Sample records for energy development strategy

  1. Transportation energy strategy: Project {number_sign}5 of the Hawaii Energy Strategy Development Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-08-01

    This study was prepared for the State Department of Business, Economic Development and Tourism (DBEDT) as part of the Hawaii Energy Strategy program. Authority and responsibility for energy planning activities, such as the Hawaii Energy Strategy, rests with the State Energy Resources Coordinator, who is the Director of DBEDT. Hawaii Energy Strategy Study No. 5, Transportation Energy Strategy Development, was prepared to: collect and synthesize information on the present and future use of energy in Hawaii`s transportation sector, examine the potential of energy conservation to affect future energy demand; analyze the possibility of satisfying a portion of the state`s futuremore » transportation energy demand through alternative fuels; and recommend a program targeting energy use in the state`s transportation sector to help achieve state goals. The analyses and conclusions of this report should be assessed in relation to the other Hawaii Energy Strategy Studies in developing a comprehensive state energy program. 56 figs., 87 tabs.« less

  2. 7 CFR 1948.81 - State Investment Strategy for Energy Impacted Areas.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 13 2011-01-01 2009-01-01 true State Investment Strategy for Energy Impacted Areas..., DEPARTMENT OF AGRICULTURE (CONTINUED) PROGRAM REGULATIONS (CONTINUED) RURAL DEVELOPMENT Section 601 Energy Impacted Area Development Assistance Program § 1948.81 State Investment Strategy for Energy Impacted Areas...

  3. 7 CFR 1948.81 - State Investment Strategy for Energy Impacted Areas.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 13 2013-01-01 2013-01-01 false State Investment Strategy for Energy Impacted Areas..., DEPARTMENT OF AGRICULTURE (CONTINUED) PROGRAM REGULATIONS (CONTINUED) RURAL DEVELOPMENT Section 601 Energy Impacted Area Development Assistance Program § 1948.81 State Investment Strategy for Energy Impacted Areas...

  4. 7 CFR 1948.81 - State Investment Strategy for Energy Impacted Areas.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 13 2010-01-01 2009-01-01 true State Investment Strategy for Energy Impacted Areas..., DEPARTMENT OF AGRICULTURE (CONTINUED) PROGRAM REGULATIONS (CONTINUED) RURAL DEVELOPMENT Section 601 Energy Impacted Area Development Assistance Program § 1948.81 State Investment Strategy for Energy Impacted Areas...

  5. Hawaii energy strategy report, October 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    This is a report on the Hawaii Energy Strategy Program. The topics of the report include the a description of the program including an overview, objectives, policy statement and purpose and objectives; energy strategy policy development; energy strategy projects; current energy situation; modeling Hawaii`s energy future; energy forecasts; reducing energy demand; scenario assessment, and recommendations.

  6. Hawaii energy strategy: Executive summary, October 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    This is an executive summary to a report on the Hawaii Energy Strategy Program. The topics of the report include the a description of the program including an overview, objectives, policy statement and purpose and objectives; energy strategy policy development; energy strategy projects; current energy situation; modeling Hawaii`s energy future; energy forecasts; reducing energy demand; scenario assessment, and recommendations.

  7. 75 FR 29993 - Department of Commerce: Trade Promotion Coordinating Committee Renewable Energy and Energy...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-28

    ... Coordinating Committee Renewable Energy and Energy Efficiency Export Strategy To Support the National Export... Trade Promotion Coordinating Committee's (TPCC) Renewable Energy and Energy Efficiency Working Group is developing a U.S. Renewable Energy and Energy Efficiency Export Strategy (the Strategy) to guide U.S...

  8. Research on the Direction of China's Energy Development and Coping Strategies Based on the Trend of World Energy Development

    NASA Astrophysics Data System (ADS)

    Zhang, Lixin; Tao, Ye; Jiang, Yan; Ma, Ju

    2018-06-01

    To realize the modernization of the national economy, it is necessary to develop energy science and technology for China,which is third largest countries in the world.The rapid development of science and technology has promoted the continuous transformation of the global energy industry. By analyzing the trend of energy development in the world today, this paper discusses the challenges that the global energy development facing and the situation and tasks faced by China's energy sustainable development, and looks forward to China's strategies to cope with the development of the world's energy.

  9. Oil substitution and energy saving - A research and development strategy of the International Energy Agency /IEA/

    NASA Astrophysics Data System (ADS)

    Rath-Nagel, S.

    1981-03-01

    Systems analyses were carried out by the International Energy Agency for the participating 15 countries in order to work out strategies and scenarios for lessening the dependence on imported oil and for developing new energy technologies. MARKAL model computations show the technology and energy mixes necessary for achieving a reduction of oil imports by two thirds over the next 40 years. The scenario 'high social security' examines the projected rise in energy consumption, the development of oil substitutes, the increase in alternative heating sources, the development of markets for liquid energy products, the demand for gas, and the relative usage of various energy generation methods. The recommended strategy involves as the most important points an increase in coal consumption, greater nuclear energy reliance and development of alternative technologies.

  10. 76 FR 4338 - Research and Development Strategies for Compressed & Cryo-Compressed Hydrogen Storage Workshops

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-25

    ... DEPARTMENT OF ENERGY Research and Development Strategies for Compressed & Cryo- Compressed Hydrogen Storage Workshops AGENCY: Fuel Cell Technologies Program, Office of Energy Efficiency and Renewable Energy, Department of Energy. ACTION: Notice of meeting. SUMMARY: The Systems Integration group of...

  11. Energy Efficiency Programs in K-12 Schools: A Guide to Developing and Implementing Greenhouse Gas Reduction Programs. Local Government Climate and Energy Strategy Series

    ERIC Educational Resources Information Center

    US Environmental Protection Agency, 2011

    2011-01-01

    Saving energy through energy efficiency improvements can cost less than generating, transmitting, and distributing energy from power plants, and provides multiple economic and environmental benefits. Local governments can promote energy efficiency in their jurisdictions by developing and implementing strategies that improve the efficiency of…

  12. National Offshore Wind Strategy: Facilitating the Development of the Offshore Wind Industry in the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patrick Gilman; Maurer, Ben; Feinberg, Luke

    2016-09-01

    The U.S. Department of Energy, through its Wind Energy Technologies Office, and U.S. Department of the Interior, through its Bureau of Ocean Energy Management, have jointly produced this updated national strategy to facilitate the responsible development of offshore wind energy in the United States.

  13. Joint Peru/United States report on Peru/United States cooperative energy assessment. Volume 1. Executive summary, main report and appendices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1979-08-01

    In 1978, the US and Peru conducted a comprehensive assessment of Peru's energy resources, needs, and uses and developed several alternative energy strategies that utilize the available resources to meet their energy requirements. This Volume I reports the findings of the assessment and contains the executive summary, the main report, and five appendices of information that support the integrated energy supply and demand analysis. The following chapters are included: The Energy Situation in Peru (economic context and background, energy resources and production, energy consumption patterns); Reference Supply and Demand Projection (approach, procedures, and assumptions; economic projections; energy demand and supplymore » projections; supply/demand integration; uncertainties); and The Development of Strategies and Options (the analysis of options; strategies; increased use of renewables, hydropower, coal; increased energy efficiency; and financial analysis of strategies).« less

  14. Public sector energy management: A strategy for catalyzing energy efficiency in Malaysia

    NASA Astrophysics Data System (ADS)

    Roy, Anish Kumar

    To date the public sector role in facilitating the transition to a sustainable energy future has been envisaged mainly from a regulatory perspective. In such a role, the public sector provides the push factors---enforcing regulations and providing incentives---to correct market imperfections that impede energy transitions. An alternative and complementary role of the public sector that is now gaining increasing attention is that of catalyzing energy transitions through public sector energy management initiatives. This dissertation offers a conceptual framework to rationalize such a role for the public sector by combining recent theories of sustainable energy transition and public management. In particular, the framework identifies innovative public management strategies (such as performance contracting and procurement) for effectively implementing sustainable energy projects in government facilities. The dissertation evaluates a model of sustainable public sector energy management for promoting energy efficiency in Malaysia. The public sector in Malaysia can be a major player in leading and catalyzing energy efficiency efforts as it is not only the largest and one of the most influential energy consumers, but it also plays a central role in setting national development strategy. The dissertation makes several recommendations on how a public sector energy management strategy can be implemented in Malaysia. The US Federal Energy Management Program (FEMP) is used as a practical model. The analysis, however, shows that in applying the FEMP model to the Malaysian context, there are a number of limitations that will have to be taken into consideration to enable a public sector energy management strategy to be effectively implemented. Overall the analysis of this dissertation contributes to a rethinking of the public sector role in sustainable energy development that can strengthen the sector's credibility both in terms of governance and institutional performance. In addition, it links theory with practice by offering a strategy that can effectively address critical issues arising from the energy-development-policy nexus of the sustainable energy development debate.

  15. Context-specific energy strategies: coupling energy system visions with feasible implementation scenarios.

    PubMed

    Trutnevyte, Evelina; Stauffacher, Michael; Schlegel, Matthias; Scholz, Roland W

    2012-09-04

    Conventional energy strategy defines an energy system vision (the goal), energy scenarios with technical choices and an implementation mechanism (such as economic incentives). Due to the lead of a generic vision, when applied in a specific regional context, such a strategy can deviate from the optimal one with, for instance, the lowest environmental impacts. This paper proposes an approach for developing energy strategies by simultaneously, rather than sequentially, combining multiple energy system visions and technically feasible, cost-effective energy scenarios that meet environmental constraints at a given place. The approach is illustrated by developing a residential heat supply strategy for a Swiss region. In the analyzed case, urban municipalities should focus on reducing heat demand, and rural municipalities should focus on harvesting local energy sources, primarily wood. Solar thermal units are cost-competitive in all municipalities, and their deployment should be fostered by information campaigns. Heat pumps and building refurbishment are not competitive; thus, economic incentives are essential, especially for urban municipalities. In rural municipalities, wood is cost-competitive, and community-based initiatives are likely to be most successful. Thus, the paper shows that energy strategies should be spatially differentiated. The suggested approach can be transferred to other regions and spatial scales.

  16. A national research & development strategy for biomass crop feedstocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wright, L.L.; Cushman, J.H.

    Planning was initiated in 1996 with the objective of reevaluating current biomass feedstock research and development strategies to: (1) assure that by 2005, one or more commercial lignocellulosic to ethanol projects will be able to acquire a dependable supply of biomass crop feedstocks; (2) assure that recently initiated demonstrations of crops to electricity will be successful and; (3) assure that the research base needed to support future biomass industry expansion is being developed. Multiple trends and analyses indicate that biomass energy research and development strategies must take into account the fact that competition for land will define the upper limitsmore » of available biomass energy crop supplies and will largely dictate the price of those supplies. Only crop production and utilization strategies which contribute profit to the farmer or landowner and to energy producers will be used commercially for biomass energy production. Strategies for developing biomass {open_quotes}energy{close_quotes} crop supplies must take into consideration all of the methods by which biomass crops will enter biomass energy markets. The lignocellulosic materials derived from crops can be available as primary residues or crop by-products; secondary residues or processing by-products; co-products (at both the crop production and processing stages); or, as dedicated energy crops. Basic research and development (R&D) leading to yield improvement continues to be recommended as a major long-term focus for dedicated energy crops. Many additional near term topics need attention, some of which are also applicable to by-products and co-products. Switchgrass R&D should be expanded and developed with greater collaboration of USDA and state extension groups. Woody crop research should continue with significant cost-share from industries developing the crops for other commercial products. Co-product options need more investigation.« less

  17. Real-time pricing strategy of micro-grid energy centre considering price-based demand response

    NASA Astrophysics Data System (ADS)

    Xu, Zhiheng; Zhang, Yongjun; Wang, Gan

    2017-07-01

    With the development of energy conversion technology such as power to gas (P2G), fuel cell and so on, the coupling between energy sources becomes more and more closely. Centralized dispatch among electricity, natural gas and heat will become a trend. With the goal of maximizing the system revenue, this paper establishes the model of micro-grid energy centre based on energy hub. According to the proposed model, the real-time pricing strategy taking into account price-based demand response of load is developed. And the influence of real-time pricing strategy on the peak load shifting is discussed. In addition, the impact of wind power predicted inaccuracy on real-time pricing strategy is analysed.

  18. Guam Strategic Energy Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conrad, M. D.

    2013-07-01

    Describes various energy strategies available to Guam to meet the territory's goal of diversifying fuel sources and reducing fossil energy consumption 20% by 2020.The information presented in this strategic energy plan will be used by the Guam Energy Task Force to develop an energy action plan. Available energy strategies include policy changes, education and outreach, reducing energy consumption at federal facilities, and expanding the use of a range of energy technologies, including buildings energy efficiency and conservation, renewable electricity production, and alternative transportation. The strategies are categorized based on the time required to implement them.

  19. Energy Efficiency and Importance of Renewable Energy Sources in Latvia

    NASA Astrophysics Data System (ADS)

    Skapare, I.; Kreslins, A.

    2007-10-01

    The main goal of Latvian energy policy is to ensure safe and environmentally friendly long-term energy supply at cost-effective prices, contributing to enhance competitiveness, and to ensure safe energy transit. The Latvian Parliament approved an Energy Efficiency Strategy in 2000. Its objective is to decrease energy consumption per unit of GDP by 25% by 2010. Awareness raising, implementation of standards and economic incentives for self financing are the main instruments to increase energy efficiency, mentioned in the strategy. Latvia, as many other European Union member states, is dependent on the import of primary energy resources. The Latvian Renewable Energy strategy is still under development. The only recent study on RES was developed in the framework of a PHARE program in year 2000: "Renewable energy resource program", where three main objectives for a future RES strategy were proposed: 1. To increase the use of wood waste and low value wood and forest residues. 2. To improve efficiency of combustion technologies and to replace outdated plants. 3. To increase the use of renewables in Combined Heat and Power plants (CHP). Through the Renewable Energy and Energy Efficiency Partnership, partners will develop a set of new shared activities, and coordinate and strengthen existing efforts in this area.

  20. The Moving Target of Climate Mitigation: Examples from the Energy Sector in California

    NASA Astrophysics Data System (ADS)

    Tarroja, B.; AghaKouchak, A.; Forrest, K.; Chiang, F.; Samuelsen, S.

    2016-12-01

    In response to the concerns of climate change-induced impacts on human health, environmental integrity, and the secure operation of resource supply infrastructures, strategies to reduce greenhouse gas (GHG) emissions of major societal sectors have been in development. In the energy sector, these strategies are based in low carbon primary energy deployment, increased energy efficiency, and implementing complementary technologies for operational resilience. While these strategies are aimed at climate mitigation, a degree of climate change-induced impacts will occur by the time of their deployment, and many of these impacts can compromise the effectiveness of these climate mitigation strategies. In order to develop climate mitigation strategies that will achieve their GHG reduction and other goals, the impact that climate change-induced conditions can have on different components of climate mitigation strategies must be understood. This presentation will highlight three examples of how climate change-induced conditions affect components of climate mitigation strategies in California: through impacts on 1) hydropower generation, 2) renewable potential for geothermal and solar thermal resources to form part of the renewable resource portfolio, and 3) the magnitudes and shapes of the electric load demand that must be met sustainably. These studies are part of a larger, overarching project to understand how climate change impacts the energy system and how to develop a sustainable energy infrastructure that is resilient against these impacts.

  1. Commonwealth of the Northern Mariana Islands Energy Action Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conrad, M. D.; Ness, J. E.

    2013-07-01

    This document describes the three near-term energy strategies selected by the CNMI Energy Task Force during action planning workshops conducted in March 2013, and outlines the steps being taken to implement those strategies. The three energy strategies selected by the task force are (1) designing a demand-side management program focusing on utility, residential and commercial sectors, (2) developing an outreach and education plan focused on energy conservation in government agencies and businesses, including workplace rules, and (3) exploring waste-to-energy options. The task force also discussed several other medium- and long-term energy strategies that could be explored at a future date.

  2. Hawaii energy strategy project 3: Renewable energy resource assessment and development program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-11-01

    RLA Consulting (RLA) has been retained by the State of Hawaii Department of Business, Economic Development and Tourism (DBEDT) to conduct a Renewable Energy Resource Assessment and Development Program. This three-phase program is part of the Hawaii Energy Strategy (HES), which is a multi-faceted program intended to produce an integrated energy strategy for the State of Hawaii. The purpose of Phase 1 of the project, Development of a Renewable Energy Resource Assessment Plan, is to better define the most promising potential renewable energy projects and to establish the most suitable locations for project development in the state. In order tomore » accomplish this goal, RLA has identified constraints and requirements for renewable energy projects from six different renewable energy resources: wind, solar, biomass, hydro, wave, and ocean thermal. These criteria were applied to areas with sufficient resource for commercial development and the results of Phase 1 are lists of projects with the most promising development potential for each of the technologies under consideration. Consideration of geothermal energy was added to this investigation under a separate contract with DBEDT. In addition to the project lists, a monitoring plan was developed with recommended locations and a data collection methodology for obtaining additional wind and solar data. This report summarizes the results of Phase 1. 11 figs., 22 tabs.« less

  3. Combined optimization model for sustainable energization strategy

    NASA Astrophysics Data System (ADS)

    Abtew, Mohammed Seid

    Access to energy is a foundation to establish a positive impact on multiple aspects of human development. Both developed and developing countries have a common concern of achieving a sustainable energy supply to fuel economic growth and improve the quality of life with minimal environmental impacts. The Least Developing Countries (LDCs), however, have different economic, social, and energy systems. Prevalence of power outage, lack of access to electricity, structural dissimilarity between rural and urban regions, and traditional fuel dominance for cooking and the resultant health and environmental hazards are some of the distinguishing characteristics of these nations. Most energy planning models have been designed for developed countries' socio-economic demographics and have missed the opportunity to address special features of the poor countries. An improved mixed-integer programming energy-source optimization model is developed to address limitations associated with using current energy optimization models for LDCs, tackle development of the sustainable energization strategies, and ensure diversification and risk management provisions in the selected energy mix. The Model predicted a shift from traditional fuels reliant and weather vulnerable energy source mix to a least cost and reliable modern clean energy sources portfolio, a climb on the energy ladder, and scored multifaceted economic, social, and environmental benefits. At the same time, it represented a transition strategy that evolves to increasingly cleaner energy technologies with growth as opposed to an expensive solution that leapfrogs immediately to the cleanest possible, overreaching technologies.

  4. Data analytics and optimization of an ice-based energy storage system for commercial buildings

    DOE PAGES

    Luo, Na; Hong, Tianzhen; Li, Hui; ...

    2017-07-25

    Ice-based thermal energy storage (TES) systems can shift peak cooling demand and reduce operational energy costs (with time-of-use rates) in commercial buildings. The accurate prediction of the cooling load, and the optimal control strategy for managing the charging and discharging of a TES system, are two critical elements to improving system performance and achieving energy cost savings. This study utilizes data-driven analytics and modeling to holistically understand the operation of an ice–based TES system in a shopping mall, calculating the system’s performance using actual measured data from installed meters and sensors. Results show that there is significant savings potential whenmore » the current operating strategy is improved by appropriately scheduling the operation of each piece of equipment of the TES system, as well as by determining the amount of charging and discharging for each day. A novel optimal control strategy, determined by an optimization algorithm of Sequential Quadratic Programming, was developed to minimize the TES system’s operating costs. Three heuristic strategies were also investigated for comparison with our proposed strategy, and the results demonstrate the superiority of our method to the heuristic strategies in terms of total energy cost savings. Specifically, the optimal strategy yields energy costs of up to 11.3% per day and 9.3% per month compared with current operational strategies. A one-day-ahead hourly load prediction was also developed using machine learning algorithms, which facilitates the adoption of the developed data analytics and optimization of the control strategy in a real TES system operation.« less

  5. Data analytics and optimization of an ice-based energy storage system for commercial buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Na; Hong, Tianzhen; Li, Hui

    Ice-based thermal energy storage (TES) systems can shift peak cooling demand and reduce operational energy costs (with time-of-use rates) in commercial buildings. The accurate prediction of the cooling load, and the optimal control strategy for managing the charging and discharging of a TES system, are two critical elements to improving system performance and achieving energy cost savings. This study utilizes data-driven analytics and modeling to holistically understand the operation of an ice–based TES system in a shopping mall, calculating the system’s performance using actual measured data from installed meters and sensors. Results show that there is significant savings potential whenmore » the current operating strategy is improved by appropriately scheduling the operation of each piece of equipment of the TES system, as well as by determining the amount of charging and discharging for each day. A novel optimal control strategy, determined by an optimization algorithm of Sequential Quadratic Programming, was developed to minimize the TES system’s operating costs. Three heuristic strategies were also investigated for comparison with our proposed strategy, and the results demonstrate the superiority of our method to the heuristic strategies in terms of total energy cost savings. Specifically, the optimal strategy yields energy costs of up to 11.3% per day and 9.3% per month compared with current operational strategies. A one-day-ahead hourly load prediction was also developed using machine learning algorithms, which facilitates the adoption of the developed data analytics and optimization of the control strategy in a real TES system operation.« less

  6. Potential Advantages of Reusing Potentially Contaminated Land for Renewable Energy Fact Sheet

    EPA Pesticide Factsheets

    EPA promotes the reuse of potentially contaminated lands and landfills for renewable energy. This strategy creates new markets for potentially contaminated lands, while providing a sustainable land development strategy for renewable energy.

  7. Investigation of energy management strategies for photovoltaic systems - An analysis technique

    NASA Technical Reports Server (NTRS)

    Cull, R. C.; Eltimsahy, A. H.

    1982-01-01

    Progress is reported in formulating energy management strategies for stand-alone PV systems, developing an analytical tool that can be used to investigate these strategies, applying this tool to determine the proper control algorithms and control variables (controller inputs and outputs) for a range of applications, and quantifying the relative performance and economics when compared to systems that do not apply energy management. The analysis technique developed may be broadly applied to a variety of systems to determine the most appropriate energy management strategies, control variables and algorithms. The only inputs required are statistical distributions for stochastic energy inputs and outputs of the system and the system's device characteristics (efficiency and ratings). Although the formulation was originally driven by stand-alone PV system needs, the techniques are also applicable to hybrid and grid connected systems.

  8. Investigation of energy management strategies for photovoltaic systems - An analysis technique

    NASA Astrophysics Data System (ADS)

    Cull, R. C.; Eltimsahy, A. H.

    Progress is reported in formulating energy management strategies for stand-alone PV systems, developing an analytical tool that can be used to investigate these strategies, applying this tool to determine the proper control algorithms and control variables (controller inputs and outputs) for a range of applications, and quantifying the relative performance and economics when compared to systems that do not apply energy management. The analysis technique developed may be broadly applied to a variety of systems to determine the most appropriate energy management strategies, control variables and algorithms. The only inputs required are statistical distributions for stochastic energy inputs and outputs of the system and the system's device characteristics (efficiency and ratings). Although the formulation was originally driven by stand-alone PV system needs, the techniques are also applicable to hybrid and grid connected systems.

  9. Strategy Plan Strengthens Energy Conservation Program.

    ERIC Educational Resources Information Center

    Minning, William R.

    1987-01-01

    The United States Department of Energy's Schools and Hospitals Program has been popular among schools. The necessity of locating nonfederal resources to achieve energy management warrants (1) developing a strategy of evaluation among schools and (2) market research and analysis. (CJH)

  10. Study on improving rail energy efficiency (E2) : best practices and strategies

    DOT National Transportation Integrated Search

    2015-03-23

    A recent Volpe Center report [1] for the Federal Railroad Administrations (FRA) Rail Energy, Environment, and Engine (E3) Technology research and development program reviewed rail industry best practices (BPs) and strategies for improving energy e...

  11. Commonwealth of the Northern Mariana Islands Strategic Energy Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conrad, M. D.; Ness, J. E.

    2013-07-01

    Describes various energy strategies available to CNMI to meet the territory's goal of diversifying fuel sources and reducing fossil energy consumption. The information presented in this strategic energy plan will be used by the CNMI Governor's Energy Task Force to develop an energy action plan. Available energy strategies include policy changes, education and outreach, and expanding the use of a range of energy technologies, including renewable electricity production and buildings energy efficiency and conservation.

  12. Solar Energy Systems for Ohioan Residential Homeowners

    NASA Astrophysics Data System (ADS)

    Luckett, Rickey D.

    Dwindling nonrenewable energy resources and rising energy costs have forced the United States to develop alternative renewable energy sources. The United States' solar energy industry has seen an upsurge in recent years, and photovoltaic holds considerable promise as a renewable energy technology. The purpose of this case study was to explore homeowner's awareness of the benefits of solar energy. Disruptive-innovation theory was used to explore marketing strategies for conveying information to homeowners about access to new solar energy products and services. Twenty residential homeowners were interviewed face-to-face to explore (a) perceived benefits of solar energy in their county in Ohio, and (b) perceptions on the rationale behind the marketing strategy of solar energy systems sold for residential use. The study findings used inductive analyses and coding interpretation to explore the participants' responses that revealed 3 themes: the existence of environmental benefits for using solar energy systems, the expensive cost of equipment associated with government incentives, and the lack of marketing information that is available for consumer use. The implications for positive social change include the potential to enable corporate leaders, small business owners, and entrepreneurs to develop marketing strategies for renewable energy systems. These strategies may promote use of solar energy systems as a clean, renewable, and affordable alternative electricity energy source for the 21st century.

  13. Augustine Band of Cahuilla Indians Energy Conservation and Options Analysis - Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paul Turner

    2008-07-11

    The Augustine Band of Cahuilla Indians was awarded a grant through the Department of Energy First Steps program in June of 2006. The primary purpose of the grant was to enable the Tribe to develop energy conservation policies and a strategy for alternative energy resource development. All of the work contemplated by the grant agreement has been completed and the Tribe has begun implementing the resource development strategy through the construction of a 1.0 MW grid-connected photovoltaic system designed to offset a portion of the energy demand generated by current and projected land uses on the Tribe’s Reservation. Implementation ofmore » proposed energy conservation policies will proceed more deliberately as the Tribe acquires economic development experience sufficient to evaluate more systematically the interrelationships between conservation and its economic development goals.« less

  14. National energy strategy to be devised

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Secretary of Energy James D. Watkins has announced the Department of Energy's plans to develop a national energy strategy. Leaders of three national associations voiced concern that organizers of the U.S. Department of Energy hearings made no contract with the American Wind Energy Association, (AWEA) and National Wood Energy Association (NWEA) or the Solar Energy Industries Association (SEIA). All three representatives urged the DOE to address the problems of acid rain, global climate change and continued reliance on imported fuel. The renewable energy industry groups expressed hope that a future DOE meeting with Watkins and the renewable energy industries willmore » be held to discuss the components of a national energy strategy encouraging the use of renewable energy sources.« less

  15. 75 FR 12743 - Office of Energy Efficiency and Renewable Energy; Request for Information; Weatherization...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-17

    ..., and realistic schedule and milestones. The specifics of the outreach/marketing strategy, the funding... on a non-attribution basis for program planning and funding opportunity strategy development. DOE will review and consider all responses in its formulation of program strategies in the pursuant FOA...

  16. Research on the business QoS and trustworthy and controllable strategies mechanism for energy internet

    NASA Astrophysics Data System (ADS)

    Zhang, Geng; Lu, Meiling; Zhang, Dahua; Zhou, Liang; Li, Likang

    2017-01-01

    Energy internet is a kind of power sharing network, which can realize the bidirectional flow of energy information on the basis of the existing power grid. It puts forward higher requirements for reliability and controllability of information communication, and all kinds of business QoS of the backbone network. So the research of business QoS and trustworthy and controllable strategies mechanism have an important significance for the development of energy internet. This paper mainly studies how to use the software defined network (SDN) to achieve business QoS, and provide QoS support for all kinds of business of the energy internet. Combined with the current development situation of the energy internet in our country, this paper researches the trustworthy and controllable strategies mechanism for energy internet, and proposes the transition scheme of the IPv6 credible network architecture based on SDN. This coordinates the contradiction between the growing demand for energy internet applications and the limitations of the energy internet technology itself.

  17. 7 CFR 1948.86 - Site development and acquisition grant selection criteria.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... in the State Investment Strategy for Energy Impacted Areas; (2) The increase in the number of new... for in the State Investment Strategy for Energy Impacted Areas in relation to available financial...

  18. Energy developments and the transportation infrastructure in Texas : impacts and strategies.

    DOT National Transportation Integrated Search

    2012-03-01

    In recent years, Texas has experienced a boom in energy-related activities, particularly in wind power : generation and extraction of oil and natural gas. While energy developments contribute to enhance the : states ability to produce energy relia...

  19. Development of an operation strategy for hydrogen production using solar PV energy based on fluid dynamic aspects

    NASA Astrophysics Data System (ADS)

    Amores, Ernesto; Rodríguez, Jesús; Oviedo, José; de Lucas-Consuegra, Antonio

    2017-06-01

    Alkaline water electrolysis powered by renewable energy sources is one of the most promising strategies for environmentally friendly hydrogen production. However, wind and solar energy sources are highly dependent on weather conditions. As a result, power fluctuations affect the electrolyzer and cause several negative effects. Considering these limiting effects which reduce the water electrolysis efficiency, a novel operation strategy is proposed in this study. It is based on pumping the electrolyte according to the current density supplied by a solar PV module, in order to achieve the suitable fluid dynamics conditions in an electrolysis cell. To this aim, a mathematical model including the influence of electrode-membrane distance, temperature and electrolyte flow rate has been developed and used as optimization tool. The obtained results confirm the convenience of the selected strategy, especially when the electrolyzer is powered by renewable energies.

  20. Options for reducing carbon dioxide emissions

    NASA Astrophysics Data System (ADS)

    Rosenfeld, Arthur H.; Price, Lynn

    1992-03-01

    Improvements in energy efficiency can significantly reduce the annual growth in greenhouse gas emissions. Such improvements occur when energy intensity is reduced; no reduction in energy services is required. Using the concept of ``cost of conserved energy'' to develop conservation supply curves similar to resource supply curves, researchers consistently find that electricity and natural gas savings of nearly 50% of current consumption are possible for U.S. buildings. Such reductions in energy consumption directly reduce emissions of greenhouse gases. To capture these savings, we must continue to develop energy-efficient technologies and strategies. This paper describes three recent energy-efficient technologies that benefitted from energy conservation research and development (R&D) funding: high-frequency ballasts, compact fluorescent lamps, and low-emissivity windows. Other advanced technologies and strategies of spectrally selective windows, superwindows, electrochromic windows, advanced insulation, low-flow showerheads, improved recessed lamp fixtures, whitening surfaces and planting urban trees, daylighting, and thermal energy storage are also discussed.

  1. A novel multimode hybrid energy storage system and its energy management strategy for electric vehicles

    NASA Astrophysics Data System (ADS)

    Wang, Bin; Xu, Jun; Cao, Binggang; Zhou, Xuan

    2015-05-01

    This paper proposes a novel topology of multimode hybrid energy storage system (HESS) and its energy management strategy for electric vehicles (EVs). Compared to the conventional HESS, the proposed multimode HESS has more operating modes and thus it could in further enhance the efficiency of the system. The rule-based control strategy and the power-balancing strategy are developed for the energy management strategy to realize mode selection and power distribution. Generally, the DC-DC converter will operate at peak efficiency to convey the energy from the batteries to the UCs. Otherwise, the pure battery mode or the pure ultracapacitors (UCs) mode will be utilized without the DC-DC converter. To extend the battery life, the UCs have the highest priority to recycle the energy and the batteries are isolated from being recharged directly during regenerative braking. Simulations and experiments are established to validate the proposed multimode HESS and its energy management strategy. The results reveal that the energy losses in the DC-DC converter, the total energy consumption and the overall system efficiency of the proposed multimode HESS are improved compared to the conventional HESS.

  2. Sustainable Development Strategies of Biomass Energy in Beijing

    NASA Astrophysics Data System (ADS)

    Zhang, H. Z.; Huang, B. R.

    2017-10-01

    The development of biomass energy industry can effectively improve the rural environment and alleviate the shortage of living energy in rural areas, especially in mountain areas. In order to make clear the current situation of biomass energy industry development in Beijing, this paper analyzed the status of biomass resources and biomass energy utilization and discussed the factors hindering the development of biomass energy industry in Beijing. Based on the analysis, suggestions for promoting sustainable development of Biomass Energy Industry in Beijing are put forward.

  3. Dispatch Strategy Development for Grid-tied Household Energy Systems

    NASA Astrophysics Data System (ADS)

    Cardwell, Joseph

    The prevalence of renewable generation will increase in the next several decades and offset conventional generation more and more. Yet this increase is not coming without challenges. Solar, wind, and even some water resources are intermittent and unpredictable, and thereby create scheduling challenges due to their inherent "uncontrolled" nature. To effectively manage these distributed renewable assets, new control algorithms must be developed for applications including energy management, bridge power, and system stability. This can be completed through a centralized control center though efforts are being made to parallel the control architecture with the organization of the renewable assets themselves--namely, distributed controls. Building energy management systems are being employed to control localized energy generation, storage, and use to reduce disruption on the net utility load. One such example is VOLTTRONTM, an agent-based platform for building energy control in real time. In this thesis, algorithms developed in VOLTTRON simulate a home energy management system that consists of a solar PV array, a lithium-ion battery bank, and the grid. Dispatch strategies are implemented to reduce energy charges from overall consumption (/kWh) and demand charges (/kW). Dispatch strategies for implementing storage devices are tuned on a month-to-month basis to provide a meaningful economic advantage under simulated scenarios to explore algorithm sensitivity to changing external factors. VOLTTRON agents provide automated real-time optimization of dispatch strategies to efficiently manage energy supply and demand, lower consumer costs associated with energy usage, and reduce load on the utility grid.

  4. Multi-mode energy management strategy for fuel cell electric vehicles based on driving pattern identification using learning vector quantization neural network algorithm

    NASA Astrophysics Data System (ADS)

    Song, Ke; Li, Feiqiang; Hu, Xiao; He, Lin; Niu, Wenxu; Lu, Sihao; Zhang, Tong

    2018-06-01

    The development of fuel cell electric vehicles can to a certain extent alleviate worldwide energy and environmental issues. While a single energy management strategy cannot meet the complex road conditions of an actual vehicle, this article proposes a multi-mode energy management strategy for electric vehicles with a fuel cell range extender based on driving condition recognition technology, which contains a patterns recognizer and a multi-mode energy management controller. This paper introduces a learning vector quantization (LVQ) neural network to design the driving patterns recognizer according to a vehicle's driving information. This multi-mode strategy can automatically switch to the genetic algorithm optimized thermostat strategy under specific driving conditions in the light of the differences in condition recognition results. Simulation experiments were carried out based on the model's validity verification using a dynamometer test bench. Simulation results show that the proposed strategy can obtain better economic performance than the single-mode thermostat strategy under dynamic driving conditions.

  5. Does energy availability predict gastropod reproductive strategies?

    PubMed Central

    McClain, Craig R.; Filler, Ryan; Auld, Josh R.

    2014-01-01

    The diversity of reproductive strategies in nature is shaped by a plethora of factors including energy availability. For example, both low temperatures and limited food availability could increase larval exposure to predation by slowing development, selecting against pelagic and/or feeding larvae. The frequency of hermaphroditism could increase under low food availability as population density (and hence mate availability) decreases. We examine the relationship between reproductive/life-history traits and energy availability for 189 marine gastropod families. Only larval type was related to energy availability with the odds of having planktotrophic larvae versus direct development decreasing by 1% with every one-unit increase in the square root of carbon flux. Simultaneous hermaphroditism also potentially increases with carbon flux, but this effect disappears when accounting for evolutionary relationships among taxa. Our findings are in contrast to some theory and empirical work demonstrating that hermaphroditism should increase and planktotrophic development should decrease with decreasing productivity. Instead, they suggest that some reproductive strategies are too energetically expensive at low food availabilities, or arise only when energy is available, and others serve to capitalize on opportunities for aggregation or increased energy availability. PMID:25009058

  6. Energy models and national energy policy

    NASA Astrophysics Data System (ADS)

    Bloyd, Cary N.; Streets, David G.; Fisher, Ronald E.

    1990-01-01

    As work begins on the development of a new National Energy Strategy (NES), the role of energy models is becoming increasingly important. Such models are needed to determine and assess both the short and long term effects of new policy initiatives on U.S. energy supply and demand. A central purpose of the model is to translate overall energy strategy goals into policy options while identifying potential costs and environmental benefits. Three models currently being utilized in the NES process are described, followed by a detailed listing of the publicly identified NES goals. These goals are then viewed in light of the basic modeling scenarios that were proposed as part of the NES development process.

  7. Using Sustainable Development as a Competitive Strategy

    NASA Astrophysics Data System (ADS)

    Spearman, Pat

    Sustainable development reduces construction waste by 43%, generating 50% cost savings. Residential construction executives lacking adequate knowledge regarding the benefits of sustainable development practices are at a competitive disadvantage. Drawing from the diffusion of innovation theory, the purpose of this qualitative case study was to explore knowledge acquisition within the bounds of sustainable residential construction. The purposive sample size of 11 executive decision makers fulfilled the sample size requirements and enabled the extraction of meaningful data. Participants were members of the National Home Builders Association and had experience of a minimum of 5 years in residential construction. The research question addressed how to improve knowledge acquisition relating to the cost benefits of building green homes and increase the adoption rate of sustainable development among residential builders. Data were collected via semistructured telephone interviews, field observation, and document analysis. Transcribed data were validated via respondent validation, coded into 5 initial categories aligned to the focus of the research, then reduced to 3 interlocking themes of environment, competitive advantage, and marketing. Recommendations include developing comprehensive public policies, horizontal and vertical communications networks, and green banks to capitalize sustainable development programs to improve the diffusion of green innovation as a competitive advantage strategy. Business leaders could benefit from this data by integrating sustainable development practices into their business processes. Sustainable development reduces operational costs, increases competitive advantage for builders, and reduces greenhouse gas emissions. Implications for social change increase energy independence through conservation and developing a legislative policy template for comprehensive energy strategies. A comprehensive energy strategy promotes economic development, technological gains in all business sectors within the energy industry, and reduces energy costs for consumers.

  8. A Regional Water Resource Planning Model to Explore the Water-Energy Nexus in the American Southwest

    NASA Astrophysics Data System (ADS)

    Flores-Lopez, F.; Yates, D.; Purkey, D.; Huber-lee, A. T.

    2011-12-01

    The power sector withdraws substantial cooling water for electric generation in the United States and is thus heavily dependent on available water resources. Changes in water supplies and water quality may impact the reliability of power generation. This research intends to guide energy policy and decision making, leading to reduced greenhouse gas emission and avoiding unintended consequences related to water management in the context of future decisions around type and location of energy generation. It is recognized that different energy management strategies will have different water management implications that extend from the local, to the regional, and ultimately to the national scale. Further, the importance of these impacts will be defined by the characteristics of individual water systems within which energy management strategies are implemented. The Water Evaluation and Planning (WEAP) system was employed to represent the water resource systems of the American Southwest, where various energy management strategies could be represented within a broad water management context, but with regional specificity. A point of convergence for the American Southwest is Southern California, which relies on water transfers from both the Sacramento/San Joaquin system and the Colorado River systems. The reality is that the water systems of the Los Angeles/San Diego system are connected to those of the San Francisco Bay Area, the Central Valley of California, Central Arizona, Metropolitan Las Vegas, the Salt Lake Valley, the Rio Grande Valley, the Front Range of the Rockies, and in fact, to the borders of Kansas, Nebraska, Texas, and Mexico through Interstate and International Compacts. The Southwest WEAP application was developed to represent the water management implications of different energy and water management strategies and development pathways under current and future conditions. The energy assumptions are derived from the National Renewable Energy Laboratory (NREL) Regional Energy Deployment System (ReEDS) analysis that is being conducted independently, and for the entire United States. In addition to different energy development strategies, other development pathways can and will be explored, such as changes in municipal water demand use and patterns, and/or changes in irrigation demand.

  9. Leveraging Human-environment Systems in Residential Buildings for Aggregate Energy Efficiency and Sustainability

    NASA Astrophysics Data System (ADS)

    Xu, Xiaoqi

    Reducing the energy consumed in the built environment is a key objective in many sustainability initiatives. Existing energy saving methods have consisted of physical interventions to buildings and/or behavioral modifications of occupants. However, such methods may not only suffer from their own disadvantages, e.g. high cost and transient effect, but also lose aggregate energy saving potential due to the oftentimes-associated single-building-focused view and an isolated examination of occupant behaviors. This dissertation attempts to overcome the limitations of traditional energy saving research and practical approaches, and enhance residential building energy efficiency and sustainability by proposing innovative energy strategies from a holistic perspective of the aggregate human-environment systems. This holistic perspective features: (1) viewing buildings as mutual influences in the built environment, (2) leveraging both the individual and contextualized social aspects of occupant behaviors, and (3) incorporating interactions between the built environment and human behaviors. First, I integrate three interlinked components: buildings, residents, and the surrounding neighborhood, and quantify the potential energy savings to be gained from renovating buildings at the inter-building level and leveraging neighborhood-contextualized occupant social networks. Following the confirmation of both the inter-building effect among buildings and occupants' interpersonal influence on energy conservation, I extend the research further by examining the synergy that may exist at the intersection between these "engineered" building networks and "social" peer networks, focusing specifically on the additional energy saving potential that could result from interactions between the two components. Finally, I seek to reach an alignment of the human and building environment subsystems by matching the thermostat preferences of each household with the thermal conditions within their apartment, and develop the Energy Saving Alignment Strategy to be considered in public housing assignment policy. This strategy and the inter-building level energy management strategies developed in my preceding research possess large-scale cost-effectiveness and may engender long-lasting influence compared with existing energy saving approaches. Building from the holistic framework of coupled human-environment systems, the findings of this research will advance knowledge of energy efficiency in the built environment and lead to the development of novel strategies to conserve energy in residential buildings.

  10. Mark Jacobson | NREL

    Science.gov Websites

    assessments and developing capacity building strategies; educational outreach for renewable energy technologies, primarily wind; and developing solutions for the various market barriers of wind energy background of energy positions. He has been responsible for leading or supporting various renewable

  11. Romania Country Analysis Brief

    EIA Publications

    2014-01-01

    Romania’s energy strategy is to secure supply through both fuel imports and domestic supplies and maintain a balanced energy resource portfolio by promoting clean coal technologies, nuclear energy, renewable energy expansion, and shale gas development.

  12. Simulation of trading strategies in the electricity market

    NASA Astrophysics Data System (ADS)

    Charkiewicz, Kamil; Nowak, Robert

    2011-10-01

    The main objective of the energy market existence is reduction of the total cost of production, transport and distribution of energy, and so the prices paid by terminal consumers. Energy market contains few markets that are varying on operational rules, the important segments: the Futures Contract Market and Next Day Market are analyzed in presented approach. The computer system was developed to simulate the Polish Energy Market. This system use the multi-agent approach, where each agent is the separate shared library with defined interface. The software was used to compare strategies for players in energy market, where the strategies uses auto-regression, k-nearest neighbours, neural network and mixed algorithm, to predict the next price.

  13. Jennifer Daw | NREL

    Science.gov Websites

    , energy and water audits, greenhouse gas mitigation, energy-water-food nexus analysis and strategy planning, and asset management. Research Interests Energy-water-food nexus Sustainable development and

  14. Improved crashworthiness of rail passenger equipment in the United States

    DOT National Transportation Integrated Search

    2006-06-30

    The Federal Railroad Administration has been conducting research to develop strategies for improved passenger : protection in train accidents. Crash energy management (CEM) has been developed as a strategy for structural : crashworthiness. Interior s...

  15. Alternative energy resources for MoDOT

    DOT National Transportation Integrated Search

    2011-02-01

    This research investigates environmentally friendly alternative energy sources that could be used by MoDOT in various areas, and develops applicable and sustainable strategies to implement those energy sources.

  16. Net-zero Building Cluster Simulations and On-line Energy Forecasting for Adaptive and Real-Time Control and Decisions

    NASA Astrophysics Data System (ADS)

    Li, Xiwang

    Buildings consume about 41.1% of primary energy and 74% of the electricity in the U.S. Moreover, it is estimated by the National Energy Technology Laboratory that more than 1/4 of the 713 GW of U.S. electricity demand in 2010 could be dispatchable if only buildings could respond to that dispatch through advanced building energy control and operation strategies and smart grid infrastructure. In this study, it is envisioned that neighboring buildings will have the tendency to form a cluster, an open cyber-physical system to exploit the economic opportunities provided by a smart grid, distributed power generation, and storage devices. Through optimized demand management, these building clusters will then reduce overall primary energy consumption and peak time electricity consumption, and be more resilient to power disruptions. Therefore, this project seeks to develop a Net-zero building cluster simulation testbed and high fidelity energy forecasting models for adaptive and real-time control and decision making strategy development that can be used in a Net-zero building cluster. The following research activities are summarized in this thesis: 1) Development of a building cluster emulator for building cluster control and operation strategy assessment. 2) Development of a novel building energy forecasting methodology using active system identification and data fusion techniques. In this methodology, a systematic approach for building energy system characteristic evaluation, system excitation and model adaptation is included. The developed methodology is compared with other literature-reported building energy forecasting methods; 3) Development of the high fidelity on-line building cluster energy forecasting models, which includes energy forecasting models for buildings, PV panels, batteries and ice tank thermal storage systems 4) Small scale real building validation study to verify the performance of the developed building energy forecasting methodology. The outcomes of this thesis can be used for building cluster energy forecasting model development and model based control and operation optimization. The thesis concludes with a summary of the key outcomes of this research, as well as a list of recommendations for future work.

  17. Energy management strategy based on fuzzy logic for a fuel cell hybrid bus

    NASA Astrophysics Data System (ADS)

    Gao, Dawei; Jin, Zhenhua; Lu, Qingchun

    Fuel cell vehicles, as a substitute for internal-combustion-engine vehicles, have become a research hotspot for most automobile manufacturers all over the world. Fuel cell systems have disadvantages, such as high cost, slow response and no regenerative energy recovery during braking; hybridization can be a solution to these drawbacks. This paper presents a fuel cell hybrid bus which is equipped with a fuel cell system and two energy storage devices, i.e., a battery and an ultracapacitor. An energy management strategy based on fuzzy logic, which is employed to control the power flow of the vehicular power train, is described. This strategy is capable of determining the desired output power of the fuel cell system, battery and ultracapacitor according to the propulsion power and recuperated braking power. Some tests to verify the strategy were developed, and the results of the tests show the effectiveness of the proposed energy management strategy and the good performance of the fuel cell hybrid bus.

  18. Renewable Energy Certificate Monetization

    EPA Pesticide Factsheets

    The Toolbox for Renewable Energy Project Development's Renewable Energy Certificate (REC) Monetization page provides an overview of REC monetization strategies and resources and how RECs impact the financing and economics of solar projects.

  19. Make it Fit, evaluating strategies to reduce the environmental impacts of meeting human needs in 2050

    NASA Astrophysics Data System (ADS)

    Reid, J.; Polasky, S.; Hawthorne, P.

    2014-12-01

    Sustainable development requires providing for human well-being by meeting basic demands for food, energy and consumer goods and services, all while maintaining an environment capable of sustaining the provisioning of those demands for future generations. Failure to meet the basic needs of human well-being is not an ethically viable option and strategies for doubling agricultural production and providing energy and goods for a growing population exist. However, the question is, at what cost to environmental quality? We developed an integrated modeling approach to test strategies for meeting multiple objectives within the limits of the earth system. We use scenarios to explore a range of assumptions on socio-economic factors like population growth, per capita income and technological change; food systems factors like food waste, production intensification and expansion, and meat demand; and technological developments in energy efficiency and wastewater treatment. We use these scenario to test the conditions in which we can fit the simultaneous goals of sustainable development.

  20. Alternative energy resources for the Missouri Department of Transportation.

    DOT National Transportation Integrated Search

    2011-01-01

    This research investigates environmentally friendly alternative energy sources that could be used by MoDOT in various areas, and develops applicable and sustainable strategies to implement those energy sources.

  1. Space-time windowing of angle-beam wavefield data to characterize scattering from defects

    NASA Astrophysics Data System (ADS)

    Weng, Yu; Michaels, Jennifer E.

    2018-04-01

    The primary focus of ultrasonic nondestructive evaluation is defect detection and characterization. In particular, fatigue cracks emanating from fastener holes are commonly found in aerospace structures. Therefore, scattering of ultrasonic waves from crack-like notches is of practical interest. Here, angle-beam shear waves are used to interrogate notches in aluminum plates. In prior work, notch-scattering was characterized and quantified in the frequency-wavenumber domain, which has the undesirable effect of lumping all scattered shear wave energy from notches into a single energy curve. This present work focuses on developing space-time windowing methods to quantify notch-scattered energy directly in the time-space domain. Two strategies are developed. The first is to indirectly characterize notch-scattering via the change in scattering as compared to the undamaged through-hole. The second strategy is to directly track notch-scattered waves in the time-space domain and then quantify scattered energy by constructing energy-versus-direction curves. Both strategies provide a group of energy difference curves, which show how notch-scattering evolves as time progresses. Notch-scattering quantification results for different notch lengths are shown and discussed.

  2. Understanding Emerging Impacts and Requirements Related to Utility-Scale Solar Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hartmann, Heidi M.; Grippo, Mark A.; Heath, Garvin A.

    2016-09-01

    Utility-scale solar energy plays an important role in the nation’s strategy to address climate change threats through increased deployment of renewable energy technologies, and both the federal government and individual states have established specific goals for increased solar energy development. In order to achieve these goals, much attention is paid to making utility-scale solar energy cost-competitive with other conventional energy sources, while concurrently conducting solar development in an environmentally sound manner.

  3. Accounting for Human Health and Ecosystems Quality in Developing Sustainable Energy Products: The Implications of Wood Biomass-based Electricity Strategies to Climate Change Mitigation

    NASA Astrophysics Data System (ADS)

    Weldu, Yemane W.

    The prospect for transitions and transformations in the energy sector to mitigate climate change raises concerns that actions should not shift the impacts from one impact category to another, or from one sustainability domain to another. Although the development of renewables mostly results in low environmental impacts, energy strategies are complex and may result in the shifting of impacts. Strategies to climate change mitigation could have potentially large effects on human health and ecosystems. Exposure to air pollution claimed the lives of about seven million people worldwide in 2010, largely from the combustion of solid fuels. The degradation of ecosystem services is a significant barrier to achieving millennium development goals. This thesis quantifies the biomass resources potential for Alberta; presents a user-friendly and sector-specific framework for sustainability assessment; unlocks the information and policy barriers to biomass integration in energy strategy; introduces new perspectives to improve understanding of the life cycle human health and ecotoxicological effects of energy strategies; provides insight regarding the guiding measures that are required to ensure sustainable bioenergy production; validates the utility of the Environmental Life Cycle Cost framework for economic sustainability assessment; and provides policy-relevant societal cost estimates to demonstrate the importance of accounting for human health and ecosystem externalities in energy planning. Alberta is endowed with a wealth of forest and agricultural biomass resources, estimated at 458 PJ of energy. Biomass has the potential to avoid 11-15% of GHG emissions and substitute 14-17% of final energy demand by 2030. The drivers for integrating bioenergy sources into Alberta's energy strategy are economic diversification, technological innovation, and resource conservation policy objectives. Bioenergy pathways significantly improved both human health and ecosystem quality from coal fuel. Bioenergy alternatives have higher economic cost than the prevailing scenario of coal-fired generation system. Although coal fuel is the most cost effective way of electricity generation, its combustion results in the loss of 123.5 billion USD per year for Alberta due to societal life cycle cost. This research demonstrated that bioenergy can support the transformation of a fossil-based energy system to a more sustainable power production system; however, respiratory effects is a concern.

  4. Space and energy conservation housing prototype unit development

    NASA Technical Reports Server (NTRS)

    Sunshine, D. R.

    1975-01-01

    Construction plans are discussed for a house which will demonstrate the application of advanced technology to minimize energy requirements and to help direct further development in home construction by defining the interaction of integrated energy and water systems with building configuration and construction materials. Housing unit designs are provided and procedures for the analysis of a variety of housing strategies are developed.

  5. Auto-DR and Pre-cooling of Buildings at Tri-City Corporate Center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yin, Rongxin; Xu, Peng; Kiliccote, Sila

    2008-11-01

    Over the several past years, Lawrence Berkeley National Laboratory (LBNL) has conducted field tests for different pre-cooling strategies in different commercial buildings within California. The test results indicated that pre-cooling strategies were effective in reducing electric demand in these buildings during peak periods. This project studied how to optimize pre-cooling strategies for eleven buildings in the Tri-City Corporate Center, San Bernardino, California with the assistance of a building energy simulation tool -- the Demand Response Quick Assessment Tool (DRQAT) developed by LBNL's Demand Response Research Center funded by the California Energy Commission's Public Interest Energy Research (PIER) Program. From themore » simulation results of these eleven buildings, optimal pre-cooling and temperature reset strategies were developed. The study shows that after refining and calibrating initial models with measured data, the accuracy of the models can be greatly improved and the models can be used to predict load reductions for automated demand response (Auto-DR) events. This study summarizes the optimization experience of the procedure to develop and calibrate building models in DRQAT. In order to confirm the actual effect of demand response strategies, the simulation results were compared to the field test data. The results indicated that the optimal demand response strategies worked well for all buildings in the Tri-City Corporate Center. This study also compares DRQAT with other building energy simulation tools (eQUEST and BEST). The comparison indicate that eQUEST and BEST underestimate the actual demand shed of the pre-cooling strategies due to a flaw in DOE2's simulation engine for treating wall thermal mass. DRQAT is a more accurate tool in predicting thermal mass effects of DR events.« less

  6. About the development strategies of power plant in energy market

    NASA Astrophysics Data System (ADS)

    Duinea, Adelaida Mihaela

    2017-12-01

    The paper aims at identifying and assessing the revenues and costs incurred by various modernization and modernization-development strategies for a power plant in order to optimize the electric and thermal energy are produced and to conduct a sensitivity analysis of the main performance indicators. The Romanian energy system and the energy market have gone a long transition way, from the vertically integrated model, the responsibility for the delivery of the electricity comes exclusively to a state monopoly, to a decentralized system, characterized by the decentralization of production and transport, respectively distribution activities. Romania chose the liberal market model where the relations between the actors in the market - producers and suppliers free to make sales and purchase transactions for electrical energy - are mostly governed by contracts, which may be either bilaterally negotiated or are already regulated. Therefore, the importance of understanding the development trend of the Romanian energy market lies in its economic effects upon the solutions which could be adopted for the evolution of the cogeneration power plant in question.

  7. Barriers to electric energy efficiency in Ghana

    NASA Astrophysics Data System (ADS)

    Berko, Joseph Kofi, Jr.

    Development advocates argue that sustainable development strategies are the best means to permanently improve living standards in developing countries. Advocates' arguments are based on the technical, financial, and environmental advantages of sustainable development. However, they have not addressed the organizational and administrative decision-making issues which are key to successful implementation of sustainable development in developing countries. Using the Ghanaian electricity industry as a case study, this dissertation identifies and analyzes organizational structures, administrative mechanisms, and decision-maker viewpoints that critically affect the success of adoption and implementation of energy efficiency within a sustainable development framework. Utilizing semi-structured interviews in field research, decision-makers' perceptions of the pattern of the industry's development, causes of the electricity supply shortfall, and barriers to electricity-use efficiency were identified. Based on the initial findings, the study formulated a set of policy initiatives to establish support for energy use efficiency. In a second set of interviews, these policy suggestions were presented to some of the top decision-makers to elicit their reactions. According to the decision-makers, the electricity supply shortfall is due to rapid urbanization and increased industrial consumption as a result of the structural adjustment program, rural electrification, and the sudden release of suppressed loads. The study found a lack of initiative and collaboration among industry decision-makers, and a related divergence in decision-makers' concerns and viewpoints. Also, lacking are institutional support systems and knowledge of proven energy efficiency strategies and technologies. As a result, planning, and even the range of perceived solutions to choose from are supply-side oriented. The final chapter of the study presents implications of its findings and proposes that any implementation strategy will have to address the different decision-makers' concerns and viewpoints. These include the need for national policies to promote electric energy efficiency and institutional development to provide support, guidance and direction to an energy efficiency effort. It also proposes structural changes within the industry to reduce government influence by creating an independent regulatory board. Finally, it proposes the adoption of integrated resource planning strategies and changes in the supply-side dominated culture within the electric utilities.

  8. Assessment of the visual landscape impact and dominance of wind tubines in Austria using weighted viewshed maps

    NASA Astrophysics Data System (ADS)

    Schauppenlehner, Thomas; Salak, Boris; Scherhaufer, Patrick; Höltinger, Stefan; Schmidt, Johannes

    2017-04-01

    Due to efficiency reasons and broadly availability of wind, wind energy is in focus of strategies regarding the expansion of renewable energy and energy transition policies. Nevertheless, the dimensions of the wind turbines and rotating dynamics have a significant impact on the landscape scenery and recreation as well as tourism activities. This often leads to local opposition against wind energy projects and is a major criterion regarding the acceptance of wind energy. In the project TransWind, the social acceptance of wind energy is surveyed on the basis of different development scenarios for Austria. Therefore, a GIS-based viewshed indicator was developed to assess the visual impact of different development scenarios as well as the current situation using weighted - regarding distance, amount and masking - viewshed analysis. This weighted viewshed maps for Austria allows a comprehensive evaluation of existing and potential wind energy sites regarding dominance and visual impact and can contribute to the spatial development process of wind energy site. Different regions can be compared and repowering strategies can be evaluated. Due to the large project area, data resolutions, generalized assumptions (e.g. tree heights) and missing data (e.g. solitary trees, small hedges) at local level further analysis are necessary but it supports the assessment of large-scale development scenarios can be identified.

  9. 7 CFR 1948.82 - Plan and State Investment Strategy approval procedure.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 13 2010-01-01 2009-01-01 true Plan and State Investment Strategy approval procedure... Impacted Area Development Assistance Program § 1948.82 Plan and State Investment Strategy approval... the State Investment Strategy for Energy Impacted Areas. (c) Appropriate growth management and/or...

  10. Economic and Technological Role of Kuzbass Industry in the Implementation of National Energy Strategy of Russian Federation

    NASA Astrophysics Data System (ADS)

    Zhironkin, S. A.; Khoreshok, A. A.; Tyulenev, M. A.; Barysheva, G. A.; Hellmer, M. C.

    2016-08-01

    This article describes the problems and prospects of development of coal mining in Kuzbass - the center of coal production in Siberia and Russia, in the framework of the major initiatives of the National Energy Strategy for the period until 2035. The structural character of the regional coal industry problems, caused by decline in investment activity, high level of fixed assets depreciation, slow development of deep coal processing and technological reduction of coal mining is shown.

  11. Development activities, challenges and prospects for the hydropower sector in Austria

    NASA Astrophysics Data System (ADS)

    Wagner, Beatrice; Hauer, Christoph; Habersack, Helmut

    2017-04-01

    This contribution intends to give an overview of hydropower development activities in Austria and deepen the knowledge on actual strategies and planning documents. Thereby, the focus is on a climate and energy policy based perspective, also analyzing economic trends at the hydropower sector due to energy market changes in the last years. This includes a comparison with other political strategies and programs dealing with hydropower exploitation based on selected countries. With respect to technology developments, a concise review on technological innovations, such as hydrokinetic energy conversion systems, and new constructive designs of conventional hydropower plants in Austria will be given. Moreover, potential impacts on environment and aquatic ecosystems are described. Finally, key challenges and prospects will be identified and discussed.

  12. Development of a strategy for energy efficiency improvement in a Kraft process based on systems interactions analysis

    NASA Astrophysics Data System (ADS)

    Mateos-Espejel, Enrique

    The objective of this thesis is to develop, validate, and apply a unified methodology for the energy efficiency improvement of a Kraft process that addresses globally the interactions of the various process systems that affect its energy performance. An implementation strategy is the final result. An operating Kraft pulping mill situated in Eastern Canada with a production of 700 adt/d of high-grade bleached pulp was the case study. The Pulp and Paper industry is Canada's premier industry. It is characterized by large thermal energy and water consumption. Rising energy costs and more stringent environmental regulations have led the industry to refocus its efforts toward identifying ways to improve energy and water conservation. Energy and water aspects are usually analyzed independently, but in reality they are strongly interconnected. Therefore, there is a need for an integrated methodology, which considers energy and water aspects, as well as the optimal utilization and production of the utilities. The methodology consists of four successive stages. The first stage is the base case definition. The development of a focused, reliable and representative model of an operating process is a prerequisite to the optimization and fine tuning of its energy performance. A four-pronged procedure has been developed: data gathering, master diagram, utilities systems analysis, and simulation. The computer simulation has been focused on the energy and water systems. The second stage corresponds to the benchmarking analysis. The benchmarking of the base case has the objectives of identifying the process inefficiencies and to establish guidelines for the development of effective enhancement measures. The studied process is evaluated by a comparison of its efficiency to the current practice of the industry and by the application of new energy and exergy content indicators. The minimum energy and water requirements of the process are also determined in this step. The third stage is the core of the methodology; it represents the formulation of technically feasible energy enhancing options. Several techniques are applied in an iterative procedure to cast light on their synergies and counter-actions. The objective is to develop a path for improving the process so as to maximize steam savings while minimizing the investment required. The fourth stage is the implementation strategy. As the existing process configuration and operating conditions vary from process to process it is important to develop a strategy for the implementation of energy enhancement programs in the most advantageous way for each case. A three-phase strategy was selected for the specific case study in the context of its management strategic plan: the elimination of fossil fuel, the production of power and the liberation of steam capacity. A post-benchmarking analysis is done to quantify the improvement of the energy efficiency. The performance indicators are computed after all energy enhancing measures have been implemented. The improvement of the process by applying the unified methodology results in substantially more steam savings than by applying individually the typical techniques that it comprises: energy savings of 5.6 GJ/adt (27% of the current requirement), water savings of 32 m3/adt (34% of the current requirement) and an electricity production potential of 44.5MW. As a result of applying the unified methodology the process becomes eco-friendly as it does not require fossil fuel for producing steam; its water and steam consumptions are below the Canadian average and it produces large revenues from the production of green electricity.

  13. Elements of an Alternative to Nuclear Power as a Response to the Energy-Environment Crisis in India: Development as Freedom and a Sustainable Energy Utility

    ERIC Educational Resources Information Center

    Mathai, Manu V.

    2009-01-01

    Even as the conventional energy system is fundamentally challenged by the "energy-environment crisis," its adherents have presented the prospect of "abundant" and purportedly "green" nuclear power as part of a strategy to address the crisis. Surveying the development of nuclear power in India, this article finds that…

  14. Cautious but committed: moving toward adaptive planning and operation strategies for renewable energy's wildlife implications.

    PubMed

    Köppel, Johann; Dahmen, Marie; Helfrich, Jennifer; Schuster, Eva; Bulling, Lea

    2014-10-01

    Wildlife planning for renewable energy must cope with the uncertainties of potential wildlife impacts. Unfortunately, the environmental policies which instigate renewable energy and those which protect wildlife are not coherently aligned-creating a green versus green dilemma. Thus, climate mitigation efforts trigger renewable energy development, but then face substantial barriers from biodiversity protection instruments and practices. This article briefly reviews wind energy and wildlife interactions, highlighting the lively debated effects on bats. Today, planning and siting of renewable energy are guided by the precautionary principle in an attempt to carefully address wildlife challenges. However, this planning attitude creates limitations as it struggles to negotiate the aforementioned green versus green dilemma. More adaptive planning and management strategies and practices hold the potential to reconcile these discrepancies to some degree. This adaptive approach is discussed using facets of case studies from policy, planning, siting, and operational stages of wind energy in Germany and the United States, with one case showing adaptive planning in action for solar energy as well. This article attempts to highlight the benefits of more adaptive approaches as well as the possible shortcomings, such as reduced planning security for renewable energy developers. In conclusion, these studies show that adaptive planning and operation strategies can be designed to supplement and enhance the precautionary principle in wildlife planning for green energy.

  15. Cautious but Committed: Moving Toward Adaptive Planning and Operation Strategies for Renewable Energy's Wildlife Implications

    NASA Astrophysics Data System (ADS)

    Köppel, Johann; Dahmen, Marie; Helfrich, Jennifer; Schuster, Eva; Bulling, Lea

    2014-10-01

    Wildlife planning for renewable energy must cope with the uncertainties of potential wildlife impacts. Unfortunately, the environmental policies which instigate renewable energy and those which protect wildlife are not coherently aligned—creating a green versus green dilemma. Thus, climate mitigation efforts trigger renewable energy development, but then face substantial barriers from biodiversity protection instruments and practices. This article briefly reviews wind energy and wildlife interactions, highlighting the lively debated effects on bats. Today, planning and siting of renewable energy are guided by the precautionary principle in an attempt to carefully address wildlife challenges. However, this planning attitude creates limitations as it struggles to negotiate the aforementioned green versus green dilemma. More adaptive planning and management strategies and practices hold the potential to reconcile these discrepancies to some degree. This adaptive approach is discussed using facets of case studies from policy, planning, siting, and operational stages of wind energy in Germany and the United States, with one case showing adaptive planning in action for solar energy as well. This article attempts to highlight the benefits of more adaptive approaches as well as the possible shortcomings, such as reduced planning security for renewable energy developers. In conclusion, these studies show that adaptive planning and operation strategies can be designed to supplement and enhance the precautionary principle in wildlife planning for green energy.

  16. Resources | Energy Plan

    Science.gov Websites

    sequestration Strategy 7 Nuclear power Footer Text Department for Energy Development and Independence l 300 Sower Blvd. 3rd Floor l Frankfort, KY 40601 502-564-7192 (Telephone) l http://energy.ky.gov Site Map

  17. Photovoltaics technology program summary

    NASA Astrophysics Data System (ADS)

    1985-05-01

    An adequate supply of energy at reasonable price is discussed. Economic efficiency and the following strategies to obtain it are suggested: (1) minimization of federal regulation in energy pricing; and (2) promote a balanced and mixed energy resource system. The development of photovoltaic energy conversion technology is summarized.

  18. Optimization under Uncertainty of a Biomass-integrated Renewable Energy Microgrid with Energy Storage

    NASA Astrophysics Data System (ADS)

    Zheng, Yingying

    The growing energy demands and needs for reducing carbon emissions call more and more attention to the development of renewable energy technologies and management strategies. Microgrids have been developed around the world as a means to address the high penetration level of renewable generation and reduce greenhouse gas emissions while attempting to address supply-demand balancing at a more local level. This dissertation presents a model developed to optimize the design of a biomass-integrated renewable energy microgrid employing combined heat and power with energy storage. A receding horizon optimization with Monte Carlo simulation were used to evaluate optimal microgrid design and dispatch under uncertainties in the renewable energy and utility grid energy supplies, the energy demands, and the economic assumptions so as to generate a probability density function for the cost of energy. Case studies were examined for a conceptual utility grid-connected microgrid application in Davis, California. The results provide the most cost effective design based on the assumed energy load profile, local climate data, utility tariff structure, and technical and financial performance of the various components of the microgrid. Sensitivity and uncertainty analyses are carried out to illuminate the key parameters that influence the energy costs. The model application provides a means to determine major risk factors associated with alternative design integration and operating strategies.

  19. Chained lightning: part III--Emerging technology, novel therapeutic strategies, and new energy modalities for radiosurgery.

    PubMed

    Hoh, Daniel J; Liu, Charles Y; Chen, Joseph C T; Pagnini, Paul G; Yu, Cheng; Wang, Michael Y; Apuzzo, Michael L J

    2007-12-01

    Radiosurgery is fundamentally the harnessing of energy and delivering it to a focal target for a therapeutic effect. The evolution of radiosurgical technology and practice has served toward refining methodologies for better conformal energy delivery. In the past, this has resulted in developing strategies for improved beam generation and delivery. Ultimately, however, our current instrumentation and treatment modalities may be approaching a practical limit with regard to further optimizing energy containment. In looking forward, several strategies are emerging to circumvent these limitations and improve conformal radiosurgery. Refinement of imaging techniques through functional imaging and nanoprobes for cancer detection may benefit lesion localization and targeting. Methods for enhancing the biological effect while reducing radiation-induced changes are being examined through dose fractionation schedules. Radiosensitizers and photosensitizers are being investigated as agents for modulating the biological response of tissues to radiation and alternative energy forms. Discovery of new energy modalities is being pursued through development of microplanar beams, free electron lasers, and high-intensity focused ultrasound. The exploration of these future possibilities will provide the tools for radiosurgical treatment of a broader spectrum of diseases for the next generation.

  20. Life cycle implications of urban green infrastructure.

    PubMed

    Spatari, Sabrina; Yu, Ziwen; Montalto, Franco A

    2011-01-01

    Low Impact Development (LID) is part of a new paradigm in urban water management that aims to decentralize water storage and movement functions within urban watersheds. LID strategies can restore ecosystem functions and reduce runoff loadings to municipal water pollution control facilities (WPCF). This research examines the avoided energy and greenhouse gas (GHG) emissions of select LID strategies using life cycle assessment (LCA) and a stochastic urban watershed model. We estimate annual energy savings and avoided GHG emissions of 7.3 GJ and 0.4 metric tons, respectively, for a LID strategy implemented in a neighborhood in New York City. Annual savings are small compared to the energy and GHG intensity of the LID materials, resulting in slow environmental payback times. This preliminary analysis suggests that if implemented throughout an urban watershed, LID strategies may have important energy cost savings to WPCF, and can make progress towards reducing their carbon footprint. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Control Strategies for Distributed Energy Resources to Maximize the Use of Wind Power in Rural Microgrids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Shuai; Elizondo, Marcelo A.; Samaan, Nader A.

    2011-10-10

    The focus of this paper is to design control strategies for distributed energy resources (DERs) to maximize the use of wind power in a rural microgrid. In such a system, it may be economical to harness wind power to reduce the consumption of fossil fuels for electricity production. In this work, we develop control strategies for DERs, including diesel generators, energy storage and demand response, to achieve high penetration of wind energy in a rural microgrid. Combinations of centralized (direct control) and decentralized (autonomous response) control strategies are investigated. Detailed dynamic models for a rural microgrid are built to conductmore » simulations. The system response to large disturbances and frequency regulation are tested. It is shown that optimal control coordination of DERs can be achieved to maintain system frequency while maximizing wind power usage and reducing the wear and tear on fossil fueled generators.« less

  2. Project Overcoat - An Exploration of Exterior Insulation Strategies for 1-1/2-Story Roof Applications in Cold Climates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ojczyk, Cindy; Mosiman, Garrett; Huelman, Pat

    The development of an alternative method to interior-applied insulation strategies or exterior applied 'band-aids' such as heat tapes and ice belts may help reduce energy needs of millions of 1-1/2 story homes while reducing the risk of ice dam formation. A potential strategy for energy improvement of the roof is borrowed from new construction best practices: Here an 'overcoat' of a continuous air, moisture, and thermal barrier is applied on the outside of the roof structure for improved overall performance. The continuous insulation of this approach facilitates a reduction in thermal bridging which could further reduce energy consumption and bringmore » existing homes closer to meeting the Building America goals for energy reduction. Research favors an exterior approach to deep energy retrofits and ice dam prevention in existing homes. The greatest amount of research focuses on whole house deep energy retrofits leaving a void in roof-only applications. The research is also void of data supporting the hygrothermal performance, durability, constructability, and cost of roof-only exterior overcoat strategies. Yet, contractors interviewed for this report indicate an understanding that exterior approaches are most promising for mitigating ice dams and energy loss and are able to sell these strategies to homeowners.« less

  3. 7 CFR 1948.82 - Plan and State Investment Strategy approval procedure.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ..., DEPARTMENT OF AGRICULTURE (CONTINUED) PROGRAM REGULATIONS (CONTINUED) RURAL DEVELOPMENT Section 601 Energy Impacted Area Development Assistance Program § 1948.82 Plan and State Investment Strategy approval... the plan; (3) A brief description of the socio-economic impacts that have occurred during the two most...

  4. United States Air Force Infrastructure Energy Strategic Plan

    DTIC Science & Technology

    2008-09-01

    sulfur diesel ( LSD ) fuel to ultra-low sulfur diesel (ULSD) fuel throughout the Air Force. As bases converted from LSD to ULSD, 820 tracking had to be...direction; develops initiatives, ideas, and poten- tial strategies; and further develops command policy, guidance, and execution strategies. Shaw AFB

  5. Central station market development strategies for photovoltaics

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Federal market development strategies designed to accelerate the market penetration of central station applications of photovoltaic energy system are analyzed. Since no specific goals were set for the commercialization of central station applications, strategic principles are explored which, when coupled with specific objectives for central stations, can produce a market development implementation plan. The study includes (1) background information on the National Photovoltaic Program, photovoltaic technology, and central stations; (2) a brief market assessment; (3) a discussion of the viewpoints of the electric utility industry with respect to solar energy; (4) a discussion of commercialization issues; and (5) strategy principles. It is recommended that a set of specific goals and objectives be defined for the photovoltaic central station program, and that these goals and objectives evolve into an implementation plan that identifies the appropriate federal role.

  6. Central station market development strategies for photovoltaics

    NASA Astrophysics Data System (ADS)

    1980-11-01

    Federal market development strategies designed to accelerate the market penetration of central station applications of photovoltaic energy system are analyzed. Since no specific goals were set for the commercialization of central station applications, strategic principles are explored which, when coupled with specific objectives for central stations, can produce a market development implementation plan. The study includes (1) background information on the National Photovoltaic Program, photovoltaic technology, and central stations; (2) a brief market assessment; (3) a discussion of the viewpoints of the electric utility industry with respect to solar energy; (4) a discussion of commercialization issues; and (5) strategy principles. It is recommended that a set of specific goals and objectives be defined for the photovoltaic central station program, and that these goals and objectives evolve into an implementation plan that identifies the appropriate federal role.

  7. Analysis of alternative strategies for energy conservation in new buildings

    NASA Astrophysics Data System (ADS)

    Fang, J. M.; Tawil, J.

    1980-12-01

    The policy instruments considered include: greater reliance on market forces; research and development; information, education and demonstration programs; tax incentives and sanctions; mortgage and finance programs; and regulations and standards. The analysis starts with an explanation of the barriers to energy conservation in the residential and commercial sectors. Individual policy instruments are described and evaluated with respect to energy conservation, economic efficiency, equity, political impacts, and implementation and other transitional impacts. Five possible strategies are identified: (1) increased reliance on the market place; (2) energy consumption tax and supply subsidies; (3) Building Energy Performance Standards (BEPS) with no sanctions and no incentives; (4) BEPS with sanctions and incentives (price control); and (5) BEPS with sanctions and incentives (no price controls). A comparative analysis is performed. Elements are proposed for inclusion in a comprehensive strategy for conservation in new buildings.

  8. Energy minimization strategies and renewable energy utilization for desalination: a review.

    PubMed

    Subramani, Arun; Badruzzaman, Mohammad; Oppenheimer, Joan; Jacangelo, Joseph G

    2011-02-01

    Energy is a significant cost in the economics of desalinating waters, but water scarcity is driving the rapid expansion in global installed capacity of desalination facilities. Conventional fossil fuels have been utilized as their main energy source, but recent concerns over greenhouse gas (GHG) emissions have promoted global development and implementation of energy minimization strategies and cleaner energy supplies. In this paper, a comprehensive review of energy minimization strategies for membrane-based desalination processes and utilization of lower GHG emission renewable energy resources is presented. The review covers the utilization of energy efficient design, high efficiency pumping, energy recovery devices, advanced membrane materials (nanocomposite, nanotube, and biomimetic), innovative technologies (forward osmosis, ion concentration polarization, and capacitive deionization), and renewable energy resources (solar, wind, and geothermal). Utilization of energy efficient design combined with high efficiency pumping and energy recovery devices have proven effective in full-scale applications. Integration of advanced membrane materials and innovative technologies for desalination show promise but lack long-term operational data. Implementation of renewable energy resources depends upon geography-specific abundance, a feasible means of handling renewable energy power intermittency, and solving technological and economic scale-up and permitting issues. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. The United Nations development programme initiative for sustainable energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hurry, S.

    1997-12-01

    Energy is central to current concerns about sustainable human development, affecting economic and social development; economic growth, the local, national, regional, and global environment; the global climate; a host of social concerns, including poverty, population, and health, the balance of payments, and the prospects for peace. Energy is not an end in itself, but rather the means to achieve the goals of sustainable human development. The energy systems of most developing countries are in serious crisis involving insufficient levels of energy services, environmental degradation, inequity, poor technical and financial performance, and capital scarcity. Approximately 2.5 billion people in the developingmore » countries have little access to commercial energy supplies. Yet the global demand for energy continues to grow: total primary energy is projected to grow from 378 exajoules (EJ) per year in 1990 to 571 EJ in 2020, and 832 EJ in 2050. If this increase occurs using conventional approaches and energy sources, already serious local (e.g., indoor and urban air pollution), regional (eg., acidification and land degradation), and global (e.g., climate change) environmental problems will be critically aggravated. There is likely to be inadequate capital available for the needed investments in conventional energy sources. Current approaches to energy are thus not sustainable and will, in fact, make energy a barrier to socio-economic development. What is needed now is a new approach in which energy becomes an instrument for sustainable development. The two major components of a sustainable energy strategy are (1) more efficient energy use, especially at the point of end-use, and (2) increased use of renewable sources of energy. The UNDP Initiative for Sustainable Energy (UNISE) is designed to harness opportunities in these areas to build upon UNDP`s existing energy activities to help move the world toward a more sustainable energy strategy by helping program countries.« less

  10. Software and Dataware for Energy Generation and Consumption Analysis System of Gas Processing Enterprises

    NASA Astrophysics Data System (ADS)

    Dolotovskii, I. V.; Dolotovskaya, N. V.; Larin, E. A.

    2018-05-01

    The article presents the architecture and content of a specialized analytical system for monitoring operational conditions, planning of consumption and generation of energy resources, long-term planning of production activities and development of a strategy for the development of the energy complex of gas processing enterprises. A compositional model of structured data on the equipment of the main systems of the power complex is proposed. The correctness of the use of software modules and the database of the analytical system is confirmed by comparing the results of measurements on the equipment of the electric power system and simulation at the operating gas processing plant. A high accuracy in the planning of consumption of fuel and energy resources has been achieved (the error does not exceed 1%). Information and program modules of the analytical system allow us to develop a strategy for improving the energy complex in the face of changing technological topology and partial uncertainty of economic factors.

  11. Water-food-energy nexus index: analysis of water-energy-food nexus of crop's production system applying the indicators approach

    NASA Astrophysics Data System (ADS)

    El-Gafy, Inas

    2017-10-01

    Analysis the water-food-energy nexus is the first step to assess the decision maker in developing and evaluating national strategies that take into account the nexus. The main objective of the current research is providing a method for the decision makers to analysis the water-food-energy nexus of the crop production system at the national level and carrying out a quantitative assessment of it. Through the proposed method, indicators considering the water and energy consumption, mass productivity, and economic productivity were suggested. Based on these indicators a water-food-energy nexus index (WFENI) was performed. The study showed that the calculated WFENI of the Egyptian summer crops have scores that range from 0.21 to 0.79. Comparing to onion (the highest scoring WFENI,i.e., the best score), rice has the lowest WFENI among the summer food crops. Analysis of the water-food-energy nexus of forty-two Egyptian crops in year 2010 was caried out (energy consumed for irrigation represent 7.4% of the total energy footprint). WFENI can be applied to developed strategies for the optimal cropping pattern that minimizing the water and energy consumption and maximizing their productivity. It can be applied as a holistic tool to evaluate the progress in the water and agricultural national strategies. Moreover, WFENI could be applied yearly to evaluate the performance of the water-food-energy nexus managmant.

  12. International Jobs and Economic Development Impacts (I-JEDI) Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    International Jobs and Economic Development Impacts (I-JEDI) is a freely available economic model that estimates gross economic impacts from wind, solar, biomass, and geothermal energy projects. Building on a similar model for the United States, I-JEDI was developed by the National Renewable Energy Laboratory under the U.S. government's Enhancing Capacity for Low Emission Development Strategies (EC-LEDS) program to support partner countries in assessing economic impacts of LEDS actions in the energy sector.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weldu, Yemane W., E-mail: ywweldem@ucalgary.ca; Assefa, Getachew; Athena Chair in Life Cycle Assessment in Design

    A roadmap for a more sustainable energy strategy is complex, as its development interacts critically with the economic, social, and environmental dimensions of sustainable development. This paper applied an impact matrix method to evaluate the environmental sustainability and to identify the desirable policy objectives of biomass-based energy strategy for the case of Alberta. A matrix with the sustainability domains on one axis and areas of environmental impact on the other was presented to evaluate the nexus effect of policy objectives and bioenergy production. As per to our analysis, economic diversification, technological innovation, and resource conservation came up as the desirablemore » policy objectives of sustainable development for Alberta because they demonstrated environmental benefits in all environmental impact categories, namely climate change, human health, and ecosystem. On the other hand, human health and ecosystem impacts were identified as trade-offs when the policy objectives for sustainability were energy security, job creation, and climate change. Thus, bioenergy can mitigate climate change but may impact human health and ecosystem which then in turn can become issues of concern. Energy strategies may result in shifting of risks from one environmental impact category to another, and from one sustainable domain to another if the technical and policy-related issues are not identified.« less

  14. Advanced Metering Installations – A Perspective from Federal Sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Earni, Shankar

    2016-05-02

    This report is intended to provide guidance to the United States Department of Energy (DOE) and other federal agencies to highlight some of the existing practices related to advanced building metering systems. This study identified some of the existing actions related to advanced meter data and proposes how advanced metered data can be employed to develop robust cost effective measurement and verification (M&V) strategies. This report proposes an integrated framework on how advanced meter data can be used to identify energy conservation opportunities and to develop proactive M&V strategies to ensure that the savings for energy projects are being realized.more » This information will help improve metering, feedback, and dashboard implementations for reducing energy use at DOE facilities, based on lessons learned from various advanced metering implementations.« less

  15. New Technological Platform for the National Nuclear Energy Strategy Development

    NASA Astrophysics Data System (ADS)

    Adamov, E. O.; Rachkov, V. I.

    2017-12-01

    The paper considers the need to update the development strategy of Russia's nuclear power industry and various approaches to the large-scale nuclear power development. Problems of making decisions on fast neutron reactors and closed nuclear fuel cycle (NFC) arrangement are discussed. The current state of the development of fast neutron reactors and closed NFC technologies in Russia is considered and major problems are highlighted.

  16. State Energy Conservation Program Measure Directory. Sourcebook: Volume 8. Part 2 of 2 books

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    DOE prepared an 8-volume Sourcebook to provide useful information for states in development and implementation of their Energy Conservation Plans. The purpose of Vol. 8, a 2-book set, is to facilitate exchange of information among states concerning program measures of common interest. DOE/CS--0159/1, Vol. 8, Book 1, announced in EAPA 6: abst. 3475, covered states Alabama through Missouri; this report, Vol. 8, Book 2 begins with Montana and completes the alphabet. Information is summarized also for American Samoa, Guam, Northern Mariana Islands, Puerto Rico, and the Virgin Islands in the two books. Information on the various programs in each statemore » includes identification data; narrative description of program measure; program measure information; and annual energy savings reported. A cross-reference index is included for agriculture, industry, transportation, buildings, government, legislative/regulatory implementation strategies, general education implementation strategies, specific information implementation strategies, demonstration implementation strategies, administration implementation strategies, and renewable-resource implementation strategies.« less

  17. Supporting Clean Energy Development in Swaziland

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2016-04-01

    Swaziland, a country largely dependent on regional fossil fuel imports to meet power needs, is vulnerable to supply changes and price shocks. To address this challenge, the country's National Energy Policy and Implementation Strategy prioritizes actions to enhance energy independence through scaling up renewable energy and energy efficiency. With approximately 70 percent of the country lacking electricity, Swaziland is also strongly committed to expanding energy access to support key economic and social development goals. Within this context, energy security and energy access are two foundational objectives for clean energy development in Swaziland. The partnership between the Swaziland Energy Regulatory Authoritymore » and the Clean Energy Solutions Center led to concrete outcomes to support clean energy development in Swaziland. Improving renewable energy project licensing processes will enable Swaziland to achieve key national objectives to expand clean energy access and transition to greater energy independence.« less

  18. Energy II: Use, Conservation and Supply. No. 6 in a Series of Special "Science" Compendia.

    ERIC Educational Resources Information Center

    Abelson, Philip H., Ed.; Hammond, Allen L., Ed.

    Presented are 26 articles originally published in "Science" during 1975-78. The document is divided into three parts. The first part contains articles on changes in energy use. Included are articles on industrial energy use, energy options and strategies for Western Europe, energy use in Brazil, and solar energy for village development, as well as…

  19. Photovoltaics as a terrestrial energy source. Volume 3: An overview

    NASA Technical Reports Server (NTRS)

    Smith, J. L.

    1980-01-01

    Photovoltaic (PV) systems were evaluated in terms of their potential for terrestrial application A comprehensive overview of important issues which bear on photovoltaic (PV) systems development is presented. Studies of PV system costs, the societal implications of PV system development, and strategies in PV research and development in relationship to current energy policies are summarized.

  20. Zero Energy Districts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Polly, Benjamin J

    This presentation shows how NREL is approaching Zero Energy Districts, including key opportunities, design strategies, and master planning concepts. The presentation also covers URBANopt, an advanced analytical platform for district that is being developed by NREL.

  1. Montana BioDiesel Initiative

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peyton, Brent

    This initiative funding helped put Montana State University (MSU) in a position to help lead in the development of biodiesel production strategies. Recent shortages in electrical power and rising gasoline prices have focused much attention on the development of alternative energy sources that will end our dependence on fossil fuels. In addition, as the concern for environmental impact of utilizing fossil fuels increases, effective strategies must be implemented to reduce emissions or the increased regulations imposed on fossil fuel production will cause economic barriers for their use to continue to increase. Biodiesel has been repeatedly promoted as a more environmentallymore » sound and renewable source of fuel and may prove to be a highly viable solution to provide, at the least, a proportion of our energy needs. Currently there are both practical and economic barriers to the implementation of alternative energy however the advent of these technologies is inevitable. Since many of the same strategies for the storage, transport, and utilization of biodiesel are common with that of fossil fuels, the practical barriers for biodiesel are comparatively minimal. Strategies were developed to harness the CO 2 as feedstock to support the growth of biodiesel producing algae. The initiative funding led to the successful funding of highly rated projects in competitive national grant programs in the National Science Foundation and the Department of Energy. This funding put MSU in a key position to develop technologies to utilize the CO 2 rich emissions produced in fossil fuel utilization and assembled world experts concerning the growth characteristics of photosynthetic microorganisms capable of producing biodiesel.« less

  2. Energy. Our Common Home: Earth. A Curriculum Strategy to Affect Student Skills Development and Exposure to Diverse Global Natural/Social Environments.

    ERIC Educational Resources Information Center

    Peters, Richard

    One of a series of global education instructional units, this energy awareness curriculum was designed to be infused with existing social studies courses aimed at students in grades 5-12. Concept-based and skills-oriented, the curriculum provides opportunities for students to develop an understanding of synthetic energy sources; human dependence…

  3. Strategies for optimizing algal biology for enhanced biomass production

    DOE PAGES

    Barry, Amanda N.; Starkenburg, Shawn R.; Sayre, Richard T.

    2015-02-02

    One of the most environmentally sustainable ways to produce high-energy density (oils) feed stocks for the production of liquid transportation fuels is from biomass. Photosynthetic carbon capture combined with biomass combustion (point source) and subsequent carbon capture and sequestration has also been proposed in the intergovernmental panel on climate change report as one of the most effective and economical strategies to remediate atmospheric greenhouse gases. To maximize photosynthetic carbon capture efficiency and energy-return-on-investment, we must develop biomass production systems that achieve the greatest yields with the lowest inputs. Numerous studies have demonstrated that microalgae have among the greatest potentials formore » biomass production. This is in part due to the fact that all alga cells are photoautotrophic, they have active carbon concentrating mechanisms to increase photosynthetic productivity, and all the biomass is harvestable unlike plants. All photosynthetic organisms, however, convert only a fraction of the solar energy they capture into chemical energy (reduced carbon or biomass). To increase aerial carbon capture rates and biomass productivity, it will be necessary to identify the most robust algal strains and increase their biomass production efficiency often by genetic manipulation. We review recent large-scale efforts to identify the best biomass producing strains and metabolic engineering strategies to improve aerial productivity. In addition, these strategies include optimization of photosynthetic light-harvesting antenna size to increase energy capture and conversion efficiency and the potential development of advanced molecular breeding techniques. To date, these strategies have resulted in up to twofold increases in biomass productivity.« less

  4. Energy by the Numbers: Collegiate Wind Competition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2016-05-19

    The U.S. Department of Energy Collegiate Wind Competition prepares students from multiple disciplines to enter tomorrow’s wind energy workforce. As part of the competition, undergraduate students build and test a wind turbine, establish a deployment strategy, and develop and deliver a business plan.

  5. Tactical Fuel and Energy Strategy for The Future Modular Force

    DTIC Science & Technology

    2009-05-18

    product of the anaerobic digestion (decomposition without oxygen) of organic matter such as animal manure , sewage, and municipal solid waste. It is...supplement petroleum-based fuels and thereby decrease petroleum-based fuel requirements. The Army can stage itself through additional and increased R&D...Energy situation and to begin to develop flexible options and recommend choices and investments that will yield a balanced strategy. At this stage

  6. Managing the resilience space of the German energy system - A vector analysis.

    PubMed

    Schlör, Holger; Venghaus, Sandra; Märker, Carolin; Hake, Jürgen-Friedrich

    2018-07-15

    The UN Sustainable Development Goals formulated in 2016 confirmed the sustainability concept of the Earth Summit of 1992 and supported UNEP's green economy transition concept. The transformation of the energy system (Energiewende) is the keystone of Germany's sustainability strategy and of the German green economy concept. We use ten updated energy-related indicators of the German sustainability strategy to analyse the German energy system. The development of the sustainable indicators is examined in the monitoring process by a vector analysis performed in two-dimensional Euclidean space (Euclidean plane). The aim of the novel vector analysis is to measure the current status of the Energiewende in Germany and thereby provide decision makers with information about the strains for the specific remaining pathway of the single indicators and of the total system in order to meet the sustainability targets of the Energiewende. Within this vector model, three vectors (the normative sustainable development vector, the real development vector, and the green economy vector) define the resilience space of our analysis. The resilience space encloses a number of vectors representing different pathways with different technological and socio-economic strains to achieve a sustainable development of the green economy. In this space, the decision will be made as to whether the government measures will lead to a resilient energy system or whether a readjustment of indicator targets or political measures is necessary. The vector analysis enables us to analyse both the government's ambitiousness, which is expressed in the sustainability target for the indicators at the start of the sustainability strategy representing the starting preference order of the German government (SPO) and, secondly, the current preference order of German society in order to bridge the remaining distance to reach the specific sustainability goals of the strategy summarized in the current preference order (CPO). Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Evaluation of Supercapacitors Effects on Hybrid Energy Systems for Automotive

    NASA Astrophysics Data System (ADS)

    Lungoci, Carmen; Helerea, Elena

    This work aims at evaluating the effects of the supercapacitors presence in hybrid energy systems used in automotive. The design and the electrical schema of a hybrid energy system that contains batteries and supercapacitors and propel a synchronous motor are purposed. The motor operating regime is described, detailing the drive evolution of the cycle speed imposed. In these conditions, to model the systems behavior, simulations developed in Matlab/Simulink environment are carried out. Two energies management strategies for the ensemble energy system-motor are implemented. Simulations are done and the energy management is discussed, making the comparative analyses. Applying a current control strategy on the supercapacitors, under two working conditions, functional diagrams are showed and compared. The results obtained highlight the advantages of the supercapacitors.

  8. Household energy management strategies in Bulgaria's transitioning energy sector

    NASA Astrophysics Data System (ADS)

    Carper, Mark Daniel Lynn

    Recent transition literature of post-socialist states has addressed the shortcomings of a rapid blanket implementation of neo-liberal policies and practices placed upon a landscape barren of the needed institutions and experiences. Included in these observations are the policy-making oversight of spatial socioeconomic variations and their individual and diverse methods of coping with their individual challenges. Of such literature addressing the case of Bulgaria, a good portion deals with the spatial consequences of restructuring as well as with embedded disputes over access to and control of resources. With few exceptions, studies of Bulgaria's changing energy sector have largely been at the state level and have not been placed within the context of spatial disparities of socioeconomic response. By exploring the variations of household energy management strategies across space, my dissertation places this resource within such a theoretical context and offers analysis based on respective levels of economic and human development, inherited material infrastructures, the organization and activities of institutions, and fuel and technological availability. A closed survey was distributed to explore six investigational themes across four geographic realms. The investigational themes include materials of housing construction, methods of household heating, use of electrical appliances, energy conservation strategies, awareness and use of energy conservation technologies, and attitudes toward the transitioning energy sector. The geographic realms include countrywide results, the urban-rural divide, regional variations, and urban divisions of the capital city, Sofia. Results conclude that, indeed, energy management strategies at the household level have been shaped by multiple variables, many of which differ across space. These variables include price sensitivity, degree of dependence on remnant technologies, fuel and substitute availability, and level of human and socioeconomic development. Thus far, the state has taken a very limited role in improving residential energy efficiency despite the increased energy expenditure burdens that most households face. Yet lacking are affordable technologies, educational campaigns, and individual financing mechanisms or incentives. As shown, where there is an informed, active, and financially capable population, improved household efficiency is more likely to be the winning strategy for both the goals of the individual as well as of the state.

  9. Department of Defense Operational Energy Strategy: A Content Analysis of Energy Literature from 1973-2014

    DTIC Science & Technology

    2014-03-27

    Globalization has resulted in increased demand for energy, specifically, crude oil as the primary means to power economic development. As countries continue...represent technologies that produce energy from wind, solar, biomass, hydropower, nuclear power , natural gas, and clean coal (The White House, 2011). On...dollars whereby the largest partition of that money ($11B) was appropriated for development of an electric “smart grid” to digitize power distribution and

  10. Development of a fuel cell plug-in hybrid electric vehicle and vehicle simulator for energy management assessment

    NASA Astrophysics Data System (ADS)

    Meintz, Andrew Lee

    This dissertation offers a description of the development of a fuel cell plug-in hybrid electric vehicle focusing on the propulsion architecture selection, propulsion system control, and high-level energy management. Two energy management techniques have been developed and implemented for real-time control of the vehicle. The first method is a heuristic method that relies on a short-term moving average of the vehicle power requirements. The second method utilizes an affine function of the short-term and long-term moving average vehicle power requirements. The development process of these methods has required the creation of a vehicle simulator capable of estimating the effect of changes to the energy management control techniques on the overall vehicle energy efficiency. Furthermore, the simulator has allowed for the refinement of the energy management methods and for the stability of the method to be analyzed prior to on-road testing. This simulator has been verified through on-road testing of a constructed prototype vehicle under both highway and city driving schedules for each energy management method. The results of the finalized vehicle control strategies are compared with the simulator predictions and an assessment of the effectiveness of both strategies is discussed. The methods have been evaluated for energy consumption in the form of both hydrogen fuel and stored electricity from grid charging.

  11. Energy Efficient Community Development in California: Chula Vista Research Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gas Technology Institute

    2009-03-31

    In 2007, the U.S. Department of Energy joined the California Energy Commission in funding a project to begin to examine the technical, economic and institutional (policy and regulatory) aspects of energy-efficient community development. That research project was known as the Chula Vista Research Project for the host California community that co-sponsored the initiative. The researches proved that the strategic integration of the selected and economically viable buildings energy efficiency (EE) measures, photovoltaics (PV), distributed generation (DG), and district cooling can produce significant reductions in aggregate energy consumption, peak demand and emissions, compared to the developer/builder's proposed baseline approach. However, themore » central power plant emission reductions achieved through use of the EE-DG option would increase local air emissions. The electric and natural gas utility infrastructure impacts associated with the use of the EE and EE-PV options were deemed relatively insignificant while use of the EE-DG option would result in a significant reduction of necessary electric distribution facilities to serve a large-scale development project. The results of the Chula Vista project are detailed in three separate documents: (1) Energy-Efficient Community Development in California; Chula Vista Research Project report contains a detailed description of the research effort and findings. This includes the methodologies, and tools used and the analysis of the efficiency, economic and emissions impacts of alternative energy technology and community design options for two development sites. Research topics covered included: (a) Energy supply, demand, and control technologies and related strategies for structures; (b) Application of locally available renewable energy resources including solar thermal and PV technology and on-site power generation with heat recovery; (c) Integration of local energy resources into district energy systems and existing energy utility networks; (d) Alternative land-use design and development options and their impact on energy efficiency and urban runoff, emissions and the heat island effect; and (e) Alternative transportation and mobility options and their impact on local emissions. (2) Creating Energy-Efficient Communities in California: A Reference Guide to Barriers, Solutions and Resources report provides the results of an effort to identify the most innovative existing and emerging public policy, incentive and market mechanisms that encourage investment in advanced energy technologies and enabling community design options in the State of California and the nation. The report evaluates each of these mechanisms in light of the preceding research and concludes with a set of recommended mechanisms designed for consideration by relevant California State agencies, development and finance industry associations, and municipal governments. (3) Creating Energy-Efficient Communities in California: A Technical Reference Guide to Building and Site Design report contains a set of selected commercially viable energy technology and community design options for high-efficiency, low-impact community development in California. It includes a summary of the research findings referenced above and recommendations for energy technology applications and energy-efficient development strategies for residential, commercial and institutional structures and supporting municipal infrastructure for planned communities. The document also identifies design options, technology applications and development strategies that are applicable to urban infill projects.« less

  12. Energy efficiency and conservation in the developing world. World Bank policy paper. Energia: Eficiencia y conservacion en el mundo en desarrollo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-01-01

    Energy demand and production in developing countries are up, but efficiency of production and consumption are falling behind. The paper explores that issue and reviews the Bank's participation in energy projects. The paper conveys the Bank's strategy to promote efficiency through such means as transferring modern technology from the industrial countries and lending more selectively to energy-supply enterprises. The Bank identifies four factors that account for the differences in efficiency between the industrial and developing countries: energy pricing policies, control of energy supply enterprises, protection of energy-using industry from competition, and barriers to the productive functioning of markets.

  13. Directions of management for the development of fuel-and-energy complex as the key driver of the social-and-economic development of regions

    NASA Astrophysics Data System (ADS)

    Mottaeva, Asiiat

    2017-10-01

    The article is dedicated to the problems of the participation of the energy enterprises in the social-and-economic development of the regions and municipalities. The complex of mechanisms of the implementation of the Energy strategy in the form of strategic initiatives of the development of the energy industry representing the complex inter-industry state-private long-term projects is presented in the article. The author considers the development of the energy industry to be the key driver of the social-and-economic development of regions. The author proves, that the increase in competitiveness of Russian energy, geographical and grocery diversification of export and improvement of quality of export products might allow to solve some problems of the development of national economy.

  14. Residential Capabilities | Buildings | NREL

    Science.gov Websites

    components, develop whole-house strategies, and predict performance at various levels of energy savings. This packages at levels of whole-house energy savings. This photo shows a man in front of two computer screens

  15. LCoE Analysis of Surge-Mode WEC

    DOE Data Explorer

    Bill Staby

    2017-03-07

    Spreadsheet which provides estimates of reductions in Levelized Cost of Energy for a surge-mode wave energy converter (WEC). This is made available via adoption of the advanced control strategies developed during this research effort.

  16. Development of a 2nd Generation Decision Support Tool to Optimize Resource and Energy Recovery for Municipal Solid Waste

    EPA Science Inventory

    In 2012, EPA’s Office of Research and Development released the MSW decision support tool (MSW-DST) to help identify strategies for more sustainable MSW management. Depending upon local infrastructure, energy grid mix, population density, and waste composition and quantity, the m...

  17. The GETE approach to facilitating the commercialization and use of DOE-developed environmental technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harvey, T.N.

    The Global Environmental Technology Enterprise (GETE) was conceived to develop and implement strategies to facilitate the commercialization of innovative, cost-effective Department of Energy (DOE)-developed environmental technologies. These strategies are needed to aid DOE`s clean-up mission; to break down barriers to commercialization; and to build partnerships between the federal government and private industry in order to facilitate the development and use of innovative environmental technologies.

  18. Formulation of US international energy policies

    NASA Astrophysics Data System (ADS)

    1980-09-01

    To find out how the United States develops international energy policy, GAO reviewed five major energy issues covering the period from early 1977 through 1979. The issues are: vulnerabilities to petroleum supply interruptions; long term national security strategy on imported oil prices; export of U.S. oil and gas production equipment and technology to the Soviety Union; World Bank initiatives to assist in financing oil and gas exploration and development in oil-importing developing countries; and the role of gas imports relative to the nation's future sources of gas.

  19. The Russian-Mongolian vector of the eastern energy strategy of Russia: role of energy potential of the Baikal region

    NASA Astrophysics Data System (ADS)

    Saneev, Boris; Ivanova, Irina; Izbuldin, Alexander; Muzychuk, Svetlana; Maysyuk, Elena; Borisov, Gennady; Butkhuyag, Sodovin

    2018-01-01

    The paper is concerned with the specific features of Russia's economic development in a new economic environment that caused the need to revise the priorities of energy policy. The research presents the initial conditions, targets and strategic directions of energy development in the East of the country. The focus is made on the priority lines of innovation and technology cooperation between Russia and Northeast Asian countries in the field of energy, and recommendations on necessary conditions and initiatives for their successful implementation are given.

  20. Framework for Testing the Effectiveness of Bat and Eagle Impact-Reduction Strategies at Wind Energy Projects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sinclair, Karin; DeGeorge, Elise

    2016-04-13

    The objectives of this framework are to facilitate the study design and execution to test the effectiveness of bat and eagle impact-reduction strategies at wind energy sites. Through scientific field research, the wind industry and its partners can help determine if certain strategies are ready for operational deployment or require further development. This framework should be considered a living document to be improved upon as fatality-reduction technologies advance from the initial concepts to proven readiness (through project- and technology-specific testing) and as scientific field methods improve.

  1. Wireless sensor and actuator networks for lighting energy efficiency and user satisfaction

    NASA Astrophysics Data System (ADS)

    Wen, Yao-Jung

    Buildings consume more than one third of the primary energy generated in the U.S., and lighting alone accounts for approximately 30% of the energy usage in commercial buildings. As the largest electricity consumer of all building electrical systems, lighting harbors the greatest potential for energy savings in the commercial sector. Fifty percent of current energy consumption could be reduced with energy-efficient lighting management strategies. While commercial products do exist, they are poorly received due to exorbitant retrofitting cost and unsatisfactory performance. As a result, most commercial buildings, especially legacy buildings, have not taken advantage of the opportunity to generate savings from lighting. The emergence of wireless sensor and actuator network (WSAN) technologies presents an alternative that circumvents costly rewiring and promises better performance than existing commercial lighting systems. The goal of this dissertation research is to develop a framework for wireless-networked lighting systems with increased cost effectiveness, energy efficiency, and user satisfaction. This research is realized through both theoretical developments and implementations. The theoretical research aims at developing techniques for harnessing WSAN technologies to lighting hardware and control strategies. Leveraging redundancy, a sensor validation and fusion algorithm is developed for extracting pertinent lighting information from the disturbance-prone desktop-mounted photosensors. An adaptive sensing strategy optimizes the timing of data acquisition and power-hungry wireless transmission of sensory feedback in real-time lighting control. Exploiting the individual addressability of wireless-enabled luminaires, a lighting optimization algorithm is developed to create the optimal lighting that minimizes energy usage while satisfying occupants' diverse lighting preferences. The wireless-networked lighting system was implemented and tested in a number of real-life settings. A human subject study conducted in a private office concluded that the research system was competitive with the commercial lighting system with much fewer retrofitting requirements. The system implemented in a shared-space office realized a self-configuring mesh network with wireless photosensors and light actuators, and demonstrated a 50% energy savings and increased performance when harvesting daylight through windows is possible. The cost analysis revealed a reasonable payback period after the system is optimized for commercialization and confirms the marketing feasibility.

  2. REopt Screenings Catalyze Development of Hundreds of Megawatts of Renewable Energy for Federal Agencies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    The Federal Energy Management Program (FEMP) offers renewable energy project assistance to federal agencies, which often begins with a desktop screening to develop a prioritized portfolio of project opportunities. FEMP uses the National Renewable Energy Laboratory's REopt energy planning platform to screen potential renewable energy opportunities at a single site or across a range of sites. REopt helps organizations prioritize the most economi­cally and technically viable projects for further study and identifies the size and mix of technologies that meet the orga­nization's goals at minimum cost, along with the optimal operating strategies.

  3. Village Infrastructure Kit-Alpha. Global Innovation and Strategy Center

    DTIC Science & Technology

    2009-05-01

    populations in the world. These kits could be capable of providing renewable energy, water, and telecommunication services, and therefore could impact...for development. The VIKA team adhered to the following five parameters during research efforts: Make available potable water, renewable energy...ENERGY Solar Energy Overview Solar energy is a renewable source that can provide an alternative to the electrical grid. It is an increasingly

  4. Assessment of Energy Storage Alternatives in the Puget Sound Energy System Volume 2: Energy Storage Evaluation Tool

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Di; Jin, Chunlian; Balducci, Patrick J.

    2013-12-01

    This volume presents the battery storage evaluation tool developed at Pacific Northwest National Laboratory (PNNL), which is used to evaluate benefits of battery storage for multiple grid applications, including energy arbitrage, balancing service, capacity value, distribution system equipment deferral, and outage mitigation. This tool is based on the optimal control strategies to capture multiple services from a single energy storage device. In this control strategy, at each hour, a look-ahead optimization is first formulated and solved to determine battery base operating point. The minute by minute simulation is then performed to simulate the actual battery operation. This volume provide backgroundmore » and manual for this evaluation tool.« less

  5. SWOT analysis of the renewable energy sources in Romania - case study: solar energy

    NASA Astrophysics Data System (ADS)

    Lupu, A. G.; Dumencu, A.; Atanasiu, M. V.; Panaite, C. E.; Dumitrașcu, Gh; Popescu, A.

    2016-08-01

    The evolution of energy sector worldwide triggered intense preoccupation on both finding alternative renewable energy sources and environmental issues. Romania is considered to have technological potential and geographical location suitable to renewable energy usage for electricity generation. But this high potential is not fully exploited in the context of policies and regulations adopted globally, and more specific, European Union (EU) environmental and energy strategies and legislation related to renewable energy sources. This SWOT analysis of solar energy source presents the state of the art, potential and future prospects for development of renewable energy in Romania. The analysis concluded that the development of solar energy sector in Romania depends largely on: viability of legislative framework on renewable energy sources, increased subsidies for solar R&D, simplified methodology of green certificates, and educating the public, investors, developers and decision-makers.

  6. Caroline Sallum Uriarte | NREL

    Science.gov Websites

    integration Research Interests Climate change mitigation and adaptation Low emissions development strategies International collaboration to address climate change Renewable energy technology development, resource

  7. NREL Buildings Research Video

    ScienceCinema

    None

    2017-12-09

    Through research, the National Renewable Energy Laboratory (NREL) has developed many strategies and design techniques to ensure both commercial and residential buildings use as little energy as possible and also work well with the surroundings. Here you will find a video that introduces the work of NREL Buildings Research, highlights some of the facilities on the NREL campus, and demonstrates these efficient building strategies. Watch this video to see design highlights of the Science and Technology Facility on the NREL campus—the first Federal building to be LEED® Platinum certified. Additionally, the video demonstrates the energy-saving features of NRELs Thermal Test Facility.

  8. The Effects of Domestic Energy Consumption on Urban Development Using System Dynamics

    NASA Astrophysics Data System (ADS)

    Saryazdi, M. D.; Homaei, N.; Arjmand, A.

    2018-05-01

    In developed countries, people have learned to follow efficient consumption patterns, while in developing countries, such as Iran, these patterns are not well executed. A large amount of energy is almost consumed in buildings and houses and though the consumption patterns varies in different societies, various energy policies are required to meet the consumption challenges. So far, several papers and more than ten case studies have worked on the relationship between domestic energy consumption and urban development, however these researches did not analyzed the impact of energy consumption on urban development. Therefore, this paper attempts to examine the interactions between the energy consumption and urban development by using system dynamics as the most widely used methods for complex problems. The proposed approach demonstrates the interactions using causal loop and flow diagrams and finally, suitable strategies will be proposed for urban development through simulations of different scenarios.

  9. The "Boom" and "Bust" Patterns of Communities within the Energy Rich Region of West Virginia: A Case Study of Moundsville

    NASA Astrophysics Data System (ADS)

    Kiger, Brandon S.

    The increasing worldwide demand for energy will provide Energy Rich Regions (ERRs) the opportunity to increase their wealth and quality of living. However, a reoccurring pattern of boom and bust cycles in ERRs suggests the need for more sustainable development strategies. A mixed methods approach (case study) is employed to explore the "wicked human problems" occurring in one community, Moundsville, WV and to discover development patterns that might inform sustainable development strategies for the future. This study explores briefly the distant past development patterns, and in greater detail the pre-boom and most current boom in natural gas. First, data will be derived from a conceptual "Energy Rich Region Template" that explores the sustainability of development from the inclusive wealth forms of natural, human, and physical capital. The qualitative data analysis software (MAXQDA) is used to systematically collect and organize data and information into a community-wide knowledge base (specifically the seven years of city council minutes). This framework can assist future research dedicated to similar cases. Furthermore, this case may support communities and or policymakers in the development of a programming guide for converting the natural capital into other reproducible capital forms, thus avoiding the development cycle of boom and bust.

  10. Way Beyond Widgets: Delivering Integrated Lighting Design in Actionable Solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Myer, Michael; Richman, Eric E.; Jones, Carol C.

    2008-08-17

    Previously, energy-efficiency strategies for commercial spaces have focused on using efficient equipment without providing specific detailed instructions. Designs by experts in their fields are an energy-efficiency product in its own right. A new national program has developed interactive application-specific lighting designs for widespread use in four major commercial sectors. This paper will describe the technical basis for the solutions, energy efficiency and cost-savings methodology, and installations and measurement/verification to-date. Lighting designs have been developed for five types of retail stores (big box, small box, grocery, specialty market, and pharmacy) and are planned for the office, healthcare, and education sectors asmore » well. Nationally known sustainable lighting designers developed the designs using high-performance commercially available products, daylighting, and lighting controls. Input and peer review was received by stakeholders, including manufacturers, architects, utilities, energy-efficiency program sponsors (EEPS), and end-users (i.e., retailers). An interactive web tool delivers the lighting solutions and analyzes anticipated energy savings using project-specific inputs. The lighting solutions were analyzed against a reference building using the space-by-space method as allowed in the Energy Standard for Buildings Except Low-Rise Residential Buildings (ASHRAE 2004) co-sponsored by the American Society of Heating, Refrigeration, and Air Conditioning Engineers (ASHRAE) and the Illuminating Engineering Society of North America (IESNA). The results showed that the design vignettes ranged from a 9% to 28% reduction in the allowed lighting power density. Detailed control strategies are offered to further reduce the actual kilowatt-hour power consumption. When used together, the lighting design vignettes and control strategies show a modeled decrease in energy consumption (kWh) by 33% to 50% below the baseline design.« less

  11. Status Report on Efforts to Enhance Instrumentation to Support Advanced Test Reactor Irradiations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. Rempe; D. Knudson; J. Daw

    2014-01-01

    The Department of Energy (DOE) designated the Advanced Test Reactor (ATR) as a National Scientific User Facility (NSUF) in April 2007 to support the growth of nuclear science and technology in the United States (US). By attracting new research users - universities, laboratories, and industry - the ATR NSUF facilitates basic and applied nuclear research and development, further advancing the nation's energy security needs. A key component of the ATR NSUF effort at the Idaho National Laboratory (INL) is to design, develop, and deploy new in-pile instrumentation techniques that are capable of providing real-time measurements of key parameters during irradiation.more » To address this need, an assessment of instrumentation available and under-development at other test reactors was completed. Based on this initial review, recommendations were made with respect to what instrumentation is needed at the ATR, and a strategy was developed for obtaining these sensors. In 2009, a report was issued documenting this program’s strategy and initial progress toward accomplishing program objectives. Since 2009, annual reports have been issued to provide updates on the program strategy and the progress made on implementing the strategy. This report provides an update reflecting progress as of January 2014.« less

  12. Best practices and strategies for improving rail energy efficiency

    DOT National Transportation Integrated Search

    2014-01-28

    In support of the FRA Energy, Environment, and Engine (E3) program, this study reviews and evaluates technology development opportunities, equipment upgrades, and best practices (BPs) of international and U.S. passenger and freight rail industry segm...

  13. The Overwhelmed Generation and Foreign Language Teacher Preparation: Developing Strategies to Work with the Mental Health Challenges of Preservice Teachers

    ERIC Educational Resources Information Center

    Schrier, Leslie L.

    2008-01-01

    For the last two decades the foreign language education profession has spent considerable energy establishing professional guidelines for foreign language teacher preparation. This article discusses research that suggests that the profession should now direct its energies toward developing protocols to assist preservice teachers whose mental…

  14. Energy in an Interdependent World: A Global Development Studies Case Study.

    ERIC Educational Resources Information Center

    Collier, Anne B.

    Part of the Global Development Studies Institute series of model curricula, the teacher guide presents strategies for teaching about energy as a global issue. The unit, intended for students in grades 11-14, is designed for one semester. The overall objective is to promote awareness of and responsibility toward the global community through an…

  15. Developing a Resilient Green Cellular Network

    DTIC Science & Technology

    2013-12-01

    to provide BS autonomy from grid power through alternative energy, such as: fuel cells and xiii renewable photovoltaic (PV), wind energy...stations with adequate backup power or utilizing alternative/renewable energy technology such as photovoltaic or wind power to allow them to...mitigating strategies with the consensus view on BSs migrating away from grid power , to renewable energy ( photovoltaic ), and alternative fuels. 40

  16. Thermal Simulation of a Zero Energy Glazed Pavilion in Sofia, Bulgaria. New Strategies for Energy Management by Means of Water Flow Glazing

    NASA Astrophysics Data System (ADS)

    del Ama Gonzalo, Fernando; Hernandez Ramos, Juan A.; Moreno, Belen

    2017-10-01

    The building sector is primarily responsible for a major part of total energy consumption. The European Energy Performance of Buildings Directives (EPBD) emphasized the need to reduce the energy consumption in buildings, and put forward the rationale for developing Near to Zero Energy Buildings (NZEB). Passive and active strategies help architects to minimize the use of active HVAC systems, taking advantage of the available natural resources such as solar radiation, thermal variability and daylight. The building envelope plays a decisive role in passive and active design strategies. The ideal transparent façade would be one with optical properties, such as Solar Heat Gain Coefficient (SHGC) and Visible Transmittance (VT), that could readily adapt in response to changing climatic conditions or occupant preferences. The aim of this article consists of describing the system to maintain a small glazed pavilion located in Sofia (Bulgaria) at the desired interior temperature over a whole year. The system comprises i) the use of Water Flow Glazing facades (WFG) and Radiant Interior Walls (RIW), ii) the use of free cooling devices along with traditional heat pump connected to photo-voltaic panels and iii) the use of a new Energy Management System that collects data and acts accordingly by controlling all components. The effect of these strategies and the use of active systems, like Water Flow Glazing, are analysed by means of simulating the prototype over one year. Summer and Winter energy management strategies are discussed in order to change the SHGC value of the Water Flow Glazing and thus, reduce the required energy to maintain comfort conditions.

  17. Status and prospect of NDT technology for nuclear energy industry in Korea

    NASA Astrophysics Data System (ADS)

    Lee, Joon Hyun

    2016-02-01

    Innovative energy technology is considered to be one of the key solutions for meeting the challenges of climate change and energy security, which is why global leaders are focusing on enhancing energy technology R&D. In accordance with the global movements to accelerate energy R&D, the Korean government has made significant investments in a broad spectrum of energy R&D programs, including energy efficiency, resources, CCS, new and renewable energy, power generation and electricity delivery, nuclear power and nuclear waste management. In order to manage government sponsored energy R&D programs in an efficient and effective way, the government established the Korea Institute of Energy technology Evaluation and Planning (KETEP) in 2009. Main activities of KETEP include developing energy technology roadmaps, planning, evaluating, and managing R&D programs, fostering experts in the field of energy, promoting international cooperation programs, gathering and analyzing energy statistics, and supporting infrastructure and commercialization. KETEP assists the Ministry of Trade, Industry and Energy in developing national R&D strategies while also working with researchers, universities, national institutes and the private sector for their successful energy technology and deployment. This presentation consists of three parts. First, I will introduce the characteristics of energy trends and mix in Korea. Then, I'll speak about the related national R&D strategies of energy technology. Finally, I'll finish up with the status and prospect of NDT technology for nuclear energy industry in Korea. The development of the on-line structural integrity monitoring systems and the related techniques in Korean nuclear power plant for the purpose of condition based maintenance is introduced. The needs of NDT techniques for inspection and condition monitoring for GEN IV including SFR, small module reactor etc., are also discussed.

  18. Single-Family Energy Auditor Job Task Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Head, Heather R.; Kurnik, Charles W.

    The National Renewable Energy Laboratory (NREL) is contracted by the U.S. Department of Energy (DOE) Weatherization Assistance Program (WAP) to develop and maintain the resources under the Guidelines for Home Energy Professionals (GHEP) project. As part of the GHEP strategy to increase the quality of work conducted for single-family, residential energy-efficiency retrofits, the Home Energy Professionals Job Task Analysis are used as the foundation for quality training programs and trainers.

  19. New Orleans and Energy Efficiency

    ScienceCinema

    Rosenburg, Zachary

    2018-05-30

    The Saint Bernard Project works tirelessly with volunteers, veterans and homeowners to continue the rebuilding. With the help of the Department of Energy and the Department of Housing and Urban Development they will be able to apply a greater energy efficiency strategy to help New Orleans and the country reduce our dependence on foreign oil.

  20. The nexus between energy consumption and financial development: estimating the role of globalization in Next-11 countries.

    PubMed

    Danish; Saud, Shah; Baloch, Muhammad Awais; Lodhi, Rab Nawaz

    2018-04-28

    In the modern era of globalization, the economic activities expand with the passage of time. This expansion may increase demand for energy both in developing and developed countries. Therefore, this study assesses the impact of financial development on energy consumption incorporating the role of globalization in Next-11 countries. A group of panel estimation techniques is used to analyze the panel data and time series data for the time 1990-2014. The empirical results of the study suggest that financial development stimulates energy consumption. Also, globalization increases demand for energy consumption, although the single country analysis suggests that the effect of globalization on energy demand is heterogeneous among N-11 countries. Furthermore, feedback hypothesis is confirmed between financial development and energy consumption. Also, bidirectional causality is found between economic growth and energy consumption. The findings urge for the attention of policymaker in emerging countries to develop a strategy to reduce the consequences of energy consumption by controlling resource transfer through globalization to the host country and by adopting energy conversation policies.

  1. Energy Security Strategies: An Analysis of Tanzania and Mozambique

    DTIC Science & Technology

    2016-06-01

    prioritizes domestic consumption or export of energy resources. The strategy a government chooses affects the overall energy security of that country...This thesis seeks to explain why countries pursue energy strategies that focus on domestic consumption of indigenous energy resources instead of...energy strategy that either prioritizes domestic consumption or export of energy resources. The strategy a government chooses affects the overall

  2. Modeling nexus of urban heat island mitigation strategies with electricity/power usage and consumer costs: a case study for Phoenix, Arizona, USA

    NASA Astrophysics Data System (ADS)

    Silva, Humberto; Fillpot, Baron S.

    2018-01-01

    A reduction in both power and electricity usage was determined using a previously validated zero-dimensional energy balance model that implements mitigation strategies used to reduce the urban heat island (UHI) effect. The established model has been applied to show the change in urban characteristic temperature when executing four common mitigation strategies: increasing the overall (1) emissivity, (2) vegetated area, (3) thermal conductivity, and (4) albedo of the urban environment in a series of increases by 5, 10, 15, and 20% from baseline values. Separately, a correlation analysis was performed involving meteorological data and total daily energy (TDE) consumption where the 24-h average temperature was shown to have the greatest correlation to electricity service data in the Phoenix, Arizona, USA, metropolitan region. A methodology was then developed for using the model to predict TDE consumption reduction and corresponding cost-saving analysis when implementing the four mitigation strategies. The four modeled UHI mitigation strategies, taken in combination, would lead to the largest percent reduction in annual energy usage, where increasing the thermal conductivity is the single most effective mitigation strategy. The single least effective mitigation strategy, increasing the emissivity by 5% from the baseline value, resulted in an average calculated reduction of about 1570 GWh in yearly energy usage with a corresponding 157 million dollar cost savings. When the four parameters were increased in unison by 20% from baseline values, an average calculated reduction of about 2050 GWh in yearly energy usage was predicted with a corresponding 205 million dollar cost savings.

  3. Evaluative methodology for prioritizing transportation energy conservation strategies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pang, L.M.G.

    An analytical methodology was developed for the purpose of prioritizing a set of transportation energy conservation (TEC) strategies within an urban environment. Steps involved in applying the methodology consist of 1) defining the goals, objectives and constraints of the given urban community, 2) identifying potential TEC strategies, 3) assessing the impact of the strategies, 4) applying the TEC evaluation model, and 5) utilizing a selection process to determine the optimal set of strategies for implementation. This research provides an overview of 21 TEC strategies, a quick-response technique for estimating energy savings, a multiattribute utility theory approach for assessing subjective impacts,more » and a computer program for making the strategy evaluations, all of which assist in expediting the execution of the entire methodology procedure. The critical element of the methodology is the strategy evaluation model which incorporates a number of desirable concepts including 1) a comprehensive accounting of all relevant impacts, 2) the application of multiobjective decision-making techniques, 3) an approach to assure compatibilty among quantitative and qualitative impact measures, 4) the inclusion of the decision maker's preferences in the evaluation procedure, and 5) the cost-effectiveness concept. Application of the methodolgy to Salt Lake City, Utah demonstrated its utility, ease of use and favorability by decision makers.« less

  4. 7 CFR 1948.84 - Application procedure for site development and acquisition grants.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... project is a part of and consistent with the State Investment Strategy for Energy Impacted Areas; (3) Send... copy of the State Investment for Energy Areas; and (17) District, where appropriate, and State FmHA or...

  5. Strategy Guideline. Proper Water Heater Selection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoeschele, M.; Springer, D.; German, A.

    2015-04-09

    This Strategy Guideline on proper water heater selection was developed by the Building America team Alliance for Residential Building Innovation to provide step-by-step procedures for evaluating preferred cost-effective options for energy efficient water heater alternatives based on local utility rates, climate, and anticipated loads.

  6. Strategy Guideline: Proper Water Heater Selection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoeschele, M.; Springer, D.; German, A.

    2015-04-01

    This Strategy Guideline on proper water heater selection was developed by the Building America team Alliance for Residential Building Innovation to provide step-by-step procedures for evaluating preferred cost-effective options for energy efficient water heater alternatives based on local utility rates, climate, and anticipated loads.

  7. Agroforestry systems for bioenergy in the southeastern USA

    USDA-ARS?s Scientific Manuscript database

    Agricultural landscapes are an important component of a biofuel strategy to develop energy independence. Agroforestry systems offer an opportunity to produce both food and biofuel feedstocks from the same land area. Such a strategy could improve numerous ecosystem services more so than either of t...

  8. Blue to Green: How Past Energy Transitions Inform the Department of Defense’s Energy Strategy

    DTIC Science & Technology

    2012-06-01

    www.netl.doe.gov/technologies/coalpower/ gasification /gasifipedia/5-support/5- 11_ftsynthesis.html (accessed March 19, 2012) 245 Biomass feedstock can be...fuels from renewable fuel sources. The two methods that are currently the furthest developed are Fischer-Tropsch (FT) synthesis ( biomass to liquid...years of isolation brought on by apartheid.244 In the FT synthesis process proposed by renewable energy developers today, biomass feedstock is heated

  9. Advancing Development and Greenhouse Gas Reductions in Vietnam's Wind Sector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bilello, D.; Katz, J.; Esterly, S.

    2014-09-01

    Clean energy development is a key component of Vietnam's Green Growth Strategy, which establishes a target to reduce greenhouse gas (GHG) emissions from domestic energy activities by 20-30 percent by 2030 relative to a business-as-usual scenario. Vietnam has significant wind energy resources, which, if developed, could help the country reach this target while providing ancillary economic, social, and environmental benefits. Given Vietnam's ambitious clean energy goals and the relatively nascent state of wind energy development in the country, this paper seeks to fulfill two primary objectives: to distill timely and useful information to provincial-level planners, analysts, and project developers asmore » they evaluate opportunities to develop local wind resources; and, to provide insights to policymakers on how coordinated efforts may help advance large-scale wind development, deliver near-term GHG emission reductions, and promote national objectives in the context of a low emission development framework.« less

  10. Projects without a purpose: Why a top down strategy to resilience matters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kingery, Kristine M.; Fowler, Kimberly M.; Harrove

    Energy resilience is a key focus of the current administration and Department of Defense (DoD) leaders, and is in the title of every energy conference session. Most case studies and success stories focus on resilience projects hardening systems or microgriding critical infrastructure. Some case studies focus on unique financing approaches to bring private sector innovation and increased investment to military installations. Many times, what initially look like innovative resilience projects, end as isolated systems or stranded infrastructure. This article will explore how the DoD can make greater strides advancing resilience objectives and ultimately developing projects that support installation mission readinessmore » by first focusing on top down strategies. The Army established energy and water security/resilience requirements, developed a comprehensive measurement framework, is evolving integrated planning approaches in collaboration with local communities, and is supporting project development activities across third-party and appropriated programs. The Army’s multi-year strategic energy and water security planning activities can provide helpful guidance to both the lifecycle of programs or individual projects, and ensure resilience projects both have and achieve a purpose.« less

  11. Strategic prospects of the electric power industry of Russia

    NASA Astrophysics Data System (ADS)

    Makarov, A. A.; Veselov, F. V.; Makarova, A. S.; Novikova, T. V.; Pankrushina, T. G.

    2017-11-01

    The prospects for the development of the electric power industry of Russia adopted at a regular stage of working out the Energy Strategy and the General Plan of Distribution of the Electric Power Facilities are discussed. The monitoring of the progress in the implementation of the Energy Strategies for the periods until 2020 and 2030 adopted in 2003 and 2009 has, in general, validated the correctness of the estimated volumes of the energy resource production under overestimation of the expected domestic demand owing to an excessively optimistic forecast of the real development of the economy. The priority lines of the national energy policy in electric power and allied industries proposed in the Energy Strategy for the period until 2035 are considered. The tools for implementation of most of the proposals and the effectiveness of their implementation have yet to be defined more concretely. The development of the energy sector and the electric power industry under the conservative and optimistic scenarios of the development of the country's economy has been predicted using the SCANER modeling and information system, viz., the dynamics of the domestic consumption, export, and production of the primary energy and the electric power has been determined and the commissioning and structure of the required generating capacities and the consumption of the basic types of the energy resources by the electric power industry and the centralized heat supply systems has been optimized. Changes in the economic efficiency of the nuclear and thermal power plants under the expected improvements on their cost and performance characteristics and an increase in the domestic fuel prices are presented. The competitiveness of the wind and solar power production under Russian conditions has been evaluated considering the necessity of reservation and partial duplication of their capacities when operated in the power supply systems. When optimizing the electric power industry as a subsystem of the country's energy sector, the required amounts of capital investments in the industry have been assessed. Based on the obtained data and the predicted prices of fuel in the main pricing zones of Russia, the ranges of changes in the prices of the electric power in agreement with the macroeconomic restrictions on their dynamics have been calculated.

  12. Energy Education in the Schools. Results of a Survey of the Penetration of Energy Education into the Classroom.

    ERIC Educational Resources Information Center

    White, Janet A.; Fowler, John M.

    Nine years after the 1973 oil embargo and the outpouring of educational materials and strategies developed in response to the energy crisis, the extent and content of energy education in the classroom were assessed. Seven thousand randomly selected teachers and principals were surveyed at the end of the 1981-82 school year (1000 each of elementary…

  13. Environmental value considerations in public attitudes about alternative energy development in Oregon and Washington.

    PubMed

    Steel, Brent S; Pierce, John C; Warner, Rebecca L; Lovrich, Nicholas P

    2015-03-01

    The 2013 Pacific Coast Action Plan on Climate and Energy signed by the Governors of California, Oregon, and Washington and the Premier of British Columbia launched a broadly announced public commitment to reduce greenhouse gas emissions through multiple strategies. Those strategies include the development and increased use of renewable energy sources. The initiative recognized that citizens are both a central component in abating greenhouse gas emissions with regard to their energy use behaviors, and are important participants in the public policymaking process at both state and local levels of government. The study reported here examines whether either support or opposition to state government leadership in the development of alternative energy technologies can be explained by environmental values as measured by the New Ecological Paradigm (NEP). The research results are based on mail surveys of randomly selected households conducted throughout Oregon and Washington in late 2009 and early 2010. Findings suggest that younger and more highly educated respondents are significantly more likely than older and less educated respondents to either support or strongly support government policies to promote bioenergy, wind, geothermal, and solar energy. Those respondents with higher NEP scores are also more supportive of government promotion of wind, geothermal, and solar technologies than are those with lower NEP scores. Support for wave energy does not show a statistical correlation with environmental values, maybe a reflection of this technology's nascent level of development. The paper concludes with a consideration of the implications of these findings for environmental management.

  14. Environmental Value Considerations in Public Attitudes About Alternative Energy Development in Oregon and Washington

    NASA Astrophysics Data System (ADS)

    Steel, Brent S.; Pierce, John C.; Warner, Rebecca L.; Lovrich, Nicholas P.

    2015-03-01

    The 2013 Pacific Coast Action Plan on Climate and Energy signed by the Governors of California, Oregon, and Washington and the Premier of British Columbia launched a broadly announced public commitment to reduce greenhouse gas emissions through multiple strategies. Those strategies include the development and increased use of renewable energy sources. The initiative recognized that citizens are both a central component in abating greenhouse gas emissions with regard to their energy use behaviors, and are important participants in the public policymaking process at both state and local levels of government. The study reported here examines whether either support or opposition to state government leadership in the development of alternative energy technologies can be explained by environmental values as measured by the New Ecological Paradigm (NEP). The research results are based on mail surveys of randomly selected households conducted throughout Oregon and Washington in late 2009 and early 2010. Findings suggest that younger and more highly educated respondents are significantly more likely than older and less educated respondents to either support or strongly support government policies to promote bioenergy, wind, geothermal, and solar energy. Those respondents with higher NEP scores are also more supportive of government promotion of wind, geothermal, and solar technologies than are those with lower NEP scores. Support for wave energy does not show a statistical correlation with environmental values, maybe a reflection of this technology's nascent level of development. The paper concludes with a consideration of the implications of these findings for environmental management.

  15. Factors that promote renewable energy production in U.S. states: A fixed effect estimation

    NASA Astrophysics Data System (ADS)

    Nwokeji, Ekwuniru Chika

    2011-12-01

    The unsustainability of conventional energy sources and its environmental destructions are well-known; the sustainability of renewable energy and its environmental benefits are also well-documented. The United States in common with many other countries is increasingly focused on developing renewable energy. At first, the pursuit of this strategy in U.S. was seen more as a way to reduce dependence on oil importation. With increased awareness of environmental challenges resulting from the consumption and production of conventional energy, an additional strategy for the continued interest in renewable energy development in the United States was as a result of its potential to ameliorate environmental problems. The U.S. government are utilizing policy measures and dedicating funding to encourage the development of renewable energy technologies. Beside government policies, there are contextual factors that also affect renewable energy production. These include, but not limited to population growth, energy demand, economic growth, and public acceptance. Given the pressing need to develop a sustainable energy, this study embarks on an outcome assessment of the nature of relationship of renewable energy policy incentives, and selected contextual factors on renewable energy production in the United States. The policy incentive evaluated in this study is the Renewable Energy Production Incentive program. The contextual factors evaluated in this study are energy consumption, population growth, employment, and poverty. Understanding the contextual factors within which policies are placed is essential to defining the most appropriate policy features. The methodological approach to the study is quantitative, using panel data from 1976 to 2007. The study tested two hypotheses using fixed effect estimation with robust standard error as a statistical model. Statistical analyses reveal several interesting results which lend support that besides policy incentives, contextual factors also affect renewable energy production. It therefore appears that to obtain a maximum renewable energy production, policymakers need to adopt a policy approach that incorporates these contextual factors.

  16. CO2 Reduction: From the Electrochemical to Photochemical Approach

    PubMed Central

    Wu, Jinghua; Huang, Yang; Ye, Wen

    2017-01-01

    Abstract Increasing CO2 concentration in the atmosphere is believed to have a profound impact on the global climate. To reverse the impact would necessitate not only curbing the reliance on fossil fuels but also developing effective strategies capture and utilize CO2 from the atmosphere. Among several available strategies, CO2 reduction via the electrochemical or photochemical approach is particularly attractive since the required energy input can be potentially supplied from renewable sources such as solar energy. In this Review, an overview on these two different but inherently connected approaches is provided and recent progress on the development, engineering, and understanding of CO2 reduction electrocatalysts and photocatalysts is summarized. First, the basic principles that govern electrocatalytic or photocatalytic CO2 reduction and their important performance metrics are discussed. Then, a detailed discussion on different CO2 reduction electrocatalysts and photocatalysts as well as their generally designing strategies is provided. At the end of this Review, perspectives on the opportunities and possible directions for future development of this field are presented. PMID:29201614

  17. Joint Egypt/United States report on Egypt/United States cooperative energy assessment. Volume 5 of 5 Vols. Annexes 11--13

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1979-04-01

    The principal features of the existing environment of Egypt are characterized and the main problem areas identified in Annex 11. The environmental, health, and associated social issues that must be considered in choosing from among the options available to Egypt for meeting projected future energy needs are identified. The environmental impacts associated with these options are discussed and observations are made of alternte ways to minimize environmental insults. Annex 12, Manpower, analyzes the energy-related manpower situation of Egypt. Manpower education and training resources of Egypt; the existing manpower base of Egypt; manpower needs of the energy strategies; a comparison ofmore » manpower needs and existing manpower base; and the underlying economic and social factors that will make Egypt energy facility development very difficult to plan and execute are discussed. Annex 13 summarizes a preliminary analysis of the capital, labor, materials, and equipment resources required to implement alternative Egyptian energy futures and documents the assessment of several Egyptian energy development programs selected by the DOE. It egins with brief overviews of the ESPM model and data base. It then describes the method by which the system was adapted to Egyptian conditions and the results of this modification. The comparison Case energy development program is described, followed by a summary of ESPM-derived facility and resource requirements. Finally, the sensitivity of these results to several alternative energy strategies is illustrated.« less

  18. REopt Screenings Catalyze Development of Hundreds of Megawatts of Renewable Energy for Federal Agencies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    The U.S. Department of Energy's (DOE's) Federal Energy Management Program (FEMP) offers project assistance to federal agencies, which often begins with a desktop screening to develop a prioritized portfolio of renewable energy project opportunities. FEMP uses the National Renewable Energy Laboratory's (NREL) REopt energy planning platform to quickly and efficiently screen potential renewable energy opportunities at a single site or across a range of sites. REopt helps organizations prioritize the most economically and technically viable projects for further study, and identifies the size and mix of technologies that meet the organization's goals at minimum cost, along with the optimal operatingmore » strategies.« less

  19. Priority directions of the improvement of energy management at the enterprise

    NASA Astrophysics Data System (ADS)

    Dyakova, Galina; Izmaylova, Svetlana; Mottaeva, Angela; Karanina, Elena

    2017-10-01

    The relevance of article is caused by the fact that at the industrial enterprises pay little attention to the matters of energy saving or to the management of energy efficiency. The authors of the article defined that the potential of the increase in energy efficiency as well as the improvement of quality of strategic management at the enterprise, is connected with investment into the human capital. For the improvement of system of energy management, the key indicators of energy efficiency at the individual level are defined, the algorithm of the development of key indicators by means of which the energy efficiency of the human capital will be measured is developed, actions for support to the developed transitional strategy of power management are offered, positive results of formation of the human capital directed to increase in energy efficiency are designated.

  20. Single-Family Quality Control Inspector Job Task Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Head, Heather R; Kurnik, Charles W

    The National Renewable Energy Laboratory (NREL) is contracted by the U.S. Department of Energy (DOE) Weatherization Assistance Program (WAP) to develop and maintain the resources under the Guidelines for Home Energy Professionals (GHEP) project. As part of the GHEP strategy to increase the quality of work conducted for single-family, residential energy-efficiency retrofits, the Home Energy Professionals Job Task Analysis are used as the foundation for quality training programs and trainers.

  1. Building environment analysis based on temperature and humidity for smart energy systems.

    PubMed

    Yun, Jaeseok; Won, Kwang-Ho

    2012-10-01

    In this paper, we propose a new HVAC (heating, ventilation, and air conditioning) control strategy as part of the smart energy system that can balance occupant comfort against building energy consumption using ubiquitous sensing and machine learning technology. We have developed ZigBee-based wireless sensor nodes and collected realistic temperature and humidity data during one month from a laboratory environment. With the collected data, we have established a building environment model using machine learning algorithms, which can be used to assess occupant comfort level. We expect the proposed HVAC control strategy will be able to provide occupants with a consistently comfortable working or home environment.

  2. E3 Success Story - Advancing Performance in Sustainability and Workforce Development

    EPA Pesticide Factsheets

    E3: North Carolina advances performance in sustainability and workforce development strategies for the state's manufacturers. The initiative helps communities and manufacturers address energy and sustainability challenges by leveraging expertise.

  3. A Strategy for Nuclear Energy Research and Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ralph G. Bennett

    2008-12-01

    The United States is facing unprecedented challenges in climate change and energy security. President-elect Obama has called for a reduction of CO2 emissions to 1990 levels by 2020, with a further 80% reduction by 2050. Meeting these aggressive goals while gradually increasing the overall energy supply requires that all non-emitting technologies must be advanced. The development and deployment of nuclear energy can, in fact, help the United States meet several key challenges: 1) Increase the electricity generated by non-emitting sources to mitigate climate change, 2) Foster the safe and proliferation-resistant use of nuclear energy throughout the world, 3) Reduce themore » transportation sector’s dependence on imported fossil fuels, and 4) Reduce the demand on natural gas for process heat and hydrogen production. However, because of the scale, cost, and time horizons involved, increasing nuclear energy’s share will require a coordinated research effort—combining the efforts of industry and government, supported by innovation from the research community. This report outlines the significant nuclear energy research and development (R&D) necessary to create options that will allow government and industrial decision-makers to set policies and create nuclear energy initiatives that are decisive and sustainable. The nuclear energy R&D strategy described in this report adopts the following vision: Safe and economical nuclear energy in the United States will expand to address future electric and non-electric needs, significantly reduce greenhouse gas emissions and provide energy diversity, while providing leadership for safe, secure and responsible expansion of nuclear energy internationally.« less

  4. Towards a Managed Aquifer Recharge strategy for Gujarat, India: An economist’s dialogue with hydro-geologists

    NASA Astrophysics Data System (ADS)

    Shah, Tushaar

    2014-10-01

    Gujarat state in Western India exemplifies all challenges of an agrarian economy founded on groundwater overexploitation sustained over decades by perverse energy subsidies. Major consequences are: secular decline in groundwater levels, deterioration of groundwater quality, rising energy cost of pumping, soaring carbon footprint of agriculture and growing financial burden of energy subsidies. In 2009, Government of Gujarat asked the present author, an economist, to chair a Taskforce of senior hydro-geologists and civil engineers to develop and recommend a Managed Aquifer Recharge (MAR) strategy for the state. This paper summarizes the recommended strategy and its underlying logic. It also describes the imperfect fusion of socio-economic and hydro-geologic perspectives that occurred in course of the working of the Taskforce and highlights the need for trans-disciplinary perspectives on groundwater governance.

  5. Mathematical Modelling-Based Energy System Operation Strategy Considering Energy Storage Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryu, Jun-Hyung; Hodge, Bri-Mathias

    2016-06-25

    Renewable energy resources are widely recognized as an alternative to environmentally harmful fossil fuels. More renewable energy technologies will need to penetrate into fossil fuel dominated energy systems to mitigate the globally witnessed climate changes and environmental pollutions. It is necessary to prepare for the potential problems with increased proportions of renewable energy in the energy system, to prevent higher costs and decreased reliability. Motivated by this need, this paper addresses the operation of an energy system with an energy storage system in the context of developing a decision-supporting framework.

  6. Implementation of real-time energy management strategy based on reinforcement learning for hybrid electric vehicles and simulation validation

    PubMed Central

    Kong, Zehui; Liu, Teng

    2017-01-01

    To further improve the fuel economy of series hybrid electric tracked vehicles, a reinforcement learning (RL)-based real-time energy management strategy is developed in this paper. In order to utilize the statistical characteristics of online driving schedule effectively, a recursive algorithm for the transition probability matrix (TPM) of power-request is derived. The reinforcement learning (RL) is applied to calculate and update the control policy at regular time, adapting to the varying driving conditions. A facing-forward powertrain model is built in detail, including the engine-generator model, battery model and vehicle dynamical model. The robustness and adaptability of real-time energy management strategy are validated through the comparison with the stationary control strategy based on initial transition probability matrix (TPM) generated from a long naturalistic driving cycle in the simulation. Results indicate that proposed method has better fuel economy than stationary one and is more effective in real-time control. PMID:28671967

  7. Implementation of real-time energy management strategy based on reinforcement learning for hybrid electric vehicles and simulation validation.

    PubMed

    Kong, Zehui; Zou, Yuan; Liu, Teng

    2017-01-01

    To further improve the fuel economy of series hybrid electric tracked vehicles, a reinforcement learning (RL)-based real-time energy management strategy is developed in this paper. In order to utilize the statistical characteristics of online driving schedule effectively, a recursive algorithm for the transition probability matrix (TPM) of power-request is derived. The reinforcement learning (RL) is applied to calculate and update the control policy at regular time, adapting to the varying driving conditions. A facing-forward powertrain model is built in detail, including the engine-generator model, battery model and vehicle dynamical model. The robustness and adaptability of real-time energy management strategy are validated through the comparison with the stationary control strategy based on initial transition probability matrix (TPM) generated from a long naturalistic driving cycle in the simulation. Results indicate that proposed method has better fuel economy than stationary one and is more effective in real-time control.

  8. A wavelet-fuzzy logic based energy management strategy for a fuel cell/battery/ultra-capacitor hybrid vehicular power system

    NASA Astrophysics Data System (ADS)

    Erdinc, O.; Vural, B.; Uzunoglu, M.

    Due to increasing concerns on environmental pollution and depleting fossil fuels, fuel cell (FC) vehicle technology has received considerable attention as an alternative to the conventional vehicular systems. However, a FC system combined with an energy storage system (ESS) can display a preferable performance for vehicle propulsion. As the additional ESS can fulfill the transient power demand fluctuations, the fuel cell can be downsized to fit the average power demand without facing peak loads. Besides, braking energy can be recovered by the ESS. This study focuses on a vehicular system powered by a fuel cell and equipped with two secondary energy storage devices: battery and ultra-capacitor (UC). However, an advanced energy management strategy is quite necessary to split the power demand of a vehicle in a suitable way for the on-board power sources in order to maximize the performance while promoting the fuel economy and endurance of hybrid system components. In this study, a wavelet and fuzzy logic based energy management strategy is proposed for the developed hybrid vehicular system. Wavelet transform has great capability for analyzing signals consisting of instantaneous changes like a hybrid electric vehicle (HEV) power demand. Besides, fuzzy logic has a quite suitable structure for the control of hybrid systems. The mathematical and electrical models of the hybrid vehicular system are developed in detail and simulated using MATLAB ®, Simulink ® and SimPowerSystems ® environments.

  9. Microalgal bioengineering for sustainable energy development: Recent transgenesis and metabolic engineering strategies.

    PubMed

    Banerjee, Chiranjib; Singh, Puneet Kumar; Shukla, Pratyoosh

    2016-03-01

    Exploring the efficiency of algae to produce remarkable products can be directly benefitted by studying its mechanism at systems level. Recent advents in biotechnology like flux balance analysis (FBA), genomics and in silico proteomics minimize the wet lab exertion. It is understood that FBA predicts the metabolic products, metabolic pathways and alternative pathway to maximize the desired product, and these are key components for microalgae bio-engineering. This review encompasses recent transgenesis techniques and metabolic engineering strategies applied to different microalgae for improving different traits. Further it also throws light on RNAi and riboswitch engineering based methods which may be advantageous for high throughput microalgal research. A valid and optimally designed microalga can be developed where every engineering strategies meet each other successfully and will definitely fulfill the market needs. It is also to be noted that Omics (viz. genetic and metabolic manipulation with bioinformatics) should be integrated to develop a strain which could prove to be a futuristic solution for sustainable development for energy. Copyright © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Deregulation strategies for local governments and the role/opportunities for energy efficiency services in the utility industry deregulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tseng, P.C.

    As the future shape of the electric utility industry continues to unfold and as retail competition becomes a reality, local governments are faced with balancing the need for: (1) economic development; (2) and to avoid the potential impact of cost-shifting among residents and businesses, while ensuring reliable and universal energy services. Furthermore, local governments need to find ways to recoup potential loss of franchise and tax revenues, to ensure fair and adequate energy-efficiency programs, and to continue other social programs for low income families. This paper will address two important issues every local government in the US are facing: (1)more » the development of viable deregulation strategies before, during and after the promulgation of utility deregulation; (2) opportunities for energy efficiency services in the competitive markets to serve local governments, which typically constitutes the largest market segment in utility's service territory. This paper presents issues and challenges common to all local governments. It documents strategies that several local governments are utilizing to embrace the coming electric utility restructuring and competition challenge to the benefits of their respective communities. This paper presents the results on deregulation work by the City of Portland, Oregon, Barnstable County, Massachusetts, and Montgomery County, Maryland. The research by these local governments was sponsored by the Urban Consortium Energy Task Force and Public Technology, Inc.« less

  11. Coherent Wave Measurement Buoy Arrays to Support Wave Energy Extraction

    NASA Astrophysics Data System (ADS)

    Spada, F.; Chang, G.; Jones, C.; Janssen, T. T.; Barney, P.; Roberts, J.

    2016-02-01

    Wave energy is the most abundant form of hydrokinetic energy in the United States and wave energy converters (WECs) are being developed to extract the maximum possible power from the prevailing wave climate. However, maximum wave energy capture is currently limited by the narrow banded frequency response of WECs as well as extended protective shutdown requirements during periods of large waves. These limitations must be overcome in order to maximize energy extraction, thus significantly decreasing the cost of wave energy and making it a viable energy source. Techno-economic studies of several WEC devices have shown significant potential to improve wave energy capture efficiency through operational control strategies that incorporate real-time information about local surface wave motions. Integral Consulting Inc., with ARPA-E support, is partnering with Sandia National Laboratories and Spoondrift LLC to develop a coherent array of wave-measuring devices to relay and enable the prediction of wave-resolved surface dynamics at a WEC location ahead of real time. This capability will provide necessary information to optimize power production of WECs through control strategies, thereby allowing for a single WEC design to perform more effectively across a wide range of wave environments. The information, data, or work presented herein was funded in part by the Advanced Research Projects Agency-Energy (ARPA-E), U.S. Department of Energy, under Award Number DE-AR0000514.

  12. Design of Organic Transformations at Ambient Conditions: Our Sincere Efforts to the Cause of Green Chemistry Practice.

    PubMed

    Brahmachari, Goutam

    2016-02-01

    This account summarizes our recent efforts in designing a good number of important organic transformations leading to the synthesis of biologically relevant compounds at room temperature and pressure. Currently, the concept of green chemistry is globally acclaimed and has already advanced quite significantly to emerge as a distinct branch of chemical sciences. Among the principles of green chemistry, one principle is dedicated to the "design of energy efficiency" - that is, to develop synthetic strategies that require less or the minimum amount of energy to carry out a specific reaction with optimum productivity - and the most effective way to save energy is to develop strategies/protocols that are capable enough to carry out the transformations at ambient temperature! As part of on-going developments in green synthetic strategies, the design of reactions under ambient conditions coupled with other green aspects is, thus, an area of current interest. The concept of developing reaction strategies at room temperature and pressure is now an emerging field of research in organic chemistry and is progressing steadily. This account is aimed to offer an overview of our recent research works directly related to this particular field of interest, and highlights the green chemistry practice leading to carbon-carbon and carbon-heteroatom bond-forming reactions of topical significance. Green synthetic routes to a variety of biologically relevant organic molecules (heterocyclic, heteroaromatic, alicyclic, acyclic, etc.) at room temperature and pressure are discussed. © 2015 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. International Energy Agency (IEA): Implementing Agreement for Co-operation in the Research and Development of Wind Turbine Systems (IEA Wind)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sinclair, Karin C

    This fact sheet covers the work that is being done via the International Energy Agency Task 34 (WREN). The fact sheet highlights the objective, strategy, primary activities, members, and contacts for this task.

  14. Guidelines for Energy-Efficient Sustainable Schools.

    ERIC Educational Resources Information Center

    Nicklas, Michael; Bailey, Gary; Rosemain, Pascale; Olin, Samuel

    These guidelines present optional strategies to be considered in designing schools to be more energy efficient and sustainable. The guidelines are organized by the following design and construction process: site selection; selection of A & E design team; programming and goal setting; schematic design; design development; construction…

  15. Robust optimization based energy dispatch in smart grids considering demand uncertainty

    NASA Astrophysics Data System (ADS)

    Nassourou, M.; Puig, V.; Blesa, J.

    2017-01-01

    In this study we discuss the application of robust optimization to the problem of economic energy dispatch in smart grids. Robust optimization based MPC strategies for tackling uncertain load demands are developed. Unexpected additive disturbances are modelled by defining an affine dependence between the control inputs and the uncertain load demands. The developed strategies were applied to a hybrid power system connected to an electrical power grid. Furthermore, to demonstrate the superiority of the standard Economic MPC over the MPC tracking, a comparison (e.g average daily cost) between the standard MPC tracking, the standard Economic MPC, and the integration of both in one-layer and two-layer approaches was carried out. The goal of this research is to design a controller based on Economic MPC strategies, that tackles uncertainties, in order to minimise economic costs and guarantee service reliability of the system.

  16. Successful Strategies for Planning a Green Building.

    ERIC Educational Resources Information Center

    Browning, William D.

    2003-01-01

    Presents several strategies for successful green building on campus: develop a set of clear environmental performance goals (buildings as pedagogical tools, climate-neutral operations, maximized human performance), use Leadership in Energy and Environmental Design (LEED) as a gauge of performance, and use the project to reform the campus building…

  17. Energy efficiency technologies in cement and steel industry

    NASA Astrophysics Data System (ADS)

    Zanoli, Silvia Maria; Cocchioni, Francesco; Pepe, Crescenzo

    2018-02-01

    In this paper, Advanced Process Control strategies aimed at energy efficiency achievement and improvement in cement and steel industry are proposed. A flexible and smart control structure constituted by several functional modules and blocks has been developed. The designed control strategy is based on Model Predictive Control techniques, formulated on linear models. Two industrial control solutions have been developed, oriented to energy efficiency and process control improvement in cement industry clinker rotary kilns (clinker production phase) and in steel industry billets reheating furnaces. Tailored customization procedures for the design of ad hoc control systems have been executed, based on the specific needs and specifications of the analysed processes. The installation of the developed controllers on cement and steel plants produced significant benefits in terms of process control which resulted in working closer to the imposed operating limits. With respect to the previous control systems, based on local controllers and/or operators manual conduction, more profitable configurations of the crucial process variables have been provided.

  18. Optimization based on benefit of regional energy suppliers of distributed generation in active distribution network

    NASA Astrophysics Data System (ADS)

    Huo, Xianxu; Li, Guodong; Jiang, Ling; Wang, Xudong

    2017-08-01

    With the development of electricity market, distributed generation (DG) technology and related policies, regional energy suppliers are encouraged to build DG. Under this background, the concept of active distribution network (ADN) is put forward. In this paper, a bi-level model of intermittent DG considering benefit of regional energy suppliers is proposed. The objective of the upper level is the maximization of benefit of regional energy suppliers. On this basis, the lower level is optimized for each scene. The uncertainties of DG output and load of users, as well as four active management measures, which include demand-side management, curtailing the output power of DG, regulating reactive power compensation capacity and regulating the on-load tap changer, are considered. Harmony search algorithm and particle swarm optimization are combined as a hybrid strategy to solve the model. This model and strategy are tested with IEEE-33 node system, and results of case study indicate that the model and strategy successfully increase the capacity of DG and benefit of regional energy suppliers.

  19. From photons to biomass and biofuels: evaluation of different strategies for the improvement of algal biotechnology based on comparative energy balances.

    PubMed

    Wilhelm, Christian; Jakob, Torsten

    2011-12-01

    Microalgal based biofuels are discussed as future sustainable energy source because of their higher photosynthetic and water use efficiency to produce biomass. In the context of climate CO2 mitigation strategies, algal mass production is discussed as a potential CO2 sequestration technology which uses CO2 emissions to produce biomass with high-oil content independent on arable land. In this short review, it is presented how complete energy balances from photon to harvestable biomass can help to identify the limiting processes on the cellular level. The results show that high productivity is always correlated with high metabolic costs. The overall efficiency of biomass formation can be improved by a photobioreactor design which is kinetically adapted to the rate-limiting steps in cell physiology. However, taking into account the real photon demand per assimilated carbon and the energy input for biorefinement, it becomes obvious that alternative strategies must be developed to reach the goal of a real CO2 sequestration.

  20. Joint Planning Of Energy Storage and Transmission Considering Wind-Storage Combined System and Demand Side Response

    NASA Astrophysics Data System (ADS)

    Huang, Y.; Liu, B. Z.; Wang, K. Y.; Ai, X.

    2017-12-01

    In response to the new requirements of the operation mode of wind-storage combined system and demand side response for transmission network planning, this paper presents a joint planning of energy storage and transmission considering wind-storage combined system and demand side response. Firstly, the charge-discharge strategy of energy storage system equipped at the outlet of wind farm and demand side response strategy are analysed to achieve the best comprehensive benefits through the coordination of the two. Secondly, in the general transmission network planning model with wind power, both energy storage cost and demand side response cost are added to the objective function. Not only energy storage operation constraints and but also demand side response constraints are introduced into the constraint condition. Based on the classical formulation of TEP, a new formulation is developed considering the simultaneous addition of the charge-discharge strategy of energy storage system equipped at the outlet of the wind farm and demand side response strategy, which belongs to a typical mixed integer linear programming model that can be solved by mature optimization software. The case study based on the Garver-6 bus system shows that the validity of the proposed model is verified by comparison with general transmission network planning model. Furthermore, the results demonstrate that the joint planning model can gain more economic benefits through setting up different cases.

  1. Developing a framework for energy technology portfolio selection

    NASA Astrophysics Data System (ADS)

    Davoudpour, Hamid; Ashrafi, Maryam

    2012-11-01

    Today, the increased consumption of energy in world, in addition to the risk of quick exhaustion of fossil resources, has forced industrial firms and organizations to utilize energy technology portfolio management tools viewed both as a process of diversification of energy sources and optimal use of available energy sources. Furthermore, the rapid development of technologies, their increasing complexity and variety, and market dynamics have made the task of technology portfolio selection difficult. Considering high level of competitiveness, organizations need to strategically allocate their limited resources to the best subset of possible candidates. This paper presents the results of developing a mathematical model for energy technology portfolio selection at a R&D center maximizing support of the organization's strategy and values. The model balances the cost and benefit of the entire portfolio.

  2. Energy-Aware RFID Anti-Collision Protocol.

    PubMed

    Arjona, Laura; Simon, Hugo Landaluce; Ruiz, Asier Perallos

    2018-06-11

    The growing interest in mobile devices is transforming wireless identification technologies. Mobile and battery-powered Radio Frequency Identification (RFID) readers, such as hand readers and smart phones, are are becoming increasingly attractive. These RFID readers require energy-efficient anti-collision protocols to minimize the tag collisions and to expand the reader's battery life. Furthermore, there is an increasing interest in RFID sensor networks with a growing number of RFID sensor tags. Thus, RFID application developers must be mindful of tag anti-collision protocols. Energy-efficient protocols involve a low reader energy consumption per tag. This work presents a thorough study of the reader energy consumption per tag and analyzes the main factor that affects this metric: the frame size update strategy. Using the conclusion of this analysis, the anti-collision protocol Energy-Aware Slotted Aloha (EASA) is presented to decrease the energy consumption per tag. The frame size update strategy of EASA is configured to minimize the energy consumption per tag. As a result, EASA presents an energy-aware frame. The performance of the proposed protocol is evaluated and compared with several state of the art Aloha-based anti-collision protocols based on the current RFID standard. Simulation results show that EASA, with an average of 15 mJ consumed per tag identified, achieves a 6% average improvement in the energy consumption per tag in relation to the strategies of the comparison.

  3. Research on biomass energy and environment from the past to the future: A bibliometric analysis.

    PubMed

    Mao, Guozhu; Huang, Ning; Chen, Lu; Wang, Hongmei

    2018-09-01

    The development and utilization of biomass energy can help to change the ways of energy production and consumption and establish a sustainable energy system that can effectively promote the development of the national economy and strengthen the protection of the environment. Here,we perform a bibliometric analysis of 9514 literature reports in the Web of Science Core Collection searched with the key words "Biomass energy" and "Environment*" date from 1998 to 2017; hot topics in the research and development of biomass energy utilization, as well as the status and development trends of biomass energy utilization and the environment, were analyzed based on content analysis and bibliometrics. The interaction between biomass energy and the environment began to become a major concern as the research progressively deepened. This work is of great significance for the development and utilization of biomass energy to put forward specific suggestions and strategies based on the analysis and demonstration of relationships and interactions between biomass energy utilization and environment. It is also useful to researchers for selecting the future research topics. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Research on the Orientation and Application of Distributed Energy Storage in Energy Internet

    NASA Astrophysics Data System (ADS)

    Zeng, Ming; Zhou, Pengcheng; Li, Ran; Zhou, Jingjing; Chen, Tao; Li, Zhe

    2018-01-01

    Energy storage is indispensable resources to achieve a high proportion of new energy power consumption in electric power system. As an important support to energy Internet, energy storage system can achieve a variety of energy integration operation to ensure maximum energy efficiency. In this paper, firstly, the SWOT analysis method is used to express the internal and external advantages and disadvantages of distributed energy storage participating in the energy Internet. Secondly, the function orientation of distributed energy storage in energy Internet is studied, based on which the application modes of distributed energy storage in virtual power plant, community energy storage and auxiliary services are deeply studied. Finally, this paper puts forward the development strategy of distributed energy storage which is suitable for the development of China’s energy Internet, and summarizes and prospects the application of distributed energy storage system.

  5. Fuel cell systems program plan, FY 1990

    NASA Astrophysics Data System (ADS)

    1989-10-01

    A principal goal of the Office of Fossil Energy is to increase the utilization of domestic fuels in an environmentally benign manner, through the development and transfer to the private sector of advanced energy conversion technology. Successful efforts to achieve this goal contribute to the stability and reliability of reasonably priced energy supplies, enhance the competitiveness of domestic fuels and energy technologies in domestic and international markets, and contribute to the development of cost effective strategies for control of acid rain and global warming. Several advanced energy conversion technologies are now under development by DOE which can help to achieve these objectives. Fuel cells are among those technologies. This report briefly describes fuel cell technology and the program plan of U.S. DOE fuel cell program.

  6. Integration of microalgae cultivation with industrial waste remediation for biofuel and bioenergy production: opportunities and limitations.

    PubMed

    McGinn, Patrick J; Dickinson, Kathryn E; Bhatti, Shabana; Frigon, Jean-Claude; Guiot, Serge R; O'Leary, Stephen J B

    2011-09-01

    There is currently a renewed interest in developing microalgae as a source of renewable energy and fuel. Microalgae hold great potential as a source of biomass for the production of energy and fungible liquid transportation fuels. However, the technologies required for large-scale cultivation, processing, and conversion of microalgal biomass to energy products are underdeveloped. Microalgae offer several advantages over traditional 'first-generation' biofuels crops like corn: these include superior biomass productivity, the ability to grow on poor-quality land unsuitable for agriculture, and the potential for sustainable growth by extracting macro- and micronutrients from wastewater and industrial flue-stack emissions. Integrating microalgal cultivation with municipal wastewater treatment and industrial CO(2) emissions from coal-fired power plants is a potential strategy to produce large quantities of biomass, and represents an opportunity to develop, test, and optimize the necessary technologies to make microalgal biofuels more cost-effective and efficient. However, many constraints on the eventual deployment of this technology must be taken into consideration and mitigating strategies developed before large scale microalgal cultivation can become a reality. As a strategy for CO(2) biomitigation from industrial point source emitters, microalgal cultivation can be limited by the availability of land, light, and other nutrients like N and P. Effective removal of N and P from municipal wastewater is limited by the processing capacity of available microalgal cultivation systems. Strategies to mitigate against the constraints are discussed.

  7. Developing estimates of potential demand for renewable wood energy products in Alaska

    Treesearch

    Allen M. Brackley; Valerie A. Barber; Cassie Pinkel

    2010-01-01

    Goal three of the current U.S. Department of Agriculture, Forest Service strategy for improving the use of woody biomass is to help develop and expand markets for woody biomass products. This report is concerned with the existing volumes of renewable wood energy products (RWEP) that are currently used in Alaska and the potential demand for RWEP for residential and...

  8. National Renewable Energy Laboratory Renewable Energy Opportunity Assessment for USAID Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watson, Andrea; Bracho, Ricardo; Romero, Rachel

    The United States Agency for International Development (USAID) Enhancing Capacity for Low Emission Development Strategies (EC-LEDS) program is designing its second phase of assistance to the Government of Mexico (GOM). In preparation for program design, USAID has asked the National Renewable Energy Laboratory (NREL) to assist in identifying options for enabling renewable energy in Mexico and reducing greenhouse gas (GHG) emissions in the energy sector. The NREL team conducted a literature review and consulted with over 20 Mexican agencies and organizations during a two-week temporary duty assignment (TDY) to Mexico to identify gaps, opportunities, and program theme areas for Mexico.

  9. Intelligent energy allocation strategy for PHEV charging station using gravitational search algorithm

    NASA Astrophysics Data System (ADS)

    Rahman, Imran; Vasant, Pandian M.; Singh, Balbir Singh Mahinder; Abdullah-Al-Wadud, M.

    2014-10-01

    Recent researches towards the use of green technologies to reduce pollution and increase penetration of renewable energy sources in the transportation sector are gaining popularity. The development of the smart grid environment focusing on PHEVs may also heal some of the prevailing grid problems by enabling the implementation of Vehicle-to-Grid (V2G) concept. Intelligent energy management is an important issue which has already drawn much attention to researchers. Most of these works require formulation of mathematical models which extensively use computational intelligence-based optimization techniques to solve many technical problems. Higher penetration of PHEVs require adequate charging infrastructure as well as smart charging strategies. We used Gravitational Search Algorithm (GSA) to intelligently allocate energy to the PHEVs considering constraints such as energy price, remaining battery capacity, and remaining charging time.

  10. New Whole-House Solutions Case Study: HVAC Design Strategy for a Hot-Humid Production Builder, Houston, Texas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    Building Science Corporation (BSC) worked directly with the David Weekley Homes - Houston division to develop a cost-effective design for moving the HVAC system into conditioned space. In addition, BSC conducted energy analysis to calculate the most economical strategy for increasing the energy performance of future production houses in preparation for the upcoming code changes in 2015. The following research questions were addressed by this research project: 1. What is the most cost effective, best performing and most easily replicable method of locating ducts inside conditioned space for a hot-humid production home builder that constructs one and two story singlemore » family detached residences? 2. What is a cost effective and practical method of achieving 50% source energy savings vs. the 2006 International Energy Conservation Code for a hot-humid production builder? 3. How accurate are the pre-construction whole house cost estimates compared to confirmed post construction actual cost? BSC and the builder developed a duct design strategy that employs a system of dropped ceilings and attic coffers for moving the ductwork from the vented attic to conditioned space. The furnace has been moved to either a mechanical closet in the conditioned living space or a coffered space in the attic.« less

  11. Methodology for energy strategy to prescreen the feasibility of Ground Source Heat Pump systems in residential and commercial buildings in the United States

    DOE PAGES

    Cho, Soolyeon; Ray, Saurabh; Im, Piljae; ...

    2017-09-21

    Geothermal resources have potential to reduce dependence on fossil fuels. The viability of geothermal heat pumps or ground source heat pumps (GSHPs) is significant as a potential alternative energy source with substantial savings potential. While the prospect of these systems is promising for energy efficiency, careful feasibility analysis is required before implementation. Here, this paper presents the results of evaluation of the application feasibility for GSHPs in buildings across seven climate zones in three United States regions. A comprehensive methodology is developed to measure the integrated feasibility of GSHPs using compiled data for energy use intensity, energy cost and designmore » parameters. Four different feasibility metrics are utilized: ground temperature, outdoor weather condition, energy savings potential, and cost benefits. For each metric, a corresponding feasibility score system is developed. The defined integrated feasibility score classifies the locations into five different feasibility levels ranging from Fair (0–20), Moderate (21–40), Good (41–60), High (61–80), and Very High (81–100). Conclusions show the GSHP feasibility level is High for 3 sites, Good for 8 sites and Moderate for 4 sites. Through the methodology, it is possible to develop a practical energy strategy for more economic and sustainable GSHP systems at an early design stage in the various viewpoints of geometries, climate conditions, operational factors, and energy costs.« less

  12. Methodology for energy strategy to prescreen the feasibility of Ground Source Heat Pump systems in residential and commercial buildings in the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cho, Soolyeon; Ray, Saurabh; Im, Piljae

    Geothermal resources have potential to reduce dependence on fossil fuels. The viability of geothermal heat pumps or ground source heat pumps (GSHPs) is significant as a potential alternative energy source with substantial savings potential. While the prospect of these systems is promising for energy efficiency, careful feasibility analysis is required before implementation. Here, this paper presents the results of evaluation of the application feasibility for GSHPs in buildings across seven climate zones in three United States regions. A comprehensive methodology is developed to measure the integrated feasibility of GSHPs using compiled data for energy use intensity, energy cost and designmore » parameters. Four different feasibility metrics are utilized: ground temperature, outdoor weather condition, energy savings potential, and cost benefits. For each metric, a corresponding feasibility score system is developed. The defined integrated feasibility score classifies the locations into five different feasibility levels ranging from Fair (0–20), Moderate (21–40), Good (41–60), High (61–80), and Very High (81–100). Conclusions show the GSHP feasibility level is High for 3 sites, Good for 8 sites and Moderate for 4 sites. Through the methodology, it is possible to develop a practical energy strategy for more economic and sustainable GSHP systems at an early design stage in the various viewpoints of geometries, climate conditions, operational factors, and energy costs.« less

  13. Real Time Energy Management Control Strategies for Hybrid Powertrains

    NASA Astrophysics Data System (ADS)

    Zaher, Mohamed Hegazi Mohamed

    In order to improve fuel efficiency and reduce emissions of mobile vehicles, various hybrid power-train concepts have been developed over the years. This thesis focuses on embedded control of hybrid powertrain concepts for mobile vehicle applications. Optimal robust control approach is used to develop a real time energy management strategy for continuous operations. The main idea is to store the normally wasted mechanical regenerative energy in energy storage devices for later usage. The regenerative energy recovery opportunity exists in any condition where the speed of motion is in opposite direction to the applied force or torque. This is the case when the vehicle is braking, decelerating, or the motion is driven by gravitational force, or load driven. There are three main concepts for regernerative energy storing devices in hybrid vehicles: electric, hydraulic, and flywheel. The real time control challenge is to balance the system power demand from the engine and the hybrid storage device, without depleting the energy storage device or stalling the engine in any work cycle, while making optimal use of the energy saving opportunities in a given operational, often repetitive cycle. In the worst case scenario, only engine is used and hybrid system completely disabled. A rule based control is developed and tuned for different work cycles and linked to a gain scheduling algorithm. A gain scheduling algorithm identifies the cycle being performed by the machine and its position via GPS, and maps them to the gains.

  14. Republic of the Marshall Islands. Energy Project Development Options and Technical Assessment (2013)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conrad, Misty Dawn; Olis, Dan; Ness, J. Erik

    2015-09-01

    The advancement of renewable energy and energy efficient technologies continues to be fluid. There are many technical opportunities and strategies that can be utilized to guide communities to deploy cost-effective commercial alternative energy options; however, to achieve aggressive economic, environmental, and security goals, it requires a comprehensive, integrated approach. This document reports on the initial findings of an energy assessment that was conducted for the Republic of the Marshall Islands.

  15. A Strategy for American Power: Energy, Climate and National Security

    DTIC Science & Technology

    2008-06-01

    principle applies to the suppliers of energy, particularly oil, since the United States gets...outlined four principles : • Human-induced climate change is real; • The consequences of climate change will be significant and will hit the poor...savings, in terms of higher macroeconomic output in times of energy price volatility, associated with the development of nuclear capacity in Japan.

  16. Advanced materials for energy storage.

    PubMed

    Liu, Chang; Li, Feng; Ma, Lai-Peng; Cheng, Hui-Ming

    2010-02-23

    Popularization of portable electronics and electric vehicles worldwide stimulates the development of energy storage devices, such as batteries and supercapacitors, toward higher power density and energy density, which significantly depends upon the advancement of new materials used in these devices. Moreover, energy storage materials play a key role in efficient, clean, and versatile use of energy, and are crucial for the exploitation of renewable energy. Therefore, energy storage materials cover a wide range of materials and have been receiving intensive attention from research and development to industrialization. In this Review, firstly a general introduction is given to several typical energy storage systems, including thermal, mechanical, electromagnetic, hydrogen, and electrochemical energy storage. Then the current status of high-performance hydrogen storage materials for on-board applications and electrochemical energy storage materials for lithium-ion batteries and supercapacitors is introduced in detail. The strategies for developing these advanced energy storage materials, including nanostructuring, nano-/microcombination, hybridization, pore-structure control, configuration design, surface modification, and composition optimization, are discussed. Finally, the future trends and prospects in the development of advanced energy storage materials are highlighted.

  17. Blueprint for Success: An Energy Education Unit Management Plan.

    ERIC Educational Resources Information Center

    National Energy Education Development Project, Reston, VA.

    This energy education unit contains activities and classroom management strategies that emphasize cooperative learning and peer teaching. The activities are designed to develop students' science, math, language arts, and social studies skills and knowledge. Students' critical thinking, leadership, and problem solving skills will be enhanced as…

  18. Overview of the wind energy market and renewable energy policy in Romania

    NASA Astrophysics Data System (ADS)

    Chioncel, C. P.; Tirian, G. O.; Gillich, N.; Hatiegan, C.; Spunei, E.

    2017-01-01

    The modern, developed society becomes aware of the necessity to conserve and protect the environment, increasing the gained benefits from a rational use of the natural resources. The pollution and the limitation of the fossil fuels, associated with the political situation worldwide that affects direct the energy strategies, have opened opportunities in the area of operation renewable energy sources. The development of the exploitation of renewable energy sources is directly linked to the energy politic, which, in terms of Romania, has the focus to integrate into the European Union energy strategy. The year 2014 brought in Romania many legislative changes to the renewable support scheme, that proves, once again, the legislative unpredictability and limitations introduced by the legislator ”during the game” that overthrew all economic profitability calculation of the existent and planned investments in this sector. The actual stage of the wind energy across Europe and the particular situation in Romania are highlighted; also a 2020 forecast for Romania tries to evaluate the perspective for the wind, and general, renewable energy market. The actual Romanian renewable energy support scheme, mainly regulated by “Law 220/2008” ends December 2016. The so-called “ready to build” projects especially wind- or hydropower, can’t be finalized until this deadline, being unable to qualify to the existing, mainly to inoperable, support scheme. Another legislation that has to clarify how investments in renewable energy will be supported is still not in place, blocking any project development, implementation and economical benefit of the producer. The paper presents in this respect an updated overview of the Romanian renewable energy sector and its perspective.

  19. Smart EV Energy Management System to Support Grid Services

    NASA Astrophysics Data System (ADS)

    Wang, Bin

    Under smart grid scenarios, the advanced sensing and metering technologies have been applied to the legacy power grid to improve the system observability and the real-time situational awareness. Meanwhile, there is increasing amount of distributed energy resources (DERs), such as renewable generations, electric vehicles (EVs) and battery energy storage system (BESS), etc., being integrated into the power system. However, the integration of EVs, which can be modeled as controllable mobile energy devices, brings both challenges and opportunities to the grid planning and energy management, due to the intermittency of renewable generation, uncertainties of EV driver behaviors, etc. This dissertation aims to solve the real-time EV energy management problem in order to improve the overall grid efficiency, reliability and economics, using online and predictive optimization strategies. Most of the previous research on EV energy management strategies and algorithms are based on simplified models with unrealistic assumptions that the EV charging behaviors are perfectly known or following known distributions, such as the arriving time, leaving time and energy consumption values, etc. These approaches fail to obtain the optimal solutions in real-time because of the system uncertainties. Moreover, there is lack of data-driven strategy that performs online and predictive scheduling for EV charging behaviors under microgrid scenarios. Therefore, we develop an online predictive EV scheduling framework, considering uncertainties of renewable generation, building load and EV driver behaviors, etc., based on real-world data. A kernel-based estimator is developed to predict the charging session parameters in real-time with improved estimation accuracy. The efficacy of various optimization strategies that are supported by this framework, including valley-filling, cost reduction, event-based control, etc., has been demonstrated. In addition, the existing simulation-based approaches do not consider a variety of practical concerns of implementing such a smart EV energy management system, including the driver preferences, communication protocols, data models, and customized integration of existing standards to provide grid services. Therefore, this dissertation also solves these issues by designing and implementing a scalable system architecture to capture the user preferences, enable multi-layer communication and control, and finally improve the system reliability and interoperability.

  20. Electricity from biomass: A development strategy

    NASA Astrophysics Data System (ADS)

    1992-04-01

    The purpose of this document is to review the current status of biomass power technology and to evaluate the future directions for development that could significantly enhance the contribution of biomass power to U.S. production of electricity. This document reviews the basic principles of biomass electric systems, the previous contributions of industry and the National Biomass Energy Programs to technology development, and the options for future technology development. It discusses the market for biomass electric technology and future needs for electric power production to help establish a market-oriented development strategy. It projects trends in the performance and cost of the technology and examines the changing dynamics of the power generation market place to evaluate specific opportunities for biomass power development. In a separate document, the Biomass Power Program Five Year R&D Plan, the details of schedules, funding, and roles of participating R&D organizations within the R&D program funded by the U.S. Department of Energy (DOE) are presented. In evaluating the future directions for research and development, two cases are examined.

  1. Air-to-Water Heat Pumps With Radiant Delivery in Low-Load Homes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Backman, C.; German, A.; Dakin, B.

    2013-12-01

    Space conditioning represents nearly 50% of average residential household energy consumption, highlighting the need to identify alternative cost-effective, energy-efficient cooling and heating strategies. As homes are better built, there is an increasing need for strategies that are particularly well suited for high performance, low load homes. ARBI researchers worked with two test homes in hot-dry climates to evaluate the in-situ performance of air-to-water heat pump (AWHP) systems, an energy efficient space conditioning solution designed to cost-effectively provide comfort in homes with efficient, safe, and durable operation. Two monitoring projects of test houses in hot-dry climates were initiated in 2010 tomore » test this system. Both systems were fully instrumented and have been monitored over one year to capture complete performance data over the cooling and heating seasons. Results are used to quantify energy savings, cost-effectiveness, and system performance using different operating modes and strategies. A calibrated TRNSYS model was developed and used to evaluate performance in various climate regions. This strategy is most effective in tight, insulated homes with high levels of thermal mass (i.e. exposed slab floors).« less

  2. Global Stress Classification System for Materials Used in Solar Energy Applications

    NASA Astrophysics Data System (ADS)

    Slamova, Karolina; Schill, Christian; Herrmann, Jan; Datta, Pawan; Chih Wang, Chien

    2016-08-01

    Depending on the geographical location, the individual or combined impact of environmental stress factors and corresponding performance losses for solar applications varies significantly. Therefore, as a strategy to reduce investment risks and operating and maintenance costs, it is necessary to adapt the materials and components of solar energy systems specifically to regional environmental conditions. The project «GloBe Solar» supports this strategy by focusing on the development of a global stress classification system for materials in solar energy applications. The aim of this classification system is to assist in the identification of the individual stress conditions for every location on the earth's surface. The stress classification system could serve as a decision support tool for the industry (manufacturers, investors, lenders and project developers) and help to improve knowledge and services that can provide higher confidence to solar power systems.

  3. Sadie Cox | NREL

    Science.gov Websites

    , advancing technical solutions for resilient power systems, and assessing development impacts of clean energy applications in developing countries Distributed generation policies and impacts Education M.A. in global Impacts Associated with Low Emission Development Strategies: Lessons Learned from Pilot Efforts in Kenya

  4. Heating, Ventilation, and Air Conditioning Design Strategy for a Hot-Humid Production Builder

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kerrigan, P.

    2014-03-01

    BSC worked directly with the David Weekley Homes - Houston division to redesign three floor plans in order to locate the HVAC system in conditioned space. The purpose of this project is to develop a cost effective design for moving the HVAC system into conditioned space. In addition, BSC conducted energy analysis to calculate the most economical strategy for increasing the energy performance of future production houses. This is in preparation for the upcoming code changes in 2015. The builder wishes to develop an upgrade package that will allow for a seamless transition to the new code mandate. The followingmore » research questions were addressed by this research project: 1. What is the most cost effective, best performing and most easily replicable method of locating ducts inside conditioned space for a hot-humid production home builder that constructs one and two story single family detached residences? 2. What is a cost effective and practical method of achieving 50% source energy savings vs. the 2006 International Energy Conservation Code for a hot-humid production builder? 3. How accurate are the pre-construction whole house cost estimates compared to confirmed post construction actual cost? BSC and the builder developed a duct design strategy that employs a system of dropped ceilings and attic coffers for moving the ductwork from the vented attic to conditioned space. The furnace has been moved to either a mechanical closet in the conditioned living space or a coffered space in the attic.« less

  5. HVAC Design Strategy for a Hot-Humid Production Builder, Houston, Texas (Fact Sheet)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    BSC worked directly with the David Weekley Homes - Houston division to redesign three floor plans in order to locate the HVAC system in conditioned space. The purpose of this project is to develop a cost effective design for moving the HVAC system into conditioned space. In addition, BSC conducted energy analysis to calculate the most economical strategy for increasing the energy performance of future production houses. This is in preparation for the upcoming code changes in 2015. The builder wishes to develop an upgrade package that will allow for a seamless transition to the new code mandate. The followingmore » research questions were addressed by this research project: 1. What is the most cost effective, best performing and most easily replicable method of locating ducts inside conditioned space for a hot-humid production home builder that constructs one and two story single family detached residences? 2. What is a cost effective and practical method of achieving 50% source energy savings vs. the 2006 International Energy Conservation Code for a hot-humid production builder? 3. How accurate are the pre-construction whole house cost estimates compared to confirmed post construction actual cost? BSC and the builder developed a duct design strategy that employs a system of dropped ceilings and attic coffers for moving the ductwork from the vented attic to conditioned space. The furnace has been moved to either a mechanical closet in the conditioned living space or a coffered space in the attic.« less

  6. Hybrid AC-High Voltage DC Grid Stability and Controls

    NASA Astrophysics Data System (ADS)

    Yu, Jicheng

    The growth of energy demands in recent years has been increasing faster than the expansion of transmission facility construction. This tendency cooperating with the continuous investing on the renewable energy resources drives the research, development, and construction of HVDC projects to create a more reliable, affordable, and environmentally friendly power grid. Constructing the hybrid AC-HVDC grid is a significant move in the development of the HVDC techniques; the form of dc system is evolving from the point-to-point stand-alone dc links to the embedded HVDC system and the multi-terminal HVDC (MTDC) system. The MTDC is a solution for the renewable energy interconnections, and the MTDC grids can improve the power system reliability, flexibility in economic dispatches, and converter/cable utilizing efficiencies. The dissertation reviews the HVDC technologies, discusses the stability issues regarding the ac and HVDC connections, proposes a novel power oscillation control strategy to improve system stability, and develops a nonlinear voltage droop control strategy for the MTDC grid. To verify the effectiveness the proposed power oscillation control strategy, a long distance paralleled AC-HVDC transmission test system is employed. Based on the PSCAD/EMTDC platform simulation results, the proposed power oscillation control strategy can improve the system dynamic performance and attenuate the power oscillations effectively. To validate the nonlinear voltage droop control strategy, three droop controls schemes are designed according to the proposed nonlinear voltage droop control design procedures. These control schemes are tested in a hybrid AC-MTDC system. The hybrid AC-MTDC system, which is first proposed in this dissertation, consists of two ac grids, two wind farms and a five-terminal HVDC grid connecting them. Simulation studies are performed in the PSCAD/EMTDC platform. According to the simulation results, all the three design schemes have their unique salient features.

  7. Solar-energy production and energy-efficient lighting: photovoltaic devices and white-light-emitting diodes using poly(2,7-fluorene), poly(2,7-carbazole), and poly(2,7-dibenzosilole) derivatives.

    PubMed

    Beaupré, Serge; Boudreault, Pierre-Luc T; Leclerc, Mario

    2010-02-23

    World energy needs grow each year. To address global warming and climate changes the search for renewable energy sources with limited greenhouse gas emissions and the development of energy-efficient lighting devices are underway. This Review reports recent progress made in the synthesis and characterization of conjugated polymers based on bridged phenylenes, namely, poly(2,7-fluorene)s, poly(2,7-carbazole)s, and poly(2,7-dibenzosilole)s, for applications in solar cells and white-light-emitting diodes. The main strategies and remaining challenges in the development of reliable and low-cost renewable sources of energy and energy-saving lighting devices are discussed.

  8. Saving energy and protecting environment of electric vehicles

    NASA Astrophysics Data System (ADS)

    Yuan, Lina; Chen, Huajun; Gong, Jing

    2017-05-01

    With the concept of low carbon economy, saving energy, and protecting environment spread, the development of the electric promotes the research pace of wireless charging electronic vehicles, which will become the best choice of energy supply in the future. To generalize and exploit the corresponding alternative fuels and the research and development, and promotion of electric vehicles, becomes the effective means to directly reduce the consumption of fuel, effectively relieves the problem of nervous energy and environmental pollution, and really conforms to the requirements of the national strategy of sustainable development in China. This paper introduces the status of electronic cars and wireless charging, expounds the principle of wireless charging, and concludes the full text.

  9. Reducing aeration energy consumption in a large-scale membrane bioreactor: Process simulation and engineering application.

    PubMed

    Sun, Jianyu; Liang, Peng; Yan, Xiaoxu; Zuo, Kuichang; Xiao, Kang; Xia, Junlin; Qiu, Yong; Wu, Qing; Wu, Shijia; Huang, Xia; Qi, Meng; Wen, Xianghua

    2016-04-15

    Reducing the energy consumption of membrane bioreactors (MBRs) is highly important for their wider application in wastewater treatment engineering. Of particular significance is reducing aeration in aerobic tanks to reduce the overall energy consumption. This study proposed an in situ ammonia-N-based feedback control strategy for aeration in aerobic tanks; this was tested via model simulation and through a large-scale (50,000 m(3)/d) engineering application. A full-scale MBR model was developed based on the activated sludge model (ASM) and was calibrated to the actual MBR. The aeration control strategy took the form of a two-step cascaded proportion-integration (PI) feedback algorithm. Algorithmic parameters were optimized via model simulation. The strategy achieved real-time adjustment of aeration amounts based on feedback from effluent quality (i.e., ammonia-N). The effectiveness of the strategy was evaluated through both the model platform and the full-scale engineering application. In the former, the aeration flow rate was reduced by 15-20%. In the engineering application, the aeration flow rate was reduced by 20%, and overall specific energy consumption correspondingly reduced by 4% to 0.45 kWh/m(3)-effluent, using the present practice of regulating the angle of guide vanes of fixed-frequency blowers. Potential energy savings are expected to be higher for MBRs with variable-frequency blowers. This study indicated that the ammonia-N-based aeration control strategy holds promise for application in full-scale MBRs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Mapping the energy footprint of produced water management in New Mexico

    NASA Astrophysics Data System (ADS)

    Zemlick, Katie; Kalhor, Elmira; Thomson, Bruce M.; Chermak, Janie M.; Sullivan Graham, Enid J.; Tidwell, Vincent C.

    2018-02-01

    Hydraulic fracturing (HF) and horizontal drilling have revolutionized the fossil fuel industry by enabling production from unconventional oil and gas (UOG) reserves. However, UOG development requires large volumes of water, and subsequent oil and gas production from both conventional and unconventional wells generate large volumes of produced water (PW). While PW is usually considered a waste product, its reuse may lessen demand for freshwater supplies, reduce costs for transportation and disposal, and reduce the risks for injection-induced seismicity. Whether this water is disposed of or treated and reused, both methods require significant amounts of energy. The objective of this study was to identify the primary energy demands of alternative water management strategies, and to characterize and quantify their geographic variability in four oil and gas producing basins in New Mexico using a single year of production. Results illustrate the importance of each component of each produced water management strategy in determining its total energy footprint. Based on 2015 production and water use data, the energy to extract fresh groundwater for hydraulic fracturing (34 GWh-th yr-1.) exceeds the energy that would be required if the same volume of PW were treated chemically (19 GWh-th yr-1.). In addition, the energy required to transport fresh water and dispose of PW (167 GWh-th yr-1.) is far greater than that required to move treated PW (8 GWh-th yr-1.) to a point of reuse. Furthermore, transportation distances, which contribute significantly to the total energy footprint of a given management strategy, are underestimated by nearly 50% state-wide. This indicates that reuse may be an even more energy efficient way to manage PW, even with energy-intensive treatment strategies like electrocoagulation. Reuse of PW for HF is not only more energy efficient than conventional management techniques, it also reduces both demand for scarce fresh water resources and use of disposal wells. By evaluating components of each management strategy individually, this work illustrates how the energy footprint of regional PW management can be reduced. The advent of UOG recovery in the last decade highlights the need to understand existing water management in the industry, identify opportunities and strategies for improvement, and recognize that these dynamics are likely to change into the future.

  11. Abstract - Cooperative Research and Development Agreement between Ames National Laboratory and National Energy Technology Laboratory AGMT-0609

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bryden, Mark; Tucker, David A.

    The goal of this project is to develop a merged environment for simulation and analysis (MESA) at the National Energy Technology Laboratory’s (NETL) Hybrid Performance (Hyper) project laboratory. The MESA sensor lab developed as a component of this research will provide a development platform for investigating: 1) advanced control strategies, 2) testing and development of sensor hardware, 3) various modeling in-the-loop algorithms and 4) other advanced computational algorithms for improved plant performance using sensors, real-time models, and complex systems tools.

  12. Prospective scenarios of nuclear energy evolution over the 21. century

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Massara, S.; Tetart, P.; Garzenne, C.

    2006-07-01

    In this paper, different world scenarios of nuclear energy development over the 21. century are analyzed, by means of the EDF fuel cycle simulation code for nuclear scenario studies, TIRELIRE - STRATEGIE. Three nuclear demand scenarios are considered, and the performance of different nuclear strategies in satisfying these scenarios is analyzed and discussed, focusing on natural uranium consumption and industrial requirements related to the nuclear reactors and the associated fuel cycle facilities. Both thermal-spectrum systems (Pressurized Water Reactor and High Temperature Gas-cooled Reactor) and Fast Reactors are investigated. (authors)

  13. The Next Breakthrough for Organic Photovoltaics?

    PubMed

    Jackson, Nicholas E; Savoie, Brett M; Marks, Tobin J; Chen, Lin X; Ratner, Mark A

    2015-01-02

    While the intense focus on energy level tuning in organic photovoltaic materials has afforded large gains in device performance, we argue here that strategies based on microstructural/morphological control are at least as promising in any rational design strategy. In this work, a meta-analysis of ∼150 bulk heterojunction devices fabricated with different materials combinations is performed and reveals strong correlations between power conversion efficiency and morphology-dominated properties (short-circuit current, fill factor) and surprisingly weak correlations between efficiency and energy level positioning (open-circuit voltage, enthalpic offset at the interface, optical gap). While energy level positioning should in principle provide the theoretical maximum efficiency, the optimization landscape that must be navigated to reach this maximum is unforgiving. Thus, research aimed at developing understanding-based strategies for more efficient optimization of an active layer microstructure and morphology are likely to be at least as fruitful.

  14. Design and Control of Integrated Systems for Hydrogen Production and Power Generation

    NASA Astrophysics Data System (ADS)

    Georgis, Dimitrios

    Growing concerns on CO2 emissions have led to the development of highly efficient power plants. Options for increased energy efficiencies include alternative energy conversion pathways, energy integration and process intensification. Solid oxide fuel cells (SOFC) constitute a promising alternative for power generation since they convert the chemical energy electrochemically directly to electricity. Their high operating temperature shows potential for energy integration with energy intensive units (e.g. steam reforming reactors). Although energy integration is an essential tool for increased efficiencies, it leads to highly complex process schemes with rich dynamic behavior, which are challenging to control. Furthermore, the use of process intensification for increased energy efficiency imposes an additional control challenge. This dissertation identifies and proposes solutions on design, operational and control challenges of integrated systems for hydrogen production and power generation. Initially, a study on energy integrated SOFC systems is presented. Design alternatives are identified, control strategies are proposed for each alternative and their validity is evaluated under different operational scenarios. The operational range of the proposed control strategies is also analyzed. Next, thermal management of water gas shift membrane reactors, which are a typical application of process intensification, is considered. Design and operational objectives are identified and a control strategy is proposed employing advanced control algorithms. The performance of the proposed control strategy is evaluated and compared with classical control strategies. Finally SOFC systems for combined heat and power applications are considered. Multiple recycle loops are placed to increase design flexibility. Different operational objectives are identified and a nonlinear optimization problem is formulated. Optimal designs are obtained and their features are discussed and compared. The results of the dissertation provide a deeper understanding on the design, operational and control challenges of the above systems and can potentially guide further commercialization efforts. In addition to this, the results can be generalized and used for applications from the transportation and residential sector to large--scale power plants.

  15. Fiscal 1993 U.S. Science Budget request released

    NASA Astrophysics Data System (ADS)

    Bush, Susan; Simarski, Lynn Teo; DeVito, M. Catherine

    1992-02-01

    DOE's proposed budget for fiscal 1993 is $19.4 billion, almost level with fiscal 1992's $19 billion. Of that, $5.5 billion is targeted for environmental cleanup at DOE facilities, an increase of $1.16 billion. DOE's portion of research and development related to the National Energy Strategy is $725 million, up 16% from 1992. Funding for defense activities is down 9% to $7.5 billion from $8.3 billion.According to DOE Secretary James D. Watkins, “Congressional enactment of a comprehensive and balanced legislative package is needed to implement fully the president's National Energy Strategy.” As such, there are provisions in the fiscal 1993 DOE budget for advanced energy technology R&D to reduce energy consumption, increase fuel flexibility, and improve U.S. competitiveness in world markets.

  16. Win-Win for Wind and Wildlife: A Vision to Facilitate Sustainable Development

    PubMed Central

    Kiesecker, Joseph M.; Evans, Jeffrey S.; Fargione, Joe; Doherty, Kevin; Foresman, Kerry R.; Kunz, Thomas H.; Naugle, Dave; Nibbelink, Nathan P.; Niemuth, Neal D.

    2011-01-01

    Wind energy offers the potential to reduce carbon emissions while increasing energy independence and bolstering economic development. However, wind energy has a larger land footprint per Gigawatt (GW) than most other forms of energy production, making appropriate siting and mitigation particularly important. Species that require large unfragmented habitats and those known to avoid vertical structures are particularly at risk from wind development. Developing energy on disturbed lands rather than placing new developments within large and intact habitats would reduce cumulative impacts to wildlife. The U.S. Department of Energy estimates that it will take 241 GW of terrestrial based wind development on approximately 5 million hectares to reach 20% electricity production for the U.S. by 2030. We estimate there are ∼7,700 GW of potential wind energy available across the U.S., with ∼3,500 GW on disturbed lands. In addition, a disturbance-focused development strategy would avert the development of ∼2.3 million hectares of undisturbed lands while generating the same amount of energy as development based solely on maximizing wind potential. Wind subsidies targeted at favoring low-impact developments and creating avoidance and mitigation requirements that raise the costs for projects impacting sensitive lands could improve public value for both wind energy and biodiversity conservation. PMID:21533285

  17. Win-win for wind and wildlife: a vision to facilitate sustainable development.

    PubMed

    Kiesecker, Joseph M; Evans, Jeffrey S; Fargione, Joe; Doherty, Kevin; Foresman, Kerry R; Kunz, Thomas H; Naugle, Dave; Nibbelink, Nathan P; Niemuth, Neal D

    2011-04-13

    Wind energy offers the potential to reduce carbon emissions while increasing energy independence and bolstering economic development. However, wind energy has a larger land footprint per Gigawatt (GW) than most other forms of energy production, making appropriate siting and mitigation particularly important. Species that require large unfragmented habitats and those known to avoid vertical structures are particularly at risk from wind development. Developing energy on disturbed lands rather than placing new developments within large and intact habitats would reduce cumulative impacts to wildlife. The U.S. Department of Energy estimates that it will take 241 GW of terrestrial based wind development on approximately 5 million hectares to reach 20% electricity production for the U.S. by 2030. We estimate there are ∼7,700 GW of potential wind energy available across the U.S., with ∼3,500 GW on disturbed lands. In addition, a disturbance-focused development strategy would avert the development of ∼2.3 million hectares of undisturbed lands while generating the same amount of energy as development based solely on maximizing wind potential. Wind subsidies targeted at favoring low-impact developments and creating avoidance and mitigation requirements that raise the costs for projects impacting sensitive lands could improve public value for both wind energy and biodiversity conservation.

  18. Strategic Energy Planning (Area 1) Consultants Reports to Citizen Potawatomi Nation Federally Recognized Indian Tribe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Marvin; Bose, James; Beier, Richard

    2004-12-01

    The assets that Citizen Potawatomi Nation holds were evaluated to help define the strengths and weaknesses to be used in pursuing economic prosperity. With this baseline assessment, a Planning Team will create a vision for the tribe to integrate into long-term energy and business strategies. Identification of energy efficiency devices, systems and technologies was made, and an estimation of cost benefits of the more promising ideas is submitted for possible inclusion into the final energy plan. Multiple energy resources and sources were identified and their attributes were assessed to determine the appropriateness of each. Methods of saving energy were evaluatedmore » and reported on and potential revenue-generating sources that specifically fit the tribe were identified and reported. A primary goal is to create long-term energy strategies to explore development of tribal utility options and analyze renewable energy and energy efficiency options. Associated goals are to consider exploring energy efficiency and renewable economic development projects involving the following topics: (1) Home-scale projects may include construction of a home with energy efficiency or renewable energy features and retrofitting an existing home to add energy efficiency or renewable energy features. (2) Community-scale projects may include medium to large scale energy efficiency building construction, retrofit project, or installation of community renewable energy systems. (3) Small business development may include the creation of a tribal enterprise that would manufacture and distribute solar and wind powered equipment for ranches and farms or create a contracting business to include energy efficiency and renewable retrofits such as geothermal heat pumps. (4) Commercial-scale energy projects may include at a larger scale, the formation of a tribal utility formed to sell power to the commercial grid, or to transmit and distribute power throughout the tribal community, or hydrogen production, and propane and natural-gas distribution systems.« less

  19. Fuzzy Energy Management for a Catenary-Battery-Ultracapacitor based Hybrid Tramway

    NASA Astrophysics Data System (ADS)

    Jibin, Yang; Jiye, Zhang; Pengyun, Song

    2017-05-01

    In this paper, an energy management strategy (EMS) based on fuzzy logic control for a catenary-battery-ultracapacitor powered hybrid modern tramway was presented. The fuzzy logic controller for the catenary zone and catenary-less zone was respectively designed by analyzing the structure and working mode of the hybrid system, then an energy management strategy based on double fuzzy logic control was proposed to enhance the fuel economy. The hybrid modern tramway simulation model was developed based on MATLAB/Simulink environment. The simulation results show that the proposed EMS can satisfy the demand of dynamic performance of the tramway and achieve the power distribution reasonably between the each power source.

  20. Building Environment Analysis based on Temperature and Humidity for Smart Energy Systems

    PubMed Central

    Yun, Jaeseok; Won, Kwang-Ho

    2012-01-01

    In this paper, we propose a new HVAC (heating, ventilation, and air conditioning) control strategy as part of the smart energy system that can balance occupant comfort against building energy consumption using ubiquitous sensing and machine learning technology. We have developed ZigBee-based wireless sensor nodes and collected realistic temperature and humidity data during one month from a laboratory environment. With the collected data, we have established a building environment model using machine learning algorithms, which can be used to assess occupant comfort level. We expect the proposed HVAC control strategy will be able to provide occupants with a consistently comfortable working or home environment. PMID:23202004

  1. Interaction region design driven by energy deposition

    NASA Astrophysics Data System (ADS)

    Martin, Roman; Besana, Maria Ilaria; Cerutti, Francesco; Langner, Andy; Tomás, Rogelio; Cruz-Alaniz, Emilia; Dalena, Barbara

    2017-08-01

    The European Strategy Group for High Energy Physics recommends to study collider designs for the post-LHC era. Among the suggested projects there is the circular 100 TeV proton-proton collider FCC-hh. Starting from LHC and its proposed upgrade HL-LHC, this paper outlines the development of the interaction region design for FCC-hh. We identify energy deposition from debris of the collision events as a driving factor for the layout and draft the guiding principles to unify protection of the superconducting final focus magnets from radiation with a high luminosity performance. Furthermore, we offer a novel strategy to mitigate the lifetime limitation of the first final focus magnet due to radiation load, the Q1 split.

  2. Experimental model of a wind energy conversion system

    NASA Astrophysics Data System (ADS)

    Vasar, C.; Rat, C. L.; Prostean, O.

    2018-01-01

    The renewable energy domain represents an important issue for the sustainable development of the mankind in the actual context of increasing demand for energy along with the increasing pollution that affect the environment. A significant quota of the clean energy is represented by the wind energy. As a consequence, the developing of wind energy conversion systems (WECS) in order to achieve high energetic performances (efficiency, stability, availability, competitive cost etc) represents a topic of permanent actuality. Testing and developing of an optimized control strategy for a WECS direct implemented on a real energetic site is quite difficult and not cost efficient. Thus a more convenient solution consists in a flexible laboratory setup which requires an experimental model of a WECS. Such approach would allow the simulation of various real conditions very similar with existing energetic sites. This paper presents a grid-connected wind turbine emulator. The wind turbine is implemented through a real-time Hardware-in-the-Loop (HIL) emulator, which will be analyzed extensively in the paper. The HIL system uses software implemented in the LabVIEW programming environment to control an ABB ACS800 electric drive. ACS800 has the task of driving an induction machine coupled to a permanent magnet synchronous generator. The power obtained from the synchronous generator is rectified, filtered and sent to the main grid through a controlled inverter. The control strategy is implemented on a NI CompactRIO (cRIO) platform.

  3. Industrial Sector Energy Efficiency Modeling (ISEEM) Framework Documentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karali, Nihan; Xu, Tengfang; Sathaye, Jayant

    2012-12-12

    The goal of this study is to develop a new bottom-up industry sector energy-modeling framework with an agenda of addressing least cost regional and global carbon reduction strategies, improving the capabilities and limitations of the existing models that allows trading across regions and countries as an alternative.

  4. Providing Decision-Relevant Information for a State Climate Change Action Plan

    NASA Astrophysics Data System (ADS)

    Wake, C.; Frades, M.; Hurtt, G. C.; Magnusson, M.; Gittell, R.; Skoglund, C.; Morin, J.

    2008-12-01

    Carbon Solutions New England (CSNE), a public-private partnership formed to promote collective action to achieve a low carbon society, has been working with the Governor appointed New Hampshire Climate Change Policy Task Force (NHCCTF) to support the development of a state Climate Change Action Plan. CSNE's role has been to quantify the potential carbon emissions reduction, implementation costs, and cost savings at three distinct time periods (2012, 2025, 2050) for a range of strategies identified by the Task Force. These strategies were developed for several sectors (transportation and land use, electricity generation and use, building energy use, and agriculture, forestry, and waste).New Hampshire's existing and projected economic and population growth are well above the regional average, creating additional challenges for the state to meet regional emission reduction targets. However, by pursuing an ambitious suite of renewable energy and energy efficiency strategies, New Hampshire may be able to continue growing while reducing emissions at a rate close to 3% per year up to 2025. This suite includes efficiency improvements in new and existing buildings, a renewable portfolio standard for electricity generation, avoiding forested land conversion, fuel economy gains in new vehicles, and a reduction in vehicle miles traveled. Most (over 80%) of these emission reduction strategies are projected to provide net economic savings in 2025.A collaborative and iterative process was developed among the key partners in the project. The foundation for the project's success included: a diverse analysis team with leadership that was committed to the project, an open source analysis approach, weekly meetings and frequent communication among the partners, interim reporting of analysis, and an established and trusting relationship among the partners, in part due to collaboration on previous projects.To develop decision-relevant information for the Task Force, CSNE addressed several challenges, including: allocating the emission reduction and economic impacts of local- to state-scale mitigation strategies that are in reality integrated on regional and/or national scales; incorporating changes to the details of the strategies over time; identifying and quantifying key variables; choosing appropriate levels of detail for over 100 strategies within the limited analysis timeframe; integrating individual strategies into a coherent whole; and structuring data presentation to maximize transparency of analysis without confusing or overwhelming decision makers.

  5. The EU sustainable energy policy indicators framework.

    PubMed

    Streimikiene, Dalia; Sivickas, Gintautas

    2008-11-01

    The article deals with indicators framework to monitor implementation of the main EU (European Union) directives and other policy documents targeting sustainable energy development. The main EU directives which have impact on sustainable energy development are directives promoting energy efficiency and use of renewable energy sources, directives implementing greenhouse gas mitigation and atmospheric pollution reduction policies and other policy documents and strategies targeting energy sector. Promotion of use of renewable energy sources and energy efficiency improvements are among priorities of EU energy policy because the use of renewable energy sources and energy efficiency improvements has positive impact on energy security and climate change mitigation. The framework of indicators can be developed to establish the main targets set by EU energy and environmental policies allowing to connect indicators via chain of mutual impacts and to define policies and measures necessary to achieve established targets based on assessment of their impact on the targeted indicators representing sustainable energy development aims. The article discusses the application of indicators framework for EU sustainable energy policy analysis and presents the case study of this policy tool application for Baltic States. The article also discusses the use of biomass in Baltic States and future considerations in this field.

  6. New Energy Efficient Housing Has Reduced Carbon Footprints in Outer but Not in Inner Urban Areas.

    PubMed

    Ottelin, Juudit; Heinonen, Jukka; Junnila, Seppo

    2015-08-18

    Avoiding urban sprawl and increasing density are often considered as effective means to mitigate climate change through urban planning. However, there have been rapid technological changes in the fields of housing energy and private driving, and the development is continuing. In this study, we analyze the carbon footprints of the residents living in new housing in different urban forms in Finland. We compare the new housing to existing housing stock. In all areas, the emissions from housing energy were significantly lower in new buildings. However, in the inner urban areas the high level of consumption, mostly due to higher affluence, reverse the gains of energy efficient new housing. The smallest carbon footprints were found in newly built outer and peri-urban areas, also when income level differences were taken into account. Rather than strengthening the juxtaposition of urban and suburban areas, we suggest that it would be smarter to recognize the strengths and weaknesses of both modes of living and develop a more systemic strategy that would result in greater sustainability in both areas. Since such strategy does not exist yet, it should be researched and practically developed. It would be beneficial to focus on area specific mitigation measures.

  7. Optimal urban water conservation strategies considering embedded energy: coupling end-use and utility water-energy models.

    NASA Astrophysics Data System (ADS)

    Escriva-Bou, A.; Lund, J. R.; Pulido-Velazquez, M.; Spang, E. S.; Loge, F. J.

    2014-12-01

    Although most freshwater resources are used in agriculture, a greater amount of energy is consumed per unit of water supply for urban areas. Therefore, efforts to reduce the carbon footprint of water in cities, including the energy embedded within household uses, can be an order of magnitude larger than for other water uses. This characteristic of urban water systems creates a promising opportunity to reduce global greenhouse gas emissions, particularly given rapidly growing urbanization worldwide. Based on a previous Water-Energy-CO2 emissions model for household water end uses, this research introduces a probabilistic two-stage optimization model considering technical and behavioral decision variables to obtain the most economical strategies to minimize household water and water-related energy bills given both water and energy price shocks. Results show that adoption rates to reduce energy intensive appliances increase significantly, resulting in an overall 20% growth in indoor water conservation if household dwellers include the energy cost of their water use. To analyze the consequences on a utility-scale, we develop an hourly water-energy model based on data from East Bay Municipal Utility District in California, including the residential consumption, obtaining that water end uses accounts for roughly 90% of total water-related energy, but the 10% that is managed by the utility is worth over 12 million annually. Once the entire end-use + utility model is completed, several demand-side management conservation strategies were simulated for the city of San Ramon. In this smaller water district, roughly 5% of total EBMUD water use, we found that the optimal household strategies can reduce total GHG emissions by 4% and utility's energy cost over 70,000/yr. Especially interesting from the utility perspective could be the "smoothing" of water use peaks by avoiding daytime irrigation that among other benefits might reduce utility energy costs by 0.5% according to our assessment.

  8. Community-based assessment and planning of energy futures

    NASA Astrophysics Data System (ADS)

    Carnes, S. A.

    1981-04-01

    The decentralized solar energy technology assessment program is discussed. Four communities were involved in an assessment of the compatibility of diverse conservation and renewable energy supply technologies and community values and goals and in community planning for the implementation of compatible energy demand and supply alternatives. The community approach has several basic components: (1) recruiting and organizing for the assessment planning process; (2) collection and analysis of data related to community energy use and indigenous renewable energy resources; (3) creation and maintenance of a community education and information program; (4) development of policies favorable to the development of preferred community futures; and (5) development of implementation or action strategies. The role of public participation, group decision making techniques, the role of technical information in citizen and group decision making, and linkage between assessment planning and the relevant policy process are emphasized.

  9. Evaluating environmental impacts of alternative construction waste management approaches using supply-chain-linked life-cycle analysis.

    PubMed

    Kucukvar, Murat; Egilmez, Gokhan; Tatari, Omer

    2014-06-01

    Waste management in construction is critical for the sustainable treatment of building-related construction and demolition (C&D) waste materials, and recycling of these wastes has been considered as one of the best strategies in minimization of C&D debris. However, recycling of C&D materials may not always be a feasible strategy for every waste type and therefore recycling and other waste treatment strategies should be supported by robust decision-making models. With the aim of assessing the net carbon, energy, and water footprints of C&D recycling and other waste management alternatives, a comprehensive economic input-output-based hybrid life-cycle assessment model is developed by tracing all of the economy-wide supply-chain impacts of three waste management strategies: recycling, landfilling, and incineration. Analysis results showed that only the recycling of construction materials provided positive environmental footprint savings in terms of carbon, energy, and water footprints. Incineration is a better option as a secondary strategy after recycling for water and energy footprint categories, whereas landfilling is found to be as slightly better strategy when carbon footprint is considered as the main focus of comparison. In terms of construction materials' environmental footprint, nonferrous metals are found to have a significant environmental footprint reduction potential if recycled. © The Author(s) 2014.

  10. An Asset-Based Approach to Tribal Community Energy Planning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gutierrez, Rachael A.; Martino, Anthony; Begay, Sandra K.

    Community energy planning is a vital component of successful energy resource development and project implementation. Planning can help tribes develop a shared vision and strategies to accomplish their energy goals. This paper explores the benefits of an asset-based approach to tribal community energy planning. While a framework for community energy planning and federal funding already exists, some areas of difficulty in the planning cycle have been identified. This paper focuses on developing a planning framework that offsets those challenges. The asset-based framework described here takes inventory of a tribe’s capital assets, such as: land capital, human capital, financial capital, andmore » political capital. Such an analysis evaluates how being rich in a specific type of capital can offer a tribe unique advantages in implementing their energy vision. Finally, a tribal case study demonstrates the practical application of an asset-based framework.« less

  11. Cormack Research Project: Glasgow University

    NASA Technical Reports Server (NTRS)

    Skinner, Susan; Ryan, James M.

    1998-01-01

    The aim of this project was to investigate and improve upon existing methods of analysing data from COMITEL on the Gamma Ray Observatory for neutrons emitted during solar flares. In particular, a strategy for placing confidence intervals on neutron energy distributions, due to uncertainties on the response matrix has been developed. We have also been able to demonstrate the superior performance of one of a range of possible statistical regularization strategies. A method of generating likely models of neutron energy distributions has also been developed as a tool to this end. The project involved solving an inverse problem with noise being added to the data in various ways. To achieve this pre-existing C code was used to run Fortran subroutines which performed statistical regularization on the data.

  12. Community Based Approach to Wind Energy Information Dissemination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Innis, S.

    The purpose of the Department of Energy's grant was to transfer to New Mexico and Utah a national award-winning market-based strategy to aggregate demand for wind energy. Their experiences over the past few years in New Mexico and utah have been quite different. In both states they have developed stronger relationships with utilities and policymakers which will increase the effectiveness of the future advocacy efforts.

  13. Assessment of Biomass Resources in Afghanistan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Milbrandt, A.; Overend, R.

    2011-01-01

    Afghanistan is facing many challenges on its path of reconstruction and development. Among all its pressing needs, the country would benefit from the development and implementation of an energy strategy. In addition to conventional energy sources, the Afghan government is considering alternative options such as energy derived from renewable resources (wind, solar, biomass, geothermal). Biomass energy is derived from a variety of sources -- plant-based material and residues -- and can be used in various conversion processes to yield power, heat, steam, and fuel. This study provides policymakers and industry developers with information on the biomass resource potential in Afghanistanmore » for power/heat generation and transportation fuels production. To achieve this goal, the study estimates the current biomass resources and evaluates the potential resources that could be used for energy purposes.« less

  14. Short- and long-range energy strategies for Japan and the world after the Fukushima nuclear accident

    NASA Astrophysics Data System (ADS)

    Muraoka, K.; Wagner, F.; Yamagata, Y.; Donné, A. J. H.

    2016-01-01

    The accident at the Fukushima Dai-ichi nuclear power station in 2011 has caused profound effects on energy policies in Japan and worldwide. This is particularly because it occurred at the time of the growing awareness of global warming forcing measures towards decarbonised energy production, namely the use of fossil fuels has to be drastically reduced from the present level of more than 80% by 2050. A dilemma has now emerged because nuclear power, a CO2-free technology with proven large-scale energy production capability, lost confidence in many societies, especially in Japan and Germany. As a consequence, there is a world-wide effort now to expand renewable energies (REs), specifically photo-voltaic (PV) and wind power. However, the authors conjecture that PV and wind power can provide only up to a 40% share of the electricity production as long as sufficient storage is not available. Beyond this level, the technological (high grid power) and economic problems (large surplus production) grow. This is the result of the analysis of the growing use of REs in the electricity systems for Germany and Japan. The key element to overcome this situation is to develop suitable energy storage technologies. This is particularly necessary when electricity will become the main energy source because also transportation, process heat and heating, will be supplied by it. Facing the difficulty in replacing all fossil fuels in all countries with different technology standards, a rapid development of carbon capture and storage (CCS) might also be necessary. Therefore, for the short-range strategy up to 2050, all meaningful options have to be developed. For the long-range strategy beyond 2050, new energy sources (such as thermonuclear fusion, solar fuels and nuclear power—if inherently safe concepts will gain credibility of societies again), and large-scale energy storage systems based on novel concepts (such as large-capacity batteries and hydrogen) is required. It is acknowledged that the prediction of the future is difficult; therefore, the only insurance in this situation is by intensified research into all viable options.

  15. The rapid bi-level exploration on the evolution of regional solar energy development

    NASA Astrophysics Data System (ADS)

    Guan, Qing; An, Haizhong; Li, Huajiao; Hao, Xiaoqing

    2017-01-01

    As one of the renewable energy, solar energy is experiencing increased but exploratory development worldwide. The positive or negative influences of regional characteristics, like economy, production capacity and allowance policies, make them have uneven solar energy development. In this paper, we aim at quickly exploring the features of provincial solar energy development, and their concerns about solar energy. We take China as a typical case, and combine text mining and two-actor networks. We find that the classification of levels based on certain nodes and the amount of degree avoids missing meaningful information that may be ignored by global level results. Moreover, eastern provinces are hot focus for the media, western countries are key to bridge the networks and special administrative region has local development features; third, most focus points are more about the application than the improvement of material. The exploration of news provides practical information to adjust researches and development strategies of solar energy. Moreover, the bi-level exploration, which can also be expanded to multi-level, is helpful for governments or researchers to grasp more targeted and precise knowledge.

  16. Perchlorate and Halogen-Free High Energy Dense Oxidizers (HEDO)

    DTIC Science & Technology

    2011-06-01

    nitric acid indicate that the covalent oxalic acid dinitrate ester should be more stable than the ionic dinitronium oxalate . The following three...synthetic strategies were developed to generate compound 11 (Scheme 17). Strategy I is the nitration of anhydrous oxalic acid with nitric acid (100...temperatures (25 to –30 °C) and in all dry solvents used. Scheme 17: Synthetic strategies for the production of oxalic acid dinitrate ester (11

  17. [Can the local energy minimization refine the PDB structures of different resolution universally?].

    PubMed

    Godzi, M G; Gromova, A P; Oferkin, I V; Mironov, P V

    2009-01-01

    The local energy minimization was statistically validated as the refinement strategy for PDB structure pairs of different resolution. Thirteen pairs of structures with the only difference in resolution were extracted from PDB, and the structures of 11 identical proteins obtained by different X-ray diffraction techniques were represented. The distribution of RMSD value was calculated for these pairs before and after the local energy minimization of each structure. The MMFF94 field was used for energy calculations, and the quasi-Newton method was used for local energy minimization. By comparison of these two RMSD distributions, the local energy minimization was proved to statistically increase the structural differences in pairs so that it cannot be used for refinement purposes. To explore the prospects of complex refinement strategies based on energy minimization, randomized structures were obtained by moving the initial PDB structures as far as the minimized structures had been moved in a multidimensional space of atomic coordinates. For these randomized structures, the RMSD distribution was calculated and compared with that for minimized structures. The significant differences in their mean values proved the energy surface of the protein to have only few minima near the conformations of different resolution obtained by X-ray diffraction for PDB. Some other results obtained by exploring the energy surface near these conformations are also presented. These results are expected to be very useful for the development of new protein refinement strategies based on energy minimization.

  18. Maximum wind energy extraction strategies using power electronic converters

    NASA Astrophysics Data System (ADS)

    Wang, Quincy Qing

    2003-10-01

    This thesis focuses on maximum wind energy extraction strategies for achieving the highest energy output of variable speed wind turbine power generation systems. Power electronic converters and controls provide the basic platform to accomplish the research of this thesis in both hardware and software aspects. In order to send wind energy to a utility grid, a variable speed wind turbine requires a power electronic converter to convert a variable voltage variable frequency source into a fixed voltage fixed frequency supply. Generic single-phase and three-phase converter topologies, converter control methods for wind power generation, as well as the developed direct drive generator, are introduced in the thesis for establishing variable-speed wind energy conversion systems. Variable speed wind power generation system modeling and simulation are essential methods both for understanding the system behavior and for developing advanced system control strategies. Wind generation system components, including wind turbine, 1-phase IGBT inverter, 3-phase IGBT inverter, synchronous generator, and rectifier, are modeled in this thesis using MATLAB/SIMULINK. The simulation results have been verified by a commercial simulation software package, PSIM, and confirmed by field test results. Since the dynamic time constants for these individual models are much different, a creative approach has also been developed in this thesis to combine these models for entire wind power generation system simulation. An advanced maximum wind energy extraction strategy relies not only on proper system hardware design, but also on sophisticated software control algorithms. Based on literature review and computer simulation on wind turbine control algorithms, an intelligent maximum wind energy extraction control algorithm is proposed in this thesis. This algorithm has a unique on-line adaptation and optimization capability, which is able to achieve maximum wind energy conversion efficiency through continuously improving the performance of wind power generation systems. This algorithm is independent of wind power generation system characteristics, and does not need wind speed and turbine speed measurements. Therefore, it can be easily implemented into various wind energy generation systems with different turbine inertia and diverse system hardware environments. In addition to the detailed description of the proposed algorithm, computer simulation results are presented in the thesis to demonstrate the advantage of this algorithm. As a final confirmation of the algorithm feasibility, the algorithm has been implemented inside a single-phase IGBT inverter, and tested with a wind simulator system in research laboratory. Test results were found consistent with the simulation results. (Abstract shortened by UMI.)

  19. Mixed strategies for energy conservation and alternative energy utilization (solar) in buildings. Final report. Volume II. Detailed results. [New York, Atlanta, Omaha, and Albuquerque

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1977-06-01

    The mixed-strategy analysis was a tradeoff analysis between energy-conservation methods and an alternative energy source (solar) considering technical and economic benefits. The objective of the analysis was to develop guidelines for: reducing energy requirements; reducing conventional fuel use; and identifying economic alternatives for building owners. The analysis was done with a solar system in place. This makes the study unique in that it is determining the interaction of energy conservation with a solar system. The study, therefore, established guidelines as to how to minimize capital investment while reducing the conventional fuel consumption through either a larger solar system or anmore » energy-conserving technique. To focus the scope of energy-conservation techniques and alternative energy sources considered, five building types (house, apartment buildings, commercial buildings, schools, and office buildings) were selected. Finally, the lists of energy-conservation techniques and alternative energy sources were reduced to lists of manageable size by using technical attributes to select the best candidates for further study. The resultant energy-conservation techniques were described in detail and installed costs determined. The alternative energy source reduced to solar. Building construction characteristics were defined for each building for each of four geographic regions of the country. A mixed strategy consisting of an energy-conservation technique and solar heating/hot water/cooling system was analyzed, using computer simulation to determine the interaction between energy conservation and the solar system. Finally, using FEA fuel-price scenarios and installed costs for the solar system and energy conservation techniques, an economic analysis was performed to determine the cost effectiveness of the combination. (MCW)« less

  20. Local energy governance in vermont: an analysis of energy system transition strategies and actor capacity

    NASA Astrophysics Data System (ADS)

    Rowse, Tarah

    While global, national, and regional efforts to address climate and energy challenges remain essential, local governments and community groups are playing an increasingly stronger and vital role. As an active state in energy system policy, planning and innovation, Vermont offers a testing ground for research into energy governance at the local level. A baseline understanding of the energy planning and energy organizing activities initiated at the local level can support efforts to foster a transition to a sustainable energy system in Vermont. Following an inductive, applied and participatory approach, and grounded in the fields of sustainability transitions, energy planning, and community energy, this research project identifies conditions for change, including opportunities and challenges, within Vermont energy system decision-making and governance at the local level. The following questions are posed: What are the main opportunities and challenges for sustainable energy development at the town level? How are towns approaching energy planning? What are the triggers that will facilitate a faster transition to alternative energy systems, energy efficiency initiatives, and localized approaches? In an effort to answer these questions two studies were conducted: 1) an analysis of municipal energy plans, and 2) a survey of local energy actors. Study 1 examined Vermont energy planning at the state and local level through a review and comparison of 40 municipal plan energy chapters with the state 2011 Comprehensive Energy Plan. On average, municipal plans mentioned just over half of the 24 high-level strategies identified in the Comprehensive Energy Plan. Areas of strong and weak agreement were examined. Increased state and regional interaction with municipal energy planners would support more holistic and coordinated energy planning. The study concludes that while municipalities are keenly aware of the importance of education and partnerships, stronger policy mechanisms and financial stimulus are essential if Vermont hopes to increase strategic energy planning alignment and spur whole-scale energy system change. Study 2 examined local energy actors to assess their ability to develop and sustain energy action on the local level. A survey of 120 municipalities collected statewide baseline data covering the structures, processes, and activities of local energy actors. The analysis examined the role that various forms of capacity play in local energy activity. The results show that towns with higher incomes are more likely to have local energy actors and towns with higher populations have higher aggregate energy activity levels. Structurally, energy actors that had both an energy coordinator and an energy committee were more active, and municipal committees were more active than independent committees. Access to a budget and volunteer engagement were both associated with higher activity levels. The network of local energy actors in Vermont consists of committed and knowledgeable volunteers. Yet, the capacity of these local energy actors to implement sustainable energy change is limited due to resource constraints of time and money. In most cases, the scope of municipal energy planning strategy is modest. Prioritization of strategy and action at the central and local levels, along with increased interaction and coordination, is necessary to increase the regional compatibility and pace of energy system transformation.

  1. Capacity value of energy storage considering control strategies.

    PubMed

    Shi, Nian; Luo, Yi

    2017-01-01

    In power systems, energy storage effectively improves the reliability of the system and smooths out the fluctuations of intermittent energy. However, the installed capacity value of energy storage cannot effectively measure the contribution of energy storage to the generator adequacy of power systems. To achieve a variety of purposes, several control strategies may be utilized in energy storage systems. The purpose of this paper is to study the influence of different energy storage control strategies on the generation adequacy. This paper presents the capacity value of energy storage to quantitatively estimate the contribution of energy storage on the generation adequacy. Four different control strategies are considered in the experimental method to study the capacity value of energy storage. Finally, the analysis of the influence factors on the capacity value under different control strategies is given.

  2. Estimating the potential for industrial waste heat reutilization in urban district energy systems: method development and implementation in two Chinese provinces

    NASA Astrophysics Data System (ADS)

    Tong, Kangkang; Fang, Andrew; Yu, Huajun; Li, Yang; Shi, Lei; Wang, Yangjun; Wang, Shuxiao; Ramaswami, Anu

    2017-12-01

    Utilizing low-grade waste heat from industries to heat and cool homes and businesses through fourth generation district energy systems (DES) is a novel strategy to reduce energy use. This paper develops a generalizable methodology to estimate the energy saving potential for heating/cooling in 20 cities in two Chinese provinces, representing cold winter and hot summer regions respectively. We also conduct a life-cycle analysis of the new infrastructure required for energy exchange in DES. Results show that heating and cooling energy use reduction from this waste heat exchange strategy varies widely based on the mix of industrial, residential and commercial activities, and climate conditions in cities. Low-grade heat is found to be the dominant component of waste heat released by industries, which can be reused for both district heating and cooling in fourth generation DES, yielding energy use reductions from 12%-91% (average of 58%) for heating and 24%-100% (average of 73%) for cooling energy use in the different cities based on annual exchange potential. Incorporating seasonality and multiple energy exchange pathways resulted in energy savings reductions from 0%-87%. The life-cycle impact of added infrastructure was small (<3% for heating) and 1.9% ~ 6.5% (cooling) of the carbon emissions from fuel use in current heating or cooling systems, indicating net carbon savings. This generalizable approach to delineate waste heat potential can help determine suitable cities for the widespread application of industrial waste heat re-utilization.

  3. Towards integrated solutions for water, energy, and land using an integrated nexus modeling framework

    NASA Astrophysics Data System (ADS)

    Wada, Y.

    2017-12-01

    Humanity has already reached or even exceeded the Earth's carrying capacity. Growing needs for food, energy and water will only exacerbate existing challenges over the next decades. Consequently, the acceptance of "business as usual" is eroding and we are being challenged to adopt new, more integrated, and more inclusive development pathways that avoid dangerous interference with the local environment and global planetary boundaries. This challenge is embodied in the United Nation's Sustainable Development Goals (SDGs), which endeavor to set a global agenda for moving towards more sustainable development strategies. To improve and sustain human welfare, it is critical that access to modern, reliable, and affordable water, energy, and food is expanded and maintained. The Integrated Solutions for Water, Energy, and Land (IS-WEL) project has been launched by IIASA, together with the Global Environment Facility (GEF) and the United Nations Industrial Development Organization (UNIDO). This project focuses on the water-energy-land nexus in the context of other major global challenges such as urbanization, environmental degradation, and equitable and sustainable futures. It develops a consistent framework for looking at the water-energy-land nexus and identify strategies for achieving the needed transformational outcomes through an advanced assessment framework. A multi-scalar approach are being developed that aims to combine global and regional integrated assessment tools with local stakeholder knowledge in order to identify robust solutions to energy, water, food, and ecosystem security in selected regions of the world. These are regions facing multiple energy, water and land use challenges and rapid demographic and economic changes, and are hardest hit by increasing climate variability and change. This project combines the global integrated assessment model (MESSAGE) with the global land (GLOBIOM) and water (Community Water Model) model respectively, and the integrated modeling framework are then combined with detailed regional decision support tools for water-energy-land nexus analysis in case study regions. A number of stakeholder meetings are used to engage local communities in the definition of important nexus drivers, scenario development and definition of performance metrics.

  4. Urban Wood-Based Bio-Energy Systems in Seattle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stan Gent, Seattle Steam Company

    2010-10-25

    Seattle Steam Company provides thermal energy service (steam) to the majority of buildings and facilities in downtown Seattle, including major hospitals (Swedish and Virginia Mason) and The Northwest (Level I) Regional Trauma Center. Seattle Steam has been heating downtown businesses for 117 years, with an average length of service to its customers of 40 years. In 2008 and 2009 Seattle Steam developed a biomass-fueled renewable energy (bio-energy) system to replace one of its gas-fired boilers that will reduce greenhouse gases, pollutants and the amount of waste sent to landfills. This work in this sub-project included several distinct tasks associated withmore » the biomass project development as follows: a. Engineering and Architecture: Engineering focused on development of system control strategies, development of manuals for start up and commissioning. b. Training: The project developer will train its current operating staff to operate equipment and facilities. c. Flue Gas Clean-Up Equipment Concept Design: The concept development of acid gas emissions control system strategies associated with the supply wood to the project. d. Fuel Supply Management Plan: Development of plans and specifications for the supply of wood. It will include potential fuel sampling analysis and development of contracts for delivery and management of fuel suppliers and handlers. e. Integrated Fuel Management System Development: Seattle Steam requires a biomass Fuel Management System to track and manage the delivery, testing, processing and invoicing of delivered fuel. This application will be web-based and accessed from a password-protected URL, restricting data access and privileges by user-level.« less

  5. Life-cycle energy impacts for adapting an urban water supply system to droughts.

    PubMed

    Lam, Ka Leung; Stokes-Draut, Jennifer R; Horvath, Arpad; Lane, Joe L; Kenway, Steven J; Lant, Paul A

    2017-12-15

    In recent years, cities in some water stressed regions have explored alternative water sources such as seawater desalination and potable water recycling in spite of concerns over increasing energy consumption. In this study, we evaluate the current and future life-cycle energy impacts of four alternative water supply strategies introduced during a decade-long drought in South East Queensland (SEQ), Australia. These strategies were: seawater desalination, indirect potable water recycling, network integration, and rainwater tanks. Our work highlights the energy burden of alternative water supply strategies which added approximately 24% life-cycle energy use to the existing supply system (with surface water sources) in SEQ even for a current post-drought low utilisation status. Over half of this additional life-cycle energy use was from the centralised alternative supply strategies. Rainwater tanks contributed an estimated 3% to regional water supply, but added over 10% life-cycle energy use to the existing system. In the future scenario analysis, we compare the life-cycle energy use between "Normal", "Dry", "High water demand" and "Design capacity" scenarios. In the "Normal" scenario, a long-term low utilisation of the desalination system and the water recycling system has greatly reduced the energy burden of these centralised strategies to only 13%. In contrast, higher utilisation in the unlikely "Dry" and "Design capacity" scenarios add 86% and 140% to life-cycle energy use of the existing system respectively. In the "High water demand" scenario, a 20% increase in per capita water use over 20 years "consumes" more energy than is used by the four alternative strategies in the "Normal" scenario. This research provides insight for developing more realistic long-term scenarios to evaluate and compare life-cycle energy impacts of drought-adaptation infrastructure and regional decentralised water sources. Scenario building for life-cycle assessments of water supply systems should consider i) climate variability and, therefore, infrastructure utilisation rate, ii) potential under-utilisation for both installed centralised and decentralised sources, and iii) the potential energy penalty for operating infrastructure well below its design capacity (e.g., the operational energy intensity of the desalination system is three times higher at low utilisation rates). This study illustrates that evaluating the life-cycle energy use and intensity of these type of supply sources without considering their realistic long-term operating scenario(s) can potentially distort and overemphasise their energy implications. To other water stressed regions, this work shows that managing long-term water demand is also important, in addition to acknowledging the energy-intensive nature of some alternative water sources. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Automated Deployment of Advanced Controls and Analytics in Buildings

    NASA Astrophysics Data System (ADS)

    Pritoni, Marco

    Buildings use 40% of primary energy in the US. Recent studies show that developing energy analytics and enhancing control strategies can significantly improve their energy performance. However, the deployment of advanced control software applications has been mostly limited to academic studies. Larger-scale implementations are prevented by the significant engineering time and customization required, due to significant differences among buildings. This study demonstrates how physics-inspired data-driven models can be used to develop portable analytics and control applications for buildings. Specifically, I demonstrate application of these models in all phases of the deployment of advanced controls and analytics in buildings: in the first phase, "Site Preparation and Interface with Legacy Systems" I used models to discover or map relationships among building components, automatically gathering metadata (information about data points) necessary to run the applications. During the second phase: "Application Deployment and Commissioning", models automatically learn system parameters, used for advanced controls and analytics. In the third phase: "Continuous Monitoring and Verification" I utilized models to automatically measure the energy performance of a building that has implemented advanced control strategies. In the conclusions, I discuss future challenges and suggest potential strategies for these innovative control systems to be widely deployed in the market. This dissertation provides useful new tools in terms of procedures, algorithms, and models to facilitate the automation of deployment of advanced controls and analytics and accelerate their wide adoption in buildings.

  7. Using Dialogue to Engage Agricultural Audiences in Cooperative Learning about Climate Change: A Strategy with Broad Implications

    ERIC Educational Resources Information Center

    Doll, Julie E.; Eschbach, Cheryl L.; DeDecker, James

    2018-01-01

    Dialogue with stakeholders has been recognized as an effective educational strategy for addressing complex topics such as climate change. We report here on the Carbon, Energy, and Climate fishbowl discussion series developed by Michigan State University Extension to assist the state's agricultural community in understanding and adapting to the…

  8. Minding the Gap: Synthetic Strategies for Tuning the Energy Gap in Conjugated Molecules

    ERIC Educational Resources Information Center

    Christensen, Dana; Cohn, Pamela G.

    2016-01-01

    While structure-property relationships are commonly developed in applications of physical organic chemistry to real-world problems at the graduate level, they have not been generally emphasized in the undergraduate chemistry curriculum. For instance, the ability to modify the energy gap between the highest occupied molecular orbital (HOMO) and the…

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitola, J.P.

    In two year`s time, Unicorn Thermal Technologies has grown into one of the largest district cooling systems of 25,000 tons with a 1996 plan to grow to 40,000 tons. This growth is attributed to the development and implementation of a marketing and sales plan based on thorough market research and innovative marketing and sales strategies, and the consistent implementation of those strategies. The beginning of the sales effort was focused around the company`s first district cooling facility, However, it quickly grew into a much broader vision as market acceptance increased. Although the district energy industry has often based its messagemore » on being a low cost energy provider, market research and early sales experience indicated that customers choose district cooling as a value added service. As customers began to reserve capacity in the first plant, the idea that district cooling is a value added service and not a commodity energy product was continually reinforced through marketing communications. Although this analysis is a review of developing a district energy system in a competitive urban market, it purposely avoids a long winded discussion of head to head competition.« less

  10. A U.S. Strategy for Timely Fusion Energy Development

    NASA Astrophysics Data System (ADS)

    Wade, Mickey

    2017-10-01

    Worldwide energy demand is expected to explode in the latter half of this century. In anticipation of this demand, the U.S. DOE recently asked the National Academy of Science to provide guidance on a long-term strategic plan assuming that ``economical fusion energy within the next several decades is a U.S. strategic interest. ``Delivering on such a plan will require an R&D program that delivers key data and understanding on the building blocks of a) burning plasma physics, b) optimization of the coupled core-edge solution, and c) fusion nuclear science to inform the design of a cost-attractive DEMO reactor in this time frame. Such a program should leverage existing facilities in the U.S. program including ITER, provide substantive motivation for an expanding R&D scope (and funding), and enable timely redirection of resources within the program as appropriate (and endorsed by DOE and the fusion community). This paper will outline a potential strategy that provides world-leading opportunities for the research community in a range of areas while delivering on key milestones required for timely fusion energy development. Supported by General Atomics internal funding.

  11. Optimal waste-to-energy strategy assisted by GIS For sustainable solid waste management

    NASA Astrophysics Data System (ADS)

    Tan, S. T.; Hashim, H.

    2014-02-01

    Municipal solid waste (MSW) management has become more complex and costly with the rapid socio-economic development and increased volume of waste. Planning a sustainable regional waste management strategy is a critical step for the decision maker. There is a great potential for MSW to be used for the generation of renewable energy through waste incineration or landfilling with gas capture system. However, due to high processing cost and cost of resource transportation and distribution throughout the waste collection station and power plant, MSW is mostly disposed in the landfill. This paper presents an optimization model incorporated with GIS data inputs for MSW management. The model can design the multi-period waste-to-energy (WTE) strategy to illustrate the economic potential and tradeoffs for MSW management under different scenarios. The model is capable of predicting the optimal generation, capacity, type of WTE conversion technology and location for the operation and construction of new WTE power plants to satisfy the increased energy demand by 2025 in the most profitable way. Iskandar Malaysia region was chosen as the model city for this study.

  12. Wind offering in energy and reserve markets

    NASA Astrophysics Data System (ADS)

    Soares, T.; Pinson, P.; Morais, H.

    2016-09-01

    The increasing penetration of wind generation in power systems to fulfil the ambitious European targets will make wind power producers to play an even more important role in the future power system. Wind power producers are being incentivized to participate in reserve markets to increase their revenue, since currently wind turbine/farm technologies allow them to provide ancillary services. Thus, wind power producers are to develop offering strategies for participation in both energy and reserve markets, accounting for market rules, while ensuring optimal revenue. We consider a proportional offering strategy to optimally decide upon participation in both markets by maximizing expected revenue from day-ahead decisions while accounting for estimated regulation costs for failing to provide the services. An evaluation of considering the same proportional splitting of energy and reserve in both day- ahead and balancing market is performed. A set of numerical examples illustrate the behavior of such strategy. An important conclusion is that the optimal split of the available wind power between energy and reserve strongly depends upon prices and penalties on both market trading floors.

  13. Game Design and Analysis for Price-Based Demand Response: An Aggregate Game Approach.

    PubMed

    Ye, Maojiao; Hu, Guoqiang

    2016-02-18

    In this paper, an aggregate game is adopted for the modeling and analysis of energy consumption control in smart grid. Since the electricity users' cost functions depend on the aggregate energy consumption, which is unknown to the end users, an average consensus protocol is employed to estimate it. By neighboring communication among the users about their estimations on the aggregate energy consumption, Nash seeking strategies are developed. Convergence properties are explored for the proposed Nash seeking strategies. For energy consumption game that may have multiple isolated Nash equilibria, a local convergence result is derived. The convergence is established by utilizing singular perturbation analysis and Lyapunov stability analysis. Energy consumption control for a network of heating, ventilation, and air conditioning systems is investigated. Based on the uniqueness of the Nash equilibrium, it is shown that the players' actions converge to a neighborhood of the unique Nash equilibrium nonlocally. More specially, if the unique Nash equilibrium is an inner Nash equilibrium, an exponential convergence result is obtained. Energy consumption game with stubborn players is studied. In this case, the actions of the rational players can be driven to a neighborhood of their best response strategies by using the proposed method. Numerical examples are presented to verify the effectiveness of the proposed methods.

  14. Evolution, opportunity and challenges of transboundary water and energy problems in Central Asia.

    PubMed

    Guo, Lidan; Zhou, Haiwei; Xia, Ziqiang; Huang, Feng

    2016-01-01

    Central Asia is one of the regions that suffer the most prominent transboundary water and energy problems in the world. Effective transboundary water-energy resource management and cooperation are closely related with socioeconomic development and stability in the entire Central Asia. Similar to Central Asia, Northwest China has an arid climate and is experiencing a water shortage. It is now facing imbalanced supply-demand relations of water and energy resources. These issues in Northwest China and Central Asia pose severe challenges in the implementation of the Silk Road Economic Belt strategy. Based on the analysis of water and energy distribution characteristics in Central Asia as well as demand characteristics of different countries, the complexity of local transboundary water problems was explored by reviewing corresponding historical problems of involved countries, correlated energy issues, and the evolution of inter-country water-energy cooperation. With references to experiences and lessons of five countries, contradictions, opportunities, challenges and strategies for transboundary water-energy cooperation between China and Central Asia were discussed under the promotion of the Silk Road Economic Belt construction based on current cooperation conditions.

  15. NASA's Exploration Technology Development Program Energy Storage Project Battery Technology Development

    NASA Technical Reports Server (NTRS)

    Reid, Concha M.; Miller, Thomas B.; Mercer, Carolyn R.; Jankovsky, Amy L.

    2010-01-01

    Technical Interchange Meeting was held at Saft America s Research and Development facility in Cockeysville, Maryland on Sept 28th-29th, 2010. The meeting was attended by Saft, contractors who are developing battery component materials under contracts awarded through a NASA Research Announcement (NRA), and NASA. This briefing presents an overview of the components being developed by the contractor attendees for the NASA s High Energy (HE) and Ultra High Energy (UHE) cells. The transition of the advanced lithium-ion cell development project at NASA from the Exploration Technology Development Program Energy Storage Project to the Enabling Technology Development and Demonstration High Efficiency Space Power Systems Project, changes to deliverable hardware and schedule due to a reduced budget, and our roadmap to develop cells and provide periodic off-ramps for cell technology for demonstrations are discussed. This meeting gave the materials and cell developers the opportunity to discuss the intricacies of their materials and determine strategies to address any particulars of the technology.

  16. Principles and applications of photoelectrochemical sensing strategies based on biofunctionalized nanostructures.

    PubMed

    Zang, Yang; Lei, Jianping; Ju, Huangxian

    2017-10-15

    Photoelectrochemical (PEC) biosensing is a popular research hotspot that has attracted substantial attention from chemists and biologists due to its low cost and desirable sensitivity. The PEC biosensing mainly refers to the influence of the interaction between recognition element and analyte on photocurrent signal, which involves the charge and energy transfer of PEC reaction between electron donor/acceptor and photoactive material upon light irradiation. Understanding the fundamentals of PEC strategy benefits the development of next-generation PEC sensors. However, the research on detection mechanism of PEC sensors is in the initial stage and need to be further exploited. Thus, with a particular focus on the signal transduction formats, this review highlights the novel concept on PEC sensing strategies, and categorizes the recent illustrative examples into three signaling principles: reactant determinant, electron transfer and energy transfer, providing the comprehensive design guidelines for researchers to develop more advanced PEC sensors. The prospects and challenges for future work are also included. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Energy options: changing views from India. [Comments on Energy options for the Third World, A. K. N. Reddy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rudolph, L.I.; Lenth, C.S.

    1978-06-01

    In A.K.N. Reddy's article in the bulletin of the Atomic Scientists, April 1978, Energy Options for the Third World, he advocated the application of science and technology to the tasks of Third World development, particularly to the provision of new forms of energy technologies for economic development. Rudolph and Lenth comment on ideas about India's energy strategies as viewed by Reddy in the article. Rudolph and Lenth say the energy situation in India is not as desperate as Reddy indicates, and the solutions he proposes are not as new or unique as he presents them to be. The analytical frameworkmore » presented by Reddy does not take account of the complex motives and objectives or the ambiguous consequences that accompany attempts to achieve social and economic development, the authors say. (MCW)« less

  18. Spatiotemporal control to eliminate cardiac alternans using isostable reduction

    NASA Astrophysics Data System (ADS)

    Wilson, Dan; Moehlis, Jeff

    2017-03-01

    Cardiac alternans, an arrhythmia characterized by a beat-to-beat alternation of cardiac action potential durations, is widely believed to facilitate the transition from normal cardiac function to ventricular fibrillation and sudden cardiac death. Alternans arises due to an instability of a healthy period-1 rhythm, and most dynamical control strategies either require extensive knowledge of the cardiac system, making experimental validation difficult, or are model independent and sacrifice important information about the specific system under study. Isostable reduction provides an alternative approach, in which the response of a system to external perturbations can be used to reduce the complexity of a cardiac system, making it easier to work with from an analytical perspective while retaining many of its important features. Here, we use isostable reduction strategies to reduce the complexity of partial differential equation models of cardiac systems in order to develop energy optimal strategies for the elimination of alternans. Resulting control strategies require significantly less energy to terminate alternans than comparable strategies and do not require continuous state feedback.

  19. Battery Storage Evaluation Tool, version 1.x

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2015-10-02

    The battery storage evaluation tool developed at Pacific Northwest National Laboratory is used to run a one-year simulation to evaluate the benefits of battery storage for multiple grid applications, including energy arbitrage, balancing service, capacity value, distribution system equipment deferral, and outage mitigation. This tool is based on the optimal control strategies to capture multiple services from a single energy storage device. In this control strategy, at each hour, a lookahead optimization is first formulated and solved to determine the battery base operating point. The minute-by-minute simulation is then performed to simulate the actual battery operation.

  20. Final Technical Report- Virginia Solar Pathways Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bond, Katharine; Cosby, Sarah

    This Report provides a technical review of the final results of a funding award to Virginia Electric and Power Company (Dominion Energy Virginia (DEV) or the Company) for a project under the U.S. Department of Energy’s Solar Energy Technologies Office. The three-year project was formally known as the Virginia Solar Pathways Project (VSPP or the Project). The purpose of the VSPP was to develop a collaborative utility-administered solar strategy (Solar Strategy) for DEV’s service territory in the Commonwealth that could serve as a replicable model for other states with similar policy environments.

  1. Capacity value of energy storage considering control strategies

    PubMed Central

    Luo, Yi

    2017-01-01

    In power systems, energy storage effectively improves the reliability of the system and smooths out the fluctuations of intermittent energy. However, the installed capacity value of energy storage cannot effectively measure the contribution of energy storage to the generator adequacy of power systems. To achieve a variety of purposes, several control strategies may be utilized in energy storage systems. The purpose of this paper is to study the influence of different energy storage control strategies on the generation adequacy. This paper presents the capacity value of energy storage to quantitatively estimate the contribution of energy storage on the generation adequacy. Four different control strategies are considered in the experimental method to study the capacity value of energy storage. Finally, the analysis of the influence factors on the capacity value under different control strategies is given. PMID:28558027

  2. A roadmap for nuclear energy technology

    NASA Astrophysics Data System (ADS)

    Sofu, Tanju

    2018-01-01

    The prospects for the future use of nuclear energy worldwide can best be understood within the context of global population growth, urbanization, rising energy need and associated pollution concerns. As the world continues to urbanize, sustainable development challenges are expected to be concentrated in cities of the lower-middle-income countries where the pace of urbanization is fastest. As these countries continue their trajectory of economic development, their energy need will also outpace their population growth adding to the increased demand for electricity. OECD IEA's energy system deployment pathway foresees doubling of the current global nuclear capacity by 2050 to reduce the impact of rapid urbanization. The pending "retirement cliff" of the existing U.S. nuclear fleet, representing over 60 percent of the nation's emission-free electricity, also poses a large economic and environmental challenge. To meet the challenge, the U.S. DOE has developed the vision and strategy for development and deployment of advanced reactors. As part of that vision, the U.S. government pursues programs that aim to expand the use of nuclear power by supporting sustainability of the existing nuclear fleet, deploying new water-cooled large and small modular reactors to enable nuclear energy to help meet the energy security and climate change goals, conducting R&D for advanced reactor technologies with alternative coolants, and developing sustainable nuclear fuel cycle strategies. Since the current path relying heavily on water-cooled reactors and "once-through" fuel cycle is not sustainable, next generation nuclear energy systems under consideration aim for significant advances over existing and evolutionary water-cooled reactors. Among the spectrum of advanced reactor options, closed-fuel-cycle systems using reactors with fast-neutron spectrum to meet the sustainability goals offer the most attractive alternatives. However, unless the new public-private partnership models emerge to tackle the licensing and demonstration challenges for these advanced reactor concepts, realization of their enormous potential is not likely, at least in the U.S.

  3. Model-based development of low-level control strategies for transient operation of solid oxide fuel cell systems

    NASA Astrophysics Data System (ADS)

    Sorrentino, Marco; Pianese, Cesare

    The exploitation of an SOFC-system model to define and test control and energy management strategies is presented. Such a work is motivated by the increasing interest paid to SOFC technology by industries and governments due to its highly appealing potentialities in terms of energy savings, fuel flexibility, cogeneration, low-pollution and low-noise operation. The core part of the model is the SOFC stack, surrounded by a number of auxiliary devices, i.e. air compressor, regulating pressure valves, heat exchangers, pre-reformer and post-burner. Due to the slow thermal dynamics of SOFCs, a set of three lumped-capacity models describes the dynamic response of fuel cell and heat exchangers to any operation change. The dynamic model was used to develop low-level control strategies aimed at guaranteeing targeted performance while keeping stack temperature derivative within safe limits to reduce stack degradation due to thermal stresses. Control strategies for both cold-start and warmed-up operations were implemented by combining feedforward and feedback approaches. Particularly, the main cold-start control action relies on the precise regulation of methane flow towards anode and post-burner via by-pass valves; this strategy is combined with a cathode air-flow adjustment to have a tight control of both stack temperature gradient and warm-up time. Results are presented to show the potentialities of the proposed model-based approach to: (i) serve as a support to control strategies development and (ii) solve the trade-off between fast SOFC cold-start and avoidance of thermal-stress caused damages.

  4. Control and Optimization of Electric Ship Propulsion Systems with Hybrid Energy Storage

    NASA Astrophysics Data System (ADS)

    Hou, Jun

    Electric ships experience large propulsion-load fluctuations on their drive shaft due to encountered waves and the rotational motion of the propeller, affecting the reliability of the shipboard power network and causing wear and tear. This dissertation explores new solutions to address these fluctuations by integrating a hybrid energy storage system (HESS) and developing energy management strategies (EMS). Advanced electric propulsion drive concepts are developed to improve energy efficiency, performance and system reliability by integrating HESS, developing advanced control solutions and system integration strategies, and creating tools (including models and testbed) for design and optimization of hybrid electric drive systems. A ship dynamics model which captures the underlying physical behavior of the electric ship propulsion system is developed to support control development and system optimization. To evaluate the effectiveness of the proposed control approaches, a state-of-the-art testbed has been constructed which includes a system controller, Li-Ion battery and ultra-capacitor (UC) modules, a high-speed flywheel, electric motors with their power electronic drives, DC/DC converters, and rectifiers. The feasibility and effectiveness of HESS are investigated and analyzed. Two different HESS configurations, namely battery/UC (B/UC) and battery/flywheel (B/FW), are studied and analyzed to provide insights into the advantages and limitations of each configuration. Battery usage, loss analysis, and sensitivity to battery aging are also analyzed for each configuration. In order to enable real-time application and achieve desired performance, a model predictive control (MPC) approach is developed, where a state of charge (SOC) reference of flywheel for B/FW or UC for B/UC is used to address the limitations imposed by short predictive horizons, because the benefits of flywheel and UC working around high-efficiency range are ignored by short predictive horizons. Given the multi-frequency characteristics of load fluctuations, a filter-based control strategy is developed to illustrate the importance of the coordination within the HESS. Without proper control strategies, the HESS solution could be worse than a single energy storage system solution. The proposed HESS, when introduced into an existing shipboard electrical propulsion system, will interact with the power generation systems. A model-based analysis is performed to evaluate the interactions of the multiple power sources when a hybrid energy storage system is introduced. The study has revealed undesirable interactions when the controls are not coordinated properly, and leads to the conclusion that a proper EMS is needed. Knowledge of the propulsion-load torque is essential for the proposed system-level EMS, but this load torque is immeasurable in most marine applications. To address this issue, a model-based approach is developed so that load torque estimation and prediction can be incorporated into the MPC. In order to evaluate the effectiveness of the proposed approach, an input observer with linear prediction is developed as an alternative approach to obtain the load estimation and prediction. Comparative studies are performed to illustrate the importance of load torque estimation and prediction, and demonstrate the effectiveness of the proposed approach in terms of improved efficiency, enhanced reliability, and reduced wear and tear. Finally, the real-time MPC algorithm has been implemented on a physical testbed. Three different efforts have been made to enable real-time implementation: a specially tailored problem formulation, an efficient optimization algorithm and a multi-core hardware implementation. Compared to the filter-based strategy, the proposed real-time MPC achieves superior performance, in terms of the enhanced system reliability, improved HESS efficiency, and extended battery life.

  5. Blades of Glory: An Energy.gov Mini-Doc – The 2016 Collegiate Wind Competition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zayas, Jose; Newcomb, Charles

    2016-06-06

    In this short documentary, we follow three collegiate teams who are participating in this year’s U.S. Department of Energy Collegiate Wind Competition in New Orleans. Learn about their experiences and why the competition is important for America’s clean energy future. The competition provides undergraduates with real-world skills they need to enter tomorrow’s clean energy workforce by challenging them to develop and deliver a business plan, establish a deployment strategy, and build and test a wind turbine.

  6. Eco-design of low energy mechanical milling through implementation of quality function deployment and design for sustainability

    NASA Astrophysics Data System (ADS)

    Rashid, Muhammad Hanif Abd; Nor, Nik Hisyamudin Muhd; Selamat, Siti Norhana; Hassan, Mohd Fahrul; Rahim, Abd Khalil Abd; Ahmad, Mohd Fauzi; Ismail, Al Emran; Omar, Badrul; Mokhtar, Mohd Faiz; Turan, Faiz Mohd; Yokoyama, Seiji

    2017-04-01

    Malaysia as a developing country favor energy demand by years which created mainly from fossil fuel. Unfortunately, the action leads to significant increment in carbon dioxide (CO2) emission that causing the global warming. The most promising mitigation strategy is by deploying Carbon Capture and Storage (CCS) technology where mineral carbonation was identified as the safest method for permanent storage and does not require continuous monitoring. Accordingly, National Green Technology was launched in 2009 to support the growth of green technology development in Malaysia as a carbon mitigation strategy. Thus, this paper aims to propose the development of a conceptual eco-design for Low Energy Mechanical Milling (LEMM). The concept was proposed by using the Quality Function Deployment (QFD) tool with combination of sustainability determinants (DFS) namely economic, environmental and social which evaluated using Solidworks 2015 sustainability assessment. The results show the new product targets for LEMM in prior on energy consumption (MJ), selling price (MYR), material cost (MYR), carbon footprint (kg CO2) with weightage of 5.2, 4.2, 3.6 and 3.6 respectively. The implementation of DFS criteria into the QFD promote to reduce material used by 16%, 35% reduction of carbon footprint, 28% less energy consumption, 28% lower air acidification, 77% of water eutrophication declined and increased recyclability by 15%.

  7. Intravital FRET: Probing Cellular and Tissue Function in Vivo

    PubMed Central

    Radbruch, Helena; Bremer, Daniel; Mothes, Ronja; Günther, Robert; Rinnenthal, Jan Leo; Pohlan, Julian; Ulbricht, Carolin; Hauser, Anja E.; Niesner, Raluca

    2015-01-01

    The development of intravital Förster Resonance Energy Transfer (FRET) is required to probe cellular and tissue function in the natural context: the living organism. Only in this way can biomedicine truly comprehend pathogenesis and develop effective therapeutic strategies. Here we demonstrate and discuss the advantages and pitfalls of two strategies to quantify FRET in vivo—ratiometrically and time-resolved by fluorescence lifetime imaging—and show their concrete application in the context of neuroinflammation in adult mice. PMID:26006244

  8. Programming Chemical Reaction Networks Using Intramolecular Conformational Motions of DNA.

    PubMed

    Lai, Wei; Ren, Lei; Tang, Qian; Qu, Xiangmeng; Li, Jiang; Wang, Lihua; Li, Li; Fan, Chunhai; Pei, Hao

    2018-06-22

    The programmable regulation of chemical reaction networks (CRNs) represents a major challenge toward the development of complex molecular devices performing sophisticated motions and functions. Nevertheless, regulation of artificial CRNs is generally energy- and time-intensive as compared to natural regulation. Inspired by allosteric regulation in biological CRNs, we herein develop an intramolecular conformational motion strategy (InCMS) for programmable regulation of DNA CRNs. We design a DNA switch as the regulatory element to program the distance between the toehold and branch migration domain. The presence of multiple conformational transitions leads to wide-range kinetic regulation spanning over 4 orders of magnitude. Furthermore, the process of energy-cost-free strand exchange accompanied by conformational change discriminates single base mismatches. Our strategy thus provides a simple yet effective approach for dynamic programming of complex CRNs.

  9. Developing core-shell upconversion nanoparticles for optical encoding

    NASA Astrophysics Data System (ADS)

    Huang, Kai

    Lanthanide-doped upconversion nanoparticles (UCNPs) are an emerging class of luminescent materials that emit UV or visible light under near infra-red (NIR) excitations, thereby possessing a large anti-Stokes shift property. Also considering their sharp emission bands, excellent photo- and chemical stability, and almost zero auto-fluorescence of their NIR excitation, UCNPs are advantageous for optical encoding. Fabricating core-shell structured UCNPs provides a promising strategy to tune and enhance their upconverting luminescence. However, the energy transfer between core and shell had been rarely studied. Moreover, this strategy had been limited by the difficulty of coating thick shells onto the large cores of UCNPs. To overcome these constraints, the overall aim of this project is to study the inter-layers energy transfer in core-shell UCNPs and to develop an approach for coating thicker shell onto the core UCNPs, in order to fabricate UCNPs with enhanced and tunable luminescence for optical encoding. The strategy for encapsulating UCNPs into hydrogel droplet to fabricate multi-color bead barcodes has also been developed. Firstly, to study the inter-layers energy transfer between the core and shell of coreshell UCNPs, the activator and sensitizer ions were separately doped in the core or shell by fabricating NaYF4:Er NaYF4:Yb and NaYF4:Yb NaYF4:Er UCNPs. This eliminated the intra-layer energy transfer, resulting in a luminescence that is solely based on the energy transfer between layers, which facilitated the study of inter-layers energy transfer. The results demonstrated that the NaYF4:Yb NaYF4:Er structure, with sensitizer ions doped in the core, was preferable because of the strong luminescence, through minimizing the cross relaxations between Er3+ and Yb3+ and the surface quenching. Based on these information, a strategy of enhancing and tuning upconversion luminescence of core-shell UCNPs by accumulating sensitizer in the core has been developed. Next, a strategy of coating a thick shell by lutetium doping has been developed. With a smaller ion radius compared to Y3+, when Lu3+ partially replace Y3+ in the NaYF4 UCNPs during nanoparticle synthesis, nucleation process is suppressed and the growth process is promoted, which are favorable for increasing the nanoparticle size and coating a thicker shell onto the core UCNPs. Through the rational doping of Lu3+, core UCNPs with bigger sizes and enhanced luminescence were produced. Using NaLuF4 as the shell material, shells with tremendous thickness were coated onto core UCNPs, with the shell/core ratio of up to 10:1. This led to the fabrication of multi-color UCNPs with well-designed core-shell structures with multiple layers and controllable thicknesses. Finally, a strategy of encapsulating these UCNPs to produce optically encoded micro-beads through high-throughput microfluidics has been developed. The hydrophobic UCNPs were first modified with Pluronic F127 to render them hydrophilic and uniformly distributed in the poly (ethylene glycol) diacrylate (PEGDA) hydrogel precursor. Droplets of the hydrogel precursor were formed in a microfluidic device and cross-linked into micro-beads under UV irradiation. Through encapsulation of multi-color UCNPs and by controlling their ratio, optically encoded multi-color micro-beads have been easily fabricated. These multi-color UCNPs and micro-bead barcodes have great potential for use in multiplexed bioimaging and detection.

  10. Targeting 100! Advanced Energy Efficient Building Technologies for High Performance Hospitals: Executive Summary.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burpee, Heather; Loveland, Joel; Helmers, Aaron

    2015-09-02

    This research, Targeting 100!, provides a conceptual framework and decision-making structure at a schematic design level of precision for hospital owners, architects and engineers to radically reduce energy use in hospitals. Following the goals of Architecture 2030 and The 2030 Challenge, it offers access to design strategies and the cost implications of those strategies for new hospitals to utilize 60% less energy. The name, Targeting 100!, comes from the 2030 Challenge energy reduction goal for hospitals; a 60% energy use reduction from typical acute care hospital targets approximately 100 KBtu/SF Year, thus the name “Targeting 100!”. Targeting 100! was developedmore » through funding partnerships with the US Department of Energy and the Northwest Energy Efficiency’s BetterBricks Initiative. The technical team was led by the University of Washington Integrated Design Lab supported by deep collaboration with Solarc Architecture and Engineering, TBD Cost Consultants, and NBBJ Architecture. Through extensive research and design development, Targeting 100! provides a framework for developing high performance healthcare projects today and into the future. An online tool houses a Targeting 100! knowlegebase and roadmap. It can be accessed at: www.idlseattle.com/t100. The webtool is structured from high-level overview materials to detailed library with modeling inputs and outputs, providing a comprehensive report of the background, data, and outcomes from the project.« less

  11. Malaysia Country Analysis Brief

    EIA Publications

    2017-01-01

    Malaysia's energy industry is a critical sector of growth for the entire economy, and it makes up almost 20% of the total gross domestic product. New tax and investment incentives, starting in 2010, aim to promote oil and natural gas exploration and development in the country's deepwater and marginal fields as well as promote energy efficiency measures and use of alternative energy sources. These fiscal incentives are part of the country's economic transformation program to leverage its resources and geographic location to be one of Asia's top energy players by 2020. Another key pillar in Malaysia's energy strategy is to become a regional oil and natural gas storage, trading, and development hub that will attract technical expertise and downstream services that can compete in Asia.

  12. Modeling Urban Energy Savings Scenarios Using Earth System Microclimate and Urban Morphology

    NASA Astrophysics Data System (ADS)

    Allen, M. R.; Rose, A.; New, J. R.; Yuan, J.; Omitaomu, O.; Sylvester, L.; Branstetter, M. L.; Carvalhaes, T. M.; Seals, M.; Berres, A.

    2017-12-01

    We analyze and quantify the relationships among climatic conditions, urban morphology, population, land cover, and energy use so that these relationships can be used to inform energy-efficient urban development and planning. We integrate different approaches across three research areas: earth system modeling; impacts, adaptation and vulnerability; and urban planning in order to address three major gaps in the existing capability in these areas: i) neighborhood resolution modeling and simulation of urban micrometeorological processes and their effect on and from regional climate; ii) projections for future energy use under urbanization and climate change scenarios identifying best strategies for urban morphological development and energy savings; iii) analysis and visualization tools to help planners optimally use these projections.

  13. Comparative analysis of hospital energy use: pacific northwest and scandinavia.

    PubMed

    Burpee, Heather; McDade, Erin

    2014-01-01

    This study aimed to establish the potential for significant energy reduction in hospitals in the United States by providing evidence of Scandinavian operational precedents with high Interior Environmental Quality (IEQ) and substantially lower energy profiles than comparable U.S. facilities. These facilities set important precedents for design teams seeking operational examples for achieving aggressive energy and interior environmental quality goals. This examination of operational hospitals is intended to offer hospital owners, designers, and building managers a strong case and concrete framework for strategies to achieve exceptionally high performing buildings. Energy efficient hospitals have the potential to significantly impact the U.S.'s overall energy profile, and key stakeholders in the hospital industry need specific, operationally grounded precedents in order to successfully implement informed energy reduction strategies. This study is an outgrowth of previous research evaluating high quality, low energy hospitals that serve as examples for new high performance hospital design, construction, and operation. Through extensive interviews, numerous site visits, the development of case studies, and data collection, this team has established thorough qualitative and quantitative analyses of several contemporary hospitals in Scandinavia and the Pacific Northwest. Many Scandinavian hospitals demonstrate a low energy profile, and when analyzed in comparison with U.S. hospitals, such Scandinavian precedents help define the framework required to make significant changes in the U.S. hospital building industry. Eight hospitals, four Scandinavian and four Pacific Northwest, were quantitatively compared using the Environmental Protection Agency's Portfolio Manager, allowing researchers to answer specific questions about the impact of energy source and architectural and mechanical strategies on energy efficiency in operational hospitals. Specific architectural, mechanical, and plant systems make these Scandinavian hospitals more energy efficient than their Pacific Northwest counterparts. More importantly, synergistic systems integration allows for their significant reductions in energy consumption. This quantitative comparison of operational Scandinavian and Pacific Northwest hospitals resulted in compelling evidence of the potential for deep energy savings in the U.S., and allowed researchers to outline specific strategies for achieving such reductions. © 2014 Vendome Group, LLC.

  14. Improved control strategy for wind-powered refrigerated storage of apples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baldwin, J.D.C.

    1979-01-01

    The need for an improved control strategy for the operation of a wind-powered refrigeration system for the storage of apples was investigated. The results are applicable to other systems which employ intermittently available power sources, battery and thermal storage, and an auxiliary, direct current power supply. Tests were conducted on the wind-powered refrigeration system at the Virginia Polytechnic Institute and State University Horticulture Research Farm in Blacksburg, Virginia. Tests were conducted on the individual components of the system. In situ windmill performance was also conducted. The results of these tests have been presented. An improved control strategy was developed tomore » improve the utilization of available wind energy and to reduce the need for electrical energy from an external source while maintaining an adequate apple storage environment.« less

  15. Selection of energy source and evolutionary stable strategies for power plants under financial intervention of government

    NASA Astrophysics Data System (ADS)

    Hafezalkotob, Ashkan; Mahmoudi, Reza

    2017-09-01

    Currently, many socially responsible governments adopt economic incentives and deterrents to manage environmental impacts of electricity suppliers. Considering the Stackelberg leadership of the government, the government's role in the competition of power plants in an electricity market is investigated. A one-population evolutionary game model of power plants is developed to study how their production strategy depends on tariffs levied by the government. We establish that a unique evolutionary stable strategy (ESS) for the population exists. Numerical examples demonstrate that revenue maximization and environment protection policies of the government significantly affect the production ESS of competitive power plants. The results reveal that the government can introduce a green energy source as an ESS of the competitive power plants by imposing appropriate tariffs.

  16. Assessment of Food Waste Prevention and Recycling Strategies Using a Multilayer Systems Approach.

    PubMed

    Hamilton, Helen A; Peverill, M Samantha; Müller, Daniel B; Brattebø, Helge

    2015-12-15

    Food waste (FW) generates large upstream and downstream emissions to the environment and unnecessarily consumes natural resources, potentially affecting future food security. The ecological impacts of FW can be addressed by the upstream strategies of FW prevention or by downstream strategies of FW recycling, including energy and nutrient recovery. While FW recycling is often prioritized in practice, the ecological implications of the two strategies remain poorly understood from a quantitative systems perspective. Here, we develop a multilayer systems framework and scenarios to quantify the implications of food waste strategies on national biomass, energy, and phosphorus (P) cycles, using Norway as a case study. We found that (i) avoidable food waste in Norway accounts for 17% of sold food; (ii) 10% of the avoidable food waste occurs at the consumption stage, while industry and retailers account for only 7%; (iii) the theoretical potential for systems-wide net process energy savings is 16% for FW prevention and 8% for FW recycling; (iv) the theoretical potential for systems-wide P savings is 21% for FW prevention and 9% for FW recycling; (v) while FW recycling results in exclusively domestic nutrient and energy savings, FW prevention leads to domestic and international savings due to large food imports; (vi) most effective is a combination of prevention and recycling, however, FW prevention reduces the potential for FW recycling and therefore needs to be prioritized to avoid potential overcapacities for FW recycling.

  17. Implementation and comparative study of control strategies for an isolated DFIG based WECS

    NASA Astrophysics Data System (ADS)

    Bouchiba, Nouha; Barkia, Asma; Sallem, Souhir; Chrifi-Alaoui, Larbi; Drid, Saïd; Kammoun, M. B. A.

    2017-10-01

    Nowadays, a global interest for renewable energy sources has been growing intensely. In particular, a wind energy has become the most popular. In case of autonomous systems, wind energy conversion system (WECS) based on a double fed induction generator (DFIG) is widely used. In this paper, in order to control the stand-alone system outputs under wind speed and load variations, three kinds of nonlinear control strategies have been proposed, applied and compared, such as: Classical PI controller, Back-Stepping and Sliding Mode controllers. A series of experiments have been conducted to evaluate and to compare the developed controllers' dynamic performances under load demand and speed variations. The design and the implementation of different control strategies to a 1.5kW doubly fed induction machine is carried out using a dSpace DS1104 card based on MATLAB/Simulink environment. Experimental results are presented to show the validity of the implemented controllers and demonstrate the effectiveness of each controller compared with others.

  18. The Scenario of the Potential Analysis Alternative Energy in Order to Strengthening District's Energy Resilience (The Case Study in South Sumatera Province)

    NASA Astrophysics Data System (ADS)

    Ferry Muhrom, Muhammad; Ronny Rahman Nitibaskara, Tb; Herdiansyah, Herdis; Sari, Ravita

    2017-10-01

    The current development of fossil energy, which is the driving force of the economy in Indonesia, is a non-renewable energy and is in need to know when it will be exhausted so it may be replaced with renewable energy. Many powerplant systems in Indonesia are still using conventional system that utilizes fossil energy as the primary energy in the process of electricity generation. The occurrence of electrical energy crisis is marked by several electricity blackout phenomenon in some areas in South Sumatera province rotately, which is the proof that the installed power capacity has exceeded the capacity of generation power. Interconnection among several islands, namely Java Island, Sumatera Island, and Bali Island which has been interconnected with closed loop system through transmission network has not been able to overcome the electrical energy crisis. This paper aims to create alternative energy potential scenarios in the province of South Sumatera in sequence/ranking by using quantitative methods with sequential explanatory model formulated in the determination of alternative energy strategies then analyzed by using Analitycal Hierarchy Process(AHP) method. The simulation results from this research indicate that geothermal energy potentials get the highest value so that it becomes the priority of alternative energy strategy in South Sumatera Province.

  19. Issues regarding the usage of MPPT techniques in micro grid systems

    NASA Astrophysics Data System (ADS)

    Szeidert, I.; Filip, I.; Dragan, F.; Gal, A.

    2018-01-01

    The main objective of the control strategies applied at hybrid micro grid systems (wind/hydro/solar), that function based on maximum power point tracking (MPPT) techniques is to improve the conversion system’s efficiency and to preserve the quality of the generated electrical energy (voltage and power factor). One of the main goals of maximum power point tracking strategy is to achieve the harvesting of the maximal possible energy within a certain time period. In order to implement the control strategies for micro grid, there are typically required specific transducers (sensor for wind speed, optical rotational transducers, etc.). In the technical literature, several variants of the MPPT techniques are presented and particularized at some applications (wind energy conversion systems, solar systems, hydro plants, micro grid hybrid systems). The maximum power point tracking implementations are mainly based on two-level architecture. The lower level controls the main variable and the superior level represents the MPPT control structure. The paper presents micro grid structures developed at Politehnica University Timisoara (PUT) within the frame of a research grant. The paper is focused on the application of MPPT strategies on hybrid micro grid systems. There are presented several structures and control strategies and are highlighted their advantages and disadvantages, together with practical implementation guidelines.

  20. Fiscal year 2013 energy department budget: Proposed investments in clean energy research

    NASA Astrophysics Data System (ADS)

    Balcerak, Ernie

    2012-03-01

    Energy and environmental research programs generally fared well in President Barack Obama's proposed budget for the Department of Energy (DOE) for fiscal year (FY) 2013. In his State of the Union address, Obama called for the United States to pursue an "all of the above" energy strategy that includes fossil fuels, as well as a variety of renewable sources of energy. The DOE budget request supports that strategy, Energy Secretary Steven Chu said in a 13 February press briefing announcing the budget proposal. The proposed budget gives DOE 27.2 billion overall, a 3.2% increase from the FY 2012 enacted budget (see Table 1). This budget "reflects some tough choices," Chu said. The proposed budget would cut 4 billion in subsidies for oil and gas companies; many Republican members of Congress have already indicated that they oppose such cuts, suggesting that congressional approval of this budget may run into stumbling blocks. The budget would also cut funding for research and development projects that are already attracting private-sector investment or that are not working, and would reduce some of the department's operational costs.

  1. Fuel economy of hybrid fuel-cell vehicles

    NASA Astrophysics Data System (ADS)

    Ahluwalia, Rajesh K.; Wang, X.; Rousseau, A.

    The potential improvement in fuel economy of a mid-size fuel-cell vehicle by combining it with an energy storage system has been assessed. An energy management strategy is developed and used to operate the direct hydrogen, pressurized fuel-cell system in a load-following mode and the energy storage system in a charge-sustaining mode. The strategy places highest priority on maintaining the energy storage system in a state where it can supply unanticipated boost power when the fuel-cell system alone cannot meet the power demand. It is found that downsizing a fuel-cell system decreases its efficiency on a drive cycle which is compensated by partial regenerative capture of braking energy. On a highway cycle with limited braking energy the increase in fuel economy with hybridization is small but on the stop-and-go urban cycle the fuel economy can improve by 27%. On the combined highway and urban drive cycles the fuel economy of the fuel-cell vehicle is estimated to increase by up to 15% by hybridizing it with an energy storage system.

  2. Summary Report for National Aeronautics Space Administration (NASA) and Centro Para Prevencao da Poluicao (C3P) 2011 International Workshop on Environment and Alternative Energy

    NASA Technical Reports Server (NTRS)

    Greene, Brian

    2011-01-01

    The C3P &. NASA International Workshop on Environment and Alternative Energy was held on November 15-18, 2011 at the European Space Agency (ESA)'s Research and Technology Centre (ESTEC) in Noordwijk, The Netherlands. The theme of the workshop was "Global Collaboration in Environmental and Alternative Energy Strategies". The workshop was held at ESTEC's conference center. More than 110 individuals from eleven countries attended the workshop. For the first time since the inception of NASA-C3P workshops, a full day was dedicated to a student session. Fifteen students from around the globe gave oral presentations along with poster displays relating to the latest technologies in environmental and alternative energy strategies. Judges from NASA, C3P and ESA awarded plaques to the top three students. In addition to the students, thirty eight U.S. and international subject matter experts presented on the following general environmental-related topics: (1) Hazardous materials management and substitution in support of space operations (2) Emerging renewable and alternative energy technologies (3) Sustainable development and redevelopment (4) Remediation technologies and strategies The workshop also included a panel discussion on the topic of the challenges of operating installations across borders. Throughout the workshop, attendees heard about the scope of environmental and energy challenges that industry and governments face. They heard about technologies for increasing energy efficiency and increasing use of renewable energy. They learned about ways companies and government agencies are using materials, processes, goods and services in a manner more respectful with the environment and in compliance with health and safety rules. The concept of partnerships and their inherent benefits was evidenced throughout the workshop. Partnering is a key aspect of sustainability because sustainable development is complicated. Through formal presentations and side discussions, attendees commented on the need for continued exploration of joint projects of mutual interest.

  3. A socio-technical approach to improving retail energy efficiency behaviours.

    PubMed

    Christina, Sian; Waterson, Patrick; Dainty, Andrew; Daniels, Kevin

    2015-03-01

    In recent years, the UK retail sector has made a significant contribution to societal responses on carbon reduction. We provide a novel and timely examination of environmental sustainability from a systems perspective, exploring how energy-related technologies and strategies are incorporated into organisational life. We use a longitudinal case study approach, looking at behavioural energy efficiency from within one of the UK's leading retailers. Our data covers a two-year period, with qualitative data from a total of 131 participants gathered using phased interviews and focus groups. We introduce an adapted socio-technical framework approach in order to describe an existing organisational behavioural strategy to support retail energy efficiency. Our findings point to crucial socio-technical and goal-setting factors which both impede and/or enable energy efficient behaviours, these include: tensions linked to store level perception of energy management goals; an emphasis on the importance of technology for underpinning change processes; and, the need for feedback and incentives to support the completion of energy-related tasks. We also describe the evolution of a practical operational intervention designed to address issues raised in our findings. Our study provides fresh insights into how sustainable workplace behaviours can be achieved and sustained over time. Secondly, we discuss in detail a set of issues arising from goal conflict in the workplace; these include the development of a practical energy management strategy to facilitate secondary organisational goals through job redesign. Copyright © 2014 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  4. Spacecraft detumbling through energy dissipation

    NASA Technical Reports Server (NTRS)

    Fitz-Coy, Norman; Chatterjee, Anindya

    1993-01-01

    The attitude motion of a tumbling, rigid, axisymmetric spacecraft is considered. A methodology for detumbling the spacecraft through energy dissipation is presented. The differential equations governing this motion are stiff, and therefore an approximate solution, based on the variation of constants method, is developed and utilized in the analysis of the detumbling strategy. Stability of the detumbling process is also addressed.

  5. Reducing Energy Burden with Solar: Colorado's Strategy and Roadmap for

    Science.gov Websites

    -income residents suffer from a high energy burden, which can force these residents to choose between . The report concludes with a roadmap other states might consider when developing their own low-income states might learn from the state's experience when they design their own programs. The report concludes

  6. Towards a framework for selection of supervisory control for commercial buildings: HVAC system energy efficiency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramachandran, Thiagarajan; Kundu, Soumya; Chen, Yan

    This paper develops and utilizes an optimization based framework to investigate the maximal energy efficiency potentially attainable by HVAC system operation in a non-predictive context. Performance is evaluated relative to the existing state of the art set point reset strategies. The expected efficiency increase driven by operation constraints relaxations is evaluated.

  7. Towards a framework for selection of supervisory control for commercial buildings: HVAC system energy efficiency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramachandran, Thiagarajan; Kundu, Soumya; Chen, Yan

    This paper develops and utilizes an optimization based framework to investigate the maximal energy efficiency potentially attainable by HVAC system operation in a non-predictive context. Performance is evaluated relative to the existing state of the art set-point reset strategies. The expected efficiency increase driven by operation constraints relaxations is evaluated.

  8. Analysis of energy requirement in the irrigation sector and its application in groundwater over-pumping control at a local scale - A case study in the North China Plain

    NASA Astrophysics Data System (ADS)

    Wang, L.; Kinzelbach, W.; Yao, H.; Hagmann, A.; Li, N.; Steiner, J. F.

    2017-12-01

    The North China Plain is one of the most important agricultural regions which relies heavily on groundwater pumping for irrigation powered by electric energy. This region is also facing a severe problem of groundwater over-pumping. Stopping groundwater depletion by controlling pumping for irrigation may harm the agricultural production and affect the interests of the electricity utility who is a direct participant in the irrigation management. Water-saving infrastructures such as sprinklers can be effective means for water conservation but are often difficult to implement due to farmers' unwillingness to pay for the additional electricity consumption. Understanding this food-energy-water nexus is fundamental to implement effective and practical strategies for groundwater over-pumping control in the North China Plain. However, this understanding can be obscured by the missing groundwater pumping monitoring and a lack of access to specific energy data for irrigation use as well as the field observations of pump efficiency. Taking the example of a typical agricultural county (Guantao) in the North China Plain with irrigation pumps generally powered by electricity, this study is focused on the analysis of the energy requirement in the irrigation sector and its application in developing strategies for groundwater over-pumping control at the county scale. 1) Field measurements from pumping tests are used to adjust the pumps' theoretical characteristics. A simple empirical equation is derived to estimate the energy use rate for irrigation given the depth of the groundwater table. Field measurements show that pump efficiency is around 30% in the tested region. 2) We hypothesize that the inter-annual variability of rural energy consumption is caused by the randomness in annual precipitation. This assumption is examined and then applied to separate the energy consumption for irrigation from the total rural energy consumption. 3) Based on the groundwater pumping rate reconstructed from the energy use, the interaction of agricultural production, groundwater resources and energy requirement is analysed and will help in developing practical strategies for groundwater over-pumping control in Guantao County.

  9. Household Energy Consumption Segmentation Using Hourly Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwac, J; Flora, J; Rajagopal, R

    2014-01-01

    The increasing US deployment of residential advanced metering infrastructure (AMI) has made hourly energy consumption data widely available. Using CA smart meter data, we investigate a household electricity segmentation methodology that uses an encoding system with a pre-processed load shape dictionary. Structured approaches using features derived from the encoded data drive five sample program and policy relevant energy lifestyle segmentation strategies. We also ensure that the methodologies developed scale to large data sets.

  10. Improved immunization strategy to reduce energy consumption on nodes traffic

    NASA Astrophysics Data System (ADS)

    Yuan, Jiazheng; Zhao, Dongyan; Long, Keping; Zheng, Yongrong

    2017-04-01

    The increasing requirement of transmission network sizes would result in huge energy consumption with communication traffic. Green communication technologies are expected to help in reducing energy consumption impact to environment. Therefore, it is important to design energy-efficient strategy that can decrease energy consumption. This paper proposes to use the acquaintance and improved targeted immunization strategies from complex systems to resolve energy consumption issues and uses traffic as measure standard to obtain a stable threshold. The simulation results show that the improved control strategy is better and more effective to save as much energy as possible.

  11. Promoting the energy structure optimization around Chinese Beijing-Tianjin area by developing biomass energy

    NASA Astrophysics Data System (ADS)

    Zhao, Li; Sun, Du; Wang, Shi-Yu; Zhao, Feng-Qing

    2017-06-01

    In recent years, remarkable achievements in the utilization of biomass energy have been made in China. However, there are still some problems, such as irrational industry layout, immature existing market survival mechanism and lack of core competitiveness. On the basis of investigation and research, some recommendations and strategies are proposed for the development of biomass energy around Chinese Beijing-Tianjin area: scientific planning and precise laying out of biomass industry; rationalizing the relationship between government and enterprises and promoting the establishment of a market-oriented survival mechanism; combining ‘supply side’ with ‘demand side’ to optimize product structure; extending industrial chain to promote industry upgrading and sustainable development; and comprehensive co-ordinating various types of biomass resources and extending product chain to achieve better economic benefits.

  12. Establishment of the International Power Institute. Final technical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Julius E. Coles

    The International Power Institute, in collaboration with American industries, seeks to address technical, political, economic and cultural issues of developing countries in the interest of facilitating profitable transactions in power related infrastructure projects. IPI works with universities, governments and commercial organizations to render project-specific recommendations for private-sector investment considerations. IPI also established the following goals: Facilitate electric power infrastructure transactions between developing countries and the US power industry; Collaborate with developing countries to identify development strategies to achieve energy stability; and Encourage market driven solutions and work collaboratively with other international trade energy, technology and banking organizations.

  13. A corporate approach to social monitoring and assessment for development in a fragile environment.

    PubMed

    May, Peter H; Dabbs, Alan W; Fernández-Dávila, Patricia; Da Vinha, Valéria; Zaidenweber, Nathan

    2002-05-01

    The prevailing corporate trend regarding development of energy resources in the tropics emphasizes financial gain over long-term societal benefits. Some corporations are beginning to find a competitive advantage linked to proactive relations with host communities and adequate protection of fragile ecosystems. Herein, we describe a case study where an international energy production company worked with stakeholders to achieve social capital and sustainable development. The strategies aimed to strengthen local capacity to improve social welfare and to ensure conservation and wise use of biodiversity. We provide examples, discuss lessons learned and make recommendations for future development projects.

  14. Hualapai Tribal Utility Development Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hualapai Tribal Nation

    The first phase of the Hualapai Tribal Utility Development Project (Project) studied the feasibility of establishing a tribally operated utility to provide electric service to tribal customers at Grand Canyon West (see objective 1 below). The project was successful in completing the analysis of the energy production from the solar power systems at Grand Canyon West and developing a financial model, based on rates to be charged to Grand Canyon West customers connected to the solar systems, that would provide sufficient revenue for a Tribal Utility Authority to operate and maintain those systems. The objective to establish a central powermore » grid over which the TUA would have authority and responsibility had to be modified because the construction schedule of GCW facilities, specifically the new air terminal, did not match up with the construction schedule for the solar power system. Therefore, two distributed systems were constructed instead of one central system with a high voltage distribution network. The Hualapai Tribal Council has not taken the action necessary to establish the Tribal Utility Authority that could be responsible for the electric service at GCW. The creation of a Tribal Utility Authority (TUA) was the subject of the second objective of the project. The second phase of the project examined the feasibility and strategy for establishing a tribal utility to serve the remainder of the Hualapai Reservation and the feasibility of including wind energy from a tribal wind generator in the energy resource portfolio of the tribal utility (see objective 2 below). It is currently unknown when the Tribal Council will consider the implementation of the results of the study. Objective 1 - Develop the basic organizational structure and operational strategy for a tribally controlled utility to operate at the Tribe’s tourism enterprise district, Grand Canyon West. Coordinate the development of the Tribal Utility structure with the development of the Grand Canyon West Power Project construction of the power infrastructure at Grand Canyon West. Develop the maintenance and operations capacity necessary to support utility operations. Develop rates for customers on the Grand Canyon West “mini-grid” sufficient for the tribal utility to be self-sustaining. Establish an implementation strategy for tribal utility service at Grand Canyon West Objective 2 - Develop a strategy for tribal utility takeover of electric service on the Reservation. Perform a cost analysis of Reservation electrical service. Develop an implementation strategy for tribal takeover of Reservation electrical service. Examine options and costs associated with integration of the Tribe’s wind resources.« less

  15. Material science lesson from the biological photosystem.

    PubMed

    Kim, Younghye; Lee, Jun Ho; Ha, Heonjin; Im, Sang Won; Nam, Ki Tae

    2016-01-01

    Inspired by photosynthesis, artificial systems for a sustainable energy supply are being designed. Each sequential energy conversion process from light to biomass in natural photosynthesis is a valuable model for an energy collection, transport and conversion system. Notwithstanding the numerous lessons of nature that provide inspiration for new developments, the features of natural photosynthesis need to be reengineered to meet man's demands. This review describes recent strategies toward adapting key lessons from natural photosynthesis to artificial systems. We focus on the underlying material science in photosynthesis that combines photosystems as pivotal functional materials and a range of materials into an integrated system. Finally, a perspective on the future development of photosynthesis mimetic energy systems is proposed.

  16. Performance assessment and optimization of an irreversible nano-scale Stirling engine cycle operating with Maxwell-Boltzmann gas

    NASA Astrophysics Data System (ADS)

    Ahmadi, Mohammad H.; Ahmadi, Mohammad-Ali; Pourfayaz, Fathollah

    2015-09-01

    Developing new technologies like nano-technology improves the performance of the energy industries. Consequently, emerging new groups of thermal cycles in nano-scale can revolutionize the energy systems' future. This paper presents a thermo-dynamical study of a nano-scale irreversible Stirling engine cycle with the aim of optimizing the performance of the Stirling engine cycle. In the Stirling engine cycle the working fluid is an Ideal Maxwell-Boltzmann gas. Moreover, two different strategies are proposed for a multi-objective optimization issue, and the outcomes of each strategy are evaluated separately. The first strategy is proposed to maximize the ecological coefficient of performance (ECOP), the dimensionless ecological function (ecf) and the dimensionless thermo-economic objective function ( F . Furthermore, the second strategy is suggested to maximize the thermal efficiency ( η), the dimensionless ecological function (ecf) and the dimensionless thermo-economic objective function ( F). All the strategies in the present work are executed via a multi-objective evolutionary algorithms based on NSGA∥ method. Finally, to achieve the final answer in each strategy, three well-known decision makers are executed. Lastly, deviations of the outcomes gained in each strategy and each decision maker are evaluated separately.

  17. Heating, Ventilation, and Air Conditioning Design Strategy for a Hot-Humid Production Builder

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kerrigan, P.

    2014-03-01

    Building Science Corporation (BSC) worked directly with the David Weekley Homes - Houston division to develop a cost-effective design for moving the HVAC system into conditioned space. In addition, BSC conducted energy analysis to calculate the most economical strategy for increasing the energy performance of future production houses in preparation for the upcoming code changes in 2015. This research project addressed the following questions: 1. What is the most cost effective, best performing and most easily replicable method of locating ducts inside conditioned space for a hot-humid production home builder that constructs one and two story single family detached residences?more » 2. What is a cost effective and practical method of achieving 50% source energy savings vs. the 2006 International Energy Conservation Code for a hot-humid production builder? 3. How accurate are the pre-construction whole house cost estimates compared to confirmed post construction actual cost?« less

  18. Transportation Science and Technology Strategy.

    DOT National Transportation Integrated Search

    1997-09-01

    The report, released by the National Science Technology Council (NSTC), is a comprehensive strategic plan developed by the Departments of Transportation, Defense, Energy, and Commerce, the Environmental Protection Agency, the National Aeronautics and...

  19. A versatile strategy toward binary three-dimensional architectures based on engineering graphene aerogels with porous carbon fabrics for supercapacitors.

    PubMed

    Song, Wei-Li; Song, Kuo; Fan, Li-Zhen

    2015-02-25

    Graphene-based supercapacitors and related flexible devices have attracted great attention because of the increasing demands in the energy storage. As promising three-dimensional (3D) nanostructures in the supercapacitor electrodes, graphene-based aerogels have been paid dramatic attention recently, and numerous methods have been developed for enhancing their performance in energy storage. In this study, an exclusive strategy is presented toward directly in situ growing reduced graphene oxide (RGO) aerogels inside the 3D porous carbon fabrics for engineering the interfaces of the resulting binary 3D architectures. Such unique architectures have shown various advantages in the improvements of the nanostructures and chemical compositions, allowing them to possess much enhanced electrochemical properties (391, 229, and 195 F g(-1) at current densities of 0.1, 1, and 5 A g(-1), respectively) with excellent cycling stability in comparison with the neat RGO aerogels. The results of the performance in the flexible all-solid-state supercapacitors along with discussion on the related mechanisms in the electrochemical properties indicate the remaining issues and associated opportunities in the development of advanced energy storage devices. This strategy is relatively facile, versatile, and tunable, which highlights a unique platform for engineering various 3D porous structures in many fields.

  20. Sustainability of utility-scale solar energy: Critical environmental concepts

    NASA Astrophysics Data System (ADS)

    Hernandez, R. R.; Moore-O'Leary, K. A.; Johnston, D. S.; Abella, S.; Tanner, K.; Swanson, A.; Kreitler, J.; Lovich, J.

    2017-12-01

    Renewable energy development is an arena where ecological, political, and socioeconomic values collide. Advances in renewable energy will incur steep environmental costs to landscapes in which facilities are constructed and operated. Scientists - including those from academia, industry, and government agencies - have only recently begun to quantify trade-off in this arena, often using ground-mounted, utility-scale solar energy facilities (USSE, ≥ 1 megawatt) as a model. Here, we discuss five critical ecological concepts applicable to the development of more sustainable USSE with benefits over fossil-fuel-generated energy: (1) more sustainable USSE development requires careful evaluation of trade-offs between land, energy, and ecology; (2) species responses to habitat modification by USSE vary; (3) cumulative and large-scale ecological impacts are complex and challenging to mitigate; (4) USSE development affects different types of ecosystems and requires customized design and management strategies; and (5) long-term ecological consequences associated with USSE sites must be carefully considered. These critical concepts provide a framework for reducing adverse environmental impacts, informing policy to establish and address conservation priorities, and improving energy production sustainability.

  1. Sustainability of utility-scale solar energy – critical ecological concepts

    USGS Publications Warehouse

    Moore-O'Leary, Kara A.; Hernandez, Rebecca R.; Johnston, Dave S.; Abella, Scott R.; Tanner, Karen E.; Swanson, Amanda C.; Kreitler, Jason R.; Lovich, Jeffrey E.

    2017-01-01

    Renewable energy development is an arena where ecological, political, and socioeconomic values collide. Advances in renewable energy will incur steep environmental costs to landscapes in which facilities are constructed and operated. Scientists – including those from academia, industry, and government agencies – have only recently begun to quantify trade-offs in this arena, often using ground-mounted, utility-scale solar energy facilities (USSE, ≥1 megawatt) as a model. Here, we discuss five critical ecological concepts applicable to the development of more sustainable USSE with benefits over fossil-fuel-generated energy: (1) more sustainable USSE development requires careful evaluation of trade-offs between land, energy, and ecology; (2) species responses to habitat modification by USSE vary; (3) cumulative and large-scale ecological impacts are complex and challenging to mitigate; (4) USSE development affects different types of ecosystems and requires customized design and management strategies; and (5) long-term ecological consequences associated with USSE sites must be carefully considered. These critical concepts provide a framework for reducing adverse environmental impacts, informing policy to establish and address conservation priorities, and improving energy production sustainability.

  2. Energy Monitoring and Targeting as diagnosis; Applying work analysis to adapt a statistical change detection strategy using representation aiding

    NASA Astrophysics Data System (ADS)

    Hilliard, Antony

    Energy Monitoring and Targeting is a well-established business process that develops information about utility energy consumption in a business or institution. While M&T has persisted as a worthwhile energy conservation support activity, it has not been widely adopted. This dissertation explains M&T challenges in terms of diagnosing and controlling energy consumption, informed by a naturalistic field study of M&T work. A Cognitive Work Analysis of M&T identifies structures that diagnosis can search, information flows un-supported in canonical support tools, and opportunities to extend the most popular tool for MM&T: Cumulative Sum of Residuals (CUSUM) charts. A design application outlines how CUSUM charts were augmented with a more contemporary statistical change detection strategy, Recursive Parameter Estimates, modified to better suit the M&T task using Representation Aiding principles. The design was experimentally evaluated in a controlled M&T synthetic task, and was shown to significantly improve diagnosis performance.

  3. HPI markets and strategies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ekolf, W.D.

    1988-03-01

    How the HPI and government react to new directions will not only set the course for the future of refining and marketing, it will have profound implications for the entire energy industry. Strategies developed by individual refiners and marketers in response to this changing environment will determine their future in the industry. In developing scenarios for the downstream, Cambridge Energy Research Associates (CERA), has identified three forces that will determine the downstream playing field in the nineties: 1. Imbalances between market demands and refinery capacity will continue to promote intense competition and to depress margins, 2. Product and crude pricemore » volatility will be at least as great in the future as it has been in the last three years and 3. Renewed environmental concerns will add new capital investment burdens to the industry. The implications of these three forces on refiners are clear - being in the downstream business is likely to become increasingly expensive, competitive and risky. The author shares CERA's perspective on why these forces have evolved and, in turn, led to new strategies and developments in the industry. Then he outlines how we think these new themes may affect players in the industry. Finally, he summarizes some key uncertainties the future holds.« less

  4. Fruit flies may face a nutrient-dependent life-history trade-off between secondary sexual trait quality, survival and developmental rate.

    PubMed

    Gray, Lindsey J; Simpson, Stephen J; Polak, Michal

    2018-01-01

    Optimal life-history strategies are those that best allocate finite environmental resources to competing traits. We used the geometric framework for nutrition to evaluate life-history strategies followed by Drosophila melanogaster by measuring the condition-dependent performance of life-history traits, including the morphology of male secondary sexual characters, sex combs. We found that depending on their rearing environment flies faced different forms of trait trade-offs and accordingly followed different life-history strategies. High-energy, high-carbohydrate, low-protein diets supported development of the largest and most symmetrical sex combs, however, consistent with handicap models of sexual selection these foods were associated with reduced fly survival and developmental rate. Expressing the highest quality sex combs may have required secondary sexual trait quality to be traded-off with developmental rate, and our results indicated that flies unable to slow development died. As larval nutritional environments are predominantly determined by female oviposition substrate choice, we tested where mated female flies laid the most eggs. Mothers chose high-energy, high-protein foods associated with rapid larval development. Mothers avoided high-carbohydrate foods associated with maximal sex comb expression, showing they may avoid producing fewer 'sexy' sons in favour of producing offspring that develop rapidly. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Characterization of cellulose nanofibrillation by micro grinding

    Treesearch

    Sandeep S. Nair; J.Y. Zhu; Yulin Deng; Arthur J. Ragauskas

    2014-01-01

    A fundamental understanding of the morphological development of cellulose fibers during fibrillation using micro grinder is very essential to develop effective strategies for process improvement and to reduce energy consumption. We demonstrated some simple measures for characterizing cellulose fibers fibrillated at different fibrillation times through the grinder. The...

  6. Silicon ribbon technology assessment 1978-1986 - A computer-assisted analysis using PECAN

    NASA Technical Reports Server (NTRS)

    Kran, A.

    1978-01-01

    The paper presents a 1978-1986 economic outlook for silicon ribbon technology based on the capillary action shaping technique. The outlook is presented within the framework of two sets of scenarios, which develop strategy for approaching the 1986 national energy capacity cost objective of $0.50/WE peak. The PECAN (Photovoltaic Energy Conversion Analysis) simulation technique is used to develop a 1986 sheet material price ($50/sq m) which apparently can be attained without further scientific breakthrough.

  7. Toward the renewables - A natural gas/solar energy transition strategy

    NASA Technical Reports Server (NTRS)

    Hanson, J. A.; Escher, W. J. D.

    1979-01-01

    The inevitability of an energy transition from today's non-renewable fossil base toward a renewable energy base is considered from the viewpoint of the need for a national transition strategy. Then, one such strategy is offered. Its technological building blocks are described in terms of both energy use and energy supply. The strategy itself is then sketched at four points in its implementation; (1) initiation, (2) early transition, (3) late transition, and (4) completion. The transition is assumed to evolve from a heavily natural gas-dependent energy economy. It then proceeds through its transition toward a balanced, hybrid energy system consisting of both centralized and dispersed energy supply technologies supplying hydrogen and electricity from solar energy. Related institutional, environmental and economic factors are examined briefly.

  8. Identifying potential environmental impacts of waste handling strategies in textile industry.

    PubMed

    Yacout, Dalia M M; Hassouna, M S

    2016-08-01

    Waste management is a successful instrument to minimize generated waste and improve environmental conditions. In spite of the large share of developing countries in the textile industry, limited information is available concerning the waste management strategies implemented for textiles on those countries and their environmental impacts. In the current study, two waste management approaches for hazardous solid waste treatment of acrylic fibers (landfill and incineration) were investigated. The main research questions were: What are the different impacts of each waste management strategy? Which waste management strategy is more ecofriendly? Life cycle assessment was employed in order to model the environmental impacts of each waste streaming approach separately then compare them together. Results revealed that incineration was the more ecofriendly approach. Highest impacts of both approaches were on ecotoxicity and carcinogenic potentials due to release of metals from pigment wastes. Landfill had an impact of 46.8 % on human health as compared to 28 % by incineration. Incineration impact on ecosystem quality was higher than landfill impact (68.4 and 51.3 %, respectively). As for resources category, incineration had a higher impact than landfill (3.5 and 2.0 %, respectively). Those impacts could be mitigated if state-of-the-art landfill or incinerator were used and could be reduced by applying waste to energy approaches for both management systems In conclusion, shifting waste treatment from landfill to incineration would decrease the overall environmental impacts and allow energy recovery. The potential of waste to energy approach by incineration with heat recovery could be considered in further studies. Future research is needed in order to assess the implementation of waste management systems and the preferable waste management strategies in the textile industry on developing countries.

  9. The conservation nexus: valuing interdependent water and energy savings in Arizona.

    PubMed

    Bartos, Matthew D; Chester, Mikhail V

    2014-02-18

    Water and energy resources are intrinsically linked, yet they are managed separately--even in the water-scarce American southwest. This study develops a spatially explicit model of water-energy interdependencies in Arizona and assesses the potential for cobeneficial conservation programs. The interdependent benefits of investments in eight conservation strategies are assessed within the context of legislated renewable energy portfolio and energy efficiency standards. The cobenefits of conservation are found to be significant. Water conservation policies have the potential to reduce statewide electricity demand by 0.82-3.1%, satisfying 4.1-16% of the state's mandated energy-efficiency standard. Adoption of energy-efficiency measures and renewable generation portfolios can reduce nonagricultural water demand by 1.9-15%. These conservation cobenefits are typically not included in conservation plans or benefit-cost analyses. Many cobenefits offer negative costs of saved water and energy, indicating that these measures provide water and energy savings at no net cost. Because ranges of costs and savings for water-energy conservation measures are somewhat uncertain, future studies should investigate the cobenefits of individual conservation strategies in detail. Although this study focuses on Arizona, the analysis can be extended elsewhere as renewable portfolio and energy efficiency standards become more common nationally and internationally.

  10. Stochastic control of smart home energy management with plug-in electric vehicle battery energy storage and photovoltaic array

    NASA Astrophysics Data System (ADS)

    Wu, Xiaohua; Hu, Xiaosong; Moura, Scott; Yin, Xiaofeng; Pickert, Volker

    2016-11-01

    Energy management strategies are instrumental in the performance and economy of smart homes integrating renewable energy and energy storage. This article focuses on stochastic energy management of a smart home with PEV (plug-in electric vehicle) energy storage and photovoltaic (PV) array. It is motivated by the challenges associated with sustainable energy supplies and the local energy storage opportunity provided by vehicle electrification. This paper seeks to minimize a consumer's energy charges under a time-of-use tariff, while satisfying home power demand and PEV charging requirements, and accommodating the variability of solar power. First, the random-variable models are developed, including Markov Chain model of PEV mobility, as well as predictive models of home power demand and PV power supply. Second, a stochastic optimal control problem is mathematically formulated for managing the power flow among energy sources in the smart home. Finally, based on time-varying electricity price, we systematically examine the performance of the proposed control strategy. As a result, the electric cost is 493.6% less for a Tesla Model S with optimal stochastic dynamic programming (SDP) control relative to the no optimal control case, and it is by 175.89% for a Nissan Leaf.

  11. Unconditionally energy stable time stepping scheme for Cahn–Morral equation: Application to multi-component spinodal decomposition and optimal space tiling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tavakoli, Rouhollah, E-mail: rtavakoli@sharif.ir

    An unconditionally energy stable time stepping scheme is introduced to solve Cahn–Morral-like equations in the present study. It is constructed based on the combination of David Eyre's time stepping scheme and Schur complement approach. Although the presented method is general and independent of the choice of homogeneous free energy density function term, logarithmic and polynomial energy functions are specifically considered in this paper. The method is applied to study the spinodal decomposition in multi-component systems and optimal space tiling problems. A penalization strategy is developed, in the case of later problem, to avoid trivial solutions. Extensive numerical experiments demonstrate themore » success and performance of the presented method. According to the numerical results, the method is convergent and energy stable, independent of the choice of time stepsize. Its MATLAB implementation is included in the appendix for the numerical evaluation of algorithm and reproduction of the presented results. -- Highlights: •Extension of Eyre's convex–concave splitting scheme to multiphase systems. •Efficient solution of spinodal decomposition in multi-component systems. •Efficient solution of least perimeter periodic space partitioning problem. •Developing a penalization strategy to avoid trivial solutions. •Presentation of MATLAB implementation of the introduced algorithm.« less

  12. The lead/acid battery — a key technology for global energy management

    NASA Astrophysics Data System (ADS)

    Rand, D. A. J.

    As the nations of the world continue to develop, their industrialization and growing populations will require increasing amounts of energy. Yet, global energy consumption, even at present levels, is already giving rise to concerns over both the security of future supplies and the attendant problems of environmental degradation. Thus, a major objective for the energy industry — in all its sectors — is to develop procedures so that the burgeoning demand for energy can be tolerated without exhaustion of the planet's resources, and without further deterioration of the global ecosystem. A step in the right direction is to place lead/acid batteries — serviceable, efficient and clean technology — at the cutting edge of energy strategies, regardless of the relatively low price of such traditional fuels as coal, mineral oil and natural gas.

  13. Demand response-enabled model predictive HVAC load control in buildings using real-time electricity pricing

    NASA Astrophysics Data System (ADS)

    Avci, Mesut

    A practical cost and energy efficient model predictive control (MPC) strategy is proposed for HVAC load control under dynamic real-time electricity pricing. The MPC strategy is built based on a proposed model that jointly minimizes the total energy consumption and hence, cost of electricity for the user, and the deviation of the inside temperature from the consumer's preference. An algorithm that assigns temperature set-points (reference temperatures) to price ranges based on the consumer's discomfort tolerance index is developed. A practical parameter prediction model is also designed for mapping between the HVAC load and the inside temperature. The prediction model and the produced temperature set-points are integrated as inputs into the MPC controller, which is then used to generate signal actions for the AC unit. To investigate and demonstrate the effectiveness of the proposed approach, a simulation based experimental analysis is presented using real-life pricing data. An actual prototype for the proposed HVAC load control strategy is then built and a series of prototype experiments are conducted similar to the simulation studies. The experiments reveal that the MPC strategy can lead to significant reductions in overall energy consumption and cost savings for the consumer. Results suggest that by providing an efficient response strategy for the consumers, the proposed MPC strategy can enable the utility providers to adopt efficient demand management policies using real-time pricing. Finally, a cost-benefit analysis is performed to display the economic feasibility of implementing such a controller as part of a building energy management system, and the payback period is identified considering cost of prototype build and cost savings to help the adoption of this controller in the building HVAC control industry.

  14. Identification of successful ridesharing strategies.

    DOT National Transportation Integrated Search

    1989-01-01

    Ridesharing offers a relatively low-cost solution to the problems associated with high commuting costs, traffic congestion, unmet parking demands, energy shortages, and excessive air pollutants. Accordingly, it is worthwhile to develop a list of stra...

  15. Averting a Disaster with Groundwater Depletion in India: The General Case of Water Management Principles and Development (Invited)

    NASA Astrophysics Data System (ADS)

    Lall, U.

    2013-12-01

    Many countries, including the USA, China, and India are experiencing chronic groundwater depletion. In part this unsustainable water use results from climatic factors that reduce surface water availability and also the recharge to the aquifer system. However, a more critical factor is uncontrolled use for agriculture and energy and mineral processing. Interestingly in places such as India endowments have been politically created that lead to ever increasing use, through the provision of free energy for pumping. Reversing the situation is considered politically challenging, and the concept of metering and payment for what is essentially economic use of water is also considered difficult to apply. In this talk I use the Indian situation as a general example and discuss the role central planning strategies for demand and resource management can play recognizing the private action by millions of users as an inevitable tool that needs to be leveraged without necessarily the high transaction costs that come with monitoring and fee collection for monitored use. Specifically, targeting and stimulating potential cropping strategies and on farm water and energy management emerge as a choice in a difficult management environment. In a broader development context, I argue that the role of private sector aggregators in developing farm to market procurement strategies can play a role in both improving rural economies and providing a trajectory for more efficient water use through technology and crop choice.

  16. Super-hierarchical porous carbons derived from mixed biomass wastes by a stepwise removal strategy for high-performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Peng, Lin; Liang, Yeru; Dong, Hanwu; Hu, Hang; Zhao, Xiao; Cai, Yijing; Xiao, Yong; Liu, Yingliang; Zheng, Mingtao

    2018-02-01

    The synthesis and energy storage application of hierarchical porous carbons with size ranging from nano-to micrometres has attracted considerable attention all over the world. Exploring eco-friendly and reliable synthesis of hierarchical porous carbons for supercapacitors with high energy density and high power is still of ongoing challenge. In this work, we report the design and synthesis of super-hierarchical porous carbons with highly developed porosity by a stepwise removal strategy for high-rate supercapacitors. The mixed biomass wastes of coconut shell and sewage sludge are employed as raw material. The as-prepared super-hierarchical porous carbons present high surface areas (3003 m2 g-1), large pore volume (2.04 cm3 g-1), appropriate porosity, and outstanding electrochemical performance. The dependence of electrochemical performance on structural, textural, and functional properties of carbons engineered by various synthesis strategies is investigated in detail. Moreover, the as-assembled symmetrical supercapacitor exhibits high energy density of 25.4 Wh kg-1 at a power density of 225 W kg-1 and retains 20.7 Wh kg-1 even at a very high power of 9000 W kg-1. This work provides an environmentally benign strategy and new insights to efficiently regulate the porosity of hierarchical porous carbons derived from biomass wastes for energy storage applications.

  17. Performance profiles of major energy producers, 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1999-01-01

    The energy industry generally and petroleum and natural gas operations in particular are frequently reacting to a variety of unsettling forces. Falling oil prices, economic upswings, currency devaluations, increasingly rigorous environmental quality standards, deregulation of electricity markets, and continued advances in exploration and production technology were among the challenges and opportunities to the industry in 1997. To analyze the extent to which these and other developments have affected energy industry financial and operating performance, strategies, and industry structure, the Energy Information Administration (EIA) maintains the Financial Reporting Systems (FRS). Through Form EIA-28, major US energy companies annually report to themore » FRS. Financial and operating information is reported by major lines of business, including oil and gas production (upstream), petroleum refining and marketing (downstream), other energy operations, and nonenergy business. Performance Profiles of Major Producers 1997 examines the interplays of energy markets, companies` strategies, and government policies (in 1997 and in historical context) that gave rise to the results given here. The report also analyzes other key aspects of energy company financial performance as seen through the multifaceted lens provided by the FRS data and complementary data for industry overall. 41 figs., 77 tabs.« less

  18. Strategies to improve energy efficiency in sewage treatment plants

    NASA Astrophysics Data System (ADS)

    Au, Mau Teng; Pasupuleti, Jagadeesh; Chua, Kok Hua

    2013-06-01

    This paper discusses on strategies to improve energy efficiency in Sewage Treatment Plant (STP). Four types of STP; conventional activated sludge, extended aeration, oxidation ditch, and sequence batch reactor are presented and strategized to reduce energy consumption based on their influent flow. Strategies to reduce energy consumption include the use of energy saving devices, energy efficient motors, automation/control and modification of processes. It is envisaged that 20-30% of energy could be saved from these initiatives.

  19. How can we restrict the sale of sports and energy drinks to children? A proposal for a World Health Organization-sponsored framework convention to restrict the sale of sports and energy drinks.

    PubMed

    Jean, G

    2017-12-01

    High-sugar drinks, including fruit drinks, soft drinks, sports drinks and energy drinks, are of no nutritional value and contribute to the burden of dental disease in all age groups. The manufacturers of sports and energy drinks have elected to target children in their marketing campaigns and promote a misleading association between their products, healthy lifestyles and sporting prowess. The World Health Organization (WHO) has acknowledged that strategies aimed at prevention of dental disease are the only economically viable options for managing the oral health of children in low- and middle-income countries. Developed nations will also be advantaged by preventive programmes given that the cost of providing dental care to those who cannot pay draws valuable resources away from more pressing health issues. The Convention on the Rights of the Child (CRC) obligates governments to develop legislation to protect the health of children. A framework convention modelled on the existing Framework Convention for Tobacco Control, supported by the WHO, would assist governments to proactively legislate to restrict the sale of sports and energy drinks to children. This article will consider how a framework convention would be an advantage with reference to the strategies used by sports and energy drink manufacturers in Australia. © 2017 Australian Dental Association.

  20. The difference between energy consumption and energy cost: Modelling energy tariff structures for water resource recovery facilities.

    PubMed

    Aymerich, I; Rieger, L; Sobhani, R; Rosso, D; Corominas, Ll

    2015-09-15

    The objective of this paper is to demonstrate the importance of incorporating more realistic energy cost models (based on current energy tariff structures) into existing water resource recovery facilities (WRRFs) process models when evaluating technologies and cost-saving control strategies. In this paper, we first introduce a systematic framework to model energy usage at WRRFs and a generalized structure to describe energy tariffs including the most common billing terms. Secondly, this paper introduces a detailed energy cost model based on a Spanish energy tariff structure coupled with a WRRF process model to evaluate several control strategies and provide insights into the selection of the contracted power structure. The results for a 1-year evaluation on a 115,000 population-equivalent WRRF showed monthly cost differences ranging from 7 to 30% when comparing the detailed energy cost model to an average energy price. The evaluation of different aeration control strategies also showed that using average energy prices and neglecting energy tariff structures may lead to biased conclusions when selecting operating strategies or comparing technologies or equipment. The proposed framework demonstrated that for cost minimization, control strategies should be paired with a specific optimal contracted power. Hence, the design of operational and control strategies must take into account the local energy tariff. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Parameters optimization for the energy management system of hybrid electric vehicle

    NASA Astrophysics Data System (ADS)

    Tseng, Chyuan-Yow; Hung, Yi-Hsuan; Tsai, Chien-Hsiung; Huang, Yu-Jen

    2007-12-01

    Hybrid electric vehicle (HEV) has been widely studied recently due to its high potential in reduction of fuel consumption, exhaust emission, and lower noise. Because of comprised of two power sources, the HEV requires an energy management system (EMS) to distribute optimally the power sources for various driving conditions. The ITRI in Taiwan has developed a HEV consisted of a 2.2L internal combustion engine (ICE), a 18KW motor/generator (M/G), a 288V battery pack, and a continuous variable transmission (CVT). The task of the present study is to design an energy management strategy of the EMS for the HEV. Due to the nonlinear nature and the fact of unknown system model of the system, a kind of simplex method based energy management strategy is proposed for the HEV system. The simplex method is a kind of optimization strategy which is generally used to find out the optimal parameters for un-modeled systems. The way to apply the simplex method for the design of the EMS is presented. The feasibility of the proposed method was verified by perform numerical simulation on the FTP75 drive cycles.

  2. An effective approach of lesion segmentation within the breast ultrasound image based on the cellular automata principle.

    PubMed

    Liu, Yan; Cheng, H D; Huang, Jianhua; Zhang, Yingtao; Tang, Xianglong

    2012-10-01

    In this paper, a novel lesion segmentation within breast ultrasound (BUS) image based on the cellular automata principle is proposed. Its energy transition function is formulated based on global image information difference and local image information difference using different energy transfer strategies. First, an energy decrease strategy is used for modeling the spatial relation information of pixels. For modeling global image information difference, a seed information comparison function is developed using an energy preserve strategy. Then, a texture information comparison function is proposed for considering local image difference in different regions, which is helpful for handling blurry boundaries. Moreover, two neighborhood systems (von Neumann and Moore neighborhood systems) are integrated as the evolution environment, and a similarity-based criterion is used for suppressing noise and reducing computation complexity. The proposed method was applied to 205 clinical BUS images for studying its characteristic and functionality, and several overlapping area error metrics and statistical evaluation methods are utilized for evaluating its performance. The experimental results demonstrate that the proposed method can handle BUS images with blurry boundaries and low contrast well and can segment breast lesions accurately and effectively.

  3. [Environment and energy in hospitals: assessment of usage and impact of Health Facilities in the Lombardy Region].

    PubMed

    Brioschi, A; Capolongo, S; Buffoli, M

    2010-01-01

    The research moves from the current global and local context and from shared development strategies. From the observation and the analysis of contemporary environmental and energy issues and redefined directions of growth of human activity, it is addressing the question of environmental sustainability and energy conservation of building hospital systems. The work has developed a field survey relating the specific topic of energy saving and efficiency of the Park Hospital in the Italian Lombardy Region. This has been articulated in a diagnosis of technology and efficiency of regional hospitals, implemented through a census, and in a subsequent identification of interventional cases, in order to show its economic, environmental and health performance of the energy efficiency consumption and the environmentally sound.

  4. Selling wind: Lessons in green niche marketing

    NASA Astrophysics Data System (ADS)

    Worden, Gregory Edward

    Concern about global warming, energy independence, and threats to oil supply have increased attention on wind and other forms of renewable energy. Yet after more than twenty years, the wind industry remains dependent on government interventions. This research examined the potential of renewable energy credits (RECs) to help wind energy become profitable. Messages used to promote wind and solar energy RECs were compared with those for sustainable building materials. Findings confirm a still immature approach to marketing and sales. None of those interviewed either recognized the value of or had taken action to ensure customer retention nor recognized the role socially conscious and active consumers might play in promoting and helping develop the industry. Recommended actions include continuing research on effective marketing strategies and development of a coordinated industry message.

  5. Space assets, technology and services in support of energy policy

    NASA Astrophysics Data System (ADS)

    Vasko, C. A.; Adriaensen, M.; Bretel, A.; Duvaux-Bechon, I.; Giannopapa, C. G.

    2017-09-01

    Space can be used as a tool by decision and policy makers in developing, implementing and monitoring various policy areas including resource management, environment, transport, security and energy. This paper focuses on the role of space for the energy policy. Firstly, the paper summarizes the European Union's (EU) main objectives in energy policy enclosed in the Energy Strategy 2020-2030-2050 and demonstrates how space assets can contribute to achieving those objectives. Secondly, the paper addresses how the European Space Agency (ESA) has established multiple initiatives and programs that directly finance the development of space assets, technology and applications that deliver services in support of the EU energy policy and sector. These efforts should be continued and strengthened in order to overcome identified technological challenges. The use of space assets, technology and applications, can help achieve the energy policy objectives for the next decades.

  6. Renewable energy sources in Bulgaria: Current state and trends

    NASA Astrophysics Data System (ADS)

    Kolev, K.

    The over-dependency of Bulgaria on imported fuel stressed the importance of developing a new energy strategy based on energy saving which includes also using renewable energy sources (RES). The target is the substitution of at least 2 percent of the real primary energy consumption with RES by 2010. The author gives a generalized analysis of the available RES in Bulgaria -solar, wind, geothermal, biomass and mini-hydraulic. The potentialities of each source for its usage as a suitable energy supply are pointed out, as well as the current status of research and implementation work, problems connected with legislation, financing and production of particular facilities. The governmental policy concerning RES is considered briefly. A description is given to the project 'Technical and Economical Assessment of Possibilities for Expansion of the RES-part in the Energy Balance of the Country' developed and started in 1994 in the framework of the PHARE program.

  7. Smart Building: Decision Making Architecture for Thermal Energy Management.

    PubMed

    Uribe, Oscar Hernández; Martin, Juan Pablo San; Garcia-Alegre, María C; Santos, Matilde; Guinea, Domingo

    2015-10-30

    Smart applications of the Internet of Things are improving the performance of buildings, reducing energy demand. Local and smart networks, soft computing methodologies, machine intelligence algorithms and pervasive sensors are some of the basics of energy optimization strategies developed for the benefit of environmental sustainability and user comfort. This work presents a distributed sensor-processor-communication decision-making architecture to improve the acquisition, storage and transfer of thermal energy in buildings. The developed system is implemented in a near Zero-Energy Building (nZEB) prototype equipped with a built-in thermal solar collector, where optical properties are analysed; a low enthalpy geothermal accumulation system, segmented in different temperature zones; and an envelope that includes a dynamic thermal barrier. An intelligent control of this dynamic thermal barrier is applied to reduce the thermal energy demand (heating and cooling) caused by daily and seasonal weather variations. Simulations and experimental results are presented to highlight the nZEB thermal energy reduction.

  8. PowerSat: A technology demonstration of a solar power satellite

    NASA Technical Reports Server (NTRS)

    Sigler, Douglas L. (Editor); Riedman, John; Duracinski, Jon; Edwards, Joe; Brown, Garry; Webb, Ron; Platzke, Mike; Yuan, Xiaolin; Rogers, Pete; Khan, Afsar

    1994-01-01

    PowerSat is a preliminary design strategy for microwave wireless power transfer of solar energy. Solar power satellites convert solar power into microwave energy and use wireless power transmission to transfer the power to the Earth's surface. The PowerSat project will show how new developments in inflatable technology can be used to deploy solar panels and phased array antennas.

  9. Optimized Free Energies from Bidirectional Single-Molecule Force Spectroscopy

    NASA Astrophysics Data System (ADS)

    Minh, David D. L.; Adib, Artur B.

    2008-05-01

    An optimized method for estimating path-ensemble averages using data from processes driven in opposite directions is presented. Based on this estimator, bidirectional expressions for reconstructing free energies and potentials of mean force from single-molecule force spectroscopy—valid for biasing potentials of arbitrary stiffness—are developed. Numerical simulations on a model potential indicate that these methods perform better than unidirectional strategies.

  10. Energy-Performance-Based Design-Build Process: Strategies for Procuring High-Performance Buildings on Typical Construction Budgets: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scheib, J.; Pless, S.; Torcellini, P.

    NREL experienced a significant increase in employees and facilities on our 327-acre main campus in Golden, Colorado over the past five years. To support this growth, researchers developed and demonstrated a new building acquisition method that successfully integrates energy efficiency requirements into the design-build requests for proposals and contracts. We piloted this energy performance based design-build process with our first new construction project in 2008. We have since replicated and evolved the process for large office buildings, a smart grid research laboratory, a supercomputer, a parking structure, and a cafeteria. Each project incorporated aggressive efficiency strategies using contractual energy usemore » requirements in the design-build contracts, all on typical construction budgets. We have found that when energy efficiency is a core project requirement as defined at the beginning of a project, innovative design-build teams can integrate the most cost effective and high performance efficiency strategies on typical construction budgets. When the design-build contract includes measurable energy requirements and is set up to incentivize design-build teams to focus on achieving high performance in actual operations, owners can now expect their facilities to perform. As NREL completed the new construction in 2013, we have documented our best practices in training materials and a how-to guide so that other owners and owner's representatives can replicate our successes and learn from our experiences in attaining market viable, world-class energy performance in the built environment.« less

  11. A conceptual framework for clutch-size evolution in songbirds.

    PubMed

    Martin, Thomas E

    2014-03-01

    Causes of evolved differences in clutch size among songbird species remain debated. I propose a new conceptual framework that integrates aspects of traditional life-history theory while including novel elements to explain evolution of clutch size among songbirds. I review evidence that selection by nest predation on length of time that offspring develop in the nest creates a gradient in offspring characteristics at nest leaving (fledging), including flight mobility, spatial dispersion, and self-feeding rate. I postulate that this gradient has consequences for offspring mortality rates and parental energy expenditure per offspring. These consequences then determine how reproductive effort is partitioned among offspring, while reproductive effort evolves from age-specific mortality effects. Using data from a long-term site in Arizona, as well as from the literature, I provide support for hypothesized relationships. Nestling development period consistently explains fledgling mortality, energy expenditure per offspring, and clutch size while accounting for reproductive effort (i.e., total energy expenditure) to thereby support the framework. Tests in this article are not definitive, but they document previously unrecognized relationships and address diverse traits (developmental strategies, parental care strategies, energy requirements per offspring, evolution of reproductive effort, clutch size) that justify further investigations of hypotheses proposed here.

  12. A conceptual framework for clutch size evolution in songbirds

    USGS Publications Warehouse

    Martin, Thomas E.

    2014-01-01

    Causes of evolved differences in clutch size among songbird species remain debated. I propose a new conceptual framework that integrates aspects of traditional life history theory, while including novel elements, to explain evolution of clutch size among songbirds. I review evidence that selection by nest predation on length of time that offspring develop in the nest creates a gradient in offspring characteristics at nest-leaving (fledging), including flight mobility, spatial dispersion, and self-feeding rate. I postulate that this gradient has consequences for offspring mortality rates and parental energy expenditure per offspring. These consequences then determine how reproductive effort is partitioned among offspring, while reproductive effort evolves from age-specific mortality effects. Using data from a long-term site in Arizona, as well as from the literature, I provide support for hypothesized relationships. Nestling development period consistently explains fledgling mortality, energy expenditure per offspring, and clutch size while accounting for reproductive effort (i.e., total energy expenditure) to thereby support the framework. Tests in this paper are not definitive, but they document previously unrecognized relationships and address diverse traits (developmental strategies, parental care strategies, energy requirements per offspring, evolution of reproductive effort, clutch size) that justify further investigations of hypotheses proposed here.

  13. Overview of the Biomass Scenario Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peterson, S.; Peck, C.; Stright, D.

    2015-02-01

    Biofuels are promoted in the United States through legislation, as one part of an overall strategy to lessen dependence on imported energy as well as to reduce the emissions of greenhouse gases (Office of the Biomass Program and Energy Efficiency and Renewable Energy, 2008). For example, the Energy Independence and Security Act of 2007 (EISA) mandates 36 billion gallons of renewable liquid transportation fuel in the U.S. marketplace by the year 2022 (U.S. Government, 2007). Meeting the volumetric targets has prompted an unprecedented increase in funding for biofuels research, much of it focused on producing ethanol and other fuel typesmore » from cellulosic feedstocks as well as additional biomass sources (such as oil seeds and algae feedstock). In order to help propel the biofuels industry, the U.S. government has enacted a variety of incentive programs (including subsidies, fixed capital investment grants, loan guarantees, vehicle choice credits, and corporate average fuel economy standards) -- the short-and long-term ramifications of which are not well understood. Efforts to better understand the impacts of incentive strategies can help policy makers to develop a policy suite which will foster industry development while reducing the financial risk associated with government support of the nascent biofuels industry.« less

  14. The impact of translucent fabric shades and control strategies on energy savings and visual quality

    NASA Astrophysics Data System (ADS)

    Wankanapon, Pimonmart

    Translucent fabric shades provide opportunities for building occupants to control sunlight penetration for heat reduction, thermal comfort, and visual quality. Regulating shades affects building energy and can potentially reduce the size of mechanical cooling systems. Shades are not normally included in energy model studies during the design process, even though shades potential impact energy use. This is because the occupants normally leave shades closed a large fraction of the time, but models are generally performed with no shades. Automatic shade control is now available, so it is necessary to understand the impact of shades on visual quality and their energy saving potential in order to optimize their overall performance. There are very limited studies that have address shades and their integrated performance on energy consumption and visual quality. Most of these do not reflected modern shade types and their application. The goals of this study are: First, to determine the impact of shades on total, heating, cooling and lighting energy savings with different design and operation parameters. Second, to study and develop different automatic shade control strategies to promote and optimize energy savings and visual quality. A simulation-based approach using EnergyPlus in a parametric study provide better understanding energy savings under different shade conditions. The parametric runs addressed various building parameters such as geometry, orientation, site climate, glazing/shade properties, and shade control strategies with integrated lighting control. The impact of shades was determined for total building and space heating, cooling and lighting energy savings. The effect of shades on visual quality was studied using EnergyPlus, AGI32 and DAYSIM for several indices such as daylight glare index (DGI), work plane illuminance, luminance ratios and view. Different shade control strategies and integrated lighting control were considered with two translucent fabric shade colors. The results clearly show the benefit of automatic shade control strategies with integrated lighting control over a condition when shades are closed all day. The main contributor to the total energy savings is from lighting energy savings, followed by cooling energy savings. Shades provide greater benefit in a hot climate and in a moderate climate than in a cold climate. Different control strategies provide savings in the range of 7-35% for annual total space energy with higher savings with light colored shades. Control strategies of shades should be selected and optimized based on climate, orientation, window area, and window/shade properties. High performance glazings, when equipped with shades, show lower energy savings when compared to standard glazings. High transmittance/reflectance shades, such as white shades, perform better than dark shades in most of the cases due to higher lighting energy savings obtained with the automatic electric lighting control and the resulting cooling energy savings from rejection of some solar energy and a reduction in the heat from lights. A South orientation showed the least benefit of automatic control of shades when compare to other orientations due to the large fraction of time shades are required to provide visual comfort. Under automatic shade control, energy savings are higher the more often the shades can be raised. The different automatic control strategies present tradeoffs between energy savings and comfort. With regard to visual quality, daylight quality assessments on view, glare, luminance ratios, and UDI can be used to assess shade control strategies. Automatic shade control can increase the number of view hours while controlling sunlight penetration. With automatic shade control, more daylight hours can be provided within the beneficial range of 100-2000 lux compared to shades that are closed all day. For a person facing the window, discomfort glare is likely to increase the more often the shades are raised. Keeping the shades down ensures an acceptable glare condition, but limits energy savings. Luminance ratios are another metric that can be used to assess shade performance. With white shades, the luminance ratios between the task and proximate surfaces are improved. Dark shades help improve the luminance ratios between the task and distant surfaces. When the shades are left open, even with no direct sunlight in the space, task to window luminance ratios will often exceed 1:10.

  15. Evolution Of The Operational Energy Strategy And Its Consideration In The Defense Acquisition Process

    DTIC Science & Technology

    2016-09-01

    OPERATIONAL ENERGY STRATEGY AND ITS CONSIDERATION IN THE DEFENSE ACQUISITION PROCESS by Richard J. Kendig Ashley D. Seaton Robert J. Rodgers...project 4. TITLE AND SUBTITLE EVOLUTION OF THE OPERATIONAL ENERGY STRATEGY AND ITS CONSIDERATION IN THE DEFENSE ACQUISITION PROCESS 5. FUNDING...looked at the DOD Operational Energy Strategy evolution and how it applies to new and modified weapon systems, considering the three-legged table of the

  16. Energy balance at a crossroads: translating the science into action.

    PubMed

    Manore, Melinda M; Brown, Katie; Houtkooper, Linda; Jakicic, John; Peters, John C; Smith Edge, Marianne; Steiber, Alison; Going, Scott; Gable, Lisa Guillermin; Krautheim, Ann Marie

    2014-07-01

    One of the major challenges facing the United States is the high number of overweight and obese adults and the growing number of overweight and unfit children and youth. To improve the nation's health, young people must move into adulthood without the burden of obesity and its associated chronic diseases. To address these issues, the American College of Sports Medicine, the Academy of Nutrition and Dietetics, and the US Department of Agriculture/Agriculture Research Service convened an expert panel meeting in October 2012 titled "Energy Balance at a Crossroads: Translating the Science into Action." Experts in the fields of nutrition and exercise science came together to identify the biological, lifestyle, and environmental changes that will most successfully help children and families attain and manage energy balance and tip the scale toward healthier weights. Two goals were addressed: 1) professional training and 2) consumer/community education. The training goal focused on developing a comprehensive strategy to facilitate the integration of nutrition and physical activity (PA) using a dynamic energy balance approach for regulating weight into the training of undergraduate and graduate students in dietetics/nutrition science, exercise science/PA, and pre-K-12 teacher preparation programs and in training existing cooperative extension faculty. The education goal focused on developing strategies for integrating dynamic energy balance into nutrition and PA educational programs for the public, especially programs funded by federal/state agencies. The meeting expert presenters and participants addressed three key areas: 1) biological and lifestyle factors that affect energy balance, 2) undergraduate/graduate educational and training issues, and 3) best practices associated with educating the public about dynamic energy balance. Specific consensus recommendations were developed for each goal.

  17. Implementing nationally determined contributions: building energy policies in India’s mitigation strategy

    NASA Astrophysics Data System (ADS)

    Yu, Sha; Evans, Meredydd; Kyle, Page; Vu, Linh; Tan, Qing; Gupta, Ashu; Patel, Pralit

    2018-03-01

    The Nationally Determined Contributions are allowing countries to examine options for reducing emissions through a range of domestic policies. India, like many developing countries, has committed to reducing emissions through specific policies, including building energy codes. Here we assess the potential of these sectoral policies to help in achieving mitigation targets. Collectively, it is critically important to see the potential impact of such policies across developing countries in meeting national and global emission goals. Buildings accounted for around one third of global final energy use in 2010, and building energy consumption is expected to increase as income grows in developing countries. Using the Global Change Assessment Model, this study finds that implementing a range of energy efficiency policies robustly can reduce total Indian building energy use by 22% and lower total Indian carbon dioxide emissions by 9% in 2050 compared to the business-as-usual scenario. Among various policies, energy codes for new buildings can result in the most significant savings. For all building energy policies, well-coordinated, consistent implementation is critical, which requires coordination across different departments and agencies, improving capacity of stakeholders, and developing appropriate institutions to facilitate policy implementation.

  18. Fire-protection research for energy technology: Fy 80 year end report

    NASA Astrophysics Data System (ADS)

    Hasegawa, H. K.; Alvares, N. J.; Lipska, A. E.; Ford, H.; Priante, S.; Beason, D. G.

    1981-05-01

    This continuing research program was initiated in order to advance fire protection strategies for Fusion Energy Experiments (FEE). The program expanded to encompass other forms of energy research. Accomplishments for fiscal year 1980 were: finalization of the fault-free analysis of the Shiva fire management system; development of a second-generation, fire-growth analysis using an alternate model and new LLNL combustion dynamics data; improvements of techniques for chemical smoke aerosol analysis; development and test of a simple method to assess the corrosive potential of smoke aerosols; development of an initial aerosol dilution system; completion of primary small-scale tests for measurements of the dynamics of cable fires; finalization of primary survey format for non-LLNL energy technology facilities; and studies of fire dynamics and aerosol production from electrical insulation and computer tape cassettes.

  19. Economics and Environmental Compatibility of Fusion Reactors —Its Analysis and Coming Issues— 1.Energy Strategy of the 21st Century Taking Advantage of Fusion

    NASA Astrophysics Data System (ADS)

    Okumura, Norihiro

    There is some general concern that economic development in developing countries will hasten global warning. In terms of reducing CO2 emissions, fusion will have great potential as a primary energy in the late 21st century according to the results of WING model simulations based on scenario analysis, if the cost of fusion with hydrogen generation would become competitive compared with those of other substitutive energies. However, securing social acceptance is very important to maintain the fossil research funded by the government suffering from cumulative debt.

  20. The Optimization Based Dynamic and Cyclic Working Strategies for Rechargeable Wireless Sensor Networks with Multiple Base Stations and Wireless Energy Transfer Devices

    PubMed Central

    Ding, Xu; Han, Jianghong; Shi, Lei

    2015-01-01

    In this paper, the optimal working schemes for wireless sensor networks with multiple base stations and wireless energy transfer devices are proposed. The wireless energy transfer devices also work as data gatherers while charging sensor nodes. The wireless sensor network is firstly divided into sub networks according to the concept of Voronoi diagram. Then, the entire energy replenishing procedure is split into the pre-normal and normal energy replenishing stages. With the objective of maximizing the sojourn time ratio of the wireless energy transfer device, a continuous time optimization problem for the normal energy replenishing cycle is formed according to constraints with which sensor nodes and wireless energy transfer devices should comply. Later on, the continuous time optimization problem is reshaped into a discrete multi-phased optimization problem, which yields the identical optimality. After linearizing it, we obtain a linear programming problem that can be solved efficiently. The working strategies of both sensor nodes and wireless energy transfer devices in the pre-normal replenishing stage are also discussed in this paper. The intensive simulations exhibit the dynamic and cyclic working schemes for the entire energy replenishing procedure. Additionally, a way of eliminating “bottleneck” sensor nodes is also developed in this paper. PMID:25785305

  1. The optimization based dynamic and cyclic working strategies for rechargeable wireless sensor networks with multiple base stations and wireless energy transfer devices.

    PubMed

    Ding, Xu; Han, Jianghong; Shi, Lei

    2015-03-16

    In this paper, the optimal working schemes for wireless sensor networks with multiple base stations and wireless energy transfer devices are proposed. The wireless energy transfer devices also work as data gatherers while charging sensor nodes. The wireless sensor network is firstly divided into sub networks according to the concept of Voronoi diagram. Then, the entire energy replenishing procedure is split into the pre-normal and normal energy replenishing stages. With the objective of maximizing the sojourn time ratio of the wireless energy transfer device, a continuous time optimization problem for the normal energy replenishing cycle is formed according to constraints with which sensor nodes and wireless energy transfer devices should comply. Later on, the continuous time optimization problem is reshaped into a discrete multi-phased optimization problem, which yields the identical optimality. After linearizing it, we obtain a linear programming problem that can be solved efficiently. The working strategies of both sensor nodes and wireless energy transfer devices in the pre-normal replenishing stage are also discussed in this paper. The intensive simulations exhibit the dynamic and cyclic working schemes for the entire energy replenishing procedure. Additionally, a way of eliminating "bottleneck" sensor nodes is also developed in this paper.

  2. Profiting from competition: Financial tools for electric generation companies

    NASA Astrophysics Data System (ADS)

    Richter, Charles William, Jr.

    Regulations governing the operation of electric power systems in North America and many other areas of the world are undergoing major changes designed to promote competition. This process of change is often referred to as deregulation. Participants in deregulated electricity systems may find that their profits will greatly benefit from the implementation of successful bidding strategies. While the goal of the regulators may be to create rules which balance reliable power system operation with maximization of the total benefit to society, the goal of generation companies is to maximize their profit, i.e., return to their shareholders. The majority of the research described here is conducted from the point of view of generation companies (GENCOs) wishing to maximize their expected utility function, which is generally comprised of expected profit and risk. Strategies that help a GENCO to maximize its objective function must consider the impact of (and aid in making) operating decisions that may occur within a few seconds to multiple years. The work described here assumes an environment in which energy service companies (ESCOs) buy and GENCOs sell power via double auctions in regional commodity exchanges. Power is transported on wires owned by transmission companies (TRANSCOs) and distribution companies (DISTCOs). The proposed market framework allows participants to trade electrical energy contracts via the spot, futures, options, planning, and swap markets. An important method of studying these proposed markets and the behavior of participating agents is the field of experimental/computational economics. For much of the research reported here, the market simulator developed by Kumar and Sheble and similar simulators has been adapted to allow computerized agents to trade energy. Creating computerized agents that can react as rationally or irrationally as a human trader is a difficult problem for which we have turned to the field of artificial intelligence. Some of our work uses GP-Automata, a technique which combines genetic programming and finite state machines, to represent adaptive agents. We use a genetic algorithm to evolve these adaptive agents (each with its own bidding strategy) for use in a double auction. The agent's strategies may be judged by the amount of profit they produce and are tested by computerized agents repeatedly buying and selling electricity in an auction simulator. In addition to the obvious profit-maximization strategies, one can also design strategies which exhibit other types of trading behaviors. The resulting strategies can be used directly in on-line trading, or as realistic models of competitors in a trading simulator. In addition to developing double auction bidding strategies, we investigate and discuss methods of an energy trader's risk. This can be done using such financial vehicles as futures and options contracts or through the inclusion of risk while judging strategies used in the market simulations described above. We discuss the role of fuzzy logic in the competitive electric marketplace, including how it can be applied in developing bidding strategies. Since competition promises to drive the power system closer to its operating limits, improvements in measurement and system control will be important. We provide an example of using fuzzy logic to do automatic generation control and discuss extensions that would make it superior to traditional controllers. Since the GENCO's forte is primarily generating electricity, we examine unit commitment and discuss how to update it for the competitive environment. We discuss the role of unit commitment in developing bidding strategies, as well as, the role of bidding strategies in solving the unit commitment problem. Depending on the market structure adopted by a particular location, large amounts of bidding data may be available to regulators or market participants. Ideally, regulators could use this data to verify dig the market is efficient. Market participants with access to this data might gain an advantage over their competitors if they could somehow determine their competitor's bidding strategy. We outline methods of automatically inferring other participants' trading rules based on historical data. Much of the work described here should aid in the design of effective operating procedures, trading strategies and profitable portfolios for energy producers.

  3. Coarse-Graining of Polymer Dynamics via Energy Renormalization

    NASA Astrophysics Data System (ADS)

    Xia, Wenjie; Song, Jake; Phelan, Frederick; Douglas, Jack; Keten, Sinan

    The computational prediction of the properties of polymeric materials to serve the needs of materials design and prediction of their performance is a grand challenge due to the prohibitive computational times of all-atomistic (AA) simulations. Coarse-grained (CG) modeling is an essential strategy for making progress on this problem. While there has been intense activity in this area, effective methods of coarse-graining have been slow to develop. Our approach to this fundamental problem starts from the observation that integrating out degrees of freedom of the AA model leads to a strong modification of the configurational entropy and cohesive interaction. Based on this observation, we propose a temperature-dependent systematic renormalization of the cohesive interaction in the CG modeling to recover the thermodynamic modifications in the system and the dynamics of the AA model. Here, we show that this energy renormalization approach to CG can faithfully estimate the diffusive, segmental and glassy dynamics of the AA model over a large temperature range spanning from the Arrhenius melt to the non-equilibrium glassy states. Our proposed CG strategy offers a promising strategy for developing thermodynamically consistent CG models with temperature transferability.

  4. Global energy strategies: Looking over the horizon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-12-31

    This document presents reports which were presented at the 1996 Cambridge Energy Research Associate`s (CERA) Executive Conference. Topics include: the political and economic outlook; CERA`s 1996 outlook; the energy company of the 21st century; oil market dynamics; natural gas business; generating strategies; growth opportunities in the oil industry; emerging oil and gas strategies; natural gas market; Asia Pacific energy; Latin America energy; California`s energy future; European gas and power opportunities; Russian and FSU energy. Individual reports were processed separately for the Department of Energy databases.

  5. Energy Harvesters for Wearable and Stretchable Electronics: From Flexibility to Stretchability.

    PubMed

    Wu, Hao; Huang, YongAn; Xu, Feng; Duan, Yongqing; Yin, Zhouping

    2016-12-01

    The rapid advancements of wearable electronics have caused a paradigm shift in consumer electronics, and the emerging development of stretchable electronics opens a new spectrum of applications for electronic systems. Playing a critical role as the power sources for independent electronic systems, energy harvesters with high flexibility or stretchability have been the focus of research efforts over the past decade. A large number of the flexible energy harvesters developed can only operate at very low strain level (≈0.1%), and their limited flexibility impedes their application in wearable or stretchable electronics. Here, the development of highly flexible and stretchable (stretchability >15% strain) energy harvesters is reviewed with emphasis on strategies of materials synthesis, device fabrication, and integration schemes for enhanced flexibility and stretchability. Due to their particular potential applications in wearable and stretchable electronics, energy-harvesting devices based on piezoelectricity, triboelectricity, thermoelectricity, and dielectric elastomers have been largely developed and the progress is summarized. The challenges and opportunities of assembly and integration of energy harvesters into stretchable systems are also discussed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. An advanced optical system for laser ablation propulsion in space

    NASA Astrophysics Data System (ADS)

    Bergstue, Grant; Fork, Richard; Reardon, Patrick

    2014-03-01

    We propose a novel space-based ablation driven propulsion engine concept utilizing transmitted energy in the form of a series of ultra-short optical pulses. Key differences are generating the pulses at the transmitting spacecraft and the safe delivery of that energy to the receiving spacecraft for propulsion. By expanding the beam diameter during transmission in space, the energy can propagate at relatively low intensity and then be refocused and redistributed to create an array of ablation sites at the receiver. The ablation array strategy allows greater control over flight dynamics and eases thermal management. Research efforts for this transmission and reception of ultra-short optical pulses include: (1) optical system design; (2) electrical system requirements; (3) thermal management; (4) structured energy transmission safety. Research has also been focused on developing an optical switch concept for the multiplexing of the ultra-short pulses. This optical switch strategy implements multiple reflectors polished into a rotating momentum wheel device to combine the pulses from different laser sources. The optical system design must minimize the thermal load on any one optical element. Initial specifications and modeling for the optical system are being produced using geometrical ray-tracing software to give a better understanding of the optical requirements. In regards to safety, we have advanced the retro-reflective beam locking strategy to include look-ahead capabilities for long propagation distances. Additional applications and missions utilizing multiplexed pulse transmission are also presented. Because the research is in early development, it provides an opportunity for new and valuable advances in the area of transmitted energy for propulsion as well as encourages joint international efforts. Researchers from different countries can cooperate in order to find constructive and safe uses of ordered pulse transmission for propulsion in future space-based missions.

  7. Energy Performance and Optimal Control of Air-conditioned Buildings Integrated with Phase Change Materials

    NASA Astrophysics Data System (ADS)

    Zhu, Na

    This thesis presents an overview of the previous research work on dynamic characteristics and energy performance of buildings due to the integration of PCMs. The research work on dynamic characteristics and energy performance of buildings using PCMs both with and without air-conditioning is reviewed. Since the particular interest in using PCMs for free cooling and peak load shifting, specific research efforts on both subjects are reviewed separately. A simplified physical dynamic model of building structures integrated with SSPCM (shaped-stabilized phase change material) is developed and validated in this study. The simplified physical model represents the wall by 3 resistances and 2 capacitances and the PCM layer by 4 resistances and 2 capacitances respectively while the key issue is the parameter identification of the model. This thesis also presents the studies on the thermodynamic characteristics of buildings enhanced by PCM and on the investigation of the impacts of PCM on the building cooling load and peak cooling demand at different climates and seasons as well as the optimal operation and control strategies to reduce the energy consumption and energy cost by reducing the air-conditioning energy consumption and peak load. An office building floor with typical variable air volume (VAV) air-conditioning system is used and simulated as the reference building in the comparison study. The envelopes of the studied building are further enhanced by integrating the PCM layers. The building system is tested in two selected cities of typical climates in China including Hong Kong and Beijing. The cold charge and discharge processes, the operation and control strategies of night ventilation and the air temperature set-point reset strategy for minimizing the energy consumption and electricity cost are studied. This thesis presents the simulation test platform, the test results on the cold storage and discharge processes, the air-conditioning energy consumption and demand reduction potentials in typical air-conditioning seasons in typical China cites as well as the impacts of operation and control strategies.

  8. Layered host-guest long-afterglow ultrathin nanosheets: high-efficiency phosphorescence energy transfer at 2D confined interface.

    PubMed

    Gao, Rui; Yan, Dongpeng

    2017-01-01

    Tuning and optimizing the efficiency of light energy transfer play an important role in meeting modern challenges of minimizing energy loss and developing high-performance optoelectronic materials. However, attempts to fabricate systems giving highly efficient energy transfer between luminescent donor and acceptor have achieved limited success to date. Herein, we present a strategy towards phosphorescence energy transfer at a 2D orderly crystalline interface. We first show that new ultrathin nanosheet materials giving long-afterglow luminescence can be obtained by assembling aromatic guests into a layered double hydroxide host. Furthermore, we demonstrate that co-assembly of these long-lived energy donors with an energy acceptor in the same host generates an ordered arrangement of phosphorescent donor-acceptor pairs spatially confined within the 2D nanogallery, which affords energy transfer efficiency as high as 99.7%. Therefore, this work offers an alternative route to develop new types of long-afterglow nanohybrids and efficient light transfer systems with potential energy, illumination and sensor applications.

  9. Energy for the new millennium.

    PubMed

    Goldemberg, J; Johansson, T B; Reddy, A K; Williams, R H

    2001-09-01

    The evolution of thinking about energy is discussed. When the authors began collaborating 20 years ago, energy was typically considered from a growth-oriented, supply-side perspective, with a focus on consumption trends and how to expand supplies to meet rising demand. They were deeply troubled by the environmental, security and equity implications of that approach. For instance, about two billion people lack access to affordable modern energy, seriously limiting their opportunities for a better life. And energy is a significant contributor to environmental problems, including indoor air pollution, urban air pollution, acidification, and global warming. The authors saw the need to evolve a different perspective in which energy is provided in ways that help solve such serious problems. They argued that energy must become an instrument for advancing sustainable development--economically viable, need-oriented, self-reliant and environmentally sound development--and that the focus should be on the end uses of energy and the services that energy provides. Energy technological options that can help meet sustainable development goals are discussed. The necessity of developing and employing innovative technological solutions is stressed. The possibilities of technological leap-frogging that could enable developing countries to avoid repeating the mistakes of the industrialized countries is illustrated with a discussion of ethanol in Brazil. The role foreign direct investment might play in bringing advanced technologies to developing countries is highlighted. Near- and long-term strategies for rural energy are discussed. Finally, policy issues are considered for evolving the energy system so that it will be consistent with and supportive of sustainable development.

  10. Passive and hybrid solar technologies program summary

    NASA Astrophysics Data System (ADS)

    1985-05-01

    The goal of the national energy policy is to foster an adequate supply of energy at reasonable prices. This policy recognizes that adequate supply requires flexibility, with no undue reliance on any single source of supply. The goal of reasonable prices suggests economic efficiency so that consumers, individuals, commercial and industrial users alike, are not penalized by government regulation or subside. The strategies for achieving this energy policy goal are: (1) to minimize federal regulation in energy pricing while maintaining public health and safety and environmental quality, and (2) to promote a balanced and mixed energy resource system through research and development. One of the keys to energy sufficiently is the scientific application of passive solar energy techniques.

  11. Comparative Physiology of Energy Metabolism: Fishing for Endocrine Signals in the Early Vertebrate Pool

    PubMed Central

    van de Pol, Iris; Flik, Gert; Gorissen, Marnix

    2017-01-01

    Energy is the common currency of life. To guarantee a homeostatic supply of energy, multiple neuro-endocrine systems have evolved in vertebrates; systems that regulate food intake, metabolism, and distribution of energy. Even subtle (lasting) dysregulation of the delicate balance of energy intake and expenditure may result in severe pathologies. Feeding-related pathologies have fueled research on mammals, including of course the human species. The mechanisms regulating food intake and body mass are well-characterized in these vertebrates. The majority of animal life is ectothermic, only birds and mammals are endotherms. What can we learn from a (comparative) study on energy homeostasis in teleostean fishes, ectotherms, with a very different energy budget and expenditure? We present several adaptation strategies in fish. In recent years, the components that regulate food intake in fishes have been identified. Although there is homology of the major genetic machinery with mammals (i.e., there is a vertebrate blueprint), in many cases this does not imply analogy. Although both mammals and fish must gain their energy from food, the expenditure of the energy obtained is different. Mammals need to spend vast amounts of energy to maintain body temperature; fishes seem to utilize a broader metabolic range to their advantage. In this review, we briefly discuss ecto- and endothermy and their consequences for energy balance. Next, we argue that the evolution of endothermy and its (dis-)advantages may explain very different strategies in endocrine regulation of energy homeostasis among vertebrates. We follow a comparative and evolutionary line of thought: we discuss similarities and differences between fish and mammals. Moreover, given the extraordinary radiation of teleostean fishes (with an estimated number of 33,400 contemporary species, or over 50% of vertebrate life forms), we also compare strategies in energy homeostasis between teleostean species. We present recent developments in the field of (neuro)endocrine regulation of energy balance in teleosts, with a focus on leptin. PMID:28303116

  12. A reduced energy supply strategy in active vibration control

    NASA Astrophysics Data System (ADS)

    Ichchou, M. N.; Loukil, T.; Bareille, O.; Chamberland, G.; Qiu, J.

    2011-12-01

    In this paper, a control strategy is presented and numerically tested. This strategy aims to achieve the potential performance of fully active systems with a reduced energy supply. These energy needs are expected to be comparable to the power demands of semi-active systems, while system performance is intended to be comparable to that of a fully active configuration. The underlying strategy is called 'global semi-active control'. This control approach results from an energy investigation based on management of the optimal control process. Energy management encompasses storage and convenient restitution. The proposed strategy monitors a given active law without any external energy supply by considering purely dissipative and energy-demanding phases. Such a control law is offered here along with an analysis of its properties. A suboptimal form, well adapted for practical implementation steps, is also given. Moreover, a number of numerical experiments are proposed in order to validate test findings.

  13. Biologically Enhanced Energy and Carbon Cycling on Titan?

    NASA Astrophysics Data System (ADS)

    Schulze-Makuch, Dirk; Grinspoon, David H.

    2005-08-01

    With the Cassini-Huygens Mission in orbit around Saturn, the large moon Titan, with its reducing atmosphere, rich organic chemistry, and heterogeneous surface, moves into the astrobiological spotlight. Environmental conditions on Titan and Earth were similar in many respects 4 billion years ago, the approximate time when life originated on Earth. Life may have originated on Titan during its warmer early history and then developed adaptation strategies to cope with the increasingly cold conditions. If organisms originated and persisted, metabolic strategies could exist that would provide sufficient energy for life to persist, even today. Metabolic reactions might include the catalytic hydrogenation of photochemically produced acetylene, or involve the recombination of radicals created in the atmosphere by ultraviolet radiation. Metabolic activity may even contribute to the apparent youth, smoothness, and high activity of Titan's surface via biothermal energy.

  14. Biologically enhanced energy and carbon cycling on Titan?

    PubMed

    Schulze-Makuch, Dirk; Grinspoon, David H

    2005-08-01

    With the Cassini-Huygens Mission in orbit around Saturn, the large moon Titan, with its reducing atmosphere, rich organic chemistry, and heterogeneous surface, moves into the astrobiological spotlight. Environmental conditions on Titan and Earth were similar in many respects 4 billion years ago, the approximate time when life originated on Earth. Life may have originated on Titan during its warmer early history and then developed adaptation strategies to cope with the increasingly cold conditions. If organisms originated and persisted, metabolic strategies could exist that would provide sufficient energy for life to persist, even today. Metabolic reactions might include the catalytic hydrogenation of photochemically produced acetylene, or involve the recombination of radicals created in the atmosphere by ultraviolet radiation. Metabolic activity may even contribute to the apparent youth, smoothness, and high activity of Titan's surface via biothermal energy.

  15. The High Field Path to Practical Fusion Energy

    NASA Astrophysics Data System (ADS)

    Mumgaard, Robert; Whyte, D.; Greenwald, M.; Hartwig, Z.; Brunner, D.; Sorbom, B.; Marmar, E.; Minervini, J.; Bonoli, P.; Irby, J.; Labombard, B.; Terry, J.; Vieira, R.; Wukitch, S.

    2017-10-01

    We propose a faster, lower cost development path for fusion energy enabled by high temperature superconductors, devices at high magnetic field, innovative technologies and modern approaches to technology development. Timeliness, scale, and economic-viability are the drivers for fusion energy to combat climate change and aid economic development. The opportunities provided by high-temperature superconductors, innovative engineering and physics, and new organizational structures identified over the last few years open new possibilities for realizing practical fusion energy that could meet mid-century de-carbonization needs. We discuss re-factoring the fusion energy development path with an emphasis on concrete risk retirement strategies utilizing a modular approach based on the high-field tokamak that leverages the broader tokamak physics understanding of confinement, stability, and operational limits. Elements of this plan include development of high-temperature superconductor magnets, simplified immersion blankets, advanced long-leg divertors, a compact divertor test tokamak, efficient current drive, modular construction, and demountable magnet joints. An R&D plan culminating in the construction of an integrated pilot plant and test facility modeled on the ARC concept is presented.

  16. Existing Whole-House Solutions Case Study: Exterior Insulation Pre- and Post-Retrofit, Syracuse, New York

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    In this study, IBACOS, in collaboration with GreenHomes America, Inc., was contracted by the New York State Energy Research and Development Authority (NYSERDA) to research exterior wall insulation solutions for enclosure upgrades. This case study describes the deep energy retrofit of three test homes in the Syracuse, New York area and represent these enclosure strategies: rigid foam insulation; spray foam insulation, and a control house that follows Home Performance with ENERGY STAR (HPwES) guidelines.

  17. Evidence Base for the Development of an Enduring DND/CAF Operational Energy Strategy (DOES): Expressing Canadian Values Through Defence Operational Energy Stewardship Here and Abroad

    DTIC Science & Technology

    2014-12-01

    Class Ships, DTIC Document. D. De Donno, L.C., and L. Tarricone (2013), Enabling Self-Powered Autonomous Wireless Sensors with New-Generation I2C-RFID...use energy consumption, electricity is growing much faster than direct use of fuels.” Advance information technologies, sensors and weapons as...operating bases (FOBs) and any off-grid encampments). 3. Tactical Platforms (i.e., independent, military vehicles incorporating sensor , communications and

  18. Climate, Land-, Energy-, Water-use simulations (CLEWs) in Mauritius - an integrated optimisation approach

    NASA Astrophysics Data System (ADS)

    Alfstad, Thomas; Howells, Mark; Rogner, Holger; Ramos, Eunice; Zepeda, Eduardo

    2016-04-01

    The Climate, Land, Energy and Water (CLEW) framework is a set of methodologies for integrated assessment of resource systems. It was developed to provide a means to simultaneously address matters pertaining to energy, water and food security. This is done while both considering the impact that the utilization of these resources have on our climate, as well as how our ability to continue using these resources could be impacted by climate change. CLEW is being applied in Mauritius to provide policy relevant analysis for sustainable development. The work aims to explore the interplay among the different elements of a national sustainable development strategy. A driving motivation is to address issues pertaining to policy cohesion, by exploring cross-sectoral impacts of individual policies and measures. The analysis explores how policies and actions intended to promote sustainability, have ramifications beyond the sector of the economy where it is applied. A primary concern is to ensure that efforts undertaken in pursuit of one policy goal do not inadvertently compromise progress towards attaining goals in other areas. Conversely there may be instances where an action has multiple benefits across various areas. Identifying such trade-offs and synergies can provide additional insights into development policy and support formulation of robust sustainable development strategies. The agreed sustainable development goals clearly illustrate the multi-faceted and multi-dimensional nature of the development challenge, with many overlapping and interlinked concerns. This work focuses on the link between food, energy, water and climate policy, which has shown to be particularly closely intertwined. In Mauritius, the highly interlinked and interdependent nature of the energy and sugar industries for example, highlights the need for coherent and integrated assessment of the role of these sectors in support of sustainable development in the country. Promoting energy self-sufficiency, cutting carbon emissions, adapting to climate change and supporting incomes in the agricultural sector for instance are not separate goals, but interlinked ones, and a holistic and inclusive view of policy formulation is likely to lead to more sustainable outcomes. This presentation will share the findings and lessons learned from this work. .

  19. Strategies for the Use of Tidal Stream Currents for Power Generation

    NASA Astrophysics Data System (ADS)

    Orhan, Kadir; Mayerle, Roberto

    2015-04-01

    Indonesia is one of the priority countries in Southeast Asia for the development of ocean renewable energy facilities and The National Energy Council intends to increase the role of ocean energy significantly in the energy mix for 2010-2050. To this end, the joint German-Indonesian project "Ocean Renewable Energy ORE-12" aims at the identification of marine environments in the Indonesian Archipelago, which are suitable for the efficient generation of electric power by converter facilities. This study, within the ORE-12 project, is focused on the tidal stream currents on the straits between the Indian Ocean and Flores Sea to estimate the energy potentials and to develop strategies for producing renewable energy. FLOW module of Delft3D has been used to run hydrodynamic models for site assessment and design development. In site assessment phase, 2D models have been operated for a-month long periods and with a resolution of 500 m. Later on, in design development phase, detailed 3D models have been developed and operated for three-month long periods and with a resolution of 50 m. Bathymetric data for models have been obtained from the GEBCO_08 Grid and wind data from the Global Forecast System of NOAA's National Climatic Data Center. To set the boundary conditions of models, tidal forcing with 11 harmonic constituents was supplied from TPXO Indian Ocean Atlas (1/12° regional model) and data from HYCOM+NCODA Global 1/12° Analysis have been used to determine salinity and temperature on open boundaries. After the field survey is complete, water level time-series supplied from a tidal gauge located in the domain of interest (8° 20΄ 9.7" S, 122° 54΄ 51.9" E) have been used to verify the models and then energy potentials of the straits have been estimated. As a next step, correspondence between model outputs and measurements taken by the radar system of TerraSAR-X satellite (DLR) will be analysed. Also for the assessment of environmental impacts caused by tidal stream current power plants, studies are being conducted in a cooperation with CRM (Coastal Research & Management) company.

  20. Conceptual Design of Optimized Fossil Energy Systems with Capture and Sequestration of Carbon Dioxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nils Johnson; Joan Ogden

    2010-12-31

    In this final report, we describe research results from Phase 2 of a technical/economic study of fossil hydrogen energy systems with carbon dioxide (CO{sub 2}) capture and storage (CCS). CO{sub 2} capture and storage, or alternatively, CO{sub 2} capture and sequestration, involves capturing CO{sub 2} from large point sources and then injecting it into deep underground reservoirs for long-term storage. By preventing CO{sub 2} emissions into the atmosphere, this technology has significant potential to reduce greenhouse gas (GHG) emissions from fossil-based facilities in the power and industrial sectors. Furthermore, the application of CCS to power plants and hydrogen production facilitiesmore » can reduce CO{sub 2} emissions associated with electric vehicles (EVs) and hydrogen fuel cell vehicles (HFCVs) and, thus, can also improve GHG emissions in the transportation sector. This research specifically examines strategies for transitioning to large-scale coal-derived energy systems with CCS for both hydrogen fuel production and electricity generation. A particular emphasis is on the development of spatially-explicit modeling tools for examining how these energy systems might develop in real geographic regions. We employ an integrated modeling approach that addresses all infrastructure components involved in the transition to these energy systems. The overall objective is to better understand the system design issues and economics associated with the widespread deployment of hydrogen and CCS infrastructure in real regions. Specific objectives of this research are to: Develop improved techno-economic models for all components required for the deployment of both hydrogen and CCS infrastructure, Develop novel modeling methods that combine detailed spatial data with optimization tools to explore spatially-explicit transition strategies, Conduct regional case studies to explore how these energy systems might develop in different regions of the United States, and Examine how the design and cost of coal-based H{sub 2} and CCS infrastructure depend on geography and location.« less

  1. Technical Support Document: Development of the Advanced Energy Design Guide for Large Hospitals - 50% Energy Savings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bonnema, E.; Leach, M.; Pless, S.

    2013-06-01

    This Technical Support Document describes the process and methodology for the development of the Advanced Energy Design Guide for Large Hospitals: Achieving 50% Energy Savings Toward a Net Zero Energy Building (AEDG-LH) ASHRAE et al. (2011b). The AEDG-LH is intended to provide recommendations for achieving 50% whole-building energy savings in large hospitals over levels achieved by following Standard 90.1-2004. The AEDG-LH was created for a 'standard' mid- to large-size hospital, typically at least 100,000 ft2, but the strategies apply to all sizes and classifications of new construction hospital buildings. Its primary focus is new construction, but recommendations may be applicablemore » to facilities undergoing total renovation, and in part to many other hospital renovation, addition, remodeling, and modernization projects (including changes to one or more systems in existing buildings).« less

  2. Development of robust building energy demand-side control strategy under uncertainty

    NASA Astrophysics Data System (ADS)

    Kim, Sean Hay

    The potential of carbon emission regulations applied to an individual building will encourage building owners to purchase utility-provided green power or to employ onsite renewable energy generation. As both cases are based on intermittent renewable energy sources, demand side control is a fundamental precondition for maximizing the effectiveness of using renewable energy sources. Such control leads to a reduction in peak demand and/or in energy demand variability, therefore, such reduction in the demand profile eventually enhances the efficiency of an erratic supply of renewable energy. The combined operation of active thermal energy storage and passive building thermal mass has shown substantial improvement in demand-side control performance when compared to current state-of-the-art demand-side control measures. Specifically, "model-based" optimal control for this operation has the potential to significantly increase performance and bring economic advantages. However, due to the uncertainty in certain operating conditions in the field its control effectiveness could be diminished and/or seriously damaged, which results in poor performance. This dissertation pursues improvements of current demand-side controls under uncertainty by proposing a robust supervisory demand-side control strategy that is designed to be immune from uncertainty and perform consistently under uncertain conditions. Uniqueness and superiority of the proposed robust demand-side controls are found as below: a. It is developed based on fundamental studies about uncertainty and a systematic approach to uncertainty analysis. b. It reduces variability of performance under varied conditions, and thus avoids the worst case scenario. c. It is reactive in cases of critical "discrepancies" observed caused by the unpredictable uncertainty that typically scenario uncertainty imposes, and thus it increases control efficiency. This is obtainable by means of i) multi-source composition of weather forecasts including both historical archive and online sources and ii) adaptive Multiple model-based controls (MMC) to mitigate detrimental impacts of varying scenario uncertainties. The proposed robust demand-side control strategy verifies its outstanding demand-side control performance in varied and non-indigenous conditions compared to the existing control strategies including deterministic optimal controls. This result reemphasizes importance of the demand-side control for a building in the global carbon economy. It also demonstrates a capability of risk management of the proposed robust demand-side controls in highly uncertain situations, which eventually attains the maximum benefit in both theoretical and practical perspectives.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neuhauser, K.

    Through discussion of five case studies (test homes), this project evaluates strategies to elevate the performance of existing homes to a level commensurate with best-in-class implementation of high-performance new construction homes. The test homes featured in this research activity participated in Deep Energy Retrofit (DER) Pilot Program sponsored by the electric and gas utility National Grid in Massachusetts and Rhode Island. Building enclosure retrofit strategies are evaluated for impact on durability and indoor air quality in addition to energy performance. Evaluation of strategies is structured around the critical control functions of water, airflow, vapor flow, and thermal control. The aimmore » of the research project is to develop guidance that could serve as a foundation for wider adoption of high performance, 'deep' retrofit work. The project will identify risk factors endemic to advanced retrofit in the context of the general building type, configuration and vintage encountered in the National Grid DER Pilot. Results for the test homes are based on observation and performance testing of recently completed projects. Additional observation would be needed to fully gauge long-term energy performance, durability, and occupant comfort.« less

  4. Southeast Atmosphere Studies Workshop 2015

    EPA Science Inventory

    Concentrations of atmospheric trace species in the United States have changed dramatically over the past several decades in response to pollution control strategies, shifts in domestic energy policy, and economic development (and resulting emission changes) elsewhere in the world...

  5. Operating wind turbines in strong wind conditions by using feedforward-feedback control

    NASA Astrophysics Data System (ADS)

    Feng, Ju; Sheng, Wen Zhong

    2014-12-01

    Due to the increasing penetration of wind energy into power systems, it becomes critical to reduce the impact of wind energy on the stability and reliability of the overall power system. In precedent works, Shen and his co-workers developed a re-designed operation schema to run wind turbines in strong wind conditions based on optimization method and standard PI feedback control, which can prevent the typical shutdowns of wind turbines when reaching the cut-out wind speed. In this paper, a new control strategy combing the standard PI feedback control with feedforward controls using the optimization results is investigated for the operation of variable-speed pitch-regulated wind turbines in strong wind conditions. It is shown that the developed control strategy is capable of smoothening the power output of wind turbine and avoiding its sudden showdown at high wind speeds without worsening the loads on rotor and blades.

  6. Environmental impacts of utility-scale solar energy

    USGS Publications Warehouse

    Hernandez, R.R.; Easter, S.B.; Murphy-Mariscal, M. L.; Maestre, F.T.; Tavassoli, M.; Allen, E.B.; Barrows, C.W.; Belnap, J.; Ochoa-Hueso, R.; Ravi, S.; Allen, M.F.

    2014-01-01

    Renewable energy is a promising alternative to fossil fuel-based energy, but its development can require a complex set of environmental tradeoffs. A recent increase in solar energy systems, especially large, centralized installations, underscores the urgency of understanding their environmental interactions. Synthesizing literature across numerous disciplines, we review direct and indirect environmental impacts – both beneficial and adverse – of utility-scale solar energy (USSE) development, including impacts on biodiversity, land-use and land-cover change, soils, water resources, and human health. Additionally, we review feedbacks between USSE infrastructure and land-atmosphere interactions and the potential for USSE systems to mitigate climate change. Several characteristics and development strategies of USSE systems have low environmental impacts relative to other energy systems, including other renewables. We show opportunities to increase USSE environmental co-benefits, the permitting and regulatory constraints and opportunities of USSE, and highlight future research directions to better understand the nexus between USSE and the environment. Increasing the environmental compatibility of USSE systems will maximize the efficacy of this key renewable energy source in mitigating climatic and global environmental change.

  7. Excitons and the lifetime of organic semiconductor devices.

    PubMed

    Forrest, Stephen R

    2015-06-28

    While excitons are responsible for the many beneficial optical properties of organic semiconductors, their non-radiative recombination within the material can result in material degradation due to the dumping of energy onto localized molecular bonds. This presents a challenge in developing strategies to exploit the benefits of excitons without negatively impacting the device operational stability. Here, we will briefly review the fundamental mechanisms leading to excitonic energy-driven device ageing in two example devices: blue emitting electrophosphorescent organic light emitting devices (PHOLEDs) and organic photovoltaic (OPV) cells. We describe strategies used to minimize or even eliminate this fundamental device degradation pathway. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  8. Nonlinear Analysis and Modeling of Tires

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K.

    1996-01-01

    The objective of the study was to develop efficient modeling techniques and computational strategies for: (1) predicting the nonlinear response of tires subjected to inflation pressure, mechanical and thermal loads; (2) determining the footprint region, and analyzing the tire pavement contact problem, including the effect of friction; and (3) determining the sensitivity of the tire response (displacements, stresses, strain energy, contact pressures and contact area) to variations in the different material and geometric parameters. Two computational strategies were developed. In the first strategy the tire was modeled by using either a two-dimensional shear flexible mixed shell finite elements or a quasi-three-dimensional solid model. The contact conditions were incorporated into the formulation by using a perturbed Lagrangian approach. A number of model reduction techniques were applied to substantially reduce the number of degrees of freedom used in describing the response outside the contact region. The second strategy exploited the axial symmetry of the undeformed tire, and uses cylindrical coordinates in the development of three-dimensional elements for modeling each of the different parts of the tire cross section. Model reduction techniques are also used with this strategy.

  9. Workaholism and daily energy management at work: associations with self-reported health and emotional exhaustion

    PubMed Central

    SCHULZ, Anika Susanne; BLOOM, Jessica; KINNUNEN, Ulla

    2017-01-01

    Adequate energy management during the working day is essential for employees to remain healthy and vital. Research has investigated which energy management strategies are frequently used and which are most beneficial, but the results are inconclusive and research is still scarce. We aim to extend the current knowledge by considering individual differences in terms of working compulsively (as key feature of workaholism) with regard to energy management. Data were collected with an online survey in 1,253 employees from 12 different organizations. Employees’ levels of compulsiveness were expected to relate to 1) employees’ choice of which energy management strategies to use, and 2) the benefits (improved health and alleviated emotional exhaustion) of the chosen strategy. The results partly supported the hypotheses in that compulsiveness was associated with more frequent use of work-related energy management strategies. However, compulsiveness was not related to less frequent use of micro-breaks. Energy management (particularly work-related and physical micro-break strategies) improved health and alleviated emotional exhaustion regardless of compulsiveness levels, whereas private micro-break strategies were only beneficial for employees high in compulsiveness. PMID:28123137

  10. Negotiating the labyrinth of modernity's promise a paradigm analysis of energy poverty in peri-urban Kumasi, Ghana

    NASA Astrophysics Data System (ADS)

    Odarno, Lily Ameley

    Energy poverty in developing countries has been conventionally attributed to a lack of access to sufficient, sustainable and modern forms of energy (ESMAP 2001; Modi et al. 2006). Per this definition, Sub--Saharan Africa is the most energy poor region in the world today. In line with this, efforts at addressing energy poverty in the region have concentrated on the expansion of access to modern energy sources, particularly electricity. In spite of the implementation of diverse energy development interventions, access to modern energy services remains limited. That energy poverty remains one of the most pressing challenges in Sub--Saharan Africa today in spite of the many decades of energy development necessitates a candid and thorough re--evaluation of the questions that have been traditionally asked about this issue and the solutions that have been offered in response to it. Based on theoretical analyses and empirical studies in peri--urban Kumasi, Ghana, this study attempts to offer some of the much needed re--evaluations. Using Kuhn's paradigm approach as a conceptual tool, this dissertation identifies peri--urban energy poverty as a paradigm--scale conflict in the modern arrangement of energy--development relations. By emphasizing the importance of context and political economy in understanding energy poverty, the study proposes strategies for an alternative paradigm in which energy--development relations are fundamentally redefined; one which enlists appropriate knowledge, technologies, and institutions in addressing the needs of the energy poor in ways which promote environmental values, social equity and sustainable livelihoods.

  11. Analysis of Different Fragmentation Strategies on a Variety of Large Peptides: Implementation of a Low Level of Theory in Fragment-Based Methods Can Be a Crucial Factor.

    PubMed

    Saha, Arjun; Raghavachari, Krishnan

    2015-05-12

    We have investigated the performance of two classes of fragmentation methods developed in our group (Molecules-in-Molecules (MIM) and Many-Overlapping-Body (MOB) expansion), to reproduce the unfragmented MP2 energies on a test set composed of 10 small to large biomolecules. They have also been assessed to recover the relative energies of different motifs of the acetyl(ala)18NH2 system. Performance of different bond-cutting environments and the use of Hartree-Fock and different density functionals (as a low level of theory) in conjunction with the fragmentation strategies have been analyzed. Our investigation shows that while a low level of theory (for recovering long-range interactions) may not be necessary for small peptides, it provides a very effective strategy to accurately reproduce the total and relative energies of larger peptides such as the different motifs of the acetyl(ala)18NH2 system. Employing M06-2X as the low level of theory, the calculated mean total energy deviation (maximum deviation) in the total MP2 energies for the 10 molecules in the test set at MIM(d=3.5Å), MIM(η=9), and MOB(d=5Å) are 1.16 (2.31), 0.72 (1.87), and 0.43 (2.02) kcal/mol, respectively. The excellent performance suggests that such fragment-based methods should be of general use for the computation of accurate energies of large biomolecular systems.

  12. Transition state-finding strategies for use with the growing string method.

    PubMed

    Goodrow, Anthony; Bell, Alexis T; Head-Gordon, Martin

    2009-06-28

    Efficient identification of transition states is important for understanding reaction mechanisms. Most transition state search algorithms require long computational times and a good estimate of the transition state structure in order to converge, particularly for complex reaction systems. The growing string method (GSM) [B. Peters et al., J. Chem. Phys. 120, 7877 (2004)] does not require an initial guess of the transition state; however, the calculation is still computationally intensive due to repeated calls to the quantum mechanics code. Recent modifications to the GSM [A. Goodrow et al., J. Chem. Phys. 129, 174109 (2008)] have reduced the total computational time for converging to a transition state by a factor of 2 to 3. In this work, three transition state-finding strategies have been developed to complement the speedup of the modified-GSM: (1) a hybrid strategy, (2) an energy-weighted strategy, and (3) a substring strategy. The hybrid strategy initiates the string calculation at a low level of theory (HF/STO-3G), which is then refined at a higher level of theory (B3LYP/6-31G(*)). The energy-weighted strategy spaces points along the reaction pathway based on the energy at those points, leading to a higher density of points where the energy is highest and finer resolution of the transition state. The substring strategy is similar to the hybrid strategy, but only a portion of the low-level string is refined using a higher level of theory. These three strategies have been used with the modified-GSM and are compared in three reactions: alanine dipeptide isomerization, H-abstraction in methanol oxidation on VO(x)/SiO(2) catalysts, and C-H bond activation in the oxidative carbonylation of toluene to p-toluic acid on Rh(CO)(2)(TFA)(3) catalysts. In each of these examples, the substring strategy was proved most effective by obtaining a better estimate of the transition state structure and reducing the total computational time by a factor of 2 to 3 compared to the modified-GSM. The applicability of the substring strategy has been extended to three additional examples: cyclopropane rearrangement to propylene, isomerization of methylcyclopropane to four different stereoisomers, and the bimolecular Diels-Alder condensation of 1,3-butadiene and ethylene to cyclohexene. Thus, the substring strategy used in combination with the modified-GSM has been demonstrated to be an efficient transition state-finding strategy for a wide range of types of reactions.

  13. High Energy Laser Joint Technology Office: a mission overview

    NASA Astrophysics Data System (ADS)

    Seeley, Don D.; Slater, John M.

    2004-10-01

    The High Energy Laser Joint Technology Office (HEL-JTO) was established in 2000 for the purpose of developing and executing a comprehensive investment strategy for HEL science and technology that would underpin weapons development. The JTO is currently sponsoring 80 programs across industry, academia, and government agencies with a budget of approximately $60 million. The competitively awarded programs are chosen to advance the current state of the art in HEL technology and fill technology gaps, thus providing a broad capability that can be harvested in acquisition programs by the military services.

  14. Virginia Solar Pathways Project: Economic Study of Utility-Administered Solar Programs: Soft Costs, Community Solar, and Tax Normalization Considerations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reiter, Emerson; Lowder, Travis; Mathur, Shivani

    This report presents economic considerations for solar development in support of the Virginia Solar Pathways Project (VSPP), an effort funded by the U.S. Department of Energy (DOE) SunShot Initiative that seeks to develop a collaborative utility-administered solar strategy for the Commonwealth of Virginia. The results presented are intended to be considered alongside the results of other studies conducted under the VSPP that evaluate the impacts of solar energy on the electric distribution, transmission, and generation systems in Virginia.

  15. Army Net Zero: Energy Roadmap and Program Summary, Fiscal Year 2013 (Brochure)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The U.S. Army (Army) partnered with the National Renewable Energy Laboratory (NREL) and the U.S. Army Corps of Engineers to assess opportunities for increasing energy security through improved energy efficiency and optimized renewable energy strategies at nine installations across the Army's portfolio. Referred to as Net Zero Energy Installations (NZEIs), these projects demonstrate and validate energy efficiency and renewable energy technologies with approaches that can be replicated across DOD and other Federal agencies, setting the stage for broad market adoption. This report summarizes the results of the energy project roadmaps developed by NREL, shows the progress each installation could makemore » in achieving Net Zero Energy by 2020, and presents lessons learned and unique challenges from each installation.« less

  16. Strategy for thermometry via Tm³⁺-doped NaYF₄ core-shell nanoparticles.

    PubMed

    Zhou, Shaoshuai; Jiang, Guicheng; Li, Xinyue; Jiang, Sha; Wei, Xiantao; Chen, Yonghu; Yin, Min; Duan, Changkui

    2014-12-01

    Optical thermometers usually make use of the fluorescence intensity ratio of two thermally coupled energy levels, with the relative sensitivity constrained by the limited energy gap. Here we develop a strategy by using the upconversion (UC) emissions originating from two multiplets with opposite temperature dependences to achieve higher relative temperature sensitivity. We show that the intensity ratio of the two UC emissions, ³F(2,3) and ¹G₄, of Tm³⁺ in β-NaYF₄:20%Yb³⁺, 0.5%Tm³⁺/NaYF₄:1%Pr³⁺ core-shell nanoparticles under 980 nm laser excitation exhibits high relative temperature sensitivity between 350 and 510 K, with a maximum of 1.53%  K⁻¹ at 417 K. This demonstrates the validity of the strategy, and that the studied material has the potential for high-performance optical thermometry.

  17. Adaptive sampling strategies with high-throughput molecular dynamics

    NASA Astrophysics Data System (ADS)

    Clementi, Cecilia

    Despite recent significant hardware and software developments, the complete thermodynamic and kinetic characterization of large macromolecular complexes by molecular simulations still presents significant challenges. The high dimensionality of these systems and the complexity of the associated potential energy surfaces (creating multiple metastable regions connected by high free energy barriers) does not usually allow to adequately sample the relevant regions of their configurational space by means of a single, long Molecular Dynamics (MD) trajectory. Several different approaches have been proposed to tackle this sampling problem. We focus on the development of ensemble simulation strategies, where data from a large number of weakly coupled simulations are integrated to explore the configurational landscape of a complex system more efficiently. Ensemble methods are of increasing interest as the hardware roadmap is now mostly based on increasing core counts, rather than clock speeds. The main challenge in the development of an ensemble approach for efficient sampling is in the design of strategies to adaptively distribute the trajectories over the relevant regions of the systems' configurational space, without using any a priori information on the system global properties. We will discuss the definition of smart adaptive sampling approaches that can redirect computational resources towards unexplored yet relevant regions. Our approaches are based on new developments in dimensionality reduction for high dimensional dynamical systems, and optimal redistribution of resources. NSF CHE-1152344, NSF CHE-1265929, Welch Foundation C-1570.

  18. Miniaturized supercapacitors: key materials and structures towards autonomous and sustainable devices and systems.

    PubMed

    Soavi, Francesca; Bettini, Luca Giacomo; Piseri, Paolo; Milani, Paolo; Santoro, Carlo; Atanassov, Plamen; Arbizzani, Catia

    2016-09-15

    Supercapacitors (SCs) are playing a key role for the development of self-powered and self-sustaining integrated systems for different fields ranging from remote sensing, robotics and medical devices. SC miniaturization and integration into more complex systems that include energy harvesters and functional devices are valuable strategies that address system autonomy. Here, we discuss about novel SC fabrication and integration approaches. Specifically, we report about the results of interdisciplinary activities on the development of thin, flexible SCs by an additive technology based on Supersonic Cluster Beam Deposition (SCBD) to be implemented into supercapacitive electrolyte gated transistors and supercapacitive microbial fuel cells. Such systems integrate at materials level the specific functions of devices, like electric switch or energy harvesting with the reversible energy storage capability. These studies might open new frontiers for the development and application of new multifunction-energy storage elements.

  19. Miniaturized supercapacitors: key materials and structures towards autonomous and sustainable devices and systems

    NASA Astrophysics Data System (ADS)

    Soavi, Francesca; Bettini, Luca Giacomo; Piseri, Paolo; Milani, Paolo; Santoro, Carlo; Atanassov, Plamen; Arbizzani, Catia

    2016-09-01

    Supercapacitors (SCs) are playing a key role for the development of self-powered and self-sustaining integrated systems for different fields ranging from remote sensing, robotics and medical devices. SC miniaturization and integration into more complex systems that include energy harvesters and functional devices are valuable strategies that address system autonomy. Here, we discuss about novel SC fabrication and integration approaches. Specifically, we report about the results of interdisciplinary activities on the development of thin, flexible SCs by an additive technology based on Supersonic Cluster Beam Deposition (SCBD) to be implemented into supercapacitive electrolyte gated transistors and supercapacitive microbial fuel cells. Such systems integrate at materials level the specific functions of devices, like electric switch or energy harvesting with the reversible energy storage capability. These studies might open new frontiers for the development and application of new multifunction-energy storage elements.

  20. Boosting the Energy Density of Carbon-Based Aqueous Supercapacitors by Optimizing the Surface Charge.

    PubMed

    Yu, Minghao; Lin, Dun; Feng, Haobin; Zeng, Yinxiang; Tong, Yexiang; Lu, Xihong

    2017-05-08

    The voltage of carbon-based aqueous supercapacitors is limited by the water splitting reaction occurring in one electrode, generally resulting in the promising but unused potential range of the other electrode. Exploiting this unused potential range provides the possibility for further boosting their energy density. An efficient surface charge control strategy was developed to remarkably enhance the energy density of multiscale porous carbon (MSPC) based aqueous symmetric supercapacitors (SSCs) by controllably tuning the operating potential range of MSPC electrodes. The operating voltage of the SSCs with neutral electrolyte was significantly expanded from 1.4 V to 1.8 V after simple adjustment, enabling the energy density of the optimized SSCs reached twice as much as the original. Such a facile strategy was also demonstrated for the aqueous SSCs with acidic and alkaline electrolytes, and is believed to bring insight in the design of aqueous supercapacitors. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Impacts of wave energy conversion devices on local wave climate: observations and modelling from the Perth Wave Energy Project

    NASA Astrophysics Data System (ADS)

    Hoeke, Ron; Hemer, Mark; Contardo, Stephanie; Symonds, Graham; Mcinnes, Kathy

    2016-04-01

    As demonstrated by the Australian Wave Energy Atlas (AWavEA), the southern and western margins of the country possess considerable wave energy resources. The Australia Government has made notable investments in pre-commercial wave energy developments in these areas, however little is known about how this technology may impact local wave climate and subsequently affect neighbouring coastal environments, e.g. altering sediment transport, causing shoreline erosion or accretion. In this study, a network of in-situ wave measurement devices have been deployed surrounding the 3 wave energy converters of the Carnegie Wave Energy Limited's Perth Wave Energy Project. This data is being used to develop, calibrate and validate numerical simulations of the project site. Early stage results will be presented and potential simulation strategies for scaling-up the findings to larger arrays of wave energy converters will be discussed. The intended project outcomes are to establish zones of impact defined in terms of changes in local wave energy spectra and to initiate best practice guidelines for the establishment of wave energy conversion sites.

  2. High-performance Sonitopia (Sonic Utopia): Hyper intelligent Material-based Architectural Systems for Acoustic Energy Harvesting

    NASA Astrophysics Data System (ADS)

    Heidari, F.; Mahdavinejad, M.

    2017-08-01

    The rate of energy consumption in all over the world, based on reliable statistics of international institutions such as the International Energy Agency (IEA) shows significant increase in energy demand in recent years. Periodical recorded data shows a continuous increasing trend in energy consumption especially in developed countries as well as recently emerged developing economies such as China and India. While air pollution and water contamination as results of high consumption of fossil energy resources might be consider as menace to civic ideals such as livability, conviviality and people-oriented cities. In other hand, automobile dependency, cars oriented design and other noisy activities in urban spaces consider as threats to urban life. Thus contemporary urban design and planning concentrates on rethinking about ecology of sound, reorganizing the soundscape of neighborhoods, redesigning the sonic order of urban space. It seems that contemporary architecture and planning trends through soundscape mapping look for sonitopia (Sonic + Utopia) This paper is to propose some interactive hyper intelligent material-based architectural systems for acoustic energy harvesting. The proposed architectural design system may be result in high-performance architecture and planning strategies for future cities. The ultimate aim of research is to develop a comprehensive system for acoustic energy harvesting which cover the aim of noise reduction as well as being in harmony with architectural design. The research methodology is based on a literature review as well as experimental and quasi-experimental strategies according the paradigm of designedly ways of doing and knowing. While architectural design has solution-focused essence in problem-solving process, the proposed systems had better be hyper intelligent rather than predefined procedures. Therefore, the steps of the inference mechanism of the research include: 1- understanding sonic energy and noise potentials as energy resources, 2- recognition of transductor and other similar mechanisms, 3- developing an integrated, hyper intelligent and material-based system, 4- examining the productivity, performance and efficiency of proposed systems in commercial buildings and office departments of Tehran as case study. The results of the research show that high-performance Sonitopia concept might be helpful for adoption in contemporary architecture of developing countries such as Iran in order to better energy efficiency. It is intelligent energy systems (IES) enjoy electromechanical energy converters based on performance-oriented design in over-crowded architectural spaces. The results indicated significance of concentrating on smart, intelligent and recombinant materials in order to achieve higher performance and productivity.

  3. Energy savings for heat-island reduction strategies in Chicago and Houston (including updates for Baton Rouge, Sacramento, and Salt Lake City)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Konopacki, S.; Akbari, H.

    2002-02-28

    In 1997, the U.S. Environmental Protection Agency (EPA) established the ''Heat Island Reduction Initiative'' to quantify the potential benefits of Heat-Island Reduction (HIR) strategies (i.e., shade trees, reflective roofs, reflective pavements and urban vegetation) to reduce cooling-energy use in buildings, lower the ambient air temperature and improve urban air quality in cities, and reduce CO2 emissions from power plants. Under this initiative, the Urban Heat Island Pilot Project (UHIPP) was created with the objective of investigating the potential of HIR strategies in residential and commercial buildings in three initial UHIPP cities: Baton Rouge, LA; Sacramento, CA; and Salt Lake City,more » UT. Later two other cities, Chicago, IL and Houston, TX were added to the UHIPP. In an earlier report we summarized our efforts to calculate the annual energy savings, peak power avoidance, and annual CO2 reduction obtainable from the introduction of HIR strategies in the initial three cities. This report summarizes the results of our study for Chicago and Houston. In this analysis, we focused on three building types that offer the highest potential savings: single-family residence, office and retail store. Each building type was characterized in detail by vintage and system type (i.e., old and new building constructions, and gas and electric heat). We used the prototypical building characteristics developed earlier for each building type and simulated the impact of HIR strategies on building cooling- and heating-energy use and peak power demand using the DOE-2.1E model. Our simulations included the impact of (1) strategically-placed shade trees near buildings [direct effect], (2) use of high-albedo roofing material on the building [direct effect], (3) urban reforestation with high-albedo pavements and building surfaces [indirect effect] and (4) combined strategies 1, 2, and 3 [direct and indirect effects]. We then estimated the total roof area of air-conditioned buildings in each city using readily obtainable data to calculate the metropolitan-wide impact of HIR strategies. The results show that in Chicago, potential annual energy savings of $30M could be realized by ratepayers from the combined direct and indirect effects of HIR strategies. Additionally, peak power avoidance is estimated at 400 MW and the reduction in annual carbon emissions at 58 ktC. In Houston, the potential annual energy savings are estimated at $82M, with an avoidance of 730 MW in peak power and a reduction in annual carbon emissions of 170 ktC.« less

  4. A review of wind turbine-oriented active flow control strategies

    NASA Astrophysics Data System (ADS)

    Aubrun, Sandrine; Leroy, Annie; Devinant, Philippe

    2017-10-01

    To reduce the levelized cost of energy, the energy production, robustness and lifespan of horizontal axis wind turbines (HAWTs) have to be improved to ensure optimal energy production and operational availability during periods longer than 15-20 years. HAWTs are subject to unsteady wind loads that generate combinations of unsteady mechanical loads with characteristic time scales from seconds to minutes. This can be reduced by controlling the aerodynamic performance of the wind turbine rotors in real time to compensate the overloads. Mitigating load fluctuations and optimizing the aerodynamic performance at higher time scales need the development of fast-response active flow control (AFC) strategies located as close as possible to the torque generation, i.e., directly on the blades. The most conventional actuators currently used in HAWTs are mechanical flaps/tabs (similar to aeronautical accessories), but some more innovative concepts based on fluidic and plasma actuators are very promising since they are devoid of mechanical parts, have a fast response and can be driven in unsteady modes to influence natural instabilities of the flow. In this context, the present paper aims at giving a state-of-the-art review of current research in wind turbine-oriented flow control strategies applied at the blade scale. It provides an overview of research conducted in the last decade dealing with the actuators and devices devoted to developing AFC on rotor blades, focusing on the flow phenomena that they cause and that can lead to aerodynamic load increase or decrease. After providing some general background on wind turbine blade aerodynamics and on the atmospheric flows in which HAWTs operate, the review focuses on flow separation control and circulation control mainly through experimental investigations. It is followed by a discussion about the overall limitations of current studies in the wind energy context, with a focus on a few studies that attempt to provide a global efficiency assessment and wind energy-oriented energy balance.

  5. Energy and life-cycle cost analysis of a six-story office building

    NASA Astrophysics Data System (ADS)

    Turiel, I.

    1981-10-01

    An energy analysis computer program, DOE-2, was used to compute annual energy use for a typical office building as originally designed and with several energy conserving design modifications. The largest energy use reductions were obtained with the incorporation of daylighting techniques, the use of double pane windows, night temperature setback, and the reduction of artificial lighting levels. A life-cycle cost model was developed to assess the cost-effectiveness of the design modifications discussed. The model incorporates such features as inclusion of taxes, depreciation, and financing of conservation investments. The energy conserving strategies are ranked according to economic criteria such as net present benefit, discounted payback period, and benefit to cost ratio.

  6. Blades of Glory: An Energy.gov Mini-Doc – The 2016 Collegiate Wind Competition

    ScienceCinema

    Zayas, Jose; Newcomb, Charles

    2018-01-16

    In this short documentary, we follow three collegiate teams who are participating in this year’s U.S. Department of Energy Collegiate Wind Competition in New Orleans. Learn about their experiences and why the competition is important for America’s clean energy future. The competition provides undergraduates with real-world skills they need to enter tomorrow’s clean energy workforce by challenging them to develop and deliver a business plan, establish a deployment strategy, and build and test a wind turbine.

  7. Solution synthesis of metal oxides for electrochemical energy storage applications.

    PubMed

    Xia, Xinhui; Zhang, Yongqi; Chao, Dongliang; Guan, Cao; Zhang, Yijun; Li, Lu; Ge, Xiang; Bacho, Ignacio Mínguez; Tu, Jiangping; Fan, Hong Jin

    2014-05-21

    This article provides an overview of solution-based methods for the controllable synthesis of metal oxides and their applications for electrochemical energy storage. Typical solution synthesis strategies are summarized and the detailed chemical reactions are elaborated for several common nanostructured transition metal oxides and their composites. The merits and demerits of these synthesis methods and some important considerations are discussed in association with their electrochemical performance. We also propose the basic guideline for designing advanced nanostructure electrode materials, and the future research trend in the development of high power and energy density electrochemical energy storage devices.

  8. Lights, Camera, Action ... and Cooling - The case for centralized low carbon energy at Fox Studios

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robinson, Alastair; Regnier, Cindy

    Fox Studios partnered with the U.S. Department of Energy (DOE) to develop and implement solutions to retrofit two production stages and one of its central cooling plants, to reduce energy consumption by at least 30% as part of DOE’s Commercial Building Partnerships (CBP) Program. Although this case study reports expected savings arising from proposed design recommendations for a unique building type and the unusual load characteristics associated with its use, the EEMs implemented for the central plant are applicable to any large campus, office and higher education facility. The intent is that by making the energy-efficiency measures (EEMs) set thatmore » were assessed as cost-effective from this project applicable to a larger number of buildings on the campus Fox Studios will be able to implement an integrated campus-wide energy strategy for the long term. The significant challenges for this project in the design phase included identifying how to assess and analyze multiple system types, develop a coherent strategy for assessment and analysis, implement the measurement and verification activities to collect the appropriate data (in terms of capturing ‘normal’ operating characteristics and granularity) and determine the best approach to providing cooling to the site buildings based on the nature of existing systems and the expected improvement in energy performance of the central cooling plant. The analytical framework adopted provides a blueprint for similar projects at other large commercial building campuses.« less

  9. Mining residential water and electricity demand data in Southern California to inform demand management strategies

    NASA Astrophysics Data System (ADS)

    Cominola, A.; Spang, E. S.; Giuliani, M.; Castelletti, A.; Loge, F. J.; Lund, J. R.

    2016-12-01

    Demand side management strategies are key to meet future water and energy demands in urban contexts, promote water and energy efficiency in the residential sector, provide customized services and communications to consumers, and reduce utilities' costs. Smart metering technologies allow gathering high temporal and spatial resolution water and energy consumption data and support the development of data-driven models of consumers' behavior. Modelling and predicting resource consumption behavior is essential to inform demand management. Yet, analyzing big, smart metered, databases requires proper data mining and modelling techniques, in order to extract useful information supporting decision makers to spot end uses towards which water and energy efficiency or conservation efforts should be prioritized. In this study, we consider the following research questions: (i) how is it possible to extract representative consumers' personalities out of big smart metered water and energy data? (ii) are residential water and energy consumption profiles interconnected? (iii) Can we design customized water and energy demand management strategies based on the knowledge of water- energy demand profiles and other user-specific psychographic information? To address the above research questions, we contribute a data-driven approach to identify and model routines in water and energy consumers' behavior. We propose a novel customer segmentation procedure based on data-mining techniques. Our procedure consists of three steps: (i) extraction of typical water-energy consumption profiles for each household, (ii) profiles clustering based on their similarity, and (iii) evaluation of the influence of candidate explanatory variables on the identified clusters. The approach is tested onto a dataset of smart metered water and energy consumption data from over 1000 households in South California. Our methodology allows identifying heterogeneous groups of consumers from the studied sample, as well as characterizing them with respect to consumption profiles features and socio- demographic information. Results show how such better understanding of the considered users' community allows spotting potentially interesting areas for water and energy demand management interventions.

  10. Thermal energy dissipation and xanthophyll cycles beyond the Arabidopsis model.

    PubMed

    García-Plazaola, José Ignacio; Esteban, Raquel; Fernández-Marín, Beatriz; Kranner, Ilse; Porcar-Castell, Albert

    2012-09-01

    Thermal dissipation of excitation energy is a fundamental photoprotection mechanism in plants. Thermal energy dissipation is frequently estimated using the quenching of the chlorophyll fluorescence signal, termed non-photochemical quenching. Over the last two decades, great progress has been made in the understanding of the mechanism of thermal energy dissipation through the use of a few model plants, mainly Arabidopsis. Nonetheless, an emerging number of studies suggest that this model represents only one strategy among several different solutions for the environmental adjustment of thermal energy dissipation that have evolved among photosynthetic organisms in the course of evolution. In this review, a detailed analysis of three examples highlights the need to use models other than Arabidopsis: first, overwintering evergreens that develop a sustained form of thermal energy dissipation; second, desiccation tolerant plants that induce rapid thermal energy dissipation; and third, understorey plants in which a complementary lutein epoxide cycle modulates thermal energy dissipation. The three examples have in common a shift from a photosynthetically efficient state to a dissipative conformation, a strategy widely distributed among stress-tolerant evergreen perennials. Likewise, they show a distinct operation of the xanthophyll cycle. Expanding the list of model species beyond Arabidopsis will enhance our knowledge of these mechanisms and increase the synergy of the current studies now dispersed over a wide number of species.

  11. Nanostructured carbon and carbon nanocomposites for electrochemical energy storage applications.

    PubMed

    Su, Dang Sheng; Schlögl, Robert

    2010-02-22

    Electrochemical energy storage is one of the important technologies for a sustainable future of our society, in times of energy crisis. Lithium-ion batteries and supercapacitors with their high energy or power densities, portability, and promising cycling life are the cores of future technologies. This Review describes some materials science aspects on nanocarbon-based materials for these applications. Nanostructuring (decreasing dimensions) and nanoarchitecturing (combining or assembling several nanometer-scale building blocks) are landmarks in the development of high-performance electrodes for with long cycle lifes and high safety. Numerous works reviewed herein have shown higher performances for such electrodes, but mostly give diverse values that show no converging tendency towards future development. The lack of knowledge about interface processes and defect dynamics of electrodes, as well as the missing cooperation between material scientists, electrochemists, and battery engineers, are reasons for the currently widespread trial-and-error strategy of experiments. A concerted action between all of these disciplines is a prerequisite for the future development of electrochemical energy storage devices.

  12. Energy efficiency buildings program

    NASA Astrophysics Data System (ADS)

    1981-05-01

    Progress is reported in developing techniques for auditing the energy performance of buildings. The ventilation of buildings and indoor air quality is discussed from the viewpoint of (1) combustion generated pollutants; (2) organic contaminants; (3) radon emanation, measurements, and control; (4) strategies for the field monitoring of indoor air quality; and (5) mechanical ventilation systems using air-to-air heat exchanges. The development of energy efficient windows to provide optimum daylight with minimal thermal losses in cold weather and minimum thermal gain in hot weather is considered as well as the production of high frequency solid state ballasts for fluorescent lights to provide more efficient lighting at a 25% savings over conventional core ballasts. Data compilation, analysis, and demonstration activities are summarized.

  13. Preemption - atomic energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ojanen, K.

    1984-07-01

    While waiting for the federal government to develop a nuclear waste disposal strategy, California enacted legislation that bans the construction of nuclear reactors until permanent disposal technology for high-level wastes is demonstrated and approved. The US Supreme Court upheld this prohibition in Pacific Gas and Electric Co. v. State Energy Resources Conservation and Development Commission. The Court found that the California law did not attempt to regulate the construction or operation of a nuclear plant nor to infringe on federal regulation of radiation safety and nuclear wastes. The moratorium is a legitimate move by the state to avoid economic uncertainties.more » Federal preemption of the law would empower utilities to determine state energy needs and programs. 131 references.« less

  14. Southeast Atmosphere Studies: learning from model-observation syntheses

    EPA Science Inventory

    Concentrations of atmospheric trace species in the United States have changed dramatically over the past several decades in response to pollution control strategies, shifts in domestic energy policy and economics, and economic development (and resulting emission changes) elsewher...

  15. Next Generation Natural Gas Vehicle (NGNGV) program brochure

    DOT National Transportation Integrated Search

    2000-10-26

    The U.S. Department of Energys (DOE) Office of Transportation Technologies (OTT), is responding to these national concerns. OTT has identified the development of next-generation natural gas vehicles as a strategy to reduce oil imports, vehicle pol...

  16. School Finance. Trends and Issues.

    ERIC Educational Resources Information Center

    Hadderman, Margaret, Comp.

    During the past several years, policymakers and practitioners have concentrated their energies on resolving equity/adequacy issues, reforming school tax structures, improving schools' efficiency and cost-effectiveness, developing school-based accountability, and exploring alternative cost-cutting and fundraising strategies. Total expenditures for…

  17. A Novel Combination of Thermal Ablation and Heat-Inducible Gene therapy for Breast Cancer Treatment

    DTIC Science & Technology

    2009-04-01

    intensity focused ultrasound ( HIFU ) has been developed as an emerging non-invasive strategy for cancer treatment by thermal ablation of tumor tissue. The...Leenders, G., et al., Histopathological changes associated with high intensity focused ultrasound ( HIFU ) treatment for localised adenocarcinoma of...invasive strategy for cancer therapy [1, 2]. Through HIFU exposure, acoustic energy is focused into a deep-sited tumor volume and converted into heat

  18. Locations and attributes of wind turbines in Colorado, 2009

    USGS Publications Warehouse

    Carr, Natasha B.; Diffendorfer, Jay E.; Fancher, Tammy S.; Latysh, Natalie E.; Leib, Kenneth J.; Matherne, Anne-Marie; Turner, Christine

    2011-01-01

    The Colorado wind-turbine data series provides geospatial data for all wind turbines established within the State as of August 2009. Attributes specific to each turbine include: turbine location, manufacturer and model, rotor diameter, hub height, rotor height, potential megawatt output, land ownership, and county. Wind energy facility data for each turbine include: facility name, facility power capacity, number of turbines associated with each facility to date, facility developer, facility ownership, year the facility went online, and development status of wind facility. Turbine locations were derived from August 2009 1-meter true-color aerial photographs produced by the National Agriculture Imagery Program; the photographs have a positional accuracy of about + or - 5 meters. The location of turbines under construction during August 2009 likely will be less accurate than the location of existing turbines. This data series contributes to an Online Interactive Energy Atlas currently (2011) in development by the U.S. Geological Survey. The Energy Atlas will synthesize data on existing and potential energy development in Colorado and New Mexico and will include additional natural resource data layers. This information may be used by decisionmakers to evaluate and compare the potential benefits and tradeoffs associated with different energy development strategies or scenarios. Interactive maps, downloadable data layers, comprehensive metadata, and decision-support tools will be included in the Energy Atlas. The format of the Energy Atlas will facilitate the integration of information about energy with key terrestrial and aquatic resources for evaluating resource values and minimizing risks from energy development.

  19. Locations and attributes of wind turbines in New Mexico, 2009

    USGS Publications Warehouse

    Carr, Natasha B.; Diffendorfer, Jay E.; Fancher, Tammy S.; Latysh, Natalie E.; Leib, Kenneth J.; Matherne, Anne-Marie; Turner, Christine

    2011-01-01

    The New Mexico wind-turbine data series provides geospatial data for all wind turbines established within the State as of August 2009. Attributes specific to each turbine include: turbine location, manufacturer and model, rotor diameter, hub height, rotor height, potential megawatt output, land ownership, and county. Wind energy facility data for each turbine include: facility name, facility power capacity, number of turbines associated with each facility to date, facility developer, facility ownership, year the facility went online, and development status of wind facility. Turbine locations were derived from 1-meter August 2009 true-color aerial photographs produced by the National Agriculture Imagery Program; the photographs have a positional accuracy of about + or - 5 meters. The location of turbines under construction during August 2009 likely will be less accurate than the location of existing turbines. This data series contributes to an Online Interactive Energy Atlas currently (2011) in development by the U.S. Geological Survey. The Energy Atlas will synthesize data on existing and potential energy development in Colorado and New Mexico and will include additional natural resource data layers. This information may be used by decisionmakers to evaluate and compare the potential benefits and tradeoffs associated with different energy development strategies or scenarios. Interactive maps, downloadable data layers, comprehensive metadata, and decision-support tools will be included in the Energy Atlas. The format of the Energy Atlas will facilitate the integration of information about energy with key terrestrial and aquatic resources for evaluating resource values and minimizing risks from energy development.

  20. AIEgens for dark through-bond energy transfer: design, synthesis, theoretical study and application in ratiometric Hg2+ sensing.

    PubMed

    Chen, Yuncong; Zhang, Weijie; Cai, Yuanjing; Kwok, Ryan T K; Hu, Yubing; Lam, Jacky W Y; Gu, Xinggui; He, Zikai; Zhao, Zheng; Zheng, Xiaoyan; Chen, Bin; Gui, Chen; Tang, Ben Zhong

    2017-03-01

    A novel dark through-bond energy transfer (DTBET) strategy is proposed and applied as the design strategy to develop ratiometric Hg 2+ sensors with high performance. Tetraphenylethene ( TPE ) derivatives with aggregation-induced emission (AIE) characteristics are selected as dark donors to eliminate emission leakage from the donors. The TBET mechanism has been adopted since it experiences less influence from spectral overlapping than Förster resonance energy transfer (FRET), making it more flexible for developing cassettes with large pseudo-Stokes shifts. In this work, energy transfer from the TPE derivatives (dark donor) to a rhodamine moiety (acceptor) was illustrated through photophysical spectroscopic studies and the energy transfer efficiency (ETE) was found to be up to 99%. In the solution state, no emission from the donors was observed and large pseudo-Stokes shifts were achieved (>280 nm), which are beneficial for biological imaging. Theoretical calculations were performed to gain a deeper mechanistic insight into the DTBET process and the structure-property relationship of the DTBET cassettes. Ratiometric Hg 2+ sensors were rationally constructed based on the DTBET mechanism by taking advantage of the intense emission of TPE aggregates. The Hg 2+ sensors exhibited well resolved emission peaks. >6000-fold ratiometric fluorescent enhancement is also achieved and the detection limit was found to be as low as 0.3 ppb. This newly proposed DTBET mechanism could be used to develop novel ratiometric sensors for various analytes and AIEgens with DTBET characteristics will have great potential in various areas including light harvesting materials, environmental science, chemical sensing, biological imaging and diagnostics.

  1. Transportation Energy Futures: Combining Strategies for Deep Reductions in Energy Consumption and GHG Emissions (Brochure)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2013-03-01

    This fact sheet summarizes actions in the areas of light-duty vehicle, non-light-duty vehicle, fuel, and transportation demand that show promise for deep reductions in energy use. Energy efficient transportation strategies have the potential to simultaneously reduce oil consumption and greenhouse gas (GHG) emissions. The Transportation Energy Futures (TEF) project examined how the combination of multiple strategies could achieve deep reductions in GHG emissions and petroleum use on the order of 80%. Led by NREL, in collaboration with Argonne National Laboratory, the project's primary goal was to help inform domestic decisions about transportation energy strategies, priorities, and investments, with an emphasismore » on underexplored opportunities. TEF findings reveal three strategies with the potential to displace most transportation-related petroleum use and GHG emissions: 1) Stabilizing energy use in the transportation sector through efficiency and demand-side approaches. 2) Using additional advanced biofuels. 3) Expanding electric drivetrain technologies.« less

  2. Long-term consequences of selected competitive strategies during deregulation of the United States electric utility industry: System dynamics modeling and simulation

    NASA Astrophysics Data System (ADS)

    Khalil, Yehia Fahim

    Currently, U.S. investor-owned utilities (IOUs) are facing major reforms in their business environment similar to the airlines, telecommunications, banking, and insurance industries. As a result, IOUs are gearing up for fierce price competition in the power generation sector, and are vying for electricity customers outside their franchised service territories. Energy experts predict that some IOUs may suffer fatal financial setbacks (especially those with nuclear plants), while others may thrive under competition. Both federal and state energy regulators anticipate that it may take from five to ten years to complete the transition of America's electric utility industry from a regulated monopoly to a market-driven business. During this transition, utility executives are pursuing aggressive business strategies to confront the upcoming price wars. The most compelling strategies focus on cutting operation and maintenance (O&M) costs of power production, downsizing the work force, and signing bilateral energy agreements with large price-sensitive customers to retain their business. This research assesses the impact of the three pivotal strategies on financial performance of utilities during transition to open market competition. A system-dynamics-based management flight simulator has been developed to predict the dynamic performance of a hypothetical IOU organization preparing for market competition. The simulation results show that while the three business strategies lead to short-lived gains, they also produce unanticipated long-term consequences that adversely impact the organization's operating revenues. Generally, the designed flight simulator serves as a learning laboratory which allows management to test new strategies before implementation.

  3. Do Bodybuilders Use Evidence-Based Nutrition Strategies to Manipulate Physique?

    PubMed Central

    Gifford, Janelle; Estermann, Frederico

    2017-01-01

    Competitive bodybuilders undergo strict dietary and training practices to achieve an extremely lean and muscular physique. The purpose of this study was to identify and describe different dietary strategies used by bodybuilders, their rationale, and the sources of information from which these strategies are gathered. In-depth interviews were conducted with seven experienced (10.4 ± 3.4 years bodybuilding experience), male, natural bodybuilders. Participants were asked about training, dietary and supplement practices, and information resources for bodybuilding strategies. Interviews were transcribed verbatim and analyzed using qualitative content analysis. During the off-season, energy intake was higher and less restricted than during the in-season to aid in muscle hypertrophy. There was a focus on high protein intake with adequate carbohydrate to permit high training loads. To create an energy deficit and loss of fat mass, energy intake was gradually and progressively reduced during the in-season via a reduction in carbohydrate and fat intake. The rationale for weekly higher carbohydrate refeed days was to offset declines in metabolic rate and fatigue, while in the final “peak week” before competition, the reasoning for fluid and sodium manipulation and carbohydrate loading was to enhance the appearance of leanness and vascularity. Other bodybuilders, coaches and the internet were significant sources of information. Despite the common perception of extreme, non-evidence-based regimens, these bodybuilders reported predominantly using strategies which are recognized as evidence-based, developed over many years of experience. Additionally, novel strategies such as weekly refeed days to enhance fat loss, and sodium and fluid manipulation, warrant further investigation to evaluate their efficacy and safety.

  4. Evaluation of Two CEDA Weatherization Pilot Implementations of an Exterior Insulation and Over-Clad Retrofit Strategy for Residential Masonry Buildings in Chicago

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neuhauser, K.

    This project examines the implementation of an exterior insulation and over-clad strategy for brick masonry buildings in Chicago. The strategy was implemented at a free-standing two story two-family dwelling and a larger free-standing multifamily building. The test homes selected for this research represent predominant housing types for the Chicago area. High heating energy use typical in these buildings threaten housing affordability. Uninsulated mass masonry wall assemblies also have a strongly detrimental impact on comfort. Significant changes to the performance of masonry wall assemblies is generally beyond the reach of typical weatherization (Wx) program resources. The Community and Economic Development Associationmore » of Cook County, Inc. (CEDA) has secured a Sustainable Energy Resources for Consumers (SERC) innovation grant sponsored by the United States Department of Energy (DOE). This grant provides CEDA the opportunity to pursue a pilot implementation of innovative approaches to retrofit in masonry wall enclosures. The exterior insulation and over-clad strategy implemented through this project was designed to allow implementation by contractors active in CEDA weatherization programs and using materials and methods familiar to these contractors. The retrofit measures are evaluated in terms of feasibility, cost and performance. Through observations of the strategies implemented, the research described in this report identifies measures critical to performance as well as conditions for wider adoption. The research also identifies common factors that must be considered in determining whether the exterior insulation and over-clad strategy is appropriate for the building.« less

  5. Impact of Climate Change on Energy Demand in the Midwestern USA

    NASA Astrophysics Data System (ADS)

    Yan, M. B.; Zhang, F.; Franklin, M.; Kotamarthi, V. R.

    2008-12-01

    The impact of climate change on energy demand and use is a significant issue for developing future GHG emission scenarios and developing adaptation and mitigation strategies. A number of studies have evaluated the increase in GHG emissions as a result of changes in energy production from fossil fuels, but the consequences of climate change on energy consumption have not been the focus of many studies. Here we focus on the impacts of climate change on energy use at a regional scale using the Midwestern USA as a test. The paper presents results of analyzing energy use in response to ambient temperature changes in a 17-year period from 1989 to 2006 and projection of energy use under future climate scenarios (2010-2061). This study consisted of a two-step procedure. In the first step, sensitivity of historic energy demand, specifically electricity and natural gas in residential and commercial sectors (42% of end-use energy), with respect to many climatic and non-climatic variables was examined. State-specific regression models were developed to quantify the relationship between energy use and climatic variables using degree days. We found that model parameters and base temperatures for estimating heating and cooling days varied by state and energy sector, mainly depending on climate conditions, infrastructure, economic factors, and seasonal change in energy use. In the second step, we applied these models to predict future energy demand using output data generated by the Community Climate System Model (CCSM) for the SRES A1B scenario used in the IPCC AR-4. The annual demands of electricity and natural gas were predicted for each state from 2010 to 2061. The model results indicate that the average annual electricity demand will increase 3%-5% for the southern states and 1%-3% for the northern states in the region by 2061 and that the demand for natural gas is expected to be reduced in all states. A seasonal analysis of energy distribution in response to climate variables identifies a significant peak in demand in July-August (11%-16% in southern states and 6%-10% in the northern states). These findings suggest that the energy sector is vulnerable to climate change even in the northern Midwest region of the US. Furthermore, we demonstrate that a state-level assessment can help to better identify adaptation strategies for future regional energy sector changes.

  6. Impacts of climate mitigation strategies in the energy sector on global land use and carbon balance

    NASA Astrophysics Data System (ADS)

    Engström, Kerstin; Lindeskog, Mats; Olin, Stefan; Hassler, John; Smith, Benjamin

    2017-09-01

    Reducing greenhouse gas emissions to limit damage to the global economy climate-change-induced and secure the livelihoods of future generations requires ambitious mitigation strategies. The introduction of a global carbon tax on fossil fuels is tested here as a mitigation strategy to reduce atmospheric CO2 concentrations and radiative forcing. Taxation of fossil fuels potentially leads to changed composition of energy sources, including a larger relative contribution from bioenergy. Further, the introduction of a mitigation strategy reduces climate-change-induced damage to the global economy, and thus can indirectly affect consumption patterns and investments in agricultural technologies and yield enhancement. Here we assess the implications of changes in bioenergy demand as well as the indirectly caused changes in consumption and crop yields for global and national cropland area and terrestrial biosphere carbon balance. We apply a novel integrated assessment modelling framework, combining three previously published models (a climate-economy model, a socio-economic land use model and an ecosystem model). We develop reference and mitigation scenarios based on the narratives and key elements of the shared socio-economic pathways (SSPs). Taking emissions from the land use sector into account, we find that the introduction of a global carbon tax on the fossil fuel sector is an effective mitigation strategy only for scenarios with low population development and strong sustainability criteria (SSP1 Taking the green road). For scenarios with high population growth, low technological development and bioenergy production the high demand for cropland causes the terrestrial biosphere to switch from being a carbon sink to a source by the end of the 21st century.

  7. Symposium on "The challenge of translating nutrition research into public health nutrition". Session 5: Nutrition communication. Obesity and social marketing: works in progress.

    PubMed

    Cairns, Georgina; Stead, Martine

    2009-02-01

    Internationally, socio-economic trends reinforce the complex physiological mechanisms that favour positive energy balance, leading to an accumulation of excess body weight and associated metabolic disorders. This so-called 'obesogenic environment' is characterised by increasing accessibility and affordability of energy-dense foods and declining levels of physical activity. In the face of such rapidly-rising obesity rates there is general consensus that strategies to address trends in weight gain must go forwards in the absence of complete evidence of cause or effective prevention strategy. Thus, strategy implementation and evaluation must contribute to, as well as be informed by, the evidence base. Social marketing research and practice has a track record that strongly indicates that it can contribute to both the evolving knowledge base on obesity and overweight control policy and the development of effective intervention strategies. Social marketing draws pragmatically on many disciplines to bring about voluntary behaviour change as well as requisite supporting policy and environmental change. Key objectives include: generating insights into the drivers of current behaviour patterns; important barriers to change; client-oriented approaches to new desirable diet and lifestyle choices. Social marketing recognises that target clients have the power to ensure success or failure of obesity control policies. Social marketing seeks to identify genuine exchange of benefits for target adopters of behaviour change and the advocates of change, and how they may be developed and offered within an appropriate relevant context. Social marketing adopts a cyclical approach of learning, strategic development and evaluation, and therefore is well placed to integrate with the multi-disciplinary demands of obesity prevention strategies.

  8. Innovative Approach for Developing Spacecraft Interior Acoustic Requirement Allocation

    NASA Technical Reports Server (NTRS)

    Chu, S. Reynold; Dandaroy, Indranil; Allen, Christopher S.

    2016-01-01

    The Orion Multi-Purpose Crew Vehicle (MPCV) is an American spacecraft for carrying four astronauts during deep space missions. This paper describes an innovative application of Power Injection Method (PIM) for allocating Orion cabin continuous noise Sound Pressure Level (SPL) limits to the sound power level (PWL) limits of major noise sources in the Environmental Control and Life Support System (ECLSS) during all mission phases. PIM is simulated using both Statistical Energy Analysis (SEA) and Hybrid Statistical Energy Analysis-Finite Element (SEA-FE) models of the Orion MPCV to obtain the transfer matrix from the PWL of the noise sources to the acoustic energies of the receivers, i.e., the cavities associated with the cabin habitable volume. The goal of the allocation strategy is to control the total energy of cabin habitable volume for maintaining the required SPL limits. Simulations are used to demonstrate that applying the allocated PWLs to the noise sources in the models indeed reproduces the SPL limits in the habitable volume. The effects of Noise Control Treatment (NCT) on allocated noise source PWLs are investigated. The measurement of source PWLs of involved fan and pump development units are also discussed as it is related to some case-specific details of the allocation strategy discussed here.

  9. Transformations, Inc. Net Zero Energy Communities, Devens, Easthampton, Townsend, Massachusetts (Fact Sheet)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2013-11-01

    In 2009, Transformations, Inc. partnered with U.S. Department of Energy (DOE) Building America team Building Science Corporation (BSC) to build new net zero energy houses in three developments in Massachusetts. The company has been developing strategies for cost-effective super-insulated homes in the New England market since 2006. After years of using various construction techniques, it has developed a specific set of assemblies and specifications that achieve a 44.9% reduction in energy use compared with a home built to the 2009 International Residential Code, qualifying the houses for the DOE's Challenge Home. The super-insulated houses provide data for several research topicsmore » in a cold climate. BSC studied the moisture risks in double stud walls insulated with open cell spray foam and cellulose. The mini-split air source heat pump (ASHP) research focused on the range of temperatures experienced in bedrooms as well as the homeowners' perceptions of equipment performance. BSC also examined the developer's financing options for the photovoltaic (PV) systems, which take advantage of Solar Renewable Energy Certificates, local incentives, and state and federal tax credits.« less

  10. Improving the accuracy of energy baseline models for commercial buildings with occupancy data

    DOE PAGES

    Liang, Xin; Hong, Tianzhen; Shen, Geoffrey Qiping

    2016-07-07

    More than 80% of energy is consumed during operation phase of a building's life cycle, so energy efficiency retrofit for existing buildings is considered a promising way to reduce energy use in buildings. The investment strategies of retrofit depend on the ability to quantify energy savings by “measurement and verification” (M&V), which compares actual energy consumption to how much energy would have been used without retrofit (called the “baseline” of energy use). Although numerous models exist for predicting baseline of energy use, a critical limitation is that occupancy has not been included as a variable. However, occupancy rate is essentialmore » for energy consumption and was emphasized by previous studies. This study develops a new baseline model which is built upon the Lawrence Berkeley National Laboratory (LBNL) model but includes the use of building occupancy data. The study also proposes metrics to quantify the accuracy of prediction and the impacts of variables. However, the results show that including occupancy data does not significantly improve the accuracy of the baseline model, especially for HVAC load. The reasons are discussed further. In addition, sensitivity analysis is conducted to show the influence of parameters in baseline models. To conclude, the results from this study can help us understand the influence of occupancy on energy use, improve energy baseline prediction by including the occupancy factor, reduce risks of M&V and facilitate investment strategies of energy efficiency retrofit.« less

  11. Market leadership by example: Government sector energy efficiency in developing countries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Wie McGrory, Laura; Harris, Jeffrey; Breceda, Miguel

    2002-05-20

    Government facilities and services are often the largest energy users and major purchasers of energy-using equipment within a country. In developing as well as industrial countries, government ''leadership by example'' can be a powerful force to shift the market toward energy efficiency, complementing other elements of a national energy efficiency strategy. Benefits from more efficient energy management in government facilities and operations include lower government energy bills, reduced greenhouse gas emissions, less demand on electric utility systems, and in many cases reduced dependence on imported oil. Even more significantly, the government sector's buying power and example to others can generatemore » broader demand for energy-efficient products and services, creating entry markets for domestic suppliers and stimulating competition in providing high-efficiency products and services. Despite these benefits, with the exception of a few countries government sector actions have often lagged behind other energy efficiency policies. This is especially true in developing countries and transition economies - even though energy used by public agencies in these countries may represent at least as large a share of total energy use as the public sector in industrial economies. This paper summarizes work in progress to inventory current programs and policies for government sector energy efficiency in developing countries, and describes successful case studies from Mexico's implementation of energy management in the public sector. We show how these policies in Mexico, begun at the federal level, have more recently been extended to state and local agencies, and consider the applicability of this model to other developing countries.« less

  12. Monolithic Interconnected Modules (MIMs) for Thermophotovoltaic Energy Conversion

    NASA Technical Reports Server (NTRS)

    Wilt, David; Wehrer, Rebecca; Palmisiano, Marc; Wanlass, Mark; Murray, Christopher

    2003-01-01

    Monolithic Interconnected Modules (MIM) are under development for thermophotovoltaic (TPV) energy conversion applications. MIM devices are typified by series-interconnected photovoltaic cells on a common, semi-insulating substrate and generally include rear-surface infrared (IR) reflectors. The MIM architecture is being implemented in InGaAsSb materials without semi-insulating substrates through the development of alternative isolation methodologies. Motivations for developing the MIM structure include: reduced resistive losses, higher output power density than for systems utilizing front surface spectral control, improved thermal coupling and ultimately higher system efficiency. Numerous design and material changes have been investigated since the introduction of the MIM concept in 1994. These developments as well as the current design strategies are addressed.

  13. Optimal charge control strategies for stationary photovoltaic battery systems

    NASA Astrophysics Data System (ADS)

    Li, Jiahao; Danzer, Michael A.

    2014-07-01

    Battery systems coupled to photovoltaic (PV) modules for example fulfill one major function: they locally decouple PV generation and consumption of electrical power leading to two major effects. First, they reduce the grid load, especially at peak times and therewith reduce the necessity of a network expansion. And second, they increase the self-consumption in households and therewith help to reduce energy expenses. For the management of PV batteries charge control strategies need to be developed to reach the goals of both the distribution system operators and the local power producer. In this work optimal control strategies regarding various optimization goals are developed on the basis of the predicted household loads and PV generation profiles using the method of dynamic programming. The resulting charge curves are compared and essential differences discussed. Finally, a multi-objective optimization shows that charge control strategies can be derived that take all optimization goals into account.

  14. Daily Use of Energy Management Strategies and Occupational Well-being: The Moderating Role of Job Demands.

    PubMed

    Parker, Stacey L; Zacher, Hannes; de Bloom, Jessica; Verton, Thomas M; Lentink, Corine R

    2017-01-01

    We examine the relationships among employees' use of energy management strategies and two occupational well-being outcomes: job satisfaction and emotional exhaustion. Based on conservation of resources theory, it was hypothesized that employees with high job demands would benefit more from using energy management strategies (i.e., including prosocial, organizing, and meaning-related strategies), compared to employees with low job demands. We tested this proposition using a quantitative diary study. Fifty-four employees provided data twice daily across one work week (on average, 7 daily entries). Supporting the hypotheses, prosocial energy management was positively related to job satisfaction. Moreover, employees with high job demands were less emotionally exhausted when using prosocial strategies. Contrary to predictions, when using organizing strategies, employees with low job demands had higher job satisfaction and lower emotional exhaustion. Under high job demands, greater use of organizing strategies was associated with lower job satisfaction and higher emotional exhaustion. Finally, use of meaning-related strategies was associated with higher emotional exhaustion when job demands were low. With this research, we position energy management as part of a resource investment process aimed at maintaining and improving occupational well-being. Our findings show that this resource investment will be more or less effective depending on the type of strategy used and the existing drain on resources (i.e., job demands). This is the first study to examine momentary effects of distinct types of work-related energy management strategies on occupational well-being.

  15. Daily Use of Energy Management Strategies and Occupational Well-being: The Moderating Role of Job Demands

    PubMed Central

    Parker, Stacey L.; Zacher, Hannes; de Bloom, Jessica; Verton, Thomas M.; Lentink, Corine R.

    2017-01-01

    We examine the relationships among employees’ use of energy management strategies and two occupational well-being outcomes: job satisfaction and emotional exhaustion. Based on conservation of resources theory, it was hypothesized that employees with high job demands would benefit more from using energy management strategies (i.e., including prosocial, organizing, and meaning-related strategies), compared to employees with low job demands. We tested this proposition using a quantitative diary study. Fifty-four employees provided data twice daily across one work week (on average, 7 daily entries). Supporting the hypotheses, prosocial energy management was positively related to job satisfaction. Moreover, employees with high job demands were less emotionally exhausted when using prosocial strategies. Contrary to predictions, when using organizing strategies, employees with low job demands had higher job satisfaction and lower emotional exhaustion. Under high job demands, greater use of organizing strategies was associated with lower job satisfaction and higher emotional exhaustion. Finally, use of meaning-related strategies was associated with higher emotional exhaustion when job demands were low. With this research, we position energy management as part of a resource investment process aimed at maintaining and improving occupational well-being. Our findings show that this resource investment will be more or less effective depending on the type of strategy used and the existing drain on resources (i.e., job demands). This is the first study to examine momentary effects of distinct types of work-related energy management strategies on occupational well-being. PMID:28912741

  16. Smart Building: Decision Making Architecture for Thermal Energy Management

    PubMed Central

    Hernández Uribe, Oscar; San Martin, Juan Pablo; Garcia-Alegre, María C.; Santos, Matilde; Guinea, Domingo

    2015-01-01

    Smart applications of the Internet of Things are improving the performance of buildings, reducing energy demand. Local and smart networks, soft computing methodologies, machine intelligence algorithms and pervasive sensors are some of the basics of energy optimization strategies developed for the benefit of environmental sustainability and user comfort. This work presents a distributed sensor-processor-communication decision-making architecture to improve the acquisition, storage and transfer of thermal energy in buildings. The developed system is implemented in a near Zero-Energy Building (nZEB) prototype equipped with a built-in thermal solar collector, where optical properties are analysed; a low enthalpy geothermal accumulation system, segmented in different temperature zones; and an envelope that includes a dynamic thermal barrier. An intelligent control of this dynamic thermal barrier is applied to reduce the thermal energy demand (heating and cooling) caused by daily and seasonal weather variations. Simulations and experimental results are presented to highlight the nZEB thermal energy reduction. PMID:26528978

  17. Rational material, interface, and device engineering for high-performance polymer and perovskite solar cells (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Jen, Alex K.

    2015-10-01

    The performance of polymer and hybrid solar cells is also strongly dependent on their efficiency in harvesting light, exciton dissociation, charge transport, and charge collection at the metal/organic/metal oxide or the metal/perovskite/metal oxide interfaces. Our laboratory employs a molecular engineering approach to develop processible low band-gap polymers with high charge carrier mobility that can enhance power conversion efficiency of the single junction solar cells to values as high as ~11%. We have also developed several innovative strategies to modify the interface of bulk-heterojunction devices and create new device architectures to fully explore their potential for solar applications. In this talk, the integrated approach of combining material design, interface, and device engineering to significantly improve the performance of polymer and hybrid perovskite photovoltaic cells will be discussed. Specific emphasis will be placed on the development of low band-gap polymers with reduced reorganizational energy and proper energy levels, formation of optimized morphology of active layer, and minimized interfacial energy barriers using functional conductive surfactants. At the end, several new device architectures and optical engineering strategies to make tandem cells and semitransparent solar cells will be discussed to explore the full promise of polymer and perovskite hybrid solar cells.

  18. Nuclear energy strategy to preserve the industrial base into the twenty-first century. Research report, August 1992-April 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Naughton, R.J.

    1993-04-01

    The National Energy Strategy of 1991/1992 provides only the broadest of Outlines for a strategy to ensure a viable nuclear energy generation capability for electrical power. The FY 93 and FY 94 federal defense budgets provide minimum support to maintain a nuclear powered shipbuilding capability within the United States. These two industries are closely related and are vital strategic assets. The United States must implement a more comprehensive strategy to Preserve the core design and production technologies of the nuclear power industry. This paper examines the background of both the commercial nuclear and nuclear shipbuilding industries, then proposes modifications tomore » the National Energy Strategy and the Defense Department procurement strategy to save these industries.« less

  19. Development of Extracorporeal Shock Wave Therapy for the Treatment for Ischemic Cardiovascular Diseases

    NASA Astrophysics Data System (ADS)

    Shimokawa, Hiroaki

    Cardiovascular diseases, such as coronary artery disease and peripheral artery disease, are the major causes of death in developed countries, and the number of elderly patients has been rapidly increasing worldwide. Thus, it is crucial to develop new non-invasive therapeutic strategies for these patients. We found that a low-energy shock wave (SW) (about 10% of the energy density that is used for urolithiasis) effectively increases the expression of vascular endothelial growth factor (VEGF) in cultured endothelial cells. Subsequently, we demonstrated that extracorporeal cardiac SW therapy with low-energy SW up-regulates the expression of VEGF, enhances angiogenesis, and improves myocardial ischemia in a pig model of chronic myocardial ischemia without any adverse effects in vivo. Based on these promising results in animal studies, we have subsequently developed a new, non-invasive angiogenic therapy with low-energy SW for cardiovascular diseases. Our extracorporeal cardiac SW therapy improved symptoms and myocardial perfusion evaluated with stress-scintigraphy in patients with severe coronary artery disease without indication of percutaneous coronary intervention or coronary artery bypass surgery. Importantly, no procedural complications or adverse effects were noted. The SW therapy was also effective in ameliorating left ventricular remodeling after acute myocardial infarction in pigs and in enhancing angiogenesis in hindlimb ischemia in animals and patients with coronary artery disease. Furthermore, our recent experimental studies suggest that the SW therapy is also effective for indications other than cardiovascular diseases. Thus, our extracorporeal cardiac SW therapy is an effective, safe, and non-invasive angiogenic strategy for cardiovascular medicine.

  20. A multi-criteria analysis of options for energy recovery from municipal solid waste in India and the UK.

    PubMed

    Yap, H Y; Nixon, J D

    2015-12-01

    Energy recovery from municipal solid waste plays a key role in sustainable waste management and energy security. However, there are numerous technologies that vary in suitability for different economic and social climates. This study sets out to develop and apply a multi-criteria decision making methodology that can be used to evaluate the trade-offs between the benefits, opportunities, costs and risks of alternative energy from waste technologies in both developed and developing countries. The technologies considered are mass burn incineration, refuse derived fuel incineration, gasification, anaerobic digestion and landfill gas recovery. By incorporating qualitative and quantitative assessments, a preference ranking of the alternative technologies is produced. The effect of variations in decision criteria weightings are analysed in a sensitivity analysis. The methodology is applied principally to compare and assess energy recovery from waste options in the UK and India. These two countries have been selected as they could both benefit from further development of their waste-to-energy strategies, but have different technical and socio-economic challenges to consider. It is concluded that gasification is the preferred technology for the UK, whereas anaerobic digestion is the preferred technology for India. We believe that the presented methodology will be of particular value for waste-to-energy decision-makers in both developed and developing countries. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. U.S. Geological Survey energy and minerals science strategy

    USGS Publications Warehouse

    Ferrero, Richard C.; Kolak, Jonathan J.; Bills, Donald J.; Bowen, Zachary H.; Cordier, Daniel J.; Gallegos, Tanya J.; Hein, James R.; Kelley, Karen D.; Nelson, Philip H.; Nuccio, Vito F.; Schmidt, Jeanine M.; Seal, Robert R.

    2012-01-01

    The economy, national security, and standard of living of the United States depend heavily on adequate and reliable supplies of energy and mineral resources. Based on current population and consumption trends, the Nation's use of energy and minerals can be expected to grow, driving the demand for ever broader scientific understanding of resource formation, location, and availability. In addition, the increasing importance of environmental stewardship, human health, and sustainable growth place further emphasis on energy and mineral resources research and understanding. Collectively, these trends in resource demand and the interconnectedness among resources will lead to new challenges and, in turn, require cutting-edge science for the next generation of societal decisions. The contributions of the U.S. Geological Survey to energy and minerals research are well established. Based on five interrelated goals, this plan establishes a comprehensive science strategy. It provides a structure that identifies the most critical aspects of energy and mineral resources for the coming decade. * Goal 1. - Understand fundamental Earth processes that form energy and mineral resources. * Goal 2. - Understand the environmental behavior of energy and mineral resources and their waste products. * Goal 3. - Provide inventories and assessments of energy and mineral resources. * Goal 4. - Understand the effects of energy and mineral development on natural resources. * Goal 5. - Understand the availability and reliability of energy and mineral resource supplies. Within each goal, multiple, scalable actions are identified. The level of specificity and complexity of these actions varies, consistent with the reality that even a modest refocus can yield large payoffs in the near term whereas more ambitious plans may take years to reach fruition. As such, prioritization of actions is largely dependent on policy direction, available resources, and the sequencing of prerequisite steps that will lead up to the most visionary directions. The science strategy stresses early planning and places an emphasis on interdisciplinary collaboration and leveraging of expertise across the U.S. Geological Survey.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herbert, Christine

    SPEER will provide assistance and develop strategies for successfully deploying best practices to advance energy efficiency on a regional basis through work with state and local governmental entities. SPEER will work with regional stakeholders and DOE to coordinate and assist the development, management, and implementation of market transformation policies and programs that remove implementation barriers, and create regional synergies and facilitate peer-to-peer exchange.

  3. Pristine Metal-Organic Frameworks and their Composites for Energy Storage and Conversion.

    PubMed

    Liang, Zibin; Qu, Chong; Guo, Wenhan; Zou, Ruqiang; Xu, Qiang

    2017-11-22

    Metal-organic frameworks (MOFs), a new class of crystalline porous organic-inorganic hybrid materials, have recently attracted increasing interest in the field of energy storage and conversion. Herein, recent progress of MOFs and MOF composites for energy storage and conversion applications, including photochemical and electrochemical fuel production (hydrogen production and CO 2 reduction), water oxidation, supercapacitors, and Li-based batteries (Li-ion, Li-S, and Li-O 2 batteries), is summarized. Typical development strategies (e.g., incorporation of active components, design of smart morphologies, and judicious selection of organic linkers and metal nodes) of MOFs and MOF composites for particular energy storage and conversion applications are highlighted. A broad overview of recent progress is provided, which will hopefully promote the future development of MOFs and MOF composites for advanced energy storage and conversion applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Formation of the priority directions of innovative strategic energy management

    NASA Astrophysics Data System (ADS)

    Mottaeva, Asiiat; Minnullina, Anna

    2017-10-01

    Article is devoted to the matter of the ensuring long-term potential of dynamic growth of the Russian economy, its sustainable development in which the special role is assigned to the energy industry. Inclusion of the stage of management of the human capital, which becomes one of priority levers in the field of management of the industrial enterprises, into the in structure of strategy of planning subsequently represents one of innovative steps at the heart of power management. In work the algorithm of the development of the key performance indicators of the human capital on the basis of stage-by-stage problem definition of energy saving, search of the centers of responsibility in energy consumption and quality control of the involved productions is offered in the article. The application of the offered innovative algorithm might promote the formation of high culture of energy saving and the decrease in the level of resistance to organizational changes.

  5. Window Design Strategies to Conserve Energy. NBS Building Science Series 104.

    ERIC Educational Resources Information Center

    Hastings, S. Robert; Crenshaw, Richard W.

    A multitude of design strategies are available to achieve energy-efficient windows. Opportunities for improving window performance fall into six groups: site, exterior appendages, frame, glazing, interior accessories, and building interior. Design strategies within these groups can improve one or more of the six energy functions of windows: solar…

  6. Alternative strategies for energy recovery from municipal solid waste Part A: Mass and energy balances.

    PubMed

    Consonni, S; Giugliano, M; Grosso, M

    2005-01-01

    This two-part paper assesses four strategies for energy recovery from municipal solid waste (MSW) by dedicated waste-to-energy (WTE) plants generating electricity through a steam cycle. The feedstock is the residue after materials recovery (MR), assumed to be 35% by weight of the collected MSW. In strategy 1, the MR residue is fed directly to a grate combustor. In strategy 2, the MR residue is first subjected to light mechanical treatment. In strategies 3 and 4, the MR residue is converted into RDF, which is combusted in a fluidized bed combustor. To examine the relevance of scale, we considered a small waste management system (WMS) serving 200,000 people and a large WMS serving 1,200,000 people. A variation of strategy 1 shows the potential of cogeneration with district heating. The assessment is carried out by a Life Cycle Analysis where the electricity generated by the WTE plant displaces electricity generated by fossil fuel-fired steam plants. Part A focuses on mass and energy balances, while Part B focuses on emissions and costs. Results show that treating the MR residue ahead of the WTE plant reduces energy recovery. The largest energy savings are achieved by combusting the MR residue "as is" in large scale plants; with cogeneration, primary energy savings can reach 2.5% of total societal energy use.

  7. 48 CFR 970.2671-1 - Policy.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... of Energy policy recognizes that full utilization of the talents and capabilities of a diverse work... and enhance partnerships with small, small disadvantaged, women-owned small businesses, and... disadvantaged, women-owned small business, and educational activity; and to develop innovative strategies to...

  8. Energy efficiency design strategies for buildings with grid-connected photovoltaic systems

    NASA Astrophysics Data System (ADS)

    Yimprayoon, Chanikarn

    The building sector in the United States represents more than 40% of the nation's energy consumption. Energy efficiency design strategies and renewable energy are keys to reduce building energy demand. Grid-connected photovoltaic (PV) systems installed on buildings have been the fastest growing market in the PV industry. This growth poses challenges for buildings qualified to serve in this market sector. Electricity produced from solar energy is intermittent. Matching building electricity demand with PV output can increase PV system efficiency. Through experimental methods and case studies, computer simulations were used to investigate the priorities of energy efficiency design strategies that decreased electricity demand while producing load profiles matching with unique output profiles from PV. Three building types (residential, commercial, and industrial) of varying sizes and use patterns located in 16 climate zones were modeled according to ASHRAE 90.1 requirements. Buildings were analyzed individually and as a group. Complying with ASHRAE energy standards can reduce annual electricity consumption at least 13%. With energy efficiency design strategies, the reduction could reach up to 65%, making it possible for PV systems to meet reduced demands in residential and industrial buildings. The peak electricity demand reduction could be up to 71% with integration of strategies and PV. Reducing lighting power density was the best single strategy with high overall performances. Combined strategies such as zero energy building are also recommended. Electricity consumption reductions are the sum of the reductions from strategies and PV output. However, peak electricity reductions were less than their sum because they reduced peak at different times. The potential of grid stress reduction is significant. Investment incentives from government and utilities are necessary. The PV system sizes on net metering interconnection should not be limited by legislation existing in some states. Data from this study provides insight of impacts from applying energy efficiency design strategies in buildings with grid-connected PV systems. With the current transition from traditional electric grids to future smart grids, this information plus large database of various building conditions allow possible investigations needed by governments or utilities in large scale communities for implementing various measures and policies.

  9. Free energy surfaces from nonequilibrium processes without work measurement

    NASA Astrophysics Data System (ADS)

    Adib, Artur B.

    2006-04-01

    Recent developments in statistical mechanics have allowed the estimation of equilibrium free energies from the statistics of work measurements during processes that drive the system out of equilibrium. Here a different class of processes is considered, wherein the system is prepared and released from a nonequilibrium state, and no external work is involved during its observation. For such "clamp-and-release" processes, a simple strategy for the estimation of equilibrium free energies is offered. The method is illustrated with numerical simulations and analyzed in the context of tethered single-molecule experiments.

  10. Space strategy for Europe and the International Lunar Decade

    NASA Astrophysics Data System (ADS)

    Beldavs, VZ

    2017-09-01

    The 2020-2030 decade offers extraordinary opportunity for the European space sector that is largely not recognized in present space strategy which does not recognize commercial space activities beyond communications satellites, launchers, and earth observation and navigation and downstream activities. Lunar and cislunar development can draw on the extensive experience of Europe in mining, clean energy, ecological systems as well as deep experience in managing the development of technologies through TRL1 through commercial sale via Horizon 2020 and previous Framework programs. The EU has unrivalled experience in coordinating research and advanced technology development from research centers, major firms and SMEs across multiple sovereign states. This capacity to coordinate across national boundaries can be a significant contribution to a global cooperative program like the International Lunar Decade. This paper will present a European space strategy for beyond 2020 and how this can mesh with the International Lunar Decade.

  11. Implementation of Strategies to Leverage Public and Private Resources for National Security Workforce Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2009-04-01

    This report documents implementation strategies to leverage public and private resources for the development of an adequate national security workforce as part of the National Security Preparedness Project (NSPP), being performed under a U.S. Department of Energy (DOE)/National Nuclear Security Administration (NNSA) grant. There are numerous efforts across the United States to develop a properly skilled and trained national security workforce. Some of these efforts are the result of the leveraging of public and private dollars. As budget dollars decrease and the demand for a properly skilled and trained national security workforce increases, it will become even more important tomore » leverage every education and training dollar. This report details some of the efforts that have been implemented to leverage public and private resources, as well as implementation strategies to further leverage public and private resources.« less

  12. Major factors for facilitating change in behavioral strategies to reduce obesity

    PubMed Central

    Dalle Grave, Riccardo; Centis, Elena; Marzocchi, Rebecca; El Ghoch, Marwan; Marchesini, Giulio

    2013-01-01

    It is very unlikely that our obesity-promoting environment will change in the near future. It is therefore mandatory to improve our knowledge of the main factors associated with successful adoption of obesity-reducing behaviors. This may help design more powerful procedures and strategies to facilitate the adoption of healthy lifestyles in a “toxic” environment favoring the development of a positive energy balance. The aim of this review is to describe the main factors associated with successful adoption of obesity-reducing behaviors and to describe the most recent development, limits, and outcomes of lifestyle modification programs. The evidence regarding predictors of weight loss and weight loss maintenance remains largely incomplete. It is necessary to develop strategies matching treatments to patients’ needs to improve successful weight loss and its maintenance. How to detect and how to address these needs is a continuous, challenging, research problem. PMID:24124398

  13. Inspiring Climate Education Excellence(ICEE): Developing Elearning professional development modules - secondary science teachers

    NASA Astrophysics Data System (ADS)

    Kellagher, E.; Buhr, S. M.; Lynds, S. E.; McCaffrey, M. S.; Cires Education Outreach

    2011-12-01

    Inspiring Climate Education Excellence (ICEE) is a NASA-funded project to develop content knowledge and knowledge of effective teaching strategies in climate education among secondary science teachers. ICEE resources are aligned with the Essential Principles of Climate Science. Building upon a needs assessment and face to face workshop, ICEE resources include iTunesU videos, an ICEE 101 resource site with videos and peer-reviewed learning activities, and a moderated online forum. Self-directed modules and an online course are being developed around concepts and topics in which teachers express the most interest and need for instruction. ICEE resources include attention to effective teaching strategies, such as awareness of student misconceptions, strategies for forestalling controversy and advice from master teachers on implementation and curriculum development. The resources are being developed in partnership with GLOBE, and the National Science Digital Library (NSDL) and are informed by the work of the Climate Literacy and Energy Awareness Network (CLEAN) project. ICEE will help to meet the professional development needs of teachers, including those participating in the GLOBE Student Climate Research Campaign.

  14. Flight-management strategies for escape from microburst encounters. M.S. Thesis - George Washington Univ.

    NASA Technical Reports Server (NTRS)

    Hinton, David A.

    1988-01-01

    An effort is underway by NASA, FAA, and industry to reduce the threat of convective microburst wind shear phenomena to aircraft. The goal is to develop and test a candidate set of strategies for recovery from inadvertent microburst encounters during takeoff. Candidate strategies were developed and evaluated using a fast-time simulation consisting of a simple point-mass performance model of a transport-category airplane and an analytical microburst model. The results indicate that the recovery strategy characteristics that best utilize available airplane energy include an initial reduction in pitch attitude to reduce the climb rate, followed by an increase in pitch up to the stick shaker angle of attack. The stick shaker angle of attack should be reached just as the airplane is exiting the microburst. The shallowest angle of climb necessary for obstacle clearance should be used. If the altitude is higher than necessary, an intentional descent to reduce the airspeed deceleration should be used. Of the strategies tested, two flight-path-angle based strategies had the highest recovery altitudes and the least sensitivity to variations in the encounter scenarios.

  15. Modelling Electrical Energy Consumption in Automotive Paint Shop

    NASA Astrophysics Data System (ADS)

    Oktaviandri, Muchamad; Safiee, Aidil Shafiza Bin

    2018-03-01

    Industry players are seeking ways to reduce operational cost to sustain in a challenging economic trend. One key aspect is an energy cost reduction. However, implementing energy reduction strategy often struggle with obstructions, which slow down their realization and implementation. Discrete event simulation method is an approach actively discussed in current research trend to overcome such obstructions because of its flexibility and comprehensiveness. Meanwhile, in automotive industry, paint shop is considered the most energy consumer area which is reported consuming about 50%-70% of overall automotive plant consumption. Hence, this project aims at providing a tool to model and simulate energy consumption at paint shop area by conducting a case study at XYZ Company, one of the automotive companies located at Pekan, Pahang. The simulation model was developed using Tecnomatix Plant Simulation software version 13. From the simulation result, the model was accurately within ±5% for energy consumption and ±15% for maximum demand after validation with real system. Two different energy saving scenarios were tested. Scenario 1 was based on production scheduling approach under low demand situation which results energy saving up to 30% on the consumption. Meanwhile scenario 2 was based on substituting high power compressor with the lower power compressor. The results were energy consumption saving of approximately 1.42% and maximum demand reduction about 1.27%. This approach would help managers and engineers to justify worthiness of investment for implementing the reduction strategies.

  16. From Smart-Eco Building to High-Performance Architecture: Optimization of Energy Consumption in Architecture of Developing Countries

    NASA Astrophysics Data System (ADS)

    Mahdavinejad, M.; Bitaab, N.

    2017-08-01

    Search for high-performance architecture and dreams of future architecture resulted in attempts towards meeting energy efficient architecture and planning in different aspects. Recent trends as a mean to meet future legacy in architecture are based on the idea of innovative technologies for resource efficient buildings, performative design, bio-inspired technologies etc. while there are meaningful differences between architecture of developed and developing countries. Significance of issue might be understood when the emerging cities are found interested in Dubaization and other related booming development doctrines. This paper is to analyze the level of developing countries’ success to achieve smart-eco buildings’ goals and objectives. Emerging cities of West of Asia are selected as case studies of the paper. The results of the paper show that the concept of high-performance architecture and smart-eco buildings are different in developing countries in comparison with developed countries. The paper is to mention five essential issues in order to improve future architecture of developing countries: 1- Integrated Strategies for Energy Efficiency, 2- Contextual Solutions, 3- Embedded and Initial Energy Assessment, 4- Staff and Occupancy Wellbeing, 5- Life-Cycle Monitoring.

  17. High throughput light absorber discovery, Part 2: Establishing structure–band gap energy relationships

    DOE PAGES

    Suram, Santosh K.; Newhouse, Paul F.; Zhou, Lan; ...

    2016-09-23

    Combinatorial materials science strategies have accelerated materials development in a variety of fields, and we extend these strategies to enable structure-property mapping for light absorber materials, particularly in high order composition spaces. High throughput optical spectroscopy and synchrotron X-ray diffraction are combined to identify the optical properties of Bi-V-Fe oxides, leading to the identification of Bi 4V 1.5Fe 0.5O 10.5 as a light absorber with direct band gap near 2.7 eV. Here, the strategic combination of experimental and data analysis techniques includes automated Tauc analysis to estimate band gap energies from the high throughput spectroscopy data, providing an automated platformmore » for identifying new optical materials.« less

  18. High throughput light absorber discovery, Part 2: Establishing structure–band gap energy relationships

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suram, Santosh K.; Newhouse, Paul F.; Zhou, Lan

    Combinatorial materials science strategies have accelerated materials development in a variety of fields, and we extend these strategies to enable structure-property mapping for light absorber materials, particularly in high order composition spaces. High throughput optical spectroscopy and synchrotron X-ray diffraction are combined to identify the optical properties of Bi-V-Fe oxides, leading to the identification of Bi 4V 1.5Fe 0.5O 10.5 as a light absorber with direct band gap near 2.7 eV. Here, the strategic combination of experimental and data analysis techniques includes automated Tauc analysis to estimate band gap energies from the high throughput spectroscopy data, providing an automated platformmore » for identifying new optical materials.« less

  19. Resilience of natural gas networks during conflicts, crises and disruptions.

    PubMed

    Carvalho, Rui; Buzna, Lubos; Bono, Flavio; Masera, Marcelo; Arrowsmith, David K; Helbing, Dirk

    2014-01-01

    Human conflict, geopolitical crises, terrorist attacks, and natural disasters can turn large parts of energy distribution networks offline. Europe's current gas supply network is largely dependent on deliveries from Russia and North Africa, creating vulnerabilities to social and political instabilities. During crises, less delivery may mean greater congestion, as the pipeline network is used in ways it has not been designed for. Given the importance of the security of natural gas supply, we develop a model to handle network congestion on various geographical scales. We offer a resilient response strategy to energy shortages and quantify its effectiveness for a variety of relevant scenarios. In essence, Europe's gas supply can be made robust even to major supply disruptions, if a fair distribution strategy is applied.

  20. High Throughput Light Absorber Discovery, Part 2: Establishing Structure-Band Gap Energy Relationships.

    PubMed

    Suram, Santosh K; Newhouse, Paul F; Zhou, Lan; Van Campen, Douglas G; Mehta, Apurva; Gregoire, John M

    2016-11-14

    Combinatorial materials science strategies have accelerated materials development in a variety of fields, and we extend these strategies to enable structure-property mapping for light absorber materials, particularly in high order composition spaces. High throughput optical spectroscopy and synchrotron X-ray diffraction are combined to identify the optical properties of Bi-V-Fe oxides, leading to the identification of Bi 4 V 1.5 Fe 0.5 O 10.5 as a light absorber with direct band gap near 2.7 eV. The strategic combination of experimental and data analysis techniques includes automated Tauc analysis to estimate band gap energies from the high throughput spectroscopy data, providing an automated platform for identifying new optical materials.

  1. Fuel Cycle Analysis Framework Base Cases for the IAEA/INPRO GAINS Collaborative Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brent Dixon

    Thirteen countries participated in the Collaborative Project GAINS “Global Architecture of Innovative Nuclear Energy Systems Based on Thermal and Fast Reactors Including a Closed Fuel Cycle”, which was the primary activity within the IAEA/INPRO Program Area B: “Global Vision on Sustainable Nuclear Energy” for the last three years. The overall objective of GAINS was to develop a standard framework for assessing future nuclear energy systems taking into account sustainable development, and to validate results through sample analyses. This paper details the eight scenarios that constitute the GAINS framework base cases for analysis of the transition to future innovative nuclear energymore » systems. The framework base cases provide a reference for users of the framework to start from in developing and assessing their own alternate systems. Each base case is described along with performance results against the GAINS sustainability evaluation metrics. The eight cases include four using a moderate growth projection and four using a high growth projection for global nuclear electricity generation through 2100. The cases are divided into two sets, addressing homogeneous and heterogeneous scenarios developed by GAINS to model global fuel cycle strategies. The heterogeneous world scenario considers three separate nuclear groups based on their fuel cycle strategies, with non-synergistic and synergistic cases. The framework base case analyses results show the impact of these different fuel cycle strategies while providing references for future users of the GAINS framework. A large number of scenario alterations are possible and can be used to assess different strategies, different technologies, and different assumptions about possible futures of nuclear power. Results can be compared to the framework base cases to assess where these alternate cases perform differently versus the sustainability indicators.« less

  2. An approach to enhance the conservation-compatibility of solar energy development.

    PubMed

    Cameron, D Richard; Cohen, Brian S; Morrison, Scott A

    2012-01-01

    The rapid pace of climate change poses a major threat to biodiversity. Utility-scale renewable energy development (>1 MW capacity) is a key strategy to reduce greenhouse gas emissions, but development of those facilities also can have adverse effects on biodiversity. Here, we examine the synergy between renewable energy generation goals and those for biodiversity conservation in the 13 M ha Mojave Desert of the southwestern USA. We integrated spatial data on biodiversity conservation value, solar energy potential, and land surface slope angle (a key determinant of development feasibility) and found there to be sufficient area to meet renewable energy goals without developing on lands of relatively high conservation value. Indeed, we found nearly 200,000 ha of lower conservation value land below the most restrictive slope angle (<1%); that area could meet the state of California's current 33% renewable energy goal 1.8 times over. We found over 740,000 ha below the highest slope angle (<5%)--an area that can meet California's renewable energy goal seven times over. Our analysis also suggests that the supply of high quality habitat on private land may be insufficient to mitigate impacts from future solar projects, so enhancing public land management may need to be considered among the options to offset such impacts. Using the approach presented here, planners could reduce development impacts on areas of higher conservation value, and so reduce trade-offs between converting to a green energy economy and conserving biodiversity.

  3. An Approach to Enhance the Conservation-Compatibility of Solar Energy Development

    PubMed Central

    Cameron, D. Richard; Cohen, Brian S.; Morrison, Scott A.

    2012-01-01

    The rapid pace of climate change poses a major threat to biodiversity. Utility-scale renewable energy development (>1 MW capacity) is a key strategy to reduce greenhouse gas emissions, but development of those facilities also can have adverse effects on biodiversity. Here, we examine the synergy between renewable energy generation goals and those for biodiversity conservation in the 13 M ha Mojave Desert of the southwestern USA. We integrated spatial data on biodiversity conservation value, solar energy potential, and land surface slope angle (a key determinant of development feasibility) and found there to be sufficient area to meet renewable energy goals without developing on lands of relatively high conservation value. Indeed, we found nearly 200,000 ha of lower conservation value land below the most restrictive slope angle (<1%); that area could meet the state of California’s current 33% renewable energy goal 1.8 times over. We found over 740,000 ha below the highest slope angle (<5%) – an area that can meet California’s renewable energy goal seven times over. Our analysis also suggests that the supply of high quality habitat on private land may be insufficient to mitigate impacts from future solar projects, so enhancing public land management may need to be considered among the options to offset such impacts. Using the approach presented here, planners could reduce development impacts on areas of higher conservation value, and so reduce trade-offs between converting to a green energy economy and conserving biodiversity. PMID:22685568

  4. Pilot Testing of Commercial Refrigeration-Based Demand Response

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirsch, Adam; Clark, Jordan; Deru, Michael

    Supermarkets potentially offer a substantial demand response (DR) resource because of their high energy intensity and use patterns. This report describes a pilot project conducted to better estimate supermarket DR potential. Previous work has analyzed supermarket DR using heating, ventilating, and air conditioning (HVAC), lighting, and anti-condensate heaters. This project was concerned with evaluating DR using the refrigeration system and quantifying the DR potential inherent in supermarket refrigeration systems. Ancillary aims of the project were to identify practical barriers to the implementation of DR programs in supermarkets and to determine which high-level control strategies were most appropriate for achieving certainmore » DR objectives. The scope of this project does not include detailed control strategy development for DR or development of a strategy for regional implementation of DR in supermarkets.« less

  5. Feasibility and Costs of Natural Gas as a Bridge to Deep Decarbonization in the United States

    NASA Astrophysics Data System (ADS)

    Jones, A. D.; McJeon, H. C.; Muratori, M.; Shi, W.

    2015-12-01

    Achieving emissions reductions consistent with a 2 degree Celsius global warming target requires nearly complete replacement of traditional fossil fuel combustion with near-zero carbon energy technologies in the United States by 2050. There are multiple technological change pathways consistent with this deep decarbonization, including strategies that rely on renewable energy, nuclear, and carbon capture and storage (CCS) technologies. The replacement of coal-fired power plants with natural gas-fired power plants has also been suggested as a bridge strategy to achieve near-term emissions reduction targets. These gas plants, however, would need to be replaced by near-zero energy technologies or retrofitted with CCS by 2050 in order to achieve longer-term targets. Here we examine the costs and feasibility of a natural gas bridge strategy. Using the Global Change Assessment (GCAM) model, we develop multiple scenarios that each meet the recent US Intended Nationally Determined Contribution (INDC) to reduce GHG emissions by 26%-28% below its 2005 levels in 2025, as well as a deep decarbonization target of 80% emissions reductions below 1990 levels by 2050. We find that the gas bridge strategy requires that gas plants be retired on average 20 years earlier than their designed lifetime of 45 years, a potentially challenging outcome to achieve from a policy perspective. Using a more idealized model, we examine the net energy system costs of this gas bridge strategy compared to one in which near-zero energy technologies are deployed in the near tem. We explore the sensitivity of these cost results to four factors: the discount rate applied to future costs, the length (or start year) of the gas bridge, the relative capital cost of natural gas vs. near-zero energy technology, and the fuel price of natural gas. The discount rate and cost factors are found to be more important than the length of the bridge. However, we find an important interaction as well. At low discount rates, the gas bridge is more expensive and a shorter bridge is preferred. At high discount rates, the gas bridge is less expensive and a longer bridge is preferred. This result indicates that the valuation of future expenditures relative to present day expenditures is a major factor in determining the merits of a gas bridge strategy.

  6. What works in school-based energy balance behaviour interventions and what does not? A systematic review of mediating mechanisms.

    PubMed

    van Stralen, M M; Yildirim, M; te Velde, S J; Brug, J; van Mechelen, W; Chinapaw, M J M

    2011-10-01

    Obesity prevention requires effective interventions targeting the so-called energy balance-related behaviours (that is, physical activity, sedentary and dietary behaviours). To improve (cost-)effectiveness of these interventions, one needs to know the working mechanisms underlying behavioural change. Mediation analyses evaluates whether an intervention works via hypothesised working mechanisms. Identifying mediators can prompt intervention developers to strengthen effective intervention components and remove/adapt ineffective components. This systematic review aims to identify psychosocial and environmental mediators of energy balance-related behaviours interventions for youth. Studies were identified by a systematic search of electronic databases (PubMed, Embase, PsycINFO, ERIC and SPORTDiscus). Studies were included if they (1) were school-based randomised controlled or quasi-experimental studies; (2) targeted energy balance behaviours; (3) conducted among children and adolescents (4-18 years of age); (4) written in English; and (5) conducted mediation analyses. A total of 24 studies were included. We found strong evidence for self-efficacy and moderate evidence for intention as mediators of physical activity interventions. Indications were found for attitude, knowledge and habit strength to be mediators of dietary behaviour interventions. The few sedentary behaviour interventions reporting on mediating effects prevented us from forming strong conclusions regarding mediators of sedentary behaviour interventions. The majority of interventions failed to significantly change hypothesised mediators because of ineffective intervention strategies, low power and/or use of insensitive measures. Despite its importance, few studies published results of mediation analysis, and more high-quality research into relevant mediators is necessary. On the basis of the limited number of published studies, self-efficacy and intention appear to be relevant mediators for physical activity interventions. Future intervention developers are advised to provide information on the theoretical base of their intervention including the strategies applied to provide insight into which strategies are effective in changing relevant mediators. In addition, future research is advised to focus on the development, validity, reliability and sensitivity of mediator measures.

  7. What works in school-based energy balance behaviour interventions and what does not? A systematic review of mediating mechanisms

    PubMed Central

    van Stralen, M M; Yildirim, M; Velde, SJ te; Brug, J; van Mechelen, W; Chinapaw, M J M

    2011-01-01

    Objective: Obesity prevention requires effective interventions targeting the so-called energy balance-related behaviours (that is, physical activity, sedentary and dietary behaviours). To improve (cost-)effectiveness of these interventions, one needs to know the working mechanisms underlying behavioural change. Mediation analyses evaluates whether an intervention works via hypothesised working mechanisms. Identifying mediators can prompt intervention developers to strengthen effective intervention components and remove/adapt ineffective components. This systematic review aims to identify psychosocial and environmental mediators of energy balance-related behaviours interventions for youth. Method: Studies were identified by a systematic search of electronic databases (Pubmed, Embase, PsycINFO, ERIC and SPORTDiscus). Studies were included if they (1) were school-based randomised controlled or quasi-experimental studies; (2) targeted energy balance behaviours; (3) conducted among children and adolescents (4–18 years of age); (4) written in English; and (5) conducted mediation analyses. Results: A total of 24 studies were included. We found strong evidence for self-efficacy and moderate evidence for intention as mediators of physical activity interventions. Indications were found for attitude, knowledge and habit strength to be mediators of dietary behaviour interventions. The few sedentary behaviour interventions reporting on mediating effects prevented us from forming strong conclusions regarding mediators of sedentary behaviour interventions. The majority of interventions failed to significantly change hypothesised mediators because of ineffective intervention strategies, low power and/or use of insensitive measures. Conclusion: Despite its importance, few studies published results of mediation analysis, and more high-quality research into relevant mediators is necessary. On the basis of the limited number of published studies, self-efficacy and intention appear to be relevant mediators for physical activity interventions. Future intervention developers are advised to provide information on the theoretical base of their intervention including the strategies applied to provide insight into which strategies are effective in changing relevant mediators. In addition, future research is advised to focus on the development, validity, reliability and sensitivity of mediator measures. PMID:21487398

  8. Sustainable infrastructure system modeling under uncertainties and dynamics

    NASA Astrophysics Data System (ADS)

    Huang, Yongxi

    Infrastructure systems support human activities in transportation, communication, water use, and energy supply. The dissertation research focuses on critical transportation infrastructure and renewable energy infrastructure systems. The goal of the research efforts is to improve the sustainability of the infrastructure systems, with an emphasis on economic viability, system reliability and robustness, and environmental impacts. The research efforts in critical transportation infrastructure concern the development of strategic robust resource allocation strategies in an uncertain decision-making environment, considering both uncertain service availability and accessibility. The study explores the performances of different modeling approaches (i.e., deterministic, stochastic programming, and robust optimization) to reflect various risk preferences. The models are evaluated in a case study of Singapore and results demonstrate that stochastic modeling methods in general offers more robust allocation strategies compared to deterministic approaches in achieving high coverage to critical infrastructures under risks. This general modeling framework can be applied to other emergency service applications, such as, locating medical emergency services. The development of renewable energy infrastructure system development aims to answer the following key research questions: (1) is the renewable energy an economically viable solution? (2) what are the energy distribution and infrastructure system requirements to support such energy supply systems in hedging against potential risks? (3) how does the energy system adapt the dynamics from evolving technology and societal needs in the transition into a renewable energy based society? The study of Renewable Energy System Planning with Risk Management incorporates risk management into its strategic planning of the supply chains. The physical design and operational management are integrated as a whole in seeking mitigations against the potential risks caused by feedstock seasonality and demand uncertainty. Facility spatiality, time variation of feedstock yields, and demand uncertainty are integrated into a two-stage stochastic programming (SP) framework. In the study of Transitional Energy System Modeling under Uncertainty, a multistage stochastic dynamic programming is established to optimize the process of building and operating fuel production facilities during the transition. Dynamics due to the evolving technologies and societal changes and uncertainty due to demand fluctuations are the major issues to be addressed.

  9. Mission and status of the US Department of Energy's battery energy storage program

    NASA Astrophysics Data System (ADS)

    Quinn, J. E.; Hurwitch, J. W.; Landgrebe, A. R.; Hauser, S. G.

    1985-05-01

    The mission of the US Department of Energy's battery research program has evolved to reflect the changing conditions of the world energy economy and the national energy policy. The battery energy storage program supports the goals of the National Energy Policy Plan (FY 1984). The goals are to provide an adequate supply of energy at reasonable costs, minimize federal control and involvement in the energy marketplace, promote a balanced and mixed energy resource system, and facilitate technology transfer from the public to the private sector. This paper describes the history of the battery energy storage program and its relevance to the national interest. Potential market applications for battery energy storage are reviewed, and each technology, its goals, and its current technical status are described. The paper concludes by describing the strategy developed to ensure effective technology transfer to the private sector and reviewing past significant accomplishments.

  10. Solar energy and conservation technologies for Caribbean Tourist Facilities (CTF)

    NASA Astrophysics Data System (ADS)

    The primary objectives of the Caribbean Tourist Facilities (CTF) project were to develop and publish materials and conduct workshops on solar energy and conservation technologies that would directly address the needs and interests of tourist facilities in the Caribbean basin. Past contacts with the Caribbean and US tourist industries indicated that decision-makers remained unconvinced that renewable technologies could have a significant impact on development and operation costs or that renewable energy products and services suited their needs. In order to assure that the materials and programs developed were responsive to the Caribbean tourist industry and U.S. conservation and renewable energy industries, marketing research with potential end users and the organizations and associations that serve those users was included as an underlying task in the project. The tasks outlined in the CTF Statement of Work included conference planning, gathering of field data, development of educational materials, and conduct of workshop(s). In addition to providing a chronicle of the fulfillment of those tasks, this final report includes suggestions for distributing the documents developed during the project, venues for future workshops, and other technology transfer and market influence strategies.

  11. Patterns of daily energy management at work: relations to employee well-being and job characteristics.

    PubMed

    Kinnunen, Ulla; Feldt, Taru; de Bloom, Jessica; Korpela, Kalevi

    2015-11-01

    The present study aimed at identifying subgroups of employees with similar daily energy management strategies at work and finding out whether well-being indicators and job characteristics differ between these subgroups. The study was conducted by electronic questionnaire among 1122 Finnish employees. First, subgroups of employees with unique and distinctive patterns of energy management strategies were identified using latent profile analysis. Second, differences in well-being indicators and job characteristics between the subgroups were investigated by means of ANCOVA. Four subgroups (i.e., patterns) were identified and named: Passives (n = 371), Averages (n = 390), Casuals (n = 272) and Actives (n = 89). Passives used all three (i.e., work-related, private micro-break and physical micro-break) strategies less frequently than other subgroups, whereas Actives used work-related and physical energy management strategies more frequently than other subgroups. Averages used all strategies on an average level. Casuals' use of all strategies came close to that of Actives, notably in a shared low use of private micro-break strategies. Active and Casual patterns maintained vigor and vitality. Autonomy and social support at work played a significant role in providing opportunities for the use of beneficial energy management strategies. Autonomy and support at work seem to support active and casual use of daily energy management, which is important in staying energized throughout the working day.

  12. Don't ban PVC: incinerate and recycle it instead!

    PubMed

    Menke, Doris; Fiedler, Hiltrud; Zwahr, Heiner

    2003-04-01

    Plastics are making a growing contribution to sustainable development. For example, over an expected lifetime of 50 years, the use of window frames and insulating materials made of plastic in buildings save many times the energy required to manufacture them. Plastics for packaging purposes provide protection against damage and dirt contamination, thereby saving considerable amounts of material and energy. Choosing appropriate disposal strategies for plastic waste also helps to protect the environment (Mark 2000).

  13. Waste-to-Energy Thermal Destruction Identification for Forward Operating Bases

    DTIC Science & Technology

    2016-07-01

    waste disposal strategy is to simplify the technology development goals. Specifically, we recommend a goal of reducing total net energy consumption ...to net zero. The minimum objective should be the lowest possible fuel consumption per unit of waste disposed. By shifting the focus from W2E to waste...over long distances increases the risks to military personnel and contractors. Because fuel is a limited resource at FOBs, diesel fuel consumption

  14. Photocatalytic Cellulosic Electrospun Fibers for the Degradation of Potent Cyanobacteria Toxin Microcystin-LR

    DTIC Science & Technology

    2012-01-01

    treatment applications using solar light as a renewable source of energy. Introduction The need for low cost and efficient water treatment strategies... photocatalysis with nanoparticles (such as titania, TiO2) show tremendous promise as a simple and energy efficient tech- nology for water purification and...which limits the amount of available sunlight that can be used for photocatalysis . To circumvent this issue, methods have been developed to extend

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    This paper responds to the Development Committee Communique of April 2006 requesting the World Bank to review existing financial instruments and explore the potential value of new financial instruments to accelerate investment in clean energy. It builds on the report 'Clean Energy and Development: Towards an Investment Framework' that was presented to the Development Committee at the April 2006 Spring Meeting and concludes: The major financing gap for the energy for development and energy access agendas can be met by deepening and broadening energy sector policy reform to attract private sector investments and additional public sector financing. A long-term stablemore » global regulatory framework, with differentiated responsibilities, is needed to stimulate private investments and provide predictability. The Bank proposes the development of a number of options to accelerate the transition to a low carbon economy. Risks of weather-related disasters need to be integrated into poverty and sustainable development strategies with a combination of public and private sector resources. Clean energy will address the following issues that affect poor people and undermine progress on many of the Millennium Development Goals: Pollution at the household level, especially indoor air pollution, which adversely affects human health; Environmental impacts at the local, national and regional level, including urban air pollution and acid deposition, which affects human health and ecological systems; and The adverse impacts of greenhouse gas emissions from the production of energy on agricultural productivity, water resources, human health, human settlements and ecological systems. 11 figs., 2 tabs., 2 annexes.« less

  16. Effects off system factors on the economics of and demand for small solar thermal power systems

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Market penetration as a function time, SPS performance factors, and market/economic considerations was estimated, and commercialization strategies were formulated. A market analysis task included personal interviews and supplemental mail surveys to acquire statistical data and to identify and measure attitudes, reactions and intentions of prospective SPS users. Interviews encompassed three ownership classes of electric utilities and industrial firms in the SIC codes for energy consumption. A market demand model was developed which utilized the data base developed, and projected energy price and consumption data to perform sensitivity analyses and estimate potential market for SPS.

  17. Effects off system factors on the economics of and demand for small solar thermal power systems

    NASA Astrophysics Data System (ADS)

    1981-09-01

    Market penetration as a function time, SPS performance factors, and market/economic considerations was estimated, and commercialization strategies were formulated. A market analysis task included personal interviews and supplemental mail surveys to acquire statistical data and to identify and measure attitudes, reactions and intentions of prospective SPS users. Interviews encompassed three ownership classes of electric utilities and industrial firms in the SIC codes for energy consumption. A market demand model was developed which utilized the data base developed, and projected energy price and consumption data to perform sensitivity analyses and estimate potential market for SPS.

  18. 7 CFR 2.29 - Chief Economist.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Energy Act of 2008 (Pub. L. 110-246). (12) Related to climate change. (i) Coordinate policy analysis, long-range planning, research, and response strategies relating to climate change issues. (ii) Provide... climate change issues. (iii) Inform the Department of scientific developments and policy issues relating...

  19. 75 FR 54300 - Energy and Infrastructure Mission to Saudi Arabia

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-07

    ...) and communication products and services to potential buyers and allow them to explore new business... to discuss industry developments, opportunities, and sales strategies. Commercial Setting Saudi... key U.S. Government and corporate officials. Participants will also take part in business matchmaking...

  20. Cloud decision model for selecting sustainable energy crop based on linguistic intuitionistic information

    NASA Astrophysics Data System (ADS)

    Peng, Hong-Gang; Wang, Jian-Qiang

    2017-11-01

    In recent years, sustainable energy crop has become an important energy development strategy topic in many countries. Selecting the most sustainable energy crop is a significant problem that must be addressed during any biofuel production process. The focus of this study is the development of an innovative multi-criteria decision-making (MCDM) method to handle sustainable energy crop selection problems. Given that various uncertain data are encountered in the evaluation of sustainable energy crops, linguistic intuitionistic fuzzy numbers (LIFNs) are introduced to present the information necessary to the evaluation process. Processing qualitative concepts requires the effective support of reliable tools; then, a cloud model can be used to deal with linguistic intuitionistic information. First, LIFNs are converted and a novel concept of linguistic intuitionistic cloud (LIC) is proposed. The operations, score function and similarity measurement of the LICs are defined. Subsequently, the linguistic intuitionistic cloud density-prioritised weighted Heronian mean operator is developed, which served as the basis for the construction of an applicable MCDM model for sustainable energy crop selection. Finally, an illustrative example is provided to demonstrate the proposed method, and its feasibility and validity are further verified by comparing it with other existing methods.

  1. Public policy performance for social development: solar energy approach to assess technological outcome in Mexico City Metropolitan Area.

    PubMed

    Arenas-Aquino, Angel Raúl; Matsumoto-Kuwabara, Y; Kleiche-Dray, M

    2017-11-01

    Mexico City Metropolitan Area (MCMA) is the most populated urban area in the country. In 2010, MCMA required 14.8% of total energy domestic demand, but greenhouse gas emissions accounted for 7.7% of domestic emissions. Mexico has massive renewable energy potential that could be harnessed through solar photovoltaic (PV) technology. The problem to explore is the relationship between local and federal public strategies in MCMA and their stance on energy transition concern, social empowerment, new technology appropriation, and the will to boost social development and urban sustainability. A public policy typology was conducted through instruments of State intervention approach, based on political agenda articulation and environmental local interactions. Social equality is encouraged by means of forthright funding and in-kind support and energy policies focus on non-renewable energy subsidies and electric transmission infrastructure investment. There is a lack of vision for using PV technology as a guiding axis for marginalized population development. It is essential to promote economic and political rearrangement in order to level and structure environmental governance. It is essential to understand people's representation about their own needs along with renewable energy.

  2. Evaluation of Heliostat Standby Aiming Strategies to Reduce Avian Flux Hazards and Impacts on Operational Performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wendelin, Timothy J; Ho, Clifford K.; Horstman, Luke

    This paper presents a study of alternative heliostat standby aiming strategies and their impact on avian flux hazards and operational performance of a concentrating solar power plant. A mathematical model was developed that predicts the bird-feather temperature as a function of solar irradiance, thermal emittance, convection, and thermal properties of the feather. The irradiance distribution in the airspace above the Ivanpah Unit 2 heliostat field was simulated using a ray-trace model for two different times of the day, four days of the year, and nine different standby aiming strategies. The impact of the alternative aiming strategies on operational performance wasmore » assessed by comparing the heliostat slew times from standby position to the receiver for the different aiming strategies. Increased slew times increased a proxy start-up time that reduced the simulated annual energy production. Results showed that spreading the radial aim points around the receiver to a distance of ~150 m or greater reduced the hazardous exposure times that the feather temperature exceeded the hazard metric of 160 degrees C. The hazardous exposure times were reduced by ~23% and 90% at a radial spread of aim points extending to 150 m and 250 m, respectively, but the simulated annual energy production decreased as a result of increased slew times. Single point-focus aiming strategies were also evaluated, but these strategies increased the exposure hazard relative to other aiming strategies.« less

  3. Strategy for development of the Polish electricity sector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dybowski, J.

    1995-12-01

    This paper represents the strategy for development of the Polish Electricity Sector dealing with specific problems which are common for all of East Central Europe. In 1990 Poland adopted a restructuring program for the entire energy sector. Very ambitious plans were changed several times but still the main direction of change was preserved. The most difficult period of transformation is featured by several contradictions which have to be balanced. Electricity prices should increase in order to cover the modernization and development program but the society is not able to take this burden in such a short time. Furthermore the newmore » environment protection standards force the growth of capital investment program which sooner or later has to be transferred through the electricity prices. New economic mechanisms have to be introduced to the electricity sector to replace the old ones noneffective, centrally planned. This process has to follow slow management changes. Also, introduction of new electricity market is limited by those constraints. However, this process of change would not be possible without parallel governmental initiation like preparation of new energy law and regulatory frames.« less

  4. Community energy management in Sitka, Alaska: What strategies can help increase energy independence?

    Treesearch

    David Nicholls; Trista Patterson

    2013-01-01

    This report summarizes practical energy management strategies that could help communities in southeast Alaska move closer to energy independence while utilizing local resources more effectively. Our analysis focuses primarily on Sitka, Alaska, yet could be relevant to other communities having similar energy structures that rely primarily on hydroelectric power...

  5. Sensor Measurement Strategies for Monitoring Offshore Wind and Wave Energy Devices

    NASA Astrophysics Data System (ADS)

    O'Donnell, Deirdre; Srbinovsky, Bruno; Murphy, Jimmy; Popovici, Emanuel; Pakrashi, Vikram

    2015-07-01

    While the potential of offshore wind and wave energy devices is well established and accepted, operations and maintenance issues are still not very well researched or understood. In this regard, scaled model testing has gained popularity over time for such devices at various technological readiness levels. The dynamic response of these devices are typically measured by different instruments during such scaled tests but agreed sensor choice, measurement and placement guidelines are still not in place. This paper compared the dynamic responses of some of these sensors from a scaled ocean wave testing to highlight the importance of sensor measurement strategies. The possibility of using multiple, cheaper sensors of seemingly inferior performance as opposed to the deployment of a small number of expensive and accurate sensors are also explored. An energy aware adaptive sampling theory is applied to highlight the possibility of more efficient computing when large volumes of data are available from the tested structures. Efficient sensor measurement strategies are expected to have a positive impact on the development of an device at different technological readiness levels while it is expected to be helpful in reducing operation and maintenance costs if such an approach is considered for the devices when they are in operation.

  6. Recent Development of Plasmonic Resonance-Based Photocatalysis and Photovoltaics for Solar Utilization.

    PubMed

    Fan, Wenguang; Leung, Michael K H

    2016-02-02

    Increasing utilization of solar energy is an effective strategy to tackle our energy and energy-related environmental issues. Both solar photocatalysis (PC) and solar photovoltaics (PV) have high potential to develop technologies of many practical applications. Substantial research efforts are devoted to enhancing visible light activation of the photoelectrocatalytic reactions by various modifications of nanostructured semiconductors. This review paper emphasizes the recent advancement in material modifications by means of the promising localized surface plasmonic resonance (LSPR) mechanisms. The principles of LSPR and its effects on the photonic efficiency of PV and PC are discussed here. Many research findings reveal the promise of Au and Ag plasmonic nanoparticles (NPs). Continual investigation for increasing the stability of the plasmonic NPs will be fruitful.

  7. A “fullerene-carbon nanotube” structure with tunable mechanical properties

    NASA Astrophysics Data System (ADS)

    Ji, W. M.; Zhang, L. W.; Liew, K. M.

    2018-03-01

    Carbon-based nanostructures have drawn tremendous research interest and become promising building blocks for the new generation of smart sensors and devices. Utilizing a bottom-up strategy, the chemical interconnecting sp 3 covalent bond between carbon building blocks is an efficient way to enhance its Young's modulus and ductility. The formation of sp 3 covalent bond, however, inevitably degrades its ultimate tensile strength caused by stress concentration at the junction. By performing a molecular dynamics simulation of tensile deformation for a fullerene-carbon nanotube (FCNT) structure, we propose a tunable strategy in which fullerenes with various angle energy absorption capacities are utilized as building blocks to tune their ductile behavior, while still maintaining a good ultimate tensile strength of the carbon building blocks. A higher ultimate tensile strength is revealed with the reduction of stress concentration at the junction. A brittle-to-ductile transition during the tensile deformation is detected through the structural modification. The development of ductile behavior is attributed to the improvement of energy propagation ability during the fracture initiation, in which the released energy from bonds fracture is mitigated properly, leading to the further development of mechanical properties.

  8. Fat intake and injury in female runners.

    PubMed

    Gerlach, Kristen E; Burton, Harold W; Dorn, Joan M; Leddy, John J; Horvath, Peter J

    2008-01-03

    Our purpose was to determine the relationship between energy intake, energy availability, dietary fat and lower extremity injury in adult female runners. We hypothesized that runners who develop overuse running-related injuries have lower energy intakes, lower energy availability and lower fat intake compared to non-injured runners. Eighty-six female subjects, running a minimum of 20 miles/week, completed a food frequency questionnaire and informed us about injury incidence over the next year. Injured runners had significantly lower intakes of total fat (63 +/- 20 vs. 80 +/- 50 g/d) and percentage of kilocalories from fat (27 +/- 5 vs. 30 +/- 8 %) compared with non-injured runners. A logistic regression analysis found that fat intake was the best dietary predictor, correctly identifying 64% of future injuries. Lower energy intake and lower energy availability approached, but did not reach, a significant association with overuse injury in this study. Fat intake is likely associated with injury risk in female runners. By documenting these associations, better strategies can be developed to reduce running injuries in women.

  9. Imaging energy landscapes with concentrated diffusing colloidal probes

    NASA Astrophysics Data System (ADS)

    Bahukudumbi, Pradipkumar; Bevan, Michael A.

    2007-06-01

    The ability to locally interrogate interactions between particles and energetically patterned surfaces provides essential information to design, control, and optimize template directed self-assembly processes. Although numerous techniques are capable of characterizing local physicochemical surface properties, no current method resolves interactions between colloids and patterned surfaces on the order of the thermal energy kT, which is the inherent energy scale of equilibrium self-assembly processes. Here, the authors describe video microscopy measurements and an inverse Monte Carlo analysis of diffusing colloidal probes as a means to image three dimensional free energy and potential energy landscapes due to physically patterned surfaces. In addition, they also develop a consistent analysis of self-diffusion in inhomogeneous fluids of concentrated diffusing probes on energy landscapes, which is important to the temporal imaging process and to self-assembly kinetics. Extension of the concepts developed in this work suggests a general strategy to image multidimensional and multiscale physical, chemical, and biological surfaces using a variety of diffusing probes (i.e., molecules, macromolecules, nanoparticles, and colloids).

  10. Biomass for energy in the European Union - a review of bioenergy resource assessments

    PubMed Central

    2012-01-01

    This paper reviews recent literature on bioenergy potentials in conjunction with available biomass conversion technologies. The geographical scope is the European Union, which has set a course for long term development of its energy supply from the current dependence on fossil resources to a dominance of renewable resources. A cornerstone in European energy policies and strategies is biomass and bioenergy. The annual demand for biomass for energy is estimated to increase from the current level of 5.7 EJ to 10.0 EJ in 2020. Assessments of bioenergy potentials vary substantially due to methodological inconsistency and assumptions applied by individual authors. Forest biomass, agricultural residues and energy crops constitute the three major sources of biomass for energy, with the latter probably developing into the most important source over the 21st century. Land use and the changes thereof is a key issue in sustainable bioenergy production as land availability is an ultimately limiting factor. PMID:22546368

  11. Strategy and design of Innovation Policy Road Mapping for a waste biorefinery.

    PubMed

    Rama Mohan, S

    2016-09-01

    Looming energy crisis, climate change concerns coupled with decreasing fossil fuel resources has garnered significant global attention toward development of alternative, renewable, carbon-neutral and eco-friendly fuels to fulfil burgeoning energy demands. Waste utilization and its management are being pursued with renewed interest due to the gamut of biobased products it can offer apart from providing enough energy to meet a major fraction of the world's energy demand. Biorefining is the sustainable processing of biomass into a spectrum of marketable products and energy. Integrating all components of waste treatment culminating into biobased products and energy recovery in a single integrated waste biorefinery is self sufficient, highly sustainable and is very beneficial. Designing systematic innovation policies are essential for development and commercialization of new technologies in this important futuristic research area. This communication explores Innovation Policy Road Mapping (IPRM) methodology available in the literature and applies it to design integrated waste biorefinery. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Energy scaling and reduction in controlling complex networks

    PubMed Central

    Chen, Yu-Zhong; Wang, Le-Zhi; Wang, Wen-Xu; Lai, Ying-Cheng

    2016-01-01

    Recent works revealed that the energy required to control a complex network depends on the number of driving signals and the energy distribution follows an algebraic scaling law. If one implements control using a small number of drivers, e.g. as determined by the structural controllability theory, there is a high probability that the energy will diverge. We develop a physical theory to explain the scaling behaviour through identification of the fundamental structural elements, the longest control chains (LCCs), that dominate the control energy. Based on the LCCs, we articulate a strategy to drastically reduce the control energy (e.g. in a large number of real-world networks). Owing to their structural nature, the LCCs may shed light on energy issues associated with control of nonlinear dynamical networks. PMID:27152220

  13. Strategy and gaps for modeling, simulation, and control of hybrid systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rabiti, Cristian; Garcia, Humberto E.; Hovsapian, Rob

    2015-04-01

    The purpose of this report is to establish a strategy for modeling and simulation of candidate hybrid energy systems. Modeling and simulation is necessary to design, evaluate, and optimize the system technical and economic performance. Accordingly, this report first establishes the simulation requirements to analysis candidate hybrid systems. Simulation fidelity levels are established based on the temporal scale, real and synthetic data availability or needs, solution accuracy, and output parameters needed to evaluate case-specific figures of merit. Accordingly, the associated computational and co-simulation resources needed are established; including physical models when needed, code assembly and integrated solutions platforms, mathematical solvers,more » and data processing. This report first attempts to describe the figures of merit, systems requirements, and constraints that are necessary and sufficient to characterize the grid and hybrid systems behavior and market interactions. Loss of Load Probability (LOLP) and effective cost of Effective Cost of Energy (ECE), as opposed to the standard Levelized Cost of Electricty (LCOE), are introduced as technical and economical indices for integrated energy system evaluations. Financial assessment methods are subsequently introduced for evaluation of non-traditional, hybrid energy systems. Algorithms for coupled and iterative evaluation of the technical and economic performance are subsequently discussed. This report further defines modeling objectives, computational tools, solution approaches, and real-time data collection and processing (in some cases using real test units) that will be required to model, co-simulate, and optimize; (a) an energy system components (e.g., power generation unit, chemical process, electricity management unit), (b) system domains (e.g., thermal, electrical or chemical energy generation, conversion, and transport), and (c) systems control modules. Co-simulation of complex, tightly coupled, dynamic energy systems requires multiple simulation tools, potentially developed in several programming languages and resolved on separate time scales. Whereas further investigation and development of hybrid concepts will provide a more complete understanding of the joint computational and physical modeling needs, this report highlights areas in which co-simulation capabilities are warranted. The current development status, quality assurance, availability and maintainability of simulation tools that are currently available for hybrid systems modeling is presented. Existing gaps in the modeling and simulation toolsets and development needs are subsequently discussed. This effort will feed into a broader Roadmap activity for designing, developing, and demonstrating hybrid energy systems.« less

  14. Economic optimization of operations for hybrid energy systems under variable markets

    DOE PAGES

    Chen, Jen; Garcia, Humberto E.

    2016-05-21

    We prosed a hybrid energy systems (HES) which is an important element to enable increasing penetration of clean energy. Our paper investigates the operations flexibility of HES, and develops a methodology for operations optimization for maximizing economic value based on predicted renewable generation and market information. A multi-environment computational platform for performing such operations optimization is also developed. In order to compensate for prediction error, a control strategy is accordingly designed to operate a standby energy storage element (ESE) to avoid energy imbalance within HES. The proposed operations optimizer allows systematic control of energy conversion for maximal economic value. Simulationmore » results of two specific HES configurations are included to illustrate the proposed methodology and computational capability. These results demonstrate the economic viability of HES under proposed operations optimizer, suggesting the diversion of energy for alternative energy output while participating in the ancillary service market. Economic advantages of such operations optimizer and associated flexible operations are illustrated by comparing the economic performance of flexible operations against that of constant operations. Sensitivity analysis with respect to market variability and prediction error, are also performed.« less

  15. Energy availabilities for state and local development: projected energy patterns for 1980 and 1985

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vogt, D. P.; Rice, P. L.; Pai, V. P.

    1978-06-01

    This report presents projections of the supply, demand, and net imports of seven fuel types and four final consuming sectors for BEAs, states, census regions, and the nation for 1980 and 1985. The data are formatted to present regional energy availability from primary extraction, as well as from regional transformation processes. As constructed, the tables depict energy balances between availability and use for each of the specific fuels. The objective of the program is to provide a consistent base of historic and projected energy information within a standard format. Such a framework should aid regional policymakers in their consideration ofmore » regional growth issues that may be influenced by the regional energy system. This basic data must be supplemented by region-specific information which only the local policy analyst can bring to bear in his assessment of the energy conditions which characterize each region. The energy data, coupled with specific knowledge of projected economic growth and employment patterns, can assist EDA in developing its grant-in-aid investment strategy.« less

  16. Economic optimization of operations for hybrid energy systems under variable markets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Jen; Garcia, Humberto E.

    We prosed a hybrid energy systems (HES) which is an important element to enable increasing penetration of clean energy. Our paper investigates the operations flexibility of HES, and develops a methodology for operations optimization for maximizing economic value based on predicted renewable generation and market information. A multi-environment computational platform for performing such operations optimization is also developed. In order to compensate for prediction error, a control strategy is accordingly designed to operate a standby energy storage element (ESE) to avoid energy imbalance within HES. The proposed operations optimizer allows systematic control of energy conversion for maximal economic value. Simulationmore » results of two specific HES configurations are included to illustrate the proposed methodology and computational capability. These results demonstrate the economic viability of HES under proposed operations optimizer, suggesting the diversion of energy for alternative energy output while participating in the ancillary service market. Economic advantages of such operations optimizer and associated flexible operations are illustrated by comparing the economic performance of flexible operations against that of constant operations. Sensitivity analysis with respect to market variability and prediction error, are also performed.« less

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Z.; Liu, C.; Botterud, A.

    Renewable energy resources have been rapidly integrated into power systems in many parts of the world, contributing to a cleaner and more sustainable supply of electricity. Wind and solar resources also introduce new challenges for system operations and planning in terms of economics and reliability because of their variability and uncertainty. Operational strategies based on stochastic optimization have been developed recently to address these challenges. In general terms, these stochastic strategies either embed uncertainties into the scheduling formulations (e.g., the unit commitment [UC] problem) in probabilistic forms or develop more appropriate operating reserve strategies to take advantage of advanced forecastingmore » techniques. Other approaches to address uncertainty are also proposed, where operational feasibility is ensured within an uncertainty set of forecasting intervals. In this report, a comprehensive review is conducted to present the state of the art through Spring 2015 in the area of stochastic methods applied to power system operations with high penetration of renewable energy. Chapters 1 and 2 give a brief introduction and overview of power system and electricity market operations, as well as the impact of renewable energy and how this impact is typically considered in modeling tools. Chapter 3 reviews relevant literature on operating reserves and specifically probabilistic methods to estimate the need for system reserve requirements. Chapter 4 looks at stochastic programming formulations of the UC and economic dispatch (ED) problems, highlighting benefits reported in the literature as well as recent industry developments. Chapter 5 briefly introduces alternative formulations of UC under uncertainty, such as robust, chance-constrained, and interval programming. Finally, in Chapter 6, we conclude with the main observations from our review and important directions for future work.« less

  18. A Lyapunov based approach to energy maximization in renewable energy technologies

    NASA Astrophysics Data System (ADS)

    Iyasere, Erhun

    This dissertation describes the design and implementation of Lyapunov-based control strategies for the maximization of the power captured by renewable energy harnessing technologies such as (i) a variable speed, variable pitch wind turbine, (ii) a variable speed wind turbine coupled to a doubly fed induction generator, and (iii) a solar power generating system charging a constant voltage battery. First, a torque control strategy is presented to maximize wind energy captured in variable speed, variable pitch wind turbines at low to medium wind speeds. The proposed strategy applies control torque to the wind turbine pitch and rotor subsystems to simultaneously control the blade pitch and tip speed ratio, via the rotor angular speed, to an optimum point at which the capture efficiency is maximum. The control method allows for aerodynamic rotor power maximization without exact knowledge of the wind turbine model. A series of numerical results show that the wind turbine can be controlled to achieve maximum energy capture. Next, a control strategy is proposed to maximize the wind energy captured in a variable speed wind turbine, with an internal induction generator, at low to medium wind speeds. The proposed strategy controls the tip speed ratio, via the rotor angular speed, to an optimum point at which the efficiency constant (or power coefficient) is maximal for a particular blade pitch angle and wind speed by using the generator rotor voltage as a control input. This control method allows for aerodynamic rotor power maximization without exact wind turbine model knowledge. Representative numerical results demonstrate that the wind turbine can be controlled to achieve near maximum energy capture. Finally, a power system consisting of a photovoltaic (PV) array panel, dc-to-dc switching converter, charging a battery is considered wherein the environmental conditions are time-varying. A backstepping PWM controller is developed to maximize the power of the solar generating system. The controller tracks a desired array voltage, designed online using an incremental conductance extremum-seeking algorithm, by varying the duty cycle of the switching converter. The stability of the control algorithm is demonstrated by means of Lyapunov analysis. Representative numerical results demonstrate that the grid power system can be controlled to track the maximum power point of the photovoltaic array panel in varying atmospheric conditions. Additionally, the performance of the proposed strategy is compared to the typical maximum power point tracking (MPPT) method of perturb and observe (P&O), where the converter dynamics are ignored, and is shown to yield better results.

  19. Effects of acid deposition on terrestrial ecosystems and their rehabilitation strategies in China.

    PubMed

    Feng, Zong-wei; Miao, Hong; Zhang, Fu-zhu; Huang, Yi-zong

    2002-04-01

    South China has become the third largest region associated with acid deposition following Europe and North America, the area subject to damage by acid deposition increased from 1.75 million km2 in 1985 to 2.8 million km2 in 1993. Acid deposition has caused serious damage to ecosystem. Combined pollution of acid rain and SO2 showed the obvious multiple effects on crops. Vegetable was more sensitive to acid deposition than foodstuff crops. Annual economic loss of crops due to acid deposition damage in eleven provinces of south China was 4.26 billion RMB Yuan. Acid deposition caused serious damage to forest. Annual economic loss of wood volume was about 1.8 billion RMB Yuan and forest ecological benefit loss 16.2 billion in eleven provinces of south China. Acid deposition in south China was typical "sulfuric acid type". According to the thoughts of sustainable development, some strategies were brought forward as follows: (1) enhancing environmental management, specifying acid-controlling region, controlling and abating the total emission amount of SO2; (2) selecting practical energy technologies of clean coal, for example, cleansing and selecting coal, sulfur-fixed-type industrial briqutting, abating sulfur from waste gas and so on; (3) developing other energy sources to replace coal, including water electricity, atomic energy and the new energy such as solar energy, wind energy and so on; (4) in acid deposition region of south China, selecting acid-resistant type of crop and tree to decrease agricultural losses, planting more green fertilizer crops, using organic fertilizers and liming, in order to improve buffer capacities of soil.

  20. Mode shift strategies in intercity transportation and their effect on energy consumption

    NASA Technical Reports Server (NTRS)

    Sokolsky, S.

    1975-01-01

    Policies are examined which, if implemented, could lead to significant energy savings in intercity travel in the northeast corridor arena, without restricting the traveler's freedom of mode choice. The effects on arena energy consumption of introducing new, more energy-efficient aircraft are investigated; and several strategies unrelated to the implementation of new aircraft are introduced to yield reductions in overall intercity energy use. In both parts of this analysis, resulting changes in patronage (modal share) and energy use are demonstrated, leading to new insights into the effectiveness of different potential policies for achieving energy conservation. Some observations on induced demand trends that could be associated with certain strategies and the resultant potential effect on energy conservation are provided.

  1. Selection for Improved Energy Use Efficiency and Drought Tolerance in Canola Results in Distinct Transcriptome and Epigenome Changes.

    PubMed

    Verkest, Aurine; Byzova, Marina; Martens, Cindy; Willems, Patrick; Verwulgen, Tom; Slabbinck, Bram; Rombaut, Debbie; Van de Velde, Jan; Vandepoele, Klaas; Standaert, Evi; Peeters, Marrit; Van Lijsebettens, Mieke; Van Breusegem, Frank; De Block, Marc

    2015-08-01

    To increase both the yield potential and stability of crops, integrated breeding strategies are used that have mostly a direct genetic basis, but the utility of epigenetics to improve complex traits is unclear. A better understanding of the status of the epigenome and its contribution to agronomic performance would help in developing approaches to incorporate the epigenetic component of complex traits into breeding programs. Starting from isogenic canola (Brassica napus) lines, epilines were generated by selecting, repeatedly for three generations, for increased energy use efficiency and drought tolerance. These epilines had an enhanced energy use efficiency, drought tolerance, and nitrogen use efficiency. Transcriptome analysis of the epilines and a line selected for its energy use efficiency solely revealed common differentially expressed genes related to the onset of stress tolerance-regulating signaling events. Genes related to responses to salt, osmotic, abscisic acid, and drought treatments were specifically differentially expressed in the drought-tolerant epilines. The status of the epigenome, scored as differential trimethylation of lysine-4 of histone 3, further supported the phenotype by targeting drought-responsive genes and facilitating the transcription of the differentially expressed genes. From these results, we conclude that the canola epigenome can be shaped by selection to increase energy use efficiency and stress tolerance. Hence, these findings warrant the further development of strategies to incorporate epigenetics into breeding. © 2015 American Society of Plant Biologists. All Rights Reserved.

  2. An overview of the ENEA activities in the field of coupled codes NPP simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parisi, C.; Negrenti, E.; Sepielli, M.

    2012-07-01

    In the framework of the nuclear research activities in the fields of safety, training and education, ENEA (the Italian National Agency for New Technologies, Energy and the Sustainable Development) is in charge of defining and pursuing all the necessary steps for the development of a NPP engineering simulator at the 'Casaccia' Research Center near Rome. A summary of the activities in the field of the nuclear power plants simulation by coupled codes is here presented with the long term strategy for the engineering simulator development. Specifically, results from the participation in international benchmarking activities like the OECD/NEA 'Kalinin-3' benchmark andmore » the 'AER-DYN-002' benchmark, together with simulations of relevant events like the Fukushima accident, are here reported. The ultimate goal of such activities performed using state-of-the-art technology is the re-establishment of top level competencies in the NPP simulation field in order to facilitate the development of Enhanced Engineering Simulators and to upgrade competencies for supporting national energy strategy decisions, the nuclear national safety authority, and the R and D activities on NPP designs. (authors)« less

  3. Renewable Energy Laboratory Development for Biofuels Advanced Combustion Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soloiu, Valentin A.

    2012-03-31

    The research advanced fundamental science and applied engineering for increasing the efficiency of internal combustion engines and meeting emissions regulations with biofuels. The project developed a laboratory with new experiments and allowed investigation of new fuels and their combustion and emissions. This project supports a sustainable domestic biofuels and automotive industry creating economic opportunities across the nation, reducing the dependence on foreign oil, and enhancing U.S. energy security. The one year period of research developed fundamental knowledge and applied technology in advanced combustion, emissions and biofuels formulation to increase vehicle's efficiency. Biofuels combustion was investigated in a Compression Ignition Directmore » Injection (DI) to develop idling strategies with biofuels and an Indirect Diesel Injection (IDI) intended for auxiliary power unit.« less

  4. Modal shifts in short-haul passenger travel and the consequent energy impacts. [Intercity travel under 500 miles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1980-03-01

    A study was performed to evaluate the impacts of strategies to effect modal shifts in short-haul passenger travel (defined herein as intercity travel under 500 miles) from energy-intensive modes to those modes that are less energy-intensive. A series of individual strategies, ranging from incentives to the less energy-intensive modes (bus, rail) to penalties to the more energy-intensive modes (auto, air) was examined to determine energy saved and policy implications relative to strategy implementation. The most effective of the individual strategies were then combined in all permutations, and the analysis was repeated. As part of the analytical process, effects of factorsmore » other than energy (user cost and time, emissions, government subsidy, and travel fatailities) were examined in a benefit/cost analysis. Finally, energy savings, benefit/cost impacts, implementation considerations, and policy implications were evaluated to arrive at conclusions as to the effectiveness of the more-influential strategies and to the overall effectiveness of induced modal shifts. The principal conclusion of the study is that the maximum 1980 energy saving that might be realized by modal shifts, discounting the concurrent effects of demand suppression and improvement of mode efficiency, is approximately 83 x 10/sup 12/ Btu (46,500 bbl gasoline per day), 3.8% of the total projected 1980 energy consumption in the short-haul transportation sector and 0.23% of the total US petroleum use. It was also concluded that strategies to achieve these small savings by modal shifts would result in significant economic, social, and business disruptions.« less

  5. Nantucket, Ma. Climate Protection Action Plan: A Public Outreach Strategy

    NASA Astrophysics Data System (ADS)

    Petrik, C.; Stephenson, A.; Petsch, S.

    2009-12-01

    As communities and municipalities gain a better understanding of climate change, they are exploring the ways in which to work towards adaptation and mitigation. One strategy that the Island of Nantucket, Massachusetts turned toward is the drafting of a Climate Protection Action Plan (CPAP). The CPAP was developed during the summer of 2009 to meet three goals: (1) assist the Town of Nantucket in creating a framework to help them reduce CO2 emissions; (2) educate the municipality and community in techniques that promote energy efficiency and sustainability on the island; and (3) document past, present and future approaches adopted by the Town towards emissions reduction and energy sustainability. In particular, this project focused on using local strengths and natural resources identified by island stakeholders that may help the island to mitigate carbon emissions and adapt to climate change.. Drafting the CPAP provided community members and politicians with an opportunity to become better educated in the science of climate change and to learn how climate change will affect their community. On the island of Nantucket, leaders in the religious, civic, and political communities were brought into a conversation about how each group could contribute to reducing greenhouse gas emissions. A geosciences graduate student was brought into the CPAP team as a climate fellow to facilitate this conversation. This provided the foundation for stakeholder recommendations incorporated into the CPAP. This capacity-building model served as an effective way to create an informal learning environment about climate change that allowed members of the island community to directly participate in developing their locally appropriate climate protection strategy. The draft CPAP developed through this study and presented to the Town of Nantucket comprises assessments and recommendations in public research and education; building and energy efficiency; transportation; renewable energy; and carbon offsets. Through the drafting of these types of Plans, geoscientists have the unique opportunity to offer a scientific foundation to communities that are looking to better understand climate change, its projected affects, and how they can best develop plans for mitigation and adaptation.

  6. Challenges and Strength of Current Industrial Energy Efficiency Management Practices in Steam Industries

    NASA Astrophysics Data System (ADS)

    Nkosi, S. B.; Pretorius, J. H. C.

    2017-07-01

    The aim of this study is to achieve greater output by examining the existing way of coordinating the determined attempts of Steam Industries in South Africa to successfully reach a sustainable industrial development by using energy source adequately in a more competent way. Furthermore into the study we look at obstacles that prevent and those that leads to maximum utilization of energy management measures and also highlights the effects of implementing cheap available energy source in South Africa. The investigation and analysis have shown that energy is not well managed in Steam Industries and that the use of energy is minimized and not fully utilized due to poor management and lack of knowledge. Another detection was that lack of government structured and strategic measures of implementing and motivating the use of energy effectively. The effective and rational use of available power by Steam Industries in South Africa is a key player in developing a sustainable industrial development. The use of energy efficiency management strategies has contributed an increase in economic and improve environmentally friendly in the industrial sector. The slow pace adoption of energy saving and cost effective management programmes are negatively impacting on the benefits to Steam Industries in South Africa. In conclusion the study finds that the economy can be boosted by implementing energy efficiency management programmes and environmentally friendly. These will also stabilize the negative impact of energy raising prices.

  7. Evaluation of Cities in the Context of Energy Efficient Urban Planning Approach

    NASA Astrophysics Data System (ADS)

    Handan Yücel Yıldırım, H.; Burcu Gültekin, Arzuhan; Tanrıvermiş, Harun

    2017-10-01

    Due to the increase in energy need with urbanization as a result of industrialization and rapid population growth, preservation of natural resources has become impossible. As the energy generated particularly from non-renewable natural resources that are in danger of depletion such as coal, natural gas, petroleum is limited, and as environmental issues caused by energy resources increase, means of safe and continuous access to energy are searched in the world. Owing to the limited energy resources and energy dependence on foreign sources in the world, particularly in European Union countries, efforts of increasing the share of renewable energy sources in energy consumption increased in all industries, including urban planning as well. Concordantly, it is necessary to develop policies and approaches that enable utilization of domestic resources complying with the country’s conditions, and monitor developments in energy. Such policies and approaches, which must be implemented in urban planning as well, have great importance in terms of not deteriorating habitable environments of future generations while utilizing present-day energy resources, prevalence of utilization of renewable energy sources, and utilization of energy effectively. For that purpose, this paper puts forward a conceptual framework covering the principles, strategies, and methods on energy efficient urban planning approach, and discusses the energy efficient urban area examples within the scope of the suggested framework.

  8. Through the Past Decade: How Advanced Energy Design Guides have influenced the Design Industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Bing; Athalye, Rahul A.

    Advanced Energy Design Guides (AEDGs) were originally developed intended to provide a simple approach to building professionals seeking energy efficient building designs better than ASHRAE Standard 90.1. Since its first book was released in 2004, the AEDG series provided inspiration for the design industry and were seen by designers as a starting point for buildings that wished to go beyond minimum codes and standards. In addition, U.S. Department of Energy’s successful Commercial Building Partnerships (CBP) program leveraged many of the recommendations from the AEDGs to achieve 50% energy savings over ASHRAE Standard 90.1-2004 for prototypical designs of large commercial entitiesmore » in the retail, banking and lodging sectors. Low-energy technologies and strategies developed during the CBP process have been applied by commercial partners throughout their national portfolio of buildings. Later, the AEDGs served as the perfect platform for both Standard 90.1 and ASHRAE’s high performance buildings standard, Standard 189.1. What was high performance a few years ago, however, has become minimum code today. Indeed, most of the prescriptive envelope component requirements in ASHRAE Standard 90.1-2013 are values recommended in the 50% AEDGs several years ago. Similarly, AEDG strategies and recommendations have penetrated the lighting and HVAC sections of both Standard 189.1 and Standard 90.1. Finally, as we look to the future of codes and standards, the AEDGs are serving as a blueprint for how minimum code requirements could be expressed. By customizing codes to specific building types, design strategies tailored for individual buildings could be prescribed as minimum code, just like in the AEDGs. This paper describes the impact that AEDGs have had over the last decade on the design industry and how they continue to influence the future of codes and Standards. From design professionals to code officials, everyone in the building industry has been affected by the AEDGs.« less

  9. [Development of green hospitals home and abroad].

    PubMed

    Yang, Yiju; Zeng, Na; Shen, Minxue; Sun, Zhenqiu

    2013-09-01

    Green hospital construction is a new challenge for medical industry after global sustainable development strategy was put forward. The core connotation of green hospital includes green building, green healthcare, patient safety, and doctor-patient harmony. Many countries have established green building evaluation system to deal with energy crisis. Leadership in Energy and Environmental Design (LEED), Green Guide for Health Care (GGHC) in the U.S., and Evaluation System for Green Hospital Building (CSUS/GBC 2-2011) in China have guiding significance for the development of green hospitals in China. The evaluation system of green hospitals home and abroad still focuses on green building, and establishment of suitable synthesis evaluation system of green hospitals in China needs further research.

  10. Electrolytes for high voltage electrochemical double layer capacitors: A perspective article

    NASA Astrophysics Data System (ADS)

    Balducci, A.

    2016-09-01

    The development of innovative electrolyte components is nowadays considered one of the most important aspects for the realization of high energy electrochemical double capacitors (EDLCs). Consequently, in the last years many investigations have been dedicated towards new solvents, new salts and ionic liquids able to replace the current electrolytes. This perspective article aims to supply a critical analysis about the results obtained so far on the development of new electrolytes for high energy EDLCs and to outline the advantages as well as the limits related to the use of these innovative components. Furthermore, this article aims to give indications about the strategies could be used in the future for a further development of advanced electrolytes.

  11. Bridging Climate Change Resilience and Mitigation in the Electricity Sector Through Renewable Energy and Energy Efficiency: Emerging Climate Change and Development Topics for Energy Sector Transformation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cox, Sarah L; Hotchkiss, Elizabeth L; Bilello, Daniel E

    Reliable, safe, and secure electricity is essential for economic and social development and a necessary input for many sectors of the economy. However, electricity generation and associated processes make up a significant portion of global greenhouse gas (GHG) emissions contributing to climate change. Furthermore, electricity systems are vulnerable to climate change impacts - both short-term events and changes over the longer term. This vulnerability presents both near-term and chronic challenges in providing reliable, affordable, equitable, and sustainable energy services. Within this context, developing countries face a number of challenges in the energy sector, including the need to reliably meet growingmore » electricity demand, lessen dependence on imported fuels, expand energy access, and improve stressed infrastructure for fuel supply and electricity transmission. Energy efficiency (EE) and renewable energy (RE) technical solutions described in this paper can bridge action across climate change mitigation and resilience through reducing GHG emissions and supporting electric power sector adaptation to increasing climate risk. Integrated planning approaches, also highlighted in this paper, play an integral role in bringing together mitigation and resilience action under broader frameworks. Through supporting EE and RE deployment and integrated planning approaches, unique to specific national and local circumstances, countries can design and implement policies, strategies, and sectoral plans that unite development priorities, climate change mitigation, and resilience.« less

  12. Strategic research on the sustainable development cost of manufacturing industry under the background of carbon allowance and trade policy

    NASA Astrophysics Data System (ADS)

    Ma, Zhongmin; Cheng, Mengting; Wang, Mei

    2017-08-01

    The important subjects of energy consumption and carbon emission are manufacturing enterprises, with the deepening of international cooperation, and the implementation of carbon limit and trade policy, costs of manufacturing industry will rise sharply. How can the manufacturing industry survive in this reform, and it has to be a problem that the managers of the manufacturing industry need to solve. This paper analyses sustainable development cost connotation and value basis on the basis of sustainable development concept, discusses the influence of carbon allowance and trade policy for cost strategy of manufacturing industry, thinks that manufacturing industry should highlight social responsibility and realize maximization of social value, implement cost strategy the sustainable development, and pointed out the implementation way.

  13. Green campus management based on conservation program in Universitas Negeri Semarang

    NASA Astrophysics Data System (ADS)

    Prihanto, Teguh

    2018-03-01

    Universitas Negeri Semarang (UNNES) has a great commitment in the development of higher education programs in line with its vision as a conservation - minded and internationally reputable university. Implementation of conservation programs with respect to the rules or conservation aspects of sustainable use, preservation, provisioning, protection, restoration and conservation of nature. In order to support the implementation of UNNES conservation program more focused, development strategies and development programs for each conservation scope are covered: (1) Biodiversity management; (2) Internal transportation management; (3) energy management; (4) Green building management; (5) Waste and water management; (6) Cultural conservation management. All related to conservation development strategies and programs are managed in the form of green campus management aimed at realizing UNNES as a green campus, characterized and reputable at the regional and global level.

  14. Forecasting Strategies for Predicting Peak Electric Load Days

    NASA Astrophysics Data System (ADS)

    Saxena, Harshit

    Academic institutions spend thousands of dollars every month on their electric power consumption. Some of these institutions follow a demand charges pricing structure; here the amount a customer pays to the utility is decided based on the total energy consumed during the month, with an additional charge based on the highest average power load required by the customer over a moving window of time as decided by the utility. Therefore, it is crucial for these institutions to minimize the time periods where a high amount of electric load is demanded over a short duration of time. In order to reduce the peak loads and have more uniform energy consumption, it is imperative to predict when these peaks occur, so that appropriate mitigation strategies can be developed. The research work presented in this thesis has been conducted for Rochester Institute of Technology (RIT), where the demand charges are decided based on a 15 minute sliding window panned over the entire month. This case study makes use of different statistical and machine learning algorithms to develop a forecasting strategy for predicting the peak electric load days of the month. The proposed strategy was tested for a whole year starting May 2015 to April 2016 during which a total of 57 peak days were observed. The model predicted a total of 74 peak days during this period, 40 of these cases were true positives, hence achieving an accuracy level of 70 percent. The results obtained with the proposed forecasting strategy are promising and demonstrate an annual savings potential worth about $80,000 for a single submeter of RIT.

  15. Drying based on temperature-detection-assisted control in microwave-assisted pulse-spouted vacuum drying.

    PubMed

    Cao, Xiaohuang; Zhang, Min; Qian, He; Mujumdar, Arun S

    2017-06-01

    An online temperature-detection-assisted control system of microwave-assisted pulse-spouted vacuum drying was newly developed. By using this system, temperature control can be automatically and continuously adjusted based on the detection of drying temperature and preset temperature. Various strategies for constant temperature control, linear temperature control and three-step temperature control were applied to drying carrot cubes. Drying kinetics and the quality of various temperature-controlled strategies online are evaluated for the new drying technology as well as its suitability as an alternative drying method. Drying time in 70 °C mode 1 had the shortest drying time and lowest energy consumption in all modes. A suitable colour, highest re-hydration ratio and fracture-hardness, and longest drying time occurred in 30-40-50 °C mode 3. The number of hot spots was reduced in 40-50-60 °C mode 3. Acceptable carrot snacks were obtained in 50-60-70 °C mode 3 and 70 °C mode 2. All temperature curves showed that the actual temperatures followed the preset temperatures appropriately. With this system, a linear temperature-controlled strategy and a three-step temperature-controlled strategy can improve product quality and heating non-uniformity compared to constant temperature control, but need greater energy consumption and longer drying time. A temperature-detection-assisted control system was developed for providing various drying strategies as a suitable alternative in making a snack product. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  16. Cities and “budget-based” management of the energy-water-climate nexus: Case studies in transportation policy, infrastructure systems, and urban utility risk management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sperling, Joshua B.; Ramaswami, Anu

    This article reviews city case studies to inform a framework for developing urban infrastructure design standards and policy instruments that together aim to pursue energy efficiency and greenhouse gas mitigation through city carbon budgets and water use efficiency and climate risk adaptation through city water budgets. Here, this article also proposes combining carbon and water budgeting at the city-scale for achieving successful coupled city carbon and water budget (CCCWB) programs. Under a CCCWB program, key actors including local governments, infrastructure designers/operators, and households would be assigned a GHG emissions and water 'budget' and be required by state or federal levelsmore » to keep within this budget through the use of flexibility mechanisms, incentive programs, and sanctions. Multiple incentives and cross-scale governance arrangements would be tied to energy-water systems integration, resource-efficient transportation and infrastructure development, and effective monitoring and management of energy use, emissions, climate risks to, and security of energy-water-transport-food and other critical systems. As a first step to promote strategies for CCCWB development, we systematically review approaches of and shortcomings to existing budget-based programs in the UK and US, and suggest improvements in three areas: measurement, modeling effectiveness of interventions for staying within a budget, and governance. To date, the majority of climate action or sustainability plans by cities, while mentioning climate impacts as a premise for the plan, do not address these impacts in the plan. They focus primarily on GHG mitigation while ignoring resource depletion challenges and energy-climate-water linkages, whereby water supplies can begin to limit energy production and energy shifts to mitigate climate change can limit water availability. Coupled carbon-water budget plans, programs, and policies - described in this study- may address these concerns as well as the emerging trends that will exacerbate these problems - e.g., including population growth, climatic changes, and emerging policy choices that are not coordinated. Cities and 'Budget-Based' Management of the Energy-Water-Climate Nexus: Case Studies to Inform Strategy for Integrated Performance- and Incentive-Based Design and Policy Instruments.« less

  17. Cities and “budget-based” management of the energy-water-climate nexus: Case studies in transportation policy, infrastructure systems, and urban utility risk management

    DOE PAGES

    Sperling, Joshua B.; Ramaswami, Anu

    2017-11-03

    This article reviews city case studies to inform a framework for developing urban infrastructure design standards and policy instruments that together aim to pursue energy efficiency and greenhouse gas mitigation through city carbon budgets and water use efficiency and climate risk adaptation through city water budgets. Here, this article also proposes combining carbon and water budgeting at the city-scale for achieving successful coupled city carbon and water budget (CCCWB) programs. Under a CCCWB program, key actors including local governments, infrastructure designers/operators, and households would be assigned a GHG emissions and water 'budget' and be required by state or federal levelsmore » to keep within this budget through the use of flexibility mechanisms, incentive programs, and sanctions. Multiple incentives and cross-scale governance arrangements would be tied to energy-water systems integration, resource-efficient transportation and infrastructure development, and effective monitoring and management of energy use, emissions, climate risks to, and security of energy-water-transport-food and other critical systems. As a first step to promote strategies for CCCWB development, we systematically review approaches of and shortcomings to existing budget-based programs in the UK and US, and suggest improvements in three areas: measurement, modeling effectiveness of interventions for staying within a budget, and governance. To date, the majority of climate action or sustainability plans by cities, while mentioning climate impacts as a premise for the plan, do not address these impacts in the plan. They focus primarily on GHG mitigation while ignoring resource depletion challenges and energy-climate-water linkages, whereby water supplies can begin to limit energy production and energy shifts to mitigate climate change can limit water availability. Coupled carbon-water budget plans, programs, and policies - described in this study- may address these concerns as well as the emerging trends that will exacerbate these problems - e.g., including population growth, climatic changes, and emerging policy choices that are not coordinated. Cities and 'Budget-Based' Management of the Energy-Water-Climate Nexus: Case Studies to Inform Strategy for Integrated Performance- and Incentive-Based Design and Policy Instruments.« less

  18. Future Directions for Selected Topics in Physics and Materials Science

    DTIC Science & Technology

    2012-07-12

    referred to as lightides (e.g. borides , nitrides, phosphides) • Materials for energy conversion, energy storage, energy transport and energy production...Distributed nanosystems and sensors • Strategy for multilayered combinatorics • lightides ( borides , nitrides, phosphides, • New applications for...Strategy for multilayered combinatorics Lightides ( borides , nitrides, phosphides) • Energy conversion, .storage and production • Precision control

  19. Mechanism-based testing strategy using in vitro approaches for identification of thyroid hormone disrupting chemicals

    EPA Science Inventory

    The thyroid hormone (TH) system is involved in several important physiological processes, including regulation of energy metabolism, growth and differentiation, development and maintenance of brain function, thermo-regulation, osmo-regulation, and axis of regulation of other endo...

  20. Atomically thick bismuth selenide freestanding single layers achieving enhanced thermoelectric energy harvesting.

    PubMed

    Sun, Yongfu; Cheng, Hao; Gao, Shan; Liu, Qinghua; Sun, Zhihu; Xiao, Chong; Wu, Changzheng; Wei, Shiqiang; Xie, Yi

    2012-12-19

    Thermoelectric materials can realize significant energy savings by generating electricity from untapped waste heat. However, the coupling of the thermoelectric parameters unfortunately limits their efficiency and practical applications. Here, a single-layer-based (SLB) composite fabricated from atomically thick single layers was proposed to optimize the thermoelectric parameters fully. Freestanding five-atom-thick Bi(2)Se(3) single layers were first synthesized via a scalable interaction/exfoliation strategy. As revealed by X-ray absorption fine structure spectroscopy and first-principles calculations, surface distortion gives them excellent structural stability and a much increased density of states, resulting in a 2-fold higher electrical conductivity relative to the bulk material. Also, the surface disorder and numerous interfaces in the Bi(2)Se(3) SLB composite allow for effective phonon scattering and decreased thermal conductivity, while the 2D electron gas and energy filtering effect increase the Seebeck coefficient, resulting in an 8-fold higher figure of merit (ZT) relative to the bulk material. This work develops a facile strategy for synthesizing atomically thick single layers and demonstrates their superior ability to optimize the thermoelectric energy harvesting.

Top