, shed additional light not only on the physics of inflation, but also the nature of the dark matter and dark energy required by the current cosmological standard model, and perhaps on the new physics that determines the baryon density.

  13. Vacuum stress energy density and its gravitational implications

    NASA Astrophysics Data System (ADS)

    Estrada, Ricardo; Fulling, Stephen A.; Kaplan, Lev; Kirsten, Klaus; Liu, Zhonghai; Milton, Kimball A.

    2008-04-01

    In nongravitational physics the local density of energy is often regarded as merely a bookkeeping device; only total energy has an experimental meaning—and it is only modulo a constant term. But in general relativity the local stress-energy tensor is the source term in Einstein's equation. In closed universes, and those with Kaluza-Klein dimensions, theoretical consistency demands that quantum vacuum energy should exist and have gravitational effects, although there are no boundary materials giving rise to that energy by van der Waals interactions. In the lab there are boundaries, and in general the energy density has a nonintegrable singularity as a boundary is approached (for idealized boundary conditions). As pointed out long ago by Candelas and Deutsch, in this situation there is doubt about the viability of the semiclassical Einstein equation. Our goal is to show that the divergences in the linearized Einstein equation can be renormalized to yield a plausible approximation to the finite theory that presumably exists for realistic boundary conditions. For a scalar field with Dirichlet or Neumann boundary conditions inside a rectangular parallelepiped, we have calculated by the method of images all components of the stress tensor, for all values of the conformal coupling parameter and an exponential ultraviolet cutoff parameter. The qualitative features of contributions from various classes of closed classical paths are noted. Then the Estrada-Kanwal distributional theory of asymptotics, particularly the moment expansion, is used to show that the linearized Einstein equation with the stress-energy near a plane boundary as source converges to a consistent theory when the cutoff is removed. This paper reports work in progress on a project combining researchers in Texas, Louisiana and Oklahoma. It is supported by NSF Grants PHY-0554849 and PHY-0554926.

  14. Kinetic simulations of the stability of a plasma confined by the magnetic field of a current rod

    NASA Astrophysics Data System (ADS)

    Tonge, J.; Leboeuf, J. N.; Huang, C.; Dawson, J. M.

    2003-09-01

    The kinetic stability of a plasma in the magnetic field of a current rod is investigated for various temperature and density profiles using three-dimensional particle-in-cell simulations. Such a plasma obeys similar physics to a plasma in a dipole magnetic field, while it is easier to perform computer simulations, and do theoretical analysis, of a plasma in the field of a current rod. Simple energy principle calculations and simulations with a variety of temperature and density profiles show that the plasma is stable to interchange for pressure profiles proportional to r-10/3. As predicted by theory the simulations also show that the density profile will be stationary as long as density is proportional to r-2 even though the temperature profile may not be stable.

  15. Modelling radiation fluxes in simple and complex environments: basics of the RayMan model.

    PubMed

    Matzarakis, Andreas; Rutz, Frank; Mayer, Helmut

    2010-03-01

    Short- and long-wave radiation flux densities absorbed by people have a significant influence on their energy balance. The heat effect of the absorbed radiation flux densities is parameterised by the mean radiant temperature. This paper presents the physical basis of the RayMan model, which simulates the short- and long-wave radiation flux densities from the three-dimensional surroundings in simple and complex environments. RayMan has the character of a freely available radiation and human-bioclimate model. The aim of the RayMan model is to calculate radiation flux densities, sunshine duration, shadow spaces and thermo-physiologically relevant assessment indices using only a limited number of meteorological and other input data. A comparison between measured and simulated values for global radiation and mean radiant temperature shows that the simulated data closely resemble measured data.

  16. Accuracy of ab initio electron correlation and electron densities in vanadium dioxide

    NASA Astrophysics Data System (ADS)

    Kylänpää, Ilkka; Balachandran, Janakiraman; Ganesh, Panchapakesan; Heinonen, Olle; Kent, Paul R. C.; Krogel, Jaron T.

    2017-11-01

    Diffusion quantum Monte Carlo results are used as a reference to analyze properties related to phase stability and magnetism in vanadium dioxide computed with various formulations of density functional theory. We introduce metrics related to energetics, electron densities and spin densities that give us insight on both local and global variations in the antiferromagnetic M1 and R phases. Importantly, these metrics can address contributions arising from the challenging description of the 3 d orbital physics in this material. We observe that the best description of energetics between the structural phases does not correspond to the best accuracy in the charge density, which is consistent with observations made recently by Medvedev et al. [Science 355, 371 (2017), 10.1126/science.aag0410] in the context of isolated atoms. However, we do find evidence that an accurate spin density connects to correct energetic ordering of different magnetic states in VO2, although local, semilocal, and meta-GGA functionals tend to erroneously favor demagnetization of the vanadium sites. The recently developed SCAN functional stands out as remaining nearly balanced in terms of magnetization across the M1-R transition and correctly predicting the ground state crystal structure. In addition to ranking current density functionals, our reference energies and densities serve as important benchmarks for future functional development. With our reference data, the accuracy of both the energy and the electron density can be monitored simultaneously, which is useful for functional development. So far, this kind of detailed high accuracy reference data for correlated materials has been absent from the literature.

  17. Phase mixing of Alfvén waves in axisymmetric non-reflective magnetic plasma configurations

    NASA Astrophysics Data System (ADS)

    Petrukhin, N. S.; Ruderman, M. S.; Shurgalina, E. G.

    2018-02-01

    We study damping of phase-mixed Alfvén waves propagating in non-reflective axisymmetric magnetic plasma configurations. We derive the general equation describing the attenuation of the Alfvén wave amplitude. Then we applied the general theory to a particular case with the exponentially divergent magnetic field lines. The condition that the configuration is non-reflective determines the variation of the plasma density along the magnetic field lines. The density profiles exponentially decreasing with the height are not among non-reflective density profiles. However, we managed to find non-reflective profiles that fairly well approximate exponentially decreasing density. We calculate the variation of the total wave energy flux with the height for various values of shear viscosity. We found that to have a substantial amount of wave energy dissipated at the lower corona, one needs to increase shear viscosity by seven orders of magnitude in comparison with the value given by the classical plasma theory. An important result that we obtained is that the efficiency of the wave damping strongly depends on the density variation with the height. The stronger the density decrease, the weaker the wave damping is. On the basis of this result, we suggested a physical explanation of the phenomenon of the enhanced wave damping in equilibrium configurations with exponentially diverging magnetic field lines.

  18. Energy challenges in optical access and aggregation networks.

    PubMed

    Kilper, Daniel C; Rastegarfar, Houman

    2016-03-06

    Scalability is a critical issue for access and aggregation networks as they must support the growth in both the size of data capacity demands and the multiplicity of access points. The number of connected devices, the Internet of Things, is growing to the tens of billions. Prevailing communication paradigms are reaching physical limitations that make continued growth problematic. Challenges are emerging in electronic and optical systems and energy increasingly plays a central role. With the spectral efficiency of optical systems approaching the Shannon limit, increasing parallelism is required to support higher capacities. For electronic systems, as the density and speed increases, the total system energy, thermal density and energy per bit are moving into regimes that become impractical to support-for example requiring single-chip processor powers above the 100 W limit common today. We examine communication network scaling and energy use from the Internet core down to the computer processor core and consider implications for optical networks. Optical switching in data centres is identified as a potential model from which scalable access and aggregation networks for the future Internet, with the application of integrated photonic devices and intelligent hybrid networking, will emerge. © 2016 The Author(s).

  19. Description of the NIF Laser

    DOE PAGES

    Spaeth, M. L.; Manes, K. R.; Kalantar, D. H.; ...

    2017-03-23

    The possibility of imploding small capsules to produce mini-fusion explosions was explored soon after the first thermonuclear explosions in the early 1950s. Various technologies have been pursued to achieve the focused power and energy required for laboratory-scale fusion. Each technology has its own challenges. For example, electron and ion beams can deliver the large amounts of energy but must contend with Coulomb repulsion forces that make focusing these beams a daunting challenge. The demonstration of the first laser in 1960 provided a new option. Energy from laser beams can be focused and deposited within a small volume; the challenge becamemore » whether a practical laser system can be constructed that delivers the power and energy required while meeting all other demands for achieving a high-density, symmetric implosion. The National Ignition Facility (NIF) is the laser designed and built to meet the challenges for study of high-energy-density physics and inertial confinement fusion (ICF) implosions. This study describes the architecture, systems, and subsystems of NIF. Finally, it describes how they partner with each other to meet these new, complex demands and describes how laser science and technology were woven together to bring NIF into reality.« less

  20. Energy Density is Not a Consistent Correlate of Adiposity in Women During the Menopausal Transition.

    PubMed

    Lafrenière, Jacynthe; Prud'homme, Denis; Brochu, Martin; Rabasa-Lhoret, Rémi; Lavoie, Jean-Marc; Doucet, Éric

    2017-03-01

    The association between the energy density (ED) of foods and adiposity has been reported previously. However, whether the contribution of ED to adiposity remains significant when controlled for energy intake (EI) and physical activity energy expenditure (PAEE) remains to be clearly established. We aimed to investigate the independent contribution of ED to variations in body composition in women during the menopausal transition. Sixty-seven women from the MONET cohort study were analyzed. Seven-day food records were used to assess EI and ED. Body composition (body fat mass (FM) and trunk-fat mass (TFM)) was measured with dual-energy X-ray absorptiometry; PAEE was assessed with accelerometers. This secondary analysis of data included measurements obtained at years 1 and 5 of the study. Mean ED was correlated with FM (r = 0.22; P = 0.04) and TFM (r = 0.22; P = 0.04) at year 1, but not at year 5. The multiple regression analysis showed that EI and ED contributed to 14% of the variance in FM and TFM at year 1. These results suggest that ED is a modest but inconsistent determinant of adiposity in healthy women at the time of the menopause transition.

  1. Systematic implementation of spectral CT with a photon counting detector for liquid security inspection

    NASA Astrophysics Data System (ADS)

    Xu, Xiaofei; Xing, Yuxiang; Wang, Sen; Zhang, Li

    2018-06-01

    X-ray liquid security inspection system plays an important role in homeland security, while the conventional dual-energy CT (DECT) system may have a big deviation in extracting the atomic number and the electron density of materials in various conditions. Photon counting detectors (PCDs) have the capability of discriminating the incident photons of different energy. The technique becomes more and more mature in nowadays. In this work, we explore the performance of a multi-energy CT imaging system with a PCD for liquid security inspection in material discrimination. We used a maximum-likelihood (ML) decomposition method with scatter correction based on a cross-energy response model (CERM) for PCDs so that to improve the accuracy of atomic number and electronic density imaging. Experimental study was carried to examine the effectiveness and robustness of the proposed system. Our results show that the concentration of different solutions in physical phantoms can be reconstructed accurately, which could improve the material identification compared to current available dual-energy liquid security inspection systems. The CERM-base decomposition and reconstruction method can be easily used to different applications such as medical diagnosis.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spaeth, M. L.; Manes, K. R.; Kalantar, D. H.

    The possibility of imploding small capsules to produce mini-fusion explosions was explored soon after the first thermonuclear explosions in the early 1950s. Various technologies have been pursued to achieve the focused power and energy required for laboratory-scale fusion. Each technology has its own challenges. For example, electron and ion beams can deliver the large amounts of energy but must contend with Coulomb repulsion forces that make focusing these beams a daunting challenge. The demonstration of the first laser in 1960 provided a new option. Energy from laser beams can be focused and deposited within a small volume; the challenge becamemore » whether a practical laser system can be constructed that delivers the power and energy required while meeting all other demands for achieving a high-density, symmetric implosion. The National Ignition Facility (NIF) is the laser designed and built to meet the challenges for study of high-energy-density physics and inertial confinement fusion (ICF) implosions. This study describes the architecture, systems, and subsystems of NIF. Finally, it describes how they partner with each other to meet these new, complex demands and describes how laser science and technology were woven together to bring NIF into reality.« less

  3. Unified first principles description from warm dense matter to ideal ionized gas plasma: electron-ion collisions induced friction.

    PubMed

    Dai, Jiayu; Hou, Yong; Yuan, Jianmin

    2010-06-18

    Electron-ion interactions are central to numerous phenomena in the warm dense matter (WDM) regime and at higher temperature. The electron-ion collisions induced friction at high temperature is introduced in the procedure of ab initio molecular dynamics using the Langevin equation based on density functional theory. In this framework, as a test for Fe and H up to 1000 eV, the equation of state and the transition of electronic structures of the materials with very wide density and temperature can be described, which covers a full range of WDM up to high energy density physics. A unified first principles description from condensed matter to ideal ionized gas plasma is constructed.

  4. Perspectives on High-Energy-Density Physics

    NASA Astrophysics Data System (ADS)

    Drake, R. Paul

    2008-11-01

    Much of 21st century plasma physics will involve work to produce, understand, control, and exploit very non-traditional plasmas. High-energy density (HED) plasmas are often examples, variously involving strong Coulomb interactions and few particles per Debeye sphere, dominant radiation effects, strongly relativistic effects, or strongly quantum-mechanical behavior. Indeed, these and other modern plasma systems often fall outside the early standard theoretical definitions of ``plasma''. This presentation will focus on two types of HED plasmas that exhibit non-traditional behavior. Our first example will be the plasmas produced by extremely strong shock waves. Shock waves are present across the entire realm of plasma densities, often in space or astrophysical contexts. HED shock waves (at pressures > 1 Mbar) enable studies in many areas, from equations of state to hydrodynamics to radiation hydrodynamics. We will specifically consider strongly radiative shocks, in which the radiative energy fluxes are comparable to the mechanical energy fluxes that drive the shocks. Modern HED facilities can produce such shocks, which are also present in dense, energetic, astrophysical systems such as supernovae. These shocks are also excellent targets for advanced simulations due to their range of spatial scales and complex radiation transport. Our second example will be relativistic plasmas. In general, these vary from plasmas containing relativistic particle beams, produced for some decades in the laboratory, to the relativistic thermal plasmas present for example in pulsar winds. Laboratory HED relativistic plasmas to date have been those produced by laser beams of irradiance ˜ 10^18 to 10^22 W/cm^2 or by accelerator-produced HED electron beams. These have applications ranging from generation of intense x-rays to production of proton beams for radiation therapy to acceleration of electrons. Here we will focus on electron acceleration, a spectacular recent success and a rare example in which simplicity emerges from the complexity present in the plasma state.

  5. Spiro-(1,1‧)-bipyrrolidinium tetrafluoroborate salt as high voltage electrolyte for electric double layer capacitors

    NASA Astrophysics Data System (ADS)

    Yu, Xuewen; Ruan, Dianbo; Wu, Changcheng; Wang, Jing; Shi, Zhiqiang

    2014-11-01

    A novel quaternary ammonium salt based on spiro-(1,1‧)-bipyrolidinium tetrafluoroborate (SBP-BF4) has been synthesized and dissolved in propylene carbonate (PC) with 1.5 mol L-1 (M) concentration for electric double-layer capacitors (EDLCs). The physic-chemical properties and electrochemical performance of SBP-BF4/PC electrolyte are investigated. Compared with the standard electrolyte 1.5 M TEMA-BF4 in PC, the novel SBP-BF4/PC electrolyte exhibited much better electrochemical performance due to its smaller cation size, lower viscosity and higher conductivity. The specific discharge capacitance of activated carbon electrode based EDLCs using SBP-BF4/PC electrolyte is 120 F g-1, the energy density and power density can reach 31 kW kg-1 and 6938 W kg-1, respectively, when the working voltage is 2.7 V and current density is 50 mA g-1. The withstand voltage of activated carbon based EDLCs with SBP-BF4/PC electrolyte can reach to 3.2 V, where the stable discharge capacitance and energy density are 121 F g-1 and 43 Wh kg-1, respectively.

  6. Final Project Report "Advanced Concept Exploration For Fast Ignition Science Program"

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    STEPHENS, Richard B.; McLEAN, Harry M.; THEOBALD, Wolfgang

    The Fast Ignition (FI) Concept for Inertial Confinement Fusion has the potential to provide a significant advance in the technical attractiveness of Inertial Fusion Energy (IFE) reactors. FI differs from conventional “central hot spot” (CHS) target ignition by decoupling compression from heating: using the laser (or heavy ion beam or Z pinch) drive pulse (10’s of ns) to create a dense fuel and a second, much shorter (~10 ps) high intensity pulse to ignite a small region of it. There are two major physics issues concerning this concept; controlling the laser-induced generation of large electron currents and their propagation throughmore » high density plasmas. This project has addressed these two significant scientific issues in Relativistic High Energy Density (RHED) physics. Learning to control relativistic laser matter interaction (and the limits and potential thereof) will enable a wide range of applications. While these physics issues are of specific interest to inertial fusion energy science, they are also important for a wide range of other HED phenomena, including high energy ion beam generation, isochoric heating of materials, and the development of high brightness x-ray sources. Generating, controlling, and understanding the extreme conditions needed to advance this science has proved to be challenging: Our studies have pushed the boundaries of physics understanding and are at the very limits of experimental, diagnostic, and simulation capabilities in high energy density laboratory physics (HEDLP). Our research strategy has been based on pursuing the fundamental physics underlying the Fast Ignition (FI) concept. We have performed comprehensive study of electron generation and transport in fast-ignition targets with experiments, theory, and numerical modeling. A major issue is that the electrons produced in these experiments cannot be measured directly—only effects due to their transport. We focused mainly on x-ray continuum photons from bremsstrahlung and x-ray line radiation from K-shell fluorescence. Integrated experiments, which combine target compression with short-pulse laser heating, yield additional information on target heating efficiency. This indirect way of studying the underlying behavior of the electrons must be validated with computational modeling to understand the physics and improve the design. This program execution required a large, well-organized team and it was managed by a joint Collaboration between General Atomics (GA), Lawrence Livermore National Laboratory (LLNL), and the Laboratory for Laser Energetics (LLE). The Collaboration was formed 8 years ago to understand the physics issues of the Fast Ignition concept, building on the strengths of each partner. GA fulfills its responsibilities jointly with the University of California, San Diego (UCSD), The Ohio State University (OSU) and the University of Nevada at Reno (UNR). Since RHED physics is pursued vigorously in many countries, international researchers have been an important part of our efforts to make progress. The division of responsibility was as follows: (1) LLE had primary leadership for channeling studies and the integrated energy transfer, (2) LLNL led the development of measurement methods, analysis, and deployment of diagnostics, and (3) GA together with UCSD, OSU and UNR studied the detailed energy-transfer physics. The experimental program was carried out using the Titan laser at the Jupiter Laser Facility at LLNL, the OMEGA and OMEGA EP lasers at LLE and the Texas Petawatt laser (TPW) at UT Austin. Modeling has been pursued on large computing facilities at LLNL, OSU, and UCSD using codes developed (by us and others) within the HEDLP program, commercial codes, and by leveraging existing supercomputer codes developed by the NNSA ICF program. This Consortium brought together all the components—resources, facilities, and personnel—necessary to accomplish its aggressive goals. The ACE Program has been strongly collaborative, taking advantage of the expertise of the participating institutions to provide a research effort that is far greater than the sum of its parts. The results of this work have firmly strengthened the scientific foundation from which the viability of FI and other applications can be evaluated. Program execution has also led to improved diagnostics for probing dense, hot plasmas, detailed understanding of high-current, relativistic electron energy generation and transport across boundaries and into dense plasmas, and greatly enhanced predictive modeling capabilities. One important aspect of this program was the involvement and training of young scientists including postdoctoral fellows and graduate students. During the entire 8 years of FI and ACE project period since 2005, more than fifteen graduate students completed their doctoral dissertations including three from OSU and two from UCSD in last three years. This project generated an impressive forty articles in high quality journals including nine (including two under review) in Physical Review Letters during the last funding period since 2011.« less

  7. Multiconfiguration Pair-Density Functional Theory: A New Way To Treat Strongly Correlated Systems.

    PubMed

    Gagliardi, Laura; Truhlar, Donald G; Li Manni, Giovanni; Carlson, Rebecca K; Hoyer, Chad E; Bao, Junwei Lucas

    2017-01-17

    The electronic energy of a system provides the Born-Oppenheimer potential energy for internuclear motion and thus determines molecular structure and spectra, bond energies, conformational energies, reaction barrier heights, and vibrational frequencies. The development of more efficient and more accurate ways to calculate the electronic energy of systems with inherently multiconfigurational electronic structure is essential for many applications, including transition metal and actinide chemistry, systems with partially broken bonds, many transition states, and most electronically excited states. Inherently multiconfigurational systems are called strongly correlated systems or multireference systems, where the latter name refers to the need for using more than one ("multiple") configuration state function to provide a good zero-order reference wave function. This Account describes multiconfiguration pair-density functional theory (MC-PDFT), which was developed as a way to combine the advantages of wave function theory (WFT) and density functional theory (DFT) to provide a better treatment of strongly correlated systems. First we review background material: the widely used Kohn-Sham DFT (which uses only a single Slater determinant as reference wave function), multiconfiguration WFT methods that treat inherently multiconfigurational systems based on an active space, and previous attempts to combine multiconfiguration WFT with DFT. Then we review the formulation of MC-PDFT. It is a generalization of Kohn-Sham DFT in that the electron kinetic energy and classical electrostatic energy are calculated from a reference wave function, while the rest of the energy is obtained from a density functional. However, there are two main differences with respent to Kohn-Sham DFT: (i) The reference wave function is multiconfigurational rather than being a single Slater determinant. (ii) The density functional is a function of the total density and the on-top pair density rather than being a function of the spin-up and spin-down densities. In work carried out so far, the multiconfigurational wave function is a multiconfiguration self-consistent-field wave function. The new formulation has the advantage that the reference wave function has the correct spatial and spin symmetry and can describe bond dissociation (of both single and multiple bonds) and electronic excitations in a formally and physically correct way. We then review the formulation of density functionals in terms of the on-top pair density. Finally we review successful applications of the theory to bond energies and bond dissociation potential energy curves of main-group and transition metal bonds, to barrier heights (including pericyclic reactions), to proton affinities, to the hydrogen bond energy of water dimer, to ground- and excited-state charge transfer, to valence and Rydberg excitations of molecules, and to singlet-triplet splittings of radicals. We find that that MC-PDFT can give accurate results not only with complete-active-space multiconfiguration wave functions but also with generalized-active-space multiconfiguration wave functions, which are practical for larger numbers of active electrons and active orbitals than are complete-active-space wave functions. The separated-pair approximation, which is a special case of generalized active space self-consistent-field theory, is especially promising. MC-PDFT, because it requires much less computer time and storage than pure WFT methods, has the potential to open larger and more complex strongly correlated systems to accurate simulation.

  8. Peeling Off Neutron Skins from Neutron-Rich Nuclei: Constraints on the Symmetry Energy from Neutron-Removal Cross Sections

    NASA Astrophysics Data System (ADS)

    Aumann, T.; Bertulani, C. A.; Schindler, F.; Typel, S.

    2017-12-01

    An experimentally constrained equation of state of neutron-rich matter is fundamental for the physics of nuclei and the astrophysics of neutron stars, mergers, core-collapse supernova explosions, and the synthesis of heavy elements. To this end, we investigate the potential of constraining the density dependence of the symmetry energy close to saturation density through measurements of neutron-removal cross sections in high-energy nuclear collisions of 0.4 to 1 GeV /nucleon . We show that the sensitivity of the total neutron-removal cross section is high enough so that the required accuracy can be reached experimentally with the recent developments of new detection techniques. We quantify two crucial points to minimize the model dependence of the approach and to reach the required accuracy: the contribution to the cross section from inelastic scattering has to be measured separately in order to allow a direct comparison of experimental cross sections to theoretical cross sections based on density functional theory and eikonal theory. The accuracy of the reaction model should be investigated and quantified by the energy and target dependence of various nucleon-removal cross sections. Our calculations explore the dependence of neutron-removal cross sections on the neutron skin of medium-heavy neutron-rich nuclei, and we demonstrate that the slope parameter L of the symmetry energy could be constrained down to ±10 MeV by such a measurement, with a 2% accuracy of the measured and calculated cross sections.

  9. Physical activity benefits bone density and bone-related hormones in adult men with cervical spinal cord injury.

    PubMed

    Chain, Amina; Koury, Josely C; Bezerra, Flávia Fioruci

    2012-09-01

    Severe bone loss is a recognized complication of chronic spinal cord injury (SCI). Physical exercise contributes to bone health; however, its influence on bone mass of cervical SCI individuals has not been investigated. The aim of this study was to investigate the influence of physical activity on bone mass, bone metabolism, and vitamin D status in quadriplegics. Total, lumbar spine (L1-L4), femur and radius bone mineral density (BMD) were assessed in active (n = 15) and sedentary (n = 10) quadriplegic men by dual energy X-ray absorptiometry. Concentrations of 25-hydroxyvitamin D [25(OH)D], PTH, IGF1, osteocalcin and NTx were measured in serum. After adjustments for duration of injury, total body mass, and habitual calcium intake, bone indices were similar between groups, except for L1-L4 BMD Z score that was higher in the sedentary group (P < 0.05). Hours of physical exercise per week correlated positively with 25(OH)D (r = 0.59; P < 0.05) and negatively with PTH (r = -0.50; P < 0.05). Femur BMD was negatively associated with the number of months elapsed between the injury and the onset of physical activity (r = -0.60; P < 0.05). Moreover, in the active subjects, both L1-L4 BMD Z score (r = 0.72; P < 0.01) and radius BMD (r = 0.59; P < 0.05) were positively associated with calcium intake. In this cross-sectional study, both the onset of physical activity after injury and the number of hours dedicated to exercise were able to influence bone density and bone-related hormones in quadriplegic men. Our results also suggest a positive combined effect of exercise and calcium intake on bone health of quadriplegic individuals.

  10. The optimized effective potential and the self-interaction correction in density functional theory: Application to molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garza, Jorge; Nichols, Jeffrey A.; Dixon, David A.

    2000-05-08

    The Krieger, Li, and Iafrate approximation to the optimized effective potential including the self-interaction correction for density functional theory has been implemented in a molecular code, NWChem, that uses Gaussian functions to represent the Kohn and Sham spin-orbitals. The differences between the implementation of the self-interaction correction in codes where planewaves are used with an optimized effective potential are discussed. The importance of the localization of the spin-orbitals to maximize the exchange-correlation of the self-interaction correction is discussed. We carried out exchange-only calculations to compare the results obtained with these approximations, and those obtained with the local spin density approximation,more » the generalized gradient approximation and Hartree-Fock theory. Interesting results for the energy difference (GAP) between the highest occupied molecular orbital, HOMO, and the lowest unoccupied molecular orbital, LUMO, (spin-orbital energies of closed shell atoms and molecules) using the optimized effective potential and the self-interaction correction have been obtained. The effect of the diffuse character of the basis set on the HOMO and LUMO eigenvalues at the various levels is discussed. Total energies obtained with the optimized effective potential and the self-interaction correction show that the exchange energy with these approximations is overestimated and this will be an important topic for future work. (c) 2000 American Institute of Physics.« less

  11. Factors in daily physical activity related to calcaneal mineral density in men.

    PubMed

    Hutchinson, T M; Whalen, R T; Cleek, T M; Vogel, J M; Arnaud, S B

    1995-05-01

    To determine the factors in daily physical activity that influence the mineral density of the calcaneus, we recorded walking steps and the type and duration of exercise in 43 healthy 26-to 51-yr-old men. Areal (g.cm-2) calcaneal bone mineral density (CBMD) was measured by single energy x-ray densitometry (SXA, Osteon, Inc., Wahiawa, HI). Subjects walked a mean (+/- SD) of 7902 (+/- 2534) steps per day or approximately 3.9 (+/- 1.2) miles daily. Eight subjects reported no exercise activities. The remaining 35 subjects spent 143 (2-772) (median and range) min.wk-1 exercising. Twenty-eight men engaged in exercise activities that generate single leg peak vertical ground reaction forces (GRFz) of 2 or more body weights (high loaders, HL), and 15 reported exercise or daily activities that typically generate GRFz less than 1.5 body weights (low loaders, LL). CBMD was 12% higher in HL than LL (0.668 +/- 0.074 g.cm-2 vs 0.597 +/- 0.062 g.cm-2, P < 0.004). In the HL group, CBMD correlated to reported minutes of high load exercise (r = 0.41, P < 0.03). CBMD was not related to the number of daily walking steps (N = 43, r = 0.03, NS). The results of this study support the concept that the dominant factor in daily physical activity relating to bone mineral density is the participation in site specific high loading activities, i.e., for the calcaneus, high calcaneal loads.

  12. Factors in Daily Physical Activity Related to Calcaneal Mineral Density in Men

    NASA Technical Reports Server (NTRS)

    Hutchinson, Teresa M.; Whalen, Robert T.; Cleek, Tammy M.; Vogel, John M.; Arnaud, Sara B.

    1995-01-01

    To determine the factors in daily physical activity that influence the mineral density of the calcaneus, we recorded walking steps and the type and duration of exercise in 43 healthy 26-to 51-yr-old men. Areal (g/sq cm) calcaneal bone mineral density (CBMD) was measured by single energy x-ray densitometry. Subjects walked a mean (+/- SD) of 7902(+/-2534) steps per day or approximately 3.9(+/-1.2) miles daily. Eight subjects reported no exercise activities. The remaining 35 subjects spent 143(2-772) (median and range) min/wk exercising. Twenty-eight men engaged in exercise activities that generate single leg peak vertical ground reaction forces (GRF(sub z)) of 2 or more body weights (high loaders, HL), and 15 reported exercise or daily activities that typically generate GRF(sub z) less than 1.5 body weights (low loaders, LL). CBMD was 12% higher in HL than LL (0.668 +/- 0.074 g/sq cm vs 0.597 +/- 0.062 g/sq cm, P less than 0.004). In the HL group, CBMD correlated to reported minutes of high load exercise (r = 0.41, P less than 0.03). CBMD was not related to the number of daily walking steps (N = 43, r = 0.03, NS). The results of this study support the concept that the dominant factor in daily physical activity relating to bone mineral density is the participation in site specific high loading activities, i.e., for the calcaneus, high calcaneal loads.

  13. Longitudinal relationship between physical activity and cardiometabolic factors in overweight and obese adults

    PubMed Central

    Choo, Jina; Elci, Okan U.; Yang, Kyeongra; Turk, Melanie W.; Styn, Mindi A.; Sereika, Susan M.; Music, Edvin; Burke, Lora E.

    2012-01-01

    Few studies have reported longitudinal relationships between physical activity (PA) and cardiometabolic risk factors over time using repeated assessments in overweight or obese adults. We conducted a longitudinal study in 127 participants (81% with body mass index > 30 kg/m2) who completed a 12-month behavioral intervention for weight loss between 2003 and 2005 in Pittsburgh, PA, USA. Using absolute change scores from baseline to each time point (i.e., 6 and 12 months) for all studied variables (Δ = time point – baseline), we performed mixed effects modeling to examine relationships between PA and cardiometabolic risk factors, after adjusting for body weight, energy intake and other covariates (i.e., age, gender, and ethnicity). PA was assessed as energy expenditure (kcal/week) using the Paffenbarger activity questionnaire. Over the 12-month period, energy expenditure increased (Δ1,370 kcal/week at 6 months vs. Δ886 kcal/week at 12 months); body weight decreased (Δ8.9 kg at 6 months vs. Δ8.4 kg at 12 months). The average increase in energy expenditure over 12 months was significantly and independently related to reductions in total cholesterol (F = 6.25, p = 0.013), low-density lipoprotein cholesterol (LDL-C) (F = 5.08, p = 0.025) and fasting blood glucose (F = 5.10, p = 0.025), but not to other risk factors (i.e., fasting insulin, high-density lipoprotein cholesterol, triglycerides, and waist circumference). In conclusion, among overweight and obese adults undergoing a weight loss intervention, increased energy expenditure over 12 months may improve total cholesterol and LDL-C, important coronary risk factors, and fasting blood glucose, a metabolic risk factor. PMID:19806358

  14. Equations of State for Mixtures: Results from DFT Simulations of Xenon/Ethane Mixtures Compared to High Accuracy Validation Experiments on Z

    NASA Astrophysics Data System (ADS)

    Magyar, Rudolph

    2013-06-01

    We report a computational and validation study of equation of state (EOS) properties of liquid / dense plasma mixtures of xenon and ethane to explore and to illustrate the physics of the molecular scale mixing of light elements with heavy elements. Accurate EOS models are crucial to achieve high-fidelity hydrodynamics simulations of many high-energy-density phenomena such as inertial confinement fusion and strong shock waves. While the EOS is often tabulated for separate species, the equation of state for arbitrary mixtures is generally not available, requiring properties of the mixture to be approximated by combining physical properties of the pure systems. The main goal of this study is to access how accurate this approximation is under shock conditions. Density functional theory molecular dynamics (DFT-MD) at elevated-temperature and pressure is used to assess the thermodynamics of the xenon-ethane mixture. The simulations are unbiased as to elemental species and therefore provide comparable accuracy when describing total energies, pressures, and other physical properties of mixtures as they do for pure systems. In addition, we have performed shock compression experiments using the Sandia Z-accelerator on pure xenon, ethane, and various mixture ratios thereof. The Hugoniot results are compared to the DFT-MD results and the predictions of different rules for combing EOS tables. The DFT-based simulation results compare well with the experimental points, and it is found that a mixing rule based on pressure equilibration performs reliably well for the mixtures considered. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  15. Estimation of the viscosities of liquid binary alloys

    NASA Astrophysics Data System (ADS)

    Wu, Min; Su, Xiang-Yu

    2018-01-01

    As one of the most important physical and chemical properties, viscosity plays a critical role in physics and materials as a key parameter to quantitatively understanding the fluid transport process and reaction kinetics in metallurgical process design. Experimental and theoretical studies on liquid metals are problematic. Today, there are many empirical and semi-empirical models available with which to evaluate the viscosity of liquid metals and alloys. However, the parameter of mixed energy in these models is not easily determined, and most predictive models have been poorly applied. In the present study, a new thermodynamic parameter Δ G is proposed to predict liquid alloy viscosity. The prediction equation depends on basic physical and thermodynamic parameters, namely density, melting temperature, absolute atomic mass, electro-negativity, electron density, molar volume, Pauling radius, and mixing enthalpy. Our results show that the liquid alloy viscosity predicted using the proposed model is closely in line with the experimental values. In addition, if the component radius difference is greater than 0.03 nm at a certain temperature, the atomic size factor has a significant effect on the interaction of the binary liquid metal atoms. The proposed thermodynamic parameter Δ G also facilitates the study of other physical properties of liquid metals.

  16. Determination of tissue equivalent materials of a physical 8-year-old phantom for use in computed tomography

    NASA Astrophysics Data System (ADS)

    Akhlaghi, Parisa; Miri Hakimabad, Hashem; Rafat Motavalli, Laleh

    2015-07-01

    This paper reports on the methodology applied to select suitable tissue equivalent materials of an 8-year phantom for use in computed tomography (CT) examinations. To find the appropriate tissue substitutes, first physical properties (physical density, electronic density, effective atomic number, mass attenuation coefficient and CT number) of different materials were studied. Results showed that, the physical properties of water and polyurethane (as soft tissue), B-100 and polyvinyl chloride (PVC) (as bone) and polyurethane foam (as lung) agree more with those of original tissues. Then in the next step, the absorbed doses in the location of 25 thermoluminescent dosimeters (TLDs) as well as dose distribution in one slice of phantom were calculated for original and these proposed materials by Monte Carlo simulation at different tube voltages. The comparisons suggested that at tube voltages of 80 and 100 kVp using B-100 as bone, water as soft tissue and polyurethane foam as lung is suitable for dosimetric study in pediatric CT examinations. In addition, it was concluded that by considering just the mass attenuation coefficient of different materials, the appropriate tissue equivalent substitutes in each desired X-ray energy range could be found.

  17. Advanced Concept Exploration for Fast Ignition Science Program, Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stephens, Richard Burnite; McLean, Harry M.; Theobald, Wolfgang

    The Fast Ignition (FI) Concept for Inertial Confinement Fusion (ICF) has the potential to provide a significant advance in the technical attractiveness of Inertial Fusion Energy reactors. FI differs from conventional “central hot spot” (CHS) target ignition by decoupling compression from heating: using a laser (or heavy ion beam or Z pinch) drive pulse (10’s of nanoseconds) to create a dense fuel and a second, much shorter (~10 picoseconds) high intensity pulse to ignite a small volume within the dense fuel. The physics of fast ignition process was the focus of our Advanced Concept Exploration (ACE) program. Ignition depends criticallymore » on two major issues involving Relativistic High Energy Density (RHED) physics: The laser-induced creation of fast electrons and their propagation in high-density plasmas. Our program has developed new experimental platforms, diagnostic packages, computer modeling analyses, and taken advantage of the increasing energy available at laser facilities to advance understanding of the fundamental physics underlying these issues. Our program had three thrust areas: • Understand the production and characteristics of fast electrons resulting from FI relevant laser-plasma interactions and their dependence on laser prepulse and laser pulse length. • Investigate the subsequent fast electron transport in solid and through hot (FI-relevant) plasmas. • Conduct and understand integrated core-heating experiments by comparison to simulations. Over the whole period of this project (three years for this contract), we have greatly advanced our fundamental understanding of the underlying properties in all three areas: • Comprehensive studies on fast electron source characteristics have shown that they are controlled by the laser intensity distribution and the topology and plasma density gradient. Laser pre-pulse induced pre-plasma in front of a solid surface results in increased stand-off distances from the electron origin to the high density target as well as large and erratic spread of the electron beam with increasing short pulse duration. We have demonstrated, using newly available higher contrast lasers, an improved energy coupling, painting a promising picture for FI feasibility. • Our detailed experiments and analyses of fast electron transport dependence on target material have shown that it is feasible to collimate fast electron beam by self-generated resistive magnetic fields in engineered targets with a rather simple geometry. Stable and collimated electron beam with spot size as small as 50-μm after >100-μm propagation distance (an angular divergence angle of 20°!) in solid density plasma targets has been demonstrated with FI-relevant (10-ps, >1-kJ) laser pulses Such collimated beam would meet the required heating beam size for FI. • Our new experimental platforms developed for the OMEGA laser (i.e., i) high resolution 8 keV backlighter platform for cone-in-shell implosion and ii) the 8 keV imaging with Cu-doped shell targets for detailed transport characterization) have enabled us to experimentally confirm fuel assembly from cone-in-shell implosion with record-high areal density. We have also made the first direct measurement of fast electron transport and spatial energy deposition in integrated FI experiments enabling the first experiment-based benchmarking of integrated simulation codes. Executing this program required a large team. It was managed as a collaboration between General Atomics (GA), Lawrence Livermore National Laboratory (LLNL), and the Laboratory for Laser Energetics (LLE). GA fulfills its responsibilities jointly with the University of California, San Diego (UCSD), The Ohio State University (OSU) and the University of Nevada at Reno (UNR). The division of responsibility was as follows: (1) LLE had primary leadership for channeling studies and the integrated energy transfer, (2) LLNL led the development of measurement methods, analysis, and deployment of diagnostics, and (3) GA together with UCSD, OSU and UNR studied the detailed energy-transfer physics. The experimental program was carried out using the Titan laser at the Jupiter Laser Facility at LLNL, the OMEGA and OMEGA EP lasers at LLE and the Texas Petawatt laser at the University of Texas, Austin. Modeling has been pursued on large computing facilities at LLNL, OSU, and UCSD using codes developed (by us and others) within the HEDLP program, commercial codes, and by leveraging existing simulations codes developed by the National Nuclear Security Administration ICF program. One important aspect of this program was the involvement and training of young scientists including postdoctoral fellows and graduate students. This project generated an impressive forty articles in high quality journals including nine (two under review) in Physical Review Letters during the three years of this grant and five graduate students completed their doctoral dissertations.« less

  18. Electrokinetic Supercapacitor for Simultaneous Harvesting and Storage of Mechanical Energy.

    PubMed

    Yang, Peihua; Qu, Xiaopeng; Liu, Kang; Duan, Jiangjiang; Li, Jia; Chen, Qian; Xue, Guobin; Xie, Wenke; Xu, Zhimou; Zhou, Jun

    2018-03-07

    Energy harvesting and storage are two distinct processes that are generally achieved using two separated parts based on different physical and chemical principles. Here we report a self-charging electrokinetic supercapacitor that directly couples the energy harvesting and storage processes into one device. The device consists of two identical carbon nanotube/titanium electrodes, separated by a piece of anodic aluminum oxide nanochannels membrane. Pressure-driven electrolyte flow through the nanochannels generates streaming potential, which can be used to charge the capacitive electrodes, accomplishing simultaneous energy generation and storage. The device stores electric charge density of 0.4 mC cm -2 after fully charging under pressure of 2.5 bar. This work may offer a train of thought for the development of a new type of energy unit for self-powered systems.

  19. Energy exchange analysis in droplet dynamics via the Navier-Stokes-Cahn-Hilliard model

    NASA Astrophysics Data System (ADS)

    Espath, L. F. R.; Sarmiento, A. F.; Vignal, P.; Varga, B. O. N.; Cortes, A. M. A.; Dalcin, L.; Calo, V. M.

    2016-06-01

    We develop the energy budget equation of the coupled Navier-Stokes-Cahn-Hilliard (NSCH) system. We use the NSCH equations to model the dynamics of liquid droplets in a liquid continuum. Buoyancy effects are accounted for through the Boussinesq assumption. We physically interpret each quantity involved in the energy exchange to further insight into the model. Highly resolved simulations involving density-driven flows and merging of droplets allow us to analyze these energy budgets. In particular, we focus on the energy exchanges when droplets merge, and describe flow features relevant to this phenomenon. By comparing our numerical simulations to analytical predictions and experimental results available in the literature, we conclude that modeling droplet dynamics within the framework of NSCH equations is a sensible approach worth further research.

  20. Two Complementary Strategies for New Physics Searches at Lepton Colliders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hooberman, Benjamin Henry

    In this thesis I present two complementary strategies for probing beyond-the-Standard Model physics using data collected in e +e - collisions at lepton colliders. One strategy involves searching for effects at low energy mediated by new particles at the TeV mass scale, at which new physics is expected to manifest. Several new physics scenarios, including Supersymmetry and models with leptoquarks or compositeness, may lead to observable rates for charged lepton-flavor violating processes, which are forbidden in the Standard Model. I present a search for lepton-flavor violating decays of the Υ(3S) using data collected with the BABAR detector. This study establishesmore » the 90% confidence level upper limits BF(Υ(3S) → eτ) < 5.0 x 10 -6 and BF(Υ(3S) → μτ) < 4.1 x 10 -6 which are used to place constraints on new physics contributing to lepton-flavor violation at the TeV mass scale. An alternative strategy is to increase the collision energy above the threshold for new particles and produce them directly. I discuss research and development efforts aimed at producing a vertex tracker which achieves the physics performance required of a high energy lepton collider. A small-scale vertex tracker prototype is constructed using Silicon sensors of 50 μm thickness and tested using charged particle beams. This tracker achieves the targeted impact parameter resolution of σ LP = (5⊕10 GeV/p T) as well as a longitudinal vertex resolution of (260 ± 10) μm, which is consistent with the requirements of a TeV-scale lepton collider. This detector research and development effort must be motivated and directed by simulation studies of physics processes. Investigation of a dark matter-motivated Supersymmetry scenario is presented, in which the dark matter is composed of Supersymmetric neutralinos. In this scenario, studies of the e +e - → H 0A 0 production process allow for precise measurements of the properties of the A 0 Supersymmetric Higgs boson, which improve the achievable precision on the neutralino dark matter candidate relic density to 8%. Comparison between this quantity and the dark matter density determined from cosmological observations will further our understanding of dark matter by allowing us to determine if it is of Supersymmetric origin.« less

  1. Modelling coronal electron density and temperature profiles of the Active Region NOAA 11855

    NASA Astrophysics Data System (ADS)

    Rodríguez Gómez, J. M.; Antunes Vieira, L. E.; Dal Lago, A.; Palacios, J.; Balmaceda, L. A.; Stekel, T.

    2017-10-01

    The magnetic flux emergence can help understand the physical mechanism responsible for solar atmospheric phenomena. Emerging magnetic flux is frequently related to eruptive events, because when emerging they can reconnected with the ambient field and release magnetic energy. We will use a physic-based model to reconstruct the evolution of the solar emission based on the configuration of the photospheric magnetic field. The structure of the coronal magnetic field is estimated by employing force-free extrapolation NLFFF based on vector magnetic field products (SHARPS) observed by HMI instrument aboard SDO spacecraft from Sept. 29 (2013) to Oct. 07 (2013). The coronal plasma temperature and density are described and the emission is estimated using the CHIANTI atomic database 8.0. The performance of the our model is compared to the integrated emission from the AIA instrument aboard SDO spacecraft in the specific wavelengths 171Å and 304Å.

  2. On thermonuclear ignition criterion at the National Ignition Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Baolian; Kwan, Thomas J. T.; Wang, Yi-Ming

    2014-10-15

    Sustained thermonuclear fusion at the National Ignition Facility remains elusive. Although recent experiments approached or exceeded the anticipated ignition thresholds, the nuclear performance of the laser-driven capsules was well below predictions in terms of energy and neutron production. Such discrepancies between expectations and reality motivate a reassessment of the physics of ignition. We have developed a predictive analytical model from fundamental physics principles. Based on the model, we obtained a general thermonuclear ignition criterion in terms of the areal density and temperature of the hot fuel. This newly derived ignition threshold and its alternative forms explicitly show the minimum requirementsmore » of the hot fuel pressure, mass, areal density, and burn fraction for achieving ignition. Comparison of our criterion with existing theories, simulations, and the experimental data shows that our ignition threshold is more stringent than those in the existing literature and that our results are consistent with the experiments.« less

  3. Exploring Low Internal Reorganization Energies for Silicene Nanoclusters

    NASA Astrophysics Data System (ADS)

    Pablo-Pedro, Ricardo; Lopez-Rios, Hector; Mendoza-Cortes, Jose-L.; Kong, Jing; Fomine, Serguei; Van Voorhis, Troy; Dresselhaus, Mildred S.

    2018-05-01

    This paper is a contribution to the Physical Review Applied collection in memory of Mildred S. Dresselhaus. High-performance materials rely on small reorganization energies to facilitate both charge separation and charge transport. Here, we perform density-functional-theory calculations to predict small reorganization energies of rectangular silicene nanoclusters with hydrogen-passivated edges denoted by H-SiNC. We observe that across all geometries, H-SiNCs feature large electron affinities and highly stabilized anionic states, indicating their potential as n -type materials. Our findings suggest that fine-tuning the size of H-SiNCs along the "zigzag" and "armchair" directions may permit the design of novel n -type electronic materials and spintronics devices that incorporate both high electron affinities and very low internal reorganization energies.

  4. Density Imaging of Puy de Dôme Volcano by Joint Inversion of Muographic and Gravimetric Data

    NASA Astrophysics Data System (ADS)

    Barnoud, A.; Niess, V.; Le Ménédeu, E.; Cayol, V.; Carloganu, C.

    2016-12-01

    We aim at jointly inverting high density muographic and gravimetric data to robustly infer the density structure of volcanoes. We use the puy de Dôme volcano in France as a proof of principle since high quality data sets are available for both muography and gravimetry. Gravimetric inversion and muography are independent methods that provide an estimation of density distributions. On the one hand, gravimetry allows to reconstruct 3D density variations by inversion. This process is well known to be ill-posed and intrinsically non unique, thus it requires additional constraints (eg. a priori density model). On the other hand, muography provides a direct measurement of 2D mean densities (radiographic images) from the detection of high energy atmospheric muons crossing the volcanic edifice. 3D density distributions can be computed from several radiographic images, but the number of images is generally limited by field constraints and by the limited number of available telescopes. Thus, muon tomography is also ill-posed in practice.In the case of the puy de Dôme volcano, the density structures inferred from gravimetric data (Portal et al. 2016) and from muographic data (Le Ménédeu et al. 2016) show a qualitative agreement but cannot be compared quantitatively. Because each method has different intrinsic resolutions due to the physics (Jourde et al., 2015), the joint inversion is expected to improve the robustness of the inversion. Such joint inversion has already been applied in a volcanic context (Nishiyama et al., 2013).Volcano muography requires state-of-art, high-resolution and large-scale muon detectors (Ambrosino et al., 2015). Instrumental uncertainties and systematic errors may constitute an important limitation for muography and should not be overlooked. For instance, low-energy muons are detected together with ballistic high-energy muons, decreasing the measured value of the mean density closed to the topography.Here, we jointly invert the gravimetric and muographic data to characterize the 3D density distribution of the puy de Dôme volcano. We attempt to precisely identify and estimate the different uncertainties and systematic errors so that they can be accounted for in the inversion scheme.

  5. Final Technical Report: Magnetic Reconnection in High-Energy Laser-Produced Plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Germaschewski, Kai; Fox, William; Bhattacharjee, Amitava

    This report describes the final results from the DOE Grant DE-SC0007168, “Fast Magnetic Reconnection in HED Laser-Produced Plasmas.” The recent generation of laboratory high-energy-density physics facilities has opened significant physics opportunities for experimentally modeling astrophysical plasmas. The goal of this proposal is to use these new tools to study fundamental problems in plasma physics and plasma astrophysics. Fundamental topics in this area involve study of the generation, amplification, and fate of magnetic fields, which are observed to pervade the plasma universe and govern its evolution. This project combined experiments at DOE laser facilities with kinetic plasma simulation to study thesemore » processes. The primary original goal of the project was to study magnetic reconnection using a new experimental platform, colliding magnetized laser-produced plasmas. However through a series of fortuitous discoveries, the work broadened out to allow significant advancement on multiple topics in laboratory astrophysics, including magnetic reconnection, Weibel instability, and collisionless shocks.« less

  6. Effective atomic numbers and electron densities of some human tissues and dosimetric materials for mean energies of various radiation sources relevant to radiotherapy and medical applications

    NASA Astrophysics Data System (ADS)

    Kurudirek, Murat

    2014-09-01

    Effective atomic numbers, Zeff, and electron densities, neff, are convenient parameters used to characterise the radiation response of a multi-element material in many technical and medical applications. Accurate values of these physical parameters provide essential data in medical physics. In the present study, the effective atomic numbers and electron densities have been calculated for some human tissues and dosimetric materials such as Adipose Tissue (ICRU-44), Bone Cortical (ICRU-44), Brain Grey/White Matter (ICRU-44), Breast Tissue (ICRU-44), Lung Tissue (ICRU-44), Soft Tissue (ICRU-44), LiF TLD-100H, TLD-100, Water, Borosilicate Glass, PAG (Gel Dosimeter), Fricke (Gel Dosimeter) and OSL (Aluminium Oxide) using mean photon energies, Em, of various radiation sources. The used radiation sources are Pd-103, Tc-99, Ra-226, I-131, Ir-192, Co-60, 30 kVp, 40 kVp, 50 kVp (Intrabeam, Carl Zeiss Meditec) and 6 MV (Mohan-6 MV) sources. The Em values were then used to calculate Zeff and neff of the tissues and dosimetric materials for various radiation sources. Different calculation methods for Zeff such as the direct method, the interpolation method and Auto-Zeff computer program were used and agreements and disagreements between the used methods have been presented and discussed. It has been observed that at higher Em values agreement is quite satisfactory (Dif.<5%) between the adopted methods.

  7. Variational energy principle for compressible, baroclinic flow. 1: First and second variations of total kinetic action

    NASA Technical Reports Server (NTRS)

    Schmid, L. A.

    1977-01-01

    The case of a cold gas in the absence of external force fields is considered. Since the only energy involved is kinetic energy, the total kinetic action (i.e., the space-time integral of the kinetic energy density) should serve as the total free-energy functional in this case, and as such should be a local minimum for all possible fluctuations about stable flow. This conjecture is tested by calculating explicit, manifestly covariant expressions for the first and second variations of the total kinetic action in the context of Lagrangian kinematics. The general question of the correlation between physical stability and the convexity of any action integral that can be interpreted as the total free-energy functional of the flow is discussed and illustrated for the cases of rectillinear and rotating shearing flows.

  8. Greater energy reduction in 6-n-propylthiouracil (PROP) super-tasters as compared to non-tasters during a lifestyle intervention.

    PubMed

    Coletta, Adriana; Bachman, Jessica; Tepper, Beverly J; Raynor, Hollie A

    2013-04-01

    Little is known as to how 6-n-propylthiouracil (PROP) taster status may influence changes in dietary intake in adults participating in a lifestyle intervention to assist with reducing weight. This secondary data analysis examined changes in energy, percent energy from macronutrients, and food group intake; physical activity; and body mass index (BMI) in super-tasters and non-tasters participating in two randomized controlled trials implementing a lifestyle obesity intervention. One trial focused on lowering energy density of the diet and the other trial focused on changing eating frequency. Overweight and obese participants (n = 57) who completed measures of dietary intake, physical activity, and anthropometrics at 0 and 3 months were included in the analyses. Taster status was determined at baseline: 46 non-tasters and 11 super-tasters. After controlling for condition assignment and baseline values, results indicated that a significantly greater reduction in energy intake occurred for super-tasters as compared to non-tasters (-1149 ± 561 kcal/day vs. -902 ± 660 kcal/day, p < 0.05). No other significant differences in changes in dietary intake, physical activity, or BMI were found. These results suggest that in situations of reducing energy intake, overweight and obese super-tasters may be more successful than overweight and obese non-tasters. More research is needed to understand the influence of taster-status on dietary change during a lifestyle intervention and how this may impact weight loss. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. A Low-cost Beam Profiler Based On Cerium-doped Silica Fibers

    NASA Astrophysics Data System (ADS)

    Potkins, David Edward; Braccini, Saverio; Nesteruk, Konrad Pawel; Carzaniga, Tommaso Stefano; Vedda, Anna; Chiodini, Norberto; Timmermans, Jacob; Melanson, Stephane; Dehnel, Morgan Patrick

    A beam profiler called the Universal Beam Monitor (UniBEaM) has been developed by D-Pace Inc. (Canada) and the Albert Einstein Center for Fundamental Physics, Laboratory for High Energy Physics, University of Bern (Switzerland). The device is based on passing 100 to 600 micron cerium-doped optical fibers through a particle beam. Visible scintillation light from the sensor fibers is transmitted over distances of tens of meters to the light sensors with minimal signal loss and no susceptibility to electromagnetic fields. The probe has an insertion length of only 70 mm. The software plots the beam intensity distribution in the horizontal and vertical planes, and calculates the beam location and integrated profile area, which correlates well with total beam current. UniBEaM has a large dynamic range, operating with beam currents of ∼pA to mA, and a large range of particle kinetic energies of ∼keV to GeV, depending on the absorbed power density. Test data are presented for H- beams at 25keV for 500 μA, and H+ beams at 18MeV for 50pA to 10 μA. Maximum absorbed power density of the optical fiber before thermal damage is discussed in relation to dE/dx energy deposition as a function of particle type and kinetic energy. UniBEaM is well suited for a wide variety of beamlines including discovery science applications, radio-pharmaceutical production, hadron therapy, industrial ion beam applications including ion implantation, industrial electron beams, and ion source testing.

  10. Dissipative hidden sector dark matter

    NASA Astrophysics Data System (ADS)

    Foot, R.; Vagnozzi, S.

    2015-01-01

    A simple way of explaining dark matter without modifying known Standard Model physics is to require the existence of a hidden (dark) sector, which interacts with the visible one predominantly via gravity. We consider a hidden sector containing two stable particles charged under an unbroken U (1 )' gauge symmetry, hence featuring dissipative interactions. The massless gauge field associated with this symmetry, the dark photon, can interact via kinetic mixing with the ordinary photon. In fact, such an interaction of strength ε ˜10-9 appears to be necessary in order to explain galactic structure. We calculate the effect of this new physics on big bang nucleosynthesis and its contribution to the relativistic energy density at hydrogen recombination. We then examine the process of dark recombination, during which neutral dark states are formed, which is important for large-scale structure formation. Galactic structure is considered next, focusing on spiral and irregular galaxies. For these galaxies we modeled the dark matter halo (at the current epoch) as a dissipative plasma of dark matter particles, where the energy lost due to dissipation is compensated by the energy produced from ordinary supernovae (the core-collapse energy is transferred to the hidden sector via kinetic mixing induced processes in the supernova core). We find that such a dynamical halo model can reproduce several observed features of disk galaxies, including the cored density profile and the Tully-Fisher relation. We also discuss how elliptical and dwarf spheroidal galaxies could fit into this picture. Finally, these analyses are combined to set bounds on the parameter space of our model, which can serve as a guideline for future experimental searches.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, R; Pan, T; Li, B

    Purpose: Dual energy CT has a variety of uses in a small animal setting including quantification and enhanced visualization of contrast agent. This study aims to determine the best energy combinations for contrast enhanced DECT on the XRAD 225Cx (Precision x-ray), a small animal IGRT system with a nominal energy range of 20 – 225 kVp. Focus was placed on material density accuracy and low contrast detectability. Methods: Simulations of single energy scans of an object containing concentrations of iodine varying from 0.5 to 50 mg/ml were performed using the simulation package ImaSim. Energy spectra from 50 – 220 kVpmore » were calculated using the same software. For approximate Poisson noise modeling, mAs were chosen such that 30% of the total 10cGy dose was assigned to the low energy scan. A calibration involving projections of objects containing different thicknesses of iodine (0–0.5 mm) and water (0–50 mm) was performed for each energy and fit to a cubic equation as the calibration curve for each energy pair. Results: Contrast to noise ratios of the iodine material images and accuracies in iodine density measurements were measured. Gradual improvements in each metric were seen with increasing high energy. Larger improvements in CNR were observed for decreasing the low energy. Errors in iodine density were generally close to 5% for concentrations of iodine above 3 mg/ml but increased to around 15% for 50 kVp, likely due to its proximity to the discontinuity caused by the k-edge of iodine. Conclusion: Based on these simulations, the best energy combination for detecting low concentrations of iodine using a projection space calibration procedure is 50/200 kVp. However, if accuracy is most important 80/220 kVp is ideal, with 60/220 kVp being a good compromise to achieve both goals. Future work is necessary to verify these conclusions with physical data.« less

  12. UCLA Tokamak Program Close Out Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, Robert John

    2014-02-04

    The results of UCLA experimental fusion program are summarized. Starting with smaller devices like Microtor, Macrotor, CCT and ending the research on the large (5 m) Electric Tokamak. CCT was the most diagnosed device for H-mode like physics and the effects of rotation induced radial fields. ICRF heating was also studied but plasma heating of University Type Tokamaks did not produce useful results due to plasma edge disturbances of the antennae. The Electric Tokamak produced better confinement in the seconds range. However, it presented very good particle confinement due to an "electric particle pinch". This effect prevented us from reachingmore » a quasi steady state. This particle accumulation effect was numerically explained by Shaing's enhanced neoclassical theory. The PI believes that ITER will have a good energy confinement time but deleteriously large particle confinement time and it will disrupt on particle pinching at nominal average densities. The US fusion research program did not study particle transport effects due to its undue focus on the physics of energy confinement time. Energy confinement time is not an issue for energy producing tokamaks. Controlling the ash flow will be very expensive.« less

  13. The energetics of relativistic jets in active galactic nuclei with various kinetic powers

    NASA Astrophysics Data System (ADS)

    Musoke, Gibwa Rebecca; Young, Andrew; Molnar, Sandor; Birkinshaw, Mark

    2018-01-01

    Numerical simulations are an important tool in understanding the physical processes behind relativistic jets in active galactic nuclei. In such simulations different combinations of intrinsic jet parameters can be used to obtain the same jet kinetic powers. We present a numerical investigation of the effects of varying the jet power on the dynamic and energetic characteristics of the jets for two kinetic power regimes; in the first regime we change the jet density whilst maintaining a fixed velocity, in the second the jet density is held constant while the velocity is varied. We conduct 2D axisymmetric hydrodynamic simulations of bipolar jets propagating through an isothermal cluster atmosphere using the FLASH MHD code in pure hydrodynamics mode. The jets are simulated with kinetic powers ranging between 1045 and 1046 erg/s and internal Mach numbers ranging from 5.6 to 21.5.As the jets begin to propagate into the intracluster medium (ICM), the injected jet energy is converted into the thermal, kinetic and gravitational potential energy components of the jet cocoon and ICM. We explore the temporal evolution of the partitioning of the injected jet energy into the cocoon and the ICM and quantify the importance of entrainment process on the energy partitioning. We investigate the fraction of injected energy transferred to the thermal energy component of the jet-ICM system in the context of heating the cluster environments, noting that the jets simulated display peak thermalisation efficiencies of least 65% and a marked dependence on the jet density. We compare the efficiencies of the energy partitioning between the cocoon and ICM for the two kinetic power regimes and discuss the resulting efficiency-power scaling relations of each regime.

  14. The principle of ‘maximum energy dissipation’: a novel thermodynamic perspective on rapid water flow in connected soil structures

    PubMed Central

    Zehe, Erwin; Blume, Theresa; Blöschl, Günter

    2010-01-01

    Preferential flow in biological soil structures is of key importance for infiltration and soil water flow at a range of scales. In the present study, we treat soil water flow as a dissipative process in an open non-equilibrium thermodynamic system, to better understand this key process. We define the chemical potential and Helmholtz free energy based on soil physical quantities, parametrize a physically based hydrological model based on field data and simulate the evolution of Helmholtz free energy in a cohesive soil with different populations of worm burrows for a range of rainfall scenarios. The simulations suggest that flow in connected worm burrows allows a more efficient redistribution of water within the soil, which implies a more efficient dissipation of free energy/higher production of entropy. There is additional evidence that the spatial pattern of worm burrow density at the hillslope scale is a major control of energy dissipation. The pattern typically found in the study is more efficient in dissipating energy/producing entropy than other patterns. This is because upslope run-off accumulates and infiltrates via the worm burrows into the dry soil in the lower part of the hillslope, which results in an overall more efficient dissipation of free energy. PMID:20368256

  15. Exact dynamics of a one dimensional Bose gas in a periodic time-dependent harmonic trap

    NASA Astrophysics Data System (ADS)

    Scopa, Stefano; Unterberger, Jéremie; Karevski, Dragi

    2018-05-01

    We study the unitary dynamics of a 1D gas of hard-core bosons trapped into a harmonic potential which varies periodically in time with frequency . Such periodic systems can be classified into orbits of different monodromies corresponding to two different physical situations, namely the case in which the bosonic cloud remains stable during the time-evolution and the case where it turns out to be unstable. In the present work we derive in the large particle number limit exact results for the stroboscopic evolution of the energy and particle densities in both physical situations.

  16. Chemical and Physical Properties of Hi-Cal-2

    NASA Technical Reports Server (NTRS)

    Spakowski, A. E.; Allen, Harrison, Jr.; Caves, Robert M.

    1955-01-01

    As part of the Navy Project Zip to consider various boron-containing materials as possible high-energy fuels, the chemical and physical properties of Hi-Cal-2 prepared by the Callery Chemical Company were evaluated at the NACA Lewis laboratory. Elemental chemical analysis, heat of combustion, vapor pressure and decomposition, freezing point, density, self ignition temperature, flash point, and blow-out velocity were determined for the fuel. Although the precision of measurement of these properties was not equal to that obtained for hydrocarbons, this special release research memorandum was prepared to make the data available as soon as possible.

  17. Nano-Transistor Modeling: Two Dimensional Green's Function Method

    NASA Technical Reports Server (NTRS)

    Svizhenko, Alexei; Anantram, M. P.; Govindan, T. R.; Biegel, Bryan

    2001-01-01

    Two quantum mechanical effects that impact the operation of nanoscale transistors are inversion layer energy quantization and ballistic transport. While the qualitative effects of these features are reasonably understood, a comprehensive study of device physics in two dimensions is lacking. Our work addresses this shortcoming and provides: (a) a framework to quantitatively explore device physics issues such as the source-drain and gate leakage currents, DIBL (Drain Induced Barrier Lowering), and threshold voltage shift due to quantization, and b) a means of benchmarking quantum corrections to semiclassical models (such as density-gradient and quantum-corrected MEDICI).

  18. Light Propagation Through Transition Metal Dichalcogenides

    NASA Astrophysics Data System (ADS)

    Stevens, Christopher; Paul, Jagannath; Zhang, Haoxiang; Stier, Andreas; Karaiskaj, Denis

    C.E.STEVENS,J.PAUL,H.ZHANG, Dept. of Physics, University of South Florida, Tampa, Florida 33620, USA. A.V.STIER, National High Magnetic Field Laboratory, Los Alamos, New Mexico 87545, D. KARAISKAJ, Dept. of Physics, University of South Florida, Tampa, Florida 33620, USA. - Using broadband light, the propagation of light through MoSe2 and WSe2 was investigated. Measuring the optical density for samples with different number of layers, we found that these values differ from what the Beer-Lambert Law predicts. The results were also modeled theoretically according to an effective two-band model. Funded by The Department of Energy.

  19. OMEGA FY13 HED requests - LANL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Workman, Jonathan B; Loomis, Eric N

    2012-06-25

    This is a summary of scientific work to be performed on the OMEGA laser system located at the Laboratory for Laser Energetics in Rochester New York. The work is funded through Science and ICF Campagins and falls under the category of laser-driven High-Energy Density Physics experiments. This summary is presented to the Rochester scheduling committee on an annual basis for scheduling and planning purposes.

  20. Tunneling spectroscopy of Majorana-Kondo devices

    NASA Astrophysics Data System (ADS)

    Eriksson, Erik; Nava, Andrea; Mora, Christophe; Egger, Reinhold

    2014-12-01

    We study the local density of states (LDOS) in systems of Luttinger-liquid nanowires connected to a common mesoscopic superconducting island, in which Majorana bound states give rise to different types of topological Kondo effects. We show that electron interactions enhance the low-energy LDOS in the leads close to the island, with unusual exponents due to Kondo physics that can be probed in tunneling experiments.

  1. Chemical evolution via beta decay: a case study in strontium-90

    NASA Astrophysics Data System (ADS)

    Marks, N. A.; Carter, D. J.; Sassi, M.; Rohl, A. L.; Sickafus, K. E.; Uberuaga, B. P.; Stanek, C. R.

    2013-02-01

    Using 90Sr as a representative isotope, we present a framework for understanding beta decay within the solid state. We quantify three key physical and chemical principles, namely momentum-induced recoil during the decay event, defect creation due to physical displacement, and chemical evolution over time. A fourth effect, that of electronic excitation, is also discussed, but this is difficult to quantify and is strongly material dependent. The analysis is presented for the specific cases of SrTiO3 and SrH2. By comparing the recoil energy with available threshold displacement data we show that in many beta-decay situations defects such as Frenkel pairs will not be created during decay as the energy transfer is too low. This observation leads to the concept of chemical evolution over time, which we quantify using density functional theory. Using a combination of Bader analysis, phonon calculations and cohesive energy calculations, we show that beta decay leads to counter-intuitive behavior that has implications for nuclear waste storage and novel materials design.

  2. Chemical evolution via beta decay: a case study in strontium-90.

    PubMed

    Marks, N A; Carter, D J; Sassi, M; Rohl, A L; Sickafus, K E; Uberuaga, B P; Stanek, C R

    2013-02-13

    Using (90)Sr as a representative isotope, we present a framework for understanding beta decay within the solid state. We quantify three key physical and chemical principles, namely momentum-induced recoil during the decay event, defect creation due to physical displacement, and chemical evolution over time. A fourth effect, that of electronic excitation, is also discussed, but this is difficult to quantify and is strongly material dependent. The analysis is presented for the specific cases of SrTiO(3) and SrH(2). By comparing the recoil energy with available threshold displacement data we show that in many beta-decay situations defects such as Frenkel pairs will not be created during decay as the energy transfer is too low. This observation leads to the concept of chemical evolution over time, which we quantify using density functional theory. Using a combination of Bader analysis, phonon calculations and cohesive energy calculations, we show that beta decay leads to counter-intuitive behavior that has implications for nuclear waste storage and novel materials design.

  3. Nuclear physics in particle therapy: a review

    NASA Astrophysics Data System (ADS)

    Durante, Marco; Paganetti, Harald

    2016-09-01

    Charged particle therapy has been largely driven and influenced by nuclear physics. The increase in energy deposition density along the ion path in the body allows reducing the dose to normal tissues during radiotherapy compared to photons. Clinical results of particle therapy support the physical rationale for this treatment, but the method remains controversial because of the high cost and of the lack of comparative clinical trials proving the benefit compared to x-rays. Research in applied nuclear physics, including nuclear interactions, dosimetry, image guidance, range verification, novel accelerators and beam delivery technologies, can significantly improve the clinical outcome in particle therapy. Measurements of fragmentation cross-sections, including those for the production of positron-emitting fragments, and attenuation curves are needed for tuning Monte Carlo codes, whose use in clinical environments is rapidly increasing thanks to fast calculation methods. Existing cross sections and codes are indeed not very accurate in the energy and target regions of interest for particle therapy. These measurements are especially urgent for new ions to be used in therapy, such as helium. Furthermore, nuclear physics hardware developments are frequently finding applications in ion therapy due to similar requirements concerning sensors and real-time data processing. In this review we will briefly describe the physics bases, and concentrate on the open issues.

  4. Nuclear physics in particle therapy: a review.

    PubMed

    Durante, Marco; Paganetti, Harald

    2016-09-01

    Charged particle therapy has been largely driven and influenced by nuclear physics. The increase in energy deposition density along the ion path in the body allows reducing the dose to normal tissues during radiotherapy compared to photons. Clinical results of particle therapy support the physical rationale for this treatment, but the method remains controversial because of the high cost and of the lack of comparative clinical trials proving the benefit compared to x-rays. Research in applied nuclear physics, including nuclear interactions, dosimetry, image guidance, range verification, novel accelerators and beam delivery technologies, can significantly improve the clinical outcome in particle therapy. Measurements of fragmentation cross-sections, including those for the production of positron-emitting fragments, and attenuation curves are needed for tuning Monte Carlo codes, whose use in clinical environments is rapidly increasing thanks to fast calculation methods. Existing cross sections and codes are indeed not very accurate in the energy and target regions of interest for particle therapy. These measurements are especially urgent for new ions to be used in therapy, such as helium. Furthermore, nuclear physics hardware developments are frequently finding applications in ion therapy due to similar requirements concerning sensors and real-time data processing. In this review we will briefly describe the physics bases, and concentrate on the open issues.

  5. Catalysis of partial chiral symmetry restoration by Δ matter

    NASA Astrophysics Data System (ADS)

    Takeda, Yusuke; Kim, Youngman; Harada, Masayasu

    2018-06-01

    We study the phase structure of dense hadronic matter including Δ (1232 ) as well as N (939 ) based on the parity partner structure, where the baryons have their chiral partners with a certain amount of chiral invariant masses. We show that, in symmetric matter, Δ enters into matter in the density region of about one to four times normal nuclear matter density, ρB˜1 -4 ρ0 . The onset density of Δ matter depends on the chiral invariant mass of Δ ,mΔ 0 : As mΔ 0 increases, the onset density becomes bigger. The stable Δ -nucleon matter is realized for ρB≳1.5 ρ0 , i.e., the phase transition from nuclear matter to Δ -nucleon matter is of first order for small mΔ 0, and it is of second order for large mΔ 0. We find that, associated with the phase transition, the chiral condensate changes very rapidly; i.e., the chiral symmetry restoration is accelerated by Δ matter. As a result of the accelerations, there appear N*(1535 ) and Δ (1700 ) , which are the chiral partners to N (939 ) and Δ (1232 ) , in high-density matter, signaling the partial chiral symmetry restoration. Furthermore, we find that complete chiral symmetry restoration itself is delayed by Δ matter. We also calculate the effective masses, pressure, and symmetry energy to study how the transition to Δ matter affects such physical quantities. We observe that the physical quantities change drastically at the transition density.

  6. Collective Temperature Anisotropy Instabilities in Intense Charged Particle Beams

    NASA Astrophysics Data System (ADS)

    Startsev, Edward

    2006-10-01

    Periodic focusing accelerators, transport systems and storage rings have a wide range of applications ranging from basic scientific research in high energy and nuclear physics, to applications such as ion-beam-driven high energy density physics and fusion, and spallation neutron sources. Of particular importance at the high beam currents and charge densities of practical interest, are the effects of the intense self fields produced by the beam space charge and current on determining the detailed equilibrium, stability and transport properties. Charged particle beams confined by external focusing fields represent an example of nonneutral plasma. A characteristic feature of such plasmas is the non-uniformity of the equilibrium density profiles and the nonlinearity of the self fields, which makes detailed analytical investigation very difficult. The development and application of advanced numerical tools such as eigenmode codes [1] and Monte-Carlo particle simulation methods [2] are often the only tractable approach to understand the underlying physics of different instabilities familiar in electrically neutral plasmas which may cause a degradation in beam quality. Two such instabilities are the electrostatic Harris instability [2] and the electromagnetic Weibel instability [1], both driven by a large temperature anisotropy which develops naturally in accelerators. The beam acceleration causes a large reduction in the longitudinal temperature and provides the free energy to drive collective temperature anisotropy instabilities. Such instabilities may lead to an increase in the longitudinal velocity spread, which will make focusing the beam difficult, and may impose a limit on the beam luminosity and the minimum spot size achievable in focusing experiments. This paper reviews recent advances in the theory and simulation of collective instabilities in intense charged particle beams caused by temperature anisotropy. We also describe new simulation tools that have been developed to study these instabilities. The results of the investigations that identify the instability growth rates, levels of saturations, and conditions for quiescent beam propagation will also be discussed. [1] E.A. Startsev and R.C. Davidson, Phys.Plasmas 10, 4829 (2003). [2] E.A. Startsev, R.C. Davidson and H. Qin, Phys.Rev. ST Accel. Beams 8,124201 (2005).

  7. Issues in Space Physics in Need of Reconnection with Laboratory Physics

    NASA Astrophysics Data System (ADS)

    Coppi, B.

    2017-10-01

    Predicted space observations, such as the ``foot'' in front of collisionless shocks or the occurrence of magnetic reconnection in the Earth`s magnetotail leading to auroral substorms, have highlighted the fruitful connection of laboratory and space plasma physics. The emergence of high energy astrophysics has then benefitted by the contribution of experiments devised for fusion research to the understanding of issues such as that of angular momentum transport processes that have a key role in allowing accretion of matter on a central object (e.g. black hole). The theory proposed for the occurrence of spontaneous rotation in toroidal plasmas was suggested by that developed for accretion. The particle density values, =1015 cm-3 that are estimated to be those of plasmas surrounding known galactic black holes have in fact been produced by the Alcator and other machines. Collective modes excited in the presence of high energy particle populations in laboratory plasmas (e.g. when the ``slide away'' regime has been produced) have found successful applications in space. Magnetic reconnection theory developments and the mode particle resonances associated with them have led to envision new processes for novel high energy particle acceleration. Sponsored in part by the U.S. DoE.

  8. Latent Profiles of Macronutrient Density and their Association with Mobility Limitations in an Observational Longitudinal Study of Older U.S. Adults.

    PubMed

    Bishop, N J; Zuniga, K E; Lucht, A L

    2018-01-01

    Our first objective was to estimate empirically-derived subgroups (latent profiles) of observed carbohydrate, protein, and fat intake density in a nationally representative sample of older U.S. adults. Our second objective was to determine whether membership in these groups was associated with levels of, and short term change in, physical mobility limitations. Measures of macronutrient density were taken from the 2013 Health Care and Nutrition Study, an off-year supplement to the Health and Retirement Study, which provided indicators of physical mobility limitations and sociodemographic and health-related covariates. 3,914 community-dwelling adults age 65 years and older. Percent of daily calories from carbohydrate, protein, and fat were calculated based on responses to a modified Harvard food frequency questionnaire. Latent profile analysis was used to describe unobserved heterogeneity in measures of carbohydrate, protein, and fat density. Mobility limitation counts were based on responses to 11 items indicating physical limitations. Poisson regression models with autoregressive controls were used to identify associations between macronutrient density profile membership and mobility limitations. Sociodemographic and health-related covariates were included in all Poisson regression models. Four latent subgroups of macronutrient density were identified: "High Carbohydrate", "Moderate with Fat", "Moderate", and "Low Carbohydrate/High Fat". Older adults with the lowest percentage of daily calories coming from carbohydrate and the greatest percentage coming from fat ("Low Carbohydrate/High Fat") were found to have greater reported mobility limitations in 2014 than those identified as having moderate macronutrient density, and more rapid two-year increases in mobility limitations than those identified as "Moderate with Fat" or "Moderate". Older adults identified as having the lowest carbohydrate and highest fat energy density were more likely to report a greater number of mobility limitations and experience greater increases in these limitations than those identified as having moderate macronutrient density. These results suggest that the interrelation of macronutrients must be considered by those seeking to reduce functional limitations among older adults through dietary interventions.

  9. Analysis of the 20th November 2003 Extreme Geomagnetic Storm using CTIPe Model and GNSS Data

    NASA Astrophysics Data System (ADS)

    Fernandez-Gomez, I.; Borries, C.; Codrescu, M.

    2016-12-01

    The ionospheric instabilities produced by solar activity generate disturbances in ionospheric density (ionospheric storms) with important terrestrial consequences such as disrupting communications and positioning. During the 20th November 2003 extreme geomagnetic storm, significant perturbations were produced in the ionosphere - thermosphere system. In this work, we replicate how this system responded to the onset of this particular storm, using the Coupled Thermosphere Ionosphere Plasmasphere electrodynamics physics based model. CTIPe simulates the changes in the neutral winds, temperature, composition and electron densities. Although modelling the ionosphere under this conditions is a challenging task due to energy flow uncertainties, the model reproduces some of the storm features necessary to interpret the physical mechanisms behind the Total Electron Content (TEC) increase and the dramatic changes in composition during this event.Corresponding effects are observed in the TEC simulations from other physics based models and from observations derived from Global Navigation Satellite System (GNSS) and ground-based measurements.The study illustrates the necessity of using both, measurements and models, to have a complete understanding of the processes that are most likely responsible for the observed effects.

  10. Energy density of bloaters in the upper Great Lakes

    USGS Publications Warehouse

    Pothoven, Steven A.; Bunnell, David B.; Madenjian, Charles P.; Gorman, Owen T.; Roseman, Edward F.

    2012-01-01

    We evaluated the energy density of bloaters Coregonus hoyi as a function of fish size across Lakes Michigan, Huron, and Superior in 2008–2009 and assessed how differences in energy density are related to factors such as biomass density of bloaters and availability of prey. Additional objectives were to compare energy density between sexes and to compare energy densities of bloaters in Lake Michigan between two time periods (1998–2001 and 2008–2009). For the cross-lake comparisons in 2008, energy density increased with fish total length (TL) only in Lake Michigan. Mean energy density adjusted for fish size was 8% higher in bloaters from Lake Superior than in bloaters from Lake Huron. Relative to fish in these two lakes, small (175 mm TL) bloaters had higher energy density. In 2009, energy density increased with bloater size, and mean energy density adjusted for fish size was about 9% higher in Lake Michigan than in Lake Huron (Lake Superior was not sampled during 2009). Energy density of bloaters in Lake Huron was generally the lowest among lakes, reflecting the relatively low densities of opossum shrimp Mysis diluviana and the relatively high biomass of bloaters reported for that lake. Other factors, such as energy content of prey, growing season, or ontogenetic differences in energy use strategies, may also influence cross-lake variation in energy density. Mean energy density adjusted for length was 7% higher for female bloaters than for male bloaters in Lakes Michigan and Huron. In Lake Superior, energy density did not differ between males and females. Finally, energy density of bloaters in Lake Michigan was similar between the periods 2008–2009 and 1998–2001, possibly due to a low population abundance of bloaters, which could offset food availability changes linked to the loss of prey such as the amphipods Diporeia spp.

  11. High-energy (>70 keV) x-ray conversion efficiency measurement on the ARC laser at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Chen, Hui; Hermann, M. R.; Kalantar, D. H.; Martinez, D. A.; Di Nicola, P.; Tommasini, R.; Landen, O. L.; Alessi, D.; Bowers, M.; Browning, D.; Brunton, G.; Budge, T.; Crane, J.; Di Nicola, J.-M.; Döppner, T.; Dixit, S.; Erbert, G.; Fishler, B.; Halpin, J.; Hamamoto, M.; Heebner, J.; Hernandez, V. J.; Hohenberger, M.; Homoelle, D.; Honig, J.; Hsing, W.; Izumi, N.; Khan, S.; LaFortune, K.; Lawson, J.; Nagel, S. R.; Negres, R. A.; Novikova, L.; Orth, C.; Pelz, L.; Prantil, M.; Rushford, M.; Shaw, M.; Sherlock, M.; Sigurdsson, R.; Wegner, P.; Widmayer, C.; Williams, G. J.; Williams, W.; Whitman, P.; Yang, S.

    2017-03-01

    The Advanced Radiographic Capability (ARC) laser system at the National Ignition Facility (NIF) is designed to ultimately provide eight beamlets with a pulse duration adjustable from 1 to 30 ps, and energies up to 1.5 kJ per beamlet. Currently, four beamlets have been commissioned. In the first set of 6 commissioning target experiments, the individual beamlets were fired onto gold foil targets with energy up to 1 kJ per beamlet at 20-30 ps pulse length. The x-ray energy distribution and pulse duration were measured, yielding energy conversion efficiencies of 4-9 × 10-4 for x-rays with energies greater than 70 keV. With greater than 3 J of such x-rays, ARC provides a high-precision x-ray backlighting capability for upcoming inertial confinement fusion and high-energy-density physics experiments on NIF.

  12. IN SITU MEASUREMENTS OF THE SIZE AND DENSITY OF TITAN AEROSOL ANALOGS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoerst, S. M.; Tolbert, M. A, E-mail: sarah.horst@colorado.edu

    2013-06-10

    The organic haze produced from complex CH{sub 4}/N{sub 2} chemistry in the atmosphere of Titan plays an important role in processes that occur in the atmosphere and on its surface. The haze particles act as condensation nuclei and are therefore involved in Titan's methane hydrological cycle. They also may behave like sediment on Titan's surface and participate in both fluvial and aeolian processes. Models that seek to understand these processes require information about the physical properties of the particles including their size and density. Although measurements obtained by Cassini-Huygens have placed constraints on the size of the haze particles, theirmore » densities remain unknown. We have conducted a series of Titan atmosphere simulation experiments and measured the size, number density, and particle density of Titan aerosol analogs, or tholins, for CH{sub 4} concentrations from 0.01% to 10% using two different energy sources, spark discharge and UV. We find that the densities currently in use by many Titan models are higher than the measured densities of our tholins.« less

  13. A Lagrangian discontinuous Galerkin hydrodynamic method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Xiaodong; Morgan, Nathaniel Ray; Burton, Donald E.

    Here, we present a new Lagrangian discontinuous Galerkin (DG) hydrodynamic method for solving the two-dimensional gas dynamic equations on unstructured hybrid meshes. The physical conservation laws for the momentum and total energy are discretized using a DG method based on linear Taylor expansions. Three different approaches are investigated for calculating the density variation over the element. The first approach evolves a Taylor expansion of the specific volume field. The second approach follows certain finite element methods and uses the strong mass conservation to calculate the density field at a location inside the element or on the element surface. The thirdmore » approach evolves a Taylor expansion of the density field. The nodal velocity, and the corresponding forces, are explicitly calculated by solving a multidirectional approximate Riemann problem. An effective limiting strategy is presented that ensures monotonicity of the primitive variables. This new Lagrangian DG hydrodynamic method conserves mass, momentum, and total energy. Results from a suite of test problems are presented to demonstrate the robustness and expected second-order accuracy of this new method.« less

  14. Hysteresis in Carbon Nanotube Transistors: Measurement and Analysis of Trap Density, Energy Level, and Spatial Distribution.

    PubMed

    Park, Rebecca Sejung; Shulaker, Max Marcel; Hills, Gage; Suriyasena Liyanage, Luckshitha; Lee, Seunghyun; Tang, Alvin; Mitra, Subhasish; Wong, H-S Philip

    2016-04-26

    We present a measurement technique, which we call the Pulsed Time-Domain Measurement, for characterizing hysteresis in carbon nanotube field-effect transistors, and demonstrate its applicability for a broad range of 1D and 2D nanomaterials beyond carbon nanotubes. The Pulsed Time-Domain Measurement enables the quantification (density, energy level, and spatial distribution) of charged traps responsible for hysteresis. A physics-based model of the charge trapping process for a carbon nanotube field-effect transistor is presented and experimentally validated using the Pulsed Time-Domain Measurement. Leveraging this model, we discover a source of traps (surface traps) unique to devices with low-dimensional channels such as carbon nanotubes and nanowires (beyond interface traps which exist in today's silicon field-effect transistors). The different charge trapping mechanisms for interface traps and surface traps are studied based on their temperature dependencies. Through these advances, we are able to quantify the interface trap density for carbon nanotube field-effect transistors (∼3 × 10(13) cm(-2) eV(-1) near midgap), and compare this against a range of previously studied dielectric/semiconductor interfaces.

  15. A Lagrangian discontinuous Galerkin hydrodynamic method

    DOE PAGES

    Liu, Xiaodong; Morgan, Nathaniel Ray; Burton, Donald E.

    2017-12-11

    Here, we present a new Lagrangian discontinuous Galerkin (DG) hydrodynamic method for solving the two-dimensional gas dynamic equations on unstructured hybrid meshes. The physical conservation laws for the momentum and total energy are discretized using a DG method based on linear Taylor expansions. Three different approaches are investigated for calculating the density variation over the element. The first approach evolves a Taylor expansion of the specific volume field. The second approach follows certain finite element methods and uses the strong mass conservation to calculate the density field at a location inside the element or on the element surface. The thirdmore » approach evolves a Taylor expansion of the density field. The nodal velocity, and the corresponding forces, are explicitly calculated by solving a multidirectional approximate Riemann problem. An effective limiting strategy is presented that ensures monotonicity of the primitive variables. This new Lagrangian DG hydrodynamic method conserves mass, momentum, and total energy. Results from a suite of test problems are presented to demonstrate the robustness and expected second-order accuracy of this new method.« less

  16. Force Field Accelerated Density Functional Theory Molecular Dynamics for Simulation of Reactive Systems at Extreme Conditions

    NASA Astrophysics Data System (ADS)

    Lindsey, Rebecca; Goldman, Nir; Fried, Laurence

    Understanding chemistry at extreme conditions is crucial in fields including geochemistry, astrobiology, and alternative energy. First principles methods can provide valuable microscopic insights into such systems while circumventing the risks of physical experiments, however the time and length scales associated with chemistry at extreme conditions (ns and μm, respectively) largely preclude extension of such models to molecular dynamics. In this work, we develop a simulation approach that retains the accuracy of density functional theory (DFT) while decreasing computational effort by several orders of magnitude. We generate n-body descriptions for atomic interactions by mapping forces arising from short density functional theory (DFT) trajectories on to simple Chebyshev polynomial series. We examine the importance of including greater than 2-body interactions, model transferability to different state points, and discuss approaches to ensure smooth and reasonable model shape outside of the distance domain sampled by the DFT training set. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  17. Nuclear-level densities in the {sup 49}V and {sup 57}Co nuclei on the basis of evaporated-neutron spectra in (p, n) and (d, n) reactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhuravlev, B. V., E-mail: zhurav@ippe.ru; Titarenko, N. N.

    The spectra of neutrons from the reactions {sup 49}Ti(p, n){sup 49}V and {sup 57}Fe (p, n){sup 57}Co were measured in the range of proton energies between 8 and 11 MeV along with their counterparts from the reactions {sup 48}Ti(d, n){sup 49}V and {sup 56}Fe (d, n){sup 57}Co at the deuteron energies of 2.7 and 3.8 MeV. These measurements were conducted with the aid of a time-of-flight fast-neutron spectrometer on the basis of the EGP-15 pulsed tandem accelerator of the Institute for Physics and Power Engineering (IPPE, Obninsk). An analysis of measured data was performed within the statistical equilibrium and preequilibriummore » models of nuclear reactions. The respective calculations based on the Hauser–Feshbach formalism of statistical theory were carried out with nuclear-level densities given by the generalized superfluid model of the nucleus, the backshifted Fermi-gas model, and the Gilbert–Cameron composite formula. The nuclear-level densities of {sup 49}V and {sup 57}Co and their energy dependences were determined. The results were discussed together with available experimental data and data recommended by model systematics.« less

  18. Scaling properties of fractional momentum loss of high-pT hadrons in nucleus-nucleus collisions at √{sN N} from 62.4 GeV to 2.76 TeV

    NASA Astrophysics Data System (ADS)

    Adare, A.; Afanasiev, S.; Aidala, C.; Ajitanand, N. N.; Akiba, Y.; Akimoto, R.; Al-Bataineh, H.; Alexander, J.; Alfred, M.; Al-Ta'Ani, H.; Angerami, A.; Aoki, K.; Apadula, N.; Aphecetche, L.; Aramaki, Y.; Armendariz, R.; Aronson, S. H.; Asai, J.; Asano, H.; Aschenauer, E. C.; Atomssa, E. T.; Averbeck, R.; Awes, T. C.; Azmoun, B.; Babintsev, V.; Bai, M.; Baksay, G.; Baksay, L.; Baldisseri, A.; Bandara, N. S.; Bannier, B.; Barish, K. N.; Barnes, P. D.; Bassalleck, B.; Basye, A. T.; Bathe, S.; Batsouli, S.; Baublis, V.; Baumann, C.; Baumgart, S.; Bazilevsky, A.; Beaumier, M.; Beckman, S.; Belikov, S.; Belmont, R.; Bennett, R.; Berdnikov, A.; Berdnikov, Y.; Bickley, A. A.; Blau, D. S.; Boissevain, J. G.; Bok, J. S.; Borel, H.; Boyle, K.; Brooks, M. L.; Bryslawskyj, J.; Buesching, H.; Bumazhnov, V.; Bunce, G.; Butsyk, S.; Camacho, C. M.; Campbell, S.; Castera, P.; Chang, B. S.; Charvet, J.-L.; Chen, C.-H.; Chernichenko, S.; Chi, C. Y.; Chiba, J.; Chiu, M.; Choi, I. J.; Choi, J. B.; Choi, S.; Choudhury, R. K.; Christiansen, P.; Chujo, T.; Chung, P.; Churyn, A.; Chvala, O.; Cianciolo, V.; Citron, Z.; Cleven, C. R.; Cole, B. A.; Comets, M. P.; Connors, M.; Constantin, P.; Csanád, M.; Csörgő, T.; Dahms, T.; Dairaku, S.; Danchev, I.; Danley, T. W.; Das, K.; Datta, A.; Daugherity, M. S.; David, G.; Deaton, M. B.; Deblasio, K.; Dehmelt, K.; Delagrange, H.; Denisov, A.; D'Enterria, D.; Deshpande, A.; Desmond, E. J.; Dharmawardane, K. V.; Dietzsch, O.; Ding, L.; Dion, A.; Diss, P. B.; Do, J. H.; Donadelli, M.; D'Orazio, L.; Drapier, O.; Drees, A.; Drees, K. A.; Dubey, A. K.; Durham, J. M.; Durum, A.; Dutta, D.; Dzhordzhadze, V.; Edwards, S.; Efremenko, Y. V.; Egdemir, J.; Ellinghaus, F.; Emam, W. S.; Engelmore, T.; Enokizono, A.; En'yo, H.; Esumi, S.; Eyser, K. O.; Fadem, B.; Feege, N.; Fields, D. E.; Finger, M.; Finger, M.; Fleuret, F.; Fokin, S. L.; Fraenkel, Z.; Frantz, J. E.; Franz, A.; Frawley, A. D.; Fujiwara, K.; Fukao, Y.; Fusayasu, T.; Gadrat, S.; Gainey, K.; Gal, C.; Gallus, P.; Garg, P.; Garishvili, A.; Garishvili, I.; Ge, H.; Giordano, F.; Glenn, A.; Gong, H.; Gong, X.; Gonin, M.; Gosset, J.; Goto, Y.; Granier de Cassagnac, R.; Grau, N.; Greene, S. V.; Grosse Perdekamp, M.; Gunji, T.; Guo, L.; Gustafsson, H.-Å.; Hachiya, T.; Hadj Henni, A.; Haegemann, C.; Haggerty, J. S.; Hahn, K. I.; Hamagaki, H.; Hamblen, J.; Hamilton, H. F.; Han, R.; Han, S. Y.; Hanks, J.; Harada, H.; Hartouni, E. P.; Haruna, K.; Hasegawa, S.; Haseler, T. O. S.; Hashimoto, K.; Haslum, E.; Hayano, R.; He, X.; Heffner, M.; Hemmick, T. K.; Hester, T.; Hiejima, H.; Hill, J. C.; Hobbs, R.; Hohlmann, M.; Hollis, R. S.; Holzmann, W.; Homma, K.; Hong, B.; Horaguchi, T.; Hori, Y.; Hornback, D.; Hoshino, T.; Hotvedt, N.; Huang, J.; Huang, S.; Ichihara, T.; Ichimiya, R.; Ide, J.; Iinuma, H.; Ikeda, Y.; Imai, K.; Imrek, J.; Inaba, M.; Inoue, Y.; Iordanova, A.; Isenhower, D.; Isenhower, L.; Ishihara, M.; Isobe, T.; Issah, M.; Isupov, A.; Ivanishchev, D.; Jacak, B. V.; Javani, M.; Jezghani, M.; Jia, J.; Jiang, X.; Jin, J.; Jinnouchi, O.; Johnson, B. M.; Joo, K. S.; Jouan, D.; Jumper, D. S.; Kajihara, F.; Kametani, S.; Kamihara, N.; Kamin, J.; Kanda, S.; Kaneta, M.; Kaneti, S.; Kang, B. H.; Kang, J. H.; Kang, J. S.; Kanou, H.; Kapustinsky, J.; Karatsu, K.; Kasai, M.; Kawall, D.; Kawashima, M.; Kazantsev, A. V.; Kempel, T.; Key, J. A.; Khachatryan, V.; Khanzadeev, A.; Kijima, K. M.; Kikuchi, J.; Kim, B. I.; Kim, C.; Kim, D. H.; Kim, D. J.; Kim, E.; Kim, E.-J.; Kim, G. W.; Kim, H. J.; Kim, K.-B.; Kim, M.; Kim, S. H.; Kim, Y.-J.; Kim, Y. K.; Kimelman, B.; Kinney, E.; Kiriluk, K.; Kiss, Á.; Kistenev, E.; Kitamura, R.; Kiyomichi, A.; Klatsky, J.; Klay, J.; Klein-Boesing, C.; Kleinjan, D.; Kline, P.; Koblesky, T.; Kochenda, L.; Kochetkov, V.; Komatsu, Y.; Komkov, B.; Konno, M.; Koster, J.; Kotchetkov, D.; Kotov, D.; Kozlov, A.; Král, A.; Kravitz, A.; Krizek, F.; Kubart, J.; Kunde, G. J.; Kurihara, N.; Kurita, K.; Kurosawa, M.; Kweon, M. J.; Kwon, Y.; Kyle, G. S.; Lacey, R.; Lai, Y. S.; Lajoie, J. G.; Lebedev, A.; Lee, B.; Lee, D. M.; Lee, J.; Lee, K.; Lee, K. B.; Lee, K. S.; Lee, M. K.; Lee, S.; Lee, S. H.; Lee, S. R.; Lee, T.; Leitch, M. J.; Leite, M. A. L.; Leitgab, M.; Leitner, E.; Lenzi, B.; Lewis, B.; Li, X.; Liebing, P.; Lim, S. H.; Linden Levy, L. A.; Liška, T.; Litvinenko, A.; Liu, H.; Liu, M. X.; Love, B.; Luechtenborg, R.; Lynch, D.; Maguire, C. F.; Makdisi, Y. I.; Makek, M.; Malakhov, A.; Malik, M. D.; Manion, A.; Manko, V. I.; Mannel, E.; Mao, Y.; Mašek, L.; Masui, H.; Masumoto, S.; Matathias, F.; McCumber, M.; McGaughey, P. L.; McGlinchey, D.; McKinney, C.; Means, N.; Meles, A.; Mendoza, M.; Meredith, B.; Miake, Y.; Mibe, T.; Mignerey, A. C.; Mikeš, P.; Miki, K.; Miller, T. E.; Milov, A.; Mioduszewski, S.; Mishra, D. K.; Mishra, M.; Mitchell, J. T.; Mitrovski, M.; Miyachi, Y.; Miyasaka, S.; Mizuno, S.; Mohanty, A. K.; Mohapatra, S.; Montuenga, P.; Moon, H. J.; Moon, T.; Morino, Y.; Morreale, A.; Morrison, D. P.; Motschwiller, S.; Moukhanova, T. V.; Mukhopadhyay, D.; Murakami, T.; Murata, J.; Mwai, A.; Nagae, T.; Nagamiya, S.; Nagashima, K.; Nagata, Y.; Nagle, J. L.; Naglis, M.; Nagy, M. I.; Nakagawa, I.; Nakagomi, H.; Nakamiya, Y.; Nakamura, K. R.; Nakamura, T.; Nakano, K.; Nattrass, C.; Nederlof, A.; Netrakanti, P. K.; Newby, J.; Nguyen, M.; Nihashi, M.; Niida, T.; Nishimura, S.; Norman, B. E.; Nouicer, R.; Novák, T.; Novitzky, N.; Nyanin, A. S.; O'Brien, E.; Oda, S. X.; Ogilvie, C. A.; Ohnishi, H.; Oka, M.; Okada, K.; Omiwade, O. O.; Onuki, Y.; Orjuela Koop, J. D.; Osborn, J. D.; Oskarsson, A.; Ouchida, M.; Ozawa, K.; Pak, R.; Pal, D.; Palounek, A. P. T.; Pantuev, V.; Papavassiliou, V.; Park, B. H.; Park, I. H.; Park, J.; Park, J. S.; Park, S.; Park, S. K.; Park, W. J.; Pate, S. F.; Patel, L.; Patel, M.; Pei, H.; Peng, J.-C.; Pereira, H.; Perepelitsa, D. V.; Perera, G. D. N.; Peresedov, V.; Peressounko, D. Yu.; Perry, J.; Petti, R.; Pinkenburg, C.; Pinson, R.; Pisani, R. P.; Proissl, M.; Purschke, M. L.; Purwar, A. K.; Qu, H.; Rak, J.; Rakotozafindrabe, A.; Ramson, B. J.; Ravinovich, I.; Read, K. F.; Rembeczki, S.; Reuter, M.; Reygers, K.; Reynolds, D.; Riabov, V.; Riabov, Y.; Richardson, E.; Rinn, T.; Roach, D.; Roche, G.; Rolnick, S. D.; Romana, A.; Rosati, M.; Rosen, C. A.; Rosendahl, S. S. E.; Rosnet, P.; Rowan, Z.; Rubin, J. G.; Rukoyatkin, P.; Ružička, P.; Rykov, V. L.; Sahlmueller, B.; Saito, N.; Sakaguchi, T.; Sakai, S.; Sakashita, K.; Sakata, H.; Sako, H.; Samsonov, V.; Sano, M.; Sano, S.; Sarsour, M.; Sato, S.; Sato, T.; Sawada, S.; Schaefer, B.; Schmoll, B. K.; Sedgwick, K.; Seele, J.; Seidl, R.; Semenov, A. Yu.; Semenov, V.; Sen, A.; Seto, R.; Sett, P.; Sexton, A.; Sharma, D.; Shein, I.; Shevel, A.; Shibata, T.-A.; Shigaki, K.; Shimomura, M.; Shoji, K.; Shukla, P.; Sickles, A.; Silva, C. L.; Silvermyr, D.; Silvestre, C.; Sim, K. S.; Singh, B. K.; Singh, C. P.; Singh, V.; Skutnik, S.; Slunečka, M.; Snowball, M.; Soldatov, A.; Soltz, R. A.; Sondheim, W. E.; Sorensen, S. P.; Sourikova, I. V.; Sparks, N. A.; Staley, F.; Stankus, P. W.; Stenlund, E.; Stepanov, M.; Ster, A.; Stoll, S. P.; Sugitate, T.; Suire, C.; Sukhanov, A.; Sumita, T.; Sun, J.; Sziklai, J.; Tabaru, T.; Takagi, S.; Takagui, E. M.; Takahara, A.; Taketani, A.; Tanabe, R.; Tanaka, Y.; Taneja, S.; Tanida, K.; Tannenbaum, M. J.; Tarafdar, S.; Taranenko, A.; Tarján, P.; Tennant, E.; Themann, H.; Thomas, T. L.; Tieulent, R.; Timilsina, A.; Todoroki, T.; Togawa, M.; Toia, A.; Tojo, J.; Tomášek, L.; Tomášek, M.; Torii, H.; Towell, C. L.; Towell, R.; Towell, R. S.; Tram, V.-N.; Tserruya, I.; Tsuchimoto, Y.; Tsuji, T.; Vale, C.; Valle, H.; van Hecke, H. W.; Vargyas, M.; Vazquez-Zambrano, E.; Veicht, A.; Velkovska, J.; Vértesi, R.; Vinogradov, A. A.; Virius, M.; Vossen, A.; Vrba, V.; Vznuzdaev, E.; Wagner, M.; Walker, D.; Wang, X. R.; Watanabe, D.; Watanabe, K.; Watanabe, Y.; Watanabe, Y. S.; Wei, F.; Wei, R.; Wessels, J.; White, A. S.; White, S. N.; Winter, D.; Wolin, S.; Wood, J. P.; Woody, C. L.; Wright, R. M.; Wysocki, M.; Xia, B.; Xie, W.; Xue, L.; Yalcin, S.; Yamaguchi, Y. L.; Yamaura, K.; Yang, R.; Yanovich, A.; Yasin, Z.; Ying, J.; Yokkaichi, S.; Yoo, J. H.; Yoon, I.; You, Z.; Young, G. R.; Younus, I.; Yu, H.; Yushmanov, I. E.; Zajc, W. A.; Zaudtke, O.; Zelenski, A.; Zhang, C.; Zhou, S.; Zimamyi, J.; Zolin, L.; Zou, L.; Phenix Collaboration

    2016-02-01

    Measurements of the fractional momentum loss (Sloss≡δ pT/pT ) of high-transverse-momentum-identified hadrons in heavy-ion collisions are presented. Using π0 in Au +Au and Cu +Cu collisions at √{sNN}=62.4 and 200 GeV measured by the PHENIX experiment at the Relativistic Heavy Ion Collider and and charged hadrons in Pb +Pb collisions measured by the ALICE experiment at the Large Hadron Collider, we studied the scaling properties of Sloss as a function of a number of variables: the number of participants, Npart, the number of quark participants, Nqp, the charged-particle density, d Nch/d η , and the Bjorken energy density times the equilibration time, ɛBjτ0 . We find that the pT, where Sloss has its maximum, varies both with centrality and collision energy. Above the maximum, Sloss tends to follow a power-law function with all four scaling variables. The data at √{sNN}=200 GeV and 2.76 TeV, for sufficiently high particle densities, have a common scaling of Sloss with d Nch/d η and ɛBjτ0 , lending insight into the physics of parton energy loss.

  19. Modeling of Materials for Energy Storage: A Challenge for Density Functional Theory

    NASA Astrophysics Data System (ADS)

    Kaltak, Merzuk; Fernandez-Serra, Marivi; Hybertsen, Mark S.

    Hollandite α-MnO2 is a promising material for rechargeable batteries and is studied extensively in the community because of its interesting tunnel structure and the corresponding large capacity for lithium as well as sodium ions. However, the presence of partially reduced Mn ions due to doping with Ag or during lithiation makes hollandite a challenging system for density functional theory and the conventionally employed PBE+U method. A naive attempt to model the ternary system LixAgyMnO2 with density functionals, similar to those employed for the case y = 0 , fails and predicts a strong monoclinic distortion of the experimentally observed tetragonal unit cell for Ag2Mn8O16. Structure and binding energies are compared with experimental data and show the importance of van der Waals interactions as well as the necessity for an accurate description of the cooperative Jan-Teller effects for silver hollandite AgyMnO2. Based on these observations a ternary phase diagram is calculated allowing to predict the physical and chemical properties of LixAgyMnO2, such as stable stoichiometries, open circuit voltages, the formation of Ag metal and the structural change during lithiation. Department of Energy (DOE) under award #DE-SC0012673.

  20. Measurements of the parallel wavenumber of lower hybrid waves in the scrape-off layer of a high-density tokamak

    NASA Astrophysics Data System (ADS)

    Baek, S. G.; Wallace, G. M.; Shinya, T.; Parker, R. R.; Shiraiwa, S.; Bonoli, P. T.; Brunner, D.; Faust, I.; LaBombard, B. L.; Takase, Y.; Wukitch, S.

    2016-05-01

    In lower hybrid current drive (LHCD) experiments on tokamaks, the parallel wavenumber of lower hybrid waves is an important physics parameter that governs the wave propagation and absorption physics. However, this parameter has not been experimentally well-characterized in the present-day high density tokamaks, despite the advances in the wave physics modeling. In this paper, we present the first measurement of the dominant parallel wavenumber of lower hybrid waves in the scrape-off layer (SOL) of the Alcator C-Mod tokamak with an array of magnetic loop probes. The electric field strength measured with the probe in typical C-Mod plasmas is about one-fifth of that of the electric field at the mouth of the grill antenna. The amplitude and phase responses of the measured signals on the applied power spectrum are consistent with the expected wave energy propagation. At higher density, the observed k|| increases for the fixed launched k||, and the wave amplitude decreases rapidly. This decrease is correlated with the loss of LHCD efficiency at high density, suggesting the presence of loss mechanisms. Evidence of the spectral broadening mechanisms is observed in the frequency spectra. However, no clear modifications in the dominant k|| are observed in the spectrally broadened wave components, as compared to the measured k|| at the applied frequency. It could be due to (1) the probe being in the SOL and (2) the limited k|| resolution of the diagnostic. Future experiments are planned to investigate the roles of the observed spectral broadening mechanisms on the LH density limit problem in the strong single pass damping regime.

  1. Walnut consumption in a weight reduction intervention: effects on body weight, biological measures, blood pressure and satiety.

    PubMed

    Rock, Cheryl L; Flatt, Shirley W; Barkai, Hava-Shoshana; Pakiz, Bilge; Heath, Dennis D

    2017-12-04

    Dietary strategies that help patients adhere to a weight reduction diet may increase the likelihood of weight loss maintenance and improved long-term health outcomes. Regular nut consumption has been associated with better weight management and less adiposity. The objective of this study was to compare the effects of a walnut-enriched reduced-energy diet to a standard reduced-energy-density diet on weight, cardiovascular disease risk factors, and satiety. Overweight and obese men and women (n = 100) were randomly assigned to a standard reduced-energy-density diet or a walnut-enriched (15% of energy) reduced-energy diet in the context of a behavioral weight loss intervention. Measurements were obtained at baseline and 3- and 6-month clinic visits. Participants rated hunger, fullness and anticipated prospective consumption at 3 time points during the intervention. Body measurements, blood pressure, physical activity, lipids, tocopherols and fatty acids were analyzed using repeated measures mixed models. Both study groups reduced body weight, body mass index and waist circumference (time effect p < 0.001 for each). Change in weight was -9.4 (0.9)% vs. -8.9 (0.7)% (mean [SE]), for the standard vs. walnut-enriched diet groups, respectively. Systolic blood pressure decreased in both groups at 3 months, but only the walnut-enriched diet group maintained a lower systolic blood pressure at 6 months. The walnut-enriched diet group, but not the standard reduced-energy-density diet group, reduced total cholesterol and low-density lipoprotein cholesterol (LDL-C) at 6 months, from 203 to 194 mg/dL and 121 to 112 mg/dL, respectively (p < 0.05). Self-reported satiety was similar in the groups. These findings provide further evidence that a walnut-enriched reduced-energy diet can promote weight loss that is comparable to a standard reduced-energy-density diet in the context of a behavioral weight loss intervention. Although weight loss in response to both dietary strategies was associated with improvements in cardiovascular disease risk factors, the walnut-enriched diet promoted more favorable effects on LDL-C and systolic blood pressure. The trial is registered at ( NCT02501889 ).

  2. Cosmology with negative absolute temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vieira, J.P.P.; Byrnes, Christian T.; Lewis, Antony, E-mail: J.Pinto-Vieira@sussex.ac.uk, E-mail: ctb22@sussex.ac.uk, E-mail: antony@cosmologist.info

    Negative absolute temperatures (NAT) are an exotic thermodynamical consequence of quantum physics which has been known since the 1950's (having been achieved in the lab on a number of occasions). Recently, the work of Braun et al. [1] has rekindled interest in negative temperatures and hinted at a possibility of using NAT systems in the lab as dark energy analogues. This paper goes one step further, looking into the cosmological consequences of the existence of a NAT component in the Universe. NAT-dominated expanding Universes experience a borderline phantom expansion ( w < -1) with no Big Rip, and their contractingmore » counterparts are forced to bounce after the energy density becomes sufficiently large. Both scenarios might be used to solve horizon and flatness problems analogously to standard inflation and bouncing cosmologies. We discuss the difficulties in obtaining and ending a NAT-dominated epoch, and possible ways of obtaining density perturbations with an acceptable spectrum.« less

  3. 1 D analysis of Radiative Shock damping by lateral radiative losses.

    NASA Astrophysics Data System (ADS)

    Busquet, Michel; Colombier, Jean-Philippe; Stehle, Chantal

    2007-11-01

    It has been shown theoretically and experimentally [1] that the radiative precursor in front of a strong shock in hi-Z material is slowed down by lateral radiative losses. The 2D simulation showed that the shock front and the precursor front remain planar, with an increase of density and a decrease of temperature close to the walls. The damping of the precursor is obviously sensitive to the fraction of self-emitted radiation reflected by the walls (the albedo). In order to perform parametric studies we include the albedo controlled lateral radiative losses in the 1D hydro-code MULTI (created by Ramis et al [2]) both in terms of energy balance and of spectral diagnostic. [1] Gonzales et al, Laser Part. Beams 24, 1-6 (2006) ; Busquet et al, High Energy Density Physics (2007), doi: 10.1016/j.hedp.2007.01.002 [2] Ramis et al, Comp. Phys. Comm., 49 (1988), 475

  4. Dark energy, antimatter gravity and geometry of the Universe

    NASA Astrophysics Data System (ADS)

    Hajdukovic, Dragan Slavkov

    2010-11-01

    This article is based on two hypotheses. The first one is the existence of the gravitational repulsion between particles and antiparticles. Consequently, virtual particle-antiparticle pairs in the quantum vacuum might be considered as gravitational dipoles. The second hypothesis is that the Universe has geometry of a four-dimensional hyper-spherical shell with thickness equal to the Compton wavelength of a pion, which is a simple generalization of the usual geometry of a 3-hypersphere. It is striking that these two hypotheses lead to a simple relation for the gravitational mass density of the vacuum, which is in very good agreement with the observed dark energy density. It might be a sign that QCD fields provide the largest contribution to the gravitational mass of the physical vacuum; contrary to the prediction of the Standard Model that QCD contribution is much smaller than some other contributions.

  5. Splitter target for controlling magnetic reconnection in relativistic laser plasma interactions

    NASA Astrophysics Data System (ADS)

    Gu, Y. J.; Bulanov, S. S.; Korn, G.; Bulanov, S. V.

    2018-04-01

    The utilization of a conical target irradiated by a high power laser is proposed to study fast magnetic reconnection in relativistic plasma interactions. Such target, placed in front of the near critical density gas jet, splits the laser pulse, forming two parallel laser pulses in the 2D case and a donut shaped pulse in the 3D case. The magnetic annihilation and reconnection occur in the density downramp region of the subsequent gas jet. The magnetic field energy is converted into the particle kinetic energy. As a result, a backward accelerated electron beam is obtained as a signature of reconnection. The above mechanisms are demonstrated using particle-in-cell simulations in both 2D and 3D cases. Facilitating the synchronization of two laser beams, the proposed approach can be used in designing the corresponding experiments on studying fundamental problems of relativistic plasma physics.

  6. Anisotropic charged stellar models in Generalized Tolman IV spacetime

    NASA Astrophysics Data System (ADS)

    Murad, Mohammad Hassan; Fatema, Saba

    2015-01-01

    With the presence of electric charge and pressure anisotropy some anisotropic stellar models have been developed. An algorithm recently presented by Herrera et al. (Phys. Rev. D 77, 027502 (2008)) to generate static spherically symmetric anisotropic solutions of Einstein's equations has been used to derive relativistic anisotropic charged fluid spheres. In the absence of pressure anisotropy the fluid spheres reduce to some well-known Generalized Tolman IV exact metrics. The astrophysical significance of the resulting equations of state (EOS) for a particular case (Wyman-Leibovitz-Adler) for the anisotropic charged matter distribution has been discussed. Physical analysis shows that the relativistic stellar structure obtained in this work may reasonably model an electrically charged compact star, whose energy density associated with the electric fields is on the same order of magnitude as the energy density of fluid matter itself like electrically charged bare strange quark stars.

  7. Cylindrically symmetric cosmological model of the universe in modified gravity

    NASA Astrophysics Data System (ADS)

    Mishra, B.; Vadrevu, Samhita

    2017-02-01

    In this paper, we have constructed the cosmological models of the universe in a cylindrically symmetric space time in two classes of f(R,T) gravity (Harko et al. in Phys. Rev. D 84:024020, 2011). We have discussed two cases: one in the linear form and the other in the quadratic form of R. The matter is considered to be in the form of perfect fluid. It is observed that in the first case, the pressure and energy density remain the same, which reduces to a Zeldovich fluid. In the second case we have studied the quadratic function of f(R,T) gravity in the form f(R)=λ(R+R2) and f(T)=λ T. In the second case the pressure is in the negative domain and the energy density is in the positive domain, which confirms that the equation of state parameter is negative. The physical properties of the constructed models are studied.

  8. Density matrix modeling of quantum cascade lasers without an artificially localized basis: A generalized scattering approach

    NASA Astrophysics Data System (ADS)

    Pan, Andrew; Burnett, Benjamin A.; Chui, Chi On; Williams, Benjamin S.

    2017-08-01

    We derive a density matrix (DM) theory for quantum cascade lasers (QCLs) that describes the influence of scattering on coherences through a generalized scattering superoperator. The theory enables quantitative modeling of QCLs, including localization and tunneling effects, using the well-defined energy eigenstates rather than the ad hoc localized basis states required by most previous DM models. Our microscopic approach to scattering also eliminates the need for phenomenological transition or dephasing rates. We discuss the physical interpretation and numerical implementation of the theory, presenting sets of both energy-resolved and thermally averaged equations, which can be used for detailed or compact device modeling. We illustrate the theory's applications by simulating a high performance resonant-phonon terahertz (THz) QCL design, which cannot be easily or accurately modeled using conventional DM methods. We show that the theory's inclusion of coherences is crucial for describing localization and tunneling effects consistent with experiment.

  9. Polyarene mediators for mediated redox flow battery

    DOEpatents

    Delnick, Frank M.; Ingersoll, David; Liang, Chengdu

    2018-01-02

    The fundamental charge storage mechanisms in a number of currently studied high energy redox couples are based on intercalation, conversion, or displacement reactions. With exception to certain metal-air chemistries, most often the active redox materials are stored physically in the electrochemical cell stack thereby lowering the practical gravimetric and volumetric energy density as a tradeoff to achieve reasonable power density. In a general embodiment, a mediated redox flow battery includes a series of secondary organic molecules that form highly reduced anionic radicals as reaction mediator pairs for the reduction and oxidation of primary high capacity redox species ex situ from the electrochemical cell stack. Arenes are reduced to stable anionic radicals that in turn reduce a primary anode to the charged state. The primary anode is then discharged using a second lower potential (more positive) arene. Compatible separators and solvents are also disclosed herein.

  10. Lipidemic profile of athletes and non-athletes with similar body fat.

    PubMed

    Petridou, Anatoli; Lazaridou, Despina; Mougios, Vassilis

    2005-08-01

    Although chronic exercise is generally believed to improve the lipidemic profile, it is not clear whether this is due to exercise training or to other determinants such as the usually low body fat of athletes. The aim of the present study was to compare the lipidemic profile of young lean athletes and non-athletes matched for percentage body fat. Fourteen endurance athletes and fourteen sedentary men participated in the study. Participants provided two blood samples at the beginning and end of a 7-d period, during which they recorded physical activity and food intake. Athletes had significantly higher energy expenditure and energy intake but not significantly different macronutrient composition of their diet from non-athletes. No significant differences were found in serum triacylglycerol, total cholesterol, high-density lipoprotein cholesterol and low-density lipoprotein cholesterol concentrations between groups. These data suggest that athletes and non-athletes with similar body fat do not differ in their lipidemic profiles.

  11. Bone Health in Adolescent Athletes with a Focus on Female Athlete Triad

    PubMed Central

    Ackerman, Kathryn E.; Misra, Madhusmita

    2013-01-01

    Peak bone mass (PBM) is a negative predictor of osteoporosis and life-long fracture risk. Because osteoporosis is such a prevalent disease with life-threatening consequences later in life, it is important to try to maximize PBM. Adolescence is a critical time for bone acquisition. This review discusses some of the differences in male and female skeletal development and modifiable factors that enhance bone accrual in this age group, particularly in athletes. Hormonal influences, physical activity effects, and nutritional contributions are presented, with a focus on the adolescent athlete. Emphasis is placed on the importance of appropriate energy availability in this age group. The Female Athlete Triad (the inter-relationship of decreased energy availability, menstrual irregularity, and low bone density) is an important issue for adolescent, athletic women, and is therefore reviewed, including prevention and treatment strategies. Recommendations for maximizing bone density in both male and female adolescents are discussed. PMID:21378496

  12. Continuum Mean-Field Theories for Molecular Fluids, and Their Validity at the Nanoscale

    NASA Astrophysics Data System (ADS)

    Hanna, C. B.; Peyronel, F.; MacDougall, C.; Marangoni, A.; Pink, D. A.; AFMNet-NCE Collaboration

    2011-03-01

    We present a calculation of the physical properties of solid triglyceride particles dispersed in an oil phase, using atomic- scale molecular dynamics. Significant equilibrium density oscillations in the oil appear when the interparticle distance, d , becomes sufficiently small, with a global minimum in the free energy found at d ~ 1.4 nm. We compare the simulation values of the Hamaker coefficient with those of models which assume that the oil is a homogeneous continuum: (i) Lifshitz theory, (ii) the Fractal Model, and (iii) a Lennard-Jones 6-12 potential model. The last-named yields a minimum in the free energy at d ~ 0.26 nm. We conclude that, at the nanoscale, continuum Lifshitz theory and other continuum mean-field theories based on the assumption of homogeneous fluid density can lead to erroneous conclusions. CBH supported by NSF DMR-0906618. DAP supported by NSERC. This work supported by AFMNet-NCE.

  13. Subsystem real-time time dependent density functional theory.

    PubMed

    Krishtal, Alisa; Ceresoli, Davide; Pavanello, Michele

    2015-04-21

    We present the extension of Frozen Density Embedding (FDE) formulation of subsystem Density Functional Theory (DFT) to real-time Time Dependent Density Functional Theory (rt-TDDFT). FDE is a DFT-in-DFT embedding method that allows to partition a larger Kohn-Sham system into a set of smaller, coupled Kohn-Sham systems. Additional to the computational advantage, FDE provides physical insight into the properties of embedded systems and the coupling interactions between them. The extension to rt-TDDFT is done straightforwardly by evolving the Kohn-Sham subsystems in time simultaneously, while updating the embedding potential between the systems at every time step. Two main applications are presented: the explicit excitation energy transfer in real time between subsystems is demonstrated for the case of the Na4 cluster and the effect of the embedding on optical spectra of coupled chromophores. In particular, the importance of including the full dynamic response in the embedding potential is demonstrated.

  14. Challenges in QCD matter physics -The scientific programme of the Compressed Baryonic Matter experiment at FAIR

    NASA Astrophysics Data System (ADS)

    Ablyazimov, T.; Abuhoza, A.; Adak, R. P.; Adamczyk, M.; Agarwal, K.; Aggarwal, M. M.; Ahammed, Z.; Ahmad, F.; Ahmad, N.; Ahmad, S.; Akindinov, A.; Akishin, P.; Akishina, E.; Akishina, T.; Akishina, V.; Akram, A.; Al-Turany, M.; Alekseev, I.; Alexandrov, E.; Alexandrov, I.; Amar-Youcef, S.; Anđelić, M.; Andreeva, O.; Andrei, C.; Andronic, A.; Anisimov, Yu.; Appelshäuser, H.; Argintaru, D.; Atkin, E.; Avdeev, S.; Averbeck, R.; Azmi, M. D.; Baban, V.; Bach, M.; Badura, E.; Bähr, S.; Balog, T.; Balzer, M.; Bao, E.; Baranova, N.; Barczyk, T.; Bartoş, D.; Bashir, S.; Baszczyk, M.; Batenkov, O.; Baublis, V.; Baznat, M.; Becker, J.; Becker, K.-H.; Belogurov, S.; Belyakov, D.; Bendarouach, J.; Berceanu, I.; Bercuci, A.; Berdnikov, A.; Berdnikov, Y.; Berendes, R.; Berezin, G.; Bergmann, C.; Bertini, D.; Bertini, O.; Beşliu, C.; Bezshyyko, O.; Bhaduri, P. P.; Bhasin, A.; Bhati, A. K.; Bhattacharjee, B.; Bhattacharyya, A.; Bhattacharyya, T. K.; Biswas, S.; Blank, T.; Blau, D.; Blinov, V.; Blume, C.; Bocharov, Yu.; Book, J.; Breitner, T.; Brüning, U.; Brzychczyk, J.; Bubak, A.; Büsching, H.; Bus, T.; Butuzov, V.; Bychkov, A.; Byszuk, A.; Cai, Xu; Cãlin, M.; Cao, Ping; Caragheorgheopol, G.; Carević, I.; Cătănescu, V.; Chakrabarti, A.; Chattopadhyay, S.; Chaus, A.; Chen, Hongfang; Chen, LuYao; Cheng, Jianping; Chepurnov, V.; Cherif, H.; Chernogorov, A.; Ciobanu, M. I.; Claus, G.; Constantin, F.; Csanád, M.; D'Ascenzo, N.; Das, Supriya; Das, Susovan; de Cuveland, J.; Debnath, B.; Dementiev, D.; Deng, Wendi; Deng, Zhi; Deppe, H.; Deppner, I.; Derenovskaya, O.; Deveaux, C. A.; Deveaux, M.; Dey, K.; Dey, M.; Dillenseger, P.; Dobyrn, V.; Doering, D.; Dong, Sheng; Dorokhov, A.; Dreschmann, M.; Drozd, A.; Dubey, A. K.; Dubnichka, S.; Dubnichkova, Z.; Dürr, M.; Dutka, L.; Dželalija, M.; Elsha, V. V.; Emschermann, D.; Engel, H.; Eremin, V.; Eşanu, T.; Eschke, J.; Eschweiler, D.; Fan, Huanhuan; Fan, Xingming; Farooq, M.; Fateev, O.; Feng, Shengqin; Figuli, S. P. D.; Filozova, I.; Finogeev, D.; Fischer, P.; Flemming, H.; Förtsch, J.; Frankenfeld, U.; Friese, V.; Friske, E.; Fröhlich, I.; Frühauf, J.; Gajda, J.; Galatyuk, T.; Gangopadhyay, G.; García Chávez, C.; Gebelein, J.; Ghosh, P.; Ghosh, S. K.; Gläßel, S.; Goffe, M.; Golinka-Bezshyyko, L.; Golovatyuk, V.; Golovnya, S.; Golovtsov, V.; Golubeva, M.; Golubkov, D.; Gómez Ramírez, A.; Gorbunov, S.; Gorokhov, S.; Gottschalk, D.; Gryboś, P.; Grzeszczuk, A.; Guber, F.; Gudima, K.; Gumiński, M.; Gupta, A.; Gusakov, Yu.; Han, Dong; Hartmann, H.; He, Shue; Hehner, J.; Heine, N.; Herghelegiu, A.; Herrmann, N.; Heß, B.; Heuser, J. M.; Himmi, A.; Höhne, C.; Holzmann, R.; Hu, Dongdong; Huang, Guangming; Huang, Xinjie; Hutter, D.; Ierusalimov, A.; Ilgenfritz, E.-M.; Irfan, M.; Ivanischev, D.; Ivanov, M.; Ivanov, P.; Ivanov, Valery; Ivanov, Victor; Ivanov, Vladimir; Ivashkin, A.; Jaaskelainen, K.; Jahan, H.; Jain, V.; Jakovlev, V.; Janson, T.; Jiang, Di; Jipa, A.; Kadenko, I.; Kähler, P.; Kämpfer, B.; Kalinin, V.; Kallunkathariyil, J.; Kampert, K.-H.; Kaptur, E.; Karabowicz, R.; Karavichev, O.; Karavicheva, T.; Karmanov, D.; Karnaukhov, V.; Karpechev, E.; Kasiński, K.; Kasprowicz, G.; Kaur, M.; Kazantsev, A.; Kebschull, U.; Kekelidze, G.; Khan, M. M.; Khan, S. A.; Khanzadeev, A.; Khasanov, F.; Khvorostukhin, A.; Kirakosyan, V.; Kirejczyk, M.; Kiryakov, A.; Kiš, M.; Kisel, I.; Kisel, P.; Kiselev, S.; Kiss, T.; Klaus, P.; Kłeczek, R.; Klein-Bösing, Ch.; Kleipa, V.; Klochkov, V.; Kmon, P.; Koch, K.; Kochenda, L.; Koczoń, P.; Koenig, W.; Kohn, M.; Kolb, B. W.; Kolosova, A.; Komkov, B.; Korolev, M.; Korolko, I.; Kotte, R.; Kovalchuk, A.; Kowalski, S.; Koziel, M.; Kozlov, G.; Kozlov, V.; Kramarenko, V.; Kravtsov, P.; Krebs, E.; Kreidl, C.; Kres, I.; Kresan, D.; Kretschmar, G.; Krieger, M.; Kryanev, A. V.; Kryshen, E.; Kuc, M.; Kucewicz, W.; Kucher, V.; Kudin, L.; Kugler, A.; Kumar, Ajit; Kumar, Ashwini; Kumar, L.; Kunkel, J.; Kurepin, A.; Kurepin, N.; Kurilkin, A.; Kurilkin, P.; Kushpil, V.; Kuznetsov, S.; Kyva, V.; Ladygin, V.; Lara, C.; Larionov, P.; Laso García, A.; Lavrik, E.; Lazanu, I.; Lebedev, A.; Lebedev, S.; Lebedeva, E.; Lehnert, J.; Lehrbach, J.; Leifels, Y.; Lemke, F.; Li, Cheng; Li, Qiyan; Li, Xin; Li, Yuanjing; Lindenstruth, V.; Linnik, B.; Liu, Feng; Lobanov, I.; Lobanova, E.; Löchner, S.; Loizeau, P.-A.; Lone, S. A.; Lucio Martínez, J. A.; Luo, Xiaofeng; Lymanets, A.; Lyu, Pengfei; Maevskaya, A.; Mahajan, S.; Mahapatra, D. P.; Mahmoud, T.; Maj, P.; Majka, Z.; Malakhov, A.; Malankin, E.; Malkevich, D.; Malyatina, O.; Malygina, H.; Mandal, M. M.; Mandal, S.; Manko, V.; Manz, S.; Marin Garcia, A. M.; Markert, J.; Masciocchi, S.; Matulewicz, T.; Meder, L.; Merkin, M.; Mialkovski, V.; Michel, J.; Miftakhov, N.; Mik, L.; Mikhailov, K.; Mikhaylov, V.; Milanović, B.; Militsija, V.; Miskowiec, D.; Momot, I.; Morhardt, T.; Morozov, S.; Müller, W. F. J.; Müntz, C.; Mukherjee, S.; Muñoz Castillo, C. E.; Murin, Yu.; Najman, R.; Nandi, C.; Nandy, E.; Naumann, L.; Nayak, T.; Nedosekin, A.; Negi, V. S.; Niebur, W.; Nikulin, V.; Normanov, D.; Oancea, A.; Oh, Kunsu; Onishchuk, Yu.; Ososkov, G.; Otfinowski, P.; Ovcharenko, E.; Pal, S.; Panasenko, I.; Panda, N. R.; Parzhitskiy, S.; Patel, V.; Pauly, C.; Penschuck, M.; Peshekhonov, D.; Peshekhonov, V.; Petráček, V.; Petri, M.; Petriş, M.; Petrovici, A.; Petrovici, M.; Petrovskiy, A.; Petukhov, O.; Pfeifer, D.; Piasecki, K.; Pieper, J.; Pietraszko, J.; Płaneta, R.; Plotnikov, V.; Plujko, V.; Pluta, J.; Pop, A.; Pospisil, V.; Poźniak, K.; Prakash, A.; Prasad, S. K.; Prokudin, M.; Pshenichnov, I.; Pugach, M.; Pugatch, V.; Querchfeld, S.; Rabtsun, S.; Radulescu, L.; Raha, S.; Rami, F.; Raniwala, R.; Raniwala, S.; Raportirenko, A.; Rautenberg, J.; Rauza, J.; Ray, R.; Razin, S.; Reichelt, P.; Reinecke, S.; Reinefeld, A.; Reshetin, A.; Ristea, C.; Ristea, O.; Rodriguez Rodriguez, A.; Roether, F.; Romaniuk, R.; Rost, A.; Rostchin, E.; Rostovtseva, I.; Roy, Amitava; Roy, Ankhi; Rożynek, J.; Ryabov, Yu.; Sadovsky, A.; Sahoo, R.; Sahu, P. K.; Sahu, S. K.; Saini, J.; Samanta, S.; Sambyal, S. S.; Samsonov, V.; Sánchez Rosado, J.; Sander, O.; Sarangi, S.; Satława, T.; Sau, S.; Saveliev, V.; Schatral, S.; Schiaua, C.; Schintke, F.; Schmidt, C. J.; Schmidt, H. R.; Schmidt, K.; Scholten, J.; Schweda, K.; Seck, F.; Seddiki, S.; Selyuzhenkov, I.; Semennikov, A.; Senger, A.; Senger, P.; Shabanov, A.; Shabunov, A.; Shao, Ming; Sheremetiev, A. D.; Shi, Shusu; Shumeiko, N.; Shumikhin, V.; Sibiryak, I.; Sikora, B.; Simakov, A.; Simon, C.; Simons, C.; Singaraju, R. N.; Singh, A. K.; Singh, B. K.; Singh, C. P.; Singhal, V.; Singla, M.; Sitzmann, P.; Siwek-Wilczyńska, K.; Škoda, L.; Skwira-Chalot, I.; Som, I.; Song, Guofeng; Song, Jihye; Sosin, Z.; Soyk, D.; Staszel, P.; Strikhanov, M.; Strohauer, S.; Stroth, J.; Sturm, C.; Sultanov, R.; Sun, Yongjie; Svirida, D.; Svoboda, O.; Szabó, A.; Szczygieł, R.; Talukdar, R.; Tang, Zebo; Tanha, M.; Tarasiuk, J.; Tarassenkova, O.; Târzilă, M.-G.; Teklishyn, M.; Tischler, T.; Tlustý, P.; Tölyhi, T.; Toia, A.; Topil'skaya, N.; Träger, M.; Tripathy, S.; Tsakov, I.; Tsyupa, Yu.; Turowiecki, A.; Tuturas, N. G.; Uhlig, F.; Usenko, E.; Valin, I.; Varga, D.; Vassiliev, I.; Vasylyev, O.; Verbitskaya, E.; Verhoeven, W.; Veshikov, A.; Visinka, R.; Viyogi, Y. P.; Volkov, S.; Volochniuk, A.; Vorobiev, A.; Voronin, Aleksey; Voronin, Alexander; Vovchenko, V.; Vznuzdaev, M.; Wang, Dong; Wang, Xi-Wei; Wang, Yaping; Wang, Yi; Weber, M.; Wendisch, C.; Wessels, J. P.; Wiebusch, M.; Wiechula, J.; Wielanek, D.; Wieloch, A.; Wilms, A.; Winckler, N.; Winter, M.; Wiśniewski, K.; Wolf, Gy.; Won, Sanguk; Wu, Ke-Jun; Wüstenfeld, J.; Xiang, Changzhou; Xu, Nu; Yang, Junfeng; Yang, Rongxing; Yin, Zhongbao; Yoo, In-Kwon; Yuldashev, B.; Yushmanov, I.; Zabołotny, W.; Zaitsev, Yu.; Zamiatin, N. I.; Zanevsky, Yu.; Zhalov, M.; Zhang, Yifei; Zhang, Yu; Zhao, Lei; Zheng, Jiajun; Zheng, Sheng; Zhou, Daicui; Zhou, Jing; Zhu, Xianglei; Zinchenko, A.; Zipper, W.; Żoładź, M.; Zrelov, P.; Zryuev, V.; Zumbruch, P.; Zyzak, M.

    2017-03-01

    Substantial experimental and theoretical efforts worldwide are devoted to explore the phase diagram of strongly interacting matter. At LHC and top RHIC energies, QCD matter is studied at very high temperatures and nearly vanishing net-baryon densities. There is evidence that a Quark-Gluon-Plasma (QGP) was created at experiments at RHIC and LHC. The transition from the QGP back to the hadron gas is found to be a smooth cross over. For larger net-baryon densities and lower temperatures, it is expected that the QCD phase diagram exhibits a rich structure, such as a first-order phase transition between hadronic and partonic matter which terminates in a critical point, or exotic phases like quarkyonic matter. The discovery of these landmarks would be a breakthrough in our understanding of the strong interaction and is therefore in the focus of various high-energy heavy-ion research programs. The Compressed Baryonic Matter (CBM) experiment at FAIR will play a unique role in the exploration of the QCD phase diagram in the region of high net-baryon densities, because it is designed to run at unprecedented interaction rates. High-rate operation is the key prerequisite for high-precision measurements of multi-differential observables and of rare diagnostic probes which are sensitive to the dense phase of the nuclear fireball. The goal of the CBM experiment at SIS100 (√{s_{NN}}= 2.7-4.9 GeV) is to discover fundamental properties of QCD matter: the phase structure at large baryon-chemical potentials ( μ_B > 500 MeV), effects of chiral symmetry, and the equation of state at high density as it is expected to occur in the core of neutron stars. In this article, we review the motivation for and the physics programme of CBM, including activities before the start of data taking in 2024, in the context of the worldwide efforts to explore high-density QCD matter.

  15. Proton Spectra from He 3 + T and He 3 + He 3 Fusion at Low Center-of-Mass Energy, with Potential Implications for Solar Fusion Cross Sections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zylstra, A. B.; Frenje, J. A.; Gatu Johnson, M.

    Few-body nuclear physics often relies upon phenomenological models, with new efforts at the ab initio theory reported recently; both need high-quality benchmark data, particularly at low center-of-mass energies. We use high-energy-density plasmas to measure the proton spectra from 3He + T and 3He + 3He fusion. The data disagree with R -matrix predictions constrained by neutron spectra from T + T fusion. Here, we present a new analysis of the 3He + 3He proton spectrum; these benchmarked spectral shapes should be used for interpreting low-resolution data, such as solar fusion cross-section measurements.

  16. Proton Spectra from 3He + T and 3He + 3He Fusion at Low Center-of-Mass Energy, with Potential Implications for Solar Fusion Cross Sections

    NASA Astrophysics Data System (ADS)

    Zylstra, A. B.; Frenje, J. A.; Gatu Johnson, M.; Hale, G. M.; Brune, C. R.; Bacher, A.; Casey, D. T.; Li, C. K.; McNabb, D.; Paris, M.; Petrasso, R. D.; Sangster, T. C.; Sayre, D. B.; Séguin, F. H.

    2017-12-01

    Few-body nuclear physics often relies upon phenomenological models, with new efforts at the ab initio theory reported recently; both need high-quality benchmark data, particularly at low center-of-mass energies. We use high-energy-density plasmas to measure the proton spectra from 3He +T and 3He + 3He fusion. The data disagree with R -matrix predictions constrained by neutron spectra from T +T fusion. We present a new analysis of the 3He + 3He 3 proton spectrum; these benchmarked spectral shapes should be used for interpreting low-resolution data, such as solar fusion cross-section measurements.

  17. Interaction physics for the stimulated Brillouin scattering of a laser in laser driven fusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yadav, Pinki; Gupta, D.N.; Avinash, K., E-mail: dngupta@physics.du.ac.in

    2014-07-01

    Energy exchange between pump wave and ion-acoustic wave during the stimulated Brillouin Scattering process in relativistic laser-plasma interactions is studied, including the effect of damping coefficient of electron-ion collision by obeying the energy and momentum conservations. The variations of plasma density and damping coefficient of electron-ion collision change the amplitudes of the interacting wave. The relativistic mass effect modifies the dispersion relations of the interacting waves and consequently, the energy exchange during the stimulated Brillouin Scattering is affected. The collisional damping of electron-ion collision in the plasma is shown to have an important effect on the evolution of the interactingmore » waves. (author)« less

  18. Overview on the high power excimer laser technology

    NASA Astrophysics Data System (ADS)

    Liu, Jingru

    2013-05-01

    High power excimer laser has essential applications in the fields of high energy density physics, inertial fusion energy and industry owing to its advantages such as short wavelength, high gain, wide bandwidth, energy scalable and repetition operating ability. This overview is aimed at an introduction and evaluation of enormous endeavor of the international high power excimer laser community in the last 30 years. The main technologies of high power excimer laser are reviewed, which include the pumping source technology, angular multiplexing and pulse compressing, beam-smoothing and homogenous irradiation, high efficiency and repetitive operation et al. A high power XeCl laser system developed in NINT of China is described in detail.

  19. Next-generation laser for inertial confinement fusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marshall, C; Bibeau, C; Bayramian, A

    1998-03-13

    We are developing and building the ''Mercury'' laser system as the first in a series of a new generation of diode-pumped solid-state lasers (DPSSL) for advanced high energy density (HED) physics experiments at LLNL. Mercury will be the first integrated demonstration of a scalable laser architecture compatible with advanced Inertial Confinement Fusion (ICF) goals. Primary performance goals include 10% efficiencies at 10 Hz and a <10 ns pulse with l {omega} energies of 100 J and with 2 {omega}/3 {omega} frequency conversion. Achieving this performance will provide a near term capability for HED experiments and prove the potential of DPSSLsmore » for inertial fusion energy (IFE).« less

  20. Proton Spectra from He 3 + T and He 3 + He 3 Fusion at Low Center-of-Mass Energy, with Potential Implications for Solar Fusion Cross Sections

    DOE PAGES

    Zylstra, A. B.; Frenje, J. A.; Gatu Johnson, M.; ...

    2017-11-29

    Few-body nuclear physics often relies upon phenomenological models, with new efforts at the ab initio theory reported recently; both need high-quality benchmark data, particularly at low center-of-mass energies. We use high-energy-density plasmas to measure the proton spectra from 3He + T and 3He + 3He fusion. The data disagree with R -matrix predictions constrained by neutron spectra from T + T fusion. Here, we present a new analysis of the 3He + 3He proton spectrum; these benchmarked spectral shapes should be used for interpreting low-resolution data, such as solar fusion cross-section measurements.

  1. Value of H, space-time patterns, vacuum, matter, expansion of the Universe, alternative cosmologies

    NASA Astrophysics Data System (ADS)

    Gonzalez-Mestres, Luis

    2017-12-01

    To the experimental uncertainties on the present value H0 of the Lundmark - Lemaître-Hubble constant, fundamental theoretical uncertainties of several kinds should also be added. In standard Cosmology, consistency problems are really serious. The cosmological constant is a source of well-known diffculties while the associated dark energy is assumed to be at the origin of the observed acceleration of the expansion of the Universe. But in alternative cosmologies, possible approaches without these problems exist. An example is the pattern based on the spinorial space-time (SST) we introduced in 1996-97 where the H t = 1 relation (t = cosmic time = age of the Universe) is automatically generated by a pre-existing cosmic geometry before standard matter and conventional forces, including gravitation and relativity, are introduced. We analyse present theoretical, experimental and observational uncertainties, focusing also on the possible sources of the acceleration of the expansion of the Universe as well as on the structure of the physical vacuum and its potential cosmological role. Particular attention is given to alternative approaches to both Particle Physics and Cosmology including possible preonic constituents of the physical vacuum and associated pre-Big Bang patterns. A significant example is provided by the cosmic SST geometry together with the possibility that the expanding cosmological vacuum releases energy in the form of standard matter and dark matter, thus modifying the dependence of the matter energy density with respect to the age and size of our Universe. The SST naturally generates a new leading contribution to the value of H. If the matter energy density decreases more slowly than in standard patterns, it can naturally be at the origin of the observed acceleration of the expansion of the Universe. The mathematical and dynamical structure of standard Physics at very short distances can also be modified by an underlying preonic structure. If preons are the constituents of the physical vacuum, as postulated two decades ago with the superbradyon (superluminal preon) hypothesis, the strongest implication would be the possibility that vacuum actually drives the expansion of the Universe. If an unstable (metastable) vacuum permanently expands, it can release energy in the form of conventional matter and of its associated kinetic energy. The SST can be the expression of such an expanding vacuum at cosmic level. We briefly discuss these and related issues, as well as relevant open questions including the problematics of the initial singularity and the cosmic vacuum dynamics in a pre-Big Bang era. The possibility to obtain experimental information on the preonic internal structure of vacuum is also considered.

  2. Conjugate-gradient optimization method for orbital-free density functional calculations.

    PubMed

    Jiang, Hong; Yang, Weitao

    2004-08-01

    Orbital-free density functional theory as an extension of traditional Thomas-Fermi theory has attracted a lot of interest in the past decade because of developments in both more accurate kinetic energy functionals and highly efficient numerical methodology. In this paper, we developed a conjugate-gradient method for the numerical solution of spin-dependent extended Thomas-Fermi equation by incorporating techniques previously used in Kohn-Sham calculations. The key ingredient of the method is an approximate line-search scheme and a collective treatment of two spin densities in the case of spin-dependent extended Thomas-Fermi problem. Test calculations for a quartic two-dimensional quantum dot system and a three-dimensional sodium cluster Na216 with a local pseudopotential demonstrate that the method is accurate and efficient. (c) 2004 American Institute of Physics.

  3. Infrared thermography for wood density estimation

    NASA Astrophysics Data System (ADS)

    López, Gamaliel; Basterra, Luis-Alfonso; Acuña, Luis

    2018-03-01

    Infrared thermography (IRT) is becoming a commonly used technique to non-destructively inspect and evaluate wood structures. Based on the radiation emitted by all objects, this technique enables the remote visualization of the surface temperature without making contact using a thermographic device. The process of transforming radiant energy into temperature depends on many parameters, and interpreting the results is usually complicated. However, some works have analyzed the operation of IRT and expanded its applications, as found in the latest literature. This work analyzes the effect of density on the thermodynamic behavior of timber to be determined by IRT. The cooling of various wood samples has been registered, and a statistical procedure that enables one to quantitatively estimate the density of timber has been designed. This procedure represents a new method to physically characterize this material.

  4. Dark energy and the structure of the Coma cluster of galaxies

    NASA Astrophysics Data System (ADS)

    Chernin, A. D.; Bisnovatyi-Kogan, G. S.; Teerikorpi, P.; Valtonen, M. J.; Byrd, G. G.; Merafina, M.

    2013-05-01

    Context. We consider the Coma cluster of galaxies as a gravitationally bound physical system embedded in the perfectly uniform static dark energy background as implied by ΛCDM cosmology. Aims: We ask if the density of dark energy is high enough to affect the structure of a large and rich cluster of galaxies. Methods: We base our work on recent observational data on the Coma cluster, and apply our theory of local dynamical effects of dark energy, including the zero-gravity radius RZG of the local force field as the key parameter. Results: 1) Three masses are defined that characterize the structure of a regular cluster: the matter mass MM, the dark-energy effective mass MDE (<0), and the gravitating mass MG (=MM + MDE). 2) A new matter-density profile is suggested that reproduces the observational data well for the Coma cluster in the radius range from 1.4 Mpc to 14 Mpc and takes the dark energy background into account. 3) Using this profile, we calculate upper limits for the total size of the Coma cluster, R ≤ RZG ≈ 20 Mpc, and its total matter mass, MM ≲ MM(RZG) = 6.2 × 1015 M⊙. Conclusions: The dark energy antigravity affects the structure of the Coma cluster strongly at large radii R ≳ 14 Mpc and should be considered when its total mass is derived.

  5. Joint density-functional theory and its application to systems in solution

    NASA Astrophysics Data System (ADS)

    Petrosyan, Sahak A.

    The physics of solvation, the interaction of water with solutes, plays a central role in chemistry and biochemistry, and it is essential for the very existence of life. Despite the central importance of water and the advent of the quantum theory early in the twentieth century, the link between the fundamental laws of physics and the observable properties of water remain poorly understood to this day. The central goal of this thesis is to develop a new formalism and framework to make the study of systems (solutes or surfaces) in contact with liquid water as practical and accurate as standard electronic structure calculations without the need for explicit averaging over large ensembles of configurations of water molecules. The thesis introduces a new form of density functional theory for the ab initio description of electronic systems in contact with a molecular liquid environment. This theory rigorously joins an electron density-functional for the electrons of a solute with a classical density-functional theory for the liquid into a single variational principle for the free energy of the combined system. Using the new form of density-functional theory for the ab initio description of electronic systems in contact with a molecular liquid environment, the thesis then presents the first detailed study of the impact of a solvent on the surface chemistry of Cr2O3, the passivating layer of stainless steel alloys. In comparison to a vacuum, we predict that the presence of water has little impact on the adsorption of chloride ions to the oxygen-terminated surface but has a dramatic effect on the binding of hydrogen to that surface. A key ingredient of a successful joint density functional theory is a good approximate functional for describing the solvent. We explore how the simplest examples of the best known class of approximate forms for the classical density functional fail when applied directly to water. The thesis then presents a computationally efficient density-functional theory for water which overcomes this difficulty and gives reasonable agreement with molecular dynamics simulation data for the solvation of hard spheres in water and sufficient agreement with experimental data for hydration of inert gas atoms to justify its use in a joint theory with standard approximate density functionals used in electronic structure calculations. The last study in the thesis combines the previous ideas and presenting an approximate model density functional which includes a description of cavitation effects through a classical density-functional theory; a description of dielectric effects through a non-local polarizability, and a description of the coupling of the solvent to the electrons of the solute through a pseudopotential. Without any empirical fitting of parameters to solvation data, this theory predicts solvation energies at least as well as state-of-the-art quantum-chemical cavity approaches, which do employ such fitting. Although this agreement without adjustable parameters is very encouraging and shows the promise of the joint density-functional approach, the functionals which we develop here are models and do not yet include all of the microscopic physics. The thesis concludes with a description of the directions future work should take to address this weakness.

  6. Modeling wormholes in f (R ,T ) gravity

    NASA Astrophysics Data System (ADS)

    Moraes, P. H. R. S.; Sahoo, P. K.

    2017-08-01

    In this work, we propose the modeling of static wormholes within the f (R ,T ) extended theory of gravity perspective. We present some models of wormholes, which are constructed from different hypotheses for their matter content, i.e., different relations for their pressure components (radial and lateral) and different equations of state. The solutions obtained for the shape function of the wormholes obey the necessary metric conditions. They show a behavior similar to those found in previous references about wormholes, which also happens to our solutions for the energy density of such objects. We also apply the energy conditions for the wormholes' physical content.

  7. Medium-heavy nuclei from nucleon-nucleon interactions in lattice QCD

    NASA Astrophysics Data System (ADS)

    Inoue, Takashi; Aoki, Sinya; Charron, Bruno; Doi, Takumi; Hatsuda, Tetsuo; Ikeda, Yoichi; Ishii, Noriyoshi; Murano, Keiko; Nemura, Hidekatsu; Sasaki, Kenji; HAL QCD Collaboration

    2015-01-01

    On the basis of the Brueckner-Hartree-Fock method with the nucleon-nucleon forces obtained from lattice QCD simulations, the properties of the medium-heavy doubly magic nuclei such as 16O and 40Ca are investigated. We found that those nuclei are bound for the pseudoscalar meson mass MPS≃470 MeV. The mass number dependence of the binding energies, single-particle spectra, and density distributions are qualitatively consistent with those expected from empirical data at the physical point, although these hypothetical nuclei at heavy quark mass have smaller binding energies than the real nuclei.

  8. Antimatter Propulsion Developed by NASA

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This Quick Time movie shows possible forms of an antimatter propulsion system being developed by NASA. Antimatter annihilation offers the highest possible physical energy density of any known reaction substance. It is about 10 billion times more powerful than that of chemical energy such as hydrogen and oxygen combustion. Antimatter would be the perfect rocket fuel, but the problem is that the basic component of antimatter, antiprotons, doesn't exist in nature and has to manufactured. The process of antimatter development is ongoing and making some strides, but production of this as a propulsion system is far into the future.

  9. Active Free Surface Density Maps

    NASA Astrophysics Data System (ADS)

    Çelen, S.

    2016-10-01

    Percolation problems were occupied to many physical problems after their establishment in 1957 by Broadbent and Hammersley. They can be used to solve complex systems such as bone remodeling. Volume fraction method was adopted to set some algorithms in the literature. However, different rate of osteoporosis could be observed for different microstructures which have the same mass density, mechanical stimuli, hormonal stimuli and nutrition. Thus it was emphasized that the bone might have identical porosity with different specific surfaces. Active free surface density of bone refers the used total area for its effective free surface. The purpose of this manuscript is to consolidate a mathematical approach which can be called as “active free surface density maps” for different surface patterns and derive their formulations. Active free surface density ratios were calculated for different Archimedean lattice models according to Helmholtz free energy and they were compared with their site and bond percolation thresholds from the background studies to derive their potential probability for bone remodeling.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seljak, Uroš; McDonald, Patrick, E-mail: useljak@berkeley.edu, E-mail: pvmcdonald@lbl.gov

    We develop a phase space distribution function approach to redshift space distortions (RSD), in which the redshift space density can be written as a sum over velocity moments of the distribution function. These moments are density weighted and have well defined physical interpretation: their lowest orders are density, momentum density, and stress energy density. The series expansion is convergent if kμu/aH < 1, where k is the wavevector, H the Hubble parameter, u the typical gravitational velocity and μ = cos θ, with θ being the angle between the Fourier mode and the line of sight. We perform an expansionmore » of these velocity moments into helicity modes, which are eigenmodes under rotation around the axis of Fourier mode direction, generalizing the scalar, vector, tensor decomposition of perturbations to an arbitrary order. We show that only equal helicity moments correlate and derive the angular dependence of the individual contributions to the redshift space power spectrum. We show that the dominant term of μ{sup 2} dependence on large scales is the cross-correlation between the density and scalar part of momentum density, which can be related to the time derivative of the matter power spectrum. Additional terms contributing to μ{sup 2} and dominating on small scales are the vector part of momentum density-momentum density correlations, the energy density-density correlations, and the scalar part of anisotropic stress density-density correlations. The second term is what is usually associated with the small scale Fingers-of-God damping and always suppresses power, but the first term comes with the opposite sign and always adds power. Similarly, we identify 7 terms contributing to μ{sup 4} dependence. Some of the advantages of the distribution function approach are that the series expansion converges on large scales and remains valid in multi-stream situations. We finish with a brief discussion of implications for RSD in galaxies relative to dark matter, highlighting the issue of scale dependent bias of velocity moments correlators.« less

  11. Adolescence physical activity is associated with higher tibial pQCT bone values in adulthood after 28-years of follow-up--the Cardiovascular Risk in Young Finns Study.

    PubMed

    Tolonen, S; Sievänen, H; Mikkilä, V; Telama, R; Oikonen, M; Laaksonen, M; Viikari, J; Kähönen, M; Raitakari, O T

    2015-06-01

    High peak bone mass and strong bone phenotype are known to be partly explained by physical activity during growth but there are few prospective studies on this topic. In this 28-year follow-up of Cardiovascular Risk in Young Finns Study cohort, we assessed whether habitual childhood and adolescence physical activity or inactivity at the age of 3-18 years were associated with adult phenotype of weight-bearing tibia and the risk of low-energy fractures. Baseline physical activity and data on clinical, nutritional and lifestyle factors were assessed separately for females and males aged 3-6-years (N=395-421) and 9-18-years (N=923-965). At the age of 31-46-years, the prevalence of low-energy fractures was assessed with a questionnaire and several tibial traits were measured with pQCT (bone mineral content (BMC; mg), total and cortical cross-sectional areas (mm(2)), trabecular (for the distal site only) and cortical (for the shaft only) bone densities (mg/cm(3)), stress-strain index (SSI; mm(3), for the shaft only), bone strength index (BSI; mg(2)/cm(4), for the distal site only) and the cortical strength index (CSI, for the shaft only)). For the statistical analysis, each bone trait was categorized as below the cohort median or the median and above and the adjusted odds ratios (OR) were determined. In females, frequent physical activity at the age of 9-18-years was associated with higher adulthood values of BSI, total and cortical areas, BMC, CSI and SSI at the tibia independently of many health and lifestyle factors (ORs 0.33-0.53, P≤0.05; P-values for trend 0.002-0.05). Cortical density at the tibial shaft showed the opposite trend (P-value for trend 0.03). Similarly in males, frequent physical activity was associated with higher values of adult total and cortical areas and CSI at the tibia (ORs 0.48-0.53, P≤0.05; P-values for trend 0.01-0.02). However, there was no evidence that childhood or adolescence physical activity was associated with lower risk of low energy fractures during the follow-up. In conclusion, frequent habitual physical activity in adolescence seems to confer benefits on tibial bone size and geometry in adulthood. Copyright © 2015. Published by Elsevier Inc.

  12. Accelerating the Design of Solar Thermal Fuel Materials through High Throughput Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Y; Grossman, JC

    2014-12-01

    Solar thermal fuels (STF) store the energy of sunlight, which can then be released later in the form of heat, offering an emission-free and renewable solution for both solar energy conversion and storage. However, this approach is currently limited by the lack of low-cost materials with high energy density and high stability. In this Letter, we present an ab initio high-throughput computational approach to accelerate the design process and allow for searches over a broad class of materials. The high-throughput screening platform we have developed can run through large numbers of molecules composed of earth-abundant elements and identifies possible metastablemore » structures of a given material. Corresponding isomerization enthalpies associated with the metastable structures are then computed. Using this high-throughput simulation approach, we have discovered molecular structures with high isomerization enthalpies that have the potential to be new candidates for high-energy density STF. We have also discovered physical principles to guide further STF materials design through structural analysis. More broadly, our results illustrate the potential of using high-throughput ab initio simulations to design materials that undergo targeted structural transitions.« less

  13. Interactive mixture of inhomogeneous dark fluids driven by dark energy: a dynamical system analysis

    NASA Astrophysics Data System (ADS)

    Izquierdo, Germán; Blanquet-Jaramillo, Roberto C.; Sussman, Roberto A.

    2018-03-01

    We examine the evolution of an inhomogeneous mixture of non-relativistic pressureless cold dark matter (CDM), coupled to dark energy (DE) characterised by the equation of state parameter w<-1/3, with the interaction term proportional to the DE density. This coupled mixture is the source of a spherically symmetric Lemaître-Tolman-Bondi (LTB) metric admitting an asymptotic Friedman-Lemaître-Robertson-Walker (FLRW) background. Einstein's equations reduce to a 5-dimensional autonomous dynamical system involving quasi-local variables related to suitable averages of covariant scalars and their fluctuations. The phase space evolution around the critical points (past/future attractors and five saddles) is examined in detail. For all parameter values and both directions of energy flow (CDM to DE and DE to CDM) the phase space trajectories are compatible with a physically plausible early cosmic times behaviour near the past attractor. This result compares favourably with mixtures with interaction driven by the CDM density, whose past evolution is unphysical for DE to CDM energy flow. Numerical examples are provided describing the evolution of an initial profile that can be associated with idealised structure formation scenarios.

  14. NDCX-II target experiments and simulations

    DOE PAGES

    Barnard, J. J.; More, R. M.; Terry, M.; ...

    2013-06-13

    The ion accelerator NDCX-II is undergoing commissioning at Lawrence Berkeley National Laboratory (LBNL). Its principal mission is to explore ion-driven High Energy Density Physics (HEDP) relevant to Inertial Fusion Energy (IFE) especially in the Warm Dense Matter (WDM) regime. We have carried out hydrodynamic simulations of beam-heated targets for parameters expected for the initial configuration of NDCX-II. For metal foils of order one micron thick (thin targets), the beam is predicted to heat the target in a timescale comparable to the hydrodynamic expansion time for experiments that infer material properties from measurements of the resulting rarefaction wave. We have alsomore » carried out hydrodynamic simulations of beam heating of metallic foam targets several tens of microns thick (thick targets) in which the ion range is shorter than the areal density of the material. In this case shock waves will form and we derive simple scaling laws for the efficiency of conversion of ion energy into kinetic energy of fluid flow. Geometries with a tamping layer may also be used to study the merging of a tamper shock with the end-of-range shock. As a result, this process can occur in tamped, direct drive IFE targets.« less

  15. Enhancing Understanding of Magnetized High Energy Density Plasmas from Solid Liner Implosions Using Fluid Modeling with Kinetic Closures

    NASA Astrophysics Data System (ADS)

    Masti, Robert; Srinivasan, Bhuvana; King, Jacob; Stoltz, Peter; Hansen, David; Held, Eric

    2017-10-01

    Recent results from experiments and simulations of magnetically driven pulsed power liners have explored the role of early-time electrothermal instability in the evolution of the MRT (magneto-Rayleigh-Taylor) instability. Understanding the development of these instabilities can lead to potential stabilization mechanisms; thereby providing a significant role in the success of fusion concepts such as MagLIF (Magnetized Liner Inertial Fusion). For MagLIF the MRT instability is the most detrimental instability toward achieving fusion energy production. Experiments of high-energy density plasmas from wire-array implosions have shown the requirement for more advanced physics modeling than that of ideal magnetohydrodynamics. The overall focus of this project is on using a multi-fluid extended-MHD model with kinetic closures for thermal conductivity, resistivity, and viscosity. The extended-MHD model has been updated to include the SESAME equation-of-state tables and numerical benchmarks with this implementation will be presented. Simulations of MRT growth and evolution for MagLIF-relevant parameters will be presented using this extended-MHD model with the SESAME equation-of-state tables. This work is supported by the Department of Energy Office of Science under Grant Number DE-SC0016515.

  16. Correlation of physical properties with molecular structure for some dicyclic hydrocarbons having high thermal-energy release per unit volume -- 2-alkylbiphenyl and the two isomeric 2-alkylbicyclohexyl series

    NASA Technical Reports Server (NTRS)

    Goodman, Irving A; Wise, Paul H

    1952-01-01

    Three homologous series of related dicyclic hydrocarbons are presented for comparison on the basis of their physical properties, which include net heat of combustion, density, melting point, boiling point, and kinematic viscosity. The three series investigated include the 2-n-alkylbiphenyl, 2-n-alkylbicyclohexyl (high boiling), and 2-n-alkylbiphenyls (low boiling) series through c sub 16, in addition to three branched-chain (isopropyl, sec-butyl, and isobutyl) 2-alkylbiphenyls and their corresponding 2-alkylbicyclohexyls. The physical properties of the low-boiling and high-boiling isomers of 2-sec-butylbicyclohexyl and 2-isobutylbicyclohexyl are reported herein for the first time.

  17. Probing neutrino physics with a self-consistent treatment of the weak decoupling, nucleosynthesis, and photon decoupling epochs

    DOE PAGES

    Grohs, E.; Fuller, George M.; Kishimoto, Chad T.; ...

    2015-05-11

    In this study, we show that a self-consistent and coupled treatment of the weak decoupling, big bang nucleosynthesis, and photon decoupling epochs can be used to provide new insights and constraints on neutrino sector physics from high-precision measurements of light element abundances and Cosmic Microwave Background observables. Implications of beyond-standard-model physics in cosmology, especially within the neutrino sector, are assessed by comparing predictions against five observables: the baryon energy density, helium abundance, deuterium abundance, effective number of neutrinos, and sum of the light neutrino mass eigenstates. We give examples for constraints on dark radiation, neutrino rest mass, lepton numbers, andmore » scenarios for light and heavy sterile neutrinos.« less

  18. [Basic concepts of radiology physics].

    PubMed

    Gambini, D-J

    2010-11-01

    An x-ray tube mainly emits low-energy X-rays, with few maximum energy E₀ (equal in keV to the voltage U in kV) x-rays. Aluminium filtration (mandatory minimum thickness of 1.5 to 2.5 mm based on tube voltage) reduces soft X-rays and provides a mean energy equal to 2/3 E₀. The half value layer of a reference material characterizes the spectrum. X-ray attenuation in tissues is due to secondary electron interactions: photoelectric effect at low-energy, especially in dense materials with high Z number; compton effect at intermediate-energy, proportional to density. The optimization of acquisition parameters of a medically necessary examination is based on appropriate selection of the highest voltage (U in kV) providing the best contrast and lowest tube current (Q in mAs) providing a diagnostic image.

  19. Urban Futures - Innovation Engines or Slums? A Stellar Evolution Model of Urban Growth

    NASA Astrophysics Data System (ADS)

    Shutters, S. T.; Timmes, F.; Desouza, K.

    2015-12-01

    Why, as cities grow in size and density, do some "ignite" into global engines of innovation and prosperity while others grow into dense slums? This is our overarching question as we explore a novel framework for thinking about the evolution of cities and, more specifically, the divergent trajectories they may take. We develop a speculative framework by examining the analogies between the evolution of cities and the evolution of stars. Like cities, stellar gas clouds can grow in mass, eventually reaching temperature and density thresholds at which they ignite the hydrogen fuel in their cores to become full-fledged stars. But not all gas and dust clouds share this fate. Some never achieve the critical conditions and do not unleash the energy we witness emanating from our own star. Some stars, after exhaustion of their initial fuel, evolve to incredible density but lack the temperature to ignite the next fuel needed to maintain the critical interactions that release so much energy. Instead they fade away to an object of intense density, but without the vibrant emission of light and energy associated with non-degenerate stars. The fate of cities, too, depends on the density of interactions - not of gas molecules, but of people. This elevated rate of face-to-face interactions in an urban core is critical for the transition to an innovative and creative economy. Yet, density is not enough, as evidenced both by many megacities in the developing world and degenerate stars. What is this missing element that, along with density, ignites a city and turns it into an innovation engine? With these analogies in mind, we explore whether they are useful for framing future research on cities, what questions they may help pose, and, more broadly, how physical, social, and natural scientists can all contribute to an interdisciplinary endeavor to understand cities more deeply.

  20. Nuclear Physics of neutron stars

    NASA Astrophysics Data System (ADS)

    Piekarewicz, Jorge

    2015-04-01

    One of the overarching questions posed by the recent community report entitled ``Nuclear Physics: Exploring the Heart of Matter'' asks How Does Subatomic Matter Organize Itself and What Phenomena Emerge? With their enormous dynamic range in both density and neutron-proton asymmetry, neutron stars provide ideal laboratories to answer this critical challenge. Indeed, a neutron star is a gold mine for the study of physical phenomena that cut across a variety of disciplines, from particle physics to general relativity. In this presentation--targeted at non-experts--I will focus on the essential role that nuclear physics plays in constraining the dynamics, structure, and composition of neutron stars. In particular, I will discuss some of the many exotic states of matter that are speculated to exist in a neutron star and the impact of nuclear-physics experiments on elucidating their fascinating nature. This material is based upon work supported by the U.S. Department of Energy Office of Science, Office of Nuclear Physics under Award Number DE-FD05-92ER40750.

  1. Variational calculation of second-order reduced density matrices by strong N-representability conditions and an accurate semidefinite programming solver.

    PubMed

    Nakata, Maho; Braams, Bastiaan J; Fujisawa, Katsuki; Fukuda, Mituhiro; Percus, Jerome K; Yamashita, Makoto; Zhao, Zhengji

    2008-04-28

    The reduced density matrix (RDM) method, which is a variational calculation based on the second-order reduced density matrix, is applied to the ground state energies and the dipole moments for 57 different states of atoms, molecules, and to the ground state energies and the elements of 2-RDM for the Hubbard model. We explore the well-known N-representability conditions (P, Q, and G) together with the more recent and much stronger T1 and T2(') conditions. T2(') condition was recently rederived and it implies T2 condition. Using these N-representability conditions, we can usually calculate correlation energies in percentage ranging from 100% to 101%, whose accuracy is similar to CCSD(T) and even better for high spin states or anion systems where CCSD(T) fails. Highly accurate calculations are carried out by handling equality constraints and/or developing multiple precision arithmetic in the semidefinite programming (SDP) solver. Results show that handling equality constraints correctly improves the accuracy from 0.1 to 0.6 mhartree. Additionally, improvements by replacing T2 condition with T2(') condition are typically of 0.1-0.5 mhartree. The newly developed multiple precision arithmetic version of SDP solver calculates extraordinary accurate energies for the one dimensional Hubbard model and Be atom. It gives at least 16 significant digits for energies, where double precision calculations gives only two to eight digits. It also provides physically meaningful results for the Hubbard model in the high correlation limit.

  2. CMB-induced radio quenching of high-redshift jetted AGNs with highly magnetic hotspots

    NASA Astrophysics Data System (ADS)

    Wu, Jianfeng; Ghisellini, Gabriele; Hodges-Kluck, Edmund; Gallo, Elena; Ciardi, Benedetta; Haardt, Francesco; Sbarrato, Tullia; Tavecchio, Fabrizio

    2017-06-01

    In an effort to understand the cause of the apparent depletion in the number density of radio-loud active galactic nuclei (AGNs) at z > 3, this work investigates the viability of the so-called cosmic microwave background (CMB) quenching mechanism of intrinsically jetted, high-z AGNs, whereby inverse Compton scattering of CMB photons off electrons within the extended lobes results in a substantial dimming of the lobe synchrotron emission at GHz frequencies, while simultaneously boosting their diffuse X-ray signal. We focus on five z > 3.5 radio galaxies that have sufficiently deep Chandra exposure (>50 ks) to warrant a meaningful investigation of any extended X-ray emission. For those objects with evidence for statistically significant extended X-ray lobes (4C 41.17 and 4C 03.24), we combine the Chandra measurements with literature data at lower frequencies to assemble the systems' spectral energy distributions (SEDs), and utilize state-of-the-art SED modelling - including emission from the disc, torus, jet, hotspots and lobes - to infer their physical parameters. For both radio galaxies, the magnetic energy density in the hotspots is found to exceed the energy density in CMB photons, whereas the opposite is true for the lobes. This implies that any extended synchrotron emission likely originates from the hotspots themselves, rather than the lobes. Conversely, inverse Compton scattering of CMB photons dominates the extended X-ray emission from the lobes, which are effectively 'radio-quenched'. As a result, CMB quenching is effective in these systems in spite of the fact that the observed X-ray to radio luminosity ratio does not bear the signature (1 + z)4 dependence of the CMB energy density.

  3. Making Stargates: The Physics of Traversable Absurdly Benign Wormholes

    NASA Astrophysics Data System (ADS)

    Woodward, J. F.

    Extremely short throat "absurdly benign" wormholes enabling near instantaneous travel to arbitrarily remote locations in both space and time - stargates - have long been a staple of science fiction. The physical requirements for the production of such devices were worked out by Morris and Thorne in 1988. They approached the issue of rapid spacetime transport by asking the question: what constraints do the laws of physics as we know them place on an "arbitrarily advanced culture" (AAC)? Their answer - a Jupiter mass of negative restmass matter in a structure a few tens of meters in size - seems to have rendered such things beyond the realm of the believably achievable. This might be taken as justification for abandoning further serious exploration of the physics of stargates. If such an investigation is pursued, however, one way to do so is to invert Morris and Thorne's question and ask: if "arbitrarily advanced aliens" (AAAs) have actually made stargates, what must be true of the laws of physics for them to have done so? Elementary arithmetic reveals that stargates would have an "exotic" density of on the order of 1022 gm/cm3, that is, orders of magnitude higher than nuclear density. Not only does one have to achieve this stupendous density of negative mass matter, it must be done, presumably, only with the application of "low" energy electromagnetic fields. We examine this problem, finding that a plausible solution does not depend on the laws of quantum gravity, as some have proposed. Rather, the solution depends on understanding the nature of electrons in terms of a semi-classical extension of the exact, general relativistic electron model of Arnowitt, Deser, and Misner (ADM), and Mach's Principle.

  4. Influence of different crosslinking treatments on the physical properties of collagen membranes.

    PubMed

    Charulatha, V; Rajaram, A

    2003-02-01

    The physical properties of collagen-based biomaterials are profoundly influenced by the method and extent of crosslinking. In this study, the influence of various crosslinking treatments on the physical properties of reconstituted collagen membranes was assessed. Five crosslinking agents viz., GTA, DMS, DTBP, a combination of DMS and GTA and acyl azide method were used to stabilize collagen matrices. Crosslinking density, swelling ratio, thermo-mechanical properties, stress-strain characteristics and resistance to collagenase digestion were determined to evaluate the physical properties of crosslinked matrices. GTA treatment induced the maximum number of crosslinks (13) while DMS treatment induced the minimum (7). Of the two diimidoesters (DMS and DTBP), DTBP was a more effective crosslinking agent due to the presence of disulphide bonds in the DTBP crosslinks. T(s) for DTBP and DMS crosslinked collagen were 80 degrees C and 70 degrees C, and their HIT values were 5.4 and 2.85MN/m(2), respectively. Low concentration of GTA (0.01%) increased the crosslinking density of an already crosslinked matrix (DMS treated matrix) from 7 to 12. Lowest fracture energy was observed for the acyl azide treated matrix (0.61MJ/m(3)) while the highest was observed for the GTA treated matrix (1.97MJ/m(3)). The tensile strength of GTA treated matrix was maximum (12.4MPa) and that of acyl azide treated matrix was minimum (7.2MPa). GTA, DTBP and acyl azide treated matrices were equally resistant to collagenase degradation with approximately 6% solubilization after 5h while the DMS treated was least stable with 52.4% solubilization after the same time period. The spatial orientation of amino acid side chain residues on collagen plays an important role in determining the crosslinking density and consequent physical properties of the collagen matrix.

  5. First-principles approach to calculating energy level alignment at aqueous semiconductor interfaces.

    PubMed

    Kharche, Neerav; Muckerman, James T; Hybertsen, Mark S

    2014-10-24

    A first-principles approach is demonstrated for calculating the relationship between an aqueous semiconductor interface structure and energy level alignment. The physical interface structure is sampled using density functional theory based molecular dynamics, yielding the interface electrostatic dipole. The  GW approach from many-body perturbation theory is used to place the electronic band edge energies of the semiconductor relative to the occupied 1b1 energy level in water. The application to the specific cases of nonpolar (101¯0) facets of GaN and ZnO reveals a significant role for the structural motifs at the interface, including the degree of interface water dissociation and the dynamical fluctuations in the interface Zn-O and O-H bond orientations. These effects contribute up to 0.5 eV.

  6. Study of iridium silicide monolayers using density functional theory

    NASA Astrophysics Data System (ADS)

    Popis, Minh D.; Popis, Sylvester V.; Oncel, Nuri; Hoffmann, Mark R.; ćakır, Deniz

    2018-02-01

    In this study, we investigated physical and electronic properties of possible two-dimensional structures formed by Si (silicon) and Ir (iridium). To this end, different plausible structures were modeled by using density functional theory and the cohesive energies calculated for the geometry of optimized structures, with the lowest equilibrium lattice constants. Among several candidate structures, we identified three mechanically (via elastic constants and Young's modulus), dynamically (via phonon calculations), and thermodynamically stable iridium silicide monolayer structures. The lowest energy structure has a chemical formula of Ir2Si4 (called r-IrSi2), with a rectangular lattice (Pmmn space group). Its cohesive energy was calculated to be -0.248 eV (per IrSi2 unit) with respect to bulk Ir and bulk Si. The band structure indicates that the Ir2Si4 monolayer exhibits metallic properties. Other stable structures have hexagonal (P-3m1) and tetragonal (P4/nmm) cell structures with 0.12 and 0.20 eV/f.u. higher cohesive energies, respectively. Our calculations showed that Ir-Si monolayers are reactive. Although O2 molecules exothermically dissociate on the surface of the free-standing iridium silicide monolayers with large binding energies, H2O molecules bind to the monolayers with a rather weak interaction.

  7. Analyzing non-LTE Kr plasmas produced in high energy density experiments: from the Z machine to the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Dasgupta, Arati

    2015-11-01

    Designing high fluence photon sources above 10 keV are a challenge for High Energy Density plasmas. This has motivated radiation source development investigations of Kr with K-shell energies around 13 keV. Recent pulsed power driven gas-puff experiments on the refurbished Z machine at Sandia have produced intense X-rays in the multi-keV photon energy range. K-shell radiative yields and efficiencies are very high for Ar, but rapidly decrease for higher atomic number (ZA) elements such as Kr. It has been suggested that an optimum exists corresponding to a trade-off between the increase of photon energy for higher ZA elements and the corresponding fall off in radiative power. However the conversion efficiency on NIF, where the drive, energy deposition process, and target dynamics are different, does not fall off with higher ZA as rapidly as on Z. We have developed detailed atomic structure and collisional data for the full K-, L- and partial M-shell of Kr using the Flexible Atomic Code (FAC). Our non-LTE atomic model includes all collisional and recombination processes, including state-specific dielectronic recombination (DR), that significantly affect ionization balance and spectra of Kr plasmas at the temperatures and densities of concern. The model couples ionization physics, radiation production and transport, and magnetohydrodynamics. In this talk, I will give a detailed description of the model and discuss 1D Kr simulations employing a multifrequency radiation transport scheme. Synthetic K- and L-shell spectra will be compared with available experimental data. This talk will analyze experimental data indicative of the differences between Z and NIF experimental data and discuss how they affect the K-shell radiative output of Kr plasma. Work supported by DOE/NNSA.

  8. Magnetized Target Fusion Driven by Plasma Liners

    NASA Technical Reports Server (NTRS)

    Thio, Y. C. Francis; Kirkpatrick, Ronald C.; Knapp, Charles E.; Rodgers, Stephen L. (Technical Monitor)

    2002-01-01

    Magnetized target fusion is an emerging, relatively unexplored approach to fusion for electrical power and propulsion application. The physical principles of the concept are founded upon both inertial confinement fusion (ICF) and magnetic confinement fusion (MCF). It attempts to combine the favorable attributes of both these orthogonal approaches to fusion, but at the same time, avoiding the extreme technical challenges of both by exploiting a fusion regime intermediate between them. It uses a material liner to compress, heat and contain the fusion reacting plasma (the target plasma) mentally. By doing so, the fusion burn could be made to occur at plasma densities as high as six orders of magnitude higher than conventional MCF such as tokamak, thus leading to an approximately three orders of magnitude reduction in the plasma energy required for ignition. It also uses a transient magnetic field, compressed to extremely high intensity (100's T to 1000T) in the target plasma, to slow down the heat transport to the liner and to increase the energy deposition of charged-particle fusion products. This has several compounding beneficial effects. It leads to longer energy confinement time compared with conventional ICF without magnetized target, and thus permits the use of much lower plasma density to produce reasonable burn-up fraction. The compounding effects of lower plasma density and the magneto-insulation of the target lead to greatly reduced compressional heating power on the target. The increased energy deposition rate of charged-particle fusion products also helps to lower the energy threshold required for ignition and increasing the burn-up fraction. The reduction in ignition energy and the compressional power compound to lead to reduced system size, mass and R&D cost. It is a fusion approach that has an affordable R&D pathway, and appears attractive for propulsion application in the nearer term.

  9. Gravitational collapse of dark energy field configurations and supermassive black hole formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jhalani, V.; Kharkwal, H.; Singh, A., E-mail: anupamsingh.iitk@gmail.com

    Dark energy is the dominant component of the total energy density of our Universe. The primary interaction of dark energy with the rest of the Universe is gravitational. It is therefore important to understand the gravitational dynamics of dark energy. Since dark energy is a low-energy phenomenon from the perspective of particle physics and field theory, a fundamental approach based on fields in curved space should be sufficient to understand the current dynamics of dark energy. Here, we take a field theory approach to dark energy. We discuss the evolution equations for a generic dark energy field in curved space-timemore » and then discuss the gravitational collapse for dark energy field configurations. We describe the 3 + 1 BSSN formalism to study the gravitational collapse of fields for any general potential for the fields and apply this formalism to models of dark energy motivated by particle physics considerations. We solve the resulting equations for the time evolution of field configurations and the dynamics of space-time. Our results show that gravitational collapse of dark energy field configurations occurs and must be considered in any complete picture of our Universe. We also demonstrate the black hole formation as a result of the gravitational collapse of the dark energy field configurations. The black holes produced by the collapse of dark energy fields are in the supermassive black hole category with the masses of these black holes being comparable to the masses of black holes at the centers of galaxies.« less

  10. Toward Computational Design of High-Efficiency Photovoltaics from First-Principles

    DTIC Science & Technology

    2016-08-15

    dependence of exciton diffusion in conjugated small molecules, Applied Physics Letters, (04 2014): 0. doi: 10.1063/1.4871303 Guangfen Wu, Zi Li, Xu...principle approach based on the time- dependent density functional theory (TDDFT) to describe exciton states, including energy levels and many-body wave... depends more sensitively on the dimension and crystallinity of the acceptor parallel to the interface than normal to the interface. Reorganization

  11. Constraining unparticle physics with cosmology and astrophysics.

    PubMed

    Davoudiasl, Hooman

    2007-10-05

    It has recently been suggested that a scale-invariant "unparticle" sector with a nontrivial infrared fixed point may couple to the standard model (SM) via higher-dimensional operators. The weakness of such interactions hides the unparticle phenomena at low energies. We demonstrate how cosmology and astrophysics can place significant bounds on the strength of unparticle-SM interactions. We also discuss the possibility of a having a non-negligible unparticle relic density today.

  12. Fuel Surrogate Physical Property Effects on Direct Injection Spray and Ignition Behavior

    DTIC Science & Technology

    2015-09-01

    of fuel density and the energy required to vaporize the liquid fuel. Genzale et al. [11] compared diesel and biodiesel sprays under conditions...relevant to late-cycle post-injection conditions and showed ~15 % longer liquid penetration length for biodiesel . Kook and Pickett [12] tested various...emissions, and spray characteristics to the properties of alternative diesel fuels, such as dimethyl ether (DME), biodiesel , and jet fuel, which are

  13. Remote Sensing of the Optical and Physical Densities of Smoke, Dust, and Water Clouds.

    DTIC Science & Technology

    1982-12-01

    systems to measure variability of aerosol concentration distributions along horizontal optical paths . Analysis of backscatter... extinction measurements using a single- laser lidar system operating at 1.06- and 0.53-pm wavelengths. For larger mean particle sizes the extinction ratio...clear air paths and The transmissometers were mounted across a 10-m complete blockage of the source energy. Transmisso- long aerosol tunnel that

  14. Production of bio-oil from underutilized forest biomass using an auger reactor

    Treesearch

    H. Ravindran; S. Thangalzhy-Gopakumar; S. Adhikari; O. Fasina; M. Tu; B. Via; E. Carter; S. Taylor

    2015-01-01

    Conversion of underutilized forest biomass to bio-oil could be a niche market for energy production. In this work, bio-oil was produced from underutilized forest biomass at selected temperatures between 425–500°C using an auger reactor. Physical properties of bio-oil, such as pH, density, heating value, ash, and water, were analyzed and compared with an ASTM standard...

  15. [Sedentary lifestyle: physical activity duration versus percentage of energy expenditure].

    PubMed

    Cabrera de León, Antonio; Rodríguez-Pérez, María del C; Rodríguez-Benjumeda, Luis M; Anía-Lafuente, Basilio; Brito-Díaz, Buenaventura; Muros de Fuentes, Mercedes; Almeida-González, Delia; Batista-Medina, Marta; Aguirre-Jaime, Armando

    2007-03-01

    To compare different definitions of a sedentary lifestyle and to determine which is the most appropriate for demonstrating its relationship with the metabolic syndrome and other cardiovascular risk factors. A cross-sectional study of 5814 individuals was carried out. Comparisons were made between two definitions of a sedentary lifestyle: one based on active energy expenditure being less than 10% of total energy expenditure, and the other, on performing less than 25-30 minutes of physical activity per day. Reported levels of physical activity, anthropometric measurements, and biochemical markers of cardiovascular risk were recorded. The associations between a sedentary lifestyle and metabolic syndrome and other risk factors were adjusted for gender, age and tobacco use. The prevalence of a sedentary lifestyle was higher in women (70%) than in men (45-60%, according to the definition used). The definitions based on physical activity duration and on energy expenditure were equally useful: there were direct associations between a sedentary lifestyle and metabolic syndrome, body mass index, abdominal and pelvic circumferences, systolic blood pressure, heart rate, apolipoprotein B, and triglycerides, and inverse associations with high-density lipoprotein cholesterol and paraoxonase activity, which demonstrated the greatest percentage difference between sedentary and active individuals. An incidental finding was that both definitions of a sedentary lifestyle were more strongly associated with the metabolic syndrome as defined by International Diabetes Federation criteria than by Adult Treatment Panel III criteria. Given that it is relatively easy to determine whether a patient performs less than 25 minutes of physical activity per day, use of this definition of a sedentary lifestyle is recommended for clinical practice. The serum paraoxonase activity level could provide a useful marker for studying sedentary lifestyles.

  16. The Wang-Landau Sampling Algorithm

    NASA Astrophysics Data System (ADS)

    Landau, David P.

    2003-03-01

    Over the past several decades Monte Carlo simulations[1] have evolved into a powerful tool for the study of wide-ranging problems in statistical/condensed matter physics. Standard methods sample the probability distribution for the states of the system, usually in the canonical ensemble, and enormous improvements have been made in performance through the implementation of novel algorithms. Nonetheless, difficulties arise near phase transitions, either due to critical slowing down near 2nd order transitions or to metastability near 1st order transitions, thus limiting the applicability of the method. We shall describe a new and different Monte Carlo approach [2] that uses a random walk in energy space to determine the density of states directly. Once the density of states is estimated, all thermodynamic properties can be calculated at all temperatures. This approach can be extended to multi-dimensional parameter spaces and has already found use in classical models of interacting particles including systems with complex energy landscapes, e.g., spin glasses, protein folding models, etc., as well as for quantum models. 1. A Guide to Monte Carlo Simulations in Statistical Physics, D. P. Landau and K. Binder (Cambridge U. Press, Cambridge, 2000). 2. Fugao Wang and D. P. Landau, Phys. Rev. Lett. 86, 2050 (2001); Phys. Rev. E64, 056101-1 (2001).

  17. Machining Specific Fourier Power Spectrum Profiles into Plastics for High Energy Density Physics Experiments [Machining Specific Fourier Power Spectrum Profiles into Plastics for HEDP Experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmidt, Derek William; Cardenas, Tana; Doss, Forrest W.

    In this paper, the High Energy Density Physics program at Los Alamos National Laboratory (LANL) has had a multiyear campaign to verify the predictive capability of the interface evolution of shock propagation through different profiles machined into the face of a plastic package with an iodine-doped plastic center region. These experiments varied the machined surface from a simple sine wave to a double sine wave and finally to a multitude of different profiles with power spectrum ranges and shapes to verify LANL’s simulation capability. The MultiMode-A profiles had a band-pass flat region of the power spectrum, while the MultiMode-B profilemore » had two band-pass flat regions. Another profile of interest was the 1-Peak profile, a band-pass concept with a spike to one side of the power spectrum. All these profiles were machined in flat and tilted orientations of 30 and 60 deg. Tailor-made machining profiles, supplied by experimental physicists, were compared to actual machined surfaces, and Fourier power spectra were compared to see the reproducibility of the machining process over the frequency ranges that physicists require.« less

  18. Machining Specific Fourier Power Spectrum Profiles into Plastics for High Energy Density Physics Experiments [Machining Specific Fourier Power Spectrum Profiles into Plastics for HEDP Experiments

    DOE PAGES

    Schmidt, Derek William; Cardenas, Tana; Doss, Forrest W.; ...

    2018-01-15

    In this paper, the High Energy Density Physics program at Los Alamos National Laboratory (LANL) has had a multiyear campaign to verify the predictive capability of the interface evolution of shock propagation through different profiles machined into the face of a plastic package with an iodine-doped plastic center region. These experiments varied the machined surface from a simple sine wave to a double sine wave and finally to a multitude of different profiles with power spectrum ranges and shapes to verify LANL’s simulation capability. The MultiMode-A profiles had a band-pass flat region of the power spectrum, while the MultiMode-B profilemore » had two band-pass flat regions. Another profile of interest was the 1-Peak profile, a band-pass concept with a spike to one side of the power spectrum. All these profiles were machined in flat and tilted orientations of 30 and 60 deg. Tailor-made machining profiles, supplied by experimental physicists, were compared to actual machined surfaces, and Fourier power spectra were compared to see the reproducibility of the machining process over the frequency ranges that physicists require.« less

  19. Nonadiabatic electron response in the Hasegawa-Wakatani equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stoltzfus-Dueck, T.; Scott, B. D.; Krommes, J. A.

    2013-08-15

    Tokamak edge turbulence is strongly influenced by parallel electron physics, which relaxes density and potential fluctuations towards electron adiabatic response. Beginning with the paradigmatic Hasegawa-Wakatani equations (HWEs) for resistive tokamak edge turbulence, a unique decomposition of the electric potential (φ) into adiabatic (a) and nonadiabatic (b) portions is derived, based on the requirement that a neither drive nor respond to the parallel current j{sub ∥}. The form of the decomposition clarifies that, at perpendicular scales large relative to the sound radius, the electron adiabatic response controls the nonzonal φ, not the fluctuating density n. Simple energy balance arguments allow onemore » to rigorously bound the ratio of rms nonzonal nonadiabatic fluctuations (b(tilde sign)) relative to adiabatic ones (ã). The role of the vorticity nonlinearity in transferring energy between adiabatic and nonadiabatic fluctuations aids intuitive understanding of self-sustained turbulence in the HWEs. When the normalized parallel resistivity is weak, b(tilde sign) becomes effectively slaved, allowing the reduction to an approximate one-field model that remains valid for strong turbulence. In addition to guiding physical intuition, the one-field reduction should greatly ease further analytical manipulations. Direct numerical simulation of the 2D HWEs confirms the convergence of the asymptotic formula for b(tilde sign)« less

  20. FY16 LLNL Omega Experimental Programs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heeter, R. F.; Ali, S. J.; Benstead, J.

    In FY16, LLNL’s High-Energy-Density Physics (HED) and Indirect Drive Inertial Confinement Fusion (ICF-ID) programs conducted several campaigns on the OMEGA laser system and on the EP laser system, as well as campaigns that used the OMEGA and EP beams jointly. Overall, these LLNL programs led 430 target shots in FY16, with 304 shots using just the OMEGA laser system, and 126 shots using just the EP laser system. Approximately 21% of the total number of shots (77 OMEGA shots and 14 EP shots) supported the Indirect Drive Inertial Confinement Fusion Campaign (ICF-ID). The remaining 79% (227 OMEGA shots and 112more » EP shots) were dedicated to experiments for High-Energy-Density Physics (HED). Highlights of the various HED and ICF campaigns are summarized in the following reports. In addition to these experiments, LLNL Principal Investigators led a variety of Laboratory Basic Science campaigns using OMEGA and EP, including 81 target shots using just OMEGA and 42 shots using just EP. The highlights of these are also summarized, following the ICF and HED campaigns. Overall, LLNL PIs led a total of 553 shots at LLE in FY 2016. In addition, LLNL PIs also supported 57 NLUF shots on Omega and 31 NLUF shots on EP, in collaboration with the academic community.« less

Top