Ambipolar zinc-polyiodide electrolyte for a high-energy density aqueous redox flow battery
Li, Bin; Nie, Zimin; Vijayakumar, M.; ...
2015-02-24
Large-scale energy storage systems are crucial for substantial deployment of renewable energy sources. Energy storage systems with high energy density, high safety, and low cost and environmental friendliness are desired. To overcome the major limitations of the current aqueous redox flow battery systems, namely lower energy density (~25 Wh L -1) and presence of strong acids and/or other hazardous, a high energy density aqueous zinc/polyiodide flow battery (ZIB) is designed with near neutral ZnI 2 solutions as catholytes. The energy density of ZIB could reach 322 Wh L -1 at the solubility limit of ZnI 2 in water (~7 M).more » We demonstrate charge and discharge energy densities of 245.9 Wh/L and 166.7 Wh L-1 with ZnI 2 electrolyte at 5.0 M, respectively. The addition of ethanol (EtOH) in ZnI 2 electrolyte can effectively mitigate the growth of zinc dendrite at the anode and improve the stability of catholytes with wider temperature window (-20 to 50°C), which enable ZIB system to be a promising alternative as a high-energy and high- safety stationary energy storage system.« less
Regenerative braking systems with torsional springs made of carbon nanotube yarn
NASA Astrophysics Data System (ADS)
Liu, S.; Martin, C.; Lashmore, D.; Schauer, M.; Livermore, C.
2014-11-01
The demonstration of large stroke, high energy density and high power density torsional springs based on carbon nanotube (CNT) yarns is reported, as well as their application as an energy-storing actuator for regenerative braking systems. Originally untwisted CNT yarn is cyclically loaded and unloaded in torsion, with the maximum rotation angle increasing until failure. The maximum extractable energy density is measured to be as high as 6.13 kJ/kg. The tests also reveal structural reorganization and hysteresis in the torsional loading curves. A regenerative braking system is built to capture the kinetic energy of a wheel and store it as elastic energy in twisted CNT yarns. When the yam's twist is released, the stored energy reaccelerates the wheel. The measured energy and mean power densities of the CNT yarns in the simple regenerative braking system are up to 4.69 kJ/kg and 1.21 kW/kg, respectively. A slightly lower energy density of up to 1.23 kJ/kg and a 0.29 kW/kg mean power density are measured for the CNT yarns in a more complex system that mimics a unidirectional rotating regenerative braking mechanism. The lower energy densities for CNT yarns in the regenerative braking systems as compared with the yarns themselves reflect the frictional losses of the regenerative systems.
High energy density propulsion systems and small engine dynamometer
NASA Astrophysics Data System (ADS)
Hays, Thomas
2009-07-01
Scope and Method of Study. This study investigates all possible methods of powering small unmanned vehicles, provides reasoning for the propulsion system down select, and covers in detail the design and production of a dynamometer to confirm theoretical energy density calculations for small engines. Initial energy density calculations are based upon manufacturer data, pressure vessel theory, and ideal thermodynamic cycle efficiencies. Engine tests are conducted with a braking type dynamometer for constant load energy density tests, and show true energy densities in excess of 1400 WH/lb of fuel. Findings and Conclusions. Theory predicts lithium polymer, the present unmanned system energy storage device of choice, to have much lower energy densities than other conversion energy sources. Small engines designed for efficiency, instead of maximum power, would provide the most advantageous method for powering small unmanned vehicles because these engines have widely variable power output, loss of mass during flight, and generate rotational power directly. Theoretical predictions for the energy density of small engines has been verified through testing. Tested values up to 1400 WH/lb can be seen under proper operating conditions. The implementation of such a high energy density system will require a significant amount of follow-on design work to enable the engines to tolerate the higher temperatures of lean operation. Suggestions are proposed to enable a reliable, small-engine propulsion system in future work. Performance calculations show that a mature system is capable of month long flight times, and unrefueled circumnavigation of the globe.
Chen, Zehua; Zhang, Du; Jin, Ye; Yang, Yang; Su, Neil Qiang; Yang, Weitao
2017-09-21
To describe static correlation, we develop a new approach to density functional theory (DFT), which uses a generalized auxiliary system that is of a different symmetry, such as particle number or spin, from that of the physical system. The total energy of the physical system consists of two parts: the energy of the auxiliary system, which is determined with a chosen density functional approximation (DFA), and the excitation energy from an approximate linear response theory that restores the symmetry to that of the physical system, thus rigorously leading to a multideterminant description of the physical system. The electron density of the physical system is different from that of the auxiliary system and is uniquely determined from the functional derivative of the total energy with respect to the external potential. Our energy functional is thus an implicit functional of the physical system density, but an explicit functional of the auxiliary system density. We show that the total energy minimum and stationary states, describing the ground and excited states of the physical system, can be obtained by a self-consistent optimization with respect to the explicit variable, the generalized Kohn-Sham noninteracting density matrix. We have developed the generalized optimized effective potential method for the self-consistent optimization. Among options of the auxiliary system and the associated linear response theory, reformulated versions of the particle-particle random phase approximation (pp-RPA) and the spin-flip time-dependent density functional theory (SF-TDDFT) are selected for illustration of principle. Numerical results show that our multireference DFT successfully describes static correlation in bond dissociation and double bond rotation.
Electronic energy density in chemical reaction systems
NASA Astrophysics Data System (ADS)
Tachibana, Akitomo
2001-08-01
The energy of chemical reaction is visualized in real space using the electronic energy density nE(r⃗) associated with the electron density n(r⃗). The electronic energy density nE(r⃗) is decomposed into the kinetic energy density nT(r⃗), the external potential energy density nV(r⃗), and the interelectron potential energy density nW(r⃗). Using the electronic energy density nE(r⃗) we can pick up any point in a chemical reaction system and find how the electronic energy E is assigned to the selected point. We can then integrate the electronic energy density nE(r⃗) in any region R surrounding the point and find out the regional electronic energy ER to the global E. The kinetic energy density nT(r⃗) is used to identify the intrinsic shape of the reactants, the electronic transition state, and the reaction products along the course of the chemical reaction coordinate. The intrinsic shape is identified with the electronic interface S that discriminates the region RD of the electronic drop from the region RA of the electronic atmosphere in the density distribution of the electron gas. If the R spans the whole space, then the integral gives the total E. The regional electronic energy ER in thermodynamic ensemble is realized in electrochemistry as the intrinsic Volta electric potential φR and the intrinsic Herring-Nichols work function ΦR. We have picked up first a hydrogen-like atom for which we have analytical exact expressions of the relativistic kinetic energy density nTM(r⃗) and its nonrelativistic version nT(r⃗). These expressions are valid for any excited bound states as well as the ground state. Second, we have selected the following five reaction systems and show the figures of the nT(r⃗) as well as the other energy densities along the intrinsic reaction coordinates: a protonation reaction to He, addition reactions of HF to C2H4 and C2H2, hydrogen abstraction reactions of NH3+ from HF and NH3. Valence electrons possess their unique delocalized drop region remote from those heavily localized drop regions adhered to core electrons. The kinetic energy density nT(r⃗) and the tension density τ⃗S(r⃗) can vividly demonstrate the formation of the chemical bond. Various basic chemical concepts in these chemical reaction systems have been clearly visualized in real three-dimensional space.
High Energy Density Regenerative Fuel Cell Systems for Terrestrial Applications
NASA Technical Reports Server (NTRS)
Burke, Kenneth A.
1999-01-01
Regenerative Fuel Cell System (RFCS) technology for energy storage has been a NASA power system concept for many years. Compared to battery-based energy storage systems, RFCS has received relatively little attention or resources for development because the energy density and electrical efficiency were not sufficiently attractive relative to advanced battery systems. Even today, RFCS remains at a very low technology readiness level (TRL of about 2 indicating feasibility has been demonstrated). Commercial development of the Proton Exchange Membrane (PEM) fuel cells for automobiles and other terrestrial applications and improvements in lightweight pressure vessel design to reduce weight and improve performance make possible a high energy density RFCS energy storage system. The results from this study of a lightweight RFCS energy storage system for a remotely piloted, solar-powered, high altitude aircraft indicate an energy density up to 790 w-h/kg with electrical efficiency of 53.4% is attainable. Such an energy storage system would allow a solar-powered aircraft to carry hundreds of kilograms of payload and remain in flight indefinitely for use in atmospheric research, earth observation, resource mapping. and telecommunications. Future developments in the areas of hydrogen and oxygen storage, pressure vessel design, higher temperature and higher- pressure fuel cell operation, unitized regenerative fuel cells, and commercial development of fuel cell technology will improve both the energy density and electrical efficiency of the RFCS.
All 2D materials as electrodes for high power hybrid energy storage applications
NASA Astrophysics Data System (ADS)
Kato, Keiko; Sayed, Farheen N.; Babu, Ganguli; Ajayan, Pulickel M.
2018-04-01
Achieving both high energy and power densities from energy storage devices is a core strategy to meet the increasing demands of high performance portable electronics and electric transportation systems. Li-ion capacitor is a promising hybrid technology that strategically exploits high energy density from a Li-ion battery electrode and high power density from a supercapacitor electrode. However, the performance and safety of hybrid devices are still major concerns due to the use of graphite anodes which form passivation layers with organic electrolytes at lower potentials. Here, we explore 2D nanosheets as both anode and cathode electrodes to build a high power system without compromising energy density. Owing to the high electrical conductivity and multivalent redox activity at higher potentials, the Li-ion intercalation electrode is capable of maintaining large energy density at higher current rates with less safety risk than conventional systems. Hybrid devices consisting of all in all 2D electrodes deliver energy density as high as 121 Wh g-1 (at 240 W kg-1) and retains 29 Wh g-1 at high power density of 3600 W kg-1.
NASA Astrophysics Data System (ADS)
Stone, J. R.; Danielewicz, P.; Iwata, Y.
2017-07-01
Background: The distribution of protons and neutrons in the matter created in heavy-ion collisions is one of the main points of interest for the collision physics, especially at supranormal densities. These distributions are the basis for predictions of the density dependence of the symmetry energy and the density range that can be achieved in a given colliding system. We report results of the first systematic simulation of proton and neutron density distributions in central heavy-ion collisions within the beam energy range of Ebeam≤800 MeV /nucl . The symmetric 40Ca+40Ca , 48Ca+48Ca , 100Sn+100Sn , and 120Sn+120Sn and asymmetric 40Ca+48Ca and 100Sn+120Sn systems were chosen for the simulations. Purpose: We simulate development of proton and neutron densities and asymmetries as a function of initial state, beam energy, and system size in the selected collisions in order to guide further experiments pursuing the density dependence of the symmetry energy. Methods: The Boltzmann-Uhlenbeck-Uehling (pBUU) transport model with four empirical models for the density dependence of the symmetry energy was employed. Results of simulations using pure Vlasov dynamics were added for completeness. In addition, the time-dependent Hartree-Fock (TDHF) model, with the SV-bas Skyrme interaction, was used to model the heavy-ion collisions at Ebeam≤40 MeV /nucl . Maximum proton and neutron densities ρpmax and ρnmax, reached in the course of a collision, were determined from the time evolution of ρp and ρn. Results: The highest total densities predicted at Ebeam=800 MeV /nucl . were of the order of ˜2.5 ρ0 (ρ0=0.16 fm-3 ) for both Sn and Ca systems. They were found to be only weakly dependent on the initial conditions, beam energy, system size, and a model of the symmetry energy. The proton-neutron asymmetry δ =(ρnmax-ρpmax) /(ρnmax+ρpmax) at maximum density does depend, though, on these parameters. The highest value of δ found in all systems and at all investigated beam energies was ˜0.17 . Conclusions: We find that the initial state, beam energy, system size, and a symmetry energy model affect very little the maximum proton and neutron densities, but have a subtle impact on the proton-neutron asymmetry. Most importantly, the variations in the proton-neutron asymmetry at maximum densities are related at most at 50% level to the details in the symmetry energy at supranormal density. The reminder is due to the details in the symmetry energy at subnormal densities and proton and neutron distributions in the initial state. This result brings to the forefront the need for a proper initialization of the nuclei in the simulation, but also brings up the question of microscopy, such as shell effects, that affect initial proton and neutron densities, but cannot be consistently incorporated into semiclassical transport models.
Kim, Mok-Hwa; Kim, Hyun-Kyung; Xi, Kai; Kumar, R Vasant; Jung, Dae Soo; Kim, Kwang-Bum; Roh, Kwang Chul
2018-02-21
Although many existing hybrid energy storage systems demonstrate promising electrochemical performances, imbalances between the energies and kinetics of the two electrodes must be resolved to allow their widespread commercialization. As such, the development of a new class of energy storage systems is a particular challenge, since future systems will require a single device to provide both a high gravimetric energy and a high power density. In this context, we herein report the design of novel lithium-sulfur capacitors. The resulting asymmetric systems exhibited energy densities of 23.9-236.4 Wh kg -1 and power densities of 72.2-4097.3 W kg -1 , which are the highest reported values for an asymmetric system to date. This approach involved the use of a prelithiated anode and a hybrid cathode material exhibiting anion adsorption-desorption in addition to the electrochemical reduction and oxidation of sulfur at almost identical rates. This novel strategy yielded both high energy and power densities, and therefore establishes a new benchmark for hybrid systems.
NASA Astrophysics Data System (ADS)
Waters, Daniel F.; Cadou, Christopher P.
2014-02-01
A unique requirement of underwater vehicles' power/energy systems is that they remain neutrally buoyant over the course of a mission. Previous work published in the Journal of Power Sources reported gross as opposed to neutrally-buoyant energy densities of an integrated solid oxide fuel cell/Rankine-cycle based power system based on the exothermic reaction of aluminum with seawater. This paper corrects this shortcoming by presenting a model for estimating system mass and using it to update the key findings of the original paper in the context of the neutral buoyancy requirement. It also presents an expanded sensitivity analysis to illustrate the influence of various design and modeling assumptions. While energy density is very sensitive to turbine efficiency (sensitivity coefficient in excess of 0.60), it is relatively insensitive to all other major design parameters (sensitivity coefficients < 0.15) like compressor efficiency, inlet water temperature, scaling methodology, etc. The neutral buoyancy requirement introduces a significant (∼15%) energy density penalty but overall the system still appears to offer factors of five to eight improvements in energy density (i.e., vehicle range/endurance) over present battery-based technologies.
Density functional theory calculations of the water interactions with ZrO2 nanoparticles Y2O3 doped
NASA Astrophysics Data System (ADS)
Subhoni, Mekhrdod; Kholmurodov, Kholmirzo; Doroshkevich, Aleksandr; Asgerov, Elmar; Yamamoto, Tomoyuki; Lyubchyk, Andrei; Almasan, Valer; Madadzada, Afag
2018-03-01
Development of a new electricity generation techniques is one of the most relevant tasks, especially nowadays under conditions of extreme growth in energy consumption. The exothermic heterogeneous electrochemical energy conversion to the electric energy through interaction of the ZrO2 based nanopowder system with atmospheric moisture is one of the ways of electric energy obtaining. The questions of conversion into the electric form of the energy of water molecules adsorption in 3 mol% Y2O3 doped ZrO2 nanopowder systems were investigated using the density functional theory calculations. The density functional theory calculations has been realized as in the Kohn-Sham formulation, where the exchange-correlation potential is approximated by a functional of the electronic density. The electronic density, total energy and band structure calculations are carried out using the all-electron, full potential, linear augmented plane wave method of the electronic density and related approximations, i.e. the local density, the generalized gradient and their hybrid approximations.
Application of a high-energy-density permanent magnet material in underwater systems
NASA Astrophysics Data System (ADS)
Cho, C. P.; Egan, C.; Krol, W. P.
1996-06-01
This paper addresses the application of high-energy-density permanent magnet (PM) technology to (1) the brushless, axial-field PM motor and (2) the integrated electric motor/pump system for under-water applications. Finite-element analysis and lumped parameter magnetic circuit analysis were used to calculate motor parameters and performance characteristics and to conduct tradeoff studies. Compact, efficient, reliable, and quiet underwater systems are attainable with the development of high-energy-density PM material, power electronic devices, and power integrated-circuit technology.
2009-11-19
Energy Density of UltraCell XX25 72 25W Mission Energy Density: 24-hr 230 Whr /kg 72-hr 360 Whr /kg UltraCell XX55 RMFC 0% 5% 10% 15% 20% 25% 30% 0% 25...Weight: 2.7 kg System Efficiency: 26.0 % 55W Mission Energy Density: 24 hr 265 Whr /kg* 72-hr 410 Whr /kg* * Calculated based on initial data only AMIe60...10.25" x 9" x 4" Start Up Time: 15min. System Dry Weight: 2.8 kg System Efficiency: 18.0 % 60W Mission Energy Density: 24 hr 400 Whr /kg 72-hr
Hybrid system for rechargeable magnesium battery with high energy density
NASA Astrophysics Data System (ADS)
Chang, Zheng; Yang, Yaqiong; Wang, Xiaowei; Li, Minxia; Fu, Zhengwen; Wu, Yuping; Holze, Rudolf
2015-07-01
One of the main challenges of electrical energy storage (EES) is the development of environmentally friendly battery systems with high safety and high energy density. Rechargeable Mg batteries have been long considered as one highly promising system due to the use of low cost and dendrite-free magnesium metal. The bottleneck for traditional Mg batteries is to achieve high energy density since their output voltage is below 2.0 V. Here, we report a magnesium battery using Mg in Grignard reagent-based electrolyte as the negative electrode, a lithium intercalation compound in aqueous solution as the positive electrode, and a solid electrolyte as a separator. Its average discharge voltage is 2.1 V with stable discharge platform and good cycling life. The calculated energy density based on the two electrodes is high. These findings open another door to rechargeable magnesium batteries.
Enhanced energy harvesting in commercial ferroelectric materials
NASA Astrophysics Data System (ADS)
Patel, Satyanarayan; Chauhan, Aditya; Vaish, Rahul
2014-04-01
Ferroelectric materials are used in a number of applications ranging from simple sensors and actuators to ferroelectric random access memories (FRAMs), transducers, health monitoring system and microelectronics. The multiphysical coupling ability possessed by these materials has been established to be useful for energy harvesting applications. However, conventional energy harvesting techniques employing ferroelectric materials possess low energy density. This has prevented the successful commercialization of ferroelectric based energy harvesting systems. In this context, the present study aims at proposing a novel approach for enhanced energy harvesting using commercially available ferroelectric materials. This technique was simulated to be used for two commercially available piezoelectric materials namely PKI-552 and APCI-840, soft and hard lead-zirconate-titanate (PZT) pervoskite ceramics, respectively. It was observed that a maximum energy density of 348 kJm-3cycle-1 can be obtained for cycle parameters of (0-1 ton compressive stress and 1-25 kV.cm-1 electric field) using APCI-840. The reported energy density is several hundred times larger than the maximum energy density reported in the literature for vibration harvesting systems.
Hybrid system for rechargeable magnesium battery with high energy density
Chang, Zheng; Yang, Yaqiong; Wang, Xiaowei; Li, Minxia; Fu, Zhengwen; Wu, Yuping; Holze, Rudolf
2015-01-01
One of the main challenges of electrical energy storage (EES) is the development of environmentally friendly battery systems with high safety and high energy density. Rechargeable Mg batteries have been long considered as one highly promising system due to the use of low cost and dendrite-free magnesium metal. The bottleneck for traditional Mg batteries is to achieve high energy density since their output voltage is below 2.0 V. Here, we report a magnesium battery using Mg in Grignard reagent-based electrolyte as the negative electrode, a lithium intercalation compound in aqueous solution as the positive electrode, and a solid electrolyte as a separator. Its average discharge voltage is 2.1 V with stable discharge platform and good cycling life. The calculated energy density based on the two electrodes is high. These findings open another door to rechargeable magnesium batteries. PMID:26173624
Generalization of the Kohn-Sham system that can represent arbitrary one-electron density matrices
Hubertus J. J. van Dam
2016-04-27
Density functional theory is currently the most widely applied method in electronic structure theory. The Kohn-Sham method, based on a fictitious system of noninteracting particles, is the workhorse of the theory. The particular form of the Kohn-Sham wave function admits only idempotent one-electron density matrices whereas wave functions of correlated electrons in post-Hartree-Fock methods invariably have fractional occupation numbers. Here we show that by generalizing the orbital concept and introducing a suitable dot product as well as a probability density, a noninteracting system can be chosen that can represent the one-electron density matrix of any system, even one with fractionalmore » occupation numbers. This fictitious system ensures that the exact electron density is accessible within density functional theory. It can also serve as the basis for reduced density matrix functional theory. Moreover, to aid the analysis of the results the orbitals may be assigned energies from a mean-field Hamiltonian. This produces energy levels that are akin to Hartree-Fock orbital energies such that conventional analyses based on Koopmans' theorem are available. Lastly, this system is convenient in formalisms that depend on creation and annihilation operators as they are trivially applied to single-determinant wave functions.« less
Semiclassical neutral atom as a reference system in density functional theory.
Constantin, Lucian A; Fabiano, E; Laricchia, S; Della Sala, F
2011-05-06
We use the asymptotic expansions of the semiclassical neutral atom as a reference system in density functional theory to construct accurate generalized gradient approximations (GGAs) for the exchange-correlation and kinetic energies without any empiricism. These asymptotic functionals are among the most accurate GGAs for molecular systems, perform well for solid state, and overcome current GGA state of the art in frozen density embedding calculations. Our results also provide evidence for the conjointness conjecture between exchange and kinetic energies of atomic systems.
Advanced High Energy Density Secondary Batteries with Multi‐Electron Reaction Materials
Luo, Rui; Huang, Yongxin; Li, Li
2016-01-01
Secondary batteries have become important for smart grid and electric vehicle applications, and massive effort has been dedicated to optimizing the current generation and improving their energy density. Multi‐electron chemistry has paved a new path for the breaking of the barriers that exist in traditional battery research and applications, and provided new ideas for developing new battery systems that meet energy density requirements. An in‐depth understanding of multi‐electron chemistries in terms of the charge transfer mechanisms occuring during their electrochemical processes is necessary and urgent for the modification of secondary battery materials and development of secondary battery systems. In this Review, multi‐electron chemistry for high energy density electrode materials and the corresponding secondary battery systems are discussed. Specifically, four battery systems based on multi‐electron reactions are classified in this review: lithium‐ and sodium‐ion batteries based on monovalent cations; rechargeable batteries based on the insertion of polyvalent cations beyond those of alkali metals; metal–air batteries, and Li–S batteries. It is noted that challenges still exist in the development of multi‐electron chemistries that must be overcome to meet the energy density requirements of different battery systems, and much effort has more effort to be devoted to this. PMID:27840796
NASA Astrophysics Data System (ADS)
Jana, Subrata; Samal, Prasanjit
2018-01-01
The behaviors of the positive definite Kohn-Sham kinetic energy density near the origin and at the asymptotic region play a major role in designing meta-generalized gradient approximations (meta-GGAs) for exchange in low-dimensional quantum systems. It is shown that near the origin of the parabolic quantum dot, the Kohn-Sham kinetic energy differs from its von Weizsäcker counterpart due to the p orbital contributions, whereas in the asymptotic region, the difference between the above two kinetic energy densities goes as ˜ρ/(r ) r2 . All these behaviors have been explored using the two-dimensional isotropic quantum harmonic oscillator as a test case. Several meta-GGA ingredients are then studied by making use of the above findings. Also, the asymptotic conditions for the exchange energy density and the potential at the meta-GGA level are proposed using the corresponding behaviors of the two kinetic energy densities.
Jana, Subrata; Samal, Prasanjit
2018-01-14
The behaviors of the positive definite Kohn-Sham kinetic energy density near the origin and at the asymptotic region play a major role in designing meta-generalized gradient approximations (meta-GGAs) for exchange in low-dimensional quantum systems. It is shown that near the origin of the parabolic quantum dot, the Kohn-Sham kinetic energy differs from its von Weizsäcker counterpart due to the p orbital contributions, whereas in the asymptotic region, the difference between the above two kinetic energy densities goes as ∼ρ(r)r 2 . All these behaviors have been explored using the two-dimensional isotropic quantum harmonic oscillator as a test case. Several meta-GGA ingredients are then studied by making use of the above findings. Also, the asymptotic conditions for the exchange energy density and the potential at the meta-GGA level are proposed using the corresponding behaviors of the two kinetic energy densities.
NASA Technical Reports Server (NTRS)
Easter, R. W.
1974-01-01
Simplified design concepts were used to estimate gravimetric and volumetric energy densities for metal hydrogen battery cells for assessing the characteristics of cells containing metal hydrides as compared to gaseous storage cells, and for comparing nickel cathode and silver cathode systems. The silver cathode was found to yield superior energy densities in all cases considered. The inclusion of hydride forming materials yields cells with very high volumetric energy densities that also retain gravimetric energy densities nearly as high as those of gaseous storage cells.
Advanced rechargeable sodium batteries with novel cathodes
NASA Technical Reports Server (NTRS)
Distefano, S.; Ratnakumar, B. V.; Bankston, C. P.
1989-01-01
Various high energy density rechargeable batteries are being considered for future space applications. Of these, the sodium-sulfur battery is one of the leading candidates. The primary advantage is the high energy density (760 Wh/kg theoretical). Energy densities in excess of 180 Wh/kg were realized in practical batteries. Other technological advantages include its chemical simplicity, absence of self-discharge, and long cycle life possibility. More recently, other high temperature sodium batteries have come into the spotlight. These systems can be described as follow: Na/Beta Double Prime-Al2O3/NaAlCl4/Metal Dichloride Sodium/metal dichloride systems are colloquially known as the zebra system and are currently being developed for traction and load leveling applications. The sodium-metal dichloride systems appear to offer many of the same advantages of the Na/S system, especially in terms of energy density and chemical simplicity. The metal dichloride systems offer increased safety and good resistance to overcharge and operate over a wide range of temperatures from 150 to 400 C with less corrosion problems.
Charge Energy Transport in Hopping Systems with Rapidly Decreasing Density of States
NASA Astrophysics Data System (ADS)
Mendels, Dan; Organic Electronics Group Technion Team
2014-03-01
An accurate description of the carrier hopping topology in the energy domain of hopping systems incorporating a rapidly decreasing density of states and the subsequent energetic position of these systems' so called effective conduction band is crucial for rationalizing and quantifying these systems' thermo-electric properties, doping related phenomena and carrier gradient effects such as the emergence of the General Einstein Relation under degenerate conditions. Additionally, as will be shown, the 'mobile' carriers propagating through the system can have excess energies reaching 0.3eV above the system quasi-Fermi energy. Hence, since these mobile carriers are most prone to reach systems interfaces and interact with oppositely charged carriers, their excess energy should be considered in determining the efficiencies of energy dependent processes such as carrier recombination and exciton dissociation. In light of the stated motivations, a comprehensive numerical and analytical study of the topology of hopping in the energetic density of such systems (i.e. the statistics regarding which energy values carriers visit most and in what manner) was implemented and the main statistical features of the hopping process that determine the position in energy of the system's effective conduction band were distilled. The obtained results also help shed light on yet to be elucidated discrepancies between predictions given by the widely employed transport energy concept and Monte Carlo simulations.
High-energy non-rechargeable batteries and their applications
NASA Astrophysics Data System (ADS)
Higgins, Robert; Kruger, Ken
1990-04-01
Many of the more recently developed high energy battery systems employ Li anodes, which are capable of energy densities of 700 W h/kg and shelf power-losses of less than 3 percent/yr. It has been noted, however, that some Li-based systems exhibit 'voltage sag' during storage and pose some safety problems in cases of inadvertent abuse. The two highest energy-output yielding of the current Li systems, namely Li/CF(x) spiral cells and Li/thionyl chloride liquid cathode cells, are presented and compared with a Zn/AgO electrochemical (aqueous) battery system which, although of older design, is still capable of substantial energy densities.
A Hybrid Redox-Supercapacitor System with Anionic Catholyte and Cationic Anolyte
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, B; Macia-Agullo, JA; Prendiville, DG
A significant challenge for energy storage technologies is to realize battery-level energy density and capacitor-level durability and power density in one device. By introducing an electrolyte composed of an anionic catholyte and a cationic anolyte into a symmetric carbon-based supercapacitor configuration, a hybrid electrochemical battery-supercapacitor system using soluble redox species delivers significantly improved energy density from 20 to 42 W.h/kg (based on the electrode mass) and stable capacities for > 10(4) cycles. The ionic species formed in the electrolyte are studied by UV-Vis, Raman and mass spectroscopy to probe the energy storage mechanism. The strategy is general and may providemore » a route to critically-needed fast-charging devices with both high energy density and power. (C) 2014 The Electrochemical Society. All rights reserved.« less
Multiconfiguration Pair-Density Functional Theory: A New Way To Treat Strongly Correlated Systems.
Gagliardi, Laura; Truhlar, Donald G; Li Manni, Giovanni; Carlson, Rebecca K; Hoyer, Chad E; Bao, Junwei Lucas
2017-01-17
The electronic energy of a system provides the Born-Oppenheimer potential energy for internuclear motion and thus determines molecular structure and spectra, bond energies, conformational energies, reaction barrier heights, and vibrational frequencies. The development of more efficient and more accurate ways to calculate the electronic energy of systems with inherently multiconfigurational electronic structure is essential for many applications, including transition metal and actinide chemistry, systems with partially broken bonds, many transition states, and most electronically excited states. Inherently multiconfigurational systems are called strongly correlated systems or multireference systems, where the latter name refers to the need for using more than one ("multiple") configuration state function to provide a good zero-order reference wave function. This Account describes multiconfiguration pair-density functional theory (MC-PDFT), which was developed as a way to combine the advantages of wave function theory (WFT) and density functional theory (DFT) to provide a better treatment of strongly correlated systems. First we review background material: the widely used Kohn-Sham DFT (which uses only a single Slater determinant as reference wave function), multiconfiguration WFT methods that treat inherently multiconfigurational systems based on an active space, and previous attempts to combine multiconfiguration WFT with DFT. Then we review the formulation of MC-PDFT. It is a generalization of Kohn-Sham DFT in that the electron kinetic energy and classical electrostatic energy are calculated from a reference wave function, while the rest of the energy is obtained from a density functional. However, there are two main differences with respent to Kohn-Sham DFT: (i) The reference wave function is multiconfigurational rather than being a single Slater determinant. (ii) The density functional is a function of the total density and the on-top pair density rather than being a function of the spin-up and spin-down densities. In work carried out so far, the multiconfigurational wave function is a multiconfiguration self-consistent-field wave function. The new formulation has the advantage that the reference wave function has the correct spatial and spin symmetry and can describe bond dissociation (of both single and multiple bonds) and electronic excitations in a formally and physically correct way. We then review the formulation of density functionals in terms of the on-top pair density. Finally we review successful applications of the theory to bond energies and bond dissociation potential energy curves of main-group and transition metal bonds, to barrier heights (including pericyclic reactions), to proton affinities, to the hydrogen bond energy of water dimer, to ground- and excited-state charge transfer, to valence and Rydberg excitations of molecules, and to singlet-triplet splittings of radicals. We find that that MC-PDFT can give accurate results not only with complete-active-space multiconfiguration wave functions but also with generalized-active-space multiconfiguration wave functions, which are practical for larger numbers of active electrons and active orbitals than are complete-active-space wave functions. The separated-pair approximation, which is a special case of generalized active space self-consistent-field theory, is especially promising. MC-PDFT, because it requires much less computer time and storage than pure WFT methods, has the potential to open larger and more complex strongly correlated systems to accurate simulation.
Prospects and Limits of Energy Storage in Batteries.
Abraham, K M
2015-03-05
Energy densities of Li ion batteries, limited by the capacities of cathode materials, must increase by a factor of 2 or more to give all-electric automobiles a 300 mile driving range on a single charge. Battery chemical couples with very low equivalent weights have to be sought to produce such batteries. Advanced Li ion batteries may not be able to meet this challenge in the near term. The state-of-the-art of Li ion batteries is discussed, and the challenges of developing ultrahigh energy density rechargeable batteries are identified. Examples of ultrahigh energy density battery chemical couples include Li/O2, Li/S, Li/metal halide, and Li/metal oxide systems. Future efforts are also expected to involve all-solid-state batteries with performance similar to their liquid electrolyte counterparts, biodegradable batteries to address environmental challenges, and low-cost long cycle-life batteries for large-scale energy storage. Ultimately, energy densities of electrochemical energy storage systems are limited by chemistry constraints.
Carbon nanotube torsional springs for regenerative braking systems
NASA Astrophysics Data System (ADS)
Liu, Sanwei; Martin, Corbin; Lashmore, David; Schauer, Mark; Livermore, Carol
2015-10-01
The modeling and demonstration of large stroke, high energy density and high power density torsional springs based on carbon nanotube (CNT) yarns is reported, as well as their application as energy-storing actuators for regenerative braking systems. An originally untwisted CNT yarn is cyclically loaded and unloaded in torsion, with the maximum rotation angle increasing incrementally until failure. The measured average extractable energy density values are 2.9 kJ kg-1 ± 1.2 kJ kg-1 and 3.4 kJ kg-1 ± 0.4 kJ kg-1 for 1-ply CNT yarns and 2-ply CNT yarns, respectively. Additionally, a regenerative braking system is demonstrated to capture the kinetic energy of a wheel and store it as elastic energy in twisted CNT yarns. When the yarn’s twist is released, the stored energy reaccelerates the wheel. The measured energy and mean power densities of the CNT yarns in the simple regenerative braking setup are on average 3.3 kJ kg-1 and 0.67 kW kg-1, respectively, with maximum measured values of up to 4.7 kJ kg-1 and 1.2 kW kg-1, respectively. A slightly lower energy density of up to 1.2 kJ kg-1 and a 0.29 kW kg-1 mean power density are measured for CNT yarns in a more complex setup that mimics a unidirectional rotating regenerative braking mechanism.
Ground-state-entanglement bound for quantum energy teleportation of general spin-chain models
NASA Astrophysics Data System (ADS)
Hotta, Masahiro
2013-03-01
Many-body quantum systems in the ground states have zero-point energy due to the uncertainty relation. In many cases, the system in the ground state accompanies spatially entangled energy density fluctuation via the noncommutativity of the energy density operators, though the total energy takes a fixed value, i.e., the lowest eigenvalue of the Hamiltonian. Quantum energy teleportation (QET) is a protocol for the extraction of the zero-point energy out of one subsystem using information of a remote measurement of another subsystem. From an operational viewpoint of protocol users, QET can be regarded as an effective rapid energy transportation without breaking all physical laws, including causality and local energy conservation. In the protocol, the ground-state entanglement plays a crucial role. In this paper, we show analytically for a general class of spin-chain systems that the entanglement entropy is lower bounded by a positive quadratic function of the teleported energy between the regions of a QET protocol. This supports a general conjecture that ground-state entanglement is an evident physical resource for energy transportation in the context of QET. The result may also deepen our understanding of the energy density fluctuation in condensed-matter systems from a perspective of quantum information theory.
NASA Technical Reports Server (NTRS)
Eichenberg, Dennis J.
2005-01-01
The NASA John H. Glenn Research Center initiated baseline testing of ultracapacitors for the Next Generation Launch Transportation (NGLT) project to obtain empirical data for determining the feasibility of using ultracapacitors for the project. There are large transient loads associated with NGLT that require either a very large primary energy source or an energy storage system. The primary power source used for these tests is a proton exchange membrane (PEM) fuel cell. The energy storage system can consist of devices such as batteries, flywheels, or ultracapacitors. Ultracapacitors were used for these tests. Ultracapacitors are ideal for applications such as NGLT where long life, maintenance-free operation, and excellent low-temperature performance is essential. State-of-the-art symmetric ultracapacitors were used for these tests. The ultracapacitors were interconnected in an innovative configuration to minimize interconnection impedance. PEM fuel cells provide excellent energy density, but not good power density. Ultracapacitors provide excellent power density, but not good energy density. The combination of PEM fuel cells and ultracapacitors provides a power source with excellent energy density and power density. The life of PEM fuel cells is shortened significantly by large transient loads. Ultracapacitors used in conjunction with PEM fuel cells reduce the transient loads applied to the fuel cell, and thus appreciably improves its life. PEM fuel cells were tested with and without ultracapacitors, to determine the benefits of ultracapacitors. The report concludes that the implementation of symmetric ultracapacitors in the NGLT power system can provide significant improvements in power system performance and reliability.
Baseline Testing of Ultracapacitors for the Next Generation Launch Technology (NGLT) Project
NASA Technical Reports Server (NTRS)
Eichenberg, Dennis J.
2004-01-01
The NASA John H. Glenn Research Center initiated baseline testing of ultracapacitors for the Next Generation Launch Transportation (NGLT) project to obtain empirical data for determining the feasibility of using ultracapacitors for the project. There are large transient loads associated with NGLT that require either a very large primary energy source or an energy storage system. The primary power source used for these tests is a proton exchange membrane (PEM) fuel cell. The energy storage system can consist of devices such as batteries, flywheels, or ultracapacitors. Ultracapacitors were used for these tests. Ultracapacitors are ideal for applications such as NGLT where long life, maintenance-free operation, and excellent low-temperature performance is essential. State-of-the-art symmetric ultracapacitors were used for these tests. The ultracapacitors were interconnected in an innovative configuration to minimize interconnection impedance. PEM fuel cells provide excellent energy density, but not good power density. Ultracapacitors provide excellent power density, but not good energy density. The combination of PEM fuel cells and ultracapacitors provides a power source with excellent energy density and power density. The life of PEM fuel cells is shortened significantly by large transient loads. Ultracapacitors used in conjunction with PEM fuel cells reduce the transient loads applied to the fuel cell, and thus appreciably improves its life. PEM fuel cells were tested with and without ultracapacitors, to determine the benefits of ultracapacitors. The report concludes that the implementation of symmetric ultracapacitors in the NGLT power system can provide significant improvements in power system performance and reliability.
High-Energy-Density Metal-Oxygen Batteries: Lithium-Oxygen Batteries vs Sodium-Oxygen Batteries.
Song, Kyeongse; Agyeman, Daniel Adjei; Park, Mihui; Yang, Junghoon; Kang, Yong-Mook
2017-12-01
The development of next-generation energy-storage devices with high power, high energy density, and safety is critical for the success of large-scale energy-storage systems (ESSs), such as electric vehicles. Rechargeable sodium-oxygen (Na-O 2 ) batteries offer a new and promising opportunity for low-cost, high-energy-density, and relatively efficient electrochemical systems. Although the specific energy density of the Na-O 2 battery is lower than that of the lithium-oxygen (Li-O 2 ) battery, the abundance and low cost of sodium resources offer major advantages for its practical application in the near future. However, little has so far been reported regarding the cell chemistry, to explain the rate-limiting parameters and the corresponding low round-trip efficiency and cycle degradation. Consequently, an elucidation of the reaction mechanism is needed for both lithium-oxygen and sodium-oxygen cells. An in-depth understanding of the differences and similarities between Li-O 2 and Na-O 2 battery systems, in terms of thermodynamics and a structural viewpoint, will be meaningful to promote the development of advanced metal-oxygen batteries. State-of-the-art battery design principles for high-energy-density lithium-oxygen and sodium-oxygen batteries are thus reviewed in depth here. Major drawbacks, reaction mechanisms, and recent strategies to improve performance are also summarized. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Density functional theory and an experimentally-designed energy functional of electron density.
Miranda, David A; Bueno, Paulo R
2016-09-21
We herein demonstrate that capacitance spectroscopy (CS) experimentally allows access to the energy associated with the quantum mechanical ground state of many-electron systems. Priorly, electrochemical capacitance, C [small mu, Greek, macron] [ρ], was previously understood from conceptual and computational density functional theory (DFT) calculations. Thus, we herein propose a quantum mechanical experiment-based variational method for electron charging processes based on an experimentally-designed functional of the ground state electron density. In this methodology, the electron state density, ρ, and an energy functional of the electron density, E [small mu, Greek, macron] [ρ], can be obtained from CS data. CS allows the derivative of the electrochemical potential with respect to the electron density, (δ[small mu, Greek, macron][ρ]/δρ), to be obtained as a unique functional of the energetically minimised system, i.e., β/C [small mu, Greek, macron] [ρ], where β is a constant (associated with the size of the system) and C [small mu, Greek, macron] [ρ] is an experimentally observable quantity. Thus the ground state energy (at a given fixed external potential) can be obtained simply as E [small mu, Greek, macron] [ρ], from the experimental measurement of C [small mu, Greek, macron] [ρ]. An experimental data-set was interpreted to demonstrate the potential of this quantum mechanical experiment-based variational principle.
Institute for High Energy Density Science
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wootton, Alan
The project objective was for the Institute of High Energy Density Science (IHEDS) at the University of Texas at Austin to help grow the High Energy Density (HED) science community, by connecting academia with the Z Facility (Z) and associated staff at Sandia National Laboratories (SNL). IHEDS was originally motivated by common interests and complementary capabilities at SNL and the University of Texas System (UTX), in 2008.
Fission Systems for Mars Exploration
NASA Technical Reports Server (NTRS)
Houts, Michael G.; Kim, T.; Dorney, D. J.; Swint, Marion Shayne
2012-01-01
Fission systems are used extensively on earth, and 34 such systems have flown in space. The energy density of fission is over 10 million times that of chemical reactions, giving fission the potential to eliminate energy density constraints for many space missions. Potential safety and operational concerns with fission systems are well understood, and strategies exist for affordably developing such systems. By enabling a power-rich environment and highly efficient propulsion, fission systems could enable affordable, sustainable exploration of Mars.
Committor of elementary reactions on multistate systems
NASA Astrophysics Data System (ADS)
Király, Péter; Kiss, Dóra Judit; Tóth, Gergely
2018-04-01
In our study, we extend the committor concept on multi-minima systems, where more than one reaction may proceed, but the feasible data evaluation needs the projection onto partial reactions. The elementary reaction committor and the corresponding probability density of the reactive trajectories are defined and calculated on a three-hole two-dimensional model system explored by single-particle Langevin dynamics. We propose a method to visualize more elementary reaction committor functions or probability densities of reactive trajectories on a single plot that helps to identify the most important reaction channels and the nonreactive domains simultaneously. We suggest a weighting for the energy-committor plots that correctly shows the limits of both the minimal energy path and the average energy concepts. The methods also performed well on the analysis of molecular dynamics trajectories of 2-chlorobutane, where an elementary reaction committor, the probability densities, the potential energy/committor, and the free-energy/committor curves are presented.
Universality of quantum information in chaotic CFTs
NASA Astrophysics Data System (ADS)
Lashkari, Nima; Dymarsky, Anatoly; Liu, Hong
2018-03-01
We study the Eigenstate Thermalization Hypothesis (ETH) in chaotic conformal field theories (CFTs) of arbitrary dimensions. Assuming local ETH, we compute the reduced density matrix of a ball-shaped subsystem of finite size in the infinite volume limit when the full system is an energy eigenstate. This reduced density matrix is close in trace distance to a density matrix, to which we refer as the ETH density matrix, that is independent of all the details of an eigenstate except its energy and charges under global symmetries. In two dimensions, the ETH density matrix is universal for all theories with the same value of central charge. We argue that the ETH density matrix is close in trace distance to the reduced density matrix of the (micro)canonical ensemble. We support the argument in higher dimensions by comparing the Von Neumann entropy of the ETH density matrix with the entropy of a black hole in holographic systems in the low temperature limit. Finally, we generalize our analysis to the coherent states with energy density that varies slowly in space, and show that locally such states are well described by the ETH density matrix.
NASA Astrophysics Data System (ADS)
Xia, Junchao; Carter, Emily
2014-03-01
We propose a density decomposition scheme using a Wang-Govind-Carter (WGC)-based kinetic energy density functional (KEDF) to accurately and efficiently simulate covalent systems within orbital-free (OF) density functional theory (DFT). By using a local, density-dependent scale function, the total density is decomposed into a localized density within covalent bond regions and a flattened delocalized density, with the former described by semilocal KEDFs and the latter treated by the WGC KEDF. The new model predicts reasonable equilibrium volumes, bulk moduli, and phase ordering energies for various semiconductors compared to Kohn-Sham (KS) DFT benchmarks. The surface energy of Si(100) also agrees well with KSDFT. We further apply the model to study mechanical properties of Li-Si alloys, which have been recently recognized as a promising candidate for next-generation anodes of Li-ion batteries with outstanding capacity. We study multiple crystalline Li-Si alloys. The WGCD KEDF predicts accurate cell lattice vectors, equilibrium volumes, elastic moduli, electron densities, alloy formation and Li adsorption energies. Because of its quasilinear scaling, coupled with the level of accuracy shown here, OFDFT appears quite promising for large-scale simulation of such materials phenomena. Office of Naval Research, National Science Foundation, Tigress High Performance Computing Center.
Zheng, Jun-Sheng; Zhang, Lei; Shellikeri, Annadanesh; Cao, Wanjun; Wu, Qiang; Zheng, Jim P
2017-02-07
Li ion battery (LIB) and electrochemical capacitor (EC) are considered as the most widely used energy storage systems (ESSs) because they can produce a high energy density or a high power density, but it is a huge challenge to achieve both the demands of a high energy density as well as a high power density on their own. A new hybrid Li ion capacitor (HyLIC), which combines the advantages of LIB and Li ion capacitor (LIC), is proposed. This device can successfully realize a potential match between LIB and LIC and can avoid the excessive depletion of electrolyte during the charge process. The galvanostatic charge-discharge cycling tests reveal that at low current, the HyLIC exhibits a high energy density, while at high current, it demonstrates a high power density. Ragone plot confirms that this device can make a synergetic balance between energy and power and achieve a highest energy density in the power density range of 80 to 300 W kg -1 . The cycle life test proves that HyLIC exhibits a good cycle life and an excellent coulombic efficiency. The present study shows that HyLIC, which is capable of achieving a high energy density, a long cycle life and an excellent power density, has the potential to achieve the winning combination of a high energy and power density.
Zheng, Jun-Sheng; Zhang, Lei; Shellikeri, Annadanesh; Cao, Wanjun; Wu, Qiang; Zheng, Jim P.
2017-01-01
Li ion battery (LIB) and electrochemical capacitor (EC) are considered as the most widely used energy storage systems (ESSs) because they can produce a high energy density or a high power density, but it is a huge challenge to achieve both the demands of a high energy density as well as a high power density on their own. A new hybrid Li ion capacitor (HyLIC), which combines the advantages of LIB and Li ion capacitor (LIC), is proposed. This device can successfully realize a potential match between LIB and LIC and can avoid the excessive depletion of electrolyte during the charge process. The galvanostatic charge-discharge cycling tests reveal that at low current, the HyLIC exhibits a high energy density, while at high current, it demonstrates a high power density. Ragone plot confirms that this device can make a synergetic balance between energy and power and achieve a highest energy density in the power density range of 80 to 300 W kg−1. The cycle life test proves that HyLIC exhibits a good cycle life and an excellent coulombic efficiency. The present study shows that HyLIC, which is capable of achieving a high energy density, a long cycle life and an excellent power density, has the potential to achieve the winning combination of a high energy and power density. PMID:28169329
Modeling of Single and Dual Reservoir Porous Media Compressed Gas (Air and CO2) Storage Systems
NASA Astrophysics Data System (ADS)
Oldenburg, C. M.; Liu, H.; Borgia, A.; Pan, L.
2017-12-01
Intermittent renewable energy sources are causing increasing demand for energy storage. The deep subsurface offers promising opportunities for energy storage because it can safely contain high-pressure gases. Porous media compressed air energy storage (PM-CAES) is one approach, although the only facilities in operation are in caverns (C-CAES) rather than porous media. Just like in C-CAES, PM-CAES operates generally by injecting working gas (air) through well(s) into the reservoir compressing the cushion gas (existing air in the reservoir). During energy recovery, high-pressure air from the reservoir is mixed with fuel in a combustion turbine to produce electricity, thereby reducing compression costs. Unlike in C-CAES, the storage of energy in PM-CAES occurs variably across pressure gradients in the formation, while the solid grains of the matrix can release/store heat. Because air is the working gas, PM-CAES has fairly low thermal efficiency and low energy storage density. To improve the energy storage density, we have conceived and modeled a closed-loop two-reservoir compressed CO2 energy storage system. One reservoir is the low-pressure reservoir, and the other is the high-pressure reservoir. CO2 is cycled back and forth between reservoirs depending on whether energy needs to be stored or recovered. We have carried out thermodynamic and parametric analyses of the performance of an idealized two-reservoir CO2 energy storage system under supercritical and transcritical conditions for CO2 using a steady-state model. Results show that the transcritical compressed CO2 energy storage system has higher round-trip efficiency and exergy efficiency, and larger energy storage density than the supercritical compressed CO2 energy storage. However, the configuration of supercritical compressed CO2 energy storage is simpler, and the energy storage densities of the two systems are both higher than that of PM-CAES, which is advantageous in terms of storage volume for a given power rating.
Reversible chemical delithiation/lithiation of LiFePO4: towards a redox flow lithium-ion battery.
Huang, Qizhao; Li, Hong; Grätzel, Michael; Wang, Qing
2013-02-14
Reversible chemical delithiation/lithiation of LiFePO(4) was successfully demonstrated using ferrocene derivatives, based on which a novel energy storage system--the redox flow lithium-ion battery (RFLB), was devised by integrating the operation flexibility of a redox flow battery and high energy density of a lithium-ion battery. Distinct from the recent semi-solid lithium rechargeable flow battery, the energy storage materials of RFLB stored in separate energy tanks remain stationary upon operation, giving us a fresh perspective on building large-scale energy storage systems with higher energy density and improved safety.
Are amino groups advantageous to insensitive high explosives (IHEs)?
Cao, Xia; Wen, Yushi; Xiang, Bin; Long, Xinping; Zhang, Chaoyang
2012-10-01
There is usually a contradiction between increasing energy densities and reducing sensitivities of explosives. The explosives with both high energy densities and low sensitivities, or the so-called insensitive high explosives (IHEs), are desirable in most cases. It seems from applied explosives that amino groups are advantageous to IHE but the amount of amino groups contained IHEs is very limited. To make this clear, we present systemic examinations of the effects on the two properties stressed in IHEs after introducing amino groups to different molecular skeletons. As a result, the amino groups on resonant sites to nitro groups in conjugated systems can improve distinctly sensitivities and change energy densities in terms of oxygen balance; while the amino groups in unconjugated systems can hardly increase energy densities and usually cause increased sensitivities. It agrees well with a fact that almost all the molecules of applied amino group contained explosives possess conjugated skeletons. We therefore confirm that if amino groups are introduced resonantly to a nitro group in a conjugated system and the introduction improves OB, they are advantageous to IHEs.
Łazarski, Roman; Burow, Asbjörn Manfred; Grajciar, Lukáš; Sierka, Marek
2016-10-30
A full implementation of analytical energy gradients for molecular and periodic systems is reported in the TURBOMOLE program package within the framework of Kohn-Sham density functional theory using Gaussian-type orbitals as basis functions. Its key component is a combination of density fitting (DF) approximation and continuous fast multipole method (CFMM) that allows for an efficient calculation of the Coulomb energy gradient. For exchange-correlation part the hierarchical numerical integration scheme (Burow and Sierka, Journal of Chemical Theory and Computation 2011, 7, 3097) is extended to energy gradients. Computational efficiency and asymptotic O(N) scaling behavior of the implementation is demonstrated for various molecular and periodic model systems, with the largest unit cell of hematite containing 640 atoms and 19,072 basis functions. The overall computational effort of energy gradient is comparable to that of the Kohn-Sham matrix formation. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Ward, Patrick A.; Corgnale, Claudio; Teprovich, Joseph A.; Motyka, Theodore; Hardy, Bruce; Sheppard, Drew; Buckley, Craig; Zidan, Ragaiy
2016-04-01
Recently, there has been increasing interest in thermal energy storage (TES) systems for concentrated solar power (CSP) plants, which allow for continuous operation when sunlight is unavailable. Thermochemical energy storage materials have the advantage of much higher energy densities than latent or sensible heat materials. Furthermore, thermochemical energy storage systems based on metal hydrides have been gaining great interest for having the advantage of higher energy densities, better reversibility, and high enthalpies. However, in order to achieve higher efficiencies desired of a thermal storage system by the US Department of Energy, the system is required to operate at temperatures >600 °C. Operation at temperatures >600 °C presents challenges including material selection, hydrogen embrittlement and permeation of containment vessels, appropriate selection of heat transfer fluids, and cost. Herein, the technical difficulties and proposed solutions associated with the use of metal hydrides as TES materials in CSP applications are discussed and evaluated.
Metal hydride-based thermal energy storage systems
Vajo, John J.; Fang, Zhigang
2017-10-03
The invention provides a thermal energy storage system comprising a metal-containing first material with a thermal energy storage density of about 1300 kJ/kg to about 2200 kJ/kg based on hydrogenation; a metal-containing second material with a thermal energy storage density of about 200 kJ/kg to about 1000 kJ/kg based on hydrogenation; and a hydrogen conduit for reversibly transporting hydrogen between the first material and the second material. At a temperature of 20.degree. C. and in 1 hour, at least 90% of the metal is converted to the hydride. At a temperature of 0.degree. C. and in 1 hour, at least 90% of the metal hydride is converted to the metal and hydrogen. The disclosed metal hydride materials have a combination of thermodynamic energy storage densities and kinetic power capabilities that previously have not been demonstrated. This performance enables practical use of thermal energy storage systems for electric vehicle heating and cooling.
NASA Astrophysics Data System (ADS)
Liu, Baoliang; Liu, Ying; Liu, Ziyi; Qiu, Denggao; Sun, Guoxiang; Li, Xian
2014-09-01
Atlantic salmon Salmo salar were reared at four stocking densities—high density D 1 (final density ˜39 kg/m3), medium densities D 2 (˜29 kg/m3) and D 3 (˜19 kg/m3), and low density D 4 (˜12 kg/m3)—for 40 days to investigate the effect of stocking density on their growth performance, body composition and energy budgets. Stocking density did not significantly affect specific growth rate in terms of weight (SGRw) but did affect specific growth rate in terms of energy (SGRe). Stocking density significantly influenced the ration level (RLw and RLe), feed conversion ratio (FCRw and FCRe) and apparent digestibility rate (ADR). Ration level and FCRw tended to increase with increasing density. Fish at the highest density D 1 and lowest density D 4 showed lower FCRe and higher ADR than at medium densities. Stocking density significantly affected protein and energy contents of the body but did not affect its moisture, lipid, or ash contents. The expenditure of energy for metabolism in the low-density and high-density groups was lower than that in the medium-density groups. Stocking density affected energy utilization from the feces but had no effect on excretion rate. The greater energy allocation to growth at high density and low density may be attributed to reduced metabolic rate and increased apparent digestibility rate. These findings provide information that will assist selection of suitable stocking densities in the Atlantic-salmon-farming industry.
Sumi, Tomonari; Maruyama, Yutaka; Mitsutake, Ayori; Koga, Kenichiro
2016-06-14
In the conventional classical density functional theory (DFT) for simple fluids, an ideal gas is usually chosen as the reference system because there is a one-to-one correspondence between the external field and the density distribution function, and the exact intrinsic free-energy functional is available for the ideal gas. In this case, the second-order density functional Taylor series expansion of the excess intrinsic free-energy functional provides the hypernetted-chain (HNC) approximation. Recently, it has been shown that the HNC approximation significantly overestimates the solvation free energy (SFE) for an infinitely dilute Lennard-Jones (LJ) solution, especially when the solute particles are several times larger than the solvent particles [T. Miyata and J. Thapa, Chem. Phys. Lett. 604, 122 (2014)]. In the present study, we propose a reference-modified density functional theory as a systematic approach to improve the SFE functional as well as the pair distribution functions. The second-order density functional Taylor series expansion for the excess part of the intrinsic free-energy functional in which a hard-sphere fluid is introduced as the reference system instead of an ideal gas is applied to the LJ pure and infinitely dilute solution systems and is proved to remarkably improve the drawbacks of the HNC approximation. Furthermore, the third-order density functional expansion approximation in which a factorization approximation is applied to the triplet direct correlation function is examined for the LJ systems. We also show that the third-order contribution can yield further refinements for both the pair distribution function and the excess chemical potential for the pure LJ liquids.
Density Functionals of Chemical Bonding
Putz, Mihai V.
2008-01-01
The behavior of electrons in general many-electronic systems throughout the density functionals of energy is reviewed. The basic physico-chemical concepts of density functional theory are employed to highlight the energy role in chemical structure while its extended influence in electronic localization function helps in chemical bonding understanding. In this context the energy functionals accompanied by electronic localization functions may provide a comprehensive description of the global-local levels electronic structures in general and of chemical bonds in special. Becke-Edgecombe and author’s Markovian electronic localization functions are discussed at atomic, molecular and solid state levels. Then, the analytical survey of the main workable kinetic, exchange, and correlation density functionals within local and gradient density approximations is undertaken. The hierarchy of various energy functionals is formulated by employing both the parabolic and statistical correlation degree of them with the electronegativity and chemical hardness indices by means of quantitative structure-property relationship (QSPR) analysis for basic atomic and molecular systems. PMID:19325846
Antiproton powered propulsion with magnetically confined plasma engines
NASA Technical Reports Server (NTRS)
Lapointe, Michael R.
1989-01-01
Matter-antimatter annihilation releases more energy per unit mass than any other method of energy production, making it an attractive energy source for spacecraft propulsion. In the magnetically confined plasma engine, antiproton beams are injected axially into a pulsed magnetic mirror system, where they annihilate with an initially neutral hydrogen gas. The resulting charged annihilation products transfer energy to the hydrogen propellant, which is then exhausted through one end of the pulsed mirror system to provide thrust. The calculated energy transfer efficiencies for a low number density (10(14)/cu cm) hydrogen propellant are insufficient to warrant operating the engine in this mode. Efficiencies are improved using moderate propellant number densities (10(16)/cu cm), but the energy transferred to the plasma in a realistic magnetic mirror system is generally limited to less than 2 percent of the initial proton-antiproton annihilation energy. The energy transfer efficiencies are highest for high number density (10(18)/cu cm) propellants, but plasma temperatures are reduced by excessive radiation losses. Low to moderate thrust over a wide range of specific impulse can be generated with moderate propellant number densities, while higher thrust but lower specific impulse may be generated using high propellant number densities. Significant mass will be required to shield the superconducting magnet coils from the high energy gamma radiation emitted by neutral pion decay. The mass of such a radiation shield may dominate the total engine mass, and could severely diminish the performance of antiproton powered engines which utilize magnetic confinement. The problem is compounded in the antiproton powered plasma engine, where lower energy plasma bremsstrahlung radiation may cause shield surface ablation and degradation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Do, Hainam, E-mail: h.do@nottingham.ac.uk, E-mail: richard.wheatley@nottingham.ac.uk; Wheatley, Richard J., E-mail: h.do@nottingham.ac.uk, E-mail: richard.wheatley@nottingham.ac.uk
A robust and model free Monte Carlo simulation method is proposed to address the challenge in computing the classical density of states and partition function of solids. Starting from the minimum configurational energy, the algorithm partitions the entire energy range in the increasing energy direction (“upward”) into subdivisions whose integrated density of states is known. When combined with the density of states computed from the “downward” energy partitioning approach [H. Do, J. D. Hirst, and R. J. Wheatley, J. Chem. Phys. 135, 174105 (2011)], the equilibrium thermodynamic properties can be evaluated at any temperature and in any phase. The methodmore » is illustrated in the context of the Lennard-Jones system and can readily be extended to other molecular systems and clusters for which the structures are known.« less
High energy density rechargeable magnesium battery using earth-abundant and non-toxic elements
Orikasa, Yuki; Masese, Titus; Koyama, Yukinori; Mori, Takuya; Hattori, Masashi; Yamamoto, Kentaro; Okado, Tetsuya; Huang, Zhen-Dong; Minato, Taketoshi; Tassel, Cédric; Kim, Jungeun; Kobayashi, Yoji; Abe, Takeshi; Kageyama, Hiroshi; Uchimoto, Yoshiharu
2014-01-01
Rechargeable magnesium batteries are poised to be viable candidates for large-scale energy storage devices in smart grid communities and electric vehicles. However, the energy density of previously proposed rechargeable magnesium batteries is low, limited mainly by the cathode materials. Here, we present new design approaches for the cathode in order to realize a high-energy-density rechargeable magnesium battery system. Ion-exchanged MgFeSiO4 demonstrates a high reversible capacity exceeding 300 mAh·g−1 at a voltage of approximately 2.4 V vs. Mg. Further, the electronic and crystal structure of ion-exchanged MgFeSiO4 changes during the charging and discharging processes, which demonstrates the (de)insertion of magnesium in the host structure. The combination of ion-exchanged MgFeSiO4 with a magnesium bis(trifluoromethylsulfonyl)imide–triglyme electrolyte system proposed in this work provides a low-cost and practical rechargeable magnesium battery with high energy density, free from corrosion and safety problems. PMID:25011939
High energy density rechargeable magnesium battery using earth-abundant and non-toxic elements
NASA Astrophysics Data System (ADS)
Orikasa, Yuki; Masese, Titus; Koyama, Yukinori; Mori, Takuya; Hattori, Masashi; Yamamoto, Kentaro; Okado, Tetsuya; Huang, Zhen-Dong; Minato, Taketoshi; Tassel, Cédric; Kim, Jungeun; Kobayashi, Yoji; Abe, Takeshi; Kageyama, Hiroshi; Uchimoto, Yoshiharu
2014-07-01
Rechargeable magnesium batteries are poised to be viable candidates for large-scale energy storage devices in smart grid communities and electric vehicles. However, the energy density of previously proposed rechargeable magnesium batteries is low, limited mainly by the cathode materials. Here, we present new design approaches for the cathode in order to realize a high-energy-density rechargeable magnesium battery system. Ion-exchanged MgFeSiO4 demonstrates a high reversible capacity exceeding 300 mAh.g-1 at a voltage of approximately 2.4 V vs. Mg. Further, the electronic and crystal structure of ion-exchanged MgFeSiO4 changes during the charging and discharging processes, which demonstrates the (de)insertion of magnesium in the host structure. The combination of ion-exchanged MgFeSiO4 with a magnesium bis(trifluoromethylsulfonyl)imide-triglyme electrolyte system proposed in this work provides a low-cost and practical rechargeable magnesium battery with high energy density, free from corrosion and safety problems.
Yao, Kui; Chen, Shuting; Rahimabady, Mojtaba; Mirshekarloo, Meysam Sharifzadeh; Yu, Shuhui; Tay, Francis Eng Hock; Sritharan, Thirumany; Lu, Li
2011-09-01
Although batteries possess high energy storage density, their output power is limited by the slow movement of charge carriers, and thus capacitors are often required to deliver high power output. Dielectric capacitors have high power density with fast discharge rate, but their energy density is typically much lower than electrochemical supercapacitors. Increasing the energy density of dielectric materials is highly desired to extend their applications in many emerging power system applications. In this paper, we review the mechanisms and major characteristics of electric energy storage with electrochemical supercapacitors and dielectric capacitors. Three types of in-house-produced ferroic nonlinear dielectric thin film materials with high energy density are described, including (Pb(0.97)La(0.02))(Zr(0.90)Sn(0.05)Ti(0.05))O(3) (PLZST) antiferroelectric ceramic thin films, Pb(Zn(1/3)Nb(2/3))O(3-)Pb(Mg(1/3)Nb(2/3))O(3-)PbTiO(3) (PZN-PMN-PT) relaxor ferroelectric ceramic thin films, and poly(vinylidene fluoride) (PVDF)-based polymer blend thin films. The results showed that these thin film materials are promising for electric storage with outstandingly high power density and fairly high energy density, comparable with electrochemical supercapacitors.
Interference of interchromophoric energy-transfer pathways in π-conjugated macrocycles
Alfonso Hernandez, Laura; Nelson, Tammie Renee; Gelin, Maxim F.; ...
2016-11-10
The interchromophoric energy-transfer pathways between weakly coupled units in a π-conjugated phenylene–ethynylene macrocycle and its half-ring analogue have been investigated using the nonadiabatic excited-state molecular dynamics approach. To track the flow of electronic transition density between macrocycle units, we formulate a transition density flux analysis adapted from the statistical minimum flow method previously developed to investigate vibrational energy flow. Following photoexcitation, transition density is primarily delocalized on two chromophore units and the system undergoes ultrafast energy transfer, creating a localized excited state on a single unit. In the macrocycle, distinct chromophore units donate transition density to a single acceptor unitmore » but do not interchange transition density among each other. We find that energy transfer in the macrocycle is slower than in the corresponding half ring because of the presence of multiple interfering energy-transfer pathways. Finally, simulation results are validated by modeling the fluorescence anisotropy decay.« less
Low Li+ Insertion Barrier Carbon for High Energy Efficient Lithium-Ion Capacitor.
Lee, Wee Siang Vincent; Huang, Xiaolei; Tan, Teck Leong; Xue, Jun Min
2018-01-17
Lithium-ion capacitor (LIC) is an attractive energy-storage device (ESD) that promises high energy density at moderate power density. However, the key challenge in its design is the low energy efficient negative electrode, which barred the realization of such research system in fulfilling the current ESD technological inadequacy due to its poor overall energy efficiency. Large voltage hysteresis is the main issue behind high energy density alloying/conversion-type materials, which reduces the electrode energy efficiency. Insertion-type material though averted in most research due to the low capacity remains to be highly favorable in commercial application due to its lower voltage hysteresis. To further reduce voltage hysteresis and increase capacity, amorphous carbon with wider interlayer spacing has been demonstrated in the simulation result to significantly reduce Li + insertion barrier. Hence, by employing such amorphous carbon, together with disordered carbon positive electrode, a high energy efficient LIC with round-trip energy efficiency of 84.3% with a maximum energy density of 133 Wh kg -1 at low power density of 210 W kg -1 can be achieved.
Zhu, Xiuping; Kim, Taeyoung; Rahimi, Mohammad; Gorski, Christopher A; Logan, Bruce E
2017-02-22
Salinity gradient energy can be directly converted into electrical power by using reverse electrodialysis (RED) and other technologies, but reported power densities have been too low for practical applications. Herein, the RED stack performance was improved by using 2,6-dihydroxyanthraquinone and ferrocyanide as redox couples. These electrolytes were then used in a flow battery to produce an integrated RED stack and flow battery (RED-FB) system capable of capturing, storing, and discharging salinity gradient energy. Energy captured from the RED stack was discharged in the flow battery at a maximum power density of 3.0 kW m -2 -anode, which was similar to the flow batteries charged by electrical power and could be used for practical applications. Salinity gradient energy captured from the RED stack was recovered from the electrolytes as electricity with 30 % efficiency, and the maximum energy density of the system was 2.4 kWh m -3 -anolyte. The combined RED-FB system overcomes many limitations of previous approaches to capture, store, and use salinity gradient energy from natural or engineered sources. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Carlson, Rebecca K; Li Manni, Giovanni; Sonnenberger, Andrew L; Truhlar, Donald G; Gagliardi, Laura
2015-01-13
Kohn-Sham density functional theory, resting on the representation of the electronic density and kinetic energy by a single Slater determinant, has revolutionized chemistry, but for open-shell systems, the Kohn-Sham Slater determinant has the wrong symmetry properties as compared to an accurate wave function. We have recently proposed a theory, called multiconfiguration pair-density functional theory (MC-PDFT), in which the electronic kinetic energy and classical Coulomb energy are calculated from a multiconfiguration wave function with the correct symmetry properties, and the rest of the energy is calculated from a density functional, called the on-top density functional, that depends on the density and the on-top pair density calculated from this wave function. We also proposed a simple way to approximate the on-top density functional by translation of Kohn-Sham exchange-correlation functionals. The method is much less expensive than other post-SCF methods for calculating the dynamical correlation energy starting with a multiconfiguration self-consistent-field wave function as the reference wave function, and initial tests of the theory were quite encouraging. Here, we provide a broader test of the theory by applying it to bond energies of main-group molecules and transition metal complexes, barrier heights and reaction energies for diverse chemical reactions, proton affinities, and the water dimerization energy. Averaged over 56 data points, the mean unsigned error is 3.2 kcal/mol for MC-PDFT, as compared to 6.9 kcal/mol for Kohn-Sham theory with a comparable density functional. MC-PDFT is more accurate on average than complete active space second-order perturbation theory (CASPT2) for main-group small-molecule bond energies, alkyl bond dissociation energies, transition-metal-ligand bond energies, proton affinities, and the water dimerization energy.
Hwang, Junho; Kataoka, Sho; Endo, Akira; Daiguji, Hirofumi
2016-09-21
Nanofluidic energy harvesting systems have attracted interest in the field of battery application, particularly for miniaturized electrical devices, because they possess excellent energy conversion capability for their size. In this study, a mesoporous silica (MPS)-based nanofluidic energy harvesting system was fabricated and selective ion transport in mesopores as a function of the salt gradient was investigated. Aqueous solutions with three different kinds of monovalent electrolytes-KCl, NaCl, and LiCl-with different diffusion coefficients (D + ) were considered. The highest power density was 3.90 W m -2 for KCl, followed by 2.39 W m -2 for NaCl and 1.29 W m -2 for LiCl. Furthermore, the dependency of power density on the type of cation employed indicates that the harvested energy increases as the cation mobility increases, particularly at high concentrations. This cation-specific dependency suggests that the maximum power density increases by increasing the diffusion coefficient ratio of cations to anions, making this ratio a critical parameter in enhancing the performance of nanofluidic energy harvesting systems with extremely small pores ranging from 2 to 3 nm.
Aqueous Rechargeable Alkaline CoxNi2-xS2/TiO2 Battery.
Liu, Jilei; Wang, Jin; Ku, Zhiliang; Wang, Huanhuan; Chen, Shi; Zhang, Lili; Lin, Jianyi; Shen, Ze Xiang
2016-01-26
An electrochemical energy storage system with high energy density, stringent safety, and reliability is highly desirable for next-generation energy storage devices. Here an aqueous rechargeable alkaline CoxNi2-xS2 // TiO2 battery system is designed by integrating two reversible electrode processes associated with OH(-) insertion/extraction in the cathode part and Li ion insertion/extraction in the anode part, respectively. The prototype CoxNi2-xS2 // TiO2 battery is able to deliver high energy/power densities of 83.7 Wh/kg at 609 W/kg (based on the total mass of active materials) and good cycling stabilities (capacity retention 75.2% after 1000 charge/discharge cycles). A maximum volumetric energy density of 21 Wh/l (based on the whole packaged cell) has been achieved, which is comparable to that of a thin-film battery and better than that of typical commercial supercapacitors, benefiting from the unique battery and hierarchical electrode design. This hybrid system would enrich the existing aqueous rechargeable LIB chemistry and be a promising battery technology for large-scale energy storage.
Bypassing the Kohn-Sham equations with machine learning.
Brockherde, Felix; Vogt, Leslie; Li, Li; Tuckerman, Mark E; Burke, Kieron; Müller, Klaus-Robert
2017-10-11
Last year, at least 30,000 scientific papers used the Kohn-Sham scheme of density functional theory to solve electronic structure problems in a wide variety of scientific fields. Machine learning holds the promise of learning the energy functional via examples, bypassing the need to solve the Kohn-Sham equations. This should yield substantial savings in computer time, allowing larger systems and/or longer time-scales to be tackled, but attempts to machine-learn this functional have been limited by the need to find its derivative. The present work overcomes this difficulty by directly learning the density-potential and energy-density maps for test systems and various molecules. We perform the first molecular dynamics simulation with a machine-learned density functional on malonaldehyde and are able to capture the intramolecular proton transfer process. Learning density models now allows the construction of accurate density functionals for realistic molecular systems.Machine learning allows electronic structure calculations to access larger system sizes and, in dynamical simulations, longer time scales. Here, the authors perform such a simulation using a machine-learned density functional that avoids direct solution of the Kohn-Sham equations.
A Method to Improve Electron Density Measurement of Cone-Beam CT Using Dual Energy Technique
Men, Kuo; Dai, Jian-Rong; Li, Ming-Hui; Chen, Xin-Yuan; Zhang, Ke; Tian, Yuan; Huang, Peng; Xu, Ying-Jie
2015-01-01
Purpose. To develop a dual energy imaging method to improve the accuracy of electron density measurement with a cone-beam CT (CBCT) device. Materials and Methods. The imaging system is the XVI CBCT system on Elekta Synergy linac. Projection data were acquired with the high and low energy X-ray, respectively, to set up a basis material decomposition model. Virtual phantom simulation and phantoms experiments were carried out for quantitative evaluation of the method. Phantoms were also scanned twice with the high and low energy X-ray, respectively. The data were decomposed into projections of the two basis material coefficients according to the model set up earlier. The two sets of decomposed projections were used to reconstruct CBCT images of the basis material coefficients. Then, the images of electron densities were calculated with these CBCT images. Results. The difference between the calculated and theoretical values was within 2% and the correlation coefficient of them was about 1.0. The dual energy imaging method obtained more accurate electron density values and reduced the beam hardening artifacts obviously. Conclusion. A novel dual energy CBCT imaging method to calculate the electron densities was developed. It can acquire more accurate values and provide a platform potentially for dose calculation. PMID:26346510
Recovery Act: Advanced Direct Methanol Fuel Cell for Mobile Computing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fletcher, James H.; Cox, Philip; Harrington, William J
2013-09-03
ABSTRACT Project Title: Recovery Act: Advanced Direct Methanol Fuel Cell for Mobile Computing PROJECT OBJECTIVE The objective of the project was to advance portable fuel cell system technology towards the commercial targets of power density, energy density and lifetime. These targets were laid out in the DOE’s R&D roadmap to develop an advanced direct methanol fuel cell power supply that meets commercial entry requirements. Such a power supply will enable mobile computers to operate non-stop, unplugged from the wall power outlet, by using the high energy density of methanol fuel contained in a replaceable fuel cartridge. Specifically this project focusedmore » on balance-of-plant component integration and miniaturization, as well as extensive component, subassembly and integrated system durability and validation testing. This design has resulted in a pre-production power supply design and a prototype that meet the rigorous demands of consumer electronic applications. PROJECT TASKS The proposed work plan was designed to meet the project objectives, which corresponded directly with the objectives outlined in the Funding Opportunity Announcement: To engineer the fuel cell balance-of-plant and packaging to meet the needs of consumer electronic systems, specifically at power levels required for mobile computing. UNF used existing balance-of-plant component technologies developed under its current US Army CERDEC project, as well as a previous DOE project completed by PolyFuel, to further refine them to both miniaturize and integrate their functionality to increase the system power density and energy density. Benefits of UNF’s novel passive water recycling MEA (membrane electrode assembly) and the simplified system architecture it enabled formed the foundation of the design approach. The package design was hardened to address orientation independence, shock, vibration, and environmental requirements. Fuel cartridge and fuel subsystems were improved to ensure effective fuel containment. PROJECT OVERVIEW The University of North Florida (UNF), with project partner the University of Florida, recently completed the Department of Energy (DOE) project entitled “Advanced Direct Methanol Fuel Cell for Mobile Computing”. The primary objective of the project was to advance portable fuel cell system technology towards the commercial targets as laid out in the DOE R&D roadmap by developing a 20-watt, direct methanol fuel cell (DMFC), portable power supply based on the UNF innovative “passive water recovery” MEA. Extensive component, sub-system, and system development and testing was undertaken to meet the rigorous demands of the consumer electronic application. Numerous brassboard (nonpackaged) systems were developed to optimize the integration process and facilitating control algorithm development. The culmination of the development effort was a fully-integrated, DMFC, power supply (referred to as DP4). The project goals were 40 W/kg for specific power, 55 W/l for power density, and 575 Whr/l for energy density. It should be noted that the specific power and power density were for the power section only, and did not include the hybrid battery. The energy density is based on three, 200 ml, fuel cartridges, and also did not include the hybrid battery. The results show that the DP4 system configured without the methanol concentration sensor exceeded all performance goals, achieving 41.5 W/kg for specific power, 55.3 W/l for power density, and 623 Whr/l for energy density. During the project, the DOE revised its technical targets, and the definition of many of these targets, for the portable power application. With this revision, specific power, power density, specific energy (Whr/kg), and energy density are based on the total system, including fuel tank, fuel, and hybridization battery. Fuel capacity is not defined, but the same value is required for all calculations. Test data showed that the DP4 exceeded all 2011 Technical Status values; for example, the DP4 energy density was 373 Whr/l versus the DOE 2011 status of 200 Whr/l. For the DOE 2013 Technical Goals, the operation time was increased from 10 hours to 14.3 hours. Under these conditions, the DP4 closely approached or surpassed the technical targets; for example, the DP4 achieved 468 Whr/l versus the goal of 500 Whr/l. Thus, UNF has successfully met the project goals. A fully-operational, 20-watt DMFC power supply was developed based on the UNF passive water recovery MEA. The power supply meets the project performance goals and advances portable power technology towards the commercialization targets set by the DOE.« less
A Microelectromechanical High-Density Energy Storage/Rapid Release System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodgers, M. Steven; Allen, Jim J.; Meeks, Kent D.
1999-07-21
One highly desirable characteristic of electrostatically driven microelectromechanical systems (MEMS) is that they consume very little power. The corresponding drawback is that the force they produce may be inadequate for many applications. It has previously been demonstrated that gear reduction units or microtransmissions can substantially increase the torque generated by microengines. Operating speed, however, is also reduced by the transmission gear ratio. Some applications require both high speed and high force. If this output is only required for a limited period of time, then energy could be stored in a mechanical system and rapidly released upon demand. We have designed,more » fabricated, and demonstrated a high-density energy storage/rapid release system that accomplishes this task. Built using a 5-level surface micromachining technology, the assembly closely resembles a medieval crossbow. Energy releases on the order of tens of nanojoules have already been demonstrated, and significantly higher energy systems are under development.« less
Microelectromechanical high-density energy storage/rapid release system
NASA Astrophysics Data System (ADS)
Rodgers, M. Steven; Allen, James J.; Meeks, Kent D.; Jensen, Brian D.; Miller, Samuel L.
1999-08-01
One highly desirable characteristic of electrostatically driven microelectromechanical systems (MEMS) is that they consume very little power. The corresponding drawback is that the force they produce may be inadequate for many applications. It has previously been demonstrated that gear reduction units or microtransmissions can substantially increase the torque generated by microengines. Operating speed, however, is also reduced by the transmission gear ratio. Some applications require both high speed and high force. If this output is only required for a limited period of time, then energy could be stored in a mechanical system and rapidly released upon demand. We have designed, fabricated, and demonstrated a high-density energy storage/rapid release system that accomplishes this task. Built using a 5-level surface micromachining technology, the assembly closely resembles a medieval crossbow. Energy releases on the order of tens of nanojoules have already been demonstrated, and significantly higher energy systems are under development.
Smith, J. C.; Pribram-Jones, A.; Burke, K.
2016-06-14
Thermal density functional theory calculations often use the Mermin-Kohn-Sham scheme, but employ ground-state approximations to the exchange-correlation (XC) free energy. In the simplest solvable nontrivial model, an asymmetric Hubbard dimer, we calculate the exact many-body energies and the exact Mermin-Kohn-Sham functionals for this system and extract the exact XC free energy. For moderate temperatures and weak correlation, we find this approximation to be excellent. Here we extract various exact free-energy correlation components and the exact adiabatic connection formula.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, J. C.; Pribram-Jones, A.; Burke, K.
Thermal density functional theory calculations often use the Mermin-Kohn-Sham scheme, but employ ground-state approximations to the exchange-correlation (XC) free energy. In the simplest solvable nontrivial model, an asymmetric Hubbard dimer, we calculate the exact many-body energies and the exact Mermin-Kohn-Sham functionals for this system and extract the exact XC free energy. For moderate temperatures and weak correlation, we find this approximation to be excellent. Here we extract various exact free-energy correlation components and the exact adiabatic connection formula.
Globally optimal superconducting magnets part I: minimum stored energy (MSE) current density map.
Tieng, Quang M; Vegh, Viktor; Brereton, Ian M
2009-01-01
An optimal current density map is crucial in magnet design to provide the initial values within search spaces in an optimization process for determining the final coil arrangement of the magnet. A strategy for obtaining globally optimal current density maps for the purpose of designing magnets with coaxial cylindrical coils in which the stored energy is minimized within a constrained domain is outlined. The current density maps obtained utilising the proposed method suggests that peak current densities occur around the perimeter of the magnet domain, where the adjacent peaks have alternating current directions for the most compact designs. As the dimensions of the domain are increased, the current density maps yield traditional magnet designs of positive current alone. These unique current density maps are obtained by minimizing the stored magnetic energy cost function and therefore suggest magnet coil designs of minimal system energy. Current density maps are provided for a number of different domain arrangements to illustrate the flexibility of the method and the quality of the achievable designs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Z.; Department of Applied Mathematics and Mechanics, University of Science and Technology Beijing, Beijing 100083; Lin, P.
In this paper, we investigate numerically a diffuse interface model for the Navier–Stokes equation with fluid–fluid interface when the fluids have different densities [48]. Under minor reformulation of the system, we show that there is a continuous energy law underlying the system, assuming that all variables have reasonable regularities. It is shown in the literature that an energy law preserving method will perform better for multiphase problems. Thus for the reformulated system, we design a C{sup 0} finite element method and a special temporal scheme where the energy law is preserved at the discrete level. Such a discrete energy lawmore » (almost the same as the continuous energy law) for this variable density two-phase flow model has never been established before with C{sup 0} finite element. A Newton method is introduced to linearise the highly non-linear system of our discretization scheme. Some numerical experiments are carried out using the adaptive mesh to investigate the scenario of coalescing and rising drops with differing density ratio. The snapshots for the evolution of the interface together with the adaptive mesh at different times are presented to show that the evolution, including the break-up/pinch-off of the drop, can be handled smoothly by our numerical scheme. The discrete energy functional for the system is examined to show that the energy law at the discrete level is preserved by our scheme.« less
Redox electrodes comprised of polymer-modified carbon nanomaterials
NASA Astrophysics Data System (ADS)
Roberts, Mark; Emmett, Robert; Karakaya, Mehmet; Podila, Ramakrishna; Rao, Apparao; Clemson Physics Team; Clemson Chemical Engineering Team
2013-03-01
A shift in how we generate and use electricity requires new energy storage materials and systems compatible with hybrid electric transportation and the integration of renewable energy sources. Supercapacitors provide a solution to these needs by combining the high power, rapid switching, and exceptional cycle life of a capacitor with the high energy density of a battery. Our research brings together nanotechnology and materials chemistry to address the limitations of electrode materials. Paper electrodes fabricated with various forms of carbon nanomaterials, such as nanotubes, are modified with redox-polymers to increase the electrode's energy density while maintaining rapid discharge rates. In these systems, the carbon nanomaterials provide the high surface area, electrical conductivity, nanoscale and porosity, while the redox polymers provide a mechanism for charge storage through Faradaic charge transfer. The design of redox polymers and their incorporation into nanomaterial electrodes will be discussed with a focus on enabling high power and high energy density electrodes.
DFTB3: Extension of the self-consistent-charge density-functional tight-binding method (SCC-DFTB).
Gaus, Michael; Cui, Qiang; Elstner, Marcus
2012-04-10
The self-consistent-charge density-functional tight-binding method (SCC-DFTB) is an approximate quantum chemical method derived from density functional theory (DFT) based on a second-order expansion of the DFT total energy around a reference density. In the present study we combine earlier extensions and improve them consistently with, first, an improved Coulomb interaction between atomic partial charges, and second, the complete third-order expansion of the DFT total energy. These modifications lead us to the next generation of the DFTB methodology called DFTB3, which substantially improves the description of charged systems containing elements C, H, N, O, and P, especially regarding hydrogen binding energies and proton affinities. As a result, DFTB3 is particularly applicable to biomolecular systems. Remaining challenges and possible solutions are also briefly discussed.
Space Vehicle Power System Comprised of Battery/Capacitor Combinations
NASA Technical Reports Server (NTRS)
Camarotte, C.; Lancaster, G. S.; Eichenberg, D.; Butler, S. M.; Miller, J. R.
2002-01-01
Recent improvements in energy densities of batteries open the possibility of using electric rather that hydraulic actuators in space vehicle systems. However, the systems usually require short-duration, high-power pulses. This power profile requires the battery system to be sized to meet the power requirements rather than stored energy requirements, often resulting in a large and inefficient energy storage system. Similar transient power applications have used a combination of two or more disparate energy storage technologies. For instance, placing a capacitor and a battery side-by-side combines the high energy density of a battery with the high power performance of a capacitor and thus can create a lighter and more compact system. A parametric study was performed to identify favorable scenarios for using capacitors. System designs were then carried out using equivalent circuit models developed for five commercial electrochemical capacitor products. Capacitors were sized to satisfy peak power levels and consequently "leveled" the power requirement of the battery, which can then be sized to meet system energy requirements. Simulation results clearly differentiate the performance offered by available capacitor products for the space vehicle applications.
Some Fundamental Issues in Ground-State Density Functional Theory: A Guide for the Perplexed.
Perdew, John P; Ruzsinszky, Adrienn; Constantin, Lucian A; Sun, Jianwei; Csonka, Gábor I
2009-04-14
Some fundamental issues in ground-state density functional theory are discussed without equations: (1) The standard Hohenberg-Kohn and Kohn-Sham theorems were proven for a Hamiltonian that is not quite exact for real atoms, molecules, and solids. (2) The density functional for the exchange-correlation energy, which must be approximated, arises from the tendency of electrons to avoid one another as they move through the electron density. (3) In the absence of a magnetic field, either spin densities or total electron density can be used, although the former choice is better for approximations. (4) "Spin contamination" of the determinant of Kohn-Sham orbitals for an open-shell system is not wrong but right. (5) Only to the extent that symmetries of the interacting wave function are reflected in the spin densities should those symmetries be respected by the Kohn-Sham noninteracting or determinantal wave function. Functionals below the highest level of approximations should however sometimes break even those symmetries, for good physical reasons. (6) Simple and commonly used semilocal (lower-level) approximations for the exchange-correlation energy as a functional of the density can be accurate for closed systems near equilibrium and yet fail for open systems of fluctuating electron number. (7) The exact Kohn-Sham noninteracting state need not be a single determinant, but common approximations can fail when it is not. (8) Over an open system of fluctuating electron number, connected to another such system by stretched bonds, semilocal approximations make the exchange-correlation energy and hole-density sum rule too negative. (9) The gap in the exact Kohn-Sham band structure of a crystal underestimates the real fundamental gap but may approximate the first exciton energy in the large-gap limit. (10) Density functional theory is not really a mean-field theory, although it looks like one. The exact functional includes strong correlation, and semilocal approximations often overestimate the strength of static correlation through their semilocal exchange contributions. (11) Only under rare conditions can excited states arise directly from a ground-state theory.
Low concentrator PV optics optimization
NASA Astrophysics Data System (ADS)
Sharp, Leonard; Chang, Ben
2008-08-01
Purpose: Cost reduction is a major focus of the solar industry. Thin film technologies and concentration systems are viable ways to reducing cost, with unique strengths and weakness for both. Most of the concentrating PV work focuses on high concentration systems for reducing energy cost. Meanwhile, many believe that low concentrators provide significant cost reduction potential while addressing the mainstream PV market with a product that acts as a flat panel replacement. This paper analyzes the relative benefit of asymmetric vs. symmetric optics for low-concentrators in light of specific PV applications. Approach: Symmetric and asymmetric concentrating PV module performance is evaluated using computer simulation to determine potential value across various geographic locations and applications. The selected optic design is modeled against standard cSi flat panels and thin film to determine application fit, system level energy density and economic value. Results: While symmetric designs may seem ideal, asymmetric designs have an advantage in energy density. Both designs are assessed for aperture, optimum concentration ratio, and ideal system array configuration. Analysis of performance across climate specific effects (diffuse, direct and circumsolar) and location specific effects (sunpath) are also presented. The energy density and energy production of low concentrators provide a compelling value proposition. More significantly, the choice of optics for a low concentrating design can affect real world performance. With the goal of maximizing energy density and return on investment, this paper presents the advantages of asymmetric optic concentration and illustrates the value of this design within specific PV applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alfonso Hernandez, Laura; Nelson, Tammie Renee; Gelin, Maxim F.
The interchromophoric energy-transfer pathways between weakly coupled units in a π-conjugated phenylene–ethynylene macrocycle and its half-ring analogue have been investigated using the nonadiabatic excited-state molecular dynamics approach. To track the flow of electronic transition density between macrocycle units, we formulate a transition density flux analysis adapted from the statistical minimum flow method previously developed to investigate vibrational energy flow. Following photoexcitation, transition density is primarily delocalized on two chromophore units and the system undergoes ultrafast energy transfer, creating a localized excited state on a single unit. In the macrocycle, distinct chromophore units donate transition density to a single acceptor unitmore » but do not interchange transition density among each other. We find that energy transfer in the macrocycle is slower than in the corresponding half ring because of the presence of multiple interfering energy-transfer pathways. Finally, simulation results are validated by modeling the fluorescence anisotropy decay.« less
NASA Astrophysics Data System (ADS)
Seino, Junji; Kageyama, Ryo; Fujinami, Mikito; Ikabata, Yasuhiro; Nakai, Hiromi
2018-06-01
A semi-local kinetic energy density functional (KEDF) was constructed based on machine learning (ML). The present scheme adopts electron densities and their gradients up to third-order as the explanatory variables for ML and the Kohn-Sham (KS) kinetic energy density as the response variable in atoms and molecules. Numerical assessments of the present scheme were performed in atomic and molecular systems, including first- and second-period elements. The results of 37 conventional KEDFs with explicit formulae were also compared with those of the ML KEDF with an implicit formula. The inclusion of the higher order gradients reduces the deviation of the total kinetic energies from the KS calculations in a stepwise manner. Furthermore, our scheme with the third-order gradient resulted in the closest kinetic energies to the KS calculations out of the presented functionals.
NASA Astrophysics Data System (ADS)
Pikul, James H.; Liu, Jinyun; Braun, Paul V.; King, William P.
2016-05-01
Microbatteries are increasingly important for powering electronic systems, however, the volumetric energy density of microbatteries lags behind that of conventional format batteries. This paper reports a primary microbattery with energy density 45.5 μWh cm-2 μm-1 and peak power 5300 μW cm-2 μm-1, enabled by the integration of large volume fractions of high capacity anode and cathode chemistry into porous micro-architectures. The interdigitated battery electrodes consist of a lithium metal anode and a mesoporous manganese oxide cathode. The key enabler of the high energy and power density is the integration of the high capacity manganese oxide conversion chemistry into a mesostructured high power interdigitated bicontinuous cathode architecture and an electrodeposited dense lithium metal anode. The resultant energy density is greater than previously reported three-dimensional microbatteries and is comparable to commercial conventional format lithium-based batteries.
Postmortem validation of breast density using dual-energy mammography
Molloi, Sabee; Ducote, Justin L.; Ding, Huanjun; Feig, Stephen A.
2014-01-01
Purpose: Mammographic density has been shown to be an indicator of breast cancer risk and also reduces the sensitivity of screening mammography. Currently, there is no accepted standard for measuring breast density. Dual energy mammography has been proposed as a technique for accurate measurement of breast density. The purpose of this study is to validate its accuracy in postmortem breasts and compare it with other existing techniques. Methods: Forty postmortem breasts were imaged using a dual energy mammography system. Glandular and adipose equivalent phantoms of uniform thickness were used to calibrate a dual energy basis decomposition algorithm. Dual energy decomposition was applied after scatter correction to calculate breast density. Breast density was also estimated using radiologist reader assessment, standard histogram thresholding and a fuzzy C-mean algorithm. Chemical analysis was used as the reference standard to assess the accuracy of different techniques to measure breast composition. Results: Breast density measurements using radiologist reader assessment, standard histogram thresholding, fuzzy C-mean algorithm, and dual energy were in good agreement with the measured fibroglandular volume fraction using chemical analysis. The standard error estimates using radiologist reader assessment, standard histogram thresholding, fuzzy C-mean, and dual energy were 9.9%, 8.6%, 7.2%, and 4.7%, respectively. Conclusions: The results indicate that dual energy mammography can be used to accurately measure breast density. The variability in breast density estimation using dual energy mammography was lower than reader assessment rankings, standard histogram thresholding, and fuzzy C-mean algorithm. Improved quantification of breast density is expected to further enhance its utility as a risk factor for breast cancer. PMID:25086548
Postmortem validation of breast density using dual-energy mammography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Molloi, Sabee, E-mail: symolloi@uci.edu; Ducote, Justin L.; Ding, Huanjun
2014-08-15
Purpose: Mammographic density has been shown to be an indicator of breast cancer risk and also reduces the sensitivity of screening mammography. Currently, there is no accepted standard for measuring breast density. Dual energy mammography has been proposed as a technique for accurate measurement of breast density. The purpose of this study is to validate its accuracy in postmortem breasts and compare it with other existing techniques. Methods: Forty postmortem breasts were imaged using a dual energy mammography system. Glandular and adipose equivalent phantoms of uniform thickness were used to calibrate a dual energy basis decomposition algorithm. Dual energy decompositionmore » was applied after scatter correction to calculate breast density. Breast density was also estimated using radiologist reader assessment, standard histogram thresholding and a fuzzy C-mean algorithm. Chemical analysis was used as the reference standard to assess the accuracy of different techniques to measure breast composition. Results: Breast density measurements using radiologist reader assessment, standard histogram thresholding, fuzzy C-mean algorithm, and dual energy were in good agreement with the measured fibroglandular volume fraction using chemical analysis. The standard error estimates using radiologist reader assessment, standard histogram thresholding, fuzzy C-mean, and dual energy were 9.9%, 8.6%, 7.2%, and 4.7%, respectively. Conclusions: The results indicate that dual energy mammography can be used to accurately measure breast density. The variability in breast density estimation using dual energy mammography was lower than reader assessment rankings, standard histogram thresholding, and fuzzy C-mean algorithm. Improved quantification of breast density is expected to further enhance its utility as a risk factor for breast cancer.« less
Significantly Enhanced Energy Storage Density by Modulating the Aspect Ratio of BaTiO3 Nanofibers
Zhang, Dou; Zhou, Xuefan; Roscow, James; Zhou, Kechao; Wang, Lu; Luo, Hang; Bowen, Chris R.
2017-01-01
There is a growing need for high energy density capacitors in modern electric power supplies. The creation of nanocomposite systems based on one-dimensional nanofibers has shown great potential in achieving a high energy density since they can optimize the energy density by exploiting both the high permittivity of ceramic fillers and the high breakdown strength of the polymer matrix. In this paper, BaTiO3 nanofibers (NFs) with different aspect ratio were synthesized by a two-step hydrothermal method and the permittivity and energy storage of the P(VDF-HFP) nanocomposites were investigated. It is found that as the BaTiO3 NF aspect ratio and volume fraction increased the permittivity and maximum electric displacement of the nanocomposites increased, while the breakdown strength decreased. The nanocomposites with the highest aspect ratio BaTiO3 NFs exhibited the highest energy storage density at the same electric field. However, the nanocomposites with the lowest aspect ratio BaTiO3 NFs achieved the maximal energy storage density of 15.48 J/cm3 due to its higher breakdown strength. This contribution provides a potential route to prepare and tailor the properties of high energy density capacitor nanocomposites. PMID:28332636
Significantly Enhanced Energy Storage Density by Modulating the Aspect Ratio of BaTiO3 Nanofibers
NASA Astrophysics Data System (ADS)
Zhang, Dou; Zhou, Xuefan; Roscow, James; Zhou, Kechao; Wang, Lu; Luo, Hang; Bowen, Chris R.
2017-03-01
There is a growing need for high energy density capacitors in modern electric power supplies. The creation of nanocomposite systems based on one-dimensional nanofibers has shown great potential in achieving a high energy density since they can optimize the energy density by exploiting both the high permittivity of ceramic fillers and the high breakdown strength of the polymer matrix. In this paper, BaTiO3 nanofibers (NFs) with different aspect ratio were synthesized by a two-step hydrothermal method and the permittivity and energy storage of the P(VDF-HFP) nanocomposites were investigated. It is found that as the BaTiO3 NF aspect ratio and volume fraction increased the permittivity and maximum electric displacement of the nanocomposites increased, while the breakdown strength decreased. The nanocomposites with the highest aspect ratio BaTiO3 NFs exhibited the highest energy storage density at the same electric field. However, the nanocomposites with the lowest aspect ratio BaTiO3 NFs achieved the maximal energy storage density of 15.48 J/cm3 due to its higher breakdown strength. This contribution provides a potential route to prepare and tailor the properties of high energy density capacitor nanocomposites.
Significantly Enhanced Energy Storage Density by Modulating the Aspect Ratio of BaTiO3 Nanofibers.
Zhang, Dou; Zhou, Xuefan; Roscow, James; Zhou, Kechao; Wang, Lu; Luo, Hang; Bowen, Chris R
2017-03-23
There is a growing need for high energy density capacitors in modern electric power supplies. The creation of nanocomposite systems based on one-dimensional nanofibers has shown great potential in achieving a high energy density since they can optimize the energy density by exploiting both the high permittivity of ceramic fillers and the high breakdown strength of the polymer matrix. In this paper, BaTiO 3 nanofibers (NFs) with different aspect ratio were synthesized by a two-step hydrothermal method and the permittivity and energy storage of the P(VDF-HFP) nanocomposites were investigated. It is found that as the BaTiO 3 NF aspect ratio and volume fraction increased the permittivity and maximum electric displacement of the nanocomposites increased, while the breakdown strength decreased. The nanocomposites with the highest aspect ratio BaTiO 3 NFs exhibited the highest energy storage density at the same electric field. However, the nanocomposites with the lowest aspect ratio BaTiO 3 NFs achieved the maximal energy storage density of 15.48 J/cm 3 due to its higher breakdown strength. This contribution provides a potential route to prepare and tailor the properties of high energy density capacitor nanocomposites.
Cosmological implications of the transition from the false vacuum to the true vacuum state
NASA Astrophysics Data System (ADS)
Stachowski, Aleksander; Szydłowski, Marek; Urbanowski, Krzysztof
2017-06-01
We study cosmology with running dark energy. The energy density of dark energy is obtained from the quantum process of transition from the false vacuum state to the true vacuum state. We use the Breit-Wigner energy distribution function to model the quantum unstable systems and obtain the energy density of the dark energy parametrization ρ _ {de}(t). We also use Krauss and Dent's idea linking properties of the quantum mechanical decay of unstable states with the properties of the observed Universe. In the cosmological model with this parametrization there is an energy transfer between dark matter and dark energy. The intensity of this process, measured by a parameter α , distinguishes two scenarios. As the Universe starts from the false vacuum state, for the small value of α (0<α <0.4) it goes through an intermediate oscillatory (quantum) regime of the density of dark energy, while for α > 0.4 the density of the dark energy jumps down. In both cases the present value of the density of dark energy is reached. From a statistical analysis we find this model to be in good agreement with the astronomical data and practically indistinguishable from the Λ CDM model.
Modulation of Food Reward by Endocrine and Environmental Factors: Update and Perspective.
Figlewicz, Dianne P
2015-01-01
Palatable foods are frequently high in energy density. Chronic consumption of high-energy density foods can contribute to the development of cardiometabolic pathology including obesity, diabetes, and cardiovascular disease. This article reviews the contributions of extrinsic and intrinsic factors that influence the reward components of food intake. A narrative review was conducted to determine the behavioral and central nervous system (CNS) related processes involved in the reward components of high-energy density food intake. The rewarding aspects of food, particularly palatable and preferred foods, are regulated by CNS circuitry. Overlaying this regulation is modulation by intrinsic endocrine systems and metabolic hormones relating to energy homeostasis, developmental stage, or gender. It is now recognized that extrinsic or environmental factors, including ambient diet composition and the provocation of stress or anxiety, also contribute substantially to the expression of food reward behaviors such as motivation for, and seeking of, preferred foods. High-energy density food intake is influenced by both physiological and pathophysiological processes. Contextual, behavioral, and psychological factors and CNS-related processes represent potential targets for multiple types of therapeutic intervention.
Dynamics of a Two-Dimensional System of Quantum Dipoles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mazzanti, F.; Astrakharchik, G. E.; Boronat, J.
2009-03-20
A detailed microscopic analysis of the dynamic structure function S(k,{omega}) of a two-dimensional Bose system of dipoles polarized along the direction perpendicular to the plane is presented and discussed. Starting from ground-state quantities obtained using a quantum diffusion Monte Carlo algorithm, the density-density response is evaluated in the context of the correlated basis functions (CBF) theory. CBF predicts a sharp peak and a multiexcitation component at higher energies produced by the decay of excitations. We discuss the structure of the phonon-roton peak and show that the Feynman and Bogoliubov predictions depart from the CBF result already at low densities. Wemore » finally discuss the emergence of a roton in the spectrum, but find the roton energy not low enough to make the system unstable under density fluctuations up to the highest density considered that is close to the freezing point.« less
Phantom energy: dark energy with w <--1 causes a cosmic doomsday.
Caldwell, Robert R; Kamionkowski, Marc; Weinberg, Nevin N
2003-08-15
We explore the consequences that follow if the dark energy is phantom energy, in which the sum of the pressure and energy density is negative. The positive phantom-energy density becomes infinite in finite time, overcoming all other forms of matter, such that the gravitational repulsion rapidly brings our brief epoch of cosmic structure to a close. The phantom energy rips apart the Milky Way, solar system, Earth, and ultimately the molecules, atoms, nuclei, and nucleons of which we are composed, before the death of the Universe in a "big rip."
Flexible asymmetric supercapacitors with high energy and high power density in aqueous electrolytes
NASA Astrophysics Data System (ADS)
Cheng, Yingwen; Zhang, Hongbo; Lu, Songtao; Varanasi, Chakrapani V.; Liu, Jie
2013-01-01
Supercapacitors with both high energy and high power densities are critical for many practical applications. In this paper, we discuss the design and demonstrate the fabrication of flexible asymmetric supercapacitors based on nanocomposite electrodes of MnO2, activated carbon, carbon nanotubes and graphene. The combined unique properties of each of these components enable highly flexible and mechanically strong films that can serve as electrodes directly without using any current collectors or binders. Using these flexible electrodes and a roll-up approach, asymmetric supercapacitors with 2 V working voltage were successfully fabricated. The fabricated device showed excellent rate capability, with 78% of the original capacitance retained when the scan rate was increased from 2 mV s-1 to 500 mV s-1. Owing to the unique composite structure, these supercapacitors were able to deliver high energy density (24 W h kg-1) under high power density (7.8 kW kg-1) conditions. These features could enable supercapacitor based energy storage systems to be very attractive for a variety of critical applications, such as the power sources in hybrid electric vehicles and the back-up powers for wind and solar energy, where both high energy density and high power density are required.Supercapacitors with both high energy and high power densities are critical for many practical applications. In this paper, we discuss the design and demonstrate the fabrication of flexible asymmetric supercapacitors based on nanocomposite electrodes of MnO2, activated carbon, carbon nanotubes and graphene. The combined unique properties of each of these components enable highly flexible and mechanically strong films that can serve as electrodes directly without using any current collectors or binders. Using these flexible electrodes and a roll-up approach, asymmetric supercapacitors with 2 V working voltage were successfully fabricated. The fabricated device showed excellent rate capability, with 78% of the original capacitance retained when the scan rate was increased from 2 mV s-1 to 500 mV s-1. Owing to the unique composite structure, these supercapacitors were able to deliver high energy density (24 W h kg-1) under high power density (7.8 kW kg-1) conditions. These features could enable supercapacitor based energy storage systems to be very attractive for a variety of critical applications, such as the power sources in hybrid electric vehicles and the back-up powers for wind and solar energy, where both high energy density and high power density are required. Electronic supplementary information (ESI) available. See DOI: 10.1039/c2nr33136e
NASA Astrophysics Data System (ADS)
Schneider, A. S.; Horowitz, C. J.; Hughto, J.; Berry, D. K.
2013-12-01
The formation of complex nonuniform phases of nuclear matter, known as nuclear pasta, is studied with molecular dynamics (MD) simulations containing 51200 nucleons. A phenomenological nuclear interaction is used that reproduces the saturation binding energy and density of nuclear matter. Systems are prepared at an initial density of 0.10fm-3 and then the density is decreased by expanding the simulation volume at different rates to densities of 0.01fm-3 or less. An originally uniform system of nuclear matter is observed to form spherical bubbles (“swiss cheese”), hollow tubes, flat plates (“lasagna”), thin rods (“spaghetti”) and, finally, nearly spherical nuclei with decreasing density. We explicitly observe nucleation mechanisms, with decreasing density, for these different pasta phase transitions. Topological quantities known as Minkowski functionals are obtained to characterize the pasta shapes. Different pasta shapes are observed depending on the expansion rate. This indicates nonequilibrium effects. We use this to determine the best ways to obtain lower energy states of the pasta system from MD simulations and to place constraints on the equilibration time of the system.
Motor/Generator and Inverter Characterization for Flywheel System Applications
NASA Technical Reports Server (NTRS)
Tamarcus, Jeffries L.
2004-01-01
The Advanced Electrical Systems Development Branch at NASA Glenn Research Center (GRC) has been involved in the research and development of high speed flywheels systems for satellite energy storage and attitude applications. These flywheels will serve as replacement for chemical nickel hydrogen, nickel cadmium batteries and gyroscopic wheels. The advantages of using flywheel systems for energy storage on satellites are high energy density, high power density, long life, deep depth of discharge, and broad operating temperature ranges. A flywheel system for space applications consist of a number of flywheel modules, the motor/generator and magnetic bearing, and an electronics package. The motor/generator electronics package includes a pulse-width modulated inverter that drives the flywheel permanent magnet motor/generator located at one end of the shaft. This summer, I worked under the direct supervision of my mentor, Walter Santiago, and the goal for this summer was to characterize motor generator and inverter attributes in order to increase their viability as a more efficient energy storage source for space applications. To achieve this goal, magnetic field measurements around the motor/generator permanent magnet and the impedance of the motor/generator three phase windings were characterized, and a recreation of the inverter pulse width modulated control system was constructed. The Flywheel modules for space use are designed to maximize energy density and minimize loss, and attaining these values will aid in locating and reducing losses within the flywheel system as a whole, making flywheel technology more attractive for use as energy storage in future space applications.
On the v-representability of ensemble densities of electron systems
NASA Astrophysics Data System (ADS)
Gonis, A.; Däne, M.
2018-05-01
Analogously to the case at zero temperature, where the density of the ground state of an interacting many-particle system determines uniquely (within an arbitrary additive constant) the external potential acting on the system, the thermal average of the density over an ensemble defined by the Boltzmann distribution at the minimum of the thermodynamic potential, or the free energy, determines the external potential uniquely (and not just modulo a constant) acting on a system described by this thermodynamic potential or free energy. The paper describes a formal procedure that generates the domain of a constrained search over general ensembles (at zero or elevated temperatures) that lead to a given density, including as a special case a density thermally averaged at a given temperature, and in the case of a v-representable density determines the external potential leading to the ensemble density. As an immediate consequence of the general formalism, the concept of v-representability is extended beyond the hitherto discussed case of ground state densities to encompass excited states as well. Specific application to thermally averaged densities solves the v-representability problem in connection with the Mermin functional in a manner analogous to that in which this problem was recently settled with respect to the Hohenberg and Kohn functional. The main formalism is illustrated with numerical results for ensembles of one-dimensional, non-interacting systems of particles under a harmonic potential.
On the v-representability of ensemble densities of electron systems
Gonis, A.; Dane, M.
2017-12-30
Analogously to the case at zero temperature, where the density of the ground state of an interacting many-particle system determines uniquely (within an arbitrary additive constant) the external potential acting on the system, the thermal average of the density over an ensemble defined by the Boltzmann distribution at the minimum of the thermodynamic potential, or the free energy, determines the external potential uniquely (and not just modulo a constant) acting on a system described by this thermodynamic potential or free energy. The study describes a formal procedure that generates the domain of a constrained search over general ensembles (at zeromore » or elevated temperatures) that lead to a given density, including as a special case a density thermally averaged at a given temperature, and in the case of a v-representable density determines the external potential leading to the ensemble density. As an immediate consequence of the general formalism, the concept of v-representability is extended beyond the hitherto discussed case of ground state densities to encompass excited states as well. Specific application to thermally averaged densities solves the v-representability problem in connection with the Mermin functional in a manner analogous to that in which this problem was recently settled with respect to the Hohenberg and Kohn functional. Finally, the main formalism is illustrated with numerical results for ensembles of one-dimensional, non-interacting systems of particles under a harmonic potential.« less
Oxygen reduction on a Pt(111) catalyst in HT-PEM fuel cells by density functional theory
NASA Astrophysics Data System (ADS)
Sun, Hong; Li, Jie; Almheiri, Saif; Xiao, Jianyu
2017-08-01
The oxygen reduction reaction plays an important role in the performance of high-temperature proton exchange membrane (HT-PEM) fuel cells. In this study, a molecular dynamics model, which is based on the density functional theory and couples the system's energy, the exchange-correlation energy functional, the charge density distribution function, and the simplified Kohn-Sham equation, was developed to simulate the oxygen reduction reaction on a Pt(111) surface. Additionally, an electrochemical reaction system on the basis of a four-electron reaction mechanism was also developed for this simulation. The reaction path of the oxygen reduction reaction, the product structure of each reaction step and the system's energy were simulated. It is found that the first step reaction of the first hydrogen ion with the oxygen molecule is the controlling step of the overall reaction. Increasing the operating temperature speeds up the first step reaction rate and slightly decreases its reaction energy barrier. Our results provide insight into the working principles of HT-PEM fuel cells.
Density-matrix based determination of low-energy model Hamiltonians from ab initio wavefunctions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Changlani, Hitesh J.; Zheng, Huihuo; Wagner, Lucas K.
2015-09-14
We propose a way of obtaining effective low energy Hubbard-like model Hamiltonians from ab initio quantum Monte Carlo calculations for molecular and extended systems. The Hamiltonian parameters are fit to best match the ab initio two-body density matrices and energies of the ground and excited states, and thus we refer to the method as ab initio density matrix based downfolding. For benzene (a finite system), we find good agreement with experimentally available energy gaps without using any experimental inputs. For graphene, a two dimensional solid (extended system) with periodic boundary conditions, we find the effective on-site Hubbard U{sup ∗}/t tomore » be 1.3 ± 0.2, comparable to a recent estimate based on the constrained random phase approximation. For molecules, such parameterizations enable calculation of excited states that are usually not accessible within ground state approaches. For solids, the effective Hamiltonian enables large-scale calculations using techniques designed for lattice models.« less
Design definition of a mechanical capacitor
NASA Technical Reports Server (NTRS)
Michaelis, T. D.; Schlieban, E. W.; Scott, R. D.
1977-01-01
A design study and analyses of a 10 kW-hr, 15 kW mechanical capacitor system was studied. It was determined that magnetically supported wheels constructed of advanced composites have the potential for high energy density and high power density. Structural concepts are analyzed that yield the highest energy density of any structural design yet reported. Particular attention was paid to the problem of 'friction' caused by magnetic and I to the second power R losses in the suspension and motor-generator subsystems, and low design friction levels have been achieved. The potentially long shelf life of this system, and the absence of wearing parts, provide superior performance over conventional flywheels supported with mechanical bearings. Costs and economies of energy storage wheels were reviewed briefly.
NASA Astrophysics Data System (ADS)
Murshid, Ghulam; Garg, Sahil
2018-05-01
Amine scrubbing is the state of the art technology for CO2 capture, and solvent selection can significantly reduce the capital and energy cost of the process. Higher energy requirement for aqueous amine based CO2 removal process is still a most important downside preventive its industrial deployment. Therefore, in this study, novel non-aqueous based amino acid salt system consisting of potassium prolinate, ethanol and ethylene glycol has been studied. This work presents initial CO2 solubility study and important physical properties i.e. density of the studied solvent system. Previous work showed that non-aqueous system of potassium prolinate and ethanol has good absorption rates and requires lower energy for solvent regeneration. However, during regeneration, solvent loss issues were found due to lower boiling point of the ethanol. Therefore, ethylene glycol was added into current studied system for enhancing the overall boiling point of the system. The good initial CO2 solubility and low density of studied solvent system offers several advantages as compared to conventional amine solutions.
Wang, Wei; Guo, Shirui; Lee, Ilkeun; Ahmed, Kazi; Zhong, Jiebin; Favors, Zachary; Zaera, Francisco; Ozkan, Mihrimah; Ozkan, Cengiz S.
2014-01-01
In real life applications, supercapacitors (SCs) often can only be used as part of a hybrid system together with other high energy storage devices due to their relatively lower energy density in comparison to other types of energy storage devices such as batteries and fuel cells. Increasing the energy density of SCs will have a huge impact on the development of future energy storage devices by broadening the area of application for SCs. Here, we report a simple and scalable way of preparing a three-dimensional (3D) sub-5 nm hydrous ruthenium oxide (RuO2) anchored graphene and CNT hybrid foam (RGM) architecture for high-performance supercapacitor electrodes. This RGM architecture demonstrates a novel graphene foam conformally covered with hybrid networks of RuO2 nanoparticles and anchored CNTs. SCs based on RGM show superior gravimetric and per-area capacitive performance (specific capacitance: 502.78 F g−1, areal capacitance: 1.11 F cm−2) which leads to an exceptionally high energy density of 39.28 Wh kg−1 and power density of 128.01 kW kg−1. The electrochemical stability, excellent capacitive performance, and the ease of preparation suggest this RGM system is promising for future energy storage applications. PMID:24663242
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Wei; Guo, S.; Lee, I.
2014-03-25
In real life applications, supercapacitors (SCs) often can only be used as part of a hybrid system together with other high energy storage devices due to their relatively lower energy density in comparison to other types of energy storage devices such as batteries and fuel cells. Increasing the energy density of SCs will have a huge impact on the development of future energy storage devices by broadening the area of application for SCs. Here, we report a simple and scalable way of preparing a three-dimensional (3D) sub-5 nm hydrous ruthenium oxide (RuO₂) anchored graphene and CNT hybrid foam (RGM) architecturemore » for high-performance supercapacitor electrodes. This RGM architecture demonstrates a novel graphene foam conformally covered with hybrid networks of RuO₂ nanoparticles and anchored CNTs. SCs based on RGM show superior gravimetric and per-area capacitive performance (specific capacitance: 502.78 F g⁻¹, areal capacitance: 1.11 F cm⁻²) which leads to an exceptionally high energy density of 39.28 Wh kg⁻¹ and power density of 128.01 kW kg⁻¹. The electrochemical stability, excellent capacitive performance, and the ease of preparation suggest this RGM system is promising for future energy storage applications.« less
Huang, Chen; Muñoz-García, Ana Belén; Pavone, Michele
2016-12-28
Density-functional embedding theory provides a general way to perform multi-physics quantum mechanics simulations of large-scale materials by dividing the total system's electron density into a cluster's density and its environment's density. It is then possible to compute the accurate local electronic structures and energetics of the embedded cluster with high-level methods, meanwhile retaining a low-level description of the environment. The prerequisite step in the density-functional embedding theory is the cluster definition. In covalent systems, cutting across the covalent bonds that connect the cluster and its environment leads to dangling bonds (unpaired electrons). These represent a major obstacle for the application of density-functional embedding theory to study extended covalent systems. In this work, we developed a simple scheme to define the cluster in covalent systems. Instead of cutting covalent bonds, we directly split the boundary atoms for maintaining the valency of the cluster. With this new covalent embedding scheme, we compute the dehydrogenation energies of several different molecules, as well as the binding energy of a cobalt atom on graphene. Well localized cluster densities are observed, which can facilitate the use of localized basis sets in high-level calculations. The results are found to converge faster with the embedding method than the other multi-physics approach ONIOM. This work paves the way to perform the density-functional embedding simulations of heterogeneous systems in which different types of chemical bonds are present.
Ding, Huanjun; Molloi, Sabee
2012-08-07
A simple and accurate measurement of breast density is crucial for the understanding of its impact in breast cancer risk models. The feasibility to quantify volumetric breast density with a photon-counting spectral mammography system has been investigated using both computer simulations and physical phantom studies. A computer simulation model involved polyenergetic spectra from a tungsten anode x-ray tube and a Si-based photon-counting detector has been evaluated for breast density quantification. The figure-of-merit (FOM), which was defined as the signal-to-noise ratio of the dual energy image with respect to the square root of mean glandular dose, was chosen to optimize the imaging protocols, in terms of tube voltage and splitting energy. A scanning multi-slit photon-counting spectral mammography system has been employed in the experimental study to quantitatively measure breast density using dual energy decomposition with glandular and adipose equivalent phantoms of uniform thickness. Four different phantom studies were designed to evaluate the accuracy of the technique, each of which addressed one specific variable in the phantom configurations, including thickness, density, area and shape. In addition to the standard calibration fitting function used for dual energy decomposition, a modified fitting function has been proposed, which brought the tube voltages used in the imaging tasks as the third variable in dual energy decomposition. For an average sized 4.5 cm thick breast, the FOM was maximized with a tube voltage of 46 kVp and a splitting energy of 24 keV. To be consistent with the tube voltage used in current clinical screening exam (∼32 kVp), the optimal splitting energy was proposed to be 22 keV, which offered a FOM greater than 90% of the optimal value. In the experimental investigation, the root-mean-square (RMS) error in breast density quantification for all four phantom studies was estimated to be approximately 1.54% using standard calibration function. The results from the modified fitting function, which integrated the tube voltage as a variable in the calibration, indicated a RMS error of approximately 1.35% for all four studies. The results of the current study suggest that photon-counting spectral mammography systems may potentially be implemented for an accurate quantification of volumetric breast density, with an RMS error of less than 2%, using the proposed dual energy imaging technique.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Q.; Ayers, P.W.; Zhang, Y.
2009-10-28
The first purely density-based energy decomposition analysis (EDA) for intermolecular binding is developed within the density functional theory. The most important feature of this scheme is to variationally determine the frozen density energy, based on a constrained search formalism and implemented with the Wu-Yang algorithm [Q. Wu and W. Yang, J. Chem. Phys. 118, 2498 (2003) ]. This variational process dispenses with the Heitler-London antisymmetrization of wave functions used in most previous methods and calculates the electrostatic and Pauli repulsion energies together without any distortion of the frozen density, an important fact that enables a clean separation of these twomore » terms from the relaxation (i.e., polarization and charge transfer) terms. The new EDA also employs the constrained density functional theory approach [Q. Wu and T. Van Voorhis, Phys. Rev. A 72, 24502 (2005)] to separate out charge transfer effects. Because the charge transfer energy is based on the density flow in real space, it has a small basis set dependence. Applications of this decomposition to hydrogen bonding in the water dimer and the formamide dimer show that the frozen density energy dominates the binding in these systems, consistent with the noncovalent nature of the interactions. A more detailed examination reveals how the interplay of electrostatics and the Pauli repulsion determines the distance and angular dependence of these hydrogen bonds.« less
Takahashi, Hideaki; Omi, Atsushi; Morita, Akihiro; Matubayasi, Nobuyuki
2012-06-07
We present a simple and exact numerical approach to compute the free energy contribution δμ in solvation due to the electron density polarization and fluctuation of a quantum-mechanical solute in the quantum-mechanical/molecular-mechanical (QM/MM) simulation combined with the theory of the energy representation (QM/MM-ER). Since the electron density fluctuation is responsible for the many-body QM-MM interactions, the standard version of the energy representation method cannot be applied directly. Instead of decomposing the QM-MM polarization energy into the pairwise additive and non-additive contributions, we take sum of the polarization energies in the QM-MM interaction and adopt it as a new energy coordinate for the method of energy representation. Then, it is demonstrated that the free energy δμ can be exactly formulated in terms of the energy distribution functions for the solution and reference systems with respect to this energy coordinate. The benchmark tests were performed to examine the numerical efficiency of the method with respect to the changes in the individual properties of the solvent and the solute. Explicitly, we computed the solvation free energy of a QM water molecule in ambient and supercritical water, and also the free-energy change associated with the isomerization reaction of glycine from neutral to zwitterionic structure in aqueous solution. In all the systems examined, it was demonstrated that the computed free energy δμ agrees with the experimental value, irrespective of the choice of the reference electron density of the QM solute. The present method was also applied to a prototype reaction of adenosine 5'-triphosphate hydrolysis where the effect of the electron density fluctuation is substantial due to the excess charge. It was demonstrated that the experimental free energy of the reaction has been accurately reproduced with the present approach.
Extending density functional embedding theory for covalently bonded systems.
Yu, Kuang; Carter, Emily A
2017-12-19
Quantum embedding theory aims to provide an efficient solution to obtain accurate electronic energies for systems too large for full-scale, high-level quantum calculations. It adopts a hierarchical approach that divides the total system into a small embedded region and a larger environment, using different levels of theory to describe each part. Previously, we developed a density-based quantum embedding theory called density functional embedding theory (DFET), which achieved considerable success in metals and semiconductors. In this work, we extend DFET into a density-matrix-based nonlocal form, enabling DFET to study the stronger quantum couplings between covalently bonded subsystems. We name this theory density-matrix functional embedding theory (DMFET), and we demonstrate its performance in several test examples that resemble various real applications in both chemistry and biochemistry. DMFET gives excellent results in all cases tested thus far, including predicting isomerization energies, proton transfer energies, and highest occupied molecular orbital-lowest unoccupied molecular orbital gaps for local chromophores. Here, we show that DMFET systematically improves the quality of the results compared with the widely used state-of-the-art methods, such as the simple capped cluster model or the widely used ONIOM method.
Does a Single Eigenstate Encode the Full Hamiltonian?
NASA Astrophysics Data System (ADS)
Garrison, James R.; Grover, Tarun
2018-04-01
The eigenstate thermalization hypothesis (ETH) posits that the reduced density matrix for a subsystem corresponding to an excited eigenstate is "thermal." Here we expound on this hypothesis by asking: For which class of operators, local or nonlocal, is ETH satisfied? We show that this question is directly related to a seemingly unrelated question: Is the Hamiltonian of a system encoded within a single eigenstate? We formulate a strong form of ETH where, in the thermodynamic limit, the reduced density matrix of a subsystem corresponding to a pure, finite energy density eigenstate asymptotically becomes equal to the thermal reduced density matrix, as long as the subsystem size is much less than the total system size, irrespective of how large the subsystem is compared to any intrinsic length scale of the system. This allows one to access the properties of the underlying Hamiltonian at arbitrary energy densities (or temperatures) using just a single eigenstate. We provide support for our conjecture by performing an exact diagonalization study of a nonintegrable 1D quantum lattice model with only energy conservation. In addition, we examine the case in which the subsystem size is a finite fraction of the total system size, and we find that, even in this case, many operators continue to match their canonical expectation values, at least approximately. In particular, the von Neumann entanglement entropy equals the thermal entropy as long as the subsystem is less than half the total system. Our results are consistent with the possibility that a single eigenstate correctly predicts the expectation values of all operators with support on less than half the total system, as long as one uses a microcanonical ensemble with vanishing energy width for comparison. We also study, both analytically and numerically, a particle-number conserving model at infinite temperature that substantiates our conjectures.
Density and energy relaxation in an open one-dimensional system
NASA Astrophysics Data System (ADS)
Jose, Prasanth P.; Bagchi, Biman
2004-05-01
A new master equation to mimic the dynamics of a collection of interacting random walkers in an open system is proposed and solved numerically. In this model, the random walkers interact through excluded volume interaction (single-file system); and the total number of walkers in the lattice can fluctuate because of exchange with a bath. In addition, the movement of the random walkers is biased by an external perturbation. Two models for the latter are considered: (1) an inverse potential (V∝1/r), where r is the distance between the center of the perturbation and the random walker and (2) an inverse of sixth power potential (V∝1/r6). The calculated density of the walkers and the total energy show interesting dynamics. When the size of the system is comparable to the range of the perturbing field, the energy relaxation is found to be highly nonexponential. In this range, the system can show stretched exponential (e-(t/τs)β) and even logarithmic time dependence of energy relaxation over a limited range of time. Introduction of density exchange in the lattice markedly weakens this nonexponentiality of the relaxation function, irrespective of the nature of perturbation.
Comparison of Boltzmann and Gibbs entropies for the analysis of single-chain phase transitions
NASA Astrophysics Data System (ADS)
Shakirov, T.; Zablotskiy, S.; Böker, A.; Ivanov, V.; Paul, W.
2017-03-01
In the last 10 years, flat histogram Monte Carlo simulations have contributed strongly to our understanding of the phase behavior of simple generic models of polymers. These simulations result in an estimate for the density of states of a model system. To connect this result with thermodynamics, one has to relate the density of states to the microcanonical entropy. In a series of publications, Dunkel, Hilbert and Hänggi argued that it would lead to a more consistent thermodynamic description of small systems, when one uses the Gibbs definition of entropy instead of the Boltzmann one. The latter is the logarithm of the density of states at a certain energy, the former is the logarithm of the integral of the density of states over all energies smaller than or equal to this energy. We will compare the predictions using these two definitions for two polymer models, a coarse-grained model of a flexible-semiflexible multiblock copolymer and a coarse-grained model of the protein poly-alanine. Additionally, it is important to note that while Monte Carlo techniques are normally concerned with the configurational energy only, the microcanonical ensemble is defined for the complete energy. We will show how taking the kinetic energy into account alters the predictions from the analysis. Finally, the microcanonical ensemble is supposed to represent a closed mechanical N-particle system. But due to Galilei invariance such a system has two additional conservation laws, in general: momentum and angular momentum. We will also show, how taking these conservation laws into account alters the results.
Optimization of Norbornadiene Compounds for Solar Thermal Storage by First-Principles Calculations.
Kuisma, Mikael; Lundin, Angelica; Moth-Poulsen, Kasper; Hyldgaard, Per; Erhart, Paul
2016-07-21
Molecular photoswitches capable of storing solar energy are interesting candidates for future renewable energy applications. Here, using quantum mechanical calculations, we carry out a systematic screening of crucial optical (solar spectrum match) and thermal (storage energy density) properties of 64 such compounds based on the norbornadiene-quadricyclane system. Whereas a substantial number of these molecules reach the theoretical maximum solar power conversion efficiency, this requires a strong red-shift of the absorption spectrum, which causes undesirable absorption by the photoisomer as well as reduced thermal stability. These compounds typically also have a large molecular mass, leading to low storage densities. By contrast, single-substituted systems achieve a good compromise between efficiency and storage density, while avoiding competing absorption by the photo-isomer. This establishes guiding principles for the future development of molecular solar thermal storage systems. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Quantum oscillations in the kinetic energy density: Gradient corrections from the Airy gas
NASA Astrophysics Data System (ADS)
Lindmaa, Alexander; Mattsson, Ann E.; Armiento, Rickard
2014-03-01
We show how one can systematically derive exact quantum corrections to the kinetic energy density (KED) in the Thomas-Fermi (TF) limit of the Airy gas (AG). The resulting expression is of second order in the density variation and we demonstrate how it applies universally to a certain class of model systems in the slowly varying regime, for which the accuracy of the gradient corrections of the extended Thomas-Fermi (ETF) model is limited. In particular we study two kinds of related electronic edges, the Hermite gas (HG) and the Mathieu gas (MG), which are both relevant for discussing periodic systems. We also consider two systems with finite integer particle number, namely non-interacting electrons subject to harmonic confinement as well as the hydrogenic potential. Finally we discuss possible implications of our findings mainly related to the field of functional development of the local kinetic energy contribution.
Regenerative fuel cell study for satellites in GEO orbit
NASA Technical Reports Server (NTRS)
Vandine, Leslie; Gonzalez-Sanabria, Olga; Levy, Alexander
1987-01-01
The results of a 12 month study to identify high performance regenerative hydrogen-oxygen fuel cell concepts for geosynchronous satellite application are summarized. Emphasis was placed on concepts with the potential for high energy density and passive means for water and heat management to maximize system reliability. Both polymer membrane and alkaline electrolyte fuel cells were considered, with emphasis on the alkaline cell because of its high performance, advanced state of development, and proven ability to operate in a launch and space environment. Three alkaline system concepts were studied. Results indicate that using near term technology energy densities between 46 and 52 watt-hour/lb can be achieved at efficiencies of 55 percent. Using advanced light weight cell construction which was achieved in experimental cells, composite tankage material for the reactant gases and the reversible stack concept, system energy densities of 115 watt-hours/lb can be projected.
Orbital relaxation effects on Kohn–Sham frontier orbital energies in density functional theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, DaDi; Zheng, Xiao, E-mail: xz58@ustc.edu.cn; Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026
2015-04-21
We explore effects of orbital relaxation on Kohn–Sham frontier orbital energies in density functional theory by using a nonempirical scaling correction approach developed in Zheng et al. [J. Chem. Phys. 138, 174105 (2013)]. Relaxation of Kohn–Sham orbitals upon addition/removal of a fractional number of electrons to/from a finite system is determined by a systematic perturbative treatment. The information of orbital relaxation is then used to improve the accuracy of predicted Kohn–Sham frontier orbital energies by Hartree–Fock, local density approximation, and generalized gradient approximation methods. The results clearly highlight the significance of capturing the orbital relaxation effects. Moreover, the proposed scalingmore » correction approach provides a useful way of computing derivative gaps and Fukui quantities of N-electron finite systems (N is an integer), without the need to perform self-consistent-field calculations for (N ± 1)-electron systems.« less
A new time dependent density functional algorithm for large systems and plasmons in metal clusters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baseggio, Oscar; Fronzoni, Giovanna; Stener, Mauro, E-mail: stener@univ.trieste.it
2015-07-14
A new algorithm to solve the Time Dependent Density Functional Theory (TDDFT) equations in the space of the density fitting auxiliary basis set has been developed and implemented. The method extracts the spectrum from the imaginary part of the polarizability at any given photon energy, avoiding the bottleneck of Davidson diagonalization. The original idea which made the present scheme very efficient consists in the simplification of the double sum over occupied-virtual pairs in the definition of the dielectric susceptibility, allowing an easy calculation of such matrix as a linear combination of constant matrices with photon energy dependent coefficients. The methodmore » has been applied to very different systems in nature and size (from H{sub 2} to [Au{sub 147}]{sup −}). In all cases, the maximum deviations found for the excitation energies with respect to the Amsterdam density functional code are below 0.2 eV. The new algorithm has the merit not only to calculate the spectrum at whichever photon energy but also to allow a deep analysis of the results, in terms of transition contribution maps, Jacob plasmon scaling factor, and induced density analysis, which have been all implemented.« less
Flow Cells for Scalable Energy Conversion and Storage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mukundan, Rangachary
2017-10-26
This project is a response to current flow systems that are V-aqueous and not cost effective. It will hopefully enable high energy/ power density flow cells through rational materials and system design.
Hydrogen: the future energy carrier.
Züttel, Andreas; Remhof, Arndt; Borgschulte, Andreas; Friedrichs, Oliver
2010-07-28
Since the beginning of the twenty-first century the limitations of the fossil age with regard to the continuing growth of energy demand, the peaking mining rate of oil, the growing impact of CO2 emissions on the environment and the dependency of the economy in the industrialized world on the availability of fossil fuels became very obvious. A major change in the energy economy from fossil energy carriers to renewable energy fluxes is necessary. The main challenge is to efficiently convert renewable energy into electricity and the storage of electricity or the production of a synthetic fuel. Hydrogen is produced from water by electricity through an electrolyser. The storage of hydrogen in its molecular or atomic form is a materials challenge. Some hydrides are known to exhibit a hydrogen density comparable to oil; however, these hydrides require a sophisticated storage system. The system energy density is significantly smaller than the energy density of fossil fuels. An interesting alternative to the direct storage of hydrogen are synthetic hydrocarbons produced from hydrogen and CO2 extracted from the atmosphere. They are CO2 neutral and stored like fossil fuels. Conventional combustion engines and turbines can be used in order to convert the stored energy into work and heat.
Development of a PEMFC Power System with Integrated Balance of Plant
NASA Technical Reports Server (NTRS)
Wynne, B.; Diffenderfer, C.; Ferguson, S.; Keyser, J.; Miller, M.; Sievers, B.; Ryan, A.; Vasquez, A.
2012-01-01
Autonomous Underwater Vehicles (AUV s) have received increasing attention in recent years as military and commercial users look for means to maintain a mobile and persistent presence in the undersea world. Compact, neutrally buoyant power systems are needed for both small and large vehicles. Batteries are usually employed in these applications, but the energy density and therefore the mission duration are limited with current battery technology. At a certain energy or mission duration requirement, other means to get long duration power become feasible. For example, above 10 kW-hrs liquid oxygen and hydrogen have better specific energy than batteries and are preferable for energy storage as long as a compact system of about 100 W/liter is achievable to convert the chemical energy in these reactants into power. Other reactant forms are possible, such as high pressure gas, chemical hydrides or oxygen carriers, but it is essential that the power system be small and light weight. Recent fuel cell work, primarily focused on NASA applications, has developed power systems that can meet this target power density. Passive flow-through systems, using ejector driven reactant (EDR) flow, integrated into a compact balance of plant have been developed. These systems are thermally and functionally integrated in much the same way as are automotive, air breathing fuel cell systems. These systems fit into the small volumes required for AUV and future NASA applications. Designs have been developed for both a 21" diameter and a larger diameter (LD) AUV. These fuel cell systems occupy a very small portion of the overall energy system, allowing most of the system volume to be used for the reactants. The fuel cell systems have been optimized to use reactants efficiently with high stack efficiency and low parasitic losses. The resulting compact, highly efficient fuel cell system provides exceptional reactant utilization and energy density. Key design variables and supporting test data are presented. Future development activities are described.
Development of a High Reliability Compact Air Independent PEMFC Power System
NASA Technical Reports Server (NTRS)
Vasquez, Arturo; Wynne, Bob
2013-01-01
Autonomous Underwater Vehicles (AUV's) have received increasing attention in recent years as military and commercial users look for means to maintain a mobile and persistent presence in the undersea world. Compact, neutrally buoyant power systems are needed for both small and large vehicles. Historically, batteries have been employed in these applications, but the energy density and therefore mission duration are limited with current battery technologies. Vehicles with stored energy requirements greater than approximately 10 kWh have an alternate means to get long duration power. High efficiency Proton Exchange Membrane (PEM) fuel cell systems utilizing pure hydrogen and oxygen reactants show the potential for an order of magnitude energy density improvement over batteries as long as the subsystems are compact. One key aspect to achieving a compact and energy dense system is the design of the fuel cell balance of plant (BOP). Recent fuel cell work, initially focused on NASA applications requiring high reliability, has developed systems that can meet target power and energy densities. Passive flow through systems using ejector driven reactant (EDR) circulation have been developed to provide high reactant flow and water management within the stack, with minimal parasitic losses compared to blowers. The ejectors and recirculation loops, along with valves and other BOP instrumentation, have been incorporated within the stack end plate. In addition, components for water management and reactant conditioning have been incorporated within the stack to further minimize the BOP. These BOP systems are thermally and functionally integrated into the stack hardware and fit into the small volumes required for AUV and future NASA applications to maximize the volume available for reactants. These integrated systems provide a compact solution for the fuel cell BOP and maximize the efficiency and reliability of the system. Designs have been developed for multiple applications ranging from less than 1 kWe to 70 kWe. These systems occupy a very small portion of the overall energy system, allowing most of the system volume to be used for reactants. The fuel cell systems have been optimized to use reactants efficiently with high stack efficiency and low parasitic losses. The resulting compact, highly efficient fuel cell system provides exceptional reactant utilization and energy density. Key design variables and supporting test data are presented. Future development activities are described.
High energy density aluminum-oxygen cell
NASA Technical Reports Server (NTRS)
Rudd, E. J.; Gibbons, D. W.
1993-01-01
An alternative to a secondary battery as the power source for vehicle propulsion is a fuel cell. An example of this is the metal-air fuel cell using metals such as aluminum, zinc, or iron. Aluminum is a particularly attractive candidate, having high energy and power densities, being environmentally acceptable, and having a large, established industrial base for production and distribution. An aluminum-oxygen system is currently under development for a UUV test vehicle, and recent work has focussed upon low corrosion aluminum alloys and an electrolyte management system for processing the by-products of the energy-producing reactions. This paper summarizes the progress made in both areas. Anode materials capable of providing high utilization factors over current densities ranging from S to 150 mA/sq cm have been identified. These materials are essential to realizing an acceptable mission life for the UUV. With respect to the electrolyte management system, a filter/precipitator unit has been successfully operated for over 250 hours in a large scale, half-cell system.
Zhao, Lei; Gao, Jing; Liu, Qing; Zhang, Shujun; Li, Jing-Feng
2018-01-10
Lead-free dielectric ceramics with high recoverable energy density are highly desired to sustainably meet the future energy demand. AgNbO 3 -based lead-free antiferroelectric ceramics with double ferroelectric hysteresis loops have been proved to be potential candidates for energy storage applications. Enhanced energy storage performance with recoverable energy density of 3.3 J/cm 3 and high thermal stability with minimal energy density variation (<10%) over a temperature range of 20-120 °C have been achieved in W-modified AgNbO 3 ceramics. It is revealed that the W 6+ cations substitute the B-site Nb 5+ and reduce the polarizability of B-site cations, leading to the enhanced antiferroelectricity, which is confirmed by the polarization hysteresis and dielectric tunability. It is believed that the polarizability of B-site cations plays a dominant role in stabilizing the antiferroelectricity in AgNbO 3 system, in addition to the tolerance factor, which opens up a new design approach to achieve stable antiferroelectric materials.
NASA Astrophysics Data System (ADS)
Constantin, Lucian A.; Fabiano, Eduardo; Della Sala, Fabio
2018-05-01
Orbital-free density functional theory (OF-DFT) promises to describe the electronic structure of very large quantum systems, being its computational cost linear with the system size. However, the OF-DFT accuracy strongly depends on the approximation made for the kinetic energy (KE) functional. To date, the most accurate KE functionals are nonlocal functionals based on the linear-response kernel of the homogeneous electron gas, i.e., the jellium model. Here, we use the linear-response kernel of the jellium-with-gap model to construct a simple nonlocal KE functional (named KGAP) which depends on the band-gap energy. In the limit of vanishing energy gap (i.e., in the case of metals), the KGAP is equivalent to the Smargiassi-Madden (SM) functional, which is accurate for metals. For a series of semiconductors (with different energy gaps), the KGAP performs much better than SM, and results are close to the state-of-the-art functionals with sophisticated density-dependent kernels.
Vibrational Power Flow Analysis of Rods and Beams
NASA Technical Reports Server (NTRS)
Wohlever, James Christopher; Bernhard, R. J.
1988-01-01
A new method to model vibrational power flow and predict the resulting energy density levels in uniform rods and beams is investigated. This method models the flow of vibrational power in a manner analogous to the flow of thermal power in a heat conduction problem. The classical displacement solutions for harmonically excited, hysteretically damped rods and beams are used to derive expressions for the vibrational power flow and energy density in the rod and beam. Under certain conditions, the power flow in these two structural elements will be shown to be proportional to the energy density gradient. Using the relationship between power flow and energy density, an energy balance on differential control volumes in the rod and beam leads to a Poisson's equation which models the energy density distribution in the rod and beam. Coupling the energy density and power flow solutions for rods and beams is also discussed. It is shown that the resonant behavior of finite structures complicates the coupling of solutions, especially when the excitations are single frequency inputs. Two coupling formulations are discussed, the first based on the receptance method, and the second on the travelling wave approach used in Statistical Energy Analysis. The receptance method is the more computationally intensive but is capable of analyzing single frequency excitation cases. The traveling wave approach gives a good approximation of the frequency average of energy density and power flow in coupled systems, and thus, is an efficient technique for use with broadband frequency excitation.
Low Molecular Weight Norbornadiene Derivatives for Molecular Solar‐Thermal Energy Storage
Quant, Maria; Lennartson, Anders; Dreos, Ambra; Kuisma, Mikael; Erhart, Paul; Börjesson, Karl
2016-01-01
Abstract Molecular solar‐thermal energy storage systems are based on molecular switches that reversibly convert solar energy into chemical energy. Herein, we report the synthesis, characterization, and computational evaluation of a series of low molecular weight (193–260 g mol−1) norbornadiene–quadricyclane systems. The molecules feature cyano acceptor and ethynyl‐substituted aromatic donor groups, leading to a good match with solar irradiation, quantitative photo‐thermal conversion between the norbornadiene and quadricyclane, as well as high energy storage densities (396–629 kJ kg−1). The spectroscopic properties and energy storage capability have been further evaluated through density functional theory calculations, which indicate that the ethynyl moiety plays a critical role in obtaining the high oscillator strengths seen for these molecules. PMID:27492997
NASA Technical Reports Server (NTRS)
Lacy, Dovie E.; Coles-Hamilton, Carolyn; Juhasz, Albert
1987-01-01
Under the direction of NASA's Office of Aeronautics and Technology (OAST), the NASA Lewis Research Center has initiated an in-house thermal energy storage program to identify combinations of phase change thermal energy storage media for use with a Brayton and Stirling Advanced Solar Dynamic (ASD) space power system operating between 1070 and 1400 K. A study has been initiated to determine suitable combinations of thermal energy storage (TES) phase change materials (PCM) that result in the smallest and lightest weight ASD power system possible. To date the heats of fusion of several fluoride salt mixtures with melting points greater than 1025 K have been verified experimentally. The study has indicated that these salt systems produce large ASD systems because of their inherent low thermal conductivity and low density. It is desirable to have PCMs with high densities and high thermal conductivities. Therefore, alternate phase change materials based on metallic alloy systems are also being considered as possible TES candidates for future ASD space power systems.
Link between Food Energy Density and Body Weight Changes in Obese Adults
Stelmach-Mardas, Marta; Rodacki, Tomasz; Dobrowolska-Iwanek, Justyna; Brzozowska, Anna; Walkowiak, Jarosław; Wojtanowska-Krosniak, Agnieszka; Zagrodzki, Paweł; Bechthold, Angela; Mardas, Marcin; Boeing, Heiner
2016-01-01
Regulating the energy density of food could be used as a novel approach for successful body weight reduction in clinical practice. The aim of this study was to conduct a systemic review of the literature on the relationship between food energy density and body weight changes in obese adults to obtain solid evidence supporting this approach. The search process was based on the selection of publications in the English language listed in public databases. A meta-analysis was performed to combine individual study results. Thirteen experimental and observational studies were identified and included in the final analysis. The analyzed populations consist of 3628 individuals aged 18 to 66 years. The studies varied greatly in terms of study populations, study design and applied dietary approaches. The meta-analysis revealed a significant association between low energy density foods and body weight reduction, i.e., −0.53 kg when low energy density foods were eaten (95% CI: −0.88, −0.19). In conclusions, this study adds evidence which supports the energy density of food as a simple but effective measure to manage weight in the obese with the aim of weight reduction. PMID:27104562
Accurate Exchange-Correlation Energies for the Warm Dense Electron Gas.
Malone, Fionn D; Blunt, N S; Brown, Ethan W; Lee, D K K; Spencer, J S; Foulkes, W M C; Shepherd, James J
2016-09-09
The density matrix quantum Monte Carlo (DMQMC) method is used to sample exact-on-average N-body density matrices for uniform electron gas systems of up to 10^{124} matrix elements via a stochastic solution of the Bloch equation. The results of these calculations resolve a current debate over the accuracy of the data used to parametrize finite-temperature density functionals. Exchange-correlation energies calculated using the real-space restricted path-integral formalism and the k-space configuration path-integral formalism disagree by up to ∼10% at certain reduced temperatures T/T_{F}≤0.5 and densities r_{s}≤1. Our calculations confirm the accuracy of the configuration path-integral Monte Carlo results available at high density and bridge the gap to lower densities, providing trustworthy data in the regime typical of planetary interiors and solids subject to laser irradiation. We demonstrate that the DMQMC method can calculate free energies directly and present exact free energies for T/T_{F}≥1 and r_{s}≤2.
Vortex line in the unitary Fermi gas
Madeira, Lucas; Vitiello, Silvio A.; Gandolfi, Stefano; ...
2016-04-06
Here, we report diffusion Monte Carlo results for the ground state of unpolarized spin-1/2 fermions in a cylindrical container and properties of the system with a vortex-line excitation. The density profile of the system with a vortex line presents a nonzero density at the core. We also calculate the ground-state energy per particle, the superfluid pairing gap, and the excitation energy per particle. Finally, these simulations can be extended to calculate the properties of vortex excitations in other strongly interacting systems such as superfluid neutron matter using realistic nuclear Hamiltonians.
Exact kinetic energy enables accurate evaluation of weak interactions by the FDE-vdW method.
Sinha, Debalina; Pavanello, Michele
2015-08-28
The correlation energy of interaction is an elusive and sought-after interaction between molecular systems. By partitioning the response function of the system into subsystem contributions, the Frozen Density Embedding (FDE)-vdW method provides a computationally amenable nonlocal correlation functional based on the adiabatic connection fluctuation dissipation theorem applied to subsystem density functional theory. In reproducing potential energy surfaces of weakly interacting dimers, we show that FDE-vdW, either employing semilocal or exact nonadditive kinetic energy functionals, is in quantitative agreement with high-accuracy coupled cluster calculations (overall mean unsigned error of 0.5 kcal/mol). When employing the exact kinetic energy (which we term the Kohn-Sham (KS)-vdW method), the binding energies are generally closer to the benchmark, and the energy surfaces are also smoother.
Exact kinetic energy enables accurate evaluation of weak interactions by the FDE-vdW method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sinha, Debalina; Pavanello, Michele, E-mail: m.pavanello@rutgers.edu
2015-08-28
The correlation energy of interaction is an elusive and sought-after interaction between molecular systems. By partitioning the response function of the system into subsystem contributions, the Frozen Density Embedding (FDE)-vdW method provides a computationally amenable nonlocal correlation functional based on the adiabatic connection fluctuation dissipation theorem applied to subsystem density functional theory. In reproducing potential energy surfaces of weakly interacting dimers, we show that FDE-vdW, either employing semilocal or exact nonadditive kinetic energy functionals, is in quantitative agreement with high-accuracy coupled cluster calculations (overall mean unsigned error of 0.5 kcal/mol). When employing the exact kinetic energy (which we term themore » Kohn-Sham (KS)-vdW method), the binding energies are generally closer to the benchmark, and the energy surfaces are also smoother.« less
High to ultra-high power electrical energy storage.
Sherrill, Stefanie A; Banerjee, Parag; Rubloff, Gary W; Lee, Sang Bok
2011-12-14
High power electrical energy storage systems are becoming critical devices for advanced energy storage technology. This is true in part due to their high rate capabilities and moderate energy densities which allow them to capture power efficiently from evanescent, renewable energy sources. High power systems include both electrochemical capacitors and electrostatic capacitors. These devices have fast charging and discharging rates, supplying energy within seconds or less. Recent research has focused on increasing power and energy density of the devices using advanced materials and novel architectural design. An increase in understanding of structure-property relationships in nanomaterials and interfaces and the ability to control nanostructures precisely has led to an immense improvement in the performance characteristics of these devices. In this review, we discuss the recent advances for both electrochemical and electrostatic capacitors as high power electrical energy storage systems, and propose directions and challenges for the future. We asses the opportunities in nanostructure-based high power electrical energy storage devices and include electrochemical and electrostatic capacitors for their potential to open the door to a new regime of power energy.
Cheng, Qian; Tang, Jie; Ma, Jun; Zhang, Han; Shinya, Norio; Qin, Lu-Chang
2011-10-21
We describe a graphene and single-walled carbon nanotube (SWCNT) composite film prepared by a blending process for use as electrodes in high energy density supercapacitors. Specific capacitances of 290.6 F g(-1) and 201.0 F g(-1) have been obtained for a single electrode in aqueous and organic electrolytes, respectively, using a more practical two-electrode testing system. In the organic electrolyte the energy density reached 62.8 Wh kg(-1) and the power density reached 58.5 kW kg(-1). The addition of single-walled carbon nanotubes raised the energy density by 23% and power density by 31% more than the graphene electrodes. The graphene/CNT electrodes exhibited an ultra-high energy density of 155.6 Wh kg(-1) in ionic liquid at room temperature. In addition, the specific capacitance increased by 29% after 1000 cycles in ionic liquid, indicating their excellent cyclicity. The SWCNTs acted as a conductive additive, spacer, and binder in the graphene/CNT supercapacitors. This work suggests that our graphene/CNT supercapacitors can be comparable to NiMH batteries in performance and are promising for applications in hybrid vehicles and electric vehicles. This journal is © the Owner Societies 2011
Many-particle theory of nuclear systems with application to neutron star matter
NASA Technical Reports Server (NTRS)
Chakkalakal, D. A.; Yang, C.
1973-01-01
The research is reported concerning energy-density relation for the normal state of neutron star matter, and the effects of superfluidity and polarization on neutron star matter. Considering constraints on variation, and the theory of quantum fluids, three methods for calculating the energy-density range are presented. The effects of polarization on neutron star structure, and polarization effects on condensation and superfluid-state energy are discussed.
Thompson, Debbe; Ferry, Robert J; Cullen, Karen W; Liu, Yan
2016-09-01
Children generally do not consume adequate amounts of fruits and vegetables (F/V). Eating more F/V can improve energy density and overall diet quality. Our aim was to investigate whether improvements in F/V consumption were associated with improvements in energy density, total calories, and dietary components related to F/V. We performed secondary analyses of dietary data from a successful four-group randomized controlled trial promoting F/V. Data were collected at baseline, immediately after gameplay, and 3 months post intervention. Preadolescent child-parent dyads (n=400) were recruited. Eligibility criteria were 4th- or 5th-grade child (approximately 9 to 11 years old) with Internet access and a parent willing to participate in the intervention. Complete dietary data were collected on 387 of the 400 child participants. The videogame was available online on a secure, password-protected website. Dietary intake was assessed with three unannounced dietary recalls collected at each data-collection period via telephone by trained staff using Nutrition Data System for Research software. Energy density and F/V, nutrient, and food consumption were calculated. A 4×3 (group by time) repeated measures analysis of covariance with mixed-effect linear models was used. Covariates included child's sex, race/ethnicity, and total energy intake as well as parent's age and household education. Energy was excluded as a covariate in the energy density and energy models. Significant changes occurred in energy density. A significant interaction (group by time) was observed (F6, 515=2.40; P<0.05) in energy density from food only, while a significant time effect was observed for energy density from all foods and beverages (F2, 388=13.75; P<0.0001). Desirable changes were also observed in F/V-related dietary components. Increasing F/V consumption improved energy density and diet quality considerably in preadolescent children. Copyright © 2016 Academy of Nutrition and Dietetics. Published by Elsevier Inc. All rights reserved.
Zhu, Yun Guang; Du, Yonghua; Jia, Chuankun; Zhou, Mingyue; Fan, Li; Wang, Xingzhu; Wang, Qing
2017-05-10
Redox flow batteries, despite great operation flexibility and scalability for large-scale energy storage, suffer from low energy density and relatively high cost as compared to the state-of-the-art Li-ion batteries. Here we report a redox flow lithium battery, which operates via the redox targeting reactions of LiFePO 4 with a bifunctional redox mediator, 2,3,5,6-tetramethyl-p-phenylenediamine, and presents superb energy density as the Li-ion battery and system flexibility as the redox flow battery. The battery has achieved a tank energy density as high as 1023 Wh/L, power density of 61 mW/cm 2 , and voltage efficiency of 91%. Operando X-ray absorption near-edge structure measurements were conducted to monitor the evolution of LiFePO 4 , which provides insightful information on the redox targeting process, critical to the device operation and optimization.
Borgoo, Alex; Teale, Andrew M; Tozer, David J
2012-01-21
Correlated electron densities, experimental ionisation potentials, and experimental electron affinities are used to investigate the homogeneity of the exchange-correlation and non-interacting kinetic energy functionals of Kohn-Sham density functional theory under density scaling. Results are presented for atoms and small molecules, paying attention to the influence of the integer discontinuity and the choice of the electron affinity. For the exchange-correlation functional, effective homogeneities are highly system-dependent on either side of the integer discontinuity. By contrast, the average homogeneity-associated with the potential that averages over the discontinuity-is generally close to 4/3 when the discontinuity is computed using positive affinities for systems that do bind an excess electron and negative affinities for those that do not. The proximity to 4/3 becomes increasingly pronounced with increasing atomic number. Evaluating the discontinuity using a zero affinity in systems that do not bind an excess electron instead leads to effective homogeneities on the electron abundant side that are close to 4/3. For the non-interacting kinetic energy functional, the effective homogeneities are less system-dependent and the effect of the integer discontinuity is less pronounced. Average values are uniformly below 5/3. The study provides information that may aid the development of improved exchange-correlation and non-interacting kinetic energy functionals. © 2012 American Institute of Physics
An Integrated, Layered-Spinel Composite Cathode for Energy Storage Applications
NASA Technical Reports Server (NTRS)
Hagh, Nader; Skandan, Ganesh
2012-01-01
At low operating temperatures, commercially available electrode materials for lithium-ion batteries do not fully meet the energy and power requirements for NASA fs exploration activities. The composite cathode under development is projected to provide the required energy and power densities at low temperatures and its usage will considerably reduce the overall volume and weight of the battery pack. The newly developed composite electrode material can provide superior electrochemical performance relative to a commercially available lithium cobalt system. One advantage of using a composite cathode is its higher energy density, which can lead to smaller and lighter battery packs. In the current program, different series of layered-spinel composite materials with at least two different systems in an integrated structure were synthesized, and the volumetric and gravimetric energy densities were evaluated. In an integrated network of a composite electrode, the effect of the combined structures is to enhance the capacity and power capabilities of the material to levels greater than what is possible in current state-of-the-art cathode systems. The main objective of the current program is to implement a novel cathode material that meets NASA fs low temperature energy density requirements. An important feature of the composite cathode is that it has at least two components (e.g., layered and spinel) that are structurally integrated. The layered material by itself is electrochemically inactive; however, upon structural integration with a spinel material, the layered material can be electrochemically activated, thereby delivering a large amount of energy with stable cycling. A key aspect of the innovation has been the development of a scalable process to produce submicronand micron-scale particles of these composite materials. An additional advantage of using such a composite electrode material is its low irreversible loss (.5%), which is primarily due to the unique activation of the composite. High columbic efficiency (greater than 99%) upon cycling may indicate the formation of a stable SEI (solid-electrolyte interface) layer, which can contribute to long cycle life. The innovation in the current program, when further developed, will enable the system to maintain high energy and power densities at low temperatures, improve efficiency, and further stabilize and enhance the safety of the cell.
Energy density and energy flow of surface waves in a strongly magnetized graphene
NASA Astrophysics Data System (ADS)
Moradi, Afshin
2018-01-01
General expressions for the energy density and energy flow of plasmonic waves in a two-dimensional massless electron gas (as a simple model of graphene) are obtained by means of the linearized magneto-hydrodynamic model and classical electromagnetic theory when a strong external magnetic field perpendicular to the system is present. Also, analytical expressions for the energy velocity, wave polarization, wave impedance, transverse and longitudinal field strength functions, and attenuation length of surface magneto-plasmon-polariton waves are derived, and numerical results are prepared.
All-graphene-battery: bridging the gap between supercapacitors and lithium ion batteries
NASA Astrophysics Data System (ADS)
Kim, Haegyeom; Park, Kyu-Young; Hong, Jihyun; Kang, Kisuk
2014-06-01
Herein, we propose an advanced energy-storage system: all-graphene-battery. It operates based on fast surface-reactions in both electrodes, thus delivering a remarkably high power density of 6,450 W kg-1total electrode while also retaining a high energy density of 225 Wh kg-1total electrode, which is comparable to that of conventional lithium ion battery. The performance and operating mechanism of all-graphene-battery resemble those of both supercapacitors and batteries, thereby blurring the conventional distinction between supercapacitors and batteries. This work demonstrates that the energy storage system made with carbonaceous materials in both the anode and cathode are promising alternative energy-storage devices.
All-graphene-battery: bridging the gap between supercapacitors and lithium ion batteries.
Kim, Haegyeom; Park, Kyu-Young; Hong, Jihyun; Kang, Kisuk
2014-06-13
Herein, we propose an advanced energy-storage system: all-graphene-battery. It operates based on fast surface-reactions in both electrodes, thus delivering a remarkably high power density of 6,450 W kg(-1)(total electrode) while also retaining a high energy density of 225 Wh kg(-1)(total electrode), which is comparable to that of conventional lithium ion battery. The performance and operating mechanism of all-graphene-battery resemble those of both supercapacitors and batteries, thereby blurring the conventional distinction between supercapacitors and batteries. This work demonstrates that the energy storage system made with carbonaceous materials in both the anode and cathode are promising alternative energy-storage devices.
All-graphene-battery: bridging the gap between supercapacitors and lithium ion batteries
Kim, Haegyeom; Park, Kyu-Young; Hong, Jihyun; Kang, Kisuk
2014-01-01
Herein, we propose an advanced energy-storage system: all-graphene-battery. It operates based on fast surface-reactions in both electrodes, thus delivering a remarkably high power density of 6,450 W kg−1total electrode while also retaining a high energy density of 225 Wh kg−1total electrode, which is comparable to that of conventional lithium ion battery. The performance and operating mechanism of all-graphene-battery resemble those of both supercapacitors and batteries, thereby blurring the conventional distinction between supercapacitors and batteries. This work demonstrates that the energy storage system made with carbonaceous materials in both the anode and cathode are promising alternative energy-storage devices. PMID:24923290
NASA Technical Reports Server (NTRS)
Intrator, T.; Hershkowitz, N.; Chan, C.
1984-01-01
Counterstreaming large-diameter electron beams in a steady-state laboratory experiment are observed to generate transverse radiation at twice the upper-hybrid frequency (2omega-UH) with a quadrupole radiation pattern. The electromagnetic wave power density is nonlinearly enhanced over the power density obtained from a single beam-plasma system. Electromagnetic power density scales exponentially with beam energy and increases with ion mass. Weak turbulence theory can predict similar (but weaker) beam energy scaling but not the high power density, or the predominance of the 2omega-UH radiation peak over the omega-UH peak. Significant noise near the upper-hybrid and ion plasma frequencies is also measured, with normalized electrostatic wave energy density W(ES)/n(e)T(e) approximately 0.01.
NASA Astrophysics Data System (ADS)
de Silva, Piotr; Corminboeuf, Clémence
2015-09-01
We construct an orbital-free non-empirical meta-generalized gradient approximation (GGA) functional, which depends explicitly on density through the density overlap regions indicator [P. de Silva and C. Corminboeuf, J. Chem. Theory Comput. 10, 3745 (2014)]. The functional does not depend on either the kinetic energy density or the density Laplacian; therefore, it opens a new class of meta-GGA functionals. By construction, our meta-GGA yields exact exchange and correlation energy for the hydrogen atom and recovers the second order gradient expansion for exchange in the slowly varying limit. We show that for molecular systems, overall performance is better than non-empirical GGAs. For atomization energies, performance is on par with revTPSS, without any dependence on Kohn-Sham orbitals.
Chen, Zhongxue; Yuan, Tianci; Pu, Xiangjun; Yang, Hanxi; Ai, Xinping; Xia, Yongyao; Cao, Yuliang
2018-04-11
Batteries and electrochemical capacitors play very important roles in the portable electronic devices and electric vehicles and have shown promising potential for large-scale energy storage applications. However, batteries or capacitors alone cannot meet the energy and power density requirements because rechargeable batteries have a poor power property, whereas supercapacitors offer limited capacity. Here, a novel symmetric sodium-ion capacitor (NIC) is developed based on low-cost Na 0.44 MnO 2 nanorods. The Na 0.44 MnO 2 with unique nanoarchitectures and iso-oriented feature offers shortened diffusion path lengths for both electronic and Na + transport and reduces the stress associated with Na + insertion and extraction. Benefiting from these merits, the symmetric device achieves a high power density of 2432.7 W kg -1 , an improved energy density of 27.9 Wh kg -1 , and a capacitance retention of 85.2% over 5000 cycles. Particularly, the symmetric NIC based on Na 0.44 MnO 2 permits repeatedly reverse-polarity characteristics, thus simplifying energy management system and greatly enhancing the safety under abuse condition. This cost-effective, high-safety, and high-performance symmetric NIC can balance the energy and power density between batteries and capacitors and serve as an electric power source for future low-maintenance large-scale energy storage systems.
Ground-state properties of trapped Bose-Fermi mixtures: Role of exchange correlation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Albus, Alexander P.; Wilkens, Martin; Illuminati, Fabrizio
2003-06-01
We introduce density-functional theory for inhomogeneous Bose-Fermi mixtures, derive the associated Kohn-Sham equations, and determine the exchange-correlation energy in local-density approximation. We solve numerically the Kohn-Sham system, and determine the boson and fermion density distributions and the ground-state energy of a trapped, dilute mixture beyond mean-field approximation. The importance of the corrections due to exchange correlation is discussed by a comparison with current experiments; in particular, we investigate the effect of the repulsive potential-energy contribution due to exchange correlation on the stability of the mixture against collapse.
Design of activated carbon/activated carbon asymmetric capacitors
NASA Astrophysics Data System (ADS)
Piñeiro-Prado, Isabel; Salinas-Torres, David; Ruiz Rosas, Ramiro; Morallon, Emilia; Cazorla-Amoros, Diego
2016-03-01
Supercapacitors are energy storage devices that offer a high power density and a low energy density in comparison with batteries. Their limited energy density can be overcome by using asymmetric configuration in mass electrodes, where each electrode works within their maximum available potential window, rendering the maximum voltage output of the system. Such asymmetric capacitors must be optimized through careful electrochemical characterization of the electrodes for accurate determination of the capacitance and the potential stability limits. The results of the characterization are then used for optimizing mass ratio of the electrodes from the balance of stored charge. The reliability of the design largely depends on the approach taken for the electrochemical characterization. Therefore, the performance could be lower than expected and even the system could break down, if a well thought out procedure is not followed. In this work, a procedure for the development of asymmetric supercapacitors based on activated carbons is detailed. Three activated carbon materials with different textural properties and surface chemistry have been systematically characterized in neutral aqueous electrolyte. The asymmetric configuration of the masses of both electrodes in the supercapacitor has allowed to cover a higher potential window, resulting in an increase of the energy density of the three devices studied when compared with the symmetric systems, and an improved cycle life.
NASA Astrophysics Data System (ADS)
Krauland, Christine; Drake, R.; Loupias, B.; Falize, E.; Busschaert, C.; Ravasio, A.; Yurchak, R.; Pelka, A.; Koenig, M.; Kuranz, C. C.; Plewa, T.; Huntington, C. M.; Kaczala, D. N.; Klein, S.; Sweeney, R.; Villete, B.; Young, R.; Keiter, P. A.
2012-05-01
We present results from high-energy-density (HED) laboratory experiments that explore the contribution of radiative shock waves to the evolving dynamics of the cataclysmic variable (CV) systems in which they reside. CVs can be classified under two main categories, non-magnetic and magnetic. In the process of accretion, both types involve strongly radiating shocks that provide the main source of radiation in the binary systems. This radiation can cause varying structure to develop depending on the optical properties of the material on either side of the shock. The ability of high-intensity lasers to create large energy densities in targets of millimeter-scale volume makes it feasible to create similar radiative shocks in the laboratory. We provide an overview of both CV systems and their connection to the designed and executed laboratory experiments preformed on two laser facilities. Available data and accompanying simulations will likewise be shown. Funded by the NNSA-DS and SC-OFES Joint Prog. in High-Energy-Density Lab. Plasmas, by the Nat. Laser User Facility Prog. in NNSA-DS and by the Predictive Sci. Acad. Alliances Prog. in NNSA-ASC, under grant numbers are DE-FG52-09NA29548, DE-FG52-09NA29034, and DE-FC52-08NA28616.
NASA Astrophysics Data System (ADS)
Sand, Andrew M.; Truhlar, Donald G.; Gagliardi, Laura
2017-01-01
The recently developed multiconfiguration pair-density functional theory (MC-PDFT) combines multiconfiguration wave function theory with a density functional that depends on the on-top pair density of an electronic system. In an MC-PDFT calculation, there are two steps: a conventional multiconfiguration self-consistent-field (MCSCF) calculation and a post-MCSCF evaluation of the energy with an on-top density functional. In this work, we present the details of the MC-PDFT algorithm that avoids steeply scaling steps that are present in other post-self-consistent-field multireference calculations of dynamic correlation energy. We demonstrate the favorable scaling by considering systems of H2 molecules with active spaces of several different sizes. We then apply the MC-PDFT method to calculate the heterolytic dissociation enthalpy of ferrocene. We find that MC-PDFT yields results that are at least as accurate as complete active space second-order perturbation theory and are more stable with respect to basis set, but at a fraction of the cost in both time and memory.
Sand, Andrew M; Truhlar, Donald G; Gagliardi, Laura
2017-01-21
The recently developed multiconfiguration pair-density functional theory (MC-PDFT) combines multiconfiguration wave function theory with a density functional that depends on the on-top pair density of an electronic system. In an MC-PDFT calculation, there are two steps: a conventional multiconfiguration self-consistent-field (MCSCF) calculation and a post-MCSCF evaluation of the energy with an on-top density functional. In this work, we present the details of the MC-PDFT algorithm that avoids steeply scaling steps that are present in other post-self-consistent-field multireference calculations of dynamic correlation energy. We demonstrate the favorable scaling by considering systems of H 2 molecules with active spaces of several different sizes. We then apply the MC-PDFT method to calculate the heterolytic dissociation enthalpy of ferrocene. We find that MC-PDFT yields results that are at least as accurate as complete active space second-order perturbation theory and are more stable with respect to basis set, but at a fraction of the cost in both time and memory.
Hydrodynamic and material properties experiments using pulsed power techniques
NASA Astrophysics Data System (ADS)
Reinovsky, R. E.; Trainor, R. J.
2000-04-01
Within the last five years, a new approach to the exploration of dynamic material properties and advanced hydrodynamics at extreme conditions has joined the traditional techniques of high velocity guns and explosives. This new application uses electromagnetic energy to accelerate solid density material to produce shocks in a cylindrical target. The principal tool for producing high energy density environments is the high precision, magnetically imploded, near-solid density cylindrical liner. The most attractive pulsed power system for driving such experiments is an ultrahigh current, low impedance, microsecond time scale source that is economical both to build and to operate. Two families of pulsed power systems can be applied to drive such experiments. The 25-MJ Atlas capacitor bank system currently under construction at Los Alamos is the first system of its scale specifically designed to drive high precision solid liners. Delivering 30 MA, Atlas will provide liner velocities 12-15 km/sec and kinetic energies of 1-2 MJ/cm with extensive diagnostics and excellent reproducibility. Explosive flux compressor technology provides access to currents exceeding 100 MA producing liner velocities above 25 km/sec and kinetic energies of 5-20 MJ/cm in single shot operations
d'Entremont, Anna; Corgnale, Claudio; Hardy, Bruce; ...
2018-01-11
Concentrating solar power plants can achieve low cost and efficient renewable electricity production if equipped with adequate thermal energy storage systems. Metal hydride based thermal energy storage systems are appealing candidates due to their demonstrated potential for very high volumetric energy densities, high exergetic efficiencies, and low costs. The feasibility and performance of a thermal energy storage system based on NaMgH 2F hydride paired with TiCr 1.6Mn 0.2 is examined, discussing its integration with a solar-driven ultra-supercritical steam power plant. The simulated storage system is based on a laboratory-scale experimental apparatus. It is analyzed using a detailed transport model accountingmore » for the thermochemical hydrogen absorption and desorption reactions, including kinetics expressions adequate for the current metal hydride system. The results show that the proposed metal hydride pair can suitably be integrated with a high temperature steam power plant. The thermal energy storage system achieves output energy densities of 226 kWh/m 3, 9 times the DOE SunShot target, with moderate temperature and pressure swings. Also, simulations indicate that there is significant scope for performance improvement via heat-transfer enhancement strategies.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
d'Entremont, Anna; Corgnale, Claudio; Hardy, Bruce
Concentrating solar power plants can achieve low cost and efficient renewable electricity production if equipped with adequate thermal energy storage systems. Metal hydride based thermal energy storage systems are appealing candidates due to their demonstrated potential for very high volumetric energy densities, high exergetic efficiencies, and low costs. The feasibility and performance of a thermal energy storage system based on NaMgH 2F hydride paired with TiCr 1.6Mn 0.2 is examined, discussing its integration with a solar-driven ultra-supercritical steam power plant. The simulated storage system is based on a laboratory-scale experimental apparatus. It is analyzed using a detailed transport model accountingmore » for the thermochemical hydrogen absorption and desorption reactions, including kinetics expressions adequate for the current metal hydride system. The results show that the proposed metal hydride pair can suitably be integrated with a high temperature steam power plant. The thermal energy storage system achieves output energy densities of 226 kWh/m 3, 9 times the DOE SunShot target, with moderate temperature and pressure swings. Also, simulations indicate that there is significant scope for performance improvement via heat-transfer enhancement strategies.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stránský, Pavel; Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, 04510, México, D.F.; Macek, Michal
2014-06-15
Quantum systems with a finite number of freedom degrees f develop robust singularities in the energy spectrum of excited states as the system’s size increases to infinity. We analyze the general form of these singularities for low f, particularly f=2, clarifying the relation to classical stationary points of the corresponding potential. Signatures in the smoothed energy dependence of the quantum state density and in the flow of energy levels with an arbitrary control parameter are described along with the relevant thermodynamical consequences. The general analysis is illustrated with specific examples of excited-state singularities accompanying the first-order quantum phase transition. --more » Highlights: •ESQPTs found in infinite-size limit of systems with low numbers of freedom degrees f. •ESQPTs related to non-analytical evolutions of classical phase–space properties. •ESQPT signatures analyzed for general f, particularly f=2, extending known case f=1. •ESQPT signatures identified in smoothened density and flow of energy spectrum. •ESQPTs shown to induce a new type of thermodynamic anomalies.« less
An innovative demonstration of high power density in a compact MDH (magnetohydrodynamic) generator
NASA Astrophysics Data System (ADS)
Schmidt, H. J.; Lineberry, J. T.; Chapman, J. N.
1990-06-01
The present program was conducted by the University of Tennessee Space Institute (UTSI). It was by its nature a high risk experimental program to demonstrate the feasibility of high power density operation in a laboratory scale combustion driven MHD generator. Maximization of specific energy was not a consideration for the present program, but the results have implications in this regard by virtue of high energy fuel used. The power density is the ratio of the electrical energy output to the internal volume of the generator channel. The MHD process is a volumetric process and the power density is therefore a direct measure of the compactness of the system. Specific energy, is the ratio of the electrical energy output to consumable energy used for its production. The two parameters are conceptually interrelated. To achieve high power density and implied commensurate low system volume and weight, it was necessary to use an energetic fuel. The high energy fuel of choice was a mixture of powdered aluminum and carbon seeded with potassium carbonate and burned with gaseous oxygen. The solid fuel was burned in a hybrid combustion scheme wherein the fuel was cast within a cylindrical combustor in analogy with a solid propellant rocket motor. Experimental data is limited to gross channel output current and voltage, magnetic field strength, fuel and oxidizer flow rates, flow train external temperatures and combustor pressure. Similarly, while instantaneous oxidizer flow rates were measured, only average fuel consumption based on pre and post test component weights and dimensions was possible.
NASA Astrophysics Data System (ADS)
Izquierdo, Germán; Blanquet-Jaramillo, Roberto C.; Sussman, Roberto A.
2018-01-01
The quasi-local scalar variables approach is applied to a spherically symmetric inhomogeneous Lemaître-Tolman-Bondi metric containing a mixture of non-relativistic cold dark matter and coupled dark energy with constant equation of state. The quasi-local coupling term considered is proportional to the quasi-local cold dark matter energy density and a quasi-local Hubble factor-like scalar via a coupling constant α . The autonomous numerical system obtained from the evolution equations is classified for different choices of the free parameters: the adiabatic constant of the dark energy w and α . The presence of a past attractor in a non-physical region of the energy densities phase-space of the system makes the coupling term non physical when the energy flows from the matter to the dark energy in order to avoid negative values of the dark energy density in the past. On the other hand, if the energy flux goes from dark energy to dark matter, the past attractor lies in a physical region. The system is also numerically solved for some interesting initial profiles leading to different configurations: an ever expanding mixture, a scenario where the dark energy is completely consumed by the non-relativistic matter by means of the coupling term, a scenario where the dark energy disappears in the inner layers while the outer layers expand as a mixture of both sources, and, finally, a structure formation toy model scenario, where the inner shells containing the mixture collapse while the outer shells expand.
Linear-response time-dependent density-functional theory with pairing fields.
Peng, Degao; van Aggelen, Helen; Yang, Yang; Yang, Weitao
2014-05-14
Recent development in particle-particle random phase approximation (pp-RPA) broadens the perspective on ground state correlation energies [H. van Aggelen, Y. Yang, and W. Yang, Phys. Rev. A 88, 030501 (2013), Y. Yang, H. van Aggelen, S. N. Steinmann, D. Peng, and W. Yang, J. Chem. Phys. 139, 174110 (2013); D. Peng, S. N. Steinmann, H. van Aggelen, and W. Yang, J. Chem. Phys. 139, 104112 (2013)] and N ± 2 excitation energies [Y. Yang, H. van Aggelen, and W. Yang, J. Chem. Phys. 139, 224105 (2013)]. So far Hartree-Fock and approximated density-functional orbitals have been utilized to evaluate the pp-RPA equation. In this paper, to further explore the fundamentals and the potential use of pairing matrix dependent functionals, we present the linear-response time-dependent density-functional theory with pairing fields with both adiabatic and frequency-dependent kernels. This theory is related to the density-functional theory and time-dependent density-functional theory for superconductors, but is applied to normal non-superconducting systems for our purpose. Due to the lack of the proof of the one-to-one mapping between the pairing matrix and the pairing field for time-dependent systems, the linear-response theory is established based on the representability assumption of the pairing matrix. The linear response theory justifies the use of approximated density-functionals in the pp-RPA equation. This work sets the fundamentals for future density-functional development to enhance the description of ground state correlation energies and N ± 2 excitation energies.
Advanced intermediate temperature sodium-nickel chloride batteries with ultra-high energy density.
Li, Guosheng; Lu, Xiaochuan; Kim, Jin Y; Meinhardt, Kerry D; Chang, Hee Jung; Canfield, Nathan L; Sprenkle, Vincent L
2016-02-11
Sodium-metal halide batteries have been considered as one of the more attractive technologies for stationary electrical energy storage, however, they are not used for broader applications despite their relatively well-known redox system. One of the roadblocks hindering market penetration is the high-operating temperature. Here we demonstrate that planar sodium-nickel chloride batteries can be operated at an intermediate temperature of 190 °C with ultra-high energy density. A specific energy density of 350 Wh kg(-1), higher than that of conventional tubular sodium-nickel chloride batteries (280 °C), is obtained for planar sodium-nickel chloride batteries operated at 190 °C over a long-term cell test (1,000 cycles), and it attributed to the slower particle growth of the cathode materials at the lower operating temperature. Results reported here demonstrate that planar sodium-nickel chloride batteries operated at an intermediate temperature could greatly benefit this traditional energy storage technology by improving battery energy density, cycle life and reducing material costs.
Advanced intermediate temperature sodium-nickel chloride batteries with ultra-high energy density
NASA Astrophysics Data System (ADS)
Li, Guosheng; Lu, Xiaochuan; Kim, Jin Y.; Meinhardt, Kerry D.; Chang, Hee Jung; Canfield, Nathan L.; Sprenkle, Vincent L.
2016-02-01
Sodium-metal halide batteries have been considered as one of the more attractive technologies for stationary electrical energy storage, however, they are not used for broader applications despite their relatively well-known redox system. One of the roadblocks hindering market penetration is the high-operating temperature. Here we demonstrate that planar sodium-nickel chloride batteries can be operated at an intermediate temperature of 190 °C with ultra-high energy density. A specific energy density of 350 Wh kg-1, higher than that of conventional tubular sodium-nickel chloride batteries (280 °C), is obtained for planar sodium-nickel chloride batteries operated at 190 °C over a long-term cell test (1,000 cycles), and it attributed to the slower particle growth of the cathode materials at the lower operating temperature. Results reported here demonstrate that planar sodium-nickel chloride batteries operated at an intermediate temperature could greatly benefit this traditional energy storage technology by improving battery energy density, cycle life and reducing material costs.
NASA Technical Reports Server (NTRS)
Eichenberg, Dennis J.
2004-01-01
In fiscal year 2003, the continuation of the Hybrid Power Management (HPM) Program through NASA Glenn Research Center's Commercial Technology Office resulted in several new successful applications of this pioneering technology. HPM is the innovative integration of diverse, state-of-the-art power devices in an optimal configuration for space and terrestrial applications. The appropriate application and control of the various power devices significantly improves overall system performance and efficiency. The advanced power devices include ultracapacitors, fuel cells, and photovoltaics. HPM has extremely wide potential, with applications from nanowatts to megawatts--including power generation, transportation systems, biotechnology systems, and space power systems. HPM has the potential to significantly alleviate global energy concerns, improve the environment, and stimulate the economy. Fuel cells provide excellent efficiency and energy density, but do not have good power density. In contrast, ultracapacitors have excellent power density and virtually unlimited cycle life. To improve the power density of the fuel cell, the combination of fuel cells and ultracapacitors was evaluated.
Riemannian geometry of thermodynamics and systems with repulsive power-law interactions.
Ruppeiner, George
2005-07-01
A Riemannian geometric theory of thermodynamics based on the postulate that the curvature scalar R is proportional to the inverse free energy density is used to investigate three-dimensional fluid systems of identical classical point particles interacting with each other via a power-law potential energy gamma r(-alpha) . Such systems are useful in modeling melting transitions. The limit alpha-->infinity corresponds to the hard sphere gas. A thermodynamic limit exists only for short-range (alpha>3) and repulsive (gamma>0) interactions. The geometric theory solutions for given alpha>3 , gamma>0 , and any constant temperature T have the following properties: (1) the thermodynamics follows from a single function b (rho T(-3/alpha) ) , where rho is the density; (2) all solutions are equivalent up to a single scaling constant for rho T(-3/alpha) , related to gamma via the virial theorem; (3) at low density, solutions correspond to the ideal gas; (4) at high density there are solutions with pressure and energy depending on density as expected from solid state physics, though not with a Dulong-Petit heat capacity limit; (5) for 3
Pair Formation of Hard Core Bosons in Flat Band Systems
NASA Astrophysics Data System (ADS)
Mielke, Andreas
2018-05-01
Hard core bosons in a large class of one or two dimensional flat band systems have an upper critical density, below which the ground states can be described completely. At the critical density, the ground states are Wigner crystals. If one adds a particle to the system at the critical density, the ground state and the low lying multi particle states of the system can be described as a Wigner crystal with an additional pair of particles. The energy band for the pair is separated from the rest of the multi-particle spectrum. The proofs use a Gerschgorin type of argument for block diagonally dominant matrices. In certain one-dimensional or tree-like structures one can show that the pair is localised, for example in the chequerboard chain. For this one-dimensional system with periodic boundary condition the energy band for the pair is flat, the pair is localised.
Low Molecular Weight Norbornadiene Derivatives for Molecular Solar-Thermal Energy Storage.
Quant, Maria; Lennartson, Anders; Dreos, Ambra; Kuisma, Mikael; Erhart, Paul; Börjesson, Karl; Moth-Poulsen, Kasper
2016-09-05
Molecular solar-thermal energy storage systems are based on molecular switches that reversibly convert solar energy into chemical energy. Herein, we report the synthesis, characterization, and computational evaluation of a series of low molecular weight (193-260 g mol(-1) ) norbornadiene-quadricyclane systems. The molecules feature cyano acceptor and ethynyl-substituted aromatic donor groups, leading to a good match with solar irradiation, quantitative photo-thermal conversion between the norbornadiene and quadricyclane, as well as high energy storage densities (396-629 kJ kg(-1) ). The spectroscopic properties and energy storage capability have been further evaluated through density functional theory calculations, which indicate that the ethynyl moiety plays a critical role in obtaining the high oscillator strengths seen for these molecules. © 2016 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
Regulation of Oil Biosynthesis in Algae
2014-10-06
renewed interest in microalgae as potential feed stock for renewable fuels including high energy density aviation fuels. Microalgae accumulate large...mechanisms of TAG accumulation relevant to other microalgae and perhaps dedicated biofuel crop plants. Knowledge and understanding of algal model systems...energy density liquid fuels. Long Term Objectives. Under permissive conditions, i.e. nutrient deprivation, many microalgae accumulate oils (TAGs
Golze, Dorothea; Iannuzzi, Marcella; Hutter, Jürg
2017-05-09
A local resolution-of-the-identity (LRI) approach is introduced in combination with the Gaussian and plane waves (GPW) scheme to enable large-scale Kohn-Sham density functional theory calculations. In GPW, the computational bottleneck is typically the description of the total charge density on real-space grids. Introducing the LRI approximation, the linear scaling of the GPW approach with respect to system size is retained, while the prefactor for the grid operations is reduced. The density fitting is an O(N) scaling process implemented by approximating the atomic pair densities by an expansion in one-center fit functions. The computational cost for the grid-based operations becomes negligible in LRIGPW. The self-consistent field iteration is up to 30 times faster for periodic systems dependent on the symmetry of the simulation cell and on the density of grid points. However, due to the overhead introduced by the local density fitting, single point calculations and complete molecular dynamics steps, including the calculation of the forces, are effectively accelerated by up to a factor of ∼10. The accuracy of LRIGPW is assessed for different systems and properties, showing that total energies, reaction energies, intramolecular and intermolecular structure parameters are well reproduced. LRIGPW yields also high quality results for extended condensed phase systems such as liquid water, ice XV, and molecular crystals.
Ding, Huanjun; Molloi, Sabee
2012-01-01
Purpose A simple and accurate measurement of breast density is crucial for the understanding of its impact in breast cancer risk models. The feasibility to quantify volumetric breast density with a photon-counting spectral mammography system has been investigated using both computer simulations and physical phantom studies. Methods A computer simulation model involved polyenergetic spectra from a tungsten anode x-ray tube and a Si-based photon-counting detector has been evaluated for breast density quantification. The figure-of-merit (FOM), which was defined as the signal-to-noise ratio (SNR) of the dual energy image with respect to the square root of mean glandular dose (MGD), was chosen to optimize the imaging protocols, in terms of tube voltage and splitting energy. A scanning multi-slit photon-counting spectral mammography system has been employed in the experimental study to quantitatively measure breast density using dual energy decomposition with glandular and adipose equivalent phantoms of uniform thickness. Four different phantom studies were designed to evaluate the accuracy of the technique, each of which addressed one specific variable in the phantom configurations, including thickness, density, area and shape. In addition to the standard calibration fitting function used for dual energy decomposition, a modified fitting function has been proposed, which brought the tube voltages used in the imaging tasks as the third variable in dual energy decomposition. Results For an average sized breast of 4.5 cm thick, the FOM was maximized with a tube voltage of 46kVp and a splitting energy of 24 keV. To be consistent with the tube voltage used in current clinical screening exam (~ 32 kVp), the optimal splitting energy was proposed to be 22 keV, which offered a FOM greater than 90% of the optimal value. In the experimental investigation, the root-mean-square (RMS) error in breast density quantification for all four phantom studies was estimated to be approximately 1.54% using standard calibration function. The results from the modified fitting function, which integrated the tube voltage as a variable in the calibration, indicated a RMS error of approximately 1.35% for all four studies. Conclusions The results of the current study suggest that photon-counting spectral mammography systems may potentially be implemented for an accurate quantification of volumetric breast density, with an RMS error of less than 2%, using the proposed dual energy imaging technique. PMID:22771941
NREL Validated Google's Little Box Challenge Entries | Energy Systems
inverter with a power density greater than 50 watts per cubic inch. To help determine the winner, NREL validated the entries at the Energy Systems Integration Facility. Text version A smaller inverter that is
Isovector dipole resonance and shear viscosity in low energy heavy-ion collisions
NASA Astrophysics Data System (ADS)
Guo, C. Q.; Ma, Y. G.; He, W. B.; Cao, X. G.; Fang, D. Q.; Deng, X. G.; Zhou, C. L.
2017-05-01
The ratio of shear viscosity over entropy density in low energy heavy-ion collision has been calculated by using the Green-Kubo method in the framework of an extended quantum molecular dynamics model. After the system almost reaches a local equilibration for a head-on 40Ca+100Mo collision, thermodynamic and transport properties are extracted. Meanwhile, the isovector giant dipole resonance (IVGDR) of the collision system also is studied. By the Gaussian fits to the IVGDR photon spectra, the peak energies of the IVGDR are extracted at different incident energies. The result shows that the IVGDR peak energy has a positive correlation with the ratio of shear viscosity over entropy density. This is a quantum effect and indicates a difference between nuclear matter and classical fluid.
Surface energy and radiation balance systems - General description and improvements
NASA Technical Reports Server (NTRS)
Fritschen, Leo J.; Simpson, James R.
1989-01-01
Surface evaluation of sensible and latent heat flux densities and the components of the radiation balance were desired for various vegetative surfaces during the ASCOT84 experiment to compare with modeled results and to relate these values to drainage winds. Five battery operated data systems equipped with sensors to determine the above values were operated for 105 station days during the ASCOT84 experiment. The Bowen ratio energy balance technique was used to partition the available energy into the sensible and latent heat flux densities. A description of the sensors and battery operated equipment used to collect and process the data is presented. In addition, improvements and modifications made since the 1984 experiment are given. Details of calculations of soil heat flow at the surface and an alternate method to calculate sensible and latent heat flux densities are provided.
Compatibility of Automatic Exposure Control with New Screen Phosphors in Diagnostic Roentgenography.
NASA Astrophysics Data System (ADS)
Mulvaney, James Arthur
1982-03-01
Automatic exposure control systems are used in diagnostic roentgenography to obtain proper film density for a variety of patient examinations and roentgenographic techniques. Most automatic exposure control systems have been designed for use with par speed, calcium tungstate intensifying screens. The use of screens with faster speeds and new phosphor materials has put extreme demands on present systems. The performance of a representative automatic exposure control system is investigated to determine its ability to maintain constant film density over a wide range of x-ray tube voltages and acrylic phantom thicknesses with four different intensifying screen phosphors. The effects of x-ray energy dependence, generator switching time and stored change are investigated. The system is able to maintain film density to within plus or minus 0.2 optical density units for techniques representing adult patients. A single nonadjustable tube voltage compensation circuit is adequate for the four different screen phosphors for x-ray tube voltages above sixty peak kilovolts. For techniques representing pediatric patients at high x-ray tube voltages, excess film density occurs due to stored charge in the transformer and high-voltage cables. An anticipation circuit in the automatic exposure control circuit can be modified to correct for stored charge effects. In a separate experiment the energy dependence of three different ionization chamber detectors used in automatic exposure control systems is compared directly with the energy dependence of three different screen phosphors. The data on detector sensitivity and screen speed are combined to predict the best tube voltage compensation for each combination of screen and detector.
Exact differential equation for the density and ionization energy of a many-particle system
NASA Technical Reports Server (NTRS)
Levy, M.; Perdew, J. P.; Sahni, V.
1984-01-01
The present investigation is concerned with relations studied by Hohenberg and Kohn (1964) and Kohn and Sham (1965). The properties of a ground-state many-electron system are determined by the electron density. The correct differential equation for the density, as dictated by density-functional theory, is presented. It is found that the ground-state density n of a many-electron system obeys a Schroedinger-like differential equation which may be solved by standard Kohn-Sham programs. Results are connected to the traditional exact Kohn-Sham theory. It is pointed out that the results of the current investigations are readily extended to spin-density functional theory.
Experimental design to generate strong shear layers in a high-energy-density plasma
NASA Astrophysics Data System (ADS)
Harding, E. C.; Drake, R. P.; Aglitskiy, Y.; Gillespie, R. S.; Grosskopf, M. J.; Weaver, J. L.; Velikovich, A. L.; Visco, A.; Ditmar, J. R.
2010-06-01
The development of a new experimental system for generating a strong shear flow in a high-energy-density plasma is described in detail. The targets were designed with the goal of producing a diagnosable Kelvin-Helmholtz (KH) instability, which plays an important role in the transition turbulence but remains relatively unexplored in the high-energy-density regime. To generate the shear flow the Nike laser was used to drive a flow of Al plasma over a low-density foam surface with an initial perturbation. The interaction of the Al and foam was captured with a spherical crystal imager using 1.86 keV X-rays. The selection of the individual targets components is discussed and results are presented.
Criticality of the electron-nucleus cusp condition to local effective potential-energy theories
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pan Xiaoyin; Sahni, Viraht; Graduate School of the City University of New York, 360 Fifth Avenue, New York, New York 10016
2003-01-01
Local(multiplicative) effective potential energy-theories of electronic structure comprise the transformation of the Schroedinger equation for interacting Fermi systems to model noninteracting Fermi or Bose systems whereby the equivalent density and energy are obtained. By employing the integrated form of the Kato electron-nucleus cusp condition, we prove that the effective electron-interaction potential energy of these model fermions or bosons is finite at a nucleus. The proof is general and valid for arbitrary system whether it be atomic, molecular, or solid state, and for arbitrary state and symmetry. This then provides justification for all prior work in the literature based on themore » assumption of finiteness of this potential energy at a nucleus. We further demonstrate the criticality of the electron-nucleus cusp condition to such theories by an example of the hydrogen molecule. We show thereby that both model system effective electron-interaction potential energies, as determined from densities derived from accurate wave functions, will be singular at the nucleus unless the wave function satisfies the electron-nucleus cusp condition.« less
Śmiga, Szymon; Fabiano, Eduardo; Laricchia, Savio; Constantin, Lucian A; Della Sala, Fabio
2015-04-21
We analyze the methodology and the performance of subsystem density functional theory (DFT) with meta-generalized gradient approximation (meta-GGA) exchange-correlation functionals for non-bonded molecular systems. Meta-GGA functionals depend on the Kohn-Sham kinetic energy density (KED), which is not known as an explicit functional of the density. Therefore, they cannot be directly applied in subsystem DFT calculations. We propose a Laplacian-level approximation to the KED which overcomes this limitation and provides a simple and accurate way to apply meta-GGA exchange-correlation functionals in subsystem DFT calculations. The so obtained density and energy errors, with respect to the corresponding supermolecular calculations, are comparable with conventional approaches, depending almost exclusively on the approximations in the non-additive kinetic embedding term. An embedding energy error decomposition explains the accuracy of our method.
Tao, Jianmin; Tretiak, Sergei; Zhu, Jian-Xin
2010-01-01
With technological advances, light-emitting conjugated oligomers and polymers have become competitive candidates in the commercial market of light-emitting diodes for display and other technologies, due to the ultralow cost, light weight, and flexibility. Prediction of excitation energies of these systems plays a crucial role in the understanding of their optical properties and device design. In this review article, we discuss the calculation of excitation energies with time-dependent density functional theory, which is one of the most successful methods in the investigation of the dynamical response of molecular systems to external perturbation, owing to its high computational efficiency.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Valdivia, M. P.; Stutman, D.; Finkenthal, M.
2014-07-15
The highly localized density gradients expected in High Energy Density (HED) plasma experiments can be characterized by x-ray phase-contrast imaging in addition to conventional attenuation radiography. Moiré deflectometry using the Talbot-Lau grating interferometer setup is an attractive HED diagnostic due to its high sensitivity to refraction induced phase shifts. We report on the adaptation of such a system for operation in the sub-10 keV range by using a combination of free standing and ultrathin Talbot gratings. This new x-ray energy explored matches well the current x-ray backlighters used for HED experiments, while also enhancing phase effects at lower electron densities.more » We studied the performance of the high magnification, low energy Talbot-Lau interferometer, for single image phase retrieval using Moiré fringe deflectometry. Our laboratory and simulation studies indicate that such a device is able to retrieve object electron densities from phase shift measurements. Using laboratory x-ray sources from 7 to 15 μm size we obtained accurate simultaneous measurements of refraction and attenuation for both sharp and mild electron density gradients.« less
Valdivia, M P; Stutman, D; Finkenthal, M
2014-07-01
The highly localized density gradients expected in High Energy Density (HED) plasma experiments can be characterized by x-ray phase-contrast imaging in addition to conventional attenuation radiography. Moiré deflectometry using the Talbot-Lau grating interferometer setup is an attractive HED diagnostic due to its high sensitivity to refraction induced phase shifts. We report on the adaptation of such a system for operation in the sub-10 keV range by using a combination of free standing and ultrathin Talbot gratings. This new x-ray energy explored matches well the current x-ray backlighters used for HED experiments, while also enhancing phase effects at lower electron densities. We studied the performance of the high magnification, low energy Talbot-Lau interferometer, for single image phase retrieval using Moiré fringe deflectometry. Our laboratory and simulation studies indicate that such a device is able to retrieve object electron densities from phase shift measurements. Using laboratory x-ray sources from 7 to 15 μm size we obtained accurate simultaneous measurements of refraction and attenuation for both sharp and mild electron density gradients.
d'Entremont, A.; Corgnale, C.; Sulic, M.; ...
2017-08-31
Concentrating solar power plants represent low cost and efficient solutions for renewable electricity production only if adequate thermal energy storage systems are included. Metal hydride thermal energy storage systems have demonstrated the potential to achieve very high volumetric energy densities, high exergetic efficiencies, and low costs. The current work analyzes the technical feasibility and the performance of a storage system based on the high temperature Mg 2FeH 6 hydride coupled with the low temperature Na 3AlH 6 hydride. To accomplish this, a detailed transport model has been set up and the coupled metal hydride system has been simulated based onmore » a laboratory scale experimental configuration. Proper kinetics expressions have been developed and included in the model to replicate the absorption and desorption process in the high temperature and low temperature hydride materials. The system showed adequate hydrogen transfer between the two metal hydrides, with almost complete charging and discharging, during both thermal energy storage and thermal energy release. The system operating temperatures varied from 450°C to 500°C, with hydrogen pressures between 30 bar and 70 bar. This makes the thermal energy storage system a suitable candidate for pairing with a solar driven steam power plant. The model results, obtained for the selected experimental configuration, showed an actual thermal energy storage system volumetric energy density of about 132 kWh/m 3, which is more than 5 times the U.S. Department of Energy SunShot target (25 kWh/m 3).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
d'Entremont, A.; Corgnale, C.; Sulic, M.
Concentrating solar power plants represent low cost and efficient solutions for renewable electricity production only if adequate thermal energy storage systems are included. Metal hydride thermal energy storage systems have demonstrated the potential to achieve very high volumetric energy densities, high exergetic efficiencies, and low costs. The current work analyzes the technical feasibility and the performance of a storage system based on the high temperature Mg 2FeH 6 hydride coupled with the low temperature Na 3AlH 6 hydride. To accomplish this, a detailed transport model has been set up and the coupled metal hydride system has been simulated based onmore » a laboratory scale experimental configuration. Proper kinetics expressions have been developed and included in the model to replicate the absorption and desorption process in the high temperature and low temperature hydride materials. The system showed adequate hydrogen transfer between the two metal hydrides, with almost complete charging and discharging, during both thermal energy storage and thermal energy release. The system operating temperatures varied from 450°C to 500°C, with hydrogen pressures between 30 bar and 70 bar. This makes the thermal energy storage system a suitable candidate for pairing with a solar driven steam power plant. The model results, obtained for the selected experimental configuration, showed an actual thermal energy storage system volumetric energy density of about 132 kWh/m 3, which is more than 5 times the U.S. Department of Energy SunShot target (25 kWh/m 3).« less
Flexible asymmetric supercapacitors with high energy and high power density in aqueous electrolytes.
Cheng, Yingwen; Zhang, Hongbo; Lu, Songtao; Varanasi, Chakrapani V; Liu, Jie
2013-02-07
Supercapacitors with both high energy and high power densities are critical for many practical applications. In this paper, we discuss the design and demonstrate the fabrication of flexible asymmetric supercapacitors based on nanocomposite electrodes of MnO(2), activated carbon, carbon nanotubes and graphene. The combined unique properties of each of these components enable highly flexible and mechanically strong films that can serve as electrodes directly without using any current collectors or binders. Using these flexible electrodes and a roll-up approach, asymmetric supercapacitors with 2 V working voltage were successfully fabricated. The fabricated device showed excellent rate capability, with 78% of the original capacitance retained when the scan rate was increased from 2 mV s(-1) to 500 mV s(-1). Owing to the unique composite structure, these supercapacitors were able to deliver high energy density (24 W h kg(-1)) under high power density (7.8 kW kg(-1)) conditions. These features could enable supercapacitor based energy storage systems to be very attractive for a variety of critical applications, such as the power sources in hybrid electric vehicles and the back-up powers for wind and solar energy, where both high energy density and high power density are required.
Impact of Pb content on the physical parameters of Se-Te-Pb system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anjali,; Sharma, Raman; Thakur, Nagesh
2015-05-15
In the present study, we have investigated the impact of Pb content on the physical parameters in Se-Te-Pb system via average coordination number, constraints, the fraction of floppy modes, cross-linking density, lone pairs electrons, heat of atomization, mean bond energy, cohesive energy and electronegativity. The bulk samples have been prepared by using melt quenching technique. X-ray diffraction pattern of various samples indicates the amorphous nature of investigated glassy alloys. It is observed that average coordination number, average number of constraints and cross-linking density increase with Pb content. However, lone-pair electrons, floppy modes, average heat of atomization, cohesive energy and meanmore » bond energy are found to decrease with Pb atomic percentage.« less
Beyond Kohn-Sham Approximation: Hybrid Multistate Wave Function and Density Functional Theory.
Gao, Jiali; Grofe, Adam; Ren, Haisheng; Bao, Peng
2016-12-15
A multistate density functional theory (MSDFT) is presented in which the energies and densities for the ground and excited states are treated on the same footing using multiconfigurational approaches. The method can be applied to systems with strong correlation and to correctly describe the dimensionality of the conical intersections between strongly coupled dissociative potential energy surfaces. A dynamic-then-static framework for treating electron correlation is developed to first incorporate dynamic correlation into contracted state functions through block-localized Kohn-Sham density functional theory (KSDFT), followed by diagonalization of the effective Hamiltonian to include static correlation. MSDFT can be regarded as a hybrid of wave function and density functional theory. The method is built on and makes use of the current approximate density functional developed in KSDFT, yet it retains its computational efficiency to treat strongly correlated systems that are problematic for KSDFT but too large for accurate WFT. The results presented in this work show that MSDFT can be applied to photochemical processes involving conical intersections.
Shen, Juanjuan; Li, Xiaocheng; Wan, Liu; Liang, Kun; Tay, Beng Kang; Kong, Lingbin; Yan, Xingbin
2017-01-11
Development of a supercapacitor device with both high gravimetric and volumetric energy density is one of the most important requirements for their practical application in energy storage/conversion systems. Currently, improvement of the gravimetric/volumetric energy density of a supercapacitor is restricted by the insufficient utilization of positive materials at high loading density and the inferior capacitive behavior of negative electrodes. To solve these problems, we elaborately designed and prepared a 3D core-shell structured Ni(OH) 2 /MnO 2 @carbon nanotube (CNT) composite via a facile solvothermal process by using the thermal chemical vapor deposition grown-CNTs as support. Owing to the superiorities of core-shell architecture in improving the service efficiency of pseudocapacitive materials at high loading density, the prepared Ni(OH) 2 /MnO 2 @CNT electrode demonstrated a high capacitance value of 2648 F g -1 (1 A g -1 ) at a high loading density of 6.52 mg cm -2 . Coupled with high-performance activated polyaniline-derived carbon (APDC, 400 F g -1 at 1 A g -1 ), the assembled Ni(OH) 2 /MnO 2 @CNT//APDC asymmetric device delivered both high gravimetric and volumetric energy density (126.4 Wh kg -1 and 10.9 mWh cm -3 , respectively), together with superb rate performance and cycling lifetime. Moreover, we demonstrate an effective approach for building a high-performance supercapacitor with high gravimetric/volumetric energy density.
Enhancing dielectric permittivity for energy-storage devices through tricritical phenomenon
Gao, Jinghui; Wang, Yan; Liu, Yongbin; Hu, Xinghao; Ke, Xiaoqin; Zhong, Lisheng; He, Yuting; Ren, Xiaobing
2017-01-01
Although dielectric energy-storing devices are frequently used in high voltage level, the fast growing on the portable and wearable electronics have been increasing the demand on the energy-storing devices at finite electric field strength. This paper proposes an approach on enhancing energy density under low electric field through compositionally inducing tricriticality in Ba(Ti,Sn)O3 ferroelectric material system with enlarged dielectric response. The optimal dielectric permittivity at tricritical point can reach to εr = 5.4 × 104, and the associated energy density goes to around 30 mJ/cm3 at the electric field of 10 kV/cm, which exceeds most of the selected ferroelectric materials at the same field strength. The microstructure nature for such a tricritical behavior shows polarization inhomogeneity in nanometeric scale, which indicates a large polarizability under external electric field. Further phenomenological Landau modeling suggests that large dielectric permittivity and energy density can be ascribed to the vanishing of energy barrier for polarization altering caused by tricriticality. Our results may shed light on developing energy-storing dielectrics with large permittivity and energy density at low electric field. PMID:28098249
Ruthenium Oxide Electrochemical Super Capacitor Optimization for Pulse Power Applications
NASA Technical Reports Server (NTRS)
Merryman, Stephen A.; Chen, Zheng
2000-01-01
Electrical actuator systems are being pursued as alternatives to hydraulic systems to reduce maintenance time, weight and costs while increasing reliability. Additionally, safety and environmental hazards associated with the hydraulic fluids can be eliminated. For most actuation systems, the actuation process is typically pulsed with high peak power requirements but with relatively modest average power levels. The power-time requirements for electrical actuators are characteristic of pulsed power technologies where the source can be sized for the average power levels while providing the capability to achieve the peak requirements. Among the options for the power source are battery systems, capacitor systems or battery-capacitor hybrid systems. Battery technologies are energy dense but deficient in power density; capacitor technologies are power dense but limited by energy density. The battery-capacitor hybrid system uses the battery to supply the average power and the capacitor to meet the peak demands. It has been demonstrated in previous work that the hybrid electrical power source can potentially provide a weight savings of approximately 59% over a battery-only source. Electrochemical capacitors have many properties that make them well-suited for electrical actuator applications. They have the highest demonstrated energy density for capacitive storage (up to 100 J/g), have power densities much greater than most battery technologies (greater than 30kW/kg), are capable of greater than one million charge-discharge cycles, can be charged at extremely high rates, and have non-explosive failure modes. Thus, electrochemical capacitors exhibit a combination of desirable battery and capacitor characteristics.
NASA Astrophysics Data System (ADS)
Zuo, Wenhua; Wang, Chong; Li, Yuanyuan; Liu, Jinping
2015-01-01
Hybrid supercapacitor (HSC), which typically consists of a Li-ion battery electrode and an electric double-layer supercapacitor electrode, has been extensively investigated for large-scale applications such as hybrid electric vehicles, etc. Its application potential for thin-film downsized energy storage systems that always prefer high volumetric energy/power densities, however, has not yet been explored. Herein, as a case study, we develop an entirely binder-free HSC by using multiwalled carbon nanotube (MWCNT) network film as the cathode and Li4Ti5O12 (LTO) nanowire array as the anode and study the volumetric energy storage capability. Both the electrode materials are grown directly on carbon cloth current collector, ensuring robust mechanical/electrical contacts and flexibility. Our 3 V HSC device exhibits maximum volumetric energy density of ~4.38 mWh cm-3, much superior to those of previous supercapacitors based on thin-film electrodes fabricated directly on carbon cloth and even comparable to the commercial thin-film lithium battery. It also has volumetric power densities comparable to that of the commercial 5.5 V/100 mF supercapacitor (can be operated within 3 s) and has excellent cycling stability (~92% retention after 3000 cycles). The concept of utilizing binder-free electrodes to construct HSC for thin-film energy storage may be readily extended to other HSC electrode systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maurer, Simon A.; Clin, Lucien; Ochsenfeld, Christian, E-mail: christian.ochsenfeld@uni-muenchen.de
2014-06-14
Our recently developed QQR-type integral screening is introduced in our Cholesky-decomposed pseudo-densities Møller-Plesset perturbation theory of second order (CDD-MP2) method. We use the resolution-of-the-identity (RI) approximation in combination with efficient integral transformations employing sparse matrix multiplications. The RI-CDD-MP2 method shows an asymptotic cubic scaling behavior with system size and a small prefactor that results in an early crossover to conventional methods for both small and large basis sets. We also explore the use of local fitting approximations which allow to further reduce the scaling behavior for very large systems. The reliability of our method is demonstrated on test sets formore » interaction and reaction energies of medium sized systems and on a diverse selection from our own benchmark set for total energies of larger systems. Timings on DNA systems show that fast calculations for systems with more than 500 atoms are feasible using a single processor core. Parallelization extends the range of accessible system sizes on one computing node with multiple cores to more than 1000 atoms in a double-zeta basis and more than 500 atoms in a triple-zeta basis.« less
NASA Astrophysics Data System (ADS)
Shao, Zhiqiang
2018-04-01
The relativistic full Euler system with generalized Chaplygin proper energy density-pressure relation is studied. The Riemann problem is solved constructively. The delta shock wave arises in the Riemann solutions, provided that the initial data satisfy some certain conditions, although the system is strictly hyperbolic and the first and third characteristic fields are genuinely nonlinear, while the second one is linearly degenerate. There are five kinds of Riemann solutions, in which four only consist of a shock wave and a centered rarefaction wave or two shock waves or two centered rarefaction waves, and a contact discontinuity between the constant states (precisely speaking, the solutions consist in general of three waves), and the other involves delta shocks on which both the rest mass density and the proper energy density simultaneously contain the Dirac delta function. It is quite different from the previous ones on which only one state variable contains the Dirac delta function. The formation mechanism, generalized Rankine-Hugoniot relation and entropy condition are clarified for this type of delta shock wave. Under the generalized Rankine-Hugoniot relation and entropy condition, we establish the existence and uniqueness of solutions involving delta shocks for the Riemann problem.
NASA Astrophysics Data System (ADS)
García-Aldea, David; Alvarellos, J. E.
2009-03-01
We present several nonlocal exchange energy density functionals that reproduce the linear response function of the free electron gas. These nonlocal functionals are constructed following a similar procedure used previously for nonlocal kinetic energy density functionals by Chac'on-Alvarellos-Tarazona, Garc'ia-Gonz'alez et al., Wang-Govind-Carter and Garc'ia-Aldea-Alvarellos. The exchange response function is not known but we have used the approximate response function developed by Utsumi and Ichimaru, even we must remark that the same ansatz can be used to reproduce any other response function with the same scaling properties. We have developed two families of new nonlocal functionals: one is constructed with a mathematical structure based on the LDA approximation -- the Dirac functional for the exchange - and for the second one the structure of the second order gradient expansion approximation is took as a model. The functionals are constructed is such a way that they can be used in localized systems (using real space calculations) and in extended systems (using the momentum space, and achieving a quasilinear scaling with the system size if a constant reference electron density is defined).
Alkaline Capacitors Based on Nitride Nanoparticles
NASA Technical Reports Server (NTRS)
Aldissi, Matt
2003-01-01
High-energy-density alkaline electrochemical capacitors based on electrodes made of transition-metal nitride nanoparticles are undergoing development. Transition- metal nitrides (in particular, Fe3N and TiN) offer a desirable combination of high electrical conductivity and electrochemical stability in aqueous alkaline electrolytes like KOH. The high energy densities of these capacitors are attributable mainly to their high capacitance densities, which, in turn, are attributable mainly to the large specific surface areas of the electrode nanoparticles. Capacitors of this type could be useful as energy-storage components in such diverse equipment as digital communication systems, implanted medical devices, computers, portable consumer electronic devices, and electric vehicles.
NASA Astrophysics Data System (ADS)
Gil-Baez, Maite; Barrios-Padura, Ángela; Molina-Huelva, Marta; Chacartegui, Ricardo
2017-11-01
European regulations set the condition of Zero Energy Buildings for new buildings since 2020, with an intermediate milestone in 2018 for public buildings, in order to control greenhouse gases emissions control and climate change mitigation. Given that main fraction of energy consumption in buildings operation is due to HVAC systems, advances in its design and operation conditions are required. One key element for energy demand control is passive design of buildings. On this purpose, different recent studies and publications analyse natural ventilation systems potential to provide indoor air quality and comfort conditions minimizing electric power consumption. In these passive systems are of special relevance their capacities as passive cooling systems as well as air renovation systems, especially in high-density occupied spaces. With adequate designs, in warm/mild climates natural ventilation systems can be used along the whole year, maintaining indoor air quality and comfort conditions with small support of other heating/cooling systems. In this paper is analysed the state of the art of natural ventilation systems applied to high density occupied spaces with special focus on school buildings. The paper shows the potential and applicability of these systems for energy savings and discusses main criteria for their adequate integration in school building designs.
High energy density micro-fiber based nickel electrode for aerospace batteries
NASA Technical Reports Server (NTRS)
Francisco, Jennifer; Chiappetti, Dennis; Coates, Dwaine
1996-01-01
The nickel electrode is the specific energy limiting component in battery systems such as nickel-hydrogen, nickel-metal hydride and nickel-zinc. Lightweight, high energy density nickel electrodes have been developed which deliver in excess of 180 mAh/g at the one-hour discharge rate. These electrodes are based on a highly porous, nickel micro-fiber (less than 10 micron diameter) substrate, electrochemically impregnated with nickel-hydroxide active material. Electrodes are being tested both as a flooded half-cell and in full nickel-hydrogen and nickel-metal hydride cells. The electrode technology developed is applicable to commercial nickel-based batteries for applications such as electric vehicles, cellular telephones and laptop computers and for low-cost, high energy density military and aerospace applications.
Vyboishchikov, Sergei F
2016-12-05
We report correlation energies, electron densities, and exchange-correlation potentials obtained from configuration interaction and density functional calculations on spherically confined He, Be, Be 2+ , and Ne atoms. The variation of the correlation energy with the confinement radius R c is relatively small for the He, Be 2+ , and Ne systems. Curiously, the Lee-Yang-Parr (LYP) functional works well for weak confinements but fails completely for small R c . However, in the neutral beryllium atom the CI correlation energy increases markedly with decreasing R c . This effect is less pronounced at the density-functional theory level. The LYP functional performs very well for the unconfined Be atom, but fails badly for small R c . The standard exchange-correlation potentials exhibit significant deviation from the "exact" potential obtained by inversion of Kohn-Sham equation. The LYP correlation potential behaves erratically at strong confinements. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Zhao, Yu; Ding, Yu; Li, Yutao; Peng, Lele; Byon, Hye Ryung; Goodenough, John B; Yu, Guihua
2015-11-21
Electrical energy storage system such as secondary batteries is the principle power source for portable electronics, electric vehicles and stationary energy storage. As an emerging battery technology, Li-redox flow batteries inherit the advantageous features of modular design of conventional redox flow batteries and high voltage and energy efficiency of Li-ion batteries, showing great promise as efficient electrical energy storage system in transportation, commercial, and residential applications. The chemistry of lithium redox flow batteries with aqueous or non-aqueous electrolyte enables widened electrochemical potential window thus may provide much greater energy density and efficiency than conventional redox flow batteries based on proton chemistry. This Review summarizes the design rationale, fundamentals and characterization of Li-redox flow batteries from a chemistry and material perspective, with particular emphasis on the new chemistries and materials. The latest advances and associated challenges/opportunities are comprehensively discussed.
Biopolymer-nanocarbon composite electrodes for use as high-energy high-power density electrodes
NASA Astrophysics Data System (ADS)
Karakaya, Mehmet; Roberts, Mark; Arcilla-Velez, Margarita; Zhu, Jingyi; Podila, Ramakrishna; Rao, Apparao
2014-03-01
Supercapacitors (SCs) address our current energy storage and delivery needs by combining the high power, rapid switching, and exceptional cycle life of a capacitor with the high energy density of a battery. Although activated carbon is extensively used as a supercapacitor electrode due to its inexpensive nature, its low specific capacitance (100-120 F/g) fundamentally limits the energy density of SCs. We demonstrate that a nano-carbon based mechanically robust, electrically conducting, free-standing buckypaper electrode modified with an inexpensive biorenewable polymer, viz., lignin increases the electrode's specific capacitance (~ 600-700 F/g) while maintaining rapid discharge rates. In these systems, the carbon nanomaterials provide the high surface area, electrical conductivity and porosity, while the redox polymers provide a mechanism for charge storage through Faradaic charge transfer. The design of redox polymers and their incorporation into nanomaterial electrodes will be discussed with a focus on enabling high power and high energy density electrodes. Research supported by US NSF CMMI Grant 1246800.
Achieving High-Energy-High-Power Density in a Flexible Quasi-Solid-State Sodium Ion Capacitor.
Li, Hongsen; Peng, Lele; Zhu, Yue; Zhang, Xiaogang; Yu, Guihua
2016-09-14
Simultaneous integration of high-energy output with high-power delivery is a major challenge for electrochemical energy storage systems, limiting dual fine attributes on a device. We introduce a quasi-solid-state sodium ion capacitor (NIC) based on a battery type urchin-like Na2Ti3O7 anode and a capacitor type peanut shell derived carbon cathode, using a sodium ion conducting gel polymer as electrolyte, achieving high-energy-high-power characteristics in solid state. Energy densities can reach 111.2 Wh kg(-1) at power density of 800 W kg(-1), and 33.2 Wh kg(-1) at power density of 11200 W kg(-1), which are among the best reported state-of-the-art NICs. The designed device also exhibits long-term cycling stability over 3000 cycles with capacity retention ∼86%. Furthermore, we demonstrate the assembly of a highly flexible quasi-solid-state NIC and it shows no obvious capacity loss under different bending conditions.
Pie-like electrode design for high-energy density lithium–sulfur batteries
Li, Zhen; Zhang, Jin Tao; Chen, Yu Ming; Li, Ju; Lou, Xiong Wen (David)
2015-01-01
Owing to the overwhelming advantage in energy density, lithium–sulfur (Li–S) battery is a promising next-generation electrochemical energy storage system. Despite many efforts in pursuing long cycle life, relatively little emphasis has been placed on increasing the areal energy density. Herein, we have designed and developed a ‘pie' structured electrode, which provides an excellent balance between gravimetric and areal energy densities. Combining lotus root-like multichannel carbon nanofibers ‘filling' and amino-functionalized graphene ‘crust', the free-standing paper electrode (S mass loading: 3.6 mg cm−2) delivers high specific capacity of 1,314 mAh g−1 (4.7 mAh cm−2) at 0.1 C (0.6 mA cm−2) accompanied with good cycling stability. Moreover, the areal capacity can be further boosted to more than 8 mAh cm−2 by stacking three layers of paper electrodes with S mass loading of 10.8 mg cm−2. PMID:26608228
Density fluctuation in HT-6M tokamak by CO2 laser scattering
NASA Astrophysics Data System (ADS)
Zeng, Lei; Cao, Jinxiang; Zhu, Guoliang; Ding, Weixing; Yu, Chang-Xuan; Zhang, Daqing; Li, Youyi
1993-09-01
The small scale density fluctuations in the interior of HT-6M Ohmic plasma have been studied by CO2 laser collective scattering system in deuterium discharges covering a wide range of nqa (chord-average density times safety factor at the limiter) and energy confinement time. The relative density fluctuation level in the interior is inversely proportional to the toroidal magnetic field and average density, and the energy confinement time (tau) E decreases with the fluctuation level increasing in the region where (tau) E linearly increases with nq0.5a and satisfies the Goldston scaling law. It is suggested that the microturbulence in the interior zone is responsible for anomalous transport in tokamaks.
Primary batteries for implantable pacemakers and defibrillators
NASA Astrophysics Data System (ADS)
Drews, J.; Fehrmann, G.; Staub, R.; Wolf, R.
The lithium-iodine battery is established as the standard system for low-rate implantable applications, namely pacemakers because of its excellent volumetric energy density. Within defibrillators/cardioverters lithium-silver-oxovanadium (SVO) and lithium-manganese-dioxide (MDX) high-rate batteries are in use. The concept of a hybrid system which makes use of a high-rate battery and a low-rate battery within one application is described. Experimental results obtained from a MDX battery and a lithium-iodine battery, both with the same dimensions, are showing that MDX batteries of that size are able to combine excellent volumetric energy density and medium power ratings. Energy densities of 650 mWh/cm 3 for the MDX battery with a lode of 30 kΩ to an end voltage of 2.5 V have been confirmed. These results show the potential of lithium-manganese-dioxide batteries to be used as low-rate and medium-rate sources within implantable applications.
Implicit solvation model for density-functional study of nanocrystal surfaces and reaction pathways
NASA Astrophysics Data System (ADS)
Mathew, Kiran; Sundararaman, Ravishankar; Letchworth-Weaver, Kendra; Arias, T. A.; Hennig, Richard G.
2014-02-01
Solid-liquid interfaces are at the heart of many modern-day technologies and provide a challenge to many materials simulation methods. A realistic first-principles computational study of such systems entails the inclusion of solvent effects. In this work, we implement an implicit solvation model that has a firm theoretical foundation into the widely used density-functional code Vienna ab initio Software Package. The implicit solvation model follows the framework of joint density functional theory. We describe the framework, our algorithm and implementation, and benchmarks for small molecular systems. We apply the solvation model to study the surface energies of different facets of semiconducting and metallic nanocrystals and the SN2 reaction pathway. We find that solvation reduces the surface energies of the nanocrystals, especially for the semiconducting ones and increases the energy barrier of the SN2 reaction.
Energy propagation by transverse waves in multiple flux tube systems using filling factors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Doorsselaere, T.; Gijsen, S. E.; Andries, J.
2014-11-01
In the last few years, it has been found that transverse waves are present at all times in coronal loops or spicules. Their energy has been estimated with an expression derived for bulk Alfvén waves in homogeneous media, with correspondingly uniform wave energy density and flux. The kink mode, however, is localized in space with the energy density and flux dependent on the position in the cross-sectional plane. The more relevant quantities for the kink mode are the integrals of the energy density and flux over the cross-sectional plane. The present paper provides an approximation to the energy propagated bymore » kink modes in an ensemble of flux tubes by means of combining the analysis of single flux tube kink oscillations with a filling factor for the tube cross-sectional area. This finally allows one to compare the expressions for energy flux of Alfvén waves with an ensemble of kink waves. We find that the correction factor for the energy in kink waves, compared to the bulk Alfvén waves, is between f and 2f, where f is the density filling factor of the ensemble of flux tubes.« less
NASA Astrophysics Data System (ADS)
Bagchi, Debarshee; Tsallis, Constantino
2017-04-01
The relaxation to equilibrium of two long-range-interacting Fermi-Pasta-Ulam-like models (β type) in thermal contact is numerically studied. These systems, with different sizes and energy densities, are coupled to each other by a few thermal contacts which are short-range harmonic springs. By using the kinetic definition of temperature, we compute the time evolution of temperature and energy density of the two systems. Eventually, for some time t >teq, the temperature and energy density of the coupled system equilibrate to values consistent with standard Boltzmann-Gibbs thermostatistics. The equilibration time teq depends on the system size N as teq ∼Nγ where γ ≃ 1.8. We compute the velocity distribution P (v) of the oscillators of the two systems during the relaxation process. We find that P (v) is non-Gaussian and is remarkably close to a q-Gaussian distribution for all times before thermal equilibrium is reached. During the relaxation process we observe q > 1 while close to t =teq the value of q converges to unity and P (v) approaches a Gaussian. Thus the relaxation phenomenon in long-ranged systems connected by a thermal contact can be generically described as a crossover from q-statistics to Boltzmann-Gibbs statistics.
NASA Astrophysics Data System (ADS)
Wang, Anqi; Zhou, Xi; Qian, Tao; Yu, Chenfei; Wu, Shishan; Shen, Jian
2015-08-01
Highly dispersed polypyrrole particles were decorated on reduced graphene oxide sheets using a facile in situ synthesis route. The prepared composite, which obtained a folded surface, shows remarkable performance as the electrode material of supercapacitors. The specific capacitance reaches 564.1 F g-1 at a current density of 1 A g-1 and maintains 86.4 % after 1000 charging-discharging cycles at a current density of 20 A g-1, which indicates a good cycling stability. Furthermore, the prepared supercapacitor demonstrates an ultrahigh energy density of 50.13 Wh kg-1 at power density of 0.40 kW kg-1, and remains of 45.33 Wh kg-1 even at high power density of 8.00 kW kg-1, which demonstrate that the hybrid supercapacitor can be a promising energy storage system for fast and efficient energy storage in the future.
Polis, G A; Hurd, S D
1995-01-01
Some islands in the Gulf of California support very high densities of spiders. Spider density is negatively correlated with island size; many small islands support 50-200 spiders per m3 of cactus. Energy for these spiders comes primarily from the ocean and not from in situ productivity by land plants. We explicitly connect the marine and terrestrial systems to show that insular food webs represent one endpoint of the marine web. We describe two conduits for marine energy entering these islands: shore drift and seabird colonies. Both conduits are related to island area, having a much stronger effect on smaller islands. This asymmetric effect helps to explain the exceptionally high spider densities on small islands. Although productivity sets the maximal potential densities, predation (by scorpions) limits realized spider abundance. Thus, prey availability and predation act in concert to set insular spider abundance. PMID:7753815
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leonard, T.; Lander, B.; Seifert, U.
2013-11-28
We discuss the stochastic thermodynamics of systems that are described by a time-dependent density field, for example, simple liquids and colloidal suspensions. For a time-dependent change of external parameters, we show that the Jarzynski relation connecting work with the change of free energy holds if the time evolution of the density follows the Kawasaki-Dean equation. Specifically, we study the work distributions for the compression and expansion of a two-dimensional colloidal model suspension implementing a practical coarse-graining scheme of the microscopic particle positions. We demonstrate that even if coarse-grained dynamics and density functional do not match, the fluctuation relations for themore » work still hold albeit for a different, apparent, change of free energy.« less
NASA Astrophysics Data System (ADS)
Kyser, David F.; Eib, Nicholas K.; Ritchie, Nicholas W. M.
2016-07-01
The absorbed energy density (eV/cm3) deposited by extreme ultraviolet (EUV) photons and electron beam (EB) high-keV electrons is proposed as a metric for characterizing the sensitivity of EUV resist films. Simulations of energy deposition are used to calculate the energy density as a function of the incident aerial flux (EUV: mJ/cm2, EB: μC/cm2). Monte Carlo calculations for electron exposure are utilized, and a Lambert-Beer model for EUV absorption. The ratio of electron flux to photon flux which results in equivalent energy density is calculated for a typical organic chemically amplified resist film and a typical inorganic metal-oxide film. This ratio can be used to screen EUV resist materials with EB measurements and accelerate advances in EUV resist systems.
Redox Species of Redox Flow Batteries: A Review.
Pan, Feng; Wang, Qing
2015-11-18
Due to the capricious nature of renewable energy resources, such as wind and solar, large-scale energy storage devices are increasingly required to make the best use of the renewable power. The redox flow battery is considered suitable for large-scale applications due to its modular design, good scalability and flexible operation. The biggest challenge of the redox flow battery is the low energy density. The redox active species is the most important component in redox flow batteries, and the redox potential and solubility of redox species dictate the system energy density. This review is focused on the recent development of redox species. Different categories of redox species, including simple inorganic ions, metal complexes, metal-free organic compounds, polysulfide/sulfur and lithium storage active materials, are reviewed. The future development of redox species towards higher energy density is also suggested.
1993-01-01
C-R248 Phone: (619) 455-9741 PI: DAVID ANDING Title: Method for Incorporating High -Fidelity Engineering Models Into Distributed Simulations Abstract...Ferroelectric Capacitors for Pulse Power Electronics Abstract: High -density energy storage and fast discharge will be critical in a variety of high ...to meet the design objectives of High Energy Density Capacitors (HEDC) for energy storage in pulsed power systems (15 to 45 mJ/kg). In the proposed
Investigation of low temperature solid oxide fuel cells for air-independent UUV applications
NASA Astrophysics Data System (ADS)
Moton, Jennie Mariko
Unmanned underwater vehicles (UUVs) will benefit greatly from high energy density (> 500 Wh/L) power systems utilizing high-energy-density fuels and air-independent oxidizers. Current battery-based systems have limited energy densities (< 400 Wh/L), which motivate development of alternative power systems such as solid oxide fuel cells (SOFCs). SOFC-based power systems have the potential to achieve the required UUV energy densities, and the current study explores how SOFCs based on gadolinia-doped ceria (GDC) electrolytes with operating temperatures of 650°C and lower may operate in the unique environments of a promising UUV power plant. The plant would contain a H 2O2 decomposition reactor to supply humidified O2 to the SOFC cathode and exothermic aluminum/H2O combustor to provide heated humidified H2 fuel to the anode. To characterize low-temperature SOFC performance with these unique O2 and H2 source, SOFC button cells based on nickel/GDC (Gd0.1Ce0.9O 1.95) anodes, GDC electrolytes, and lanthanum strontium cobalt ferrite (La0.6Sr0.4Co0.2Fe0.8O3-δ or LSCF)/GDC cathodes were fabricated and tested for performance and stability with humidity on both the anode and the cathode. Cells were also tested with various reactant concentrations of H2 and O2 to simulate gas depletion down the channel of an SOFC stack. Results showed that anode performance depended primarily on fuel concentration and less on the concentration of the associated increase in product H2O. O 2 depletion with humidified cathode flows also caused significant loss in cell current density at a given voltage. With the humidified flows in either the anode or cathode, stability tests of the button cells at 650 °C showed stable voltage is maintained at low operating current (0.17 A/cm2) at up to 50 % by mole H2O, but at higher current densities (0.34 A/cm2), irreversible voltage degradation occurred at rates of 0.8-3.7 mV/hour depending on exposure time. From these button cell results, estimated average current densities over the length of a low-temperature SOFC stack were estimated and used to size a UUV power system based on Al/H 2O oxidation for fuel and H2O2 decomposition for O2. The resulting system design suggested that energy densities above 300 Wh/L may be achieved at neutral buoyancy with seawater if the cell is operated at high reactant utilizations in the SOFC stack for missions longer than 20 hours.
Microcombustor-thermoelectric power generator for 10-50 watt applications
NASA Astrophysics Data System (ADS)
Marshall, Daniel S.; Cho, Steve T.
2010-04-01
Fuel-based portable power systems, including combustion and fuel cell systems, take advantage of the 80x higher energy density of fuel over lithium battery technologies and offer the potential for much higher energy density power sources - especially for long-duration applications, such as unattended sensors. Miniaturization of fuel-based systems poses significant challenges, including processing of fuel in small channels, catalyst poisoning, and coke and soot formation. Recent advances in micro-miniature combustors in the 200Watt thermal range have enabled the development of small power sources that use the chemical energy of heavy fuel to drive thermal-to-electric converters for portable applications. CUBE Technology has developed compact Micro-Furnace combustors that efficiently deliver high-quality heat to optimized thermal-to-electric power converters, such as advanced thermoelectric power modules and Stirling motors, for portable power generation at the 10-50Watt scale. Key innovations include a compact gas-gas recuperator, innovative heavy fuel processing, coke- & soot-free operation, and combustor optimization for low balance-of-plant power use while operating at full throttle. This combustor enables the development of robust, high energy density, miniature power sources for portable applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sarkar, Sunandan; Rajbanshi, Biplab; Sarkar, Pranab, E-mail: pranab.sarkar@visva-bharati.ac.in
2014-09-21
By using the density-functional tight binding method, we studied the electronic structure of CdSe quantum dot(QD)-buckminsterfullerene (C{sub 60}) hybrid systems as a function of both the size of the QD and concentration of the fullerene molecule. Our calculation reveals that the lowest unoccupied molecular orbital energy level of the hybrid CdSeQD-C{sub 60} systems lies on the fullerene moiety, whereas the highest occupied molecular orbital (HOMO) energy level lies either on the QD or the fullerene depending on size of the CdSe QD. We explored the possibility of engineering the energy level alignment by varying the size of the CdSe QD.more » With increase in size of the QD, the HOMO level is shifted upward and crosses the HOMO level of the C{sub 60}-thiol molecule resulting transition from the type-I to type-II band energy alignment. The density of states and charge density plot support these types of band gap engineering of the CdSe-C{sub 60} hybrid systems. This type II band alignment indicates the possibility of application of this nanohybrid for photovoltaic purpose.« less
Noncovalent Interactions of DNA Bases with Naphthalene and Graphene.
Cho, Yeonchoo; Min, Seung Kyu; Yun, Jeonghun; Kim, Woo Youn; Tkatchenko, Alexandre; Kim, Kwang S
2013-04-09
The complexes of a DNA base bound to graphitic systems are studied. Considering naphthalene as the simplest graphitic system, DNA base-naphthalene complexes are scrutinized at high levels of ab initio theory including coupled cluster theory with singles, doubles, and perturbative triples excitations [CCSD(T)] at the complete basis set (CBS) limit. The stacked configurations are the most stable, where the CCSD(T)/CBS binding energies of guanine, adenine, thymine, and cytosine are 9.31, 8.48, 8.53, 7.30 kcal/mol, respectively. The energy components are investigated using symmetry-adapted perturbation theory based on density functional theory including the dispersion energy. We compared the CCSD(T)/CBS results with several density functional methods applicable to periodic systems. Considering accuracy and availability, the optB86b nonlocal functional and the Tkatchenko-Scheffler functional are used to study the binding energies of nucleobases on graphene. The predicted values are 18-24 kcal/mol, though many-body effects on screening and energy need to be further considered.
NASA Astrophysics Data System (ADS)
Seibt, Joachim; Mančal, Tomáš
2017-05-01
We derive equations of motion for the reduced density matrix of a molecular system which undergoes energy transfer dynamics competing with fast internal conversion channels. Environmental degrees of freedom of such a system have no time to relax to quasi-equilibrium in the electronic excited state of the donor molecule, and thus the conditions of validity of Förster and Modified Redfield theories in their standard formulations do not apply. We derive non-equilibrium versions of the two well-known rate theories and apply them to the case of carotenoid-chlorophyll energy transfer. Although our reduced density matrix approach does not account for the formation of vibronic excitons, it still confirms the important role of the donor ground-state vibrational states in establishing the resonance energy transfer conditions. We show that it is essential to work with a theory valid in a strong system-bath interaction regime to obtain correct dependence of the rates on donor-acceptor energy gap.
Advanced intermediate temperature sodium–nickel chloride batteries with ultra-high energy density
Li, Guosheng; Lu, Xiaochuan; Kim, Jin Y.; Meinhardt, Kerry D.; Chang, Hee Jung; Canfield, Nathan L.; Sprenkle, Vincent L.
2016-01-01
Sodium-metal halide batteries have been considered as one of the more attractive technologies for stationary electrical energy storage, however, they are not used for broader applications despite their relatively well-known redox system. One of the roadblocks hindering market penetration is the high-operating temperature. Here we demonstrate that planar sodium–nickel chloride batteries can be operated at an intermediate temperature of 190 °C with ultra-high energy density. A specific energy density of 350 Wh kg−1, higher than that of conventional tubular sodium–nickel chloride batteries (280 °C), is obtained for planar sodium–nickel chloride batteries operated at 190 °C over a long-term cell test (1,000 cycles), and it attributed to the slower particle growth of the cathode materials at the lower operating temperature. Results reported here demonstrate that planar sodium–nickel chloride batteries operated at an intermediate temperature could greatly benefit this traditional energy storage technology by improving battery energy density, cycle life and reducing material costs. PMID:26864635
Simplicity of condensed matter at its core: generic definition of a Roskilde-simple system.
Schrøder, Thomas B; Dyre, Jeppe C
2014-11-28
The isomorph theory is reformulated by defining Roskilde-simple systems by the property that the order of the potential energies of configurations at one density is maintained when these are scaled uniformly to a different density. If the potential energy as a function of all particle coordinates is denoted by U(R), this requirement translates into U(Ra) < U(Rb) ⇒ U(λRa) < U(λRb). Isomorphs remain curves in the thermodynamic phase diagram along which structure, dynamics, and excess entropy are invariant, implying that the phase diagram is effectively one-dimensional with respect to many reduced-unit properties. In contrast to the original formulation of the isomorph theory, however, the density-scaling exponent is not exclusively a function of density and the isochoric heat capacity is not an exact isomorph invariant. A prediction is given for the latter quantity's variation along the isomorphs. Molecular dynamics simulations of the Lennard-Jones and Lennard-Jones Gaussian systems validate the new approach.
NASA Astrophysics Data System (ADS)
Chu, Baojin
Miniature of power electronics, scaling-down of microelectronics and other electrical and electronic systems, and development of many technologies (such as hybrid vehicles or implantable heart defibrillators) require capacitors with high energy density to improve the weight and volume efficiency of the whole system. Various capacitor technologies are investigated to meet the requirements of developing future technologies. Among these technologies, polymer film capacitor technology is one of the most promising. Besides high energy density, polymer-based capacitors possess the merits of high power density, low loss, high reliability (self-healing), easy processing, and feasibility (in size, shape and energy level). Due to the ferroelectricity of polyvinylidene fluoride (PVDF)-based polymers, they exhibit much higher polarization response under an electric field, in comparison with other linear dielectric polymers for capacitor applications. The maximum polarization level of PVDF-based polymers can be as high as 0.1 C/m2 and the breakdown field can be higher than 600 MV/m. An estimated energy density of around 30 J/cm3 can be expected in this class of materials. However, this value is much higher than the energy density that can be achieved in the PVDF homopolymer and the poly(vinylidene fluoride-trifluoroethylene) (P(VDF-TrFE)) copolymers due to the polarization hysteresis in these polymers. Therefore, in this thesis, PVDF-based polymer materials were investigated and developed to approach this expected energy density by various strategies. An energy density of higher than 24 J/cm 3, which is close to the predicted value, was found in PVDF-based copolymers. Recently, the poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) (P(VDF-TrFE-CFE)) terpolymer was developed in Prof. Qiming Zhang's group. Previous works have shown that incorporation of CTE into P(VDF-TrFE) copolymers, in which bulky CFE acts as a defect, could convert the copolymer into relaxor ferroelectrics. P(VDF-TrFE-CFE) terpolymers possess a high dielectric constant (larger than 50 at 1 kHz) at room temperature and excellent electromechanical properties. Here, the P(VDF-TrFE-CFE) terpolymers were studied as dielectric materials for capacitor applications. The electrical, thermal and microstructure characterizations were performed on the terpolymers. The terpolymers exhibit a high breakdown field (higher than 400 MV/m) and energy density (larger than 9 J/cm 3). The energy discharge characteristics of the terpolymer were studied by directly discharging the stored energy in the terpolymers to a load resistor. Due to the highly field-dependent nonlinear and frequency dependent dielectric response of the terpolymers, the discharge energy density and equivalent series resistance strongly depend on the load resistor and discharge speed. This study found that for high energy density dielectric materials, a very high dielectric constant might not be an advantage. In the case of terpolymers, this leads to early polarization saturation, i.e., polarization response saturates under an electric field much lower than the breakdown field and causes lower than expected energy density. Due to the dielectric nonlinearity and early saturation of polarization, the energy density of the terpolymers increases linearly with the applied electric fields. It was also found that the polymer-metal interface played an important role for conduction and the breakdown field in the terpolymers, which was related to the charge injection from the metal to the polymer. Due to highly nonlinear dielectric behavior and early polarization saturation in the terpolymers, it was proposed that a high dielectric constant might not be desirable to obtain high energy density. Poly(vinylidene fluoride-chlorotrifluoroethylene) (P(VDFCTFE), 10, 15 and 20 wt% CTFE) and Poly(vinylidene fluoride-hexafluoropropylene) (P(VDF-HFP), 10 and 12 wt% HFP) copolymers, which possess a much lower dielectric constant (about 12 at 1 kHz at room temperature), were further investigated for dielectric materials of high energy density. Due to the lower dielectric constant, the early polarization saturation was avoided and these polymers showed a very high breakdown field and energy density. For the P(VDF-CTFE) copolymer with 15 wt% CTFE, an energy density of higher than 24 J/cm 3 at an electric field higher than 650 MV/m could be obtained. Based on thermal and microstructure studies, the high energy density was found to be caused by the structural modification of PVDF by bulky CTFE or HFP, which also act as defects, similar to the terpolymers. The discharge behavior of the copolymers mainly relies on the load resistors, suggesting that the copolymers have lower equivalent series resistance. Multi-component material system based on current available materials was found to be a useful strategy to tailor and improve the performance of dielectric materials. Nanocomposites composed of the P(VDF-TrFE-CFE) terpolymers and ZrO2 or TiO2 nanoparticles were found to greatly enhance the polarization response and energy density of terpolymers (from 9 J/cm3 to 10.5 J/cm3). Based on comprehensive thermal, dielectric and microstructure studies, the enhancement was believed to be related to the large amount of interfaces in the nanocomposites. In the interfaces, the chain mobility is increased and the energy barrier between the polar and nonpolar phases is reduced, resulting in higher polarization response and energy density at a reduced electric field. The P(VDF-TrFE-CFE) terpolymer/P(VDF-CTFE) copolymer and the P(VDFTrFE-CFE) terpolymer/PMMA blends were also studied. It was found that the P(VDFTrFE-CFE) terpolymers could not be completely miscible with the P(VDF-CTFE) copolymer. In the P(VDF-TrFE-CFE) terpolymer/P(VDF-CTFE) copolymer blends, with a small amount of the copolymer (5 and 10 wt%) in the terpolymer, enhancement of the polarization response similar to that observed in the terpolymer/ZrO 2 nanocomposites was observed. This enhancement was also thought to be mainly caused by the interface effect. The breakdown field of blends was also greatly improved, which resulted in a significant improvement in energy density (from 9 J/cm3 to 11.5 J/cm3). The P(VDF-TrFE-CFE) terpolymers are miscible with PMMA. Addition of PMMA was found to reduce the dielectric response of blends, but also to improve the breakdown field due to the improvement of mechanical properties. The optimum composition of the blends is around 2.5 wt% PMMA. With this composition, the breakdown field of the blends can be improved without reduction of energy density.
Elliptic flow from Coulomb interaction and low density elastic scattering
NASA Astrophysics Data System (ADS)
Sun, Yuliang; Li, Qingfeng; Wang, Fuqiang
2018-04-01
In high energy heavy ion collisions and interacting cold atom systems, large elliptic flow anisotropies have been observed. For the large opacity (ρ σ L ˜103 ) of the latter hydrodynamics is a natural consequence, but for the small opacity (ρ σ L ˜1 ) of the former the hydrodynamic description is questionable. To shed light onto the situation, we simulate the expansion of a low density argon ion (or atom) system, initially trapped in an elliptical region, under the Coulomb interaction (or elastic scattering). Significant elliptic anisotropy is found in both cases, and the anisotropy depends on the initial spatial eccentricity and the density of the system. The results may provide insights into the physics of anisotropic flow in high energy heavy ion collisions and its role in the study of quantum chromodynamics.
Energy Storage: Batteries and Fuel Cells for Exploration
NASA Technical Reports Server (NTRS)
Manzo, Michelle A.; Miller, Thomas B.; Hoberecht, Mark A.; Baumann, Eric D.
2007-01-01
NASA's Vision for Exploration requires safe, human-rated, energy storage technologies with high energy density, high specific energy and the ability to perform in a variety of unique environments. The Exploration Technology Development Program is currently supporting the development of battery and fuel cell systems that address these critical technology areas. Specific technology efforts that advance these systems and optimize their operation in various space environments are addressed in this overview of the Energy Storage Technology Development Project. These technologies will support a new generation of more affordable, more reliable, and more effective space systems.
Characterization system for research on energy storage capacitors.
Noriega, J R; Iyore, O D; Budime, C; Gnade, B; Vasselli, J
2013-05-01
In this work a characterization system for high energy-density capacitors is described and demonstrated. Capacitors are being designed using thin-film technology in an attempt to achieve higher energy-density levels by operating the devices at a high voltage. These devices are fabricated from layers of 100 nm aluminum and a layer of polyvinylidene fluoride-hexafluoropropylene on a polyethylene naphthalate plastic substrate. The devices have been designed to store electrical charge at up to 200 V. Characterizations of these devices focus on the measurement of capacitance vs bias voltage and temperature, equivalent series resistance, and charge/discharge cycles. For the purpose of the characterization of these capacitors, an electronic charge/discharge interface was designed and tested.
NASA Astrophysics Data System (ADS)
Kassem, M.; Soize, C.; Gagliardini, L.
2009-06-01
In this paper, an energy-density field approach applied to the vibroacoustic analysis of complex industrial structures in the low- and medium-frequency ranges is presented. This approach uses a statistical computational model. The analyzed system consists of an automotive vehicle structure coupled with its internal acoustic cavity. The objective of this paper is to make use of the statistical properties of the frequency response functions of the vibroacoustic system observed from previous experimental and numerical work. The frequency response functions are expressed in terms of a dimensionless matrix which is estimated using the proposed energy approach. Using this dimensionless matrix, a simplified vibroacoustic model is proposed.
Multilayer Lead-Free Ceramic Capacitors with Ultrahigh Energy Density and Efficiency.
Li, Jinglei; Li, Fei; Xu, Zhuo; Zhang, Shujun
2018-06-26
The utilization of antiferroelectric (AFE) materials is thought to be an effective approach to enhance the energy density of dielectric capacitors. However, the high energy dissipation and inferior reliability that are associated with the antiferroelectric-ferroelectric phase transition are the main issues that restrict the applications of antiferroelectric ceramics. Here, simultaneously achieving high energy density and efficiency in a dielectric ceramic is proposed by combining antiferroelectric and relaxor features. Based on this concept, a lead-free dielectric (Na 0.5 Bi 0.5 )TiO 3 -x(Sr 0.7 Bi 0.2 )TiO 3 (NBT-xSBT) system is investigated and the corresponding multilayer ceramic capacitors (MLCCs) are fabricated. A record-high energy density of 9.5 J cm -3 , together with a high energy efficiency of 92%, is achieved in NBT-0.45SBT multilayer ceramic capacitors, which consist of ten dielectric layers with the single-layer thickness of 20 µm and the internal electrode area of 6.25 mm 2 . Furthermore, the newly developed capacitor exhibits a wide temperature usage range of -60 to 120 °C, with an energy-density variation of less than 10%, and satisfactory cycling reliability, with degradation of less than 8% over 10 6 cycles. These characteristics demonstrate that the NBT-0.45SBT multilayer ceramic is a promising candidate for high-power energy storage applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Calculating electronic correlation effects from densities of transitions
NASA Astrophysics Data System (ADS)
Haydock, Roger
Adding a localized electron to a system of interacting electrons induces a density of transitions described by the time-independent Heisenberg equation. Sequences of these transitions generate interacting states whose total energy is the sum of energies of the constituent transitions. A calculation of magnetic moments for itinerant electrons with Ising interactions illustrates this method. supported by the H. V. Snyder Gift to the University of Oregon.
NASA Astrophysics Data System (ADS)
Obeidat, Amr M.
Clean and renewable energy systems have emerged as an important area of research having diverse and significant new applications. These systems utilize different energy storage methods such as the batteries and supercapacitors. Supercapacitors are electrochemical energy storage devices that are designed to bridge the gap between batteries and conventional capacitors. Supercapacitors which store electrical energy by electrical double layer capacitance are based on large surface area structured carbons. The materials systems in which the Faradaic reversible redox reactions store electrical energy are the transition metal oxides and electronically conducting polymers. Among the different types of conducting polymers, poly (3, 4- ethylenedioxythiophene) (PEDOT) is extensively investigated owing to its chemical and mechanical stability. Due to instability of aqueous electrolytes at high voltages and toxicity of organic electrolytes, potential of supercapacitors has not been fully exploited. A novel aspect of this work is in utilizing the ionic liquid gel polymer electrolyte to design solid-state supercapacitors for energy storage. Various electrochemical systems were investigated including graphene, PEDOT, PEDOT-carbon nanotubes, PEDOT-manganese oxide, and PEDOT-iron oxide nanocomposites. The electrochemical performance of solid-state supercapacitor devices was evaluated based on cyclic voltammetry (CV), charge-discharge (CD), prolonged cyclic tests, and electrochemical impedance spectroscopy (EIS) techniques. Raman spectroscopy technique was also utilized to analyze the bonding structure of the electrode materials. The graphene solid-state supercapacitor system displayed areal capacitance density of 141.83 mF cm-2 based on high potential window up to 4V. The PEDOT solid-state supercapacitor system was synthesized in acetonitrile and aqueous mediums achieving areal capacitance density of 219.17 mF cm-2. The hybrid structure of solid-state supercapacitors was also studied in solid-state design based on PEDOT and graphene electrodes that produced areal capacitance density of 198.26 mF cm-2. Symmetrical PEDOT-manganese oxide nanocomposites were synthesized by co-deposition and dip-coating techniques to fabricate solid-state supercapacitor systems achieving areal capacitance density of 122.08 mF cm-2 credited to the PEDOT-MnO2 supercapacitor that was synthesized by dipping the PEDOT electrode in pure KMnO4 solution. The electrochemical performance of PEDOT-carbon nanotube solid-state supercapacitors was also investigated in both acetonitrile and aqueous medium showing good dispersion characteristics with optimum CNT content of 1 mg. The PEDOT-CNT solid-state supercapacitor system synthesized in acetonitrile displayed areal capacitance density of 297.43 mF cm-2. PEDOT-Fe2O3 nanocomposites were synthesized by single-step co-deposition techniques, and these were used to fabricate solid-state supercapacitors achieving areal capacitance density of 96.89 mF cm-2. Furthermore, some of these thin flexible solid-state supercapacitors were integrated with solar cells for direct storage of solar electricity, which proved to be promising as autonomous power source for flexible and wearable electronics. This dissertation describes the electrode synthesis, design and properties of solid-state supercapacitors, and their electrochemical performance in the storage of electrical energy.
Propulsion Physics Under the Changing Density Field Model
NASA Technical Reports Server (NTRS)
Robertson, Glen A.
2011-01-01
To grow as a space faring race, future spaceflight systems will requires new propulsion physics. Specifically a propulsion physics model that does not require mass ejection without limiting the high thrust necessary to accelerate within or beyond our solar system and return within a normal work period or lifetime. In 2004 Khoury and Weltman produced a density dependent cosmology theory they called Chameleon Cosmology, as at its nature, it is hidden within known physics. This theory represents a scalar field within and about an object, even in the vacuum. Whereby, these scalar fields can be viewed as vacuum energy fields with definable densities that permeate all matter; having implications to dark matter/energy with universe acceleration properties; implying a new force mechanism for propulsion physics. Using Chameleon Cosmology, the author has developed a new propulsion physics model, called the Changing Density Field (CDF) Model. This model relates to density changes in these density fields, where the density field density changes are related to the acceleration of matter within an object. These density changes in turn change how an object couples to the surrounding density fields. Whereby, thrust is achieved by causing a differential in the coupling to these density fields about an object. Since the model indicates that the density of the density field in an object can be changed by internal mass acceleration, even without exhausting mass, the CDF model implies a new propellant-less propulsion physics model
Counter-facing plasma guns for efficient extreme ultra-violet plasma light source
NASA Astrophysics Data System (ADS)
Kuroda, Yusuke; Yamamoto, Akiko; Kuwabara, Hajime; Nakajima, Mitsuo; Kawamura, Tohru; Horioka, Kazuhiko
2013-11-01
A plasma focus system composed of a pair of counter-facing coaxial guns was proposed as a long-pulse and/or repetitive high energy density plasma source. We applied Li as the source of plasma for improvement of the conversion efficiency, the spectral purity, and the repetition capability. For operation of the system with ideal counter-facing plasma focus mode, we changed the system from simple coaxial geometry to a multi-channel configuration. We applied a laser trigger to make synchronous multi-channel discharges with low jitter. The results indicated that the configuration is promising to make a high energy density plasma with high spectral efficiency.
NASA Astrophysics Data System (ADS)
Drews, Jürgen; Wolf, R.; Fehrmann, G.; Staub, R.
An implantable defibrillator battery has to provide pulse power capabilities as well as high energy density. Low self-discharge rates are mandatory and a way to check the remaining available capacity is necessary. These requirements are accomplished by a system consisting of a lithium/manganese dioxide 6 V battery, plus a lithium/iodine-cell. The use of a high rate 6 V double-cell design in combination with a high energy density cell reduces the total volume required by the power source within an implantable defibrillator. The design features and performance data of the hybrid system are described.
The Hubble diagram for a system within dark energy: influence of some relevant quantities
NASA Astrophysics Data System (ADS)
Saarinen, J.; Teerikorpi, P.
2014-08-01
Aims: We study the influence of relevant quantities, including the density of dark energy (DE), to the predicted Hubble outflow around a system of galaxies. In particular, we are interested in the difference between two models: 1) the standard ΛCDM model, with the everywhere constant DE density, and 2) the "Swiss cheese model", where the Universe is as old as the standard model and the DE density is zero on short scales, including the environment of the system. Methods: We calculated the current predicted outflow patterns of dwarf galaxies around the Local Group-like system, using different values for the mass of the group, the local DE density, and the time of ejection of the dwarf galaxies, which are treated as test particles. These results are compared with the observed Hubble flow around the Local Group. Results: The predicted distance-velocity relations around galaxy groups are not very sensitive indicators of the DE density, owing to the observational scatter and the uncertainties caused by the mass used for the group and a range in the ejection times. In general, the Local Group outflow data agree with the local DE density being equal to the global one, if the Local Group mass is about 4 × 1012 M⊙; a lower mass ≲ 2 × 1012 M⊙ could suggest a zero local DE density. The dependence of the inferred DE density on the mass is a handicap in this and other common dynamical methods. This emphasizes the need to use different approaches together, for constraining the local DE density.
Microturbulence in HT-6M Tokamak
NASA Astrophysics Data System (ADS)
Zeng, Lei; Yu, Changxuan; Cao, Jinxiang; Zhu, Guoliang; Zhang, Daqing; Li, Youyi
1993-08-01
The small scale density fluctuations in the interior of HT-6M Ohmic plasma have been studied by CO2 laser collective scattering system in deuterium discharges covering a range of bar neqa (chord-average density times safety factor at the limiter) and energy confinement time. The relative density fluctuation level in the interior is inversely proportional to the toroidal magnetic field and average density, and the energy confinement time τE decreases with the fluctuation level increasing in the region where τE linearly increases with bar neqa and statisfies the Goldston scaling law. It is suggested that the microturbulence in the interior zone is responsible for anomalous transport in tokamaks.
NASA Astrophysics Data System (ADS)
Hamprecht, Fred A.; Peter, Christine; Daura, Xavier; Thiel, Walter; van Gunsteren, Wilfred F.
2001-02-01
We propose an approach for summarizing the output of long simulations of complex systems, affording a rapid overview and interpretation. First, multidimensional scaling techniques are used in conjunction with dimension reduction methods to obtain a low-dimensional representation of the configuration space explored by the system. A nonparametric estimate of the density of states in this subspace is then obtained using kernel methods. The free energy surface is calculated from that density, and the configurations produced in the simulation are then clustered according to the topography of that surface, such that all configurations belonging to one local free energy minimum form one class. This topographical cluster analysis is performed using basin spanning trees which we introduce as subgraphs of Delaunay triangulations. Free energy surfaces obtained in dimensions lower than four can be visualized directly using iso-contours and -surfaces. Basin spanning trees also afford a glimpse of higher-dimensional topographies. The procedure is illustrated using molecular dynamics simulations on the reversible folding of peptide analoga. Finally, we emphasize the intimate relation of density estimation techniques to modern enhanced sampling algorithms.
Magnetic-Field Density-Functional Theory (BDFT): Lessons from the Adiabatic Connection.
Reimann, Sarah; Borgoo, Alex; Tellgren, Erik I; Teale, Andrew M; Helgaker, Trygve
2017-09-12
We study the effects of magnetic fields in the context of magnetic field density-functional theory (BDFT), where the energy is a functional of the electron density ρ and the magnetic field B. We show that this approach is a worthwhile alternative to current-density functional theory (CDFT) and may provide a viable route to the study of many magnetic phenomena using density-functional theory (DFT). The relationship between BDFT and CDFT is developed and clarified within the framework of the four-way correspondence of saddle functions and their convex and concave parents in convex analysis. By decomposing the energy into its Kohn-Sham components, we demonstrate that the magnetizability is mainly determined by those energy components that are related to the density. For existing density functional approximations, this implies that, for the magnetizability, improvements of the density will be more beneficial than introducing a magnetic-field dependence in the correlation functional. However, once a good charge density is achieved, we show that high accuracy is likely only obtainable by including magnetic-field dependence. We demonstrate that adiabatic-connection (AC) curves at different field strengths resemble one another closely provided each curve is calculated at the equilibrium geometry of that field strength. In contrast, if all AC curves are calculated at the equilibrium geometry of the field-free system, then the curves change strongly with increasing field strength due to the increasing importance of static correlation. This holds also for density functional approximations, for which we demonstrate that the main error encountered in the presence of a field is already present at zero field strength, indicating that density-functional approximations may be applied to systems in strong fields, without the need to treat additional static correlation.
Mapping out the QCD phase transition in multiparticle production
NASA Astrophysics Data System (ADS)
Kabana, Sonja; Minkowski, Peter
2001-04-01
We analyse multiparticle production in a thermal framework for seven central nucleus + nucleus collisions, e+ + e- annihilation into hadrons on the Z resonance and four hadronic reactions p + p and p + pbar with partial centrality selection), with centre of mass energies ranging from √(s) = 2.6 GeV (per nucleon pair) to 1.8 TeV. Thermodynamic parameters at chemical freeze-out (temperature and baryon and strangeness fugacities) are obtained from appropriate fits, generally improving in quality for reactions subjected to centrality cuts. All systems with non-vanishing fugacities are extrapolated along trajectories of equal energy density, density and entropy density to zero fugacities. The so-obtained temperatures extrapolated to zero fugacities as a function of initial energy density ɛin universally show a strong rise followed by a saturating limit of Tlim = 155 +/- 6 +/- 20 MeV. We interpret this behaviour as mapping out the boundary between quark gluon plasma and hadronic phases. The ratio of strange antiquarks to light ones as a function of the initial energy density ɛin shows the same behaviour as the temperature, saturating at a value of 0.365 +/- 0.033 +/- 0.07. No distinctive feature of `strangeness enhancement' is seen for heavy ion collisions relative to hadronic and leptonic reactions, when compared at the same initial energy density.
Periodic subsystem density-functional theory
NASA Astrophysics Data System (ADS)
Genova, Alessandro; Ceresoli, Davide; Pavanello, Michele
2014-11-01
By partitioning the electron density into subsystem contributions, the Frozen Density Embedding (FDE) formulation of subsystem Density Functional Theory (DFT) has recently emerged as a powerful tool for reducing the computational scaling of Kohn-Sham DFT. To date, however, FDE has been employed to molecular systems only. Periodic systems, such as metals, semiconductors, and other crystalline solids have been outside the applicability of FDE, mostly because of the lack of a periodic FDE implementation. To fill this gap, in this work we aim at extending FDE to treat subsystems of molecular and periodic character. This goal is achieved by a dual approach. On one side, the development of a theoretical framework for periodic subsystem DFT. On the other, the realization of the method into a parallel computer code. We find that periodic FDE is capable of reproducing total electron densities and (to a lesser extent) also interaction energies of molecular systems weakly interacting with metallic surfaces. In the pilot calculations considered, we find that FDE fails in those cases where there is appreciable density overlap between the subsystems. Conversely, we find FDE to be in semiquantitative agreement with Kohn-Sham DFT when the inter-subsystem density overlap is low. We also conclude that to make FDE a suitable method for describing molecular adsorption at surfaces, kinetic energy density functionals that go beyond the GGA level must be employed.
Periodic subsystem density-functional theory.
Genova, Alessandro; Ceresoli, Davide; Pavanello, Michele
2014-11-07
By partitioning the electron density into subsystem contributions, the Frozen Density Embedding (FDE) formulation of subsystem Density Functional Theory (DFT) has recently emerged as a powerful tool for reducing the computational scaling of Kohn-Sham DFT. To date, however, FDE has been employed to molecular systems only. Periodic systems, such as metals, semiconductors, and other crystalline solids have been outside the applicability of FDE, mostly because of the lack of a periodic FDE implementation. To fill this gap, in this work we aim at extending FDE to treat subsystems of molecular and periodic character. This goal is achieved by a dual approach. On one side, the development of a theoretical framework for periodic subsystem DFT. On the other, the realization of the method into a parallel computer code. We find that periodic FDE is capable of reproducing total electron densities and (to a lesser extent) also interaction energies of molecular systems weakly interacting with metallic surfaces. In the pilot calculations considered, we find that FDE fails in those cases where there is appreciable density overlap between the subsystems. Conversely, we find FDE to be in semiquantitative agreement with Kohn-Sham DFT when the inter-subsystem density overlap is low. We also conclude that to make FDE a suitable method for describing molecular adsorption at surfaces, kinetic energy density functionals that go beyond the GGA level must be employed.
Periodic subsystem density-functional theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Genova, Alessandro; Pavanello, Michele, E-mail: m.pavanello@rutgers.edu; Ceresoli, Davide
2014-11-07
By partitioning the electron density into subsystem contributions, the Frozen Density Embedding (FDE) formulation of subsystem Density Functional Theory (DFT) has recently emerged as a powerful tool for reducing the computational scaling of Kohn–Sham DFT. To date, however, FDE has been employed to molecular systems only. Periodic systems, such as metals, semiconductors, and other crystalline solids have been outside the applicability of FDE, mostly because of the lack of a periodic FDE implementation. To fill this gap, in this work we aim at extending FDE to treat subsystems of molecular and periodic character. This goal is achieved by a dualmore » approach. On one side, the development of a theoretical framework for periodic subsystem DFT. On the other, the realization of the method into a parallel computer code. We find that periodic FDE is capable of reproducing total electron densities and (to a lesser extent) also interaction energies of molecular systems weakly interacting with metallic surfaces. In the pilot calculations considered, we find that FDE fails in those cases where there is appreciable density overlap between the subsystems. Conversely, we find FDE to be in semiquantitative agreement with Kohn–Sham DFT when the inter-subsystem density overlap is low. We also conclude that to make FDE a suitable method for describing molecular adsorption at surfaces, kinetic energy density functionals that go beyond the GGA level must be employed.« less
Veeraraghavan, Srikant; Mazziotti, David A
2014-03-28
We present a density matrix approach for computing global solutions of restricted open-shell Hartree-Fock theory, based on semidefinite programming (SDP), that gives upper and lower bounds on the Hartree-Fock energy of quantum systems. While wave function approaches to Hartree-Fock theory yield an upper bound to the Hartree-Fock energy, we derive a semidefinite relaxation of Hartree-Fock theory that yields a rigorous lower bound on the Hartree-Fock energy. We also develop an upper-bound algorithm in which Hartree-Fock theory is cast as a SDP with a nonconvex constraint on the rank of the matrix variable. Equality of the upper- and lower-bound energies guarantees that the computed solution is the globally optimal solution of Hartree-Fock theory. The work extends a previously presented method for closed-shell systems [S. Veeraraghavan and D. A. Mazziotti, Phys. Rev. A 89, 010502-R (2014)]. For strongly correlated systems the SDP approach provides an alternative to the locally optimized Hartree-Fock energies and densities with a certificate of global optimality. Applications are made to the potential energy curves of C2, CN, Cr2, and NO2.
NASA Astrophysics Data System (ADS)
Ze-Fang, Jiang; Chun-Bin, Yang; Csanád, Máté; Csörgő, Tamás
2018-06-01
A known class of analytic, exact, accelerating solutions of prefect relativistic hydrodynamics with longitudinal acceleration is utilized to describe results on the pseudorapidity distributions for different collision systems. These results include d N /d η measured in p +p , Cu+Cu, Au+Au, and Pb+Pb collisions at the BNL Relativistic Heavy Ion Collider and the CERN Large Hadron Collider, in a broad centrality range. Going beyond the traditional Bjorken model, from the accelerating hydrodynamic description we determine the initial energy density and other thermodynamic quantities in those collisions.
Handling Density Conversion in TPS.
Isobe, Tomonori; Mori, Yutaro; Takei, Hideyuki; Sato, Eisuke; Tadano, Kiichi; Kobayashi, Daisuke; Tomita, Tetsuya; Sakae, Takeji
2016-01-01
Conversion from CT value to density is essential to a radiation treatment planning system. Generally CT value is converted to the electron density in photon therapy. In the energy range of therapeutic photon, interactions between photons and materials are dominated with Compton scattering which the cross-section depends on the electron density. The dose distribution is obtained by calculating TERMA and kernel using electron density where TERMA is the energy transferred from primary photons and kernel is a volume considering spread electrons. Recently, a new method was introduced which uses the physical density. This method is expected to be faster and more accurate than that using the electron density. As for particle therapy, dose can be calculated with CT-to-stopping power conversion since the stopping power depends on the electron density. CT-to-stopping power conversion table is also called as CT-to-water-equivalent range and is an essential concept for the particle therapy.
A continuum theory of edge dislocations
NASA Astrophysics Data System (ADS)
Berdichevsky, V. L.
2017-09-01
Continuum theory of dislocation aims to describe the behavior of large ensembles of dislocations. This task is far from completion, and, most likely, does not have a "universal solution", which is applicable to any dislocation ensemble. In this regards it is important to have guiding lines set by benchmark cases, where the transition from a discrete set of dislocations to a continuum description is made rigorously. Two such cases have been considered recently: equilibrium of dislocation walls and screw dislocations in beams. In this paper one more case is studied, equilibrium of a large set of 2D edge dislocations placed randomly in a 2D bounded region. The major characteristic of interest is energy of dislocation ensemble, because it determines the structure of continuum equations. The homogenized energy functional is obtained for the periodic dislocation ensembles with a random contents of the periodic cell. Parameters of the periodic structure can change slowly on distances of order of the size of periodic cells. The energy functional is obtained by the variational-asymptotic method. Equilibrium positions are local minima of energy. It is confirmed the earlier assertion that energy density of the system is the sum of elastic energy of averaged elastic strains and microstructure energy, which is elastic energy of the neutralized dislocation system, i.e. the dislocation system placed in a constant dislocation density field making the averaged dislocation density zero. The computation of energy is reduced to solution of a variational cell problem. This problem is solved analytically. The solution is used to investigate stability of simple dislocation arrays, i.e. arrays with one dislocation in the periodic cell. The relations obtained yield two outcomes: First, there is a state parameter of the system, dislocation polarization; averaged stresses affect only dislocation polarization and cannot change other characteristics of the system. Second, the structure of dislocation phase space is strikingly simple. Dislocation phase space is split in a family of subspaces corresponding to constant values of dislocation polarizations; in each equipolarization subspace there are many local minima of energy; for zero external stresses the system is stuck in a local minimum of energy; for non-zero slowly changing external stress, dislocation polarization evolves, while the system moves over local energy minima of equipolarization subspaces. Such a simple picture of dislocation dynamics is due to the presence of two time scales, slow evolution of dislocation polarization and fast motion of the system over local minima of energy. The existence of two time scales is justified for a neutral system of edge dislocations.
Zuo, Wenhua; Wang, Chong; Li, Yuanyuan; Liu, Jinping
2015-01-01
Hybrid supercapacitor (HSC), which typically consists of a Li-ion battery electrode and an electric double-layer supercapacitor electrode, has been extensively investigated for large-scale applications such as hybrid electric vehicles, etc. Its application potential for thin-film downsized energy storage systems that always prefer high volumetric energy/power densities, however, has not yet been explored. Herein, as a case study, we develop an entirely binder-free HSC by using multiwalled carbon nanotube (MWCNT) network film as the cathode and Li4Ti5O12 (LTO) nanowire array as the anode and study the volumetric energy storage capability. Both the electrode materials are grown directly on carbon cloth current collector, ensuring robust mechanical/electrical contacts and flexibility. Our 3 V HSC device exhibits maximum volumetric energy density of ~4.38 mWh cm−3, much superior to those of previous supercapacitors based on thin-film electrodes fabricated directly on carbon cloth and even comparable to the commercial thin-film lithium battery. It also has volumetric power densities comparable to that of the commercial 5.5 V/100 mF supercapacitor (can be operated within 3 s) and has excellent cycling stability (~92% retention after 3000 cycles). The concept of utilizing binder-free electrodes to construct HSC for thin-film energy storage may be readily extended to other HSC electrode systems. PMID:25586374
NASA Astrophysics Data System (ADS)
Xu, Xiaofei; Xing, Yuxiang; Wang, Sen; Zhang, Li
2018-06-01
X-ray liquid security inspection system plays an important role in homeland security, while the conventional dual-energy CT (DECT) system may have a big deviation in extracting the atomic number and the electron density of materials in various conditions. Photon counting detectors (PCDs) have the capability of discriminating the incident photons of different energy. The technique becomes more and more mature in nowadays. In this work, we explore the performance of a multi-energy CT imaging system with a PCD for liquid security inspection in material discrimination. We used a maximum-likelihood (ML) decomposition method with scatter correction based on a cross-energy response model (CERM) for PCDs so that to improve the accuracy of atomic number and electronic density imaging. Experimental study was carried to examine the effectiveness and robustness of the proposed system. Our results show that the concentration of different solutions in physical phantoms can be reconstructed accurately, which could improve the material identification compared to current available dual-energy liquid security inspection systems. The CERM-base decomposition and reconstruction method can be easily used to different applications such as medical diagnosis.
Sweany, M.; Marleau, P.
2016-07-08
In this paper, we present the design and expected performance of a proof-of-concept 32 channel material identification system. Our system is based on the energy-dependent attenuation of fast neutrons for four elements: hydrogen, carbon, nitrogen and oxygen. We describe a new approach to obtaining a broad range of neutron energies to probe a sample, as well as our technique for reconstructing the molar densities within a sample. The system's performance as a function of time-of-flight energy resolution is explored using a Geant4-based Monte Carlo. Our results indicate that, with the expected detector response of our system, we will be ablemore » to determine the molar density of all four elements to within a 20–30% accuracy in a two hour scan time. In many cases this error is systematically low, thus the ratio between elements is more accurate. This degree of accuracy is enough to distinguish, for example, a sample of water from a sample of pure hydrogen peroxide: the ratio of oxygen to hydrogen is reconstructed to within 8±0.5% of the true value. Lastly, with future algorithm development that accounts for backgrounds caused by scattering within the sample itself, the accuracy of molar densities, not ratios, may improve to the 5–10% level for a two hour scan time.« less
2012-05-01
thermal energy storage system using molten silicon as a phase change material. A cylindrical receiver, absorber, converter system was evaluated using...temperature operation. This work computationally evaluates a thermal energy storage system using molten silicon as a phase change material. A cylindrical... salts ) offering a low power density and a low thermal conductivity, leading to a limited rate of charging and discharging (4). A focus on
NASA Astrophysics Data System (ADS)
Li, Heling; Ren, Jinxiu; Wang, Wenwei; Yang, Bin; Shen, Hongjun
2018-02-01
Using the semi-classical (Thomas-Fermi) approximation, the thermodynamic properties of ideal Fermi gases in a harmonic potential in an n-dimensional space are studied under the generalized uncertainty principle (GUP). The mean particle number, internal energy, heat capacity and other thermodynamic variables of the Fermi system are calculated analytically. Then, analytical expressions of the mean particle number, internal energy, heat capacity, chemical potential, Fermi energy, ground state energy and amendments of the GUP are obtained at low temperatures. The influence of both the GUP and the harmonic potential on the thermodynamic properties of a copper-electron gas and other systems with higher electron densities are studied numerically at low temperatures. We find: (1) When the GUP is considered, the influence of the harmonic potential is very much larger, and the amendments produced by the GUP increase by eight to nine orders of magnitude compared to when no external potential is applied to the electron gas. (2) The larger the particle density, or the smaller the particle masses, the bigger the influence of the GUP. (3) The effect of the GUP increases with the increase in the spatial dimensions. (4) The amendments of the chemical potential, Fermi energy and ground state energy increase with an increase in temperature, while the heat capacity decreases. T F0 is the Fermi temperature of the ideal Fermi system in a harmonic potential. When the temperature is lower than a certain value (0.22 times T F0 for the copper-electron gas, and this value decreases with increasing electron density), the amendment to the internal energy is positive, however, the amendment decreases with increasing temperature. When the temperature increases to the value, the amendment is zero, and when the temperature is higher than the value, the amendment to the internal energy is negative and the absolute value of the amendment increases with increasing temperature. (5) When electron density is greater than or equal to 1037 m-3, the influence of the GUP becomes the dominant factor affecting the thermodynamic properties of the system.
Optimum free energy in the reference functional approach for the integral equations theory
NASA Astrophysics Data System (ADS)
Ayadim, A.; Oettel, M.; Amokrane, S.
2009-03-01
We investigate the question of determining the bulk properties of liquids, required as input for practical applications of the density functional theory of inhomogeneous systems, using density functional theory itself. By considering the reference functional approach in the test particle limit, we derive an expression of the bulk free energy that is consistent with the closure of the Ornstein-Zernike equations in which the bridge functions are obtained from the reference system bridge functional. By examining the connection between the free energy functional and the formally exact bulk free energy, we obtain an improved expression of the corresponding non-local term in the standard reference hypernetted chain theory derived by Lado. In this way, we also clarify the meaning of the recently proposed criterion for determining the optimum hard-sphere diameter in the reference system. This leads to a theory in which the sole input is the reference system bridge functional both for the homogeneous system and the inhomogeneous one. The accuracy of this method is illustrated with the standard case of the Lennard-Jones fluid and with a Yukawa fluid with very short range attraction.
An investigation on the effects of air on electron energy in atmospheric pressure helium plasma jets
NASA Astrophysics Data System (ADS)
Liu, Yadi; Tan, Zhenyu; Chen, Xinxian; Li, Xiaotong; Zhang, Huimin; Pan, Jie; Wang, Xiaolong
2018-03-01
In this work, the effects of air on electron energy in the atmospheric pressure helium plasma jet produced by a needle-plane discharge system have been investigated by means of the numerical simulation based on a two-dimensional fluid model, and the air concentration dependences of the reactive species densities have also been calculated. In addition, the synergistic effects of the applied voltage and air concentration on electron energy have been explored. The present work gives the following significant results. For a fixed applied voltage, the averaged electron energy is basically a constant at air concentrations below about 0.5%, but it evidently decreases above the concentration of 0.5%. Furthermore, the averaged densities of four main reactive species O, O(1D), O2(1Δg), and N2(A3Σu+) increase with the increasing air concentration, but the increase becomes slow at air concentrations above 0.5%. The air concentration dependences of the averaged electron energy under different voltage amplitudes are similar, and for a given air concentration, the averaged electron energy increases with the increase in the voltage amplitude. For the four reactive species, the effects of the air concentration on their averaged densities are similar for a given voltage amplitude. In addition, the averaged densities of the four reactive species increase with increasing voltage amplitude for a fixed air concentration. The present work suggests that a combination of high voltage amplitude and the characteristic air concentration, 0.5% in the present discharge system, allows an expected electron energy and also generates abundant reactive species.
Energy density in the Maxwell-Chern-Simons theory
NASA Astrophysics Data System (ADS)
Wesolowski, Denne; Hosotani, Yutaka; Chakravarty, Sumantra
1994-12-01
A two-dimensional nonrelativistic fermion system coupled to both electromagnetic gauge fields and Chern-Simons gauge fields is analyzed. Polarization tensors relevant in the quantum Hall effect and anyon superconductivity are obtained as simple closed integrals and are evaluated numerically for all momenta and frequencies. The correction to the energy density is evaluated in the random phase approximation (RPA) by summing an infinite series of ring diagrams. It is found that the correction has significant dependence on the particle number density. In the context of anyon superconductivity, the energy density relative to the mean field value is minimized at a hole concentration per lattice plaquette (0.05-0.06)(pca/ħ)2 where pc and a are the momentum cutoff and lattice constant, respectively. At the minimum the correction is about -5% to -25%, depending on the ratio 2mwc/p2c where wc is the frequency cutoff. In the Jain-Fradkin-Lopez picture of the fractional quantum Hall effect the RPA correction to the energy density is very large. It diverges logarithmically as the cutoff is removed, implying that corrections beyond RPA become important at large momentum and frequency.
NASA Astrophysics Data System (ADS)
Fujiwara, Takeo; Nishino, Shinya; Yamamoto, Susumu; Suzuki, Takashi; Ikeda, Minoru; Ohtani, Yasuaki
2018-06-01
A novel tight-binding method is developed, based on the extended Hückel approximation and charge self-consistency, with referring the band structure and the total energy of the local density approximation of the density functional theory. The parameters are so adjusted by computer that the result reproduces the band structure and the total energy, and the algorithm for determining parameters is established. The set of determined parameters is applicable to a variety of crystalline compounds and change of lattice constants, and, in other words, it is transferable. Examples are demonstrated for Si crystals of several crystalline structures varying lattice constants. Since the set of parameters is transferable, the present tight-binding method may be applicable also to molecular dynamics simulations of large-scale systems and long-time dynamical processes.
A Nonaqueous Potassium-Based Battery-Supercapacitor Hybrid Device.
Fan, Ling; Lin, Kairui; Wang, Jue; Ma, Ruifang; Lu, Bingan
2018-05-01
A low cost nonaqueous potassium-based battery-supercapacitor hybrid device (BSH) is successfully established for the first time with soft carbon as the anode, commercialized activated carbon as the cathode, and potassium bis(fluoro-slufonyl)imide in dimethyl ether as the electrolyte. This BSH reconciles the advantages of potassium ion batteries and supercapacitors, achieving a high energy density of 120 W h kg -1 , a high power density of 599 W kg -1 , a long cycle life of 1500 cycles, and an ultrafast charge/slow discharge performance (energy density and power density are calculated based on the total mass of active materials in the anode and cathode). This work demonstrates a great potential of applying the nonaqueous BSH for low cost electric energy storage systems. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
The nature of three-body interactions in DFT: Exchange and polarization effects
NASA Astrophysics Data System (ADS)
Hapka, Michał; Rajchel, Łukasz; Modrzejewski, Marcin; Schäffer, Rainer; Chałasiński, Grzegorz; Szcześniak, Małgorzata M.
2017-08-01
We propose a physically motivated decomposition of density functional theory (DFT) 3-body nonadditive interaction energies into the exchange and density-deformation (polarization) components. The exchange component represents the effect of the Pauli exclusion in the wave function of the trimer and is found to be challenging for density functional approximations (DFAs). The remaining density-deformation nonadditivity is less dependent upon the DFAs. Numerical demonstration is carried out for rare gas atom trimers, Ar2-HX (X = F, Cl) complexes, and small hydrogen-bonded and van der Waals molecular systems. None of the tested semilocal, hybrid, and range-separated DFAs properly accounts for the nonadditive exchange in dispersion-bonded trimers. By contrast, for hydrogen-bonded systems, range-separated DFAs achieve a qualitative agreement to within 20% of the reference exchange energy. A reliable performance for all systems is obtained only when the monomers interact through the Hartree-Fock potential in the dispersion-free Pauli blockade scheme. Additionally, we identify the nonadditive second-order exchange-dispersion energy as an important but overlooked contribution in force-field-like dispersion corrections. Our results suggest that range-separated functionals do not include this component, although semilocal and global hybrid DFAs appear to imitate it in the short range.
ERIC Educational Resources Information Center
Smith, Michael J.; Vincent, Colin A.
1989-01-01
Summarizes the quantitative relationships pertaining to the operation of electrochemical cells. Energy conversion efficiency, cycle efficiency, battery power, and energy/power density of two types of zinc-silver oxide cells are discussed. (YP)
Efficiency improvement of an all-vanadium redox flow battery by harvesting low-grade heat
NASA Astrophysics Data System (ADS)
Reynard, Danick; Dennison, C. R.; Battistel, Alberto; Girault, Hubert H.
2018-06-01
Redox flow batteries (RFBs) are rugged systems, which can withstand several thousand cycles and last many years. However, they suffer from low energy density, low power density, and low efficiency. Integrating a Thermally Regenerative Electrochemical Cycle (TREC) into the RFB, it is possible to mitigate some of these drawbacks. The TREC takes advantage of the temperature dependence of the cell voltage to convert heat directly into electrical energy. Here, the performance increase of a TREC-RFB is investigated using two kinds of all-vanadium electrolyte chemistries: one containing a typical concentration of sulfuric acid and one containing a large excess of hydrochloric acid. The results show that the energy density of the system was increased by 1.3Wh L-1 and 0.8Wh L-1, respectively and the overall energy efficiency also increased by 9 and 5 percentage points, respectively. The integration of the heat exchangers necessary to change the battery temperature is readily facilitated by the design of the redox flow battery, which already utilizes fluid circulation loops.
Deceleration of Antiprotons in Support of Antiproton Storage/Utilization Research
NASA Astrophysics Data System (ADS)
Howe, Steven D.; Jackson, Gerald P.; Pearson, J. Boise; Lewis, Raymond A.
2005-02-01
Antimatter has the highest energy density known to mankind. Many concepts have been studied that use antimatter for propulsion. All of these concepts require the development of high density storage. Hbar Technologies, under contract with the NASA Marshall Space Flight Center, has undertaken the first step toward development of high density storage. Demonstration of the ability to store antiprotons in a Penning Trap provides the technology to pursue research in alternative storage methods that may lead to eventually to high density concepts. Hbar Technologies has undertaken research activity on the detailed design and operations required to decelerate and redirect the Fermi National Accelerator Laboratory (FNAL) antiproton beam to lay the groundwork for a source of low energy antiprotons. We have performed a detailed assessment of an antiproton deceleration scheme using the FNAL Main Injector, outlining the requirements to significantly and efficiently lower the energy of antiprotons. This task shall require a combination of: theoretical/computation simulations, development of specialized accelerator controls programming, modification of specific Main Injector hardware, and experimental testing of the modified system. Testing shall be performed to characterize the system with a goal of reducing the beam momentum from 8.9 GeV/c to a level of 1 GeV/c or less. We have designed an antiproton degrader system that will integrate with the FNAL decelerated/transferred beam. The degrader shall be designed to maximize the number of low energy antiprotons with a beam spot sized for acceptance by the Mark I test hardware.
NASA Technical Reports Server (NTRS)
Daglis, Loannis A.; Livi, Stefano; Sarris, Emmanuel T.; Wilken, Berend
1994-01-01
Comprehensive energy density studies provide an important measure of the participation of various sources in energization processes and have been relatively rare in the literature. We present a statistical study of the energy density of the near-Earth magnetotail major ions (H(+), O(+), He(++), He(+)) during substorm expansion phase and discuss its implications for the solar wind/magnetosphere/ionosphere coupling. Our aim is to examine the relation between auroral activity and the particle energization during substorms through the correlation between the AE indices and the energy density of the major magnetospheric ions. The data we used here were collected by the charge-energy-mass (CHEM) spectrometer on board the Active Magnetospheric Particle Trace Explorer (AMPTE)/Charge Composition Explorer (CCE) satellite in the near-equatorial nightside magnetosphere, at geocentric distances approximately 7 to 9 R(sub E). CHEM provided the opportunity to conduct the first statistical study of energy density in the near-Earth magnetotail with multispecies particle data extending into the higher energy range (greater than or equal to 20 keV/E). the use of 1-min AE indices in this study should be emphasized, as the use (in previous statistical studies) of the (3-hour) Kp index or of long-time averages of AE indices essentially smoothed out all the information on substorms. Most distinct feature of our study is the excellent correlation of O(+) energy density with the AE index, in contrast with the remarkably poor He(++) energy density - AE index correlation. Furthermore, we examined the relation of the ion energy density to the electrojet activity during substorm growth phase. The O(+) energy density is strongly correlated with the pre-onset AU index, that is the eastward electrojet intensity, which represents the growth phase current system. Our investigation shows that the near-Earth magnetotail is increasingly fed with energetic ionospheric ions during periods of enhanced dissipation of auroral currents. The participation of the ionosphere in the substorm energization processes seems to be closely, although not solely, associated with the solar wind/magnetosphere coupling. That is, the ionosphere influences actively the substorm energization processes by responding to the increased solar wind/magnetosphere coupling as well as to the unloading dissipation of stored energy, with the increased feeding of new material into the magnetosphere.
High Energy Density Li-ion Cells for EV’s Based on Novel, High Voltage Cathode Material Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kepler, Keith D.; Slater, Michael
This Li-ion cell technology development project had three objectives: to develop advanced electrode materials and cell components to enable stable high-voltage operation; to design and demonstrate a Li-ion cell using these materials that meets the PHEV40 performance targets; and to design and demonstrate a Li-ion cell using these materials that meets the EV performance targets. The major challenge to creating stable high energy cells with long cycle life is system integration. Although materials that can give high energy cells are known, stabilizing them towards long-term cycling in the presence of other novel cell components is a major challenge. The majormore » technical barriers addressed by this work include low cathode specific energy, poor electrolyte stability during high voltage operation, and insufficient capacity retention during deep discharge for Si-containing anodes. Through the course of this project, Farasis was able to improve capacity retention of NCM materials for 4.4+ V operation, through both surface treatment and bulk-doping approaches. Other material advances include increased rate capability and of HE-NCM materials through novel synthesis approach, doubling the relative capacity at 1C over materials synthesized using standard methods. Silicon active materials proved challenging throughout the project and ultimately were the limiting factor in the energy density vs. cycle life trade off. By avoiding silicon anodes for the lower energy PHEV design, we manufactured cells with intermediate energy density and long cycle life under high voltage operation for PHEV applications. Cells with high energy density for EV applications were manufactured targeting a 300 Wh/kg design and were able to achieve > 200 cycles.« less
Energy density and rate limitations in structural composite supercapacitors
NASA Astrophysics Data System (ADS)
Snyder, J. F.; Gienger, E.; Wetzel, E. D.; Xu, K.
2012-06-01
The weight and volume of conventional energy storage technologies greatly limits their performance in mobile platforms. Traditional research efforts target improvements in energy density to reduce device size and mass. Enabling a device to perform additional functions, such as bearing mechanical load, is an alternative approach as long as the total mass efficiency exceeds that of the individual materials it replaces. Our research focuses on structural composites that function as batteries and supercapacitors. These multifunctional devices could be used to replace conventional structural components, such as vehicle frame elements, to provide significant system-level weight reductions and extend mission times. Our approach is to design structural properties directly into the electrolyte and electrode materials. Solid polymer electrolyte materials bind the system and transfer load to the fibers while conducting ions between the electrodes. Carbon fiber electrodes provide a route towards optimizing both energy storage and load-bearing capabilities, and may also obviate the need for a separate current collector. The components are being integrated using scalable, cost-effective composite processing techniques that are amenable to complex part shapes. Practical considerations of energy density and rate behavior are described here as they relate to materials used. Our results highlight the viability as well as the challenges of this multifunctional approach towards energy storage.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saperstein, E. E., E-mail: saper@mbslab.kiae.ru; Tolokonnikov, S. V.
Recent results obtained on the basis of the self-consistent theory of finite Fermi systems by employing the energy density functional proposed by Fayans and his coauthors are surveyed. These results are compared with the predictions of Skyrme–Hartree–Fock theory involving several popular versions of the Skyrme energy density functional. Spherical nuclei are predominantly considered. The charge radii of even and odd nuclei and features of low-lying 2{sup +} excitations in semimagic nuclei are discussed briefly. The single-particle energies ofmagic nuclei are examined inmore detail with allowance for corrections to mean-field theory that are induced by particle coupling to low-lying collective surfacemore » excitations (phonons). The importance of taking into account, in this problem, nonpole (tadpole) diagrams, which are usually disregarded, is emphasized. The spectroscopic factors of magic and semimagic nuclei are also considered. In this problem, only the surface term stemming from the energy dependence induced in the mass operator by the exchange of surface phonons is usually taken into account. The volume contribution associated with the energy dependence initially present in the mass operator within the self-consistent theory of finite Fermi systems because of the exchange of high-lying particle–hole excitations is also included in the spectroscopic factor. The results of the first studies that employed the Fayans energy density functional for deformed nuclei are also presented.« less
A mathematical method for quantifying in vivo mechanical behaviour of heel pad under dynamic load.
Naemi, Roozbeh; Chatzistergos, Panagiotis E; Chockalingam, Nachiappan
2016-03-01
Mechanical behaviour of the heel pad, as a shock attenuating interface during a foot strike, determines the loading on the musculoskeletal system during walking. The mathematical models that describe the force deformation relationship of the heel pad structure can determine the mechanical behaviour of heel pad under load. Hence, the purpose of this study was to propose a method of quantifying the heel pad stress-strain relationship using force-deformation data from an indentation test. The energy input and energy returned densities were calculated by numerically integrating the area below the stress-strain curve during loading and unloading, respectively. Elastic energy and energy absorbed densities were calculated as the sum of and the difference between energy input and energy returned densities, respectively. By fitting the energy function, derived from a nonlinear viscoelastic model, to the energy density-strain data, the elastic and viscous model parameters were quantified. The viscous and elastic exponent model parameters were significantly correlated with maximum strain, indicating the need to perform indentation tests at realistic maximum strains relevant to walking. The proposed method showed to be able to differentiate between the elastic and viscous components of the heel pad response to loading and to allow quantifying the corresponding stress-strain model parameters.
Science of Nanofluidics and Energy Conversion
NASA Astrophysics Data System (ADS)
Xu, Baoxing
The emerging subject of nanofluidics, where solids and fluids interact closely at the nanoscale, has exhibited radically different from their macroscopic counterparts (and sometimes counterintuitive), and yet relatively less explored. On the other hand, the resulting unique properties may contribute to a number of innovative functions with fascinating applications. Among various exciting potential applications, an important and ever expanding one is to provide alternative solutions to energy conversion with high efficiency, including energy absorption, actuation and harvesting. In this dissertation, we first report a novel protection mechanism of energy capture through which an intensive impact or blast energy can be effectively mitigated based on a nonwetting liquid-nanoporous material system. The captured energy is stored in nanopores in the form of potential energy of intercalated water molecules for a while, and not necessarily converted to other forms of energy (e.g. heat). At unloading stage, the captured energy will be released gradually due to the hydrophobic inner surfaces of nanopores through the diffusion of water molecules out of nanopores, thus making this system reusable. Several key controlling factors including impacting velocity, nanopore size, nanopore structure, and liquid phase have been investigated on the capacity of energy capture. The molecular mechanism is elucidated through the study of water molecular distributions inside nanpores. These molecular dynamic (MD) findings are quantitatively verified by a parallel blast experiment on a zeolite/water system. During the transport of confined liquid molecules, the friction resistance exerted by solid atoms of nanopores to liquid molecules will dissipate part of energy, and is highly dependent of temperature of liquid molecules and wall morphology of nanopores. Using MD simulations, the effects of temperature and wall roughness on the transport resistance of water molecules inside nanopores are investigated in Chapter 3. The effective shear stress and nominal viscosity that dominate the nanofluidic transport resistance are extracted and coupled with the nanopore size, transport rate, and liquid property. The molecular-level mechanisms are revealed through the study of the density profile and hydrogen bonding of confined liquid molecules. A parallel experiment on a nanoporous carbon-liquid system is carried out and qualitatively verifies MD findings. Motived by the well-known thermo- and electro-capillary effect, Chapter 4 and Chapter 5 present a conceptual design of thermal and electric actuation system by adjusting the relative hydrophobicity of a liquid-nanoporous system through a thermal and electric field, respectively. The thermally and electrically dependent infiltration behaviors of liquids into nanopores are analyzed by using MD simulations. The fundamental molecular characteristics, including the density profile, contact angle, and surface tension of the confined liquid molecules, are examined to reveal underlying mechanisms. The energy density, power density, and efficiency of both thermal and electric actuation systems are explored and their variations with pore size, solid phase, and liquid phase are evaluated. Thermally and electrically controlled infiltration experiments on a zeolite-water /electrolyte solution system are performed accordingly to qualitatively validate these findings. These energy actuation systems can also become high density thermal or electric storage devices with proper designs. Energy harvesting by the flow of a hydrochloric acid-water solution through a nanopore is explored using atomistic simulations in the last chapter. Through ion configurations near the pore wall, an averaged ion drifting velocity is determined, and the induced voltage along the axial direction is obtained as a function of key material parameters, including the applied flow rate, environmental temperature, solution concentration and nanopore size. The molecular mechanism of ion hopping and motion is revealed. This study shed light on harvesting wasted thermal and mechanical energy from ambient environmental sources such as wasted heat in power plants. Nanofluidics is a novel and thriving research area, whose couplings with other disciplines such as material, mechanical, physical, chemical, electrical engineering are open.
Ultrahigh Energy Density in SrTiO3 Film Capacitors.
Hou, Chuangming; Huang, Weichuan; Zhao, Wenbo; Zhang, Dalong; Yin, Yuewei; Li, Xiaoguang
2017-06-21
Solid-state dielectric film capacitors with high-energy-storage density will further promote advanced electronic devices and electrical power systems toward miniaturization, lightweight, and integration. In this study, the influence of interface and thickness on energy storage properties of SrTiO 3 (STO) films grown on La 0.67 Sr 0.33 MnO 3 (LSMO) electrode are systematically studied. The cross-sectional high resolution transmission electron microscopy reveals an ion interdiffusion layer and oxygen vacancies at the STO/LSMO interface. The capacitors show good frequency stability and increased dielectric constant with increasing STO thickness (410-710 nm). The breakdown strength (E b ) increases with decreasing STO thickness and reaches 6.8 MV/cm. Interestingly, the E b under positive field is enhanced significantly and an ultrahigh energy density up to 307 J/cm 3 with a high efficiency of 89% is realized. The enhanced E b may be related to the modulation of local electric field and redistribution of oxygen vacancies at the STO/LSMO interface. Our results should be helpful for potential strategies to design devices with ultrahigh energy density.
Dielectric capacitors with three-dimensional nanoscale interdigital electrodes for energy storage.
Han, Fangming; Meng, Guowen; Zhou, Fei; Song, Li; Li, Xinhua; Hu, Xiaoye; Zhu, Xiaoguang; Wu, Bing; Wei, Bingqing
2015-10-01
Dielectric capacitors are promising candidates for high-performance energy storage systems due to their high power density and increasing energy density. However, the traditional approach strategies to enhance the performance of dielectric capacitors cannot simultaneously achieve large capacitance and high breakdown voltage. We demonstrate that such limitations can be overcome by using a completely new three-dimensional (3D) nanoarchitectural electrode design. First, we fabricate a unique nanoporous anodic aluminum oxide (AAO) membrane with two sets of interdigitated and isolated straight nanopores opening toward opposite planar surfaces. By depositing carbon nanotubes in both sets of pores inside the AAO membrane, the new dielectric capacitor with 3D nanoscale interdigital electrodes is simply realized. In our new capacitors, the large specific surface area of AAO can provide large capacitance, whereas uniform pore walls and hemispheric barrier layers can enhance breakdown voltage. As a result, a high energy density of 2 Wh/kg, which is close to the value of a supercapacitor, can be achieved, showing promising potential in high-density electrical energy storage for various applications.
Dielectric capacitors with three-dimensional nanoscale interdigital electrodes for energy storage
Han, Fangming; Meng, Guowen; Zhou, Fei; Song, Li; Li, Xinhua; Hu, Xiaoye; Zhu, Xiaoguang; Wu, Bing; Wei, Bingqing
2015-01-01
Dielectric capacitors are promising candidates for high-performance energy storage systems due to their high power density and increasing energy density. However, the traditional approach strategies to enhance the performance of dielectric capacitors cannot simultaneously achieve large capacitance and high breakdown voltage. We demonstrate that such limitations can be overcome by using a completely new three-dimensional (3D) nanoarchitectural electrode design. First, we fabricate a unique nanoporous anodic aluminum oxide (AAO) membrane with two sets of interdigitated and isolated straight nanopores opening toward opposite planar surfaces. By depositing carbon nanotubes in both sets of pores inside the AAO membrane, the new dielectric capacitor with 3D nanoscale interdigital electrodes is simply realized. In our new capacitors, the large specific surface area of AAO can provide large capacitance, whereas uniform pore walls and hemispheric barrier layers can enhance breakdown voltage. As a result, a high energy density of 2 Wh/kg, which is close to the value of a supercapacitor, can be achieved, showing promising potential in high-density electrical energy storage for various applications. PMID:26601294
Special Issue: Materials for Electrochemical Capacitors and Batteries.
Wang, Jian-Gan; Wei, Bingqing
2017-04-22
Electrochemical capacitors and rechargeable batteries have received worldwide attention due to their excellent energy storage capability for a variety of applications. The rapid development of these technologies is propelled by the advanced electrode materials and new energy storage systems. It is believed that research efforts can improve the device performance to meet the ever-increasing requirements of high energy density, high power density and long cycle life. This Special Issue aims to provide readers with a glimpse of different kinds of electrode materials for electrochemical capacitors and batteries.
Electrode Materials, Electrolytes, and Challenges in Nonaqueous Lithium-Ion Capacitors.
Li, Bing; Zheng, Junsheng; Zhang, Hongyou; Jin, Liming; Yang, Daijun; Lv, Hong; Shen, Chao; Shellikeri, Annadanesh; Zheng, Yiran; Gong, Ruiqi; Zheng, Jim P; Zhang, Cunman
2018-04-01
Among the various energy-storage systems, lithium-ion capacitors (LICs) are receiving intensive attention due to their high energy density, high power density, long lifetime, and good stability. As a hybrid of lithium-ion batteries and supercapacitors, LICs are composed of a battery-type electrode and a capacitor-type electrode and can potentially combine the advantages of the high energy density of batteries and the large power density of capacitors. Here, the working principle of LICs is discussed, and the recent advances in LIC electrode materials, particularly activated carbon and lithium titanate, as well as in electrolyte development are reviewed. The charge-storage mechanisms for intercalative pseudocapacitive behavior, battery behavior, and conventional pseudocapacitive behavior are classified and compared. Finally, the prospects and challenges associated with LICs are discussed. The overall aim is to provide deep insights into the LIC field for continuing research and development of second-generation energy-storage technologies. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Asymmetric Supercapacitor Electrodes and Devices.
Choudhary, Nitin; Li, Chao; Moore, Julian; Nagaiah, Narasimha; Zhai, Lei; Jung, Yeonwoong; Thomas, Jayan
2017-06-01
The world is recently witnessing an explosive development of novel electronic and optoelectronic devices that demand more-reliable power sources that combine higher energy density and longer-term durability. Supercapacitors have become one of the most promising energy-storage systems, as they present multifold advantages of high power density, fast charging-discharging, and long cyclic stability. However, the intrinsically low energy density inherent to traditional supercapacitors severely limits their widespread applications, triggering researchers to explore new types of supercapacitors with improved performance. Asymmetric supercapacitors (ASCs) assembled using two dissimilar electrode materials offer a distinct advantage of wide operational voltage window, and thereby significantly enhance the energy density. Recent progress made in the field of ASCs is critically reviewed, with the main focus on an extensive survey of the materials developed for ASC electrodes, as well as covering the progress made in the fabrication of ASC devices over the last few decades. Current challenges and a future outlook of the field of ASCs are also discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Sequential limiting in continuous and discontinuous Galerkin methods for the Euler equations
NASA Astrophysics Data System (ADS)
Dobrev, V.; Kolev, Tz.; Kuzmin, D.; Rieben, R.; Tomov, V.
2018-03-01
We present a new predictor-corrector approach to enforcing local maximum principles in piecewise-linear finite element schemes for the compressible Euler equations. The new element-based limiting strategy is suitable for continuous and discontinuous Galerkin methods alike. In contrast to synchronized limiting techniques for systems of conservation laws, we constrain the density, momentum, and total energy in a sequential manner which guarantees positivity preservation for the pressure and internal energy. After the density limiting step, the total energy and momentum gradients are adjusted to incorporate the irreversible effect of density changes. Antidiffusive corrections to bounds-compatible low-order approximations are limited to satisfy inequality constraints for the specific total and kinetic energy. An accuracy-preserving smoothness indicator is introduced to gradually adjust lower bounds for the element-based correction factors. The employed smoothness criterion is based on a Hessian determinant test for the density. A numerical study is performed for test problems with smooth and discontinuous solutions.
Gallium Nitride Direct Energy Conversion Betavoltaic Modeling and Optimization
2017-03-01
require high energy density battery systems. Radioisotopes are the most energy dense materials that can be converted into electrical energy. Pure...beta radioisotopes can be used towards making a long-lasting battery. However, the process to convert the energy provided by a pure beta radioisotope ...betavoltaic. Each energy conversion method has different challenges to overcome to improve thesystem efficiency. These energy conversion methods that are
Guidez, Emilie B; Gordon, Mark S
2015-03-12
The modeling of dispersion interactions in density functional theory (DFT) is commonly performed using an energy correction that involves empirically fitted parameters for all atom pairs of the system investigated. In this study, the first-principles-derived dispersion energy from the effective fragment potential (EFP) method is implemented for the density functional theory (DFT-D(EFP)) and Hartree-Fock (HF-D(EFP)) energies. Overall, DFT-D(EFP) performs similarly to the semiempirical DFT-D corrections for the test cases investigated in this work. HF-D(EFP) tends to underestimate binding energies and overestimate intermolecular equilibrium distances, relative to coupled cluster theory, most likely due to incomplete accounting for electron correlation. Overall, this first-principles dispersion correction yields results that are in good agreement with coupled-cluster calculations at a low computational cost.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakata, Hiroya, E-mail: hiroya.nakata.gt@kyocera.jp; Nishimoto, Yoshio; Fedorov, Dmitri G.
2016-07-28
The analytic second derivative of the energy is developed for the fragment molecular orbital (FMO) method combined with density-functional tight-binding (DFTB), enabling simulations of infrared and Raman spectra of large molecular systems. The accuracy of the method is established in comparison to full DFTB without fragmentation for a set of representative systems. The performance of the FMO-DFTB Hessian is discussed for molecular systems containing up to 10 041 atoms. The method is applied to the study of the binding of α-cyclodextrin to polyethylene glycol, and the calculated IR spectrum of an epoxy amine oligomer reproduces experiment reasonably well.
NASA Astrophysics Data System (ADS)
Sharma, Abhiraj; Suryanarayana, Phanish
2018-05-01
We present an accurate and efficient real-space Density Functional Theory (DFT) framework for the ab initio study of non-orthogonal crystal systems. Specifically, employing a local reformulation of the electrostatics, we develop a novel Kronecker product formulation of the real-space kinetic energy operator that significantly reduces the number of operations associated with the Laplacian-vector multiplication, the dominant cost in practical computations. In particular, we reduce the scaling with respect to finite-difference order from quadratic to linear, thereby significantly bridging the gap in computational cost between non-orthogonal and orthogonal systems. We verify the accuracy and efficiency of the proposed methodology through selected examples.
Jin, Yang; Zhou, Guangmin; Shi, Feifei; ...
2017-09-06
Lithium polysulfide batteries possess several favorable attributes including low cost and high energy density for grid energy storage. However, the precipitation of insoluble and irreversible sulfide species on the surface of carbon and lithium (called “dead” sulfide species) leads to continuous capacity degradation in high mass loading cells, which represents a great challenge. To address this problem, herein we propose a strategy to reactivate dead sulfide species by reacting them with sulfur powder with stirring and heating (70 °C) to recover the cell capacity, and further demonstrate a flow battery system based on the reactivation approach. As a result, ultrahighmore » mass loading (0.125 g cm –3, 2g sulfur in a single cell), high volumetric energy density (135 Wh L –1), good cycle life, and high single-cell capacity are achieved. The high volumetric energy density indicates its promising application for future grid energy storage.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin, Yang; Zhou, Guangmin; Shi, Feifei
Lithium polysulfide batteries possess several favorable attributes including low cost and high energy density for grid energy storage. However, the precipitation of insoluble and irreversible sulfide species on the surface of carbon and lithium (called “dead” sulfide species) leads to continuous capacity degradation in high mass loading cells, which represents a great challenge. To address this problem, herein we propose a strategy to reactivate dead sulfide species by reacting them with sulfur powder with stirring and heating (70 °C) to recover the cell capacity, and further demonstrate a flow battery system based on the reactivation approach. As a result, ultrahighmore » mass loading (0.125 g cm –3, 2g sulfur in a single cell), high volumetric energy density (135 Wh L –1), good cycle life, and high single-cell capacity are achieved. The high volumetric energy density indicates its promising application for future grid energy storage.« less
Guiding supersonic projectiles using optically generated air density channels
NASA Astrophysics Data System (ADS)
Johnson, Luke A.; Sprangle, Phillip
2015-09-01
We investigate the feasibility of using optically generated channels of reduced air density to provide trajectory correction (guiding) for a supersonic projectile. It is shown that the projectile experiences a force perpendicular to its direction of motion as one side of the projectile passes through a channel of reduced air density. A single channel of reduced air density can be generated by the energy deposited from filamentation of an intense laser pulse. We propose changing the laser pulse energy from shot-to-shot to build longer effective channels. Current femtosecond laser systems with multi-millijoule pulses could provide trajectory correction of several meters on 5 km trajectories for sub-kilogram projectiles traveling at Mach 3.
Pseudocapacitive and hierarchically ordered porous electrode materials supercapacitors
NASA Astrophysics Data System (ADS)
Saruhan, B.; Gönüllü, Y.; Arndt, B.
2013-05-01
Commercially available double layer capacitors store energy in an electrostatic field. This forms in the form of a double layer by charged particles arranged on two electrodes consisting mostly of active carbon. Such double layer capacitors exhibit a low energy density, so that components with large capacity according to large electrode areas are required. Our research focuses on the development of new electrode materials to realize the production of electrical energy storage systems with high energy density and high power density. Metal oxide based electrodes increase the energy density and the capacitance by addition of pseudo capacitance to the static capacitance present by the double layer super-capacitor electrodes. The so-called hybrid asymmetric cell capacitors combine both types of energy storage in a single component. In this work, the production routes followed in our laboratories for synthesis of nano-porous and aligned metal oxide electrodes using the electrochemical and sputter deposition as well as anodization methods will be described. Our characterisation studies concentrate on electrodes having redox metal-oxides (e.g. MnOx and WOx) and hierarchically aligned nano-porous Li-doped TiO2-NTs. The material specific and electrochemical properties achieved with these electrodes will be presented.
Yue, Yang; Yang, Zhichun; Liu, Nishuang; Liu, Weijie; Zhang, Hui; Ma, Yanan; Yang, Congxing; Su, Jun; Li, Luying; Long, Fei; Zou, Zhengguang; Gao, Yihua
2016-12-27
Nowadays, the integrated systems on a plane substrate containing energy harvesting, energy storing, and working units are strongly desired with the fast development of wearable and portable devices. Here, a simple, low cost, and scalable strategy involving ink printing and electrochemical deposition is proposed to fabricate a flexible integrated system on a plane substrate containing an all-solid-state asymmetric microsupercapacitor (MSC), a photoconduct-type photodetector of perovskite nanowires (NWs), and a wireless charging coil. In the asymmetric MSCs, MnO 2 -PPy and V 2 O 5 -PANI composites are used as positive and negative electrodes, respectively. Typical values of energy density in the range of 15-20 mWh cm -3 at power densities of 0.3-2.5 W cm -3 with an operation potential window of 1.6 V are achieved. In the system, the wireless charging coil receives energy from a wireless power transmitter, which then can be stored in the MSC to drive the photoconductive detector of perovskite NWs in sequence. The designed integrated system exhibits a stable photocurrent response comparable with the detector driven by an external power source. This research provides an important routine to fabricate integrated systems.
Nonlinear functional for solvation in Density Functional Theory
NASA Astrophysics Data System (ADS)
Gunceler, Deniz; Sundararaman, Ravishankar; Schwarz, Kathleen; Letchworth-Weaver, Kendra; Arias, T. A.
2013-03-01
Density functional calculations of molecules and surfaces in a liquid can accelerate the development of many technologies ranging from solar energy harvesting to lithium batteries. Such studies require the development of robust functionals describing the liquid. Polarizable continuum models (PCM's) have been applied to some solvated systems; but they do not sufficiently capture solvation effects to describe highly polar systems like surfaces of ionic solids. In this work, we present a nonlinear fluid functional within the framework of Joint Density Functional Theory. The fluid is treated not as a linear dielectric, but as a distribution of dipoles that responds to the solute, which we describe starting from the exact free energy functional for point dipoles. We also show PCM's can be recovered as the linear limit of our functional. Our description is of similar computational cost to PCM's, and captures complex solvation effects like dielectric saturation without requiring new fit parameters. For polar and nonpolar molecules, it achieves millihartree level agreement with experimental solvation energies. Furthermore, our functional now makes it possible to investigate chemistry on the surface of lithium battery materials, which PCM's predict to be unstable. Supported as part of the Energy Materials Center at Cornell, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001086
NASA Astrophysics Data System (ADS)
Ali, Amjad; Shabbir Naz, G.; Saleem Shahzad, M.; Kouser, R.; Aman-ur-Rehman; Nasim, M. H.
2018-03-01
The energy states of the bound electrons in high energy density systems (HEDS) are significantly affected due to the electric field of the neighboring ions. Due to this effect bound electrons require less energy to get themselves free and move into the continuum. This phenomenon of reduction in potential is termed as ionization potential depression (IPD) or the continuum lowering (CL). The foremost parameter to depict this change is the average charge state, therefore accurate modeling for CL is imperative in modeling atomic data for computation of radiative and thermodynamic properties of HEDS. In this paper, we present an improved model of CL in the screened hydrogenic model with l-splitting (SHML) proposed by G. Faussurier and C. Blancard, P. Renaudin [High Energy Density Physics 4 (2008) 114] and its effect on average charge state. We propose the level charge dependent calculation of CL potential energy and inclusion of exchange and correlation energy in SHML. By doing this, we made our model more relevant to HEDS and free from CL empirical parameter to the plasma environment. We have implemented both original and modified model of SHML in our code named OPASH and benchmark our results with experiments and other state-of-the-art simulation codes. We compared our results of average charge state for Carbon, Beryllium, Aluminum, Iron and Germanium against published literature and found a very reasonable agreement between them.
Li, Chen; Lu, Jianfeng; Yang, Weitao
2015-12-14
We develop the gentlest ascent dynamics for Kohn-Sham density functional theory to search for the index-1 saddle points on the energy landscape of the Kohn-Sham density functionals. These stationary solutions correspond to excited states in the ground state functionals. As shown by various examples, the first excited states of many chemical systems are given by these index-1 saddle points. Our novel approach provides an alternative, more robust way to obtain these excited states, compared with the widely used ΔSCF approach. The method can be easily generalized to target higher index saddle points. Our results also reveal the physical interest and relevance of studying the Kohn-Sham energy landscape.
Density variations of plastic carriers in metallic glasses during aging
NASA Astrophysics Data System (ADS)
Fan, Yue; Iwashita, Takuya; Egami, Takeshi
Thermally induced deformation in metallic glasses was investigated by sampling the potential energy landscape (PEL) and probing the changes in the atomic properties (e.g. energy, displacement, stress). We demonstrate that there exists a universal plastic carrier in amorphous materials, which corresponds to the hopping between local minima on PEL. However very interestingly, the density of plastic carrier is largely affected by the aging history of the glasses. The higher fictive temperature (i . e . fast cooling rate), the larger density of plastic carrier is contained in the system. In particular, we observe a scaling of ρ~exp(- α/Tfic) , which is consistent with the prediction of shear transformation zone theory. The work is supported by U.S. Department of Energy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gledhill, Jonathan D.; Tozer, David J., E-mail: d.j.tozer@durham.ac.uk
Density scaling considerations are used to derive an exchange–correlation explicit density functional that is appropriate for the electron deficient side of the integer and which recovers the exact r → ∞ asymptotic behaviour of the exchange–correlation potential. The functional has an unconventional mathematical form with parameters that are system-dependent; the parameters for an N-electron system are determined in advance from generalised gradient approximation (GGA) calculations on the N- and (N − 1)-electron systems. Compared to GGA results, the functional yields similar exchange–correlation energies, but HOMO energies that are an order of magnitude closer to the negative of the vertical ionisationmore » potential; for anions, the HOMO energies are negative, as required. Rydberg excitation energies are also notably improved and the exchange–correlation potential is visibly lowered towards the near-exact potential. Further development is required to improve valence excitations, static isotropic polarisabilities, and the shape of the potential in non-asymptotic regions. The functional is fundamentally different to conventional approximations.« less
Interfacial profiles in fluid/liquid systems: a description based on the storing of elastic energy.
Castellanos-Suárez, Aly J; Toro-Mendoza, Jhoan; García-Sucre, Máximo
2011-06-01
An analytical expression for the interfacial energy is found by solving a Poisson equation and assuming a Boltzmann distribution of volume elements forming the fluid/liquid system. Interfacial phenomena are treated as a result of the response of a liquid when it makes contact with other fluid phase, in order to reach thermal and mechanical equilibrium. This model gives a quantitative description of the interface, obtaining values for its molar, force and energy density profiles. Also, our model allows the determination of the proportion of the fluids present in the interfacial zone, the values of interfacial tension and thickness. In the case of water+n-alkanes systems, the tensions are in agreement with the behavior shown by the experimental data. Finally, the values for interfacial thickness predicted from molar density profiles are lower than the range of influence of the elastic energy and elastic field. Copyright © 2011 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Spiegel, J. Dominik; Lyskov, Igor; Kleinschmidt, Martin; Marian, Christel M.
2017-01-01
BODIPY-based dyads serve as model systems for the investigation of excitation energy transfer (EET). Through-space EET is brought about by direct and exchange interactions between the transition densities of donor and acceptor localized states. The presence of a molecular linker gives rise to additional charge transfer (CT) contributions. Here, we present a novel approach for the calculation of the excitonic coupling matrix element (ECME) including CT contributions which is based on supermolecular one-electron transition density matrices (STD). The validity of the approach is assessed for a model system of two π -stacked ethylene molecules at varying intermolecular separation. Wave functions and electronic excitation energies of five EET cassettes comprising anthracene as exciton donor and BODIPY as exciton acceptor are obtained by the redesigned combined density functional theory and multireference configuration interaction (DFT/MRCI-R) method. CT contributions to the ECME are shown to be important in the covalently linked EET cassettes.
Tuning Surface Energy Landscapes in Metallic Quantum Films using Alkali Adsorbates
NASA Astrophysics Data System (ADS)
Khajetoorians, Alexander; Qin, Shengyong; Zhu, Wenguang; Eisele, Holger; Zhang, Zhenyu; Shih, Chih-Kang
2008-03-01
Quantum confinement shows a strong interplay with growth and kinetics in thin metal systems where the Fermi wavelength has a special relationship to the surface normal lattice constant. In the case of Pb/Si(111) systems, this relationship reveals an interesting thickness-dependent bilayer oscillation in the density of states and surface energy up to a phase. In this paper, we report on a novel effect: tuning of the energy landscape of a flat-top quantum Pb mesa using Cs adsorbates. Using STM/STS, we show that depositing Cs adsorbates on a thin Pb mesa promotes quantum stable Pb nanoislands on preferentially unstable thicknesses. Thickness-dependent nanoisland densities show a strong bilayer oscillation correlating with quantum stability. By modifying the Cs coverage on the mesa surface, we can tune the lateral size distribution of the nanoislands and the overall amplitude of the island density oscillation. Nanoisland formation is linked to a step decoration of Cs adatoms along the step edge of the nanoisland.
Beckwith, M. A.; Jiang, S.; Schropp, A.; ...
2017-05-01
Tuning the energy of an x-ray probe to an absorption line or edge can provide material-specific measurements that are particularly useful for interfaces. Simulated hard x-ray images above the Fe K-edge are presented to examine ion diffusion across an interface between Fe 2O 3 and SiO 2 aerogel foam materials. The simulations demonstrate the feasibility of such a technique for measurements of density scale lengths near the interface with submicron spatial resolution. A proof-of-principle experiment is designed and performed at the Linac coherent light source facility. Preliminary data show the change of the interface after shock compression and heating withmore » simultaneous fluorescence spectra for temperature determination. Here, the results provide the first demonstration of using x-ray imaging at an absorption edge as a diagnostic to detect ultrafast phenomena for interface physics in high-energy-density systems.« less
NASA Astrophysics Data System (ADS)
Di Cintio, Pierfrancesco; Livi, Roberto; Lepri, Stefano; Ciraolo, Guido
2017-04-01
By means of hybrid multiparticle collsion-particle-in-cell (MPC-PIC) simulations we study the dynamical scaling of energy and density correlations at equilibrium in moderately coupled two-dimensional (2D) and quasi-one-dimensional (1D) plasmas. We find that the predictions of nonlinear fluctuating hydrodynamics for the structure factors of density and energy fluctuations in 1D systems with three global conservation laws hold true also for 2D systems that are more extended along one of the two spatial dimensions. Moreover, from the analysis of the equilibrium energy correlators and density structure factors of both 1D and 2D neutral plasmas, we find that neglecting the contribution of the fluctuations of the vanishing self-consistent electrostatic fields overestimates the interval of frequencies over which the anomalous transport is observed. Such violations of the expected scaling in the currents correlation are found in different regimes, hindering the observation of the asymptotic scaling predicted by the theory.
Spin polarization of two-dimensional electron system in parabolic potential
NASA Astrophysics Data System (ADS)
Miyake, Takashi; Totsuji, Chieko; Nakanishi, Kenta; Tsuruta, Kenji; Totsuji, Hiroo
2008-09-01
We analyze the ground state of the two-dimensional quantum system of electrons confined in a parabolic potential with the system size around 100 at 0 K. We map the system onto a classical system on the basis of the classical-map hypernetted-chain (CHNC) method which has been proven to work in the integral-equation-based analyses of uniform systems and apply classical Monte Carlo and molecular dynamics simulations. We find that, when we decrease the strength of confinement keeping the number of confined electrons fixed, the energy of the spin-polarized state with somewhat lower average density becomes smaller than that of the spin-unpolarized state with somewhat higher average density. This system thus undergoes the transition from the spin-unpolarized state to the spin polarized state and the corresponding critical value of r estimated from the average density is as low as r∼0.4 which is much smaller than the r value for the Wigner lattice formation. When we compare the energies of spin-unpolarized and spin-polarized states for given average density, our data give the critical r value for the transition between unpolarized and polarized states around 10 which is close to but still smaller than the known possibility of polarization at r∼27. The advantage of our method is a direct applicability to geometrically complex systems which are difficult to analyze by integral equations and this is an example.
High-density capacitors pack more energy in a smaller space
NASA Astrophysics Data System (ADS)
Lerner, E. J.
1985-05-01
Attention is given to the design features and performance characteristics of novel high density capacitor banks which furnish a tenfold energy increase over conventional capacitors, to values of the order of 100 J/kg or 0.28 J/cu cm. The essential feature of the new design is the replacement of plastic dielectric films interleaved with oil-soaked films by a paperless film system that uses perfluorocarbon rather than oil.
Energy challenges in optical access and aggregation networks.
Kilper, Daniel C; Rastegarfar, Houman
2016-03-06
Scalability is a critical issue for access and aggregation networks as they must support the growth in both the size of data capacity demands and the multiplicity of access points. The number of connected devices, the Internet of Things, is growing to the tens of billions. Prevailing communication paradigms are reaching physical limitations that make continued growth problematic. Challenges are emerging in electronic and optical systems and energy increasingly plays a central role. With the spectral efficiency of optical systems approaching the Shannon limit, increasing parallelism is required to support higher capacities. For electronic systems, as the density and speed increases, the total system energy, thermal density and energy per bit are moving into regimes that become impractical to support-for example requiring single-chip processor powers above the 100 W limit common today. We examine communication network scaling and energy use from the Internet core down to the computer processor core and consider implications for optical networks. Optical switching in data centres is identified as a potential model from which scalable access and aggregation networks for the future Internet, with the application of integrated photonic devices and intelligent hybrid networking, will emerge. © 2016 The Author(s).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akkelin, S.V.; Sinyukov, Yu.M.
A method allowing analysis of the overpopulation of phase space in heavy ion collisions in a model-independent way is proposed within the hydrodynamic approach. It makes it possible to extract a chemical potential of thermal pions at freeze-out, irrespective of the form of freeze-out (isothermal) hypersurface in Minkowski space and transverse flows on it. The contributions of resonance (with masses up to 2 GeV) decays to spectra, interferometry volumes, and phase-space densities are calculated and discussed in detail. The estimates of average phase-space densities and chemical potentials of thermal pions are obtained for SPS and RHIC energies. They demonstrate thatmore » multibosonic phenomena at those energies might be considered as a correction factor rather than as a significant physical effect. The analysis of the evolution of the pion average phase-space density in chemically frozen hadron systems shows that it is almost constant or slightly increases with time while the particle density and phase-space density at each space point decreases rapidly during the system's expansion. We found that, unlike the particle density, the average phase-space density has no direct link to the freeze-out criterion and final thermodynamic parameters, being connected rather to the initial phase-space density of hadronic matter formed in relativistic nucleus-nucleus collisions.« less
Nickel-hydrogen component development
NASA Technical Reports Server (NTRS)
Charleston, J. A.
1983-01-01
Light weight energy storage systems for future space missions are investigated. One of the systems being studied is the nickel hydrogen battery. This battery is designed to achieve longer life, improve performance, and higher energy densities for space applications. The nickel hydrogen component development is discussed. Test data from polarization measurements of the hydrogen electrode component is presented.
The impact of hot charge carrier mobility on photocurrent losses in polymer-based solar cells
Philippa, Bronson; Stolterfoht, Martin; Burn, Paul L.; Juška, Gytis; Meredith, Paul; White, Ronald D.; Pivrikas, Almantas
2014-01-01
A typical signature of charge extraction in disordered organic systems is dispersive transport, which implies a distribution of charge carrier mobilities that negatively impact on device performance. Dispersive transport has been commonly understood to originate from a time-dependent mobility of hot charge carriers that reduces as excess energy is lost during relaxation in the density of states. In contrast, we show via photon energy, electric field and film thickness independence of carrier mobilities that the dispersive photocurrent in organic solar cells originates not from the loss of excess energy during hot carrier thermalization, but rather from the loss of carrier density to trap states during transport. Our results emphasize that further efforts should be directed to minimizing the density of trap states, rather than controlling energetic relaxation of hot carriers within the density of states. PMID:25047086
NASA Astrophysics Data System (ADS)
Boella, E.; Fiúza, F.; Stockem Novo, A.; Fonseca, R.; Silva, L. O.
2018-03-01
A numerical study on ion acceleration in electrostatic shock waves is presented, with the aim of determining the best plasma configuration to achieve quasi-monoenergetic ion beams in laser-driven systems. It was recently shown that tailored near-critical density plasmas characterized by a long-scale decreasing rear density profile lead to beams with low energy spread (Fiúza et al 2012 Phys. Rev. Lett. 109 215001). In this work, a detailed parameter scan investigating different plasma scale lengths is carried out. As result, the optimal plasma spatial scale length that allows for minimizing the energy spread while ensuring a significant reflection of ions by the shock is identified. Furthermore, a new configuration where the required profile has been obtained by coupling micro layers of different densities is proposed. Results show that this new engineered approach is a valid alternative, guaranteeing a low energy spread with a higher level of controllability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sundararaman, Ravishankar; Goddard, III, William A.; Arias, Tomas A.
First-principles calculations combining density-functional theory and continuum solvation models enable realistic theoretical modeling and design of electrochemical systems. When a reaction proceeds in such systems, the number of electrons in the portion of the system treated quantum mechanically changes continuously, with a balancing charge appearing in the continuum electrolyte. A grand-canonical ensemble of electrons at a chemical potential set by the electrode potential is therefore the ideal description of such systems that directly mimics the experimental condition. We present two distinct algorithms: a self-consistent field method and a direct variational free energy minimization method using auxiliary Hamiltonians (GC-AuxH), to solvemore » the Kohn-Sham equations of electronic density-functional theory directly in the grand canonical ensemble at fixed potential. Both methods substantially improve performance compared to a sequence of conventional fixed-number calculations targeting the desired potential, with the GC-AuxH method additionally exhibiting reliable and smooth exponential convergence of the grand free energy. Lastly, we apply grand-canonical density-functional theory to the under-potential deposition of copper on platinum from chloride-containing electrolytes and show that chloride desorption, not partial copper monolayer formation, is responsible for the second voltammetric peak.« less
Sundararaman, Ravishankar; Goddard, William A; Arias, Tomas A
2017-03-21
First-principles calculations combining density-functional theory and continuum solvation models enable realistic theoretical modeling and design of electrochemical systems. When a reaction proceeds in such systems, the number of electrons in the portion of the system treated quantum mechanically changes continuously, with a balancing charge appearing in the continuum electrolyte. A grand-canonical ensemble of electrons at a chemical potential set by the electrode potential is therefore the ideal description of such systems that directly mimics the experimental condition. We present two distinct algorithms: a self-consistent field method and a direct variational free energy minimization method using auxiliary Hamiltonians (GC-AuxH), to solve the Kohn-Sham equations of electronic density-functional theory directly in the grand canonical ensemble at fixed potential. Both methods substantially improve performance compared to a sequence of conventional fixed-number calculations targeting the desired potential, with the GC-AuxH method additionally exhibiting reliable and smooth exponential convergence of the grand free energy. Finally, we apply grand-canonical density-functional theory to the under-potential deposition of copper on platinum from chloride-containing electrolytes and show that chloride desorption, not partial copper monolayer formation, is responsible for the second voltammetric peak.
Sundararaman, Ravishankar; Goddard, III, William A.; Arias, Tomas A.
2017-03-16
First-principles calculations combining density-functional theory and continuum solvation models enable realistic theoretical modeling and design of electrochemical systems. When a reaction proceeds in such systems, the number of electrons in the portion of the system treated quantum mechanically changes continuously, with a balancing charge appearing in the continuum electrolyte. A grand-canonical ensemble of electrons at a chemical potential set by the electrode potential is therefore the ideal description of such systems that directly mimics the experimental condition. We present two distinct algorithms: a self-consistent field method and a direct variational free energy minimization method using auxiliary Hamiltonians (GC-AuxH), to solvemore » the Kohn-Sham equations of electronic density-functional theory directly in the grand canonical ensemble at fixed potential. Both methods substantially improve performance compared to a sequence of conventional fixed-number calculations targeting the desired potential, with the GC-AuxH method additionally exhibiting reliable and smooth exponential convergence of the grand free energy. Lastly, we apply grand-canonical density-functional theory to the under-potential deposition of copper on platinum from chloride-containing electrolytes and show that chloride desorption, not partial copper monolayer formation, is responsible for the second voltammetric peak.« less
Locality of correlation in density functional theory.
Burke, Kieron; Cancio, Antonio; Gould, Tim; Pittalis, Stefano
2016-08-07
The Hohenberg-Kohn density functional was long ago shown to reduce to the Thomas-Fermi (TF) approximation in the non-relativistic semiclassical (or large-Z) limit for all matter, i.e., the kinetic energy becomes local. Exchange also becomes local in this limit. Numerical data on the correlation energy of atoms support the conjecture that this is also true for correlation, but much less relevant to atoms. We illustrate how expansions around a large particle number are equivalent to local density approximations and their strong relevance to density functional approximations. Analyzing highly accurate atomic correlation energies, we show that EC → -AC ZlnZ + BCZ as Z → ∞, where Z is the atomic number, AC is known, and we estimate BC to be about 37 mhartree. The local density approximation yields AC exactly, but a very incorrect value for BC, showing that the local approximation is less relevant for the correlation alone. This limit is a benchmark for the non-empirical construction of density functional approximations. We conjecture that, beyond atoms, the leading correction to the local density approximation in the large-Z limit generally takes this form, but with BC a functional of the TF density for the system. The implications for the construction of approximate density functionals are discussed.
Luo, Hang; Zhang, Dou; Jiang, Chao; Yuan, Xi; Chen, Chao; Zhou, Kechao
2015-04-22
Energy storage materials are urgently demanded in modern electric power supply and renewable energy systems. The introduction of inorganic fillers to polymer matrix represents a promising avenue for the development of high energy density storage materials, which combines the high dielectric constant of inorganic fillers with supernal dielectric strength of polymer matrix. However, agglomeration and phase separation of inorganic fillers in the polymer matrix remain the key barriers to promoting the practical applications of the composites for energy storage. Here, we developed a low-cost and environmentally friendly route to modifying BaTiO3 (BT) nanoparticles by a kind of water-soluble hydantoin epoxy resin. The modified BT nanoparticles exhibited homogeneous dispersion in the ferroelectric polymer poly(vinylidene fluoride-co-hexafluoropropylene) (P(VDF-HFP)) matrix and strong interfacial adhesion with the polymer matrix. The dielectric constants of the nanocomposites increased significantly with the increase of the coated BT loading, while the dielectric loss of the nanocomposites was still as low as that of the pure P(VDF-HFP). The energy storage density of the nanocomposites was largely enhanced with the coated BT loading at the same electric field. The nanocomposite with 20 vol % BT exhibited an estimated maximum energy density of 8.13 J cm(-3), which was much higher than that of pure P(VDF-HFP) and other dielectric polymers. The findings of this research could provide a feasible approach to produce high energy density materials for practical application in energy storage.
Experiment study of bio-tissue's temperature irradiated by laser based on optical fiber F-P sensor
NASA Astrophysics Data System (ADS)
Shan, Ning; Liu, Xia
2014-08-01
Laser has several advantages, such as strong anti-interference ability, quick speed, high power, agility and precision. It is widely applied in military and medicine fields. When laser acts on human body, biological tissue of human body will appear the phenomenon of ablation and carbonization and solidification. In order to effectively defend excess damage by laser, the thermal effect research of skin tissue should be carried out. Temperature is a key parameter in the processing between laser and bio-tissue. It is the mostly foundation using analyze size of thermal damage area and forecast thermal damage degree. In this paper, the low fineness optical fiber F-P sensing system for temperature measurement is designed and established. The real-time measurement system of temperature generated by laser irradiating bio-tissue is build based on the sensing system. The temperature distributing generated by laser in the bio-tissue is studied through experiment when the spot diameter of emission laser is difference with the same energy density and the energy density is difference with the same spot diameter of emission laser. The experimental results show that the sensing system can be used to the real-time temperature measurement of bio-tissue efficiency. It has small bulk. Its outer diameter is 250μm. And the hurt for bio-tissue is small. It has high respond speed. The respond time of temperature is less than 1s. These can be satisfied with practice demand. When the energy density of laser is same, the temperature rising in the same location is low along the spot diameter of emission laser increasing. When the spot diameter of emission laser is same, the temperature rising in the same location is increasing along with the energy density of laser increasing.
NASA Astrophysics Data System (ADS)
Harvey, C. F.; Michael, H. A.
2017-12-01
We formulate the energy balance for coastal groundwater systems and apply it to: (1) Explain the energy driving offshore saline circulation cells, and; (2) Assess the accuracy of numerical simulations of coastal groundwater systems. The flow of fresh groundwater to the ocean is driven by the loss of potential energy as groundwater drops from the elevation of the inland watertable, where recharge occurs, to discharge at sea level. This freshwater flow creates an underlying circulation cell of seawater, drawn into coastal aquifers offshore and discharging near shore, that adds to total submarine groundwater discharge. The saline water in the circulation cell enters and exits the aquifer through the sea floor at the same hydraulic potential. Existing theory explains that the saline circulation cell is driven by mixing of fresh and saline without any additional source of potential or mechanical power. This explanation raises a basic thermodynamic question: what is the source of energy that drives the saline circulation cell? Here, we resolve this question by building upon Hubbert's conception of hydraulic potential to formulate an energy balance for density-dependent flow and salt transport through an aquifer. We show that, because local energy dissipation within the aquifer is proportional to the square of the groundwater velocity, more groundwater flow may be driven through an aquifer for a given energy input if local variations in velocity are smoothed. Our numerical simulations of coastal groundwater systems show that dispersion of salt across the fresh-saline interface spreads flow over larger volumes of the aquifer, smoothing the velocity field, and increasing total flow and submarine groundwater discharge without consuming more power. The energy balance also provides a criterion, in addition to conventional mass balances, for judging the accuracy of numerical solutions of non-linear density-dependent flow problems. Our results show that some numerical simulations of saline circulation converge to excellent balances of both mass and energy, but that other simulations may poorly balance energy even after converging to a good mass balance. Thus, the energy balance can be used to identify incorrect simulations that pass convential mass balance criteria for accuracy.
NASA Astrophysics Data System (ADS)
Jiang, Yu; Fletcher, John; Burr, Patrick; Hall, Charles; Zheng, Bowen; Wang, Da-Wei; Ouyang, Zi; Lennon, Alison
2018-04-01
Photovoltaic (PV) systems can exhibit rapid variances in their power output due to irradiance changes which can destabilise an electricity grid. This paper presents a quantitative comparison of the suitability of different electrochemical energy storage system (ESS) technologies to provide ramp-rate control of power in PV systems. Our investigations show that, for PV systems ranging from residential rooftop systems to megawatt power systems, lithium-ion batteries with high energy densities (up to 600 Wh L-1) require the smallest power-normalised volumes to achieve the ramp rate limit of 10% min-1 with 100% compliance. As the system size increases, the ESS power-normalised volume requirements are significantly reduced due to aggregated power smoothing, with high power lithium-ion batteries becoming increasingly more favourable with increased PV system size. The possibility of module-level ramp-rate control is also introduced, and results show that achievement of a ramp rate of 10% min-1 with 100% compliance with typical junction box sizes will require ESS energy and power densities of 400 Wh L-1 and 2300 W L-1, respectively. While module-level ramp-rate control can reduce the impact of solar intermittence, the requirement is challenging, especially given the need for low cost and long cycle life.
2011-12-01
management system. This paper describes recent development of salt hydrate-based TES composites at the Air Force Research Laboratory. Salt hydrates are...composites. 15. SUBJECT TERMS thermal energy storage, composite, salt hydrate, graphic foam 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF...part of a thermal management system. This paper describes recent development of salt hydrate-based TES composites at the Air Force Research
NASA Astrophysics Data System (ADS)
Wei, J. Q.; Cong, Y. C.; Xiao, M. Q.
2018-05-01
As renewable energies are increasingly integrated into power systems, there is increasing interest in stochastic analysis of power systems.Better techniques should be developed to account for the uncertainty caused by penetration of renewables and consequently analyse its impacts on stochastic stability of power systems. In this paper, the Stochastic Differential Equations (SDEs) are used to represent the evolutionary behaviour of the power systems. The stationary Probability Density Function (PDF) solution to SDEs modelling power systems excited by Gaussian white noise is analysed. Subjected to such random excitation, the Joint Probability Density Function (JPDF) solution to the phase angle and angular velocity is governed by the generalized Fokker-Planck-Kolmogorov (FPK) equation. To solve this equation, the numerical method is adopted. Special measure is taken such that the generalized FPK equation is satisfied in the average sense of integration with the assumed PDF. Both weak and strong intensities of the stochastic excitations are considered in a single machine infinite bus power system. The numerical analysis has the same result as the one given by the Monte Carlo simulation. Potential studies on stochastic behaviour of multi-machine power systems with random excitations are discussed at the end.
Electronic Zero-Point Oscillations in the Strong-Interaction Limit of Density Functional Theory.
Gori-Giorgi, Paola; Vignale, Giovanni; Seidl, Michael
2009-04-14
The exchange-correlation energy in Kohn-Sham density functional theory can be expressed exactly in terms of the change in the expectation of the electron-electron repulsion operator when, in the many-electron Hamiltonian, this same operator is multiplied by a real parameter λ varying between 0 (Kohn-Sham system) and 1 (physical system). In this process, usually called adiabatic connection, the one-electron density is kept fixed by a suitable local one-body potential. The strong-interaction limit of density functional theory, defined as the limit λ→∞, turns out to be like the opposite noninteracting Kohn-Sham limit (λ→0) mathematically simpler than the physical (λ = 1) case and can be used to build an approximate interpolation formula between λ→0 and λ→∞ for the exchange-correlation energy. Here we extend the systematic treatment of the λ→∞ limit [Phys. Rev. A 2007, 75, 042511] to the next leading term, describing zero-point oscillations of strictly correlated electrons, with numerical examples for small spherical atoms. We also propose an improved approximate functional for the zero-point term and a revised interpolation formula for the exchange-correlation energy satisfying more exact constraints.
Stochastic density functional theory at finite temperatures
NASA Astrophysics Data System (ADS)
Cytter, Yael; Rabani, Eran; Neuhauser, Daniel; Baer, Roi
2018-03-01
Simulations in the warm dense matter regime using finite temperature Kohn-Sham density functional theory (FT-KS-DFT), while frequently used, are computationally expensive due to the partial occupation of a very large number of high-energy KS eigenstates which are obtained from subspace diagonalization. We have developed a stochastic method for applying FT-KS-DFT, that overcomes the bottleneck of calculating the occupied KS orbitals by directly obtaining the density from the KS Hamiltonian. The proposed algorithm scales as O (" close=")N3T3)">N T-1 and is compared with the high-temperature limit scaling O
NASA Astrophysics Data System (ADS)
Assi, Hiba; Chaturvedi, Harshwardhan; Pleimling, Michel; Täuber, Uwe
Vortices in type-II superconductors in the presence of extended, linear defects display the strongly pinned Bose glass phase at low temperatures. This disorder-dominated thermodynamic state is characterized by suppressed lateral flux line fluctuations and very slow structural relaxation kinetics: The vortices migrate between different columnar pinning centers to minimize the mutual repulsive interactions and eventually optimize the system's pinning configuration. To monitor the flux lines' late-time structural relaxations, we employ a mapping between an effectively two-dimensional Bose glass system and a modified Coulomb glass model, originally developed to describe disordered semiconductors at low temperatures. By means of Monte Carlo simulations, we investigate the effects of the introduction of random bare site energies and sudden changes in the vortex or charge carrier density on the soft Coulomb gap that appears in the density of states due to the emerging spatial anticorrelations. The non-equilibrium relaxation properties of the Bose and Coulomb glass states and the ensuing aging kinetics are studied through the two-time density autocorrelation function and its various scaling forms. Research supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award DE-FG02-09ER46613.
Pavelka, Matej; Shukla, Manoj K; Leszczynski, Jerzy; Burda, Jaroslav V
2008-01-17
Optimization of the hydrated Cu(II)(N7-guanine) structures revealed a number of minima on the potential energy surface. For selected structures, energy decompositions together with the determination of electronic properties (partial charges and electron spin densities) were performed. In the complexes of guanine with the bare copper cation and that with the monoaqua ligated cation, an electron transfer from guanine to Cu(II) was observed, resulting in a Cu(I)-guanine(+) type of complex. Conformers with two aqua ligands are borderline systems characterized by a Cu partial charge of +0.7e and a similar value of the spin density (0.6e) localized on guanine. When tetracoordination of copper was achieved, only then the prevailing electron spin density is unambiguously localized on copper. The energetic preference of diaqua-Cu-(N7,O6-guanine) over triaqua-Cu-(N7-guanine) was found for the four-coordinate structures. However, the energy difference between these two conformations decreases with the number of water molecules present in the systems, and in complexes with five water molecules this preference is preserved only at DeltaG level where thermal and entropy terms are included.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hashemzadeh, M., E-mail: hashemzade@gmail.com
2015-11-15
The effect of q-nonextensive parameter and saturation time on the electron density steepening in electron-positron-ion plasmas is studied by particle in cell method. Phase space diagrams show that the size of the holes, and consequently, the number of trapped particles strongly depends on the q-parameter and saturation time. Furthermore, the mechanism of the instability and exchange of energy between electron-positron and electric field is explained by the profiles of the energy density. Moreover, it is found that the q-parameter, saturation time, and electron and positron velocities affect the nonlinear evolution of the electron density which leads to the steepening ofmore » its structure. The q-nonextensive parameter or degree of nonextensivity is the relation between temperature gradient and potential energy of the system. Therefore, the deviation of q-parameter from unity indicates the degree of inhomogeneity of temperature or deviation from equilibrium. Finally, using the kinetic theory, a generalized q-dispersion relation is presented for electron-positron-ion plasma systems. It is found that the simulation results in the linear regime are in good agreement with the growth rate results obtained by the kinetic theory.« less
Visual attention to food cues in obesity: an eye-tracking study.
Doolan, Katy J; Breslin, Gavin; Hanna, Donncha; Murphy, Kate; Gallagher, Alison M
2014-12-01
Based on the theory of incentive sensitization, the aim of this study was to investigate differences in attentional processing of food-related visual cues between normal-weight and overweight/obese males and females. Twenty-six normal-weight (14M, 12F) and 26 overweight/obese (14M, 12F) adults completed a visual probe task and an eye-tracking paradigm. Reaction times and eye movements to food and control images were collected during both a fasted and fed condition in a counterbalanced design. Participants had greater visual attention towards high-energy-density food images compared to low-energy-density food images regardless of hunger condition. This was most pronounced in overweight/obese males who had significantly greater maintained attention towards high-energy-density food images when compared with their normal-weight counterparts however no between weight group differences were observed for female participants. High-energy-density food images appear to capture visual attention more readily than low-energy-density food images. Results also suggest the possibility of an altered visual food cue-associated reward system in overweight/obese males. Attentional processing of food cues may play a role in eating behaviors thus should be taken into consideration as part of an integrated approach to curbing obesity. © 2014 The Obesity Society.
Improved correlation corrections to the local-spin-density approximation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Painter, G.S.
1981-10-15
The accurate correlation energies for the para- and ferromagnetic states of the electron liquid calculated by Ceperley and Alder were recently used by Vosko, Wilk, and Nusair to produce a new correlation-energy density of increased accuracy and proper limiting behavior in the metallic density regime (r/sub s/< or =6). In the present work, the correlation potential in the local-spin-density approximation (LSDA) is derived from the correlation-energy-density representation of Vosko et al. Characteristics of the new exchange-correlation model are compared with those of the LSDA model of Gunnarsson and Lundqvist. Specific comparison is made between these models and exact results inmore » the treatment of atomic and molecular hydrogen. Since the new treatment of correlation primarily affects the region of small r/sub s/, which is exchange dominated, correlation corrections are small compared with errors in the exchange energy. Thus, in light atoms the improved correlation model leads to a reduced cancellation of error between exchange and correlation energies, emphasizing the necessity for improved exchange treatment. For more homogeneous systems, the model should offer real improvement. The present results obtained with precise treatment of correlation within the prescription of Vosko et al. serve to define the present limitations of the LSDA and indicate the importance of nonlocal corrections, particularly for atoms.« less
Pre-sodiated nickel cobaltite for high-performance sodium-ion capacitors
NASA Astrophysics Data System (ADS)
Yang, Dongfang; Sun, Xiaoming; Lim, Kyungmi; Ranganathan Gaddam, Rohit; Ashok Kumar, Nanjundan; Kang, Kisuk; Zhao, Xiu Song
2017-09-01
Sodium-ion capacitors (NICs) are a hybrid energy storage system that store energy via both charge adsorption at the cathode/electrolyte interface and charge intercalation in the bulk of the anode, thereby possessing a higher energy density than supercapacitors and a higher power density than batteries. In this work, nickel cobaltite (NiCo2O4) hollow spheres with a chestnut shell morphology have been solvothermally synthesized and tested in a sodium half-cell. The NiCo2O4 material exhibits a reversible capacity of 313 mAh g-1 at 1 A g-1. Pre-sodiation of NiCo2O4 is found to significantly improve its energy density. A NIC fabricated with pre-sodiated NiCo2O4 as the anode and an activated carbon (AC) as the cathode delivers an energy density of 60 Wh kg-1 at the power density of 10,000 W kg-1. Ex-situ X-ray diffraction (XRD) and transmission electron microscopy (TEM) results reveal that NiCo2O4 is converted to metallic nickel and cobalt and Na2O phases during the pre-sodiation. The metallic nickel and cobalt phases are kinetically favourable for the electrolyte diffusion and electrochemical reactions, thus significantly improving the performance of the pre-sodiated NiCo2O4 electrode.
NASA Technical Reports Server (NTRS)
Faget, N. M.
1986-01-01
Attention is given to results obtained to date in developmental investigations of a thermal energy storage (TES) system for the projected NASA Space Station's solar dynamic power system; these tests have concentrated on issues related to materials compatibility for phase change materials (PCMs) and their containment vessels' materials. The five PCMs tested have melting temperatures that correspond to the operating temperatures of either the Brayton or Rankine heat engines, which were independently chosen for their high energy densities.
Measuring opacities for high energy density matter
Bailey, James E.
2015-07-01
How does energy propagate from the solar core to the surface of the sun, where it emerges to warm the Earth? How old are the stellar systems that host the numerous exoplanets that have now been discovered outside our solar system? How does radiation penetrate and heat an inertial fusion capsule? The answers to these seemingly disparate questions hinge on knowledge of the fundamental material property that controls the absorption of radiation: opacity. Opacity plays a critical role for many high energy density (HED) systems and is highly important for the NNSA stewardship mission. In addition, laboratory astrophysics research servesmore » as a conduit for establishing collaborations between the NNSA laboratories, between the NNSA laboratories and universities, and between the NNSA laboratories and our international partners. Exposure to open peer review sharpens the research capabilities and interactions of NNSA scientists with students and professors as a natural path for recruiting the next generation of stockpile stewards.« less
Final excitation energy of fission fragments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmidt, Karl-Heinz; Jurado, Beatriz
We study how the excitation energy of the fully accelerated fission fragments is built up. It is stressed that only the intrinsic excitation energy available before scission can be exchanged between the fission fragments to achieve thermal equilibrium. This is in contradiction with most models used to calculate prompt neutron emission, where it is assumed that the total excitation energy of the final fragments is shared between the fragments by the condition of equal temperatures. We also study the intrinsic excitation-energy partition in statistical equilibrium for different level-density descriptions as a function of the total intrinsic excitation energy of themore » fissioning system. Excitation energies are found to be strongly enhanced in the heavy fragment, if the level density follows a constant-temperature behavior at low energies, e.g., in the composed Gilbert-Cameron description.« less
High Concentrating GaAs Cell Operation Using Optical Waveguide Solar Energy System
NASA Technical Reports Server (NTRS)
Nakamura, T.; Case, J. A.; Timmons, M. L.
2004-01-01
This paper discusses the result of the concentrating photovoltaic (CPV) cell experiments conducted with the Optical Waveguide (OW) Solar Energy System. The high concentration GaAs cells developed by Research Triangle Institute (RTI) were combined with the OW system in a "fiber-on-cell" configuration. The sell performance was tested up to the solar concentration of 327. Detailed V-I characteristics, power density and efficiency data were collected. It was shown that the CPV cells combined with the OW solar energy system will be an effective electric power generation device.
Limiting factors for carbon based chemical double layer capacitors
NASA Technical Reports Server (NTRS)
Rose, M. Frank; Johnson, C.; Owens, T.; Stevens, B.
1993-01-01
The Chemical Double Layer (CDL) capacitor improves energy storage density dramatically when compared with conventional electrolytic capacitors. When compared to batteries, the CDL Capacitor is much less energy dense; however, the power density is orders of magnitude better. As a result, CDL-battery combinations present an interesting pulse power system with many potential applications. Due to the nature of the CDL it is inherently a low voltage device. The applications of the CDL can be tailored to auxiliary energy and burst mode storages which require fast charge/discharge cycles. Typical of the applications envisioned are power system backup, directed energy weapons concepts, electric automobiles, and electric actuators. In this paper, we will discuss some of the general characteristics of carbon-based CDL technology describing the structure, performance parameters, and methods of construction. Further, analytical and experimental results which define the state of the art are presented and described in terms of impact on applications.
Yip, Ngai Yin; Vermaas, David A; Nijmeijer, Kitty; Elimelech, Menachem
2014-05-06
Reverse electrodialysis (RED) can harness the Gibbs free energy of mixing when fresh river water flows into the sea for sustainable power generation. In this study, we carry out a thermodynamic and energy efficiency analysis of RED power generation, and assess the membrane power density. First, we present a reversible thermodynamic model for RED and verify that the theoretical maximum extractable work in a reversible RED process is identical to the Gibbs free energy of mixing. Work extraction in an irreversible process with maximized power density using a constant-resistance load is then examined to assess the energy conversion efficiency and power density. With equal volumes of seawater and river water, energy conversion efficiency of ∼ 33-44% can be obtained in RED, while the rest is lost through dissipation in the internal resistance of the ion-exchange membrane stack. We show that imperfections in the selectivity of typical ion exchange membranes (namely, co-ion transport, osmosis, and electro-osmosis) can detrimentally lower efficiency by up to 26%, with co-ion leakage being the dominant effect. Further inspection of the power density profile during RED revealed inherent ineffectiveness toward the end of the process. By judicious early discontinuation of the controlled mixing process, the overall power density performance can be considerably enhanced by up to 7-fold, without significant compromise to the energy efficiency. Additionally, membrane resistance was found to be an important factor in determining the power densities attainable. Lastly, the performance of an RED stack was examined for different membrane conductivities and intermembrane distances simulating high performance membranes and stack design. By thoughtful selection of the operating parameters, an efficiency of ∼ 37% and an overall gross power density of 3.5 W/m(2) represent the maximum performance that can potentially be achieved in a seawater-river water RED system with low-resistance ion exchange membranes (0.5 Ω cm(2)) at very small spacing intervals (50 μm).
First-Principles Prediction of Densities of Amorphous Materials: The Case of Amorphous Silicon
NASA Astrophysics Data System (ADS)
Furukawa, Yoritaka; Matsushita, Yu-ichiro
2018-02-01
A novel approach to predict the atomic densities of amorphous materials is explored on the basis of Car-Parrinello molecular dynamics (CPMD) in density functional theory. Despite the determination of the atomic density of matter being crucial in understanding its physical properties, no first-principles method has ever been proposed for amorphous materials until now. We have extended the conventional method for crystalline materials in a natural manner and pointed out the importance of the canonical ensemble of the total energy in the determination of the atomic densities of amorphous materials. To take into account the canonical distribution of the total energy, we generate multiple amorphous structures with several different volumes by CPMD simulations and average the total energies at each volume. The density is then determined as the one that minimizes the averaged total energy. In this study, this approach is implemented for amorphous silicon (a-Si) to demonstrate its validity, and we have determined the density of a-Si to be 4.1% lower and its bulk modulus to be 28 GPa smaller than those of the crystal, which are in good agreement with experiments. We have also confirmed that generating samples through classical molecular dynamics simulations produces a comparable result. The findings suggest that the presented method is applicable to other amorphous systems, including those for which experimental knowledge is lacking.
Ensemble Density Functional Approach to the Quantum Hall Effect
NASA Astrophysics Data System (ADS)
Heinonen, O.
1997-03-01
The fractional quantum Hall effect (FQHE) occurs in a two-dimensional electron gas of density n when a strong magnetic field perpendicular to the plane of the electron gas takes on certain strengths B(n). At these magnetic field strengths the system is incompressible, i.e., there is a finite cost in energy for creating charge density fluctuations in the bulk. Even so the boundary of the electron gas supports gapless modes of density waves. The bulk energy gap arises because of the strong electron-electron interactions. There are very good models for infinite homogeneous systems and for the gapless excitations of the boundary of the electron gas. But in order to explain experiments on quantum Hall systems, including Hall bars and quantum dots, new approaches are needed which can accurately describe inhomogeneous systems, including Landau level mixing and the spin degree of freedom. One possibility is an ensemble density functional theory approach that we have developed.(O. Heinonen, M.I. Lubin, and M.D. Johnson, Phys. Rev. Lett. 75), 4110 (1995)(O. Heinonen, M.I. Lubin, and M.D. Johnson, Int. J. Quant. Chem, December 1996) We have applied this to study edge reconstructions of spin-polarized quantum dots. The results for a six-electron test case are in excellent agreement with numerical diagonalizations. For larger systems, compressible and incompressible strips appear as the magnetic field is increased from the region in which a dot forms a compact so-called maximum density droplet. We have recently included spin degree of freedom to study the stability of a maximum density droplet, and charge-spin textures in inhomogeneous systems. As an example, when the Zeeman coupling is decreased, we find that the maximum density droplet develops a spin-structured edge instability. This implies that the spin degree of freedom may play a significant role in the study of edge modes at low or moderate magnetic fields.
Density-functional theory based on the electron distribution on the energy coordinate
NASA Astrophysics Data System (ADS)
Takahashi, Hideaki
2018-03-01
We developed an electronic density functional theory utilizing a novel electron distribution n(ɛ) as a basic variable to compute ground state energy of a system. n(ɛ) is obtained by projecting the electron density n({\\boldsymbol{r}}) defined on the space coordinate {\\boldsymbol{r}} onto the energy coordinate ɛ specified with the external potential {\\upsilon }ext}({\\boldsymbol{r}}) of interest. It was demonstrated that the Kohn-Sham equation can also be formulated with the exchange-correlation functional E xc[n(ɛ)] that employs the density n(ɛ) as an argument. It turned out an exchange functional proposed in our preliminary development suffices to describe properly the potential energies of several types of chemical bonds with comparable accuracies to the corresponding functional based on local density approximation. As a remarkable feature of the distribution n(ɛ) it inherently involves the spatially non-local information of the exchange hole at the bond dissociation limit in contrast to conventional approximate functionals. By taking advantage of this property we also developed a prototype of the static correlation functional E sc including no empirical parameters, which showed marked improvements in describing the dissociations of covalent bonds in {{{H}}}2,{{{C}}}2{{{H}}}4 and {CH}}4 molecules.
DOE R&D Accomplishments Database
MacDiarmid, A. G.
1984-02-01
The chief thrust of the research has been directed towards the evaluation of polyacetylene (CH){sub x}, the prototype conducting polymer as an electrode- active material in novel, rechargeable batteries employing nonaqueous electrolytes. The p-doped material, [(CH{sup +y})A{sub y}{sup -}]{sub x}, (where A{sup -} is an anion) in conjunction with a Li anode, shows excellent discharge characteristics, e.g., very little change in discharge voltage with change in discharge current and a high power density. Its energy density is also good but it shows poor shelf life. When (CH){sub x} is used as a cathode (Li anode), which results in the formation of the n-doped polymer, [Li{sub y} {sup +}(CH/sup -y/)]{sub x}, during discharge, good discharge plateaus and power densities are obtained together with excellent shelf life and good recyclability. The energy density is, however only moderate. Cells employing an [M{sub y}{sup +}(CH/sup -y/)]{sub x} (where M = Li, Na) anode and a TiS{sub 2} cathode show very good discharge and recycling characteristics but their energy density is poor.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Dileep; Kim, Taeil; Zhao, Weihuan
Thermal energy storage (TES) systems that are compatible with high temperature power cycles for concentrating solar power (CSP) require high temperature media for transporting and storing thermal energy. To that end, TES systems have been proposed based on the latent heat of fusion of the phase change materials (PCMs). However, PCMs have relatively low thermal conductivities. In this paper, use of high-thermal-conductivity graphite foam infiltrated with a PCM (MgCl2) has been investigated as a potential TES system. Graphite foams with two porosities were infiltrated with MgCl2. The infiltrated composites were evaluated for density, heat of fusion, melting/freezing temperatures, and thermalmore » diffusivities. Estimated thermal conductivities of MgCl2/graphite foam composites were significantly higher than those of MgCl2 alone over the measured temperature range. Furthermore, heat of fusion, melting/freezing temperatures, and densities showed comparable values to those of pure MgCl2. Results of this study indicate that MgCl2/graphite foam composites show promise as storage media for a latent heat thermal energy storage system for CSP applications.« less
Forced canonical thermalization in a hadronic transport approach at high density
NASA Astrophysics Data System (ADS)
Oliinychenko, Dmytro; Petersen, Hannah
2017-03-01
Hadronic transport approaches based on an effective solution of the relativistic Boltzmann equation are widely applied for the dynamical description of heavy ion reactions at low beam energies. At high densities, the assumption of binary interactions often used in hadronic transport approaches may not be applicable anymore. Therefore, we effectively simulate the high-density regime using the local forced canonical thermalization. This framework provides the opportunity to interpolate in a dynamical way between two different limits of kinetic theory: the dilute gas approximation and the ideal fluid case. This approach will be important for studies of the dynamical evolution of heavy ion collisions at low and intermediate energies as experimentally investigated at the beam energy scan program at RHIC, and in the future at FAIR and NICA. On the other hand, this new way of modeling hot and dense strongly interacting matter might be relevant for small systems at high energies (LHC and RHIC) as well.
Lee, Mi Kyung; Coker, David F
2016-08-18
An accurate approach for computing intermolecular and intrachromophore contributions to spectral densities to describe the electronic-nuclear interactions relevant for modeling excitation energy transfer processes in light harvesting systems is presented. The approach is based on molecular dynamics (MD) calculations of classical correlation functions of long-range contributions to excitation energy fluctuations and a separate harmonic analysis and single-point gradient quantum calculations for electron-intrachromophore vibrational couplings. A simple model is also presented that enables detailed analysis of the shortcomings of standard MD-based excitation energy fluctuation correlation function approaches. The method introduced here avoids these problems, and its reliability is demonstrated in accurate predictions for bacteriochlorophyll molecules in the Fenna-Matthews-Olson pigment-protein complex, where excellent agreement with experimental spectral densities is found. This efficient approach can provide instantaneous spectral densities for treating the influence of fluctuations in environmental dissipation on fast electronic relaxation.
The salinity gradient power generating system integrated into the seawater desalination system
NASA Astrophysics Data System (ADS)
Zhu, Yongqiang; Wang, Wanjun; Cai, Bingqian; Hao, Jiacheng; Xia, Ruihua
2017-01-01
Seawater desalination is an important way to solve the problem of fresh water shortage. Low energy efficiency and high cost are disadvantages existing in seawater desalination. With huge reserve and the highest energy density among different types of marine energy, salinity gradient energy has a bright application prospect. The promotion of traditional salinity gradient power generating systems is hindered by its low efficiency and specific requirements on site selection. This paper proposes a salinity gradient power generating system integrated into the seawater desalination system which combines the salinity gradient power generating system and the seawater desalination system aiming to remedy the aforementioned deficiency and could serve as references for future seawater desalination and salinity gradient energy exploitation. The paper elaborates on the operating principles of the system, analyzes the detailed working process, and estimates the energy output and consumption of the system. It is proved that with appropriate design, the energy output of the salinity gradient power generating system can satisfy the demand of the seawater desalination system.
Contact angle of sessile drops in Lennard-Jones systems.
Becker, Stefan; Urbassek, Herbert M; Horsch, Martin; Hasse, Hans
2014-11-18
Molecular dynamics simulations are used for studying the contact angle of nanoscale sessile drops on a planar solid wall in a system interacting via the truncated and shifted Lennard-Jones potential. The entire range between total wetting and dewetting is investigated by varying the solid-fluid dispersive interaction energy. The temperature is varied between the triple point and the critical temperature. A correlation is obtained for the contact angle in dependence of the temperature and the dispersive interaction energy. Size effects are studied by varying the number of fluid particles at otherwise constant conditions, using up to 150,000 particles. For particle numbers below 10,000, a decrease of the contact angle is found. This is attributed to a dependence of the solid-liquid surface tension on the droplet size. A convergence to a constant contact angle is observed for larger system sizes. The influence of the wall model is studied by varying the density of the wall. The effective solid-fluid dispersive interaction energy at a contact angle of θ = 90° is found to be independent of temperature and to decrease linearly with the solid density. A correlation is developed that describes the contact angle as a function of the dispersive interaction, the temperature, and the solid density. The density profile of the sessile drop and the surrounding vapor phase is described by a correlation combining a sigmoidal function and an oscillation term.
NASA Astrophysics Data System (ADS)
Sun, Jianwei; Perdew, John P.; Yang, Zenghui; Peng, Haowei
2016-05-01
The uniform electron gas and the hydrogen atom play fundamental roles in condensed matter physics and quantum chemistry. The former has an infinite number of electrons uniformly distributed over the neutralizing positively charged background, and the latter only one electron bound to the proton. The uniform electron gas was used to derive the local spin density approximation to the exchange-correlation functional that undergirds the development of the Kohn-Sham density functional theory. We show here that the ground-state exchange-correlation energies of the hydrogen atom and many other 1- and 2-electron systems are modeled surprisingly well by a different local spin density approximation (LSDA0). LSDA0 is constructed to satisfy exact constraints but agrees surprisingly well with the exact results for a uniform two-electron density in a finite, curved three-dimensional space. We also apply LSDA0 to excited or noded 1-electron densities, where it works less well. Furthermore, we show that the localization of the exact exchange hole for a 1- or 2-electron ground state can be measured by the ratio of the exact exchange energy to its optimal lower bound.
Lattice vibrations in the Frenkel-Kontorova model. I. Phonon dispersion, number density, and energy
NASA Astrophysics Data System (ADS)
Meng, Qingping; Wu, Lijun; Welch, David O.; Zhu, Yimei
2015-06-01
We studied the lattice vibrations of two interpenetrating atomic sublattices via the Frenkel-Kontorova (FK) model of a linear chain of harmonically interacting atoms subjected to an on-site potential using the technique of thermodynamic Green's functions based on quantum field-theoretical methods. General expressions were deduced for the phonon frequency-wave-vector dispersion relations, number density, and energy of the FK model system. As the application of the theory, we investigated in detail cases of linear chains with various periods of the on-site potential of the FK model. Some unusual but interesting features for different amplitudes of the on-site potential of the FK model are discussed. In the commensurate structure, the phonon spectrum always starts at a finite frequency, and the gaps of the spectrum are true ones with a zero density of modes. In the incommensurate structure, the phonon spectrum starts from zero frequency, but at a nonzero wave vector; there are some modes inside these gap regions, but their density is very low. In our approximation, the energy of a higher-order commensurate state of the one-dimensional system at a finite temperature may become indefinitely close to the energy of an incommensurate state. This finding implies that the higher-order incommensurate-commensurate transitions are continuous ones and that the phase transition may exhibit a "devil's staircase" behavior at a finite temperature.
Studies on an ultrasonic atomization feed direct methanol fuel cell.
Wu, Chaoqun; Liu, Linghao; Tang, Kai; Chen, Tao
2017-01-01
Direct methanol fuel cell (DMFC) is promising as an energy conversion device for the replacement of conventional chemical cell in future, owing to its convenient fuel storage, high energy density and low working temperature. The development of DMFC technology is currently limited by catalyst poison and methanol crossover. To alleviate the methanol crossover, a novel fuel supply system based on ultrasonic atomization is proposed. Experimental investigations on this fuel supply system to evaluate methanol permeation rates, open circuit voltages (OCVs) and polarization curves under a series of conditions have been carried out and reported in this paper. In comparison with the traditional liquid feed DMFC system, it can be found that the methanol crossover under the ultrasonic atomization feed system was significantly reduced because the DMFC reaches a large stable OCV value. Moreover, the polarization performance does not vary significantly with the liquid feed style. Therefore, the cell fed by ultrasonic atomization can be operated with a high concentration methanol to improve the energy density of DMFC. Under the supply condition of relatively high concentration methanol such as 4M and 8M, the maximum power density fed by ultrasonic atomization is higher than liquid by 6.05% and 12.94% respectively. Copyright © 2016 Elsevier B.V. All rights reserved.
Zhang, Cheng; Wei, Jun; Chen, Leiyi; Tang, Shaolong; Deng, Mingsen; Du, Youwei
2017-10-19
An asymmetric supercapacitor offers opportunities to effectively utilize the full potential of the different potential windows of the two electrodes for a higher operating voltage, resulting in an enhanced specific capacitance and significantly improved energy without sacrificing the power delivery and cycle life. To achieve high energy and power densities, we have synthesized an all-solid-state asymmetric supercapacitor with a wider voltage range using Fe-doped Co 3 O 4 and three-dimensional reduced graphene oxide (3DrGO) as the positive and negative electrodes, respectively. In contrast to undoped Co 3 O 4 , the increased density of states and modified charge spatial separation endow the Fe-doped Co 3 O 4 electrode with greatly improved electrochemical capacitive performance, including high specific capacitance (1997 F g -1 and 1757 F g -1 at current densities of 1 and 20 A g -1 , respectively), excellent rate capability, and superior cycling stability. Remarkably, the optimized all-solid-state asymmetric supercapacitor can be cycled reversibly in a wide range of 0-1.8 V, thus delivering a high energy density (270.3 W h kg -1 ), high power density (9.0 kW kg -1 at 224.2 W h kg -1 ), and excellent cycling stability (91.8% capacitance retention after 10 000 charge-discharge cycles at a constant current density of 10 A g -1 ). The superior capacitive performance suggests that such an all-solid-state asymmetric supercapacitor shows great potential for developing energy storage systems with high levels of energy and power delivery.
Recent Results from PHOBOS at Rhic
NASA Astrophysics Data System (ADS)
Garcia, Edmundo; Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Busza, W.; Carroll, A.; Chai, Z.; Decowski, M. P.; Garcia, E.; Gburek, T.; George, N.; Gulbrandsen, K.; Halliwell, C.; Hamblen, J.; Hauer, M.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Hołyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Khan, N.; Kulinich, P.; Kuo, C. M.; Lin, W. T.; Manly, S.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Reed, C.; Roland, C.; Roland, G.; Sagerer, J.; Seals, H.; Sedykh, I.; Smith, C. E.; Stankiewicz, M. A.; Steinberg, P.; Stephans, G. S. F.; Sukhanov, A.; Tonjes, M. B.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Vaurynovich, S. S.; Verdier, R.; Veres, G. I.; Wenger, E.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wysłouch, B.
The PHOBOS detector is one of four heavy-ion experiments at the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory. In this paper we will review some of the results of PHOBOS from the data collected in p+p, d+Au and Au+Au collisions at nucleon-nucleon center-of-mass energies up to 200 GeV. In the most central Au+Au collisions at the highest energy, evidence is found for the formation of a very high energy density and highly interactive system, which can not be described in terms of hadrons, and which has a relatively low baryon density.
NASA Astrophysics Data System (ADS)
Sergeev, A.; Alharbi, F. H.; Jovanovic, R.; Kais, S.
2016-04-01
The gradient expansion of the kinetic energy density functional, when applied to atoms or finite systems, usually grossly overestimates the energy in the fourth order and generally diverges in the sixth order. We avoid the divergence of the integral by replacing the asymptotic series including the sixth order term in the integrand by a rational function. Padé approximants show moderate improvements in accuracy in comparison with partial sums of the series. The results are discussed for atoms and Hooke’s law model for two-electron atoms.
Application of Density Functional Theory to Systems Containing Metal Atoms
NASA Technical Reports Server (NTRS)
Bauschlicher, Charles W., Jr.
2006-01-01
The accuracy of density functional theory (DFT) for problems involving metal atoms is considered. The DFT results are compared with experiment as well as results obtained using the coupled cluster approach. The comparisons include geometries, frequencies, and bond energies. The systems considered include MO2, M(OH)+n, MNO+, and MCO+2. The DFT works well for frequencies and geometries, even in case with symmetry breaking; however, some examples have been found where the symmetry breaking is quite severe and the DFT methods do not work well. The calculation of bond energies is more difficult and examples of successes as well as failures of DFT will be given.
A study of perturbations in scalar-tensor theory using 1 + 3 covariant approach
NASA Astrophysics Data System (ADS)
Ntahompagaze, Joseph; Abebe, Amare; Mbonye, Manasse
This work discusses scalar-tensor theories of gravity, with a focus on the Brans-Dicke sub-class, and one that also takes note of the latter’s equivalence with f(R) gravitation theories. A 1 + 3 covariant formalism is used in this case to discuss covariant perturbations on a background Friedmann-Laimaître-Robertson-Walker (FLRW) spacetime. Linear perturbation equations are developed based on gauge-invariant gradient variables. Both scalar and harmonic decompositions are applied to obtain second-order equations. These equations can then be used for further analysis of the behavior of the perturbation quantities in such a scalar-tensor theory of gravitation. Energy density perturbations are studied for two systems, namely for a scalar fluid-radiation system and for a scalar fluid-dust system, for Rn models. For the matter-dominated era, it is shown that the dust energy density perturbations grow exponentially, a result which agrees with those already existing in the literatures. In the radiation-dominated era, it is found that the behavior of the radiation energy-density perturbations is oscillatory, with growing amplitudes for n > 1, and with decaying amplitudes for 0 < n < 1. This is a new result.
NASA Astrophysics Data System (ADS)
Herrera, L.
2018-02-01
We put forward a new definition of complexity, for static and spherically symmetric self-gravitating systems, based on a quantity, hereafter referred to as complexity factor, that appears in the orthogonal splitting of the Riemann tensor, in the context of general relativity. We start by assuming that the homogeneous (in the energy density) fluid, with isotropic pressure is endowed with minimal complexity. For this kind of fluid distribution, the value of complexity factor is zero. So, the rationale behind our proposal for the definition of complexity factor stems from the fact that it measures the departure, in the value of the active gravitational mass (Tolman mass), with respect to its value for a zero complexity system. Such departure is produced by a specific combination of energy density inhomogeneity and pressure anisotropy. Thus, zero complexity factor may also be found in self-gravitating systems with inhomogeneous energy density and anisotropic pressure, provided the effects of these two factors, on the complexity factor, cancel each other. Some exact interior solutions to the Einstein equations satisfying the zero complexity criterium are found, and prospective applications of this newly defined concept, to the study of the structure and evolution of compact objects, are discussed.
Novel aqueous dual-channel aluminum-hydrogen peroxide battery
NASA Astrophysics Data System (ADS)
Marsh, Catherine; Licht, Stuart
1994-06-01
A dual-channel aluminum hydrogen peroxide battery is introduced with an open-circuit voltage of 1.9 volts, polarization losses of 0.9 mV cm(exp 2) mA(exp -1), and power densities of 1 W/cm(exp 2). Catholyte and anolyte cell compartments are separated by an Ir/Pd modified porous nickel cathode. Separation of catholyte and anolyte chambers prevents hydrogen peroxide poisoning of the aluminum anode. The battery is expressed by aluminum oxidation and aqueous solution phase hydrogen peroxide reduction for an overall battery discharge consisting of 2Al + 3H2O2 + 2OH(-) yields 2AlO2(-) + 4H2O E = 2.3 V. The search for electrical propulsion sources which fit the requirements for electrically powered vehicles has blurred the standard characteristics associated with electrochemical storage systems. Presently, electrochemical systems comprised of mechanically rechargeable primary batteries, secondary batteries, and fuel cells are candidates for electrochemical propulsion sources. While important advances in energy and power density continue for nonaqueous and molten electrolytes, aqueous electrolyte batteries often have an advantage in simplicity, conductivity, cost effectiveness, and environmental impact. Systems coupling aluminum anodes and aqueous electrolytes have been investigated. These systems include: aluminum/silver oxide, aluminum/manganese dioxide, aluminum air, aluminum/hydrogen peroxide aqueous batteries, and the recently introduced aluminum/ferricyanide and aluminum sulfur aqueous batteries. Conventional aqueous systems such as the nickel cadmium and lead-acid batteries are characterized by their relatively low energy densities and adverse environmental impact. Other systems have substantially higher theoretical energy capacities. While aluminum-silver oxide has demonstrated the highest steady-state power density, its high cost is an impediment for widespread utilization for electric propulsion.
Sodium-ion hybrid electrolyte battery for sustainable energy storage applications
NASA Astrophysics Data System (ADS)
Senthilkumar, S. T.; Abirami, Mari; Kim, Junsoo; Go, Wooseok; Hwang, Soo Min; Kim, Youngsik
2017-02-01
Sustainable, safe, and low-cost energy storage systems are essential for large-scale electrical energy storage. Herein, we report a sodium (Na)-ion hybrid electrolyte battery with a replaceable cathode system, which is separated from the Na metal anode by a Na superionic conducting ceramic. By using a fast Na-ion-intercalating nickel hexacyanoferrate (NiHCF) cathode along with an eco-friendly seawater catholyte, we demonstrate good cycling performance with an average discharge voltage of 3.4 V and capacity retention >80% over 100 cycles and >60% over 200 cycle. Remarkably, such high capacity retention is observed for both the initial as well as replaced cathodes. Moreover, a Na-metal-free hybrid electrolyte battery containing hard carbon as the anode exhibits an energy density of ∼146 Wh kg-1 at a current density of 10 mA g-1, which is comparable to that of lead-acid batteries and much higher than that of conventional aqueous Na-ion batteries. These results pave the way for further advances in sustainable energy storage technology.
Using Density Functional Theory (DFT) for the Calculation of Atomization Energies
NASA Technical Reports Server (NTRS)
Bauschlicher, Charles W., Jr.; Partridge, Harry; Langhoff, Stephen R. (Technical Monitor)
1995-01-01
The calculation of atomization energies using density functional theory (DFT), using the B3LYP hybrid functional, is reported. The sensitivity of the atomization energy to basis set is studied and compared with the coupled cluster singles and doubles approach with a perturbational estimate of the triples (CCSD(T)). Merging the B3LYP results with the G2(MP2) approach is also considered. It is found that replacing the geometry optimization and calculation of the zero-point energy by the analogous quantities computed using the B3LYP approach reduces the maximum error in the G2(MP2) approach. In addition to the 55 G2 atomization energies, some results for transition metal containing systems will also be presented.
A lithium ion battery using an aqueous electrolyte solution
Chang, Zheng; Li, Chunyang; Wang, Yanfang; Chen, Bingwei; Fu, Lijun; Zhu, Yusong; Zhang, Lixin; Wu, Yuping; Huang, Wei
2016-01-01
Energy and environmental pollution have become the two major problems in today’s society. The development of green energy storage devices with good safety, high reliability, high energy density and low cost are urgently demanded. Here we report on a lithium ion battery using an aqueous electrolyte solution. It is built up by using graphite coated with gel polymer membrane and LISICON as the negative electrode, and LiFePO4 in aqueous solution as the positive electrode. Its average discharge voltage is up to 3.1 V and energy density based on the two electrode materials is 258 Wh kg−1. It will be a promising energy storage system with good safety and efficient cooling effects. PMID:27328707
Xiao, Zhu; Liu, Hongjing; Havyarimana, Vincent; Li, Tong; Wang, Dong
2016-11-04
In this paper, we investigate the coverage performance and energy efficiency of multi-tier heterogeneous cellular networks (HetNets) which are composed of macrocells and different types of small cells, i.e., picocells and femtocells. By virtue of stochastic geometry tools, we model the multi-tier HetNets based on a Poisson point process (PPP) and analyze the Signal to Interference Ratio (SIR) via studying the cumulative interference from pico-tier and femto-tier. We then derive the analytical expressions of coverage probabilities in order to evaluate coverage performance in different tiers and investigate how it varies with the small cells' deployment density. By taking the fairness and user experience into consideration, we propose a disjoint channel allocation scheme and derive the system channel throughput for various tiers. Further, we formulate the energy efficiency optimization problem for multi-tier HetNets in terms of throughput performance and resource allocation fairness. To solve this problem, we devise a linear programming based approach to obtain the available area of the feasible solutions. System-level simulations demonstrate that the small cells' deployment density has a significant effect on the coverage performance and energy efficiency. Simulation results also reveal that there exits an optimal small cell base station (SBS) density ratio between pico-tier and femto-tier which can be applied to maximize the energy efficiency and at the same time enhance the system performance. Our findings provide guidance for the design of multi-tier HetNets for improving the coverage performance as well as the energy efficiency.
Xiao, Zhu; Liu, Hongjing; Havyarimana, Vincent; Li, Tong; Wang, Dong
2016-01-01
In this paper, we investigate the coverage performance and energy efficiency of multi-tier heterogeneous cellular networks (HetNets) which are composed of macrocells and different types of small cells, i.e., picocells and femtocells. By virtue of stochastic geometry tools, we model the multi-tier HetNets based on a Poisson point process (PPP) and analyze the Signal to Interference Ratio (SIR) via studying the cumulative interference from pico-tier and femto-tier. We then derive the analytical expressions of coverage probabilities in order to evaluate coverage performance in different tiers and investigate how it varies with the small cells’ deployment density. By taking the fairness and user experience into consideration, we propose a disjoint channel allocation scheme and derive the system channel throughput for various tiers. Further, we formulate the energy efficiency optimization problem for multi-tier HetNets in terms of throughput performance and resource allocation fairness. To solve this problem, we devise a linear programming based approach to obtain the available area of the feasible solutions. System-level simulations demonstrate that the small cells’ deployment density has a significant effect on the coverage performance and energy efficiency. Simulation results also reveal that there exits an optimal small cell base station (SBS) density ratio between pico-tier and femto-tier which can be applied to maximize the energy efficiency and at the same time enhance the system performance. Our findings provide guidance for the design of multi-tier HetNets for improving the coverage performance as well as the energy efficiency. PMID:27827917
Recent progress in supercapacitors: from materials design to system construction.
Wang, Yonggang; Xia, Yongyao
2013-10-04
Supercapacitors are currently attracting intensive attention because they can provide energy density by orders of magnitude higher than dielectric capacitors, greater power density, and longer cycling ability than batteries. The main challenge for supercapacitors is to develop them with high energy density that is close to that of a current rechargeable battery, while maintaining their inherent characteristics of high power and long cycling life. Consequently, much research has been devoted to enhance the performance of supercapacitors by either maximizing the specific capacitance and/or increasing the cell voltage. The latest advances in the exploration and development of new supercapacitor systems and related electrode materials are highlighted. Also, the prospects and challenges in practical application are analyzed, aiming to give deep insights into the material science and electrochemical fields. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ignitor with stable low-energy thermite igniting system
Kelly, Michael D.; Munger, Alan C.
1991-02-05
A stable compact low-energy igniting system in an ignitor utilizes two components, an initiating charge and an output charge. The initiating charge is a thermite in ultra-fine powder form compacted to 50-70% of theoretical maximum density and disposed in a cavity of a header of the ignitor adjacent to an electrical ignition device, or bridgewire, mounted in the header cavity. The initiating charge is ignitable by operation of the ignition device in a hot-wire mode. The output charge is a thermite in high-density consoladated form compacted to 90-99% of theoretical maximum density and disposed adjacent to the initiating charge on an opposite end thereof from the electrical ignition device and ignitable by the initiating charge. A sleeve is provided for mounting the output charge to the ignitor header with the initiating charge confined therebetween in the cavity.
Flippo, K. A.; Doss, F. W.; Kline, J. L.; ...
2016-11-23
While using a large volume high-energy-density fluid shear experiment ( 8.5 cm 3 ) at the National Ignition Facility, we have demonstrated for the first time the ability to significantly alter the evolution of a supersonic sheared mixing layer by controlling the initial conditions of that layer. Furthermore, by altering the initial surface roughness of the tracer foil, we demonstrate the ability to transition the shear mixing layer from a highly ordered system of coherent structures to a randomly ordered system with a faster growing mix layer, indicative of strong mixing in the layer at a temperature of severalmore » tens of electron volts and at near solid density. Moreover, simulations using a turbulent-mix model show good agreement with the experimental results and poor agreement without turbulent mix.« less
Tran, Fabien; Blaha, Peter
2017-05-04
Recently, exchange-correlation potentials in density functional theory were developed with the goal of providing improved band gaps in solids. Among them, the semilocal potentials are particularly interesting for large systems since they lead to calculations that are much faster than with hybrid functionals or methods like GW. We present an exhaustive comparison of semilocal exchange-correlation potentials for band gap calculations on a large test set of solids, and particular attention is paid to the potential HLE16 proposed by Verma and Truhlar. It is shown that the most accurate potential is the modified Becke-Johnson potential, which, most noticeably, is much more accurate than all other semilocal potentials for strongly correlated systems. This can be attributed to its additional dependence on the kinetic energy density. It is also shown that the modified Becke-Johnson potential is at least as accurate as the hybrid functionals and more reliable for solids with large band gaps.
Xin, Encheng; Ju, Yong; Yuan, Haiwen
2016-01-01
A space charge density wireless measurement system based on the idea of distributed measurement is proposed for collecting and monitoring the space charge density in an ultra-high-voltage direct-current (UHVDC) environment. The proposed system architecture is composed of a number of wireless nodes connected with space charge density sensors and a base station. The space charge density sensor based on atmospheric ion counter method is elaborated and developed, and the ARM microprocessor and Zigbee radio frequency module are applied. The wireless network communication quality and the relationship between energy consumption and transmission distance in the complicated electromagnetic environment is tested. Based on the experimental results, the proposed measurement system demonstrates that it can adapt to the complex electromagnetic environment under the UHVDC transmission lines and can accurately measure the space charge density. PMID:27775627
Xin, Encheng; Ju, Yong; Yuan, Haiwen
2016-10-20
A space charge density wireless measurement system based on the idea of distributed measurement is proposed for collecting and monitoring the space charge density in an ultra-high-voltage direct-current (UHVDC) environment. The proposed system architecture is composed of a number of wireless nodes connected with space charge density sensors and a base station. The space charge density sensor based on atmospheric ion counter method is elaborated and developed, and the ARM microprocessor and Zigbee radio frequency module are applied. The wireless network communication quality and the relationship between energy consumption and transmission distance in the complicated electromagnetic environment is tested. Based on the experimental results, the proposed measurement system demonstrates that it can adapt to the complex electromagnetic environment under the UHVDC transmission lines and can accurately measure the space charge density.
Designing lead-free antiferroelectrics for energy storage
Xu, Bin; Íñiguez, Jorge; Bellaiche, L.
2017-01-01
Dielectric capacitors, although presenting faster charging/discharging rates and better stability compared with supercapacitors or batteries, are limited in applications due to their low energy density. Antiferroelectric (AFE) compounds, however, show great promise due to their atypical polarization-versus-electric field curves. Here we report our first-principles-based theoretical predictions that Bi1−xRxFeO3 systems (R being a lanthanide, Nd in this work) can potentially allow high energy densities (100–150 J cm−3) and efficiencies (80–88%) for electric fields that may be within the range of feasibility upon experimental advances (2–3 MV cm−1). In addition, a simple model is derived to describe the energy density and efficiency of a general AFE material, providing a framework to assess the effect on the storage properties of variations in doping, electric field magnitude and direction, epitaxial strain, temperature and so on, which can facilitate future search of AFE materials for energy storage. PMID:28555655
Peng, Biaolin; Zhang, Qi; Li, Xing; Sun, Tieyu; Fan, Huiqing; Ke, Shanming; Ye, Mao; Wang, Yu; Lu, Wei; Niu, Hanben; Zeng, Xierong; Huang, Haitao
2015-06-24
A highly textured (111)-oriented Pb0.8Ba0.2ZrO3 (PBZ) relaxor thin film with the coexistence of antiferroelectric (AFE) and ferroelectric (FE) phases was prepared on a Pt/TiOx/SiO2/Si(100) substrate by using a sol-gel method. A large recoverable energy storage density of 40.18 J/cm(3) along with an efficiency of 64.1% was achieved at room temperature. Over a wide temperature range of 250 K (from room temperature to 523 K), the variation of the energy density is within 5%, indicating a high thermal stability. The high energy storage performance was endowed by a large dielectric breakdown strength, great relaxor dispersion, highly textured orientation, and the coexistence of FE and AFE phases. The PBZ thin film is believed to be an attractive material for applications in energy storage systems over a wide temperature range.
NASA Astrophysics Data System (ADS)
Abd El-Moneim, A.
2003-07-01
The correlation between activation energy of ultrasonic relaxation process through the temperature range from 140 to 300 K and some physical properties has been investigated in pure TeO 2 and transition metal TeO 2-V 2O 5 and TeO 2-MoO 3 glasses according to Bridge and Patel's theory. The oxygen density (loss centers), number of two-well systems, hopping distance and mechanical relaxation time have been calculated in these glasses from the data of density, bulk modulus and stretching force constant of the glass. It has been found that the acoustic activation energy increased linearly with both the oxygen density and the number of two-well systems. The correlation between the acoustic activation energy and bulk modulus was achieved through the stretching force constant of the network and other structural parameters. Moreover, the experimental values of activation energy (V) agree well with those calculated from an empirical equation presented in this study in the form V=2.9×10 -7 F( F/ K) 3.37, where F is the stretching force constant of the glass and K is the experimental bulk modulus.
van Aggelen, Helen; Verstichel, Brecht; Bultinck, Patrick; Van Neck, Dimitri; Ayers, Paul W; Cooper, David L
2011-02-07
Variational second order density matrix theory under "two-positivity" constraints tends to dissociate molecules into unphysical fractionally charged products with too low energies. We aim to construct a qualitatively correct potential energy surface for F(3)(-) by applying subspace energy constraints on mono- and diatomic subspaces of the molecular basis space. Monoatomic subspace constraints do not guarantee correct dissociation: the constraints are thus geometry dependent. Furthermore, the number of subspace constraints needed for correct dissociation does not grow linearly with the number of atoms. The subspace constraints do impose correct chemical properties in the dissociation limit and size-consistency, but the structure of the resulting second order density matrix method does not exactly correspond to a system of noninteracting units.
Influence of temperature and electrolyte on the performance of activated-carbon supercapacitors
NASA Astrophysics Data System (ADS)
Liu, Ping; Verbrugge, Mark; Soukiazian, Souren
For hybrid electric vehicle traction applications, energy storage devices with high power density and energy efficiency are required. A primary attribute of supercapacitors is that they retain their high power density and energy efficiency even at -30 °C, the lowest temperature at which unassisted starting must be provided to customers. More abuse-tolerant electrolytes are preferred to the high-conductivity acetonitrile-based systems commonly employed. Propylene carbonate based electrolytes are a promising alternative. In this work, we compare the electrochemical performance of two high-power density electrical double layer supercapacitors employing acetonitrile and propylene carbonate as solvents. From this study, we are able to elucidate phenomena that control the resistance of supercapacitor at lower temperatures, and quantify the difference in performance associated with the two electrolytes.
NASA Astrophysics Data System (ADS)
Minakshi, M.; Watcharatharapong, T.; Chakraborty, S.; Ahuja, R.
2018-04-01
Sustainable energy sources require an efficient energy storage system possessing excellent electrochemical properties. The better understanding of possible crystal configurations and the development of a new ternary metal oxide in molybdate composite as an electrode for hybrid capacitors can lead to an efficient energy storage system. Here, we reported a new ternary metal oxide in molybdate composite [(Mn1/3Co1/3Ni1/3)MoO4] prepared by simple combustion synthesis with an extended voltage window (1.8 V vs. Carbon) resulting in excellent specific capacity 35 C g-1 (58 F g-1) and energy density (50 Wh kg-1 at 500 W kg-1) for a two electrode system in an aqueous NaOH electrolyte. The binding energies measured for Mn, Co, and Ni 2p are consistent with the literature, and with the metal ions being present as M(II), implying that the oxidation states of the transition metals are unchanged. The experimental findings are correlated well through density functional theory based electronic structure calculations. Our reported work on the ternary metal oxide studies (Mn1/3Co1/3Ni1/3)MoO4 suggests that will be an added value to the materials for energy storage.
Renewable Energy Data Explorer User Guide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cox, Sarah L; Grue, Nicholas W; Tran, July
This publication provides a user guide for the Renewable Energy Data Explorer and technical potential tool within the Explorer. The Renewable Energy Data Explorer is a dynamic, web-based geospatial analysis tool that facilitates renewable energy decision-making, investment, and deployment. It brings together renewable energy resource data and other modeled or measured geographic information system (GIS) layers, including land use, weather, environmental, population density, administrative, and grid data.
The role of nanomaterials in redox-based supercapacitors for next generation energy storage devices.
Zhao, Xin; Sánchez, Beatriz Mendoza; Dobson, Peter J; Grant, Patrick S
2011-03-01
The development of more efficient electrical storage is a pressing requirement to meet future societal and environmental needs. This demand for more sustainable, efficient energy storage has provoked a renewed scientific and commercial interest in advanced capacitor designs in which the suite of experimental techniques and ideas that comprise nanotechnology are playing a critical role. Capacitors can be charged and discharged quickly and are one of the primary building blocks of many types of electrical circuit, from microprocessors to large-sale power supplies, but usually have relatively low energy storage capability when compared with batteries. The application of nanostructured materials with bespoke morphologies and properties to electrochemical supercapacitors is being intensively studied in order to provide enhanced energy density without comprising their inherent high power density and excellent cyclability. In particular, electrode materials that exploit physical adsorption or redox reactions of electrolyte ions are foreseen to bridge the performance disparity between batteries with high energy density and capacitors with high power density. In this review, we present some of the novel nanomaterial systems applied for electrochemical supercapacitors and show how material morphology, chemistry and physical properties are being tailored to provide enhanced electrochemical supercapacitor performance.
NASA Astrophysics Data System (ADS)
Flores, Christopher E.
2016-12-01
The Beam Energy Scan (BES) at the Relativistic Heavy-Ion Collider was proposed to characterize the properties of the medium produced in heavy-ion interactions over a broad range of baryon chemical potential. The aptitude of the STAR detector for mid-rapidity measurements has previously been leveraged to measure identified particle yields and spectra to extract bulk properties for the BES energies for | y | ≤ 0.1. However, to extract information on expansion dynamics and full phase space particle production, it is necessary to study identified particle rapidity density distributions. We present the first rapidity density distributions of identified pions from Au+Au collisions at √{sNN} = 7.7 , 11.5, and 19.6 GeV from the BES program as measured by the STAR detector. We use these distributions to obtain the full phase space yields of the pions to provide additional information of the system's chemistry. Further, we report the width of the rapidity density distributions compared to the width expected from Landau hydrodynamics. Finally, we interpret the results as a function of collision energy and discuss them in the context of previous energy scans done at the AGS and SPS.
The role of nanomaterials in redox-based supercapacitors for next generation energy storage devices
NASA Astrophysics Data System (ADS)
Zhao, Xin; Sánchez, Beatriz Mendoza; Dobson, Peter J.; Grant, Patrick S.
2011-03-01
The development of more efficient electrical storage is a pressing requirement to meet future societal and environmental needs. This demand for more sustainable, efficient energy storage has provoked a renewed scientific and commercial interest in advanced capacitor designs in which the suite of experimental techniques and ideas that comprise nanotechnology are playing a critical role. Capacitors can be charged and discharged quickly and are one of the primary building blocks of many types of electrical circuit, from microprocessors to large-sale power supplies, but usually have relatively low energy storage capability when compared with batteries. The application of nanostructured materials with bespoke morphologies and properties to electrochemical supercapacitors is being intensively studied in order to provide enhanced energy density without comprising their inherent high power density and excellent cyclability. In particular, electrode materials that exploit physical adsorption or redox reactions of electrolyte ions are foreseen to bridge the performance disparity between batteries with high energy density and capacitors with high power density. In this review, we present some of the novel nanomaterial systems applied for electrochemical supercapacitors and show how material morphology, chemistry and physical properties are being tailored to provide enhanced electrochemical supercapacitor performance.
Novel Molten Salts Thermal Energy Storage for Concentrating Solar Power Generation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reddy, Ramana G.
2013-10-23
The explicit UA program objective is to develop low melting point (LMP) molten salt thermal energy storage media with high thermal energy storage density for sensible heat storage systems. The novel Low Melting Point (LMP) molten salts are targeted to have the following characteristics: 1. Lower melting point (MP) compared to current salts (<222ºC) 2. Higher energy density compared to current salts (>300 MJ/m3) 3. Lower power generation cost compared to current salt In terms of lower power costs, the program target the DOE's Solar Energy Technologies Program year 2020 goal to create systems that have the potential to reducemore » the cost of Thermal Energy Storage (TES) to less than $15/kWh-th and achieve round trip efficiencies greater than 93%. The project has completed the experimental investigations to determine the thermo-physical, long term thermal stability properties of the LMP molten salts and also corrosion studies of stainless steel in the candidate LMP molten salts. Heat transfer and fluid dynamics modeling have been conducted to identify heat transfer geometry and relative costs for TES systems that would utilize the primary LMP molten salt candidates. The project also proposes heat transfer geometry with relevant modifications to suit the usage of our molten salts as thermal energy storage and heat transfer fluids. The essential properties of the down-selected novel LMP molten salts to be considered for thermal storage in solar energy applications were experimentally determined, including melting point, heat capacity, thermal stability, density, viscosity, thermal conductivity, vapor pressure, and corrosion resistance of SS 316. The thermodynamic modeling was conducted to determine potential high temperature stable molten salt mixtures that have thermal stability up to 1000 °C. The thermo-physical properties of select potential high temperature stable (HMP) molten salt mixtures were also experimentally determined. All the salt mixtures align with the go/no-go goals stipulated by the DOE for this project. Energy densities of all salt mixtures were higher than that of the current solar salt. The salt mixtures costs have been estimated and TES system costs for a 2 tank, direct approach have been estimated for each of these materials. All estimated costs are significantly below the baseline system that used solar salt. These lower melt point salts offer significantly higher energy density per volume than solar salt – and therefore attractively smaller inventory and equipment costs. Moreover, a new TES system geometry has been recommended A variety of approaches were evaluated to use the low melting point molten salt. Two novel changes are recommended that 1) use the salt as a HTF through the solar trough field, and 2) use the salt to not only create steam but also to preheat the condensed feedwater for Rankine cycle. The two changes enable the powerblock to operate at 500°C, rather than the current 400°C obtainable using oil as the HTF. Secondly, the use of salt to preheat the feedwater eliminates the need to extract steam from the low pressure turbine for that purpose. Together, these changes result in a dramatic 63% reduction required for 6 hour salt inventory, a 72% reduction in storage volume, and a 24% reduction in steam flow rate in the power block. Round trip efficiency for the Case 5 - 2 tank “direct” system is estimated at >97%, with only small losses from time under storage and heat exchange, and meeting RFP goals. This attractive efficiency is available because the major heat loss experienced in a 2 tank “indirect” system - losses by transferring the thermal energy from oil HTF to the salt storage material and back to oil to run the steam generator at night - is not present for the 2 tank direct system. The higher heat capacity values for both LMP and HMP systems enable larger storage capacities for concentrating solar power.« less
A Porphyrin Complex as a Self-Conditioned Electrode Material for High-Performance Energy Storage.
Gao, Ping; Chen, Zhi; Zhao-Karger, Zhirong; Mueller, Jonathan E; Jung, Christoph; Klyatskaya, Svetlana; Diemant, Thomas; Fuhr, Olaf; Jacob, Timo; Behm, R Jürgen; Ruben, Mario; Fichtner, Maximilian
2017-08-21
The novel functionalized porphyrin [5,15-bis(ethynyl)-10,20-diphenylporphinato]copper(II) (CuDEPP) was used as electrodes for rechargeable energy-storage systems with an extraordinary combination of storage capacity, rate capability, and cycling stability. The ability of CuDEPP to serve as an electron donor or acceptor supports various energy-storage applications. Combined with a lithium negative electrode, the CuDEPP electrode exhibited a long cycle life of several thousand cycles and fast charge-discharge rates up to 53 C and a specific energy density of 345 Wh kg -1 at a specific power density of 29 kW kg -1 . Coupled with a graphite cathode, the CuDEPP anode delivered a specific power density of 14 kW kg -1 . Whereas the capacity is in the range of that of ordinary lithium-ion batteries, the CuDEPP electrode has a power density in the range of that of supercapacitors, thus opening a pathway toward new organic electrodes with excellent rate capability and cyclic stability. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Exchange-Correlation Effects for Noncovalent Interactions in Density Functional Theory.
Otero-de-la-Roza, A; DiLabio, Gino A; Johnson, Erin R
2016-07-12
In this article, we develop an understanding of how errors from exchange-correlation functionals affect the modeling of noncovalent interactions in dispersion-corrected density-functional theory. Computed CCSD(T) reference binding energies for a collection of small-molecule clusters are decomposed via a molecular many-body expansion and are used to benchmark density-functional approximations, including the effect of semilocal approximation, exact-exchange admixture, and range separation. Three sources of error are identified. Repulsion error arises from the choice of semilocal functional approximation. This error affects intermolecular repulsions and is present in all n-body exchange-repulsion energies with a sign that alternates with the order n of the interaction. Delocalization error is independent of the choice of semilocal functional but does depend on the exact exchange fraction. Delocalization error misrepresents the induction energies, leading to overbinding in all induction n-body terms, and underestimates the electrostatic contribution to the 2-body energies. Deformation error affects only monomer relaxation (deformation) energies and behaves similarly to bond-dissociation energy errors. Delocalization and deformation errors affect systems with significant intermolecular orbital interactions (e.g., hydrogen- and halogen-bonded systems), whereas repulsion error is ubiquitous. Many-body errors from the underlying exchange-correlation functional greatly exceed in general the magnitude of the many-body dispersion energy term. A functional built to accurately model noncovalent interactions must contain a dispersion correction, semilocal exchange, and correlation components that minimize the repulsion error independently and must also incorporate exact exchange in such a way that delocalization error is absent.
Ponce-Pérez, R; Cocoletzi, Gregorio H; Takeuchi, Noboru
2017-11-28
Spin-polarized first-principles total-energy calculations have been performed to investigate the possible chain reaction of acetylene molecules mediated by hydrogen abstraction on hydrogenated hexagonal boron nitride monolayers. Calculations have been done within the periodic density functional theory (DFT), employing the PBE exchange correlation potential, with van der Waals corrections (vdW-DF). Reactions at two different sites have been considered: hydrogen vacancies on top of boron and on top of nitrogen atoms. As previously calculated, at the intermediate state of the reaction, when the acetylene molecule is attached to the surface, the adsorption energy is of the order of -0.82 eV and -0.20 eV (measured with respect to the energy of the non interacting molecule-substrate system) for adsorption on top of boron and nitrogen atoms, respectively. After the hydrogen abstraction takes place, the system gains additional energy, resulting in adsorption energies of -1.52 eV and -1.30 eV, respectively. These results suggest that the chain reaction is energetically favorable. The calculated minimum energy path (MEP) for hydrogen abstraction shows very small energy barriers of the order of 5 meV and 22 meV for the reaction on top of boron and nitrogen atoms, respectively. Finally, the density of states (DOS) evolution study helps to understand the chain reaction mechanism. Graphical abstract Acetylene chain reaction on hydrogenated boron nitride monolayers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rebolini, Elisa, E-mail: rebolini@lct.jussieu.fr; Toulouse, Julien, E-mail: julien.toulouse@upmc.fr; Savin, Andreas, E-mail: savin@lct.jussieu.fr
We present a study of the variation of total energies and excitation energies along a range-separated adiabatic connection. This connection links the non-interacting Kohn–Sham electronic system to the physical interacting system by progressively switching on the electron–electron interactions whilst simultaneously adjusting a one-electron effective potential so as to keep the ground-state density constant. The interactions are introduced in a range-dependent manner, first introducing predominantly long-range, and then all-range, interactions as the physical system is approached, as opposed to the conventional adiabatic connection where the interactions are introduced by globally scaling the standard Coulomb interaction. Reference data are reported for themore » He and Be atoms and the H{sub 2} molecule, obtained by calculating the short-range effective potential at the full configuration-interaction level using Lieb's Legendre-transform approach. As the strength of the electron–electron interactions increases, the excitation energies, calculated for the partially interacting systems along the adiabatic connection, offer increasingly accurate approximations to the exact excitation energies. Importantly, the excitation energies calculated at an intermediate point of the adiabatic connection are much better approximations to the exact excitation energies than are the corresponding Kohn–Sham excitation energies. This is particularly evident in situations involving strong static correlation effects and states with multiple excitation character, such as the dissociating H{sub 2} molecule. These results highlight the utility of long-range interacting reference systems as a starting point for the calculation of excitation energies and are of interest for developing and analyzing practical approximate range-separated density-functional methodologies.« less
NASA Astrophysics Data System (ADS)
Chen, Xianhe; Xia, Zhixun; Huang, Liya; Hu, Jianxin
2017-05-01
The working cycle of a novel underwater propulsion system based on aluminium combustion with water is researched in order to evaluate the best performance. The system exploits the exothermic reaction between aluminium and water which will produce high temperature, pressure steam and hydrogen mixture that can be used to drive turbine to generate power. Several new system configurations corresponding to different working cycles are investigated, and their performance parameters in terms of net power, energy density and global efficiency are discussed. The results of the system simulation show that using the recirculation steam rather than hydrogen as the carrier gas, the system net power, energy density and efficiency of the system are greatly increased compared, however the system performance is close either using adiabatic compression or isothermal compression. And if an evaporator component is added into system in order to take full use of the solid product heat, the system performance will be improved.
Sustainable Skyscrapers: Designing the Net Zero Energy Building of the Future
NASA Astrophysics Data System (ADS)
Kothari, S.; Bartsch, A.
2016-12-01
Cities of the future will need to increase population density in order to keep up with the rising populations in the limited available land area. In order to provide sufficient power as the population grows, cities must become more energy efficient. Fossil fuels and grid energy will continue to become more expensive as nonrenewable resources deplete. The obvious solution to increase population density while decreasing the reliance on fossil fuels is to build taller skyscrapers that are energy neutral, i.e. self-sustaining. However, current skyscrapers are not energy efficient, and therefore cannot provide a sustainable solution to the problem of increasing population density in the face of depleting energy resources. The design of a net zero energy building that includes both residential and commercial space is presented. Alternative energy systems such as wind turbines, photovoltaic cells, and a waste-to-fuel conversion plant have been incorporated into the design of a 50 story skyscraper that is not reliant on fossil fuels and has a payback time of about six years. Although the current building was designed to be located in San Francisco, simple modifications to the design would allow this building to fit the needs of any city around the world.
Hydrodynamic instabilities at an oblique interface: Experiments and Simulations
NASA Astrophysics Data System (ADS)
Douglas-Mann, E.; Fiedler Kawaguchi, C.; Trantham, M. A.; Malamud, G.; Wan, W. C.; Klein, S. R.; Kuranz, C. C.
2017-10-01
Hydrodynamic instabilities are important phenomena that occur in high-energy-density systems, such as astrophysical systems and inertial confinement fusion experiments, where pressure, density, and velocity gradients are present. Using a 30 ns laser pulse from the Omega EP laser system, a steady shock wave is driven into a target. A Spherical Crystal Imager provides high-resolution x-ray radiographs to study the evolution of complex hydrodynamic structures. This experiment has a light-to-heavy interface at an oblique angle with a precision-machined perturbation. The incident shock wave deposits shear and vorticity at the interface causing the perturbation to grow via Richtmyer-Meshkov and Kelvin-Helmholtz processes. We present results from analysis of radiographic data and hydrodynamics simulations showing the evolution of the shock and unstable structure. This work is supported by the NNSA-DS and SC-OFES Joint Program in High-Energy-Density Laboratory Plasmas, Grant Number DE-NA0002956 and the National Science Foundation through the Basic Plasma Science and Engineering program and LILAC.
Phillips, Jordan J; Peralta, Juan E
2013-05-07
We present a method for calculating magnetic coupling parameters from a single spin-configuration via analytic derivatives of the electronic energy with respect to the local spin direction. This method does not introduce new approximations beyond those found in the Heisenberg-Dirac Hamiltonian and a standard Kohn-Sham Density Functional Theory calculation, and in the limit of an ideal Heisenberg system it reproduces the coupling as determined from spin-projected energy-differences. Our method employs a generalized perturbative approach to constrained density functional theory, where exact expressions for the energy to second order in the constraints are obtained by analytic derivatives from coupled-perturbed theory. When the relative angle between magnetization vectors of metal atoms enters as a constraint, this allows us to calculate all the magnetic exchange couplings of a system from derivatives with respect to local spin directions from the high-spin configuration. Because of the favorable computational scaling of our method with respect to the number of spin-centers, as compared to the broken-symmetry energy-differences approach, this opens the possibility for the blackbox exploration of magnetic properties in large polynuclear transition-metal complexes. In this work we outline the motivation, theory, and implementation of this method, and present results for several model systems and transition-metal complexes with a variety of density functional approximations and Hartree-Fock.
Energy density of bloaters in the upper Great Lakes
Pothoven, Steven A.; Bunnell, David B.; Madenjian, Charles P.; Gorman, Owen T.; Roseman, Edward F.
2012-01-01
We evaluated the energy density of bloaters Coregonus hoyi as a function of fish size across Lakes Michigan, Huron, and Superior in 2008–2009 and assessed how differences in energy density are related to factors such as biomass density of bloaters and availability of prey. Additional objectives were to compare energy density between sexes and to compare energy densities of bloaters in Lake Michigan between two time periods (1998–2001 and 2008–2009). For the cross-lake comparisons in 2008, energy density increased with fish total length (TL) only in Lake Michigan. Mean energy density adjusted for fish size was 8% higher in bloaters from Lake Superior than in bloaters from Lake Huron. Relative to fish in these two lakes, small (175 mm TL) bloaters had higher energy density. In 2009, energy density increased with bloater size, and mean energy density adjusted for fish size was about 9% higher in Lake Michigan than in Lake Huron (Lake Superior was not sampled during 2009). Energy density of bloaters in Lake Huron was generally the lowest among lakes, reflecting the relatively low densities of opossum shrimp Mysis diluviana and the relatively high biomass of bloaters reported for that lake. Other factors, such as energy content of prey, growing season, or ontogenetic differences in energy use strategies, may also influence cross-lake variation in energy density. Mean energy density adjusted for length was 7% higher for female bloaters than for male bloaters in Lakes Michigan and Huron. In Lake Superior, energy density did not differ between males and females. Finally, energy density of bloaters in Lake Michigan was similar between the periods 2008–2009 and 1998–2001, possibly due to a low population abundance of bloaters, which could offset food availability changes linked to the loss of prey such as the amphipods Diporeia spp.
Tait, E. W.; Ratcliff, L. E.; Payne, M. C.; ...
2016-04-20
Experimental techniques for electron energy loss spectroscopy (EELS) combine high energy resolution with high spatial resolution. They are therefore powerful tools for investigating the local electronic structure of complex systems such as nanostructures, interfaces and even individual defects. Interpretation of experimental electron energy loss spectra is often challenging and can require theoretical modelling of candidate structures, which themselves may be large and complex, beyond the capabilities of traditional cubic-scaling density functional theory. In this work, we present functionality to compute electron energy loss spectra within the onetep linear-scaling density functional theory code. We first demonstrate that simulated spectra agree withmore » those computed using conventional plane wave pseudopotential methods to a high degree of precision. The ability of onetep to tackle large problems is then exploited to investigate convergence of spectra with respect to supercell size. As a result, we apply the novel functionality to a study of the electron energy loss spectra of defects on the (1 0 1) surface of an anatase slab and determine concentrations of defects which might be experimentally detectable.« less
A Thermally-Regenerative Ammonia-Based Flow Battery for Electrical Energy Recovery from Waste Heat.
Zhu, Xiuping; Rahimi, Mohammad; Gorski, Christopher A; Logan, Bruce
2016-04-21
Large amounts of low-grade waste heat (temperatures <130 °C) are released during many industrial, geothermal, and solar-based processes. Using thermally-regenerative ammonia solutions, low-grade thermal energy can be converted to electricity in battery systems. To improve reactor efficiency, a compact, ammonia-based flow battery (AFB) was developed and tested at different solution concentrations, flow rates, cell pairs, and circuit connections. The AFB achieved a maximum power density of 45 W m(-2) (15 kW m(-3) ) and an energy density of 1260 Wh manolyte (-3) , with a thermal energy efficiency of 0.7 % (5 % relative to the Carnot efficiency). The power and energy densities of the AFB were greater than those previously reported for thermoelectrochemical and salinity-gradient technologies, and the voltage or current could be increased using stacked cells. These results demonstrated that an ammonia-based flow battery is a promising technology to convert low-grade thermal energy to electricity. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Plasma wake field XUV radiation source
Prono, Daniel S.; Jones, Michael E.
1997-01-01
A XUV radiation source uses an interaction of electron beam pulses with a gas to create a plasma radiator. A flowing gas system (10) defines a circulation loop (12) with a device (14), such as a high pressure pump or the like, for circulating the gas. A nozzle or jet (16) produces a sonic atmospheric pressure flow and increases the density of the gas for interacting with an electron beam. An electron beam is formed by a conventional radio frequency (rf) accelerator (26) and electron pulses are conventionally formed by a beam buncher (28). The rf energy is thus converted to electron beam energy, the beam energy is used to create and then thermalize an atmospheric density flowing gas to a fully ionized plasma by interaction of beam pulses with the plasma wake field, and the energetic plasma then loses energy by line radiation at XUV wavelengths Collection and focusing optics (18) are used to collect XUV radiation emitted as line radiation when the high energy density plasma loses energy that was transferred from the electron beam pulses to the plasma.
Solar Thermochemical Energy Storage Through Carbonation Cycles of SrCO3/SrO Supported on SrZrO3.
Rhodes, Nathan R; Barde, Amey; Randhir, Kelvin; Li, Like; Hahn, David W; Mei, Renwei; Klausner, James F; AuYeung, Nick
2015-11-01
Solar thermochemical energy storage has enormous potential for enabling cost-effective concentrated solar power (CSP). A thermochemical storage system based on a SrO/SrCO3 carbonation cycle offers the ability to store and release high temperature (≈1200 °C) heat. The energy density of SrCO3/SrO systems supported by zirconia-based sintering inhibitors was investigated for 15 cycles of exothermic carbonation at 1150 °C followed by decomposition at 1235 °C. A sample with 40 wt % of SrO supported by yttria-stabilized zirconia (YSZ) shows good energy storage stability at 1450 MJ m(-3) over fifteen cycles at the same cycling temperatures. After further testing over 45 cycles, a decrease in energy storage capacity to 1260 MJ m(-3) is observed during the final cycle. The decrease is due to slowing carbonation kinetics, and the original value of energy density may be obtained by lengthening the carbonation steps. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Kelley, Jay Paul
As the Navy's demands for high power transient loads evolves, so too does the need for alternative energy sources to back-up the more traditional power generation. Such applications in need of support include electrical grid backup and directed energy weapon systems such as electromagnetic launchers, laser systems, and high power microwave generators, among others. Among the alternative generation sources receiving considerable attention are energy storage devices such as rechargeable electrochemical batteries and capacitors. In such applications as those mentioned above, these energy storage devices offer the ability to serve a dual role as both a power source to the various loads as well high power loads themselves to the continual generation when the high power transient loads are in periods of downtime. With the recent developments in electrochemical energy storage, lithium-ion batteries (LIBs) seem like the obvious choice, but previous research has shown that the elevated rates of charging can be detrimental to both the cycle life and the operational life span of the device. In order to preserve the batteries, their charge rate must be limited. One proposed method to accomplish the dual role task mentioned above, while preserving the life of the batteries, is by combining high energy density LIBs with high power density electric double layer capacitors (EDLCs) or lithium-ion capacitors (LICs) using controllable power electronics to adjust the flow of power to and from each device. Such a configuration is typically referred to as hybrid energy storage module (HESM). While shipboard generators start up, the combined high energy density and high power density of the HESM provides the capability to source critical loads for an extended period of time at the high rates they demand. Once the generator is operationally efficient, the HESM can act as a high energy reservoir to harvest the energy from the generator while the loads are in short periods of inactivity. This enables the generator to maintain its operation at levels of high efficiency thereby increasing the power quality of the AC bus. The work discussed here is aimed at evaluating how the use of energy storage impacts the power quality on MicroGrid's AC bus when high rate DC and AC loads are sourced simultaneously. Also HESM has been developed and evaluated as a mean to optimizing both the power and energy density of the energy storage installed.
Locality of correlation in density functional theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burke, Kieron; Cancio, Antonio; Gould, Tim
The Hohenberg-Kohn density functional was long ago shown to reduce to the Thomas-Fermi (TF) approximation in the non-relativistic semiclassical (or large-Z) limit for all matter, i.e., the kinetic energy becomes local. Exchange also becomes local in this limit. Numerical data on the correlation energy of atoms support the conjecture that this is also true for correlation, but much less relevant to atoms. We illustrate how expansions around a large particle number are equivalent to local density approximations and their strong relevance to density functional approximations. Analyzing highly accurate atomic correlation energies, we show that E{sub C} → −A{sub C} ZlnZ +more » B{sub C}Z as Z → ∞, where Z is the atomic number, A{sub C} is known, and we estimate B{sub C} to be about 37 mhartree. The local density approximation yields A{sub C} exactly, but a very incorrect value for B{sub C}, showing that the local approximation is less relevant for the correlation alone. This limit is a benchmark for the non-empirical construction of density functional approximations. We conjecture that, beyond atoms, the leading correction to the local density approximation in the large-Z limit generally takes this form, but with B{sub C} a functional of the TF density for the system. The implications for the construction of approximate density functionals are discussed.« less
High Energy Density Capacitors for Pulsed Power Applications
2009-07-01
As a result of this effort, the US Military has access to capacitors that are about a third the size and half the cost of the capacitors that were...resistor in terms of shock and vibration, mounting requirements, total volume, system reliability, and cost . All of these parameters were improved...it t tipo ymer m qua y an capac or cons ruc on. Energy Density of 10,000 Shot High Efficiency Pulse Power Capacitors The primary driver was 1 5
Functionally graded biomimetic energy absorption concept development for transportation systems.
DOT National Transportation Integrated Search
2014-02-01
Mechanics of a functionally graded cylinder subject to static or dynamic axial loading is considered, including a potential application as energy absorber. The mass density and stiffness are power functions of the radial coordinate as may be the case...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eisenbach, Markus; Li, Ying Wai; Liu, Xianglin
2017-12-01
LSMS is a first principles, Density Functional theory based, electronic structure code targeted mainly at materials applications. LSMS calculates the local spin density approximation to the diagonal part of the electron Green's function. The electron/spin density and energy are easily determined once the Green's function is known. Linear scaling with system size is achieved in the LSMS by using several unique properties of the real space multiple scattering approach to the Green's function.
Integration of Wind Turbines with Compressed Air Energy Storage
NASA Astrophysics Data System (ADS)
Arsie, I.; Marano, V.; Rizzo, G.; Moran, M.
2009-08-01
Some of the major limitations of renewable energy sources are represented by their low power density and intermittent nature, largely depending upon local site and unpredictable weather conditions. These problems concur to increase the unit costs of wind power, so limiting their diffusion. By coupling storage systems with a wind farm, some of the major limitations of wind power, such as a low power density and an unpredictable nature, can be overcome. After an overview on storage systems, the Compressed Air Energy Storage (CAES) is analyzed, and the state of art on such systems is discussed. A Matlab/Simulink model of a hybrid power plant consisting of a wind farm coupled with CAES is then presented. The model has been successfully validated starting from the operating data of the McIntosh CAES Plant in Alabama. Time-series neural network-based wind speed forecasting are employed to determine the optimal daily operation strategy for the storage system. A detailed economic analysis has been carried out: investment and maintenance costs are estimated based on literature data, while operational costs and revenues are calculated according to energy market prices. As shown in the paper, the knowledge of the expected available energy is a key factor to optimize the management strategies of the proposed hybrid power plant, allowing to obtain environmental and economic benefits.
Optimization of electrode characteristics for the Br₂/H₂ redox flow cell
Tucker, Michael C.; Cho, Kyu Taek; Weber, Adam Z.; ...
2014-10-17
The Br₂/H₂ redox flow cell shows promise as a high-power, low-cost energy storage device. The effect of various aspects of material selection, processing, and assembly of electrodes on the operation, performance, and efficiency of the system is determined. In particular, (+) electrode thickness, cell compression, hydrogen pressure, and (–) electrode architecture are investigated. Increasing hydrogen pressure and depositing the (–) catalyst layer on the membrane instead of on the carbon-paper backing layers have a large positive impact on performance, enabling a limiting current density above 2 A cm -2 and a peak power density of 1.4 W cm -2. Maximummore » energy efficiency of 79% is achieved. In addition, the root cause of limiting-current behavior in this system is elucidated, where it is found that Br - reversibly adsorbs at the Pt (–) electrode for potentials exceeding a critical value, and the extent of Br - coverage is potential-dependent. This phenomenon limits maximum cell current density and must be addressed in system modeling and design. These findings are expected to lower system cost and enable higher efficiency.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reimund, Kevin K.; McCutcheon, Jeffrey R.; Wilson, Aaron D.
A general method was developed for estimating the volumetric energy efficiency of pressure retarded osmosis via pressure-volume analysis of a membrane process. The resulting model requires only the osmotic pressure, π, and mass fraction, w, of water in the concentrated and dilute feed solutions to estimate the maximum achievable specific energy density, uu, as a function of operating pressure. The model is independent of any membrane or module properties. This method utilizes equilibrium analysis to specify the volumetric mixing fraction of concentrated and dilute solution as a function of operating pressure, and provides results for the total volumetric energy densitymore » of similar order to more complex models for the mixing of seawater and riverwater. Within the framework of this analysis, the total volumetric energy density is maximized, for an idealized case, when the operating pressure is π/(1+√w⁻¹), which is lower than the maximum power density operating pressure, Δπ/2, derived elsewhere, and is a function of the solute osmotic pressure at a given mass fraction. It was also found that a minimum 1.45 kmol of ideal solute is required to produce 1 kWh of energy while a system operating at “maximum power density operating pressure” requires at least 2.9 kmol. Utilizing this methodology, it is possible to examine the effects of volumetric solution cost, operation of a module at various pressure, and operation of a constant pressure module with various feed.« less
Yang, Weitao; Mori-Sánchez, Paula; Cohen, Aron J
2013-09-14
The exact conditions for density functionals and density matrix functionals in terms of fractional charges and fractional spins are known, and their violation in commonly used functionals has been shown to be the root of many major failures in practical applications. However, approximate functionals are designed for physical systems with integer charges and spins, not in terms of the fractional variables. Here we develop a general framework for extending approximate density functionals and many-electron theory to fractional-charge and fractional-spin systems. Our development allows for the fractional extension of any approximate theory that is a functional of G(0), the one-electron Green's function of the non-interacting reference system. The extension to fractional charge and fractional spin systems is based on the ensemble average of the basic variable, G(0). We demonstrate the fractional extension for the following theories: (1) any explicit functional of the one-electron density, such as the local density approximation and generalized gradient approximations; (2) any explicit functional of the one-electron density matrix of the non-interacting reference system, such as the exact exchange functional (or Hartree-Fock theory) and hybrid functionals; (3) many-body perturbation theory; and (4) random-phase approximations. A general rule for such an extension has also been derived through scaling the orbitals and should be useful for functionals where the link to the Green's function is not obvious. The development thus enables the examination of approximate theories against known exact conditions on the fractional variables and the analysis of their failures in chemical and physical applications in terms of violations of exact conditions of the energy functionals. The present work should facilitate the calculation of chemical potentials and fundamental bandgaps with approximate functionals and many-electron theories through the energy derivatives with respect to the fractional charge. It should play an important role in developing accurate approximate density functionals and many-body theory.
The Richtmyer-Meshkov Instability on a Circular Interface in Magnetohydrodynamics
NASA Astrophysics Data System (ADS)
Black, Wolfgang; Maxon, W. Curtis; Denissen, Nicholas; McFarland, Jacob
2017-11-01
Hydrodynamic instabilities (HI) are ubiquitous in high energy density (HED) applications such as astrophysics, thermonuclear weapons, and inertial fusion. In these systems, fluid mixing is encouraged by the HI which can reduce the energy yield and eventually drive the system to equilibrium. The Richtmyer-Meshkov (RM) instability is one such HI and is created when a perturbed interface between a density gradient is impulsively accelerated. The physics can be complicated one step further by the inclusion of Magnetohydrodynamics (MHD), where HED systems experience the effects of magnetic and electric fields. These systems provide unique challenges and as such can be used to validate hydrodynamic codes capable of predicting HI. The work presented here will outline efforts to study the RMI in MHD for a circular interface utilizing the hydrocode FLAG, developed at Los Alamos National Laboratory.
NASA Technical Reports Server (NTRS)
Billman, Kenneth W.; Gilbreath, William P.; Bowen, Stuart W.
1978-01-01
A system of orbiting, large-area, low mass density reflector satellites which provide nearly continuous solar energy to a world-distributed set of conversion sites is examined under the criteria for any potential new energy system: technical feasibility, significant and renewable energy impact, economic feasibility and social/political acceptability. Although many technical issues need further study, reasonable advances in space technology appear sufficient to implement the system. The enhanced insolation is shown to greatly improve the economic competitiveness of solar-electric generation to circa 1995 fossil/nuclear alternatives. The system is shown to have the potential for supplying a significant fraction of future domestic and world energy needs. Finally, the environmental and social issues, including a means for financing such a large shift to a world solar energy dependence, is addressed.
General Navier–Stokes-like momentum and mass-energy equations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Monreal, Jorge, E-mail: jmonreal@mail.usf.edu
2015-03-15
A new system of general Navier–Stokes-like equations is proposed to model electromagnetic flow utilizing analogues of hydrodynamic conservation equations. Such equations are intended to provide a different perspective and, potentially, a better understanding of electromagnetic mass, energy and momentum behaviour. Under such a new framework additional insights into electromagnetism could be gained. To that end, we propose a system of momentum and mass-energy conservation equations coupled through both momentum density and velocity vectors.
Hyperbolicity of the Nonlinear Models of Maxwell's Equations
NASA Astrophysics Data System (ADS)
Serre, Denis
. We consider the class of nonlinear models of electromagnetism that has been described by Coleman & Dill [7]. A model is completely determined by its energy density W(B,D). Viewing the electromagnetic field (B,D) as a 3×2 matrix, we show that polyconvexity of W implies the local well-posedness of the Cauchy problem within smooth functions of class Hs with s>1+d/2. The method follows that designed by Dafermos in his book [9] in the context of nonlinear elasticity. We use the fact that B×D is a (vectorial, non-convex) entropy, and we enlarge the system from 6 to 9 equations. The resulting system admits an entropy (actually the energy) that is convex. Since the energy conservation law does not derive from the system of conservation laws itself (Faraday's and Ampère's laws), but also needs the compatibility relations divB=divD=0 (the latter may be relaxed in order to take into account electric charges), the energy density is not an entropy in the classical sense. Thus the system cannot be symmetrized, strictly speaking. However, we show that the structure is close enough to symmetrizability, so that the standard estimates still hold true.
NASA Astrophysics Data System (ADS)
Fiksel, G.; Agliata, A.; Barnak, D.; Brent, G.; Chang, P.-Y.; Folnsbee, L.; Gates, G.; Hasset, D.; Lonobile, D.; Magoon, J.; Mastrosimone, D.; Shoup, M. J.; Betti, R.
2015-01-01
An upgrade of the pulsed magnetic field generator magneto-inertial fusion electrical discharge system [O. Gotchev et al., Rev. Sci. Instrum. 80, 043504 (2009)] is described. The device is used to study magnetized high-energy-density plasma and is capable of producing a pulsed magnetic field of tens of tesla in a volume of a few cubic centimeters. The magnetic field is created by discharging a high-voltage capacitor through a small wire-wound coil. The coil current pulse has a duration of about 1 μs and a peak value of 40 kA. Compared to the original, the updated version has a larger energy storage and improved switching system. In addition, magnetic coils are fabricated using 3-D printing technology which allows for a greater variety of the magnetic field topology.
Fiksel, G; Agliata, A; Barnak, D; Brent, G; Chang, P-Y; Folnsbee, L; Gates, G; Hasset, D; Lonobile, D; Magoon, J; Mastrosimone, D; Shoup, M J; Betti, R
2015-01-01
An upgrade of the pulsed magnetic field generator magneto-inertial fusion electrical discharge system [O. Gotchev et al., Rev. Sci. Instrum. 80, 043504 (2009)] is described. The device is used to study magnetized high-energy-density plasma and is capable of producing a pulsed magnetic field of tens of tesla in a volume of a few cubic centimeters. The magnetic field is created by discharging a high-voltage capacitor through a small wire-wound coil. The coil current pulse has a duration of about 1 μs and a peak value of 40 kA. Compared to the original, the updated version has a larger energy storage and improved switching system. In addition, magnetic coils are fabricated using 3-D printing technology which allows for a greater variety of the magnetic field topology.
Matsuda, Shoichi; Kubo, Yoshimi; Uosaki, Kohei; Nakanishi, Shuji
2017-03-16
Lithium-oxygen system has attracted much attention as a battery with high energy density that could satisfy the demands for electric vehicles. However, because lithium peroxide (Li 2 O 2 ) is formed as an insoluble and insulative discharge product at the positive electrode, Li-O 2 batteries have poor energy capacities. Although Li 2 O 2 deposition on the positive electrode can be avoided by inducing solution-route pathway using electrolytes composed of high donor number (DN) solvents, such systems generally have poor stability. Herein we report that potassium ions promote the solution-route formation of Li 2 O 2 . The present findings suggest that potassium or other monovalent ions have the potential to increase the volumetric energy density and life cycles of Li-O 2 batteries.
Blood-Forsythe, Martin A; Markovich, Thomas; DiStasio, Robert A; Car, Roberto; Aspuru-Guzik, Alán
2016-03-01
An accurate treatment of the long-range electron correlation energy, including van der Waals (vdW) or dispersion interactions, is essential for describing the structure, dynamics, and function of a wide variety of systems. Among the most accurate models for including dispersion into density functional theory (DFT) is the range-separated many-body dispersion (MBD) method [A. Ambrosetti et al. , J. Chem. Phys. , 2014, 140 , 18A508], in which the correlation energy is modeled at short-range by a semi-local density functional and at long-range by a model system of coupled quantum harmonic oscillators. In this work, we develop analytical gradients of the MBD energy with respect to nuclear coordinates, including all implicit coordinate dependencies arising from the partitioning of the charge density into Hirshfeld effective volumes. To demonstrate the efficiency and accuracy of these MBD gradients for geometry optimizations of systems with intermolecular and intramolecular interactions, we optimized conformers of the benzene dimer and isolated small peptides with aromatic side-chains. We find excellent agreement with the wavefunction theory reference geometries of these systems (at a fraction of the computational cost) and find that MBD consistently outperforms the popular TS and D3(BJ) dispersion corrections. To demonstrate the performance of the MBD model on a larger system with supramolecular interactions, we optimized the C 60 @C 60 H 28 buckyball catcher host-guest complex. In our analysis, we also find that neglecting the implicit nuclear coordinate dependence arising from the charge density partitioning, as has been done in prior numerical treatments, leads to an unacceptable error in the MBD forces, with relative errors of ∼20% (on average) that can extend well beyond 100%.
Computerized tomography platform using beta rays
NASA Astrophysics Data System (ADS)
Paetkau, Owen; Parsons, Zachary; Paetkau, Mark
2017-12-01
A computerized tomography (CT) system using a 0.1 μCi Sr-90 beta source, Geiger counter, and low density foam samples was developed. A simple algorithm was used to construct images from the data collected with the beta CT scanner. The beta CT system is analogous to X-ray CT as both types of radiation are sensitive to density variations. This system offers a platform for learning opportunities in an undergraduate laboratory, covering topics such as image reconstruction algorithms, radiation exposure, and the energy dependence of absorption.
Impurity self-energy in the strongly-correlated Bose systems
NASA Astrophysics Data System (ADS)
Panochko, Galyna; Pastukhov, Volodymyr; Vakarchuk, Ivan
2018-02-01
We proposed the nonperturbative scheme for the calculation of the impurity spectrum in the Bose system at zero temperature. The method is based on the path-integral formulation and describes an impurity as a zero-density ideal Fermi gas interacting with Bose system for which the action is written in terms of density fluctuations. On the example of the 3He atom immersed in the liquid helium-4 a good consistency with experimental data and results of Monte Carlo simulations is shown.
Rechargeable Ni-Li battery integrated aqueous/nonaqueous system.
Li, Huiqiao; Wang, Yonggang; Na, Haitao; Liu, Haimei; Zhou, Haoshen
2009-10-28
A rechargeable Ni-Li battery, in which nickel hydroxide serving as a cathode in an aqueous electrolyte and Li metal serving as an anode in an organic electrolyte were integrated by a superionic conductor glass ceramic film (LISICON), was proposed with the expectation to combine the advantages of both a Li-ion battery and Ni-MH battery. It has the potential for an ultrahigh theoretical energy density of 935 Wh/kg, twice that of a Li-ion battery (414 Wh/kg), based on the active material in electrodes. A prototype Ni-Li battery fabricated in the present work demonstrated a cell voltage of 3.47 V and a capacity of 264 mAh/g with good retention during 50 cycles of charge/discharge. This battery system with a hybrid electrolyte provides a new avenue for the best combination of electrode/electrolyte/electrode to fulfill the potential of high energy density as well as high power density.
The Litho-Density tool calibration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ellis, D.; Flaum, C.; Marienbach, E.
1983-10-01
The Litho-Density tool (LDT) uses a gamma ray source and two NaI scintillator detectors for borehole measurement of electron density, p/SUB e/, and a quantity, P/SUB e/, which is related to the photoelectric cross section at 60 keV and therefore to the lithology of the formation. An active stabilization system controls the gains of the two detectors which permits selective gamma-ray detection. Spectral analysis is performed in the near detector (2 energy windows) and in the detector farther away from the source (3 energy windows). This paper describes the results of laboratory measurements undertaken to define the basic tool response.more » The tool is shown to provide reliable measurements of formation density and lithology under a variety of environmental conditions.« less
Interdimensional effects in systems with quasirelativistic fermions
NASA Astrophysics Data System (ADS)
Zulkoskey, A. C.; Dick, R.; Tanaka, K.
2017-07-01
We examine the Green function and the density of states for fermions moving in three-dimensional Dirac materials with interfaces which affect the propagation properties of particles. Motivation for our research comes from interest in materials that exhibit quasirelativistic dispersion relations. By modifying Dirac-type contributions to the Hamiltonian in an interface we are able to calculate the Green function and the density of states. The density of states inside the interface exhibits interpolating behavior between two and three dimensions, with two-dimensional behavior at high energies and three-dimensional behavior at low energies, provided that the shift in the mass parameter in the interface is small. We also discuss the impact of the interpolating density of states on optical absorption in Dirac materials with a two-dimensional substructure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boella, E.; Fiúza, F.; Novo, A. Stockem
Here, a numerical study on ion acceleration in electrostatic shock waves is presented, with the aim of determining the best plasma configuration to achieve quasi-monoenergetic ion beams in laser-driven systems. It was recently shown that tailored near-critical density plasmas characterized by a long-scale decreasing rear density profile lead to beams with low energy spread (Fiúza et al 2012 Phys. Rev. Lett. 109 215001). In this work, a detailed parameter scan investigating different plasma scale lengths is carried out. As result, the optimal plasma spatial scale length that allows for minimizing the energy spread while ensuring a significant reflection of ionsmore » by the shock is identified. Furthermore, a new configuration where the required profile has been obtained by coupling micro layers of different densities is proposed. Lastly, results show that this new engineered approach is a valid alternative, guaranteeing a low energy spread with a higher level of controllability.« less
One-electron reduced density matrices of strongly correlated harmonium atoms.
Cioslowski, Jerzy
2015-03-21
Explicit asymptotic expressions are derived for the reduced one-electron density matrices (the 1-matrices) of strongly correlated two- and three-electron harmonium atoms in the ground and first excited states. These expressions, which are valid at the limit of small confinement strength ω, yield electron densities and kinetic energies in agreement with the published values. In addition, they reveal the ω(5/6) asymptotic scaling of the exchange components of the electron-electron repulsion energies that differs from the ω(2/3) scaling of their Coulomb and correlation counterparts. The natural orbitals of the totally symmetric ground state of the two-electron harmonium atom are found to possess collective occupancies that follow a mixed power/Gaussian dependence on the angular momentum in variance with the simple power-law prediction of Hill's asymptotics. Providing rigorous constraints on energies as functionals of 1-matrices, these results are expected to facilitate development of approximate implementations of the density matrix functional theory and ensure their proper description of strongly correlated systems.
Boella, E.; Fiúza, F.; Novo, A. Stockem; ...
2018-02-01
Here, a numerical study on ion acceleration in electrostatic shock waves is presented, with the aim of determining the best plasma configuration to achieve quasi-monoenergetic ion beams in laser-driven systems. It was recently shown that tailored near-critical density plasmas characterized by a long-scale decreasing rear density profile lead to beams with low energy spread (Fiúza et al 2012 Phys. Rev. Lett. 109 215001). In this work, a detailed parameter scan investigating different plasma scale lengths is carried out. As result, the optimal plasma spatial scale length that allows for minimizing the energy spread while ensuring a significant reflection of ionsmore » by the shock is identified. Furthermore, a new configuration where the required profile has been obtained by coupling micro layers of different densities is proposed. Lastly, results show that this new engineered approach is a valid alternative, guaranteeing a low energy spread with a higher level of controllability.« less
The PHOBOS perspective on discoveries at RHIC
NASA Astrophysics Data System (ADS)
Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Becker, B.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Chai, Z.; Decowski, M. P.; García, E.; Gburek, T.; George, N. K.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Harrington, A. S.; Hauer, M.; Heintzelman, G. A.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Hołyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Katzy, J.; Khan, N.; Kucewicz, W.; Kulinich, P.; Kuo, C. M.; Lee, J. W.; Lin, W. T.; Manly, S.; McLeod, D.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Remsberg, L. P.; Reuter, M.; Roland, C.; Roland, G.; Rosenberg, L.; Sagerer, J.; Sarin, P.; Sawicki, P.; Seals, H.; Sedykh, I.; Skulski, W.; Smith, C. E.; Stankiewicz, M. A.; Steinberg, P.; Stephans, G. S. F.; Sukhanov, A.; Tang, J.-L.; Tonjes, M. B.; Trzupek, A.; Vale, C. M.; van Nieuwenhuizen, G. J.; Vaurynovich, S. S.; Verdier, R.; Veres, G. I.; Wenger, E.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wuosmaa, A. H.; Wysłouch, B.; Zhang, J.; Phobos Collaboration
2005-08-01
This paper describes the conclusions that can be drawn from the data taken thus far with the PHOBOS detector at RHIC. In the most central Au + Au collisions at the highest beam energy, evidence is found for the formation of a very high energy density system whose description in terms of simple hadronic degrees of freedom is inappropriate. Furthermore, the constituents of this novel system are found to undergo a significant level of interaction. The properties of particle production at RHIC energies are shown to follow a number of simple scaling behaviors, some of which continue trends found at lower energies or in simpler systems. As a function of centrality, the total number of charged particles scales with the number of participating nucleons. When comparing Au + Au at different centralities, the dependence of the yield on the number of participants at higher p ( ˜4 GeV/c) is very similar to that at low transverse momentum. The measured values of charged particle pseudorapidity density and elliptic flow were found to be independent of energy over a broad range of pseudorapidities when effectively viewed in the rest frame of one of the colliding nuclei, a property we describe as "extended longitudinal scaling". Finally, the centrality and energy dependences of several observables were found to factorize to a surprising degree.
Energy density and energy flux in the focus of an optical vortex: reverse flux of light energy.
Kotlyar, Victor V; Kovalev, Alexey A; Nalimov, Anton G
2018-06-15
Using the Richards-Wolf formulas for an arbitrary circularly polarized optical vortex with an integer topological charge m, we obtain explicit expressions for all components of the electric and magnetic field strength vectors near the focus, as well as expressions for the intensity (energy density) and for the energy flux (components of the Poynting vector) in the focal plane of an aplanatic optical system. For m=2, from the obtained expressions it follows that the energy flux near the optical axis propagates in the reversed direction, rotating along a spiral around the optical axis. On the optical axis itself, the reversed flux is maximal and decays rapidly with the distance from the axis. For m=3, in contrast, the reversed energy flux in the focal plane is minimal (zero) on the optical axis and increases (until the first ring of the light intensity) as a squared distance from the axis.
Luk'ianova, S N
2013-01-01
This work represents generalization and the analysis of the long-term own materials characterizing reaction of the brain on electromagnetic radiation of low intensity (energy flow density in the continuous regime or in the impulse approximately 500 microW/sm2) and a short exposition (approximately 30 min). A set of the experimental results received on separate neurons, formations and brain as a whole give an idea about the reaction of the central nervous system to the studied influence. Comparison of these data with the corresponding responses to the known incentives (light, sound, electric current) testifies to the electromagnetic radiation of low energy flow density and a short exposition as a sub-threshold irritant for the central nervous system.
Performance of bent-crystal x-ray microscopes for high energy density physics research
Schollmeier, Marius S.; Geissel, Matthias; Shores, Jonathon E.; ...
2015-05-29
We present calculations for the field of view (FOV), image fluence, image monochromaticity, spectral acceptance, and image aberrations for spherical crystal microscopes, which are used as self-emission imaging or backlighter systems at large-scale high energy density physics facilities. Our analytic results are benchmarked with ray-tracing calculations as well as with experimental measurements from the 6.151 keV backlighter system at Sandia National Laboratories. Furthermore, the analytic expressions can be used for x-ray source positions anywhere between the Rowland circle and object plane. We discovered that this enables quick optimization of the performance of proposed but untested, bent-crystal microscope systems to findmore » the best compromise between FOV, image fluence, and spatial resolution for a particular application.« less
2011-11-21
Std Z39-18 Sol-Gel CCTO /P(VDF-HFP) Composites with High Energy Density During the previous reporting period we found that CCTO (CaCu3Ti4O12...composites containing CCTO synthesized by the standard solid-state route. At the optimal 20 vol% CCTO loading, our CCTO -P(VDF-HFP) composite has εr ~82 at...Ceramics such as BaTiO3 or CaCu3Ti4O12 ( CCTO ) have high dielectric permittivities, but they suffer from very low breakdown field strength and thus low
NASA Astrophysics Data System (ADS)
Piris, Mario; Pernal, Katarzyna
2017-10-01
van Dam [Phys. Rev. A 93, 052512 (2016), 10.1103/PhysRevA.93.052512] claims that the one-particle reduced density matrix (1RDM) of an interacting system can be represented by means of a single-determinant wave function of fictitious noninteracting particles. van Dam [Phys. Rev. A 93, 052512 (2016), 10.1103/PhysRevA.93.052512] introduced orbitals within a mean-field framework that produce energy levels similar to Hartree-Fock orbital energies, therefore he also claims that conventional analyses based on Koopmans' theorem are possible in 1RDM functional theory. In this Comment, we demonstrate that both claims are unfounded.
Application of Density Functional Theory to Systems Containing Metal Atoms
NASA Technical Reports Server (NTRS)
Bauschlicher, Charles W., Jr.; Arnold, James O. (Technical Monitor)
1997-01-01
The accuracy of density functional theory (DFT) for problems involving metal atoms is considered. The DFT results are compared with experiment as well as results obtained using the coupled cluster approach. The comparisons include geometries, frequencies, and bond energies. The systems considered include MO2, M(OH)+(sub n), MNO+, and MCO+(sub 2). The DFT works well for frequencies and geometries, even in cases with symmetry breaking; however, some examples have been found where the symmetry breaking is quite severe and the DFT methods do not work well. The calculation of bond energies is more difficult and examples of the successes as well as failures of DFT will be given.
NASA Astrophysics Data System (ADS)
García, Edmundo; Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Busza, W.; Carroll, A.; Chai, Z.; Decowski, M. P.; García, E.; Gburek, T.; George, N.; Gulbrandsen, K.; Halliwell, C.; Hamblen, J.; Hauer, M.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Hołyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Khan, N.; Kulinich, P.; Kuo, C. M.; Lin, W. T.; Manly, S.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Reed, C.; Roland, C.; Roland, G.; Sagerer, J.; Seals, H.; Sedykh, I.; Smith, C. E.; Stankiewicz, M. A.; Steinberg, P.; Stephans, G. S. F.; Sukhanov, A.; Tonjes, M. B.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Vaurynovich, S. S.; Verdier, R.; Veres, G. I.; Wenger, E.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wysłouch, B.
2007-02-01
The PHOBOS detector is one of four heavy ion experiments at the Relativistic Heavy Ion Collider at Brookhaven National Laboratory. In this paper we will review some of the results of PHOBOS from the data collected in p+p, d+Au and Au+Au collisions at nucleon-nucleon center-of-mass energies up to 200 GeV. Evidence is found of the formation of a very high energy density and highly interactive system, which can not be described in terms of hadrons, and has a relatively low baryon density. There is evidence that the system formed is thermalized to a certain degree. Scaling with the number of participants and extended longitudinal scaling behavior are also observed in distributions of produced charged particles.
A 100 J-level nanosecond DPSSL for high energy density experiments
NASA Astrophysics Data System (ADS)
Butcher, Thomas; Mason, Paul; Banerjee, Saumyabrata; Ertel, Klaus; Phillips, P. Jonathan; Smith, Jodie; De Vido, Mariastefania; Chekhlov, Oleg; Divoky, Martin; Pilat, Jan; Priebe, Gerd; Toncian, Toma; Shaikh, Waseem; Hooker, Chris; Lucianetti, Antonio; Hernandez-Gomez, Cristina; Mocek, Tomas; Edwards, Chris; Collier, John
2017-05-01
We present an overview of the cryo-amplifier concept and design utilized in the DiPOLE100 laser system built for use at the HiLASE Center, which has been successfully tested operating at an average power of 1kW. Following this we describe the alterations made to the design in the second generation system being constructed for high energy density (HED) experiments in the HED beamline at the European XFEL. These changes are predominantly geometric in nature, however also include improved mount design and improved control over the temporal shape of the output pulse. Finally, we comment on future plans for development of the DiPOLE laser amplifier architecture.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chandrasekaran, Suryanarayanan; Aghtar, Mortaza; Valleau, Stéphanie
2015-08-06
Studies on light-harvesting (LH) systems have attracted much attention after the finding of long-lived quantum coherences in the exciton dynamics of the Fenna–Matthews–Olson (FMO) complex. In this complex, excitation energy transfer occurs between the bacteriochlorophyll a (BChl a) pigments. Two quantum mechanics/molecular mechanics (QM/MM) studies, each with a different force-field and quantum chemistry approach, reported different excitation energy distributions for the FMO complex. To understand the reasons for these differences in the predicted excitation energies, we have carried out a comparative study between the simulations using the CHARMM and AMBER force field and the Zerner intermediate neglect of differential orbitalmore » (ZINDO)/S and time-dependent density functional theory (TDDFT) quantum chemistry methods. The calculations using the CHARMM force field together with ZINDO/S or TDDFT always show a wider spread in the energy distribution compared to those using the AMBER force field. High- or low-energy tails in these energy distributions result in larger values for the spectral density at low frequencies. A detailed study on individual BChl a molecules in solution shows that without the environment, the density of states is the same for both force field sets. Including the environmental point charges, however, the excitation energy distribution gets broader and, depending on the applied methods, also asymmetric. The excitation energy distribution predicted using TDDFT together with the AMBER force field shows a symmetric, Gaussian-like distribution.« less
Zang, Xining; Shen, Caiwei; Kao, Emmeline; Warren, Roseanne; Zhang, Ruopeng; Teh, Kwok Siong; Zhong, Junwen; Wei, Minsong; Li, Buxuan; Chu, Yao; Sanghadasa, Mohan; Schwartzberg, Adam; Lin, Liwei
2018-02-01
While electrochemical supercapacitors often show high power density and long operation lifetimes, they are plagued by limited energy density. Pseudocapacitive materials, in contrast, operate by fast surface redox reactions and are shown to enhance energy storage of supercapacitors. Furthermore, several reported systems exhibit high capacitance but restricted electrochemical voltage windows, usually no more than 1 V in aqueous electrolytes. Here, it is demonstrated that vertically aligned carbon nanotubes (VACNTs) with uniformly coated, pseudocapacitive titanium disulfide (TiS 2 ) composite electrodes can extend the stable working range to over 3 V to achieve a high capacitance of 195 F g -1 in an Li-rich electrolyte. A symmetric cell demonstrates an energy density of 60.9 Wh kg -1 -the highest among symmetric pseudocapacitors using metal oxides, conducting polymers, 2D transition metal carbides (MXene), and other transition metal dichalcogenides. Nanostructures prepared by an atomic layer deposition/sulfurization process facilitate ion transportation and surface reactions to result in a high power density of 1250 W kg -1 with stable operation over 10 000 cycles. A flexible solid-state supercapacitor prepared by transferring the TiS 2 -VACNT composite film onto Kapton tape is demonstrated to power a 2.2 V light emitting diode (LED) for 1 min. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Tabassum, Hassina; Mahmood, Asif; Wang, Qingfei; Xia, Wei; Liang, Zibin; Qiu, Bin; zhao, Ruo; Zou, Ruqiang
2017-01-01
To cater for the demands of electrochemical energy storage system, the development of cost effective, durable and highly efficient electrode materials is desired. Here, a novel electrode material based on redox active β-Co(OH)2 and B, N co-doped graphene nanohybrid is presented for electrochemical supercapacitor by employing a facile metal-organic frameworks (MOFs) route through pyrolysis and hydrothermal treatment. The Co(OH)2 could be firmly stabilized by dual protection of N-doped carbon polyhedron (CP) and B/N co-doped graphene (BCN) nanosheets. Interestingly, the porous carbon and BCN nanosheets greatly improve the charge storage, wettability, and redox activity of electrodes. Thus the hybrid delivers specific capacitance of 1263 F g−1 at a current density of 1A g−1 with 90% capacitance retention over 5000 cycles. Furthermore, the new aqueous asymmetric supercapacitor (ASC) was also designed by using Co(OH)2@CP@BCN nanohybrid and BCN nanosheets as positive and negative electrodes respectively, which leads to high energy density of 20.25 Whkg−1. This device also exhibits excellent rate capability with energy density of 15.55 Whkg−1 at power density of 9331 Wkg−1 coupled long termed stability up to 6000 cycles. PMID:28240224
Tabassum, Hassina; Mahmood, Asif; Wang, Qingfei; Xia, Wei; Liang, Zibin; Qiu, Bin; Zhao, Ruo; Zou, Ruqiang
2017-02-27
To cater for the demands of electrochemical energy storage system, the development of cost effective, durable and highly efficient electrode materials is desired. Here, a novel electrode material based on redox active β-Co(OH) 2 and B, N co-doped graphene nanohybrid is presented for electrochemical supercapacitor by employing a facile metal-organic frameworks (MOFs) route through pyrolysis and hydrothermal treatment. The Co(OH) 2 could be firmly stabilized by dual protection of N-doped carbon polyhedron (CP) and B/N co-doped graphene (BCN) nanosheets. Interestingly, the porous carbon and BCN nanosheets greatly improve the charge storage, wettability, and redox activity of electrodes. Thus the hybrid delivers specific capacitance of 1263 F g -1 at a current density of 1A g -1 with 90% capacitance retention over 5000 cycles. Furthermore, the new aqueous asymmetric supercapacitor (ASC) was also designed by using Co(OH) 2 @CP@BCN nanohybrid and BCN nanosheets as positive and negative electrodes respectively, which leads to high energy density of 20.25 Whkg -1 . This device also exhibits excellent rate capability with energy density of 15.55 Whkg -1 at power density of 9331 Wkg -1 coupled long termed stability up to 6000 cycles.
Ray A. Souter; Emile S Gardiner; Theodor D. Leininger; Dana Mitchell; Robert B. Rummer
2015-01-01
"Wood is an obvious alternative energy source": Johnson and others (2007) declare the potential of short-rotation intensively-managed woody crop systems to produce biomass for energy. While obvious as an energy source, costs of production need to be measured to assess the economic viability of selected tree species as woody perennial energy crops
Lattice vibrations in the Frenkel-Kontorova model. I. Phonon dispersion, number density, and energy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meng, Qingping; Wu, Lijun; Welch, David O.
2015-06-17
We studied the lattice vibrations of two inter-penetrating atomic sublattices via the Frenkel-Kontorova (FK) model of a linear chain of harmonically interacting atoms subjected to an on-site potential, using the technique of thermodynamic Green's functions based on quantum field-theoretical methods. General expressions were deduced for the phonon frequency-wave-vector dispersion relations, number density, and energy of the FK model system. In addition, as the application of the theory, we investigated in detail cases of linear chains with various periods of the on-site potential of the FK model. Some unusual but interesting features for different amplitudes of the on-site potential of themore » FK model are discussed. In the commensurate structure, the phonon spectrum always starts at a finite frequency, and the gaps of the spectrum are true ones with a zero density of modes. In the incommensurate structure, the phonon spectrum starts from zero frequency, but at a non-zero wave vector; there are some modes inside these gap regions, but their density is very low. In our approximation, the energy of a higher-order commensurate state of the one-dimensional system at a finite temperature may become indefinitely close to the energy of an incommensurate state. This finding implies that the higher-order incommensurate-commensurate transitions are continuous ones and that the phase transition may exhibit a “devil's staircase” behavior at a finite temperature.« less
Litzow, Michael A.; Piatt, John F.; Abookire, Alisa A.; Robards, Martin D.
2004-01-01
1. The quality-variability trade-off hypothesis predicts that (i) energy density (kJ g-1) and spatial-temporal variability in abundance are positively correlated in nearshore marine fishes; and (ii) prey selection by a nearshore piscivore, the pigeon guillemot (Cepphus columba Pallas), is negatively affected by variability in abundance. 2. We tested these predictions with data from a 4-year study that measured fish abundance with beach seines and pigeon guillemot prey utilization with visual identification of chick meals. 3. The first prediction was supported. Pearson's correlation showed that fishes with higher energy density were more variable on seasonal (r = 0.71) and annual (r = 0.66) time scales. Higher energy density fishes were also more abundant overall (r = 0.85) and more patchy at a scale of 10s of km (r = 0.77). 4. Prey utilization by pigeon guillemots was strongly non-random. Relative preference, defined as the difference between log-ratio transformed proportions of individual prey taxa in chick diets and beach seine catches, was significantly different from zero for seven of the eight main prey categories. 5. The second prediction was also supported. We used principal component analysis (PCA) to summarize variability in correlated prey characteristics (energy density, availability and variability in abundance). Two PCA scores explained 32% of observed variability in pigeon guillemot prey utilization. Seasonal variability in abundance was negatively weighted by these PCA scores, providing evidence of risk-averse selection. Prey availability, energy density and km-scale variability in abundance were positively weighted. 6. Trophic interactions are known to create variability in resource distribution in other systems. We propose that links between resource quality and the strength of trophic interactions may produce resource quality-variability trade-offs.
Quantification of breast density with dual energy mammography: A simulation study
Ducote, Justin L.; Molloi, Sabee
2008-01-01
Breast density, the percentage of glandular breast tissue, has been identified as an important yet underutilized risk factor in the development of breast cancer. A quantitative method to measure breast density with dual energy imaging was investigated using a computer simulation model. Two configurations to measure breast density were evaluated: the usage of monoenergetic beams and an ideal detector, and the usage of polyenergetic beams with spectra from a tungsten anode x-ray tube with a detector modeled after a digital mammography system. The simulation model calculated the mean glandular dose necessary to quantify the variability of breast density to within 1∕3%. The breast was modeled as a semicircle 10 cm in radius with equal homogenous thicknesses of adipose and glandular tissues. Breast thicknesses were considered in the range of 2–10 cm and energies in the range of 10–150 keV for the two monoenergetic beams, and 20–150 kVp for spectra with a tungsten anode x-ray tube. For a 4.2 cm breast thickness, the required mean glandular doses were 0.183 μGy for two monoenergetic beams at 19 and 71 keV, and 9.85 μGy for two polyenergetic spectra from a tungsten anode at 32 and 96 kVp with beam filtrations of 50 μm Rh and 300 μm Cu for the low and high energy beams, respectively. The results suggest that for either configuration, breast density can be precisely measured with dual energy imaging requiring only a small amount of additional dose to the breast. The possibility of using a standard screening mammogram as the low energy image is also discussed. PMID:19175100
Continuum description of solvent dielectrics in molecular-dynamics simulations of proteins
NASA Astrophysics Data System (ADS)
Egwolf, Bernhard; Tavan, Paul
2003-02-01
We present a continuum approach for efficient and accurate calculation of reaction field forces and energies in classical molecular-dynamics (MD) simulations of proteins in water. The derivation proceeds in two steps. First, we reformulate the electrostatics of an arbitrarily shaped molecular system, which contains partially charged atoms and is embedded in a dielectric continuum representing the water. A so-called fuzzy partition is used to exactly decompose the system into partial atomic volumes. The reaction field is expressed by means of dipole densities localized at the atoms. Since these densities cannot be calculated analytically for general systems, we introduce and carefully analyze a set of approximations in a second step. These approximations allow us to represent the dipole densities by simple dipoles localized at the atoms. We derive a system of linear equations for these dipoles, which can be solved numerically by iteration. After determining the two free parameters of our approximate method we check its quality by comparisons (i) with an analytical solution, which is available for a perfectly spherical system, (ii) with forces obtained from a MD simulation of a soluble protein in water, and (iii) with reaction field energies of small molecules calculated by a finite difference method.
Electron heating and energy inventory during asymmetric reconnection in a laboratory plasma
NASA Astrophysics Data System (ADS)
Yoo, J.; Na, B.; Jara-Almonte, J.; Yamada, M.; Ji, H.; Roytershteyn, V.; Argall, M. R.; Fox, W.; Chen, L. J.
2017-12-01
Electron heating and the energy inventory during asymmetric reconnection are studied in the Magnetic Reconnection Experiment (MRX) [1]. In this plasma, the density ratio is about 8 across the current sheet. Typical features of asymmetric reconnection such as the large density gradients near the low-density-side separatrices, asymmetric in-plane electric field, and bipolar out-of-plane magnetic field are observed. Unlike the symmetric case [2], electrons are also heated near the low-density-side separatrices. The measured parallel electric field may explain the observed electron heating. Although large fluctuations driven by lower-hybrid drift instabilities are also observed near the low-density-side separatrices, laboratory measurements and numerical simulations reported here suggest that they do not play a major role in electron energization. The average electron temperature increase in the exhaust region is proportional to the incoming magnetic energy per an electron/ion pair but exceeds the scaling of the previous space observations [3]. This discrepancy is explained by differences in the boundary condition and system size. The profile of electron energy gain from the electric field shows that there is additional electron energy gain associated with the electron diamagnetic current besides a large energy gain near the X-line. This additional energy gain increases electron enthalpy, not the electron temperature. Finally, a quantitative analysis of the energy inventory during asymmetric reconnection is conducted. Unlike the symmetric case where the ion energy gain is about twice more than the electron energy gain [4], electrons and ions obtain a similar amount of energy during asymmetric reconnection. [1] J. Yoo et al., accepted for a publication in J. Geophys. Res. [2] J. Yoo et al., Phys. Plasmas 21, 055706 (2014). [3] T. Phan et al., Geophys. Res. Lett. 40, 4475 (2013). [4] M. Yamada et al., Nat. Comms. 5, 4474 (2014).
Fuel cells for low power applications
NASA Astrophysics Data System (ADS)
Heinzel, A.; Hebling, C.; Müller, M.; Zedda, M.; Müller, C.
Electronic devices show an ever-increasing power demand and thus, require innovative concepts for power supply. For a wide range of power and energy capacity, membrane fuel cells are an attractive alternative to conventional batteries. The main advantages are the flexibility with respect to power and capacity achievable with different devices for energy conversion and energy storage, the long lifetime and long service life, the good ecological balance, very low self-discharge. Therefore, the development of fuel cell systems for portable electronic devices is an attractive, although also a challenging, goal. The fuel for a membrane fuel cell might be hydrogen from a hydride storage system or methanol/water as a liquid alternative. The main differences between the two systems are the much higher power density for hydrogen fuel cells, the higher energy density per weight for the liquid fuel, safety aspects and infrastructure for fuel supply for hydride materials. For different applications, different system designs are required. High power cells are required for portable computers, low power methanol fuel cells required for mobile phones in hybrid systems with batteries and micro-fuel cells are required, e.g. for hand held PCs in the sub-Watt range. All these technologies are currently under development. Performance data and results of simulations and experimental investigations will be presented.
NASA Astrophysics Data System (ADS)
Wendel, Christopher H.; Gao, Zhan; Barnett, Scott A.; Braun, Robert J.
2015-06-01
Electrical energy storage is expected to be a critical component of the future world energy system, performing load-leveling operations to enable increased penetration of renewable and distributed generation. Reversible solid oxide cells, operating sequentially between power-producing fuel cell mode and fuel-producing electrolysis mode, have the capability to provide highly efficient, scalable electricity storage. However, challenges ranging from cell performance and durability to system integration must be addressed before widespread adoption. One central challenge of the system design is establishing effective thermal management in the two distinct operating modes. This work leverages an operating strategy to use carbonaceous reactant species and operate at intermediate stack temperature (650 °C) to promote exothermic fuel-synthesis reactions that thermally self-sustain the electrolysis process. We present performance of a doped lanthanum-gallate (LSGM) electrolyte solid oxide cell that shows high efficiency in both operating modes at 650 °C. A physically based electrochemical model is calibrated to represent the cell performance and used to simulate roundtrip operation for conditions unique to these reversible systems. Design decisions related to system operation are evaluated using the cell model including current density, fuel and oxidant reactant compositions, and flow configuration. The analysis reveals tradeoffs between electrical efficiency, thermal management, energy density, and durability.
A review of flexible lithium-sulfur and analogous alkali metal-chalcogen rechargeable batteries.
Peng, Hong-Jie; Huang, Jia-Qi; Zhang, Qiang
2017-08-29
Flexible energy storage systems are imperative for emerging flexible devices that are revolutionizing our life. Lithium-ion batteries, the current main power sources, are gradually approaching their theoretical limitation in terms of energy density. Therefore, alternative battery chemistries are urgently required for next-generation flexible power sources with high energy densities, low cost, and inherent safety. Flexible lithium-sulfur (Li-S) batteries and analogous flexible alkali metal-chalcogen batteries are of paramount interest owing to their high energy densities endowed by multielectron chemistry. In this review, we summarized the recent progress of flexible Li-S and analogous batteries. A brief introduction to flexible energy storage systems and general Li-S batteries has been provided first. Progress in flexible materials for flexible Li-S batteries are reviewed subsequently, with a detailed classification of flexible sulfur cathodes as those based on carbonaceous (e.g., carbon nanotubes, graphene, and carbonized polymers) and composite (polymers and inorganics) materials and an overview of flexible lithium anodes and flexible solid-state electrolytes. Advancements in other flexible alkali metal-chalcogen batteries are then introduced. In the next part, we emphasize the importance of cell packaging and flexibility evaluation, and two special flexible battery prototypes of foldable and cable-type Li-S batteries are highlighted. In the end, existing challenges and future development of flexible Li-S and analogous alkali metal-chalcogen batteries are summarized and prospected.
O'Brien, Kieran T P; Kaltsoyannis, Nikolas
2017-01-17
A systematic computational study of organoactinide complexes of the form [LAnX] n+ has been carried out using density functional theory, the quantum theory of atoms in molecules (QTAIM) and Ziegler-Rauk energy decomposition analysis (EDA) methods. The systems studied feature L = trans-calix[2]benzene[2]pyrrolide, An = Th(iv), Th(iii), U(iii) and X = BH 4 , BO 2 C 2 H 4 , Me, N(SiH 3 ) 2 , OPh, CH 3 , NH 2 , OH, F, SiH 3 , PH 2 , SH, Cl, CH 2 Ph, NHPh, OPh, SiH 2 Ph, PHPh 2 , SPh, CPh 3 , NPh 2 , OPh, SiPh 3 PPh 2 , SPh. The PBE0 hybrid functional proved most suitable for geometry optimisations based on comparisons with available experimental data. An-X bond critical point electron densities, energy densities and An-X delocalisation indices, calculated with the PBE functional at the PBE0 geometries, are correlated with An-X bond energies, enthalpies and with the terms in the EDA. Good correlations are found between energies and QTAIM metrics, particularly for the orbital interaction term, provided the X ligand is part of an isoelectronic series and the number of open shell electrons is low (i.e. for the present Th(iv) and Th(iii) systems).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaur, Amandeep; Deepshikha; Vinayak, Karan Singh
2016-07-15
We performed a theoretical investigation of different mass-asymmetric reactions to access the direct impact of the density-dependent part of symmetry energy on multifragmentation. The simulations are performed for a specific set of reactions having same system mass and N/Z content, using isospin-dependent quantum molecular dynamics model to estimate the quantitative dependence of fragment production on themass-asymmetry factor (τ) for various symmetry energy forms. The dynamics associated with different mass-asymmetric reactions is explored and the direct role of symmetry energy is checked. Also a comparison with the experimental data (asymmetric reaction) is presented for a different equation of states (symmetry energymore » forms).« less
Dynamic Structure Factor: An Introduction
NASA Astrophysics Data System (ADS)
Sturm, K.
1993-02-01
The doubly differential cross-section for weak inelastic scattering of waves or particles by manybody systems is derived in Born approximation and expressed in terms of the dynamic structure factor according to van Hove. The application of this very general scheme to scattering of neutrons, x-rays and high-energy electrons is discussed briefly. The dynamic structure factor, which is the space and time Fourier transform of the density-density correlation function, is a property of the many-body system independent of the external probe and carries information on the excitation spectrum of the system. The relation of the electronic structure factor to the density-density response function defined in linear-response theory is shown using the fluctuation-dissipation theorem. This is important for calculations, since the response function can be calculated approximately from the independent-particle response function in self-consistent field approximations, such as the random-phase approximation or the local-density approximation of the density functional theory. Since the density-density response function also determines the dielectric function, the dynamic structure can be expressed by the dielectric function.
Fuel Cells for Space Science Applications
NASA Technical Reports Server (NTRS)
Burke, Kenneth A.
2003-01-01
Fuel cell technology has been receiving more attention recently as a possible alternative to the internal combustion engine for our automobile. Improvements in fuel cell designs as well as improvements in lightweight high-pressure gas storage tank technology make fuel cell technology worth a look to see if fuel cells can play a more expanded role in space missions. This study looks at the specific weight density and specific volume density of potential fuel cell systems as an alternative to primary and secondary batteries that have traditionally been used for space missions. This preliminary study indicates that fuel cell systems have the potential for energy densities of greater than 500 W-hr/kg, greater than 500W/kg and greater than 400 W-hr/liter, greater than 200 W/liter. This level of performance makes fuel cells attractive as high-power density, high-energy density sources for space science probes, planetary rovers and other payloads. The power requirements for these space missions are, in general, much lower than the power levels where fuel cells have been used in the past. Adaptation of fuel cells for space science missions will require down-sizing the fuel cell stack and making the fuel cell operate without significant amounts of ancillary equipment.
Jana, Subrata; Samal, Prasanjit
2017-06-29
Semilocal density functionals for the exchange-correlation energy of electrons are extensively used as they produce realistic and accurate results for finite and extended systems. The choice of techniques plays a crucial role in constructing such functionals of improved accuracy and efficiency. An accurate and efficient semilocal exchange energy functional in two dimensions is constructed by making use of the corresponding hole which is derived based on the density matrix expansion. The exchange hole involved is localized under the generalized coordinate transformation and satisfies all the relevant constraints. Comprehensive testing and excellent performance of the functional is demonstrated versus exact exchange results. The accuracy of results obtained by using the newly constructed functional is quite remarkable as it substantially reduces the errors present in the local and nonempirical exchange functionals proposed so far for two-dimensional quantum systems. The underlying principles involved in the functional construction are physically appealing and hold promise for developing range separated and nonlocal exchange functionals in two dimensions.
Bearingless Flywheel Systems, Winding and Control Schemes, and Sensorless Control
NASA Technical Reports Server (NTRS)
Kascak, Peter E (Inventor); Jansen, Ralph H (Inventor); Trase, Larry M (Inventor); Dever, Timothy P (Inventor); Kraft, Thomas G (Inventor)
2016-01-01
Flywheel systems are disclosed that provide increased energy density and operational effectiveness. A first bearingless motor and a second bearingless motor may be configured to simultaneously suspend the central rotor in a radial direction and to rotate the central rotor. However, certain implementations may have one motor or more than two motors, depending on the design. A plurality of the flywheel systems may be collectively controlled to perform community energy storage with higher storage capacities than individual flywheel systems.
A well-scaling natural orbital theory
Gebauer, Ralph; Cohen, Morrel H.; Car, Roberto
2016-11-01
Here, we introduce an energy functional for ground-state electronic structure calculations. Its variables are the natural spin-orbitals of singlet many-body wave functions and their joint occupation probabilities deriving from controlled approximations to the two-particle density matrix that yield algebraic scaling in general, and Hartree–Fock scaling in its seniority-zero version. Results from the latter version for small molecular systems are compared with those of highly accurate quantum-chemical computations. The energies lie above full configuration interaction calculations, close to doubly occupied configuration interaction calculations. Their accuracy is considerably greater than that obtained from current density-functional theory approximations and from current functionals ofmore » the oneparticle density matrix.« less
A well-scaling natural orbital theory
Gebauer, Ralph; Cohen, Morrel H.; Car, Roberto
2016-01-01
We introduce an energy functional for ground-state electronic structure calculations. Its variables are the natural spin-orbitals of singlet many-body wave functions and their joint occupation probabilities deriving from controlled approximations to the two-particle density matrix that yield algebraic scaling in general, and Hartree–Fock scaling in its seniority-zero version. Results from the latter version for small molecular systems are compared with those of highly accurate quantum-chemical computations. The energies lie above full configuration interaction calculations, close to doubly occupied configuration interaction calculations. Their accuracy is considerably greater than that obtained from current density-functional theory approximations and from current functionals of the one-particle density matrix. PMID:27803328
Many-body localization of bosons in optical lattices
NASA Astrophysics Data System (ADS)
Sierant, Piotr; Zakrzewski, Jakub
2018-04-01
Many-body localization for a system of bosons trapped in a one-dimensional lattice is discussed. Two models that may be realized for cold atoms in optical lattices are considered. The model with a random on-site potential is compared with previously introduced random interactions model. While the origin and character of the disorder in both systems is different they show interesting similar properties. In particular, many-body localization appears for a sufficiently large disorder as verified by a time evolution of initial density wave states as well as using statistical properties of energy levels for small system sizes. Starting with different initial states, we observe that the localization properties are energy-dependent which reveals an inverted many-body localization edge in both systems (that finding is also verified by statistical analysis of energy spectrum). Moreover, we consider computationally challenging regime of transition between many body localized and extended phases where we observe a characteristic algebraic decay of density correlations which may be attributed to subdiffusion (and Griffiths-like regions) in the studied systems. Ergodicity breaking in the disordered Bose–Hubbard models is compared with the slowing-down of the time evolution of the clean system at large interactions.
Feasibility and Supply Analysis of U.S. Geothermal District Heating and Cooling System
NASA Astrophysics Data System (ADS)
He, Xiaoning
Geothermal energy is a globally distributed sustainable energy with the advantages of a stable base load energy production with a high capacity factor and zero SOx, CO, and particulates emissions. It can provide a potential solution to the depletion of fossil fuels and air pollution problems. The geothermal district heating and cooling system is one of the most common applications of geothermal energy, and consists of geothermal wells to provide hot water from a fractured geothermal reservoir, a surface energy distribution system for hot water transmission, and heating/cooling facilities to provide water and space heating as well as air conditioning for residential and commercial buildings. To gain wider recognition for the geothermal district heating and cooling (GDHC) system, the potential to develop such a system was evaluated in the western United States, and in the state of West Virginia. The geothermal resources were categorized into identified hydrothermal resources, undiscovered hydrothermal resources, near hydrothermal enhanced geothermal system (EGS), and deep EGS. Reservoir characteristics of the first three categories were estimated individually, and their thermal potential calculated. A cost model for such a system was developed for technical performance and economic analysis at each geothermally active location. A supply curve for the system was then developed, establishing the quantity and the cost of potential geothermal energy which can be used for the GDHC system. A West Virginia University (WVU) case study was performed to compare the competiveness of a geothermal energy system to the current steam based system. An Aspen Plus model was created to simulate the year-round campus heating and cooling scenario. Five cases of varying water flow rates and temperatures were simulated to find the lowest levelized cost of heat (LCOH) for the WVU case study. The model was then used to derive a levelized cost of heat as a function of the population density at a constant geothermal gradient. By use of such functions in West Virginia at a census tract level, the most promising census tracts in WV for the development of geothermal district heating and cooling systems were mapped. This study is unique in that its purpose was to utilize supply analyses for the GDHC systems and determine an appropriate economic assessment of the viability and sustainability of the systems. It was found that the market energy demand, production temperature, and project lifetime have negative effects on the levelized cost, while the drilling cost, discount rate, and capital cost have positive effects on the levelized cost by sensitivity analysis. Moreover, increasing the energy demand is the most effective way to decrease the levelized cost. The derived levelized cost function shows that for EGS based systems, the population density has a strong negative effect on the LCOH at any geothermal gradient, while the gradient only has a negative effect on the LCOH at a low population density.
An x-ray backlit Talbot-Lau deflectometer for high-energy-density electron density diagnostics.
Valdivia, M P; Stutman, D; Stoeckl, C; Theobald, W; Mileham, C; Begishev, I A; Bromage, J; Regan, S P
2016-02-01
X-ray phase-contrast techniques can measure electron density gradients in high-energy-density plasmas through refraction induced phase shifts. An 8 keV Talbot-Lau interferometer consisting of free standing ultrathin gratings was deployed at an ultra-short, high-intensity laser system using K-shell emission from a 1-30 J, 8 ps laser pulse focused on thin Cu foil targets. Grating survival was demonstrated for 30 J, 8 ps laser pulses. The first x-ray deflectometry images obtained under laser backlighting showed up to 25% image contrast and thus enabled detection of electron areal density gradients with a maximum value of 8.1 ± 0.5 × 10(23) cm(-3) in a low-Z millimeter sized sample. An electron density profile was obtained from refraction measurements with an error of <8%. The 50 ± 15 μm spatial resolution achieved across the full field of view was found to be limited by the x-ray source-size, similar to conventional radiography.
Sodium-metal halide and sodium-air batteries.
Ha, Seongmin; Kim, Jae-Kwang; Choi, Aram; Kim, Youngsik; Lee, Kyu Tae
2014-07-21
Impressive developments have been made in the past a few years toward the establishment of Na-ion batteries as next-generation energy-storage devices and replacements for Li-ion batteries. Na-based cells have attracted increasing attention owing to low production costs due to abundant sodium resources. However, applications of Na-ion batteries are limited to large-scale energy-storage systems because of their lower energy density compared to Li-ion batteries and their potential safety problems. Recently, Na-metal cells such as Na-metal halide and Na-air batteries have been considered to be promising for use in electric vehicles owing to good safety and high energy density, although less attention is focused on Na-metal cells than on Na-ion cells. This Minireview provides an overview of the fundamentals and recent progress in the fields of Na-metal halide and Na-air batteries, with the aim of providing a better understanding of new electrochemical systems. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Asymmetries in the spectral density of an interaction-quenched Luttinger liquid
NASA Astrophysics Data System (ADS)
Calzona, A.; Gambetta, F. M.; Carrega, M.; Cavaliere, F.; Sassetti, M.
2018-03-01
The spectral density of an interaction-quenched one-dimensional system is investigated. Both direct and inverse quench protocols are considered and it is found that the former leads to stronger effects on the spectral density with respect to the latter. Such asymmetry is directly reflected on transport properties of the system, namely the charge and energy current flowing to the system from a tunnel coupled biased probe. In particular, the injection of particles from the probe to the right-moving channel of the system is considered. The resulting fractionalization phenomena are strongly affected by the quench protocol and display asymmetries in the case of direct and inverse quench. Transport properties therefore emerge as natural probes for the observation of this quench-induced behavior.
Song, Jong-Won; Hirao, Kimihiko
2015-10-14
Since the advent of hybrid functional in 1993, it has become a main quantum chemical tool for the calculation of energies and properties of molecular systems. Following the introduction of long-range corrected hybrid scheme for density functional theory a decade later, the applicability of the hybrid functional has been further amplified due to the resulting increased performance on orbital energy, excitation energy, non-linear optical property, barrier height, and so on. Nevertheless, the high cost associated with the evaluation of Hartree-Fock (HF) exchange integrals remains a bottleneck for the broader and more active applications of hybrid functionals to large molecular and periodic systems. Here, we propose a very simple yet efficient method for the computation of long-range corrected hybrid scheme. It uses a modified two-Gaussian attenuating operator instead of the error function for the long-range HF exchange integral. As a result, the two-Gaussian HF operator, which mimics the shape of the error function operator, reduces computational time dramatically (e.g., about 14 times acceleration in C diamond calculation using periodic boundary condition) and enables lower scaling with system size, while maintaining the improved features of the long-range corrected density functional theory.
Kim, Moonkeun; Lee, Sang-Kyun; Yang, Yil Suk; Jeong, Jaehwa; Min, Nam Ki; Kwon, Kwang-Ho
2013-12-01
We fabricated dual-beam cantilevers on the microelectromechanical system (MEMS) scale with an integrated Si proof mass. A Pb(Zr,Ti)O3 (PZT) cantilever was designed as a mechanical vibration energy-harvesting system for low power applications. The resonant frequency of the multilayer composition cantilevers were simulated using the finite element method (FEM) with parametric analysis carried out in the design process. According to simulations, the resonant frequency, voltage, and average power of a dual-beam cantilever was 69.1 Hz, 113.9 mV, and 0.303 microW, respectively, at optimal resistance and 0.5 g (gravitational acceleration, m/s2). Based on these data, we subsequently fabricated cantilever devices using dual-beam cantilevers. The harvested power density of the dual-beam cantilever compared favorably with the simulation. Experiments revealed the resonant frequency, voltage, and average power density to be 78.7 Hz, 118.5 mV, and 0.34 microW, respectively. The error between the measured and simulated results was about 10%. The maximum average power and power density of the fabricated dual-beam cantilever at 1 g were 0.803 microW and 1322.80 microW cm(-3), respectively. Furthermore, the possibility of a MEMS-scale power source for energy conversion experiments was also tested.
Minimizing lighting power density in office rooms equipped with Anidolic Daylighting Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Linhart, Friedrich; Scartezzini, Jean-Louis
2010-04-15
Electric lighting is responsible for up to one third of an office building's electricity needs. Making daylight more available in office buildings can not only contribute to significant energy savings but also enhance the occupants' performance and wellbeing. Anidolic Daylighting Systems (ADS) are one type of very effective facade-integrated daylighting systems. All south-facing office rooms within the LESO solar experimental building in Lausanne (Switzerland) are equipped with a given type of ADS. A recent study has shown that these offices' occupants are highly satisfied with their lighting environment. The most energy-efficient south-facing offices have a lighting power density of lessmore » than 5W/m{sup 2}. The lighting situation within these ''best practice''-offices has been assessed using the lighting simulation software RELUX Vision. Because this lighting situation is very much appreciated by the occupants, it was used as a starting point for developing even more energy-efficient office lighting designs. Two new lighting designs, leading to lighting power densities of 3.9W/m{sup 2} and 3W/m{sup 2}, respectively, have been suggested and simulated with RELUX Vision. Simulation results have shown that the expected performances of these new systems are comparable to that of the current lighting installation within the ''best practice''-offices or even better. These simulation results have been confirmed during experiments on 20 human subjects in a test office room recently set up within the LESO building. This article gives engineers, architects and light planers valuable information and ideas on how to design energy-efficient and comfortable electric lighting systems in office rooms with abundant access to daylight. (author)« less
High baryon and energy densities achievable in heavy-ion collisions at √{sN N}=39 GeV
NASA Astrophysics Data System (ADS)
Ivanov, Yu. B.; Soldatov, A. A.
2018-02-01
Baryon and energy densities, which are reached in central Au+Au collisions at collision energy of √{sN N}= 39 GeV, are estimated within the model of three-fluid dynamics. It is shown that the initial thermalized mean proper baryon and energy densities in a sizable central region approximately are nB/n0≈ 10 and ɛ ≈ 40 GeV/fm3, respectively. The study indicates that the deconfinement transition at the stage of interpenetration of colliding nuclei makes the system quite opaque. The final fragmentation regions in these collisions are formed not only by primordial fragmentation fireballs, i.e., the baryon-rich matter passed through the interaction region (containing approximately 30% of the total baryon charge), but also by the baryon-rich regions of the central fireball pushed out to peripheral rapidities by the subsequent almost one-dimensional expansion of the central fireball along the beam direction.
NASA Astrophysics Data System (ADS)
Al-Asadi, Ahmed S.; Henley, Luke Alexander; Wasala, Milinda; Muchharla, Baleeswaraiah; Perea-Lopez, Nestor; Carozo, Victor; Lin, Zhong; Terrones, Mauricio; Mondal, Kanchan; Kordas, Krisztian; Talapatra, Saikat
2017-03-01
Carbon nanotube/metal oxide based hybrids are envisioned as high performance electrochemical energy storage electrodes since these systems can provide improved performances utilizing an electric double layer coupled with fast faradaic pseudocapacitive charge storage mechanisms. In this work, we show that high performance supercapacitor electrodes with a specific capacitance of ˜192 F/g along with a maximum energy density of ˜3.8 W h/kg and a power density of ˜ 28 kW/kg can be achieved by synthesizing zinc oxide nanowires (ZnO NWs) directly on top of aligned multi-walled carbon nanotubes (MWCNTs). In comparison to pristine MWCNTs, these constitute a 12-fold of increase in specific capacitance as well as corresponding power and energy density values. These electrodes also possess high cycling stability and were able to retain ˜99% of their specific capacitance value over 2000 charging discharging cycles. These findings indicate potential use of a MWCNT/ZnO NW hybrid material for future electrochemical energy storage applications.
Zhao, Quan-Liang; He, Guang-Ping; Di, Jie-Jian; Song, Wei-Li; Hou, Zhi-Ling; Tan, Pei-Pei; Wang, Da-Wei; Cao, Mao-Sheng
2017-07-26
A flexible semitransparent energy harvester is assembled based on laterally aligned Pb(Zr 0.52 Ti 0.48 )O 3 (PZT) single-crystal nanowires (NWs). Such a harvester presents the highest open-circuit voltage and a stable area power density of up to 10 V and 0.27 μW/cm 2 , respectively. A high pressure sensitivity of 0.14 V/kPa is obtained in the dynamic pressure sensing, much larger than the values reported in other energy harvesters based on piezoelectric single-crystal NWs. Furthermore, theoretical and finite element analyses also confirm that the piezoelectric voltage constant g 33 of PZT NWs is competitive to the lead-based bulk single crystals and ceramics, and the enhanced pressure sensitivity and power density are substantially linked to the flexible structure with laterally aligned PZT NWs. The energy harvester in this work holds great potential in flexible and transparent sensing and self-powered systems.
Direct Density Functional Energy Minimization using an Tetrahedral Finite Element Grid
NASA Astrophysics Data System (ADS)
Vaught, A.; Schmidt, K. E.; Chizmeshya, A. V. G.
1998-03-01
We describe an O(N) (N proportional to volume) technique for solving electronic structure problems using the finite element method (FEM). A real--space tetrahedral grid is used as a basis to represent the electronic density, of a free or periodic system and Poisson's equation is solved as a boundary value problem. Nuclear cusps are treated using a local grid consisting of radial elements. These features facilitate the implementation of complicated energy functionals and permit a direct (constrained) energy minimization with respect to the density. We demonstrate the usefulness of the scheme by calculating the binding trends and polarizabilities of a number of atoms and molecules using a number of recently proposed non--local, orbital--free kinetic energy functionals^1,2. Scaling behavior, computational efficiency and the generalization to band--structure will also be discussed. indent 0 pt øbeylines øbeyspaces skip 0 pt ^1 P. Garcia-Gonzalez, J.E. Alvarellos and E. Chacon, Phys. Rev. B 54, 1897 (1996). ^2 A. J. Thakkar, Phys.Rev.B 46, 6920 (1992).
NASA Astrophysics Data System (ADS)
Wu, Shan; Burlingame, Quinn; Lin, Minren; Zhang, Qiming
2013-03-01
There is an increasing demand on dielectric materials with high electric energy density and low loss for a broad range of applications in modern electronics and electrical power systems such as hybrid electric vehicles (HEV), medical defibrillators, filters, and switched-mode power supplies. One major challenge in developing dielectric polymers is how to achieve high energy density Ue while maintaining low dielectric loss, even at very high-applied electric fields. Here we show that amorphous polar-polymers with very low impurity concentration can be promising for realizing such a dielectric polymer. Polar-polymer with high dipole moment and weak dipole coupling can provide relatively high dielectric constant for high Ue, eliminate polarization and conduction losses due to weak dipolar coupling and strong polar-scattering to charge carriers. Indeed, an aromatic polythiourea thin film can maintain low loss to high fields (>1 GV/m) with a high Ue (~ 24 J/cm3) , which is very attractive for energy storage capacitors.
Storage of Renewable Energy by Reduction of CO2 with Hydrogen.
Züttel, Andreas; Mauron, Philippe; Kato, Shunsuke; Callini, Elsa; Holzer, Marco; Huang, Jianmei
2015-01-01
The main difference between the past energy economy during the industrialization period which was mainly based on mining of fossil fuels, e.g. coal, oil and methane and the future energy economy based on renewable energy is the requirement for storage of the energy fluxes. Renewable energy, except biomass, appears in time- and location-dependent energy fluxes as heat or electricity upon conversion. Storage and transport of energy requires a high energy density and has to be realized in a closed materials cycle. The hydrogen cycle, i.e. production of hydrogen from water by renewable energy, storage and use of hydrogen in fuel cells, combustion engines or turbines, is a closed cycle. However, the hydrogen density in a storage system is limited to 20 mass% and 150 kg/m(3) which limits the energy density to about half of the energy density in fossil fuels. Introducing CO(2) into the cycle and storing hydrogen by the reduction of CO(2) to hydrocarbons allows renewable energy to be converted into synthetic fuels with the same energy density as fossil fuels. The resulting cycle is a closed cycle (CO(2) neutral) if CO(2) is extracted from the atmosphere. Today's technology allows CO(2) to be reduced either by the Sabatier reaction to methane, by the reversed water gas shift reaction to CO and further reduction of CO by the Fischer-Tropsch synthesis (FTS) to hydrocarbons or over methanol to gasoline. The overall process can only be realized on a very large scale, because the large number of by-products of FTS requires the use of a refinery. Therefore, a well-controlled reaction to a specific product is required for the efficient conversion of renewable energy (electricity) into an easy to store liquid hydrocarbon (fuel). In order to realize a closed hydrocarbon cycle the two major challenges are to extract CO(2) from the atmosphere close to the thermodynamic limit and to reduce CO(2) with hydrogen in a controlled reaction to a specific hydrocarbon. Nanomaterials with nanopores and the unique surface structures of metallic clusters offer new opportunities for the production of synthetic fuels.
NASA Astrophysics Data System (ADS)
Yang, Zhewei; Guo, Huajun; Li, Xinhai; Wang, Zhixing; Yan, Zhiliang; Wang, Yansen
2016-10-01
Lithium-ion capacitor (LIC) is a novel advanced electrochemical energy storage (EES) system bridging gap between lithium ion battery (LIB) and electrochemical capacitor (ECC). In this work, we report that sisal fiber activated carbon (SFAC) was synthesized by hydrothermal treatment followed by KOH activation and served as capacitive material in LIC for the first time. Different particle structure, morphology, specific surface area and heteroatoms affected the electrochemical performance of as-prepared materials and corresponding LICs. When the mass ratio of KOH to char precursor was 2, hierarchical porous structured SFAC-2 was prepared and exhibited moderate specific capacitance (103 F g-1 at 0.1 A g-1), superior rate capability and cyclic stability (88% capacity retention after 5000 cycles at 1 A g-1). The corresponding assembled LIC (LIC-SC2) with optimal comprehensive electrochemical performance, displayed the energy density of 83 Wh kg-1, the power density of 5718 W kg-1 and superior cyclic stability (92% energy density retention after 1000 cycles at 0.5 A g-1). It is worthwhile that the source for activated carbon is a natural and renewable one and the synthesis method is eco-friendly, which facilitate that hierarchical porous activated carbon has potential applications in the field of LIC and other energy storage systems.
Energetic Combustion Devices for Aerospace Propulsion and Power
NASA Technical Reports Server (NTRS)
Litchford, Ron J.
2000-01-01
Chemical reactions have long been the mainstay thermal energy source for aerospace propulsion and power. Although it is widely recognized that the intrinsic energy density limitations of chemical bonds place severe constraints on maximum realizable performance, it will likely be several years before systems based on high energy density nuclear fuels can be placed into routine service. In the mean time, efforts to develop high energy density chemicals and advanced combustion devices which can utilize such energetic fuels may yield worthwhile returns in overall system performance and cost. Current efforts in this vein are being carried out at NASA MSFC under the direction of the author in the areas of pulse detonation engine technology development and light metals combustion devices. Pulse detonation engines are touted as a low cost alternative to gas turbine engines and to conventional rocket engines, but actual performance and cost benefits have yet to be convincingly demonstrated. Light metal fueled engines also offer potential benefits in certain niche applications such as aluminum/CO2 fueled engines for endo-atmospheric Martian propulsion. Light metal fueled MHD generators also present promising opportunities with respect to electric power generation for electromagnetic launch assist. This presentation will discuss the applications potential of these concepts with respect to aero ace propulsion and power and will review the current status of the development efforts.
Continuum Level Density of a Coupled-Channel System in the Complex Scaling Method
NASA Astrophysics Data System (ADS)
Suzuki, R.; Kruppa, A. T.; Giraud, B. G.; Katō, K.
2008-06-01
We study the continuum level density (CLD) in the formalism of the complex scaling method (CSM) for coupled-channel systems. We apply the formalism to the ^{4}He = [^{3}H + p] + [^3{He} + n] coupled-channel cluster model where there are resonances at low energy. Numerical calculations of the CLD in the CSM with a finite number of L^{2} basis functions are consistent with the exact result calculated from the S-matrix by solving coupled-channel equations. We also study channel densities. In this framework, the extended completeness relation (ECR) plays an important role.
Silicon-Based Lithium-Ion Capacitor for High Energy and High Power Application
NASA Technical Reports Server (NTRS)
Wu, James J.; Demattia, Brianne; Loyselle, Patricia; Reid, Concha; Kohout, Lisa
2017-01-01
Si-based Li-ion capacitor has been developed and demonstrated. The results show it is feasible to improve both power density and energy density in this configuration. The applied current density impacts the power and energy density: low current favors energy density while high current favors power density. Active carbon has a better rate capability than Si. Next StepsFuture Directions. Si electrode needs to be further studied and improved. Further optimization of SiAC ratio and evaluation of its impact on energy density and power density.
Dual energy approach for cone beam artifacts correction
NASA Astrophysics Data System (ADS)
Han, Chulhee; Choi, Shinkook; Lee, Changwoo; Baek, Jongduk
2017-03-01
Cone beam computed tomography systems generate 3D volumetric images, which provide further morphological information compared to radiography and tomosynthesis systems. However, reconstructed images by FDK algorithm contain cone beam artifacts when a cone angle is large. To reduce the cone beam artifacts, two-pass algorithm has been proposed. The two-pass algorithm considers the cone beam artifacts are mainly caused by high density materials, and proposes an effective method to estimate error images (i.e., cone beam artifacts images) by the high density materials. While this approach is simple and effective with a small cone angle (i.e., 5 - 7 degree), the correction performance is degraded as the cone angle increases. In this work, we propose a new method to reduce the cone beam artifacts using a dual energy technique. The basic idea of the proposed method is to estimate the error images generated by the high density materials more reliably. To do this, projection data of the high density materials are extracted from dual energy CT projection data using a material decomposition technique, and then reconstructed by iterative reconstruction using total-variation regularization. The reconstructed high density materials are used to estimate the error images from the original FDK images. The performance of the proposed method is compared with the two-pass algorithm using root mean square errors. The results show that the proposed method reduces the cone beam artifacts more effectively, especially with a large cone angle.
Chen, Tuo; Tang, Xiaobin; Chen, Feida; Ni, Minxuan; Huang, Hai; Zhang, Yun; Chen, Da
2017-06-26
Radiation shielding of high-energy electrons is critical for successful space missions. However, conventional passive shielding systems exhibit several limitations, such as heavy configuration, poor shielding ability, and strong secondary bremsstrahlung radiation. In this work, an aluminum/vacuum multilayer structure was proposed based on the electron return effects induced by magnetic field. The shielding property of several configurations was evaluated by using the Monte Carlo method. Results showed that multilayer systems presented improved shielding ability to electrons, and less secondary x-ray transmissions than those of conventional systems. Moreover, the influences of magnetic flux density and number of layers on the shielding property of multilayer systems were investigated using a female Chinese hybrid reference phantom based on cumulative dose. In the case of two aluminum layers, the cumulative dose in a phantom gradually decreased with increasing magnetic flux density. The maximum decline rate was found within 0.4-1 Tesla. With increasing layers of configuration, the cumulative dose decreased and the shielding ability improved. This research provides effective shielding measures for future space radiation protection in high-energy electron environments.
Early Time Dynamics of Gluon Fields in High Energy Nuclear Collisions
NASA Astrophysics Data System (ADS)
Kapusta, Joseph I.; Chen, Guangyao; Fries, Rainer J.; Li, Yang
2016-12-01
Nuclei colliding at very high energy create a strong, quasi-classical gluon field during the initial phase of their interaction. We present an analytic calculation of the initial space-time evolution of this field in the limit of very high energies using a formal recursive solution of the Yang-Mills equations. We provide analytic expressions for the initial chromo-electric and chromo-magnetic fields and for their energy-momentum tensor. In particular, we discuss event-averaged results for energy density and energy flow as well as for longitudinal and transverse pressure of this system. Our results are generally applicable if τ < 1 /Qs. The transverse energy flow of the gluon field exhibits hydrodynamic-like contributions that follow transverse gradients of the energy density. In addition, a rapidity-odd energy flow also emerges from the non-abelian analog of Gauss' Law and generates non-vanishing angular momentum of the field. We will discuss the space-time picture that emerges from our analysis and its implications for observables in heavy ion collisions.
Effects of thermal treatment on energy density and hardness of torrefied wood pellets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peng, Jianghong; Wang, Jingsong; Bi, Xiaotao T.
Here, three types of wood pellets samples, including two types of commercial pellets and one type of lab-made control pellets were torrefied in a fixed bed unit to study the effect of thermal pretreatment on the quality of wood pellets. The quality of wood pellets was mainly characterized by the pellet density, bulk density, higher heating value, Meyer hardness, saturated moisture uptake, volumetric energy density, and energy yield. Results showed that torrefaction significantly decreased the pellet density, hardness, volumetric energy density, and energy yield. The higher heating value increased and the saturated moisture content decreased after torrefaction. In view ofmore » the lower density, lower hardness, lower volumetric energy density, and energy yield of torrefied pellets, it is recommended that biomass should be torrefied and then compressed to make strong pellets of high hydrophobicity and volumetric energy density.« less
Effects of thermal treatment on energy density and hardness of torrefied wood pellets
Peng, Jianghong; Wang, Jingsong; Bi, Xiaotao T.; ...
2014-09-27
Here, three types of wood pellets samples, including two types of commercial pellets and one type of lab-made control pellets were torrefied in a fixed bed unit to study the effect of thermal pretreatment on the quality of wood pellets. The quality of wood pellets was mainly characterized by the pellet density, bulk density, higher heating value, Meyer hardness, saturated moisture uptake, volumetric energy density, and energy yield. Results showed that torrefaction significantly decreased the pellet density, hardness, volumetric energy density, and energy yield. The higher heating value increased and the saturated moisture content decreased after torrefaction. In view ofmore » the lower density, lower hardness, lower volumetric energy density, and energy yield of torrefied pellets, it is recommended that biomass should be torrefied and then compressed to make strong pellets of high hydrophobicity and volumetric energy density.« less
Energy dynamics in a simulation of LAPD turbulence
NASA Astrophysics Data System (ADS)
Friedman, B.; Carter, T. A.; Umansky, M. V.; Schaffner, D.; Dudson, B.
2012-10-01
Energy dynamics calculations in a 3D fluid simulation of drift wave turbulence in the linear Large Plasma Device [W. Gekelman et al., Rev. Sci. Instrum. 62, 2875 (1991)] illuminate processes that drive and dissipate the turbulence. These calculations reveal that a nonlinear instability dominates the injection of energy into the turbulence by overtaking the linear drift wave instability that dominates when fluctuations about the equilibrium are small. The nonlinear instability drives flute-like (k∥=0) density fluctuations using free energy from the background density gradient. Through nonlinear axial wavenumber transfer to k∥≠0 fluctuations, the nonlinear instability accesses the adiabatic response, which provides the requisite energy transfer channel from density to potential fluctuations as well as the phase shift that causes instability. The turbulence characteristics in the simulations agree remarkably well with experiment. When the nonlinear instability is artificially removed from the system through suppressing k∥=0 modes, the turbulence develops a coherent frequency spectrum which is inconsistent with experimental data. This indicates the importance of the nonlinear instability in producing experimentally consistent turbulence.
NASA Astrophysics Data System (ADS)
Lacaze, Guilhem; Oefelein, Joseph
2016-11-01
High-pressure flows are known to be challenging to simulate due to thermodynamic non-linearities occurring in the vicinity of the pseudo-boiling line. This study investigates the origin of this issue by analyzing the behavior of thermodynamic processes at elevated pressure and low temperature. We show that under transcritical conditions, non-linearities significantly amplify numerical errors associated with construction of fluxes. These errors affect the local density and energy balances, which in turn creates pressure oscillations. For that reason, solvers based on a conservative system of equations that transport density and total energy are subject to unphysical pressure variations in gradient regions. These perturbations hinder numerical stability and degrade the accuracy of predictions. To circumvent this problem, the governing system can be reformulated to a pressure-based treatment of energy. We present comparisons between the pressure-based and fully conservative formulations using a progressive set of canonical cases, including a cryogenic turbulent mixing layer at rocket engine conditions. Department of Energy, Office of Science, Basic Energy Sciences Program.
Cashman, Sarah; Ma, Xin; Mosley, Janet; Garland, Jay; Crone, Brian; Xue, Xiaobo
2018-04-01
This study calculated the energy and greenhouse gas life cycle and cost profiles of transitional aerobic membrane bioreactors (AeMBR) and anaerobic membrane bioreactors (AnMBR). Membrane bioreactors (MBR) represent a promising technology for decentralized wastewater treatment and can produce recycled water to displace potable water. Energy recovery is possible with methane generated from AnMBRs. Scenarios for these technologies were investigated for different scale systems serving various population densities under a number of climate conditions with multiple methane recovery options. When incorporating the displacement of drinking water, AeMBRs started to realize net energy benefits at the 1 million gallons per day (MGD) scale and mesophilic AnMBRs at the 5 MGD scale. For all scales, the psychrophilic AnMBR resulted in net energy benefits. This study provides insights into key performance characteristics needed before an informed decision can be made for a community to transition towards the adoption of MBR technologies. Copyright © 2018. Published by Elsevier Ltd.
NASA Technical Reports Server (NTRS)
Hensler, J. R.
1973-01-01
Three approaches to the development of a high density scintillation glass were investigated: They include the increase of density of glass systems containing cerium - the only systems which were known to show scintillation, the testing of a novel silicate glass system containing significant concentrations of silver produced by ion exchange and never tested previously, and the hot pressing of a diphasic compact of low density scintillation glass with high density passive glass. In first two cases, while ultraviolet excited fluorescence was maintained in the glasses showing high density, scintillation response to high energy particles was not retained in the case of the cerium containing glasses or developed in the case of the silver containing glasses. In the case of the compacts, the extremely long path length caused by the multiple internal reflections which occur in such a body resulted in attenuation even with glasses of high specific transmission. It is not clear why the scintillation efficiency is not maintained in the higher density cerium containing glasses.
FY14 LLNL OMEGA Experimental Programs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heeter, R. F.; Fournier, K. B.; Baker, K.
In FY14, LLNL’s High-Energy-Density Physics (HED) and Indirect Drive Inertial Confinement Fusion (ICF-ID) programs conducted several campaigns on the OMEGA laser system and on the EP laser system, as well as campaigns that used the OMEGA and EP beams jointly. Overall these LLNL programs led 324 target shots in FY14, with 246 shots using just the OMEGA laser system, 62 shots using just the EP laser system, and 16 Joint shots using Omega and EP together. Approximately 31% of the total number of shots (62 OMEGA shots, 42 EP shots) shots supported the Indirect Drive Inertial Confinement Fusion Campaign (ICF-ID).more » The remaining 69% (200 OMEGA shots and 36 EP shots, including the 16 Joint shots) were dedicated to experiments for High- Energy-Density Physics (HED). Highlights of the various HED and ICF campaigns are summarized in the following reports.« less
FY15 LLNL OMEGA Experimental Programs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heeter, R. F.; Baker, K. L.; Barrios, M. A.
In FY15, LLNL’s High-Energy-Density Physics (HED) and Indirect Drive Inertial Confinement Fusion (ICF-ID) programs conducted several campaigns on the OMEGA laser system and on the EP laser system, as well as campaigns that used the OMEGA and EP beams jointly. Overall these LLNL programs led 468 target shots in FY15, with 315 shots using just the OMEGA laser system, 145 shots using just the EP laser system, and 8 Joint shots using Omega and EP together. Approximately 25% of the total number of shots (56 OMEGA shots and 67 EP shots, including the 8 Joint shots) supported the Indirect Drivemore » Inertial Confinement Fusion Campaign (ICF-ID). The remaining 75% (267 OMEGA shots and 86 EP shots) were dedicated to experiments for High-Energy-Density Physics (HED). Highlights of the various HED and ICF campaigns are summarized in the following reports.« less
46 CFR 116.423 - Furniture and furnishings.
Code of Federal Regulations, 2014 CFR
2014-10-01
... Systems Using a Radiant Heat Energy Source,” and with a specific optical density not to exceed 450 in both...) “Specific Optical Density of Smoke generated by Solid Materials.” Also: (i) Rugs and carpets shall not extend up bulkheads or vertical surfaces more than 10 centimeters (4 inches) above the deck. (ii) Rugs...
46 CFR 116.423 - Furniture and furnishings.
Code of Federal Regulations, 2012 CFR
2012-10-01
... Systems Using a Radiant Heat Energy Source,” and with a specific optical density not to exceed 450 in both...) “Specific Optical Density of Smoke generated by Solid Materials.” Also: (i) Rugs and carpets shall not extend up bulkheads or vertical surfaces more than 10 centimeters (4 inches) above the deck. (ii) Rugs...
46 CFR 116.423 - Furniture and furnishings.
Code of Federal Regulations, 2013 CFR
2013-10-01
... Systems Using a Radiant Heat Energy Source,” and with a specific optical density not to exceed 450 in both...) “Specific Optical Density of Smoke generated by Solid Materials.” Also: (i) Rugs and carpets shall not extend up bulkheads or vertical surfaces more than 10 centimeters (4 inches) above the deck. (ii) Rugs...
Subsystem real-time time dependent density functional theory.
Krishtal, Alisa; Ceresoli, Davide; Pavanello, Michele
2015-04-21
We present the extension of Frozen Density Embedding (FDE) formulation of subsystem Density Functional Theory (DFT) to real-time Time Dependent Density Functional Theory (rt-TDDFT). FDE is a DFT-in-DFT embedding method that allows to partition a larger Kohn-Sham system into a set of smaller, coupled Kohn-Sham systems. Additional to the computational advantage, FDE provides physical insight into the properties of embedded systems and the coupling interactions between them. The extension to rt-TDDFT is done straightforwardly by evolving the Kohn-Sham subsystems in time simultaneously, while updating the embedding potential between the systems at every time step. Two main applications are presented: the explicit excitation energy transfer in real time between subsystems is demonstrated for the case of the Na4 cluster and the effect of the embedding on optical spectra of coupled chromophores. In particular, the importance of including the full dynamic response in the embedding potential is demonstrated.
Subsystem functional and the missing ingredient of confinement physics in density functionals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Armiento, Rickard Roberto; Mattsson, Ann Elisabet; Hao, Feng
2010-08-01
The subsystem functional scheme is a promising approach recently proposed for constructing exchange-correlation density functionals. In this scheme, the physics in each part of real materials is described by mapping to a characteristic model system. The 'confinement physics,' an essential physical ingredient that has been left out in present functionals, is studied by employing the harmonic-oscillator (HO) gas model. By performing the potential {yields} density and the density {yields} exchange energy per particle mappings based on two model systems characterizing the physics in the interior (uniform electron-gas model) and surface regions (Airy gas model) of materials for the HO gases,more » we show that the confinement physics emerges when only the lowest subband of the HO gas is occupied by electrons. We examine the approximations of the exchange energy by several state-of-the-art functionals for the HO gas, and none of them produces adequate accuracy in the confinement dominated cases. A generic functional that incorporates the description of the confinement physics is needed.« less
A Fiber-Optic System Generating Pulses of High Spectral Density
NASA Astrophysics Data System (ADS)
Abramov, A. S.; Zolotovskii, I. O.; Korobko, D. A.; Fotiadi, A. A.
2018-03-01
A cascade fiber-optic system that generates pulses of high spectral density by using the effect of nonlinear spectral compression is proposed. It is demonstrated that the shape of the pulse envelope substantially influences the degree of compression of its spectrum. In so doing, maximum compression is achieved for parabolic pulses. The cascade system includes an optical fiber exhibiting normal dispersion that decreases along the fiber length, thereby ensuring that the pulse envelope evolves toward a parabolic shape, along with diffraction gratings and a fiber spectral compressor. Based on computer simulation, we determined parameters of cascade elements leading to maximum spectral density of radiation originating from a subpicosecond laser pulse of medium energy.
Hydrate-melt electrolytes for high-energy-density aqueous batteries
NASA Astrophysics Data System (ADS)
Yamada, Yuki; Usui, Kenji; Sodeyama, Keitaro; Ko, Seongjae; Tateyama, Yoshitaka; Yamada, Atsuo
2016-10-01
Aqueous Li-ion batteries are attracting increasing attention because they are potentially low in cost, safe and environmentally friendly. However, their low energy density (<100 Wh kg-1 based on total electrode weight), which results from the narrow operating potential window of water and the limited selection of suitable negative electrodes, is problematic for their future widespread application. Here, we explore optimized eutectic systems of several organic Li salts and show that a room-temperature hydrate melt of Li salts can be used as a stable aqueous electrolyte in which all water molecules participate in Li+ hydration shells while retaining fluidity. This hydrate-melt electrolyte enables a reversible reaction at a commercial Li4Ti5O12 negative electrode with a low reaction potential (1.55 V versus Li+/Li) and a high capacity (175 mAh g-1). The resultant aqueous Li-ion batteries with high energy density (>130 Wh kg-1) and high voltage (˜2.3-3.1 V) represent significant progress towards performance comparable to that of commercial non-aqueous batteries (with energy densities of ˜150-400 Wh kg-1 and voltages of ˜2.4-3.8 V).
Pulse Power Capability Of High Energy Density Capacitors Based on a New Dielectric Material
NASA Technical Reports Server (NTRS)
Winsor, Paul; Scholz, Tim; Hudis, Martin; Slenes, Kirk M.
1999-01-01
A new dielectric composite consisting of a polymer coated onto a high-density metallized Kraft has been developed for application in high energy density pulse power capacitors. The polymer coating is custom formulated for high dielectric constant and strength with minimum dielectric losses. The composite can be wound and processed using conventional wound film capacitor manufacturing equipment. This new system has the potential to achieve 2 to 3 J/cu cm whole capacitor energy density at voltage levels above 3.0 kV, and can maintain its mechanical properties to temperatures above 150 C. The technical and manufacturing development of the composite material and fabrication into capacitors are summarized in this paper. Energy discharge testing, including capacitance and charge-discharge efficiency at normal and elevated temperatures, as well as DC life testing were performed on capacitors manufactured using this material. TPL (Albuquerque, NM) has developed the material and Aerovox (New Bedford, MA) has used the material to build and test actual capacitors. The results of the testing will focus on pulse power applications specifically those found in electro-magnetic armor and guns, high power microwave sources and defibrillators.
Hoyer, Chad E; Gagliardi, Laura; Truhlar, Donald G
2015-11-05
Time-dependent Kohn-Sham density functional theory (TD-KS-DFT) is useful for calculating electronic excitation spectra of large systems, but the low-energy spectra are often complicated by artificially lowered higher-energy states. This affects even the lowest energy excited states. Here, by calculating the lowest energy spin-conserving excited state for atoms from H to K and for formaldehyde, we show that this problem does not occur in multiconfiguration pair-density functional theory (MC-PDFT). We use the tPBE on-top density functional, which is a translation of the PBE exchange-correlation functional. We compare to a robust multireference method, namely, complete active space second-order perturbation theory (CASPT2), and to TD-KS-DFT with two popular exchange-correlation functionals, PBE and PBE0. We find for atoms that the mean unsigned error (MUE) of MC-PDFT with the tPBE functional improves from 0.42 to 0.40 eV with a double set of diffuse functions, whereas the MUEs for PBE and PBE0 drastically increase from 0.74 to 2.49 eV and from 0.45 to 1.47 eV, respectively.
Mardirossian, Narbe; Head-Gordon, Martin
2016-08-18
The 14 Minnesota density functionals published between the years 2005 and early 2016 are benchmarked on a comprehensive database of 4986 data points (84 data sets) involving molecules composed of main-group elements. The database includes noncovalent interactions, isomerization energies, thermochemistry, and barrier heights, as well as equilibrium bond lengths and equilibrium binding energies of noncovalent dimers. Additionally, the sensitivity of the Minnesota density functionals to the choice of basis set and integration grid is explored for both noncovalent interactions and thermochemistry. By and large, the main strength of the hybrid Minnesota density functionals is that the best ones provide verymore » good performance for thermochemistry (e.g., M06-2X), barrier heights (e.g., M08-HX, M08-SO, MN15), and systems heavily characterized by self-interaction error (e.g., M06-2X, M08-HX, M08-SO, MN15), while the main weakness is that none of them are state-of-the-art for the full spectrum of noncovalent interactions and isomerization energies (although M06-2X is recommended from the 10 hybrid Minnesota functionals). Similarly, the main strength of the local Minnesota density functionals is that the best ones provide very good performance for thermochemistry (e.g., MN15-L), barrier heights (e.g., MN12-L), and systems heavily characterized by self-interaction error (e.g., MN12-L and MN15-L), while the main weakness is that none of them are state-of-the-art for the full spectrum of noncovalent interactions and isomerization energies (although M06-L is clearly the best from the four local Minnesota functionals). Finally, as an overall guide, M06-2X and MN15 are perhaps the most broadly useful hybrid Minnesota functionals, while M06-L and MN15-L are perhaps the most broadly useful local Minnesota functionals, although each has different strengths and weaknesses.« less
Do `negative' temperatures exist?
NASA Astrophysics Data System (ADS)
Lavenda, B. H.
1999-06-01
A modification of the second law is required for a system with a bounded density of states and not the introduction of a `negative' temperature scale. The ascending and descending branches of the entropy versus energy curve describe particle and hole states, having thermal equations of state that are given by the Fermi and logistic distributions, respectively. Conservation of energy requires isentropic states to be isothermal. The effect of adiabatically reversing the field is entirely mechanical because the only difference between the two states is their energies. The laws of large and small numbers, leading to the normal and Poisson approximations, characterize statistically the states of infinite and zero temperatures, respectively. Since the heat capacity also vanishes in the state of maximum disorder, the third law can be generalized in systems with a bounded density of states: the entropy tends to a constant as the temperature tends to either zero or infinity.
de Carvalho, Helder Pereira; Huang, Jiguo; Zhao, Meixia; Liu, Gang; Yang, Xinyu; Dong, Lili; Liu, Xingjuan
2016-01-01
In this study, response surface methodology (RSM) model was applied for optimization of Basic Red 2 (BR2) removal using electrocoagulation/eggshell (ES) coupling process in a batch system. Central composite design was used to evaluate the effects and interactions of process parameters including current density, reaction time, initial pH and ES dosage on the BR2 removal efficiency and energy consumption. The analysis of variance revealed high R(2) values (≥85%) indicating that the predictions of RSM models are adequately applicable for both responses. The optimum conditions when the dye removal efficiency of 93.18% and energy consumption of 0.840 kWh/kg were observed were 11.40 mA/cm(2) current density, 5 min and 3 s reaction time, 6.5 initial pH and 10.91 g/L ES dosage.
Thangavel, Ranjith; Kaliyappan, Karthikeyan; Ramasamy, Hari Vignesh; Sun, Xueliang; Lee, Yun-Sung
2017-07-10
Electrochemical supercapacitors with high energy density are promising devices due to their simple construction and long-term cycling performance. The development of a supercapacitor based on electrical double-layer charge storage with high energy density that can preserve its cyclability at higher power presents an ongoing challenge. Herein, we provide insights to achieve a high energy density at high power with an ultrahigh stability in an electrical double-layer capacitor (EDLC) system by using carbon from a biomass precursor (cinnamon sticks) in a sodium ion-based organic electrolyte. Herein, we investigated the dependence of EDLC performance on structural, textural, and functional properties of porous carbon engineered by using various activation agents. The results demonstrate that the performance of EDLCs is not only dependent on their textural properties but also on their structural features and surface functionalities, as is evident from the electrochemical studies. The electrochemical results are highly promising and revealed that the porous carbon with poor textural properties has great potential to deliver high capacitance and outstanding stability over 300 000 cycles compared with porous carbon with good textural properties. A very low capacitance degradation of around 0.066 % per 1000 cycles, along with high energy density (≈71 Wh kg -1 ) and high power density, have been achieved. These results offer a new platform for the application of low-surface-area biomass-derived carbons in the design of highly stable high-energy supercapacitors. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Automotive battery energy density — past, present and future
NASA Astrophysics Data System (ADS)
Peters, K.
Energy and power densities of automotive batteries at engine starting rates have doubled over the past twenty years. Most recent improvements can be credited to the use of both very thin plates with optimized grid design and low-resistance polyethylene separators with a thin backweb and a reduced rib height. Opportunities for further improvements using the same design approach and similar processing techniques are limited. The effect of some recent innovative developments on weight reduction and performance improvement are reviewed, together with possible changes to the electrical system of vehicles.
2016-12-22
importance. Among advanced energy storage devices, lithium - ion batteries are remarkable systems due to their high energy density, high power density...and well cycled performance with considerable reliability. Lithium - ion batteries have been playing an important role in various application fields...Li0.24Mn0.55Co0.14Ni0.07]O2 cathode material for lithium ion batteries . Solid State Ionics, 2013. 233: p. 12-19. DISTRIBUTION A. Approved for public release
Chan, Henry H L; Manstein, D; Yu, C S; Shek, S; Kono, T; Wei, W I
2007-06-01
Ablative laser resurfacing is considered to be the main therapeutic option for the treatment of wrinkles and acne scarring. However, in Asians, post-inflammatory hyperpigmentation (PIH) is a common adverse effect of laser resurfacing. Fractional resurfacing is a new concept of skin rejuvenation whereby zones of micro thermal injury are generated in the skin with the use of a 1,540-nm laser. The risk and prevalence of hyperpigmentation in dark-skinned patients using this approach have not been studied. To assess the prevalence and risk factors of PIH that is associated with the use of fractional resurfacing in Asians. A retrospective study of 37 Chinese patients who were treated with fractional resurfacing for acne scarring, skin rejuvenation, and pigmentation was carried out. In all of the cases, pre- and post-treatment clinical photographs (from standardized and cross-polarized views) were taken using the Canfield CR system. Two independent observers assessed the photographs. A prospective study of treatments of nine different density and energy levels that were applied to the forearms of 18 volunteers was also performed. Clinical photographs were assessed pre- and post-treatment for evidence of PIH. In the retrospective study, 119 treatment sessions were performed. Sixty-eight treatment sessions were high energy, low density; 51 sessions were low energy, high density. Patients who underwent a high energy but low-density treatment (range of energy 7-20 mJ; average energy 16.3 mJ, 1,000 MTZ) were associated with a lower prevalence of generalized PIH (7.1% vs. 12.4%) than those who underwent a low energy but high-density (range of energy 6-12 mJ; average energy 8.2 mJ, 2,000 MTZ) treatment. However, the difference was not statistically significant. Localized PIH occurred in the peri-oral area among patients who did not receive air cooling as an adjunctive therapy. Both the density and energy of the treatment determines the risk of PIH in dark-skinned patients. Density may be of more important but further studies are necessary to determine this. Cooling to prevent bulk tissue heating is also important, especially in small anatomical areas. By using adequate parameters, the risk of PIH in dark-skinned patients can be significantly reduced. (c) 2007 Wiley-Liss, Inc.
Lipsky, Leah M
2009-11-01
The inverse relation between energy density (kcal/g) and energy cost (price/kcal) has been interpreted to suggest that produce (fruit, vegetables) is more expensive than snacks (cookies, chips). The objective of this study was to show the methodologic weakness of comparing energy density with energy cost. The relation between energy density and energy cost was replicated in a random-number data set. Additionally, observational data were collected for produce and snacks from an online supermarket. Variables included total energy (kcal), total weight (g), total number of servings, serving size (g/serving), and energy density (kcal/g). Price measures included energy cost ($/kcal), total price ($), unit price ($/g), and serving price ($/serving). Two-tailed t tests were used to compare price measures by food category. Relations between energy density and price measures within food categories were examined with the use of Spearman rank correlation analysis. The relation between energy density and energy cost was shown to be driven by the algebraic properties of these variables. Food category was strongly correlated with both energy density and food price measures. Energy cost was higher for produce than for snacks. However, total price and unit price were lower for produce. Serving price and serving size were greater for produce than for snacks. Within food categories, energy density was uncorrelated with most measures of food price, except for a weak positive correlation with serving price within the produce category. The findings suggest the relation between energy density and food price is confounded by food category and depends on which measure of price is used.
Plasmon modes of bilayer molybdenum disulfide: a density functional study
NASA Astrophysics Data System (ADS)
Torbatian, Z.; Asgari, R.
2017-11-01
We explore the collective electronic excitations of bilayer molybdenum disulfide (MoS2) using density functional theory together with random phase approximation. The many-body dielectric function and electron energy-loss spectra are calculated using an ab initio based model involving material-realistic physical properties. The electron energy-loss function of the bilayer MoS2 system is found to be sensitive to either electron or hole doping and this is due to the fact that the Kohn-Sham band dispersions are not symmetric for energies above and below the zero Fermi level. Three plasmon modes are predicted, a damped high-energy mode, one optical mode (in-phase mode) for which the plasmon dispersion exhibits \\sqrt q in the long wavelength limit originating from low-energy electron scattering and finally a highly damped acoustic mode (out-of-phase mode).
Materials for lithium-ion battery safety.
Liu, Kai; Liu, Yayuan; Lin, Dingchang; Pei, Allen; Cui, Yi
2018-06-01
Lithium-ion batteries (LIBs) are considered to be one of the most important energy storage technologies. As the energy density of batteries increases, battery safety becomes even more critical if the energy is released unintentionally. Accidents related to fires and explosions of LIBs occur frequently worldwide. Some have caused serious threats to human life and health and have led to numerous product recalls by manufacturers. These incidents are reminders that safety is a prerequisite for batteries, and serious issues need to be resolved before the future application of high-energy battery systems. This Review aims to summarize the fundamentals of the origins of LIB safety issues and highlight recent key progress in materials design to improve LIB safety. We anticipate that this Review will inspire further improvement in battery safety, especially for emerging LIBs with high-energy density.
Materials for lithium-ion battery safety
Liu, Kai
2018-01-01
Lithium-ion batteries (LIBs) are considered to be one of the most important energy storage technologies. As the energy density of batteries increases, battery safety becomes even more critical if the energy is released unintentionally. Accidents related to fires and explosions of LIBs occur frequently worldwide. Some have caused serious threats to human life and health and have led to numerous product recalls by manufacturers. These incidents are reminders that safety is a prerequisite for batteries, and serious issues need to be resolved before the future application of high-energy battery systems. This Review aims to summarize the fundamentals of the origins of LIB safety issues and highlight recent key progress in materials design to improve LIB safety. We anticipate that this Review will inspire further improvement in battery safety, especially for emerging LIBs with high-energy density. PMID:29942858
Two-component gravitating systems and the red giant-like structure
NASA Technical Reports Server (NTRS)
Fujimoto, Masayuki Y.; Tomisaka, Kohji
1992-01-01
The present study investigates the equilibria and evolution of gravitating systems composed of two components by approximating their equations of states to polytropes. The structures are explored in hydrostatic equilibrium systematically under the condition that two components interact with each other only through gravity. The systems are found to be characterized by four parameters, the ratio of central densities and the ratio of central thermal energies per unit mass, and the polytropic indices of two components. If the central density is much higher, the structure is little affected by the presence of the other component. If the difference in the central thermal energies is smaller than specified by beta-cri, the system adopts an equilibrium configuration for any mass ratio. Two-component systems necessarily evolve to have the red giantlike structure if one component suffers cooling faster than the other. It is concluded that the red giant structure is a general characteristic of gravitating systems for which there is an appropriate mechanism to decouple the constituent into the hotter and cooler components.
All-Fullerene-Based Cells for Nonaqueous Redox Flow Batteries.
Friedl, Jochen; Lebedeva, Maria A; Porfyrakis, Kyriakos; Stimming, Ulrich; Chamberlain, Thomas W
2018-01-10
Redox flow batteries have the potential to revolutionize our use of intermittent sustainable energy sources such as solar and wind power by storing the energy in liquid electrolytes. Our concept study utilizes a novel electrolyte system, exploiting derivatized fullerenes as both anolyte and catholyte species in a series of battery cells, including a symmetric, single species system which alleviates the common problem of membrane crossover. The prototype multielectron system, utilizing molecular based charge carriers, made from inexpensive, abundant, and sustainable materials, principally, C and Fe, demonstrates remarkable current and energy densities and promising long-term cycling stability.
Nanowire modified carbon fibers for enhanced electrical energy storage
NASA Astrophysics Data System (ADS)
Shuvo, Mohammad Arif Ishtiaque; (Bill) Tseng, Tzu-Liang; Ashiqur Rahaman Khan, Md.; Karim, Hasanul; Morton, Philip; Delfin, Diego; Lin, Yirong
2013-09-01
The study of electrochemical super-capacitors has become one of the most attractive topics in both academia and industry as energy storage devices because of their high power density, long life cycles, and high charge/discharge efficiency. Recently, there has been increasing interest in the development of multifunctional structural energy storage devices such as structural super-capacitors for applications in aerospace, automobiles, and portable electronics. These multifunctional structural super-capacitors provide structures combining energy storage and load bearing functionalities, leading to material systems with reduced volume and/or weight. Due to their superior materials properties, carbon fiber composites have been widely used in structural applications for aerospace and automotive industries. Besides, carbon fiber has good electrical conductivity which will provide lower equivalent series resistance; therefore, it can be an excellent candidate for structural energy storage applications. Hence, this paper is focused on performing a pilot study for using nanowire/carbon fiber hybrids as building materials for structural energy storage materials; aiming at enhancing the charge/discharge rate and energy density. This hybrid material combines the high specific surface area of carbon fiber and pseudo-capacitive effect of metal oxide nanowires, which were grown hydrothermally in an aligned fashion on carbon fibers. The aligned nanowire array could provide a higher specific surface area that leads to high electrode-electrolyte contact area thus fast ion diffusion rates. Scanning Electron Microscopy and X-Ray Diffraction measurements are used for the initial characterization of this nanowire/carbon fiber hybrid material system. Electrochemical testing is performed using a potentio-galvanostat. The results show that gold sputtered nanowire carbon fiber hybrid provides 65.9% higher energy density than bare carbon fiber cloth as super-capacitor.
NASA Astrophysics Data System (ADS)
Liu, Y. B.; Zhuge, W. L.; Zhang, Y. J.; Zhang, S. Y.
2016-05-01
To reach the goal of energy conservation and emission reduction, high intake pressure is needed to meet the demand of high power density and high EGR rate for internal combustion engine. Present power density of diesel engine has reached 90KW/L and intake pressure ratio needed is over 5. Two-stage turbocharging system is an effective way to realize high compression ratio. Because turbocharging system compression work derives from exhaust gas energy. Efficiency of exhaust gas energy influenced by design and matching of turbine system is important to performance of high supercharging engine. Conventional turbine system is assembled by single-stage turbocharger turbines and turbine matching is based on turbine MAP measured on test rig. Flow between turbine system is assumed uniform and value of outlet physical quantities of turbine are regarded as the same as ambient value. However, there are three-dimension flow field distortion and outlet physical quantities value change which will influence performance of turbine system as were demonstrated by some studies. For engine equipped with two-stage turbocharging system, optimization of turbine system design will increase efficiency of exhaust gas energy and thereby increase engine power density. However flow interaction of turbine system will change flow in turbine and influence turbine performance. To recognize the interaction characteristics between high pressure turbine and low pressure turbine, flow in turbine system is modeled and simulated numerically. The calculation results suggested that static pressure field at inlet to low pressure turbine increases back pressure of high pressure turbine, however efficiency of high pressure turbine changes little; distorted velocity field at outlet to high pressure turbine results in swirl at inlet to low pressure turbine. Clockwise swirl results in large negative angle of attack at inlet to rotor which causes flow loss in turbine impeller passages and decreases turbine efficiency. However negative angle of attack decreases when inlet swirl is anti-clockwise and efficiency of low pressure turbine can be increased by 3% compared to inlet condition of clockwise swirl. Consequently flow simulation and analysis are able to aid in figuring out interaction mechanism of turbine system and optimizing turbine system design.
On gravity's role in the genesis of rest masses of classical fields
NASA Astrophysics Data System (ADS)
Szabados, László B.
2018-03-01
It is shown that in the Einstein-conformally coupled Higgs-Maxwell system with Friedman-Robertson-Walker symmetries the energy density of the Higgs field has stable local minimum only if the mean curvature of the t=const hypersurfaces is less than a finite critical value χ _c, while for greater mean curvature the energy density is not bounded from below. Therefore, there are extreme gravitational situations in which even quasi-locally defined instantaneous vacuum states of the Higgs sector cannot exist, and hence one cannot at all define the rest mass of all the classical fields. On hypersurfaces with mean curvature less than χ _c the energy density has the `wine bottle' (rather than the familiar `Mexican hat') shape, and the gauge field can get rest mass via the Brout-Englert-Higgs mechanism. The spacelike hypersurface with the critical mean curvature represents the moment of `genesis' of rest masses.
Lithium-Based High Energy Density Flow Batteries
NASA Technical Reports Server (NTRS)
Bugga, Ratnakumar V. (Inventor); West, William C. (Inventor); Kindler, Andrew (Inventor); Smart, Marshall C. (Inventor)
2014-01-01
Systems and methods in accordance with embodiments of the invention implement a lithium-based high energy density flow battery. In one embodiment, a lithium-based high energy density flow battery includes a first anodic conductive solution that includes a lithium polyaromatic hydrocarbon complex dissolved in a solvent, a second cathodic conductive solution that includes a cathodic complex dissolved in a solvent, a solid lithium ion conductor disposed so as to separate the first solution from the second solution, such that the first conductive solution, the second conductive solution, and the solid lithium ionic conductor define a circuit, where when the circuit is closed, lithium from the lithium polyaromatic hydrocarbon complex in the first conductive solution dissociates from the lithium polyaromatic hydrocarbon complex, migrates through the solid lithium ionic conductor, and associates with the cathodic complex of the second conductive solution, and a current is generated.
Calcium intercalation into layered fluorinated sodium iron phosphate
Lipson, Albert L.; Kim, Soojeong; Pan, Baofei; ...
2017-10-09
Here, the energy density and cost of battery systems could be improved by moving to alternative battery chemistries such as Ca-ion. However, in order to switch chemistries many problems need to be solved including the identification of cathode materials with high energy density, and electrolytes that can plate and strip calcium metal. Herein, the feasibility and cycling performance of Ca 2+ intercalation into a desodiated layered Na 2FePO 4F host is described. This is the first demonstration of Ca 2+ intercalation into a polyanionic framework, which implies that other polyanionic framework materials may be active for Ca 2+ intercalation. Althoughmore » substantial effort is still needed to identify a high energy density cathode material, this study and others demonstrate the feasibility of Ca 2+ intercalation into multiple materials making it more probable that such a cathode material can be found.« less
Calcium intercalation into layered fluorinated sodium iron phosphate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lipson, Albert L.; Kim, Soojeong; Pan, Baofei
Here, the energy density and cost of battery systems could be improved by moving to alternative battery chemistries such as Ca-ion. However, in order to switch chemistries many problems need to be solved including the identification of cathode materials with high energy density, and electrolytes that can plate and strip calcium metal. Herein, the feasibility and cycling performance of Ca 2+ intercalation into a desodiated layered Na 2FePO 4F host is described. This is the first demonstration of Ca 2+ intercalation into a polyanionic framework, which implies that other polyanionic framework materials may be active for Ca 2+ intercalation. Althoughmore » substantial effort is still needed to identify a high energy density cathode material, this study and others demonstrate the feasibility of Ca 2+ intercalation into multiple materials making it more probable that such a cathode material can be found.« less
Mauro, John C; Loucks, Roger J; Balakrishnan, Jitendra; Raghavan, Srikanth
2007-05-21
The thermodynamics and kinetics of a many-body system can be described in terms of a potential energy landscape in multidimensional configuration space. The partition function of such a landscape can be written in terms of a density of states, which can be computed using a variety of Monte Carlo techniques. In this paper, a new self-consistent Monte Carlo method for computing density of states is described that uses importance sampling and a multiplicative update factor to achieve rapid convergence. The technique is then applied to compute the equilibrium quench probability of the various inherent structures (minima) in the landscape. The quench probability depends on both the potential energy of the inherent structure and the volume of its corresponding basin in configuration space. Finally, the methodology is extended to the isothermal-isobaric ensemble in order to compute inherent structure quench probabilities in an enthalpy landscape.
Geometrical Description of fractional quantum Hall quasiparticles
NASA Astrophysics Data System (ADS)
Park, Yeje; Yang, Bo; Haldane, F. D. M.
2012-02-01
We examine a description of fractional quantum Hall quasiparticles and quasiholes suggested by a recent geometrical approach (F. D. M. Haldane, Phys. Rev. Lett. 108, 116801 (2011)) to FQH systems, where the local excess electric charge density in the incompressible state is given by a topologically-quantized ``guiding-center spin'' times the Gaussian curvature of a ``guiding-center metric tensor'' that characterizes the local shape of the correlation hole around electrons in the fluid. We use a phenomenological energy function with two ingredients: the shear distortion energy of area-preserving distortions of the fluid, and a local (short-range) approximation to the Coulomb energy of the fluctuation of charge density associated with the Gaussian curvature. Quasiparticles and quasiholes of the 1/3 Laughlin state are modeled as ``punctures'' in the incompressible fluid which then relax by geometric distortion which generates Gaussian curvature, giving rise to the charge-density profile around the topological excitation.
Advanced Electrical Materials and Components Being Developed
NASA Technical Reports Server (NTRS)
Schwarze, Gene E.
2004-01-01
All aerospace systems require power management and distribution (PMAD) between the energy and power source and the loads. The PMAD subsystem can be broadly described as the conditioning and control of unregulated power from the energy source and its transmission to a power bus for distribution to the intended loads. All power and control circuits for PMAD require electrical components for switching, energy storage, voltage-to-current transformation, filtering, regulation, protection, and isolation. Advanced electrical materials and component development technology is a key technology to increasing the power density, efficiency, reliability, and operating temperature of the PMAD. The primary means to develop advanced electrical components is to develop new and/or significantly improved electronic materials for capacitors, magnetic components, and semiconductor switches and diodes. The next important step is to develop the processing techniques to fabricate electrical and electronic components that exceed the specifications of presently available state-of-the-art components. The NASA Glenn Research Center's advanced electrical materials and component development technology task is focused on the following three areas: 1) New and/or improved dielectric materials for the development of power capacitors with increased capacitance volumetric efficiency, energy density, and operating temperature; 2) New and/or improved high-frequency, high-temperature soft magnetic materials for the development of transformers and inductors with increased power density, energy density, electrical efficiency, and operating temperature; 3) Packaged high-temperature, high-power density, high-voltage, and low-loss SiC diodes and switches.
Fission dynamics with microscopic level densities
NASA Astrophysics Data System (ADS)
Randrup, Jørgen; Ward, Daniel; Carlsson, Gillis; Døssing, Thomas; Möller, Peter; Åberg, Sven
2018-03-01
Working within the Langevin framework of nuclear shape dynamics, we study the dependence of the evolution on the degree of excitation. As the excitation energy of the fissioning system is increased, the pairing correlations and the shell effects diminish and the effective potential-energy surface becomes ever more liquid-drop like. This feature can be included in the treatment in a formally well-founded manner by using the local level densities as a basis for the shape evolution. This is particularly easy to understand and implement in the Metropolis treatment where the evolution is simulated by means of a random walk on the five-dimensional lattice of shapes for which the potential energy has been tabulated. Because the individual steps between two neighboring lattice sites are decided on the basis of the ratio of the statistical weights, what is needed is the ratio of the local level densities for those shapes, evaluated at the associated local excitation energies. For this purpose, we adapt a recently developed combinatorial method for calculating level densities which employs the same single-particle levels as those that were used for the calculation of the pairing and shell contributions to the macroscopic-microscopic deformation-energy surface. For each nucleus under consideration, the level density (for a fixed total angular momentum) is calculated microscopically for each of the over five million shapes given in the three-quadratic-surface parametrization. This novel treatment, which introduces no new parameters, is illustrated for the fission fragment mass distributions for selected uranium and plutonium cases.
Jin, Yang; Zhou, Guangmin; Shi, Feifei; Zhuo, Denys; Zhao, Jie; Liu, Kai; Liu, Yayuan; Zu, Chenxi; Chen, Wei; Zhang, Rufan; Huang, Xuanyi; Cui, Yi
2017-09-06
Lithium polysulfide batteries possess several favorable attributes including low cost and high energy density for grid energy storage. However, the precipitation of insoluble and irreversible sulfide species on the surface of carbon and lithium (called "dead" sulfide species) leads to continuous capacity degradation in high mass loading cells, which represents a great challenge. To address this problem, herein we propose a strategy to reactivate dead sulfide species by reacting them with sulfur powder with stirring and heating (70 °C) to recover the cell capacity, and further demonstrate a flow battery system based on the reactivation approach. As a result, ultrahigh mass loading (0.125 g cm -3 , 2 g sulfur in a single cell), high volumetric energy density (135 Wh L -1 ), good cycle life, and high single-cell capacity are achieved. The high volumetric energy density indicates its promising application for future grid energy storage.Lithium polysulfide batteries suffer from the precipitation of insoluble and irreversible sulfide species on the surface of carbon and lithium. Here the authors show a reactivation strategy by a reaction with cheap sulfur powder under stirring and heating to recover the cell capacity.
Alkaline regenerative fuel cell systems for energy storage
NASA Technical Reports Server (NTRS)
Schubert, F. H.; Reid, M. A.; Martin, R. E.
1981-01-01
A description is presented of the results of a preliminary design study of a regenerative fuel cell energy storage system for application to future low-earth orbit space missions. The high energy density storage system is based on state-of-the-art alkaline electrolyte cell technology and incorporates dedicated fuel cell and electrolysis cell modules. In addition to providing energy storage, the system can provide hydrogen and oxygen for attitude control of the satellite and for life support. During the daylight portion of the orbit the electrolysis module uses power provided by the solar array to generate H2 and O2 from the product water produced by the fuel cell module. The fuel cell module supplies electrical power during the dark period of the orbit.
Functional Carbon Materials for Electrochemical Energy Storage
NASA Astrophysics Data System (ADS)
Zhou, Huihui
The ability to harvest and convert solar energy has been associated with the evolution of human civilization. The increasing consumption of fossil fuels since the industrial revolution, however, has brought to concerns in ecological deterioration and depletion of the fossil fuels. Facing these challenges, humankind is forced to seek for clean, sustainable and renewable energy resources, such as biofuels, hydraulic power, wind power, geothermal energy and other kinds of alternative energies. However, most alternative energy sources, generally in the form of electrical energy, could not be made available on a continuous basis. It is, therefore, essential to store such energy into chemical energy, which are portable and various applications. In this context, electrochemical energy-storage devices hold great promises towards this goal. The most common electrochemical energy-storage devices are electrochemical capacitors (ECs, also called supercapacitors) and batteries. In comparison to batteries, ECs posses high power density, high efficiency, long cycling life and low cost. ECs commonly utilize carbon as both (symmetric) or one of the electrodes (asymmetric), of which their performance is generally limited by the capacitance of the carbon electrodes. Therefore, developing better carbon materials with high energy density has been emerging as one the most essential challenges in the field. The primary objective of this dissertation is to design and synthesize functional carbon materials with high energy density at both aqueous and organic electrolyte systems. The energy density (E) of ECs are governed by E = CV 2/2, where C is the total capacitance and V is the voltage of the devices. Carbon electrodes with high capacitance and high working voltage should lead to high energy density. In the first part of this thesis, a new class of nanoporous carbons were synthesized for symmetric supercapacitors using aqueous Li2SO4 as the electrolyte. A unique precursor was adopted to create uniformly distributed nanopores with large surface area, leading to high-performance electrodes with high capacitance, excellent rate performance and stable cycling, even under a high working voltage of 1.6V. The second part of this dissertation work further improved the capacitance of the carbon electrodes by fluorine doping. This doping process enhances the affinity of the carbon surface with organic electrolytes, leading to further improved capacitance and energy density. In the third part, carbon materials were synthesized with high surface area, capacitance and working voltage of 4V in organic electrolyte, leading to the construction of prototyped devices with energy density comparable to those of the current lead-acid batteries. Besides the abovementioned research, hierarchical graphitic carbons were also explored for lithium ion batteries and supercapacitors. Overall, through rational design of carbons with optimized pore configuration and surface chemistry, carbon electrodes with improved energy density and rate performance were improved significantly. Collectively, this thesis work systematically unveils simple yet effective strategies to achieve high performance carbon-based supercapacitors with high power density and high energy density, including the following aspects: 1) Constructed electrodes with high capacitance through building favorable ion/electron transportation pathways, tuning pore structure and pore size. 2) Improved the capacitance through enhancing the affinity between the carbon electrodes and electrolytes by doping the carbons with heteroatoms. 3) Explored and understand the roles of heteroatom doping in the capacitive behavior by both experimental measurement and computational modeling. 4) Improved energy density of carbon electrodes by enlarging their working voltage in aqueous and organic electrolyte. 5) Scalable and effective production of hierarchically porous graphite particles through aerosol process for use as the anode materials of lithium ion batteries. These strategies can be extended as a general design platform for other high-performance energy storage materials such as fuel cells and lithium-ion batteries.
Advanced materials for energy storage.
Liu, Chang; Li, Feng; Ma, Lai-Peng; Cheng, Hui-Ming
2010-02-23
Popularization of portable electronics and electric vehicles worldwide stimulates the development of energy storage devices, such as batteries and supercapacitors, toward higher power density and energy density, which significantly depends upon the advancement of new materials used in these devices. Moreover, energy storage materials play a key role in efficient, clean, and versatile use of energy, and are crucial for the exploitation of renewable energy. Therefore, energy storage materials cover a wide range of materials and have been receiving intensive attention from research and development to industrialization. In this Review, firstly a general introduction is given to several typical energy storage systems, including thermal, mechanical, electromagnetic, hydrogen, and electrochemical energy storage. Then the current status of high-performance hydrogen storage materials for on-board applications and electrochemical energy storage materials for lithium-ion batteries and supercapacitors is introduced in detail. The strategies for developing these advanced energy storage materials, including nanostructuring, nano-/microcombination, hybridization, pore-structure control, configuration design, surface modification, and composition optimization, are discussed. Finally, the future trends and prospects in the development of advanced energy storage materials are highlighted.
The impact of electric vehicles on the outlook of future energy system
NASA Astrophysics Data System (ADS)
Zhuk, A.; Buzoverov, E.
2018-02-01
Active promotion of electric vehicles (EVs) and technology of fast EV charging in the medium term may cause significant peak loads on the energy system, what necessitates making strategic decisions related to the development of generating capacities, distribution networks with EV charging infrastructure, and priorities in the development of battery electric vehicles and vehicles with electrochemical generators. The paper analyses one of the most significant aspects of joint development of electric transport system and energy system in the conditions of substantial growth of energy consumption by EVs. The assessments of per-unit-costs of operation and depreciation of EV power unit were made, taking into consideration the expenses of electric power supply. The calculations show that the choice of electricity buffering method for EV fast charging depends on the character of electricity infrastructure in the region where the electric transport is operating. In the conditions of high density of electricity network and a large number of EVs, the stationary storage facilities or the technology of distributed energy storage in EV batteries - vehicle-to-grid (V2G) technology may be used for buffering. In the conditions of low density and low capacity of electricity networks, the most economical solution could be usage of EVs with traction power units based on the combination of air-aluminum electrochemical generator and a buffer battery of small capacity.
Architecture engineering of supercapacitor electrode materials
NASA Astrophysics Data System (ADS)
Chen, Kunfeng; Li, Gong; Xue, Dongfeng
2016-02-01
The biggest challenge for today’s supercapacitor systems readily possessing high power density is their low energy density. Their electrode materials with controllable structure, specific surface area, electronic conductivity, and oxidation state, have long been highlighted. Architecture engineering of functional electrode materials toward powerful supercapacitor systems is becoming a big fashion in the community. The construction of ion-accessible tunnel structures can microscopically increase the specific capacitance and materials utilization; stiff 3D structures with high specific surface area can macroscopically assure high specific capacitance. Many exciting findings in electrode materials mainly focus on the construction of ice-folded graphene paper, in situ functionalized graphene, in situ crystallizing colloidal ionic particles and polymorphic metal oxides. This feature paper highlights some recent architecture engineering strategies toward high-energy supercapacitor electrode systems, including electric double-layer capacitance (EDLC) and pseudocapacitance.
NASA Astrophysics Data System (ADS)
Mokem Fokou, I. S.; Nono Dueyou Buckjohn, C.; Siewe Siewe, M.; Tchawoua, C.
2018-03-01
In this manuscript, a hybrid energy harvesting system combining piezoelectric and electromagnetic transduction and subjected to colored noise is investigated. By using the stochastic averaging method, the stationary probability density functions of amplitudes are obtained and reveal interesting dynamics related to the long term behavior of the device. From stationary probability densities, we discuss the stochastic bifurcation through the qualitative change which shows that noise intensity, correlation time and other system parameters can be treated as bifurcation parameters. Numerical simulations are made for a comparison with analytical findings. The Mean first passage time (MFPT) is numerical provided in the purpose to investigate the system stability. By computing the Mean residence time (TMR), we explore the stochastic resonance phenomenon; we show how it is related to the correlation time of colored noise and high output power.
Quasi-particle energy spectra in local reduced density matrix functional theory.
Lathiotakis, Nektarios N; Helbig, Nicole; Rubio, Angel; Gidopoulos, Nikitas I
2014-10-28
Recently, we introduced [N. N. Lathiotakis, N. Helbig, A. Rubio, and N. I. Gidopoulos, Phys. Rev. A 90, 032511 (2014)] local reduced density matrix functional theory (local RDMFT), a theoretical scheme capable of incorporating static correlation effects in Kohn-Sham equations. Here, we apply local RDMFT to molecular systems of relatively large size, as a demonstration of its computational efficiency and its accuracy in predicting single-electron properties from the eigenvalue spectrum of the single-particle Hamiltonian with a local effective potential. We present encouraging results on the photoelectron spectrum of molecular systems and the relative stability of C20 isotopes. In addition, we propose a modelling of the fractional occupancies as functions of the orbital energies that further improves the efficiency of the method useful in applications to large systems and solids.
Kananenka, Alexei A; Zgid, Dominika
2017-11-14
We present a rigorous framework which combines single-particle Green's function theory with density functional theory based on a separation of electron-electron interactions into short- and long-range components. Short-range contribution to the total energy and exchange-correlation potential is provided by a density functional approximation, while the long-range contribution is calculated using an explicit many-body Green's function method. Such a hybrid results in a nonlocal, dynamic, and orbital-dependent exchange-correlation functional of a single-particle Green's function. In particular, we present a range-separated hybrid functional called srSVWN5-lrGF2 which combines the local-density approximation and the second-order Green's function theory. We illustrate that similarly to density functional approximations, the new functional is weakly basis-set dependent. Furthermore, it offers an improved description of the short-range dynamic correlation. The many-body contribution to the functional mitigates the many-electron self-interaction error present in many density functional approximations and provides a better description of molecular properties. Additionally, we illustrate that the new functional can be used to scale down the self-energy and, therefore, introduce an additional sparsity to the self-energy matrix that in the future can be exploited in calculations for large molecules or periodic systems.
Energy transfer dynamics in strongly inhomogeneous hot-dense-matter systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stillman, C. R.; Nilson, P. M.; Sefkow, A. B.
Direct measurements of energy transfer across steep density and temperature gradients in a hot-dense-matter system are presented. Hot dense plasma conditions were generated by high-intensity laser irradiation of a thin-foil target containing a buried metal layer. Energy transfer to the layer was measured using picosecond time-resolved x-ray emission spectroscopy. Here, the data show two x-ray flashes in time. Fully explicit, coupled particle-in-cell and collisional-radiative atomic kinetics model predictions reproduce these observations, connecting the two x-ray flashes with staged radial energy transfer within the target.
Energy transfer dynamics in strongly inhomogeneous hot-dense-matter systems
Stillman, C. R.; Nilson, P. M.; Sefkow, A. B.; ...
2018-06-25
Direct measurements of energy transfer across steep density and temperature gradients in a hot-dense-matter system are presented. Hot dense plasma conditions were generated by high-intensity laser irradiation of a thin-foil target containing a buried metal layer. Energy transfer to the layer was measured using picosecond time-resolved x-ray emission spectroscopy. Here, the data show two x-ray flashes in time. Fully explicit, coupled particle-in-cell and collisional-radiative atomic kinetics model predictions reproduce these observations, connecting the two x-ray flashes with staged radial energy transfer within the target.
NASA Astrophysics Data System (ADS)
Song, Y.; Lysak, R. L.
2017-12-01
Parallel electrostatic electric fields provide a powerful mechanism to accelerate auroral particles to high energy in the auroral acceleration region (AAR), creating both quasi-static and Alfvenic discrete aurorae. The total field-aligned current can be written as J||total=J||+J||D, where the displacement current is denoted as J||D=(1/4π)(∂E||/∂t), which describes the E||-generation (Song and Lysak, 2006). The generation of the total field-aligned current is related to spatial gradients of the parallel vorticity caused by the axial torque acting on field-aligned flux tubes in M-I coupling system. It should be noticed that parallel electric fields are not produced by the field-aligned current. In fact, the E||-generation is caused by Alfvenic interaction in the M-I coupling system, and is favored by a low plasma density and the enhanced localized azimuthal magnetic flux. We suggest that the nonlinear interaction of incident and reflected Alfven wave packets in the AAR can create reactive stress concentration, and therefore can generate the parallel electrostatic electric fields together with a seed low density cavity. The generated electric fields will quickly deepen the seed low density cavity, which can effectively create even stronger electrostatic electric fields. The electrostatic electric fields nested in a low density cavity and surrounded by enhanced azimuthal magnetic flux constitute Alfvenic electromagnetic plasma structures, such as Alfvenic Double Layers (DLs). The Poynting flux carried by Alfven waves can continuously supply energy from the generator region to the auroral acceleration region, supporting and sustaining Alfvenic DLs with long-lasting electrostatic electric fields which accelerate auroral particles to high energy. The generation of parallel electric fields and the formation of auroral arcs can redistribute perpendicular mechanical and magnetic stresses in auroral flux tubes, decoupling the magnetosphere from ionosphere drag locally. This may enhance the magnetotail earthward shear flows and rapidly buildup stronger parallel electric fields in the auroral acceleration region, leading to a sudden and violent tail energy release, if there is accumulated free magnetic energy in the tail.
Shiba, Kenji; Nagato, Tomohiro; Tsuji, Toshio; Koshiji, Kohji
2008-07-01
This paper reports on the electromagnetic influences on the analysis of biological tissue surrounding a prototype energy transmission system for a wireless capsule endoscope. Specific absorption rate (SAR) and current density were analyzed by electromagnetic simulator in a model consisting of primary coil and a human trunk including the skin, fat, muscle, small intestine, backbone, and blood. First, electric and magnetic strength in the same conditions as the analytical model were measured and compared to the analytical values to confirm the validity of the analysis. Then, SAR and current density as a function of frequency and output power were analyzed. The validity of the analysis was confirmed by comparing the analytical values with the measured ones. The SAR was below the basic restrictions of the International Commission on Nonionizing Radiation Protection (ICNIRP). At the same time, the results for current density show that the influence on biological tissue was lowest in the 300-400 kHz range, indicating that it was possible to transmit energy safely up to 160 mW. In addition, we confirmed that the current density has decreased by reducing the primary coil's current.
Toward high-energy-density, high-efficiency, and moderate-temperature chip-scale thermophotovoltaics
Chan, Walker R.; Bermel, Peter; Pilawa-Podgurski, Robert C. N.; Marton, Christopher H.; Jensen, Klavs F.; Senkevich, Jay J.; Joannopoulos, John D.; Soljačić, Marin; Celanovic, Ivan
2013-01-01
The challenging problem of ultra-high-energy-density, high-efficiency, and small-scale portable power generation is addressed here using a distinctive thermophotovoltaic energy conversion mechanism and chip-based system design, which we name the microthermophotovoltaic (μTPV) generator. The approach is predicted to be capable of up to 32% efficient heat-to-electricity conversion within a millimeter-scale form factor. Although considerable technological barriers need to be overcome to reach full performance, we have performed a robust experimental demonstration that validates the theoretical framework and the key system components. Even with a much-simplified μTPV system design with theoretical efficiency prediction of 2.7%, we experimentally demonstrate 2.5% efficiency. The μTPV experimental system that was built and tested comprises a silicon propane microcombustor, an integrated high-temperature photonic crystal selective thermal emitter, four 0.55-eV GaInAsSb thermophotovoltaic diodes, and an ultra-high-efficiency maximum power-point tracking power electronics converter. The system was demonstrated to operate up to 800 °C (silicon microcombustor temperature) with an input thermal power of 13.7 W, generating 344 mW of electric power over a 1-cm2 area. PMID:23440220
NASA Astrophysics Data System (ADS)
Li, Guanchen; von Spakovsky, Michael R.
2016-01-01
This paper presents a study of the nonequilibrium relaxation process of chemically reactive systems using steepest-entropy-ascent quantum thermodynamics (SEAQT). The trajectory of the chemical reaction, i.e., the accessible intermediate states, is predicted and discussed. The prediction is made using a thermodynamic-ensemble approach, which does not require detailed information about the particle mechanics involved (e.g., the collision of particles). Instead, modeling the kinetics and dynamics of the relaxation process is based on the principle of steepest-entropy ascent (SEA) or maximum-entropy production, which suggests a constrained gradient dynamics in state space. The SEAQT framework is based on general definitions for energy and entropy and at least theoretically enables the prediction of the nonequilibrium relaxation of system state at all temporal and spatial scales. However, to make this not just theoretically but computationally possible, the concept of density of states is introduced to simplify the application of the relaxation model, which in effect extends the application of the SEAQT framework even to infinite energy eigenlevel systems. The energy eigenstructure of the reactive system considered here consists of an extremely large number of such levels (on the order of 10130) and yields to the quasicontinuous assumption. The principle of SEA results in a unique trajectory of system thermodynamic state evolution in Hilbert space in the nonequilibrium realm, even far from equilibrium. To describe this trajectory, the concepts of subsystem hypoequilibrium state and temperature are introduced and used to characterize each system-level, nonequilibrium state. This definition of temperature is fundamental rather than phenomenological and is a generalization of the temperature defined at stable equilibrium. In addition, to deal with the large number of energy eigenlevels, the equation of motion is formulated on the basis of the density of states and a set of associated degeneracies. Their significance for the nonequilibrium evolution of system state is discussed. For the application presented, the numerical method used is described and is based on the density of states, which is specifically developed to solve the SEAQT equation of motion. Results for different kinds of initial nonequilibrium conditions, i.e., those for gamma and Maxwellian distributions, are studied. The advantage of the concept of hypoequilibrium state in studying nonequilibrium trajectories is discussed.
Metal-Air Batteries: (Latest citations from the Aerospace Database)
NASA Technical Reports Server (NTRS)
1997-01-01
The bibliography contains citations concerning applications of metal-air batteries. Topics include systems that possess different practical energy densities at specific powers. Coverage includes the operation of air electrodes at different densities and performance results. The systems are used in electric vehicles as a cost-effective method to achieve reliability and efficiency. Zinc-air batteries are covered more thoroughly in a separate bibliography. (Contains 50-250 citations and includes a subject term index and title list.)
Eddy Correlation Flux Measurement System Handbook
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cook, D. R.
2016-01-01
The eddy correlation (ECOR) flux measurement system provides in situ, half-hour measurements of the surface turbulent fluxes of momentum, sensible heat, latent heat, and carbon dioxide (CO2) (and methane at one Southern Great Plains extended facility (SGP EF) and the North Slope of Alaska Central Facility (NSA CF). The fluxes are obtained with the eddy covariance technique, which involves correlation of the vertical wind component with the horizontal wind component, the air temperature, the water vapor density, and the CO2 concentration. The instruments used are: • a fast-response, three-dimensional (3D) wind sensor (sonic anemometer) to obtain the orthogonal wind componentsmore » and the speed of sound (SOS) (used to derive the air temperature) • an open-path infrared gas analyzer (IRGA) to obtain the water vapor density and the CO2 concentration, and • an open-path infrared gas analyzer (IRGA) to obtain methane density and methane flux at one SGP EF and at the NSA CF. The ECOR systems are deployed at the locations where other methods for surface flux measurements (e.g., energy balance Bowen ratio [EBBR] systems) are difficult to employ, primarily at the north edge of a field of crops. A Surface Energy Balance System (SEBS) has been installed collocated with each deployed ECOR system in SGP, NSA, Tropical Western Pacific (TWP), ARM Mobile Facility 1 (AMF1), and ARM Mobile Facility 2 (AMF2). The surface energy balance system consists of upwelling and downwelling solar and infrared radiometers within one net radiometer, a wetness sensor, and soil measurements. The SEBS measurements allow the comparison of ECOR sensible and latent heat fluxes with the energy balance determined from the SEBS and provide information on wetting of the sensors for data quality purposes. The SEBS at one SGP and one NSA site also support upwelling and downwelling PAR measurements to qualify those two locations as Ameriflux sites.« less
Advances in rechargeable lithium molybdenum disulfide batteries
NASA Technical Reports Server (NTRS)
Brandt, K.; Stiles, J. A. R.
1985-01-01
The lithium molybdenum disulfide system as demonstrated in a C size cell, offers performance characteristics for applications where light weight and low volume are important. A gravimetric energy density of 90 watt hours per kilogram can be achieved in a C size cell package. The combination of charge retention capabilities, high energy density and a state of charge indicator in a rechargeable cell provides power package for a wide range of devices. The system overcomes the memory effect in Nicads where the full capacity of the battery cannot be utilized unless it was utilized on previous cycles. The development of cells with an advanced electrolyte formulation led to an improved rate capability especially at low temperatures and to a significantly improved life cycle.
Novel high-density packaging of solid state diode pumped eye-safe laser for LIBS
NASA Astrophysics Data System (ADS)
Bares, Kim; Torgerson, Justin; McNeil, Laine; Maine, Patrick; Patterson, Steve
2018-02-01
Laser-Induced Breakdown Spectroscopy (LIBS) has proven to be a useful research tool for material analysis for decades. However, because of the amount of energy required in a few nanosecond pulse to generate a stable and reliable LIBS signal, the lasers are often large and inefficient, relegating their implementation to research facilities, factory floors, and assembly lines. Small portable LIBS systems are now possible without having to compromise on energy needs by leveraging off of advances in high-density packaging of electronics, opto-mechanics, and highly efficient laser resonator architecture. This paper explores the integration of these techniques to achieve a mJ class eye-safe LIBS laser source, while retaining a small, light-weight package suitable for handheld systems.
NASA Astrophysics Data System (ADS)
Ren, Hao
A Microbial fuel cell (MFC) is a bio-inspired carbon-neutral, renewable electrochemical converter to extract electricity from catabolic reaction of micro-organisms. It is a promising technology capable of directly converting the abundant biomass on the planet into electricity and potentially alleviate the emerging global warming and energy crisis. The current and power density of MFCs are low compared with conventional energy conversion techniques. Since its debut in 2002, many studies have been performed by adopting a variety of new configurations and structures to improve the power density. The reported maximum areal and volumetric power densities range from 19 mW/m2 to 1.57 W/m2 and from 6.3 W/m3 to 392 W/m 3, respectively, which are still low compared with conventional energy conversion techniques. In this dissertation, the impact of scaling effect on the performance of MFCs are investigated, and it is found that by scaling down the characteristic length of MFCs, the surface area to volume ratio increases and the current and power density improves. As a result, a miniaturized MFC fabricated by Micro-Electro-Mechanical System (MEMS) technology with gold anode is presented in this dissertation, which demonstrate a high power density of 3300 W/m3. The performance of the MEMS MFC is further improved by adopting anodes with higher surface area to volume ratio, such as carbon nanotube (CNT) and graphene based anodes, and the maximum power density is further improved to a record high power density of 11220 W/m3. A novel supercapacitor by regulating the respiration of the bacteria is also presented, and a high power density of 531.2 A/m2 (1,060,000 A/m3) and 197.5 W/m2 (395,000 W/m3), respectively, are marked, which are one to two orders of magnitude higher than any previously reported microbial electrochemical techniques.