Science.gov

Sample records for energy deposition sputtering

  1. Measuring the energy flux at the substrate position during magnetron sputter deposition processes

    SciTech Connect

    Cormier, P.-A.; Thomann, A.-L.; Dussart, R.; Semmar, N.; Mathias, J.; Balhamri, A.; Snyders, R.; Konstantinidis, S.

    2013-01-07

    In this work, the energetic conditions at the substrate were investigated in dc magnetron sputtering (DCMS), pulsed dc magnetron sputtering (pDCMS), and high power impulse magnetron sputtering (HiPIMS) discharges by means of an energy flux diagnostic based on a thermopile sensor, the probe being set at the substrate position. Measurements were performed in front of a titanium target for a highly unbalanced magnetic field configuration. The average power was always kept to 400 W and the probe was at the floating potential. Variation of the energy flux against the pulse peak power in HiPIMS was first investigated. It was demonstrated that the energy per deposited titanium atom is the highest for short pulses (5 {mu}s) high pulse peak power (39 kW), as in this case, the ion production is efficient and the deposition rate is reduced by self-sputtering. As the argon pressure is increased, the energy deposition is reduced as the probability of scattering in the gas phase is increased. In the case of the HiPIMS discharge run at moderate peak power density (10 kW), the energy per deposited atom was found to be lower than the one measured for DCMS and pDCMS discharges. In these conditions, the HiPIMS discharge could be characterized as soft and close to a pulsed DCMS discharge run at very low duty cycle. For the sake of comparison, measurements were also carried out in DCMS mode with a balanced magnetron cathode, in the same working conditions of pressure and power. The energy flux at the substrate is significantly increased as the discharge is generated in an unbalanced field.

  2. Ion beam sputter etching and deposition of fluoropolymers

    NASA Technical Reports Server (NTRS)

    Banks, B. A.; Sovey, J. S.; Miller, T. B.; Crandall, K. S.

    1978-01-01

    Fluoropolymer etching and deposition techniques including thermal evaporation, RF sputtering, plasma polymerization, and ion beam sputtering are reviewed. Etching and deposition mechanisms and material characteristics are discussed. Ion beam sputter etch rates for polytetrafluoroethylene (PTFE) were determined as a function of ion energy, current density and ion beam power density. Peel strengths were measured for epoxy bonds to various ion beam sputtered fluoropolymers. Coefficients of static and dynamic friction were measured for fluoropolymers deposited from ion bombarded PTFE.

  3. Ion beam sputter etching and deposition of fluoropolymers

    NASA Technical Reports Server (NTRS)

    Banks, B. A.; Sovey, J. S.; Miller, T. B.; Crandall, K. S.

    1978-01-01

    Fluoropolymer etching and deposition techniques including thermal evaporation, RF sputtering, plasma polymerization, and ion beam sputtering are reviewed. Etching and deposition mechanism and material characteristics are discussed. Ion beam sputter etch rates for polytetrafluoroethylene (PTFE) were determined as a function of ion energy, current density and ion beam power density. Peel strengths were measured for epoxy bonds to various ion beam sputtered fluoropolymers. Coefficients of static and dynamic friction were measured for fluoropolymers deposited from ion bombarded PTFE.

  4. Diffusion enhancement due to low-energy ion bombardment during sputter etching and deposition

    SciTech Connect

    Eltoukhy, A.H.; Greene, J.E.

    1980-08-01

    The effects of low-energy ion bombardment on enhancing elemental diffusion rates at both heterojunction interfaces during film deposition and over the compositionally altered layer created during sputter etching alloy targets have been considered. Depth dependent enhanced interdiffusion coefficients, expressed as D*(x)=D*(0) exp(-x/L/sub d/), where D*(0) is more than five orders of magnitude greater than thermal diffusion values, were measured in InSb/GaSb multilayer structures deposited by multitarget bias sputering. D*(0) was determined from the amplitude u of the compositional modulation in the multilayered films (layer thicknesses between 20 and 45 A) as measured by superlattice x-ray diffraction techniques. The value of D*(0) was found to increase from 3 x 10/sup -17/ to 1 x 10/sup -16/ cm/sup 2//sec as the applied substrate bias was increased from 0 to -75 V. However even at V/sub a/=0, the diffusion coefficient was enhanced owing to an induced substrate potential with respect to the positive space-charge region in the Ar discharge. The diffusion length of L/sub d/ of the ion bombardment created defects was approx.1000 A. Enhanced diffusion also has a significiant effect on the altered layer thickness x/sub e/ and the total sputtering time t/sub e/ (or ion dose) required to reach steady state during ion etching of multielement targets. The effects of using an exponentially depth dependent versus a constant value of the enhanced diffusion coefficient on calculated values of x/sub e/ and t/sub e/ in single-phase binary alloys were considered. The results show that both x/sub e/ and t/sub e/ are considerably larger using a depth dependent D*(x), when L/sub d/sputter etching. However, when L/sub d/>D*(0)/v, the usual case for most sputtering applications, the two solutions approach each other.

  5. Simultaneous ion sputter polishing and deposition

    NASA Technical Reports Server (NTRS)

    Rutledge, S.; Banks, B.; Brdar, M.

    1981-01-01

    Results of experiments to study ion beam sputter polishing in conjunction with simultaneous deposition as a mean of polishing copper surfaces are presented. Two types of simultaneous ion sputter polishing and deposition were used in these experiments. The first type utilized sputter polishing simultaneous with vapor deposition, and the second type utilized sputter polishing simultaneous with sputter deposition. The etch and deposition rates of both techniques were studied, as well as the surface morphology and surface roughness.

  6. High energy density amorphous silicon anodes for lithium ion batteries deposited by DC sputtering

    NASA Astrophysics Data System (ADS)

    Farmakis, Filippos; Elmasides, Costas; Fanz, Patrik; Hagen, Markus; Georgoulas, Nikolaos

    2015-10-01

    As more and more applications require high energy density electrochemical storage systems that deliver more than 200 Wh/kg, Lithium-ion batteries with silicon-based anodes provide promising electrochemical properties especially high specific capacity. In this paper, we present micro-grain structured silicon deposited by DC sputtering on special copper foil that serves as current collector. It is demonstrated that high-density silicon anodes are obtained with more than 2000 mAh g-1 and 2.0 mAh cm-2 that can be considered as a commercial value. In addition, irreversible capacity during the first galvanostatic cycle can be lower than 20% for such anodes. Finally, it is found that there exists a clear correlation between the grain-size and the texture of the amorphous silicon to the electrochemical performance of half-cells.

  7. Sputtering - A vacuum deposition method for coating material.

    NASA Technical Reports Server (NTRS)

    Spalvins, T.

    1972-01-01

    The sputtering method is discussed in terms of the unique features which sputter offers in depositing coatings. These features include versatility, momentum transfer, configuration of target, precise controls, and a relatively slow deposition rate. Sputtered films are evaluated in terms of adherence, coherence, and the internal stresses. The observed strong adherence is attributed to the high kinetic energies of the sputtered material, sputter etched surface, and the submicroscopic particle size. Film thickness can be controlled to a millionth of a centimeter. Very adherent films of sputtered PTFE (teflon) can be deposited in a single operation on any type of material and on any geometrical configuration.

  8. Sputtering. [as deposition technique in mechanical engineering

    NASA Technical Reports Server (NTRS)

    Spalvins, T.

    1976-01-01

    This paper primarily reviews the potential of using the sputtering process as a deposition technique; however, the manufacturing and sputter etching aspects are also discussed. Since sputtering is not regulated by classical thermodynamics, new multicomponent materials can be developed in any possible chemical composition. The basic mechanism for dc and rf sputtering is described. Sputter-deposition is described in terms of the unique advantageous features it offers such as versatility, momentum transfer, stoichiometry, sputter-etching, target geometry (coating complex surfaces), precise controls, flexibility, ecology, and sputtering rates. Sputtered film characteristics, such as strong adherence and coherence and film morphology, are briefly evaluated in terms of varying the sputtering parameters. Also described are some of the specific industrial areas which are turning to sputter-deposition techniques.

  9. Sputter Deposition of Metallic Sponges

    SciTech Connect

    Jankowski, A F; Hayes, J P

    2002-01-18

    Metallic films are grown with a sponge-like morphology in the as-deposited condition using planar magnetron sputtering. The morphology of the deposit is characterized by metallic continuity in three dimensions with continuous porosity on the sub-micron scale. The stabilization of the metallic sponge is directly correlated with a limited range for the sputter deposition parameters of working gas pressure and substrate temperature. This sponge-like morphology augments the features as generally understood in the classic zone models of growth for physical vapor deposits. Nickel coatings are deposited with working gas pressures up to 4 Pa and for substrate temperatures up to 1100 K. The morphology of the deposits is examined in plan and in cross-section with scanning electron microscopy. The parametric range of gas pressure and substrate temperature (relative to absolute melt point) for the deposition processing under which the metallic sponges are produced appear universal for many metals, as for example, including gold, silver, and aluminum.

  10. Ion beam sputter deposited diamond like films

    NASA Technical Reports Server (NTRS)

    Banks, B. A.; Rutledge, S. K.

    1982-01-01

    A single argon ion beam source was used to sputter deposit carbon films on fused silica, copper, and tantalum substrates under conditions of sputter deposition alone and sputter deposition combined with simultaneous argon ion bombardment. Simultaneously deposited and ion bombarded carbon films were prepared under conditions of carbon atom removal to arrival ratios of 0, 0.036, and 0.71. Deposition and etch rates were measured for films on fused silica substrates. Resulting characteristics of the deposited films are: electrical resistivity of densities of 2.1 gm/cu cm for sputter deposited films and 2.2 gm/cu cm for simultaneously sputter deposited and Ar ion bombarded films. For films approximately 1700 A thick deposited by either process and at 5550 A wavelength light the reflectance was 0.2, the absorptance was 0.7, the absorption coefficient was 67,000 cm to the -1 and the transmittance was 0.1.

  11. REACTIVE SPUTTER DEPOSITION OF CHROMIUM NITRIDE COATINGS

    EPA Science Inventory

    The effect of substrate temperature and sputtering gas compositon on the structure and properties of chromium-chromium nitride films deposited on C-1040 steel using r.f. magnetron sputter deposition was investigated. X-ray diffraction analysis was used to determine the structure ...

  12. Sputtering: A vacuum deposition method for coating material

    NASA Technical Reports Server (NTRS)

    Spalvins, T.

    1972-01-01

    The sputtering process is described in terms of its features: versatility, momentum transfer, configuration of target, precise controls and the relatively slow deposition rate. Sputtered films are evaluated in terms of adherence, coherence, and internal stresses. The strong adherence is attributed to the high kinetic energies of the sputtered material, sputter etched (cleaned) surface, and the submicroscopic particle size. An illustration is a sputtered solid film lubricant such as MoS2. Friction tests were conducted on a thin, 2000 A deg thick MoS2 film. These films are very dense and without observable pinholes, and the particle to particle cohesion is strong. Tolerances (film thickness) can be controlled to a millionth of a centimeter. Very adherent films of sputtered Teflon can be deposited in a single operation on any type of material (metal, glass, paper) and on any geometrical configuration with a dense adherent film.

  13. Effect of magnetic field strength on deposition rate and energy flux in a dc magnetron sputtering system

    SciTech Connect

    Ekpe, Samuel D.; Jimenez, Francisco J.; Field, David J.; Davis, Martin J.; Dew, Steven K.

    2009-11-15

    Variations in the magnetic field strongly affect the plasma parameters in a magnetron sputtering system. This in turn affects the throughput as well as the energy flux to the substrate. The variation in the magnetic field in this study, for a dc magnetron process, is achieved by shifting the magnet assembly slightly away from the target. Measurements of the plasma parameters show that while the electron density at the substrate increases with decrease in magnetic field, the electron temperature decreases. The cooling of the electron temperature is consistent with results reported elsewhere. The deposition rate per input magnetron power is found to increase slightly with the decrease in magnetic field for the process conditions considered in this study. Results suggest that the energy flux to the substrate tends to show a general decrease with the shift in the magnet assembly.

  14. Transport Phenomena of Off-Axis Sputtering Deposition

    NASA Technical Reports Server (NTRS)

    Zhu, S.; Su, C. H.; Lehoczky, S. L.; Zhang, S.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    Various high quality epitaxial films, especially oxides, have been synthesized using off-axis sputtering deposition. In this presentation, we report the experiment results of ZnO films grown by the off-axis sputtering deposition. Films were synthesized in temperatures ranged from room temperature to 600 C, and pressures from 5 mTorr to 150 mTorr. Film growth rate was measured by surface profilometer, ellipsometer, and wavelength dispersive spectrometry. Due to the collisions between the sputtered species and the residue gases, the kinetic energy of species was reduced and the transport of depositing species changed from a ballistic movement for low pressure to a diffuse drift for high pressure in which the transport species were almost thermalized. The measurements show an increase of growth rates along the gravity vector when the Knodson (Knudsen??) number of transport species is less than 0.05, which suggests that gravity affected the transport characterization in off-axis sputtering deposition. Because the product of pressure (p) and travel distance (d) of sputtered species, p exceeds several mTorr-cm during film deposition, the classical simulations for sputtering process in high vacuum system may not be applied. Based on these experimental measurements, a transport process of the off-axis sputtering deposition is proposed. Several methods including the Monte Carlo method and gravity-driven flow dynamics simulation will be discussed.

  15. Ion beam sputter deposited zinc telluride films

    NASA Technical Reports Server (NTRS)

    Gulino, D. A.

    1986-01-01

    Zinc telluride is of interest as a potential electronic device material, particularly as one component in an amorphous superlattice, which is a new class of interesting and potentially useful materials. Some structural and electronic properties of ZnTe films deposited by argon ion beam sputter deposition are described. Films (up to 3000 angstroms thick) were deposited from a ZnTe target. A beam energy of 1000 eV and a current density of 4 mA/sq cm resulted in deposition rates of approximately 70 angstroms/min. The optical band gap was found to be approximately 1.1 eV, indicating an amorphous structure, as compared to a literature value of 2.26 eV for crystalline material. Intrinsic stress measurements showed a thickness dependence, varying from tensile for thicknesses below 850 angstroms to compressive for larger thicknesses. Room temperature conductivity measurement also showed a thickness dependence, with values ranging from 1.86 x 10 to the -6th/ohm cm for 300 angstrom film to 2.56 x 10 to the -1/ohm cm for a 2600 angstrom film. Measurement of the temperature dependence of the conductivity for these films showed complicated behavior which was thickness dependent. Thinner films showed at least two distinct temperature dependent conductivity mechanisms, as described by a Mott-type model. Thicker films showed only one principal conductivity mechanism, similar to what might be expected for a material with more crystalline character.

  16. Surface free energy of non-stick coatings deposited using closed field unbalanced magnetron sputter ion plating

    NASA Astrophysics Data System (ADS)

    Sun, Chen-Cheng; Lee, Shih-Chin; Dai, Shyue-Bin; Tien, Shein-Long; Chang, Chung-Chih; Fu, Yaw-Shyan

    2007-02-01

    Semiconductor IC packaging molding dies require wear resistance, corrosion resistance and non-sticking (with a low surface free energy). The molding releasing capability and performance are directly associated with the surface free energy between the coating and product material. The serious sticking problem reduces productivity and reliability. Depositing TiN, TiMoS, ZrN, CrC, CrN, NiCr, NiCrN, CrTiAlN and CrNiTiAlN coatings using closed field unbalanced magnetron sputter ion plating, and characterizing their surface free energy are the main object in developing a non-stick coating system for semiconductor IC molding tools. The contact angle of water, diiodomethane and ethylene glycol on the coated surfaces were measured at temperature in 20 °C using a Dataphysics OCA-20 contact angle analyzer. The surface free energy of the coatings and their components (dispersion and polar) were calculated using the Owens-Wendt geometric mean approach. The surface roughness was investigated by atomic force microscopy (AFM). The adhesion force of these coatings was measured using direct tensile pull-off test apparatus. The experimental results showed that NiCrN, CrN and NiCrTiAlN coatings outperformed TiN, ZrN, NiCr, CiTiAlN, CrC and TiMoS coatings in terms of non-sticking, and thus have the potential as working layers for injection molding industrial equipment, especially in semiconductor IC packaging molding applications.

  17. Ion beam sputter deposited zinc telluride films

    NASA Technical Reports Server (NTRS)

    Gulino, D. A.

    1985-01-01

    Zinc telluride is of interest as a potential electronic device material, particularly as one component in an amorphous superlattice, which is a new class of interesting and potentially useful materials. Some structural and electronic properties of ZnTe films deposited by argon ion beam sputter depoairion are described. Films (up to 3000 angstroms thick) were deposited from a ZnTe target. A beam energy of 1000 eV and a current density of 4 mA/sq. cm. resulted in deposition rates of approximately 70 angstroms/min. The optical band gap was found to be approximately 1.1 eV, indicating an amorphous structure, as compared to a literature value of 2.26 eV for crystalline material. Intrinsic stress measurements showed a thickness dependence, varying from tensile for thicknesses below 850 angstroms to compressive for larger thicknesses. Room temperature conductivity measurement also showed a thickness dependence, with values ranging from 1.86 x to to the -6/ohm. cm. for 300 angstrom film to 2.56 x 10 to the -1/ohm. cm. for a 2600 angstrom film. Measurement of the temperature dependence of the conductivity for these films showed complicated behavior which was thickness dependent. Thinner films showed at least two distinct temperature dependent conductivity mechanisms, as described by a Mott-type model. Thicker films showed only one principal conductivity mechanism, similar to what might be expected for a material with more crystalline character.

  18. Low-Energy Sputtering Research

    NASA Technical Reports Server (NTRS)

    Ray, P. K.; Shutthanandan, V.

    1999-01-01

    An experimental study is described to measure low-energy (less than 600 eV) sputtering yields of molybdenum with xenon ions using Rutherford backscattering spectroscopy (RBS) and secondary neutral mass spectroscopy (SNMS). An ion gun was used to generate the ion beam. The ion current density at the target surface was approximately 30 (micro)A/sq cm. For RBS measurements, the sputtered material was collected on a thin aluminum strip which was mounted on a semi-circular collector plate. The target was bombarded with 200 and 500 eV xenon ions at normal incidence. The differential sputtering yields were measured using the RBS method with 1 MeV helium ions. The differential yields were fitted with a cosine fitting function and integrated with respect to the solid angle to provide the total sputtering yields. The sputtering yields obtained using the RBS method are in reasonable agreement with those measured by other researchers using different techniques. For the SNMS measurements, 150 to 600 eV xenon ions were used at 50deg angle of incidence. The SNMS spectra were converted to sputtering yields for perpendicular incidence by normalizing SNMS spectral data at 500 eV with the yield measured by Rutherford backscattering spectrometry. Sputtering yields as well as the shape of the yield-energy curve obtained in this manner are in reasonable agreement with those measured by other researchers using different techniques. Sputtering yields calculated by using two semi-spherical formulations agree reasonably well with measured data. The isotopic composition of secondary ions were measured by bombarding copper with xenon ions at energies ranging from 100 eV to 1.5 keV. The secondary ion flux was found to be enriched in heavy isotopes at low incident ion energies. The heavy isotope enrichment was observed to decrease with increasing impact energy. Beyond 700 eV, light isotopes were sputtered preferentially with the enrichment remaining nearly constant.

  19. Measurement of deposition rate and ion energy distribution in a pulsed dc magnetron sputtering system using a retarding field analyzer with embedded quartz crystal microbalance.

    PubMed

    Sharma, Shailesh; Gahan, David; Scullin, Paul; Doyle, James; Lennon, Jj; Vijayaraghavan, Rajani K; Daniels, Stephen; Hopkins, M B

    2016-04-01

    A compact retarding field analyzer with embedded quartz crystal microbalance has been developed to measure deposition rate, ionized flux fraction, and ion energy distribution arriving at the substrate location. The sensor can be placed on grounded, electrically floating, or radio frequency (rf) biased electrodes. A calibration method is presented to compensate for temperature effects in the quartz crystal. The metal deposition rate, metal ionization fraction, and energy distribution of the ions arriving at the substrate location are investigated in an asymmetric bipolar pulsed dc magnetron sputtering reactor under grounded, floating, and rf biased conditions. The diagnostic presented in this research work does not suffer from complications caused by water cooling arrangements to maintain constant temperature and is an attractive technique for characterizing a thin film deposition system.

  20. Measurement of deposition rate and ion energy distribution in a pulsed dc magnetron sputtering system using a retarding field analyzer with embedded quartz crystal microbalance

    NASA Astrophysics Data System (ADS)

    Sharma, Shailesh; Gahan, David; Scullin, Paul; Doyle, James; Lennon, Jj; Vijayaraghavan, Rajani K.; Daniels, Stephen; Hopkins, M. B.

    2016-04-01

    A compact retarding field analyzer with embedded quartz crystal microbalance has been developed to measure deposition rate, ionized flux fraction, and ion energy distribution arriving at the substrate location. The sensor can be placed on grounded, electrically floating, or radio frequency (rf) biased electrodes. A calibration method is presented to compensate for temperature effects in the quartz crystal. The metal deposition rate, metal ionization fraction, and energy distribution of the ions arriving at the substrate location are investigated in an asymmetric bipolar pulsed dc magnetron sputtering reactor under grounded, floating, and rf biased conditions. The diagnostic presented in this research work does not suffer from complications caused by water cooling arrangements to maintain constant temperature and is an attractive technique for characterizing a thin film deposition system.

  1. Reactive sputter deposition of boron nitride

    SciTech Connect

    Jankowski, A.F.; Hayes, J.P.; McKernan, M.A.; Makowiecki, D.M.

    1995-10-01

    The preparation of fully dense, boron targets for use in planar magnetron sources has lead to the synthesis of Boron Nitride (BN) films by reactive rf sputtering. The deposition parameters of gas pressure, flow and composition are varied along with substrate temperature and applied bias. The films are characterized for composition using Auger electron spectroscopy, for chemical bonding using Raman spectroscopy and for crystalline structure using transmission electron microscopy. The deposition conditions are established which lead to the growth of crystalline BN phases. In particular, the growth of an adherent cubic BN coating requires 400--500 C substrate heating and an applied {minus}300 V dc bias.

  2. Reactive magnetron sputter deposition of (Ti,Cu)N nano-crystalline thin films: modeling of particle and energy flux toward the substrate

    NASA Astrophysics Data System (ADS)

    Rahmati, A.

    2012-08-01

    Ternary (Ti,Cu)N thin films were deposited by reactive dc magnetron sputtering on Si (111), glass slide, quartz and potassium bromide (KBr) substrates in molecular nitrogen ambient. This work has provided insight into the effects of substrate temperature, nitrogen content and particle and energy flux toward the substrate on the characteristics of (Ti,Cu)N films. Structural analysis of the films was identified by the x-ray diffraction (XRD) technique. Crystalline quality and phase stability are strongly dependent on substrate temperature. Ti-accommodated Cu3N structure results in lattice constant expansion and (100) preferential orientation. The bonding environment in these films was obtained by Fourier transform infrared (FTIR) spectroscopy. The surface morphology and chemical composition of the films were studied by using a scanning electron microscope (SEM)/energy dispersive x-ray spectroscopy (EDX). The films were aggregated as spherical grains. The atomic titanium to copper (Ti : Cu) ratio of (Ti,Cu)N films was less than that of the original target. An optical study was performed by vis-near-IR transmittance spectroscopy. The film thickness, refractive index and extinction coefficient were extracted from the measured transmittance. The as-deposited (Ti,Cu)N films are direct semiconductors with bandgap energy in the range of 2.57-3.23 eV. Nitrogen richness acts as an acceptor center and injects holes into the valence band (excited semiconductor). The amount of N attracted by the films was calculated using a model based on chemical bonding and the solubility process. Energy and angular contributions of sputtering yield were extracted from the existing literature to obtain a prediction about the atomic Ti : Cu ratio. By means of transport and range of ions in matter (TRIM.SP) Monte-Carlo simulation, the particle reflection coefficient of reflected N-neutrals was calculated. The initial energy of reflected N-neutrals and the sputtered particle at the

  3. Spatially resolved electron density and electron energy distribution function in Ar magnetron plasmas used for sputter-deposition of ZnO-based thin films

    SciTech Connect

    Maaloul, L.; Gangwar, R. K.; Morel, S.; Stafford, L.

    2015-11-15

    Langmuir probe and trace rare gases optical emission spectroscopy were used to analyze the spatial structure of the electron density and electron energy distribution function (EEDF) in a cylindrical Ar magnetron plasma reactor used for sputter-deposition of ZnO-based thin films. While a typical Bessel (zero order) diffusion profile was observed along the radial direction for the number density of charged particles at 21 cm from the ZnO target, a significant rise of these populations with respect to the Bessel function was seen in the center of the reactor at 4 cm from the magnetron surface. As for the EEDF, it was found to transform from a more or less Maxwellian far from the target to a two-temperature Maxwellian with a depletion of high-energy electrons where magnetic field confinement effects become important. No significant change in the behavior of the electron density and EEDF across a wide range of pressures (5–100 mTorr) and self-bias voltages (115–300 V) was observed during magnetron sputtering of Zn, ZnO, and In{sub 2}O{sub 3} targets. This indicates that sputtering of Zn, In, and O atoms do not play a very significant role on the electron particle balance and electron heating dynamics, at least over the range of experimental conditions investigated.

  4. TiN Deposition and Process Diagnostics using Remote Plasma Sputtering

    NASA Astrophysics Data System (ADS)

    Yang, Wonkyun; Kim, Gi-Taek; Lee, Seunghun; Kim, Do-Geun; Kim, Jong-Kuk

    2013-08-01

    The discharge voltage-current characteristics and the optical diagnostics of a remote plasma sputtering system called by high density plasma assisted sputtering source (HiPASS) were investigated. The remote plasma was generated by the hollow cathode discharge (HCD) gun and was transported to the target surface by external electromagnet coils. This showed a wide process window because the sputtering voltage and current could be individually controlled. The ion density and energy distribution could be also controlled unlike the conventional magnetron sputtering. Titanium nitride films were deposited under different sputtering voltage. The high voltage mode induced the high ionization ratio of the sputtered atoms and the high ion energy toward the substrate. That resulted in the enlarged grain size, and the preferred orientation toward (220). Eventually, this optimized condition of HiPASS obtained the best hardness of TiN films to be about 48 GPa at the sputtering voltage of -800 V.

  5. Sputter-deposited fuel cell membranes and electrodes

    NASA Technical Reports Server (NTRS)

    Narayanan, Sekharipuram R. (Inventor); Jeffries-Nakamura, Barbara (Inventor); Chun, William (Inventor); Ruiz, Ron P. (Inventor); Valdez, Thomas I. (Inventor)

    2001-01-01

    A method for preparing a membrane for use in a fuel cell membrane electrode assembly includes the steps of providing an electrolyte membrane, and sputter-depositing a catalyst onto the electrolyte membrane. The sputter-deposited catalyst may be applied to multiple sides of the electrolyte membrane. A method for forming an electrode for use in a fuel cell membrane electrode assembly includes the steps of obtaining a catalyst, obtaining a backing, and sputter-depositing the catalyst onto the backing. The membranes and electrodes are useful for assembling fuel cells that include an anode electrode, a cathode electrode, a fuel supply, and an electrolyte membrane, wherein the electrolyte membrane includes a sputter-deposited catalyst, and the sputter-deposited catalyst is effective for sustaining a voltage across a membrane electrode assembly in the fuel cell.

  6. SPUTTER DEPOSITION OF POROUS NANOSTRUCTURED METALS AND NANOSTRUCTURED MEMBRANES FOR CATALYSIS

    SciTech Connect

    Jankowski, A F; Ferreira, J L; Hayes, J P

    2003-09-10

    The sputter deposition process can be used to create nanostructured materials that possess continuous open porosity. Characterization of sputter deposited metals and metal-oxide coatings are presented.

  7. RF Reactive Magnetron Sputter Deposition of Silicon Sub-Oxides

    NASA Astrophysics Data System (ADS)

    van Hattum, E. D.

    2007-01-01

    RF reactive magnetron plasma sputter deposition of silicon sub oxide E.D. van Hattum Department of Physics and Astronomy, Faculty of Sciences, Utrecht University The work described in the thesis has been inspired and stimulated by the use of SiOx layers in the direct inductive printing technology, where the SiOx layer is used as the charge retention layer on the drums for copying and printing devices. The thesis describes investigations of the plasma and of processes taking place on the sputter target and on the SiOx growth surface in the room temperature, RF reactive magnetron plasma sputter deposition technology. The sputtering target consists of silicon and the reactive atmosphere consists of an Ar/O2 mixture. The composition of the grown SiOx layers has been varied between x=0 and x=2 by variation of the O2 partial pressure. The characteristics of the growth process have been related to the nanostructural properties of the grown films. The deposition system enables the characterisation of the plasma (Langmuir probe, energy resolved mass spectrometer) and of the growing film (Elastic Recoil Detection (ERD), Fourier transform infrared absorption spectroscopy) and is connected to a beamline of a 6MV tandem van de Graaff accelerator. Also Rutherford Backscattering Spectrometry and X-ray Photoelectron Spectroscopy have been applied. It is shown how ERD can be used as a real-time in-situ technique. The thesis presents spatially resolved values of the ion density, electron temperature and the quasi-electrostatic potential, determined using a Langmuir probe. The plasma potential has a maximum about 2 cm from the cathode erosion area, and decreases (more than 200 V typically) towards the floating sputter cathode. The potential decreases slightly in the direction towards the grounded growth surface and the positive, mainly Ar+, ions created in the large volume of the plasma closest to the substrate are accelerated towards the growth surface. These ions obtain a few eV of

  8. Sputter deposition of lithium silicate - lithium phosphate amorphous electrolytes

    SciTech Connect

    Dudney, N.J.; Bates, J.B.; Luck, C.F. ); Robertson, J.D. . Dept. of Chemistry)

    1991-01-01

    Thin films of an amorphous lithium-conducting electrolyte were deposited by rf magnetron sputtering of ceramic targets containing Li{sub 4}SiO{sub 4} and Li{sub 3}PO{sub 4}. The lithium content of the films was found to depend more strongly on the nature and composition of the targets than on many other sputtering parameters. For targets containing Li{sub 4}SiO{sub 4}, most of the lithium was found to segregate away from the sputtered area of the target. Codeposition using two sputter sources achieves a high lithium content in a controlled and reproducible film growth. 10 refs., 4 figs.

  9. Magnetron sputter deposition of boron and boron carbide

    SciTech Connect

    McKernan, M.A.; Makowiecki, D.; Ramsey, P.; Jankowski, A.

    1991-03-13

    The fabrication of x-ray optical coatings with greater reflectivity required the development of sputter deposition processes for boron and boron carbide. The use of high density boron and boron carbide and a vacuum brazed target design was required to achieve the required sputter process stability and resistance to the thermal stress created by high rate sputtering. The results include a description of the target fabrication procedures and sputter process parameters necessary to fabricate B{sub 4}C{sup (1)} and B{sup (2)} modulated thin film structures. 3 refs., 6 figs.

  10. Energy spectrum of sputtered uranium

    NASA Technical Reports Server (NTRS)

    Weller, R. A.; Tombrello, T. A.

    1977-01-01

    The fission track technique for detecting uranium 235 was used in conjunction with a mechanical time-of-flight spectrometer to measure the energy spectrum in the region 1 eV to 1 keV of material sputtered from a 93% enriched U-235 foil by 80 keV Ar-40(+) ions. The spectrum was found to exhibit a peak in the region 2-4 eV and to decrease approximately as E to the -1.77 power for E is approximately greater than 100 eV. The design, construction and resolution of the mechanical spectrometer are discussed and comparisons are made between the data and the predictions of the ramdom collision cascade model of sputtering.

  11. Deposition of reactively ion beam sputtered silicon nitride coatings

    NASA Technical Reports Server (NTRS)

    Grill, A.

    1982-01-01

    An ion beam source was used to deposit silicon nitride films by reactively sputtering a silicon target with beams of Ar + N2 mixtures. The nitrogen fraction in the sputtering gas was 0.05 to 0.80 at a total pressure of 6 to 2 millionth torr. The ion beam current was 50 mA at 500 V. The composition of the deposited films was investigated by auger electron spectroscopy and the rate of deposition was determined by interferometry. A relatively low rate of deposition of about 2 nm. one-tenth min. was found. AES spectra of films obtained with nitrogen fractions higher than 0.50 were consistent with a silicon to nitrogen ratio corresponding to Si3N4. However the AES spectra also indicated that the sputtered silicon nitride films were contaminated with oxygen and carbon and contained significant amounts of iron, nickel, and chromium, most probably sputtered from the holder of the substrate and target.

  12. Deposition rates of high power impulse magnetron sputtering: Physics and economics

    SciTech Connect

    Anders, Andre

    2010-07-15

    Deposition by high power impulse magnetron sputtering (HIPIMS) is considered by some as the new paradigm of advanced sputtering technology, yet this is met with skepticism by others for the reported lower deposition rates, if compared to rates of more conventional sputtering of equal average power. In this contribution, the underlying physical reasons for the rate changes are discussed, including (i) ion return to the target and self-sputtering, (ii) the less-than-linear increase in the sputtering yield with increasing ion energy, (iii) yield changes due to the shift of species responsible for sputtering, (iv) changes due to greater film density, limited sticking, and self-sputtering on the substrate, (v) noticeable power losses in the switch module, (vi) changes in the magnetic balance and particle confinement of the magnetron due to self-fields at high current, and (vii) superposition of sputtering and sublimation/evaporation for selected materials. The situation is even more complicated for reactive systems where the target surface chemistry is a function of the reactive gas partial pressure and discharge conditions. While most of these factors imply a reduction in the normalized deposition rate, increased rates have been reported for certain conditions using hot targets and less poisoned targets. Finally, some points of economics and HIPIMS benefits are considered.

  13. Sputter deposition for multi-component thin films

    DOEpatents

    Krauss, Alan R.; Auciello, Orlando

    1990-01-01

    Ion beam sputter-induced deposition using a single ion beam and a multicomponent target is capable of reproducibly producing thin films of arbitrary composition, including those which are close to stoichiometry. Using a quartz crystal deposition monitor and a computer controlled, well-focused ion beam, this sputter-deposition approach is capable of producing metal oxide superconductors and semiconductors of the superlattice type such as GaAs-AlGaAs as well as layered metal/oxide/semiconductor/superconductor structures. By programming the dwell time for each target according to the known sputtering yield and desired layer thickness for each material, it is possible to deposit composite films from a well-controlled sub-monolayer up to thicknesses determined only by the available deposition time. In one embodiment, an ion beam is sequentially directed via a set of X-Y electrostatic deflection plates onto three or more different element or compound targets which are constituents of the desired film. In another embodiment, the ion beam is directed through an aperture in the deposition plate and is displaced under computer control to provide a high degree of control over the deposited layer. In yet another embodiment, a single fixed ion beam is directed onto a plurality of sputter targets in a sequential manner where the targets are each moved in alignment with the beam under computer control in forming a multilayer thin film. This controlled sputter-deposition approach may also be used with laser and electron beams.

  14. Sputter deposition for multi-component thin films

    DOEpatents

    Krauss, A.R.; Auciello, O.

    1990-05-08

    Ion beam sputter-induced deposition using a single ion beam and a multicomponent target is capable of reproducibly producing thin films of arbitrary composition, including those which are close to stoichiometry. Using a quartz crystal deposition monitor and a computer controlled, well-focused ion beam, this sputter-deposition approach is capable of producing metal oxide superconductors and semiconductors of the superlattice type such as GaAs-AlGaAs as well as layered metal/oxide/semiconductor/superconductor structures. By programming the dwell time for each target according to the known sputtering yield and desired layer thickness for each material, it is possible to deposit composite films from a well-controlled sub-monolayer up to thicknesses determined only by the available deposition time. In one embodiment, an ion beam is sequentially directed via a set of X-Y electrostatic deflection plates onto three or more different element or compound targets which are constituents of the desired film. In another embodiment, the ion beam is directed through an aperture in the deposition plate and is displaced under computer control to provide a high degree of control over the deposited layer. In yet another embodiment, a single fixed ion beam is directed onto a plurality of sputter targets in a sequential manner where the targets are each moved in alignment with the beam under computer control in forming a multilayer thin film. This controlled sputter-deposition approach may also be used with laser and electron beams. 10 figs.

  15. Effect of sputtering pressure on crystalline quality and residual stress of AlN films deposited at 823 K on nitrided sapphire substrates by pulsed DC reactive sputtering

    NASA Astrophysics Data System (ADS)

    Ohtsuka, Makoto; Takeuchi, Hiroto; Fukuyama, Hiroyuki

    2016-05-01

    Aluminum nitride (AlN) is a promising material for use in applications such as deep-ultraviolet light-emitting diodes (UV-LEDs) and surface acoustic wave (SAW) devices. In the present study, the effect of sputtering pressure on the surface morphology, crystalline quality, and residual stress of AlN films deposited at 823 K on nitrided a-plane sapphire substrates, which have high-crystalline-quality c-plane AlN thin layers, by pulsed DC reactive sputtering was investigated. The c-axis-oriented AlN films were homoepitaxially grown on nitrided sapphire substrates at sputtering pressures of 0.4–1.5 Pa. Surface damage of the AlN sputtered films increased with increasing sputtering pressure because of arcing (abnormal electrical discharge) during sputtering. The sputtering pressure affected the crystalline quality and residual stress of AlN sputtered films because of a change in the number and energy of Ar+ ions and Al sputtered atoms. The crystalline quality of AlN films was improved by deposition with lower sputtering pressure.

  16. Sputtering Threshold Energies of Heavy Ions

    NASA Technical Reports Server (NTRS)

    Mantenieks, Maris A.

    1999-01-01

    Sputter erosion in ion thrusters has been measured in lifetests at discharge voltages as low as 25 V. Thruster operation at this discharge voltage results in component erosion rates sufficiently low to satisfy most mission requirements. It has been recognized that most of the internal sputtering in ion thrusters is done by doubly charged ions. Knowledge of the sputtering threshold voltage of a xenon molybdenum system would be beneficial in understanding the sputtering process as well as making more accurate calculations of the sputtering rates of ion thruster components. Sputtering threshold energies calculated from various formulations found in the literature results in values ranging from 28 to 200 eV. It is evident that some of these formulations cannot be relied upon to provide sputtering thresholds with any degree of accuracy. This paper re-examines the threshold energies measurements made in the early sixties by Askerov and Sena, and Stuart and Wehner. The threshold voltages as derived by Askerov and au have been reevaluated by using a different extrapolation method of sputter yields at low ion energies. The resulting threshold energies are in general similar to those measured by Stuart and Wehner. An empirical relationship is derived,for mercury and xenon ions for the ratio of the sputtering threshold energy to the sublimation energy as a function of the ratio of target to ion atomic mass.

  17. View factor modeling of sputter-deposition on micron-scale-architectured surfaces exposed to plasma

    NASA Astrophysics Data System (ADS)

    Huerta, C. E.; Matlock, T. S.; Wirz, R. E.

    2016-03-01

    The sputter-deposition on surfaces exposed to plasma plays an important role in the erosion behavior and overall performance of a wide range of plasma devices. Plasma models in the low density, low energy plasma regime typically neglect micron-scale surface feature effects on the net sputter yield and erosion rate. The model discussed in this paper captures such surface architecture effects via a computationally efficient view factor model. The model compares well with experimental measurements of argon ion sputter yield from a nickel surface with a triangle wave geometry with peak heights in the hundreds of microns range. Further analysis with the model shows that increasing the surface pitch angle beyond about 45° can lead to significant decreases in the normalized net sputter yield for all simulated ion incident energies (i.e., 75, 100, 200, and 400 eV) for both smooth and roughened surfaces. At higher incident energies, smooth triangular surfaces exhibit a nonmonotonic trend in the normalized net sputter yield with surface pitch angle with a maximum yield above unity over a range of intermediate angles. The resulting increased erosion rate occurs because increased sputter yield due to the local ion incidence angle outweighs increased deposition due to the sputterant angular distribution. The model also compares well with experimentally observed radial expansion of protuberances (measuring tens of microns) in a nano-rod field exposed to an argon beam. The model captures the coalescence of sputterants at the protuberance sites and accurately illustrates the structure's expansion due to deposition from surrounding sputtering surfaces; these capabilities will be used for future studies into more complex surface architectures.

  18. High rate sputter deposition of wear resistant tantalum coatings

    SciTech Connect

    Matson, D.W.; Merz, M.D.; McClanahan, E.D.

    1991-11-01

    The refractory nature and high ductility of body centered cubic (bcc) phase tantalum makes it a suitable material for corrosion- and wear-resistant coatings on surfaces which are subjected to high stresses and harsh chemical and erosive environments. Sputter deposition can produce thick tantalum films but is prone to forming the brittle tetragonal beta phase of this material. Efforts aimed at forming thick bcc phase tantalum coatings in both flat plate and cylindrical geometries by high-rate triode sputtering methods are discussed. In addition to substrate temperature, the bcc-to-beta phase ratio in sputtered tantalum coatings is shown to be sensitive to other substrate surface effects.

  19. On the evolution of film roughness during magnetron sputtering deposition

    SciTech Connect

    Turkin, A. A.; Pei, Y. T.; Shaha, K. P.; Chen, C. Q.; Vainshtein, D. I.; De Hosson, J. Th. M.

    2010-11-15

    The effect of long-range screening on the surface morphology of thin films grown with pulsed-dc (p-dc) magnetron sputtering is studied. The surface evolution is described by a stochastic diffusion equation that includes the nonlocal shadowing effects in three spatial dimensions. The diffusional relaxation and the angular distribution of the incident particle flux strongly influence the transition to the shadowing growth regime. In the magnetron sputtering deposition the shadowing effect is essential because of the configuration of the magnetron system (finite size of sputtered targets, rotating sample holder, etc.). A realistic angular distribution of depositing particles is constructed by taking into account the cylindrical magnetron geometry. Simulation results are compared with the experimental data of surface roughness evolution during 100 and 350 kHz p-dc deposition, respectively.

  20. An experimental investigation of fractionation by sputter deposition. [application to solar wind irradiation of lunar soil

    NASA Technical Reports Server (NTRS)

    Paruso, D. M.; Cassidy, W. A.; Hapke, B. W.

    1978-01-01

    Artificial glass targets composed of elements varying widely in atomic weight were irradiated at an angle of incidence of 45 deg by 2-keV hydrogen ions at a current density of .33 mA/sq cm, and sputtered atoms were caught on a molybdenum film. Analyses of the sputter-deposited films and unsputtered target glasses were carried out by electron microprobe. The backward-sputtered component was found to be enriched in elements of low atomic weight, while the forward-sputtered component was enriched in heavy atoms. These results indicate that at the lunar surface lighter elements and isotopes would tend to be ejected in backward directions, escaping directly through the openings which admit bombarding ions without first striking an adjacent grain surface; heavy elements and isotopes would be forward-sputtered deeper into the soil and be preferentially retained, contributing to the reported enrichments of heavy elements and isotopes. Additional results show that the binding energy of an element in its oxide form influences the sticking coefficient of a sputtered atom; elements of low binding energy are likely to desorb, while elements of high binding energy tend to stick to the first bounce surface.

  1. Photochromic silver nanoparticles fabricated by sputter deposition

    SciTech Connect

    Okumu, J.; Dahmen, C.; Sprafke, A.N.; Luysberg, M.; Plessen, G. von; Wuttig, M.

    2005-05-01

    In this study a simple route to preparing photochromic silver nanoparticles in a TiO{sub 2} matrix is presented, which is based upon sputtering and subsequent annealing. The formation of silver nanoparticles with sizes of some tens of nanometers is confirmed by x-ray diffraction and transmission electron microscopy. The inhomogeneously broadened particle-plasmon resonance of the nanoparticle ensemble leads to a broad optical-absorption band, whose spectral profile can be tuned by varying the silver load and the annealing temperature. Multicolor photochromic behavior of this Ag-TiO{sub 2} system upon irradiation with laser light is demonstrated and discussed in terms of a particle-plasmon-assisted electron transfer from the silver nanoparticles to TiO{sub 2} and subsequent trapping by adsorbed molecular oxygen. The electron depletion in the nanoparticles reduces the light absorption at the wavelength of irradiation. A gradual recovery of the absorption band is observed after irradiation, which is explained with a slow thermal release of electrons from the oxygen trapping centers and subsequent capture into the nanoparticles. The recovery can be accelerated by ultraviolet irradiation; the explanation for this observation is that electrons photoexcited in the TiO{sub 2} are captured into the nanoparticles and restore the absorption band.

  2. Method to control deposition rate instabilities—High power impulse magnetron sputtering deposition of TiO{sub 2}

    SciTech Connect

    Kossoy, Anna E-mail: anna.kossoy@gmail.com; Magnusson, Rögnvaldur L.; Tryggvason, Tryggvi K.; Leosson, Kristjan; Olafsson, Sveinn

    2015-03-15

    The authors describe how changes in shutter state (open/closed) affect sputter plasma conditions and stability of the deposition rate of Ti and TiO{sub 2} films. The films were grown by high power impulse magnetron sputtering in pure Ar and in Ar/O{sub 2} mixture from a metallic Ti target. The shutter state was found to have an effect on the pulse waveform for both pure Ar and reactive sputtering of Ti also affecting stability of TiO{sub 2} deposition rate. When the shutter opened, the shape of pulse current changed from rectangular to peak-plateau and pulse energy decreased. The authors attribute it to the change in plasma impedance and gas rarefaction originating in geometry change in front of the magnetron. TiO{sub 2} deposition rate was initially found to be high, 1.45 Å/s, and then dropped by ∼40% during the first 5 min, while for Ti the change was less obvious. Instability of deposition rate poses significant challenge for growing multilayer heterostructures. In this work, the authors suggest a way to overcome this by monitoring the integrated average energy involved in the deposition process. It is possible to calibrate and control the film thickness by monitoring the integrated pulse energy and end growth when desired integrated pulse energy level has been reached.

  3. Deposition and characterization of magnetron sputtered bcc tantalum

    NASA Astrophysics Data System (ADS)

    Patel, Anamika

    The goal of this thesis was to provide scientific and technical research results for developing and characterizing tantalum (Ta) coatings on steel substrates deposited by DC magnetron sputtering. Deposition of tantalum on steel is of special interest for the protection it offers to surfaces, e.g. the surfaces of gun barrels against the erosive wear of hot propellant gases and the mechanical damage caused by the motion of launching projectiles. Electro-plated chromium is presently most commonly used for this purpose; however, it is considered to be carcinogenic in its hexavalent form. Tantalum is being investigated as non-toxic alternative to chromium and also because of its superior protective properties in these extreme environments. DC magnetron sputtering was chosen for this investigation of tantalum coatings on steel substrates because it is a versatile industrial proven process for deposition of metals. Sputter deposited Ta films can have two crystallographic structures: (1) body center cubic (bcc) phase, characterized by high toughness and high ductility and (2) a tetragonal beta phase characterized by brittleness and a tendency to fail under stress. It was found in this work that the bcc Ta coatings on steel can be obtained reliably by either of two methods: (1) depositing Ta on a submicron, stoichiometric TaN seed layer reactively sputtered on unheated steel and (2) depositing Ta directly on steel heated above a critical temperature. For argon sputtering gas this critical temperature was found to be 400°C at a pressure of 5 mtorr. With the heavier krypton gas, this critical temperature is reduced to 350°C. X-ray diffraction (XRD) was used to investigate the structure of tantalum and nitride films, and the composition of the nitride films was measured by nuclear reaction analyses (NRA), which were used to study in detail the enhancement of the bcc phase of Ta on steel. The scratch adhesion tests performed with a diamond hemispherical tip of radius 200 mum

  4. Sputter deposited Terfenol-D thin films for multiferroic applications

    NASA Astrophysics Data System (ADS)

    Mohanchandra, K. P.; Prikhodko, S. V.; Wetzlar, K. P.; Sun, W. Y.; Nordeen, P.; Carman, G. P.

    2015-09-01

    In this paper, we study the sputter deposition and crystallization process to produce high quality Terfenol-D thin film (100 nm) with surface roughness below 1.5 nm. The Terfenol-D thin film was produced using DC magnetron sputtering technique with various sputtering parameters and two different crystallization methods, i.e. substrate heating and post-annealing. Several characterization techniques including WDS, XRD, TEM, AFM, SQUID and MOKE were used to determine the physical and magnetic properties of the Terfenol-D films. TEM studies reveal that the film deposited on the heated substrate has large grains grown along the film thickness producing undesirable surface roughness while the film crystallized by post-annealing method shows uniformly distributed small grains producing a smooth surface. The Terfenol-D film was also deposited onto (011) cut PMN-PT single crystal substrate. With the application of an electric field the film exhibited a 1553 Oe change in coercivity with an estimated saturation magnetostriction of λs = 910 x 10-6.

  5. Sputter deposited beryllium fuel capsules for NIF

    SciTech Connect

    Alford, C.S.

    1998-02-12

    The objective of our effort is to systematically study the properties of films produced under different conditions, with an emphasis on improving surface morphology and microstructure while studying permeability and capsule strength. We have made extensive use of atomic force and electron microscopy to determine the microstructure of the films, along with composition probes (mainly x-ray fluorescence) to quantify the chemical structure. Our studies can be roughly divided into three categories. First, there are those in which the effects of substrate biasing have been investigated. This includes varying the substrate voltage from 0 to 120 V and applying an intermittent bias. Next there are studies of Be combined with boron, a non-soluble dopant Because of it`s low Z this dopant is of particular interest for x-ray related applications. Finally, there are experiments in which pulses of nitrogen are admitted to the vacuum chamber during deposition. The layers of nitride formed tended to disrupt the growth of Be grains, leading to a more fine-grained microstructure. For all these studies, we have most often used hollow plastic spheres for our substrate material. However, there have been some samples deposited on glass spheres or silicon flats.

  6. Stress anisotropy compensation of the sputter-deposited metal thin films by variable bias voltage

    NASA Astrophysics Data System (ADS)

    Khosraviani, Kourosh; Leung, Albert M.

    2013-08-01

    We introduce a new technique for compensating stress anisotropy across the thickness of sputter-deposited metal films. Our technique balances the film vertical stress gradient by altering the substrate bias during sputtering and by controlling the ion flux and energy that bombards the growing film. Sputter-deposited metal films are appealing materials for microfabrication of freestanding and out-of-plane structures, especially because of their low thermal budget. These microstructures extend the design space of micro-electro-mechanical systems (MEMS)-based devices, and they overcome some of the limitations of in-plane processing. Unfortunately, most elemental metals and alloys when sputter deposited have a substantial stress gradient across their thickness that can deteriorate their mechanical properties and severely distort the shape of the fabricated freestanding microstructures. The stress gradient across the thickness of a sputtered film can be compensated (balanced) by embedding a layer in the film with the opposite stress polarity compared to that of the bulk of the film. The force exerted by the stress mismatch between this layer and the bulk of the film easily overcomes the film's vertical stress gradient. This compensating force guarantees that a released freestanding structure remains flat and does not curl upward. This virtual layer is introduced to the growing film by altering the substrate bias voltage during the sputtering process. The substrate bias voltage controls the ion flux and energy that bombards the film, and it enables tailoring the film stress parameters. This technique has enabled us to fabricate freestanding microstructures up to 500 µm long with negligible stress-related deformation.

  7. Sputter deposition system for controlled fabrication of multilayers

    SciTech Connect

    Di Nardo, R.P.; Takacs, P.Z.; Majkrzak, C.F.; Stefan, P.M.

    1985-06-01

    A detailed description of a sputter deposition system constructed specifically for the fabrication of x-ray and neutron multilayer monochromators and supermirrors is given. One of the principal design criteria is to maintain precise control of film thickness and uniformity over large substrate areas. Regulation of critical system parameters is fully automated so that response to feedback control information is rapid and complicated layer thickness sequences can be deposited accurately and efficiently. The use of either dc or rf magnetron sources makes it possible to satisfy the diverse material requirements of both x-ray and neutron optics.

  8. Hard carbon coatings deposited by pulsed high current magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Oskomov, K. V.; Solov'ev, A. A.; Rabotkin, S. V.

    2014-12-01

    Hard (up to 17 GPa) carbon coatings are deposited onto face SiC bearings used in liquid pumps by pulsed high-current magnetron sputtering of graphite. As a result, the friction coefficient is decreased from 0.43 to 0.11 and the wear rate is decreased from 26 to 0.307 μm3 N-1 m-1, which increases the service life of the bearings by approximately three times. The deposited carbon coatings have a high hardness and wear resistance due to the generation of high-density (up to 1013 cm-3) plasma.

  9. Electrostatic particle trap for ion beam sputter deposition

    DOEpatents

    Vernon, Stephen P.; Burkhart, Scott C.

    2002-01-01

    A method and apparatus for the interception and trapping of or reflection of charged particulate matter generated in ion beam sputter deposition. The apparatus involves an electrostatic particle trap which generates electrostatic fields in the vicinity of the substrate on which target material is being deposited. The electrostatic particle trap consists of an array of electrode surfaces, each maintained at an electrostatic potential, and with their surfaces parallel or perpendicular to the surface of the substrate. The method involves interception and trapping of or reflection of charged particles achieved by generating electrostatic fields in the vicinity of the substrate, and configuring the fields to force the charged particulate material away from the substrate. The electrostatic charged particle trap enables prevention of charged particles from being deposited on the substrate thereby enabling the deposition of extremely low defect density films, such as required for reflective masks of an extreme ultraviolet lithography (EUVL) system.

  10. Localized deposition and sputtering of Jovian ionospheric sodium on Io

    NASA Technical Reports Server (NTRS)

    Hill, T. W.; Dessler, A. J.; Fanale, F. P.

    1979-01-01

    Because of relative motion between the innermost Galilean satellite Io and Jupiter's ionosphere, a current is drawn from the ionosphere that can be a source of both deposition on, and sputtering from, the surface of Io. It is shown that the ions in this current strike Io in a localized region in the quadrant bounded by a line connecting Io and Jupiter and a tangent line extended in the direction of Io's orbital motion. If these ions are the principal source of sodium that is sputtered from Io, then this current provides a simple explanation of the observation of a localized area from which sodium ions escape from Io. The geometry of this current may also affect the optical surface of Io. Several experimental tests are suggested that can determine the compatibility of this hypothesis with the directly observable properties of Io's surface.

  11. Ion beam sputter deposition of TiNi shape memory alloy thin films

    NASA Astrophysics Data System (ADS)

    Davies, Sam T.; Tsuchiya, Kazuyoshi

    1999-08-01

    The development of functional or smart materials for integration into microsystem is of increasing interest. An example is the shape memory effect exhibited by certain metal alloys which, in principle, can be exploited in the fabrication of micro-scale manipulators or actuators, thereby providing on-chip micromechanical functionality. We have investigated an ion beam sputter deposition process for the growth of TiNi shape memory alloy thin films and demonstrated the required control to produce equiatomic composition, uniform coverage and atomic layer-by-layer growth rates on engineering surfaces. The process uses argon ions at intermediate energy produced by a Kaufman-type ion source to sputter non-alloyed targets of high purity titanium and nickel. Precise measurements of deposition rates allows compositional control during thin film growth. As the sputtering targets and substrates are remote from the discharge plasma, deposition occurs under good vacuum of approximately 10-6 mtorr thus promoting high quality films. Furthermore, the ion beam energetics allow deposition at relatively low substrate temperatures of < 150 degrees C with as-deposited films exhibiting shape memory properties without post-process high temperature annealing. Thermal imagin is used to monitor changes which are characteristic of the shape memory effect and is indicative of changes in specific heat capacity and thermal conductivity as the TiNi shape memory alloy undergoes martensitic to austenitic phase transformations.

  12. Effects of electron irradiation on the properties of GZO films deposited with RF magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Kim, Y. S.; Heo, S. B.; Lee, H. M.; Lee, Y. J.; Kim, I. S.; Kang, M. S.; Choi, D. H.; Lee, B. H.; Kim, M. G.; Kim, Daeil

    2012-02-01

    Transparent conductive GZO films were deposited on polycarbonate substrates by electron beam assisted radio frequency (RF) magnetron sputtering and then the influence of electron irradiation on the structural, optical and electrical properties of GZO films was investigated by using X-ray diffractometry, UV-vis spectrophotometry, four point probes, atomic force microscopy and UV photoelectron spectroscopy. Sputtering power was kept constant at 3 W/cm2 during deposition, while electron irradiation energy varied from 450 to 900 eV. Electron irradiated GZO films show larger grain sizes than those of films prepared without electron irradiation, and films irradiated at 900 eV show higher optical transmittance in the visible wavelength region and lower sheet resistance (120 Ω/□) than other films. The work-function is also increased with electron irradiation energy. The highest work-function of 4.4 eV was observed in films that were electron irradiated at 900 eV.

  13. Real-time and in situ monitoring of sputter deposition with RHEED for atomic layer controlled growth

    NASA Astrophysics Data System (ADS)

    Podkaminer, J. P.; Patzner, J. J.; Davidson, B. A.; Eom, C. B.

    2016-08-01

    Sputter deposition is a widely used growth technique for a large range of important material systems. Epitaxial films of carbides, nitrides, metals, oxides and more can all be formed during the sputter process which offers the ability to deposit smooth and uniform films from the research level up to an industrial scale. This tunable kinematic deposition process excels in easily adapting for a large range of environments and growth procedures. Despite the vast advantages, there is a significant lack of in situ analysis options during sputtering. In particular, the area of real time atomic layer control is severely deficient. Atomic layer controlled growth of epitaxial thin films and artificially layered superlattices is critical for both understanding their emergent phenomena and engineering novel material systems and devices. Reflection high-energy electron diffraction (RHEED) is one of the most common in situ analysis techniques during thin film deposition that is rarely used during sputtering due to the effect of the strong permanent magnets in magnetron sputter sources on the RHEED electron beam. In this work we have solved this problem and designed a novel way to deter the effect of the magnets for a wide range of growth geometries and demonstrate the ability for the first time to have layer-by-layer control during sputter deposition by in situ RHEED.

  14. Industry-relevant magnetron sputtering and cathodic arc ultra-high vacuum deposition system for in situ x-ray diffraction studies of thin film growth using high energy synchrotron radiation.

    PubMed

    Schroeder, J L; Thomson, W; Howard, B; Schell, N; Näslund, L-Å; Rogström, L; Johansson-Jõesaar, M P; Ghafoor, N; Odén, M; Nothnagel, E; Shepard, A; Greer, J; Birch, J

    2015-09-01

    We present an industry-relevant, large-scale, ultra-high vacuum (UHV) magnetron sputtering and cathodic arc deposition system purposefully designed for time-resolved in situ thin film deposition/annealing studies using high-energy (>50 keV), high photon flux (>10(12) ph/s) synchrotron radiation. The high photon flux, combined with a fast-acquisition-time (<1 s) two-dimensional (2D) detector, permits time-resolved in situ structural analysis of thin film formation processes. The high-energy synchrotron-radiation based x-rays result in small scattering angles (<11°), allowing large areas of reciprocal space to be imaged with a 2D detector. The system has been designed for use on the 1-tonne, ultra-high load, high-resolution hexapod at the P07 High Energy Materials Science beamline at PETRA III at the Deutsches Elektronen-Synchrotron in Hamburg, Germany. The deposition system includes standard features of a typical UHV deposition system plus a range of special features suited for synchrotron radiation studies and industry-relevant processes. We openly encourage the materials research community to contact us for collaborative opportunities using this unique and versatile scientific instrument.

  15. Molecular dynamics simulation of gold cluster growth during sputter deposition

    NASA Astrophysics Data System (ADS)

    Abraham, J. W.; Strunskus, T.; Faupel, F.; Bonitz, M.

    2016-05-01

    We present a molecular dynamics simulation scheme that we apply to study the time evolution of the self-organized growth process of metal cluster assemblies formed by sputter-deposited gold atoms on a planar surface. The simulation model incorporates the characteristics of the plasma-assisted deposition process and allows for an investigation over a wide range of deposition parameters. It is used to obtain data for the cluster properties which can directly be compared with recently published experimental data for gold on polystyrene [M. Schwartzkopf et al., ACS Appl. Mater. Interfaces 7, 13547 (2015)]. While good agreement is found between the two, the simulations additionally provide valuable time-dependent real-space data of the surface morphology, some of whose details are hidden in the reciprocal-space scattering images that were used for the experimental analysis.

  16. Characterization of Niobium Oxide Films Deposited by High Target Utilization Sputter Sources

    SciTech Connect

    Chow, R; Ellis, A D; Loomis, G E; Rana, S I

    2007-01-29

    High quality, refractory metal, oxide coatings are required in a variety of applications such as laser optics, micro-electronic insulating layers, nano-device structures, electro-optic multilayers, sensors and corrosion barriers. A common oxide deposition technique is reactive sputtering because the kinetic mechanism vaporizes almost any solid material in vacuum. Also, the sputtered molecules have higher energies than those generated from thermal evaporation, and so the condensates are smoother and denser than those from thermally-evaporated films. In the typical sputtering system, target erosion is a factor that drives machine availability. In some situations such as nano-layered capacitors, where the device's performance characteristics depends on thick layers, target life becomes a limiting factor on the maximizing device functionality. The keen interest to increase target utilization in sputtering has been addressed in a variety of ways such as target geometry, rotating magnets, and/or shaped magnet arrays. Also, a recent sputtering system has been developed that generates a high density plasma, directs the plasma beam towards the target in a uniform fashion, and erodes the target in a uniform fashion. The purpose of this paper is to characterize and compare niobia films deposited by two types of high target utilization sputtering sources, a rotating magnetron and a high density plasma source. The oxide of interest in this study is niobia because of its high refractive index. The quality of the niobia films were characterized spectroscopically in optical transmission, ellipsometrically, and chemical stoichiometry with X-ray photo-electron spectroscopy. The refractive index, extinction coefficients, Cauchy constants were derived from the ellipsometric modeling. The mechanical properties of coating density and stress are also determined.

  17. Low Energy Sputtering Experiments for Ion Engine Lifetime Assessment

    NASA Technical Reports Server (NTRS)

    Duchemin Olivier B.; Polk, James E.

    1999-01-01

    The sputtering yield of molybdenum under xenon ion bombardment was measured using a Quartz Crystal Microbalance. The measurements were made for ion kinetic energies in the range 100-1keV on molybdenum films deposited by magnetron sputtering in conditions optimized to reproduce or approach bulk-like properties. SEM micrographs for different anode bias voltages during the deposition are compared, and four different methods were implemented to estimate the density of the molybdenum films. A careful discussion of the Quartz Crystal Microbalance is proposed and it is shown that this method can be used to measure mass changes that are distributed unevenly on the crystal electrode surface, if an analytical expression is known for the differential mass-sensitivity of the crystal and the erosion profile. Finally, results are presented that are in good agreement with previously published data, and it is concluded that this method holds the promise of enabling sputtering yield measurements at energies closer to the threshold energy in the very short term.

  18. Solid-solution CrCoCuFeNi high-entropy alloy thin films synthesized by sputter deposition

    SciTech Connect

    An, Zhinan; Jia, Haoling; Wu, Yueying; Rack, Philip D.; Patchen, Allan D.; Liu, Yuzi; Ren, Yang; Li, Nan; Liaw, Peter K.

    2015-05-04

    The concept of high configurational entropy requires that the high-entropy alloys (HEAs) yield single-phase solid solutions. However, phase separations are quite common in bulk HEAs. A five-element alloy, CrCoCuFeNi, was deposited via radio frequency magnetron sputtering and confirmed to be a single-phase solid solution through the high-energy synchrotron X-ray diffraction, energy-dispersive spectroscopy, wavelength-dispersive spectroscopy, and transmission electron microscopy. The formation of the solid-solution phase is presumed to be due to the high cooling rate of the sputter-deposition process.

  19. Strontium-substituted hydroxyapatite coatings deposited via a co-deposition sputter technique.

    PubMed

    Boyd, A R; Rutledge, L; Randolph, L D; Meenan, B J

    2015-01-01

    The bioactivity of hydroxyapatite (HA) coatings can be modified by the addition of different ions, such as silicon (Si), lithium (Li), magnesium (Mg), zinc (Zn) or strontium (Sr) into the HA lattice. Of the ions listed here, strontium substituted hydroxyapatite (SrHA) coatings have received a lot of interest recently as Sr has been shown to promote osteoblast proliferation and differentiation, and reduce osteoclast activity. In this study, SrHA coatings were deposited onto titanium substrates using radio frequency (RF) magnetron co-sputtering (and compared to those surfaces deposited from HA alone). FTIR, XPS, XRD, and SEM techniques were used to analyse the different coatings produced, whereby different combinations of pure HA and 13% Sr-substituted HA targets were investigated. The results highlight that Sr could be successfully incorporated into the HA lattice to form SrHA coatings. It was observed that as the number of SrHA sputtering targets in the study were increased (increasing Sr content), the deposition rate decreased. It was also shown that as the Sr content of the coatings increased, so did the degree of preferred 002 orientation of the coating (along with obvious changes in the surface morphology). This study has shown that RF magnetron sputtering (specifically co-sputtering), offers an appropriate methodology to control the surface properties of Sr-substituted HA, such as the crystallinity, stoichiometry, phase purity and surface morphology.

  20. Strontium-substituted hydroxyapatite coatings deposited via a co-deposition sputter technique.

    PubMed

    Boyd, A R; Rutledge, L; Randolph, L D; Meenan, B J

    2015-01-01

    The bioactivity of hydroxyapatite (HA) coatings can be modified by the addition of different ions, such as silicon (Si), lithium (Li), magnesium (Mg), zinc (Zn) or strontium (Sr) into the HA lattice. Of the ions listed here, strontium substituted hydroxyapatite (SrHA) coatings have received a lot of interest recently as Sr has been shown to promote osteoblast proliferation and differentiation, and reduce osteoclast activity. In this study, SrHA coatings were deposited onto titanium substrates using radio frequency (RF) magnetron co-sputtering (and compared to those surfaces deposited from HA alone). FTIR, XPS, XRD, and SEM techniques were used to analyse the different coatings produced, whereby different combinations of pure HA and 13% Sr-substituted HA targets were investigated. The results highlight that Sr could be successfully incorporated into the HA lattice to form SrHA coatings. It was observed that as the number of SrHA sputtering targets in the study were increased (increasing Sr content), the deposition rate decreased. It was also shown that as the Sr content of the coatings increased, so did the degree of preferred 002 orientation of the coating (along with obvious changes in the surface morphology). This study has shown that RF magnetron sputtering (specifically co-sputtering), offers an appropriate methodology to control the surface properties of Sr-substituted HA, such as the crystallinity, stoichiometry, phase purity and surface morphology. PMID:25491990

  1. Physics of arcing, and implications to sputter deposition

    SciTech Connect

    Anders, Andre

    2003-12-15

    Arcing is a well-known, unwanted discharge regime observed on the surface of sputtering targets. The discharge voltage breaks down to less than 50 V while the current jumps to elevated levels. Arcing is unwanted because it prevents uniform deposition and creates particulates. The issue of arcing has been dealt with by target surface conditioning and by using modern power supplies that have arc suppression incorporated. With increasing quality requirements in terms of uniformity of coatings, and absence of particulates, especially for electrochromic and other advanced coatings applications, the issue of arcing warrants a closer examination with the goal to find other, physics-based, and hopefully better approaches of arcing prevention. From a physics point of view, the onset of arcing is nothing else than the transition of the discharge to a cathodic arc mode, which is characterized by the ignition of non-stationary arc spots. Arc spots operate by a sequence of microexplosions, enabling explosive electron emission, as opposed to secondary electron emission. Arc spots and their fragments have a size distribution in the micrometer and sub-micrometer range, and a characteristic time distribution that has components shorter than microseconds. Understanding the ignition conditions of arc spots are of central physical interest. Spot ignition is associated with electric field enhancement, which can be of geometric nature (roughness,particles), or chemical nature (e.g. oxide formation) and related local accumulation of surface charge. Therefore, it is clear that these issues are of particular concern when operating with high-density plasmas, such as in high-power pulsed sputtering, and when using reactive sputter gases.

  2. Low-damage high-throughput grazing-angle sputter deposition on graphene

    SciTech Connect

    Chen, C.-T.; Gajek, M.; Raoux, S.; Casu, E. A.

    2013-07-15

    Despite the prevalence of sputter deposition in the microelectronics industry, it has seen very limited applications for graphene electronics. In this letter, we report systematic investigation of the sputtering induced damages in graphene and identify the energetic sputtering gas neutrals as the primary cause of graphene disorder. We further demonstrate a grazing-incidence sputtering configuration that strongly suppresses fast neutral bombardment and retains graphene structure integrity, creating considerably lower damage than electron-beam evaporation. Such sputtering technique yields fully covered, smooth thin dielectric films, highlighting its potential for contact metals, gate oxides, and tunnel barriers fabrication in graphene device applications.

  3. Sputter-deposited Be ablators for NIF target capsules

    SciTech Connect

    McEachern, R.; Clford, C.; Cook, R.; Makowiecki, E.; Wallace, R.

    1997-03-26

    We have performed a series of preliminary experiments to determine whether sputter deposition of doped Be is a practical route to producing NIF target capsules with Be ablators. Films ranging in thickness from 7 to {approximately} 120 {micro}m have been deposited on spherical polymer mandrels using a bounce pan to ensure uniform coating. With no voltage bias applied to the pan, relatively porous coatings were formed that were highly permeable to hydrogen. The surface finish of these films ranged from {approximately}250 nm rms for 13-{micro}m-thick films to a minimum of {approximately}75 nm rms for an 80-{micro}m-thick film. Application of a voltage bias was found to significantly modify the film morphology. At a bias of 120 V, 7-{micro}m-thick films with a dense, fine-grained microstructure were produced. These capsules had a reflective surface with a 50 nm rms roughness. Finally, to demonstrate the ability to produce a graded dopant profile, a coating was produced in which the concentration of added Cu was varied from 2.5 atom % at the beginning to zero after 40 {micro}m of deposition.

  4. Controlling ion fluxes during reactive sputter-deposition of SnO{sub 2}:F

    SciTech Connect

    Jäger, Timo Romanyuk, Yaroslav E.; Tiwari, Ayodhya N.; Anders, André

    2014-07-21

    Magnetron sputtering of fluorine-doped tin oxide (FTO) is a scalable deposition method for large-area transparent conducting films used in fenestration, photovoltaics, and other applications. The electrical conductivity of sputtered FTO is, however, lower than that of spray-pyrolized FTO because of the ion damage induced by high energy ions leading to a reduction of the crystal quality in sputtered FTO films. In this study, various ion species present during the reactive sputtering of a metallic tin target in a mixed Ar/O{sub 2}/CF{sub 4} atmosphere are systematically characterized by energy and mass spectrometry, and possible ways of controlling the ion fluxes are explored. Ion energy distribution functions (IEDFs) of the negative ions F{sup −} and O{sup −} exhibit large peaks at an energy corresponding to the full target voltage. Although the applied partial pressure of CF{sub 4} is about 1/30 than that of O{sub 2}, the obtained IEDFs of F{sup −} and O{sup −} have comparable peak height, which can be attributed to a higher electronegativity of F. The IEDFs of positively charged O{sup +}, O{sub 2}{sup +}, Ar{sup +}, and Sn{sup +} species have their peaks around 2–8 eV. To control ion fluxes a solenoid or permanent magnets were placed between the target and the mass spectrometer. The flux of positive ions could be varied by several orders of magnitude as a function of the applied current through the solenoid, whereas the high-energy (>100 eV) negative F{sup −} and O{sup −} ions were not notably deflected. By using permanent magnets with the B-field orthogonal to the ion trajectory, the flux of O{sup −} ions could be decreased by two orders and the exposure to the high-energy F{sup −} ions was completely suppressed.

  5. Thin-film CdTe photovoltaic cells by laser deposition and rf sputtering

    NASA Astrophysics Data System (ADS)

    Compaan, A.; Bohn, R. G.; Bhat, A.; Tabory, C.; Shao, M.; Li, Y.; Savage, M. E.; Tsien, L.

    1992-12-01

    Laser-driven physical vapor deposition (LDPVD) and radio-frequency (rf) sputtering have been used to fabricate thin-film solar cells on SnO2-coated glass substrates. The laser-ablation process readily permits the use of several target materials in the same vacuum chamber and complete solar cell structures have been fabricated on SnO2-coated glass using LDPVD for the CdS, CdTe, and CdCl2. To date the best devices (˜9% AM1.5) have been obtained after a post-deposition anneal at 400 °C. In addition, cells have been fabricated with the combination of LDPVD CdS, rf-sputtered CdTe, and LDPVD CdCl2. The performance of these cells indicates considerable promise for the potential of rf sputtering for CdTe photovoltaic devices. The physical mechanisms of LDPVD have been studied by transient optical spectroscopy on the laser ablation plume. These measurements have shown that, e.g., Cd is predominantly in the neutral atomic state in the plume but with a large fraction which is highly excited internally (≥6 eV) and that the typical neutral Cd translational kinetic energies perpendicular to the target are 20 eV and greater. Quality of as-grown and annealed films has been analyzed by optical absorption. Raman scattering, photoluminescence, electrical conductivity, Hall effect, x-ray diffraction, and SEM/EDS.

  6. Thermochromic VO2 thin films deposited by magnetron sputtering for smart window applications

    NASA Astrophysics Data System (ADS)

    Fortier, Jean-Philippe

    "Smart" windows are a perfect innovative example of technology that reduces our energy dependence and our impact on the environment while saving on the economical point of view. With the use of vanadium dioxide (VO2), a thermochromic compound, and this, as a thin coating, it would in fact be possible to control the sun's transmission of infrared light (heat) as a function of the surrounding environment temperature. In other words, its optical behavior would allow a more effective management of heat exchanges between a living venue and the outdoor environment. However, this type of window is still in a developmental stage. First, the oxide's deposition is not simple in nature. Based on a conventional deposition technique called magnetron sputtering mainly used in the fenestration industry, several factors such as the oxygen concentration and the substrate temperature during deposition can affect the coating's thermochromic behavior, and this, by changing its composition and crystallinity. Other control parameters such as the deposition rate, the pressure in the sputtering chamber and the choice of substrate may also modify the film microstructure, thereby varying its optical and electrical properties. In addition, several issues still persist as to its commercial application. For starters, the material's structural transition, related to the change of its optical properties, only occurs around 68°C. In addition, its low transparency and natural greenish colour are not visually appealing. Then, to this day, the deposition temperature required to crystallize and form the thermochromic oxide remains an obstacle for a possible large-scale application. Ultimately, although the material's change in temperature has been shown to be advantageous in situations of varying climate, the existing corrective solutions to these issues generate a deterioration of the thermochromic behavior. With no practical expertise on the material, this project was undertaken with certain

  7. Role of fast sputtered particles during sputter deposition: Growth of epitaxial Ge{sub 0.99}C{sub 0.01}/Ge(001)

    SciTech Connect

    D'Arcy-Gall, J.; Gall, D.; Desjardins, P.; Petrov, I.; Greene, J. E.

    2000-10-15

    We show that fast sputtered particles in the sputter-deposition process, largely ignored in previous studies, can play a major role in determining defect densities in as-deposited layers. Epitaxial Ge{sub 1-y}C{sub y}/Ge(001), in which there is a direct correlation between C lattice configurations and the local concentration of Ge self-interstitials, is used as a model materials system. We show that increasing the fraction of fast Ge neutrals in the high-energy tail of the ejected particle distribution increases the concentration of Ge--C split interstitials and thus the film compressive strain. The Ge--C split interstitials form as a result of trapping, by incorporated substitutional C atoms, of Ge self-interstitials produced by incident hyperthermal Ge atoms. Experimental results are supported by Monte Carlo simulations and ab initio calculations.

  8. Low energy sputtering of cobalt by cesium ions

    NASA Technical Reports Server (NTRS)

    Handoo, A.; Ray, Pradosh K.

    1989-01-01

    An experimental facility to investigate low energy (less than 500 eV) sputtering of metal surfaces with ions produced by an ion gun is described. Results are reported on the sputtering yield of cobalt by cesium ions in the 100 to 500 eV energy range at a pressure of 1 times 10(exp -6) Torr. The target was electroplated on a copper substrate. The sputtered atoms were collected on a cobalt foil surrounding the target. Co-57 was used as a tracer to determine the sputtering yield.

  9. Thermochromic VO2 thin films deposited by magnetron sputtering for smart window applications

    NASA Astrophysics Data System (ADS)

    Fortier, Jean-Philippe

    "Smart" windows are a perfect innovative example of technology that reduces our energy dependence and our impact on the environment while saving on the economical point of view. With the use of vanadium dioxide (VO2), a thermochromic compound, and this, as a thin coating, it would in fact be possible to control the sun's transmission of infrared light (heat) as a function of the surrounding environment temperature. In other words, its optical behavior would allow a more effective management of heat exchanges between a living venue and the outdoor environment. However, this type of window is still in a developmental stage. First, the oxide's deposition is not simple in nature. Based on a conventional deposition technique called magnetron sputtering mainly used in the fenestration industry, several factors such as the oxygen concentration and the substrate temperature during deposition can affect the coating's thermochromic behavior, and this, by changing its composition and crystallinity. Other control parameters such as the deposition rate, the pressure in the sputtering chamber and the choice of substrate may also modify the film microstructure, thereby varying its optical and electrical properties. In addition, several issues still persist as to its commercial application. For starters, the material's structural transition, related to the change of its optical properties, only occurs around 68°C. In addition, its low transparency and natural greenish colour are not visually appealing. Then, to this day, the deposition temperature required to crystallize and form the thermochromic oxide remains an obstacle for a possible large-scale application. Ultimately, although the material's change in temperature has been shown to be advantageous in situations of varying climate, the existing corrective solutions to these issues generate a deterioration of the thermochromic behavior. With no practical expertise on the material, this project was undertaken with certain

  10. A Magnetron Sputter Deposition System for the Development of Multilayer X-Ray Optics

    NASA Technical Reports Server (NTRS)

    Broadway, David; Ramsey, Brian; Gubarev, Mikhail

    2014-01-01

    The proposal objective is to establish the capability to deposit multilayer structures for x-ray, neutron, and EUV optic applications through the development of a magnetron sputtering deposition system. A specific goal of this endeavor is to combine multilayer deposition technology with the replication process in order to enhance the MSFC's position as a world leader in the design of innovative X-ray instrumentation through the development of full shell replicated multilayer optics. The development of multilayer structures is absolutely necessary in order to advance the field of X-ray astronomy by pushing the limit for observing the universe to ever increasing photon energies (i. e. up to 200 keV or higher); well beyond Chandra (approx. 10 keV) and NuStar's (approx. 75 keV) capability. The addition of multilayer technology would significantly enhance the X-ray optics capability at MSFC and allow NASA to maintain its world leadership position in the development, fabrication and design of innovative X-ray instrumentation which would be the first of its kind by combining multilayer technology with the mirror replication process. This marriage of these technologies would allow astronomers to see the universe in a new light by pushing to higher energies that are out of reach with today's instruments.To this aim, a magnetron vacum sputter deposition system for the deposition of novel multilayer thin film X-ray optics is proposed. A significant secondary use of the vacuum deposition system includes the capability to fabricate multilayers for applications in the field of EUV optics for solar physics, neutron optics, and X-ray optics for a broad range of applications including medical imaging.

  11. Influence of the magnetron on the growth of aluminum nitride thin films deposited by reactive sputtering

    SciTech Connect

    Iriarte, G. F.

    2010-03-15

    Aluminum nitride (AlN) thin films deposited on high-vacuum systems without substrate heating generally exhibit a poor degree of c-axis orientation. This is due to the nonequilibrium conditions existing between the energy of the sputtered particles and the energy at the substrate surface. The application of substrate bias or substrate temperature is known to improve the adatom mobility by delivering energy to the substrate; both are hence well-established crystal growth promoting factors. It is well known that low sputtering pressures can be used as a parameter improving the growth of highly c-axis oriented aluminum nitride films at room temperature even without applying bias voltage to the substrate. Generally, the use of high pressures implies thermalization of particles within the gas phase and is considered to increase the energy gap between these and the substrate surface. However, in later experiments we have learned that the use of high processing pressures does not necessarily implies a detriment of crystallographic orientation in the films. By measuring (for the first time to the author's knowledge) the full width at half maximum value of the rocking curve of the 0002-AlN peak at several positions along the 100 mm diameter (100)-silicon wafers on which aluminum nitride thin films were deposited by reactive sputtering, a new effect was observed. Under certain processing conditions, the growth of the AlN thin films is influenced by the target magnetron. More precisely, their degree of c-axis orientation varies at wafer areas locally coincident under the target magnetron. This effect should be considered, especially where large area substrates are employed such as in silicon wafer foundry manufacturing processes.

  12. Supported plasma sputtering apparatus for high deposition rate over large area

    DOEpatents

    Moss, Ronald W.; McClanahan, Jr., Edwin D.; Laegreid, Nils

    1977-01-01

    A supported plasma sputtering apparatus is described having shaped electrical fields in the electron discharge region between the cathode and anode and the sputter region between the target and substrate while such regions are free of any externally applied magnetic field to provide a high deposition rate which is substantially uniform over a wide area. Plasma shaping electrodes separate from the anode and target shape the electrical fields in the electron discharge region and the sputter region to provide a high density plasma. The anode surrounds the target to cause substantially uniform sputtering over a large target area. In one embodiment the anode is in the form of an annular ring surrounding a flat target surface, such anode being provided with a ribbed upper surface which shields portions of the anode from exposure to sputtered material to maintain the electron discharge for a long stable operation. Several other embodiments accomplish the same result by using different anodes which either shield the anode from sputtered material, remove the sputtered coating on the anode by heating, or simultaneously mix sputtered metal from the auxiliary target with sputtered insulator from the main target so the resultant coating is conductive. A radio frequency potential alone or together with a D.C. potential, may be applied to the target for a greater sputtering rate.

  13. Accelerated life test of sputtering and anode deposit spalling in a small mercury ion thruster

    NASA Technical Reports Server (NTRS)

    Power, J. L.

    1975-01-01

    Tantalum and molybdenum sputtered from discharge chamber components during operation of a 5 centimeter diameter mercury ion thruster adhered much more strongly to coarsely grit blasted anode surfaces than to standard surfaces. Spalling of the sputtered coating did occur from a coarse screen anode surface but only in flakes less than a mesh unit long. The results were obtained in a 200 hour accelerated life test conducted at an elevated discharge potential of 64.6 volts. The test approximately reproduced the major sputter erosion and deposition effects that occur under normal operation but at approximately 75 times the normal rate. No discharge chamber component suffered sufficient erosion in the test to threaten its structural integrity or further serviceability. The test indicated that the use of tantalum-surfaced discharge chamber components in conjunction with a fine wire screen anode surface should cure the problems of sputter erosion and sputtered deposits spalling in long term operation of small mercury ion thrusters.

  14. Electrostatic quadrupole plasma mass spectrometer measurements during thin film depositions using simultaneous matrix assisted pulsed laser evaporation and magnetron sputtering

    SciTech Connect

    Hunter, C. N.; Check, M. H.; Muratore, C.; Voevodin, A. A.

    2010-05-15

    A hybrid plasma deposition process, combining matrix assisted pulsed laser evaporation (MAPLE) of carbon nanopearls (CNPs) with magnetron sputtering of gold was investigated for growth of composite films, where 100 nm sized CNPs were encapsulated into a gold matrix. Composition and morphology of such composite films was characterized with x-ray photoelectron spectroscopy, scanning electron microscopy, and transmission electron microscopy (TEM) analysis. Carbon deposits on a gold magnetron sputter target and carbon impurities in the gold matrices of deposited films were observed while codepositing from gold and frozen toluene-CNP MAPLE targets in pure argon. Electrostatic quadrupole plasma analysis was used to determine that a likely mechanism for generation of carbon impurities was a reaction between toluene vapor generated from the MAPLE target and the argon plasma originating from the magnetron sputtering process. Carbon impurities of codeposited films were significantly reduced by introducing argon-oxygen mixtures into the deposition chamber; reactive oxygen species such as O and O+ effectively removed carbon contamination of gold matrix during the codeposition processes. Increasing the oxygen to argon ratio decreased the magnetron target sputter rate, and hence hybrid process optimization to prevent gold matrix contamination and maintain a high sputter yield is needed. High resolution TEM with energy dispersive spectrometry elemental mapping was used to study carbon distribution throughout the gold matrix as well as embedded CNP clusters. This research has demonstrated that a hybrid MAPLE and magnetron sputtering codeposition process is a viable means for synthesis of composite thin films from premanufactured nanoscale constituents, and that cross-process contaminations can be overcome with understanding of hybrid plasma process interaction mechanisms.

  15. Size-dependent electrical conductivity of indium zinc oxide deposited by RF magnetron sputtering.

    PubMed

    Heo, Young-Woo; Pearton, S J; Norton, D P

    2012-04-01

    We investigated the size-dependent electrical conductivities of indium zinc oxide stripes with different widths from 50 nm to 4 microm and with the same thickness of 50 nm deposited by RF magnetron sputtering. The size of the indium zinc oxide stripes was controlled by e-beam lithography. The distance of the two Ti/Au Ohmic electrodes along the indium zinc oxide stripes was kept constant at 25 microm. The electrical conductivity decreased as the size of the indium zinc oxide stripes decreased below a critical width (80 nm). The activation energy, derived from the electric conductivity versus temperature measurement, was dependent on the dimensions of indium zinc oxide stripes. These results can be understood as stemming from surface charge trapping from the absorption of oxygen and/or water vapor, which leads to an increase in the energy difference between the conduction energy band and the Fermi energy. PMID:22849102

  16. Cation intercalation in sputter-deposited W oxide films

    NASA Astrophysics Data System (ADS)

    Strømme Mattsson, Maria

    1998-10-01

    Intercalation of Li, Na, and K ions into sputtered amorphous and monoclinic W oxide has been studied electrochemically and by x-ray diffraction. It was found that both Li and K intercalation, at low concentrations, caused a phase separation in the crystalline W oxide, while Na intercalation, at low concentrations, accurately followed the lattice-gas model [A. J. Berlinsky, W. G. Unruh, W. R. McKinnon, and R. R. Haering, Solid State Commun. 31, 135 (1979)]. The lattice-gas model was also used to extract information about the electrochemical response at high concentrations of all three types of intercalants. At low concentrations the net interaction between the intercalated ions was found to be attractive, while at higher concentrations the interaction was repulsive. Intercalation of alkali ions into amorphous W oxide could be modeled with a Gaussian distribution of site energies. The distribution of Li ions was found to be narrower and peaked at a lower energy than that of Na and K ions.

  17. Deposition of Tungsten Thin Films on Flexible Polymer Substrates by Direct-Current Magnetron Sputtering

    NASA Astrophysics Data System (ADS)

    Zhang, Rui; Huo, Zhenxuan; Jiao, Xiangquan; Zhong, Hui; Shi, Yu

    2015-11-01

    We have investigated thin tungsten films deposited on polymer substrates by direct-current magnetron sputtering under different conditions. Unlike tungsten films deposited on rigid substrates, films on polymer substrates grew at appropriate sputtering power, low sputtering pressure, and low substrate temperature. High sputtering power results in tungsten films with good crystal orientation, compact microstructure, and low electrical resistivity. However, high-power sputtering damages the polymer substrates. Enhancing sputtering pressure substantially degrades tungsten orientation and increases electrical resistivity. Furthermore, a slight increase in substrate temperature results in tungsten films with good crystal orientation, a dense microstructure, and low electrical resistivity. Nonetheless, a high substrate temperature results in soft and deformed polymer substrates; this degrades tungsten crystal orientation and substantially roughens tungsten films. On the basis of this study, compact and flat tungsten films with low electrical resistivity can be obtained at a sputtering power of 69 W, a sputtering pressure of 1 Pa, a substrate temperature of 100°C, and a distance between target and substrate of 60 mm.

  18. Hydroxyapatite thin films grown by pulsed laser deposition and radio-frequency magnetron sputtering: comparative study

    NASA Astrophysics Data System (ADS)

    Nelea, V.; Morosanu, C.; Iliescu, M.; Mihailescu, I. N.

    2004-04-01

    Hydroxyapatite (HA) thin films for applications in the biomedical field were grown by pulsed laser deposition (PLD) and radio-frequency magnetron sputtering (RF-MS) techniques. The depositions were performed from pure hydroxyapatite targets on Ti-5Al-2.5Fe (TiAlFe) alloys substrates. In order to prevent the HA film penetration by Ti atoms or ions diffused from the Ti-based alloy during and after deposition, the substrates were pre-coated with a thin buffer layer of TiN. In both cases, TiN was introduced by reactive PLD from TiN targets in low-pressure N 2. The PLD films were grown in vacuum onto room temperature substrates. The RF-MS films were deposited in low-pressure argon on substrates heated at 550 °C. The initially amorphous PLD thin films were annealed at 550 °C for 1 h in ambient air in order to restore the initial crystalline structure of HA target. The thickness of the PLD and RF-MS films were ˜1 μm and ˜350 nm, respectively. All films were structurally studied by scanning electron microscopy (SEM), grazing incidence X-ray diffraction (GIXRD), energy dispersive X-ray spectrometry (EDS) and white light confocal microscopy (WLCM). The mechanical properties of the films were tested by Berkovich nano-indentation. Both PLD and RF-MS films mostly contain HA phase and exhibit good mechanical characteristics. Peaks of CaO were noticed as secondary phase in the GIXRD patterns only for RF-MS films. By its turn, the sputtered films were smoother as compared to the ones deposited by PLD (50 nm versus 250 nm average roughness). The RF-MS films were harder, more mechanically resistant and have a higher Young modulus.

  19. Effects of sputtering power on properties of copper oxides thin films deposited on glass substrates

    SciTech Connect

    Ooi, P. K.; Ng, S. S.; Abdullah, M. J.

    2015-04-24

    Copper oxides are deposited by radio frequency sputtering using copper target in the mixture of argon and oxygen gasses. The structural and optical properties of the copper oxides deposited at different sputtering powers have been investigated. All the films are single phase polycrystalline. At low RF power (100 W), the film is monoclinic structure of cupric oxide (CuO). Meanwhile, the films are cubic structure of cuprous oxide (Cu2O) at higher RF power. Field emission scanning electron microscopy images show the films have different morphologies with small grain size and consist of a lot of voids. The analysis of energy dispersive X-ray spectroscopy shows that the ratio of Cu to O is increased as the RF power increased. From the ultraviolet–visible spectroscopy, the films have a broad absorption edge in the range of 300–500 nm. The band gap of the films grown at RF power of 100 W, and 120 W and above, were 1.18 eV and 2.16 eV, respectively.

  20. Binary and ternary NiTi-based shape memory films deposited by simultaneous sputter deposition from elemental targets

    SciTech Connect

    Sanjabi, S.; Cao, Y.Z.; Sadrnezhaad, S.K.; Barber, Z.H.

    2005-09-15

    The most challenging requirement for depositing NiTi-based shape memory thin films is the control of film composition because a small deviation can strongly shift the transformation temperatures. This article presents a technique to control film composition via adjustment of the power supplied to the targets during simultaneous sputter deposition from separate Ni, Ti, and X (e.g., Hf) targets. After optimization of sputter parameters such as working gas pressure, target-substrate distance, and target power ratio, binary Ni{sub 100-x}Ti{sub x} thin films were fabricated and characterized by energy dispersive x-ray spectroscopy in a scanning electron microscope (to measure the film composition and uniformity), in situ x-ray diffraction (to identify the phase structures), and differential scanning calorimetry (to indicate the transformation and crystallization temperatures). To explore the possibility of depositing ternary shape memory NiTi-based thin films with a high temperature transformation >100 deg. C, a Hf target was added to the NiTi deposition system. Annealing was carried out in a high vacuum furnace slightly above the films' crystallization temperatures (500 and 550 deg. C for NiTi and NiTiHf films, respectively). Differential scanning calorimetry (DSC) results of free-standing films illustrated the dependence of transformation temperatures on film composition: Ap and Mp (referring to the austenitic and martensitic peaks in the DSC curve) were above room temperature in near equiatomic NiTi and Ti-rich films, but below it in Ni-rich films. In NiTiHf films, the transformation temperatures were a function of Hf content, reaching as high as 414 deg. C (Ap) at a Hf content of 24.4 at. %. Atomic force microscopy revealed nanostructure surface morphology of both NiTi and NiTiHf films. Detailed characterization showed that the film properties were comparable with those of NiTi and NiTiHf bulk alloys.

  1. Solutions for discharge chamber sputtering and anode deposit spalling in small mercury ion thrusters

    NASA Technical Reports Server (NTRS)

    Power, J. L.; Hiznay, D. J.

    1975-01-01

    Proposed solutions to the problems of sputter erosion and sputtered material spalling in the discharge chamber of small mercury ion thrusters are presented. The accelerated life test evaluated three such proposed solutions: (1) the use of tantalum as a single low sputter yield material for the exposed surfaces of the discharge chamber components subject to sputtering, (2) the use of a severely roughened anode surface to improve the adhesion of the sputter-deposited coating, and (3) the use of a wire cloth anode surface in order to limit the size of any coating flakes which might spall from it. Because of the promising results obtained in the accelerated life test with anode surfaces roughened by grit-blasting, experiments were carried out to optimize the grit-blasting procedure. The experimental results and an optimal grit-blasting procedure are presented.

  2. Adhesion analysis for chromium nitride thin films deposited by reactive magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Rusu, F. M.; Merie, V. V.; Pintea, I. M.; Molea, A.

    2016-08-01

    The thin film industry is continuously growing due to the wide range of applications that require the fabrication of advanced components such as sensors, biological implants, micro-electromechanical devices, optical coatings and so on. The selection regarding the deposition materials, as well as the deposition technology influences the properties of the material and determines the suitability of devices for certain real-world applications. This paper is focused on the adhesion force for several chromium nitride thin films obtained by reactive magnetron sputtering. All chromium nitride thin films were deposited on a silicon substrate, the discharge current and the argon flow being kept constant. The main purpose of the paper is to determine the influence of deposition parameters on the adhesion force. Therefore some of the deposition parameters were varied in order to study their effect on the adhesion force. Experimentally, the values of the adhesion force were determined in multiple points for each sample using the spectroscopy in point mode of the atomic force microscope. The obtained values were used to estimate the surface energy of the CrN thin films based on two existing mathematical models for the adhesion force when considering the contact between two bodies.

  3. Nanoscale compositional analysis of NiTi shape memory alloy films deposited by DC magnetron sputtering

    SciTech Connect

    Sharma, S. K.; Mohan, S.; Bysakh, S.; Kumar, A.; Kamat, S. V.

    2013-11-15

    The formation of surface oxide layer as well as compositional changes along the thickness for NiTi shape memory alloy thin films deposited by direct current magnetron sputtering at substrate temperature of 300 °C in the as-deposited condition as well as in the postannealed (at 600 °C) condition have been thoroughly studied by using secondary ion mass spectroscopy, x-ray photoelectron spectroscopy, and scanning transmission electron microscopy-energy dispersive x-ray spectroscopy techniques. Formation of titanium oxide (predominantly titanium dioxide) layer was observed in both as-deposited and postannealed NiTi films, although the oxide layer was much thinner (8 nm) in as-deposited condition. The depletion of Ti and enrichment of Ni below the oxide layer in postannealed films also resulted in the formation of a graded microstructure consisting of titanium oxide, Ni{sub 3}Ti, and B2 NiTi. A uniform composition of B2 NiTi was obtained in the postannealed film only below a depth of 200–250 nm from the surface. Postannealed film also exhibited formation of a ternary silicide (Ni{sub x}Ti{sub y}Si) at the film–substrate interface, whereas no silicide was seen in the as-deposited film. The formation of silicide also caused a depletion of Ni in the film in a region ∼250–300 nm just above the film substrate interface.

  4. Microstructural comparisons of ultrathin Cu films deposited by ion-beam and dc-magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Prater, W. L.; Allen, E. L.; Lee, W.-Y.; Toney, M. F.; Kellock, A.; Daniels, J. S.; Hedstrom, J. A.; Harrell, T.

    2005-05-01

    We report and contrast both the electrical resistance and the microstructure of copper thin films deposited in an oxygen-containing atmosphere by ion-beam and dc-magnetron sputtering. For films with thicknesses of 5 nm or less, the resistivity of the Cu films is minimized at oxygen concentrations ranging from 0.2% to 1% for dc-magnetron sputtering and 6%-10% for ion-beam sputtering. Films sputtered under both conditions show a similar decrease of interface roughness with increasing oxygen concentration, although the magnetron-deposited films are smoother. The dc-magnetron-produced films have higher resistivity, have smaller Cu grains, and contain a higher concentration of cuprous oxide particles. We discuss the mechanisms leading to the grain refinement and the consequent reduced resistivity in both types of films.

  5. Visible-light active thin-film WO3 photocatalyst with controlled high-rate deposition by low-damage reactive-gas-flow sputtering

    NASA Astrophysics Data System (ADS)

    Oka, Nobuto; Murata, Akiyo; Nakamura, Shin-ichi; Jia, Junjun; Iwabuchi, Yoshinori; Kotsubo, Hidefumi; Shigesato, Yuzo

    2015-10-01

    A process based on reactive gas flow sputtering (GFS) for depositing visible-light active photocatalytic WO3 films at high deposition rates and with high film quality was successfully demonstrated. The deposition rate for this process was over 10 times higher than that achieved by the conventional sputtering process and the process was highly stable. Furthermore, Pt nanoparticle-loaded WO3 films deposited by the GFS process exhibited much higher photocatalytic activity than those deposited by conventional sputtering, where the photocatalytic activity was evaluated by the extent of decomposition of CH3CHO under visible light irradiation. The decomposition time for 60 ppm of CH3CHO was 7.5 times more rapid on the films deposited by the GFS process than on the films deposited by the conventional process. During GFS deposition, there are no high-energy particles bombarding the growing film surface, whereas the bombardment of the surface with high-energy particles is a key feature of conventional sputtering. Hence, the WO3 films deposited by GFS should be of higher quality, with fewer structural defects, which would lead to a decrease in the number of centers for electron-hole recombination and to the efficient use of photogenerated holes for the decomposition of CH3CHO.

  6. Visible-light active thin-film WO{sub 3} photocatalyst with controlled high-rate deposition by low-damage reactive-gas-flow sputtering

    SciTech Connect

    Oka, Nobuto Murata, Akiyo; Nakamura, Shin-ichi; Jia, Junjun; Shigesato, Yuzo; Iwabuchi, Yoshinori; Kotsubo, Hidefumi

    2015-10-01

    A process based on reactive gas flow sputtering (GFS) for depositing visible-light active photocatalytic WO{sub 3} films at high deposition rates and with high film quality was successfully demonstrated. The deposition rate for this process was over 10 times higher than that achieved by the conventional sputtering process and the process was highly stable. Furthermore, Pt nanoparticle-loaded WO{sub 3} films deposited by the GFS process exhibited much higher photocatalytic activity than those deposited by conventional sputtering, where the photocatalytic activity was evaluated by the extent of decomposition of CH{sub 3}CHO under visible light irradiation. The decomposition time for 60 ppm of CH{sub 3}CHO was 7.5 times more rapid on the films deposited by the GFS process than on the films deposited by the conventional process. During GFS deposition, there are no high-energy particles bombarding the growing film surface, whereas the bombardment of the surface with high-energy particles is a key feature of conventional sputtering. Hence, the WO{sub 3} films deposited by GFS should be of higher quality, with fewer structural defects, which would lead to a decrease in the number of centers for electron-hole recombination and to the efficient use of photogenerated holes for the decomposition of CH{sub 3}CHO.

  7. A new highly automated sputter equipment for in situ investigation of deposition processes with synchrotron radiation

    SciTech Connect

    Doehrmann, Ralph; Botta, Stephan; Buffet, Adeline; Santoro, Gonzalo; Schlage, Kai; Schwartzkopf, Matthias; Risch, Johannes F. H.; Mannweiler, Roman; Roth, Stephan V.; Bommel, Sebastian; Brunner, Simon; Metwalli, Ezzeldin; Mueller-Buschbaum, Peter

    2013-04-15

    HASE (Highly Automated Sputter Equipment) is a new mobile setup developed to investigate deposition processes with synchrotron radiation. HASE is based on an ultra-high vacuum sputter deposition chamber equipped with an in-vacuum sample pick-and-place robot. This enables a fast and reliable sample change without breaking the vacuum conditions and helps to save valuable measurement time, which is required for experiments at synchrotron sources like PETRA III at DESY. An advantageous arrangement of several sputter guns, mounted on a rotative flange, gives the possibility to sputter under different deposition angles or to sputter different materials on the same substrate. The chamber is also equipped with a modular sample stage, which allows for the integration of different sample environments, such as a sample heating and cooling device. The design of HASE is unique in the flexibility. The combination of several different sputtering methods like standard deposition, glancing angle deposition, and high pressure sputter deposition combined with heating and cooling possibil-ities of the sample, the large exit windows, and the degree of automation facilitate many different grazing incidence X-ray scattering experiments, such as grazing incidence small and wide angle X-ray scattering, in one setup. In this paper we describe in detail the design and the performance of the new equipment and present the installation of the HASE apparatus at the Micro and Nano focus X-ray Scattering beamline (MiNaXS) at PETRA III. Furthermore, we describe the measurement options and present some selected results. The HASE setup has been successfully commissioned and is now available for users.

  8. A new highly automated sputter equipment for in situ investigation of deposition processes with synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Döhrmann, Ralph; Botta, Stephan; Buffet, Adeline; Santoro, Gonzalo; Schlage, Kai; Schwartzkopf, Matthias; Bommel, Sebastian; Risch, Johannes F. H.; Mannweiler, Roman; Brunner, Simon; Metwalli, Ezzeldin; Müller-Buschbaum, Peter; Roth, Stephan V.

    2013-04-01

    HASE (Highly Automated Sputter Equipment) is a new mobile setup developed to investigate deposition processes with synchrotron radiation. HASE is based on an ultra-high vacuum sputter deposition chamber equipped with an in-vacuum sample pick-and-place robot. This enables a fast and reliable sample change without breaking the vacuum conditions and helps to save valuable measurement time, which is required for experiments at synchrotron sources like PETRA III at DESY. An advantageous arrangement of several sputter guns, mounted on a rotative flange, gives the possibility to sputter under different deposition angles or to sputter different materials on the same substrate. The chamber is also equipped with a modular sample stage, which allows for the integration of different sample environments, such as a sample heating and cooling device. The design of HASE is unique in the flexibility. The combination of several different sputtering methods like standard deposition, glancing angle deposition, and high pressure sputter deposition combined with heating and cooling possibil-ities of the sample, the large exit windows, and the degree of automation facilitate many different grazing incidence X-ray scattering experiments, such as grazing incidence small and wide angle X-ray scattering, in one setup. In this paper we describe in detail the design and the performance of the new equipment and present the installation of the HASE apparatus at the Micro and Nano focus X-ray Scattering beamline (MiNaXS) at PETRA III. Furthermore, we describe the measurement options and present some selected results. The HASE setup has been successfully commissioned and is now available for users.

  9. A new highly automated sputter equipment for in situ investigation of deposition processes with synchrotron radiation.

    PubMed

    Döhrmann, Ralph; Botta, Stephan; Buffet, Adeline; Santoro, Gonzalo; Schlage, Kai; Schwartzkopf, Matthias; Bommel, Sebastian; Risch, Johannes F H; Mannweiler, Roman; Brunner, Simon; Metwalli, Ezzeldin; Müller-Buschbaum, Peter; Roth, Stephan V

    2013-04-01

    HASE (Highly Automated Sputter Equipment) is a new mobile setup developed to investigate deposition processes with synchrotron radiation. HASE is based on an ultra-high vacuum sputter deposition chamber equipped with an in-vacuum sample pick-and-place robot. This enables a fast and reliable sample change without breaking the vacuum conditions and helps to save valuable measurement time, which is required for experiments at synchrotron sources like PETRA III at DESY. An advantageous arrangement of several sputter guns, mounted on a rotative flange, gives the possibility to sputter under different deposition angles or to sputter different materials on the same substrate. The chamber is also equipped with a modular sample stage, which allows for the integration of different sample environments, such as a sample heating and cooling device. The design of HASE is unique in the flexibility. The combination of several different sputtering methods like standard deposition, glancing angle deposition, and high pressure sputter deposition combined with heating and cooling possibilities of the sample, the large exit windows, and the degree of automation facilitate many different grazing incidence X-ray scattering experiments, such as grazing incidence small and wide angle X-ray scattering, in one setup. In this paper we describe in detail the design and the performance of the new equipment and present the installation of the HASE apparatus at the Micro and Nano focus X-ray Scattering beamline (MiNaXS) at PETRA III. Furthermore, we describe the measurement options and present some selected results. The HASE setup has been successfully commissioned and is now available for users. PMID:23635203

  10. Physics of arcing, and implications to sputter deposition

    SciTech Connect

    Anders, Andre

    2005-03-15

    Arc and glow discharges are defined based on their cathode processes. Arcs are characterized by collective electron emission, which can be stationary with hot cathodes (thermionic arcs), or non-stationary with cold cathodes (cathodic arcs). A brief review on cathodic arc properties serves as the starting point to better understand arcing phenomena in sputtering. Although arcing occurs in both metal and reactive sputtering, it is more of an issue in the reactive case. Arcing occurs if sufficiently high field strength leads to thermal runaway of an electron emission site. The role of insulating layers and surface potential adjustment through current leakage is highlighted. In the situation of magnetron sputtering with ''racetrack'', the need for a model with two spatial dimensions is shown. In many cases, arcing is initiated by breakdown of dielectric layers and inclusions. It is most efficiently prevented if formation and excessive charge-up of dielectric layers and inclusions can be avoided.

  11. Highly oriented polycrystalline Cu2O film formation using RF magnetron sputtering deposition for solar cells

    NASA Astrophysics Data System (ADS)

    Noda, S.; Shima, H.; Akinaga, H.

    2014-02-01

    Room temperature sputtering deposition and re-crystallization of the deposited thin films by rapid thermal annealing have been evaluating in detail as a formation method of Cu2O active layer for solar cells, which minimize thermal budget in fabrication processes. Single phase polycrystalline Cu2O films were obtained by a magnetron rf sputtering deposition and its crystallinity and electrical characteristics were controlled by the annealing. Hall mobility was improved up to 17 cm2V-1s-1 by the annealing at 600°C for 30s. Since this value was smaller than 47 cm2V-1s-1 of the film deposited under thermal equilibrium state using pulsed laser deposition at 600°C, some contrivances were necessary to compensate the deficiency. It was understood that the sputter-deposited Cu2O films on (111)-oriented Pt films were strongly oriented to (111) face also by the self-assembly and the crystallinity was improved by the annealing preserving its orientation. The sputter-deposited film quality was expected to become equivalent to the pulsed laser deposition film from the results of X-ray diffractometry and photoluminescence.

  12. The effects of changing deposition conditions on the similarity of sputter-deposited fluorocarbon thin films to bulk PTFE

    NASA Astrophysics Data System (ADS)

    Zandona, Philip

    Solid lubrication of space-borne mechanical components is essential to their survival and the continued human exploration of space. Recent discoveries have shown that PTFE when blended with alumina nanofillers exhibits greatly improved physical performance properties, with wear rates being reduced by several orders of magnitude. The bulk processes used to produce the PTFE-alumina blends are limiting. Co-sputter deposition of PTFE and a filler material overcomes several of these limitations by enabling the reduction of particle size to the atomic level and also by allowing for the even coating of the solid lubricant on relatively large areas and components. The goal of this study was to establish a baseline performance of the sputtered PTFE films as compared to the bulk material, and to establish deposition conditions that would result in the most bulk-like film possible. In order to coax change in the structure of the sputtered films, sputtering power and deposition temperature were increased independently. Further, post-deposition annealing was applied to half of the deposited film in an attempt to affect change in the film structure. Complications in the characterization process due to increasing film thickness were also examined. Bulk-like metrics for characterization processes the included Fourier transform infrared spectroscopy (FTIR), X-ray spectroscopy (XPS), nanoindentation via atomic force microscopy, and contact angle of water on surface measurements were established. The results of the study revealed that increasing sputtering power and deposition temperature resulted in an increase in the similarity between the fluorocarbon films and the bulk PTFE, at a cost of affecting the potential of the film thicknesses, either by affecting the deposition process directly, or by decreasing the longevity of the sputtering targets.

  13. Limits of carrier mobility in Sb-doped SnO{sub 2} conducting films deposited by reactive sputtering

    SciTech Connect

    Bissig, B. Jäger, T.; Tiwari, A. N.; Romanyuk, Y. E.; Ding, L.

    2015-06-01

    Electron transport in Sb-doped SnO{sub 2} (ATO) films is studied to unveil the limited carrier mobility observed in sputtered films as compared to other deposition methods. Transparent and conductive ATO layers are deposited from metallic tin targets alloyed with antimony in oxygen atmosphere optimized for reactive sputtering. The carrier mobility decreases from 24 cm{sup 2} V{sup −1} s{sup −1} to 6 cm{sup 2} V{sup −1} s{sup −1} when increasing the doping level from 0 to 7 at. %, and the lowest resistivity of 1.8 × 10{sup −3} Ω cm corresponding to the mobility of 12 cm{sup 2} V{sup −1} s{sup −1} which is obtained for the 3 at. % Sb-doped ATO. Temperature-dependent Hall effect measurements and near-infrared reflectance measurements reveal that the carrier mobility in sputtered ATO is limited by ingrain scattering. In contrast, the mobility of unintentionally doped SnO{sub 2} films is determined mostly by the grain boundary scattering. Both limitations should arise from the sputtering process itself, which suffers from the high-energy-ion bombardment and yields polycrystalline films with small grain size.

  14. A review of basic phenomena and techniques for sputter-deposition of high temperature superconducting films

    SciTech Connect

    Auciello, O. North Carolina State Univ., Raleigh, NC . Dept. of Materials Science and Engineering); Ameen, M.S.; Kingon, A.I.; Lichtenwalner, D.J. . Dept. of Materials Science and Engineering); Krauss, A.R. )

    1990-01-01

    The processes involved in plasma and ion beam sputter-deposition of high temperature superconducting thin films are critically reviewed. Recent advances in the development of these techniques are discussed in relation to basic physical phenomena, specific to each technique, which must be understood before high quality films can be produced. Control of film composition is a major issue in sputter-deposition of multicomponent materials. Low temperature processing of films is a common goal for each technique, particularly in relation to integrating high temperature superconducting films with the current microelectronics technology. It has been understood for some time that for Y{sub 1}Ba{sub 2}Cu{sub 3}O{sub 7} deposition, the most intensely studied high-{Tc} compound, incorporation of sufficient oxygen into the film during deposition is necessary to produce as-deposited superconducting films at relatively substrate temperatures. Recent results have shown that with the use of suitable buffer layers, high quality Y{sub 1}Ba{sub 2}Cu{sub 3}O{sub 7} sputtered films can be obtained on Si substrates without the need for post-deposition anneal processing. This review is mainly focussed on issues related to sputter-deposition of Y{sub 1}Ba{sub 2}Cu{sub 3}O{sub 7} thin films, although representative results concerning the bismuth and thallium based compounds are included. 143 refs., 11 figs.

  15. Large-area few-layer MoS2 deposited by sputtering

    NASA Astrophysics Data System (ADS)

    Huang, Jyun-Hong; Chen, Hsing-Hung; Liu, Pang-Shiuan; Lu, Li-Syuan; Wu, Chien-Ting; Chou, Cheng-Tung; Lee, Yao-Jen; Li, Lain-Jong; Chang, Wen-Hao; Hou, Tuo-Hung

    2016-06-01

    Direct magnetron sputtering of transition metal dichalcogenide targets is proposed as a new approach for depositing large-area two-dimensional layered materials. Bilayer to few-layer MoS2 deposited by magnetron sputtering followed by post-deposition annealing shows superior area scalability over 20 cm2 and layer-by-layer controllability. High crystallinity of layered MoS2 was confirmed by Raman, photo-luminescence, and transmission electron microscopy analysis. The sputtering temperature and annealing ambience were found to play an important role in the film quality. The top-gate field-effect transistor by using the layered MoS2 channel shows typical n-type characteristics with a current on/off ratio of approximately 104. The relatively low mobility is attributed to the small grain size of 0.1-1 μm with a trap charge density in grain boundaries of the order of 1013 cm-2.

  16. An investigation of reactive sputtering for depositing copper indium diselenide films for photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Thornton, J. A.; Cornog, D. G.; Hall, R. B.; Shea, S. P.; Meakin, J. D.

    Sputtering, particularly using magnetron methods, offers great potential for depositing films over large areas at the production volumes required for terrestrial photovoltaic applications. Single phase chalcopyrite CuInSe2 coatings have been successfully deposited by dc reactive cosputtering from Cu and In planar magnetron sources operated in an Ar+H2Se working gas. Studies of coatings deposited with various Cu and In sputtering rates and substrate temperatures indicate that the formation of near-stoichiometric coatings is aided at elevated temperatures by a re-emission mechanism which removes excess In. Photovoltaic test devices formed by evaporating CdS onto the sputtered CuInSe2 have yielded short circuit currents of about 33 mA/sq cm and efficiencies of about 4 percent.

  17. Effects of nitrogen ion implantation time on tungsten films deposited by DC magnetron sputtering on AISI 410 martensitic stainless steel

    NASA Astrophysics Data System (ADS)

    Malau, Viktor; Ilman, Mochammad Noer; Iswanto, Priyo Tri; Jatisukamto, Gaguk

    2016-03-01

    Nitrogen ion implantation time on tungsten thin film deposited on surface of AISI 410 steel has been performed. Tungsten thin film produced by dc magnetron sputtering method was deposited on AISI 410 martensitic stainless steel substrates, and then the nitrogen ions were implanted on tungsten thin film. The objective of this research is to investigate the effects of implantation deposition time on surface roughness, microhardness, specific wear and corrosion rate of nitrogen implanted on tungsten film. Magnetron sputtering process was performed by using plasma gas of argon (Ar) to bombardier tungsten target (W) in a vacuum chamber with a pressure of 7.6 x 10-2 torr, a voltage of 300 V, a sputter current of 80 mA for sputtered time of 10 minutes. Nitrogen implantation on tungsten film was done with an initial pressure of 3x10-6 mbar, a fluence of 2 x 1017 ions/cm2, an energy of 100 keV and implantation deposition times of 0, 20, 30 and 40 minutes. The surface roughness, microhardness, specific wear and corrosion rate of the films were evaluated by surfcorder test, Vickers microhardness test, wear test and potentiostat (galvanostat) test respectively. The results show that the nitrogen ions implanted deposition time on tungsten film can modify the surface roughness, microhardness, specific wear and corrosion rate. The minimum surface roughness, specific wear and corrosion rate can be obtained for implantation time of 20 minutes and the maximum microhardness of the film is 329 VHN (Vickers Hardness Number) for implantation time of 30 minutes. The specific wear and corrosion rate of the film depend directly on the surface roughness.

  18. Structural analysis of ferromagnetic Ni-Mn-Sn thin films fabricated by co-sputter deposition

    NASA Astrophysics Data System (ADS)

    Guvenc, Sema; Yumak, Mehmet; Nedelcos, A. Quintana; Llamazares, J. L. Sanchez; Garcia, Carlos Garcia

    2015-03-01

    Ferromagnetic Ni-Mn-X (Sn, In) alloys are predicted as potential candidates for energy efficient Magnetocaloric Effect (MCE) technologies. The MCE is the basis of magnetic refrigeration and it leads to a groundbreaking progress on conventional refrigeration methods. In our research, Ni-Mn-Sn thin films were fabricated by co-sputter deposition method. The Mn losses due to the high Mn vapor pressure produce a deviation from the desired Ni50Mn37Sn13 composition, which are partially compensated by increasing power of the Mn target gun. A systematic study of thin film co-sputter fabrication was divided into three stages; i) a Ni-Mn-Sn target was evaporated at different temperatures in order to study the grain size temperature dependence, ii) the nominal chemical composition (Ni50Mn37Sn13) was reached by controlling the power value applied to the Mn target, iii) the dependence of the phase transformation temperature with the grain size of the thin film alloys was studied. Grain size can be controlled by modifying the substrate temperature (Ts) .

  19. Electrochromism in sputter deposited W1-y MoyO3 thin films

    NASA Astrophysics Data System (ADS)

    Arvizu, M. A.; Granqvist, C. G.; Niklasson, G. A.

    2016-02-01

    Electrochromic (EC) properties of tungsten-molybdenum oxide (W1-y MoyO3) thin films were investigated. The films were deposited on indium tin oxide covered glass by reactive DC sputtering from tungsten and molybdenum targets. Elemental compositions of the W1-y MoyO3 films were determined by Rutherford back scattering. Voltammetric cycling was performed in an electrolyte of 1 M LiClO4 in propylene carbonate. An increase in molybdenum content in the EC films caused both a shift towards higher energies and a lowering of the maximum of the optical absorption band, as compared with WO3 EC films. Durability under electrochemical cycling was diminished for W1-y MoyO3 EC films.

  20. STEM-EELS analysis reveals stable high-density He in nanopores of amorphous silicon coatings deposited by magnetron sputtering.

    PubMed

    Schierholz, Roland; Lacroix, Bertrand; Godinho, Vanda; Caballero-Hernández, Jaime; Duchamp, Martial; Fernández, Asunción

    2015-02-20

    A broad interest has been showed recently on the study of nanostructuring of thin films and surfaces obtained by low-energy He plasma treatments and He incorporation via magnetron sputtering. In this paper spatially resolved electron energy-loss spectroscopy in a scanning transmission electron microscope is used to locate and characterize the He state in nanoporous amorphous silicon coatings deposited by magnetron sputtering. A dedicated MATLAB program was developed to quantify the helium density inside individual pores based on the energy position shift or peak intensity of the He K-edge. A good agreement was observed between the high density (∼35-60 at nm(-3)) and pressure (0.3-1.0 GPa) values obtained in nanoscale analysis and the values derived from macroscopic measurements (the composition obtained by proton backscattering spectroscopy coupled to the macroscopic porosity estimated from ellipsometry). This work provides new insights into these novel porous coatings, providing evidence of high-density He located inside the pores and validating the methodology applied here to characterize the formation of pores filled with the helium process gas during deposition. A similar stabilization of condensed He bubbles has been previously demonstrated by high-energy He ion implantation in metals and is newly demonstrated here using a widely employed methodology, magnetron sputtering, for achieving coatings with a high density of homogeneously distributed pores and He storage capacities as high as 21 at%.

  1. STEM-EELS analysis reveals stable high-density He in nanopores of amorphous silicon coatings deposited by magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Schierholz, Roland; Lacroix, Bertrand; Godinho, Vanda; Caballero-Hernández, Jaime; Duchamp, Martial; Fernández, Asunción

    2015-02-01

    A broad interest has been showed recently on the study of nanostructuring of thin films and surfaces obtained by low-energy He plasma treatments and He incorporation via magnetron sputtering. In this paper spatially resolved electron energy-loss spectroscopy in a scanning transmission electron microscope is used to locate and characterize the He state in nanoporous amorphous silicon coatings deposited by magnetron sputtering. A dedicated MATLAB program was developed to quantify the helium density inside individual pores based on the energy position shift or peak intensity of the He K-edge. A good agreement was observed between the high density (˜35-60 at nm-3) and pressure (0.3-1.0 GPa) values obtained in nanoscale analysis and the values derived from macroscopic measurements (the composition obtained by proton backscattering spectroscopy coupled to the macroscopic porosity estimated from ellipsometry). This work provides new insights into these novel porous coatings, providing evidence of high-density He located inside the pores and validating the methodology applied here to characterize the formation of pores filled with the helium process gas during deposition. A similar stabilization of condensed He bubbles has been previously demonstrated by high-energy He ion implantation in metals and is newly demonstrated here using a widely employed methodology, magnetron sputtering, for achieving coatings with a high density of homogeneously distributed pores and He storage capacities as high as 21 at%.

  2. Formation of cubic boron-nitride by the reactive sputter deposition of boron

    SciTech Connect

    Jankowski, A.F.; Hayes, J.P.; Makowiecki, D.W.; McKeman, M.A.

    1997-03-01

    Boron-nitride films are synthesized by RF magnetron sputtering boron targets where the deposition parameters of gas pressure, flow and composition are varied along with substrate temperature and applied bias. The films are analyzed using Auger electron spectroscopy, transmission electron microscopy, nanoindentation, Raman spectroscopy and x-ray absorption spectroscopy. These techniques provide characterization of film composition, crystalline structure, hardness and chemical bonding, respectively. Reactive, rf-sputtering process parameters are established which lead to the growth of crystalline BN phases. The deposition of stable and adherent boron nitride coatings consisting of the cubic phase requires 400 `C substrate heating and the application of a 300 V negative bias.

  3. Sputter deposition of Al-doped ZnO films with various incident angles

    SciTech Connect

    Sato, Yasushi; Yanagisawa, Kei; Oka, Nobuto; Nakamura, Shin-ichi; Shigesato, Yuzo

    2009-09-15

    Al-doped ZnO (AZO) films were sputter deposited on glass substrates heated at 200 degree sign C under incident angles of sputtered particles at 0 degree sign (incidence normal to substrate), 20 deg., 40 deg., 60 deg., and 80 deg. In the case of normal incidence, x-ray diffraction pole figures show a strong [001] preferred orientation normal to the film surface. In contrast, in the case wherein the incident angles were higher than 60 degree sign , the [001] orientation inclined by 25 deg. - 35 deg. toward the direction of sputtered particles. Transmission electron microscopy revealed that the tilt angle of the [001] orientation increased with increasing angle of the incident sputtered particles, whereas the columnar structure did not show any sign of inclination with respect to the substrate plane.

  4. Closed-cell foams produced from sputter-deposited aluminum. [experiments on earth and in space environment

    NASA Technical Reports Server (NTRS)

    Patten, J. W.; Greenwell, E. N.

    1977-01-01

    Sputter deposited aluminum containing argon was melted to produce foam, both in the earth's gravitational field and in a zero-gravity space environment. Experiments leading to trapping of up to 270 ppm argon sputtering gas in pure aluminum during high-rate dc triode sputter deposition are discussed. Conduct of the melting experiments and design of the furnace used are described. Metallography; an analysis of bubble size, distribution, and morphology; and a preliminary description of the kinetics are also presented.

  5. Chemical sputtering by H2+ and H3+ ions during silicon deposition

    NASA Astrophysics Data System (ADS)

    Landheer, K.; Goedheer, W. J.; Poulios, I.; Schropp, R. E. I.; Rath, J. K.

    2016-08-01

    We investigated chemical sputtering of silicon films by Hy+ ions (with y being 2 and 3) in an asymmetric VHF Plasma Enhanced Chemical Vapor Deposition (PECVD) discharge in detail. In experiments with discharges created with pure H2 inlet flows, we observed that more Si was etched from the powered than from the grounded electrode, and this resulted in a net deposition on the grounded electrode. With experimental input data from a power density series of discharges with pure H2 inlet flows, we were able to model this process with a chemical sputtering mechanism. The obtained chemical sputtering yields were (0.3-0.4) ± 0.1 Si atom per bombarding Hy+ ion at the grounded electrode and at the powered electrode the yield ranged from (0.4 to 0.65) ± 0.1. Subsequently, we investigated the role of chemical sputtering during PECVD deposition with a series of silane fractions SF (SF(%) = [SiH4]/[H2]*100) ranging from SF = 0% to 20%. We experimentally observed that the SiHy+ flux is not proportional to SF but decreasing from SF = 3.4% to 20%. This counterintuitive SiHy+ flux trend was partly explained by an increasing chemical sputtering rate with decreasing SF and partly by the reaction between H3+ and SiH4 that forms SiH3+.

  6. ZrN coatings deposited by high power impulse magnetron sputtering and cathodic arc techniques

    SciTech Connect

    Purandare, Yashodhan Ehiasarian, Arutiun; Hovsepian, Papken; Santana, Antonio

    2014-05-15

    Zirconium nitride (ZrN) coatings were deposited on 1 μm finish high speed steel and 316L stainless steel test coupons. Cathodic Arc (CA) and High Power Impulse Magnetron Sputtering (HIPIMS) + Unbalanced Magnetron Sputtering (UBM) techniques were utilized to deposit coatings. CA plasmas are known to be rich in metal and gas ions of the depositing species as well as macroparticles (droplets) emitted from the arc sports. Combining HIPIMS technique with UBM in the same deposition process facilitated increased ion bombardment on the depositing species during coating growth maintaining high deposition rate. Prior to coating deposition, substrates were pretreated with Zr{sup +} rich plasma, for both arc deposited and HIPIMS deposited coatings, which led to a very high scratch adhesion value (L{sub C2}) of 100 N. Characterization results revealed the overall thickness of the coatings in the range of 2.5 μm with hardness in the range of 30–40 GPa depending on the deposition technique. Cross-sectional transmission electron microscopy and tribological experiments such as dry sliding wear tests and corrosion studies have been utilized to study the effects of ion bombardment on the structure and properties of these coatings. In all the cases, HIPIMS assisted UBM deposited coating fared equal or better than the arc deposited coatings, the reasons being discussed in this paper. Thus H+U coatings provide a good alternative to arc deposited where smooth, dense coatings are required and macrodroplets cannot be tolerated.

  7. Molybdenum Oxides Deposited by Modulated Pulse Power Magnetron Sputtering: Stoichiometry as a Function of Process Parameters

    NASA Astrophysics Data System (ADS)

    Murphy, Neil R.; Sun, Lirong; Grant, John T.; Jones, John G.; Jakubiak, Rachel

    2015-10-01

    Molybdenum oxide films were deposited using modulated pulse power magnetron sputtering (MPPMS) from a molybdenum target in a reactive environment where the flow rate of oxygen was varied from 0 sccm to 2.00 sccm. By varying the amount of reactive oxygen available during deposition, the composition of the films ranged from metallic Mo to fully stoichiometric MoO3, when the molybdenum target became poisoned, due to the formation of a dielectric surface oxide coating. Film compositions were verified using high energy resolution x-ray photoelectron spectroscopy. Target poisoning occurred at an oxygen flow rate of 1.25 sccm and reversed when the flow rate decreased to about 1.00 sccm. MoO3 films deposited via MPPMS had densities of 3.8 g cm-3, 81% of the density of crystalline α-MoO3 as determined by x-ray reflectivity (XRR). In addition, XRR and atomic force microscopy data showed sub-nanometer surface roughness values. From spectroscopic ellipsometry, the measured refractive index of the MoO3 films at 589 nm was 1.97 with extinction coefficient values <0.02 at wavelengths above the measured absorption edge of 506 nm (2.45 eV).

  8. Structural and optical properties of Al/ZnO thin films deposited by radio frequency sputtering

    NASA Astrophysics Data System (ADS)

    Osanyinlusi, O.; Mukolu, A. I.; Zebaze Kana, M. G.

    2016-09-01

    The effects of annealing temperature and variation of sample thickness on the structural and optical properties of zinc oxide thin films with aluminium contact (Al/ZnO) have been investigated. The study involved the synthesis of a bilayer thin film of Al/ZnO with varied thicknesses on a glass slide substrate by using radio frequency magnetron sputtering deposition technique. 99.99% pure ZnO and aluminium were used as the sputtering target. The films were then annealed in vacuum at annealing temperatures of 200 °C and 400 °C. The structural and optical properties of Al/ZnO thin films grown were characterized by x-ray diffraction (XRD) and optical measurements respectively. The results obtained from the XRD patterns showed that Al/ZnO films (both as-deposited and annealed), exhibits a crystalline structure with (002) preferred orientation. The peak intensity of the preferred plane increases as the annealing temperature increases. The optical studies of the Al/ZnO films showed a maximum value of transmittance ranging from 82% to 91% depending on the condition of the films. A decrease in transmittance as the thickness of the films increases was observed. The transmittance also increased with increasing annealing temperature. The energy gaps (E g) were determined from the transmittance data and found to be in the range 3.73-3.83 eV. The results obtained from the experiment also show that the optical band gap increases as the thickness and annealing temperature increase.

  9. Application of closed field magnetron sputtering deposition in thin film photovoltaics

    NASA Astrophysics Data System (ADS)

    Gibson, D. R.; Waugh, A. R.; Upadhyaya, Hari M.; Nasikkar, P. S.; Walls, J. M.

    2009-08-01

    Thin film solar cell technology is highly promising to enable clean and low cost generation of solar electricity for various applications. The high efficiency, flexibility and lightweight advantages of thin film solar cells, together with stable performance and potentially low production costs, further enhance their attractiveness for both terrestrial and space applications. A distinct manufacturing advantage of thin film solar cells is the use of fast vacuum deposition methods, providing the high throughput essential to reduce manufacturing costs. However, an essential pre-requisite is the development of deposition techniques which combine capability to deposit the solar cell thin film multilayer preferably within a single vacuum cycle, removing the requirement for certain process steps to be carried out using non-vacuum wet chemistry. Moreover, process development is also needed to provide low temperature processing and low stress multilayer thin film structures which enable photovoltaic devices to be deposited on to low cost flexible polymer or metal substrates. In this paper a new sputtering tool strategy is introduced, utilising high plasma densities (~10mA.cm-2) and low ion energies, thereby lowering process temperature and film stress for deposition onto both flexible and solid substrates. The technique uses magnetrons of opposing magnetic polarity to create a "closed field" in which the plasma density is enhanced without the need for high applied voltages. A prototype batch system has been designed which employs a rotating vertical drum as the substrate carrier and a symmetrical array of four linear magnetrons. The magnetrons are fitted with target materials for each of the thin films required in the PV stack including the CdTe absorber layer, CdS buffer layer and the back TCO contact. Details of the system design will be provided together with optical, electrical and metrology data already obtained from ITO thin films. The "closed field" sputtering

  10. High power impulse magnetron sputtering and related discharges: scalable plasma sources for plasma-based ion implantation and deposition

    SciTech Connect

    Anders, Andre

    2009-09-01

    High power impulse magnetron sputtering (HIPIMS) and related self-sputtering techniques are reviewed from a viewpoint of plasma-based ion implantation and deposition (PBII&D). HIPIMS combines the classical, scalable sputtering technology with pulsed power, which is an elegant way of ionizing the sputtered atoms. Related approaches, such as sustained self-sputtering, are also considered. The resulting intense flux of ions to the substrate consists of a mixture of metal and gas ions when using a process gas, or of metal ions only when using `gasless? or pure self-sputtering. In many respects, processing with HIPIMS plasmas is similar to processing with filtered cathodic arc plasmas, though the former is easier to scale to large areas. Both ion implantation and etching (high bias voltage, without deposition) and thin film deposition (low bias, or bias of low duty cycle) have been demonstrated.

  11. Sputter deposition methods for superconductors. February 1977-September 1989 (Citations from the Searchable Physics Information Notices data base). Report for February 1977-September 1989

    SciTech Connect

    Not Available

    1989-11-01

    This bibliography contains citations concerning the deposition of superconducting materials by sputtering. Citations discuss the deposition process. Properties and structures of materials prepared by sputtering are also considered. (Contains 112 citations fully indexed and including a title list.)

  12. High-rate deposition of optical coatings by closed-field magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Gibson, D. R.; Brinkley, I.; Waddell, E. M.; Walls, J. M.

    2005-09-01

    "Closed field" magnetron (CFM) sputtering offers a flexible and high throughput deposition process for optical coatings and thin films required in a wide range of optical applications. CFM sputtering uses two or more different metal targets to deposit multilayers comprising a wide range of dielectrics, metals and conductive oxides. Moreover, CFM provides a room temperature deposition process with high ion current density, low bias voltage and reactive oxidation in the entire volume around the rotating substrate drum carrier, thereby producing films over a large surface area at high deposition rate with excellent and reproducible optical properties. Machines based on the Closed Field are scaleable to meet a range of batch and in-line size requirements. Typically, thin film thickness control to <+/-1% is accomplished simply using time. Fine layer thickness control and deposition of graded index layers is also assisted with a specially designed rotating shutter mechanism. The CFM configuration also allows plasma treatment of surfaces prior to deposition, allowing optimisation of coating adhesion to substrates such as plastics. This paper presents data on optical, durability and environmental properties for CFM deposited optical coatings, including anti-reflection, IR blocker and colour control and thermal control filters, graded coatings, as well as conductive transparent oxides such as indium tin oxide. Benefits of the CFM sputter process for a range of optical applications are described.

  13. Topographic study of sputter-deposited film with different process parameters

    NASA Astrophysics Data System (ADS)

    Ju, Shin-Pon; Weng, Cheng-I.; Chang, Jee-Gong; Hwang, Chi-Chuan

    2001-06-01

    In this study, molecular dynamics simulation is employed to investigate the surface topography of thin films produced by the sputtering process for different parameters such as substrate temperature, incident energy, and incident angle. Interface width is used to quantify the quality of the deposited film. The Morse potential is used to model the atomic interaction between atoms. From the results of this study, it is found that for lower substrate temperature, lower incident energy, and larger incident angle, the growing film structure tends toward a three-dimensional columnar structure, and a rougher film is produced. Conversely, for higher substrate temperature, higher incident energy, and smaller incident angle, the growing film structure tends toward a two-dimensional (Frank-van der Merwe) quasi-layer-by-layer structure, and a smoother film is produced. Finally, average surface kinetic energy is found to be an important factor in determining the surface properties produced in the process. Generally, the produced film is smoother when the average surface kinetic energy is larger.

  14. Deposition of highly textured AlN thin films by reactive high power impulse magnetron sputtering

    SciTech Connect

    Moreira, Milena A.; Törndahl, Tobias; Katardjiev, Ilia; Kubart, Tomas

    2015-03-15

    Aluminum nitride thin films were deposited by reactive high power impulse magnetron sputtering (HiPIMS) and pulsed direct-current on Si (100) and textured Mo substrates, where the same deposition conditions were used for both techniques. The films were characterized by x-ray diffraction and atomic force microscopy. The results show a pronounced improvement in the AlN crystalline texture for all films deposited by HiPIMS on Si. Already at room temperature, the HiPIMS films exhibited a strong preferred (002) orientation and at 400 °C, no contributions from other orientations were detected. Despite the low film thickness of only 200 nm, an ω-scan full width at half maximum value of 5.1° was achieved on Si. The results are attributed to the high ionization of sputtered material achieved in HiPIMS. On textured Mo, there was no significant difference between the deposition techniques.

  15. Fluoropolymer Films Deposited by RF Plasma Sputtering of Polytetrafluoroethylene Using Inert Gases

    NASA Technical Reports Server (NTRS)

    Golub, Morton A.; Wydeven, Theodore; Kliss, Mark (Technical Monitor)

    1998-01-01

    The FT-IR (Fourier Transform Infrared), UV (Ultraviolet) and XPS (X Ray Photoelectron Spectroscopy) spectra of fluoropolymer films (SPTFE) deposited by rf (radio frequency) plasma sputtering of polytetrafluoroethylene (PTFE), using Ne, Kr and Xe as sputtering gases, were obtained and compared with prior spectra for SPTFE formed using He and Ar. The F/C (fluorine / carbon) ratios for SPTFE films (1.44-1.55), obtained at a rf power of 10 W, were essentially the same for all five rare gases, there being no trend of decreasing fluorine content in the SPTFE product with increasing atomic weight of the sputtering gas - contrary to the momentum transfer notion advanced by M. E. Ryan, et al. Increasing rf power from 10 to 50 W resulted in successively lower F/C ratios for SPTFE (e.g., from 1.55 to 1.21 in the case of Xe plasma-sputtered PTFE), accompanied by sputtering of the glass reactor and deposition of fragments of sodium aluminum silicate occurring at 40 W and above. In order to achieve a "Teflon-like" SPTFE structure (i.e., products with as high a F/C ratio as possible) in a given plasma reactor, an optimum rf power must be found, which in the present case was approximately 10 W.

  16. Deposition of multilayer optical coatings using closed-field magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Gibson, D. R.; Brinkley, I.; Hall, G. W.; Waddell, E. M.; Walls, J. M.

    2006-08-01

    "Closed field" magnetron (CFM) sputtering offers a flexible and high throughput deposition process for optical coatings and thin films required in display technologies. CFM sputtering uses two or more different metal targets to deposit multilayers comprising a wide range of dielectrics, metals and conductive oxides. Moreover, CFM provides a room temperature deposition process with high ion current density, low bias voltage and reactive oxidation in the entire volume around the rotating substrate drum carrier, thereby producing films over a large surface area at high deposition rate with excellent and reproducible optical properties. Machines based on the Closed Field are scaleable to meet a range of batch and in-line size requirements. Typically, thin film thickness control to < +/-1% is accomplished simply using time, although optical monitoring can be used for more demanding applications. Fine layer thickness control and deposition of graded index layers is also assisted with a specially designed rotating shutter mechanism. This paper presents data on optical properties for CFM deposited optical coatings, including anti-reflection, IR blocker and colour control and thermal control filters, graded coatings, narrowband filters as well as conductive transparent oxides such as indium tin oxide. Benefits of the CFM sputter process are described.

  17. Silicon oxynitride films deposited by reactive high power impulse magnetron sputtering using nitrous oxide as a single-source precursor

    SciTech Connect

    Hänninen, Tuomas Schmidt, Susann; Jensen, Jens; Hultman, Lars; Högberg, Hans

    2015-09-15

    Silicon oxynitride thin films were synthesized by reactive high power impulse magnetron sputtering of silicon in argon/nitrous oxide plasmas. Nitrous oxide was employed as a single-source precursor supplying oxygen and nitrogen for the film growth. The films were characterized by elastic recoil detection analysis, x-ray photoelectron spectroscopy, x-ray diffraction, x-ray reflectivity, scanning electron microscopy, and spectroscopic ellipsometry. Results show that the films are silicon rich, amorphous, and exhibit a random chemical bonding structure. The optical properties with the refractive index and the extinction coefficient correlate with the film elemental composition, showing decreasing values with increasing film oxygen and nitrogen content. The total percentage of oxygen and nitrogen in the films is controlled by adjusting the gas flow ratio in the deposition processes. Furthermore, it is shown that the film oxygen-to-nitrogen ratio can be tailored by the high power impulse magnetron sputtering-specific parameters pulse frequency and energy per pulse.

  18. Properties of RF sputtered cadmium telluride (CdTe) thin films: Influence of deposition pressure

    NASA Astrophysics Data System (ADS)

    Kulkarni, R. R.; Pawbake, A. S.; Waykar, R. G.; Rondiya, S. R.; Jadhavar, A. A.; Pandharkar, S. M.; Karpe, S. D.; Diwate, K. D.; Jadkar, S. R.

    2016-04-01

    Influence of deposition pressure on structural, morphology, electrical and optical properties of CdTe thin films deposited at low substrate temperature (100°C) by RF magnetron sputtering was investigated. The formation of CdTe was confirmed by low angle XRD and Raman spectroscopy. The low angle XRD analysis revealed that the CdTe films have zinc blende (cubic) structure with crystallites having preferred orientation in (111) direction. Raman spectra show the longitudinal optical (LO) phonon mode peak ˜ 165.4 cm-1 suggesting high quality CdTe film were obtained over the entire range of deposition pressure studied. Scanning electron microscopy analysis showed that films are smooth, homogenous, and crack-free with no evidence of voids. The EDAX data revealed that CdTe films deposited at low deposition pressure are high-quality stoichiometric. However, for all deposition pressures, films are rich in Cd relative to Te. The UV-Visible spectroscopy analysis show the blue shift in absorption edge with increasing the deposition pressure while the band gap show decreasing trend. The highest electrical conductivity was obtained for the film deposited at deposition pressure 1 Pa which indicates that the optimized deposition pressure for our sputtering unit is 1 Pa. Based on the experimental results, these CdTe films can be useful for the application in the flexible solar cells and other opto-electronic devices.

  19. Anisotropic Ti x Sn1- x O2 nanostructures prepared by magnetron sputter deposition

    NASA Astrophysics Data System (ADS)

    Chen, Shutian; Li, Zhengcao; Zhang, Zhengjun

    2011-12-01

    Regular arrays of Ti x Sn1- x O2 nanoflakes were fabricated through glancing angle sputter deposition onto self-assembled close-packed arrays of 200-nm-diameter polystyrene spheres. The morphology of nanostructures could be controlled by simply adjusting the sputtering power of the Ti target. The reflectance measurements showed that the melon seed-shaped nanoflakes exhibited optimal properties of antireflection in the entire visible and ultraviolet region. In addition, we determined their anisotropic reflectance in the direction parallel to the surface of nanoflakes and perpendicular to it, arising from the anisotropic morphology.

  20. The influence of varying sputter deposition conditions on the wet chemical etch rate of AlN thin films

    NASA Astrophysics Data System (ADS)

    Ababneh, A.; Kreher, H.; Seidel, H.; Schmid, U.

    2007-05-01

    Aluminium nitride (AlN) reactively sputter deposited from an aluminium target is an interesting compound material due to its CMOS compatible fabrication process and its piezoelectric properties. For the implementation in micromachined sensors and actuators an appropriate patterning technique is needed to form AlN-based elements. Therefore, the influence of different sputtering conditions on the vertical etch rate of AlN thin films with a typical thickness of 600 nm in phosphoric acid (H 3PO 4) is investigated. Under comparable conditions, such as temperature and concentration of the etchant, thin films with a high c-axis orientation are etched substantially slower compared to films with a low degree of orientation. When a high c-axis orientation is present detailed analyses of the etched topologies reveal surface characteristics with a low porosity and hence, low roughness values. From temperature dependant etching experiments an activation energy of 800 (+/- 30) meV is determined showing a reaction-controlled etching regime independent of sputter deposition conditions.

  1. The Effects of Sputtering Target Preparation and Deposition Temperature on ZnTe:Cu Film Properties

    SciTech Connect

    Faulkner, Brooke R.; Ohno, T. R.; Burst, James M.; Duenow, Joel N.; Perkins, Craig L.; To, Bobby; Gessert, Timothy A.

    2015-06-14

    A back contact containing a sputtered ZnTe:Cu interface layer can produce high-performing thin-film CdS/CdTe photovoltaic devices. We have found that varying the ZnTe:Cu sputtering target fabrication processes and deposition temperature can affect material properties of the ZnTe:Cu films and the resulting device performance. Two different target 'recipes' with various copper contents were used to study changes in the compositional, structural, optical, and electrical properties of ZnTe:Cu films. Substrate temperature during deposition was also varied to investigate the temperature dependence of the films. It was found that the target recipe, Cu concentration in the target, and deposition temperature affect the composition of the ZnTe:Cu films, which impacts their structural, optical, and electrical properties.

  2. Microstructural evaluation of NiTi-based films deposited by magnetron sputtering

    SciTech Connect

    Crăciunescu, Corneliu M. Mitelea, Ion Budău, Victor; Ercuţa, Aurel

    2014-11-24

    Shape memory alloy films belonging to the NiTi-based systems were deposited on heated and unheated substrates, by magnetron sputtering in a custom made system, and their structure and composition was analyzed using electron microscopy. Several substrates were used for the depositions: glass, Cu-Zn-Al, Cu-Al-Ni and Ti-NiCu shape memory alloy ribbons and kapton. The composition of the Ti-Ni-Cu films showed limited differences, compared to the one of the target and the microstructure for the DC magnetron sputtering revealed crystallized structure with features determined on peel off samples from a Si wafer. Both inter and transcrystalline fractures were observed and related to the interfacial stress developed on cooling from deposition temperature.

  3. Microstructural evaluation of NiTi-based films deposited by magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Crǎciunescu, Corneliu M.; Mitelea, Ion; Budǎu, Victor; ErcuÅ£a, Aurel

    2014-11-01

    Shape memory alloy films belonging to the NiTi-based systems were deposited on heated and unheated substrates, by magnetron sputtering in a custom made system, and their structure and composition was analyzed using electron microscopy. Several substrates were used for the depositions: glass, Cu-Zn-Al, Cu-Al-Ni and Ti-NiCu shape memory alloy ribbons and kapton. The composition of the Ti-Ni-Cu films showed limited differences, compared to the one of the target and the microstructure for the DC magnetron sputtering revealed crystallized structure with features determined on peel off samples from a Si wafer. Both inter and transcrystalline fractures were observed and related to the interfacial stress developed on cooling from deposition temperature.

  4. Formation of metal nanoparticles by short-distance sputter deposition in a reactive ion etching chamber

    SciTech Connect

    Nie Min; Meng, Dennis Desheng; Sun Kai

    2009-09-01

    A new method is reported to form metal nanoparticles by sputter deposition inside a reactive ion etching chamber with a very short target-substrate distance. The distribution and morphology of nanoparticles are found to be affected by the distance, the ion concentration, and the sputtering time. Densely distributed nanoparticles of various compositions were fabricated on the substrates that were kept at a distance of 130 mum or smaller from the target. When the distance was increased to 510 mum, island structures were formed, indicating the tendency to form continuous thin film with longer distance. The observed trend for nanoparticle formation is opposite to the previously reported mechanism for the formation of nanoparticles by sputtering. A new mechanism based on the seeding effect of the substrate is proposed to interpret the experimental results.

  5. Structural and optical properties of CdO thin films deposited by RF magnetron sputtering technique

    NASA Astrophysics Data System (ADS)

    Kumar, G. Anil; Reddy, M. V. Ramana; Reddy, Katta Narasimha

    2014-04-01

    Cadmium oxide (CdO) thin films were deposited on glass substrate by r.f. magnetron sputtering technique using a high purity (99.99%) Cd target of 2-inch diameter and 3 mm thickness in an Argon and oxygen mixed atmosphere with sputtering power of 50W and sputtering pressure of 2×10-2 mbar. The prepared films were characterized by X-ray diffraction (XRD), optical spectroscopy and scanning electron microscopy (SEM). The XRD analysis reveals that the films were polycrystalline with cubic structure. The visible range transmittance was found to be over 70%. The optical band gap increased from 2.7 eV to2.84 eV with decrease of film thickness.

  6. Deposition of ultrahard Ti-Si-N coatings by pulsed high-current reactive magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Oskomov, K. V.; Zakharov, A. N.; Rabotkin, S. V.; Solov'ev, A. A.

    2016-02-01

    We report on the results of investigation of properties of ultrahard Ti-Si-N coatings deposited by pulsed high-current magnetron reactive sputtering (discharge pulse voltage is 300-900 V, discharge pulse current is up to 200 A, pulse duration is 10-100 μs, and pulse repetition rate is 20-2000 Hz). It is shown that for a short sputtering pulse (25 μs) and a high discharge current (160 A), the films exhibit high hardness (66 GPa), wear resistance, better adhesion, and a lower sliding friction coefficient. The reason is an enhancement of ion bombardment of the growing coating due to higher plasma density in the substrate region (1013 cm-3) and a manifold increase in the degree of ionization of the plasma with increasing peak discharge current (mainly due to the material being sputtered).

  7. Bioactivity response of Ta1-xOx coatings deposited by reactive DC magnetron sputtering.

    PubMed

    Almeida Alves, C F; Cavaleiro, A; Carvalho, S

    2016-01-01

    The use of dental implants is sometimes accompanied by failure due to periimplantitis disease and subsequently poor esthetics when soft-hard tissue margin recedes. As a consequence, further research is needed for developing new bioactive surfaces able to enhance the osseous growth. Tantalum (Ta) is a promising material for dental implants since, comparing with titanium (Ti), it is bioactive and has an interesting chemistry which promotes the osseointegration. Another promising approach for implantology is the development of implants with oxidized surfaces since bone progenitor cells interact with the oxide layer forming a diffusion zone due to its ability to bind with calcium which promotes a stronger bond. In the present report Ta-based coatings were deposited by reactive DC magnetron sputtering onto Ti CP substrates in an Ar+O2 atmosphere. In order to assess the osteoconductive response of the studied materials, contact angle and in vitro tests of the samples immersed in Simulated Body Fluid (SBF) were performed. Structural results showed that oxide phases where achieved with larger amounts of oxygen (70 at.% O). More compact and smooth coatings were deposited by increasing the oxygen content. The as-deposited Ta coating presented the most hydrophobic character (100°); with increasing oxygen amount contact angles progressively diminished, down to the lowest measured value, 63°. The higher wettability is also accompanied by an increase on the surface energy. Bioactivity tests demonstrated that highest O-content coating, in good agreement with wettability and surface energy values, showed an increased affinity for apatite adhesion, with higher Ca/P ratio formation, when compared to the bare Ti substrates.

  8. Improvement in luminance efficiency of organic light emitting diodes by suppression of secondary electron bombardment of substrate during sputter deposition of top electrode films

    NASA Astrophysics Data System (ADS)

    Hamaguchi, Daichi; Kobayashi, Shin-ichi; Uchida, Takayuki; Sawada, Yutaka; Lei, Hao; Hoshi, Yoichi

    2016-10-01

    In this study, we investigated the degradation mechanisms of the luminance performance of organic light-emitting diodes (OLEDs) when their top electrode films were deposited by sputter deposition process. During the sputter deposition of the top electrode films, the suppression of the incidence of high-energy electrons on the substrate was attempted using various methods. As a result, we found that during electrode deposition, the incidence of the high-energy secondary electrons, which were emitted from the target surface, on the substrate was the main cause of the significant degradation of the luminance performance. It was also found that the application of a magnetic field by setting permanent magnets near the substrate holder and the insertion of a shield plate near the target cathode were effective in suppressing the incidence of secondary electrons on the substrate.

  9. Texture evolution in nanocrystalline iron films deposited using biased magnetron sputtering

    SciTech Connect

    Vetterick, G.; Taheri, M. L.; Baldwin, J. K.; Misra, A.

    2014-12-21

    Fe thin films were deposited on sodium chloride (NaCl) substrates using magnetron sputtering to investigate means of texture control in free standing metal films. The Fe thin films were studied using transmission electron microscopy equipped with automated crystallographic orientation microscopy. Using this technique, the microstructure of each film was characterized in order to elucidate the effects of altering deposition parameters. The natural tendency for Fe films grown on (100) NaCl is to form a randomly oriented nanocrystalline microstructure. By careful selection of substrate and deposition conditions, it is possible to drive the texture of the film toward a single (100) orientation while retaining the nanocrystalline microstructure.

  10. FAST TRACK COMMUNICATION: Deposition of amino-rich thin films by RF magnetron sputtering of nylon

    NASA Astrophysics Data System (ADS)

    Kylián, O.; Hanuš, J.; Choukourov, A.; Kousal, J.; Slavínská, D.; Biederman, H.

    2009-07-01

    RF magnetron sputtering of a nylon target in different gas mixtures was studied in order to evaluate the capability of this process to deposit amino-rich coatings needed in a wide range of biomedical applications. It has been demonstrated that both the deposition rate of the coatings and the surface density of primary amino groups are strongly linked with working gas mixture composition. From this point of view, a sufficiently high deposition rate as well as the highest amine efficiency reaching a NH2/C value of 18% was observed in the N2/H2 discharge, which leads to the surface exhibiting a high rate of protein adsorption.

  11. Electrical performance of low cost cathodes prepared by plasma sputtering deposition in microbial fuel cells.

    PubMed

    Lefebvre, Olivier; Tang, Zhe; Fung, Martin P H; Chua, Daniel H C; Chang, In Seop; Ng, How Y

    2012-01-15

    Microbial fuel cells (MFCs) could potentially be utilized for a variety of applications in the future from biosensors to wastewater treatment. However, the amount of costly platinum (Pt) used as a catalyst should be minimized via innovative deposition methods such as sputtering. In addition, alternative and low-cost catalysts, such as cobalt (Co), should be sought. In this study, ultra low Pt or Co cathodes (0.1 mg cm(-2)) were manufactured by plasma sputtering deposition and scanning electron micrographs revealed nano-clusters of metal catalyst in a porous structure favorable to the three-phase heterogeneous catalytic reaction. When operated in single-chamber air-cathode MFCs, sputtered-Co cathodes generated on average the same power as sputtered-Pt cathodes (0.27 mW cell(-1)) and only 27% less than conventional Pt-ink cathodes with a catalyst load 5 times higher (0.5 mg cm(-2)). Finally, microscopy and molecular analyses showed evidence of biocatalysis activity on metal-free cathodes.

  12. Structural and optical properties of ZnS thin films deposited by RF magnetron sputtering

    PubMed Central

    2012-01-01

    Zinc sulfide [ZnS] thin films were deposited on glass substrates using radio frequency magnetron sputtering. The substrate temperature was varied in the range of 100°C to 400°C. The structural and optical properties of ZnS thin films were characterized with X-ray diffraction [XRD], field emission scanning electron microscopy [FESEM], energy dispersive analysis of X-rays and UV-visible transmission spectra. The XRD analyses indicate that ZnS films have zinc blende structures with (111) preferential orientation, whereas the diffraction patterns sharpen with the increase in substrate temperatures. The FESEM data also reveal that the films have nano-size grains with a grain size of approximately 69 nm. The films grown at 350°C exhibit a relatively high transmittance of 80% in the visible region, with an energy band gap of 3.79 eV. These results show that ZnS films are suitable for use as the buffer layer of the Cu(In, Ga)Se2 solar cells. PMID:22221917

  13. Control of composition and crystallinity in hydroxyapatite films deposited by electron cyclotron resonance plasma sputtering

    NASA Astrophysics Data System (ADS)

    Akazawa, Housei; Ueno, Yuko

    2014-01-01

    Hydroxyapatite (HAp) films were deposited by electron cyclotron resonance plasma sputtering under a simultaneous flow of H2O vapor gas. Crystallization during sputter-deposition at elevated temperatures and solid-phase crystallization of amorphous films were compared in terms of film properties. When HAp films were deposited with Ar sputtering gas at temperatures above 460 °C, CaO byproducts precipitated with HAp crystallites. Using Xe instead of Ar resolved the compositional problem, yielding a single HAp phase. Preferentially c-axis-oriented HAp films were obtained at substrate temperatures between 460 and 500 °C and H2O pressures higher than 1×10-2 Pa. The absorption signal of the asymmetric stretching mode of the PO43- unit (ν3) in the Fourier-transform infrared absorption (FT-IR) spectra was the narrowest for films as-crystallized during deposition with Xe, but widest for solid-phase crystallized films. While the symmetric stretching mode of PO43- (ν1) is theoretically IR-inactive, this signal emerged in the FT-IR spectra of solid-phase crystallized films, but was absent for as-crystallized films, indicating superior crystallinity for the latter. The Raman scattering signal corresponding to ν1 PO43- sensitively reflected this crystallinity. The surface hardness of as-crystallized films evaluated by a pencil hardness test was higher than that of solid-phase crystallized films.

  14. Fabrication and physico-mechanical properties of thin magnetron sputter deposited silver-containing hydroxyapatite films

    NASA Astrophysics Data System (ADS)

    Ivanova, A. A.; Surmeneva, M. A.; Tyurin, A. I.; Pirozhkova, T. S.; Shuvarin, I. A.; Prymak, O.; Epple, M.; Chaikina, M. V.; Surmenev, R. A.

    2016-01-01

    As a measure of the prevention of implant associated infections, a number of strategies have been recently applied. Silver-containing materials possessing antibacterial activity as expected might have wide applications in orthopedics and dentistry. The present work focuses on the physico-chemical characterization of silver-containing hydroxyapatite (Ag-HA) coating obtained by radio frequency (RF) magnetron sputtering. Mechanochemically synthesized Ag-HA powder (Ca10-xAgx(PO4)6(OH)2-x, x = 1.5) was used as a precursor for sputtering target preparation. Morphology, composition, crystallinity, physico-mechanical features (Young's modulus and nanohardness) of the deposited Ag-HA coatings were investigated. The sputtering of the nanostructured multicomponent target at the applied process conditions allowed to deposit crystalline Ag-HA coating which was confirmed by XRD and FTIR data. The SEM results revealed the formation of the coating with the grain morphology and columnar cross-section structure. The EDX analysis confirmed that Ag-HA coating contained Ca, P, O and Ag with the Ca/P ratio of 1.6 ± 0.1. The evolution of the mechanical properties allowed to conclude that addition of silver to HA film caused increase of the coating nanohardness and elastic modulus compared with those of pure HA thin films deposited under the same deposition conditions.

  15. Solar Ion Sputter Deposition in the Lunar Regolith: Experimental Simulation Using Focused-Ion Beam Techniques

    NASA Technical Reports Server (NTRS)

    Christoffersen, R.; Rahman, Z.; Keller, L. P.

    2012-01-01

    As regions of the lunar regolith undergo space weathering, their component grains develop compositionally and microstructurally complex outer coatings or "rims" ranging in thickness from a few 10 s to a few 100's of nm. Rims on grains in the finest size fractions (e.g., <20 m) of mature lunar regoliths contain optically-active concentrations of nm size metallic Fe spherules, or "nanophase Fe(sup o)" that redden and attenuate optical reflectance spectral features important in lunar remote sensing. Understanding the mechanisms for rim formation is therefore a key part of connecting the drivers of mineralogical and chemical changes in the lunar regolith with how lunar terrains are observed to become space weathered from a remotely-sensed point of view. As interpreted based on analytical transmission electron microscope (TEM) studies, rims are produced from varying relative contributions from: 1) direct solar ion irradiation effects that amorphize or otherwise modify the outer surface of the original host grain, and 2) nanoscale, layer-like, deposition of extrinsic material processed from the surrounding soil. This extrinsic/deposited material is the dominant physical host for nanophase Fe(sup o) in the rims. An important lingering uncertainty is whether this deposited material condensed from regolith components locally vaporized in micrometeorite or larger impacts, or whether it formed as solar wind ions sputtered exposed soil and re-deposited the sputtered ions on less exposed areas. Deciding which of these mechanisms is dominant, or possibility exclusive, has been hampered because there is an insufficient library of chemical and microstructural "fingerprints" to distinguish deposits produced by the two processes. Experimental sputter deposition / characterization studies relevant to rim formation have particularly lagged since the early post-Apollo experiments of Hapke and others, especially with regard to application of TEM-based characterization techniques. Here

  16. Sputtering effect of low-energy ions on biological target: The analysis of sputtering product of urea and capsaicin

    NASA Astrophysics Data System (ADS)

    Zhang, Lili; Xu, Xue; Wu, Yuejin

    2013-08-01

    Sputtering is a process whereby atoms are ejected from a solid target material due to bombardment of the target by energetic particles. Recent years, ion implantation was successfully applied to biological research based on the fragments sputtering and form open paths in cell structure caused by ion sputtering. In this study, we focused on urea and chilli pepper pericarp samples implanted with N+ and Ar+ ions. To investigate the sputtering effect, we designed a collecting unit containing a disk sample and a glass pipe. The urea content and capsaicin content recovered from glass pipes were adopted to represent the sputtering product. The result of urea showed that the sputtering effect is positively correlated with the ion energy and dose, also affected by the ion type. The result of capsaicin was different from that of urea at 20 keV and possibly due to biological complex composition and structure. Therefore the sputtering yield depended on both the parameters of incident ions and the state of target materials. The sputtering yield of urea was also simulated by computational method achieved through the TRIM program. The trajectories of primary and recoiled atoms were calculated on the basis of the binary collision approximation using Monte Carlo method. The experimental results were much higher than the calculated results. The possible explanation is that in the physical model the target were assumed as a disordered lattice and independent atoms, which is much less complicated than that of the biological models.

  17. Research on titanium nitride thin films deposited by reactive magnetron sputtering for MEMS applications

    NASA Astrophysics Data System (ADS)

    Merie, Violeta; Pustan, Marius; Negrea, Gavril; Bîrleanu, Corina

    2015-12-01

    Titanium nitride can be used among other materials as diffusion barrier for MEMS (microelectromechanical systems) applications. The aim of this study is to elaborate and to characterize at nanoscale titanium nitride thin films. The thin films were deposited by reactive magnetron sputtering on silicon substrates using a 99.99% purity titanium target. Different deposition parameters were employed. The deposition temperature, deposition time, substrate bias voltage and the presence/absence of a titanium buffer layer are the parameters that were modified. The so-obtained films were then investigated by atomic force microscopy. A significant impact of the deposition parameters on the determined mechanical and tribological characteristics was highlighted. The results showed that the titanium nitride thin films deposited for 20 min at room temperature without the presence of a titanium buffer layer when a negative bias of -90 V was applied to the substrate is characterized by the best tribological and mechanical behavior.

  18. Resputtering effect during MgO buffer layer deposition by magnetron sputtering for superconducting coated conductors

    SciTech Connect

    Xiao, Shaozhu; Shi, Kai; Deng, Shutong; Han, Zhenghe; Feng, Feng Lu, Hongyuan; Qu, Timing; Zhu, Yuping; Huang, Rongxia

    2015-07-15

    In this study, MgO thin films were deposited by radio-frequency magnetron sputtering. The film thickness in the deposition area directly facing the target center obviously decreased compared with that in other areas. This reduction in thickness could be attributed to the resputtering effect resulting from bombardment by energetic particles mainly comprising oxygen atoms and negative oxygen ions. The influences of deposition position and sputtering pressure on the deposition rate were investigated. Resputtering altered the orientation of the MgO film from (111) to (001) when the film was deposited on a single crystal yttria-stabilized zirconia substrate. The density distribution of energetic particles was calculated on the basis of the measured thicknesses of the MgO films deposited at different positions. The divergence angle of the energetic particle flux was estimated to be approximately 15°. The energetic particle flux might be similar to the assisting ion flux in the ion beam assisted deposition process and could affect the orientation of the MgO film growth.

  19. Thermal Stability of Photosensitive Bragg Gratings in Sputter-Deposited Germanosilicate Glass

    SciTech Connect

    POTTER JR.,BARRETT G.; POTTER,KELLY SIMMONS; DUNBAR,TIMOTHY D.

    2000-07-24

    The thermal stability of photo-imprinted Bragg gratings formed in reactive-atmosphere, RF-magnetron sputtered germanosilicate thin films was evaluated in terms of point defect modifications observed during isochronal annealing. Optical and magnetic spectroscopes were utilized to evaluate structural relaxation in these sputtered glasses on both a local and medium-range size scale. Depending upon the substrate temperature used during deposition, significant structural rearrangement was found to occur with increasing post-deposition anneal temperature to 600 C. This resulted in changes in the photobleaching response of the material itself as the identity of optically active structural defects evolved. Based on a color center model for photosensitivity in these materials and measured changes in optical absorption with annealing, the thermal stability of a photo-imprinted Bragg grating was modeled. Good qualitative agreement with experiment was observed.

  20. Third-order nonlinear optical response of colloidal gold nanoparticles prepared by sputtering deposition

    NASA Astrophysics Data System (ADS)

    Castro, Hemerson P. S.; Wender, Heberton; Alencar, Márcio A. R. C.; Teixeira, Sergio R.; Dupont, Jairton; Hickmann, Jandir M.

    2013-11-01

    The nonlinear optical responses of gold nanoparticles dispersed in castor oil produced by sputtering deposition were investigated, using the thermally managed Z-scan technique. Particles with spherical shape and 2.6 nm of average diameter were obtained and characterized by transmission electron microscopy and small angle X-ray scattering. This colloid was highly stable, without the presence of chemical impurities, neither stabilizers. It was observed that this system presents a large refractive third-order nonlinear response and a negligible nonlinear absorption. Moreover, the evaluation of the all-optical switching figures of merit demonstrated that the colloidal nanoparticles prepared by sputtering deposition have a good potential for the development of ultrafast photonic devices.

  1. Modelling and analysis of sputter deposited ZrN coating by CFD

    NASA Astrophysics Data System (ADS)

    Kapopara, Jaydeep M.; Mengar, Akshaykumar R.; Chauhan, Kamlesh V.; Patel, Nicky P.; Rawal, Sushant K.

    2016-09-01

    The objective of the present work is to investigate the effect of various sputtering parameters such as velocity, mass flow rate on velocity profiles, pressure profiles, density profiles and concentration distribution of the process gases (argon and nitrogen) of zirconium nitride films deposited on glass and silica substrate by RF magnetron sputtering. A three dimensional Computational Fluid Dynamics (CFD) study has been carried out using Fluent-ANSYS commercial code to visualize the mixing behavior of process gases inside the deposition chamber. The results show that the location of gas inlet port has a greater influence on gas distribution inside the chamber where reactive gas will form coating. By having this information, one can able to modify the reactor geometry and gas flow openings along with its positions for better gas flow over the substrate which in turns gives an indirect indication of coating from the composition point of view.

  2. Third-order nonlinear optical response of colloidal gold nanoparticles prepared by sputtering deposition

    SciTech Connect

    Castro, Hemerson P. S.; Alencar, Márcio A. R. C.; Hickmann, Jandir M.; Wender, Heberton; Teixeira, Sergio R.; Dupont, Jairton

    2013-11-14

    The nonlinear optical responses of gold nanoparticles dispersed in castor oil produced by sputtering deposition were investigated, using the thermally managed Z-scan technique. Particles with spherical shape and 2.6 nm of average diameter were obtained and characterized by transmission electron microscopy and small angle X-ray scattering. This colloid was highly stable, without the presence of chemical impurities, neither stabilizers. It was observed that this system presents a large refractive third-order nonlinear response and a negligible nonlinear absorption. Moreover, the evaluation of the all-optical switching figures of merit demonstrated that the colloidal nanoparticles prepared by sputtering deposition have a good potential for the development of ultrafast photonic devices.

  3. Chemical bonding, optical constants, and electrical resistivity of sputter-deposited gallium oxide thin films

    SciTech Connect

    Ramana, C. V. Rubio, E. J.; Barraza, C. D.; Miranda Gallardo, A.; McPeak, Samantha; Kotru, Sushma; Grant, J. T.

    2014-01-28

    Gallium oxide (Ga{sub 2}O{sub 3}) thin films were made by sputter deposition employing a Ga{sub 2}O{sub 3} ceramic target for sputtering. The depositions were made over a wide range of substrate temperatures (T{sub s}), from 25 to 600 °C. The effect of T{sub s} on the chemical bonding, surface morphological characteristics, optical constants, and electrical properties of the grown films was evaluated using X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), spectroscopic ellipsometry (SE), and four-point probe measurements. XPS analyses indicate the binding energies (BE) of the Ga 2p doublet, i.e., the Ga 2p{sub 3/2} and Ga 2p{sub 1/2} peaks, are located at 1118.0 and 1145.0 eV, respectively, characterizing gallium in its highest chemical oxidation state (Ga{sup 3+}) in the grown films. The core level XPS spectra of O 1s indicate that the peak is centered at a BE ∼ 531 eV, which is also characteristic of Ga-O bonds in the Ga{sub 2}O{sub 3} phase. The granular morphology of the nanocrystalline Ga{sub 2}O{sub 3} films was evident from AFM measurements, which also indicate that the surface roughness of the films increases from 0.5 nm to 3.0 nm with increasing T{sub s}. The SE analyses indicate that the index of refraction (n) of Ga{sub 2}O{sub 3} films increases with increasing T{sub s} due to improved structural quality and packing density of the films. The n(λ) of all the Ga{sub 2}O{sub 3} films follows the Cauchy's dispersion relation. The room temperature electrical resistivity was high (∼200 Ω-cm) for amorphous Ga{sub 2}O{sub 3} films grown at T{sub s} = RT-300 °C and decreased to ∼1 Ω-cm for nanocrystalline Ga{sub 2}O{sub 3} films grown at T{sub s} ≥ 500–600 °C. A correlation between growth conditions, microstructure, optical constants, and electrical properties of Ga{sub 2}O{sub 3} films is derived.

  4. Submicrometer Hollow Bioglass Cones Deposited by Radio Frequency Magnetron Sputtering: Formation Mechanism, Properties, and Prospective Biomedical Applications.

    PubMed

    Popa, A C; Stan, G E; Besleaga, C; Ion, L; Maraloiu, V A; Tulyaganov, D U; Ferreira, J M F

    2016-02-01

    This work reports on the unprecedented magnetron sputtering deposition of submicrometric hollow cones of bioactive glass at low temperature in the absence of any template or catalyst. The influence of sputtering conditions on the formation and development of bioglass cones was studied. It was shown that larger populations of well-developed cones could be achieved by increasing the argon sputtering pressure. A mechanism describing the growth of bioglass hollow cones is presented, offering the links for process control and reproducibility of the cone features. The composition, structure, and morphology of the as-synthesized hollow cones were investigated by energy dispersive spectroscopy (EDS), Fourier transform infrared spectroscopy (FTIR), grazing incidence geometry X-ray diffraction (GIXRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM)-selected area electron diffraction (SAED). The in vitro biological performance, assessed by degradation tests (ISO 10993-14) and cytocompatibility assays (ISO 10993-5) in endothelial cell cultures, was excellent. This allied with resorbability and the unique morphological features make the submicrometer hollow cones interesting candidate material devices for focal transitory permeabilization of the blood-brain barrier in the treatment of carcinoma and neurodegenerative disorders.

  5. Sputtering temperature dependent growth kinetics and CO2 sensing properties of ZnO deposited over porous silicon

    NASA Astrophysics Data System (ADS)

    Martínez, L.; Holguín-Momaca, J. T.; Karthik, T. V. K.; Olive-Méndez, S. F.; Campos-Alvarez, J.; Agarwal, V.

    2016-10-01

    We report the growth kinetics and sensing properties of ZnO deposited over macro-porous silicon substrates at 400 and 600 °C using magnetron-sputtering technique. Scanning electron microscopy was employed to investigate the morphology and the particle size of the ZnO nanoparticles (NPs). The grain growth kinetics was analyzed with the help of the phenomenological equation rn =k0 texp(- Q / RT) finding an activation energy Q = 13.92 kJ/mol. The grain growth exponent (n = 2.85) for the growth at 400 °C corresponds to an Ostwald ripening process, while the growth at 600 °C is described by n = 1.66 implying a higher growth rate attributed to a high surface diffusion of add-atoms contributing to the formation of larger grains. The sensing response of the complete structure has been tested at different temperatures. The highest sensitivity, S ∼10, was obtained at a sensor temperature of 300 °C on the ZnO NPs sputtered on to the porous silicon substrate at 400 °C. The high response is attributed to the infiltration, uniform and homogenous distribution of the ZnO NPs into the pores. ZnO NPs sputtered at 400 °C are found to be smaller than those grown at 600 °C, exhibiting a larger surface-area/volume ratio and hence increasing the oxygen adsorption resulting in an enhanced CO2 sensitivity.

  6. Optimization of sputter deposition parameters for magnetostrictive Fe62Co19Ga19/Si(100) films

    NASA Astrophysics Data System (ADS)

    Jen, S. U.; Tsai, T. L.

    2012-04-01

    A good magnetostrictive material should have large saturation magnetostriction (λS) and low saturation (or anisotropy) field (HS), such that its magnetostriction susceptibility (SH) can be as large as possible. In this study, we have made Fe62Co19Ga19/Si(100) nano-crystalline films by using the dc magnetron sputtering technique under various deposition conditions: Ar working gas pressure (pAr) was varied from 1 to 15 mTorr; sputtering power (Pw) was from 10 to 120 W; deposition temperature (TS) was from room temperature (RT) to 300 °C, The film thickness (tf) was fixed at 175 nm. Each magnetic domain looked like a long leaf, with a long-axis of about 12-15 μm and a short-axis of about 1.5 μm. The optimal magnetic and electrical properties were found from the Fe62Co19Ga19 film made with the sputter deposition parameters of pAr = 5 mTorr, Pw = 80 W, and TS = RT. Those optimal properties include λS = 80 ppm, HS = 19.8 Oe, SH = 6.1 ppm/Oe, and electrical resistivity ρ = 57.0 μΩ cm. Note that SH for the conventional magnetostrictive Terfenol-D film is, in general, equal to 1.5 ppm/Oe only.

  7. HF treatment effect for carbon deposition on silicon (111) by DC sputtering technique

    SciTech Connect

    Aji, A. S. Darma, Y.

    2014-03-24

    Surface modifications of Si (111) substrate by HF solution for thin film carbon deposition have been systematically studied. Thin film carbon on Si (111) has been deposited using DC Unbalanced Magnetron Sputtering with carbon pellet doped by 5% Fe as the target. EDAX characterization confirmed that the carbon fraction on Si substrate much higher by dipping a clean Si substrate by HF solution before sputtering process in comparison with carbon fraction on Si substrate just after conventional RCA. Moreover, SEM and AFM images show the uniform thin film carbon on Si with HF treatment, in contrast to the Si without HF solution treatment. These experimental results suggest that HF treatment of Si surface provide Si-H bonds on top Si surface that useful to enhance the carbon deposition during sputtering process. Furthermore, we investigate the thermal stability of thin film carbon on Si by thermal annealing process up to 900 °C. Atomic arrangements during annealing process were characterized by Raman spectroscopy. Raman spectra indicate that thin film carbon on Si is remaining unchanged until 600 °C and carbon atoms start to diffuse toward Si substrate after annealing at 900 °C.

  8. Binding energy effects in cascade evolution and sputtering

    SciTech Connect

    Robinson, M.T.

    1995-06-01

    The MARLOWE model was extended to include a binding energy dependent on the local crystalline order, so that atoms are bound less strongly to their lattice sites near surfaces or associated damage. Sputtering and cascade evolution were studied on the examples of self-ion irradiations of Cu and Au monocrystals. In cascades, the mean binding energy is reduced {approximately}8% in Cu with little dependence on the initial recoil energy; in Au, it is reduced {approximately}9% at 1 keV and {approximately}15% at 100 keV. In sputtering, the mean binding energy is reduced {approximately}8% in Cu and {approximately}15% in Au with little energy dependence; the yields are increased about half as much. Most sites from which sputtered atoms originate are isolated in both metals. Small clusters of such sites occur in Cu, but there are some large clusters in Au, especially in [111] targets. There are always more large clusters with damage-dependent binding than with a constant binding energy, but only a few clusters are compact enough to be regarded as pits.

  9. Sputtered lead scandium tantalate thin films: crystallization behaviour during post-deposition annealing

    NASA Astrophysics Data System (ADS)

    Huang, Z.; Donohue, P. P.; Todd, M. A.; Jones, J. C.; Whatmore, R. W.

    2001-11-01

    Lead scandium titanate (PST) thin films were deposited by RF dual magnetron sputtering and then annealed either by vacuum furnace or combined rapid thermal annealing (RTA) and furnace anneal. The film structure was investigated by x-ray diffraction, scanning electron microscopy and transmission electron microscopy (TEM) and energy dispersive x-ray spectroscopy techniques. Lead loss was more severe using furnace annealing than the combined RTA and furnace anneal. The annealed films were characterized by the presence of voids and exhibited relaxor ferroelectric characteristics. PST perovskite crystal grains were found to co-exist with pyrochlore matrix in the furnace-only annealed films, whilst in RTA annealed films no apparent pyrochlore morphology was observed in the TEM image. Lead was found to diffuse through the bottom electrode Pt layer during the annealing. Films treated by combining RTA and furnace annealing have shown pyroelectric coefficients under field of up to 500 µC m-2 K-1, a dielectric loss of below 0.007 and a merit figure for thermal detection of 2.5×10-5 Pa-1/2.

  10. Synthesis of ZnO:As Films Using Off-Axis Sputtering Deposition

    NASA Technical Reports Server (NTRS)

    Zhu, Shen; Su, Ching-Hua; Lehoczky, S. L.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    As a novel oxide semiconductor material, ZnO is interesting for use in many applications. For fabricating electronic devices, it is important to have n- and p- type ZnO materials. Arsenic has been proven to be one of the p-type dopants for ZnO materials. However, information in studying the ZnAsO ternary compound films has been scarce. In order to investigate the morphology, structure and electrical properties of ZnAsO ternary compounds, ZnO:As films have been synthesized using off-axis sputtering deposition on various substrates including (100) Si and (0001) sapphire crystals. Films are grown under various growth conditions. ZnO:As targets with the atomic weight ratios of arsenic to zinc from 0.01 to 0.10 are used for film synthesis. The growth temperatures and pressures range from 350 to 550C and 5 to 150 mTorr, respectively. Argon to oxygen gas ratio for film growth is varied to examine the film quality as well. Film surface morphology, crystal structure, and compositions, are characterized using atomic force microscopy, x-ray diffraction, and energy dispersive spectroscopy, respectively. The compositions of target material and ZnO:As films grown under various conditions are then assessed. The electrical properties were also measured. The detail of these measurements will be discussed in the presentation.

  11. Poole-Frenkel effect in sputter-deposited CuAlO(2+x) nanocrystals.

    PubMed

    Banerjee, Arghya Narayan; Joo, Sang Woo

    2013-04-26

    Field-assisted thermionic emission within a sputter-deposited, nanocrystalline thin film of CuAlO2.06 is observed for the first time, and explained in terms of the Poole-Frenkel model. The presence of adsorbed oxygen ions as trap-states at the grain boundary regions of the nanostructured thin film is considered to manifest this phenomenon. Under an applied field, the barrier of the trap potential is lowered and thermal emission of charge carriers takes place at different sample temperatures to induce nonlinearity in the current (I)-voltage (V) characteristics of the nanomaterial. Fitting of the Poole-Frenkel model with the I-V data shows that the nonlinearity is effective above 50 V under the operating conditions. Calculations of the energy of the trap level, acceptor level and Fermi level reveal the existence of deep level trap-states and a shallow acceptor level with acceptor concentration considerably higher than the trap-states. Hall measurements confirm the p-type semiconductivity of the film, with a hole concentration around 10(18) cm(-3). Thermopower measurements give a room-temperature Seebeck coefficient around 130 μV K(-1). This temperature-dependent conductivity enhancement within CuAlO2 nanomaterial may find interesting applications in transparent electronics and high-voltage applications for power supply networks. PMID:23535666

  12. Poole-Frenkel effect in sputter-deposited CuAlO2+x nanocrystals

    NASA Astrophysics Data System (ADS)

    Narayan Banerjee, Arghya; Joo, Sang Woo

    2013-04-01

    Field-assisted thermionic emission within a sputter-deposited, nanocrystalline thin film of CuAlO2.06 is observed for the first time, and explained in terms of the Poole-Frenkel model. The presence of adsorbed oxygen ions as trap-states at the grain boundary regions of the nanostructured thin film is considered to manifest this phenomenon. Under an applied field, the barrier of the trap potential is lowered and thermal emission of charge carriers takes place at different sample temperatures to induce nonlinearity in the current (I)-voltage (V) characteristics of the nanomaterial. Fitting of the Poole-Frenkel model with the I-V data shows that the nonlinearity is effective above 50 V under the operating conditions. Calculations of the energy of the trap level, acceptor level and Fermi level reveal the existence of deep level trap-states and a shallow acceptor level with acceptor concentration considerably higher than the trap-states. Hall measurements confirm the p-type semiconductivity of the film, with a hole concentration around 1018 cm-3. Thermopower measurements give a room-temperature Seebeck coefficient around 130 μV K-1. This temperature-dependent conductivity enhancement within CuAlO2 nanomaterial may find interesting applications in transparent electronics and high-voltage applications for power supply networks.

  13. High power pulsed magnetron sputtering: A method to increase deposition rate

    SciTech Connect

    Raman, Priya McLain, Jake; Ruzic, David N; Shchelkanov, Ivan A.

    2015-05-15

    High power pulsed magnetron sputtering (HPPMS) is a state-of-the-art physical vapor deposition technique with several industrial applications. One of the main disadvantages of this process is its low deposition rate. In this work, the authors report a new magnetic field configuration, which produces deposition rates twice that of conventional magnetron's dipole magnetic field configuration. Three different magnet pack configurations are discussed in this paper, and an optimized magnet pack configuration for HPPMS that leads to a higher deposition rate and nearly full-face target erosion is presented. The discussed magnetic field produced by a specially designed magnet assembly is of the same size as the conventional magnet assembly and requires no external fields. Comparison of deposition rates with different power supplies and the electron trapping efficiency in complex magnetic field arrangements are discussed.

  14. Low loss Nb2O5 films deposited by novel remote plasma sputtering

    NASA Astrophysics Data System (ADS)

    Liu, Zhe; Bu, Yi-kun

    2013-03-01

    We report the deposition of Nb2O5 films on unheated BK-7 glass substrates using remote plasma sputtering system. The remote plasma geometry allows pseudo separation of plasma and target bias parameters, which offers complete deposition rate control. Using appropriate oxygen flow rates, high-density and low-loss Nb2O5 films are deposited with rates up to 0.49 nm/s. Lower deposition rates (˜0.026 nm/s) can also be obtained by working at low target current and voltage and at low pressure. Nb2O5 films deposited at different rates have the refractive index of about 2.3 and the extinction coefficient as low as 6.9×10-5.

  15. Deuterium and helium release and microstructure of tungsten deposition layers formed by RF plasma sputtering

    SciTech Connect

    Katayama, K.; Imaoka, K.; Tokitani, M.; Miyamoto, M.; Nishikawa, M.; Fukada, S.; Yoshida, N.

    2008-07-15

    It is important to evaluate tritium behavior in tungsten deposition layers considering a long-term plasma operation. In this study, tungsten deposition layers were formed by deuterium or helium RF plasma sputtering. The release behavior of deuterium or helium from the layers were observed by a thermal desorption method. When a tungsten deposition layer does not contain oxygen, the retained deuterium is mainly released as D{sub 2}. When oxygen exists in the layer, the majority of deuterium is released as water vapor. Tungsten deposition layers have an amorphous structure and consist offline grain with size of 2-3 nm. Numerous bubbles are observed in the layers. A formation of tungsten deposition layer in a fusion reactor may make tritium control more difficult. (authors)

  16. Biaxial texture development in aluminum nitride layers during off-axis sputter deposition

    SciTech Connect

    Deng Ruopeng; Muralt, Paul; Gall, Daniel

    2012-09-15

    Polycrystalline aluminum nitride (AlN) layers were deposited by pulsed-dc reactive magnetron sputtering from a variable deposition angle {alpha} = 0 Degree-Sign -84 Degree-Sign in 5 mTorr pure N{sub 2} at room temperature. X-ray diffraction pole figure analyses show that layers deposited from a normal angle ({alpha} = 0 Degree-Sign ) exhibit fiber texture, with a random in-plane grain orientation and the c-axis tilted by 42 Degree-Sign {+-} 2 Degree-Sign off the substrate normal, yielding wurtzite AlN grains with the {l_brace}1012{r_brace} plane approximately parallel ({+-}2 Degree-Sign ) to the substrate surface. However, as {alpha} is increased to 45 Degree-Sign , two preferred in-plane grain orientations emerge, with populations I and II having the c-axis tilted toward and away from the deposition flux, by 53 Degree-Sign {+-} 2 Degree-Sign and 47 Degree-Sign {+-} 1 Degree-Sign off the substrate normal, respectively. Increasing {alpha} further to 65 Degree-Sign and 84 Degree-Sign , results in the development of a single population II with a 43 Degree-Sign {+-} 1 Degree-Sign tilt. This developing biaxial texture is attributed to a competitive growth mode under conditions where the adatom mobility is sufficient to cause intergrain mass transport, but insufficient for the thermodynamically favored low energy {l_brace}0001{r_brace} planes to align parallel to the layer surface. Consequently, AlN nuclei are initially randomly oriented and form a kinetically determined crystal habit exposing {l_brace}0001{r_brace} and {l_brace}1120{r_brace} facets. The expected direction of its highest growth rate is 49 Degree-Sign {+-} 5 Degree-Sign tilted relative to the c-axis, in good agreement with the 42 Degree-Sign -53 Degree-Sign measured tilt. The in-plane preferred orientation for {alpha} > 0 Degree-Sign is well explained by the orientation dependence in the cross section of the asymmetric pyramidal nuclei to capture directional deposition flux. The observed tilt is ideal for

  17. Energy distributions of sputtered copper neutrals and ions

    NASA Technical Reports Server (NTRS)

    Lundquist, T. R.

    1978-01-01

    Direct quantitative analysis of surfaces by secondary ion mass spectrometry will depend on an understanding of the yield ratio of ions to neutrals. This ratio as a function of the energy of the sputtered particles has been obtained for a clean polycrystalline copper surface sputtered by 1000-3000 eV Ar(+). The energy distributions of both neutral and ionized copper were measured with a retarding potential analyzer using potential modulation differentiation and signal averaging. The maximum for both distributions is identical and occurs near 2.5 eV. The energy distributions of neutrals is more sharply peaked than that of the ions, presumably as a consequence of more efficient nutralization of slow escaping ions by the mobile electrons of copper. The ion-neutral ratio is compared with results from various ionization models.

  18. Synthesis of gold nanoparticles in a biocompatible fluid from sputtering deposition onto castor oil.

    PubMed

    Wender, Heberton; de Oliveira, Luciane F; Feil, Adriano F; Lissner, Elíseo; Migowski, Pedro; Meneghetti, Mario R; Teixeira, Sérgio R; Dupont, Jairton

    2010-10-01

    The sputtering of Au targets onto castor oil generates stable spherical gold nanoparticles (AuNPs) of 2.4 to 3.8 nm. The AuNP size increases with the discharge voltage and the mechanism of nucleation and growth are related to the energy of the atoms/clusters ejected from the target. PMID:20737077

  19. Deposition of Hydrogenated Microcrystalline Films of CdTe by Chemical Sputtering in Hydrogen

    NASA Astrophysics Data System (ADS)

    Saito, Koji; Nishibayashi, Yoshiki; Imura, Takeshi; Osaka, Yukio

    1988-07-01

    Films of CdTe are deposited by chemical sputtering of a CdTe target in hydrogen gas. X-ray diffraction patterns show that the films are composed of microcrystals of cubic CdTe with a grain size of 15˜30 nm. The films contain a trace amount of hydrogen in the form of the Cd-H (and presumably Te-H2) bonds. This hydrogen is evolved during the thermal treatment of the film above 100°C, as the grain size of the microcrystal grows. The deposition rate is also reduced when the substrate temperature increases up to 100°C or more.

  20. Fabrication of nanobaskets by sputter deposition on porous substrates and uses thereof

    NASA Technical Reports Server (NTRS)

    Johnson, Paige Lea (Inventor); Teeters, Dale (Inventor)

    2010-01-01

    A method of producing a nanobasket and the applications or uses thereof. The method includes the steps of providing a substrate with at least one (1) pore having diameters of about one (1) nanometer to about ten (10) micrometers. Material is deposited by sputter-coating techniques along continuous edges of the pores to form a capped or partially capped nanotube or microtube structure, termed a nanobasket. Either a single material may be used to form nanobaskets over the pores or, alternately, a layered structure may be created wherein an initial material is deposited followed by one or more other materials to form nanobaskets over the pores.

  1. CrAIN film deposited by magnetron sputtering for the inkjet printer head.

    PubMed

    Moon, Seon-Cheol; Kim, Sang Ho

    2014-12-01

    CrAIN film has advantages of stability and multifunctionality over the commercial TaN0.8. This study investigated the characteristics of CrAIN film deposited by radio frequency magnetron sputtering as a function of Al content after deposition heat treatment. With a 600 degrees C heat treatment and 20% Al content, the low temperature coefficient of resistance (-2670.6 ppm/k), high oxidation resistance, and thermal conductivity were acquired. This was found due to the high-density columnar NaCI structure with 20% Al and the recrystallization utilized by heat treatment.

  2. Internal Energies of Ion-Sputtered Neutral Tryptophan and Thymine Molecules Determined by Vacuum Ultraviolet Photoionization

    SciTech Connect

    Zhou, Jia; Takahashi, Lynelle; Wilson, Kevin R.; Leone, Stephen R.; Ahmed, Musahid

    2010-03-11

    Vacuum ultraviolet photoionization coupled to secondary neutral mass spectrometry (VUV-SNMS) of deposited tryptophan and thymine films are performed at the Chemical Dynamics Beamline. The resulting mass spectra show that while the intensity of the VUV-SNMS signal is lower than the corresponding secondary ion mass spectroscopy (SIMS) signal, the mass spectra are significantly simplified in VUV-SNMS. A detailed examination of tryptophan and thymine neutral molecules sputtered by 25 keV Bi3 + indicates that the ion-sputtered parent molecules have ~;;2.5 eV of internal energy. While this internal energy shifts the appearance energy of the photofragment ions for both tryptophan and thymine, it does not change the characteristic photoionizaton efficiency (PIE) curves of thymine versus photon energy. Further analysis of the mass spectral signals indicate that approximately 80 neutral thymine molecules and 400 tryptophan molecules are sputtered per incident Bi3 + ion. The simplified mass spectra and significant characteristic ion contributions to the VUV-SNMS spectra indicate the potential power of the technique for organic molecule surface analysis.

  3. Chemical and physical sputtering effects on the surface morphology of carbon films grown by plasma chemical vapor deposition

    SciTech Connect

    Vazquez, Luis

    2009-08-01

    We have studied the influence of chemical and physical sputtering on the surface morphology of hydrogenated carbon films deposited on silicon substrates by bias-enhanced electron cyclotron resonance chemical vapor deposition. Atomic force microscopy based power spectrum density (PSD) and roughness analysis have been used to investigate the film morphology. This study has been possible due to the appropriate choice of the experimental variables, in particular, gas mixture, resulting in either nitrogen-free (a-C:H) or nitrogenated carbon (a-CN:H) films, and substrate bias (V{sub b}). Under these conditions, chemical sputtering is present for a-CN:H deposition but it is negligible for a-C:H film growth, while physical sputtering processes appear for both systems for V{sub b}<=-85 V. When physical sputtering does not operate, the film growth with simultaneous chemical sputtering leads to a characteristic a-CN:H granular surface morphology. Furthermore, PSD analysis reveals that a spatial correlation of the a-CN:H film surface roughness, up to distances approx300 nm, becomes a fingerprint of the coexistence of growth and chemical erosion processes on the film morphology. However, once physical sputtering takes place, the influence of chemical sputtering by reactive nitrogen species on the final surface morphology becomes negligible and both a-CN:H and a-C:H film morphologies are ultrasmooth.

  4. Properties of AlN films deposited by reactive ion-plasma sputtering

    SciTech Connect

    Bert, N. A.; Bondarev, A. D.; Zolotarev, V. V.; Kirilenko, D. A.; Lubyanskiy, Ya. V.; Lyutetskiy, A. V.; Slipchenko, S. O.; Petrunov, A. N.; Pikhtin, N. A. Ayusheva, K. R.; Arsentyev, I. N.; Tarasov, I. S.

    2015-10-15

    The properties of SiO{sub 2}, Al{sub 2}O{sub 3}, and AlN dielectric coatings deposited by reactive ion-plasma sputtering are studied. The refractive indices of the dielectric coatings are determined by optical ellipsometry. It is shown that aluminum nitride is the optimal material for achieving maximum illumination of the output mirror of a semiconductor laser. A crystalline phase with a hexagonal atomic lattice and oxygen content of up to 10 at % is found by transmission electron microscopy in the aluminum-nitride films. It is found that a decrease in the concentration of residual oxygen in the chamber of the reactive ion-plasma sputtering installation makes it possible to eliminate the appearance of vertical pores in the bulk of the aluminum-nitride film.

  5. Hall mobility of cuprous oxide thin films deposited by reactive direct-current magnetron sputtering

    SciTech Connect

    Lee, Yun Seog; Winkler, Mark T.; Siah, Sin Cheng; Brandt, Riley; Buonassisi, Tonio

    2011-05-09

    Cuprous oxide (Cu{sub 2}O) is a promising earth-abundant semiconductor for photovoltaic applications. We report Hall mobilities of polycrystalline Cu{sub 2}O thin films deposited by reactive dc magnetron sputtering. High substrate growth temperature enhances film grain structure and Hall mobility. Temperature-dependent Hall mobilities measured on these films are comparable to monocrystalline Cu{sub 2}O at temperatures above 250 K, reaching 62 cm{sup 2}/V s at room temperature. At lower temperatures, the Hall mobility appears limited by carrier scattering from ionized centers. These observations indicate that sputtered Cu{sub 2}O films at high substrate growth temperature may be suitable for thin-film photovoltaic applications.

  6. Intrinsic anomalous surface roughening of TiN films deposited by reactive sputtering

    SciTech Connect

    Auger, M. A.; Vazquez, L.; Sanchez, O.; Cuerno, R.; Castro, M.; Jergel, M.

    2006-01-15

    We study surface kinetic roughening of TiN films grown on Si(100) substrates by dc reactive sputtering. The surface morphology of films deposited for different growth times under the same experimental conditions were analyzed by atomic force microscopy. The TiN films exhibit intrinsic anomalous scaling and multiscaling. The film kinetic roughening is characterized by a set of local exponent values {alpha}{sub loc}=1.0 and {beta}{sub loc}=0.39, and global exponent values {alpha}=1.7 and {beta}=0.67, with a coarsening exponent of 1/z=0.39. These properties are correlated to the local height-difference distribution function obeying power-law statistics. We associate this intrinsic anomalous scaling with the instability due to nonlocal shadowing effects that take place during thin-film growth by sputtering.

  7. Microscopic structure and electrical transport property of sputter-deposited amorphous indium-gallium-zinc oxide semiconductor films

    NASA Astrophysics Data System (ADS)

    Yabuta, H.; Kaji, N.; Shimada, M.; Aiba, T.; Takada, K.; Omura, H.; Mukaide, T.; Hirosawa, I.; Koganezawa, T.; Kumomi, H.

    2014-06-01

    We report on microscopic structures and electrical and optical properties of sputter-deposited amorphous indium-gallium-zinc oxide (a-IGZO) films. From electron microscopy observations and an x-ray small angle scattering analysis, it has been confirmed that the sputtered a-IGZO films consist of a columnar structure. However, krypton gas adsorption measurement revealed that boundaries of the columnar grains are not open-pores. The conductivity of the sputter-deposited a-IGZO films shows a change as large as seven orders of magnitude depending on post-annealing atmosphere; it is increased by N2-annealing and decreased by O2-annealing reversibly, at a temperature as low as 300°C. This large variation in conductivity is attributed to thermionic emission of carrier electrons through potential barriers at the grain boundaries, because temperature dependences of the carrier density and the Hall mobility exhibit thermal activation behaviours. The optical band-gap energy of the a-IGZO films changes between before and after annealing, but is independent of the annealing atmosphere, in contrast to the noticeable dependence of conductivity described above. For exploring other possibilities of a-IGZO, we formed multilayer films with an artificial periodic lattice structure consisting of amorphous InO, GaO, and ZnO layers, as an imitation of the layer-structured InGaZnO4 homologous phase. The hall mobility of the multilayer films was almost constant for thicknesses of the constituent layer between 1 and 6 Å, suggesting rather small contribution of lateral two-dimensional conduction It increased with increasing the thickness in the range from 6 to 15 Å, perhaps owing to an enhancement of two-dimensional conduction in InO layers.

  8. Design of a Sputtering Cathode for Binary Alloys Deposition in Plasma Source Ion Implantation

    NASA Astrophysics Data System (ADS)

    Malik, Shamim; Breun, Robert; Fetherston, Paul; Sridharan, Kumar; Conrad, John

    1996-10-01

    In Plasma Source Ion Implantation (PSII)1,2 a target is immersed in a plasma and pulse biased to a high negative voltage ( 50kV). Ions are injected into the near surface of target material under the influence of the electric field. In order to produce Ion Assisted Deposition (IAD) films in PSII, materials of interest are sputtered using DC or RF bias and up to 20 kV negative bias pulses are applied while depositing films. We have performed deposition of titanium aluminum nitride (TiAlN) films using a perforated aluminum cathode stacked on a planar titanium cathode. Design characteristics of the sputtering cathodes as a function of the ratio of material area, plasma parameters, and stoichiometric deposition rates have been evaluated. Analysis of these results will be presented. * This work was supported by NSF. No DMI-9528746, US-Army No. DAALH 03-94-G-0283 1 J. R. Conrad, et al. J. Appl. Phys.62, 4951 (1987). 2 M.M. Shamim et al., J. Vac. Sci. Technol. 12, 843 (1994).

  9. Phase, grain structure, stress, and resistivity of sputter-deposited tungsten films

    SciTech Connect

    Choi, Dooho; Wang, Bincheng; Chung, Suk; Liu Xuan; Darbal, Amith; Wise, Adam; Nuhfer, Noel T.; Barmak, Katayun; Warren, Andrew P.; Coffey, Kevin R.; Toney, Michael F.

    2011-09-15

    Sputter-deposited W films with nominal thicknesses between 5 and 180 nm were prepared by varying the base pressure prior to film deposition and by including or not including sputtered SiO{sub 2} encapsulation layers. X-ray and electron diffraction studies showed that single phase, polycrystalline {alpha}-W could be achieved in as-deposited films as thin as 5 nm. The stress state in the as-deposited films was found to be inhomogeneous. Annealing resulted in stress relaxation and reduction of resistivity for all films, except the thinnest, unencapsulated film, which agglomerated. In-plane film grain sizes measured for a subset of the annealed films with thicknesses between 5 and 180 nm surprisingly showed a near constant value (101-116 nm), independent of film thickness. Thick-film ({>=}120 nm) resistivity values as low as 8.6 {mu}{Omega} cm at 301 K were obtained after annealing at 850 deg. C for 2 h. Film resistivities were found to increase with decreasing film thicknesses below 120 nm, even for films which are fully A2 {alpha}-W with no metastable, A15 {beta}-W evident.

  10. Surface treatment effect on Si (111) substrate for carbon deposition using DC unbalanced magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Aji, A. S.; Sahdan, M. F.; Hendra, I. B.; Dinari, P.; Darma, Y.

    2015-04-01

    In this work, we studied the effect of HF treatment in silicon (111) substrate surface for depositing thin layer carbon. We performed the deposition of carbon by using DC Unbalanced Magnetron Sputtering with carbon pallet (5% Fe) as target. From SEM characterization results it can be concluded that the carbon layer on HF treated substrate is more uniform than on substrate without treated. Carbon deposition rate is higher as confirmed by AFM results if the silicon substrate is treated by HF solution. EDAX characterization results tell that silicon (111) substrate with HF treatment have more carbon fraction than substrate without treatment. These results confirmed that HF treatment on silicon Si (111) substrates could enhance the carbon deposition by using DC sputtering. Afterward, the carbon atomic arrangement on silicon (111) surface is studied by performing thermal annealing process to 900 °C. From Raman spectroscopy results, thin film carbon is not changing until 600 °C thermal budged. But, when temperature increase to 900 °C, thin film carbon is starting to diffuse to silicon (111) substrates.

  11. Surface treatment effect on Si (111) substrate for carbon deposition using DC unbalanced magnetron sputtering

    SciTech Connect

    Aji, A. S. Sahdan, M. F.; Hendra, I. B.; Dinari, P.; Darma, Y.

    2015-04-16

    In this work, we studied the effect of HF treatment in silicon (111) substrate surface for depositing thin layer carbon. We performed the deposition of carbon by using DC Unbalanced Magnetron Sputtering with carbon pallet (5% Fe) as target. From SEM characterization results it can be concluded that the carbon layer on HF treated substrate is more uniform than on substrate without treated. Carbon deposition rate is higher as confirmed by AFM results if the silicon substrate is treated by HF solution. EDAX characterization results tell that silicon (111) substrate with HF treatment have more carbon fraction than substrate without treatment. These results confirmed that HF treatment on silicon Si (111) substrates could enhance the carbon deposition by using DC sputtering. Afterward, the carbon atomic arrangement on silicon (111) surface is studied by performing thermal annealing process to 900 °C. From Raman spectroscopy results, thin film carbon is not changing until 600 °C thermal budged. But, when temperature increase to 900 °C, thin film carbon is starting to diffuse to silicon (111) substrates.

  12. Photocatalytic activity of bipolar pulsed magnetron sputter deposited TiO2/TiWOx thin films

    NASA Astrophysics Data System (ADS)

    Weng, Ko-Wei; Hu, Chung-Hsuan; Hua, Li-Yu; Lee, Chin-Tan; Zhao, Yu-Xiang; Chang, Julian; Yang, Shu-Yi; Han, Sheng

    2016-08-01

    Titanium oxide films were formed by sputtering and then TiWOx films were deposited by bipolar pulsed magnetron sputtering with pure titanium and tungsten metal targets. The sputtering of titanium oxide with tungsten enhanced the orientation of the TiO2 (1 0 1) plane of the specimen assemblies. The main varying parameter was the tungsten pulse power. Titanium oxide sputtered with tungsten using a pulsing power of 50 W exhibited a superior hydrophilic property, and a contact angle of 13.1°. This fabrication conditions maximized the photocatalytic decomposition of methylene blue solution. The mechanism by which the titanium oxide was sputtered with tungsten involves the photogeneration of holes and electron traps, inhibiting the hole-electron recombination, enhancing hydrophilicity and reducing the contact angle.

  13. Energy spectrum of sputtered uranium - A new technique

    NASA Technical Reports Server (NTRS)

    Weller, R. A.; Tombrello, T. A.

    1978-01-01

    The fission track technique for detecting U-235 has been used in conjunction with a mechanical time-of-flight spectrometer in order to measure the energy spectrum in the region 1 eV to 1 keV of material sputtered from a 93% enriched U-235 foil by 80 keV Ar-40(+) ions. The spectrum was found to exhibit a peak in the region 2-4 eV and to decrease approximately as E exp -1.77 for E not less than 100 eV. The design, construction and resolution of the mechanical spectrometer are discussed and comparisons are made between the data and the predictions of the random collision cascade model of sputtering.

  14. Bioactive glass thin films deposited by magnetron sputtering technique: The role of working pressure

    NASA Astrophysics Data System (ADS)

    Stan, G. E.; Marcov, D. A.; Pasuk, I.; Miculescu, F.; Pina, S.; Tulyaganov, D. U.; Ferreira, J. M. F.

    2010-09-01

    Bioglass coatings were prepared by radio frequency magnetron sputtering deposition at low temperature (150 °C) onto silicon substrates. The influence of argon pressure values used during deposition (0.2 Pa, 0.3 Pa and 0.4 Pa) on the short-range structure and biomineralization potential of the bioglass coatings was studied. The biomineralization capability was evaluated after 30 days of immersion in simulated body fluid. SEM-EDS, XRD and FTIR measurements were performed. The tests clearly showed strong biomineralization features for the bioglass films. The thickness of the chemically grown hydroxyapatite layers was more than twice greater for the BG films deposited at the highest working pressure, in comparison to those grown on the films obtained at lower working pressures. The paper attempts to explain this experimental fact based on structural and compositional considerations.

  15. Microstructure and optoelectronic properties of galliumtitanium-zinc oxide thin films deposited by magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Chen, Shou-bu; Lu, Zhou; Zhong, Zhi-you; Long, Hao; Gu, Jin-hua; Long, Lu

    2016-07-01

    Gallium-titanium-zinc oxide (GTZO) transparent conducting oxide (TCO) thin films were deposited on glass substrates by radio frequency magnetron sputtering. The dependences of the microstructure and optoelectronic properties of GTZO thin films on Ar gas pressure were observed. The X-ray diffraction (XRD) and scanning electron microscopy (SEM) results show that all the deposited films are polycrystalline with a hexagonal structure and have a preferred orientation along the c-axis perpendicular to the substrate. With the increment of Ar gas pressure, the microstructure and optoelectronic properties of GTZO thin films will be changed. When Ar gas pressure is 0.4 Pa, the deposited films possess the best crystal quality and optoelectronic properties.

  16. Bimodal substrate biasing to control γ-Al{sub 2}O{sub 3} deposition during reactive magnetron sputtering

    SciTech Connect

    Prenzel, Marina; Kortmann, Annika; Stein, Adrian; Keudell, Achim von; Nahif, Farwah; Schneider, Jochen M.

    2013-09-21

    Al{sub 2}O{sub 3} thin films have been deposited at substrate temperatures between 500 °C and 600 °C by reactive magnetron sputtering using an additional arbitrary substrate bias to tailor the energy distribution of the incident ions. The films were characterized by X-ray diffraction and Fourier transform infrared spectroscopy. The film structure being amorphous, nanocrystalline, or crystalline was correlated with characteristic ion energy distributions. The evolving crystalline structure is connected with different levels of displacements per atom (dpa) in the growing film as being derived from TRIM simulations. The boundary between the formation of crystalline films and amorphous or nanocrystalline films was at 0.8 dpa for a substrate temperature of 500 °C. This threshold shifts to 0.6 dpa for films grown at 550 °C.

  17. Ion beam sputtering of Ti: Influence of process parameters on angular and energy distribution of sputtered and backscattered particles

    NASA Astrophysics Data System (ADS)

    Lautenschläger, T.; Feder, R.; Neumann, H.; Rice, C.; Schubert, M.; Bundesmann, C.

    2016-10-01

    In the present study, the influence of ion energy and geometrical parameters onto the angular and energy distribution of secondary particles for sputtering a Ti target with Ar ions is investigated. The angular distribution of the particle flux of the sputtered Ti atoms was determined by the collection method, i.e. by growing Ti films and measuring their thickness. The formal description of the particle flux can be realized by dividing it into an isotropic and an anisotropic part. The experimental data show that increasing the ion energy or decreasing the ion incidence angle lead to an increase of the isotropic part, which is in good agreement with basic sputtering theory. The energy distribution of the secondary ions was measured using an energy-selective mass spectrometer. The energy distribution of the sputtered target ions shows a maximum at an energy between 10 eV and 20 eV followed by a decay proportional to E-n, which is in principle in accordance with Thompson's theory, followed by a high energetic tail. When the sum of incidence angle and emission angle is increased, the high-energetic tail expands to higher energies and an additional peak due to direct sputtering events may occur. In the case of backscattered primary Ar ions, a maximum at an energy between 5 eV and 10 eV appears and, depending on the scattering geometry, an additional broad peak at a higher energy due to direct scattering events is observed. The center energy of the additional structure shifts systematically to higher energies with decreasing scattering angle or increasing ion energy. The experimental results are compared to calculations based on simple elastic two-particle-interaction theory and to simulations done with the Monte Carlo code SDTrimSP. Both confirm in principle the experimental findings.

  18. RF sputtering deposition of CdTe on GaAs substrate

    NASA Astrophysics Data System (ADS)

    Adamiec, Krzysztof; Rutkowski, Jaroslaw; Bednarek, S.; Michalski, E.

    1997-06-01

    The fabrication of HgCdTe IR detectors demands high-quality CdTe or CdZnTe substrates. Bulk CdTe tends to twin, therefore large single crystals are generally not available. This problem could be circumvented by growing CdTe epilayers on an alternative large area substrate. Several studies have been made on the growth of CdTe on different substrates such as InSb, GaAs, Si and sapphire by MOCVD and MBE techniques. We report the initial results for the growth of CdTe buffer films on GaAs (100) substrates by sputter epitaxy. This crystal was chosen as the substrate material because of its transparency to IR radiation and availability as large area wafers with high structural perfection. Epitaxial films of CdTe were deposited in a sputtering system with a base pressure of 2 X 10-4 Pa. The GaAs substrate was degreased, etched in standard solution, and mounted immediately on a cooper substrate holder in the system. The substrates were ion etched in the sputtering system to remove surface oxide. The CdTe films were deposited in a wide substrate temperature range from 50 to 450 degrees C. Film thickness ranged from 0.1 to 5 micrometers , and deposition rates from 1 to 5 micrometers /h. The orientations and crystalline quality epitaxial films were characterized by x-ray diffraction. The surface morphology and the cross section of the gown CdTe layers were investigated by Nomarski interference contrast microscope. The optical and the electrical properties of the epitaxial films were investigated too. Structural characterization reveals that crystalline quality is a function of temperature of substrates. The single-crystals films grown at 300 degrees C on GaAs showed a best surface morphology.

  19. Effects of Processing Variables on Tantalum Nitride by Reactive-Ion-Assisted Magnetron Sputtering Deposition

    NASA Astrophysics Data System (ADS)

    Wei, Chao‑Tsang; Shieh, Han‑Ping D.

    2006-08-01

    The binary compound tantalum nitride (TaN) and ternary compounds tantalum tungsten nitrides (Ta1-xWxNy) exhibit interesting properties such as high melting point, high hardness, and chemical inertness. Such nitrides were deposited on a tungsten carbide (WC) die and silicon wafers by ion-beam-sputter evaporation of the respective metal under nitrogen ion-assisted deposition (IAD). The effects of N2/Ar flux ratio, post annealing, ion-assisted deposition, deposition rate, and W doping in coating processing variables on hardness, load critical scratching, oxidation resistance, stress and surface roughness were investigated. The optimum N2/Ar flux ratios in view of the hardness and critical load of TaN and Ta1-xWxNy films were ranged from 0.9 to 1.0. Doping W into TaN to form Ta1-xWxNy films led significant increases in hardness, critical load, oxidation resistance, and reduced surface roughness. The optimum doping ratio was [W/(W+Ta)]=0.85. From the deposition rate and IAD experiments, the stress in the films is mainly contributed by sputtering atoms. The lower deposition rate at a high N2/Ar flux ratio resulted in a higher compressive stress. A high compressive residual stress accounts for a high hardness. The relatively high compressive stress was attributed primarily to peening by atoms, ions and electrons during film growth, the Ta1-xWxNy films showed excellent hardness and strength against a high temperature, and sticking phenomena can essentially be avoided through their use. Ta1-xWxNy films showed better performance than the TaN film in terms of mechanical properties and oxidation resistance.

  20. Three-Dimensional, Fibrous Lithium Iron Phosphate Structures Deposited by Magnetron Sputtering.

    PubMed

    Bünting, Aiko; Uhlenbruck, Sven; Sebold, Doris; Buchkremer, H P; Vaßen, R

    2015-10-14

    Crystalline, three-dimensional (3D) structured lithium iron phosphate (LiFePO4) thin films with additional carbon are fabricated by a radio frequency (RF) magnetron-sputtering process in a single step. The 3D structured thin films are obtained at deposition temperatures of 600 °C and deposition times longer than 60 min by using a conventional sputtering setup. In contrast to glancing angle deposition (GLAD) techniques, no tilting of the substrate is required. Thin films are characterized by X-ray diffraction (XRD), Raman spectrospcopy, scanning electron microscopy (SEM), cyclic voltammetry (CV), and galvanostatic charging and discharging. The structured LiFePO4+C thin films consist of fibers that grow perpendicular to the substrate surface. The fibers have diameters up to 500 nm and crystallize in the desired olivine structure. The 3D structured thin films have superior electrochemical properties compared with dense two-dimensional (2D) LiFePO4 thin films and are, hence, very promising for application in 3D microbatteries.

  1. Radio-frequency sputter deposition of boron nitride based thin films

    SciTech Connect

    Mitterer, C.; Rodhammer, P.; Stori, H.; Jeglitsch, F.

    1989-07-01

    Thin films (approx.2 ..mu..m) of boron nitride, titanium boron nitride, and titanium aluminum boron nitride have been grown on molybdenum, niobium, and cemented carbide substrates employing nonreactive as well as reactive rf magnetron sputter deposition from either a BN, a TiN-BN, or a TiN--AlN--BN target. Substrates have been rf biased, with dc potentials up to /minus/200 V. By means of /ital nonreactive/ sputtering mixed-phase structures with dominant phases B/sub 48/B/sub 2/N/sub 2/ (using a BN target), or B/sub 48/B/sub 2/N/sub 2/ and hexagonal Ti--B--N (using a TiN--BN or a TiN--AlN--BN target) are formed. /ital Reactive/ deposition leads to the existence of hexagonal BN in all deposition modes. In the cases of Ti--B--N and Ti--Al--B--N films this phase is accompanied by fcc Ti--B--N. SEM cross sections revealed very fine grained to fracture-amorphous film structures. Hardness measurements gave the following maximum HV 0.02 values: B--N films 2800, Ti--B--N films 2750, and Ti--Al--B--N films 1650.

  2. RF magnetron sputtering deposition of CdTe passivation on HgCdTe

    NASA Astrophysics Data System (ADS)

    Rutkowski, Jaroslaw; Adamiec, Krzysztof; Rogalski, Antoni

    1998-04-01

    In this study, we report the RF magnetron sputtering growth and characterization of CdTe passivant on bulk n-type HgCdTe. Our investigations include the HgCdTe surface preparation and in-situ pretreatment, deposition-induced surface damage, interface charge, CdTe film stoichiometry, and thermal stability. The metal-insulator-semiconductor test structures are processed and their electrical properties are measured by capacitance-voltage characteristics. The heterostructures are also characterized by reflectance measurement. In order to investigate the passivation properties of CdTe/HgCdTe heterostructures, we have modeled the band diagram of abrupt CdTe/HgCdTe heterojunction. The effect of sputtering growth condition parameters is also reported. The sputtering CdTe layers, exhibit excellent dielectric, insulating and mechano- chemical properties, as well as interface properties. The interfaces are characterized by slight accumulation and a small hysteresis. A carefully controlled growth process and surface pretreatment tailored to the specific material are required in order to obtain near flat band conditions on n- type materials. Additional informations on surface limitations are obtained from analyzing the I-V characteristics of photodiodes with metal gates covering the p-n junction surface location.

  3. Sputter-deposited metal contacts for n-type GaN

    NASA Astrophysics Data System (ADS)

    Hall, H. P.; Awaah, M. A.; Das, K.

    2004-02-01

    Sputter-deposited Au, Pt, Cr, Ni and Cu contacts for n-type GaN films were studied using current-voltage (I-V) and capacitance-voltage (C-V) measurements. These films were grown by molecular beam epitaxy (MBE), heteroepitaxially on the basal plane of sapphire. The contacts were non-ideally rectifying in nature. Assuming that the non-ideality was due to effects of series resistance and recombination current, a computer curve fitting procedure was employed that enabled the separation of these effects from the thermionic emission current, thereby permitting the calculation of the barrier height. An analysis of the results indicates that the barrier heights for metal contacts on GaN are determined by the difference between the metal and the semiconductor electronegativities and substantially influenced by metal induced gap states (MIGS)/sputtering damage induced surface states (SDISS). The concentration of metal induced gap states/sputtering induced damage states was determined to be approximately 2.7 × 1013 states cm-2 eV-1.

  4. Shape-memory properties in Ni-Ti sputter-deposited film

    NASA Technical Reports Server (NTRS)

    Busch, J. D.; Johnson, A. D.; Lee, C. H.; Stevenson, D. A.

    1990-01-01

    A Ni-Ti alloy, generically called nitinol, was prepared from sputtering targets of two different compositions on glass substrates using a dc magnetron source. The as-deposited films were amorphous in structure and did not exhibit a shape memory. The amorphous films were crystallized with a suitable annealing process, and the transformation properties were measured using differential scanning calorimetry. The annealed films demonstrated a strong shape-memory effect. Stress/strain measurements and physical manipulation were used to evaluate the shape recovery. These tests demonstrated sustained tensile stresses of up to 480 MPa in the high-temperature phase, and a characteristic plastic deformation in the low-temperature phase.

  5. In situ high temperature crystallization study of sputter deposited amorphous W-Fe-C films

    SciTech Connect

    Trindade, B.; Vieira, M.T. . Dept. de Engenharia Mecanica); Grosse, E.B. . Lab. de Sciences et Genie des Surfaces)

    1995-01-01

    The structural behavior of amorphous W[sub 46]Fe[sub 13]C[sub 41] and W[sub 36]Fe[sub 31]C[sub 33] films produced by sputtering have been studied in situ during annealing up to [approximately] 950 C by means of hot stage transmission electron microscopy. Differential thermal analysis and X-ray diffraction were used as complementary experimental techniques. The results are presented and correlated with the equilibrium phases anticipated from the W-Fe-C ternary phase diagram and with previous studied on similar films deposited and annealed onto substrates.

  6. Glancing angle sputter deposited nanostructures on rotating substrates: Experiments and simulations

    SciTech Connect

    Patzig, C.; Karabacak, T.; Fuhrmann, B.; Rauschenbach, B.

    2008-11-01

    Ordered arrays of Si nanorods and nanospirals have been produced by ion beam sputter glancing angle deposition of Si on rotating substrates. The substrates were prepatterned with honeycomb and hexagonal-closed-packed arranged Au dots obtained by nanosphere lithography. The effects of template type, substrate rotational speed, height of the artificial Au seeds, and deposition angle {theta} of the incident flux on the growth of the Si nanostructures is examined. Especially for the deposition of Si on honeycomb templates at different deposition angles, it is shown that the structure of the growing film changes drastically. A continuous film with honeycomblike arranged hillocks on top is deposited at normal incidence. With increased {theta}, the structure shifts to almost dense films with a mesh of hexagonally arranged pores ({theta}=70 deg.). Finally, separated rodlike structures with triangular cross section are obtained under glancing angle conditions ({theta}=85 deg.). In addition, the structural evolution of the glancing angle deposited Si films is compared with oblique angle deposition three-dimensional Monte Carlo simulations. Furthermore, the effects of surface diffusion on the growth of spiral Si nanostructures on nontemplated substrates in experiment and simulation are compared and discussed.

  7. Controlled growth of few-layer hexagonal boron nitride on copper foils using ion beam sputtering deposition.

    PubMed

    Wang, Haolin; Zhang, Xingwang; Meng, Junhua; Yin, Zhigang; Liu, Xin; Zhao, Yajuan; Zhang, Liuqi

    2015-04-01

    Ion beam sputtering deposition (IBSD) is used to synthesize high quality few-layer hexagonal boron nitride (h-BN) on copper foils. Compared to the conventional chemical vapor deposition, the IBSD technique avoids the use of unconventional precursors and is much easier to control, which should be very useful for the large-scale production of h-BN in the future.

  8. Oxygen partial pressure dependent optical properties of glancing angle deposited (GLAD) Ta2O5 films deposited by magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Tripathi, S.; Haque, S. Maidul; Rao, K. Divakar; Misal, J. S.; Pratap, C.; Sahoo, N. K.

    2016-05-01

    Experiments were carried out on Ta2O5 oxide thin films by asymmetric bipolar pulsed DC magnetron sputtering using a new hybrid combination of conventional (normal incidence) deposition and glancing angle deposition (GLAD) geometries. The films were prepared with varying O2 partial pressure. The ellipsometry characterization reveals a systematic variation in refractive index, which decreased from 2.2 in the normal films to an average 1.78 in the GLAD films. The bandgap of these GLAD films is slightly higher as compared to normal films. Overall transmission of the GLAD films is increased is by ~ 15 % implying a reduction in the refractive index for potential optical filtering device applications. The results were further supported by X-ray reflectivity measurements which show an effective double layer structure in GLAD consisting of layers with different densities of the same Ta2O5 material.

  9. Reactive sputter deposition of pyrite structure transition metal disulfide thin films: Microstructure, transport, and magnetism

    SciTech Connect

    Baruth, A.; Manno, M.; Narasimhan, D.; Shankar, A.; Zhang, X.; Johnson, M.; Aydil, E. S.; Leighton, C.

    2012-09-01

    Transition metal disulfides crystallizing in the pyrite structure (e.g., TMS{sub 2}, with TM = Fe, Co, Ni, and Cu) are a class of materials that display a remarkably diverse array of functional properties. These properties include highly spin-polarized ferromagnetism (in Co{sub 1-x}Fe{sub x}S{sub 2}), superconductivity (in CuS{sub 2}), an antiferromagnetic Mott insulating ground state (in NiS{sub 2}), and semiconduction with close to optimal parameters for solar absorber applications (in FeS{sub 2}). Exploitation of these properties in heterostructured devices requires the development of reliable and reproducible methods for the deposition of high quality pyrite structure thin films. In this manuscript, we report on the suitability of reactive sputter deposition from metallic targets in an Ar/H{sub 2}S environment as a method to achieve exactly this. Optimization of deposition temperature, Ar/H{sub 2}S pressure ratio, and total working gas pressure, assisted by plasma optical emission spectroscopy, reveals significant windows over which deposition of single-phase, polycrystalline, low roughness pyrite films can be achieved. This is illustrated for the test cases of the ferromagnetic metal CoS{sub 2} and the diamagnetic semiconductor FeS{sub 2}, for which detailed magnetic and transport characterization are provided. The results indicate significant improvements over alternative deposition techniques such as ex situ sulfidation of metal films, opening up exciting possibilities for all-sulfide heterostructured devices. In particular, in the FeS{sub 2} case it is suggested that fine-tuning of the sputtering conditions provides a potential means to manipulate doping levels and conduction mechanisms, critical issues in solar cell applications. Parenthetically, we note that conditions for synthesis of phase-pure monosulfides and thiospinels are also identified.

  10. Deuterium Retention in the Co-Deposition Carbon Layers Deposited by Radio-Frequency Magnetron Sputtering in D2 Atmosphere

    NASA Astrophysics Data System (ADS)

    Zhang, Wei-Yuan; Shi, Li-Qun; Zhang, Bin; Hu, Jian-Sheng

    2014-05-01

    Carbon is deposited on C and Si substrates by rf magnetron plasma sputtering in a D2 atmosphere. The deposited layers are examined with ion beam analysis and thermal desorption spectroscopy (TDS). The growth rates of the layers deposited on Si decrease with increasing substrate temperature, while increase significantly with the increase of D2 pressure. Meanwhile, the deuterium concentrations in the layers deposited on the Si substrates decrease from 30% to 2% and from 31% to 1% on the C substrates, respectively, when the substrate temperature varies from 350K to 900 K. Similarly, the D concentration in the layer on the Si substrates increases from 3.4% to 47%, and from 8% to 35% on the C substrates when the D2 pressure increases from 0.3Pa to 8.0Pa. D desorption characterized by TDS is mainly in the forms of D2, HD, HDO, CD4, and C2D4, and a similar release peak occurs at 645 K. The release peak of D2 molecules at 960K can be attributed to the escaped gas from the thin co-deposited deuterium-rich carbon layer in the form of C-D bonding.

  11. Properties of a-C:H:Si thin films deposited by middle-frequency magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Jiang, Jinlong; Wang, Yubao; Du, Jinfang; Yang, Hua; Hao, Junying

    2016-08-01

    The silicon doped hydrogenated amorphous carbon (a-C:H:Si) films were prepared on silicon substrates by middle-frequency magnetron sputtering silicon target in an argon and methane gas mixture atmosphere. The deposition rate, chemical composition, structure, surface properties, stress, hardness and tribological properties in the ambient air of the films were systemically investigated using X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM), atomic force microscopy (AFM), nanoindentation and tribological tester. The results show that doped silicon content in the films is controlled in the wide range from 39.7 at.% to 0.2 at.% by various methane gas flow rate, and methane flow rate affects not only the silicon content but also its chemical bonding structure in the films due to the transformation of sputtering modes. Meanwhile, the sp3 carbon component in the films linearly increases with increasing of methane flow rate. The film deposited at moderate methane flow rate of 40-60 sccm exhibits the very smooth surface (RMS roughness 0.4 nm), low stress (0.42 GPa), high hardness (21.1 GPa), as well as low friction coefficient (0.038) and wear rate (1.6 × 10-7 mm3/Nm). The superior tribological performance of the films could be attributed to the formation and integral covering of the transfer materials on the sliding surface and their high hardness.

  12. Comparison of the Fatigue Performance of Commercially Produced Nitinol Samples versus Sputter-Deposited Nitinol

    NASA Astrophysics Data System (ADS)

    Siekmeyer, Gerd; Schüßler, Andreas; de Miranda, Rodrigo Lima; Quandt, Eckhard

    2014-07-01

    Self-expanding vascular implants are typically manufactured from Nitinol tubing, using laser cutting, shape setting, and electropolishing processes. The mechanical and fatigue behavior of those devices are affected by the raw material and its processing such as the melting process and subsequent warm and cold forming processes. Current trends focus on the use of raw material with fewer inclusions to improve the fatigue performance. Further device miniaturization and higher fatigue life requirements will drive the need toward smaller inclusions and new manufacturing methods. As published previously, the high-cycle fatigue region of medical devices from standard processed Nitinol is usually about 0.4-0.5% half-alternating strain. However, these results highly depend on the ingot and semi-finished materials, the applied manufacturing processes, the final dimensions of test samples, and applied test methods. Fabrication by sputter deposition is favorable, because it allows the manufacturing of micro-patterned Nitinol thin-film devices without small burrs, heat-affected zones, microcracks, or any contamination with carbides, as well as the fabrication of complex components e.g., 3D geometries. Today, however, there is limited data available on the fatigue behavior for real stent devices based on such sputter-deposited Nitinol. A detailed study (e.g., using metallographic methods, corrosion, tensile, and fatigue testing) was conducted for the first time in order to characterize the micro-patterned Nitinol thin-film material.

  13. Sputter process with time-variant reactive gas mixture for the deposition of optical multilayer and gradient layer systems

    NASA Astrophysics Data System (ADS)

    Bartzsch, H.; Weber, J.; Lau, K.; Glöß, D.; Frach, P.

    2008-09-01

    Magnetron sputtering of a silicon target in a time-variant mixture of the reactive gases oxygen and nitrogen allows the deposition of optical multilayer and gradient layer systems of silicon oxinitride at one stationary sputtering station. In this paper the processes within the sputter discharge and the properties of the growing film during the change of the reactive gas composition are investigated using optical in-situ monitoring, optical plasma emission spectroscopy and plasma impedance monitoring. A time delay between the change to the reactive gas composition and the resulting change to the film composition was observed. The time delay is longer for the transition from oxide to nitride deposition then vice versa. This asymmetry is attributed to the different affinity of nitrogen and oxygen to the silicon target. Examples of deposited antireflective coatings as well as rugate filters based on silicon oxinitride multilayer and gradient layer designs are given.

  14. Stress and magnetoelastic properties control of amorphous Fe{sub 80}B{sub 20} thin films during sputtering deposition

    SciTech Connect

    Fernandez-Martinez, I.; Costa-Kraemer, J. L.; Briones, F.

    2008-06-01

    In situ stress measurements during sputtering deposition of amorphous Fe{sub 80}B{sub 20} films are used to control their stress and magnetoelastic properties. The substrate curvature induced by the deposited film is measured optically during growth and quantitatively related to the deposition induced accumulated stress. The resulting magnetic properties are later correlated with the measured stress for a wide range of sputtering pressures [(2-25)x10{sup -3} mbar]. A significant tensile stress develops at the film-substrate interface during the early growth stages (initial 2-3 nm). At a critical thickness, a transition is observed from tensile to compressive stress, which is associated with amorphous island coalescence. By further increasing the thickness, a compressive stress follows, which is related to the local distortion induced by the ion peening effect. The Monte Carlo simulations of the sputtering process describe quantitatively the experimental results as a function of the Ar pressure and target bias voltage.

  15. Time dependence of carbon film deposition on SnO{sub 2}/Si using DC unbalanced magnetron sputtering

    SciTech Connect

    Alfiadi, H. Aji, A. S. Darma, Y.

    2014-02-24

    Carbon deposition on SnO{sub 2} layer has been demonstrated at low temperature using DC unbalanced magnetron-sputtering technique for various time depositions. Before carbon sputtering process, SnO{sub 2} thin layer is grown on silicon substrate by thermal evaporation method using high purity Sn wire and then fully oxidizes by dry O{sub 2} at 225°C. Carbon sputtering process was carried out at pressure of 4.6×10{sup −2} Torr by keeping the substrate temperature of 300 °C for sputtering deposition time of 1 to 4 hours. The properties of SnO{sub 2}/Si structure and carbon thin film on SnO{sub 2} is characterized using SEM, EDAX, XRD, FTIR, and Raman Spectra. SEM images and XRD spectra show that SnO2 thin film has uniformly growth on Si substrate and affected by annealing temperature. Raman and FTIR results confirm the formation of carbon-rich thin film on SnO{sub 2}. In addition, XRD spectra indicate that some structural change occur by increasing sputtering deposition time. Furthermore, the change of atomic structure due to the thermal annealing is analized by XRD spectra and Raman spectroscopy.

  16. Study of Electrical and Optical Properties of Cu-ASSISTED Amorphous Carbon Thin Films Deposition by DC Magnetron Sputtering

    NASA Astrophysics Data System (ADS)

    Hassannia, Sara; Elahi, Seyed Mohammad; Boochani, Arash

    2013-09-01

    Cu incorporated amorphous carbon thin films have been prepared by DC-magnetron sputtering using a bi-component Cu-C composite target. The properties of the films have been investigated by X-ray diffraction, energy dispersive X-ray analysis, atomic force microscopy, FTIR, Raman and UV-vis spectroscopies. The results show that the films are amorphous with major distorted sp2 graphite bonds as well as carbon nanotubes. Sputtering simulation shows that the chemical composition of the films is Cu0.066C0.934. Cu addition results in the formation of new type of carbon nanotubes (CNT) with new radial Breathing mode located at 236 cm-1. Cu induces an increase in the density of defects due to bundles of CNT's. Moreover the films are transparent in visible range and highly reflective in mid-infrared region. Electrical characterization shows that the pure carbon deposited films are semiconductor while the copper assisted thin films behave like metal and their sheet resistance is comparable with sheet resistance of conventional conductive electrodes.

  17. Surface properties and biocompatibility of nanostructured TiO2 film deposited by RF magnetron sputtering.

    PubMed

    Majeed, Asif; He, Jie; Jiao, Lingrui; Zhong, Xiaoxia; Sheng, Zhengming

    2015-01-01

    Nanostructured TiO2 films are deposited on a silicon substrate using 150-W power from the RF magnetron sputtering at working pressures of 3 to 5 Pa, with no substrate bias, and at 3 Pa with a substrate bias of -50 V. X-ray diffraction (XRD) analysis reveals that TiO2 films deposited on unbiased as well as biased substrates are all amorphous. Surface properties such as surface roughness and wettability of TiO2 films, grown in a plasma environment, under biased and unbiased substrate conditions are reported according to the said parameters of RF power and the working pressures. Primary rat osteoblasts (MC3T3-E1) cells have been cultured on nanostructured TiO2 films fabricated at different conditions of substrate bias and working pressures. The effects of roughness and hydrophilicity of nanostructured TiO2 films on cell density and cell spreading have been discussed.

  18. Deposition of vanadium oxide films by direct-current magnetron reactive sputtering

    NASA Technical Reports Server (NTRS)

    Kusano, E.; Theil, J. A.; Thornton, John A.

    1988-01-01

    It is demonstrated here that thin films of vanadium oxide can be deposited at modest substrate temperatures by dc reactive sputtering from a vanadium target in an O2-Ar working gas using a planar magnetron source. Resistivity ratios of about 5000 are found between a semiconductor phase with a resistivity of about 5 Ohm cm and a metallic phase with a resistivity of about 0.001 Ohm cm for films deposited onto borosilicate glass substrates at about 400 C. X-ray diffraction shows the films to be single-phase VO2 with a monoclinic structure. The VO2 films are obtained for a narrow range of O2 injection rates which correspond to conditions where cathode poisoning is just starting to occur.

  19. Surface Texture and Structure of ZnO Films Synthesized by Off-Axis Sputtering Deposition

    NASA Technical Reports Server (NTRS)

    Zhu, Shen; Su, Ching-Hua; Lehoczky, Sandor L.; George, M. A.; Lowndes, D. H.

    1999-01-01

    Morphology and structure of ZnO films deposited on (0001) sapphire and glass substrates by off-axis sputtering are investigated at various temperatures and pressures. All films show highly textured structures on glass substrates and epitaxial growth on sapphire substrates. The full width at half maximum of theta rocking curves for epitaxial films is less than 0.5 degrees. In textured films, it rises to several degrees. The trend of surface textures in films grown at low pressures is similar to those grown at high temperatures. A morphology transition from large well-defined hexagonal grains to flat surface was observed at a pressure of 50 mtorr and temperature of 550 C. The experiment results are explained by the transport behavior of depositing species.

  20. Role of oxygen atoms in the growth of magnetron sputter-deposited ZnO films

    SciTech Connect

    Jie, Jin; Morita, Aya; Shirai, Hajime

    2010-08-15

    The role of oxygen atoms in the growth of magnetron sputter-deposited ZnO films was studied by alternating the deposition of a several-nanometer-thick ZnO layer and the O{sub 2}/Ar mixture plasma exposure, i.e., layer-by-layer technique. The film crystallization promoted with suppressing the oxygen vacancy and interstitial defects by adjusting the exposure condition of O{sub 2}/Ar plasma. These findings suggest that the chemical potential of oxygen atom determine the film crystallization as well as the electronic state. The diffusion and effusion of oxygen atoms at the growing surface play a role of thermal annealing, promoted the film crystallization as well as the creation and the annihilation of oxygen and zinc related defects. The role of oxygen atoms reaching at the film-growing surface is discussed in term of chemical annealing. The possible oxygen diffusion mechanism is proposed.

  1. High-frequency magnetic properties of Zn ferrite films deposited by magnetron sputtering

    SciTech Connect

    Guo Dangwei; Zhu Jingyi; Yang Yuancai; Fan Xiaolong; Chai Guozhi; Sui Wenbo; Zhang Zhengmei; Xue Desheng

    2010-02-15

    The effect of thermal annealing on structural and magnetic properties has been investigated for Zn ferrite films deposited on Si (111) substrates using radio frequency magnetron sputtering. The saturation magnetization at room temperature was enhanced upto 303 emu/cm{sup 3} by annealing at relatively low temperature of 200 deg. C and decreased at higher temperatures. The complex permeability {mu}={mu}{sup '}-i{mu}{sup ''} values of the ferrite films as-deposited and annealed at 200 and 400 deg. C were measured at frequency upto 5 GHz. These films exhibited better high-frequency properties, especially, the film annealed at 200 deg. C had a large {mu}{sup '} of 19.5 and high resonance frequency f{sub r} of 1.61 GHz. And the reason was investigated preliminarily based on the bianisotropy model.

  2. Surface properties and biocompatibility of nanostructured TiO2 film deposited by RF magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Majeed, Asif; He, Jie; Jiao, Lingrui; Zhong, Xiaoxia; Sheng, Zhengming

    2015-02-01

    Nanostructured TiO2 films are deposited on a silicon substrate using 150-W power from the RF magnetron sputtering at working pressures of 3 to 5 Pa, with no substrate bias, and at 3 Pa with a substrate bias of -50 V. X-ray diffraction (XRD) analysis reveals that TiO2 films deposited on unbiased as well as biased substrates are all amorphous. Surface properties such as surface roughness and wettability of TiO2 films, grown in a plasma environment, under biased and unbiased substrate conditions are reported according to the said parameters of RF power and the working pressures. Primary rat osteoblasts (MC3T3-E1) cells have been cultured on nanostructured TiO2 films fabricated at different conditions of substrate bias and working pressures. The effects of roughness and hydrophilicity of nanostructured TiO2 films on cell density and cell spreading have been discussed.

  3. Surface texture and structure of ZnO films synthesized by off-axis sputtering deposition

    SciTech Connect

    Zhu, Shen; Lowndes, D. H.

    2000-05-01

    Morphology and structure of ZnO films deposited on (0001) sapphire and glass substrates by off-axis sputtering were investigated at various temperatures and pressures. All films show highly textured structures on glass substrates and epitaxial growth on sapphire substrates. The full width at half-maximum of theta rocking curves for epitaxial films is less than 0.5 degree sign . In textured films, it rises to several degrees. The trend of surface textures in films grown at low pressures is similar to those grown at high temperatures. A morphology transition from large well-defined hexagonal grains to flat surface was observed at a pressure of 50 mtorr and temperature of 550 degree sign C. The experiment results are explained by the transport behavior of depositing species. (c) 2000 Materials Research Society.

  4. Crystallographic properties of as grown CdxHg1- xTe epitaxial layers deposited by cathodic sputtering

    NASA Astrophysics Data System (ADS)

    Roussille, R.

    Large areas (up to 15 cm 2) CdxHg1- xTe epitaxial layers with Cd composition ( x value) from 0.14 to 0.4 (thickness < 15 μm) have been sputtered on to CdTe substrates with [111] orientations. The layers are grown on substrates heated up to 200°C with a deposition rate of 0.6 μm/h. Crystallographic characterization has been carried out, using different techniques such as: reflection high energy electron diffraction (RHEED), reflection X-ray topography and transmission electron microscopy (TEM). RHEED patterns reveal a good crystallographic quality. X-ray topographies show that the substructure of the layer is very similar to that of the substrate. These results are confirmed by TEM observations.

  5. Thickness dependence of the preferred orientation of Mn-Zn ferrite thin films deposited by ion-beam sputtering

    NASA Astrophysics Data System (ADS)

    Cho, Hae Seok; Kim, Hyeong Joon

    1995-07-01

    The thickness dependence of the preferred orientation of the Cu or Ti added Mn-Zn ferrite thin films deposited on SiO2(1000 Å)/Si(100) at 350 °C by ion-beam sputtering was investigated. A mosaic target, consisting of a single-crystal (110) Mn-Zn ferrite with a metal strip on it, was employed as the target. The (hhh) preferred orientation, formed at the initial growth stage, of the Cu added Mn-Zn ferrite film changed to the (h00) preferred orientation with increasing film thickness, while the initially formed (h00) preferred orientation of the Ti added one was enhanced with increasing film thickness. Such different behaviors were discussed in terms of the surface energy and the preferred growth orientation of the ferrite film. The thickness dependence of magnetic properties of the ferrite films was also investigated.

  6. Deposition and characterization of molybdenum thin films using dc-plasma magnetron sputtering

    SciTech Connect

    Khan, Majid; Islam, Mohammad

    2013-12-15

    Molebdenum (Mo) thin films were deposited on well-cleaned soda-lime glass substrates using DC-plasma magnetron sputtering. In the design of experiment deposition was optimized for maximum beneficial characteristics by monitoring effect of process variables such as deposition power (100–200 W). Their electrical, structural and morphological properties were analyzed to study the effect of these variables. The electrical resistivity of Mo thin films could be reduced by increasing deposition power. Within the range of analyzed deposition power, Mo thin films showed a mono crystalline nature and the crystallites were found to have an orientation along [110] direction. The surface morphology of thin films showed that a highly dense micro structure has been obtained. The surface roughness of films increased with deposition power. The adhesion of Mo thin films could be improved by increasing the deposition power. Atomic force microscopy was used for the topographical study of the films and to determine the roughness of the films. X-ray diffractrometer and scanning electron microscopy analysis were used to investigate the crystallinity and surface morphology of the films. Hall effect measurement system was used to find resistivity, carrier mobility and carrier density of deposited films. The adhesion test was performed using scotch hatch tape adhesion test. Mo thin films prepared at deposition power of 200 W, substrate temperature of 23°C and Ar pressure of 0.0123 mbar exhibited a mono crystalline structure with an orientation along (110) direction, thickness of ∼550 nm and electrical resistivity value of 0.57 × 10{sup −4} Ω cm.

  7. Deposition of LaMnO 3 buffer layer on IBAD-MgO template by reactive DC sputtering

    NASA Astrophysics Data System (ADS)

    Kim, H. S.; Oh, S. S.; Ha, H. S.; Ko, R. K.; Ha, D. W.; Kim, T. H.; Youm, D. J.; Lee, N. J.; Moon, S. H.; Yoo, S. I.; Park, C.

    2009-10-01

    The deposition conditions of LaMnO 3 (LMO) buffer layer on Ion Beam Assisted Deposition (IBAD)-MgO template by reactive DC sputtering were investigated. We developed a specially designed chamber for reactive DC magnetron sputtering. The deposition chamber was composed of two sputtering guns with the mixed metallic target of La (50 at%) + Mn (50 at%), halogen lamp heater, QCM (Quartz Crystal Microbalance), RGA (Residual Gas Analyzer) and reel to reel tape moving system. We investigated the effect of oxygen flow rate on the deposition rate of LMO layer. We found that there was an optimal range of oxygen flow rate to have the desired layer. Above the range, the deposition rate decreased sharply and plasma was unstable. Below the range, the deposited layer was partially metallic. We investigated the effect of substrate temperature on the texturing of LMO layer. The texturing of LMO layer was improved by increasing the substrate temperature. We investigated the effect of deposition rate on the texturing of LMO layer. The LMO layer has a good texture in the deposition rate range of 0.07-0.21 nm/s. We confirmed that deposition rate had little effect on the texturing of LMO layer in the deposition rate range. Sm 1Ba 2Cu 3O 7-d superconducting layer was deposited on the LMO(reactive)/IBAD-MgO template. I c and J c were 81.6 A and 1 MA/cm 2. This means that LMO layer deposited by reactive DC sputtering shows a good performance in superconductor coated conductor.

  8. Practical magnetron sputtering system for the deposition of optical multilayer coatings.

    PubMed

    Dobrowolski, J A; Pekelsky, J R; Pelletier, R; Ranger, M; Sullivan, B T; Waldorf, A J

    1992-07-01

    A magnetron sputtering system is described in which, at any one time, as many as four different 15-cm x 46-cm rectangular planar magnetron targets can be mounted vertically in the deposition chamber. These can be attached to either dc or rf power supplies for direct or reactive deposition of metal, metal oxide, or nitride films. Typical target materials include Ag, Al, C, Mo, Nb, Ni, Si, W, and Zr. Good uniformity can be obtained on stationary substrates, although better results are possible with oscillating substrates. The refractive indices are given for several useful oxide materials. The materials and thicknesses of the individual layers that comprise an optical multilayer system are entered into a computer that subsequently controls the deposition parameters, the substrate motion, and the deposition time. After a relatively simple calibration process, coatings that consist of between 20 and 60 layers can be produced to within an accuracy of 1% or 2%. A wideband optical monitor is available for checking the performance of the multilayer system during its deposition. Several examples of multilayer coatings that were prepared on this equipment are given.

  9. Structural and Optical Properties of Sputtered Cadmium Telluride Thin Films Deposited on Flexible Substrates for Photovoltaic Applications.

    PubMed

    Song, Woochang; Lee, Kiwon; Kim, Donguk; Lee, Jaehyeong

    2016-05-01

    Cadmium telluride (CdTe) is a photovoltaic technology based on the use of thin films of CdTe to absorb and convert sunlight into electricity. In this paper, polycrystalline CdTe thin films were deposited using radio frequency magnetron sputtering onto flexible substrates including polyimide and molybdenum foil. The structural and optical properties of the films grown at various sputtering pressures were investigated using X-ray diffraction (XRD), field-emission scanning electron microscope (FE-SEM), and UV/Nis/NIR spectrophotometry. The sputtering pressure was found to have significant effects on the structural properties, including crystallinity, preferential orientation, and microstructure. Deterioration of the optical properties of CdTe thin films were observed at high sputtering pressure. PMID:27483904

  10. Conductive ZnO:Zn Composites for High-Rate Sputtering Deposition of ZnO Thin Films

    NASA Astrophysics Data System (ADS)

    Zhou, Li Qin; Dubey, Mukul; Simões, Raul; Fan, Qi Hua; Neto, Victor

    2015-02-01

    We report an electrically conductive composite prepared by sintering ZnO and metallic Zn powders. Microstructure analysis combined with electrical conductivity studies indicated that when the proportion of metallic Zn reached a threshold (˜20 wt.%), a metal matrix was formed in accordance with percolation theory. This composite has potential as a sputtering target for deposition of high-quality ZnO. Use of the ZnO:Zn composite completely eliminates target poisoning effects in reactive sputtering of the metal, and enables deposition of thin ZnO films at rates much higher than those obtained by sputtering of pure ZnO ceramic targets. The optical transmittance of the ZnO films prepared by use of this composite is comparable with that of films produced by radio frequency sputtering of pure ZnO ceramic targets. The sputtering characteristics of the conductive ZnO:Zn composite target are reported, and possible mechanisms of the high rate of deposition are also discussed.

  11. Fluoropolymer Films Deposited by Argon Ion-Beam Sputtering of Polytetrafluoroethylene

    NASA Technical Reports Server (NTRS)

    Golub, Morton A.; Banks, Bruce A.; Kliss, Mark (Technical Monitor)

    1998-01-01

    The FT-IR, XPS and UV spectra of fluoropolymer films (SPTFE-I) deposited by argon ion-beam sputtering of polytetrafluoroethylene (PTFE) were obtained and compared with prior corresponding spectra of fluoropolymer films (SPTFE-P) deposited by argon rf plasma sputtering of PTFE. Although the F/C ratios for SPTFE-I and -P (1.63 and 1.51) were similar, their structures were quite different in that there was a much higher concentration of CF2 groups in SPTFE-I than in SPTFE-P, ca. 61 and 33% of the total carbon contents, respectively. The FT-IR spectra reflect that difference, that for SPTFE-I showing a distinct doublet at 1210 and 1150 per centimeter while that for SPTFE-P presents a broad, featureless band at ca. 1250 per centimeter. The absorbance of the 1210-per centimeter band in SPTFE-I was proportional to the thickness of the film, in the range of 50-400 nanometers. The SPTFE-I was more transparent in the UV than SPTFE-P at comparable thickness. The mechanism for SPTFE-I formation likely involves "chopping off" of oligomeric segments of PTFE as an accompaniment to "plasma" polymerization of TFE monomer or other fluorocarbon fragments generated in situ from PTFE on impact with energetic Ar ions. Data are presented for SPTFE-I deposits and the associated Ar(+) bombarded PTFE targets where a fresh target was used for each run or a single target was used for a sequence of runs.

  12. Magnetic field strength influence on the reactive magnetron sputter deposition of Ta2O5

    NASA Astrophysics Data System (ADS)

    Hollerweger, R.; Holec, D.; Paulitsch, J.; Rachbauer, R.; Polcik, P.; Mayrhofer, P. H.

    2013-08-01

    Reactive magnetron sputtering enables the deposition of various thin films to be used for protective as well as optical and electronic applications. However, progressing target erosion during sputtering results in increased magnetic field strengths at the target surface. Consequently, the glow discharge, the target poisoning, and hence the morphology, crystal structure and stoichiometry of the prepared thin films are influenced. Therefore, these effects were investigated by varying the cathode current Im between 0.50 and 1.00 A, the magnetic field strength B between 45 and 90 mT, and the O2/(Ar + O2) flow rate ratio Γ between 0% and 100%. With increasing oxygen flow ratio a substoichiometric TaOx oxide forms at the metallic Ta target surface which further transfers to a non-conductive tantalum pentoxide Ta2O5, impeding a stable dc glow discharge. These two transition zones (from Ta to TaOx and from TaOx to Ta2O5) shift to higher oxygen flow rates for increasing target currents. In contrast, increasing the magnetic field strength (e.g., due to sputter erosion) mainly shifts the TaOx to Ta2O5 transition to lower oxygen flow rates while marginally influencing the Ta to TaOx transition. To allow for a stable dc glow discharge (and to suppress the formation of non-conductive Ta2O5 at the target) even at Γ = 100% either a high target current (Im ⩾ 1 A) or a low magnetic field strength (B ⩽ 60 mT) is necessary. These conditions are required to prepare stoichiometric and fully crystalline Ta2O5 films.

  13. Effects of crystallographic plane and co-deposited element on the growth of ion-sputter induced Si nano-cone arrays: a mechanism study

    NASA Astrophysics Data System (ADS)

    Song, Sheng-Chi; Qiu, Ying; Hao, Hong-Chen; Lu, Ming

    2015-06-01

    Self-organized Si nano-cone arrays induced by Ar+ ion sputtering on different Si crystallographic planes with different co-deposited alien atoms are investigated. The Si planes are (100), (110), and (111) ones, and the alien elements are Ta, Mo, Fe, and C, respectively. It is found that the growth of Si nano-cone arrays is insensitive to the initial crystallographic plane, but depends strongly on the co-deposited element. For the same Ar+ ion dose and sample temperature, the smaller the activation energy between the co-deposited element and Si is, the larger the average cone height and base diameter are. It is found that the preferential sputtering does not play an important role in the nano-cone formation. A model based on the concepts of classical surface-curvature-dependent sputtering yield and the formation of stationary silicide is proposed, which explains the observed results. The results of microstructural and compositional analysis support the proposed model.

  14. Investigation of the physical properties of ion assisted ZrN thin films deposited by RF magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Signore, M. A.; Valerini, D.; Rizzo, A.; Tapfer, L.; Capodieci, L.; Cappello, A.

    2010-06-01

    Ion bombardment during thin film growth is known to cause structural and morphological changes in the deposited films, thus affecting their physical properties. In this work zirconium nitride films have been deposited by the ion assisted magnetron sputtering technique. The ion energy is controlled by varying the voltage applied to the substrate in the range 0-25 V. The deposited ZrN films are characterized for their structure, surface roughness, oxygen contamination, optical reflectance and electrical resistivity. With increasing substrate voltage crystallinity of the films is enhanced with a preferential orientation of the ZrN grains having the (1 1 1) axis perpendicular to the substrate surface. At the same time, a decrease in electrical resistivity and oxygen contamination content is observed up to 20 V. A higher substrate voltage (25 V) causes an inversion in the observed experimental trends. The role of oxygen contamination decrease and generation of nitrogen vacancies due to ionic assistance have been considered as a possible explanation for the experimental results.

  15. Structural and gasochromic properties of WO3 films prepared by reactive sputtering deposition

    NASA Astrophysics Data System (ADS)

    Yamamoto, S.; Hakoda, T.; Miyashita, A.; Yoshikawa, M.

    2015-02-01

    The effects of deposition temperature and film thickness on the structural and gasochromic properties of tungsten trioxide (WO3) films used for the optical detection of diluted cyclohexane gas have been investigated. The WO3 films were prepared on SiO2 substrates by magnetron sputtering, with the deposition temperature ranging from 300 to 550 °C in an Ar and O2 gas mixture. The films were characterized by scanning electron microscopy (SEM), x-ray diffraction (XRD), and Rutherford backscattering spectroscopy (RBS). The gasochromic properties of the WO3 films, coated with a catalytic Pt layer, were examined by exposing them to up to 5% cyclohexane in N2 gas. It was found that (001)-oriented monoclinic WO3 films, with a columnar structure, grew at deposition temperatures between 400 and 450 °C. Furthermore, (010)-oriented WO3 films were preferably formed at deposition temperatures higher than 500 °C. The gasochromic characterization of the Pt/WO3 films revealed that (001)-oriented WO3 films, with cauliflower-like surface morphology, were appropriate for the optical detection of cyclohexane gas.

  16. Structural transition in sputter-deposited amorphous germanium films by aging at ambient temperature

    NASA Astrophysics Data System (ADS)

    Okugawa, M.; Nakamura, R.; Ishimaru, M.; Watanabe, K.; Yasuda, H.; Numakura, H.

    2016-06-01

    The structure of amorphous Ge (a-Ge) films prepared by sputter-deposition and the effects of aging at ambient temperature and pressure were studied by pair-distribution-function (PDF) analysis from electron scattering and molecular dynamics simulations. The PDFs of the as-deposited and aged samples for 3-13 months showed that the major peaks for Ge-Ge bonds decrease in intensity and broaden with aging for up to 7 months. In the PDFs of a-Ge of molecular dynamics simulation obtained by quenching liquid at different rates, the major peak intensities of a slowly cooled model are higher than those of a rapidly cooled model. Analyses on short- and medium-range configurations show that the slowly cooled model includes a certain amount of medium-range ordered (MRO) clusters, while the rapidly cooled model includes liquid-like configurations rather than MRO clusters. The similarity between experimental and computational PDFs implies that as-deposited films are similar in structure to the slowly cooled model, whereas the fully aged films are similar to the rapidly cooled model. It is assumed that as they undergo room-temperature aging, the MRO clusters disintegrate and transform into liquid-like regions in the same matrix. This transition in local configurations is discussed in terms of instability and the non-equilibrium of nanoclusters produced by a vapor-deposition process.

  17. Electrical and optical properties of Ta-Si-N thin films deposited by reactive magnetron sputtering

    SciTech Connect

    Oezer, D.; Sanjines, R.; Ramirez, G.; Rodil, S. E.

    2012-12-01

    The electrical and optical properties of Ta{sub x}Si{sub y}N{sub z} thin films deposited by reactive magnetron sputtering from individual Ta and Si targets were studied in order to investigate the effects of nitrogen and silicon contents on both properties and their correlation to the film microstructure. Three sets of fcc-Ta{sub x}Si{sub y}N{sub z} thin films were prepared: sub-stoichiometric Ta{sub x}Si{sub y}N{sub 0.44}, nearly stoichiometric Ta{sub x}Si{sub y}N{sub 0.5}, and over-stoichiometric Ta{sub x}Si{sub y}N{sub 0.56}. The optical properties were investigated by near-normal-incidence reflectivity and ellipsometric measurements in the optical energy range from 0.375 eV to 6.8 eV, while the d.c. electrical resistivity was measured in the van der Pauw configuration from 20 K to 300 K. The optical and electrical measurements were interpreted using the standard Drude-Lorentz model and the so-called grain boundary scattering model, respectively. The electronic properties were closely correlated with the compositional and structural modifications of the Ta{sub x}Si{sub y}N{sub z} films due to variations in the stoichiometry of the fcc-TaN{sub z} system and the addition of Si atoms. According to the nitrogen and silicon contents, fcc-Ta{sub x}Si{sub y}N{sub z} films can exhibit room temperature resistivity values ranging from 10{sup 2} {mu}{Omega} cm to about 6 Multiplication-Sign 10{sup 4} {mu}{Omega} cm. The interpretation of the experimental temperature-dependent resistivity data within the Grain Boundary Scattering model, combined with the results from optical investigations, showed that the mean electron transmission probability G and the free carriers concentration, N, are the main parameters that control the transport properties of these films. The results indicated that the correlation between electrical and optical measurements with the chemical composition and the nanostructure of the Ta{sub x}Si{sub y}N{sub z} thin films provides a pertinent and

  18. Sputtering deposition of P-type SnO films with SnO₂ target in hydrogen-containing atmosphere.

    PubMed

    Hsu, Po-Ching; Hsu, Chao-Jui; Chang, Ching-Hsiang; Tsai, Shiao-Po; Chen, Wei-Chung; Hsieh, Hsing-Hung; Wu, Chung-Chih

    2014-08-27

    In this work, we had investigated sputtering deposition of p-type SnO using the widely used and robust SnO2 target in a hydrogen-containing reducing atmosphere. The effects of the hydrogen-containing sputtering gas on structures, compositions, optical, and electrical properties of deposited SnOx films were studied. Results show that polycrystalline and SnO-dominant films could be readily obtained by carefully controlling the hydrogen gas ratio in the sputtering gas and the extent of reduction reaction. P-type conductivity was unambiguously observed for SnO-dominant films with traceable Sn components, exhibiting a p-type Hall mobility of up to ∼3 cm(2) V(-1) s(-1). P-type SnO thin-film transistors using such SnO-dominant films were also demonstrated.

  19. Deposition and characterization of TiZrV-Pd thin films by dc magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Wang, Jie; Zhang, Bo; Xu, Yan-Hui; Wei, Wei; Fan, Le; Pei, Xiang-Tao; Hong, Yuan-Zhi; Wang, Yong

    2015-12-01

    TiZrV film is mainly applied in the ultra-high vacuum pipes of storage rings. Thin film coatings of palladium, which are added onto the TiZrV film to increase the service life of nonevaporable getters and enhance H2 pumping speed, were deposited on the inner face of stainless steel pipes by dc magnetron sputtering using argon gas as the sputtering gas. The TiZrV-Pd film properties were investigated by atomic force microscope (AFM), scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS) and X-Ray Diffraction (XRD). The grain size of TiZrV and Pd films were about 0.42-1.3 nm and 8.5-18.25 nm respectively. It was found that the roughness of TiZrV films is small, about 2-4 nm, but for Pd film it is large, about 17-19 nm. The PP At. % of Pd in TiZrV/Pd films varied from 86.84 to 87.56 according to the XPS test results. Supported by National Natural Science Funds of China (11205155) and Fundamental Research Funds for the Central Universities (WK2310000041)

  20. Work Function Modification of Tungsten-Doped Indium Oxides Deposited by the Co-Sputtering Method.

    PubMed

    Oh, Gyujin; Jeon, Jia; Lee, Kyoung Su; Kim, Eun Kyu

    2016-05-01

    We have studied the work function modification of tungsten-doped indium oxides (IWOs) through the co-sputtering of indium oxide (In2O3) and indium tungsten oxide (In2O3 80 wt% + WO3 20 wt%) via a radio frequency (RF) magnetron sputtering system. By controlling the elemental deposition of IWOs, the resultant work functions varied from 4.37 eV to 4.1 eV. The IWO thin films showed excellent properties for application as transparent conducting oxide materials in the region of 0 to 2.43 at.% of tungsten versus the total metal content. The carrier concentration of n-type IWO thin films varied from 8.39 x 10(19) cm(-3) to 8.58 x 10(21) cm(-3), while the resistivity varied from 3.15 x 10(-4) Ωcm to 2.26 x 10(-3) Ωcm. The largest measured optical band gap was 3.82 eV determined at 2.43 at.% of tungsten atoms relative to the total amount of metal atoms, while the smallest optical band gap was 3.6 eV at 4.78 at.% of tungsten. IWO films containing more than 2.43 at.% of tungsten atoms relative to the total number of metal atoms revealed an average transmittance of over 80% within the visible light region.

  1. Thermoelectric Properties of Amorphous Zr-Ni-Sn Thin Films Deposited by Magnetron Sputtering

    NASA Astrophysics Data System (ADS)

    Zhou, Yang; Tan, Qing; Zhu, Jie; Li, Siyang; Liu, Chenjin; Lei, Yuxiong; Li, Liangliang

    2015-06-01

    n-Type Zr-Ni-Sn thermoelectric thin films with thickness of 60 nm to 400 nm were deposited by radiofrequency magnetron sputtering. The microstructure of the Zr-Ni-Sn thin films was examined by x-ray diffractometry and high-resolution transmission electron microscopy, revealing an amorphous microstructure. The thermal conductivity of the amorphous films was measured by the ultrafast laser pump-probe thermoreflectance technique, revealing values of 1.4 W m-1 K-1 to 2.2 W m-1 K-1, smaller than that of bulk material because of the amorphous microstructure of the films. The effects of the sputtering power on the composition, Seebeck coefficient, and electrical conductivity of the films were investigated. The largest Seebeck coefficient and power factor were achieved at 393 K, being -112.0 μV K-1 and 2.66 mW K-2 m-1, respectively. The low thermal conductivity and high power factor indicate that amorphous Zr-Ni-Sn thin films could be a promising material for use in thermoelectric microdevices.

  2. Work Function Modification of Tungsten-Doped Indium Oxides Deposited by the Co-Sputtering Method.

    PubMed

    Oh, Gyujin; Jeon, Jia; Lee, Kyoung Su; Kim, Eun Kyu

    2016-05-01

    We have studied the work function modification of tungsten-doped indium oxides (IWOs) through the co-sputtering of indium oxide (In2O3) and indium tungsten oxide (In2O3 80 wt% + WO3 20 wt%) via a radio frequency (RF) magnetron sputtering system. By controlling the elemental deposition of IWOs, the resultant work functions varied from 4.37 eV to 4.1 eV. The IWO thin films showed excellent properties for application as transparent conducting oxide materials in the region of 0 to 2.43 at.% of tungsten versus the total metal content. The carrier concentration of n-type IWO thin films varied from 8.39 x 10(19) cm(-3) to 8.58 x 10(21) cm(-3), while the resistivity varied from 3.15 x 10(-4) Ωcm to 2.26 x 10(-3) Ωcm. The largest measured optical band gap was 3.82 eV determined at 2.43 at.% of tungsten atoms relative to the total amount of metal atoms, while the smallest optical band gap was 3.6 eV at 4.78 at.% of tungsten. IWO films containing more than 2.43 at.% of tungsten atoms relative to the total number of metal atoms revealed an average transmittance of over 80% within the visible light region. PMID:27483882

  3. Effect of deposition pressure on the properties of magnetron-sputter-deposited molybdenum back contacts for CIGS solar cells

    NASA Astrophysics Data System (ADS)

    Li, Weimin; Yan, Xia; Aberle, Armin G.; Venkataraj, Selvaraj

    2015-08-01

    Molybdenum (Mo) thin films were deposited onto soda-lime glass substrates by DC magnetron sputtering of a Mo target at various chamber pressures ranging from 1.5 × 10-3 to 7.5 × 10-3 mbar. The film properties were analysed with regards to their application as back electrode in copper indium gallium diselenide (CIGS) solar cells. It is observed that the resulting film morphology and microstructure were strongly affected by deposition pressure. Mo films deposited at a low pressure possess a high density and a low sheet resistance. These films also have a compact microstructure and a compressive strain, which lead to poor adhesion. The adhesion can be improved by increasing the chamber pressure, which has negative effects on the sheet resistance, optical reflection and porosity of the films. On the basis of these results, a method has been established to fabricate low-resistivity Mo films on soda-lime glass with very good adhesion for CIGS solar cell applications.

  4. Hard boron{endash}suboxide-based films deposited in a sputter-sourced, high-density plasma deposition system

    SciTech Connect

    Doughty, C.; Gorbatkin, S.M.; Tsui, T.Y.; Pharr, G.M.; Medlin, D.L.

    1997-09-01

    Boron{endash}suboxide-based thin films have been deposited on Si in an electron cyclotron resonance microwave plasma using a radio frequency (rf) magnetron as a source of boron. Variations of the oxygen fraction in the deposition ambient and of the rf bias applied to the substrate were related to film tribology. The best films have hardnesses of {approximately}28GPa and moduli of {approximately}240GPa and were deposited in oxygen fractions {lt}1{percent} at substrate temperatures {lt}350{degree}C. The films contain 4{percent}{endash}15{percent} O and {approximately}15{percent}C, with carbon originating from the sputter target. They are amorphous and have surface roughnesses of {approximately}0.2nm. Boron{endash}oxide films may form a self-generating lubricating layer of B(OH){sub 3} in ambient atmosphere. Compositional depth profiling of these films reveals an oxygen-enriched surface of {approximately}10nm thickness. Initial nanoscratch test results indicate that these films fail at high critical loads and have low friction coefficients relative to other hard coatings. {copyright} {ital 1997 American Vacuum Society.}

  5. Fabrication of InGaN thin-film transistors using pulsed sputtering deposition

    PubMed Central

    Itoh, Takeki; Kobayashi, Atsushi; Ueno, Kohei; Ohta, Jitsuo; Fujioka, Hiroshi

    2016-01-01

    We report the first demonstration of operational InGaN-based thin-film transistors (TFTs) on glass substrates. The key to our success was coating the glass substrate with a thin amorphous layer of HfO2, which enabled a highly c-axis-oriented growth of InGaN films using pulsed sputtering deposition. The electrical characteristics of the thin films were controlled easily by varying their In content. The optimized InGaN-TFTs exhibited a high on/off ratio of ~108, a field-effect mobility of ~22 cm2 V−1 s−1, and a maximum current density of ~30 mA/mm. These results lay the foundation for developing high-performance electronic devices on glass substrates using group III nitride semiconductors. PMID:27383148

  6. Fabrication of InGaN thin-film transistors using pulsed sputtering deposition.

    PubMed

    Itoh, Takeki; Kobayashi, Atsushi; Ueno, Kohei; Ohta, Jitsuo; Fujioka, Hiroshi

    2016-07-07

    We report the first demonstration of operational InGaN-based thin-film transistors (TFTs) on glass substrates. The key to our success was coating the glass substrate with a thin amorphous layer of HfO2, which enabled a highly c-axis-oriented growth of InGaN films using pulsed sputtering deposition. The electrical characteristics of the thin films were controlled easily by varying their In content. The optimized InGaN-TFTs exhibited a high on/off ratio of ~10(8), a field-effect mobility of ~22 cm(2) V(-1) s(-1), and a maximum current density of ~30 mA/mm. These results lay the foundation for developing high-performance electronic devices on glass substrates using group III nitride semiconductors.

  7. Photoelectrochemical evidence of nitrogen incorporation during anodizing sputtering--deposited Al-Ta alloys.

    PubMed

    Zaffora, A; Santamaria, M; Di Franco, F; Habazaki, H; Di Quarto, F

    2016-01-01

    Anodic films were grown to 20 V on sputtering-deposited Al-Ta alloys in ammonium biborate and borate buffer solutions. According to glow discharge optical emission spectroscopy, anodizing in ammonium containing solution leads to the formation of N containing anodic layers. Impedance measurements did not evidence significant differences between the dielectric properties of the anodic films as a function of the anodizing electrolyte. Photoelectrochemical investigation allowed evidencing that N incorporation induces a red-shift in the light absorption threshold of the films due to the formation of allowed localized states inside their mobility gap. The estimated Fowler threshold for the internal photoemission processes of electrons resulted to be independent of the anodizing electrolyte confirming that N incorporation does not appreciably affect the density of states distribution close to the conduction band mobility edge. The transport of photogenerated carriers has been rationalized according to the Pai-Enck model of geminate recombination.

  8. Control over the preferred orientation of CIGS films deposited by magnetron sputtering using a wetting layer

    NASA Astrophysics Data System (ADS)

    Yan, Yong; Jiang, Fan; Liu, Lian; Yu, Zhou; Zhang, Yong; Zhao, Yong

    2016-01-01

    A growth method is presented to control the preferred orientation in chalcopyrite CuIn x Ga1- x Se2 (CIGS) thin films grown by magnetron sputtering. Films with (220/204) and (112) preferred orientation as well as randomly oriented films were prepared. The effects of an In2Se3 wetting layer and the working pressure on the texture transition phenomena were examined. A large-grained CIGS film with (220/204) texture was formed at 400°C with the inclusion of a thin (80 nm) In2Se3 layer and liquid phase (excess copper selenide phase) formation, and the reaction mechanism is proposed. The device deposited at 2.0 Pa on an In2Se3 layer exhibited the optimal electrical properties. [Figure not available: see fulltext.

  9. Effect of gas ratio on tribological properties of sputter deposited TiN coatings

    NASA Astrophysics Data System (ADS)

    Chavda, Mahesh R.; Chauhan, Kamlesh V.; Rawal, Sushant K.

    2016-05-01

    Titanium nitride (TiN) coatings were deposited on Si, corning glass, pins of mild steel (MS, ϕ3mm), aluminium (Al, ϕ4mm) and brass (ϕ6mm) substratesby DC magnetron sputtering. The argon and nitrogen (Ar:N2)gas ratio was precisely controlled by Mass Flow Controller (MFC) and was varied systematically at diffract values of 10:10,12:08, 16:04 and 18:02sccm. The structural properties of TiN coatings were characterized by X-ray diffraction (XRD) and its surface topography was studied using field emission scanning electron microscopy (FE-SEM). The tribological properties of TiN coatings were investigated using pin-on-disc tribometer.

  10. Corrosion protection of metal implants by hard biocompatible ceramic coatings deposited by radio-frequency sputtering.

    PubMed

    Sella, C; Martin, J C; Lecoeur, J; Bellier, J P; Harmand, M F; Naji, A; Davidas, J P; Le Chanu, A

    1990-01-01

    Most metals used for orthopaedic and stomatology implants and prostheses belong to the families of titanium or nickel-based and cobalt-based superalloys designed for advanced technology industries (e.g. space, aeronautic and nuclear industries). Ideal materials should be as insoluble and biologically compatible as possible. In the present paper the corrosion behaviour of Ni-Cr and Co-Cr alloys in biological media is evaluated through potentiodynamic polarization tests. It is shown that these metals exhibit some minor release of the component elements and degradation products, which may induce cytotoxic and allergic effects. The corrosion resistance of these alloys can be strongly enhanced by hard ceramic coatings deposited by radio-frequency sputtering. The biocompatibility of coated and uncoated metals is compared from differentiated human cell cultures.

  11. Effect of buffer layer growth temperature on epitaxial GaN films deposited by magnetron sputtering

    SciTech Connect

    Mohanta, P.; Singh, D.; Kumar, R.; Ganguli, T.; Srinivasa, R. S.; Major, S. S.

    2012-06-05

    Epitaxial GaN films were deposited by reactive sputtering of a GaAs target in 100 % nitrogen at 700 deg. C on ZnO buffer layers grown at different substrate temperatures over sapphire substrates. High resolution X-ray diffraction measurements and the corresponding analysis show that the growth temperature of buffer layers significantly affects the micro-structural parameters of GaN epilayer, such as lateral coherence length, tilt and twist, while the vertical coherence length remains unaffected. The optimum substrate temperature for buffer layer growth has been found to be 300 deg. C. High epitaxial quality GaN film grown on such a buffer layer exhibited micro strain of 1.8x10{sup -4} along with screw and edge type dislocation densities of 7.87x10{sup 9} and 1.16x10{sup 11}, respectively.

  12. Controlling the optical properties of sputtered-deposited LixV2O5 films

    NASA Astrophysics Data System (ADS)

    Muñoz-Castro, M.; Berkemeier, F.; Schmitz, G.; Buchheit, A.; Wiemhöfer, H.-D.

    2016-10-01

    This study examines the influence of lithium intercalation on the optical properties of vanadium pentoxide films. The films with a thickness between 400 and 1000 nm were prepared by DC magnetron sputter deposition. Cyclic voltammetry and chronopotentiometry were used to set a well defined lithiation state of the LixV2O5 films between x = 0 and x = 1. The optical properties of these films were measured by optical reflectometry in the wavelength range between 500 and 1700 nm. From the reflectance data, the refractive index and the extinction coefficient of the films were finally calculated as a function of the wavelength using Cauchy's dispersion model. The results confirm that the optical behavior of LixV2O5 films varies significantly upon lithium insertion. It is demonstrated that the changes produced in the optical properties are completely reversible within the limits of permanent structure changes.

  13. Use of sputter-deposited 316L stainless steel ultrathin films for microbial influenced corrosion studies

    SciTech Connect

    Suci, P.A.; Geesey, G.G.; Pedraza, A.J.; Godbole, M.J.

    1993-12-31

    Ultra thin films (12nm) were sputter deposited onto cylindrical germanium internal reflection elements pre-coated with a thin (2 nm) layer of Cr{sub 2}O{sub 3}. Two crystals were inserted into Circle cell flow-through chambers and mounted on the optical bench of an Fourier Transform Infrared (FT-IR) spectrometer. One chamber was maintained as a sterile control while the other was sequentially inoculated with four bacterial species: Psudomonas aeruginosa, Bacillus subtillis, Hafnia alvei, and Desulfovibrio gigas, in that order. The water absorption band (1640cm{sup -4}) was monitored and used to follow that deterioration of the ultra thin films. In this respect, the sterile control and inoculated films exhibited only slight differences during the 1000h course of the experiment. Assay of the visible biofilm that has accumulated on the surface of the inoculated crystal after 1000h revealed that the film incorporated viable cells from all four strains.

  14. Fabrication of InGaN thin-film transistors using pulsed sputtering deposition

    NASA Astrophysics Data System (ADS)

    Itoh, Takeki; Kobayashi, Atsushi; Ueno, Kohei; Ohta, Jitsuo; Fujioka, Hiroshi

    2016-07-01

    We report the first demonstration of operational InGaN-based thin-film transistors (TFTs) on glass substrates. The key to our success was coating the glass substrate with a thin amorphous layer of HfO2, which enabled a highly c-axis-oriented growth of InGaN films using pulsed sputtering deposition. The electrical characteristics of the thin films were controlled easily by varying their In content. The optimized InGaN-TFTs exhibited a high on/off ratio of ~108, a field-effect mobility of ~22 cm2 V-1 s-1, and a maximum current density of ~30 mA/mm. These results lay the foundation for developing high-performance electronic devices on glass substrates using group III nitride semiconductors.

  15. Sputtering deposition of magnetic Ni nanoparticles directly onto an enzyme surface: a novel method to obtain a magnetic biocatalyst.

    PubMed

    Bussamara, Roberta; Eberhardt, Dario; Feil, Adriano F; Migowski, Pedro; Wender, Heberton; de Moraes, Diogo P; Machado, Giovanna; Papaléo, Ricardo M; Teixeira, Sérgio R; Dupont, Jairton

    2013-02-14

    A simple one-step method based on the sputtering deposition of Ni nanoparticles (NP) has been developed for the production of magnetic biocatalysts, avoiding the complications and drawbacks of methods based on chemical functionalisation or coating of magnetic NP. This new technique provided high levels of recovery, reusability and catalytic activity for the lipase-Ni biocatalyst.

  16. Thermal conductivity of nitride films of Ti, Cr, and W deposited by reactive magnetron sputtering

    SciTech Connect

    Jagannadham, Kasichainula

    2015-05-15

    Nitride films of Ti, Cr, and W were deposited using reactive magnetron sputtering from metal targets in argon and nitrogen plasma. TiN films with (200) orientation were achieved on silicon (100) at the substrate temperature of 500 and 600 °C. The films were polycrystalline at lower temperature. An amorphous interface layer was observed between the TiN film and Si wafer deposited at 600 °C. TiN film deposited at 600 °C showed the nitrogen to Ti ratio to be near unity, but films deposited at lower temperature were nitrogen deficient. CrN film with (200) orientation and good stoichiometry was achieved at 600 °C on Si(111) wafer but the film deposited at 500 °C showed cubic CrN and hexagonal Cr{sub 2}N phases with smaller grain size and amorphous back ground in the x-ray diffraction pattern. An amorphous interface layer was not observed in the cubic CrN film on Si(111) deposited at 600 °C. Nitride film of tungsten deposited at 600 °C on Si(100) wafer was nitrogen deficient, contained both cubic W{sub 2}N and hexagonal WN phases with smaller grain size. Nitride films of tungsten deposited at 500 °C were nonstoichiometric and contained cubic W{sub 2}N and unreacted W phases. There was no amorphous phase formed along the interface for the tungsten nitride film deposited at 600 °C on the Si wafer. Thermal conductivity and interface thermal conductance of all the nitride films of Ti, Cr, and W were determined by transient thermoreflectance technique. The thermal conductivity of the films as function of deposition temperature, microstructure, nitrogen stoichiometry and amorphous interaction layer at the interface was determined. Tungsten nitride film containing both cubic and hexagonal phases was found to exhibit much higher thermal conductivity and interface thermal conductance. The amorphous interface layer was found to reduce effective thermal conductivity of TiN and CrN films.

  17. RF Magnetron Sputtering Deposited W/Ti Thin Film For Smart Window Applications

    NASA Astrophysics Data System (ADS)

    Oksuz, Lutfi; Kiristi, Melek; Bozduman, Ferhat; Uygun Oksuz, Aysegul

    2014-10-01

    Electrochromic (EC) devices can change reversible and persistent their optical properties in the visible region (400-800 nm) upon charge insertion/extraction according to the applied voltage. A complementary type EC is a device containing two electrochromic layers, one of which is anodically colored such as vanadium oxide (V2 O5) while the other cathodically colored such as tungsten oxide (WO3) which is separated by an ionic conduction layer (electrolyte). The use of a solid electrolyte such as Nafion eliminates the need for containment of the liquid electrolyte, which simplifies the cell design, as well as improves safety and durability. In this work, the EC device was fabricated on a ITO/glass slide. The WO3-TiO2 thin film was deposited by reactive RF magnetron sputtering using a 2-in W/Ti (9:1%wt) target with purity of 99.9% in a mixture gas of argon and oxygen. As a counter electrode layer, V2O5 film was deposited on an ITO/glass substrate using V2O3 target with the same conditions of reactive RF magnetron sputtering. Modified Nafion was used as an electrolyte to complete EC device. The transmittance spectra of the complementary EC device was measured by optical spectrophotometry when a voltage of +/-3 V was applied to the EC device by computer controlled system. The surface morphology of the films was characterized by scanning electron microscopy (SEM) and atomic force microscopy (AFM) (Fig. 2). The cyclic voltammetry (CV) for EC device was performed by sweeping the potential between +/-3 V at a scan rate of 50 mV/s.

  18. Low-temperature-deposited insulating films of silicon nitride by reactive sputtering and plasma-enhanced CVD: Comparison of characteristics

    NASA Astrophysics Data System (ADS)

    Sato, Masaru; Takeyama, Mayumi B.; Nakata, Yoshihiro; Kobayashi, Yasushi; Nakamura, Tomoji; Noya, Atsushi

    2016-04-01

    The characteristics of SiN x films deposited by reactive sputtering and plasma-enhanced chemical vapor deposition (PECVD) are examined to obtain high-density films at low deposition temperatures. PECVD SiN x films deposited at 200 °C show low densities of 2.14-2.20 g/cm3 regardless of their composition, while their refractive index varies depending on their composition. PECVD requires the substrate temperature to obtain high-density films, because a possible cause of low-density films is the amount of Si-H bond, rather than that of N-H bond, in the films originating from hydrogen incorporated by the insufficient decomposition of SiH4 molecules at low temperatures. The sputtered SiN x films with high density are obtained at a temperature lower than 200 °C and considered a promising candidate for insulating films at low process temperatures.

  19. Sputter target

    DOEpatents

    Gates, Willard G.; Hale, Gerald J.

    1980-01-01

    The disclosure relates to an improved sputter target for use in the deposition of hard coatings. An exemplary target is given wherein titanium diboride is brazed to a tantalum backing plate using a gold-palladium-nickel braze alloy.

  20. Sputtered tungsten-based ternary and quaternary layers for nanocrystalline diamond deposition.

    PubMed

    Walock, Michael J; Rahil, Issam; Zou, Yujiao; Imhoff, Luc; Catledge, Shane A; Nouveau, Corinne; Stanishevsky, Andrei V

    2012-06-01

    Many of today's demanding applications require thin-film coatings with high hardness, toughness, and thermal stability. In many cases, coating thickness in the range 2-20 microm and low surface roughness are required. Diamond films meet many of the stated requirements, but their crystalline nature leads to a high surface roughness. Nanocrystalline diamond offers a smoother surface, but significant surface modification of the substrate is necessary for successful nanocrystalline diamond deposition and adhesion. A hybrid hard and tough material may be required for either the desired applications, or as a basis for nanocrystalline diamond film growth. One possibility is a composite system based on carbides or nitrides. Many binary carbides and nitrides offer one or more mentioned properties. By combining these binary compounds in a ternary or quaternary nanocrystalline system, we can tailor the material for a desired combination of properties. Here, we describe the results on the structural and mechanical properties of the coating systems composed of tungsten-chromium-carbide and/or nitride. These WC-Cr-(N) coatings are deposited using magnetron sputtering. The growth of adherent nanocrystalline diamond films by microwave plasma chemical vapor deposition has been demonstrated on these coatings. The WC-Cr-(N) and WC-Cr-(N)-NCD coatings are characterized with atomic force microscopy and SEM, X-ray diffraction, X-ray photoelectron spectroscopy, Raman spectroscopy, and nanoindentation. PMID:22905536

  1. Sputtered tungsten-based ternary and quaternary layers for nanocrystalline diamond deposition.

    PubMed

    Walock, Michael J; Rahil, Issam; Zou, Yujiao; Imhoff, Luc; Catledge, Shane A; Nouveau, Corinne; Stanishevsky, Andrei V

    2012-06-01

    Many of today's demanding applications require thin-film coatings with high hardness, toughness, and thermal stability. In many cases, coating thickness in the range 2-20 microm and low surface roughness are required. Diamond films meet many of the stated requirements, but their crystalline nature leads to a high surface roughness. Nanocrystalline diamond offers a smoother surface, but significant surface modification of the substrate is necessary for successful nanocrystalline diamond deposition and adhesion. A hybrid hard and tough material may be required for either the desired applications, or as a basis for nanocrystalline diamond film growth. One possibility is a composite system based on carbides or nitrides. Many binary carbides and nitrides offer one or more mentioned properties. By combining these binary compounds in a ternary or quaternary nanocrystalline system, we can tailor the material for a desired combination of properties. Here, we describe the results on the structural and mechanical properties of the coating systems composed of tungsten-chromium-carbide and/or nitride. These WC-Cr-(N) coatings are deposited using magnetron sputtering. The growth of adherent nanocrystalline diamond films by microwave plasma chemical vapor deposition has been demonstrated on these coatings. The WC-Cr-(N) and WC-Cr-(N)-NCD coatings are characterized with atomic force microscopy and SEM, X-ray diffraction, X-ray photoelectron spectroscopy, Raman spectroscopy, and nanoindentation.

  2. Deposition and characterization of titania-silica optical multilayers by asymmetric bipolar pulsed dc sputtering of oxide targets

    NASA Astrophysics Data System (ADS)

    Sagdeo, P. R.; Shinde, D. D.; Misal, J. S.; Kamble, N. M.; Tokas, R. B.; Biswas, A.; Poswal, A. K.; Thakur, S.; Bhattacharyya, D.; Sahoo, N. K.; Sabharwal, S. C.

    2010-02-01

    Titania-silica (TiO2/SiO2) optical multilayer structures have been conventionally deposited by reactive sputtering of metallic targets. In order to overcome the problems of arcing, target poisoning and low deposition rates encountered there, the application of oxide targets was investigated in this work with asymmetric bipolar pulsed dc magnetron sputtering. In order to evaluate the usefulness of this deposition methodology, an electric field optimized Fabry Perot mirror for He-Cd laser (λ = 441.6 nm) spectroscopy was deposited and characterized. For comparison, this mirror was also deposited by the reactive electron beam (EB) evaporation technique. The mirrors developed by the two complementary techniques were investigated for their microstructural and optical reflection properties invoking atomic force microscopy, ellipsometry, grazing incidence reflectometry and spectrophotometry. From these measurements the layer geometry, optical constants, mass density, topography, surface and interface roughness and disorder parameters were evaluated. The microstructural properties and spectral functional characteristics of the pulsed dc sputtered multilayer mirror were found to be distinctively superior to the EB deposited mirror. The knowledge gathered during this study has been utilized to develop a 21-layer high-pass edge filter for radio photoluminescence dosimetry.

  3. Non-conducting interfaces of LaAlO{sub 3}/SrTiO{sub 3} produced in sputter deposition: The role of stoichiometry

    SciTech Connect

    Dildar, I. M.; Boltje, D. B.; Hesselberth, M. H. S.; Aarts, J.; Xu, Q.; Zandbergen, H. W.; Harkema, S.

    2013-03-25

    We have investigated the properties of interfaces between LaAlO{sub 3} films grown on SrTiO{sub 3} substrates singly terminated by TiO{sub 2}. We used RF sputtering in a high-pressure oxygen atmosphere. The films are smooth, with flat surfaces. Transmission electron microscopy shows sharp and continuous interfaces with some slight intermixing. The elemental ratio of La to Al, measured by the energy dispersive X-ray technique, is found to be 1.07. Importantly, we find these interfaces to be non-conducting, indicating that the sputtered interface is not electronically reconstructed in the way reported for films grown by pulsed laser deposition because of the different interplays among stoichiometry, mixing, and oxygen vacancies.

  4. Molecular dynamics analysis of metal surface sputtering due to bombardment of high energy particles

    SciTech Connect

    Kumar, K. Kishore; Donbosco, Ferdin Sagai; Kumar, Rakesh

    2014-12-09

    Dependence of sputtering yield of Cu (100) and Ni (100) metal surface by bombardment of 200 Ar ions at various energies and angles of projections is investigated in this paper. The sputtering yield has been calculated by performing molecular dynamics simulation and the same is compared with experiments and theoretical predictions wherever possible. Additionally the kinetic energy, velocity and scattering angle distribution for sputtered and incident atoms are also observed. The results obtained from the present molecular dynamics simulations are found to be in good agreement with experimental data and theoretical estimates. It is observed that the sputtering yield increases as the energy of the bombarding ion increases. Furthermore as the incidence angle increases, the sputtering yield increases until a specific angle and then decreases as normal incidence is approached.

  5. Sputtering of cobalt and chromium by argon and xenon ions near the threshold energy region

    NASA Technical Reports Server (NTRS)

    Handoo, A. K.; Ray, P. K.

    1993-01-01

    Sputtering yields of cobalt and chromium by argon and xenon ions with energies below 50 eV are reported. The targets were electroplated on copper substrates. Measurable sputtering yields were obtained from cobalt with ion energies as low as 10 eV. The ion beams were produced by an ion gun. A radioactive tracer technique was used for the quantitative measurement of the sputtering yield. Co-57 and Cr-51 were used as tracers. The yield-energy curves are observed to be concave, which brings into question the practice of finding threshold energies by linear extrapolation.

  6. Effect of sputtering power on Cd/Zn atomic ratio and optical properties of Cu2ZnxCd1-xSnS4 thin films deposited by magnetron sputtering: An experimental and first-principle study

    NASA Astrophysics Data System (ADS)

    Xu, Na; Li, Pingting; Hao, Yunxing; Wang, Xin; Meng, Lei

    2016-09-01

    Cu2ZnxCd1-xSnS4 (CZCTS) thin films were deposited on soda-lime glass (SLG) substrates by rf magnetron sputtering. It is found that the Cd/Zn atomic ratio of kesterite CZCTS increases with the enhancement of sputtering power. The structural, surface morphology and optical properties of the CZCTS thin films deposited at different sputtering power were systemically investigated. The X-ray diffraction (XRD) measurements indicate that all CZCTS thin films are polycrystalline with kesterite structure and no impurity phase is observed. The variation of Cd/Zn atomic ratio in CZCTS results in the shift of the optical bandgap.

  7. Sputtering and ion plating

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The proceedings of a conference on sputtering and ion plating are presented. Subjects discussed are: (1) concepts and applications of ion plating, (2) sputtering for deposition of solid film lubricants, (3) commercial ion plating equipment, (4) industrial potential for ion plating and sputtering, and (5) fundamentals of RF and DC sputtering.

  8. Study on re-sputtering during CN{sub x} film deposition through spectroscopic diagnostics of plasma

    SciTech Connect

    Liang, Peipei; Yang, Xu; Li, Hui; Cai, Hua; Sun, Jian; Xu, Ning; Wu, Jiada

    2015-10-15

    A nitrogen-carbon plasma was generated during the deposition of carbon nitride (CN{sub x}) thin films by pulsed laser ablation of a graphite target in a discharge nitrogen plasma, and the optical emission of the generated nitrogen-carbon plasma was measured for the diagnostics of the plasma and the characterization of the process of CN{sub x} film deposition. The nitrogen-carbon plasma was recognized to contain various species including nitrogen molecules and molecular ions excited in the ambient N{sub 2} gas, carbon atoms and atomic ions ablated from the graphite target and CN radicals. The temporal evolution and spatial distribution of the CN emission and their dependence on the substrate bias voltage show two groups of CN radicals flying in opposite directions. One represents the CN radicals formed as the products of the reactions occurring in the nitrogen-carbon plasma, revealing the reactive deposition of CN{sub x} film due to the reactive expansion of the ablation carbon plasma in the discharge nitrogen plasma and the effective formation of gaseous CN radicals as precursors for CN{sub x} film growth. The other one represents the CN radicals re-sputtered from the growing CN{sub x} film by energetic plasma species, evidencing the re-sputtering of the growing film accompanying film growth. And, the re-sputtering presents ion-induced sputtering features.

  9. Influence of oxygen on characteristics of Zn(O,S) thin films deposited by RF magnetron sputtering

    SciTech Connect

    Choi, Ji Hyun; Garay, Adrian Adalberto; Hwang, Su Min; Chung, Chee Won

    2015-07-15

    Zn(O,S) thin films were successfully deposited by reactive sputtering using Ar and O{sub 2} gas mixtures at 473 K. X-ray diffraction patterns revealed that the well crystallized Zn(O,S) films were deposited with increasing oxygen concentration in O{sub 2}/Ar, resulting in a shift of the Zn peak of 28.5° to a higher angle, closer to the ZnO peak of 34.4°. Zn(O,S) films were composed of grains agglomerated from small particles, which grew gradually with increasing oxygen concentration. The depth profiles and energy dispersive spectroscopy results of the films indicated that the O/(O+S) ratio increased from 0.04 to 0.81, and all Zn(O,S) films were Zn rich with uniform concentrations of each component. X-ray photoelectron spectroscopy revealed that, as the oxygen concentration increased to 2%, the ZnS films were transformed to Zn(O,S) films via substitution of oxygen for sulfur.

  10. Growth and surface characterization of TiNbZr thin films deposited by magnetron sputtering for biomedical applications.

    PubMed

    Tallarico, D A; Gobbi, A L; Paulin Filho, P I; Maia da Costa, M E H; Nascente, P A P

    2014-10-01

    Low modulus of elasticity and the presence of non-toxic elements are important criteria for the development of materials for implant applications. Low modulus Ti alloys can be developed by designing β-Ti alloys containing non-toxic alloying elements such as Nb and Zr. Actually, most of the metallic implants are produced with stainless steel (SS) because it has adequate bulk properties to be used as biomaterials for orthopedic or dental implants and is less expensive than Ti and its alloys, but it is less biocompatible than them. The coating of this SS implants with Ti alloy thin films may be one alternative to improve the biomaterial properties at a relatively low cost. Sputtering is a physical deposition technique that allows the formation of nanostructured thin films. Nanostructured surfaces are interesting when it comes to the bone/implant interface due to the fact that both the surface and the bone have nanoscale particle sizes and similar mechanical properties. TiNbZr thin films were deposited on both Si(111) and stainless steel (SS) substrates. The TiNbZr/Si(111) film was used as a model system, while the TiNbZr/SS film might improve the biocompatibility and extend the life time of stainless steel implants. The morphology, chemical composition, Young's modulus, and hardness of the films were analyzed by atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), energy-dispersive X-ray spectroscopy (EDS), and nanoindentation.

  11. Secondary Ions Sputtered by Low Energy Ion Bombardment of Copper and Aluminum Surfaces.

    NASA Astrophysics Data System (ADS)

    Chen, Liang-Yu.

    1995-11-01

    We have bombarded Cu and Al surfaces with rm O_2^+ ions and measured the relative yields of secondary ions in the energy range from 50 to 500 eV. We have determined both the relative yield as a function of incident ion energy and the kinetic energy distributions of the ejected ions for selected incident ion energies. In addition to looking at rm Cu^+ ions from Cu and rm Al ^+ ions from Al, we have investigated ion signals from alkali impurities in the targets. For the Cu surface, ions ejected by rm Ar^+ bombardment were examined both before and after sputter cleaning of the surface. Data on beam energy dependent secondary ion yields from the literature and this investigation have been fit by an exponential formula Acdotexp( -B/(C + E)), where A, B and C are fitting parameters. The results, with standard deviations for fitting parameters, are reported. A distinct plateau structure has been found for beam energy dependent yields of rm Na^+ and rm K^+ ions sputtered from untreated (long existing) Cu surfaces. A series of well controlled experiments indicate that this structure is caused by a surface excess of sodium and potassium at the surfaces of copper samples. The calculation of beam energy dependent energy deposition shows that the energy deposited on the top surface of a polycrystal copper target by oxygen ions rm (O_2^+) does not further increase with the increase of beam energy above 250 eV. This result very well explains the beam energy dependence of the yield of secondary alkali ions contributed from the surface excess. Combined with the experimental data, thermodynamic calculations indicate that the positive surface excess of alkali metals near Cu surfaces is due to their segregation near the copper surface. Thus, the data for secondary ion yield vs. beam energy at low energy may provide a very surface sensitive probe with high spatial resolution (monolayer) for investigating segregation near solid material surfaces. Compared with secondary ion signals

  12. Dielectric, optical and electric studies on nanocrystalline Ba5Nb4O15 thin films deposited by RF magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Anil Kumar, C.; Pamu, D.

    2015-06-01

    We report the fabrication of nanocrystalline Ag/BNO/Pt/Ti/SiO2/Si thin film capacitors by RF magnetron sputtering with different film thicknesses. The effect of Ba5Nb4O15 (BNO) thickness on structural, microstructural, electrical, optical and dielectric properties is investigated for the first time. BNO sputtering target prepared is by mechanochemical synthesis method to eliminate the subordinate phases. As deposited thin films were X-ray amorphous and crystallinity is induced after annealing at 700 °C. Upon annealing, refractive indices of the films enhanced whereas the bandgap is decreased and are in the range of 1.89-2.16 and 4.07-4.24, respectively. With an increase in thickness, the dielectric properties improved substantially, which is described by the representation of a dead layer connected in series with a bulk region of the BNO film. The extracted values of thickness and dielectric constant for the dead layer found to be 15.21 nm and 37.03, correspondingly. The activation energy of the mobile charge carriers obtained using the Arrhenius relation are found to be 0.254, 0.036 and 0.027 eV, for the films with 150, 250 and 450 nm, respectively. The leakage current density found to decrease with thickness and found to be 2.5 × 10-6 A/cm2 at applied voltage of 50 kV/cm. The J-E characteristics of the BNO films show a combined response of grain, grain boundaries and film-electrode interfaces. It is interesting to note that in the negative electric field region, conduction is ohmic in nature whereas in the positive field region BNO films exhibit both ohmic and the space charge-limited current mechanisms. The achieved dielectric, electrical and optical properties make these films suitable for MIC, CMOS and optoelectronic applications.

  13. Thermoelectric properties of Al-doped Mg2Si thin films deposited by magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Chen, Zhi-jian; Zhou, Bai-yang; Li, Jian-xin; Wen, Cui-lian

    2016-11-01

    The Al-doped Mg2Si thin films were fabricated by two-target alternative magnetron sputtering technique, and the influences of different Al doping contents on the thermoelectric properties of Al-doped Mg2Si thin films were investigated. The compositions, crystal structures, electronic transport properties and thermoelectric properties of the thin films were examined using energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), Hall coefficient measurement and Seebeck coefficient measurement system, respectively. The EDS results show that the thin films doped with Al target sputtering power of 30 W, 60 W and 90 W have the Al content of 0.68 at.%, 1.56 at.% and 2.85 at.%, respectively. XRD results indicate that the diffraction peaks of Mg2Si become stronger with increasing Al dopant. The results of Hall coefficient measurement and Seebeck coefficient measurement system reveal that all the samples are n-type. The conductivities of Al-doped Mg2Si thin films are significantly greater than that of undoped Mg2Si thin film, and increase with increasing Al doping content. With the increase of temperature, the absolute value of the Seebeck coefficients of Mg2Si base thin films increase firstly and then decrease. The maximum power factor obtained is 3.8 mW m-1 k-2 for 1.56 at.% Al-doped Mg2Si thin film at 573 K.

  14. From zirconia to yttria: Sampling the YSZ phase diagram using sputter-deposited thin films

    NASA Astrophysics Data System (ADS)

    Götsch, Thomas; Wallisch, Wolfgang; Stöger-Pollach, Michael; Klötzer, Bernhard; Penner, Simon

    2016-02-01

    Yttria-stabilized zirconia (YSZ) thin films with varying composition between 3 mol% and 40 mol% have been prepared by direct-current ion beam sputtering at a substrate temperature of 300 °C, with ideal transfer of the stoichiometry from the target to the thin film and a high degree of homogeneity, as determined by X-ray photoelectron and energy-dispersive X-ray spectroscopy. The films were analyzed using transmission electron microscopy, revealing that, while the films with 8 mol% and 20 mol% yttria retain their crystal structure from the bulk compound (tetragonal and cubic, respectively), those with 3 mol% and 40 mol% Y2O3 undergo a phase transition upon sputtering (from a tetragonal/monoclinic mixture to purely tetragonal YSZ, and from a rhombohedral structure to a cubic one, respectively). Selected area electron diffraction shows a strong texturing for the three samples with lower yttria-content, while the one with 40 mol% Y2O3 is fully disordered, owing to the phase transition. Additionally, AFM topology images show somewhat similar structures up to 20 mol% yttria, while the specimen with the highest amount of dopant features a lower roughness. In order to facilitate the discussion of the phases present for each sample, a thorough review of previously published phase diagrams is presented.

  15. Study of physical properties of carbon nanotube thin films deposited by DC magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Mostoufirad, Sanaz; Elahi, Seyyed Mohammad; Saviz, Shahrooz

    2014-01-01

    Cu-incorporated amorphous carbon thin films containing carbon nanotubes have been prepared by DC-magnetron sputtering using a bi-component Cu-C composite target. The properties of the films have been investigated using X-ray diffraction, energy dispersive X-ray analysis, atomic force microscopy, Furrier transform infrared, Raman and UV-Vis spectroscopies. The results show that the films on a large scale are amorphous with major distorted sp2 graphite bonds, but carbon nanotubes are locally formed in the bulk of the films. Sputtering simulations show that the chemical composition of the films is Cu0.066C0.934. Cu addition results in the formation of a new type of carbon nanotube (CNT) with new radial breathing modes located at 236 cm-1. Cu induces an increase in the density of defects due to bundles of CNTs. This has also been identified in the optical spectroscopy with the observation of a reduction in the band gap with more than 1 eV. Moreover, films are transparent in the visible range and highly reflective in the mid-infrared region, and their sheet resistance is comparable to that of conventional transparent conductive electrodes.

  16. Indium tin oxide films deposited by thermionic-enhanced DC magnetron sputtering on unheated polyethylene terephthalate polymer substrate

    SciTech Connect

    Lan, Y.F.; Peng, W.C.; Lo, Y.H.; He, J.L.

    2009-08-05

    Indium tin oxide thin films were deposited onto polyethylene terephthalate substrates via thermionic enhanced DC magnetron sputtering at low substrate temperatures. The structural, optical and electrical properties of these films are methodically investigated. The results show that compared with traditional sputtering, the films deposited with thermionic emission exhibit higher crystallinity, and their optical and electrical properties are also improved. Indium tin oxide films deposited by utilizing thermionic emission exhibit an average visible transmittance of 80% and an electrical resistivity of 4.5 x 10{sup -4} {Omega} cm, while films made without thermionic emission present an average visible transmittance of 74% and an electrical resistivity of 1.7 x 10{sup -3} {Omega} cm.

  17. Structural investigations of sputter deposited thin films: reflection mode EXAFS, specular and non specular X-ray scattering

    NASA Astrophysics Data System (ADS)

    Lützenkirchen-Hecht, Dirk; Frahm, Ronald

    2000-06-01

    The extended X-ray absorption fine structure technique (EXAFS) in the reflection mode was used for the ex situ investigation of sputter deposited thin films on float glass substrates. We show that a detailed analysis of the reflectivity fine structure enables the extraction of short-range order structural information such as bond distances, coordination numbers and Debye-Waller factors. The surface roughness and the density of the thin films were determined from specular and non-specular X-ray scattering experiments. Polycrystalline Ag and Au films prepared by DC-sputtering in Ar atmospheres were investigated to show the potential of the technique. Both systems reveal a polycrystalline short-range order structure similar to that of the respective bulk materials. In contrast, amorphous structures with significantly reduced densities were found for Ta 2O 5 thin films prepared by reactive sputtering in pure O 2-atmospheres.

  18. Fiber textures of titanium nitride and hafnium nitride thin films deposited by off-normal incidence magnetron sputtering

    SciTech Connect

    Deniz, D.; Harper, J. M. E.

    2008-09-15

    We studied the development of crystallographic texture in titanium nitride (TiN) and hafnium nitride (HfN) films deposited by off-normal incidence reactive magnetron sputtering at room temperature. Texture measurements were performed by x-ray pole figure analysis of the (111) and (200) diffraction peaks. For a deposition angle of 40 deg. from substrate normal, we obtained TiN biaxial textures for a range of deposition conditions using radio frequency (rf) sputtering. Typically, we find that the <111> orientation is close to the substrate normal and the <100> orientation is close to the direction of the deposition source, showing substantial in-plane alignment. We also introduced a 150 eV ion beam at 55 deg. with respect to substrate normal during rf sputtering of TiN. Ion beam enhancement caused TiN to align its out-of-plane texture along <100> orientation. In this case, (200) planes are slightly tilted with respect to the substrate normal away from the ion beam source, and (111) planes are tilted 50 deg. toward the ion beam source. For comparison, we found that HfN deposited at 40 deg. without ion bombardment has a strong <100> orientation parallel to the substrate normal. These results are consistent with momentum transfer among adatoms and ions followed by an increase in surface diffusion of the adatoms on (200) surfaces. The type of fiber texture results from a competition among texture mechanisms related to surface mobilities of adatoms, geometrical, and directional effects.

  19. Studies on Nanostructure Aluminium Thin Film Coatings Deposited using DC magnetron Sputtering Process

    NASA Astrophysics Data System (ADS)

    Singh M, Muralidhar; G, Vijaya; MS, Krupashankara; Sridhara, B. K.; Shridhar, T. N.

    2016-09-01

    Nanostructured thin film metallic coatings has become an area of intense research particularly in applications related solar, sensor technologies and many other optical applications such as laser windows, mirrors and reflectors. Thin film metallic coatings were deposited using DC magnetron sputtering process. The deposition rate was varied to study its influence on optical behavior of Aluminum thin films at a different argon flow rate. Studies on the optical response of these nanostructure thin film coatings were characterized using UV-VIS-NIR spectrophotometer with integrating sphere in the wavelength range of (250-2500nm) and Surface morphology were carried out using atomic force microscope with roughness ranging from 2 to 20nm and thickness was measured using Dektak measuring instrument. The reflection behavior of aluminium coatings on polycarbonate substrates has been evaluated. UV-VIS-NIR Spectrophotometer analysis indicates higher reflectance of 96% for all the films in the wavelength range of 250 nm to 2500 nm. Nano indentation study revealed that there was a considerable change in hardness values of the films prepared at different conditions.

  20. Characterization and Performance of Magnetron-Sputtered Zirconium Coatings Deposited on 9Cr-1Mo Steel

    NASA Astrophysics Data System (ADS)

    Singh, Akash; Murugesan, Somasundaram; Parameswaran, P.; Priya, R.; Thirumurugessan, R.; Muthukumar, N.; Mohandas, E.; Kamachi Mudali, U.; Krishnamurthi, J.

    2016-09-01

    Zirconium coatings of different thicknesses have been deposited at 773 K on 9Cr-1Mo steel substrate using pulsed DC magnetron sputtering. These coatings were heat treated in vacuum at two different temperatures (1173 and 1273 K) for one hour. X-ray diffraction (XRD) analysis of Zr-coated samples revealed the formation of α-phase (HCP structure) of Zr. XRD analysis of heat-treated samples show the presence of Zr3Fe and Zr2Fe intermetallics. The lattice parameter of these coatings was calculated, and it matches with the bulk values when the thickness reached 2µm. In order to understand this, crystallite size and strain values of these coatings were calculated from XRD plots employing Williamson-Hall method. In order to assess the performance of the coatings, systematic corrosion tests were carried out. The corrosion current density calculated from the polarization behavior showed that the corrosion current density of the uncoated 9Cr-1Mo steel was higher than the coated sample before and after the heat treatment. Studies using electrochemical impedance spectroscopy confirmed that the coated steel has higher impedance than the uncoated steel. The corrosion resistance of 9Cr1Mo steel had improved after Zr coating. However, the corrosion resistance of the coating after heat treatment decreased when compared to the as-deposited coating. The microstructure and composition of the surface oxide film influence the corrosion resistance of the Zr-coated 9Cr1Mo steel.

  1. Plasma Processing of Functional Thin Films by Sputtering Deposition Using Metal-Based Powder Target

    NASA Astrophysics Data System (ADS)

    Kawasaki, Hiroharu; Ohshima, Tamiko; Ihara, Takeshi; Arafune, Kento; Taniyama, Daichi; Yagyu, Yoshihito; Suda, Yoshiaki

    2013-11-01

    Titanium-based functional thin films were prepared by a sputtering deposition method using a metal powder target, and the electron density and temperature of the processing plasma were investigated. The electron density of the plasma, measured by a probe method, when using a powder target was higher than that when using a bulk target. The deposition rate when using a powder target was also higher than that in the case of a bulk target. These results may be due to the net-cathode area of the powder target being larger than that of the bulk target. X-ray photoelectron spectroscopy, X-ray diffraction measurements, and atomic force microscopy images of the films prepared using the Ti powder target indicated nearly the same properties as those of films prepared using a Ti bulk target, and the prepared films are oxide. These results suggest that TiO2 thin films can be prepared using a Ti powder target and that the quality is almost the same as those of films prepared using a Ti bulk target.

  2. Deposition of CuInSe2 by the hybrid sputtering and evaporation method

    NASA Astrophysics Data System (ADS)

    Rockett, A.; Agarwal, A.; Yang, L. Chung; Banda, E.; Kenshole, G.

    CuInSe2 thin films deposited by a hybrid process combining magnetron sputtering of Cu and In with evaporation of Se have been analyzed and solar cells have been fabricated. The hybrid technique is shown to produce CuInSe2 films of device quality. Heterojunction Mo/CuInSe2/CdS/ITO/Ni devices with photovoltaic conversion efficiencies as high as 7.7 percent have been tested. Device characteristics for the best device include Voc = 0.385 V, Jsc = 32.6 mA, and a fill factor of 61.3 percent. The device required an air anneal to achieve full efficiency. Results of microstructural analyses using transmission electron microscopy are reported. The results assist in determining what limits the performance of these devices. As-deposited CuInSe2 exhibits no measurable differences as compared with CuInSe2 produced by three-source evaporation. All films contain microtwins, stacking faults, and voids. No evidence was found for second phases in material with metal atom fractions as much as 4 percent off stoichiometry. Defect ordering produces features in the diffraction patterns of single-phase material at positions not normally allowed for the chalcopyrite structure. These measurements are compared with results for single crystals grown with the vertical Bridgeman method by Tomlinson (1986). X-ray photoelectron spectroscopy results characterizing the valence band as a function of film composition are also presented.

  3. Thermochromic VO{sub 2} nanorods made by sputter deposition: Growth conditions and optical modeling

    SciTech Connect

    Li Shuyi; Niklasson, Gunnar A.; Granqvist, Claes G.; Namura, Kyoko; Suzuki, Motofumi

    2013-07-21

    Reactive dc magnetron sputtering onto glass-based substrates yielded deposits of thermochromic VO{sub 2} with well-developed nanorods and nanowires. Their formation was promoted by high substrate temperature (above {approx}500 Degree-Sign C), sufficient film thickness, proper inlet of the reactive gas, dispersed gold 'seeds,' and pronounced substrate roughness. Rutherford back scattering ascertained mass thicknesses, scanning electron microscopy depicted the nanostructures, and glancing incidence X-ray diffraction proved that single-phase VO{sub 2} was normally formed. Spectrophotometric measurements of total and diffuse transmittance and reflectance on VO{sub 2} thin films, at room temperature and {approx}100 Degree-Sign C, allowed us to determine complex dielectric functions below and above the 'critical' temperature for thermochromic switching ({approx}68 Degree-Sign C). These data were then used in computations based on the Bruggeman effective medium theory applied to randomly oriented prolate spheroidal structural units to derive the optical properties of the deposits. Experimental and computed data on spectral absorptance were found to be in good qualitative agreement.

  4. Thermochromic VO2 nanorods made by sputter deposition: Growth conditions and optical modeling

    NASA Astrophysics Data System (ADS)

    Li, Shu-Yi; Namura, Kyoko; Suzuki, Motofumi; Niklasson, Gunnar A.; Granqvist, Claes G.

    2013-07-01

    Reactive dc magnetron sputtering onto glass-based substrates yielded deposits of thermochromic VO2 with well-developed nanorods and nanowires. Their formation was promoted by high substrate temperature (above ˜500 °C), sufficient film thickness, proper inlet of the reactive gas, dispersed gold "seeds," and pronounced substrate roughness. Rutherford back scattering ascertained mass thicknesses, scanning electron microscopy depicted the nanostructures, and glancing incidence X-ray diffraction proved that single-phase VO2 was normally formed. Spectrophotometric measurements of total and diffuse transmittance and reflectance on VO2 thin films, at room temperature and ˜100 °C, allowed us to determine complex dielectric functions below and above the "critical" temperature for thermochromic switching (˜68 °C). These data were then used in computations based on the Bruggeman effective medium theory applied to randomly oriented prolate spheroidal structural units to derive the optical properties of the deposits. Experimental and computed data on spectral absorptance were found to be in good qualitative agreement.

  5. Interface and Strain Energy Revolution Texture Map To Predict Structure and Optical Properties of Sputtered PbSe Thin Films.

    PubMed

    Sun, Xigui; Gao, Kewei; Pang, Xiaolu; Yang, Huisheng

    2016-01-13

    The preferred growth orientation of the sputtered lead selenide (PbSe) thin films on Si(100) substrates was thermodynamically simulated and calculated on the basis of the density functional theory. The results showed that the total free energy variation during the grain growth is dominated by the interface and strain energy minimization under certain conditions, indicating that the preferred growth orientation and related optical properties of the PbSe thin films can be effectively modified by these two energy variations. Thermodynamically, the PbSe[200] and PbSe[220] preferred orientations are obtained when the interface and strain energy minimization dominate the total free energy variation, respectively. A texture map related to the interface and strain energy revolution was obtained, which can be used to predict the structure and optical properties of the sputtered PbSe thin films, and its applicability was confirmed by the real X-ray diffraction and Fourier transform infrared spectroscopy experimental results of four midfrequency sputtered PbSe thin films with designed thickness and microstrain deposited on Si(100) substrates.

  6. Sputtering and ion plating for aerospace applications

    NASA Technical Reports Server (NTRS)

    Spalvins, T.

    1981-01-01

    Sputtering and ion plating technologies are reviewed in terms of their potential and present uses in the aerospace industry. Sputtering offers great universality and flexibility in depositing any material or in the synthesis of new ones. The sputter deposition process has two areas of interest: thin film and fabrication technology. Thin film sputtering technology is primarily used for aerospace mechanical components to reduce friction, wear, erosion, corrosion, high temperature oxidation, diffusion and fatigue, and also to sputter-construct temperature and strain sensors for aircraft engines. Sputter fabrication is used in intricate aircraft component manufacturing. Ion plating applications are discussed in terms of the high energy evaporant flux and the high throwing power. Excellent adherence and 3 dimensional coverage are the primary attributes of this technology.

  7. Morphology and structure evolution of tin-doped indium oxide thin films deposited by radio-frequency magnetron sputtering: The role of the sputtering atmosphere

    SciTech Connect

    Nie, Man Mete, Tayfun; Ellmer, Klaus

    2014-04-21

    The microstructure and morphology evolution of tin-doped indium oxide (ITO) thin films deposited by radio-frequency magnetron sputtering in different sputtering atmospheres were investigated by X-ray diffraction, X-ray reflectivity, and atomic force microscopy. The surface roughness w increases with increasing film thickness d{sub f}, and exhibits a power law behavior w ∼ d{sub f}{sup β}. The roughness decreases with increasing O{sub 2} flow, while it increases with increasing H{sub 2} flow. The growth exponent β is found to be 0.35, 0.75, and 0.98 for depositions in Ar/10%O{sub 2}, pure Ar, and Ar/10%H{sub 2} atmospheres, respectively. The correlation length ξ increases with film thickness also with a power law according to ξ ∼ d{sub f}{sup z} with exponents z = 0.36, 0.44, and 0.57 for these three different gas atmospheres, respectively. A combination of local and non-local growth modes in 2 + 1 dimensions is discussed for the ITO growth in this work.

  8. Reticle blanks for extreme ultraviolet lithography: Ion beam sputter deposition of low defect density Mo/Si multilayers

    SciTech Connect

    Vernon, S.P.; Kania, D.R.; Kearney, P.A.; Levesque, R.A.; Hayes, A.V.; Druz, B.; Osten, E.; Rajan, R.; Hedge, H.

    1996-06-24

    We report on growth of low defect density Mo/Si multilayer (ML) coatings. The coatings were grown in a deposition system designed for EUVL reticle blank fabrication. Complete, 81 layer, high reflectance Mo/Si ML coatings were deposited on 150 mm dia (100) oriented Si wafer substrates using ion beam sputter deposition. Added defects, measured by optical scattering, correspond to defect densities of 2x10{sup -2}/cm{sup 2}. This represents a reduction in defect density of Mo/Si ML coatings by a factor of 10{sup 5}.

  9. Isochemical control over structural state and mechanical properties in Pd-based metallic glass by sputter deposition at elevated temperatures

    NASA Astrophysics Data System (ADS)

    Magagnosc, Daniel J.; Feng, Gang; Yu, Le; Cheng, Xuemei; Gianola, Daniel S.

    2016-08-01

    Sputter deposition, while varying the substrate temperature, is employed to isochemically control the structural state and concomitant mechanical response in a Pd-based metallic glass at the time of glass formation. Increasing the deposition temperature from 333 K to 461 K results in a 33.5% increase in hardness to 9.69 GPa for amorphous films. Further increasing the temperature leads to a decrease in hardness, indicating low and high temperature deposition regimes where increased surface mobility allows access to a more relaxed and more rejuvenated structure, respectively. Through this mechanism we access the range of achievable structural states, from ultrastable to highly liquid-like glasses.

  10. Photoluminescence and structure of sputter-deposited Zn2SiO4:Mn thin films

    NASA Astrophysics Data System (ADS)

    Lee, Yeon Oh; Kim, Joo Han

    2016-01-01

    Mn-doped Zn2SiO4 thin films were deposited on Si (100) substrates by radio-frequency (RF) magnetron sputtering. The deposited films were then annealed at temperatures ranging from 600 to 1200 °C in an air ambient for 1 hour. The as-deposited Zn2SiO4:Mn films exhibited an amorphous structure having a smooth surface and showed no photoluminescence (PL). Annealing at 600 °C was found to have little effect on the properties of the films. The films still remained amorphous with no PL. After annealing at 800 °C, the films were crystallized in a mixture of orthorhombic β-Zn2SiO4 and rhombohedral α-Zn2SiO4 phases. These films showed a PL emission spectrum that could be resolved into two bands, one centered at 520 nm in the green region and the other at 571 nm in the yellow region. The green PL emission originated from the 4T1 → 6A1 intrashell transition of Mn2+ ions in the α-Zn2SiO4 phase while the yellow emission was attributed to Mn2+ ions in β-Zn2SiO4. The films annealed at and above a temperature of 900 °C exhibited only the α-Zn2SiO4 phase, and the PL spectra of these films showed only the green emission band with a peak maximum at around 523 nm. The PL emission intensity increased with increasing annealing temperature, which was due to the better crystalline quality and the rougher surface morphology of the Zn2SiO4:Mn films annealed at higher temperatures.

  11. Characterisation of sputter deposited niobium and boron interlayer in the copper–diamond system

    PubMed Central

    Hell, J.; Chirtoc, M.; Eisenmenger-Sittner, C.; Hutter, H.; Kornfeind, N.; Kijamnajsuk, P.; Kitzmantel, M.; Neubauer, E.; Zellhofer, K.

    2012-01-01

    In most metal matrix composites (MMCs) interfaces are decisive but hard to manipulate. Especially copper–carbon composites can exhibit excellent mechanical and thermal properties only if the Cu/C interface is modified by an optimised interlayer. Due to the excellent thermal conductivity and mechanical stability of diamond this form of carbon is preferred as reinforcement in heat sink materials (copper–diamond composite) which are often subjected to severe thermal and mechanical loads. In the present case niobium and boron interlayers of various thicknesses were deposited on diamond and vitreous carbon substrates by magnetron sputter deposition. After the coverage of all samples by a copper film, a part of the samples was subjected to heat treatment for 30 min at 800 °C under high vacuum (HV) to simulate the thermal conditions during the production of the composite material by uniaxial hot pressing. De-wetting during heat treatment leads to the formation of holes or humps in the Cu coating. This effect was investigated by scanning electron microscopy (SEM) and atomic force microscopy (AFM). A comparison of time-of-flight secondary ion mass spectroscopy (TOF SIMS) profiles of heat treated samples with those of as deposited ones showed the influence of interdiffusion during the heating process. Diffusion behaviour and chemical composition of the interface were also studied by cross sectional transmission electron microscopy (X-TEM) investigations using focused ion beam (FIB) cut samples. The thermal contact resistance (TCR) of the interface was calculated from results obtained from modulated infrared radiometry (IR). Thin interlayers suppressed de-wetting most effectively and consequently the TCR at the Cu–diamond interface was found to decrease. Therefore they are promising candidates for optimising the Cu–diamond interface. PMID:23471515

  12. Surface modification of tantalum pentoxide coatings deposited by magnetron sputtering and correlation with cell adhesion and proliferation in in vitro tests

    NASA Astrophysics Data System (ADS)

    Zykova, A.; Safonov, V.; Goltsev, A.; Dubrava, T.; Rossokha, I.; Donkov, N.; Yakovin, S.; Kolesnikov, D.; Goncharov, I.; Georgieva, V.

    2016-03-01

    The effect was analyzed of surface treatment by argon ions on the surface properties of tantalum pentoxide coatings deposited by reactive magnetron sputtering. The structural parameters of the as-deposited coatings were investigated by means of transmission electron microscopy, atomic force microscopy and scanning electron microscopy. X-ray diffraction profiles and X-ray photoelectron spectra were also acquired. The total surface free energy (SFE), the polar, dispersion parts and fractional polarities, were estimated by the Owens-Wendt-Rabel-Kaeble method. The adhesive and proliferative potentials of bone marrow cells were evaluated for both Ta2O5 coatings and Ta2O5 coatings deposited by simultaneous bombardment by argon ions in in vitro tests.

  13. Co-sputter deposited nickel-copper bimetallic nanoalloy embedded carbon films for electrocatalytic biomarker detection

    NASA Astrophysics Data System (ADS)

    Shiba, Shunsuke; Kato, Dai; Kamata, Tomoyuki; Niwa, Osamu

    2016-06-01

    -mannitol, which should be detected with a low detection limit in urine samples for the diagnosis of severe intestinal diseases. With a Ni/Cu ratio of around 64/36, the electrocatalytic current per metal area was 3.4 times larger than that of an alloy film electrode with a similar composition (~70/30). This improved electrocatalytic activity realized higher stability (n = 60, relative standard deviation (RSD): 4.6%) than the alloy film (RSD: 32.2%) as demonstrated by continuous measurements of d-mannitol. Electronic supplementary information (ESI) available: The concept of UBM co-sputtering for fabricating nanoalloy embedded carbon films. HRTEM images of the NiNP and Ni32Cu68 nanoalloy embedded carbon films. The experimental conditions for sputter deposition, HRTEM, HAADF-STEM, STEM-EDS measurements and continuous flow injection analysis. XPS analysis of the nanoalloy embedded carbon film. Repeated CVs of both the nanoalloy embedded carbon film and the alloy film. Amperometric detection of d-mannitol in the presence of chloride ions. See DOI: 10.1039/c6nr02287a

  14. Optical function evolution of ion-assisted ZrN films deposited by sputtering

    NASA Astrophysics Data System (ADS)

    Valerini, D.; Signore, M. A.; Rizzo, A.; Tapfer, L.

    2010-10-01

    The optical functions (complex dielectric function, complex index of refraction, and complex conductivity) of sputtered zirconium nitride films are derived starting from optical reflectance measurements. Their evolution with the different bias voltages applied during the films growth is used to deduce information about the variations in the electronic structure influenced by a different oxygen and nitrogen content in the films. Improvement in the electrical conductivity is observed at increasing bias voltage due to a reduction in both oxygen contamination and nitrogen content. The separation of the different contributions (free conduction electrons and different electronic transitions) in the optical functions is achieved through the Drude-Lorentz model, allowing the detection of an unusual low-energy electronic transition in films grown at low bias voltages. Through considerations about the electronic structure and about the results coming from other characterization techniques, this transition can be ascribed to the presence of defects/impurities, nitrogen superstoichiometry, or oxygen contamination.

  15. C/CrC nanocomposite coating deposited by magnetron sputtering at high ion irradiation conditions

    SciTech Connect

    Zhou, Z.; Rainforth, W. M.; Gass, M. H.; Bleloch, A.; Ehiassarian, A. P.; Hovsepian, P. Eh.

    2011-10-01

    CrC with the fcc NaCl (B1) structure is a metastable phase that can be obtained under the non-equilibrium conditions of high ion irradiation. A nano-composite coating consisting of amorphous carbon embedded in a CrC matrix was prepared via the unbalanced magnetron sputtering of graphite and Cr metal targets in Ar gas with a high ionized flux (ion-to-neutral ratio Ji/Jn = 6). The nanoscale amorphous carbon clusters self-assembled into layers alternated by CrC, giving the composite a multilayer structure. The phase, microstructure, and composition of the coating were characterized using x-ray diffraction, transmission electron microscopy, and aberration corrected scanning transmission electron microscopy coupled with electron energy loss spectroscopy. The interpretation of the true coating structure, in particular the carbide type, is discussed.

  16. Sputter deposition of ZnS:Mn/SrS:Ce multilayer stacks for use as white phosphor thin film electroluminscent panels

    SciTech Connect

    Ruffner, J.A.; Tuenge, R.T.; Sun, Sey-Shing

    1995-07-01

    Sputter deposition of ZnS:Mn/SrS:Ce multilayered broad-band ``white`` emission thin film electroluminescent (TFEL) stacks has been investigated. To date, deposition of these multilayers has been limited to vacuum evaporation techniques and atomic layer epitaxy, both of which require two different substrate temperatures for growth of high quality ZnS and SrS. This repeated thermal cycling during multilayer deposition can induce stress, defects, and interdiffusion with adversely affect EL performance. Sputter deposition of ZnS and SrS produces high quality TFELs for a wider range of substrate temperatures. Both materials can be sputter deposited at a common temperature (300-350{degrees}C) which eliminates the need for thermal cycling and increases manufacturability. Luminance outputs from sputter deposited ZnS and SrS thin films are comparable to those from evaporated films, making sputtering an attractive alternative deposition technique for these materials. We report on the effects of sputter deposition parameters including chamber pressure, substrate temperature, and H2S process gas partial pressure on the resultant composition and morphology of ZnS:Mn and SrS:Ce thin films and multilayers. Their EL performance was evaluated and correlated to composition and morphology.

  17. Development of sputtering process to deposit stoichiometric zirconia coatings for the inside wall of regeneratively cooled rocket thrust chambers

    NASA Technical Reports Server (NTRS)

    Busch, R.

    1978-01-01

    Thermal barrier coatings of yttria stabilized zirconia and zirconia-ceria mixtures were deposited by RF reactive sputtering. Coatings were 1-2 mils thick, and were deposited on copper cylinders intended to simulate the inner wall of a regeneratively cooled thrust chamber. Coating stoichiometry and adherence were investigated as functions of deposition parameters. Modest deposition rates (approximately 0.15 mil/hr) and subambient sustrate temperatures (-80 C) resulted in nearly stoichiometric coatings which remained adherent through thermal cycles between -196 and 400 C. Coatings deposited at higher rates or substrates temperatures exhibited greater oxygen deficiences, while coatings deposited at lower temperatures were not adherent. Substrate bias resulted in structural changes in the coating and high krypton contents; no clear effect on stoichiometry was observed.

  18. Tribological and structural properties of titanium nitride and titanium aluminum nitride coatings deposited with modulated pulsed power magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Ward, Logan

    The demand for economical high-performance materials has brought attention to the development of advanced coatings. Recent advances in high power magnetron sputtering (HPPMS) have shown to improve tribological properties of coatings. These coatings offer increased wear and oxidation resistance, which may facilitate the use of more economical materials in harsh applications. This study demonstrates the use of novel forms of HPPMS, namely modulated pulsed-power magnetron sputtering (MPPMS) and deep oscillation magnetron sputtering (DOMS), for depositing TiN and Ti1-xAlxN tribological coatings on commonly used alloys, such as Ti-6Al-4V and Inconel 718. Both technologies have been shown to offer unique plasma characteristics in the physical vapor deposition (PVD) process. High power pulses lead to a high degree of ionization compared to traditional direct-current magnetron sputtering (DCMS) and pulsed magnetron sputtering (PMS). Such a high degree of ionization was previously only achievable by cathodic arc deposition (CAD); however, CAD can lead to increased macroparticles that are unfavorable in high friction and corrosive environments. MPPMS, DOMS, and other HPPMS techniques offer unique plasma characteristics and have been shown to produce coatings with refined grain structure, improved density, hardness, adhesion, and wear resistance. Using DOMS and MPPMS, TiN and Ti1-xAlxN coatings were deposited using PMS to compare microstructures and tribological performance. For Ti1-xAlxN, two sputtering target compositions, Ti 0.5Al0.5 and Ti0.3Al0.7, were used to evaluate the effects of MPPMS on the coating's composition and tribological properties. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray diffraction (XRD) were used to characterize microstructure and crystallographic texture. Several tribological properties were evaluated including: wear rate, coefficient of friction, adhesion, and nanohardness. Results show that substrate

  19. Lithium phosphorus oxynitride solid-state thin-film electrolyte deposited and modified by bias sputtering and low temperature annealing

    SciTech Connect

    Chiu, K.-F.; Chen, C. C.; Lin, K. M.; Lo, C. C.; Lin, H. C.; Ho, W.-H.; Jiang, C. S.

    2010-07-15

    Amorphous lithium phosphorus oxynitride (LiPON) solid-state thin-film electrolyte has been deposited and characterized. The thin films were prepared by rf magnetron sputtering under various substrate biases. By fabricating under different substrate biases and applying low temperature annealing (473 K), the properties of the LiPON thin-film electrolytes and the electrolyte/cathode interfaces were modified. The ionic conductivity as high as 9.4x10{sup -4} S m{sup -1} can be obtained by depositing at optimal bias. The performances of the consequently fabricated SnO{sub 2}/LiPON/LiMn{sub 2}O{sub 4} all-solid-state lithium ion thin-film batteries were improved using the bias sputtering technique, due to the enhanced the ionic conductivity and uniform interface.

  20. Structural and optical characterization of terbium doped ZnGa2O4 thin films deposited by RF magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Somasundaram, K.; Girija, K. G.; Sudarsan, V.; Selvin, P. Christopher; Vatsa, R. K.

    2016-05-01

    Tb3+ doped ZnGa2O4 nanophosphor (21 nm) has been synthesized via low temperature polyol route and subsequently thin films of the same were deposited on glass and ITO substrates by RF magnetron sputtering. The films were characterized by X-ray Diffraction and luminescence measurements. The XRD pattern showed that Tb3+ doped ZnGa2O4 nanophosphor has a cubic spinel phase. Luminescence behavior of the nanophosphor and as deposited sputtered film was investigated. The PL emission spectra of nanophosphor gave a broad ZnGa2O4 host emission band along with a strong terbium emission and the thin films showed only broad host emission band and there was no terbium ion emission.

  1. Photocatalytic Properties of TiO2 Thin Films Modified with Ag and Pt Nanoparticles Deposited by Gas Flow Sputtering.

    PubMed

    Maicu, M; Glöss, D; Frach, Peter; Hecker, D; Gerlach, G; Córdoba, José M

    2015-09-01

    In this work, a gas flow sputtering (GFS) process which allows the production and deposition of metal nanoparticles (NPs) in a vacuum environment is described. Aim of the study is to prove the potential of this technology for the fabrication of new TiO2 films with enhanced photocatalytic properties. For this purpose, Ag and Pt NPs have been produced and deposited on photocatalytic float glass coated with TiO2 thin films by magnetron sputtering. The influence of the process parameters and of the metal amount on the final properties of the particles (quantity, size, size distribution, oxidation state etc.,) was widely investigated. Moreover, the effect of the NPs on the photocatalytic activity of the resulting materials was evaluated for the case of the decomposition of stearic acid (SA) during UV-A irradiation. The reduction of the water contact angle (WCA) during the irradiation period was measured in order to test the photo-induced super-hydrophilicity (PSH).

  2. Effect of post-deposition annealing on the structural and electrical properties of RF sputtered hafnium oxide thin films

    NASA Astrophysics Data System (ADS)

    Das, K. C.; Ghosh, S. P.; Tripathy, N.; Bose, G.; Kar, J. P.

    2016-02-01

    Hafnium oxide films were deposited on silicon substrates by RF sputtering at room temperature. Post-deposition rapid thermal annealing of the sputtered HfO2 films was carried out in the temperature range of 400°C to 800°C in oxygen ambient. The structural properties ware studied by X-ray diffraction (XRD), where the enhancement in the crystallinity of HfO2 (1¯11) orientation was observed. The Capacitance —Voltage (C-V) and Current density —Voltage (J-V) characteristics of the annealed dielectric film were investigated employing Al/HfO2/Si Metal Oxide Semiconductor (MOS) capacitor structure. The flatband voltage (V fb ) and oxide charge density (Q ox ) were extracted from the high frequency (1 MHz) C-V curve. Leakage current was found to be minimum for the annealing temperature of 600°C.

  3. Low-temperature method for enhancing sputter-deposited HfO{sub 2} films with complete oxidization

    SciTech Connect

    Tsai, C.-T.; Chang, T.-C.; Liu, P.-T.; Yang, P.-Y.; Kuo, Y.-C.; Kin, K.-T.; Chang, P.-L.; Huang, F.-S.

    2007-07-02

    A low-temperature method, supercritical CO{sub 2} fluid (SCF) technology, is proposed to improve the dielectric properties of ultrathin hafnium oxide (HfO{sub 2}) film at 150 deg. C without significant formation of parasitic oxide at the interface between HfO{sub 2} and Si substrate. In this research, the HfO{sub 2} films were deposited by dc sputter at room temperature and post-treated by SCF which is mixed with 5 vol % propyl alcohol and 5 vol % H{sub 2}O. From high-resolution transmission electron microscopy image, the interfacial oxide of SCF-treated HfO{sub 2} film is only 5 A ring thick. Additionally, the enhancements in the qualities of sputter-deposited HfO{sub 2} film after SCF process are exhibited by x-ray photoelectron spectroscopy and capacitance-voltage (C-V) measurement.

  4. Growing LaAlO{sub 3}/SrTiO{sub 3} interfaces by sputter deposition

    SciTech Connect

    Dildar, I. M.; Neklyudova, M.; Xu, Q.; Zandbergen, H. W.; Harkema, S.; Boltje, D.; Aarts, J.

    2015-06-15

    Sputter deposition of oxide materials in a high-pressure oxygen atmosphere is a well-known technique to produce thin films of perovskite oxides in particular. Also interfaces can be fabricated, which we demonstrated recently by growing LaAlO{sub 3} on SrTiO{sub 3} substrates and showing that the interface showed the same high degree of epitaxy and atomic order as is made by pulsed laser deposition. However, the high pressure sputtering of oxides is not trivial and number of parameters are needed to be optimized for epitaxial growth. Here we elaborate on the earlier work to show that only a relatively small parameter window exists with respect to oxygen pressure, growth temperature, radiofrequency power supply and target to substrate distance. In particular the sensitivity to oxygen pressure makes it more difficult to vary the oxygen stoichiometry at the interface, yielding it insulating rather than conducting.

  5. In/ITO whisker and optoelectronic properties of ITO films deposited by ion beam sputtering

    SciTech Connect

    Shen, Jung-Hsiung; Yeh, Sung-Wei; Teoh, Lay Gaik

    2012-07-15

    ITO films were deposited on a glass substrate using ion beam sputtering, with oxygen flow rates from 0.5 to 2 sccm. The films consisted of randomly oriented ITO nanoparticles and metallic indium (In) with {l_brace}101{r_brace} facets, following the specific crystallographic relationship of [010]{sub In}//[110]{sub ITO}; (001){sub In}//(001){sub ITO} with habit planes (100){sub In}//(011){sub ITO}, when fabricated using a low oxygen flow rate. Oxygen flow rate in excess of 2.0 sccm results in the growth of amorphous films. The epitaxial In nanoparticles probably act as seeds for the development of curved ITO whiskers as small as 10 nm and extend up to 100 nm in length along the [100] direction, with poorly defined shape, possibly due to the tapering and bending of the whisker to form a tilt boundary about the [011] zone axis of the ITO. The ITO whisker growth was facilitated by the In globular tips in the vapor-liquid-solid growth mechanism. The films prepared using a series of oxygen flow rates showed different chemical-bonding states, electric resistivity and optical transparency; as a result of phase and microstructural changes.

  6. Structural, morphological and optical properties of CeO2 thin films deposited by RF sputtering

    NASA Astrophysics Data System (ADS)

    Murugan, R.; Vijayaprasath, G.; Sakthivel, P.; Mahalingam, T.; Ravi, G.

    2016-05-01

    Cerium oxide (CeO2) thin films were deposited on glass substrates by sputtering at various substrate temperatures. CeO2 films were characterized by X-ray diffraction, FESEM, PL and Raman analyses. X-ray diffraction patterns of films reveal fcc cubic structure with preferential orientation along (2 2 0) crystallographic plane. SEM images show that the particles are uniformly distributed on the film surface. The films were found to be well adheared to the substrates and pin holes are not observed on the surface of the films. PL spectra exhibits a strong near band-gap-edge emission and a broad blue, green luminescence, which can be assigned to the presence of Ce and O vacancies, amorphous phases, deep level impurities and structural defects. The relative intensity between the different peaks of the bands related to defects or impurities was studied as a tool for quality control of the films. Moreover, vibrational measurements through Raman analysis were carried out and the results are discussed.

  7. Temperature dependent structural, optical and hydrophobic properties of sputtered deposited HfO{sub 2} films

    SciTech Connect

    Dave, V.; Dubey, P.; Chandra, R.; Gupta, H. O.

    2014-01-28

    Hafnium oxide being high-k dielectric has been successfully utilized in electronic and optical applications. Being thermodynamically stable and having good mechanical strength, it can be used as a protective coating for outdoor HV insulators which are suffering from surface flashover problem due to contamination. In this paper, we are investigating the effect of substrate temperature on structural, optical and hydrophobic properties of hafnium oxide coating deposited over glass insulators by DC magnetron sputtering. X-ray diffraction is applied to determine the crystalline phase and crystallite size of the film. The morphology of the samples is examined using atomic force microscopy. The optical properties are studied using UV-vis-NIR spectrophotometer. The wettability of the film is investigated using contact angle meter. The thickness is measured using surface profilometer and verified through optical data. The relationship between substrate temperature with grain size, roughness, refractive index, and hydrophobicity is manifested. The maximum contact angle for HfO{sub 2} film was found to be 106° at 400°C.

  8. Sputter deposition of thin film MIM capacitors on LTCC substrates for RF bypass and filtering applications

    SciTech Connect

    Murray, Jack; O'Keefe, Matthew J.; Wilder, Kristina; Eatinger, Ryan; Kuhn, William; Krueger, Daniel S.; Wolf, J. Ambrose

    2011-08-31

    Thin film capacitors for RF bypass and filtering applications were sputter deposited onto low temperature co-fired ceramic (LTCC) substrates. The capacitors were configured in a metal-insulator-metal (MIM) design featuring 200 nm thick Al electrodes and a 300 nm thick Al{sub 2}O{sub 3} dielectric layer, with dimensions varied between ~150x150 μm and ~750x750 μm. DC current-voltage measurements (E ≤ 5 MV/cm) coupled with impedance analysis (≤15 MHz) was used to characterize the resulting devices. More than 90% of the devices functioned as capacitors with high DC resistance (>20 MΩ) and low loss (tan δ <0.1). A second set of capacitors were made under the same experimental conditions with device geometries optimized for high frequency (≥200 MHz) applications. These capacitors featured temperature coefficient of capacitance (TCC) values between 500 and 1000 ppm/°C as well as low loss and high self-resonant frequency performance (ESR <0.6 Ohms at self-resonance of 5.7 GHz for 82 pF). Capacitance and loss values were comparable between the capacitor structures of similar areas at the different frequency regimes.

  9. Growth dynamics of reactive-sputtering-deposited AlN films

    SciTech Connect

    Auger, M.A.; Vazquez, L.; Sanchez, O.; Jergel, M.; Cuerno, R.; Castro, M.

    2005-06-15

    We have studied the surface kinetic roughening of AlN films grown on Si(100) substrates by dc reactive sputtering within the framework of the dynamic scaling theory. Films deposited under the same experimental conditions for different growth times were analyzed by atomic force microscopy and x-ray diffraction. The AlN films display a (002) preferred orientation. We have found two growth regimes with a crossover time of 36 min. In the first regime, the growth dynamics is unstable and the films present two types of textured domains, well textured and randomly oriented, respectively. In contrast, in the second regime the films are homogeneous and well textured, leading to a relative stabilization of the surface roughness characterized by a growth exponent {beta}=0.37{+-}0.03. In this regime a superrough scaling behavior is found with the following exponents: (i) Global exponents: roughness exponent {alpha}=1.2{+-}0.2 and {beta}=0.37{+-}0.03 and coarsening exponent 1/z=0.32{+-}0.05; (ii) local exponents: {alpha}{sub loc}=1, {beta}{sub loc}=0.32{+-}0.01. The differences between the growth modes are found to be related to the different main growth mechanisms dominating their growth dynamics: sticking anisotropy and shadowing, respectively.

  10. Cell adhesion on NiTi thin film sputter-deposited meshes.

    PubMed

    Loger, K; Engel, A; Haupt, J; Li, Q; Lima de Miranda, R; Quandt, E; Lutter, G; Selhuber-Unkel, C

    2016-02-01

    Scaffolds for tissue engineering enable the possibility to fabricate and form biomedical implants in vitro, which fulfill special functionality in vivo. In this study, free-standing Nickel–Titanium(NiTi) thin film mesheswere produced by means of magnetron sputter deposition.Meshes contained precisely defined rhombic holes in the size of 440 to 1309 μm2 and a strut width ranging from 5.3 to 9.2 μm. The effective mechanical properties of the microstructured superelastic NiTi thin film were examined by tensile testing. These results will be adapted for the design of the holes in the film. The influence of hole and strut dimensions on the adhesion of sheep autologous cells (CD133+) was studied after 24 h and after seven days of incubation. Optical analysis using fluorescence microscopy and scanning electron microscopy showed that cell adhesion depends on the structural parameters of the mesh. After 7 days in cell culture a large part of the mesh was covered with aligned fibrous material. Cell adhesion is particularly facilitated on meshes with small rhombic holes of 440 μm2 and a strut width of 5.3 μm. Our results demonstrate that free-standing NiTi thin film meshes have a promising potential for applicationsin cardiovascular tissue engineering, particularly for the fabrication of heart valves. PMID:26652414

  11. Photocatalytic efficiency of reusable ZnO thin films deposited by sputtering technique

    NASA Astrophysics Data System (ADS)

    Ahumada-Lazo, R.; Torres-Martínez, L. M.; Ruíz-Gómez, M. A.; Vega-Becerra, O. E.; Figueroa-Torres, M. Z.

    2014-12-01

    The photocatalytic activity of ZnO thin films with different physicochemical characteristics deposited by RF magnetron sputtering on glass substrate was tested for the decolorization of orange G dye aqueous solution (OG). The crystalline phase, surface morphology, surface roughness and the optical properties of these ZnO films were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), atomic force microscopy (AFM) and UV-visible spectroscopy (UV-Vis), respectively. The dye photodecolorization process was studied at acid, neutral and basic pH media under UV irradiation of 365 nm. Results showed that ZnO films grow with an orientation along the c-axis of the substrate and exhibit a wurtzite crystal structure with a (002) preferential crystalline orientation. A clear relationship between surface morphology and photocatalytic activity was observed for ZnO films. Additionally, the recycling photocatalytic abilities of the films were also evaluated. A promising photocatalytic performance has been found with a very low variation of the decolorization degree after five consecutive cycles at a wide range of pH media.

  12. Microstructure and tribological properties of Ti-contained amorphous carbon film deposited by DC magnetron sputtering

    SciTech Connect

    Li, R. L.; Tu, J. P.; Hong, C. F.; Liu, D. G.; Zhou, D. H.; Sun, H. L.

    2009-12-15

    Pure amorphous carbon (a-C) film and that with a small amount of Ti were deposited on high speed steel (W18Cr4V) substrates by means of dc closed field unbalanced magnetron sputtering. The chemical composition and microstructure of the a-C films were performed using x-ray photoelectron spectroscopy, x-ray diffraction, Raman spectra, and transmission electron microscopy. The mechanical and tribological properties were evaluated using a nanoindentor, Rockwell and scratch tests, and a conventional ball-on-disk tribometer, respectively. The pure a-C film showed the high hardness (53 GPa), elastic modulus (289 GPa), but the poor adhesive strength. When adding a small amount of Ti to the a-C film, both the adhesive strength and the tribological properties were improved. The Ti contained a-C film had the low wear rate (1.9x10{sup -17} m{sup 3} N{sup -1} m{sup -1}) and friction coefficient in humid air.

  13. Structure-related antibacterial activity of a titanium nanostructured surface fabricated by glancing angle sputter deposition

    NASA Astrophysics Data System (ADS)

    Sengstock, Christina; Lopian, Michael; Motemani, Yahya; Borgmann, Anna; Khare, Chinmay; Buenconsejo, Pio John S.; Schildhauer, Thomas A.; Ludwig, Alfred; Köller, Manfred

    2014-05-01

    The aim of this study was to reproduce the physico-mechanical antibacterial effect of the nanocolumnar cicada wing surface for metallic biomaterials by fabrication of titanium (Ti) nanocolumnar surfaces using glancing angle sputter deposition (GLAD). Nanocolumnar Ti thin films were fabricated by GLAD on silicon substrates. S. aureus as well as E. coli were incubated with nanostructured or reference dense Ti thin film test samples for one or three hours at 37 °C. Bacterial adherence, morphology, and viability were analyzed by fluorescence staining and scanning electron microscopy and compared to human mesenchymal stem cells (hMSCs). Bacterial adherence was not significantly different after short (1 h) incubation on the dense or the nanostructured Ti surface. In contrast to S. aureus the viability of E. coli was significantly decreased after 3 h on the nanostructured film compared to the dense film and was accompanied by an irregular morphology and a cell wall deformation. Cell adherence, spreading and viability of hMSCs were not altered on the nanostructured surface. The results show that the selective antibacterial effect of the cicada wing could be transferred to a nanostructured metallic biomaterial by mimicking the natural nanocolumnar topography.

  14. Low temperature deposition of transparent conducting ITO/Au/ITO films by reactive magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Kim, Daeil

    2010-01-01

    Transparent conducting indium tin oxide/Au/indium tin oxide (ITO) multilayered films were deposited on unheated polycarbonate substrates by magnetron sputtering. The thickness of the Au intermediated film varied from 5 to 20 nm. Changes in the microstructure, surface roughness and optoelectrical properties of the ITO/Au/ITO films were investigated with respect to the thickness of the Au intermediated layer. X-ray diffraction measurements of ITO single layer films did not show characteristic diffraction peaks, while ITO/Au/ITO films showed an In 2O 3 (2 2 2) characteristic diffraction peak. The optoelectrical properties of the films were also dependent on the presence and thickness of the Au thin film. The ITO 50 nm/Au 10 nm/ITO 40 nm films had a sheet resistance of 5.6 Ω/□ and an average optical transmittance of 72% in the visible wavelength range of 400-700 nm. Consequently, the crystallinity, which affects the optoelectrical properties of ITO films, can be enhanced with Au intermediated films.

  15. Synthesis of Large-Sized Single-Crystal Hexagonal Boron Nitride Domains on Nickel Foils by Ion Beam Sputtering Deposition.

    PubMed

    Wang, Haolin; Zhang, Xingwang; Liu, Heng; Yin, Zhigang; Meng, Junhua; Xia, Jing; Meng, Xiang-Min; Wu, Jinliang; You, Jingbi

    2015-12-22

    Large-sized single-crystal h-BN domains with a lateral size up to 100 μm are synthesized on Ni foils by ion-beam sputtering deposition. The nucleation density of h-BN is dramatically decreased by reducing the concentrations of both active sites and species on the Ni surface through a brief in situ pretreatment of the substrate and optimization of the growth parameters, enabling the growth of large-sized domains.

  16. Defects, stoichiometry, and electronic transport in SrTiO3-δ epilayers: A high pressure oxygen sputter deposition study

    NASA Astrophysics Data System (ADS)

    Ambwani, P.; Xu, P.; Haugstad, G.; Jeong, J. S.; Deng, R.; Mkhoyan, K. A.; Jalan, B.; Leighton, C.

    2016-08-01

    SrTiO3 is not only of enduring interest due to its unique dielectric, structural, and lattice dynamical properties, but is also the archetypal perovskite oxide semiconductor and a foundational material in oxide heterostructures and electronics. This has naturally focused attention on growth, stoichiometry, and defects in SrTiO3, one exciting recent development being such precisely stoichiometric defect-managed thin films that electron mobilities have finally exceeded bulk crystals. This has been achieved only by molecular beam epitaxy, however (and to a somewhat lesser extent pulsed laser deposition (PLD)), and numerous open questions remain. Here, we present a study of the stoichiometry, defects, and structure in SrTiO3 synthesized by a different method, high pressure oxygen sputtering, relating the results to electronic transport. We find that this form of sputter deposition is also capable of homoepitaxy of precisely stoichiometric SrTiO3, but only provided that substrate and target preparation, temperature, pressure, and deposition rate are carefully controlled. Even under these conditions, oxygen-vacancy-doped heteroepitaxial SrTiO3 films are found to have carrier density, mobility, and conductivity significantly lower than bulk. While surface depletion plays a role, it is argued from particle-induced X-ray emission (PIXE) measurements of trace impurities in commercial sputtering targets that this is also due to deep acceptors such as Fe at 100's of parts-per-million levels. Comparisons of PIXE from SrTiO3 crystals and polycrystalline targets are shown to be of general interest, with clear implications for sputter and PLD deposition of this important material.

  17. Combinatorial study of WInZnO films deposited by rf magnetron co-sputtering

    SciTech Connect

    Oh, Byeong-Yun; Park, Jae-Cheol; Lee, Young-Jun; Cha, Sang-Jun; Kim, Joo-Hyung; Kim, Kwang-Young; Kim, Tae-Won; Heo, Gi-Seok

    2011-09-15

    The compositional dependence of co-sputtered tungsten indium zinc oxide (WInZnO) film properties was first investigated by means of a combinatorial technique. Indium zinc oxide (IZO) and WO{sub 3} targets were used with different target power. W composition ratio [W/(In+Zn+W)] was varied between 3 and 30 at% and film thickness was reduced as the sample position moved toward WO{sub 3} target. Furthermore, the optical bandgap energy increased gradually, which might be affected by the reduction in film thickness. All the WInZnO films showed an amorphous phase regardless of the W/(In+Zn+W) ratio. As the W/(In+Zn+W) ratio in WInZnO films increased, the carrier concentration was restricted, causing the increase in electrical resistivity. W cations worked as oxygen binders in determining the electronic properties, resulting in suppressing the formation of oxygen vacancies. Consequentially, W metal cations were effectively incorporated into the WInZnO films as a suppressor against the oxygen vacancies and the carrier generation by employing the combinatorial technique. - Graphical abstract: The film thickness and the sheet resistance (R{sub s}) with respect to the sample position of WInZnO films, which is compositionally graded by rf power for each target, are exhibited. Highlights: > The compositional dependence of co-sputtered WInZnO film properties is first investigated. > W cations work as oxygen binders in determining the electronic properties. > All the WInZnO films show an amorphous phase regardless of the W/(In+Zn+W) ratio. > W metal cations are effectively incorporated into the WInZnO films by the combinatorial technique.

  18. Optimization of thin-film YBa/sub 2/Cu/sub 3/O/sub 7/ deposition by dc sputtering onto sapphire substrates

    SciTech Connect

    Tomlinson, E.J.; Barber, Z.H.; Morris, G.W.; Somekh, R.E.; Evetts, J.E.

    1989-03-01

    The authors report on the deposition of Yba/sub 2/Cu/sub 3/O/sub 7/ thin films onto epitaxial magnesia coated single crystal sapphire substrates at deposition temperatures in the range 600/sup 0/-850/sup 0/C. Using a UHV dc magnetron sputter deposition system with both composite metal and ceramic oxide targets, the dependence of film composition on sputtering parameters has been investigated. Films deposited onto epitaxial magnesia are compared with those deposited directly onto sapphire and yttria stabilized zirconia (YSZ).

  19. Deposition of n-Type Bi2Te3 Thin Films on Polyimide by Using RF Magnetron Co-Sputtering Method.

    PubMed

    Joo, Sung-Jae; Kim, Bong Seo; Min, Bok-Ki; Oh, Min Wook; Lee, Ji-Eun; Ryu, Byung Ki; Lee, Hee Woong; Park, Su Dong

    2015-10-01

    Bi2Te3 thermoelectric thin films were deposited on the flexible polyimide substrates by RF magnetron co-sputtering of a Bi and a Te targets. The influence of the substrate temperature and RF power on the microstructure, chemical composition, and the thermoelectric properties of the sputtered films was investigated by using scanning electron microscopy, X-ray diffraction, energy dispersive X-ray spectroscopy, and in-plane resistivity/Seebeck coefficient measurement. It was shown that the thermoelectric properties of the films depend sensitively on the Bi/Te chemical composition ratio and the substrate temperature, and the layered structure was clearly observed from the cross section of the (00L)-oriented, nearly stoichiometric Bi2Te3 films when the substrate temperature is higher than 250 °C. As-deposited Bi2Te3 films deposited at 300 °C show the highest power factor of 0.97 mW/K(2)m and the Seebeck coefficient of -193 μV/K at 32 °C, which also have (00L) preferred orientation and the layered structure. The durability of the Bi2Te3 films on polyimide against repeated bending was also tested by monitoring the film resistance, and it was concluded that the Bi2Te3 films are applicable reliably on the curved surfaces with the radius of curvature larger than 5 mm.

  20. Improving the growth of Ge/Si islands by modulating the spacing between screen and accelerator grids in ion beam sputtering deposition system

    NASA Astrophysics Data System (ADS)

    Yang, Jie; Zhao, Bo; Wang, Chong; Qiu, Feng; Wang, Rongfei; Yang, Yu

    2016-11-01

    Ge islands were fabricated on Si buffer layer by ion beam sputtering deposition with a spacing between the screen and accelerator grids of either 1 mm or 2 mm. The Si buffer layer exhibits mixed-phase microcrystallinity for samples grown with 1 mm spacing and crystallinity for those with 2 mm spacing. Ge islands are larger and less dense than those grown on the crystalline buffer because of the selective growth mechanism on the microcrystalline buffer. Moreover, the nucleation site of Ge islands formed on the crystalline Si buffer is random. Ge islands grown at different grid-to-grid gaps are characterized by two key factors, namely, divergence half angle of ion beam and crystallinity of buffer layer. High grid-to-grid spacing results in small divergence half angle, thereby enhancing the sputtering energy and redistribution of sputtered atoms. The crystalline volume fraction of the microcrystalline Si buffer was obtained based on the integrated intensity ratio of Raman peaks. The islands show decreased density with decreasing crystalline volume fraction and are difficult to observe at crystalline volume fractions lower than 72%.

  1. Effect of sputter deposited YSZ thin films on the fracture behavior of dental bioceramics

    NASA Astrophysics Data System (ADS)

    Teixeira, Erica Cappelletto Nogueira

    The fracture behavior of dental bioceramic materials was evaluated under physiologic conditions when modified by yttria stabilized zirconia (YSZ) thin film deposition. It was hypothesized that changing the YSZ thin film properties will produce a significant enhancement in the strength of bioceramic materials, ultimately promoting a more fatigue resistant construct. Porcelain, alumina, and zirconia were evaluated in terms of dynamic fatigue for an initial characterization of their fracture behavior. Data showed that strength degradation occurred in all three materials, most drastically in porcelain. Initial strength measurements, focused on depositing YSZ thin films on three unique substrates; porcelain, alumina, and zirconia, were carried out. A significant increase in strength was observed for alumina and porcelain. Since strength alone is not enough to characterize the fracture behavior of brittle materials, coated specimens of porcelain and zirconia were subjected to dynamic fatigue and Weibull analysis. Coated YSZ porcelain specimens showed a significant increase in strength at all tested stressing rates. YSZ coated zirconia specimens showed similar strength values at all stressing rates. The effect of film thickness on porcelain was also evaluated. Data demonstrated that film thickness alone does not appear to control increases in the flexural strength of a modified substrate. It is expected that deposition induced stress in YSZ sputtered films does not change with film thickness. However, a thicker film will generate a larger force at the film/substrate interface, contributing to delamination of the film. It was clear that in order to have a significant improvement in the fracture behavior of porcelain, changing the thickness of the film is not enough. The columnar structure of the YSZ films developed seems to favor an easy path for crack propagation limiting the benefits expected by the coating. The effect of a multilayered film, composed by brittle

  2. Optoelectronic properties of delafossite structure CuCr0.93Mg0.07O2 sputter deposited coatings

    NASA Astrophysics Data System (ADS)

    Sun, Hui; Arab Pour Yazdi, Mohammad; Sanchette, Frederic; Billard, Alain

    2016-05-01

    CuCr0.93Mg0.07O2 thin films with improved optoelectronic properties were deposited by reactive magnetron sputtering on fused quartz substrates. The influence of annealing temperature under vacuum on optoelectronic properties of the films was investigated. The amorphous films annealed under vacuum at temperatures higher than 923 K are single-phased delafossite structure, while impurity phases like CuCr2O4 that affect the optoelectronic properties of the films are detected below 873 K. c-axis orientation is observed for CuCr0.93Mg0.07O2 layers and the annealing temperature window in which the films are single-phased delafossite is much larger with Mg doping (923 K  →  1073 K) than that for undoped films (~953 K). The optical and electrical behaviours of the films are enhanced by Mg substitution and their direct band gap energy of about 3.12-3.14 eV is measured. The film possesses the optimum properties after annealing under vacuum at about 1023 K its average transmittance in the visible region can reach 54.23% while the film’s conductivity is about 0.27 S cm-1.

  3. The atomic structure and chemical composition of HfOx (x < 2) films prepared by ion-beam sputtering deposition

    NASA Astrophysics Data System (ADS)

    Aliev, V. S.; Gerasimova, A. K.; Kruchinin, V. N.; Gritsenko, V. A.; Prosvirin, I. P.; Badmaeva, I. A.

    2016-08-01

    Non-stoichiometric HfOx films of different chemical composition (x < 2) were fabricated by ion-beam sputtering deposition (IBSD) at room temperature. The ratio of O and Hf atoms in films x was varied by setting the O2 partial pressure in a chamber. An effect of chemical composition on the atomic structure of the films was studied by reflection high-energy electron diffraction, x-ray photoelectron spectroscopy and field emission scanning electron microscopy methods. The films were found to be amorphous, consisting only of three components: Hf-metal clusters, Hf4O7 suboxide and stoichiometric HfO2. The relative concentration of these components varies with changing x. The surface of the films contains the increased oxygen content compared to the bulk. It was found that the Hf4O7 suboxide concentration is maximal at x = 1.8. The concept of hafnium oxide film growth by the IBSD method is proposed to explain the lack of suboxides variety in the films and the instability of HfO2, when annealed at high temperature.

  4. Optoelectronic properties of delafossite structure CuCr0.93Mg0.07O2 sputter deposited coatings

    NASA Astrophysics Data System (ADS)

    Sun, Hui; Arab Pour Yazdi, Mohammad; Sanchette, Frederic; Billard, Alain

    2016-05-01

    CuCr0.93Mg0.07O2 thin films with improved optoelectronic properties were deposited by reactive magnetron sputtering on fused quartz substrates. The influence of annealing temperature under vacuum on optoelectronic properties of the films was investigated. The amorphous films annealed under vacuum at temperatures higher than 923 K are single-phased delafossite structure, while impurity phases like CuCr2O4 that affect the optoelectronic properties of the films are detected below 873 K. c-axis orientation is observed for CuCr0.93Mg0.07O2 layers and the annealing temperature window in which the films are single-phased delafossite is much larger with Mg doping (923 K  →  1073 K) than that for undoped films (~953 K). The optical and electrical behaviours of the films are enhanced by Mg substitution and their direct band gap energy of about 3.12–3.14 eV is measured. The film possesses the optimum properties after annealing under vacuum at about 1023 K its average transmittance in the visible region can reach 54.23% while the film’s conductivity is about 0.27 S cm‑1.

  5. Sputtering of amorphous silicon nitride irradiated with energetic C60 ions: Preferential sputtering and synergy effect between electronic and collisional sputtering

    NASA Astrophysics Data System (ADS)

    Kitayama, T.; Morita, Y.; Nakajima, K.; Narumi, K.; Saitoh, Y.; Matsuda, M.; Sataka, M.; Toulemonde, M.; Kimura, K.

    2015-12-01

    Amorphous silicon nitride films (thickness 30 nm) deposited on Si(0 0 1) were irradiated with 30-1080 keV C60 and 100 MeV Xe ions to fluences ranging from 2 × 1011 to 1 × 1014 ions/cm2. The composition depth profiles of the irradiated samples were measured using high-resolution Rutherford backscattering spectrometry. The sputtering yields were estimated from the derived composition profiles. Pronounced preferential sputtering of nitrogen was observed in the electronic energy loss regime. In addition, a large synergy effect between the electronic and collisional sputtering was also observed. The sputtering yields were calculated using the unified thermal spike model to understand the observed results. Although the calculated results reproduced the observed total sputtering yields with a lowered sublimation energy, the observed preferential sputtering of nitrogen could not be explained. The present results suggest an additional sputtering mechanism related to the electronic energy loss.

  6. Near-edge x-ray absorption fine structure examination of chemical bonding in sputter deposited boron and boron-nitride films

    SciTech Connect

    Jankowski, A.F.; Hayes, J.P.; Suthreland, D.G.J.

    1996-05-01

    Near-edge x-ray absorption fine structure (NEXAFS) is used to examine the chemical bonding in boron and boron-nitride films sputter deposited from a fully-dense, pure boron target. Reactive sputtering is used to prepare the boron-nitride and multilayered films. Although the process of sputter deposition often produces films that lack long range order, NEXAFS reveals the distinguishing features of sp{sup 2} and sp{sup 3} hybridization that are associated with different crystalline structures. The sensitivity of NEXAFS to local order further provides details in bonding modifications that exist in these films.

  7. A thermalized ion explosion model for high energy sputtering and track registration

    NASA Technical Reports Server (NTRS)

    Seiberling, L. E.; Griffith, J. E.; Tombrello, T. A.

    1980-01-01

    A velocity spectrum of neutral sputtered particles as well as a low resolution mass spectrum of sputtered molecular ions was measured for 4.74 MeV F-19(+2) incident of UF4. The velocity spectrum is dramatically different from spectra taken with low energy (keV) bombarding ions, and is shown to be consistent with a hot plasma of atoms in thermal equilibrium inside the target. A thermalized ion explosion model is proposed for high energy sputtering which is expected to describe track formation in dielectric materials. The model is shown to be consistent with the observed total sputtering yield and the dependence of the yield on the primary ionization rate of the incident ion.

  8. Thick sputtered tantalum coatings for high-temperature energy conversion applications

    SciTech Connect

    Stelmakh, Veronika Peykov, Daniel; Chan, Walker R.; Senkevich, Jay J.; Joannopoulos, John D.; Soljačić, Marin; Celanovic, Ivan; Castillo, Robert; Coulter, Kent; Wei, Ronghua

    2015-11-15

    Thick sputtered tantalum (Ta) coatings on polished Inconel were investigated as a potential replacement for bulk refractory metal substrates used for high-temperature emitters and absorbers in thermophotovoltaic energy conversion applications. In these applications, high-temperature stability and high reflectance of the surface in the infrared wavelength range are critical in order to sustain operational temperatures and reduce losses due to waste heat. The reflectance of the coatings (8 and 30 μm) was characterized with a conformal protective hafnia layer as-deposited and after one hour anneals at 700, 900, and 1100 °C. To further understand the high-temperature performance of the coatings, the microstructural evolution was investigated as a function of annealing temperature. X-ray diffraction was used to analyze the texture and residual stress in the coatings at four reflections (220, 310, 222, and 321), as-deposited and after anneal. No significant changes in roughness, reflectance, or stress were observed. No delamination or cracking occurred, even after annealing the coatings at 1100 °C. Overall, the results of this study suggest that the thick Ta coatings are a promising alternative to bulk substrates and pave the way for a relatively low-cost and easily integrated platform for nanostructured devices in high-temperature energy conversion applications.

  9. Energy deposition of thermal tides

    NASA Astrophysics Data System (ADS)

    Becker, E.

    2015-12-01

    The main role of vertically propagating waves in the general circulation is to transfer pseudo momentum from the region of generation to the region of wave breaking. The most prominent examples in atmospheric dynamics are planetary Rossby waves forced in the troposphere, which drive a poleward residual circulation in the winter stratosphere, and mesoscale gravity waves with tropospheric origin, which drive a summer-to-winter-pole circulation in the mesopasue region. In addition, the role of energy deposition by gravity waves has long been recognized to contribute substantially to the energy budget above the stratopause. In atmospheric circulation models, gravity waves are usually parameterized. Their energy deposition can be computed along with the momentum deposition and the turbulent diffusivity associated with wave breaking. In particular, the energy deposition is expressed in terms of secondary moments of the parameterized waves. Therefore, one is tempted to assume that the energy deposition of waves that are resolved in circulation models, e.g., Rossby waves and thermal tides, is automatically taken into account. This assumption is, however, flawed. We show that the energy deposition by resolved waves corresponds to the shear production (frictional heating) of the subgrid-scale turbulence model by which these waves are damped. Computational results from an atmospheric circulation model with energetically consistent treatment of momentum diffusion and frictional heating show that the energy deposition of thermal tides is substantial above the mesopause. This effect is either incomplete or even ignored in conventional atmospheric models that resolve the mesopause region. An idealized sensitivity experiment furthermore shows that thermal tides lead to a significant downward shift of gravity-wave breaking in the upper mesosphere.

  10. Formation of (Ti,Al)N/Ti{sub 2}AlN multilayers after annealing of TiN/TiAl(N) multilayers deposited by ion beam sputtering

    SciTech Connect

    Dolique, V.; Jaouen, M.; Cabioc'h, T.; Pailloux, F.; Guerin, Ph.; Pelosin, V.

    2008-04-15

    By using ion beam sputtering, TiN/TiAl(N) multilayers of various modulation wavelengths ({lambda}=8, 13, and 32 nm) were deposited onto silicon substrates at room temperature. After annealing at 600 deg. C in vacuum, one obtains for {lambda}=13 nm a (Ti,Al)N/Ti{sub 2}AlN multilayer as it is evidenced from x-ray diffraction, high resolution transmission electron microscopy, and energy filtered electron imaging experiments. X-ray photoelectron spectroscopy (XPS) experiments show that the as-deposited TiAl sublayers contain a noticeable amount of nitrogen atoms which mean concentration varies with the period {lambda}. They also evidenced the diffusion of aluminum into TiN sublayers after annealing. Deduced from these observations, we propose a model to explain why this solid-state phase transformation depends on the period {lambda} of the multilayer.

  11. Sputter-Deposited AlTiO Thin Films for Semi-Transparent Silicon Thin Film Solar Cells

    NASA Astrophysics Data System (ADS)

    Lee, Seung-Yun; Bang, Ki Su; Lim, Jung Wook

    2014-09-01

    This paper reports on sputter-deposited AlTiO (ATO) thin films and their effects on the performance of semi-transparent silicon thin film solar cells. The electrical resistivity and the transparency of the ATO films depend significantly on the flow ratio of oxygen to argon during the reactive sputtering process. With highly transparent ATO films, transmittances of over 80% were obtained by increasing this flow ratio. When the ATO films were used on silicon substrates, they exhibited an anti-reflection property, where the minimum reflectance at visible light wavelength was decreased to 1.2%. The introduction of ATO thin film layers into solar cells resulted in a 24% increase in transmittance at wavelengths of around 700 nm, due to the film's anti-reflection characteristic. In addition, the color of the cells changed from green to bright red as the ATO layers were adopted. These beneficial effects of the sputter-deposited ATO films suggest an effective pathway towards the semi-transparent silicon thin film solar cells for building-integrated photovoltaic system applications.

  12. Optical and electrical properties of stainless steel oxynitride thin films deposited in an in-line sputtering system

    NASA Astrophysics Data System (ADS)

    Carretero, E.; Alonso, R.; Pelayo, C.

    2016-08-01

    The optical and electrical properties of stainless steel oxynitride thin films have been studied for different flow rates of the reactive gases during the deposition process. Films were deposited in an in-line magnetron sputtering system under similar conditions as those found in large area industrial systems. The study of the optical properties was performed by IR-VIS spectrophotometry, DC conductivity measurements were performed by the four point method and the microstructural study and chemical analysis were performed by XRD, FESEM and XPS. The results show the transition of sample films from metal to semiconductor, as well as the feasibility of obtaining visible absorbing coatings with low DC conductivity from low-cost materials. The deposited films show the typical growth structure for samples produced in in-line deposition systems commonly used in the large area coatings industry.

  13. Tunable optoelectronic properties of pulsed dc sputter-deposited ZnO:Al thin films: Role of growth angle

    NASA Astrophysics Data System (ADS)

    Kumar, Mohit; Singh, Ranveer; Nandy, Suman; Ghosh, Arnab; Rath, Satchidananda; Som, Tapobrata

    2016-07-01

    In this paper, we investigate the role of deposition angle on the physical properties and work function of pulsed dc sputter-deposited Al-doped zinc oxide (AZO) thin films. It is observed that average grain size and crystal quality increase with higher angle of deposition, yielding improved optical properties. A systematic blue shift as well as a decrease in the resistivity takes place with the increasing growth angle up to 70°, while an opposite trend is observed beyond that. In addition, the work function of AZO films is also measured using Kelvin probe force microscopy, which corroborates well with the optical and structural properties. The observed results are explained in the framework of growth angle induced diffusion and shadowing effects. The films deposited at higher angles will be important for rapid incorporation into new technological applications that require a transparent conductive oxide.

  14. Effect of oxygen flow rate on the properties of SiOx films deposited by reactive magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Lai, Fachun; Li, Ming; Wang, Haiqian; Jiang, Yousong; Song, Yizhou

    2005-08-01

    SiOx (x=0--2) films were deposited on BK-7 substrates by a low frequency reactive magnetron sputtering system with the oxygen flow rate (OFR) changing from 0 to 30 sccm. The samples were characterized by atomic force microscopy, spectrophotometer, and X-ray photoelectron spectroscopy. The extinction coefficient and refractive index decrease, while the optical transmittance increases with the increase of OFR from 0 to 17 sccm. The root mean square surface roughness has a maximum at 10 sccm OFR. The highest deposition rate is at 15 sccm OFR. Our results show that the films deposited at 20 sccm OFR are stoichiometric silica with relatively high deposition rate, low extinction coefficient, and low surface roughness. Therefore, a precise control of OFR is very important to obtain high quality films for optical applications.

  15. Sputter deposited bioceramic coatings: surface characterisation and initial protein adsorption studies using surface-MALDI-MS.

    PubMed

    Boyd, A R; Burke, G A; Duffy, H; Holmberg, M; O' Kane, C; Meenan, B J; Kingshott, P

    2011-01-01

    Protein adsorption onto calcium phosphate (Ca-P) bioceramics utilised in hard tissue implant applications has been highlighted as one of the key events that influences the subsequent biological response, in vivo. This work reports on the use of surface-matrix assisted laser desorption ionisation mass spectrometry (Surface-MALDI-MS) as a technique for the direct detection of foetal bovine serum (FBS) proteins adsorbed to hybrid calcium phosphate/titanium dioxide surfaces produced by a novel radio frequency (RF) magnetron sputtering method incorporating in situ annealing between 500°C and 700°C during deposition. XRD and XPS analysis indicated that the coatings produced at 700°C were hybrid in nature, with the presence of Ca-P and titanium dioxide clearly observed in the outer surface layer. In addition to this, the Ca/P ratio was seen to increase with increasing annealing temperature, with values of between 2.0 and 2.26 obtained for the 700°C samples. After exposure to FBS solution, surface-MALDI-MS indicated that there were significant differences in the protein patterns as shown by unique peaks detected at masses below 23.1 kDa for the different surfaces. These adsorbates were assigned to a combination of growth factors and lipoproteins present in serum. From the data obtained here it is evident that surface-MALDI-MS has significant utility as a tool for studying the dynamic nature of protein adsorption onto the surfaces of bioceramic coatings, which most likely plays a significant role in subsequent bioactivity of the materials.

  16. Optical properties of Mn-Co-Ni-O thin films prepared by radio frequency sputtering deposition

    SciTech Connect

    Zhou, Wei; Wu, Jing; Ouyang, Cheng; Gao, Yanqing; Huang, Zhiming; Xu, Xiaofeng

    2014-03-07

    Mn{sub 1.4}Co{sub 1.0}Ni{sub 0.6}O{sub 4} (MCN) thin films are prepared by RF sputtering deposition method on amorphous Al{sub 2}O{sub 3} substrate. Microstructure and X-ray photoelectron spectroscopy analyses suggest improvements in crystallinity and stoichiometry for MCN films with post-annealed process. Infrared (IR) optical constants of the MCN films are obtained by IR spectroscopic ellipsometer (SE) in the range of 1500 cm{sup −1} to 3200 cm{sup −1} (2.8–6.7 μm). The derived effective charge supports the increase of the oxidation after annealing. The dielectric function of the films is also extracted by SE in the range of 300–1000 nm adopting a double Lorentz model together with a Tauc–Lorentz model. The mechanism in electronic transition process is discussed based on the variation observed in the optical absorption spectra of the as-grown and post-annealed samples. The optical absorption peaks located at 1.7 eV, 2.4–2.6 eV, and 3.5–4 eV are attributed to the charge-transfer transitions of 2p electrons of oxygen ions and 3d electrons of Mn and Co ions. Our results are very important to understand the optoelectronic mechanism and exploit applications of metal oxides.

  17. Deposition of novel nanocomposite films by a newly developed differential pumping co-sputtering system

    SciTech Connect

    Nose, Masateru; Kurimoto, Takeshi; Saiki, Atsushi; Matsuda, Kenji; Terayama, Kiyoshi

    2012-01-15

    A differential pumping co-sputtering system was developed to facilitate a controlled, but flexible fabrication of multifunctional nanocomposite films with compositions not limited by thermodynamic restrictions. This system features a multichamber design with a differential pumping system. Dividing atmospheres with this set up greatly reduced the cross-contamination between chambers, and each material could be co-deposited by rapid rotation of the substrate. The clearance between the substrate holder and the chamber was set at 1-2 mm, and the conductance of the clearance was examined roughly using conductance equations for typical types of orifices. It was found that the potential difference (PD) value of the clearance between the two chambers was less than 0.01; the gas flow between the two chambers through the clearance thus appears to be a practical molecular flow. The PD value, where P is a pressure (Pa) and D is a diameter of an orifice or a pipe (m), is a gas flow indicator or parameter obtained from an equation of Knudsen number. The changes in the oxygen partial pressure and glow discharge plasma in the left chamber were investigated using a process gas monitor (PGM) and optical emission spectroscope (OES) by introducing different gases to each chamber. The PGM results revealed that the cross-contamination of oxygen from the other chamber was suppressed to 10 {+-} 3% of the original. In addition, the OES measurement for glow discharge plasma did not detect substantial oxygen contamination from the other chamber. Using the newly developed system, an AlN/SiO{sub x} nanocomposite film consisting of B4-type AlN and amorphous SiO{sub x} was obtained successfully.

  18. Laser damage resistance of hafnia thin films deposited by electron beam deposition, reactive low voltage ion plating, and dual ion beam sputtering

    SciTech Connect

    Gallais, Laurent; Capoulade, Jeremie; Natoli, Jean-Yves; Commandre, Mireille; Cathelinaud, Michel; Koc, Cian; Lequime, Michel

    2008-05-01

    A comparative study is made of the laser damage resistance of hafnia coatings deposited on fused silica substrates with different technologies: electron beam deposition (from Hf or HfO2 starting material), reactive low voltage ion plating, and dual ion beam sputtering.The laser damage thresholds of these coatings are determined at 1064 and 355 nm using a nanosecond pulsed YAG laser and a one-on-one test procedure. The results are associated with a complete characterization of the samples: refractive index n measured by spectrophotometry, extinction coefficient k measured by photothermal deflection, and roughness measured by atomic force microscopy.

  19. Effects of the duty ratio on the niobium oxide film deposited by pulsed-DC magnetron sputtering methods.

    PubMed

    Eom, Ji Mi; Oh, Hyun Gon; Cho, Il Hwan; Kwon, Sang Jik; Cho, Eou Sik

    2013-11-01

    Niobium oxide (Nb2O5) films were deposited on p-type Si wafers and sodalime glasses at a room temperature using in-line pulsed-DC magnetron sputtering system with various duty ratios. The different duty ratio was obtained by varying the reverse voltage time of pulsed DC power from 0.5 to 2.0 micros at the fixed frequency of 200 kHz. From the structural and optical characteristics of the sputtered NbOx films, it was possible to obtain more uniform and coherent NbOx films in case of the higher reverse voltage time as a result of the cleaning effect on the Nb2O5 target surface. The electrical characteristics from the metal-insulator-semiconductor (MIS) fabricated with the NbOx films shows the leakage currents are influenced by the reverse voltage time and the Schottky barrier diode characteristics.

  20. Corrosion and wear behaviours of a reactive-sputter-deposited Ta2O5 nanoceramic coating

    NASA Astrophysics Data System (ADS)

    Hu, Wei; Xu, Jiang; Lu, Xiaolin; Hu, Dongsheng; Tao, Hongliang; Munroe, Paul; Xie, Zong-Han

    2016-04-01

    In order to improve the wear and corrosion resistance of Ti-6Al-4V, a novel β-Ta2O5 nanoceramic coating was synthesised using reactive sputter deposition enabled by double glow discharge plasma technique. The surface topography, chemical composition, and microstructure of the newly developed coating were characterised by a variety of surface analytical techniques. The coating microstructure was found to exhibit a compact striated pattern extending in a direction perpendicular to coating surface, which is composed of equiaxed β-Ta2O5 grains with an average grain size of ∼20 nm, well adhered to the Ti-6A1-4V substrate. The hardness and the Young's modulus of the as-deposited coating were obtained by nanoindentation, and the adhesion strength between the coating and substrate was determined by a scratch tester. The dry sliding wear behaviours of the coating were investigated at room temperature against Si3N4 ceramic balls at room temperature under applied loads ranging from 2.3 N to 5.3 N using a ball-on-disc tribometer. The specific wear rates of the coating exhibited only a slight increase with applied normal load, and were shown to be two orders of magnitude lower than that for Ti-6Al-4V under the same loading condition. Furthermore, the electrochemical behaviour of the coating immersed in 3.5 wt.% NaCl solution was systematically examined by using a range of complementary electrochemical techniques including potentiodynamic polarisation, electrochemical impedance spectroscopy (EIS), Mott-Schottky analysis as well as potential of zero charge (PZC). The results showed that the corrosion resistance of the β-Ta2O5 nanoceramic coating was better than that of Ti-6Al-4V alloy in 3.5 wt.% NaCl solution. Hence, by possessing higher mechanical properties and good wear and corrosion resistance, the β-Ta2O5 nanoceramic coating is considered to be a promising candidate for protection of engineering components operating under harsh conditions.

  1. Ion beam sputtering of fluoropolymers

    NASA Technical Reports Server (NTRS)

    Sovey, J. S.

    1978-01-01

    Etching and deposition of fluoropolymers are of considerable industrial interest for applications dealing with adhesion, chemical inertness, hydrophobicity, and dielectric properties. This paper describes ion beam sputter processing rates as well as pertinent characteristics of etched targets and films. An argon ion beam source was used to sputter etch and deposit the fluoropolymers PTFE, FEP, and CTFE. Ion beam energy, current density, and target temperature were varied to examine effects on etch and deposition rates. The ion etched fluoropolymers yield cone or spire-like surface structures which vary depending upon the type of polymer, ion beam power density, etch time, and target temperature. Also presented are sputter target and film characteristics which were documented by spectral transmittance measurements, X-ray diffraction, ESCA, and SEM photomicrographs.

  2. Evaluation of structure and material properties of RF magnetron sputter-deposited yttria-stabilized zirconia thin films

    NASA Astrophysics Data System (ADS)

    Piascik, Jeffrey Robert

    Over the past several decades, research has focused on utilizing ceramic materials in new technological applications. Their uses have been primarily in applications that involve high temperatures or corrosive environments. Unfortunately, ceramic materials have been limited especially since they can be brittle, failing in a sudden and catastrophic manner. A strong emphasis on understanding mechanical properties of ceramics and ways to improving their strength and toughness, has led to many new technologies. The present work is part of a larger research initiative that is aimed at using RF magnetron sputter deposition of yttria-stabilized zirconia to improve the fracture toughness of brittle substrates (more specifically dental ceramics). Partially-stabilized zirconia (PSZ) has been studied extensively, due to its high temperature stability and stress-induced tetragonal to monoclinic (T⇒M) martensitic phase transformation. RF magnetron sputtering was chosen as the deposition method because of its versatility, especially the ability to deposit oxides at low temperatures. Initial investigations focused on the development of process-structure-properties of YSZ sputtered deposited thin films. The YSZ thin films were deposited over a range of temperatures (22--300°C), pressures (5--25 mTorr), and gas compositions (Ar:O2 ratio). Initial studies characterized a select set of properties in relation to deposition parameters including: refractive index, structure, and film stress. X-ray Diffraction (XRD) showed that the films are comprised of mainly monoclinic and tetragonal crystal phases. The film refractive index determined by prism coupling, depends strongly on deposition conditions and ranged from 1.959 to 2.223. Wafer bow measurements indicate that the sputtered YSZ films can have initial stress ranging from 86 MPa tensile to 192 MPa compressive, depending on the deposition parameters. Exposure to ambient conditions (25°C, 75% relative humidity) led to large increase

  3. Structural and nanomechanical properties of BiFeO3 thin films deposited by radio frequency magnetron sputtering

    PubMed Central

    2013-01-01

    The nanomechanical properties of BiFeO3 (BFO) thin films are subjected to nanoindentation evaluation. BFO thin films are grown on the Pt/Ti/SiO2/Si substrates by using radio frequency magnetron sputtering with various deposition temperatures. The structure was analyzed by X-ray diffraction, and the results confirmed the presence of BFO phases. Atomic force microscopy revealed that the average film surface roughness increased with increasing of the deposition temperature. A Berkovich nanoindenter operated with the continuous contact stiffness measurement option indicated that the hardness decreases from 10.6 to 6.8 GPa for films deposited at 350°C and 450°C, respectively. In contrast, Young's modulus for the former is 170.8 GPa as compared to a value of 131.4 GPa for the latter. The relationship between the hardness and film grain size appears to follow closely with the Hall–Petch equation. PMID:23799923

  4. The effect of deposition RF power on the SiC passivation layer synthesized by an RF magnetron sputtering method

    NASA Astrophysics Data System (ADS)

    Keun Seo, Jae; Ko, Ki-han; Seok Choi, Won; Park, Mungi; Hwan Lee, Jong; Yi, Jun-Sin

    2011-07-01

    In this paper, we investigated the amorphous silicon carbide (a-SiC) film as an alternative material to silicon nitride (SiN) and silicon oxide (SiO 2) for the passivation layer of solar cells. The a-SiC films were deposited on the p-type silicon (1 0 0) and glass substrates by a RF magnetron sputtering method using a-SiC (99%) target. We investigated the properties according to the deposition RF power (150, 200, 250 and 300 W). The optical properties were investigated by UV-visible spectroscopy and an ellipsometer. The performance of SiC passivation layer was investigated by carrier lifetime measurement. We could obtain the lowest refractive index of 3.22 and the carrier lifetime was the highest, 7 μs at the deposition RF power of 150 W.

  5. Structural and nanomechanical properties of BiFeO3 thin films deposited by radio frequency magnetron sputtering.

    PubMed

    Jian, Sheng-Rui; Chang, Huang-Wei; Tseng, Yu-Chin; Chen, Ping-Han; Juang, Jenh-Yih

    2013-01-01

    The nanomechanical properties of BiFeO3 (BFO) thin films are subjected to nanoindentation evaluation. BFO thin films are grown on the Pt/Ti/SiO2/Si substrates by using radio frequency magnetron sputtering with various deposition temperatures. The structure was analyzed by X-ray diffraction, and the results confirmed the presence of BFO phases. Atomic force microscopy revealed that the average film surface roughness increased with increasing of the deposition temperature. A Berkovich nanoindenter operated with the continuous contact stiffness measurement option indicated that the hardness decreases from 10.6 to 6.8 GPa for films deposited at 350°C and 450°C, respectively. In contrast, Young's modulus for the former is 170.8 GPa as compared to a value of 131.4 GPa for the latter. The relationship between the hardness and film grain size appears to follow closely with the Hall-Petch equation. PMID:23799923

  6. Selective deposition of a crystalline Si film by a chemical sputtering process in a high pressure hydrogen plasma

    SciTech Connect

    Ohmi, Hiromasa Yasutake, Kiyoshi; Kakiuchi, Hiroaki

    2015-07-28

    The selective deposition of Si films was demonstrated using a chemical sputtering process induced by a high pressure hydrogen plasma at 52.6 kPa (400 Torr). In this chemical sputtering process, the initial deposition rate (R{sub d}) is dependent upon the substrate type. At the initial stage of Si film formation, R{sub d} on glass substrates increased with elapsed time and reached to a constant value. In contrast, R{sub d} on Si substrates remained constant during the deposition. The selective deposition of Si films can be achieved by adjusting the substrate temperature (T{sub sub}) and hydrogen concentration (C{sub H2}) in the process atmosphere. For any given deposition time, it was found that an optimum C{sub H2} exists for a given T{sub sub} to realize the selective deposition of a Si film, and the optimum T{sub sub} value tends to increase with decreasing C{sub H2}. According to electron diffraction patterns obtained from the samples, the selectively prepared Si films showed epitaxial-like growth, although the Si films contained many defects. It was revealed by Raman scattering spectroscopy that some of the defects in the Si films were platelet defects induced by excess hydrogen incorporated during Si film formation. Raman spectrum also suggested that Si related radicals (SiH{sub 2}, SiH, Si) with high reactivity contribute to the Si film formation. Simple model was derived as the guideline for achieving the selective growth.

  7. Pitting corrosion protection of stainless steel by sputter deposited hafnia, alumina, and hafnia-alumina nanolaminate films

    SciTech Connect

    Almomani, M. A.; Aita, C. R.

    2009-05-15

    316L stainless steel coated with sputter deposited HfO{sub 2}, Al{sub 2}O{sub 3}, and HfO{sub 2}-Al{sub 2}O{sub 3} nanolaminate films were subjected to direct current cyclic potentiodynamic polarization (DCP) in Hanks' balanced salt solution electrolyte. Postexposure morphology was characterized by scanning electron microscopy (SEM) with in situ energy dispersive spectroscopy (EDS). SEM/EDS data show that bare steel and steel coated with single-layer HfO{sub 2} develop pits with perforated covers. These pits become autocatalytic, consistent with an observed positive DCP hysteresis. On the other hand, SEM/EDS data show that steel coated with Al{sub 2}O{sub 3} and HfO{sub 2}-Al{sub 2}O{sub 3} nanolaminate films does not develop autocatalytic pits, consistent with an observed negative DCP hysteresis. However, Al{sub 2}O{sub 3} splinters upon polarization whereas the HfO{sub 2}-Al{sub 2}O{sub 3} nanolaminate remains intact. The areas of worst damage in the nanolaminate correspond to pit cover rupture before autocatalysis, allowing pit and bulk electrolyte to mix and the newly exposed steel surface to repassivate. The films' diverse behavior is discussed in terms of a model for perforated pit growth that requires occlusion until an autocatalytic geometry is established. The authors conclude that the key property a film must have to arrest autocatalytic geometry development is the ability to rupture locally at an early stage of pit growth.

  8. Visible light-induced photocatalytic properties of WO{sub 3} films deposited by dc reactive magnetron sputtering

    SciTech Connect

    Imai, Masahiro; Kikuchi, Maiko; Oka, Nobuto; Shigesato, Yuzo

    2012-05-15

    The authors examined the photocatalytic activity of WO{sub 3} films (thickness 500-600 nm) deposited on a fused quartz substrate heated at 350-800 deg. C by dc reactive magnetron sputtering using a W metal target under the O{sub 2} gas pressure from 1.0 to 5.0 Pa. Films deposited at 800 deg. C under 5.0 Pa have excellent crystallinity of triclinic, P1(1) structure and a large surface area, as confirmed by x-ray diffraction, scanning electron microscopy, and atomic force microscopy. Exposure of acetaldehyde (CH{sub 3}CHO) adsorbed onto the film surface to ultraviolet, visible, or standard fluorescence light induces oxidative photocatalytic decomposition indicated by a decrease in CH{sub 3}CHO concentration and generation of CO{sub 2} gas. For all three types of irradiation, concentration ratio of decreased CH{sub 3}CHO to increased CO{sub 2} is about 1:1, suggesting the possible presence of intermediates. The sputter-deposited WO{sub 3} film can be a good candidate as a visible light-responsive photocatalyst.

  9. Effect of duty cycle on the electrical and optical properties of VOx film deposited by pulsed reactive magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Dong, Xiang; Wu, Zhiming; Xu, Xiangdong; Wei, Xiongbang; Jiang, Yadong

    2013-12-01

    Vanadium oxide (VOx) films were deposited onto well cleaned glass substrates by bipolar pulsed reactive magnetron sputtering at room temperature. Dependence of the structure, composition, optical and electrical properties of the films on the pulsed power's duty cycle has been investigated. The results from the X-ray diffraction (XRD) analysis show that there was no remarkable change in the amorphous structure in the films with duty cycle can be observed. But chemical analysis of the surface evaluated with x-ray photoelectron spectroscopy (XPS) indicates that decrease the duty cycle favors to enhance the oxidation of the vanadium. The optical and electrical properties of the films were characterized by spectroscopic ellipsometry and temperature dependent resistivity measurements, respectively. The evolution of the transmittance, optical band gap, optical constants, resistivity and temperature coefficient of resistance (TCR) of the deposited films with duty cycle was analyzed and discussed. In comparison with conventional DC sputtering, under the same discharge atmosphere and power level, these parameters of the VOx films can be modified over a broad range by duty cycle. Therefore adjusting the duty cycle during deposition, which is an effective way to control and optimize the performances of the VOx film for various optoelectronic devices applications.

  10. Investigation of conductive and transparent ITO/Ni/ITO multilayer films deposited by a magnetron sputter process

    NASA Astrophysics Data System (ADS)

    Kim, J. C.; Shin, C. H.; Jeong, C. W.; Kwon, Y. J.; Park, J. H.; Kim, Daeil

    2010-01-01

    Transparent conducting ITO/Ni/ITO films were deposited by RF magnetron sputtering of Sn-doped In 2O 3 and DC magnetron sputtering of Ni on unheated polycarbonate substrates. Ni interlayers with thicknesses of 5, 10, and 20 nm were used as intermediate metallic layers. Changes in the work function and optical, electrical and structural properties of the films were examined with respect to Ni layer thickness. The work function was measured to be about 4.5 eV and was found to be independent of Ni layer thickness. However, the structural, optical, and electrical properties of the films were influenced by the Ni thickness. As-deposited ITO single layer films showed In 2O 3 diffraction peaks for the (2 2 2) and (4 0 0) planes, while after insertion of the Ni layer between ITO films, these diffraction peaks disappeared. The electrical resistivity decreased with the Ni intermediated film and the optical transmittance also decreased due to increased optical absorption. The figure of merit reached a maximum of 2.0 × 10 -3 Ω -1 for a 5 nm-thick inserted Ni film, which is greater than the value for as-deposited ITO films.

  11. Fabrication of sharp tungsten-coated tip for atomic force microscopy by ion-beam sputter deposition

    SciTech Connect

    Kinoshita, Yukinori; Naitoh, Yoshitaka; Li, Yan Jun; Sugawara, Yasuhiro

    2011-11-15

    Tungsten (W) is significantly suitable as a tip material for atomic force microscopy (AFM) because its high mechanical stiffness enables the stable detection of tip-sample interaction forces. We have developed W sputter-coating equipment to compensate the drawbacks of conventional Si cantilever tips used in AFM measurements. By employing an ion gun commonly used for sputter cleaning of a cantilever tip, the equipment is capable of depositing conductive W films in the preparation chamber of a general ultrahigh vacuum (UHV)-AFM system without the need for an additional chamber or transfer system. This enables W coating of a cantilever tip immediately after sputter cleaning of the tip apex and just before the use in AFM observations. The W film consists of grain structures, which prevent tip dulling and provide sharpness (<3 nm in radius of curvature at the apex) comparable to that of the original Si tip apex. We demonstrate that in non-contact (NC)-AFM measurement, a W-coated Si tip can clearly resolve the atomic structures of a Ge(001) surface without any artifacts, indicating that, as a force sensor, the fabricated W-coated Si tip is superior to a bare Si tip.

  12. Fabrication of sharp tungsten-coated tip for atomic force microscopy by ion-beam sputter deposition.

    PubMed

    Kinoshita, Yukinori; Naitoh, Yoshitaka; Li, Yan Jun; Sugawara, Yasuhiro

    2011-11-01

    Tungsten (W) is significantly suitable as a tip material for atomic force microscopy (AFM) because its high mechanical stiffness enables the stable detection of tip-sample interaction forces. We have developed W sputter-coating equipment to compensate the drawbacks of conventional Si cantilever tips used in AFM measurements. By employing an ion gun commonly used for sputter cleaning of a cantilever tip, the equipment is capable of depositing conductive W films in the preparation chamber of a general ultrahigh vacuum (UHV)-AFM system without the need for an additional chamber or transfer system. This enables W coating of a cantilever tip immediately after sputter cleaning of the tip apex and just before the use in AFM observations. The W film consists of grain structures, which prevent tip dulling and provide sharpness (<3 nm in radius of curvature at the apex) comparable to that of the original Si tip apex. We demonstrate that in non-contact (NC)-AFM measurement, a W-coated Si tip can clearly resolve the atomic structures of a Ge(001) surface without any artifacts, indicating that, as a force sensor, the fabricated W-coated Si tip is superior to a bare Si tip.

  13. Evaporation-assisted high-power impulse magnetron sputtering: The deposition of tungsten oxide as a case study

    SciTech Connect

    Hemberg, Axel; Dauchot, Jean-Pierre; Snyders, Rony; Konstantinidis, Stephanos

    2012-07-15

    The deposition rate during the synthesis of tungsten trioxide thin films by reactive high-power impulse magnetron sputtering (HiPIMS) of a tungsten target increases, above the dc threshold, as a result of the appropriate combination of the target voltage, the pulse duration, and the amount of oxygen in the reactive atmosphere. This behavior is likely to be caused by the evaporation of the low melting point tungsten trioxide layer covering the metallic target in such working conditions. The HiPIMS process is therefore assisted by thermal evaporation of the target material.

  14. Characterization of ZnO:SnO2 (50:50) thin film deposited by RF magnetron sputtering technique

    NASA Astrophysics Data System (ADS)

    Cynthia, S. R.; Sivakumar, R.; Sanjeeviraja, C.; Ponmudi, S.

    2016-05-01

    Zinc oxide (ZnO) and tin oxide (SnO2) thin films have attracted significant interest recently for use in optoelectronic application such as solar cells, flat panel displays, photonic devices, laser diodes and gas sensors because of their desirable electrical and optical properties and wide band gap. In the present study, thin films of ZnO:SnO2 (50:50) were deposited on pre-cleaned microscopic glass substrate by RF magnetron sputtering technique. The substrate temperature and RF power induced changes in structural, surface morphological, compositional and optical properties of the films have been studied.

  15. InN thin-film transistors fabricated on polymer sheets using pulsed sputtering deposition at room temperature

    NASA Astrophysics Data System (ADS)

    Lye, Khe Shin; Kobayashi, Atsushi; Ueno, Kohei; Ohta, Jitsuo; Fujioka, Hiroshi

    2016-07-01

    Indium nitride (InN) is potentially suitable for the fabrication of high performance thin-film transistors (TFTs) because of its high electron mobility and peak electron velocity. However, InN is usually grown using a high temperature growth process, which is incompatible with large-area and lightweight TFT substrates. In this study, we report on the room temperature growth of InN films on flexible polyimide sheets using pulsed sputtering deposition. In addition, we report on the fabrication of InN-based TFTs on flexible polyimide sheets and the operation of these devices.

  16. Control and enhancement of the oxygen storage capacity of ceria films by variation of the deposition gas atmosphere during pulsed DC magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Eltayeb, Asmaa; Vijayaraghavan, Rajani K.; McCoy, Anthony; Venkatanarayanan, Anita; Yaremchenko, Aleksey A.; Surendran, Rajesh; McGlynn, Enda; Daniels, Stephen

    2015-04-01

    In this study, nanostructured ceria (CeO2) films are deposited on Si(100) and ITO coated glass substrates by pulsed DC magnetron sputtering using a CeO2 target. The influence on the films of using various gas ambients, such as a high purity Ar and a gas mixture of high purity Ar and O2, in the sputtering chamber during deposition are studied. The film compositions are studied using XPS and SIMS. These spectra show a phase transition from cubic CeO2 to hexagonal Ce2O3 due to the sputtering process. This is related to the transformation of Ce4+ to Ce3+ and indicates a chemically reduced state of CeO2 due to the formation of oxygen vacancies. TGA and electrochemical cyclic voltammetry (CV) studies show that films deposited in an Ar atmosphere have a higher oxygen storage capacity (OSC) compared to films deposited in the presence of O2. CV results specifically show a linear variation with scan rate of the anodic peak currents for both films and the double layer capacitance values for films deposited in Ar/O2 mixed and Ar atmosphere are (1.6 ± 0.2) × 10-4 F and (4.3 ± 0.5) × 10-4 F, respectively. Also, TGA data shows that Ar sputtered samples have a tendency to greater oxygen losses upon reduction compared to the films sputtered in an Ar/O2 mixed atmosphere.

  17. Hybrid biocomposite with a tunable antibacterial activity and bioactivity based on RF magnetron sputter deposited coating and silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Ivanova, A. A.; Surmenev, R. A.; Surmeneva, M. A.; Mukhametkaliyev, T.; Loza, K.; Prymak, O.; Epple, M.

    2015-02-01

    In this work, we describe fabrication techniques used to prepare a multifunctional biocomposite based on a hydroxyapatite (HA) coating and silver nanoparticles (AgNPs). AgNPs synthesized by a wet chemical reduction method were deposited on Ti substrates using a dripping/drying method followed by deposition of calcium phosphate (CaP) coating via radio-frequency (RF) magnetron sputter-deposition. The negatively charged silver nanoparticles (zeta potential -21 mV) have a spherical shape with a metallic core diameter of 50 ± 20 nm. The HA coating was deposited as a dense nanocrystalline film over a surface of AgNPs. The RF-magnetron sputter deposition of HA films on the AgNPs layer did not affect the initial content of AgNPs on the substrate surface as well as NPs size and shape. SEM cross-sectional images taken using the backscattering mode revealed a homogeneous layer of AgNPs under the CaP layer. The diffraction patterns from the coatings revealed reflexes of crystalline HA and silver. The concentration of Ag ions released from the biocomposites after 7 days of immersion in phosphate and acetate buffers was estimated. The obtained results revealed that the amount of silver in the solutions was 0.27 ± 0.02 μg mL-1 and 0.54 ± 0.02 μg mL-1 for the phosphate and acetate buffers, respectively, which corresponded well with the minimum inhibitory concentration range known for silver ions in literature. Thus, this work establishes a new route to prepare a biocompatible layer using embedded AgNPs to achieve a local antibacterial effect.

  18. Titanium dioxide fine structures by RF magnetron sputter method deposited on an electron-beam resist mask

    NASA Astrophysics Data System (ADS)

    Hashiba, Hideomi; Miyazaki, Yuta; Matsushita, Sachiko

    2013-09-01

    Titanium dioxide (TiO2) has been draw attention for wide range of applications from photonic crystals for visible light range by its catalytic characteristics to tera-hertz range by its high refractive index. We present an experimental study of fabrication of fine structures of TiO2 with a ZEP electron beam resist mask followed by Ti sputter deposition techniques. A TiO2 thin layer of 150 nm thick was grown on an FTO glass substrate with a fine patterned ZEP resist mask by a conventional RF magnetron sputter method with Ti target. The deposition was carried out with argon-oxygen gases at a pressure of 5.0 x 10 -1 Pa in a chamber. During the deposition, ratio of Ar-O2 gas was kept to the ratio of 2:1 and the deposition ratio was around 0.5 Å/s to ensure enough oxygen to form TiO2 and low temperature to avoid deformation of fine pattern of the ZPU resist mask. Deposited TiO2 layers are white-transparent, amorphous, and those roughnesses are around 7 nm. Fabricated TiO2 PCs have wider TiO2 slabs of 112 nm width leaving periodic 410 x 410 nm2 air gaps. We also studied transformation of TiO2 layers and TiO2 fine structures by baking at 500 °C. XRD measurement for TiO2 shows that the amorphous TiO2 transforms to rutile and anatase forms by the baking while keeping the same profile of the fine structures. Our fabrication method can be one of a promising technique to optic devices on researches and industrial area.

  19. Copper deposition on fabrics by rf plasma sputtering for medical applications

    NASA Astrophysics Data System (ADS)

    Segura, G.; Guzmán, P.; Zuñiga, P.; Chaves, S.; Barrantes, Y.; Navarro, G.; Asenjo, J.; Guadamuz Vargas, S., VI; Chaves, J.

    2015-03-01

    The present work is about preparation and characterization of RF sputtered Cu films on cotton by the usage of a Magnetron Sputter Source and 99.995% purity Cu target at room temperature. Cotton fabric samples of 1, 2 and 4 min of sputtering time at discharge pressure of 1×10-2 Torr and distance between target and sample of 8 cm were used. The main goal was to qualitatively test the antimicrobial action of copper on fabrics. For that purpose, a reference strain of Escherichia Coli ATCC 35218 that were grown in TSA plates was implemented. Results indicated a decrease in the growth of bacteria by contact with Cu; for fabric samples with longer sputtering presented lower development of E. coli colonies. The scope of this research focused on using these new textiles in health field, for example socks can be made with this textile for the treatment of athlete's foot and the use in pajamas, sheets, pillow covers and robes in hospital setting for reducing the spread of microorganisms.

  20. Realization of Critical Distance during the Interplay between Re-deposition and Secondary sputtering from Milling of Angular Side Wall with a Focused Ion Beam

    SciTech Connect

    Saraf, Laxmikant V.

    2011-07-01

    In-situ observation of critical distance (CD), a distance where secondary sputtering effects diminish and re-deposition starts to dominate is realized during controlled focused ion beam (FIB) sputtering. The experiments were performed on representative high density Nialloy and lower density porous Ni-YSZ. For the Ni-alloy case, it was observed that linear extrapolation of re-deposited layer width coincides with CD suggesting uniform sputtering and re-deposition effects. Estimation related to percentage of re-deposition from FIB etched layer at an angle of 50 degrees between the lower membrane and FIB etched side wall clearly demonstrated dominant secondary etching, neutralizing sputtering/redeposition and dominant re-deposition regions. Although the angle between FIB etched angular side wall and re-deposited/etched membrane adds some complication, the suggested overall experimental approach would substantially simplify to develop more realistic models than previously considered complex situations dealing with interplay between the re-deposition and secondary etching.

  1. Effect of negative bias on the composition and structure of the tungsten oxide thin films deposited by magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Wang, Meihan; Lei, Hao; Wen, Jiaxing; Long, Haibo; Sawada, Yutaka; Hoshi, Yoichi; Uchida, Takayuki; Hou, Zhaoxia

    2015-12-01

    Tungsten oxide thin films were deposited at room temperature under different negative bias voltages (Vb, 0 to -500 V) by DC reactive magnetron sputtering, and then the as-deposited films were annealed at 500 °C in air atmosphere. The crystal structure, surface morphology, chemical composition and transmittance of the tungsten oxide thin films were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), X-ray photoelectron spectroscopy (XPS) and UV-vis spectrophotometer. The XRD analysis reveals that the tungsten oxide films deposited at different negative bias voltages present a partly crystallized amorphous structure. All the films transfer from amorphous to crystalline (monoclinic + hexagonal) after annealing 3 h at 500 °C. Furthermore, the crystallized tungsten oxide films show different preferred orientation. The morphology of the tungsten oxide films deposited at different negative bias voltages is consisted of fine nanoscale grains. The grains grow up and conjunct with each other after annealing. The tungsten oxide films deposited at higher negative bias voltages after annealing show non-uniform special morphology. Substoichiometric tungsten oxide films were formed as evidenced by XPS spectra of W4f and O1s. As a result, semi-transparent films were obtained in the visible range for all films deposited at different negative bias voltages.

  2. Growth, microstructure and electrical properties of sputter-deposited hafnium oxide (HfO2) thin films grown using HfO2 ceramic target

    SciTech Connect

    Aguirre, B.; Vemuri, R. S.; Zubia, David; Engelhard, Mark H.; Shutthanandan, V.; Kamala Bharathi, K.; Ramana, Chintalapalle V.

    2011-01-01

    Hafnium oxide (HfO₂) thin films have been made by radio-frequency (rf) magnetron-sputtering onto Si(100) substrates under varying growth temperature (Ts). HfO₂ ceramic target has been employed for sputtering while varying the Ts from room temperature to 500⁰C during deposition. The effect of Ts on the growth and microstructure of deposited HfO₂ films has been studied using grazing incidence x-ray diffraction (GIXRD), X-ray photoelectron spectroscopy (XPS), and high-resolution scanning electron microscopy (HR-SEM) coupled with energy dispersive x-ray spectrometry (EDS). The results indicate that the effect of Ts is significant on the growth, surface and interface structure, morphology and chemical composition of the HfO₂ films. Structural characterization indicates that the HfO₂ films grown at Ts<200 ⁰C are amorphous while films grown at Ts>200 ⁰C are nanocrystalline. An amorphous-to-crystalline transition occurs at Ts=200 ⁰C. Nanocrystalline HfO₂ films crystallized in a monoclinic structure with a (-111) orientation. XPS measurements indicated the high surface-chemical quality and stoichiometric nature of the grown HfO₂ films. An interface layer (IL) formation occurs due to reaction at the HfO₂-Si interface for HfO₂ films deposited at Ts>200 ⁰C. The thickness of IL increases with increasing Ts. XPS and EDS at the HfO₂-Si cross-section indicate the IL is a (Hf, Si)-O compound. The electrical characterization using capacitance-voltage measurements indicate that the dielectric constant decreases from 25 to 16 with increasing Ts.

  3. Mimicry of sputtered i-ZnO thin films using chemical bath deposition for solution-processed solar cells.

    PubMed

    Della Gaspera, Enrico; van Embden, Joel; Chesman, Anthony S R; Duffy, Noel W; Jasieniak, Jacek J

    2014-12-24

    Solution processing provides a versatile and inexpensive means to prepare functional materials with specifically designed properties. The current challenge is to mimic the structural, optical, and/or chemical properties of thin films fabricated by vacuum-based techniques using solution-based approaches. In this work we focus on ZnO to show that thin films grown using a simple, aqueous-based, chemical bath deposition (CBD) method can mimic the properties of sputtered coatings, provided that the kinetic and thermodynamic reaction parameters are carefully tuned. The role of these parameters toward growing highly oriented and dense ZnO thin films is fully elucidated through detailed microscopic and spectroscopic investigations. The prepared samples exhibit bulk-like optical properties, are intrinsic in their electronic characteristics, and possess negligible organic contaminants, especially when compared to ZnO layers deposited by sol-gel or from nanocrystal inks. The efficacy of our CBD-grown ZnO thin films is demonstrated through the effective replacement of sputtered ZnO buffer layers within high efficiency solution processed Cu2ZnSnS4xSe4(1-x) solar cells. PMID:25506738

  4. Photocatalytic Properties of TiO2 Thin Films Modified with Ag and Pt Nanoparticles Deposited by Gas Flow Sputtering.

    PubMed

    Maicu, M; Glöss, D; Frach, Peter; Hecker, D; Gerlach, G; Córdoba, José M

    2015-09-01

    In this work, a gas flow sputtering (GFS) process which allows the production and deposition of metal nanoparticles (NPs) in a vacuum environment is described. Aim of the study is to prove the potential of this technology for the fabrication of new TiO2 films with enhanced photocatalytic properties. For this purpose, Ag and Pt NPs have been produced and deposited on photocatalytic float glass coated with TiO2 thin films by magnetron sputtering. The influence of the process parameters and of the metal amount on the final properties of the particles (quantity, size, size distribution, oxidation state etc.,) was widely investigated. Moreover, the effect of the NPs on the photocatalytic activity of the resulting materials was evaluated for the case of the decomposition of stearic acid (SA) during UV-A irradiation. The reduction of the water contact angle (WCA) during the irradiation period was measured in order to test the photo-induced super-hydrophilicity (PSH). PMID:26716202

  5. Electrical properties of undoped and Li-doped NiO thin films deposited by RF sputtering without intentional heating

    NASA Astrophysics Data System (ADS)

    Sugiyama, Mutsumi; Nakai, Hiroshi; Sugimoto, Gaku; Yamada, Aika; Chichibu, Shigefusa F.

    2016-08-01

    The fundamental transmittance and electrical properties of undoped and Li-doped NiO thin films deposited by conventional RF sputtering without intentional heating were evaluated. Both the transmittance and resistivity of undoped and Li-doped NiO decreased with increasing O2 fraction in the sputtering gas, f(O2) = O2/(Ar + O2). The result is attributed to the increase in the concentration of acceptors of Ni vacancies (VNi) under oxygen-rich growth conditions. In addition to VNi, Li atom on the Ni site (LiNi) likely acts as a shallow accepter, which can explain the experimental finding that the carrier concentration of Li-doped NiO was approximately three orders of magnitude higher than that of the undoped case deposited under the same f(O2). The mobility of NiO was remarkably low (around 0.1–1.0 cm2 V‑1 s‑1) and almost independent of f(O2) or the amount of doping, reflecting the large hole effective mass.

  6. Physics of Plasma-Based Ion Implantation&Deposition (PBIID)and High Power Impulse Magnetron Sputtering (HIPIMS): A Comparison

    SciTech Connect

    Anders, Andre

    2007-08-28

    The emerging technology of High Power Impulse MagnetronSputtering (HIPIMS) has much in common with the more establishedtechnology of Plasma Based Ion Implantation&Deposition (PBIID):both use pulsed plasmas, the pulsed sheath periodically evolves andcollapses, the plasma-sheath system interacts with the pulse-drivingpower supply, the plasma parameters are affected by the power dissipated,surface atoms are sputtered and secondary electrons are emitted, etc.Therefore, both fields of science and technology could learn from eachother, which has not been fully explored. On the other hand, there aresignificant differences, too. Most importantly, the operation of HIPIMSheavilyrelies on the presence of a strong magnetic field, confiningelectrons and causing their ExB drift, which is closed for typicalmagnetron configurations. Second, at the high peak power levels used forHIPIMS, 1 kW/cm2 or greater averaged over the target area, the sputteredmaterial greatly affects plasma generation. For PBIID, in contrast,plasma generation and ion processing of the surface (ion implantation,etching, and deposition) are considered rela-tively independentprocesses. Third, secondary electron emission is generally considered anuisance for PBIID, especially at high voltages, whereas it is a criticalingredient to the operation of HIPIMS. Fourth, the voltages in PBIID areoften higher than in HIPIMS. For the first three reasons listed above,modelling of PBIID seems to be easier and could give some guidance forfuture HIPIMS models, which, clearly, will be more involved.

  7. Low-Energy Sputtering Studies of Boron Nitride with Xenon Ions

    NASA Technical Reports Server (NTRS)

    Ray, P. K.; Shutthanandan, V.

    1999-01-01

    Sputtering of boron nitride with xenon ions was investigated using secondary ion (SIMS) and secondary neutral (SNMS) mass spectrometry. The ions generated from the ion gun were incident on the target at an angle of 50' with respect to the surface'normal. The energy of ions ranged from 100 eV to 3 keV. A flood electron gun was used to neutralize the positive charge build-up on the target surface. The intensities of sputtered neutral and charged particles, including single atoms, molecules, and clusters, were measured as a function of ion energy. Positive SIMS spectra were dominated by the two boron isotopes whereas BN- and B- were the two major constituents of the negative SIMS spectra. Nitrogen could be detected only in the SNMS spectra. The intensity-energy curves of the sputtered particles were similar in shape. The knees in P-SIMS and SNMS intensity-energy curves appear at around I keV which is significantly higher that 100 to 200 eV energy range at which knees appear in the sputtering of medium and heavy elements by ions of argon and xenon. This difference in the position of the sputter yield knee between boron nitride and heavier targets is due to the reduced ion energy differences. The isotopic composition of secondary ions of boron were measured by bombarding boron nitride with xenon ions at energies ranging from 100 eV to 1.5 keV using a quadrupole mass spectrometer. An ion gun was used to generate the ion beam. A flood electron gun was used to neutralize the positive charge buildup on the target surface. The secondary ion flux was found to be enriched in heavy isotopes at lower incident ion energies. The heavy isotope enrichment was observed to decrease with increasing primary ion energy. Beyond 350 eV, light isotopes were sputtered preferentially with the enrichment increasing to an asymptotic value of 1.27 at 1.5 keV. The trend is similar to that of the isotopic enrichment observed earlier when copper was sputtered with xenon ions in the same energy

  8. Ion-beam sputtering deposition and magnetoelectric properties of layered heterostructures (FM/PZT/FM)n, where FM - Co or Ni78Fe22

    NASA Astrophysics Data System (ADS)

    Stognij, Alexander; Novitskii, Nikolai; Sazanovich, Andrei; Poddubnaya, Nadezhda; Sharko, Sergei; Mikhailov, Vladimir; Nizhankovski, Viktor; Dyakonov, Vladimir; Szymczak, Henryk

    2013-08-01

    Magnetoelectric properties of layered heterostructures (FM/PZT/FM)n (n≤ 3) obtained by ion-beam sputtering deposition of ferromagnetic metal (FM), where FM is the cobalt (Co) or permalloy Ni78Fe22, onto ferroelectric ceramic based on lead zirconate titanate (PZT) have been studied. The polished ferroelectric plates in thickness from 400 to 20 μm were subjected to finished treatment by ion-beam sputtering. After plasma activation they were covered by the ferromagnetic films from 1 to 6 μm in thickness. Enhanced characteristics of these structures were reached by means of both the thickness optimization of ferroelectric and ferromagnetic layers and obtaining of ferromagnetic/ferroelectric interfaces being free from defects and foreign impurities. Assuming on the basis of analysis of elastic stresses in the ferromagnetic film that the magnetoelectric effect forms within ferromagnetic/ferroelectric interface, the structures with 2-3 ferromagnetic layers were obtained. In layered heterostructure (Py/PZT/Py)3, the optimal thickness of ferromagnetic film was 2 μm, and outer and inner ferroelectric layers had 20 μm and 80 μm in thickness, respectively. For such structure the maximal magnetoelectric voltage coefficient of 250 mV/(cm Oe) was reached at a frequency 100 Hz in magnetic field of 0.25 T at room temperature. The structures studied can serve as energy-independent elements detecting the change of magnetic or electric fields in electronic devices based on magnetoelectric effect.

  9. Effect of growth rate on crystallization of HfO2 thin films deposited by RF magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Dhanunjaya, M.; Manikanthababu, N.; Pathak, A. P.; Rao, S. V. S. Nageswara

    2016-05-01

    Hafnium oxide (HfO2) is the potentially useful dielectric material in both; electronics to replace the conventional SiO2 as gate dielectric and in Optics as anti-reflection coating material. In this present work we have synthesized polycrystalline HfO2 thin films by RF magnetron sputtering deposition technique with varying target to substrate distance. The deposited films were characterized by X-ray Diffraction, Rutherford Backscattering Spectrometry (RBS) and transmission and Reflection (T&R) measurements to study the growth behavior, microstructure and optical properties. XRD measurement shows that the samples having mixed phase of monoclinic, cubic and tetragonal crystal structure. RBS measurements suggest the formation of Inter Layer (IL) in between Substrate and film

  10. Effect of substrate temperature and film thickness on the characteristics of silver thin films deposited by DC magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Mashaiekhy, Jahanbakhsh; Shafieizadeh, Zahra; Nahidi, Hossein

    2012-11-01

    Silver (Ag) films were prepared by DC magnetron sputtering deposition at different substrate temperatures (25-450 °C) and film thicknesses (100-800 nm) and their morphological, optical, electrical and structural properties were investigated. Atomic force microscopy (AFM) was employed to study the surface topography of the thin films. The grain size as well as surface roughness of the films is strongly dependent on the temperature and the film thickness. X-ray diffraction experiments showed the intensity enhancement by increasing substrate temperature, also by increasing film thickness. The optical properties were determined by means of spectrophotometric analysis. It is found that the optical reflection is not affected significantly with substrate temperature and film thickness. The electrical resistivities of films were determined by four-point probe measurements. The experimental results indicate that the films with higher thickness and deposition temperature have the lowest resistivity.

  11. Near zero temperature coefficient of resistance in Ti:Si:O thin films deposited by magnetron co-sputtering

    NASA Astrophysics Data System (ADS)

    Mireles, Marcela; Quevedo Lopez, M. A.

    2016-10-01

    Thin films of titanium/silicon/oxygen (Ti:Si:O) deposited by sputtering were evaluated as thin film resistors and the resulting resistance and temperature coefficient of resistance (TCR) was studied. The films were deposited in an Argon atmosphere at room temperature with 1% oxygen and their electrical properties evaluated before and after forming gas (5% H2: 95% N2) annealing at 325 and 450 °C for 1 h. The physical structure was characterized by x-ray diffraction (XRD), elemental composition and depth profile by Rutherford backscattering (RBS), and film composition by x-ray photoelectron spectroscopy (XPS). Carrier mobility, type and concentration were evaluated by Hall effect measurements. Thin films with a Ti:Si ratio of 1.6 exhibited a near zero TCR (-405 ppm °C-1) and sheet resistance (Rsh) at 25 °C of 1 kOhm sq-1.

  12. OPTICAL PROPERTIES OF N-DOPED Cu2O THIN FILMS DEPOSITED BY RF-MAGNETRON SPUTTERING Cu2O TARGET

    NASA Astrophysics Data System (ADS)

    Lai, Guozhong; Wu, Yangwei; Lin, Limei; Qu, Yan; Lai, Fachun

    2014-05-01

    N-doped Cu2O films were deposited on quartz substrates by reactive magnetron sputtering a Cu2O target. The optical constants and thicknesses of the films with different nitrogen partial pressure (NPP) were retrieved from transmittance data by an optical model which combines the Forouhi-Bloomer model with modified Drude model. The results show that when NPP increases from 0.0 to 0.033 Pa, the optical gap decreases from 2.14 to 1.95 eV. Additionally, an optical absorption process in the infrared region below the optical band gap was observed for N-doped Cu2O films, which was not found in the pure Cu2O film. This is because an intermediate band (IB) in the band gap results from nitrogen doping. It is believed that N-doped Cu2O film with suitable NPP could be used to enhance the energy conversion efficiency for photovoltaic cells.

  13. Experimental investigation of the energy and temperature dependence of beryllium self sputtering

    SciTech Connect

    Korshunov, S.N.; Guseva, M.I.; Stolijarova, V.G.

    1995-09-01

    The low-Z metal beryllium is considered as plasma facing material (PFM) for the ITER. It is expected that operation temperature range of beryllium PFM will be (670 - 1070) K. While experimental Be-sputtering data bases exist for H{sup +}, D{sup +} and He{sup +}-ions, the self-sputtering yields of Be have only been estimated by computer simulation. In this paper we report the experimental results on the energy and temperature dependence of the beryllium self-sputtering yield (S). The energy dependence of S{sup s} in the energy range (0.5 - 10.0) keV was measured at 670 K. The self-sputtering yield of Be attains its maximal value at the ion energy of 1.5 keV, being equal to 0.32 {+-} at./ion. Comparison of the experimental results and theoretical prediction shows a good agreement for energy dependence of S{sup s}. The temperature dependence of S{sup s} in the temperature range (370-1070)K was obtained for 0.9keV Be{sup +}-ions. The value of S{sup s} is not changed up to 870 K. It sharply increases at the temperatures above 870 attaining the value of 0.75 at./ion at 1070 K.

  14. Observing Planets and Small Bodies in Sputtered High Energy Atom (SHEA) Fluxes

    NASA Technical Reports Server (NTRS)

    Milillo, A.; Orsini, S.; Hsieh, K. C.; Baragiola, R.; Fama, M.; Johnson, R.; Mura, A.; Plainaki, Ch.; Sarantos, M.; Cassidy, T. A.; DeAngelis, E; Desai, M.; Goldstein, R.; Lp, W.-H.; Killen, R.; Livi, S.

    2012-01-01

    The evolution of the surfaces of bodies unprotected by either strong magnetic fields or thick atmospheres in the Solar System is caused by various processes, induced by photons, energetic ions and micrometeoroids. Among these processes, the continuous bombardment of the solar wind or energetic magnetospheric ions onto the bodies may significantly affect their surfaces, with implications for their evolution. Ion precipitation produces neutral atom releases into the exosphere through ion sputtering, with velocity distribution extending well above the particle escape limits. We refer to this component of the surface ejecta as sputtered high-energy atoms (SHEA). The use of ion sputtering emission for studying the interaction of exposed bodies (EB) with ion environments is described here. Remote sensing in SHEA in the vicinity of EB can provide mapping of the bodies exposed to ion sputtering action with temporal and mass resolution. This paper speculates on the possibility of performing remote sensing of exposed bodies using SHEA The evolution of the surfaces of bodies unprotected by either strong magnetic fields or thick atmospheres in the Solar System is caused by various processes, induced by photons, energetic ions and micrometeoroids. Among these processes, the continuous bombardment of the solar wind or energetic magnetospheric ions onto the bodies may significantly affect their surfaces, with implications for their evolution. Ion precipitation produces neutral atom releases into the exosphere through ion sputtering, with velocity distribution extending well above the particle escape limits. We refer to this component of the surface ejecta as sputtered high-energy atoms (SHEA). The use of ion sputtering emission for studying the interaction of exposed bodies (EB) with ion environments is described here. Remote sensing in SHEA in the vicinity of EB can provide mapping of the bodies exposed to ion sputtering action with temporal and mass resolution. This paper

  15. On the electron energy in the high power impulse magnetron sputtering discharge

    SciTech Connect

    Gudmundsson, J. T.; Sigurjonsson, P.; Larsson, P.; Lundin, D.; Helmersson, U.

    2009-06-15

    The temporal variation of the electron energy distribution function (EEDF) was measured with a Langmuir probe in a high power impulse magnetron sputtering (HiPIMS) discharge at 3 and 20 mTorr pressures. In the HiPIMS discharge a high power pulse is applied to a planar magnetron giving a high electron density and highly ionized sputtered vapor. The measured EEDF is Maxwellian-like during the pulse; it is broader for lower discharge pressure and it becomes narrower as the pulse progresses. This indicates that the plasma cools as the pulse progresses, probably due to high metal content of the discharge.

  16. Effects of various deposition times and RF powers on CdTe thin film growth using magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Ghorannevis, Z.; Akbarnejad, E.; Ghoranneviss, M.

    2016-09-01

    Cadmium telluride (CdTe) is a p-type II-VI compound semiconductor, which is an active component for producing photovoltaic solar cells in the form of thin films, due to its desirable physical properties. In this study, CdTe film was deposited using the radio frequency (RF) magnetron sputtering system onto a glass substrate. To improve the properties of the CdTe film, effects of two experimental parameters of deposition time and RF power were investigated on the physical properties of the CdTe films. X-ray Diffraction (XRD), atomic force microscopy (AFM) and spectrophotometer were used to study the structural, morphological and optical properties of the CdTe samples grown at different experimental conditions, respectively. Our results suggest that film properties strongly depend on the experimental parameters and by optimizing these parameters, it is possible to tune the desired structural, morphological and optical properties. From XRD data, it is found that increasing the deposition time and RF power leads to increasing the crystallinity as well as the crystal sizes of the grown film, and all the films represent zinc blende cubic structure. Roughness values given from AFM images suggest increasing the roughness of the CdTe films by increasing the RF power and deposition times. Finally, optical investigations reveal increasing the film band gaps by increasing the RF power and the deposition time.

  17. Nanoporous Ti-metal film deposition using radio frequency magnetron sputtering technique for photovoltaic application.

    PubMed

    Sung, Youl-Moon; Paeng, Sung-Hwan; Moon, Byung-Ho; Kwak, Dong-Joo

    2012-02-01

    Nanoporous Ti-metal film electrode was fabricated by radio frequency (rf) magnetron sputtering technique on nanoporous TiO2 layer prepared by sol-gel combustion method and investigated with respect to its photo-anode properties of TCO-less DSCs. The porous Ti layer (approximately 1 microm) with low sheet resistance (approximately 17 Omega/sq.) can collect electrons from the TiO2 layer and allows the ionic diffusion of I(-)/I(3-) through the hole. The porous Ti layer with highly ordered columnar structure prepared by 8 mTorr sputtering shows the good impedance characteristics. The efficiency of prepared TCO-less DSCs sample is about 4.83% (ff: 0.6, Voc: 0.65 V, Jsc: 11.2 mA/cm2).

  18. A study of Ta xC 1 -x coatings deposited on biomedical 316L stainless steel by radio-frequency magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Ding, M. H.; Wang, B. L.; Li, L.; Zheng, Y. F.

    2010-11-01

    In this paper, Ta xC 1 -x coatings were deposited on 316L stainless steel (316L SS) by radio-frequency (RF) magnetron sputtering at various substrate temperatures ( Ts) in order to improve its corrosion resistance and hemocompatibility. XRD results indicated that Ts could significantly change the microstructure of Ta xC 1 -x coatings. When Ts was <150 °C, the Ta xC 1 -x coatings were in amorphous condition, whereas when Ts was ≥150 °C, TaC phase was formed, exhibiting in the form of particulates with the crystallite sizes of about 15-25 nm ( Ts = 300 °C). Atomic force microscope (AFM) results showed that with the increase of Ts, the root-mean-square (RMS) values of the Ta xC 1 -x coatings decreased. The nano-indentation experiments indicated that the Ta xC 1 -x coating deposited at 300 °C had a higher hardness and modulus. The scratch test results demonstrated that Ta xC 1 -x coatings deposited above 150 °C exhibited good adhesion performance. Tribology tests results demonstrated that Ta xC 1 -x coatings exhibited excellent wear resistance. The results of potentiodynamic polarization showed that the corrosion resistance of the 316L SS was improved significantly because of the deposited Ta xC 1 -x coatings. The platelet adhesion test results indicated that the Ta xC 1 -x coatings deposited at Ts of 150 °C and 300 °C possessed better hemocompatibility than the coating deposited at Ts of 25 °C. Additionally, the hemocompatibility of the Ta xC 1 -x coating on the 316L SS was found to be influenced by its surface roughness, hydrophilicity and the surface energy.

  19. High rate deposition of photocatalytic TiO{sub 2} films with high activity by hollow cathode gas-flow sputtering method

    SciTech Connect

    Kubo, Yoshiyuki; Iwabuchi, Yoshinori; Yoshikawa, Masato; Sato, Yasushi; Shigesato, Yuzo

    2008-07-15

    Photocatalytic TiO{sub 2} films were deposited by a hollow cathode gas-flow sputtering method using two Ti metal targets mounted parallel to each other. The Ar and O{sub 2} flow rates were 3000 and 0-50 SCCM (SCCM denotes cubic centimeter per minute at STP), respectively, and total gas pressure during the deposition was maintained at 45 Pa. The highest deposition rate for the photocatalytic TiO{sub 2} films was 162 nm/min at 30 SCCM of O{sub 2} flow. The as-deposited films and postannealed films, annealed in air at 300 deg. C for 1 h, were used to carry out photocatalytic decomposition of acetaldehyde (CH{sub 3}CHO). In particular, the postannealed films showed extremely high photocatalytic activity compared to the photocatalytic activity of films deposited by conventional reactive sputtering.

  20. Low Energy Sputter Yields for Diamond, Carbon-Carbon Composite, and Molybdenum Subject to Xenon Ion Nombardment

    NASA Technical Reports Server (NTRS)

    Blandino, J.; Goodwin, D.; Garner, C.

    1999-01-01

    Sputter yields have been measured for polycrystalline diamond, single crystal diamond, a carbon-carbon composite, and molybdenum subject to bombardment with xenon. The tests were performed using a 3 cm Kaufman ion source to produce incident ions with energy in the range of 150 - 750 eV and profilometry based technique to measure the amount of sputtered material.

  1. Improvement of adhesion and barrier properties of biomedical stainless steel by deposition of YSZ coatings using RF magnetron sputtering

    SciTech Connect

    Sánchez-Hernández, Z.E.; Domínguez-Crespo, M.A.; Torres-Huerta, A.M.; Onofre-Bustamante, E.; Andraca Adame, J.; Dorantes-Rosales, H.

    2014-05-01

    The AISI 316L stainless steel (SS) has been widely used in both artificial knee and hip joints in biomedical applications. In the present study, yttria stabilized zirconia (YSZ, ZrO{sub 2} + 8% Y{sub 2}O{sub 3}) films were deposited on AISI 316L SS by radio-frequency magnetron sputtering using different power densities (50–250 W) and deposition times (30–120 min) from a YSZ target. The crystallographic orientation and surface morphology were studied using X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The effects of the surface modification on the corrosion performance of AISI 316L SS were evaluated in phosphate buffered saline (PBS) solution using an electrochemical test on both the virgin and coated samples. The YSZ coatings have a (111) preferred orientation during crystal growth along the c-axis for short deposition times (30–60 min), whereas a polycrystalline structure forms during deposition times from 90 to 120 min. The corrosion protective character of the YSZ coatings depends on the crystal size and film thickness. A significant increase in adhesion and corrosion resistance by at least a factor of 46 and a higher breakdown potential were obtained for the deposited coatings at 200 W (120 min). - Highlights: • Well-formed and protective YSZ coatings were achieved on AISI 316L SS substrates. • Films grown at high power and long deposition time have polycrystalline structures. • The crystal size varies from ∼ 5 to 30 nm as both power and deposition time increased. • The differences of corrosion resistance are attributed to internal film structure.

  2. Energy Deposition Processes in Titan's Upper Atmosphere

    NASA Technical Reports Server (NTRS)

    Sittler, Edward C., Jr.; Bertucci, Cesar; Coates, Andrew; Cravens, Tom; Dandouras, Iannis; Shemansky, Don

    2008-01-01

    Most of Titan's atmospheric organic and nitrogen chemistry, aerosol formation, and atmospheric loss are driven from external energy sources such as Solar UV, Saturn's magnetosphere, solar wind and galactic cosmic rays. The Solar UV tends to dominate the energy input at lower altitudes of approximately 1100 km but which can extend down to approximately 400 km, while the plasma interaction from Saturn's magnetosphere, Saturn's magnetosheath or solar wind are more important at higher altitudes of approximately 1400 km, but the heavy ion plasma [O(+)] of approximately 2 keV and energetic ions [H(+)] of approximately 30 keV or higher from Saturn's magnetosphere can penetrate below 950km. Cosmic rays with energies of greater than 1 GeV can penetrate much deeper into Titan's atmosphere with most of its energy deposited at approximately 100 km altitude. The haze layer tends to dominate between 100 km and 300 km. The induced magnetic field from Titan's interaction with the external plasma can be very complex and will tend to channel the flow of energy into Titan's upper atmosphere. Cassini observations combined with advanced hybrid simulations of the plasma interaction with Titan's upper atmosphere show significant changes in the character of the interaction with Saturn local time at Titan's orbit where the magnetosphere displays large and systematic changes with local time. The external solar wind can also drive sub-storms within the magnetosphere which can then modify the magnetospheric interaction with Titan. Another important parameter is solar zenith angle (SZA) with respect to the co-rotation direction of the magnetospheric flow. Titan's interaction can contribute to atmospheric loss via pickup ion loss, scavenging of Titan's ionospheric plasma, loss of ionospheric plasma down its induced magnetotail via an ionospheric wind, and non-thermal loss of the atmosphere via heating and sputtering induced by the bombardment of magnetospheric keV ions and electrons. This

  3. Mixed-mode high-power impulse magnetron sputter deposition of tetrahedral amorphous carbon with pulse-length control of ionization

    NASA Astrophysics Data System (ADS)

    Tucker, M. D.; Ganesan, R.; McCulloch, D. G.; Partridge, J. G.; Stueber, M.; Ulrich, S.; Bilek, M. M. M.; McKenzie, D. R.; Marks, N. A.

    2016-04-01

    High-power impulse magnetron sputtering (HiPIMS) is used to deposit amorphous carbon thin films with sp3 fractions of 13% to 82%. Increasing the pulse length results in a transition from conventional HiPIMS deposition to a "mixed-mode" in which an arc triggers on the target surface, resulting in a large flux of carbon ions. The films are characterized using X-ray photoelectron spectroscopy, Raman spectroscopy, ellipsometry, nanoindentation, elastic recoil detection analysis, and measurements of stress and contact angle. All properties vary in a consistent manner, showing a high tetrahedral character only for long pulses, demonstrating that mixed-mode deposition is the source of the high carbon ion flux. Varying the substrate bias reveals an "energy window" effect, where the sp3 fraction of the films is greatest for a substrate bias around -100 V and decreases for higher or lower bias values. In the absence of bias, the films' properties show little dependence on the pulse length, showing that energetic ions are the origin of the highly tetrahedral character.

  4. Corrosion resistance of zirconium oxynitride coatings deposited via DC unbalanced magnetron sputtering and spray pyrolysis-nitriding

    NASA Astrophysics Data System (ADS)

    Cubillos, G. I.; Bethencourt, M.; Olaya, J. J.

    2015-02-01

    ZrOxNy/ZrO2 thin films were deposited on stainless steel using two different methods: ultrasonic spray pyrolysis-nitriding (SPY-N) and the DC unbalanced magnetron sputtering technique (UBMS). Using the first method, ZrO2 was initially deposited and subsequently nitrided in an anhydrous ammonia atmosphere at 1023 K at atmospheric pressure. For UBMS, the film was deposited in an atmosphere of air/argon with a Φair/ΦAr flow ratio of 3.0. Structural analysis was carried out through X-ray diffraction (XRD), and morphological analysis was done through scanning electron microscopy (SEM) and atomic force microscopy (AFM). Chemical analysis was carried out using X-ray photoelectron spectroscopy (XPS). ZrOxNy rhombohedral polycrystalline film was produced with spray pyrolysis-nitriding, whereas using the UBMS technique, the oxynitride films grew with cubic Zr2ON2 crystalline structures preferentially oriented along the (2 2 2) plane. Upon chemical analysis of the surface, the coatings exhibited spectral lines of Zr3d, O1s, and N1s, characteristic of zirconium oxynitride/zirconia. SEM analysis showed the homogeneity of the films, and AFM showed morphological differences according to the deposition technique of the coatings. Zirconium oxynitride films enhanced the stainless steel's resistance to corrosion using both techniques. The protective efficacy was evaluated using electrochemical techniques based on linear polarization (LP). The results indicated that the layers provide good resistance to corrosion when exposed to chloride-containing media.

  5. Investigation of buried homojunctions in p-InP formed during sputter deposition of both indium tin oxide and indium oxide

    NASA Technical Reports Server (NTRS)

    Gessert, T. A.; Li, X.; Wanlass, M. W.; Nelson, A. J.; Coutts, T. J.

    1990-01-01

    While dc magnetron sputter deposition of indium tin oxide leads to the formation of a buried homojunction in single crystal p-type InP, the mechanism of type conversion of the InP surface is not apparent. In view of the recent achievement of nearly 17-percent global efficiencies for cells fabricated solely by sputter deposition of In2O3, it is presently surmised that tin may not be an essential element in type conversion. A variety of electrical and optical techniques are presently used to evaluate the changes at both indium tin oxide/InP and indium oxide/InP interfaces. Such mechanisms as the passivation of acceptors by hydrogen, and sputter damage, are found to occur simultaneously.

  6. Comparative study of RF reactive magnetron sputtering and sol-gel deposition of UV induced superhydrophilic TiOx thin films

    NASA Astrophysics Data System (ADS)

    Vrakatseli, V. E.; Amanatides, E.; Mataras, D.

    2016-03-01

    TiOx and TiOx-like thin films were deposited on PEEK (Polyether ether ketone) substrates by low-temperature RF reactive magnetron sputtering and the sol-gel method. The resulting films were compared in terms of their properties and photoinduced hydrophilicity. Both techniques resulted in uniform films with good adhesion that can be switched to superhydrophilic after exposure to UVA radiation for similar time periods. In addition, the sputtered films can also be activated and switched to superhydrophilic by natural sunlight due to the higher absorption in the visible spectrum compared to the sol-gel films. On the other hand, the as deposited sol-films remain relatively hydrophilic for a longer time in dark compared to the sputtered film due to the differences in the morphology and the porosity of the two materials. Thus, depending on the application, either method can be used in order to achieve the desirable TiOx properties.

  7. Fabrication of homogenous multilayered W films by multi-step sputtering deposition: a novel grain boundary enrichment strategy.

    PubMed

    Zhu, Hailin; Yang, Jijun; Wan, Qiang; Lin, Liwei; Liao, Jiali; Yang, Yuanyou; Liu, Ning

    2015-11-01

    Using a multi-step deposition approach, we develop a strategy of homogeneous multilayered (HM) structure to enrich the grain boundary (GB) of sputtered W films. In comparison with the single-layered film, the HM W film is easily controllable for the film GB density. When decreasing the film modulation period t m from 160 nm to 7 nm, the GB density gradually increased from 0.065 nm(-1) to 0.275 nm(-1) without changing the phase structure of the films. Accordingly, the film's electrical resistivity and mechanical hardness, which are related to the GBs, changed from 40.1 μΩ · cm to 75.3 μΩ · cm and from 12.1 GPa to 16.2 GPa, respectively. Detailed analysis showed that the formation of an HM structure is related to the temperature evolution of the film growing surface during the multi-step sputtering process. This study could provide a general engineering approach to enrich film interfaces and allows for the development of thin films with novel microstructures.

  8. BiVO4 photoanodes for water splitting with high injection efficiency, deposited by reactive magnetron co-sputtering

    NASA Astrophysics Data System (ADS)

    Gong, Haibo; Freudenberg, Norman; Nie, Man; van de Krol, Roel; Ellmer, Klaus

    2016-04-01

    Photoactive bismuth vanadate (BiVO4) thin films were deposited by reactive co-magnetron sputtering from metallic Bi and V targets. The effects of the V-to-Bi ratio, molybdenum doping and post-annealing on the crystallographic and photoelectrochemical (PEC) properties of the BiVO4 films were investigated. Phase-pure monoclinic BiVO4 films, which are more photoactive than the tetragonal BiVO4 phase, were obtained under slightly vanadium-rich conditions. After annealing of the Mo-doped BiVO4 films, the photocurrent increased 2.6 times compared to undoped films. After optimization of the BiVO4 film thickness, the photocurrent densities (without a catalyst or a blocking layer or a hole scavenger) exceeded 1.2 mA/cm2 at a potential of 1.23 VRHE under solar AM1.5 irradiation. The surprisingly high injection efficiency of holes into the electrolyte is attributed to the highly porous film morphology. This co-magnetron sputtering preparation route for photoactive BiVO4 films opens new possibilities for the fabrication of large-scale devices for water splitting.

  9. Thin film deposition by electric and magnetic crossed-field diode sputtering. [Patent application

    DOEpatents

    Welch, K.M.

    1975-04-04

    Applying a coating of titanium nitride to a klystron window by means of a cross-field diode sputtering array is described. The array is comprised of a cohesive group of numerous small hollow electrically conducting cylinders and is mounted so that the open ends of the cylinders on one side of the group are adjacent to a titanium cathode plate. The workpiece is mounted so as to face the open ends of the other side of the group. A magnetic field is applied to the array so as to be coaxial with the cylinders and a potential is applied across the cylinders and the cathode plate, the cylinders as an anode being positive with respect to the cathode plate. The cylinders, the cathode plate, and the workpiece are situated in an atmosphere of nitrogen which becomes ionized such as by field emission because of the electric field between the cylinders and cathode plate, thereby establishing an anode-cathode discharge that results in sputtering of the titanium plate. The sputtered titanium coats the workpiece and chemically combines with the nitrogen to form a titanium nitride coating on the workpiece. Gas pressure, gas mixtures, cathode material composition, voltages applied to the cathode and anode, the magnetic field, cathode, anode and workpiece spacing, and the aspect ratio (ratio of length to inner diameter) of the anode cylinders, all may be controlled to provide consistent optimum thin film coatings of various compositions and thickness. Another facet of the disclosure is the coating of microwave components per se with titanium nitride to reduce multifactoring under operating conditions of the components.

  10. Thin film deposition by electric and magnetic crossed-field diode sputtering

    DOEpatents

    Welch, Kimo M.

    1977-01-01

    Applying a thin film coating to the surface of a workpiece, in particular, applying a coating of titanium nitride to a klystron window by means of a crossed-field diode sputtering array. The array is comprised of a cohesive group of numerous small hollow electrically conducting cylinders and is mounted so that the open ends of the cylinders on one side of the group are adjacent a titanium cathode plate. The workpiece is mounted so as to face the open ends of the other side of the group. A magnetic field is applied to the array so as to be coaxial with the cylinders and a potential is applied across the cylinders and the cathode plate, the cylinders as an anode being positive with respect to the cathode plate. The cylinders, the cathode plate and the workpiece are situated in an atmosphere of nitrogen which becomes ionized such as by field emission because of the electric field between the cylinders and cathode plate, thereby establishing an anode-cathode discharge that results in sputtering of the titanium plate. The sputtered titanium coats the workpiece and chemically combines with the nitrogen to form a titanium nitride coating on the workpiece. Gas pressure, gas mixtures, cathode material composition, voltages applied to the cathode and anode, the magnetic field, cathode, anode and workpiece spacing, and the aspect ratio (ratio of length to inner diameter) of the anode cylinders, all may be controlled to provide consistent optimum thin film coatings of various compositions and thicknesses. Another facet of the disclosure is the coating of microwave components per se with titanium nitride to reduce multipactoring under operating conditions of the components.

  11. Thin film deposition by electric and magnetic crossed-field diode sputtering

    DOEpatents

    Welch, Kimo M.

    1980-01-01

    Applying a thin film coating to the surface of a workpiece, in particular, applying a coating of titanium nitride to a klystron window by means of a crossed-field diode sputtering array. The array is comprised of a cohesive group of numerous small hollow electrically conducting cylinders and is mounted so that the open ends of the cylinders on one side of the group are adjacent a titanium cathode plate. The workpiece is mounted so as to face the open ends of the other side of the group. A magnetic field is applied to the array so as to be coaxial with the cylinders and a potential is applied across the cylinders and the cathode plate, the cylinders as an anode being positive with respect to the cathode plate. The cylinders, the cathode plate and the workpiece are situated in an atmosphere of nitrogen which becomes ionized such as by field emission because of the electric field between the cylinders and cathode plate, thereby establishing an anode-cathode discharge that results in sputtering of the titanium plate. The sputtered titanium coats the workpiece and chemically combines with the nitrogen to form a titanium nitride coating on the workpiece. Gas pressure, gas mixtures, cathode material composition, voltages applied to the cathode and anode, the magnetic field, cathode, anode and workpiece spacing, and the aspect ratio (ratio of length to inner diameter) of the anode cylinders, all may be controlled to provide consistent optimum thin film coatings of various compositions and thicknesses. Another facet of the disclosure is the coating of microwave components per se with titanium nitride to reduce multipactoring under operating conditions of the components.

  12. Sputter erosion and deposition in the discharge chamber of a small mercury ion thruster

    NASA Technical Reports Server (NTRS)

    Power, J. L.

    1973-01-01

    A 5 cm diameter mercury ion thruster similar to one tested for 9715 hours was operated approximately 400 hrs each at discharge voltages of 36.6, 39.6, and 42.6 V, with corresponding discharge propellant utilizations of 58, 68, and 70 percent. The observed sputter erosion rates of the internal thruster parts and the anode weight gain rate all rose rapidly with discharge voltage and were roughly in the ratio of 1:3:5 for the three voltages. The combined weight loss of the internal thruster parts nearly balanced the anode weight gain. Hg(+2) ion apparently caused most of the observed erosion.

  13. Ion beam sputter etching

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; Rutledge, Sharon K.

    1986-01-01

    An ion beam etching process which forms extremely high aspect ratio surface microstructures using thin sputter masks is utilized in the fabrication of integrated circuits. A carbon rich sputter mask together with unmasked portions of a substrate is bombarded with inert gas ions while simultaneous carbon deposition occurs. The arrival of the carbon deposit is adjusted to enable the sputter mask to have a near zero or even slightly positive increase in thickness with time while the unmasked portions have a high net sputter etch rate.

  14. Influence of working gas pressure on structure and properties of WO3 films reactively deposited by rf magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Takahashi, T.; Tanabe, J.; Yamada, N.; Nakabayashi, H.

    2003-07-01

    Tungsten trioxide (WO3) films with thickness of 0.9-6.7 μm have been deposited on glass-slide substrates, using rf magnetron sputtering in an atmosphere of mixture 80% Ar and 20% O2. The as-deposited films had a dark metallic color, like the W target, at a working gas pressure PW of 1 mTorr. Yellow films resulted at a PW of 3 mTorr. With a further increase of PW, the film color changed to pale yellow. From the x-ray diffraction patterns, the as-deposited films were polycrystalline crystallizing in the monoclinic crystal structure with high c-axis orientation perpendicular to the film plane. The optical transmittance of the films deposited at a PW of 1 mTorr is nearly zero. However, the transmittance of the films deposited at other PW are larger than 70% in the wavelength, λ, ranging from 500 to 900 nm. With decreasing λ to 400 nm, the transmittance decreases steeply to zero. The λ at this absorption edge is longer than that in TiO2 and comes in the visible region. The surface morphology of the films depends on PW. This different morphology may be attributed to the effect of the substrate heating by plasma emission because of the high plasma density at higher PW. The morphology of the films may also depend on the crystallinity of the WO3 films. As PW increased, the surfaces of the films became rougher but the grain sizes of the films did not always become larger. The WO3 films deposited in this study may be used for the underlayer of TiO2 photocatalyst.

  15. Effects of post-deposition annealing ambient on band alignment of RF magnetron-sputtered Y2O3 film on gallium nitride

    PubMed Central

    2013-01-01

    The effects of different post-deposition annealing ambients (oxygen, argon, forming gas (95% N2 + 5% H2), and nitrogen) on radio frequency magnetron-sputtered yttrium oxide (Y2O3) films on n-type gallium nitride (GaN) substrate were studied in this work. X-ray photoelectron spectroscopy was utilized to extract the bandgap of Y2O3 and interfacial layer as well as establishing the energy band alignment of Y2O3/interfacial layer/GaN structure. Three different structures of energy band alignment were obtained, and the change of band alignment influenced leakage current density-electrical breakdown field characteristics of the samples subjected to different post-deposition annealing ambients. Of these investigated samples, ability of the sample annealed in O2 ambient to withstand the highest electric breakdown field (approximately 6.6 MV/cm) at 10−6 A/cm2 was related to the largest conduction band offset of interfacial layer/GaN (3.77 eV) and barrier height (3.72 eV). PMID:23360596

  16. Nanopatterning of mica surface under low energy ion beam sputtering

    SciTech Connect

    Metya, A.; Ghose, D.; Mollick, S. A.; Majumdar, A.

    2012-04-01

    Irradiation of crystalline muscovite mica samples by 500 eV Ar{sup +} ions at different incident angles can induce significant surface morphological variations. A periodic ripple pattern of nano-dimensions forms in the angle window 47 deg. -70 deg. . On the other hand, tilted conical protrusions develop on the surface at grazing incidence angles around 80 deg. . From the derivative of the topographic images the distribution of the side-facet slopes in the ion incidence plane are measured, which is found to be strongly related to the pattern morphology. Additionally, it has been shown that, for the ripple structures, the base angles can be tuned by changing the ion fluence. An asymmetric sawtooth profile of the ripples obtained at low fluence is transformed to a symmetrical triangular profile at high fluence. As the slopes are found to be small, the pattern formation is not provoked by the gradient-dependent erosion mechanism rather it is the general effect of the curvature-dependent sputtering phenomena.

  17. Fabrication and Electrical Characterization of the Si/ZnO/ZnO:Al Structure Deposited by RF-Magnetron Sputtering

    NASA Astrophysics Data System (ADS)

    Alaya, A.; Djessas, K.; El Mir, L.; Khirouni, K.

    2016-10-01

    The electrical transport properties of the structures of Si(p)/ZnO(i)/ZnO: Al(3%) and Si(p)/PS/ZnO(i)/ZnO: Al(3%) deposited by radio-frequency-magnetron sputtering were investigated and compared by using current-voltage and impedance spectroscopy measurements in a wide temperature range of 80-300 K. Aluminum-doped ZnO is considered to be one of the most important transparent conducting oxide materials due to its high conductivity, good transparency and low cost. From the current-voltage-temperature ( I- V- T) characteristics, it was found that both structures had a good rectifying behavior. This behavior decreases according to the porous silicon layer. The variation of the conductance with frequency indicates the semiconducting behavior and superposition of different conduction mechanisms. The insertion of the porous silicon layer results in a decrease of conductivity, which is attributed to reduced conductivity of defect-rich porous silicon.

  18. Sputter deposited W1-x-yNixTiyO3 thin films: Electrochromic properties and durability

    NASA Astrophysics Data System (ADS)

    Morales-Luna, M.; Arvizu, M. A.; Granqvist, C. G.; Niklasson, G. A.

    2016-02-01

    Previous research demonstrated that a small amount of nickel enhances the coloration efficiency of tungsten-nickel oxide electrochromic (EC) thin films with respect to that of pure tungsten oxide (WO3) films. Furthermore the incorporation of titanium gives an improvement in the durability of tungsten-titanium oxide EC thin films. In this work we investigated the EC performance of tungsten-nickel-titanium oxide (W1-x-yNixTiyO3) EC thin films with emphasis on durability. The films were deposited on indium tin oxide covered glass by reactive dc sputtering from tungsten, tungsten-titanium alloy and nickel targets. Cyclic voltammetry was performed using 1 M LiClO4 in propylene carbonate as electrolyte. The voltage window was chosen to induce fast degradation of the samples within 80 cycles. Elemental compositions were obtained by Rutherford Backscattering Spectroscopy.

  19. Transparent photostable ZnO nonvolatile memory transistor with ferroelectric polymer and sputter-deposited oxide gate

    SciTech Connect

    Park, C. H.; Im, Seongil; Yun, Jungheum; Lee, Gun Hwan; Lee, Byoung H.; Sung, Myung M.

    2009-11-30

    We report on the fabrication of transparent top-gate ZnO nonvolatile memory thin-film transistors (NVM-TFTs) with 200 nm thick poly(vinylidene fluoride/trifluoroethylene) ferroelectric layer; semitransparent 10 nm thin AgO{sub x} and transparent 130 nm thick indium-zinc oxide (IZO) were deposited on the ferroelectric polymer as gate electrode by rf sputtering. Our semitransparent NVM-TFT with AgO{sub x} gate operates under low voltage write-erase (WR-ER) pulse of {+-}20 V, but shows some degradation in retention property. In contrast, our transparent IZO-gated device displays very good retention properties but requires anomalously higher pulse of {+-}70 V for WR and ER states. Both devices stably operated under visible illuminations.

  20. Structure and transport in high pressure oxygen sputter-deposited BaSnO{sub 3−δ}

    SciTech Connect

    Ganguly, Koustav; Ambwani, Palak; Xu, Peng; Jeong, Jong Seok; Mkhoyan, K. Andre; Leighton, C. E-mail: leighton@umn.edu; Jalan, Bharat E-mail: leighton@umn.edu

    2015-06-01

    BaSnO{sub 3} has recently been identified as a high mobility wide gap semiconductor with significant potential for room temperature oxide electronics. Here, a detailed study of the high pressure oxygen sputter-deposition, microstructure, morphology, and stoichiometry of epitaxial BaSnO{sub 3} on SrTiO{sub 3}(001) and MgO(001) is reported, optimized conditions resulting in single-phase, relaxed, close to stoichiometric films. Most significantly, vacuum annealing is established as a facile route to n-doped BaSnO{sub 3−δ}, leading to electron densities above 10{sup 19} cm{sup −3}, 5 mΩ cm resistivities, and room temperature mobility of 20 cm{sup 2} V{sup −1} s{sup −1} in 300-Å-thick films on MgO(001). Mobility limiting factors, and the substantial scope for their improvement, are discussed.

  1. Controlled polarity of sputter-deposited aluminum nitride on metals observed by aberration corrected scanning transmission electron microscopy

    NASA Astrophysics Data System (ADS)

    Harumoto, T.; Sannomiya, T.; Matsukawa, Y.; Muraishi, S.; Shi, J.; Nakamura, Y.; Sawada, H.; Tanaka, T.; Tanishiro, Y.; Takayanagi, K.

    2013-02-01

    The polarity determination process of sputter-deposited aluminum nitride (AlN) on metals has been analyzed using aberration corrected atomic resolution scanning transmission electron microscope. Direct growth of c-axis orientated AlN on face centered cubic metals (fcc) (111) with the local epitaxy has been observed, and the polarity was determined at the AlN/metal interface. We found that the AlN polarity can be controlled by the base metal layer: N-polarity AlN grows on Pt(111) while Al-polarity AlN forms on Al(111). Based on these results, the growth mechanism of AlN on metals is discussed.

  2. Controlled polarity of sputter-deposited aluminum nitride on metals observed by aberration corrected scanning transmission electron microscopy

    SciTech Connect

    Harumoto, T.; Sannomiya, T.; Matsukawa, Y.; Muraishi, S.; Shi, J.; Nakamura, Y.; Sawada, H.; Tanaka, T.; Tanishiro, Y.; Takayanagi, K.

    2013-02-28

    The polarity determination process of sputter-deposited aluminum nitride (AlN) on metals has been analyzed using aberration corrected atomic resolution scanning transmission electron microscope. Direct growth of c-axis orientated AlN on face centered cubic metals (fcc) (111) with the local epitaxy has been observed, and the polarity was determined at the AlN/metal interface. We found that the AlN polarity can be controlled by the base metal layer: N-polarity AlN grows on Pt(111) while Al-polarity AlN forms on Al(111). Based on these results, the growth mechanism of AlN on metals is discussed.

  3. Ion beam sputter-deposited thin film coatings for protection of spacecraft polymers in low earth orbit

    NASA Technical Reports Server (NTRS)

    Banks, B. A.; Mirtich, M. J.; Rutledge, S. K.; Swec, D. M.; Nahra, H. K.

    1985-01-01

    Ion beam sputter-deposited thin films at Al2O3, SiO2, and a codeposited mixture of predominantly SiO2 with small amounts of fluoropolymer were evaluated both in laboratory plasma ashing tests and in space on board Shuttle flight STS-8 for effectiveness in preventing oxidation of polyimide Kapton. Measurements of mass loss and optical performance of coated and uncoated polyimide samples exposed to the low earth orbital environment are presented. Optical techniques were used to measure loss rates of protective films exposed to atomic oxygen. Results of the analysis of the space flight exposed samples indicate that thin film metal oxide coatings are very effective in protecting the polyimide. Metal oxide coatings with a small amount of fluoropolymer codeposited have the additional benefit of great flexibility.

  4. Ion beam sputter-deposited thin film coatings for protection of spacecraft polymers in low Earth orbit

    NASA Technical Reports Server (NTRS)

    Banks, B. A.; Mirtich, M. J.; Rutledge, S. K.; Swec, D. M.; Nahra, H. K.

    1985-01-01

    Ion beam sputter-deposited thin films of Al2O3, SiO2, and a codeposited mixture of predominantly SiO2 with small amounts of a fluoropolymer were evaluated both in laboratory plasma ashing tests and in space on board shuttle flight STS-8 for effectiveness in preventing oxidation of polyimide Kapton. Measurements of mass loss and optical performance of coated and uncoated polyimide samples exposed to the low Earth orbital environment are presented. Optical techniques were used to measure loss rates of protective films exposed to atomic oxygen. Results of the analysis of the space flight exposed samples indicate that thin film metal oxide coatings are very effective in protecting the polyimide. Metal oxide coatings with a small amount of fluoropolymer codeposited have the additional benefit of great flexibility.

  5. Effects of additives on the preferred orientation of Mn-Zn ferrite thin films deposited by ion beam sputtering

    NASA Astrophysics Data System (ADS)

    Cho, Hae Seok; Kim, Hyeong Joon

    1995-03-01

    We investigated the effects of additives on the preferred orientation of the Mn-Zn ferrite thin films deposited on SiO2(1000 Å)/Si(100) at 350 °C by ion beam sputtering. A mosaic target, consisting of a single crystal (100) Mn-Zn ferrite with a metal strip on it, was employed as the target. The preferred orientation of the ferrite films was (hhh) for the target with or without Fe and Zn additives, and (h00) for Ti addition. In the case of Cu addition, a weak (311) orientation appeared with a strong (hhh) preferred orientation. The origin of the changes in the preferred orientation with different additives was discussed. The easy axis of magnetization, however, lay in the direction parallel to the film plane due to large shape anisotropy, irrespective of the preferred orientation.

  6. Microstructure and mechanical properties of sputter deposited Ni/Ni3Al multilayer films at elevated temperature

    NASA Astrophysics Data System (ADS)

    Zhang, Chao; Feng, Kai; Li, Zhuguo; Lu, Fenggui; Huang, Jian; Wu, Yixiong

    2016-08-01

    Nano-structured Ni/Ni3Al multilayer was prepared by magnetron sputtering, with individual layer thicknesses h varying from 10 to 160 nm. The microstructure and hardness of Ni/Ni3Al multilayer were investigated by X-ray diffraction, transmission electron microscopy and nanoindentation. The results show that the hardness increases with decreasing h for as-deposited and 500 °C annealed multilayers. When annealed at 700 °C, the hardness approach a peak value at h = 40 nm with followed by softening at smaller h. The influence of individual layer thickness, grain size as well as formation of ordered Ni3Al on strengthening mechanisms of Ni/Ni3Al multilayers at elevated temperature are discussed.

  7. On the pressure effect in energetic deposition of Cu thin films by modulated pulsed power magnetron sputtering: A global plasma model and experiments

    SciTech Connect

    Zheng, B. C.; Meng, D.; Che, H. L.; Lei, M. K.

    2015-05-28

    The modulated pulsed power magnetron sputtering (MPPMS) discharge processes are numerically modeled and experimentally investigated, in order to explore the effect of the pressure on MPPMS discharges as well as on the microstructure of the deposited thin films. A global plasma model has been developed based on a volume-averaged global description of the ionization region, considering the loss of electrons by cross-B diffusion. The temporal variations of internal plasma parameters at different pressures from 0.1 to 0.7 Pa are obtained by fitting the model to duplicate the experimental discharge data, and Cu thin films are deposited by MPPMS at the corresponding pressures. The surface morphology, grain size and orientation, and microstructure of the deposited thin films are investigated by scanning electron microscopy, transmission electron microscopy, and x-ray diffraction. By increasing the pressure from 0.1 to 0.7 Pa, both the ion bombardment energy and substrate temperature which are estimated by the modeled plasma parameters decrease, corresponding to the observed transition of the deposited thin films from a void free structure with a wide distribution of grain size (zone T) into an underdense structure with a fine fiber texture (zone 1) in the extended structure zone diagram (SZD). The microstructure and texture transition of Cu thin films are well-explained by the extended SZD, suggesting that the primary plasma processes are properly incorporated in the model. The results contribute to the understanding of the characteristics of MPPMS discharges, as well as its correlation with the microstructure and texture of deposited Cu thin films.

  8. Correlation Between Optical Properties And Chemical Composition Of Sputter-deposited Germanium Cxide (GeOx) Films

    SciTech Connect

    Murphy, Neil R.; Grant, J. T.; Sun, L.; Jones, J. G.; Jakubiak, R.; Shutthanandan, V.; Ramana, Chintalapalle V.

    2014-03-18

    Germanium oxide (GeOx) films were grown on (1 0 0) Si substrates by reactive Direct-Current (DC) magnetron sputter-deposition using an elemental Ge target. The effects of oxygen gas fraction, Г = O2/(Ar + O2), on the deposition rate, structure, chemical composition and optical properties of GeOx films have been investigated. The chemistry of the films exhibits an evolution from pure Ge to mixed Ge + GeO + GeO2 and then finally to GeO2 upon increasing Г from 0.00 to 1.00. Grazing incidence X-ray analysis indicates that the GeOx films grown were amorphous. The optical properties probed by spectroscopic ellipsometry indicate that the effect of Г is significant on the optical constants of the GeOx films. The measured index of refraction (n) at a wavelength (λ) of 550 nm is 4.67 for films grown without any oxygen, indicating behavior characteristic of semiconducting Ge. The transition from germanium to mixed Ge + GeO + GeO2 composition is associated with a characteristic decrease in n (λ = 550 nm) to 2.62 and occurs at Г = 0.25. Finally n drops to 1.60 for Г = 0.50–1.00, where the films become GeO2. A detailed correlation between Г, n, k and stoichiometry in DC sputtered GeOx films is presented and discussed.

  9. Study on MoO{sub 3-x} films deposited by reactive sputtering for organic light-emitting diodes

    SciTech Connect

    Oka, Nobuto; Watanabe, Hiroki; Sato, Yasushi; Yamaguchi, Hiroshi; Ito, Norihiro; Tsuji, Hiroya; Shigesato, Yuzo

    2010-07-15

    The authors investigate the role of reduced molybdenum trioxide [MoO{sub 3-x} (x{<=}1)] films in organic light-emitting diodes, particularly from the viewpoint of the oxidation state of Mo. MoO{sub 3-x} films were deposited by reactive sputtering under a mixture of argon (Ar) and oxygen (O{sub 2}). The O{sub 2} gas-flow ratio (GFR) [O{sub 2}/(Ar+O{sub 2})] was adjusted between 10% and 100%. Mo with six, five, and four valence electrons was detected in MoO{sub 3-x} film deposited with an O{sub 2} GFR of 10% and 12.5%, whereas, under higher O{sub 2} GFRs, only six valence electrons for Mo in the MoO{sub 3-x} film were detected. N,N{sup '}-di(1-naphthyl)-N,N{sup '}-diphenylbenzidine ({alpha}-NPD) layer, hole-transport material, were deposited over the MoO{sub 3-x} layer by subsequent vacuum evaporation. At the {alpha}-NPD/MoO{sub 3-x} interface, it was found that {alpha}-NPD cations were generated and that MoO{sub 3-x} was reduced, which provided evidence of charge transfer across the interface by Raman spectroscopy and x-ray photoelectron spectroscopy.

  10. Magnetic properties of Fe/FeSi2/Fe3Si trilayered films prepared by facing targets sputtering deposition

    NASA Astrophysics Data System (ADS)

    Ishibashi, Kazuya; Nakashima, Kazutoshi; Sakai, Ken-Ichiro; Yoshitake, Tsuyoshi

    2015-09-01

    Whereas giant magnetoresistance and tunnel magnetoresistance films generally employ nonmagnetic metal and insulator spacers, respectively, we have studied Fe3Si/FeSi artificial lattices, in which FeSi2 is semiconducting and its employment as spacers is specific to our research. For the formation of parallel/antiparallel alignments of layer magnetizations, the employment of ferromagnetic layers with different coercive forces is required. There have been few studies on the fabrication of Fe-Si system spin valves comprising ferromagnetic layers with different coercive forces. In this work, Fe3Si and Fe were employed as ferromagnetic layer materials with different coercive forces. Fe/FeSi2/Fe3Si trilayered spin valve junctions by facing targets direct-current sputtering deposition combined with a mask method, and their electrical and magnetic properties were studied. An Fe3Si layer was epitaxially grown on Si(111) substrate as a bottom layer. After that, An Fe layer with a large coercive force was deposited as a top layer, posterior to a FeSi2 layer being deposited. From magnetization curves measured by a vibrating sample magnetometer, it was confirmed that the parallel and antiparallel magnetization alignments of ferromagnetic layers are clearly realized. This work was supported by JSPS KAKENHI Grant Number 15K21594.

  11. Current-Voltage Characteristics and Deposition of AlTiN Thin Films by High Power Impulse Magnetron Sputtering Process

    NASA Astrophysics Data System (ADS)

    Wu, Wan-Yu; Su, Amei; Liu, Yawei; Yeh, Chi-Ming; Chen, Wei-Chih; Chang, Chi-Lung

    2015-09-01

    In this study, AlTiN thin films were deposited using a high power impulse magnetron sputtering (HiPIMS) process under a unipolar mode. The AlTi target had a composition of 70 at% Al and 30 at% Ti. Nitrogen was used as the reactive gas to deposite AlTiN thin films along with Ar gas at a working pressure of 1 ×10-3 torr. The target voltage and current were measured at different conditions including various duty cycles from 1 to 5%, pulse durations from 50 to 400 μs, target powers from 0.6 to 1.8 kW, and N2/Ar ratios from 0 to 1. Depending on the deposition condition, peak powers in the range of 104 to 105 W were observed. The effect of deposition conditions were discussed. For film deposition, the pulse duration and the duty cycle were fixed at 100 μs and 3%, respectively. A fixed bias of -150 V was applied to the substrates, including Si wafer, 304 stainless steel, and tungsten carbide.It was found that the nitrogen content increases with the N2/Ar ratio and then saturates. With increasing target power, a higher N2/Ar ratio was required for the AlTiN thin films to have a better mechanical properties. Meanwhile, the hardness of the AlTiN thin films also increases with the target power. The highest hardness of 41 GPa was observed as the N2/Ar ratio was 0.9 and the power was 1.8 kW. It was found that the amount Al-N bonding and the distribution of AlN phase within the AlTiN thin films play an important role in determining the mechanical properties.

  12. Process controllability of inductively coupled plasma-enhanced reactive sputter deposition for the fabrication of amorphous InGaZnOx channel thin-film transistors

    NASA Astrophysics Data System (ADS)

    Takenaka, Kosuke; Nakata, Keitaro; Otani, Hirofumi; Osaki, Soichiro; Uchida, Giichiro; Setsuhara, Yuichi

    2016-01-01

    The process controllability of inductively coupled plasma-enhanced reactive sputter deposition for the fabrication of amorphous InGaZnOx (a-IGZO) channel thin-film transistors (TFTs) was investigated. a-IGZO film deposition with the addition of H2 gas was performed using a plasma-assisted reactive sputtering system to control the oxidation process during a-IGZO film formation by balancing the oxidation and reduction reactions. Optical emission spectroscopy measurements indicate the possibility for the oxidation reaction to be inhibited by a decrease in the density of oxygen atoms and the reduction effect of hydrogen during a-IGZO film deposition due to the addition of H2 gas. The characteristics of TFTs fabricated using a-IGZO films deposited with a plasma-enhanced magnetron sputtering deposition system were investigated. The results indicate the possibility of expanding the process window by controlling the balance between oxidation and reduction with the addition of H2 gas. TFTs with a-IGZO films that were deposited with the addition of H2 gas exhibited good performance with a field-effect mobility (μFE) of 15.3 cm2 V-1 s-1 and a subthreshold gate voltage swing (S) of 0.48 V decade-1.

  13. Vapor-deposited porous films for energy conversion

    DOEpatents

    Jankowski, Alan F.; Hayes, Jeffrey P.; Morse, Jeffrey D.

    2005-07-05

    Metallic films are grown with a "spongelike" morphology in the as-deposited condition using planar magnetron sputtering. The morphology of the deposit is characterized by metallic continuity in three dimensions with continuous and open porosity on the submicron scale. The stabilization of the spongelike morphology is found over a limited range of the sputter deposition parameters, that is, of working gas pressure and substrate temperature. This spongelike morphology is an extension of the features as generally represented in the classic zone models of growth for physical vapor deposits. Nickel coatings were deposited with working gas pressures up 4 Pa and for substrate temperatures up to 1000 K. The morphology of the deposits is examined in plan and in cross section views with scanning electron microscopy (SEM). The parametric range of gas pressure and substrate temperature (relative to absolute melt point) under which the spongelike metal deposits are produced appear universal for other metals including gold, silver, and aluminum.

  14. Amorphous indium-tin-zinc oxide films deposited by magnetron sputtering with various reactive gases: Spatial distribution of thin film transistor performance

    SciTech Connect

    Jia, Junjun; Torigoshi, Yoshifumi; Shigesato, Yuzo; Kawashima, Emi; Utsuno, Futoshi; Yano, Koki

    2015-01-12

    This work presents the spatial distribution of electrical characteristics of amorphous indium-tin-zinc oxide film (a-ITZO), and how they depend on the magnetron sputtering conditions using O{sub 2}, H{sub 2}O, and N{sub 2}O as the reactive gases. Experimental results show that the electrical properties of the N{sub 2}O incorporated a-ITZO film has a weak dependence on the deposition location, which cannot be explained by the bombardment effect of high energy particles, and may be attributed to the difference in the spatial distribution of both the amount and the activity of the reactive gas reaching the substrate surface. The measurement for the performance of a-ITZO thin film transistor (TFT) also suggests that the electrical performance and device uniformity of a-ITZO TFTs can be improved significantly by the N{sub 2}O introduction into the deposition process, where the field mobility reach to 30.8 cm{sup 2} V{sup –1} s{sup –1}, which is approximately two times higher than that of the amorphous indium-gallium-zinc oxide TFT.

  15. Mechanical properties of Ta-Al-N thin films deposited by cylindrical DC magnetron sputtering: Influence of N2% in the gas mixture

    NASA Astrophysics Data System (ADS)

    Darabi, Elham; Moghaddasi, Naghmeh; Reza Hantehzadeh, Mohammad

    2016-06-01

    Ta-Al-N thin films were deposited by cylindrical DC magnetron sputtering on a stainless steel substrate under varying nitrogen flow ratios ( N2 with respect to N2 + Ar in the range of 1.5%-9%. The effect of the N2 content in the reactive gas mixture on crystalline structure, surface morphology, and mechanical properties of Ta-Al-N thin films was investigated. The amount of Al and Ta in deposited films was obtained by energy dispersive X-ray spectroscopy (EDX) analysis and films thickness was measured by surface step profilometer. X-ray diffraction analysis (XRD) revealed that the crystalline structure of the Ta-Al-N polycrystalline thin film is a mixture of TaAl, TaN, and AlN crystalline phases. Surface morphology, roughness, and grain size were investigated by atomic force microscopy (AFM). The nano hardness of Ta-Al-N thin films, measured by the nanoindentation method, was about 9GPa maximum for samples prepared under 3% N2 , and the friction coefficient, obtained by nanoscratch analysis, was approximately 0.2 for all Ta-Al-N thin films. Other results were found to be affected considerably by increasing the N2 amount.

  16. SPUTTERING FROM A POROUS MATERIAL BY PENETRATING IONS

    SciTech Connect

    Rodriguez-Nieva, J. F.; Bringa, E. M.; Cassidy, T. A.; Caro, A.; Loeffler, M. J.; Farkas, D.

    2011-12-10

    Porous materials are ubiquitous in the universe and weathering of porous surfaces plays an important role in the evolution of planetary and interstellar materials. Sputtering of porous solids in particular can influence atmosphere formation, surface reflectivity, and the production of the ambient gas around materials in space. Several previous studies and models have shown a large reduction in the sputtering of a porous solid compared to the sputtering of the non-porous solid. Using molecular dynamics simulations we study the sputtering of a nanoporous solid with 55% of the solid density. We calculate the electronic sputtering induced by a fast, penetrating ion, using a thermal spike representation of the deposited energy. We find that sputtering for this porous solid is, surprisingly, the same as that for a full-density solid, even though the sticking coefficient is high.

  17. Sputtering from a Porous Material by Penetrating Ions

    NASA Astrophysics Data System (ADS)

    Rodriguez-Nieva, J. F.; Bringa, E. M.; Cassidy, T. A.; Johnson, R. E.; Caro, A.; Fama, M.; Loeffler, M. J.; Baragiola, R. A.; Farkas, D.

    2011-12-01

    Porous materials are ubiquitous in the universe and weathering of porous surfaces plays an important role in the evolution of planetary and interstellar materials. Sputtering of porous solids in particular can influence atmosphere formation, surface reflectivity, and the production of the ambient gas around materials in space. Several previous studies and models have shown a large reduction in the sputtering of a porous solid compared to the sputtering of the non-porous solid. Using molecular dynamics simulations we study the sputtering of a nanoporous solid with 55% of the solid density. We calculate the electronic sputtering induced by a fast, penetrating ion, using a thermal spike representation of the deposited energy. We find that sputtering for this porous solid is, surprisingly, the same as that for a full-density solid, even though the sticking coefficient is high.

  18. Sputtering from a Porous Material by Penetrating Ions

    NASA Technical Reports Server (NTRS)

    Rodriguez-Nieva, J. F.; Bringa, E. M.; Cassidy, T. A.; Johnson, R. E.; Caro, A.; Fama, M.; Loeffler, M.; Baragiola, R. A.; Farkas, D.

    2012-01-01

    Porous materials are ubiquitous in the universe and weathering of porous surfaces plays an important role in the evolution of planetary and interstellar materials. Sputtering of porous solids in particular can influence atmosphere formation, surface reflectivity, and the production of the ambient gas around materials in space, Several previous studies and models have shown a large reduction in the sputtering of a porous solid compared to the sputtering of the non-porous solid. Using molecular dynamics simulations we study the sputtering of a nanoporous solid with 55% of the solid density. We calculate the electronic sputtering induced by a fast, penetrating ion, using a thermal spike representation of the deposited energy. We find that sputtering for this porous solid is, surprisingly, the same as that for a full-density solid, even though the sticking coefficient is high.

  19. Synthesis of in-plane and stacked graphene/hexagonal boron nitride heterostructures by combining with ion beam sputtering deposition and chemical vapor deposition.

    PubMed

    Meng, Jun Hua; Zhang, Xing Wang; Wang, Hao Lin; Ren, Xi Biao; Jin, Chuan Hong; Yin, Zhi Gang; Liu, Xin; Liu, Heng

    2015-10-14

    Graphene/hexagonal boron nitride (h-BN) heterostructures have attracted a great deal of attention in recent years due to their unique and complementary properties for use in a wide range of potential applications. However, it still remains a challenge to synthesize large-area high quality samples by a scalable growth method. In this work, we present the synthesis of both in-plane and stacked graphene/h-BN heterostructures on Cu foils by sequentially depositing h-BN via ion beam sputtering deposition (IBSD) and graphene with chemical vapor deposition (CVD). Due to a significant difference in the growth rate of graphene on h-BN and Cu, the in-plane graphene/h-BN heterostructures were rapidly formed on h-BN domain/Cu substrates. The large-area vertically stacked graphene/h-BN heterostructures were obtained by using the continuous h-BN film as a substrate. Furthermore, the well-designed sub-bilayered h-BN substrates provide direct evidence that the monolayered h-BN on Cu exhibits higher catalytic activity than the bilayered h-BN on Cu. The growth method applied here may have great potential in the scalable preparation of large-area high-quality graphene/h-BN heterostructures.

  20. Improving crystalline quality of sputtering-deposited MoS2 thin film by postdeposition sulfurization annealing using (t-C4H9)2S2

    NASA Astrophysics Data System (ADS)

    Ishihara, Seiya; Hibino, Yusuke; Sawamoto, Naomi; Suda, Kohei; Ohashi, Takumi; Matsuura, Kentarou; Machida, Hideaki; Ishikawa, Masato; Sudoh, Hiroshi; Wakabayashi, Hitoshi; Ogura, Atsushi

    2016-04-01

    A sputtered MoS2 thin film is a candidate for realizing enhancement-mode MoS2 metal-oxide-semiconductor field-effect transistors (MOSFETs). However, there are some sulfur vacancies in the film, which degrade the device performance. In this study, we performed postdeposition sulfurization annealing (PSA) on a sputtered MoS2 thin film in order to complement sulfur vacancies, and we investigated the fundamental properties of the MoS2 film. As a result, a high-quality crystalline 10-layer MoS2 film with an ideal stoichiometric composition was obtained at a relatively low process temperature (500 °C). The MoS2 film had an indirect bandgap of 1.36 eV and a high Hall mobility compared with the as-deposited sputtered MoS2 film.

  1. Reactive Sputter Deposition of WO3/Ag/WO3 Film for Indium Tin Oxide (ITO)-Free Electrochromic Devices.

    PubMed

    Yin, Yi; Lan, Changyong; Guo, Huayang; Li, Chun

    2016-02-17

    Functioning both as electrochromic (EC) and transparent-conductive (TC) coatings, WO3/Ag/WO3 (WAW) trilayer film shows promising potential application for ITO-free electrochromic devices. Reports on thermal-evaporated WAW films revealed that these bifunctional WAW films have distinct EC characteristics; however, their poor adhesive property leads to rapid degradation of coloring-bleaching cycling. Here, we show that WAW film with improved EC durability can be prepared by reactive sputtering using metal targets. We find that, by introducing an ultrathin tungsten (W) sacrificial layer before the deposition of external WO3, the oxidation of silver, which leads to film insulation and apparent optical haze, can be effectively avoided. We also find that the luminous transmittance and sheet resistance were sensitive to the thicknesses of tungsten and silver layers. The optimized structure for TC coating was obtained to be WO3 (45 nm)/Ag (10 nm)/W (2 nm)/WO3 (45 nm) with a sheet resistance of 16.3 Ω/□ and a luminous transmittance of 73.7%. Such film exhibits compelling EC performance with decent luminous transmittance modulation ΔTlum of 29.5%, fast switching time (6.6 s for coloring and 15.9 s for bleaching time), and long-term cycling stability (2000 cycles) with an applied potential of ±1.2 V. Thicker external WO3 layer (45/10/2/100 nm) leads to larger modulation with maximum ΔTlum of 46.4%, but at the cost of significantly increasing the sheet resistance. The strategy of introducing ultrathin metal sacrificial layer to avoid silver oxidation could be extended to fabricating other oxide-Ag-oxide transparent electrodes via low-cost reactive sputtering. PMID:26726834

  2. High-performance 6-inch EUV mask blanks produced under real production conditions by ion-beam sputter deposition

    NASA Astrophysics Data System (ADS)

    Becker, Hans W.; Sobel, Frank; Aschke, Lutz; Renno, Markus; Krieger, Juergen; Buttgereit, Ute; Hess, Guenter; Lenzen, Frank; Knapp, Konrad; Yulin, Sergey A.; Feigl, Torsten; Kuhlmann, Thomas; Kaiser, Norbert

    2002-12-01

    EUV mask blanks consist of two thin film systems deposited on low thermal expansion 6 inch substrates (LTEM). First there is the multilayer stack with around 100 alternating layers of elements with different optical properties which are topped by a capping layer. The absorber stack which consists of a buffer and a absorber layer is next. Here a minimum absorption of EUV light of 99 % is required. The stress in both layer systems should be as low as possible. The reduction of defects to an absolute minimum is one of the main challenges. The high-reflective Mo/Si multilayer coatings were designed for normal incidence reflectivity and successfully deposited on 6-inch LTEM substrates by ion-beam sputtering. X-ray scattering, transmission electron microscopy and atomic force microscopy were used for characterization of the multilayer interfaces and the surface morphology. The results are correlated to the measured normal incidence reflectivity using synchrotron radiation at the "Physikalisch- Technischen Bundesanstalt" (PTB) refelctometer at BESSY II, Berlin, Germany. A high resolution laser scanner was used to measure the particle distribution. First multilayer defect results are presented.

  3. Radio Frequency Magnetron Sputtering Deposition of TiO2 Thin Films and Their Perovskite Solar Cell Applications.

    PubMed

    Chen, Cong; Cheng, Yu; Dai, Qilin; Song, Hongwei

    2015-12-03

    In this work, we report a physical deposition based, compact (cp) layer synthesis for planar heterojunction perovskite solar cells. Typical solution-based synthesis of cp layer for perovskite solar cells involves low-quality of thin films, high-temperature annealing, non-flexible devices, limitation of large-scale production and that the effects of the cp layer on carrier transport have not been fully understood. In this research, using radio frequency magnetron sputtering (RFMS), TiO2 cp layers were fabricated and the thickness could be controlled by deposition time; CH3NH3PbI3 films were prepared by evaporation &immersion (E &I) method, in which PbI2 films made by thermal evaporation technique were immersed in CH3NH3I solution. The devices exhibit power conversion efficiency (PCE) of 12.1% and the photovoltaic performance can maintain 77% of its initial PCE after 1440 h. The method developed in this study has the capability of fabricating large active area devices (40 × 40 mm(2)) showing a promising PCE of 4.8%. Low temperature and flexible devices were realized and a PCE of 8.9% was obtained on the PET/ITO substrates. These approaches could be used in thin film based solar cells which require high-quality films leading to reduced fabrication cost and improved device performance.

  4. Radio Frequency Magnetron Sputtering Deposition of TiO2 Thin Films and Their Perovskite Solar Cell Applications.

    PubMed

    Chen, Cong; Cheng, Yu; Dai, Qilin; Song, Hongwei

    2015-01-01

    In this work, we report a physical deposition based, compact (cp) layer synthesis for planar heterojunction perovskite solar cells. Typical solution-based synthesis of cp layer for perovskite solar cells involves low-quality of thin films, high-temperature annealing, non-flexible devices, limitation of large-scale production and that the effects of the cp layer on carrier transport have not been fully understood. In this research, using radio frequency magnetron sputtering (RFMS), TiO2 cp layers were fabricated and the thickness could be controlled by deposition time; CH3NH3PbI3 films were prepared by evaporation &immersion (E &I) method, in which PbI2 films made by thermal evaporation technique were immersed in CH3NH3I solution. The devices exhibit power conversion efficiency (PCE) of 12.1% and the photovoltaic performance can maintain 77% of its initial PCE after 1440 h. The method developed in this study has the capability of fabricating large active area devices (40 × 40 mm(2)) showing a promising PCE of 4.8%. Low temperature and flexible devices were realized and a PCE of 8.9% was obtained on the PET/ITO substrates. These approaches could be used in thin film based solar cells which require high-quality films leading to reduced fabrication cost and improved device performance. PMID:26631493

  5. Crystallization of sputter-deposited amorphous Ge films by electron irradiation: Effect of low-flux pre-irradiation

    NASA Astrophysics Data System (ADS)

    Okugawa, M.; Nakamura, R.; Ishimaru, M.; Yasuda, H.; Numakura, H.

    2016-10-01

    We investigated the effect of low-flux electron irradiation with 125 keV to sputter-deposited amorphous germanium on the amorphous structure and electron-induced crystallization microstructure by TEM following our previous study on the effect of aging at room temperature. In samples aged for 3 days, coarse, spherical particles about 100 nm in diameter appear dominantly. By low-flux pre-irradiation to the samples, a reduction in the size and number of coarse particles, embedded in the matrix with fine nanograins of the diamond cubic structure, was noted with the increase in fluence. The crystal structure of these coarse particles was found to be not cubic but hexagonal. In samples aged for 4 months, a similar tendency was observed. In samples aged for 7 months, on the other hand, the homogeneous diamond cubic structured nanograins were unchanged by pre-irradiation. These results indicate that pre-irradiation as well as aging modifies the amorphous structure, preventing the appearance of a hexagonal phase. The elimination of a certain amount of medium-range ordered clusters by pre-irradiation, included in as-deposited samples and the samples aged for 4 months, apparently gives rise to a reduction in the size and number of coarse particles with a metastable hexagonal structure.

  6. Radio Frequency Magnetron Sputtering Deposition of TiO2 Thin Films and Their Perovskite Solar Cell Applications

    PubMed Central

    Chen, Cong; Cheng, Yu; Dai, Qilin; Song, Hongwei

    2015-01-01

    In this work, we report a physical deposition based, compact (cp) layer synthesis for planar heterojunction perovskite solar cells. Typical solution-based synthesis of cp layer for perovskite solar cells involves low-quality of thin films, high-temperature annealing, non-flexible devices, limitation of large-scale production and that the effects of the cp layer on carrier transport have not been fully understood. In this research, using radio frequency magnetron sputtering (RFMS), TiO2 cp layers were fabricated and the thickness could be controlled by deposition time; CH3NH3PbI3 films were prepared by evaporation & immersion (E & I) method, in which PbI2 films made by thermal evaporation technique were immersed in CH3NH3I solution. The devices exhibit power conversion efficiency (PCE) of 12.1% and the photovoltaic performance can maintain 77% of its initial PCE after 1440 h. The method developed in this study has the capability of fabricating large active area devices (40 × 40 mm2) showing a promising PCE of 4.8%. Low temperature and flexible devices were realized and a PCE of 8.9% was obtained on the PET/ITO substrates. These approaches could be used in thin film based solar cells which require high-quality films leading to reduced fabrication cost and improved device performance. PMID:26631493

  7. In situ deposition of PbTiO3 thin films by direct current reactive magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Iljinas, Aleksandras; Marcinauskas, Liutauras; Stankus, Vytautas

    2016-09-01

    The lead titanate thin films were deposited using in situ layer-by-layer reactive magnetron sputtering. The synthesis of films was performed on platinized silicon (Pt/Ti/SiO2/Si) substrates at 450-600 °C temperatures using Ti2O seed layer. The influence of the substrate temperature on the surface morphology, phase composition, and electrical properties of PbTiO3 films were investigated. Experimental results demonstrated that the deposition at higher substrate temperatures resulted in the formation of films with the lower surface roughness values. The increase of the substrate temperature has no effect on the tetragonality value of the films. The preferential orientation in the films was changed and the crystallites size slightly increased with the increased substrate temperature from 450 °C to 550 °C. Hysteresis measurements show that the films exhibit ferroelectric properties with a maximum coercive field of Ec = 150 kV/cm and of Pr = 60 μC/cm2. Coercive field dependence on the frequency measurements indicated that the creep regime of domain wall motions dominated till 1 kHz of frequency.

  8. Level-energy-dependent mean velocities of excited tungsten atoms sputtered by krypton-ion bombardment

    SciTech Connect

    Nogami, Keisuke; Sakai, Yasuhiro; Mineta, Shota; Kato, Daiji; Murakami, Izumi; Sakaue, Hiroyuki A.; Kenmotsu, Takahiro; Furuya, Kenji; Motohashi, Kenji

    2015-11-15

    Visible emission spectra were acquired from neutral atoms sputtered by 35–60 keV Kr{sup +} ions from a polycrystalline tungsten surface. Mean velocities of excited tungsten atoms in seven different 6p states were also obtained via the dependence of photon intensities on the distance from the surface. The average velocities parallel to the surface normal varied by factors of 2–4 for atoms in the different 6p energy levels. However, they were almost independent of the incident ion kinetic energy. The 6p-level energy dependence indicated that the velocities of the excited atoms were determined by inelastic processes that involve resonant charge exchange.

  9. Improving Efficiency of Diamond Thin Film Deposition In an ECR Sputter Source

    NASA Astrophysics Data System (ADS)

    Newby, Michael; Ross, Jerry; Zwicker, Andrew

    2010-11-01

    Having some of the most extreme physical properties of any material, diamond thin films are used to reinforce vacuum windows, as a semiconductor in electronic devices and to coat knives among other things. In our experiment, a 5 KW microwave ignites Argon or Hydrogen-Methane gas to create plasma at a low pressure which sputters a graphite target to create a diamond thin film on silicon substrates. The microwave matching system used to do this has an output frequency of 2.45GHz which is sent through a SmartMatch AX3060 impedance matching tuner. The SmartMatch uses three tuning stubs to match the load impedance and optimize the microwave power into the plasma. Problems arise when the SmartMatch tunes to something other than the plasma, such as the o-rings at the quartz window vacuum interface. This project focused on troubleshooting these issues by enabling the control of and communication with the microwave matching system.

  10. Photo-, cathodo-, and electroluminescence studies of sputter deposited AlN:Er thin films

    NASA Astrophysics Data System (ADS)

    Dimitrova, V. I.; Van Patten, P. G.; Richardson, H.; Kordesch, M. E.

    2001-05-01

    Green cathodoluminescence (CL), photoluminescence (PL) and electroluminescence (EL) have been obtained from Er-doped amorphous AlN thin films, 200 nm thick, prepared by rf magnetron sputtering. All films were activated by annealing at 750°C for 10 min in a nitrogen atmosphere. Three sharp bands at about 479, 538 and 559 nm corresponding to the 4F7/2→ 4I15/2, 2H11/2→ 4I15/2 and 4S3/2→ 4I15/2 transitions are observed. Fine structure is seen on the major transitions that does not change with temperature indicating that this structure is related to different local environments of the Er 3+ ion. The PL spectrum revealed sharp peaks from Er 3+ ions and a broad spectral profile that might be from defect states in the amorphous AlN. The results from EL measurements show that Er-doped amorphous AlN films can be used as a phosphor layer in alternating-current thin-film electroluminescent (ACTFEL) devices.

  11. Surface Modification and Chemical Sputtering of Graphite Induced by Low Energy Atomic and Molecular Deuterium Ions

    SciTech Connect

    Zhang, Hengda; Meyer, Fred W; Meyer III, Harry M; Lance, Michael J

    2008-01-01

    The surface morphology, and chemical/structural modifications induced during chemical sputtering of ATJ graphite by low-energy (<200 eV/D) deuterium atomic and molecular ions are explored by Scanning Electron Microscopy (SEM), Raman and Auger Electron Spectroscopy (AES) diagnostics. At the lowest impact energies, the ion range may become less than the probe depth of Raman and AES spectroscopy diagnostics. We show that such diagnostics are still useful probes at these energies. As demonstration, we used these surface diagnostics to confirm the characteristic changes of surface texture, increased amorphization, enhanced surface reactivity to impurity species, and increased sp{sup 3} content that low-energy deuterium ion bombardment to steady-state chemical sputtering conditions produces. To put these studies into proper context, we also present new chemical sputtering yields for methane production of ATJ graphite at room temperature by impact of D{sub 2}{sup +} in the energy range 10-250 eV/D, and by impact of D{sup +} and D{sub 3}{sup +} at 30 eV/D and 125 eV/D, obtained using a Quadrupole Mass Spectroscopy (QMS) approach. Below 100 eV/D, the methane production in ATJ graphite is larger than that in HOPG by a factor of {approx} 2. In the energy range 10-60 eV/D, the methane production yield is almost independent of energy and then decreases with increasing ion energies. The results are in good agreement with recent molecular dynamics simulations.

  12. Sputtering yields of Ru, Mo, and Si under low energy Ar{sup +} bombardment

    SciTech Connect

    Wu Shioumin; Kruijs, Robbert van de; Zoethout, Erwin; Bijkerk, Fred

    2009-09-01

    Ion sputtering yields for Ru, Mo, and Si under Ar{sup +} ion bombardment in the near-threshold energy range have been studied using an in situ weight-loss method with a Kaufman ion source, Faraday cup, and quartz crystal microbalance. The results are compared to theoretical models. The accuracy of the in situ weight-loss method was verified by thickness-decrease measurements using grazing incidence x-ray reflectometry, and results from both methods are in good agreement. These results provide accurate data sets for theoretical modeling in the near-threshold sputter regime and are of relevance for (optical) surfaces exposed to plasmas, as, for instance, in extreme ultraviolet photolithography.

  13. Morphological transitions in nanoscale patterns produced by concurrent ion sputtering and impurity co-deposition

    NASA Astrophysics Data System (ADS)

    Bradley, R. Mark

    2016-04-01

    We modify the theory of nanoscale patterns produced by ion bombardment with concurrent impurity deposition to take into account the effect that the near-surface impurities have on the collision cascades. As the impurity concentration is increased, the resulting theory successively yields a flat surface, a rippled surface with its wavevector along the projected direction of ion incidence, and a rippled surface with its wavevector rotated by 90°. Exactly the same morphological transitions were observed in recent experiments in which silicon was bombarded with an argon ion beam and gold was co-deposited [Moon et al., e-print arXiv:1601.02534].

  14. Large-area, continuous and high electrical performances of bilayer to few layers MoS2 fabricated by RF sputtering via post-deposition annealing method

    NASA Astrophysics Data System (ADS)

    Hussain, Sajjad; Singh, Jai; Vikraman, Dhanasekaran; Singh, Arun Kumar; Iqbal, Muhammad Zahir; Khan, Muhammad Farooq; Kumar, Pushpendra; Choi, Dong-Chul; Song, Wooseok; An, Ki-Seok; Eom, Jonghwa; Lee, Wan-Gyu; Jung, Jongwan

    2016-08-01

    We report a simple and mass-scalable approach for thin MoS2 films via RF sputtering combined with the post-deposition annealing process. We have prepared as-sputtered film using a MoS2 target in the sputtering system. The as-sputtered film was subjected to post-deposition annealing to improve crystalline quality at 700 °C in a sulfur and argon environment. The analysis confirmed the growth of continuous bilayer to few-layer MoS2 film. The mobility value of ~29 cm2/Vs and current on/off ratio on the order of ~104 were obtained for bilayer MoS2. The mobility increased up to ~173-181 cm2/Vs, respectively, for few-layer MoS2. The mobility of our bilayer MoS2 FETs is larger than any previously reported values of single to bilayer MoS2 grown on SiO2/Si substrate with a SiO2 gate oxide. Moreover, our few-layer MoS2 FETs exhibited the highest mobility value ever reported for any MoS2 FETs with a SiO2 gate oxide. It is presumed that the high mobility behavior of our film could be attributed to low charged impurities of our film and dielectric screening effect by an interfacial MoOxSiy layer. The combined preparation route of RF sputtering and post-deposition annealing process opens up the novel possibility of mass and batch production of MoS2 film.

  15. Large-area, continuous and high electrical performances of bilayer to few layers MoS2 fabricated by RF sputtering via post-deposition annealing method

    PubMed Central

    Hussain, Sajjad; Singh, Jai; Vikraman, Dhanasekaran; Singh, Arun Kumar; Iqbal, Muhammad Zahir; Khan, Muhammad Farooq; Kumar, Pushpendra; Choi, Dong-Chul; Song, Wooseok; An, Ki-Seok; Eom, Jonghwa; Lee, Wan-Gyu; Jung, Jongwan

    2016-01-01

    We report a simple and mass-scalable approach for thin MoS2 films via RF sputtering combined with the post-deposition annealing process. We have prepared as-sputtered film using a MoS2 target in the sputtering system. The as-sputtered film was subjected to post-deposition annealing to improve crystalline quality at 700 °C in a sulfur and argon environment. The analysis confirmed the growth of continuous bilayer to few-layer MoS2 film. The mobility value of ~29 cm2/Vs and current on/off ratio on the order of ~104 were obtained for bilayer MoS2. The mobility increased up to ~173–181 cm2/Vs, respectively, for few-layer MoS2. The mobility of our bilayer MoS2 FETs is larger than any previously reported values of single to bilayer MoS2 grown on SiO2/Si substrate with a SiO2 gate oxide. Moreover, our few-layer MoS2 FETs exhibited the highest mobility value ever reported for any MoS2 FETs with a SiO2 gate oxide. It is presumed that the high mobility behavior of our film could be attributed to low charged impurities of our film and dielectric screening effect by an interfacial MoOxSiy layer. The combined preparation route of RF sputtering and post-deposition annealing process opens up the novel possibility of mass and batch production of MoS2 film. PMID:27492282

  16. Large-area, continuous and high electrical performances of bilayer to few layers MoS2 fabricated by RF sputtering via post-deposition annealing method.

    PubMed

    Hussain, Sajjad; Singh, Jai; Vikraman, Dhanasekaran; Singh, Arun Kumar; Iqbal, Muhammad Zahir; Khan, Muhammad Farooq; Kumar, Pushpendra; Choi, Dong-Chul; Song, Wooseok; An, Ki-Seok; Eom, Jonghwa; Lee, Wan-Gyu; Jung, Jongwan

    2016-08-05

    We report a simple and mass-scalable approach for thin MoS2 films via RF sputtering combined with the post-deposition annealing process. We have prepared as-sputtered film using a MoS2 target in the sputtering system. The as-sputtered film was subjected to post-deposition annealing to improve crystalline quality at 700 °C in a sulfur and argon environment. The analysis confirmed the growth of continuous bilayer to few-layer MoS2 film. The mobility value of ~29 cm(2)/Vs and current on/off ratio on the order of ~10(4) were obtained for bilayer MoS2. The mobility increased up to ~173-181 cm(2)/Vs, respectively, for few-layer MoS2. The mobility of our bilayer MoS2 FETs is larger than any previously reported values of single to bilayer MoS2 grown on SiO2/Si substrate with a SiO2 gate oxide. Moreover, our few-layer MoS2 FETs exhibited the highest mobility value ever reported for any MoS2 FETs with a SiO2 gate oxide. It is presumed that the high mobility behavior of our film could be attributed to low charged impurities of our film and dielectric screening effect by an interfacial MoOxSiy layer. The combined preparation route of RF sputtering and post-deposition annealing process opens up the novel possibility of mass and batch production of MoS2 film.

  17. Large-area, continuous and high electrical performances of bilayer to few layers MoS2 fabricated by RF sputtering via post-deposition annealing method.

    PubMed

    Hussain, Sajjad; Singh, Jai; Vikraman, Dhanasekaran; Singh, Arun Kumar; Iqbal, Muhammad Zahir; Khan, Muhammad Farooq; Kumar, Pushpendra; Choi, Dong-Chul; Song, Wooseok; An, Ki-Seok; Eom, Jonghwa; Lee, Wan-Gyu; Jung, Jongwan

    2016-01-01

    We report a simple and mass-scalable approach for thin MoS2 films via RF sputtering combined with the post-deposition annealing process. We have prepared as-sputtered film using a MoS2 target in the sputtering system. The as-sputtered film was subjected to post-deposition annealing to improve crystalline quality at 700 °C in a sulfur and argon environment. The analysis confirmed the growth of continuous bilayer to few-layer MoS2 film. The mobility value of ~29 cm(2)/Vs and current on/off ratio on the order of ~10(4) were obtained for bilayer MoS2. The mobility increased up to ~173-181 cm(2)/Vs, respectively, for few-layer MoS2. The mobility of our bilayer MoS2 FETs is larger than any previously reported values of single to bilayer MoS2 grown on SiO2/Si substrate with a SiO2 gate oxide. Moreover, our few-layer MoS2 FETs exhibited the highest mobility value ever reported for any MoS2 FETs with a SiO2 gate oxide. It is presumed that the high mobility behavior of our film could be attributed to low charged impurities of our film and dielectric screening effect by an interfacial MoOxSiy layer. The combined preparation route of RF sputtering and post-deposition annealing process opens up the novel possibility of mass and batch production of MoS2 film. PMID:27492282

  18. Large-area, continuous and high electrical performances of bilayer to few layers MoS2 fabricated by RF sputtering via post-deposition annealing method

    NASA Astrophysics Data System (ADS)

    Hussain, Sajjad; Singh, Jai; Vikraman, Dhanasekaran; Singh, Arun Kumar; Iqbal, Muhammad Zahir; Khan, Muhammad Farooq; Kumar, Pushpendra; Choi, Dong-Chul; Song, Wooseok; An, Ki-Seok; Eom, Jonghwa; Lee, Wan-Gyu; Jung, Jongwan

    2016-08-01

    We report a simple and mass-scalable approach for thin MoS2 films via RF sputtering combined with the post-deposition annealing process. We have prepared as-sputtered film using a MoS2 target in the sputtering system. The as-sputtered film was subjected to post-deposition annealing to improve crystalline quality at 700 °C in a sulfur and argon environment. The analysis confirmed the growth of continuous bilayer to few-layer MoS2 film. The mobility value of ~29 cm2/Vs and current on/off ratio on the order of ~104 were obtained for bilayer MoS2. The mobility increased up to ~173–181 cm2/Vs, respectively, for few-layer MoS2. The mobility of our bilayer MoS2 FETs is larger than any previously reported values of single to bilayer MoS2 grown on SiO2/Si substrate with a SiO2 gate oxide. Moreover, our few-layer MoS2 FETs exhibited the highest mobility value ever reported for any MoS2 FETs with a SiO2 gate oxide. It is presumed that the high mobility behavior of our film could be attributed to low charged impurities of our film and dielectric screening effect by an interfacial MoOxSiy layer. The combined preparation route of RF sputtering and post-deposition annealing process opens up the novel possibility of mass and batch production of MoS2 film.

  19. ZrB2 thin films deposited on GaN(0001) by magnetron sputtering from a ZrB2 target

    NASA Astrophysics Data System (ADS)

    Tengdelius, Lina; Lu, Jun; Forsberg, Urban; Li, Xun; Hultman, Lars; Janzén, Erik; Högberg, Hans

    2016-11-01

    ZrB2 films were deposited on 900 °C-preheated or non-preheated GaN(0001) surfaces by direct current magnetron sputtering from a compound target. Analytical transmission electron microscopy and scanning transmission electron microscopy with energy dispersive X-ray spectroscopy and electron energy loss spectroscopy revealed a 0001 fiber textured ZrB2 film growth following the formation of a 2 nm thick amorphous BN layer onto the GaN(0001) at a substrate temperature of 900 °C. The amorphous BN layer remains when the substrate temperature is lowered to 500 °C or when the preheating step is removed from the process and results in the growth of polycrystalline ZrB2 films. The ZrB2 growth phenomena on GaN(0001) is compared to on 4H-SiC(0001), Si(111), and Al2O3(0001) substrates, which yield epitaxial film growth. The decomposition of the GaN surface during vacuum processing during BN interfacial layer formation is found to impede epitaxial growth of ZrB2.

  20. Sputter deposition of MgxAlyOz thin films in a dual-magnetron device: a multi-species Monte Carlo model

    NASA Astrophysics Data System (ADS)

    Yusupov, M.; Saraiva, M.; Depla, D.; Bogaerts, A.

    2012-07-01

    A multi-species Monte Carlo (MC) model, combined with an analytical surface model, has been developed in order to investigate the general plasma processes occurring during the sputter deposition of complex oxide films in a dual-magnetron sputter deposition system. The important plasma species, such as electrons, Ar+ ions, fast Ar atoms and sputtered metal atoms (i.e. Mg and Al atoms) are described with the so-called multi-species MC model, whereas the deposition of MgxAlyOz films is treated by an analytical surface model. Target-substrate distances for both magnetrons in the dual-magnetron setup are varied for the purpose of growing stoichiometric complex oxide thin films. The metal atoms are sputtered from pure metallic targets, whereas the oxygen flux is only directed toward the substrate and is high enough to obtain fully oxidized thin films but low enough to avoid target poisoning. The calculations correspond to typical experimental conditions applied to grow these complex oxide films. In this paper, some calculation results are shown, such as the densities of various plasma species, their fluxes toward the targets and substrate, the deposition rates, as well as the film stoichiometry. Moreover, some results of the combined model are compared with experimental observations. Note that this is the first complete model, which can be applied for large and complicated magnetron reactor geometries, such as dual-magnetron configurations. With this model, we are able to describe all important plasma species as well as the deposition process. It can also be used to predict film stoichiometries of complex oxide films on the substrate.

  1. Cyclic voltammetry on sputter-deposited films of electrochromic Ni oxide: Power-law decay of the charge density exchange

    SciTech Connect

    Wen, Rui-Tao Granqvist, Claes G.; Niklasson, Gunnar A.

    2014-10-20

    Ni-oxide-based thin films were produced by reactive direct-current magnetron sputtering and were characterized by X-ray diffraction and Rutherford backscattering spectroscopy. Intercalation of Li{sup +} ions was accomplished by cyclic voltammetry (CV) in an electrolyte of LiClO{sub 4} in propylene carbonate, and electrochromism was documented by spectrophotometry. The charge density exchange, and hence the optical modulation span, decayed gradually upon repeated cycling. This phenomenon was accurately described by an empirical power law, which was valid for at least 10{sup 4} cycles when the applied voltage was limited to 4.1 V vs Li/Li{sup +}. Our results allow lifetime assessments for one of the essential components in an electrochromic device such as a “smart window” for energy-efficient buildings.

  2. Cyclic voltammetry on sputter-deposited films of electrochromic Ni oxide: Power-law decay of the charge density exchange

    NASA Astrophysics Data System (ADS)

    Wen, Rui-Tao; Granqvist, Claes G.; Niklasson, Gunnar A.

    2014-10-01

    Ni-oxide-based thin films were produced by reactive direct-current magnetron sputtering and were characterized by X-ray diffraction and Rutherford backscattering spectroscopy. Intercalation of Li+ ions was accomplished by cyclic voltammetry (CV) in an electrolyte of LiClO4 in propylene carbonate, and electrochromism was documented by spectrophotometry. The charge density exchange, and hence the optical modulation span, decayed gradually upon repeated cycling. This phenomenon was accurately described by an empirical power law, which was valid for at least 104 cycles when the applied voltage was limited to 4.1 V vs Li/Li+. Our results allow lifetime assessments for one of the essential components in an electrochromic device such as a "smart window" for energy-efficient buildings.

  3. Ion energies in high power impulse magnetron sputtering with and without localized ionization zones

    SciTech Connect

    Yang, Yuchen; Tanaka, Koichi; Liu, Jason; Anders, André

    2015-03-23

    High speed imaging of high power impulse magnetron sputtering discharges has revealed that ionization is localized in moving ionization zones but localization disappears at high currents for high yield targets. This offers an opportunity to study the effect ionization zones have on ion energies. We measure that ions have generally higher energies when ionization zones are present, supporting the concept that these zones are associated with moving potential humps. We propose that the disappearance of ionization zones is caused by an increased supply of atoms from the target which cools electrons and reduces depletion of atoms to be ionized.

  4. Effect of process pressure and substrate temperature on CdS buffer layers deposited by using RF sputtering for Cu(In,Ga)Se2 solar cells

    NASA Astrophysics Data System (ADS)

    Choi, Ji Hyun; Jung, Sung Hee; Chung, Chee Won

    2016-02-01

    The characteristics of CdS films deposited on Cu(In,Ga)Se2(CIGS)/Mo/glass and glass substrates by using RF magnetron sputtering were investigated. The deposition pressure and the substrate temperature were selected as key parameters to examine the electrical, compositional and optical properties of the films. As the deposition pressure was increased, the resistivity increased while the carrier concentration decreased owing to a stoichiometric change and Cd-O incorporation at high pressure. Field-emission scanning electron microscopy(FE-SEM) revealed that the CdS films on CIGS/Mo became denser as the pressure was increased, which was responsible for the high transmittance of the film deposited at high pressure. As the substrate temperature was increased, the deposition rate decreased, which could be explained by using Langmuir theory. As the temperature was increased from room temperature to 573 K, the resistivity increased and the carrier concentration decreased, which was attributed to an increase in [S]/[Cd] ratio. In addition, as the temperature was increased, the small grains were agglomerated to form larger grains due to the increase in the activity of grains at high temperature. CdS films were confirmed to be uniformly deposited on the CIGS layer by using RF sputtering. The large amount of interdiffusion between the CIGS and the CdS films deposited at a high substrate temperature were observed by using X-ray photoelectron spectroscopy.

  5. Influence of the deposition conditions on radiofrequency magnetron sputtered MoS2 films

    NASA Technical Reports Server (NTRS)

    Steinmann, Pierre A.; Spalvins, Talivaldis

    1990-01-01

    By varying the radiofrequency (RF) power, the Ar pressure, and the potential on the substrates, MoS(x) films of various stoichiometry, density, adhesion, and morphology were produced. An increase of RF power increased the deposition rate and density of the MoS2 films as well as improved adhesion. However, the stoichiometry remained constant. An increase of Ar pressure increased the deposition rate but decreased the density, wheras both stoichiometry and adhesion were maximized at around 20 mtorr Ar pressure. Furthermore, a transition from compact film growth to columnar film growth was observed when the pressure was varied from 5 to 15 mtorr. Substoichiometric films were grown when a negative (bias) voltage was applied to the substrates.

  6. Thick aluminium nitride films deposited by room-temperature sputtering for ultrasonic applications.

    PubMed

    Lee, C K; Cochran, S; Abrar, A; Kirk, K J; Placido, F

    2004-04-01

    Materials in film form for electromechanical transduction have a number of potential applications in ultrasound. They are presently under investigation in flexural transducers for air-coupled ultrasound and underwater sonar operating at frequencies up to a few megahertz. At higher frequencies, they have the potential to be integrated with electronics for applications of ultrasound requiring high spatial resolution. However, a number of fabrication difficulties have arisen in studies of such films. These include the high temperatures required in many thick and thin film deposition processes, making them incompatible with other stages in transducer fabrication, and difficulties maintaining film quality when thin film--typically sub-1 microm--processes are extended to higher thicknesses. In this paper, we first outline a process which has allowed us to deposit aluminium nitride (AlN) films capable of electromechanical transduction at thicknesses up to more than 5 microm without substrate heating. As an ultrasonic transduction material, AlN has functional disadvantages, particularly a high acoustic velocity and weak electromechanical transduction. However, it also has a number of advantages relating to practicality of fabrication and functionality. These include the ability to be deposited on a variety of amorphous substrates, a very high Curie temperature, low permittivity, and low electrical and mechanical losses. Here, we present experimental results highlighting the transduction capabilities of AlN deposited on aluminium electrodes on glass and lithium niobate. We compare the results with those from standard simulation processes, highlighting the reasons for discrepancies and discussing the implications for incorporation of AlN into standard ultrasonic transducer design processes.

  7. Synthesis of in-plane and stacked graphene/hexagonal boron nitride heterostructures by combining with ion beam sputtering deposition and chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Meng, Jun Hua; Zhang, Xing Wang; Wang, Hao Lin; Ren, Xi Biao; Jin, Chuan Hong; Yin, Zhi Gang; Liu, Xin; Liu, Heng

    2015-09-01

    Graphene/hexagonal boron nitride (h-BN) heterostructures have attracted a great deal of attention in recent years due to their unique and complementary properties for use in a wide range of potential applications. However, it still remains a challenge to synthesize large-area high quality samples by a scalable growth method. In this work, we present the synthesis of both in-plane and stacked graphene/h-BN heterostructures on Cu foils by sequentially depositing h-BN via ion beam sputtering deposition (IBSD) and graphene with chemical vapor deposition (CVD). Due to a significant difference in the growth rate of graphene on h-BN and Cu, the in-plane graphene/h-BN heterostructures were rapidly formed on h-BN domain/Cu substrates. The large-area vertically stacked graphene/h-BN heterostructures were obtained by using the continuous h-BN film as a substrate. Furthermore, the well-designed sub-bilayered h-BN substrates provide direct evidence that the monolayered h-BN on Cu exhibits higher catalytic activity than the bilayered h-BN on Cu. The growth method applied here may have great potential in the scalable preparation of large-area high-quality graphene/h-BN heterostructures.Graphene/hexagonal boron nitride (h-BN) heterostructures have attracted a great deal of attention in recent years due to their unique and complementary properties for use in a wide range of potential applications. However, it still remains a challenge to synthesize large-area high quality samples by a scalable growth method. In this work, we present the synthesis of both in-plane and stacked graphene/h-BN heterostructures on Cu foils by sequentially depositing h-BN via ion beam sputtering deposition (IBSD) and graphene with chemical vapor deposition (CVD). Due to a significant difference in the growth rate of graphene on h-BN and Cu, the in-plane graphene/h-BN heterostructures were rapidly formed on h-BN domain/Cu substrates. The large-area vertically stacked graphene/h-BN heterostructures were

  8. Room-temperature rf-magnetron sputter-deposited W-doped indium oxide: decoupling the influence of W dopant and O vacancies on the film properties

    NASA Astrophysics Data System (ADS)

    Samatov, Ivan G.; Jeppesen, Bjarke R.; Larsen, Arne Nylandsted; Ram, Sanjay K.

    2016-04-01

    Tungsten-doped indium oxide (IWO) thin films were deposited at room temperature using rf-magnetron sputtering. The optical, electrical, and structural properties of the IWO films were studied as functions of the O2-dilution fraction in the Ar sputtering gas. The W-doping level, and contributions of intrinsic oxygen vacancies and W dopant to the free carrier concentration were studied. Windows of optimum deposition conditions are demonstrated where amorphous and smooth-surfaced IWO films are obtained with low resistivity of 3.5 × 10-4 Ω cm, high mobility of 45 cm2 v-1 s-1, and high optical transparency (visible and NIR transparencies of 83 and 80 %, respectively). The observed optoelectronic properties are discussed in light of the underlying electron transport mechanisms.

  9. Sputtered gold-coated ITO nanowires by alternating depositions from Indium and ITO targets for application in surface-enhanced Raman scattering

    NASA Astrophysics Data System (ADS)

    Setti, Grazielle O.; Mamián-López, Mónica B.; Pessoa, Priscila R.; Poppi, Ronei J.; Joanni, Ednan; Jesus, Dosil P.

    2015-08-01

    Indium Tin oxide (ITO) nanowires were deposited by RF sputtering over oxidized silicon using ITO and Indium targets. The nanowires grew on the substrate with a catalyst layer of Indium by the vapor-liquid-solid (VLS) mechanism. Modifications in the deposition conditions affected the morphology and dimensions of the nanowires. The samples, after being covered with gold, were evaluated as surface-enhanced Raman scattering (SERS) substrates for detection of dye solutions and very good intensifications of the Raman signal were obtained. The SERS performance of the samples was also compared to that of a commercial SERS substrate and the results achieved were similar. To the best of our knowledge, this is the first time ITO nanowires were grown by the sputtering technique using oxide and metal targets.

  10. AES study on the chemical composition of ferroelectric BaTiO3 thin films RF sputter-deposited on silicon

    NASA Technical Reports Server (NTRS)

    Dharmadhikari, V. S.; Grannemann, W. W.

    1983-01-01

    AES depth profiling data are presented for thin films of BaTiO3 deposited on silicon by RF sputtering. By profiling the sputtered BaTiO3/silicon structures, it was possible to study the chemical composition and the interface characteristics of thin films deposited on silicon at different substrate temperatures. All the films showed that external surface layers were present, up to a few tens of angstroms thick, the chemical composition of which differed from that of the main layer. The main layer had stable composition, whereas the intermediate film-substrate interface consisted of reduced TiO(2-x) oxides. The thickness of this intermediate layer was a function of substrate temperature. All the films showed an excess of barium at the interface. These results are important in the context of ferroelectric phenomena observed in BaTiO3 thin films.

  11. Sputter deposition of Ce(Sm,Y)O2 thin films: linking phase instability to grain size

    NASA Astrophysics Data System (ADS)

    Van Steenberge, S.; Depla, D.

    2016-06-01

    (1  -  x)CeO2  -  xMO1.5 thin films (with M  =  Y or Sm) were deposited using DC reactive dual magnetron sputtering. The influence of the substitution of Ce4+ ions by M3+ ions in the ceria fluorite structure is investigated with x-ray diffraction and scanning electron microscopy to provide a description of the thin film microstructural and textural evolution at room temperature and at elevated temperatures. Phase analysis shows that the fluorite structure can be maintained until a composition of x  =  0.40 of Y or Sm. At higher values of x, a diphasic region is observed. The films are thermally stable because no restructuring occurs when they are heated. A decrease in grain size is observed before the diphasic region forms which is typically explained from a reduced adatom mobility. However, the microstructure throughout the composition range is indicative of zone T growth. These findings illustrate that while the growth of a thin film is a kinetically driven process, the observed decrease in grain size is no evidence of a reduced surface adatom mobility but of imposed thermodynamic barriers. The critical composition for the grain size change coincides not only for both material systems (M  =  Y or Sm), but also with reported values of crystallographic structural changes in bulk material.

  12. Proton conductive tantalum oxide thin film deposited by reactive DC magnetron sputtering for all-solid-state switchable mirror

    NASA Astrophysics Data System (ADS)

    Tajima, K.; Yamada, Y.; Bao, S.; Okada, M.; Yoshimura, K.

    2008-03-01

    Our developed all-solid-state switchable mirror as a smart window is consisted in multi-layer of Mg4Ni/Pd/Ta2O5/WO3/ITO/glass and can switch reversibly from the reflective state to the transparent one. The development of high performance solid electrolyte thin film of Ta2O5 is important for fast speed switching and high durability of the device. In this work, we have investigated the electrochemical property of Ta2O5 thin film deposited by reactive DC magnetron sputtering. The effect of thickness on electrochemical and proton conductivities of Ta2O5 thin film was investigated. The Ta2O5 thin film with a thickness of 400 nm had better proton conductivity of 1.5×10-9 S/cm measured by AC impedance method. The transmittance at wavelength of 670 nm of the device with 400 nm thick Ta2O5 thin film was changed from 0.1% (reflective state) to 51% (transparent state) within 10 s by applying voltage of 5 V. The device showed high durability up to two-thousand switching cycles.

  13. Direct growth of Ge quantum dots on a graphene/SiO2/Si structure using ion beam sputtering deposition.

    PubMed

    Zhang, Z; Wang, R F; Zhang, J; Li, H S; Zhang, J; Qiu, F; Yang, J; Wang, C; Yang, Y

    2016-07-29

    The growth of Ge quantum dots (QDs) using the ion beam sputtering deposition technique has been successfully conducted directly on single-layer graphene supported by SiO2/Si substrate. The results show that the morphology and size of Ge QDs on graphene can be modulated by tuning the Ge coverage. Charge transfer behavior, i.e. doping effect in graphene has been demonstrated at the interface of Ge/graphene. Compared with that of traditional Ge dots grown on Si substrate, the positions of both corresponding photoluminescence (PL) peaks of Ge QDs/graphene hybrid structure undergo a large red-shift, which can probably be attributed to the lack of atomic intermixing and the existence of surface states in this hybrid material. According to first-principles calculations, the Ge growth on the graphene should follow the so-called Volmer-Weber mode instead of the Stranski-Krastanow one which is observed generally in the traditional Ge QDs/Si system. The calculations also suggest that the interaction between Ge and graphene layer can be enhanced with the decrease of the Ge coverage. Our results may supply a prototype for fabricating novel optoelectronic devices based on a QDs/graphene hybrid nanostructure.

  14. Influence of Deposition Conditions on Properties of All Sputtered CdS/CdTe Thin-Film Solar Cells.

    PubMed

    Kim, Minha; Kim, Doyoung; Shim, Joong-Pyo; Kim, Donguk; Lee, Jaehyeong

    2016-05-01

    The effects of deposition conditions, such as substrate temperature and CdCl2 post treatments, on the structural and optical properties of CdTe films were investigated. In addition, CdS/CdTe thin-film solar cells were fabricated by an all-sputtering process, and their photovoltaic characteristics were studied. The CdTe films had a polycrystalline, cubic structure with a preferred orientation of the [1 1 1] direction parallel to the substrate surface, regardless of the substrate temperature. As the substrate temperature increased, the crystallinity of CdTe films improved. The grain size of the CdTe films increased after CdCl2 post treatment. In addition, the optical band gap increased with the substrate temperature. The conversion efficiency of the CdS/CdTe solar cell improved at higher substrate temperatures. The maximum efficiency, 9.23%, was obtained at a substrate temperature of 400 degrees C, with an open-circuit voltage (V(oc)) of 0.78 V, a short-circuit current density (J(sc)) of 20.4 mA/cm2, and a fill factor of 0.58. PMID:27483922

  15. Low substrate temperature deposition of transparent and conducting ZnO:Al thin films by RF magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Waykar, Ravindra; Amit, Pawbake; Kulkarni, Rupali; Jadhavar, Ashok; Funde, Adinath; Waman, Vaishali; Dewan, Rupesh; Pathan, Habib; Jadkar, Sandesh

    2016-04-01

    Transparent and conducting Al-doped ZnO (ZnO:Al) films were prepared on glass substrate using the RF sputtering method at different substrate temperatures from room temperature (RT) to 200 °C. The structural, morphological, electrical and optical properties of these films were investigated using a variety of characterization techniques such as low angle XRD, Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), field-emission scanning electron microscopy (FE-SEM), Hall measurement and UV–visible spectroscopy. The electrical properties showed that films deposited at RT have the lowest resistivity and it increases with an increase in the substrate temperature whereas carrier mobility and concentration decrease with an increase in substrate temperature. Low angle XRD and Raman spectroscopy analysis reavealed that films are highly crystalline with a hexagonal wurtzite structure and a preferred orientation along the c-axis. The FE-SEM analysis showed that the surface morphology of films is strongly dependent on the substrate temperature. The band gap decreases from 3.36 to 3.29 eV as the substrate temperature is increased from RT to 200 °C. The fundamental absorption edge in the UV region shifts towards a longer wavelength with an increase in substrate temperature and be attributed to the Burstein-Moss shift. The synthesized films showed an average transmission (> 85%) in the visible region, which signifies that synthesized ZnO:Al films can be suitable for display devices and solar cells as transparent electrodes.

  16. Mixed cation phases in sputter deposited HfO{sub 2}-TiO{sub 2} nanolaminates

    SciTech Connect

    Cisneros-Morales, M. C.; Aita, C. R.

    2008-07-14

    Nanolaminate HfO{sub 2}-TiO{sub 2} films are grown by reactive sputter deposition on unheated fused SiO{sub 2}, sequentially annealed at 573 to 973 K, and studied by x-ray diffraction. A nanocrystalline structure of orthorhombic (o) HfTiO{sub 4} adjacent to an interface followed by monoclinic (m) Hf{sub 1-x}Ti{sub x}O{sub 2} is identified. m-Hf{sub 1-x}Ti{sub x}O{sub 2}, a metastable phase, is isomorphous with m-HfO{sub 2} and a high pressure phase, m-HfTiO{sub 4}. A Vegard's law analysis shows that the Ti atomic fraction in m-Hf{sub 1-x}Ti{sub x}O{sub 2} is much greater than Ti equilibrium solubility in m-HfO{sub 2}. A space group-subgroup argument proposes that m-Hf{sub 1-x}Ti{sub x}O{sub 2} arises from an o/m-HfTiO{sub 4} second order phase transition to accommodate the larger Hf atom.

  17. Surface and optical properties of indium tin oxide layer deposition by RF magnetron sputtering in argon atmosphere

    NASA Astrophysics Data System (ADS)

    Yudar, H. Hakan; Korkmaz, Şadan; Özen, Soner; Şenay, Volkan; Pat, Suat

    2016-08-01

    This study focused on the characterization and properties of transparent and conductive indium tin oxide (ITO) thin films deposited in argon atmosphere. ITO thin films were coated onto glass substrates by radio frequency (RF) magnetron sputtering technique at 75 and 100 W RF powers. Structural characteristics of producing films were investigated through X-ray diffraction analysis. UV-Vis spectrophotometer and interferometer were used to determine transmittance, absorbance and reflectance values of samples. The surface morphology of the films was characterized by atomic force microscope. The calculated band gaps were 3.8 and 4.1 eV for the films at 75 and 100 W, respectively. The effect of RF power on crystallinity of prepared films was explored using mentioned analysis methods. The high RF power caused higher poly crystallinity in the produced samples. The thickness and refractive index values for all samples increased respect to an increment of RF power and were calculated as 20, 50 nm and 1.71, 1.86 for samples at 75 and 100 W, respectively. Finally, the estimated grain sizes for all prepared films decreased with increasing of 2 θ degrees, and the number of crystallite per unit volume was calculated. It was found that nearly all properties including sheet resistance and resistivity depend on the RF power.

  18. Dissolution of sputter-deposited iron oxide films used as a model for the passive film on iron

    SciTech Connect

    Virtanen, S.; Schmuki, P.; Davenport, A.J.; Vitus, C.M.

    1995-12-01

    This paper reports results from XANES (X-ray absorption near edge spectroscopy) studies during polarization of thin sputter-deposited Fe-oxide films in acidic solutions. The dissolution rate of Fe-oxides in acidic solutions was found to be strongly increased by the presence of Fe(2+) in the oxide. During anodic polarization in acidic solutions, a deleterious effect of chloride anions is found compared with sulfates. In HCl solutions of increasing concentration, not only the pH decrease, but also the increasing anion concentration accelerates dissolution. On the other hand, the dissolution rate in sulfuric acid does not depend on the sulfate concentration. During cathodic polarization, the dissolution rate is not affected by the presence of chloride ions. This could be due to the negative surface charge of n-type oxides at potentials lower than the flat-band potential, retarding anion adsorption on the surface. These results suggest that the detrimental role of chloride anions on the stability of Fe oxide films is due to a surface complexation effect. The dissolution rate is fairly independent of the potential in the anodic range, except at very high anodic potentials. The XANES spectra reveal no changes in the average oxide valency during anodic polarization. Thus in the passive range, the dissolution that takes place is mostly chemical rather than electrochemical. The findings and their relevance to the stability of natural passive films are discussed.

  19. Correlation between properties of HfO2 films and preparing parameters by ion beam sputtering deposition.

    PubMed

    Liu, Huasong; Jiang, Yugang; Wang, Lishuan; Leng, Jian; Sun, Peng; Zhuang, Kewen; Ji, Yiqin; Cheng, Xinbin; Jiao, Hongfei; Wang, Zhanshan; Wu, Bingjun

    2014-02-01

    Ion beam sputtering is one of the most important technologies for preparing hafnium dioxide thin films. In this paper, the correlation between properties of hafnium dioxide thin films and preparing parameters was systematically researched by using the orthogonal experiment design method. The properties of hafnium oxide films (refractive index, extinction coefficient, deposition rate, stress, and inhomogeneity of refractive index) were studied. The refractive index, extinction coefficient, physical thickness, and inhomogeneity of refractive index were obtained by the multiple wavelength curve-fitting method from the reflectance and transmittance of single layers. The stress of thin film was measured by elastic deformation of the thin film-substrate system. An orthogonal experimental strategy was designed using substrate temperature, ion beam voltage, ion beam current, and oxygen flow rate as the variables. The experimental results indicated that the temperature of the substrate is the key influencing parameter on the properties of hafnium oxide films, while other preparing parameters are also correlated with specific properties. The experimental results are significant for selecting proper parameters for preparing hafnium oxide films with different applications.

  20. Direct growth of Ge quantum dots on a graphene/SiO2/Si structure using ion beam sputtering deposition.

    PubMed

    Zhang, Z; Wang, R F; Zhang, J; Li, H S; Zhang, J; Qiu, F; Yang, J; Wang, C; Yang, Y

    2016-07-29

    The growth of Ge quantum dots (QDs) using the ion beam sputtering deposition technique has been successfully conducted directly on single-layer graphene supported by SiO2/Si substrate. The results show that the morphology and size of Ge QDs on graphene can be modulated by tuning the Ge coverage. Charge transfer behavior, i.e. doping effect in graphene has been demonstrated at the interface of Ge/graphene. Compared with that of traditional Ge dots grown on Si substrate, the positions of both corresponding photoluminescence (PL) peaks of Ge QDs/graphene hybrid structure undergo a large red-shift, which can probably be attributed to the lack of atomic intermixing and the existence of surface states in this hybrid material. According to first-principles calculations, the Ge growth on the graphene should follow the so-called Volmer-Weber mode instead of the Stranski-Krastanow one which is observed generally in the traditional Ge QDs/Si system. The calculations also suggest that the interaction between Ge and graphene layer can be enhanced with the decrease of the Ge coverage. Our results may supply a prototype for fabricating novel optoelectronic devices based on a QDs/graphene hybrid nanostructure. PMID:27302495

  1. Effect of thickness on the structure, morphology and optical properties of sputter deposited Nb 2O 5 films

    NASA Astrophysics Data System (ADS)

    Lai, Fachun; Lin, Limei; Huang, Zhigao; Gai, Rongquan; Qu, Yan

    2006-12-01

    Nb 2O 5 films with the thickness ( d) ranging from 55 to 2900 nm were deposited on BK-7 substrates at room temperature by a low frequency reactive magnetron sputtering system. The structure, morphology and optical properties of the films were investigated by X-ray diffraction, atomic force microscopy and spectrophotometer, respectively. The experimental results indicated that the thickness affects drastically the structure, morphology and optical properties of the film. There exists a critical thickness of the film, dcri =2010 nm. The structure of the film remains amorphous as d < dcri. However, it becomes crystallized as d > dcri. The root mean square of surface roughness increases with increasing thickness as d > 1080 nm. Widths and depths of the holes on film surface increase monotonously with increasing thickness, and widths of the holes are larger than 1000 nm for the crystalline films. Refractive index increases with increasing thickness as d < dcri, while it decreases with increasing thickness as d > dcri. In addition, the extinction coefficient increases with increasing thickness as d > dcri.

  2. Direct growth of Ge quantum dots on a graphene/SiO2/Si structure using ion beam sputtering deposition

    NASA Astrophysics Data System (ADS)

    Zhang, Z.; Wang, R. F.; Zhang, J.; Li, H. S.; Zhang, J.; Qiu, F.; Yang, J.; Wang, C.; Yang, Y.

    2016-07-01

    The growth of Ge quantum dots (QDs) using the ion beam sputtering deposition technique has been successfully conducted directly on single-layer graphene supported by SiO2/Si substrate. The results show that the morphology and size of Ge QDs on graphene can be modulated by tuning the Ge coverage. Charge transfer behavior, i.e. doping effect in graphene has been demonstrated at the interface of Ge/graphene. Compared with that of traditional Ge dots grown on Si substrate, the positions of both corresponding photoluminescence (PL) peaks of Ge QDs/graphene hybrid structure undergo a large red-shift, which can probably be attributed to the lack of atomic intermixing and the existence of surface states in this hybrid material. According to first-principles calculations, the Ge growth on the graphene should follow the so-called Volmer-Weber mode instead of the Stranski-Krastanow one which is observed generally in the traditional Ge QDs/Si system. The calculations also suggest that the interaction between Ge and graphene layer can be enhanced with the decrease of the Ge coverage. Our results may supply a prototype for fabricating novel optoelectronic devices based on a QDs/graphene hybrid nanostructure.

  3. Optical and electrical characterization of sputter-deposited FeSi{sub 2} and its evolution with annealing temperature

    SciTech Connect

    Tan, K. H.; Chi, D. Z.; Pey, K. L.

    2008-09-15

    Optical and electrical properties of sputter-deposited FeSi{sub 2} thin films on p-Si(100) and SiO{sub 2}/p-Si(100) substrates as well as their evolution with rapid thermal annealing (RTA) temperature have been investigated. Optical absorption measurements were carried out to determine the absorption spectra of FeSi{sub 2} based on the proposed optical absorption model for the double-layer and triple-layer structures. A direct band gap behavior was concluded for both amorphous and polycrystalline semiconducting FeSi{sub 2}. An absorption coefficient in the order of 10{sup 5} cm{sup -1} at 1 eV and a band gap value of {approx}0.86 eV were obtained for the {beta}-FeSi{sub 2}. Hall effect measurements at room temperature indicate heavily doped and n-type conductivity for the FeSi{sub 2} films on p-Si, whose residual carrier concentration was found to be closely correlated with the observed subgap optical absorption via band tailing. The carrier mobility was shown to increase with decreasing residual carrier concentration when the RTA temperature was increased.

  4. Low substrate temperature deposition of transparent and conducting ZnO:Al thin films by RF magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Waykar, Ravindra; Amit, Pawbake; Kulkarni, Rupali; Jadhavar, Ashok; Funde, Adinath; Waman, Vaishali; Dewan, Rupesh; Pathan, Habib; Jadkar, Sandesh

    2016-04-01

    Transparent and conducting Al-doped ZnO (ZnO:Al) films were prepared on glass substrate using the RF sputtering method at different substrate temperatures from room temperature (RT) to 200 °C. The structural, morphological, electrical and optical properties of these films were investigated using a variety of characterization techniques such as low angle XRD, Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), field-emission scanning electron microscopy (FE-SEM), Hall measurement and UV-visible spectroscopy. The electrical properties showed that films deposited at RT have the lowest resistivity and it increases with an increase in the substrate temperature whereas carrier mobility and concentration decrease with an increase in substrate temperature. Low angle XRD and Raman spectroscopy analysis reavealed that films are highly crystalline with a hexagonal wurtzite structure and a preferred orientation along the c-axis. The FE-SEM analysis showed that the surface morphology of films is strongly dependent on the substrate temperature. The band gap decreases from 3.36 to 3.29 eV as the substrate temperature is increased from RT to 200 °C. The fundamental absorption edge in the UV region shifts towards a longer wavelength with an increase in substrate temperature and be attributed to the Burstein-Moss shift. The synthesized films showed an average transmission (> 85%) in the visible region, which signifies that synthesized ZnO:Al films can be suitable for display devices and solar cells as transparent electrodes.

  5. Microstructure and mechanical properties of Ti–B–C–N–Si nanocomposite films deposited by unbalanced magnetron sputtering

    SciTech Connect

    Jang, Jaeho; An, Eunsol; Park, In-Wook; Nam, Dae-Geun; Jo, Ilguk; Lin, Jianliang; Moore, John J.; Ho Kim, Kwang; Park, Ikmin

    2013-11-15

    Quinary Ti–B–C–N–Si nanocomposite thin films were deposited on AISI 304 stainless steel substrates by d.c. unbalanced magnetron sputtering from a TiB{sub 2}–TiC compound target and a pure Si target. The relationship between microstructure and mechanical properties of the films was investigated in terms of the nanosized crystallites/amorphous system. The synthesized Ti–B–C–N–Si films were characterized using x-ray diffraction, x-ray photoelectron spectroscopy, atomic force microscopy, and high resolution transmission electron microscopy. The results showed that the Ti–B–C–N–Si films were nanocomposites composed of nanosized TiB{sub 2}, TiC, and TiSi{sub 2} crystallites (2-3 nm in size) embedded in an amorphous matrix. The addition of Si to the Ti–B–C–N film led to precipitation of nanosized crystalline TiSi{sub 2} and percolation of amorphous SiC phases. The Ti–B–C–N–Si films with up to 7 at. % Si content presented high hardness (≥35 GPa), H/E (≥0.0095), and W{sub e} (>50%) with compressive residual stress (∼0.5 GPa). A systematic investigation on the microstructure and mechanical properties of Ti–B–C–N–Si films containing different Si contents is reported.

  6. Characterization of TiO 2/Au/TiO 2 films deposited by magnetron sputtering on polycarbonate substrates

    NASA Astrophysics Data System (ADS)

    Kim, Daeil

    2010-11-01

    Transparent and conducting TiO 2/Au/TiO 2 (TAuT) films were deposited by reactive magnetron sputtering on polycarbonate substrates to investigate the effect of the Au interlayer on the optical, electrical, and structural properties of the films. In TAuT films, the Au interlayer thickness was kept at 5 nm. Although total thickness was maintained at 100 nm, the stack structure was varied as 50/5/45, 70/5/25, and 90/5/5 nm. In XRD pattern, the intermediate Au films were crystallized, while all TAuT films did not show any diffraction peaks for TiO 2 films with regardless of stack structure. The optical and electrical properties were dependent on the stack structure of the films. The lowest sheet resistance of 23 Ω/□ and highest optical transmittance of 76% at 550 nm were obtained from TiO 2 90 nm/Au 5 nm/TiO 2 5 nm films. The work function was dependent on the film stack. The highest work function (4.8 eV) was observed with the TiO 2 90 nm/Au 5 nm/TiO 2 5 nm film stack. The TAuT film stack of TiO 2 90 nm/Au 5 nm/TiO 2 5 nm films is an optimized stack that may be an alternative candidate for transparent electrodes in flat panel displays.

  7. Optimization of Ta2O5 optical thin film deposited by radio frequency magnetron sputtering.

    PubMed

    Shakoury, R; Willey, Ronald R

    2016-07-10

    Radio frequency magnetron sputtering has been used here to find the parameters at which to deposit Ta2O5 optical thin films with negligible absorption in the visible spectrum. The design of experiment methodology was employed to minimize the number of experiments needed to find the optimal results. Two independent approaches were used to determine the index of refraction n and k values.

  8. Resistive switching in the Au/Zr/ZrO2-Y2O3/TiN/Ti memristive devices deposited by magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Gorshkov, O. N.; Mikhaylov, A. N.; Kasatkin, A. P.; Tikhov, S. V.; Filatov, D. O.; Pavlov, D. A.; Belov, A. I.; Koryazhkina, M. N.; Bobrov, A. I.; Malekhonova, N. V.; Gryaznov, E. G.; Antonov, I. N.; Shenina, M. E.

    2016-08-01

    Bipolar resistive switching phenomenon in the Au/Zr/ZrO2-Y2O3/TiN/Ti memristive devices deposited by magnetron sputtering has been studied. The structure of devices and electrical measurements data for the temperature range from 77 to 490 K are analyzed. The stable switching is demonstrated at room temperature, but the decrease in the resistive switching performance at elevated temperatures is observed.

  9. Sputtering Deposition of Sn-Mo-Based Composite Anode for Thin-Film Li-Ion Batteries

    NASA Astrophysics Data System (ADS)

    Mani Chandran, T.; Balaji, S.

    2016-06-01

    The role of electrochemically inactive molybdenum in alleviating the anomalous volume expansion of tin anode upon charge-discharge cycling has been investigated. Tin-molybdenum thin-film composite anodes for Li-ion batteries were prepared using a direct-current sputtering method from a tin metal target incorporating molybdenum element. Results of structural and compositional analyses confirmed the presence of tin and molybdenum. The elemental ratio obtained from energy-dispersive x-ray spectroscopy confirmed the feasibility of tailoring the thin-film composition by varying the ratio of metallic elements present in the sputtering target. Scanning electron micrographs of the samples revealed the occurrence of flower-like open morphology with Mo inclusion in a Sn matrix. The gravimetric discharge capacity for pure Sn, Sn-rich, and Mo-rich samples was 733 mAh g-1, 572 mAh g-1, and 439 mAh g-1, respectively, with capacity retention after 50 cycles of 22%, 61%, and 74%, respectively. Mo inclusion reduced the surface resistivity of the Sn anode after the initial charge-discharge cycle. The charge-transfer resistance after the first cycle for pure Sn, Sn-rich, and Mo-rich samples was 17.395 Ω, 5.345 Ω, and 2.865 Ω, respectively. The lithium-ion diffusion coefficient also increased from 8.68 × 10-8 cm2S-1 for the pure Sn sample to 2.98 × 10-5 cm2S-1 for the Mo-rich sample.

  10. SiNx Coatings Deposited by Reactive High Power Impulse Magnetron Sputtering: Process Parameters Influencing the Nitrogen Content.

    PubMed

    Schmidt, Susann; Hänninen, Tuomas; Goyenola, Cecilia; Wissting, Jonas; Jensen, Jens; Hultman, Lars; Goebbels, Nico; Tobler, Markus; Högberg, Hans

    2016-08-10

    Reactive high power impulse magnetron sputtering (rHiPIMS) was used to deposit silicon nitride (SiNx) coatings for biomedical applications. The SiNx growth and plasma characterization were conducted in an industrial coater, using Si targets and N2 as reactive gas. The effects of different N2-to-Ar flow ratios between 0 and 0.3, pulse frequencies, target power settings, and substrate temperatures on the discharge and the N content of SiNx coatings were investigated. Plasma ion mass spectrometry shows high amounts of ionized isotopes during the initial part of the pulse for discharges with low N2-to-Ar flow ratios of <0.16, while signals from ionized molecules rise with the N2-to-Ar flow ratio at the pulse end and during pulse-off times. Langmuir probe measurements show electron temperatures of 2-3 eV for nonreactive discharges and 5.0-6.6 eV for discharges in transition mode. The SiNx coatings were characterized with respect to their composition, chemical bond structure, density, and mechanical properties by X-ray photoelectron spectroscopy, X-ray reflectivity, X-ray diffraction, and nanoindentation, respectively. The SiNx deposition processes and coating properties are mainly influenced by the N2-to-Ar flow ratio and thus by the N content in the SiNx films and to a lower extent by the HiPIMS frequencies and power settings as well as substrate temperatures. Increasing N2-to-Ar flow ratios lead to decreasing growth rates, while the N content, coating densities, residual stresses, and the hardness increase. These experimental findings were corroborated by density functional theory calculations of precursor species present during rHiPIMS.

  11. Development of superlattice CrN/NbN coatings for joint replacements deposited by high power impulse magnetron sputtering.

    PubMed

    Hovsepian, Papken Ehiasarian; Ehiasarian, Arutiun Papken; Purandare, Yashodhan; Sugumaran, Arunprabhu Arunachalam; Marriott, Tim; Khan, Imran

    2016-09-01

    The demand for reliable coating on medical implants is ever growing. In this research, enhanced performance of medical implants was achieved by a CrN/NbN coating, utilising nanoscale multilayer/superlattice structure. The advantages of the novel high power impulse magnetron sputtering technology, namely, its unique highly ionised plasma, were exploited to deposit dense and strongly adherent coatings on CoCr implants. Transmission electron microscopy analysis revealed coating superlattice structure with bi-layer thickness of 3.5 nm. CrN/NbN deposited on CoCr samples showed exceptionally high adhesion, critical load values of LC2 = 50 N in scratch adhesion tests. Nanoindentation tests showed high hardness of 34 GPa and Young's modulus of 447 GPa. Low coefficient of friction (μ) 0.49 and coating wear coefficient (K C) = 4.94 × 10(-16) m(3) N(-1) m(-1) were recorded in dry sliding tests. Metal ion release studies showed a reduction in Co, Cr and Mo release at physiological and elevated temperatures (70 °C) to almost undetectable levels (<1 ppb). Rotating beam fatigue testing showed a significant increase in fatigue strength from 349 ± 59 MPa (uncoated) to 539 ± 59 MPa (coated). In vitro biological testing has been performed in order to assess the safety of the coating in biological environment; cytotoxicity, genotoxicity and sensitisation testing have been performed, all showing no adverse effects.

  12. Development of superlattice CrN/NbN coatings for joint replacements deposited by high power impulse magnetron sputtering.

    PubMed

    Hovsepian, Papken Ehiasarian; Ehiasarian, Arutiun Papken; Purandare, Yashodhan; Sugumaran, Arunprabhu Arunachalam; Marriott, Tim; Khan, Imran

    2016-09-01

    The demand for reliable coating on medical implants is ever growing. In this research, enhanced performance of medical implants was achieved by a CrN/NbN coating, utilising nanoscale multilayer/superlattice structure. The advantages of the novel high power impulse magnetron sputtering technology, namely, its unique highly ionised plasma, were exploited to deposit dense and strongly adherent coatings on CoCr implants. Transmission electron microscopy analysis revealed coating superlattice structure with bi-layer thickness of 3.5 nm. CrN/NbN deposited on CoCr samples showed exceptionally high adhesion, critical load values of LC2 = 50 N in scratch adhesion tests. Nanoindentation tests showed high hardness of 34 GPa and Young's modulus of 447 GPa. Low coefficient of friction (μ) 0.49 and coating wear coefficient (K C) = 4.94 × 10(-16) m(3) N(-1) m(-1) were recorded in dry sliding tests. Metal ion release studies showed a reduction in Co, Cr and Mo release at physiological and elevated temperatures (70 °C) to almost undetectable levels (<1 ppb). Rotating beam fatigue testing showed a significant increase in fatigue strength from 349 ± 59 MPa (uncoated) to 539 ± 59 MPa (coated). In vitro biological testing has been performed in order to assess the safety of the coating in biological environment; cytotoxicity, genotoxicity and sensitisation testing have been performed, all showing no adverse effects. PMID:27571960

  13. SiNx Coatings Deposited by Reactive High Power Impulse Magnetron Sputtering: Process Parameters Influencing the Nitrogen Content.

    PubMed

    Schmidt, Susann; Hänninen, Tuomas; Goyenola, Cecilia; Wissting, Jonas; Jensen, Jens; Hultman, Lars; Goebbels, Nico; Tobler, Markus; Högberg, Hans

    2016-08-10

    Reactive high power impulse magnetron sputtering (rHiPIMS) was used to deposit silicon nitride (SiNx) coatings for biomedical applications. The SiNx growth and plasma characterization were conducted in an industrial coater, using Si targets and N2 as reactive gas. The effects of different N2-to-Ar flow ratios between 0 and 0.3, pulse frequencies, target power settings, and substrate temperatures on the discharge and the N content of SiNx coatings were investigated. Plasma ion mass spectrometry shows high amounts of ionized isotopes during the initial part of the pulse for discharges with low N2-to-Ar flow ratios of <0.16, while signals from ionized molecules rise with the N2-to-Ar flow ratio at the pulse end and during pulse-off times. Langmuir probe measurements show electron temperatures of 2-3 eV for nonreactive discharges and 5.0-6.6 eV for discharges in transition mode. The SiNx coatings were characterized with respect to their composition, chemical bond structure, density, and mechanical properties by X-ray photoelectron spectroscopy, X-ray reflectivity, X-ray diffraction, and nanoindentation, respectively. The SiNx deposition processes and coating properties are mainly influenced by the N2-to-Ar flow ratio and thus by the N content in the SiNx films and to a lower extent by the HiPIMS frequencies and power settings as well as substrate temperatures. Increasing N2-to-Ar flow ratios lead to decreasing growth rates, while the N content, coating densities, residual stresses, and the hardness increase. These experimental findings were corroborated by density functional theory calculations of precursor species present during rHiPIMS. PMID:27414283

  14. Direct Imaging Mass Spectrometry of Plant Leaves Using Surface-assisted Laser Desorption/Ionization with Sputter-deposited Platinum Film.

    PubMed

    Ozawa, Tomoyuki; Osaka, Issey; Hamada, Satoshi; Murakami, Tatsuya; Miyazato, Akio; Kawasaki, Hideya; Arakawa, Ryuichi

    2016-01-01

    Plant leaves administered with systemic insecticides as agricultural chemicals were analyzed using imaging mass spectrometry (IMS). Matrix-assisted laser desorption/ionization (MALDI) is inadequate for the detection of insecticides on leaves because of the charge-up effect that occurs on the non-conductive surface of the leaves. In this study, surface-assisted laser desorption/ionization with a sputter-deposited platinum film (Pt-SALDI) was used for direct analysis of chemicals in plant leaves. Sputter-deposited platinum (Pt) films were prepared on leaves administered with the insecticides. A sputter-deposited Pt film with porous structure was used as the matrix for Pt-SALDI. Acephate and acetamiprid contained in the insecticides on the leaves could be detected using Pt-SALDI-MS, but these chemical components could not be adequately detected using MALDI-MS because of the charge-up effect. Enhancement of ion yields for the insecticides was achieved using Pt-SALDI, accompanied by prevention of the charge-up effect by the conductive Pt film. The movement of systemic insecticides in plants could be observed clearly using Pt-SALDI-IMS. The distribution and movement of components of systemic insecticides on leaves could be analyzed directly using Pt-SALDI-IMS. Additionally, changes in the properties of the chemicals with time, as an indicator of the permeability of the insecticides, could be evaluated. PMID:27169661

  15. Direct Imaging Mass Spectrometry of Plant Leaves Using Surface-assisted Laser Desorption/Ionization with Sputter-deposited Platinum Film.

    PubMed

    Ozawa, Tomoyuki; Osaka, Issey; Hamada, Satoshi; Murakami, Tatsuya; Miyazato, Akio; Kawasaki, Hideya; Arakawa, Ryuichi

    2016-01-01

    Plant leaves administered with systemic insecticides as agricultural chemicals were analyzed using imaging mass spectrometry (IMS). Matrix-assisted laser desorption/ionization (MALDI) is inadequate for the detection of insecticides on leaves because of the charge-up effect that occurs on the non-conductive surface of the leaves. In this study, surface-assisted laser desorption/ionization with a sputter-deposited platinum film (Pt-SALDI) was used for direct analysis of chemicals in plant leaves. Sputter-deposited platinum (Pt) films were prepared on leaves administered with the insecticides. A sputter-deposited Pt film with porous structure was used as the matrix for Pt-SALDI. Acephate and acetamiprid contained in the insecticides on the leaves could be detected using Pt-SALDI-MS, but these chemical components could not be adequately detected using MALDI-MS because of the charge-up effect. Enhancement of ion yields for the insecticides was achieved using Pt-SALDI, accompanied by prevention of the charge-up effect by the conductive Pt film. The movement of systemic insecticides in plants could be observed clearly using Pt-SALDI-IMS. The distribution and movement of components of systemic insecticides on leaves could be analyzed directly using Pt-SALDI-IMS. Additionally, changes in the properties of the chemicals with time, as an indicator of the permeability of the insecticides, could be evaluated.

  16. Process monitoring during AlN{sub x}O{sub y} deposition by reactive magnetron sputtering and correlation with the film's properties

    SciTech Connect

    Borges, Joel Vaz, Filipe; Marques, Luis; Martin, Nicolas

    2014-03-15

    In this work, AlN{sub x}O{sub y} thin films were deposited by reactive magnetron sputtering, using an aluminum target and an Ar/(N{sub 2}+O{sub 2}) atmosphere. The direct current magnetron discharge parameters during the deposition process were investigated by optical emission spectroscopy and a plasma floating probe was used. The discharge voltage, the electron temperature, the ion flux, and the optical emission lines were recorded for different reactive gas flows, near the target and close to the substrate. This information was correlated with the structural features of the deposits as a first step in the development of a system to control the structure and properties of the films during reactive magnetron sputtering. As the target becomes poisoned, the discharge voltage suffers an important variation, due to the modification of the secondary electron emission coefficient of the target, which is also supported by the evolution of the electron temperature and ion flux to the target. The sputtering yield of the target was also affected, leading to a reduction of the amount of Al atoms arriving to the substrate, according to optical emission spectroscopy results for Al emission line intensity. This behavior, together with the increase of nonmetallic elements in the films, allowed obtaining different microstructures, over a wide range of compositions, which induced different electrical and optical responses of films.

  17. Enhancement of optical absorption by modulation of the oxygen flow of TiO2 films deposited by reactive sputtering

    NASA Astrophysics Data System (ADS)

    Pereira, André L. J.; Lisboa Filho, Paulo N.; Acuña, Javier; Brandt, Iuri S.; Pasa, André A.; Zanatta, Antonio R.; Vilcarromero, Johnny; Beltrán, Armando; Dias da Silva, José H.

    2012-06-01

    Oxygen-deficient TiO2 films with enhanced visible and near-infrared optical absorption have been deposited by reactive sputtering using a planar diode radio frequency magnetron configuration. It is observed that the increase in the absorption coefficient is more effective when the O2 gas supply is periodically interrupted rather than by a decrease of the partial O2 gas pressure in the deposition plasma. The optical absorption coefficient at 1.5 eV increases from about 1 × 102 cm-1 to more than 4 × 103 cm-1 as a result of the gas flow discontinuity. A red-shift of ˜0.24 eV in the optical absorption edge is also observed. High resolution transmission electron microscopy with composition analysis shows that the films present a dense columnar morphology, with estimated mean column width of 40 nm. Moreover, the interruptions of the O2 gas flow do not produce detectable variations in the film composition along its growing direction. X-ray diffraction and micro-Raman experiments indicate the presence of the TiO2 anatase, rutile, and brookite phases. The anatase phase is dominant, with a slight increment of the rutile and brookite phases in films deposited under discontinued O2 gas flow. The increase of optical absorption in the visible and near-infrared regions has been attributed to a high density of defects in the TiO2 films, which is consistent with density functional theory calculations that place oxygen-related vacancy states in the upper third of the optical bandgap. The electronic structure calculation results, along with the adopted deposition method and experimental data, have been used to propose a mechanism to explain the formation of the observed oxygen-related defects in TiO2 thin films. The observed increase in sub-bandgap absorption and the modeling of the corresponding changes in the electronic structure are potentially useful concerning the optimization of efficiency of the photocatalytic activity and the magnetic doping of TiO2 films.

  18. Fabrication and characterization of implantable and flexible nerve cuff electrodes with Pt, Ir and IrOx films deposited by RF sputtering

    NASA Astrophysics Data System (ADS)

    Lee, Soo Hyun; Jung, Jung Hwan; Chae, Youn Mee; Suh, Jun-Kyo Francis; Kang, Ji Yoon

    2010-03-01

    This paper presents the fabrication and characterization of implantable and flexible nerve cuff electrodes for neural interfaces using the conventional BioMEMS technique. In order to fabricate a flexible nerve electrode, polyimide (PI) was chosen as the substrate material. Then, nerve electrodes were thermally re-formed in a cuff shape so as to increase the area in which the charges were transferred to the nerve. Platinum (Pt), iridium (Ir) and iridium oxide (IrOx) films, which were to serve as conducting materials for the nerve electrodes, were deposited at different working pressures by RF magnetron sputtering. The electrochemical properties of the deposited films were characterized by electrochemical impedance spectroscopy (EIS). The charge delivery capacities of the films were recorded and calculated by cyclic voltammetry (CV). The deposited films of Pt, Ir and IrOx have strong differences in electrochemical properties, which depend on the working pressure of sputter. Each film deposited at 30 mTorr of working pressure shows the highest value of charge delivery capacity (CDC). For the IrOx films, the electrochemical properties were strongly affected by the working pressure as well as the Ar:O2 gas ratio. The IrOx film deposited with an Ar:O2 gas ratio of 8:1 showed the highest CDC of 59.5 mC cm-2, which was about five times higher than that of films deposited with a 1:1 gas ratio.

  19. The atomic structure and chemical composition of HfOx (x < 2) films prepared by ion-beam sputtering deposition

    NASA Astrophysics Data System (ADS)

    Aliev, V. S.; Gerasimova, A. K.; Kruchinin, V. N.; Gritsenko, V. A.; Prosvirin, I. P.; Badmaeva, I. A.

    2016-08-01

    Non-stoichiometric HfOx films of different chemical composition (x < 2) were fabricated by ion-beam sputtering deposition (IBSD) at room temperature. The ratio of O and Hf atoms in films x was varied by setting the O2 partial pressure in a chamber. An effect of chemical composition on the atomic structure of the films was studied by reflection high-energy electron diffraction, x-ray photoelectron spectroscopy and field emission scanning electron microscopy methods. The films were found to be amorphous, consisting only of three components: Hf-metal clusters, Hf4O7 suboxide and stoichiometric HfO2. The relative concentration of these components varies with changing x. The surface of the films contains the increased oxygen content compared to the bulk. It was found that the Hf4O7 suboxide concentration is maximal at x = 1.8. The concept of hafnium oxide film growth by the IBSD method is proposed to explain the lack of suboxides variety in the films and the instability of HfO2, when annealed at high temperature.

  20. Characteristics of low-resistivity aluminum-doped zinc oxide films deposited at room temperature by off-axis radio-frequency sputtering on flexible plastic substrates

    NASA Astrophysics Data System (ADS)

    Wang, Li-Min; Wang, Chih-Yi; Jheng, Ciao-Ren; Wu, Syu-Jhan; Sai, Chen-Kai; Lee, Ya-Ju; Chiang, Ching-Yu; Shew, Bor-Yuan

    2016-08-01

    The crystalline structure, morphology, composition, electrical transport, and optical properties of aluminum-doped zinc oxide (AZO) films are studied for applications in transparent electronics and optoelectronic devices. AZO thin films of c-axis-oriented growth and with different thickness were deposited on PET flexible plastic substrates at room temperature by rf magnetron sputtering. A larger grain size with a decreased strain ɛ value is observed in a thicker film, while changes in composition for films with different thicknesses are insignificant. Moreover, the resistivity of film decreases with increasing thickness, and the low-temperature electrical transport properties can be described by the scenario of quantum corrections to conductivity. With the room-temperature growth conditions, the resistivity of 4.5 × 10-4 Ω cm, carrier concentration of 6.4 × 1020 cm-3, and transmittance of 80 % for the 1100-nm-thick film are obtained. In addition, the optical bandgap energy decreases with increasing film thickness, which can be attributed to the bandgap renormalization and crystallite size effects.

  1. Electrochromic properties of NiOx:H films deposited by DC magnetron sputtering for ITO/NiOx:H/ZrO2/WO3/ITO device

    NASA Astrophysics Data System (ADS)

    Dong, Dongmei; Wang, Wenwen; Dong, Guobo; Zhou, Yuliang; Wu, Zhonghou; Wang, Mei; Liu, Famin; Diao, Xungang

    2015-12-01

    NiOx:H thin films were deposited on ITO-coated glass by DC reactive magnetron sputtering at room temperature. The effects of the hydrogen content on the structure, morphologies, electrochemical properties, the stoichiometry and chemical states of NiOx:H thin films were systematically studied. In X-ray diffraction and atomic force microscopy analysis, the crystallinity of the films tends to be weakened when the flow amount ratio of Ar:O2:H2 equals 19:1:3 and as confirmed in electrochemical analysis, such relatively weak crystallinity is the main contributing factor to ion transportation. X-ray photoelectron spectroscopy reveals that the increase of the hydrogen contents results in a relatively lower binding energy exhibited in the Ni 2p spectra. The proportion of Ni2O3 in NiOx:H films increases from 22% at bleached state to 33% at colored state. A monolithic all-thin-film inorganic electrochromic device was fabricated with complementary configuration as ITO/NiOx:H/ZrO2/WO3/ITO. The electrochromic device with optimized NiOx:H thin films acting both as ion storage layer and proton-providing source displays high modulation efficiency of 68% at a fixed wavelength 550 nm.

  2. High temperature performance of sputter-deposited piezoelectric aluminum nitride thin films

    NASA Astrophysics Data System (ADS)

    Gillinger, M.; Schneider, M.; Bittner, A.; Nicolay, P.; Schmid, U.

    2015-05-01

    Aluminum nitride (AlN) is a promising material for sensor applications in harsh environments such as turbine exhausts or thermal power plants due to its piezoelectric properties, good thermal match to silicon and high temperature stability. Typically, the usage of piezoelectric materials in high temperature is limited by the Curie-temperature, the increase of the leakage current as well as by enhanced diffusion effects in the materials. In order to exploit the high temperature potential of AlN thin films, post deposition annealing experiments up to 1000°C in both oxygen and nitrogen gas atmospheres for 2 h were performed. X-ray diffraction measurements indicate that the thin films are chemically stable in a pure oxygen atmosphere for 2 h at annealing temperatures of up to 900°C. After a 2 h annealing step at 1000°C in pure oxygen. However, a 100 nm thin AlN film is completely oxidized. In contrast, the layer is stable up to 1000°C in pure nitrogen atmosphere. The surface topology changes significantly at annealing temperatures above 800°C independent of annealing atmosphere. The surface roughness is increased by about one order of magnitude compared to the "as deposited" state. This is predominantly attributed to recrystallization processes occurring during high temperature loading. Up to an annealing temperature of 700°C, a Poole-Frenkel conduction mechanism dominates the leakage current characteristics. Above, a mixture of different leakage current mechanisms is observed.

  3. Chemical sputtering of ATJ graphite induced by low-energy D2+ bombardment

    NASA Astrophysics Data System (ADS)

    Vergara, L. I.; Meyer, F. W.; Krause, H. F.

    2005-12-01

    Results of chemical sputtering of ATJ graphite by impact of D2+ in the energy range 10-250 eV/D are presented. Our experimental approach is based on the use of a quadrupole mass spectrometer (QMS) which samples the partial pressures of selected mass species in the scattering chamber resulting from the incident ion beam. Based on in situ measurements of cracking patterns and QMS sensitivities using calibrated leaks, sputtering yields are presented for the production of methane and acetylene for sample temperatures of 300 K and 800 K. In the energy range 10-60 eV/D, CD 4 appears to be the dominant light stable hydrocarbon detected at room temperature. With increasing D2+ energy, its contribution is found to decrease, while the contribution of C 2D 2 is virtually unchanged. In contrast to what is observed for the sample at room temperature, at 800 K a dramatic increase in the CD 4 production is observed with increasing beam energy, which is also manifested in the production of C 2D 2, although to a smaller degree.

  4. Comparison of the Sputter Rates of Oxide Films Relative to the Sputter Rate of SiO2

    SciTech Connect

    Baer, Donald R.; Engelhard, Mark H.; Lea, Alan S.; Nachimuthu, Ponnusamy; Droubay, Timothy C.; Kim, J.; Lee, B.; Mathews, C.; Opila, R. L.; Saraf, Laxmikant V.; Stickle, William F.; Wallace, Robert; Wright, B. S.

    2010-09-02

    Because of the increasing technological importance of oxide films for a variety of applications, there is a growing interest in knowing the sputter rates for a wide variety of oxides. To support needs of users of the Environmental Molecular Sciences Laboratory (EMSL) User facility as well as our research programs, we have made a series of measurements of the sputter rates for oxide films that have been grown by oxygen plasma assisted molecular beam epitaxy (OPA-MBE), pulsed laser deposition (PLD), Atomic Layer Deposition (ALD), electrochemical oxidation, or sputter deposition. The sputter rates for these oxide films were determined in comparison to the sputter rates for thermally grown SiO2, a common sputter rate reference material. The film thicknesses and densities of these films were usually measured using x-ray reflectivity (XRR). These samples were mounted in an x-ray photoelectron spectroscopy (XPS) system or an Auger electron spectrometer for sputtering measurements using argon ion sputtering. Although the primary objective was to determine relative sputter rates at a fixed angle, the measurements were also used to determine: i) the angle dependence of the relative sputter rates; ii) the energy dependence of the relative sputter rates; and iii) the extent of ion beam reduction for the various oxides. Materials examined include: SiO2 (reference films), Al2O3, CeO2, Cr2O3, Fe2O3, HfO2, ITO (In-Sn-oxide) Ta2O5, TiO2 (anatase and rutile) and ZnO. We find that the sputter rates for the oxides can vary up to a factor of two (usually slower) from that observed for SiO2. The ratios of sputter rates to SiO2 appear to be relatively independent of ion beam energy for the range of 1kV to 4 kV and for incident angles of less than 50º. As expected, the ion beam reduction of the oxides varies with the sputter angle. These studies demonstrate that we can usually obtain sputter rate reproducibility better than 5% for similar oxide films.

  5. Structure and optical properties of pulsed sputter deposited CrxOy/Cr/Cr2O3 solar selective coatings

    NASA Astrophysics Data System (ADS)

    Barshilia, Harish C.; Selvakumar, N.; Rajam, K. S.; Biswas, A.

    2008-01-01

    Spectrally selective CrxOy/Cr/Cr2O3 multilayer absorber coatings were deposited on copper (Cu) substrates using a pulsed sputtering system. The Cr targets were sputtered using asymmetric bipolar-pulsed dc generators in Ar +O2 and Ar plasmas to deposit a CrxOy (bottomlayer)/Cr/Cr2O3 (top layer) coating. The compositions and thicknesses of the individual component layers have been optimized to achieve high absorptance (0.899-0.912) and low emittance (0.05-0.06). The x-ray diffraction data in thin film mode showed that the CrxOy/Cr/Cr2O3 coating consists of an amorphous phase; the Raman data of the coating, however, showed the presence of A1g and Eg modes, characteristic of Cr2O3. The x-ray photoelectron spectroscopy (XPS) data from near-surface region of the absorber suggested that the chemical state of Cr was in the form of Cr3+ and no phases of CrO2 and CrO3 were present. The experimental spectroscopic ellipsometric data have been fitted with theoretical models to derive the dispersion of the optical constants (n and k). The optical constants of the three layers indicate that the bottom two layers are the main absorber layers and the top Cr2O3 layer, which has higher oxygen content, acts as an antireflection coating. In order to study the thermal stability of the CrxOy/Cr /Cr2O3 coatings, they were subjected to heat treatment (in air and vacuum) at different temperatures and durations. The coating deposited on Cu substrates exhibited high solar selectivity (α/ɛ) of 0.895/0.06 even after heat treatment in air up to 300°C for 2h. At higher temperatures, the solar selectivity decreased significantly (e.g., α /ɛ=0.855/0.24 at 350°C in air), which is attributed to oxidation of Cr crystallites, increased surface roughness, and formation of CuO. The formation of CuO and the increase in Cr3+ vacancies due to the outward diffusion of Cr at higher annealing temperatures were confirmed by XPS. In the case of vacuum annealing, for temperatures greater than 500°C the

  6. Deposition of NiFe(200) and NiFe(111) textured films onto Si/SiO2 substrates by DC magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Dzhumaliev, A. S.; Nikulin, Yu. V.; Filimonov, Yu. A.

    2016-05-01

    The effect of substrate temperature T sub and bias voltage U bias on the texture of NiFe films with thickness d ˜ 30-340 nm deposited by DC magnetron sputtering onto Si(111)/SiO2 substrates under working gas pressure ˜ 0.2 Pa has been investigated. It has been demonstrated that films grown at room substrate temperature have the (111) texture that is refined under a negative bias voltage. The deposition of films onto a grounded ( U bias ˜ 0) substrate heated to T sub ˜ 440-640 K results in the formation of textured NiFe(200) films.

  7. Secondary growth mechanism of SiGe islands deposited on a mixed-phase microcrystalline Si by ion beam co-sputtering.

    PubMed

    Ke, S Y; Yang, J; Qiu, F; Wang, Z Q; Wang, C; Yang, Y

    2015-11-01

    We discuss the SiGe island co-sputtering deposition on a microcrystalline silicon (μc-Si) buffer layer and the secondary island growth based on this pre-SiGe island layer. The growth phenomenon of SiGe islands on crystalline silicon (c-Si) is also investigated for comparison. The pre-SiGe layer grown on μc-Si exhibits a mixed-phase structure, including SiGe islands and amorphous SiGe (a-SiGe) alloy, while the layer deposited on c-Si shows a single-phase island structure. The preferential growth and Ostwald ripening growth are shown to be the secondary growth mechanism of SiGe islands on μc-Si and c-Si, respectively. This difference may result from the effect of amorphous phase Si (AP-Si) in μc-Si on the island growth. In addition, the Si-Ge intermixing behavior of the secondary-grown islands on μc-Si is interpreted by constructing the model of lateral atomic migration, while this behavior on c-Si is ascribed to traditional uphill atomic diffusion. It is found that the aspect ratios of the preferential-grown super islands are higher than those of the Ostwald-ripening ones. The lower lateral growth rate of super islands due to the lower surface energy of AP-Si on the μc-Si buffer layer for the non-wetting of Ge at 700 °C and the stronger Si-Ge intermixing effect at 730 °C may be responsible for this aspect ratio difference.

  8. Characterization of nitrogen species incorporated into graphite using low energy nitrogen ion sputtering.

    PubMed

    Kiuchi, Hisao; Kondo, Takahiro; Sakurai, Masataka; Guo, Donghui; Nakamura, Junji; Niwa, Hideharu; Miyawaki, Jun; Kawai, Maki; Oshima, Masaharu; Harada, Yoshihisa

    2016-01-01

    The electronic structures of nitrogen species incorporated into highly oriented pyrolytic graphite (HOPG), prepared by low energy (200 eV) nitrogen ion sputtering and subsequent annealing at 1000 K, were investigated by X-ray photoelectron spectroscopy (XPS), angle-dependent X-ray absorption spectroscopy (XAS), and Raman spectroscopy. An additional peak was observed at higher binding energy of 401.9 eV than 400.9 eV for graphitic1 N (graphitic N in the basal plane) in N 1s XPS, where graphitic2 N (graphitic N in the zigzag edge and/or vacancy sites) has been theoretically expected to appear. N 1s XPS showed that graphitic1 N and graphitic2 N were preferably incorporated under low nitrogen content doping conditions (8 × 10(13) ions cm(-2)), while pyridinic N and graphitic1 N were dominantly observed under high nitrogen content doping conditions. In addition, angle-dependent N 1s XAS showed that the graphitic N and pyridinic N atoms were incorporated into the basal plane of HOPG and thus were highly oriented. Furthermore, Raman spectroscopy revealed that low energy sputtering resulted in almost no fraction of the disturbed graphite surface layers under the lowest nitrogen doping condition. The suitable nitrogen doping condition was discovered for realizing the well-controlled nitrogen doped HOPG. The electrochemical properties for the oxygen reduction reaction of these samples in acidic solution were examined and discussed.

  9. Structural, chemical and nanomechanical investigations of SiC/polymeric a-C:H films deposited by reactive RF unbalanced magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Tomastik, C.; Lackner, J. M.; Pauschitz, A.; Roy, M.

    2016-03-01

    Amorphous carbon (or diamond-like carbon, DLC) films have shown a number of important properties usable for a wide range of applications for very thin coatings with low friction and good wear resistance. DLC films alloyed with (semi-)metals show some improved properties and can be deposited by various methods. Among those, the widely used magnetron sputtering of carbon targets is known to increase the number of defects in the films. Therefore, in this paper an alternative approach of depositing silicon-carbide-containing polymeric hydrogenated DLC films using unbalanced magnetron sputtering was investigated. The influence of the C2H2 precursor concentration in the deposition chamber on the chemical and structural properties of the deposited films was investigated by Raman spectroscopy, X-ray photoelectron spectroscopy and elastic recoil detection analysis. Roughness, mechanical properties and scratch response of the films were evaluated with the help of atomic force microscopy and nanoindentation. The Raman spectra revealed a strong correlation of the film structure with the C2H2 concentration during deposition. A higher C2H2 flow rate results in an increase in SiC content and decrease in hydrogen content in the film. This in turn increases hardness and elastic modulus and decreases the ratio H/E and H3/E2. The highest scratch resistance is exhibited by the film with the highest hardness, and the film having the highest overall sp3 bond content shows the highest elastic recovery during scratching.

  10. Influence of the Cs partial pressure on the optical and electrical properties of ITO films prepared by dc sputter type negative metal ion beam deposition

    NASA Astrophysics Data System (ADS)

    Kim, Daeil

    2003-12-01

    The influence of cesium (Cs) partial pressure ( PCs) in the sputtering atmosphere on the opto-electrical and surface morphological property of ITO thin films deposited onto unheated polycarbonate substrate was investigated. The deposition technique used was a dc sputter type negative metal ion beam source which uses Cs as a surface negative ionization agent. During deposition Ar gas flow rate, deposition pressure and bipolar dc power were kept constant at 30 sccm, 9 × 10 -2 Pa, and 250 W, respectively. As increase PCs both electrical conductivity and optical transmittance of the film were increased. The lowest resistivity of 5.1 × 10 -4 Ω cm and optical transmittance of 89% at 550 nm were measured in the ITO film deposited at PCs of 1.7 × 10 -3 Pa. Surface morphology of ITO film was also varied with PCs and the lowest surface roughness (Ra: 1.16 nm) was obtained a tCs of 1.7 × 10 -3 Pa.

  11. Texture of Al thin films deposited by magnetron sputtering onto epitaxial W(001)

    SciTech Connect

    Madsen, Lynnette D.; Svedberg, Erik B.; Bergstrom, Daniel B.; Petrov, Ivan; Greene, Joseph E.

    2000-01-01

    Highly textured epitaxial metallizations will be required for the next generation of devices with the main driving force being a reduction in electromigration. Herein a model system of 190 nm of Al on a 140 nm layer of W grown on MgO <00l> substrates was studied. The W layer was <00l> oriented and rotated 45 degree sign with respect to the MgO substrate to minimize the misfit; the remaining strain was accommodated by dislocations, evident in transmission electron microscopy images. From high-resolution x-ray diffraction (XRD) measurements, the out-of-plane lattice parameter was determined to be 3.175 Aa, and the in-plane parameter was 3.153 Aa, i.e., the W film sustained a strain resulting in a tetragonal distortion of the lattice. XRD pole figures showed that the Al had four fold symmetry and two dominant orientations, <016> and <3 9 11>, which were twinned with multiple placements on the epitaxial W layer. The driving force for the tilted <001> and <011> orientations of Al on W is due to strain minimization through lattice matching. These results show that <00l> Al deposited at ambient conditions onto W is difficult to achieve and implies that electromigration difficulties are inherent. (c) 2000 American Institute of Physics.

  12. The release of nickel from nickel-titanium (NiTi) is strongly reduced by a sub-micrometer thin layer of calcium phosphate deposited by rf-magnetron sputtering.

    PubMed

    Surmenev, R A; Ryabtseva, M A; Shesterikov, E V; Pichugin, V F; Peitsch, T; Epple, M

    2010-04-01

    Thin calcium phosphate coatings were deposited on NiTi substrates (plates) by rf-magnetron sputtering. The release of nickel upon immersion in water or in saline solution (0.9% NaCl in water) was measured by atomic absorption spectroscopy (AAS) for 42 days. The coating was analyzed before and after immersion by X-ray powder diffraction (XRD), scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX). After an initial burst during the first 7 days that was observed for all samples, the rate of nickel release decreased 0.4-0.5 ng cm(-2) d(-1) for a 0.5 mum-thick calcium phosphate coating (deposited at 290 W). This was much less than the release from uncoated NiTi (3.4-4.4 ng cm(-2) d(-1)). Notably, the nickel release rate was not significantly different in pure water and in aqueous saline solution.

  13. Microstructure and electrical properties of sputter-deposited Zn{sub 0.87}Fe{sub 2.13}O{sub 4} thin layers

    SciTech Connect

    Capdeville, Stephanie; Alphonse, Pierre; Bonningue, Corine; Presmanes, Lionel; Tailhades, Philippe

    2004-12-01

    Sputtering deposition of spinel ferrites leads to a combination of attractive physical properties (optical, magnetic, and semiconducting), which can be adjusted by carefully selecting the preparation conditions and stoichiometry during controlled postdeposition annealing. Thin-sputtered ferrite films are of great interest for integration as functional parts in microsystems. In this paper, we report the effect on electrical properties of the microstructure of sputtered zinc-ferrite films. Transmission electron microscopy and atomic force microscopy were used to observe these nanostructured layers. The measured surface area to projected surface area ratio was calculated on the basis of Brunauer-Emmett-Teller measurements with krypton at 77 K. The contribution of grains and boundaries to the global resistivity of the ferrite films was studied by spectroscopic impedance measurements. Impedance variations were in agreement with the microstructure evolution when the argon deposition pressure was increased. The increase of film dc resistivity versus annealing temperatures was explained by the influence of the microstructure on Fe{sup 2+} cation oxidation.

  14. Lubrication with sputtered MoS2 films.

    NASA Technical Reports Server (NTRS)

    Spalvins, T.

    1971-01-01

    Sputtered MoS2 films (2000-6500 A) were deposited on highly polished metal surfaces. These films have a low coefficient of friction (0.03-0.04) at speeds of 40-80 rpm and loads of 250-1000 grams. At loads of 250 grams the wear lives are over 0.5 million cycles, but at 1000 gram loads, it decreases to 38,000 cycles. Friction experiments and tensile tests have indicated that sputtered films have a strong adherence to metal surfaces. Electron transmission, diffraction and scanning electron microscopy show that these films have an extremely small particle size, less than 30 A in diameter, and are very dense and free from observable pinholes. The high kinetic energy of these sputtered species, the submicroscopic particle size and the sputter-etched substrate surface is responsible for strong adhesion and cohesion of the sputtered film.

  15. Localized flow control with energy deposition

    NASA Astrophysics Data System (ADS)

    Adelgren, Russell Gene

    A series of experiments with energy deposition via laser-induced optical breakdown of air, i.e., a laser spark, have been performed. These experiments have demonstrated the possibility of using a laser spark for supersonic flow control. In the first of these experiments, Rayleigh scattering flow visualization was taken for energy deposition into quiescent air. A time sequence of images showed the post breakdown fluid motion created by the laser spark for different laser energy levels. Blast wave radius and wave speed measurements were made and correlated to five different laser energy deposition levels. Laser energy was deposited upstream of a sphere in Mach 3.45 flow. The energy was deposited one sphere diameter and 0.6 diameters upstream of the front of the sphere. The frontal surface pressure on the sphere was recorded as the laser spark perturbed region interacted with the flow about the sphere. Tests for three different energy levels and two different incident laser beam diameters were completed. It has been demonstrated that the peak surface pressure associated with the Edney IV interaction can be momentarily reduced by 30% by the interaction with the thermal spot created by the laser spark. The effects of laser energy deposition on another shock interaction phenomena were studied. Laser energy deposition was used to modify the shock structure formed by symmetric wedges at Mach 3.45 within the dual solution domain. It was demonstrated experimentally that the Mach reflection could be reduced by 80% momentarily. The numerical simulations show a transition from the stable Mach reflection to a stable regular reflection. Two energy deposition methods (electric arcing and laser energy deposition) were used to force and control compressible mixing layers of axisymmetric jets. The energy deposition forcing methods have been experimentally investigated with the schlieren technique, particle image velocimetry, Mie scattering, and static pressure probe diagnostic

  16. Excellent vacuum tribological properties of Pb/PbS film deposited by RF magnetron sputtering and ion sulfurizing.

    PubMed

    Guozheng, Ma; Binshi, Xu; Haidou, Wang; Shuying, Chen; Zhiguo, Xing

    2014-01-01

    Soft metal Pb film of 3 μm in thickness was deposited on AISI 440C steel by RF magnetron sputtering, and then some of the Pb film samples were treated by low-temperature ion sulfurizing (LTIS) and formed Pb/PbS composite film. Tribological properties of the Pb and Pb/PbS films were tested contrastively in vacuum and air condition using a self-developed tribometer (model of MSTS-1). Scanning electron microscopy (SEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) were adopted to analyze the microstructure and chemical construction of the films and their worn surfaces. The results show that a mass of Pb was changed to PbS during the process of LTIS. In air condition, owing to the severe oxidation effect, pure Pb film showed relatively high friction coefficients (0.6), and Pb/PbS composite film also lost its friction-reduction property after sliding for a short time. In a vacuum, the average friction coefficients of Pb film were about 0.1, but the friction coefficient curve fluctuated obviously. And the Pb/PbS composite film exhibited excellent tribological properties in vacuum condition. Its friction coefficients keep stable at a low value of about 0.07 for a long time. If takes the value of friction coefficients exceeding 0.2 continuously as a criterion of lubrication failure, the sliding friction life of Pb/PbS film was as long as 3.2 × 10(5) r, which is 8 times of that of the Pb film. It can be concluded that the Pb/PbS film has excellent vacuum tribological properties and important foreground for applying in space solid lubrication related fields.

  17. Thermoelectric properties of epitaxial ScN films deposited by reactive magnetron sputtering onto MgO(001) substrates

    SciTech Connect

    Burmistrova, Polina V.; Rui Koh, Yee; Lundstrom, Mark S.; Maassen, Jesse; Salamat, Shuaib; Favaloro, Tela; Saha, Bivas; Shakouri, Ali; Sands, Timothy D.

    2013-04-21

    Epitaxial ScN(001) thin films were grown on MgO(001) substrates by dc reactive magnetron sputtering. The deposition was performed in an Ar/N{sub 2} atmosphere at 2 Multiplication-Sign 10{sup -3} Torr at a substrate temperature of 850 Degree-Sign C in a high vacuum chamber with a base pressure of 10{sup -8} Torr. In spite of oxygen contamination of 1.6 {+-} 1 at. %, the electrical resistivity, electron mobility, and carrier concentration obtained from a typical film grown under these conditions by room temperature Hall measurements are 0.22 m{Omega} cm, 106 cm{sup 2} V{sup -1} s{sup -1}, and 2.5 Multiplication-Sign 10{sup 20} cm{sup -3}, respectively. These films exhibit remarkable thermoelectric power factors of 3.3-3.5 Multiplication-Sign 10{sup -3} W/mK{sup 2} in the temperature range of 600 K to 840 K. The cross-plane thermal conductivity is 8.3 W/mK at 800 K yielding an estimated ZT of 0.3. Theoretical modeling of the thermoelectric properties of ScN calculated using a mean-free-path of 23 nm at 300 K is in very good agreement with the experiment. These results also demonstrate that further optimization of the power factor of ScN is possible. First-principles density functional theory combined with the site occupancy disorder technique was used to investigate the effect of oxygen contamination on the electronic structure and thermoelectric properties of ScN. The computational results suggest that oxygen atoms in ScN mix uniformly on the N site forming a homogeneous solid solution alloy. Behaving as an n-type donor, oxygen causes a shift of the Fermi level in ScN into the conduction band without altering the band structure and the density of states.

  18. The study of titanium oxynitride coatings solubility deposited by reactive magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Leonova, L. A.; Boytsova, E. L.; Pustovalova, A. A.

    2016-06-01

    To improve hemocompatibility of cardiovascular stents the coatings based on titanium oxides and oxynitrides were used. In the present work the morphology, surface properties (wettability and surface energy), and in vitro solubility of the ternary system Ti-N-O coating were investigated. Experimentally, low dissolution rate of the coating in saline NaCl (0,9%) was confirmed. Instrumental methods of quantitative analysis (XRF, AES) revealed that the Ti-N-O coating is chemical-resistant and does not change the qualitative and quantitative composition of body fluids.

  19. Fabrication of thick structures by sputtering

    NASA Technical Reports Server (NTRS)

    Kazaroff, J. M.; Mcclanahan, E. D.; Busch, R.; Moss, R. W.

    1974-01-01

    Deposit, 5500-gram of Cu-0.15 wt % Zr alloy, sputtered onto copper cylinder to average thickness of 12.29 mm. Structure was achieved with high-rate sputter deposition for about 100 hours total sputtering time. Material had twice the strength of unsputtered material at temperatures to 723 K and equivalent strength at nearly 873 K.

  20. Structure adhesion and corrosion resistance study of tungsten bisulfide doped with titanium deposited by DC magnetron co-sputtering

    NASA Astrophysics Data System (ADS)

    De La Roche, J.; González, J. M.; Restrepo-Parra, E.; Sequeda, F.; Alleh, V.; Scharf, T. W.

    2014-11-01

    Titanium-doped tungsten bisulfide thin films (WS2-Ti) were grown using a DC magnetron co-sputtering technique on AISI 304 stainless steel and silicon substrates. The films were produced by varying the Ti cathode power from 0 to 25 W. Using energy dispersive spectroscopy (EDS), the concentration of Ti in the WS2 was determined, and a maximum of 10% was obtained for the sample grown at 25 W. Moreover, the S/W ratio was calculated and determined to increase as a function of the Ti cathode power. According to transmission electron microscopy (TEM) results, at high titanium concentrations (greater than 6%), nanocomposite formation was observed, with nanocrystals of Ti embedded in an amorphous matrix of WS2. Using the scratch test, the coatings' adhesion was analyzed, and it was observed that as the Ti percentage was increased, the critical load (Lc) also increased. Furthermore, the failure type changed from plastic to elastic. Finally, the corrosion resistance was evaluated using the electrochemical impedance spectroscopy (EIS) technique, and it was observed that at high Ti concentrations, the corrosion resistance was improved, as Ti facilitates coating densification and generates a protective layer.

  1. SHI induced effects on the electrical and optical properties of HfO2 thin films deposited by RF sputtering

    NASA Astrophysics Data System (ADS)

    Manikanthababu, N.; Dhanunjaya, M.; Nageswara Rao, S. V. S.; Pathak, A. P.

    2016-07-01

    The continuous downscaling of Metal Oxide Semiconductor (MOS) devices has reached a limit with SiO2 as a gate dielectric material. Introducing high-k dielectric materials as a replacement for the conservative SiO2 is the only alternative to reduce the leakage current. HfO2 is a reliable and an impending material for the wide usage as a gate dielectric in semiconductor industry. HfO2 thin films were synthesized by RF sputtering technique. Here, we present a study of Swift Heavy Ion (SHI) irradiation with100 MeV Ag ions for studying the optical properties as well as 80 MeV Ni ions for studying the electrical properties of HfO2/Si thin films. Rutherford Backscattering Spectrometry (RBS), Field Emission Scanning Electron Microscope (FESEM), energy-dispersive X-ray spectroscopy (EDS), profilometer and I-V (leakage current) measurements have been employed to study the SHI induced effects on both the structural, electrical and optical properties.

  2. Tokomak disruption runaway electron beam energy deposition

    NASA Astrophysics Data System (ADS)

    Lei, Yian

    2012-10-01

    Disruption is one of the major concerns in magnetic confinement fusion (MCF) research. People believe the energetic runaway electron beam can damage the first wall by depositing most of its energy to certain region as heat, melting the wall. However, as the energy of the beam electron is very high (up to 50 MeV), most of the beam energy should be converted as gamma radiation and escape, and the fraction of thermal energy deposition is relatively small. We will calculate the runaway electron energy deposition in typical first wall configurations in ITER disruption scenario, and give the temperature profile of the wall. We will also calculate the bremsstrahlung gamma ray spectra of the beam and discuss the consequences.

  3. Pulsed DC bias effects on p-type semiconductor SrCu2O2 film deposited by RF magnetron sputtering.

    PubMed

    Seok, Hye-Won; Kim, Sei-Ki; Lee, Hyun-Seok; Lee, Mi-Jae; Ju, Byeong-Kwon

    2013-05-01

    Transparent p-type semiconducting SrCu2O2 films have been deposited by RF magnetron sputtering under unbalanced bipolar pulsed DC bias on low-alkali glass substrates in a mixed gas of 1% H2/Ar below 400 degrees C. The pulsed DC bias voltages to substrate were varied from 0 V to -200 V with a frequency of 350 kHz. The effect of pulsed DC bias on the structure and electrical and optical properties of SrCu2O2 films has been investigated using SEM, XRD, surface profiler, Hall measurements and UV-VIS spectrometer. The deposition rates of SrCu2O2 films under DC-pulsed bias show a maximum at -100 V bias, and decreased with increasing the bias voltage. XRD results of the as-deposited films under the bias voltage at 400 degrees C reveal SrCu2O2 polycrystalline phase, and increased crystallite size with increasing pulsed DC bias voltage. The SrCu2O2 films deposited under the pulsed-bias of -100 V exhibits the highest conductivity of 0.08 S/cm, and over 70% of transmittance at 550 nm. It is confirmed that the application of pulsed DC bias in sputtering improves the crystallization, crystal growth, and the electrical and optical properties eventually under 400 degrees C. PMID:23858855

  4. Enhanced quality of epitaxial AlN thin films on 6H-SiC by ultra-high-vacuum ion-assisted reactive dc magnetron sputter deposition

    NASA Astrophysics Data System (ADS)

    Tungasmita, S.; Birch, J.; Persson, P. O. A.˚.; Järrendahl, K.; Hultman, L.

    2000-01-01

    Epitaxial AlN thin films have been grown on 6H-SiC substrates by ultra-high-vacuum (UHV) ion-assisted reactive dc magnetron sputtering. The low-energy ion-assisted growth (Ei=17-27 eV) results in an increasing surface mobility, promoting domain-boundary annihilation and epitaxial growth. Domain widths increased from 42 to 135 nm and strained-layer epitaxy was observed in this energy range. For Ei>52 eV, an amorphous interfacial layer of AlN was formed on the SiC, which inhibited epitaxial growth. Using UHV condition and very pure nitrogen sputtering gas yielded reduced impurity levels in the films (O: 3.5×1018cm-3). Analysis techniques used in this study are in situ reflection high-energy electron diffraction, secondary-ion-mass spectroscopy, atomic-force microscopy, x-ray diffraction, and cross-section high-resolution electron microscopy.

  5. Room temperature growth of nanocrystalline anatase TiO 2 thin films by dc magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Singh, Preetam; Kaur, Davinder

    2010-03-01

    We report, the structural and optical properties of nanocrystalline anatase TiO 2 thin films grown on glass substrate by dc magnetron sputtering at room temperature. The influence of sputtering power and pressure over crystallinity and surface morphology of the films were investigated. It was observed that increase in sputtering power activates the TiO 2 film growth from relative lower surface free energy to higher surface free energy. XRD pattern revealed the change in preferred orientation from (1 0 1) to (0 0 4) with increase in sputtering power, which is accounted for different surface energy associated with different planes. Microstructure of the films also changes from cauliflower type to columnar type structures with increase in sputtering power. FESEM images of films grown at low pressure and low sputtering power showed typical cauliflower like structure. The optical measurement revealed the systematic variation of the optical constants with deposition parameters. The films are highly transparent with transmission higher than 90% with sharp ultraviolet cut off. The transmittance of these films was found to be influenced by the surface roughness and film thickness. The optical band gap was found to decrease with increase in the sputtering power and pressure. The refractive index of the films was found to vary in the range of 2.50-2.24 with increase in sputtering pressure or sputtering power, resulting in the possibility of producing TiO 2 films for device applications with different refractive index, by changing the deposition parameters.

  6. Optical and electrical properties of Ti(Cr)O2:N thin films deposited by magnetron co-sputtering

    NASA Astrophysics Data System (ADS)

    Kollbek, K.; Szkudlarek, A.; Marzec, M. M.; Lyson-Sypien, B.; Cecot, M.; Bernasik, A.; Radecka, M.; Zakrzewska, K.

    2016-09-01

    The paper deals with TiO2-based thin films, doped with Cr and N, obtained by magnetron co-sputtering from titanium dioxide ceramic and chromium targets in Ar + N2 atmosphere. Co-doped samples of Ti(Cr)O2:N are investigated from the point of view of morphological, crystallographic, optical, and electrical properties. Characterization techniques such as: X-ray diffraction, XRD, scanning electron microscopy, SEM, atomic force microscopy, AFM, Energy Dispersive X-ray spectroscopy, EDX, X-ray photoelectron spectroscopy, XPS, optical spectrophotometry as well as impedance spectroscopy are applied. XRD reveals TiO2 and TiO2:N thin films are well crystallized as opposed to those of TiO2:Cr and Ti(Cr)O2:N. XPS spectra confirm that co-doping has been successfully performed with the biggest contribution from the lower binding energy component of N 1s peak at 396 eV. SEM analysis indicates uniform and dense morphology without columnar growth. Comparison between the band gaps indicates a significant shift of the absorption edge towards visible range from 3.69 eV in the case of non-stoichiometric Ti(Cr)O2-x:N to 2.78 eV in the case of stoichiometric Ti(Cr)O2:N which should be attributed to the incorporation of both dopants at substitutional positions in TiO2 lattice. Electrical conductivity of stoichiometric Ti(Cr)O2:N increases in comparison to co-doped nonstoichiometric TiO2-x thin film and reaches almost the same value as that of TiO2 stoichiometric film.

  7. Energy deposition in STARFIRE reactor components

    SciTech Connect

    Gohar, Y.; Brooks, J.N.

    1985-04-01

    The energy deposition in the STARFIRE commercial tokamak reactor was calculated based on detailed models for the different reactor components. The heat deposition and the 14 MeV neutron flux poloidal distributions in the first wall were obtained. The poloidal surface heat load distribution in the first wall was calculated from the plasma radiation. The Monte Carlo method was used for the calculation to allow an accurate modeling for the reactor geometry.

  8. High rate deposition of photocatalytic TiO{sub 2} films by dc magnetron sputtering using a TiO{sub 2-x} target

    SciTech Connect

    Sato, Yasushi; Uebayashi, Akira; Ito, Norihiro; Kamiyama, Toshihisa; Shigesato, Yuzo

    2008-07-15

    Photocatalytic TiO{sub 2} films were deposited on glass substrates by dc magnetron sputtering using a slightly reduced TiO{sub 2-x} target (2-x=1.986; conductivity, 3.7 S cm{sup -1}; density, 4.21 g/cm{sup 3}). The variation in the deposition rate as a function of the O{sub 2} flow ratio did not show a hysteresis curve at the 'transition region' as seen in the case of a Ti metal target. The deposition rate using the TiO{sub 2-x} target in 100% Ar gas was approximately seven times higher than that using the Ti metal target in an 'oxide mode'. The films postannealed in air at temperatures {>=}200 deg. C showed excellent photodecomposition characteristics of acetaldehyde (CH{sub 3}CHO) as well as photoinduced hydrophilicity.

  9. Extended x-ray absorption fine structure measurements on radio frequency magnetron sputtered HfO2 thin films deposited with different oxygen partial pressures.

    PubMed

    Maidul Haque, S; Nayak, C; Bhattacharyya, Dibyendu; Jha, S N; Sahoo, N K

    2016-03-20

    Two sets of HfO2 thin film have been deposited by the radio frequency magnetron sputtering technique at various oxygen partial pressures, one set without any substrate bias and another set with a 50 W pulsed dc substrate bias. The films have been characterized by extended x-ray absorption fine structure (EXAFS) measurements at the Hf L3 edge, and the structural information obtained from analysis of the EXAFS data has been used to explain the macroscopic behavior of the refractive index obtained from spectroscopic ellipsometry measurements. It has been observed that the variation of refractive index with oxygen partial pressure depends on the Hf-Hf bond length for the set of films deposited without substrate bias, while for the other set of films deposited with pulsed dc substrate bias, it depends on the oxygen coordination of the nearest neighbor shell surrounding Hf sites.

  10. Annealing effects on the ferromagnetic resonance linewidths of sputter-deposited Fe{sub 100−x}Co{sub x}(001) thin films (x < 11)

    SciTech Connect

    Kusaoka, A.; Kimura, J.; Takahashi, Y. Inaba, N.; Kirino, F.; Ohtake, M.; Futamoto, M.

    2015-05-07

    Effects of post-growth annealing on the magnetic damping of 3d transition alloy thin films were investigated. Fe{sub 100−x}Co{sub x} (x < 11 at. %) thin films were epitaxially deposited on GaAs(001) substrates by rf magnetron sputtering, and some of them were annealed without exposing to atmosphere. Electrical measurement showed that in-plane resistivity was smaller in the annealed films than in the as-deposited ones, indicating that the annealing mitigates crystalline imperfections and leads to reduced electron scattering rates. Magnetic damping was evaluated by the peak widths of ferromagnetic resonance (FMR) spectra obtained by a conventional Q-band spectrometer. Comparison of as-deposited and annealed specimens showed that the damping was decreased by annealing. Combined with the electrical and FMR measurements, these observations are consistent with the theoretical predictions that crystalline imperfections strongly influence the magnetic damping, both in intrinsic and extrinsic origins.

  11. Heavy particle transport in sputtering systems

    NASA Astrophysics Data System (ADS)

    Trieschmann, Jan

    2015-09-01

    This contribution aims to discuss the theoretical background of heavy particle transport in plasma sputtering systems such as direct current magnetron sputtering (dcMS), high power impulse magnetron sputtering (HiPIMS), or multi frequency capacitively coupled plasmas (MFCCP). Due to inherently low process pressures below one Pa only kinetic simulation models are suitable. In this work a model appropriate for the description of the transport of film forming particles sputtered of a target material has been devised within the frame of the OpenFOAM software (specifically dsmcFoam). The three dimensional model comprises of ejection of sputtered particles into the reactor chamber, their collisional transport through the volume, as well as deposition of the latter onto the surrounding surfaces (i.e. substrates, walls). An angular dependent Thompson energy distribution fitted to results from Monte-Carlo simulations is assumed initially. Binary collisions are treated via the M1 collision model, a modified variable hard sphere (VHS) model. The dynamics of sputtered and background gas species can be resolved self-consistently following the direct simulation Monte-Carlo (DSMC) approach or, whenever possible, simplified based on the test particle method (TPM) with the assumption of a constant, non-stationary background at a given temperature. At the example of an MFCCP research reactor the transport of sputtered aluminum is specifically discussed. For the peculiar configuration and under typical process conditions with argon as process gas the transport of aluminum sputtered of a circular target is shown to be governed by a one dimensional interaction of the imposed and backscattered particle fluxes. The results are analyzed and discussed on the basis of the obtained velocity distribution functions (VDF). This work is supported by the German Research Foundation (DFG) in the frame of the Collaborative Research Centre TRR 87.

  12. Pulsing frequency induced change in optical constants and dispersion energy parameters of WO3 films grown by pulsed direct current magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Punitha, K.; Sivakumar, R.; Sanjeeviraja, C.

    2014-03-01

    In this work, we present the pulsing frequency induced change in the structural, optical, vibrational, and luminescence properties of tungsten oxide (WO3) thin films deposited on microscopic glass and fluorine doped tin oxide (SnO2:F) coated glass substrates by pulsed dc magnetron sputtering technique. The WO3 films deposited on SnO2:F substrate belongs to monoclinic phase. The pulsing frequency has a significant influence on the preferred orientation and crystallinity of WO3 film. The maximum optical transmittance of 85% was observed for the film and the slight shift in transmission threshold towards higher wavelength region with increasing pulsing frequency revealed the systematic reduction in optical energy band gap (3.78 to 3.13 eV) of the films. The refractive index (n) of films are found to decrease (1.832 to 1.333 at 550 nm) with increasing pulsing frequency and the average value of extinction coefficient (k) is in the order of 10-3. It was observed that the dispersion data obeyed the single oscillator of the Wemple-Didomenico model, from which the dispersion energy (Ed) parameters, dielectric constants, plasma frequency, oscillator strength, and oscillator energy (Eo) of WO3 films were calculated and reported for the first time due to variation in pulsing frequency during deposition by pulsed dc magnetron sputtering. The Eo is change between 6.30 and 3.88 eV, while the Ed varies from 25.81 to 7.88 eV, with pulsing frequency. The Raman peak observed at 1095 cm-1 attributes the presence of W-O symmetric stretching vibration. The slight shift in photoluminescence band is attributed to the difference in excitons transition. We have made an attempt to discuss and correlate these results with the light of possible mechanisms underlying the phenomena.

  13. Strength, stiffness, and microstructure of Cu(In,Ga)Se{sub 2} thin films deposited via sputtering and co-evaporation

    SciTech Connect

    Luo, Shi; Jang, Dongchan; Greer, Julia R.; Lee, Jiun-Haw; Liu, Chee-Wee; Shieh, Jia-Min; Shen, Chang-Hong; Wu, Tsung-Ta

    2014-07-07

    This work examines Cu(In,Ga)Se{sub 2} thin films fabricated by (1) selenization of pre-sputtered Cu-In-Ga and (2) co-evaporation of each constituent. The efficiency disparity between films deposited via these two methods is linked to differences in morphology and microstructure. Atomic force microscopy and scanning electron microscopy show that selenized films have rougher surfaces and poor adhesion to molybdenum back contact. Transmission electron microscopy and electron energy loss spectroscopy revealed multiple voids near the Mo layer in selenized films and a depletion of Na and Se around the voids. Residual stresses in co-evaporated films were found to be ∼1.23 GPa using wafer curvature measurements. Uniaxial compression experiments on 500 nm-diameter nanopillars carved out from co-evaporated films revealed the elastic modulus of 70.4 ± 6.5 GPa. Hertzian contact model applied to nanoindentation data on selenized films revealed the indentation modulus of 68.9 ± 12.4 GPa, which is in agreement with previous reports. This equivalence of the elastic moduli suggests that microstructural differences manifest themselves after the yield point. Typical plastic behavior with two distinct failure modes is observed in the extracted stress-strain results, with the yield strength of 640.9 ± 13.7 MPa for pillars that failed by shearing and 1100.8 ± 77.8 MPa for pillars that failed by shattering.

  14. Friction and Wear Properties of Selected Solid Lubricating Films. Part 3; Magnetron-Sputtered and Plasma-Assisted, Chemical-Vapor-Deposited Diamondlike Carbon Films

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa; Iwaki, Masanori; Gotoh, Kenichi; Obara, Shingo; Imagawa, Kichiro

    2000-01-01

    To evaluate commercially developed dry solid film lubricants for aerospace bearing applications, an investigation was conducted to examine the friction and wear behavior of magnetron-sputtered diamondlike carbon (MS DLC) and plasma-assisted, chemical-vapor-deposited diamondlike carbon (PACVD DLC) films in sliding contact with 6-mm-diameter American Iron and Steel Institute (AISI) 440C stainless steel balls. Unidirectional sliding friction experiments were conducted with a load of 5.9 N (600 g), a mean Hertzian contact pressure of 0.79 GPa (maximum Hertzian contact pressure of L-2 GPa), and a sliding velocity of 0.2 m/s. The experiments were conducted at room temperature in three environments: ultrahigh vacuum (vacuum pressure, 7x10(exp -7) Pa), humid air (relative humidity, approx.20 percent), and dry nitrogen (relative humidity, <1 percent). The resultant films were characterized by scanning electron microscopy, energy-dispersive x-ray spectroscopy, and surface profilometry. Marked differences in the friction and wear of the DLC films investigated herein resulted from the environmental conditions. The main criteria for judging the performance of the DLC films were coefficient of friction and wear rate, which had to be less than 0.3 and on the order of 10(exp -6) cu mm/N-m or less, respectively. MS DLC films and PACVD DLC films met the criteria in humid air and dry nitrogen but failed in ultrahigh vacuum, where the coefficients of friction were greater than the criterion, 0.3. In sliding contact with 440C stainless steel balls in all three environments the PACVD DLC films exhibited better tribological performance (i.e., lower friction and wear) than the MS DLC films. All sliding involved adhesive transfer of wear materials: transfer of DLC wear debris to the counterpart 440C stainless steel and transfer of 440C stainless steel wear debris to the counterpart DLC film.

  15. Combinatorial deposition by r.f. magnetron sputtering using subdivided powder targets as new development method for thin-film phosphors

    NASA Astrophysics Data System (ADS)

    Miyata, Toshihiro; Mochizuki, Yuu; Minami, Tadatsugu

    2006-01-01

    A new technique incorporating combinatorial deposition to develop new multicomponent oxide and oxynitride thin-film phosphors by r.f. magnetron sputtering is demonstrated using subdivided powder targets. By sputtering with a powder target that is subdivided into two or more parts, phosphor thin films with a chemical composition that varied across the substrate surface could be successfully prepared. In Zn IISi 1-XGe XO 4:Mn thin films, for example, the chemical composition (Ge content (X)) could be optimized to obtain higher electroluminescent and photoluminescent emission intensities by using only one deposition with the new technique. As a result, a high luminances of 11800 and 1536 cd/m2 for green emission was obtained in Zn IISi 0.6Ge 0.4O 4:Mn TFEL device driven at 1 kHz and 60 Hz, respectively. In ((AlN) 1-X-(CaO) X):Eu thin films, for example, the chemical composition (CaO content (X)) could be optimized to obtain higher electroluminescent and photoluminescent emission intensities by using only one deposition with the new technique. As a result, a luminance of 170 cd/m2 for red emission was obtained in an ((AlN) 0.1-(CaO) 0.9):Eu TFEL device driven at 1 kHz.

  16. In situ controlled sputtering deposition of gold nanoparticles on MnO2 nanorods as surface-enhanced Raman scattering substrates for molecular detection.

    PubMed

    Jiang, Tao; Zhang, Li; Jin, Han; Wang, Xiaolong; Zhou, Jun

    2015-04-28

    Single-crystal tetragonal α-MnO2 nanorods with different amounts of gold nanoparticles (NPs) attached were successfully prepared by a facile sputtering deposition technique. Initially, the morphology and crystal structure of the bare α-MnO2 nanorods synthesized via a hydrothermal approach were investigated. Then, the amount of gold NPs at different sputtering times was analyzed. It was confirmed that the amount of the decorated gold NPs increased with the lengthening of the sputtering time until they completely covered the α-MnO2 nanorods. Theoretical calculation results indicated the advantages of the composite structure by showing the enhanced electromagnetic fields around both the bare α-MnO2 nanorods and the gold NP decorated ones. The surface-enhanced Raman scattering (SERS) efficiency of these nanocomposites was evaluated using methylene blue and 4-mercaptobenzoic acid as Raman probe molecules. It was found that the SERS intensity of the substrates strongly depended on the degree of aggregation of the gold NPs. Uniform SERS signals across the entire surface of these samples were obtained. Moreover, a typical chemical toxin, methyl parathion, was effectively detected over a broad concentration range from 1 × 10(-3) to 100 ppm using the gold NP decorated α-MnO2 nanorods, suggesting this hybrid structure is highly valuable for further applications on the rapid detection of organic environmental pollutants.

  17. DEPOSITION OF NIOBIUM AND OTHER SUPERCONDUCTING MATERIALS WITH HIGH POWER IMPULSE MAGNETRON SPUTTERING: CONCEPT AND FIRST RESULTS

    SciTech Connect

    High Current Electronics Institute, Tomsk, Russia; Anders, Andre; Mendelsberg, Rueben J.; Lim, Sunnie; Mentink, Matthijs; Slack, Jonathan L.; Wallig, Joseph G.; Nollau, Alexander V.; Yushkov, Georgy Yu.

    2011-07-24

    Niobium coatings on copper cavities have been considered as a cost-efficient replacement of bulk niobium RF cavities, however, coatings made by magnetron sputtering have not quite lived up to high expectations due to Q-slope and other issues. High power impulse magnetron sputtering (HIPIMS) is a promising emerging coatings technology which combines magnetron sputtering with a pulsed power approach. The magnetron is turned into a metal plasma source by using very high peak power density of ~ 1 kW/cm{sup 2}. In this contribution, the cavity coatings concept with HIPIMS is explained. A system with two cylindrical, movable magnetrons was set up with custom magnetrons small enough to be inserted into 1.3 GHz cavities. Preliminary data on niobium HIPIMS plasma and the resulting coatings are presented. The HIPIMS approach has the potential to be extended to film systems beyond niobium, including other superconducting materials and/or multilayer systems.

  18. Dielectric thin-films by ion-beam sputtering deposition for III-V based infrared optoelectronic imaging

    NASA Astrophysics Data System (ADS)

    Nguyen, Jean

    The growing technological industry is demanding the development of powerful and smaller devices. Dielectric thin-films can play an important role to help push towards achieving these goals. However, their advantage of high-quality material and low material costs compared to bulk can only be achieved with consideration of the technique, conditions, and parameters. The sensitivity makes every step in the process extremely important, beginning from substrate preparation to the first initial layers of growth and ending with the testing/modeling of the devices. Further, not all applications want bulk-like properties, so the ability to adjust and fine tune the material characteristics opens up a wide range of opportunities with the advancements and can drive the power of the devices to an ultimate level. This work provides the motivation, theoretical basis, and experimental results for performance enhancement of optoelectronic devices through the use of high-quality dielectric thin-films by ion-beam sputtering deposition (IBSD). The advantages and disadvantages to this technique are demonstrated and compared to others. The optimization processes, relationships, and motivation of using seven different thin-film materials have been detailed and provided. Using IBSD, the performance improvements were demonstrated on infrared lasers and detectors. For lasers, a 170% increase in maximum output power was achieved using near-0% percent anti-reflection coatings (AR) and near-100% high-reflection (HR) coatings. Following, wide tunability was achieved by using the structures in an external cavity laser system, showing nearly a three-fold improvement in tuning range. Also, structurally robust lasers were achieved with a custom-tailored HR structure designed for damage resistance to high output power density operation, showing over 14W of peak output power for MOCVD lasers. For infrared photodetectors, over a 4 orders of magnitude decrease in current density and zero-bias resistance

  19. Spectroscopic ellipsometry-based study of optical properties of amorphous and crystalline ZnSnO alloys and Zn2SnO4 thin films grown using sputtering deposition: Dielectric function and subgap states

    NASA Astrophysics Data System (ADS)

    Ko, Kun Hee; So, Hyeon Seob; Jung, Dae Ho; Park, Jun Woo; Lee, Hosun

    2016-04-01

    We investigated the optical properties of amorphous and crystalline zinc tin oxide (ZTO) thin films grown on SiO2/Si substrates with varying compositions via a co-sputtering deposition method at room temperature. The co-sputtering targets consist of SnO2 and ZnO. By varying the relative power ratio of the two targets, we demonstrate the ability to control the Sn and Zn composition of the resulting ZTO thin films. The ratio of [Sn]/([Sn] + [Zn]) atomic compositions was estimated at 11%, 29%, 42%, 54%, and 60%. Using a 600 °C annealing process, the as-grown amorphous ZTO films were transformed into crystalline ZTO films. The dielectric functions were obtained based on the measured ellipsometric angles, ψ and Δ. We determined the dielectric functions, absorption coefficients, and optical gap energies of ZTO thin films with varying compositions. The dielectric functions, absorption coefficients, and optical gap energies of amorphous and crystalline Zn2SnO4 thin films were obtained at 29 at. % of Sn. Subgap states at 1.6 eV (A) and 2.8 eV (B) of ZnSnO alloys and Zn2SnO4 films were found in the imaginary part of the dielectric function spectra. The subgap state intensities were reduced via a nitrogen gas annealing. Possible origins of the observed subgap states will be discussed.

  20. Impact of the surface-near silicon substrate properties on the microstructure of sputter-deposited AlN thin films

    SciTech Connect

    Schneider, M.; Bittner, A.; Patocka, F.; Schmid, U.; Stoeger-Pollach, M.

    2012-11-26

    In micro-/nanomachined devices and systems, aluminum nitride (AlN) thin films are widely used due to their piezoelectric properties. This work evaluates the potential of modifying the interface between the AlN thin film and the silicon (Si) wafer serving as bottom electrode for optimized crystallographic orientation and, hence, improved electrical and piezoelectric properties. The films were analyzed using temperature-dependant leakage current measurements, transmission electron microscopy, and x-ray diffraction. By preconditioning of the Si substrate surface applying sputter etching prior to film deposition, leakage current levels are substantially decreased and an increased (002) orientation of the AlN grains is observed.