The evaluation model of the enterprise energy efficiency based on DPSR.
Wei, Jin-Yu; Zhao, Xiao-Yu; Sun, Xue-Shan
2017-05-08
The reasonable evaluation of the enterprise energy efficiency is an important work in order to reduce the energy consumption. In this paper, an effective energy efficiency evaluation index system is proposed based on DPSR (Driving forces-Pressure-State-Response) with the consideration of the actual situation of enterprises. This index system which covers multi-dimensional indexes of the enterprise energy efficiency can reveal the complete causal chain which includes the "driver forces" and "pressure" of the enterprise energy efficiency "state" caused by the internal and external environment, and the ultimate enterprise energy-saving "response" measures. Furthermore, the ANP (Analytic Network Process) and cloud model are used to calculate the weight of each index and evaluate the energy efficiency level. The analysis of BL Company verifies the feasibility of this index system and also provides an effective way to improve the energy efficiency at last.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
The report is an overview of electric energy efficiency programs. It takes a concise look at what states are doing to encourage energy efficiency and how it impacts electric utilities. Energy efficiency programs began to be offered by utilities as a response to the energy crises of the 1970s. These regulatory-driven programs peaked in the early-1990s and then tapered off as deregulation took hold. Today, rising electricity prices, environmental concerns, and national security issues have renewed interest in increasing energy efficiency as an alternative to additional supply. In response, new methods for administering, managing, and delivering energy efficiency programs aremore » being implemented. Topics covered in the report include: Analysis of the benefits of energy efficiency and key methods for achieving energy efficiency; evaluation of the business drivers spurring increased energy efficiency; Discussion of the major barriers to expanding energy efficiency programs; evaluation of the economic impacts of energy efficiency; discussion of the history of electric utility energy efficiency efforts; analysis of the impact of energy efficiency on utility profits and methods for protecting profitability; Discussion of non-utility management of energy efficiency programs; evaluation of major methods to spur energy efficiency - systems benefit charges, resource planning, and resource standards; and, analysis of the alternatives for encouraging customer participation in energy efficiency programs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Messenger, Mike; Bharvirkar, Ranjit; Golemboski, Bill
Public and private funding for end-use energy efficiency actions is expected to increase significantly in the United States over the next decade. For example, Barbose et al (2009) estimate that spending on ratepayer-funded energy efficiency programs in the U.S. could increase frommore » $3.1 billion in 2008 to $$7.5 and 12.4 billion by 2020 under their medium and high scenarios. This increase in spending could yield annual electric energy savings ranging from 0.58% - 0.93% of total U.S. retail sales in 2020, up from 0.34% of retail sales in 2008. Interest in and support for energy efficiency has broadened among national and state policymakers. Prominent examples include {approx}$$18 billion in new funding for energy efficiency programs (e.g., State Energy Program, Weatherization, and Energy Efficiency and Conservation Block Grants) in the 2009 American Recovery and Reinvestment Act (ARRA). Increased funding for energy efficiency should result in more benefits as well as more scrutiny of these results. As energy efficiency becomes a more prominent component of the U.S. national energy strategy and policies, assessing the effectiveness and energy saving impacts of energy efficiency programs is likely to become increasingly important for policymakers and private and public funders of efficiency actions. Thus, it is critical that evaluation, measurement, and verification (EM&V) is carried out effectively and efficiently, which implies that: (1) Effective program evaluation, measurement, and verification (EM&V) methodologies and tools are available to key stakeholders (e.g., regulatory agencies, program administrators, consumers, and evaluation consultants); and (2) Capacity (people and infrastructure resources) is available to conduct EM&V activities and report results in ways that support program improvement and provide data that reliably compares achieved results against goals and similar programs in other jurisdictions (benchmarking). The National Action Plan for Energy Efficiency (2007) presented commonly used definitions for EM&V in the context of energy efficiency programs: (1) Evaluation (E) - The performance of studies and activities aimed at determining the effects and effectiveness of EE programs; (2) Measurement and Verification (M&V) - Data collection, monitoring, and analysis associated with the calculation of gross energy and demand savings from individual measures, sites or projects. M&V can be a subset of program evaluation; and (3) Evaluation, Measurement, and Verification (EM&V) - This term is frequently seen in evaluation literature. EM&V is a catchall acronym for determining both the effectiveness of program designs and estimates of load impacts at the portfolio, program and project level. This report is a scoping study that assesses current practices and methods in the evaluation, measurement and verification (EM&V) of ratepayer-funded energy efficiency programs, with a focus on methods and practices currently used for determining whether projected (ex-ante) energy and demand savings have been achieved (ex-post). M&V practices for privately-funded energy efficiency projects (e.g., ESCO projects) or programs where the primary focus is greenhouse gas reductions were not part of the scope of this study. We identify and discuss key purposes and uses of current evaluations of end-use energy efficiency programs, methods used to evaluate these programs, processes used to determine those methods; and key issues that need to be addressed now and in the future, based on discussions with regulatory agencies, policymakers, program administrators, and evaluation practitioners in 14 states and national experts in the evaluation field. We also explore how EM&V may evolve in a future in which efficiency funding increases significantly, innovative mechanisms for rewarding program performance are adopted, the role of efficiency in greenhouse gas mitigation is more closely linked, and programs are increasingly funded from multiple sources often with multiple program administrators and intended to meet multiple purposes.« less
Li, Yan
2017-05-25
The efficiency evaluation model of integrated energy system, involving many influencing factors, and the attribute values are heterogeneous and non-deterministic, usually cannot give specific numerical or accurate probability distribution characteristics, making the final evaluation result deviation. According to the characteristics of the integrated energy system, a hybrid multi-attribute decision-making model is constructed. The evaluation model considers the decision maker's risk preference. In the evaluation of the efficiency of the integrated energy system, the evaluation value of some evaluation indexes is linguistic value, or the evaluation value of the evaluation experts is not consistent. These reasons lead to ambiguity in the decision information, usually in the form of uncertain linguistic values and numerical interval values. In this paper, the risk preference of decision maker is considered when constructing the evaluation model. Interval-valued multiple-attribute decision-making method and fuzzy linguistic multiple-attribute decision-making model are proposed. Finally, the mathematical model of efficiency evaluation of integrated energy system is constructed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knittel, Christopher; Wolfran, Catherine; Gandhi, Raina
A wide range of climate plans rely on energy efficiency to generate energy and carbon emissions reductions, but conventional wisdom holds that consumers have historically underinvested in energy efficiency upgrades. This underinvestment may occur for a variety of reasons, one of which is that consumers are not adequately informed about the benefits to energy efficiency. To address this, the U.S. Department of Energy created a tool called the Home Energy Score (HEScore) to act as a simple, low-cost means to provide clear information about a home’s energy efficiency and motivate homeowners and homebuyers to invest in energy efficiency. The Departmentmore » of Energy is in the process of conducting four evaluations assessing the impact of the Home Energy Score on residential energy efficiency investments and program participation. This paper describes one of these evaluations: a randomized controlled trial conducted in New Jersey in partnership with New Jersey Natural Gas. The evaluation randomly provides homeowners who have received an audit, either because they have recently replaced their furnace, boiler, and/or gas water heater with a high-efficiency model and participated in a free audit to access an incentive, or because they requested an independent audit3, between May 2014 and October 2015, with the Home Energy Score.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kurnik, Charles W; Violette, Daniel M.
Addressing other evaluation issues that have been raised in the context of energy efficiency programs, this chapter focuses on methods used to address the persistence of energy savings, which is an important input to the benefit/cost analysis of energy efficiency programs and portfolios. In addition to discussing 'persistence' (which refers to the stream of benefits over time from an energy efficiency measure or program), this chapter provides a summary treatment of these issues -Synergies across programs -Rebound -Dual baselines -Errors in variables (the measurement and/or accuracy of input variables to the evaluation).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mundaca, Luis; Neij, Lena; Worrell, Ernst
The growing complexities of energy systems, environmental problems and technology markets are driving and testing most energy-economy models to their limits. To further advance bottom-up models from a multidisciplinary energy efficiency policy evaluation perspective, we review and critically analyse bottom-up energy-economy models and corresponding evaluation studies on energy efficiency policies to induce technological change. We use the household sector as a case study. Our analysis focuses on decision frameworks for technology choice, type of evaluation being carried out, treatment of market and behavioural failures, evaluated policy instruments, and key determinants used to mimic policy instruments. Although the review confirms criticismmore » related to energy-economy models (e.g. unrealistic representation of decision-making by consumers when choosing technologies), they provide valuable guidance for policy evaluation related to energy efficiency. Different areas to further advance models remain open, particularly related to modelling issues, techno-economic and environmental aspects, behavioural determinants, and policy considerations.« less
Energy and Environment Guide to Action - Chapter 4.3: Building Codes for Energy Efficiency
Provides guidance and recommendations for establishing, implementing, and evaluating state building codes for energy efficiency, which improve energy efficiency in new construction and major renovations. State success stories are included for reference.
Building Energy Asset Score for Utilities and Energy Efficiency Program Administrators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Building Technologies Office
2015-01-01
The Building Energy Asset Score is a national standardized tool for evaluating the physical and structural energy efficiency of commercial and multifamily residential buildings. The Asset Score generates a simple energy efficiency rating that enables comparison among buildings, and identifies opportunities for users to invest in energy efficiency upgrades. It is web-based and free to use. This fact sheet discusses the value of the score for utilities and energy efficiency program administrators.
Model Energy Efficiency Program Impact Evaluation Guide
Find guidance on model approaches for calculating energy, demand, and emissions savings resulting from energy efficiency programs. It describes several standard approaches that can be used in order to make these programs more efficient.
State Energy Efficiency Program Evaluation Inventory
2013-01-01
The focus of this inventory, some of which has been placed into a searchable spreadsheet, is to support the National Energy Modeling System (NEMS) and to research cost information in state-mandated energy efficiency program evaluations – e.g., for use in updating analytic and modeling assumptions used by the U.S. Energy Information Administration (EIA).
Energy efficiency of mobile soft robots.
Shui, Langquan; Zhu, Liangliang; Yang, Zhe; Liu, Yilun; Chen, Xi
2017-11-15
The performance of mobile soft robots is usually characterized by their locomotion/velocity efficiency, whereas the energy efficiency is a more intrinsic and fundamental criterion for the performance evaluation of independent or integrated soft robots. In this work, a general framework is established to evaluate the energy efficiency of mobile soft robots by considering the efficiency of the energy source, actuator and locomotion, and some insights for improving the efficiency of soft robotic systems are presented. Proposed as the ratio of the desired locomotion kinetic energy to the input mechanical energy, the energy efficiency of locomotion is found to play a critical role in determining the overall energy efficiency of soft robots. Four key factors related to the locomotion energy efficiency are identified, that is, the locomotion modes, material properties, geometric sizes, and actuation states. It is found that the energy efficiency of most mobile soft robots reported in the literature is surprisingly low (mostly below 0.1%), due to the inefficient mechanical energy that essentially does not contribute to the desired locomotion. A comparison of the locomotion energy efficiency for several representative locomotion modes in the literature is presented, showing a descending ranking as: jumping ≫ fish-like swimming > snake-like slithering > rolling > rising/turning over > inchworm-like inching > quadruped gait > earthworm-like squirming. Besides, considering the same locomotion mode, soft robots with lower stiffness, higher density and larger size tend to have higher locomotion energy efficiency. Moreover, a periodic pulse actuation instead of a continuous actuation mode may significantly reduce the input mechanical energy, thus improving the locomotion energy efficiency, especially when the pulse actuation matches the resonant states of the soft robots. The results presented herein indicate a large and necessary space for improving the locomotion energy efficiency, which is of practical significance for the future development and application of soft robots.
NASA Astrophysics Data System (ADS)
Golik, V. V.; Zemenkova, M. Yu; Shipovalov, A. N.; Akulov, K. A.
2018-05-01
The paper presents calculations and an example of energy efficiency justification of the regimes of the equipment used. The engineering design of the gas pipeline in the part of monitoring the energy efficiency of a gas compressor unit (GCU) is considered. The results of the GCU characteristics and its components evaluation are described. The evaluation results of the energy efficiency indicators of the gas pipeline are presented. As an example of the result of the analysis, it is proposed to use gas compressor unit GCU-32 "Ladoga" because of its efficiency and cost effectiveness, in comparison with analogues.
Energy-efficiency program for clothes washers, clothes dryers, and dishwashers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1977-11-01
The objectives of this study of dishwashers, clothes washers, and clothes dryers are: to evaluate existing energy efficiency test procedures and recommend the use of specific test procedures for each appliance group and to establish the maximum economically and technologically feasible energy-efficiency improvement goals for each appliance group. Specifically, the program requirements were to determine the energy efficiency of the 1972 models, to evaluate the feasibility improvements that could be implemented by 1980 to maximize energy efficiency, and to calculate the percentage efficiency improvement based on the 1972 baseline and the recommended 1980 targets. The test program was conducted usingmore » 5 dishwashers, 4 top-loading clothes washers, one front-loading clothes washer, 4 electric clothes dryers, and 4 gas clothes dryers. (MCW)« less
Scout: An Impact Analysis Tool for Building Energy-Efficiency Technologies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harris, Chioke; Langevin, Jared; Roth, Amir
Evaluating the national impacts of candidate U.S. building energy-efficiency technologies has historically been difficult for organizations with large energy efficiency portfolios. In particular, normalizing results from technology-specific impact studies is time-consuming when those studies do not use comparable assumptions about the underlying building stock. To equitably evaluate its technology research, development, and deployment portfolio, the U.S. Department of Energy's Building Technologies Office has developed Scout, a software tool that quantitatively assesses the energy and CO2 impacts of building energy-efficiency measures on the national building stock. Scout efficiency measures improve upon the unit performance and/or lifetime operational costs of an equipmentmore » stock baseline that is determined from the U.S. Energy Information Administration Annual Energy Outlook (AEO). Scout measures are characterized by a market entry and exit year, unit performance level, cost, and lifetime. To evaluate measures on a consistent basis, Scout uses EnergyPlus simulation on prototype building models to translate measure performance specifications to whole-building energy savings; these savings impacts are then extended to a national scale using floor area weighting factors. Scout represents evolution in the building stock over time using AEO projections for new construction, retrofit, and equipment replacements, and competes technologies within market segments under multiple adoption scenarios. Scout and its efficiency measures are open-source, as is the EnergyPlus whole building simulation framework that is used to evaluate measure performance. The program is currently under active development and will be formally released once an initial set of measures has been analyzed and reviewed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kurnik, Charles W; Jacobson, David; Metoyer, Jarred
The specific measure described here involves improving the overall efficiency in air-conditioning systems as a whole (compressor, evaporator, condenser, and supply fan). The efficiency rating is expressed as the energy efficiency ratio (EER), seasonal energy efficiency ratio (SEER), and integrated energy efficiency ratio (IEER). The higher the EER, SEER or IEER, the more efficient the unit is.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Nan; Romankiewicz, John; Vine, Edward
2012-12-15
In recent years, the number of energy efficiency policies implemented has grown very rapidly as energy security and climate change have become top policy issues for many governments around the world. Within the sphere of energy efficiency policy, governments (federal and local), electric utilities, and other types of businesses and institutions are implementing a wide variety of programs to spread energy efficiency practices in industry, buildings, transport, and electricity. As programs proliferate, there is an administrative and business imperative to evaluate the savings and processes of these programs to ensure that program funds spent are indeed leading to a moremore » energy-efficient economy.« less
Finite-size effect on optimal efficiency of heat engines.
Tajima, Hiroyasu; Hayashi, Masahito
2017-07-01
The optimal efficiency of quantum (or classical) heat engines whose heat baths are n-particle systems is given by the strong large deviation. We give the optimal work extraction process as a concrete energy-preserving unitary time evolution among the heat baths and the work storage. We show that our optimal work extraction turns the disordered energy of the heat baths to the ordered energy of the work storage, by evaluating the ratio of the entropy difference to the energy difference in the heat baths and the work storage, respectively. By comparing the statistical mechanical optimal efficiency with the macroscopic thermodynamic bound, we evaluate the accuracy of the macroscopic thermodynamics with finite-size heat baths from the statistical mechanical viewpoint. We also evaluate the quantum coherence effect on the optimal efficiency of the cycle processes without restricting their cycle time by comparing the classical and quantum optimal efficiencies.
Efficient evaluation of the Coulomb force in the Gaussian and finite-element Coulomb method.
Kurashige, Yuki; Nakajima, Takahito; Sato, Takeshi; Hirao, Kimihiko
2010-06-28
We propose an efficient method for evaluating the Coulomb force in the Gaussian and finite-element Coulomb (GFC) method, which is a linear-scaling approach for evaluating the Coulomb matrix and energy in large molecular systems. The efficient evaluation of the analytical gradient in the GFC is not straightforward as well as the evaluation of the energy because the SCF procedure with the Coulomb matrix does not give a variational solution for the Coulomb energy. Thus, an efficient approximate method is alternatively proposed, in which the Coulomb potential is expanded in the Gaussian and finite-element auxiliary functions as done in the GFC. To minimize the error in the gradient not just in the energy, the derived functions of the original auxiliary functions of the GFC are used additionally for the evaluation of the Coulomb gradient. In fact, the use of the derived functions significantly improves the accuracy of this approach. Although these additional auxiliary functions enlarge the size of the discretized Poisson equation and thereby increase the computational cost, it maintains the near linear scaling as the GFC and does not affects the overall efficiency of the GFC approach.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramachandran, Thiagarajan; Kundu, Soumya; Chen, Yan
This paper develops and utilizes an optimization based framework to investigate the maximal energy efficiency potentially attainable by HVAC system operation in a non-predictive context. Performance is evaluated relative to the existing state of the art set point reset strategies. The expected efficiency increase driven by operation constraints relaxations is evaluated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramachandran, Thiagarajan; Kundu, Soumya; Chen, Yan
This paper develops and utilizes an optimization based framework to investigate the maximal energy efficiency potentially attainable by HVAC system operation in a non-predictive context. Performance is evaluated relative to the existing state of the art set-point reset strategies. The expected efficiency increase driven by operation constraints relaxations is evaluated.
NASA Astrophysics Data System (ADS)
Onizawa, Naoya; Tamakoshi, Akira; Hanyu, Takahiro
2017-08-01
In this paper, reinitialization-free nonvolatile computer systems are designed and evaluated for energy-harvesting Internet of things (IoT) applications. In energy-harvesting applications, as power supplies generated from renewable power sources cause frequent power failures, data processed need to be backed up when power failures occur. Unless data are safely backed up before power supplies diminish, reinitialization processes are required when power supplies are recovered, which results in low energy efficiencies and slow operations. Using nonvolatile devices in processors and memories can realize a faster backup than a conventional volatile computer system, leading to a higher energy efficiency. To evaluate the energy efficiency upon frequent power failures, typical computer systems including processors and memories are designed using 90 nm CMOS or CMOS/magnetic tunnel junction (MTJ) technologies. Nonvolatile ARM Cortex-M0 processors with 4 kB MRAMs are evaluated using a typical computing benchmark program, Dhrystone, which shows a few order-of-magnitude reductions in energy in comparison with a volatile processor with SRAM.
76 FR 47178 - Energy Efficiency Program: Test Procedure for Lighting Systems (Luminaires)
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-04
...: Test Procedure for Lighting Systems (Luminaires) AGENCY: Office of Energy Efficiency and Renewable... (``DOE'' or the ``Department'') is currently evaluating energy efficiency test procedures for luminaires... products. DOE recognizes that well-designed test procedures are important to produce reliable, repeatable...
No Cost – Low Cost Compressed Air System Optimization in Industry
NASA Astrophysics Data System (ADS)
Dharma, A.; Budiarsa, N.; Watiniasih, N.; Antara, N. G.
2018-04-01
Energy conservation is a systematic, integrated of effort, in order to preserve energy sources and improve energy utilization efficiency. Utilization of energy in efficient manner without reducing the energy usage it must. Energy conservation efforts are applied at all stages of utilization, from utilization of energy resources to final, using efficient technology, and cultivating an energy-efficient lifestyle. The most common way is to promote energy efficiency in the industry on end use and overcome barriers to achieve such efficiency by using system energy optimization programs. The facts show that energy saving efforts in the process usually only focus on replacing tools and not an overall system improvement effort. In this research, a framework of sustainable energy reduction work in companies that have or have not implemented energy management system (EnMS) will be conducted a systematic technical approach in evaluating accurately a compressed-air system and potential optimization through observation, measurement and verification environmental conditions and processes, then processing the physical quantities of systems such as air flow, pressure and electrical power energy at any given time measured using comparative analysis methods in this industry, to provide the potential savings of energy saving is greater than the component approach, with no cost to the lowest cost (no cost - low cost). The process of evaluating energy utilization and energy saving opportunities will provide recommendations for increasing efficiency in the industry and reducing CO2 emissions and improving environmental quality.
Data Center Energy Efficiency Standards in India: Preliminary Findings from Global Practices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raje, Sanyukta; Maan, Hermant; Ganguly, Suprotim
Global data center energy consumption is growing rapidly. In India, information technology industry growth, fossil-fuel generation, and rising energy prices add significant operational costs and carbon emissions from energy-intensive data centers. Adoption of energy-efficient practices can improve the global competitiveness and sustainability of data centers in India. Previous studies have concluded that advancement of energy efficiency standards through policy and regulatory mechanisms is the fastest path to accelerate the adoption of energy-efficient practices in the Indian data centers. In this study, we reviewed data center energy efficiency practices in the United States, Europe, and Asia. Using evaluation metrics, we identifiedmore » an initial set of energy efficiency standards applicable to the Indian context using the existing policy mechanisms. These preliminary findings support next steps to recommend energy efficiency standards and inform policy makers on strategies to adopt energy-efficient technologies and practices in Indian data centers.« less
Evaluation strategy of regenerative braking energy for supercapacitor vehicle.
Zou, Zhongyue; Cao, Junyi; Cao, Binggang; Chen, Wen
2015-03-01
In order to improve the efficiency of energy conversion and increase the driving range of electric vehicles, the regenerative energy captured during braking process is stored in the energy storage devices and then will be re-used. Due to the high power density of supercapacitors, they are employed to withstand high current in the short time and essentially capture more regenerative energy. The measuring methods for regenerative energy should be investigated to estimate the energy conversion efficiency and performance of electric vehicles. Based on the analysis of the regenerative braking energy system of a supercapacitor vehicle, an evaluation system for energy recovery in the braking process is established using USB portable data-acquisition devices. Experiments under various braking conditions are carried out. The results verify the higher efficiency of energy regeneration system using supercapacitors and the effectiveness of the proposed measurement method. It is also demonstrated that the maximum regenerative energy conversion efficiency can reach to 88%. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Xu; Shen, Bo; Price, Lynn
China’s industrial sector dominates the country’s total energy consumption and energy efficiency in the industry sector is crucial to help China reach its energy and CO 2 emissions reduction goals. There are many energy efficiency policies in China, but the motivation and willingness of enterprises to improve energy efficiency has weakened. This report first identifies barriers that enterprises face to be self-motivated to implement energy efficiency measures. Then, this report reviews international policies and programs to improve energy efficiency and evaluates how these policies helped to address the identified barriers. Lastly, this report draws conclusions and provides recommendations to Chinamore » in developing policies and programs to motivate enterprises to improve energy efficiency.« less
Building Energy Asset Score for Architects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Building Technologies Office
2015-01-01
The Building Energy Asset Score is a national standardized tool for evaluating the physical and structural energy efficiency of commercial and multifamily residential buildings. The Asset Score generates a simple energy efficiency rating that enables comparison among buildings, and identifies opportunities for users to invest in energy efficiency upgrades. It is web-based and free to use. This fact sheet discusses the value of the score for architects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Building Technologies Office
The Building Energy Asset Score is a national standardized tool for evaluating the physical and structural energy efficiency of commercial and multifamily residential buildings. The Asset Score generates a simple energy efficiency rating that enables comparison among buildings, and identifies opportunities for users to invest in energy efficiency upgrades. It is web-based and free to use. This fact sheet discusses the value of the score for energy services companies, engineers and green building consultants.
EM&V for Energy Efficiency Policies and Initiatives
Learn how representatives of jurisdictions, companies, and other entities can use evaluation, measurement, and verification (EM&V) in demand-side energy efficiency (EE) investments to achieve intended environmental, energy, and economic goals.
Evaluation on the Efficiency of Biomass Power Generation Industry in China
Sun, Dong; Guo, Sen
2014-01-01
As a developing country with large population, China is facing the problems of energy resource shortage and growing environmental pollution arising from the coal-dominated energy structure. Biomass energy, as a kind of renewable energy with the characteristics of being easy to store and friendly to environment, has become the focus of China's energy development in the future. Affected by the advanced power generation technology and diversified geography environment, the biomass power generation projects show new features in recent years. Hence, it is necessary to evaluate the efficiency of biomass power generation industry by employing proper method with the consideration of new features. In this paper, the regional difference as a new feature of biomass power generation industry is taken into consideration, and the AR model is employed to modify the zero-weight issue when using data envelopment analysis (DEA) method to evaluate the efficiency of biomass power generation industry. 30 biomass power generation enterprises in China are selected as the sample, and the efficiency evaluation is performed. The result can provide some insights into the sustainable development of biomass power generation industry in China. PMID:25093209
Fujioka, Shinsuke; Johzaki, Tomoyuki; Arikawa, Yasunobu; Zhang, Zhe; Morace, Alessio; Ikenouchi, Takahito; Ozaki, Tetsuo; Nagai, Takahiro; Abe, Yuki; Kojima, Sadaoki; Sakata, Shohei; Inoue, Hiroaki; Utsugi, Masaru; Hattori, Shoji; Hosoda, Tatsuya; Lee, Seung Ho; Shigemori, Keisuke; Hironaka, Youichiro; Sunahara, Atsushi; Sakagami, Hitoshi; Mima, Kunioki; Fujimoto, Yasushi; Yamanoi, Kohei; Norimatsu, Takayoshi; Tokita, Shigeki; Nakata, Yoshiki; Kawanaka, Junji; Jitsuno, Takahisa; Miyanaga, Noriaki; Nakai, Mitsuo; Nishimura, Hiroaki; Shiraga, Hiroyuki; Nagatomo, Hideo; Azechi, Hiroshi
2015-06-01
A series of experiments were carried out to evaluate the energy-coupling efficiency from heating laser to a fuel core in the fast-ignition scheme of laser-driven inertial confinement fusion. Although the efficiency is determined by a wide variety of complex physics, from intense laser plasma interactions to the properties of high-energy density plasmas and the transport of relativistic electron beams (REB), here we simplify the physics by breaking down the efficiency into three measurable parameters: (i) energy conversion ratio from laser to REB, (ii) probability of collision between the REB and the fusion fuel core, and (iii) fraction of energy deposited in the fuel core from the REB. These three parameters were measured with the newly developed experimental platform designed for mimicking the plasma conditions of a realistic integrated fast-ignition experiment. The experimental results indicate that the high-energy tail of REB must be suppressed to heat the fuel core efficiently.
Energy efficiency of high-rise buildings
NASA Astrophysics Data System (ADS)
Zhigulina, Anna Yu.; Ponomarenko, Alla M.
2018-03-01
The article is devoted to analysis of tendencies and advanced technologies in the field of energy supply and energy efficiency of tall buildings, to the history of the emergence of the concept of "efficiency" and its current interpretation. Also the article show the difference of evaluation criteria of the leading rating systems LEED and BREEAM. Authors reviewed the latest technologies applied in the construction of energy efficient buildings. Methodological approach to the design of tall buildings taking into account energy efficiency needs to include the primary energy saving; to seek the possibility of production and accumulation of alternative electric energy by converting energy from the sun and wind with the help of special technical devices; the application of regenerative technologies.
77 FR 8852 - Proposed Agency Information Collection
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-15
... DEPARTMENT OF ENERGY Office of Energy Efficiency and Renewable Energy Proposed Agency Information... proposed collection of information for a National Evaluation of the Energy Efficiency and Conservation... proposed collection of information is necessary for the proper performance of the functions of the agency...
Benchmarking and Self-Assessment in the Wine Industry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galitsky, Christina; Radspieler, Anthony; Worrell, Ernst
2005-12-01
Not all industrial facilities have the staff or theopportunity to perform a detailed audit of their operations. The lack ofknowledge of energy efficiency opportunities provides an importantbarrier to improving efficiency. Benchmarking programs in the U.S. andabroad have shown to improve knowledge of the energy performance ofindustrial facilities and buildings and to fuel energy managementpractices. Benchmarking provides a fair way to compare the energyintensity of plants, while accounting for structural differences (e.g.,the mix of products produced, climate conditions) between differentfacilities. In California, the winemaking industry is not only one of theeconomic pillars of the economy; it is also a large energymore » consumer, witha considerable potential for energy-efficiency improvement. LawrenceBerkeley National Laboratory and Fetzer Vineyards developed the firstbenchmarking tool for the California wine industry called "BEST(Benchmarking and Energy and water Savings Tool) Winery". BEST Wineryenables a winery to compare its energy efficiency to a best practicereference winery. Besides overall performance, the tool enables the userto evaluate the impact of implementing efficiency measures. The toolfacilitates strategic planning of efficiency measures, based on theestimated impact of the measures, their costs and savings. The tool willraise awareness of current energy intensities and offer an efficient wayto evaluate the impact of future efficiency measures.« less
Building Energy Asset Score for Building Owners
DOE Office of Scientific and Technical Information (OSTI.GOV)
Building Technologies Office
2015-01-01
The Building Energy Asset Score is a national standardized tool for evaluating the physical and structural energy efficiency of commercial and multifamily residential buildings. The Asset Score generates a simple energy efficiency rating that enables comparison among buildings, and identifies opportunities for users to invest in energy efficiency upgrades. It is web-based and free to use. This fact sheet discusses the value of the score for building owners.
Building Energy Asset Score for Real Estate Managers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Building Technologies Office
2015-01-01
The Building Energy Asset Score is a national standardized tool for evaluating the physical and structural energy efficiency of commercial and multifamily residential buildings. The Asset Score generates a simple energy efficiency rating that enables comparison among buildings, and identifies opportunities for users to invest in energy efficiency upgrades. It is web-based and free to use. This fact sheet discusses the value of the score for real estate managers.
Evaluating Energy Conversion Efficiency
NASA Technical Reports Server (NTRS)
Byvik, C. E.; Smith, B. T.; Buoncristiani, A. M.
1983-01-01
Devices that convert solar radiation directly into storable chemical or electrical energy, have characteristic energy absorption spectrum; specifically, each of these devices has energy threshold. The conversion efficiency of generalized system that emcompasses all threshold devices is analyzed, resulting in family of curves for devices of various threshold energies operating at different temperatures.
Evaluating architecture impact on system energy efficiency
Yu, Shijie; Wang, Rui; Luan, Zhongzhi; Qian, Depei
2017-01-01
As the energy consumption has been surging in an unsustainable way, it is important to understand the impact of existing architecture designs from energy efficiency perspective, which is especially valuable for High Performance Computing (HPC) and datacenter environment hosting tens of thousands of servers. One obstacle hindering the advance of comprehensive evaluation on energy efficiency is the deficient power measuring approach. Most of the energy study relies on either external power meters or power models, both of these two methods contain intrinsic drawbacks in their practical adoption and measuring accuracy. Fortunately, the advent of Intel Running Average Power Limit (RAPL) interfaces has promoted the power measurement ability into next level, with higher accuracy and finer time resolution. Therefore, we argue it is the exact time to conduct an in-depth evaluation of the existing architecture designs to understand their impact on system energy efficiency. In this paper, we leverage representative benchmark suites including serial and parallel workloads from diverse domains to evaluate the architecture features such as Non Uniform Memory Access (NUMA), Simultaneous Multithreading (SMT) and Turbo Boost. The energy is tracked at subcomponent level such as Central Processing Unit (CPU) cores, uncore components and Dynamic Random-Access Memory (DRAM) through exploiting the power measurement ability exposed by RAPL. The experiments reveal non-intuitive results: 1) the mismatch between local compute and remote memory node caused by NUMA effect not only generates dramatic power and energy surge but also deteriorates the energy efficiency significantly; 2) for multithreaded application such as the Princeton Application Repository for Shared-Memory Computers (PARSEC), most of the workloads benefit a notable increase of energy efficiency using SMT, with more than 40% decline in average power consumption; 3) Turbo Boost is effective to accelerate the workload execution and further preserve the energy, however it may not be applicable on system with tight power budget. PMID:29161317
Evaluating architecture impact on system energy efficiency.
Yu, Shijie; Yang, Hailong; Wang, Rui; Luan, Zhongzhi; Qian, Depei
2017-01-01
As the energy consumption has been surging in an unsustainable way, it is important to understand the impact of existing architecture designs from energy efficiency perspective, which is especially valuable for High Performance Computing (HPC) and datacenter environment hosting tens of thousands of servers. One obstacle hindering the advance of comprehensive evaluation on energy efficiency is the deficient power measuring approach. Most of the energy study relies on either external power meters or power models, both of these two methods contain intrinsic drawbacks in their practical adoption and measuring accuracy. Fortunately, the advent of Intel Running Average Power Limit (RAPL) interfaces has promoted the power measurement ability into next level, with higher accuracy and finer time resolution. Therefore, we argue it is the exact time to conduct an in-depth evaluation of the existing architecture designs to understand their impact on system energy efficiency. In this paper, we leverage representative benchmark suites including serial and parallel workloads from diverse domains to evaluate the architecture features such as Non Uniform Memory Access (NUMA), Simultaneous Multithreading (SMT) and Turbo Boost. The energy is tracked at subcomponent level such as Central Processing Unit (CPU) cores, uncore components and Dynamic Random-Access Memory (DRAM) through exploiting the power measurement ability exposed by RAPL. The experiments reveal non-intuitive results: 1) the mismatch between local compute and remote memory node caused by NUMA effect not only generates dramatic power and energy surge but also deteriorates the energy efficiency significantly; 2) for multithreaded application such as the Princeton Application Repository for Shared-Memory Computers (PARSEC), most of the workloads benefit a notable increase of energy efficiency using SMT, with more than 40% decline in average power consumption; 3) Turbo Boost is effective to accelerate the workload execution and further preserve the energy, however it may not be applicable on system with tight power budget.
ERIC Educational Resources Information Center
Dudik, C. E. Jane
2017-01-01
Energy managers are tasked with identifying energy savings opportunities and promoting energy independence. Energy-efficient (EE) and renewable-energy (RE) technology demonstrations enable energy managers to evaluate new energy technologies and adopt those that appear most effective. This study examined whether energy technology demonstrations…
Building Energy Asset Score for State and Local Governments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Building Technologies Office
2015-01-01
The Building Energy Asset Score is a national standardized tool for evaluating the physical and structural energy efficiency of commercial and multifamily residential buildings. The Asset Score generates a simple energy efficiency rating that enables comparison among buildings, and identifies opportunities for users to invest in energy efficiency upgrades. It is web-based and free to use. This fact sheet discusses the value of the score for state and local governments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kurnik, Charles W; Khawaja, M. Sami; Rushton, Josh
Evaluating an energy efficiency program requires assessing the total energy and demand saved through all of the energy efficiency measures provided by the program. For large programs, the direct assessment of savings for each participant would be cost-prohibitive. Even if a program is small enough that a full census could be managed, such an undertaking would almost always be an inefficient use of evaluation resources. The bulk of this chapter describes methods for minimizing and quantifying sampling error. Measurement error and regression error are discussed in various contexts in other chapters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, T.; Slaa, J.W.; Sathaye, J.
2010-12-15
Implementation and adoption of efficient end-use technologies have proven to be one of the key measures for reducing greenhouse gas (GHG) emissions throughout the industries. In many cases, implementing energy efficiency measures is among one of the most cost effective investments that the industry could make in improving efficiency and productivity while reducing CO2 emissions. Over the years, there have been incentives to use resources and energy in a cleaner and more efficient way to create industries that are sustainable and more productive. With the working of energy programs and policies on GHG inventory and regulation, understanding and managing themore » costs associated with mitigation measures for GHG reductions is very important for the industry and policy makers around the world. Successful implementation of emerging technologies not only can help advance productivities and competitiveness but also can play a significant role in mitigation efforts by saving energy. Providing evaluation and estimation of the costs and energy savings potential of emerging technologies is the focus of our work in this project. The overall goal of the project is to identify and select emerging and under-utilized energy-efficient technologies and practices as they are important to reduce energy consumption in industry while maintaining economic growth. This report contains the results from performing Task 2"Technology evaluation" for the project titled"Research Opportunities in Emerging and Under-Utilized Energy-Efficient Industrial Technologies," which was sponsored by California Energy Commission and managed by CIEE. The project purpose is to analyze market status, market potential, and economic viability of selected technologies applicable to the U.S. In this report, LBNL first performed re-assessments of all of the 33 emerging energy-efficient industrial technologies, including re-evaluation of the 26 technologies that were previously identified by Martin et al. (2000) and their potential significance to energy use in the industries, and new evaluation of additional seven technologies. The re-assessments were essentially updated with recent information that we searched and collected from literature to the extent possible. The progress of selected technologies as they diffused into the marketplace from 2000 to 2010 was then discussed in this report. The report also includes updated detailed characterizations of 15 technologies studied in 2000, with comparisons noted.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pannone, Greg; Thomas, John F; Reale, Michael
The three foundational elements that determine mobile source energy use and tailpipe carbon dioxide (CO2) emissions are the tractive energy requirements of the vehicle, the on-cycle energy conversion efficiency of the propulsion system, and the energy source. The tractive energy requirements are determined by the vehicle's mass, aerodynamic drag, tire rolling resistance, and parasitic drag. Oncycle energy conversion of the propulsion system is dictated by the tractive efficiency, non-tractive energy use, kinetic energy recovery, and parasitic losses. The energy source determines the mobile source CO2 emissions. For current vehicles, tractive energy requirements and overall energy conversion efficiency are readily availablemore » from the decomposition of test data. For future applications, plausible levels of mass reduction, aerodynamic drag improvements, and tire rolling resistance can be transposed into the tractive energy domain. Similarly, by combining thermodynamic, mechanical efficiency, and kinetic energy recovery fundamentals with logical proxies, achievable levels of energy conversion efficiency can be established to allow for the evaluation of future powertrain requirements. Combining the plausible levels of tractive energy and on-cycle efficiency provides a means to compute sustainable vehicle and propulsion system scenarios that can achieve future regulations. Using these principles, the regulations established in the United States (U.S.) for fuel consumption and CO2 emissions are evaluated. Fleet-level scenarios are generated and compared to the technology deployment assumptions made during rule-making. When compared to the rule-making assumptions, the results indicate that a greater level of advanced vehicle and propulsion system technology deployment will be required to achieve the model year 2025 U.S. standards for fuel economy and CO2 emissions.« less
Triplet-triplet annihilation photon-upconversion: towards solar energy applications.
Gray, Victor; Dzebo, Damir; Abrahamsson, Maria; Albinsson, Bo; Moth-Poulsen, Kasper
2014-06-14
Solar power production and solar energy storage are important research areas for development of technologies that can facilitate a transition to a future society independent of fossil fuel based energy sources. Devices for direct conversion of solar photons suffer from poor efficiencies due to spectrum losses, which are caused by energy mismatch between the optical absorption of the devices and the broadband irradiation provided by the sun. In this context, photon-upconversion technologies are becoming increasingly interesting since they might offer an efficient way of converting low energy solar energy photons into higher energy photons, ideal for solar power production and solar energy storage. This perspective discusses recent progress in triplet-triplet annihilation (TTA) photon-upconversion systems and devices for solar energy applications. Furthermore, challenges with evaluation of the efficiency of TTA-photon-upconversion systems are discussed and a general approach for evaluation and comparison of existing systems is suggested.
ERIC Educational Resources Information Center
Mustafa, Hasrina
2010-01-01
This article presents a comprehensive evaluation of the impact of two community projects on energy efficiency held in Malaysia in January 2008. Specifically, the study was undertaken to compare levels of attitudes and practices of energy efficiency between baseline and post-campaign survey; compare electricity consumptions before, one month after,…
Energy future Santa Cruz: A citizens' plan for energy self-reliance
NASA Astrophysics Data System (ADS)
Cohn, J.; Stayton, R.
The results of a grassroots energy conservation project which involved more than 3,100 residents of Santa Cruz, California, is discussed. Citizens attended forums and town meetings to suggest ideas for solving the community's energy problems. These ideas were then evaluated by the Energy Future Advisory Board and compiled into the Energy Future Plan. The energy plan covers such topics as new residences, residential retrofit, automobile efficiency, farm efficiency, commercial greenhouses, local food production, commercial efficiency, land use planning, energy education and financing, and solar, wind, and ocean energy. An energy implementation guide and glossary are included.
NASA Technical Reports Server (NTRS)
Sharma, O. P.; Kopper, F. C.; Knudsen, L. K.; Yustinich, J. B.
1982-01-01
A subsonic cascade test program was conducted to provide technical data for optimizing the blade and vane airfoil designs for the Energy Efficient Engine Low-Pressure Turbine component. The program consisted of three parts. The first involved an evaluation of the low-chamber inlet guide vane. The second, was an evaluation of two candidate aerodynamic loading philosophies for the fourth blade root section. The third part consisted of an evaluation of three candidate airfoil geometries for the fourth blade mean section. The performance of each candidate airfoil was evaluated in a linear cascade configuration. The overall results of this study indicate that the aft-loaded airfoil designs resulted in lower losses which substantiated Pratt & Whitney Aircraft's design philosophy for the Energy Efficient Engine low-pressure turbine component.
Experimental evaluation of exhaust mixers for an Energy Efficient Engine
NASA Technical Reports Server (NTRS)
Kozlowski, H.; Kraft, G.
1980-01-01
Static scale model tests were conducted to evaluate exhaust system mixers for a high bypass ratio engine as part of the NASA sponsored Energy Efficient program. Gross thrust coefficients were measured for a series of mixer configurations which included variations in the number of mixer lobes, tailpipe length, mixer penetration, and length. All of these parameters have a significant impact on exhaust system performance. In addition, flow visualization pictures and pressure/temperature traverses were obtained for selected configurations. Parametric performance trends are discussed and the results considered relative to the Energy Efficient Engine program goals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Michael; Haeri, Hossein; Reynolds, Arlis
This chapter provides a set of model protocols for determining energy and demand savings that result from specific energy efficiency measures implemented through state and utility efficiency programs. The methods described here are approaches that are or are among the most commonly used and accepted in the energy efficiency industry for certain measures or programs. As such, they draw from the existing body of research and best practices for energy efficiency program evaluation, measurement, and verification (EM&V). These protocols were developed as part of the Uniform Methods Project (UMP), funded by the U.S. Department of Energy (DOE). The principal objectivemore » for the project was to establish easy-to-follow protocols based on commonly accepted methods for a core set of widely deployed energy efficiency measures.« less
Assessing global resource utilization efficiency in the industrial sector.
Rosen, Marc A
2013-09-01
Designing efficient energy systems, which also meet economic, environmental and other objectives and constraints, is a significant challenge. In a world with finite natural resources and large energy demands, it is important to understand not just actual efficiencies, but also limits to efficiency, as the latter identify margins for efficiency improvement. Energy analysis alone is inadequate, e.g., it yields energy efficiencies that do not provide limits to efficiency. To obtain meaningful and useful efficiencies for energy systems, and to clarify losses, exergy analysis is a beneficial and useful tool. Here, the global industrial sector and industries within it are assessed by using energy and exergy methods. The objective is to improve the understanding of the efficiency of global resource use in the industrial sector and, with this information, to facilitate the development, prioritization and ultimate implementation of rational improvement options. Global energy and exergy flow diagrams for the industrial sector are developed and overall efficiencies for the global industrial sector evaluated as 51% based on energy and 30% based on exergy. Consequently, exergy analysis indicates a less efficient picture of energy use in the global industrial sector than does energy analysis. A larger margin for improvement exists from an exergy perspective, compared to the overly optimistic margin indicated by energy. Copyright © 2012 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schiller, Steven R.; Schwartz, Lisa C.
Demand-side energy efficiency (efficiency) represents a low-cost opportunity to reduce electricity consumption and demand and provide a wide range of non-energy benefits, including avoiding air pollution. Efficiency-related energy and non-energy impacts are determined and documented by implementing evaluation, measurement and verification (EM&V) systems. This technical brief describes efficiency EM&V coordination strategies that Western states can consider taking on together, outlines EM&V-related products that might be appropriate for multistate coordination, and identifies some implications of coordination. Coordinating efficiency EM&V activities can save both time and costs for state agencies and stakeholders engaged in efficiency activities and can be particularly beneficial formore » multiple states served by the same utility. First, the brief summarizes basic information on efficiency, its myriad potential benefits and EM&V for assessing those benefits. Second, the brief introduces the concept of multistate EM&V coordination in the context of assessing such benefits, including achievement of state and federal goals to reduce air pollutants.1 Next, the brief presents three coordination strategy options for efficiency EM&V: information clearinghouse/exchange, EM&V product development, and a regional energy efficiency tracking system platform. The brief then describes five regional EM&V products that could be developed on a multistate basis: EM&V reporting formats, database of consistent deemed electricity savings values, glossary of definitions and concepts, efficiency EM&V methodologies, and EM&V professional standards or accreditation processes. Finally, the brief discusses options for next steps that Western states can take to consider multistate coordination on efficiency EM&V. Appendices provide background information on efficiency and EM&V, as well as definitions and suggested resources on the covered topics. This brief is intended to inform state public utility commissions, boards for public and consumer-owned utilities, state energy offices and air agencies, and other organizations involved in discussions about the use of efficiency EM&V.« less
Evaluation of high-energy-efficiency powertrain approaches: the 1996 futurecar challenge
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sluder, S.; Duoba, M.; Larsen, R.
Twelve colleges and universities were selected to design, build, and develop a mid-size vehicle that could achieve high energy economy while maintaining the performance characteristics of today`s mid-size vehicle. Many of the teams were able to increase the fuel economy of their vehicles, but most of these increases came at the expense of decreased performance or worsened emissions. This paper evaluates and summarizes the high-energy-efficiency powertrain technology approaches that were utilized in the 1996 FutureCar Challenge, which was the first evaluation of these vehicles in a two-year program. Of the 11 vehicles evaluated in the competition, nine utilized hybrid electricmore » vehicle approaches. This paper discusses the design trade- offs made by the teams to achieve high efficiency while trying to maintain stock performance.« less
An Evaluation of the Consumer Costs and Benefits of Energy Efficiency Resource Standards
NASA Astrophysics Data System (ADS)
Lessans, Mark D.
Of the modern-day policies designed to encourage energy efficiency, one with a significant potential for impact is that of Energy Efficiency Resource Standards (EERS). EERS policies place the responsibility for meeting an efficiency target on the electric and gas utilities, typically setting requirements for annual reductions in electricity generation or gas distribution to customers as a percentage of sales. To meet these requirements, utilities typically implement demand-side management (DSM) programs, which encourage energy efficiency at the customer level through incentives and educational initiatives. In Maryland, a statewide EERS has provided for programs which save a significant amount of energy, but is ultimately falling short in meeting the targets established by the policy. This study evaluates residential DSM programs offered by Pepco, a utility in Maryland, for cost-effectiveness. However, unlike most literature on the topic, analysis focuses on the costs-benefit from the perspective of the consumer, and not the utility. The results of this study are encouraging: the majority of programs analyzed show that the cost of electricity saved, or levelized cost of saved energy (LCSE), is less expensive than the current retail cost of electricity cost in Maryland. A key goal of this study is to establish a metric for evaluating the consumer cost-effectiveness of participation in energy efficiency programs made available by EERS. In doing so, the benefits of these programs can be effectively marketed to customers, with the hope that participation will increase. By increasing consumer awareness and buy-in, the original goals set out through EERS can be realized and the policies can continue to receive support.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kurnik, Charles W; Gowans, Dakers; Telarico, Chad
The Commercial and Industrial Lighting Evaluation Protocol (the protocol) describes methods to account for gross energy savings resulting from the programmatic installation of efficient lighting equipment in large populations of commercial, industrial, and other nonresidential facilities. This protocol does not address savings resulting from changes in codes and standards, or from education and training activities. A separate Uniform Methods Project (UMP) protocol, Chapter 3: Commercial and Industrial Lighting Controls Evaluation Protocol, addresses methods for evaluating savings resulting from lighting control measures such as adding time clocks, tuning energy management system commands, and adding occupancy sensors.
Evaluation of food drying with air dehumidification system: a short review
NASA Astrophysics Data System (ADS)
Djaeni, M.; Utari, F. D.; Sasongko, S. B.; Kumoro, A. C.
2018-01-01
Energy efficient drying for food and agriculture products resulting high quality products has been an important issue. Currently, about 50% of total energy for postharvest treatment was used for drying. This paper presents the evaluation of new approach namely air dehumidification system with zeolite for food drying. Zeolite is a material having affinity to water in which reduced the moisture in air. With low moisture content and relative humidity, the air can improve driving force for drying even at low temperature. Thus, the energy efficiency can be potentially enhanced and the product quality can be well retained. For proving the hypothesis, the paddy and onion have been dried using dehumidified air. As performance indicators, the drying time, product quality, and heat efficiency were evaluated. Results indicated that the drying with zeolite improved the performances significantly. At operating temperature ranging 50 - 60°C, the efficiency of drying system can reach 75% with reasonable product quality.
Evaluating the prospects for sustainable energy development in a sample of Chinese villages.
Mortimer, Nigel D; Grant, John F
2008-04-01
This paper describes the methods used to evaluate the potential for achieving sustainable energy development in six Chinese villages included in the Sustainable Users' Concepts for China Engaging Scientific Scenarios (SUCCESS) Project by examining energy efficiency potential and local renewable energy prospects. The approaches needed to obtain and analyse information on possible energy efficiency measures and renewable energy resources are summarised. Results are presented in terms of cumulative net savings in primary energy consumption, as an indicator of energy resource depletion, and associated carbon dioxide emissions, as an indicator of global climate change. Options for sustainable energy development are ranked in order of likely implementation and practical actions which could be considered in each village are identified.
Schrama, Johan W; Haidar, Mahmoud N; Geurden, Inge; Heinsbroek, Leon T N; Kaushik, Sachi J
2018-04-01
Currently, energy evaluation of fish feeds is performed on a digestible energy basis. In contrast to net energy (NE) evaluation systems, digestible energy evaluation systems do not differentiate between the different types of digested nutrients regarding their potential for growth. The aim was to develop an NE evaluation for fish by estimating the energy efficiency of digestible nutrients (protein, fat and carbohydrates) and to assess whether these efficiencies differed between Nile tilapia and rainbow trout. Two data sets were constructed. The tilapia and rainbow data set contained, respectively, eight and nine experiments in which the digestibility of protein, fat and energy and the complete energy balances for twenty-three and forty-five diets was measured. The digestible protein (dCP), digestible fat (dFat) and digestible carbohydrate intakes (dCarb) were calculated. By multiple regression analysis, retained energy (RE) was related to dCP, dFat and dCarb. In tilapia, all digestible nutrients were linearly related to RE (P<0·001). In trout, RE was quadratically related to dCarb (P<0·01) and linearly to dCP and dFat (P<0·001). The NE formula was NE=11·5×dCP+35·8×dFAT+11·3×dCarb for tilapia and NE=13·5×dCP+33·0×dFAT+34·0×dCarb-3·64×(dCarb)2 for trout (NE in kJ/(kg0·8×d); dCP, dFat and dCarb in g/(kg0·8×d)). In tilapia, the energetic efficiency of dCP, dFat and dCarb was 49, 91 and 66 %, respectively, showing large similarity with pigs. Tilapia and trout had similar energy efficiencies of dCP (49 v. 57 %) and dFat (91 v. 84 %), but differed regarding dCarb.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-29
... encompass organization-wide energy performance improvement, such as building technology upgrades, product... help EPA promote energy-efficient technologies by evaluating the efficiency of their buildings using... Leaders--Ineligible Facilities List (5900-20) ENERGY STAR Leaders--Leaders Story (5900-20) Service and...
Zhaojiang Wang; Menghua Qin; J.Y. Zhu; Guoyu Tian; Zongquan Li
2013-01-01
Rejects from sulfite pulp mill that otherwise would be disposed of by incineration were converted to ethanol by a combined physicalâbiological process that was comprised of physical refining and simultaneous saccharification and fermentation (SSF). The energy efficiency was evaluated with comparison to thermochemically pretreated biomass, such as those pretreated by...
Updated estimation of energy efficiencies of U.S. petroleum refineries.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palou-Rivera, I.; Wang, M. Q.
2010-12-08
Evaluation of life-cycle (or well-to-wheels, WTW) energy and emission impacts of vehicle/fuel systems requires energy use (or energy efficiencies) of energy processing or conversion activities. In most such studies, petroleum fuels are included. Thus, determination of energy efficiencies of petroleum refineries becomes a necessary step for life-cycle analyses of vehicle/fuel systems. Petroleum refinery energy efficiencies can then be used to determine the total amount of process energy use for refinery operation. Furthermore, since refineries produce multiple products, allocation of energy use and emissions associated with petroleum refineries to various petroleum products is needed for WTW analysis of individual fuels suchmore » as gasoline and diesel. In particular, GREET, the life-cycle model developed at Argonne National Laboratory with DOE sponsorship, compares energy use and emissions of various transportation fuels including gasoline and diesel. Energy use in petroleum refineries is key components of well-to-pump (WTP) energy use and emissions of gasoline and diesel. In GREET, petroleum refinery overall energy efficiencies are used to determine petroleum product specific energy efficiencies. Argonne has developed petroleum refining efficiencies from LP simulations of petroleum refineries and EIA survey data of petroleum refineries up to 2006 (see Wang, 2008). This memo documents Argonne's most recent update of petroleum refining efficiencies.« less
Evaluation of the energy efficiency of enzyme fermentation by mechanistic modeling.
Albaek, Mads O; Gernaey, Krist V; Hansen, Morten S; Stocks, Stuart M
2012-04-01
Modeling biotechnological processes is key to obtaining increased productivity and efficiency. Particularly crucial to successful modeling of such systems is the coupling of the physical transport phenomena and the biological activity in one model. We have applied a model for the expression of cellulosic enzymes by the filamentous fungus Trichoderma reesei and found excellent agreement with experimental data. The most influential factor was demonstrated to be viscosity and its influence on mass transfer. Not surprisingly, the biological model is also shown to have high influence on the model prediction. At different rates of agitation and aeration as well as headspace pressure, we can predict the energy efficiency of oxygen transfer, a key process parameter for economical production of industrial enzymes. An inverse relationship between the productivity and energy efficiency of the process was found. This modeling approach can be used by manufacturers to evaluate the enzyme fermentation process for a range of different process conditions with regard to energy efficiency. Copyright © 2011 Wiley Periodicals, Inc.
Energy and Environment Guide to Action - Chapter 4.4: State Appliance Efficiency Standards
Provides recommendations on designing, implementing, and evaluating state appliance efficiency standards. Appliance standards save energy and generate net benefits for homes, businesses, and industry. State success stories are included for reference.
Fusion energy for space missions in the 21st Century
NASA Technical Reports Server (NTRS)
Schulze, Norman R.
1991-01-01
Future space missions were hypothesized and analyzed and the energy source for their accomplishment investigated. The mission included manned Mars, scientific outposts to and robotic sample return missions from the outer planets and asteroids, as well as fly-by and rendezvous mission with the Oort Cloud and the nearest star, Alpha Centauri. Space system parametric requirements and operational features were established. The energy means for accomplishing the High Energy Space Mission were investigated. Potential energy options which could provide the propulsion and electric power system and operational requirements were reviewed and evaluated. Fusion energy was considered to be the preferred option and was analyzed in depth. Candidate fusion fuels were evaluated based upon the energy output and neutron flux. Reactors exhibiting a highly efficient use of magnetic fields for space use while at the same time offering efficient coupling to an exhaust propellant or to a direct energy convertor for efficient electrical production were examined. Near term approaches were identified.
Streamlining Building Efficiency Evaluation with DOE's Asset Score Preview
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goel, Supriya; Wang, Nora; Gonzalez, Juan
2016-08-26
Building Energy Asset Score (Asset Score), developed by the Pacific Northwest National Laboratory (PNNL) for the U.S. Department of Energy (DOE), is a tool to help building owners and managers assess the efficiency of a building's energy-related systems and encourage investment in cost-effective improvements. The Asset Score uses an EnergyPlus model to provide a quick assessment of building energy performance with minimum user inputs of building characteristics and identifies upgrade opportunities. Even with a reduced set of user inputs, data collection remains a challenge for wide-spread adoption, especially when evaluating a large number of buildings. To address this, Asset Scoremore » Preview was developed to allow users to enter as few as seven building characteristics to quickly assess their buildings before a more in-depth analysis. A streamlined assessment from Preview to full Asset Score provides an easy entry point and also enables users who manage a large number of buildings to screen and prioritize buildings that can benefit most from a more detailed evaluation and possible energy efficiency upgrades without intensive data collection.« less
West Village Student Housing Phase I: Apartment Monitoring and Evaluation
DOE Office of Scientific and Technical Information (OSTI.GOV)
German, A.; Bell, C.; Dakin, B.
Building America team Alliance for Residential Building Innovation (ARBI) worked with the University of California, Davis (UC Davis) and the developer partner West Village Community Partnership (WVCP) to evaluate performance on 192 student apartments completed in September, 2011 as part of Phase I of the multi-purpose West Village project. West Village, the largest planned zero net energy community in the United States. The campus neighborhood is designed to enable faculty, staff and students to affordably live near campus, take advantage of environmentally friendly transportation options, and participate fully in campus life. The aggressive energy efficiency measures that are incorporated inmore » the design contribute to source energy reductions of 37% over the B10 Benchmark. The energy efficiency measures that are incorporated into these apartments include increased wall & attic insulation, high performance windows, high efficiency heat pumps for heating and cooling, central heat pump water heaters (HPWHs), 100% high efficacy lighting, and ENERGY STAR major appliances. Results discuss how measured energy use compares to modeling estimates over a 10 month monitoring period and includes a cost effective evaluation.« less
NASA Astrophysics Data System (ADS)
Zhang, Li; Zhang, Yu; Zhou, Liansheng; E, Zhijun; Wang, Kun; Wang, Ziyue; Li, Guohao; Qu, Bin
2018-02-01
The waste heat energy efficiency for absorption heat pump recycling thermal power plant circulating water has been analyzed. After the operation of heat pump, the influences on power generation and heat generation of unit were taken into account. In the light of the characteristics of heat pump in different operation stages, the energy efficiency of heat pump was evaluated comprehensively on both sides of benefits belonging to electricity and benefits belonging to heat, which adopted the method of contrast test. Thus, the reference of energy efficiency for same type projects was provided.
Analyses of electromagnetic and piezoelectric systems for efficient vibration energy harvesting
NASA Astrophysics Data System (ADS)
Hadas, Z.; Smilek, J.; Rubes, O.
2017-05-01
The paper deals with analyses and evaluation of vibration energy harvesting systems which are based on electromagnetic and piezoelectric physical principles off electro-mechanical conversion. Energy harvesting systems are associated with wireless sensors and a monitoring of engineering objects. The most of engineering objects operate with unwanted mechanical vibrations. However, vibrations could provide an ambient source of energy which is converted into useful electricity. The use of electromagnetic and piezoelectric vibration energy harvesters is analyzed in this paper. Thee evaluated output power is used for a choice of the efficient system with respect to the character of vibrations and thee required power output.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goldman, Charles A.; Stuart, Elizabeth; Hoffman, Ian
2011-02-25
Since the spring of 2009, billions of federal dollars have been allocated to state and local governments as grants for energy efficiency and renewable energy projects and programs. The scale of this American Reinvestment and Recovery Act (ARRA) funding, focused on 'shovel-ready' projects to create and retain jobs, is unprecedented. Thousands of newly funded players - cities, counties, states, and tribes - and thousands of programs and projects are entering the existing landscape of energy efficiency programs for the first time or expanding their reach. The nation's experience base with energy efficiency is growing enormously, fed by federal dollars andmore » driven by broader objectives than saving energy alone. State and local officials made countless choices in developing portfolios of ARRA-funded energy efficiency programs and deciding how their programs would relate to existing efficiency programs funded by utility customers. Those choices are worth examining as bellwethers of a future world where there may be multiple program administrators and funding sources in many states. What are the opportunities and challenges of this new environment? What short- and long-term impacts will this large, infusion of funds have on utility customer-funded programs; for example, on infrastructure for delivering energy efficiency services or on customer willingness to invest in energy efficiency? To what extent has the attribution of energy savings been a critical issue, especially where administrators of utility customer-funded energy efficiency programs have performance or shareholder incentives? Do the new ARRA-funded energy efficiency programs provide insights on roles or activities that are particularly well-suited to state and local program administrators vs. administrators or implementers of utility customer-funded programs? The answers could have important implications for the future of U.S. energy efficiency. This report focuses on a selected set of ARRA-funded energy efficiency programs administered by state energy offices: the State Energy Program (SEP) formula grants, the portion of Energy Efficiency and Conservation Block Grant (EECBG) formula funds administered directly by states, and the State Energy Efficient Appliance Rebate Program (SEEARP). Since these ARRA programs devote significant monies to energy efficiency and serve similar markets as utility customer-funded programs, there are frequent interactions between programs. We exclude the DOE low-income weatherization program and EECBG funding awarded directly to the over 2,200 cities, counties and tribes from our study to keep its scope manageable. We summarize the energy efficiency program design and funding choices made by the 50 state energy offices, 5 territories and the District of Columbia. We then focus on the specific choices made in 12 case study states. These states were selected based on the level of utility customer program funding, diversity of program administrator models, and geographic diversity. Based on interviews with more than 80 energy efficiency actors in those 12 states, we draw observations about states strategies for use of Recovery Act funds. We examine interactions between ARRA programs and utility customer-funded energy efficiency programs in terms of program planning, program design and implementation, policy issues, and potential long-term impacts. We consider how the existing regulatory policy framework and energy efficiency programs in these 12 states may have impacted development of these selected ARRA programs. Finally, we summarize key trends and highlight issues that evaluators of these ARRA programs may want to examine in more depth in their process and impact evaluations.« less
Energy future Santa Cruz. A citizens plan for energy self-reliance: Executive summary
NASA Astrophysics Data System (ADS)
Cohn, J.; Stayton, R.
A grassroots energy conservation project which involved more than 3100 residents of Santa Cruz, California, is discussed. Citizens attended forums and town meetings to suggest ideas for solving the community's energy problems. These ideas were then evaluated by the Energy Future Advisory Board and compiled into the Energy Future Plan. The plan covers such topics as new residences, residential retrofit, automobile efficiency, farm efficiency, commercial greenhouses, local food production, commercial efficiency, land use planning, energy eduction and financing, and solar, wind, and ocean energy. If the plan is successfully implemented, the energy that the community is projected to use in 1991 can be lowered by 24 to 35 percent.
10 CFR 436.42 - Evaluation of Life-Cycle Cost Effectiveness.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 3 2014-01-01 2014-01-01 false Evaluation of Life-Cycle Cost Effectiveness. 436.42... PROGRAMS Agency Procurement of Energy Efficient Products § 436.42 Evaluation of Life-Cycle Cost...) ENERGY STAR qualified and FEMP designated products may be assumed to be life-cycle cost-effective. (b) In...
10 CFR 436.42 - Evaluation of Life-Cycle Cost Effectiveness.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 3 2012-01-01 2012-01-01 false Evaluation of Life-Cycle Cost Effectiveness. 436.42... PROGRAMS Agency Procurement of Energy Efficient Products § 436.42 Evaluation of Life-Cycle Cost...) ENERGY STAR qualified and FEMP designated products may be assumed to be life-cycle cost-effective. (b) In...
10 CFR 436.42 - Evaluation of Life-Cycle Cost Effectiveness.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 3 2013-01-01 2013-01-01 false Evaluation of Life-Cycle Cost Effectiveness. 436.42... PROGRAMS Agency Procurement of Energy Efficient Products § 436.42 Evaluation of Life-Cycle Cost...) ENERGY STAR qualified and FEMP designated products may be assumed to be life-cycle cost-effective. (b) In...
10 CFR 436.42 - Evaluation of Life-Cycle Cost Effectiveness.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 3 2010-01-01 2010-01-01 false Evaluation of Life-Cycle Cost Effectiveness. 436.42... PROGRAMS Agency Procurement of Energy Efficient Products § 436.42 Evaluation of Life-Cycle Cost...) ENERGY STAR qualified and FEMP designated products may be assumed to be life-cycle cost-effective. (b) In...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kurnik, Charles W; Violette, Daniel M.; Rathbun, Pamela
This chapter focuses on the methods used to estimate net energy savings in evaluation, measurement, and verification (EM and V) studies for energy efficiency (EE) programs. The chapter provides a definition of net savings, which remains an unsettled topic both within the EE evaluation community and across the broader public policy evaluation community, particularly in the context of attribution of savings to a program. The chapter differs from the measure-specific Uniform Methods Project (UMP) chapters in both its approach and work product. Unlike other UMP resources that provide recommended protocols for determining gross energy savings, this chapter describes and comparesmore » the current industry practices for determining net energy savings but does not prescribe methods.« less
Analysis of railroad energy efficiency in the United States.
DOT National Transportation Integrated Search
2013-05-01
The purpose of this study is to provide information about railroad fuel efficiency that may be useful in evaluating transportation energy policies and assessing the sustainability of potential projects. The specific objectives are to (1) develop rail...
Evaluation of two typical distributed energy systems
NASA Astrophysics Data System (ADS)
Han, Miaomiao; Tan, Xiu
2018-03-01
According to the two-natural gas distributed energy system driven by gas engine driven and gas turbine, in this paper, the first and second laws of thermodynamics are used to measure the distributed energy system from the two parties of “quantity” and “quality”. The calculation results show that the internal combustion engine driven distributed energy station has a higher energy efficiency, but the energy efficiency is low; the gas turbine driven distributed energy station energy efficiency is high, but the primary energy utilization rate is relatively low. When configuring the system, we should determine the applicable natural gas distributed energy system technology plan and unit configuration plan according to the actual load factors of the project and the actual factors such as the location, background and environmental requirements of the project. “quality” measure, the utilization of waste heat energy efficiency index is proposed.
Evaluating Domestic Hot Water Distribution System Options With Validated Analysis Models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weitzel, E.; Hoeschele, M.
2014-09-01
A developing body of work is forming that collects data on domestic hot water consumption, water use behaviors, and energy efficiency of various distribution systems. A full distribution system developed in TRNSYS has been validated using field monitoring data and then exercised in a number of climates to understand climate impact on performance. This study builds upon previous analysis modelling work to evaluate differing distribution systems and the sensitivities of water heating energy and water use efficiency to variations of climate, load, distribution type, insulation and compact plumbing practices. Overall 124 different TRNSYS models were simulated. Of the configurations evaluated,more » distribution losses account for 13-29% of the total water heating energy use and water use efficiency ranges from 11-22%. The base case, an uninsulated trunk and branch system sees the most improvement in energy consumption by insulating and locating the water heater central to all fixtures. Demand recirculation systems are not projected to provide significant energy savings and in some cases increase energy consumption. Water use is most efficient with demand recirculation systems, followed by the insulated trunk and branch system with a central water heater. Compact plumbing practices and insulation have the most impact on energy consumption (2-6% for insulation and 3-4% per 10 gallons of enclosed volume reduced). The results of this work are useful in informing future development of water heating best practices guides as well as more accurate (and simulation time efficient) distribution models for annual whole house simulation programs.« less
76 FR 37344 - Technology Evaluation Process
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-27
...-NOA-0039] Technology Evaluation Process AGENCY: Office of Energy Efficiency and Renewable Energy... is an extension of a prior RFI seeking comment on a proposed commercial buildings technology... seeks comments and information related to a commercial buildings technology evaluation process. DOE is...
76 FR 30696 - Technology Evaluation Process
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-26
...-NOA-0039] Technology Evaluation Process AGENCY: Office of Energy Efficiency and Renewable Energy... (DOE) seeks comments and information related to a commercial buildings technology evaluation process... technologies for commercial buildings based on the voluntary submittal of product test data. The program would...
Dieu-Hang, To; Grafton, R Quentin; Martínez-Espiñeira, Roberto; Garcia-Valiñas, Maria
2017-07-15
Using a household-based data set of more than 12,000 households from 11 OECD countries, we analyse the factors underlying the decision by households to adopt energy-efficient and water-efficient equipment. We evaluate the roles of both attitudes and labelling schemes on the adoption of energy and water-efficient equipment, and also the interaction and complementarity between energy and water conservation behaviours. Our findings show: one, 'green' social norms and favourable attitudes towards the environment are associated with an increased likelihood of households' adoption of energy and water-efficient appliances; two, households' purchase decisions are positively affected by their awareness, understanding, and trust of labelling schemes; and three, there is evidence of complementarity between energy conservation and water conservation behaviours. Copyright © 2017 Elsevier Ltd. All rights reserved.
Asada, Naoya; Fedorov, Dmitri G.; Kitaura, Kazuo; Nakanishi, Isao; Merz, Kenneth M.
2012-01-01
We propose an approach based on the overlapping multicenter ONIOM to evaluate intermolecular interaction energies in large systems and demonstrate its accuracy on several representative systems in the complete basis set limit at the MP2 and CCSD(T) level of theory. In the application to the intermolecular interaction energy between insulin dimer and 4′-hydroxyacetanilide at the MP2/CBS level, we use the fragment molecular orbital method for the calculation of the entire complex assigned to the lowest layer in three-layer ONIOM. The developed method is shown to be efficient and accurate in the evaluation of the protein-ligand interaction energies. PMID:23050059
Energy efficient engine high-pressure turbine supersonic cascade technology report
NASA Technical Reports Server (NTRS)
Kopper, F. C.; Milano, R.; Davis, R. L.; Dring, R. P.; Stoeffler, R. C.
1981-01-01
The performance of two vane endwall geometries and three blade sections for the high-pressure turbine was evaluated in terms of the efficiency requirements of the Energy Efficient Engine high-pressure turbine component. The van endwall designs featured a straight wall and S-wall configuration. The blade designs included a base blade, straightback blade, and overcambered blade. Test results indicated that the S-wall vane configuration and the base blade configuration offered the most promising performance characteristics for the Energy Efficient Engine high-pressure turbine component.
Super Energy Efficiency Design (S.E.E.D.) Home Evaluation
DOE Office of Scientific and Technical Information (OSTI.GOV)
German, A.; Dakin, B.; Backman, C.
This report describes the results of evaluation by the Alliance for Residential Building Innovation (ARBI) Building America team of the 'Super Energy Efficient Design' (S.E.E.D) home, a 1,935 sq. ft., single-story spec home located in Tucson, AZ. This prototype design was developed with the goal of providing an exceptionally energy efficient yet affordable home and includes numerous aggressive energy features intended to significantly reduce heating and cooling loads such as structural insulated panel (SIP) walls and roof, high performance windows, an ERV, an air-to-water heat pump with mixed-mode radiant and forced air delivery, solar water heating, and rooftop PV. Sourcemore » energy savings are estimated at 45% over the Building America B10 Benchmark. System commissioning, short term testing, long term monitoring and detailed analysis of results was conducted to identify the performance attributes and cost effectiveness of the whole house measure package.« less
Super Energy Efficient Design (S.E.E.D.) Home Evaluation
DOE Office of Scientific and Technical Information (OSTI.GOV)
German, A.; Dakin, B.; Backman, C.
This report describes the results of evaluation by the Alliance for Residential Building Innovation (ARBI) Building America team of the “Super Energy Efficient Design” (S.E.E.D) home, a 1,935 sq. ft., single-story spec home located in Tucson, AZ. This prototype design was developed with the goal of providing an exceptionally energy efficient yet affordable home and includes numerous aggressive energy features intended to significantly reduce heating and cooling loads such as structural insulated panel (SIP) walls and roof, high performance windows, an ERV, an air-to-water heat pump with mixed-mode radiant and forced air delivery, solar water heating, and rooftop PV. Sourcemore » energy savings are estimated at 45% over the Building America B10 Benchmark. System commissioning, short term testing, long term monitoring and detailed analysis of results was conducted to identify the performance attributes and cost effectiveness of the whole house measure package.« less
Mohammadpour, Atefeh; Anumba, Chimay J; Messner, John I
2016-07-01
There is a growing focus on enhancing energy efficiency in healthcare facilities, many of which are decades old. Since replacement of all aging healthcare facilities is not economically feasible, the retrofitting of these facilities is an appropriate path, which also provides an opportunity to incorporate energy efficiency measures. In undertaking energy efficiency retrofits, it is vital that the safety of the patients in these facilities is maintained or enhanced. However, the interactions between patient safety and energy efficiency have not been adequately addressed to realize the full benefits of retrofitting healthcare facilities. To address this, an innovative integrated framework, the Patient Safety and Energy Efficiency (PATSiE) framework, was developed to simultaneously enhance patient safety and energy efficiency. The framework includes a step -: by -: step procedure for enhancing both patient safety and energy efficiency. It provides a structured overview of the different stages involved in retrofitting healthcare facilities and improves understanding of the intricacies associated with integrating patient safety improvements with energy efficiency enhancements. Evaluation of the PATSiE framework was conducted through focus groups with the key stakeholders in two case study healthcare facilities. The feedback from these stakeholders was generally positive, as they considered the framework useful and applicable to retrofit projects in the healthcare industry. © The Author(s) 2016.
Exergy analysis on industrial boiler energy conservation and emission evaluation applications
NASA Astrophysics Data System (ADS)
Li, Henan
2017-06-01
Industrial boiler is one of the most energy-consuming equipments in china, the annual consumption of energy accounts for about one-third of the national energy consumption. Industrial boilers in service at present have several severe problems such as small capacity, low efficiency, high energy consumption and causing severe pollution on environment. In recent years, our country in the big scope, long time serious fog weather, with coal-fired industrial boilers is closely related to the regional characteristics of high strength and low emissions [1]. The energy-efficient and emission-reducing of industry boiler is of great significance to improve China’s energy usage efficiency and environmental protection. Difference in thermal equilibrium theory is widely used in boiler design, exergy analysis method is established on the basis of the first law and second law of thermodynamics, by studying the cycle of the effect of energy conversion and utilization, to analyze its influencing factors, to reveal the exergy loss of location, distribution and size, find out the weak links, and a method of mining system of the boiler energy saving potential. Exergy analysis method is used for layer combustion boiler efficiency and pollutant emission characteristics analysis and evaluation, and can more objectively and accurately the energy conserving potential of the mining system of the boiler, find out the weak link of energy consumption, and improve equipment performance to improve the industrial boiler environmental friendliness.
Schimpe, Michael; Naumann, Maik; Truong, Nam; ...
2017-11-08
Energy efficiency is a key performance indicator for battery storage systems. A detailed electro-thermal model of a stationary lithium-ion battery system is developed and an evaluation of its energy efficiency is conducted. The model offers a holistic approach to calculating conversion losses and auxiliary power consumption. Sub-models for battery rack, power electronics, thermal management as well as the control and monitoring components are developed and coupled to a comprehensive model. The simulation is parametrized based on a prototype 192 kWh system using lithium iron phosphate batteries connected to the low voltage grid. The key loss mechanisms are identified, thoroughly analyzedmore » and modeled. Generic profiles featuring various system operation modes are evaluated to show the characteristics of stationary battery systems. Typically the losses in the power electronics outweigh the losses in the battery at low power operating points. The auxiliary power consumption dominates for low system utilization rates. For estimation of real-world performance, the grid applications Primary Control Reserve, Secondary Control Reserve and the storage of surplus photovoltaic power are evaluated. Conversion round-trip efficiency is in the range of 70-80%. Finally, overall system efficiency, which also considers system power consumption, is 8-13 percentage points lower for Primary Control Reserve and the photovoltaic-battery application. However, for Secondary Control Reserve, the total round-trip efficiency is found to be extremely low at 23% due to the low energy throughput of this application type.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schimpe, Michael; Naumann, Maik; Truong, Nam
Energy efficiency is a key performance indicator for battery storage systems. A detailed electro-thermal model of a stationary lithium-ion battery system is developed and an evaluation of its energy efficiency is conducted. The model offers a holistic approach to calculating conversion losses and auxiliary power consumption. Sub-models for battery rack, power electronics, thermal management as well as the control and monitoring components are developed and coupled to a comprehensive model. The simulation is parametrized based on a prototype 192 kWh system using lithium iron phosphate batteries connected to the low voltage grid. The key loss mechanisms are identified, thoroughly analyzedmore » and modeled. Generic profiles featuring various system operation modes are evaluated to show the characteristics of stationary battery systems. Typically the losses in the power electronics outweigh the losses in the battery at low power operating points. The auxiliary power consumption dominates for low system utilization rates. For estimation of real-world performance, the grid applications Primary Control Reserve, Secondary Control Reserve and the storage of surplus photovoltaic power are evaluated. Conversion round-trip efficiency is in the range of 70-80%. Finally, overall system efficiency, which also considers system power consumption, is 8-13 percentage points lower for Primary Control Reserve and the photovoltaic-battery application. However, for Secondary Control Reserve, the total round-trip efficiency is found to be extremely low at 23% due to the low energy throughput of this application type.« less
Wang, Zhaojiang; Qin, Menghua; Zhu, J Y; Tian, Guoyu; Li, Zongquan
2013-02-01
Rejects from sulfite pulp mill that otherwise would be disposed of by incineration were converted to ethanol by a combined physical-biological process that was comprised of physical refining and simultaneous saccharification and fermentation (SSF). The energy efficiency was evaluated with comparison to thermochemically pretreated biomass, such as those pretreated by dilute acid (DA) and sulfite pretreatment to overcome recalcitrance of lignocelluloses (SPORL). It was observed that the structure deconstruction of rejects by physical refining was indispensable to effective bioconversion but more energy intensive than that of thermochemically pretreated biomass. Fortunately, the energy consumption was compensated by the reduced enzyme dosage and the elevated ethanol yield. Furthermore, adjustment of disk-plates gap led to reduction in energy consumption with negligible influence on ethanol yield. In this context, energy efficiency up to 717.7% was achieved for rejects, much higher than that of SPORL sample (283.7%) and DA sample (152.8%). Copyright © 2012 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schiller Consulting, Inc.; Schiller, Steven R.; Goldman, Charles A.
2011-02-04
This report is a scoping study that identifies issues associated with developing a national evaluation, measurement and verification (EM&V) standard for end-use, non-transportation, energy efficiency activities. The objectives of this study are to identify the scope of such a standard and define EM&V requirements and issues that will need to be addressed in a standard. To explore these issues, we provide and discuss: (1) a set of definitions applicable to an EM&V standard; (2) a literature review of existing guidelines, standards, and 'initiatives' relating to EM&V standards as well as a review of 'bottom-up' versus 'top-down' evaluation approaches; (3) amore » summary of EM&V related provisions of two recent federal legislative proposals (Congressman Waxman's and Markey's American Clean Energy and Security Act of 2009 and Senator Bingaman's American Clean Energy Leadership Act of 2009) that include national efficiency resource requirements; (4) an annotated list of issues that that are likely to be central to, and need to be considered when, developing a national EM&V standard; and (5) a discussion of the implications of such issues. There are three primary reasons for developing a national efficiency EM&V standard. First, some policy makers, regulators and practitioners believe that a national standard would streamline EM&V implementation, reduce costs and complexity, and improve comparability of results across jurisdictions; although there are benefits associated with each jurisdiction setting its own EM&V requirements based on their specific portfolio and evaluation budgets and objectives. Secondly, if energy efficiency is determined by the US Environmental Protection Agency to be a Best Available Control Technology (BACT) for avoiding criteria pollutant and/or greenhouse gas emissions, then a standard can be required for documenting the emission reductions resulting from efficiency actions. The third reason for a national EM&V standard is that such a standard is likely to be required as a result of future federal energy legislation that includes end-use energy efficiency, either as a stand-alone energy-efficiency resource standard (EERS) or as part of a clean energy or renewable energy standard. This study is focused primarily on this third reason and thus explores issues associated with a national EM&V standard if energy efficiency is a qualifying resource in federal clean energy legislation. Developing a national EM&V standard is likely to be a lengthy process; this study focuses on the critical first step of identifying the issues that must be addressed in a future standard. Perhaps the most fundamental of these issues is 'how good is good enough?' This has always been the fundamental issue of EM&V for energy efficiency and is a result of the counter-factual nature of efficiency. Counter-factual in that savings are not measured, but estimated to varying degrees of accuracy by comparing energy consumption after a project (program) is implemented with what is assumed to have been the consumption of energy in the absence of the project (program). Therefore, the how good is good enough question is a short version of asking how certain does one have to be of the energy savings estimate that results from EM&V activities and is that level of certainty properly balanced against the amount of effort (resources, time, money) that is utilized to obtain that level of certainty. The implication is that not only should energy efficiency investments be cost-effective, but EM&V investments should consider risk management principles and thus also balance the costs and value of information derived from EM&V (EM&V should also be cost-effective).« less
NASA Astrophysics Data System (ADS)
Jian, Wei; Estevez, Claudio; Chowdhury, Arshad; Jia, Zhensheng; Wang, Jianxin; Yu, Jianguo; Chang, Gee-Kung
2010-12-01
This paper presents an energy-efficient Medium Access Control (MAC) protocol for very-high-throughput millimeter-wave (mm-wave) wireless sensor communication networks (VHT-MSCNs) based on hybrid multiple access techniques of frequency division multiplexing access (FDMA) and time division multiplexing access (TDMA). An energy-efficient Superframe for wireless sensor communication network employing directional mm-wave wireless access technologies is proposed for systems that require very high throughput, such as high definition video signals, for sensing, processing, transmitting, and actuating functions. Energy consumption modeling for each network element and comparisons among various multi-access technologies in term of power and MAC layer operations are investigated for evaluating the energy-efficient improvement of proposed MAC protocol.
7 CFR 4280.129 - Evaluation of RES and EEI guaranteed loan applications.
Code of Federal Regulations, 2013 CFR
2013-01-01
... GRANTS Rural Energy for America Program General Renewable Energy System and Energy Efficiency Improvement... Agency will evaluate each application and make a determination as to whether the borrower and project are eligible, the project has technical merit, there is reasonable assurance of repayment, there is sufficient...
7 CFR 4280.129 - Evaluation of RES and EEI guaranteed loan applications.
Code of Federal Regulations, 2012 CFR
2012-01-01
... GRANTS Rural Energy for America Program General Renewable Energy System and Energy Efficiency Improvement... Agency will evaluate each application and make a determination as to whether the borrower and project are eligible, the project has technical merit, there is reasonable assurance of repayment, there is sufficient...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Michael; Dietsch, Niko
2018-01-01
This guide describes frameworks for evaluation, measurement, and verification (EM&V) of utility customer–funded energy efficiency programs. The authors reviewed multiple frameworks across the United States and gathered input from experts to prepare this guide. This guide provides the reader with both the contents of an EM&V framework, along with the processes used to develop and update these frameworks.
BEST Winery Guidebook: Benchmarking and Energy and Water SavingsTool for the Wine Industry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galitsky, Christina; Worrell, Ernst; Radspieler, Anthony
2005-10-15
Not all industrial facilities have the staff or the opportunity to perform a detailed audit of their operations. The lack of knowledge of energy efficiency opportunities provides an important barrier to improving efficiency. Benchmarking has demonstrated to help energy users understand energy use and the potential for energy efficiency improvement, reducing the information barrier. In California, the wine making industry is not only one of the economic pillars of the economy; it is also a large energy consumer, with a considerable potential for energy-efficiency improvement. Lawrence Berkeley National Laboratory and Fetzer Vineyards developed an integrated benchmarking and self-assessment tool formore » the California wine industry called ''BEST''(Benchmarking and Energy and water Savings Tool) Winery. BEST Winery enables a winery to compare its energy efficiency to a best practice winery, accounting for differences in product mix and other characteristics of the winery. The tool enables the user to evaluate the impact of implementing energy and water efficiency measures. The tool facilitates strategic planning of efficiency measures, based on the estimated impact of the measures, their costs and savings. BEST Winery is available as a software tool in an Excel environment. This report serves as background material, documenting assumptions and information on the included energy and water efficiency measures. It also serves as a user guide for the software package.« less
Optimal Energy Efficiency Fairness of Nodes in Wireless Powered Communication Networks.
Zhang, Jing; Zhou, Qingjie; Ng, Derrick Wing Kwan; Jo, Minho
2017-09-15
In wireless powered communication networks (WPCNs), it is essential to research energy efficiency fairness in order to evaluate the balance of nodes for receiving information and harvesting energy. In this paper, we propose an efficient iterative algorithm for optimal energy efficiency proportional fairness in WPCN. The main idea is to use stochastic geometry to derive the mean proportionally fairness utility function with respect to user association probability and receive threshold. Subsequently, we prove that the relaxed proportionally fairness utility function is a concave function for user association probability and receive threshold, respectively. At the same time, a sub-optimal algorithm by exploiting alternating optimization approach is proposed. Through numerical simulations, we demonstrate that our sub-optimal algorithm can obtain a result close to optimal energy efficiency proportional fairness with significant reduction of computational complexity.
Optimal Energy Efficiency Fairness of Nodes in Wireless Powered Communication Networks
Zhou, Qingjie; Ng, Derrick Wing Kwan; Jo, Minho
2017-01-01
In wireless powered communication networks (WPCNs), it is essential to research energy efficiency fairness in order to evaluate the balance of nodes for receiving information and harvesting energy. In this paper, we propose an efficient iterative algorithm for optimal energy efficiency proportional fairness in WPCN. The main idea is to use stochastic geometry to derive the mean proportionally fairness utility function with respect to user association probability and receive threshold. Subsequently, we prove that the relaxed proportionally fairness utility function is a concave function for user association probability and receive threshold, respectively. At the same time, a sub-optimal algorithm by exploiting alternating optimization approach is proposed. Through numerical simulations, we demonstrate that our sub-optimal algorithm can obtain a result close to optimal energy efficiency proportional fairness with significant reduction of computational complexity. PMID:28914818
New Automotive Air Conditioning System Simulation Tool Developed in MATLAB/Simulink
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kiss, T.; Chaney, L.; Meyer, J.
Further improvements in vehicle fuel efficiency require accurate evaluation of the vehicle's transient total power requirement. When operated, the air conditioning (A/C) system is the largest auxiliary load on a vehicle; therefore, accurate evaluation of the load it places on the vehicle's engine and/or energy storage system is especially important. Vehicle simulation software, such as 'Autonomie,' has been used by OEMs to evaluate vehicles' energy performance. A transient A/C simulation tool incorporated into vehicle simulation models would also provide a tool for developing more efficient A/C systems through a thorough consideration of the transient A/C system performance. The dynamic systemmore » simulation software Matlab/Simulink was used to develop new and more efficient vehicle energy system controls. The various modeling methods used for the new simulation tool are described in detail. Comparison with measured data is provided to demonstrate the validity of the model.« less
Energy efficiency evaluation of hospital building office
NASA Astrophysics Data System (ADS)
Fitriani, Indah; Sangadji, Senot; Kristiawan, S. A.
2017-01-01
One of the strategy employed in building design is reducing energy consumption while maintaining the best comfort zone in building indoor climate. The first step to improve office buildings energy performance by evaluating its existing energy usage using energy consumption intensity (Intensitas Konsumsi Energi, IKE) index. Energy evaluation of office building for hospital dr. Sayidiman at Kabupaten Magetan has been carried out in the initial investigation. The office building is operated with active cooling (air conditioning, AC) and use limited daylighting which consumes 14.61 kWh/m2/month. This IKE value is attributed into a slightly inefficient category. Further investigation was carried out by modeling and simulating thermal energy load and room lighting in every building zone using of Ecotect from Autodesk. Three scenarios of building energy and lighting retrofit have been performed simulating representing energy efficiency using cross ventilation, room openings, and passive cooling. The results of the numerical simulation indicate that the third scenario by employing additional windows, reflector media and skylight exhibit the best result and in accordance with SNI 03-6575-2001 lighting standard. Total thermal load of the existing building which includes fabric gains, indirect solar gains, direct solar gains, ventilation fans, internal gains, inter-zonal gains and cooling load were 162,145.40 kWh. Based on the three scenarios, the thermal load value (kWh) obtained was lowest achieved scenario 2 with the thermal value of 117,539.08 kWh.The final results are interpreted from the total energy emissions evaluated using the Ecotect software, the heating and cooling demand value and specific design of the windows are important factors to determine the energy efficiency of the buildings.
Commercial Building Energy Asset Rating Program -- Market Research
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCabe, Molly J.; Wang, Na
2012-04-19
Under contract to Pacific Northwest National Laboratory, HaydenTanner, LLC conducted an in-depth analysis of the potential market value of a commercial building energy asset rating program for the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy. The market research objectives were to: (1) Evaluate market interest and need for a program and tool to offer asset rating and rapidly identify potential energy efficiency measures for the commercial building sector. (2) Identify key input variables and asset rating outputs that would facilitate increased investment in energy efficiency. (3) Assess best practices and lessons learned from existing nationalmore » and international energy rating programs. (4) Identify core messaging to motivate owners, investors, financiers, and others in the real estate sector to adopt a voluntary asset rating program and, as a consequence, deploy high-performance strategies and technologies across new and existing buildings. (5) Identify leverage factors and incentives that facilitate increased investment in these buildings. To meet these objectives, work consisted of a review of the relevant literature, examination of existing and emergent asset and operational rating systems, interviews with industry stakeholders, and an evaluation of the value implication of an asset label on asset valuation. This report documents the analysis methodology and findings, conclusion, and recommendations. Its intent is to support and inform the DOE Office of Energy Efficiency and Renewable Energy on the market need and potential value impacts of an asset labeling and diagnostic tool to encourage high-performance new buildings and building efficiency retrofit projects.« less
Evaluating Realized Impacts of DOE/EERE R&D Programs. Standard impact evaluation method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruegg, Rosalie; O'Connor, Alan C.; Loomis, Ross J.
2014-08-01
This document provides guidance for evaluators who conduct impact assessments of research and development (R&D) programs for the U.S. Department of Energy’s (DOE) Office of Energy Efficiency and Renewable Energy (EERE). It is also targeted at EERE program staff responsible for initiating and managing commissioned impact studies. The guide specifies how to estimate economic benefits and costs, energy saved and installed or generated, environmental impacts, energy security impacts, and knowledge impacts of R&D investments in advanced energy technologies.
Energy Education Incentives: Evaluating the Impact of Consumer Energy Kits
ERIC Educational Resources Information Center
Kirby, Sarah D.; Guin, Autumn; Langham, Laura
2015-01-01
Measuring the energy and environmental impact of residential energy education efforts is difficult. The E-Conservation residential energy management program uses consumer energy kits to document the impact of energy-efficient improvements. The consumer energy kit provides an incentive for individuals attending energy education workshop, helps…
NASA Astrophysics Data System (ADS)
Linker, Thomas M.; Lee, Glenn S.; Beekman, Matt
2018-06-01
The semi-analytical methods of thermoelectric energy conversion efficiency calculation based on the cumulative properties approach and reduced variables approach are compared for 21 high performance thermoelectric materials. Both approaches account for the temperature dependence of the material properties as well as the Thomson effect, thus the predicted conversion efficiencies are generally lower than that based on the conventional thermoelectric figure of merit ZT for nearly all of the materials evaluated. The two methods also predict material energy conversion efficiencies that are in very good agreement which each other, even for large temperature differences (average percent difference of 4% with maximum observed deviation of 11%). The tradeoff between obtaining a reliable assessment of a material's potential for thermoelectric applications and the complexity of implementation of the three models, as well as the advantages of using more accurate modeling approaches in evaluating new thermoelectric materials, are highlighted.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghatikar, Girish; Cheung, Iris; Lanzisera, Steven
This report documents the technical evaluation of a collaborative research, development, and demonstration (RD&D) project that aims to address energy efficiency of Miscellaneous and Electronic Loads (MELs) (referred to as plug loads interchangeably in this report) using load monitoring and control devices. The goal s of this project are to identify and provide energy efficiency and building technologies to exemplary information technology (IT) office buildings, and to assist in transforming markets via technical assistance and engagement of Indian and U.S. stakeholders. This report describes the results of technology evaluation and United States – India collaboration between the Lawrence Berkeley Nationalmore » Laboratory (LBNL), Infosys Technologies Limited (India), and Smartenit, Inc. (U.S.) to address plug - load efficiency. The conclusions and recommendations focus on the larger benefits of such technologies and their impacts on both U.S. and Indian stakeholders.« less
An exergy approach to efficiency evaluation of desalination
NASA Astrophysics Data System (ADS)
Ng, Kim Choon; Shahzad, Muhammad Wakil; Son, Hyuk Soo; Hamed, Osman A.
2017-05-01
This paper presents an evaluation process efficiency based on the consumption of primary energy for all types of practical desalination methods available hitherto. The conventional performance ratio has, thus far, been defined with respect to the consumption of derived energy, such as the electricity or steam, which are susceptible to the conversion losses of power plants and boilers that burned the input primary fuels. As derived energies are usually expressed by the units, either kWh or Joules, these units cannot differentiate the grade of energy supplied to the processes accurately. In this paper, the specific energy consumption is revisited for the efficacy of all large-scale desalination plants. In today's combined production of electricity and desalinated water, accomplished with advanced cogeneration concept, the input exergy of fuels is utilized optimally and efficiently in a temperature cascaded manner. By discerning the exergy destruction successively in the turbines and desalination processes, the relative contribution of primary energy to the processes can be accurately apportioned to the input primary energy. Although efficiency is not a law of thermodynamics, however, a common platform for expressing the figures of merit explicit to the efficacy of desalination processes can be developed meaningfully that has the thermodynamic rigor up to the ideal or thermodynamic limit of seawater desalination for all scientists and engineers to aspire to.
Zhang, Jun; Jia, Chunrong; Wu, Yi; Xi, Beidou; Wang, Lijun; Zhai, Youlong
2017-01-01
The bioethanol is playing an increasingly important role in renewable energy in China. Based on the theory of circular economy, integration of different resources by polygeneration is one of the solutions to improve energy efficiency and to reduce environmental impact. In this study, three modes of bioethanol production were selected to evaluate the life cycle energy efficiency and environmental impact of sweet potato-based bioethanol. The results showed that, the net energy ratio was greater than 1 and the value of net energy gain was positive in the three production modes, in which the maximum value appeared in the circular economy mode (CEM). The environment emission mainly occurred to bioethanol conversion unit in the conventional production mode (CPM) and the cogeneration mode (CGM), and eutrophication potential (EP) and global warming potential (GWP) were the most significant environmental impact category. While compared with CPM and CGM, the environmental impact of CEM significantly declined due to increasing recycling, and plant cultivation unit mainly contributed to EP and GWP. And the comprehensive evaluation score of environmental impact decreased by 73.46% and 23.36%. This study showed that CEM was effective in improving energy efficiency, especially in reducing the environmental impact, and it provides a new method for bioethanol production. PMID:28672044
Zhang, Jun; Jia, Chunrong; Wu, Yi; Xia, Xunfeng; Xi, Beidou; Wang, Lijun; Zhai, Youlong
2017-01-01
The bioethanol is playing an increasingly important role in renewable energy in China. Based on the theory of circular economy, integration of different resources by polygeneration is one of the solutions to improve energy efficiency and to reduce environmental impact. In this study, three modes of bioethanol production were selected to evaluate the life cycle energy efficiency and environmental impact of sweet potato-based bioethanol. The results showed that, the net energy ratio was greater than 1 and the value of net energy gain was positive in the three production modes, in which the maximum value appeared in the circular economy mode (CEM). The environment emission mainly occurred to bioethanol conversion unit in the conventional production mode (CPM) and the cogeneration mode (CGM), and eutrophication potential (EP) and global warming potential (GWP) were the most significant environmental impact category. While compared with CPM and CGM, the environmental impact of CEM significantly declined due to increasing recycling, and plant cultivation unit mainly contributed to EP and GWP. And the comprehensive evaluation score of environmental impact decreased by 73.46% and 23.36%. This study showed that CEM was effective in improving energy efficiency, especially in reducing the environmental impact, and it provides a new method for bioethanol production.
Eco-efficiency evaluation of a smart window prototype.
Syrrakou, E; Papaefthimiou, S; Yianoulis, P
2006-04-15
An eco-efficiency analysis was conducted using indicators suitably defined to evaluate the performance of an electrochromic window acting as an energy saving component in buildings. Combining the indicators for various parameters (control scenario, expected lifetime, climatic type, purchase cost) significant conclusions are drawn for the development and the potential applications of the device compared to other commercial fenestration products. The reduction of the purchase cost (to 200 euros/m2) and the increase of the lifetime (above 15 years) are the two main targets for achieving both cost and environmental efficiency. An electrochromic device, implemented in cooling dominated areas and operated with an optimum control strategy for the maximum expected lifetime (25 years), can reduce the building energy requirements by 52%. Furthermore, the total energy savings provided will be 33 times more than the energy required for its production while the emission of 615 kg CO2 equivalent per electrochromic glazing unit can be avoided.
Energy efficient engine: Propulsion system-aircraft integration evaluation
NASA Technical Reports Server (NTRS)
Owens, R. E.
1979-01-01
Flight performance and operating economics of future commercial transports utilizing the energy efficient engine were assessed as well as the probability of meeting NASA's goals for TSFC, DOC, noise, and emissions. Results of the initial propulsion systems aircraft integration evaluation presented include estimates of engine performance, predictions of fuel burns, operating costs of the flight propulsion system installed in seven selected advanced study commercial transports, estimates of noise and emissions, considerations of thrust growth, and the achievement-probability analysis.
Junyong Zhu; X.J. Pan
2010-01-01
This review presents a comprehensive discussion of the key technical issues in woody biomass pretreatment: barriers to efficient cellulose saccharification, pretreatment energy consumption, in particular energy consumed for wood-size reduction, and criteria to evaluate the performance of a pretreatment. A post-chemical pretreatment size-reduction approach is proposed...
Liu, Xing; Hou, Kun Mean; de Vaulx, Christophe; Shi, Hongling; Gholami, Khalid El
2014-01-01
Operating system (OS) technology is significant for the proliferation of the wireless sensor network (WSN). With an outstanding OS; the constrained WSN resources (processor; memory and energy) can be utilized efficiently. Moreover; the user application development can be served soundly. In this article; a new hybrid; real-time; memory-efficient; energy-efficient; user-friendly and fault-tolerant WSN OS MIROS is designed and implemented. MIROS implements the hybrid scheduler and the dynamic memory allocator. Real-time scheduling can thus be achieved with low memory consumption. In addition; it implements a mid-layer software EMIDE (Efficient Mid-layer Software for User-Friendly Application Development Environment) to decouple the WSN application from the low-level system. The application programming process can consequently be simplified and the application reprogramming performance improved. Moreover; it combines both the software and the multi-core hardware techniques to conserve the energy resources; improve the node reliability; as well as achieve a new debugging method. To evaluate the performance of MIROS; it is compared with the other WSN OSes (TinyOS; Contiki; SOS; openWSN and mantisOS) from different OS concerns. The final evaluation results prove that MIROS is suitable to be used even on the tight resource-constrained WSN nodes. It can support the real-time WSN applications. Furthermore; it is energy efficient; user friendly and fault tolerant. PMID:25248069
Liu, Xing; Hou, Kun Mean; de Vaulx, Christophe; Shi, Hongling; El Gholami, Khalid
2014-09-22
Operating system (OS) technology is significant for the proliferation of the wireless sensor network (WSN). With an outstanding OS; the constrained WSN resources (processor; memory and energy) can be utilized efficiently. Moreover; the user application development can be served soundly. In this article; a new hybrid; real-time; memory-efficient; energy-efficient; user-friendly and fault-tolerant WSN OS MIROS is designed and implemented. MIROS implements the hybrid scheduler and the dynamic memory allocator. Real-time scheduling can thus be achieved with low memory consumption. In addition; it implements a mid-layer software EMIDE (Efficient Mid-layer Software for User-Friendly Application Development Environment) to decouple the WSN application from the low-level system. The application programming process can consequently be simplified and the application reprogramming performance improved. Moreover; it combines both the software and the multi-core hardware techniques to conserve the energy resources; improve the node reliability; as well as achieve a new debugging method. To evaluate the performance of MIROS; it is compared with the other WSN OSes (TinyOS; Contiki; SOS; openWSN and mantisOS) from different OS concerns. The final evaluation results prove that MIROS is suitable to be used even on the tight resource-constrained WSN nodes. It can support the real-time WSN applications. Furthermore; it is energy efficient; user friendly and fault tolerant.
Sughimoto, Koichi; Takahara, Yoshiharu; Mogi, Kenji; Yamazaki, Kenji; Tsubota, Ken'ichi; Liang, Fuyou; Liu, Hao
2014-05-01
Aortic aneurysms may cause the turbulence of blood flow and result in the energy loss of the blood flow, while grafting of the dilated aorta may ameliorate these hemodynamic disturbances, contributing to the alleviation of the energy efficiency of blood flow delivery. However, evaluating of the energy efficiency of blood flow in an aortic aneurysm has been technically difficult to estimate and not comprehensively understood yet. We devised a multiscale computational biomechanical model, introducing novel flow indices, to investigate a single male patient with multiple aortic aneurysms. Preoperative levels of wall shear stress and oscillatory shear index (OSI) were elevated but declined after staged grafting procedures: OSI decreased from 0.280 to 0.257 (first operation) and 0.221 (second operation). Graftings may strategically counter the loss of efficient blood delivery to improve hemodynamics of the aorta. The energy efficiency of blood flow also improved postoperatively. Novel indices of pulsatile pressure index (PPI) and pulsatile energy loss index (PELI) were evaluated to characterize and quantify energy loss of pulsatile blood flow. Mean PPI decreased from 0.445 to 0.423 (first operation) and 0.359 (second operation), respectively; while the preoperative PELI of 0.986 dropped to 0.820 and 0.831. Graftings contributed not only to ameliorate wall shear stress or oscillatory shear index but also to improve efficient blood flow. This patient-specific modeling will help in analyzing the mechanism of aortic aneurysm formation and may play an important role in quantifying the energy efficiency or loss in blood delivery.
Energy savings potential in air conditioners and chiller systems
Kaya, Durmus; Alidrisi, Hisham
2014-01-22
In the current paper we quantified and evaluated the energy saving potential in air conditioners and chiller systems. Here, we also showed how to reduce the cost of air conditioners and chiller systems in existing facilities on the basis of payback periods. Among the measures investigated were: (1) installing higher efficiency air conditioners, (2) installing higher efficiency chillers, (3) duty cycling air conditioning units, and (4) utilizing existing economizers on air conditioning units. For each method, examples were provided from Arizona, USA. In these examples, the amount of saved energy, the financial evaluation of this energy, and the investment costmore » and pay back periods were calculated.« less
NASA Astrophysics Data System (ADS)
Madani, K.; Jess, T.; Mahlooji, M.; Ristic, B.
2015-12-01
The world's energy sector is experiencing a serious transition from reliance on fossil fuel energy sources to extensive reliance on renewable energies. Europe is leading the way in this transition to a low carbon economy in an attempt to keep climate change below 2oC. Member States have committed themselves to reducing greenhouse gas emissions by 20% and increasing the share of renewables in the EU's energy mix to 20% by 2020. The EU has now gone a step further with the objective of reducing greenhouse gas emissions by 80-95% by 2050. Nevertheless, the short-term focus of the European Commission is at "cost-efficient ways" to cut its greenhouse gas emissions which forgoes the unintended impacts of a large expansion of low-carbon energy technologies on major natural resources such as water and land. This study uses the "System of Systems (SoS) Approach to Energy Sustainability Assessment" (Hadian and Madani, 2015) to evaluate the Relative Aggregate Footprint (RAF) of energy sources in different European Union (EU) member states. RAF reflects the overall resource-use efficiency of energy sources with respect to four criteria: carbon footprint, water footprint, land footprint, and economic cost. Weights are assigned to the four resource use efficiency criteria based on each member state's varying natural and economic resources to examine the changes in the desirability of energy sources based on regional resource availability conditions, and to help evaluating the overall resource use efficiency of the EU's energy portfolio. A longer-term strategy in Europe has been devised under the "Resource Efficient Europe" flagship imitative intended to put the EU on course to using resources in a sustainable way. This study will highlight the resource efficiency of the EU's energy sector in order to assist in a sustainable transition to a low carbon economy in Europe. ReferenceHadian S, Madani K (2015) A System of Systems Approach to Energy Sustainability Assessment: Are All Renewables Really Green? Ecological Indicators, 52, 194-206.
PROTOCOL TO EVALUATE THE MOISTURE DURABILITY OF ENERGY-EFFICIENT WALLS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boudreaux, Philip R; Pallin, Simon B; Hun, Diana E
Walls account for about 8% of the energy used in residential buildings. This energy penalty can be reduced with higher insulation levels and increased airtightness. However, these measures can compromise the moisture durability and long-term performance of wall assemblies because they can lead to lower moisture tolerance due to reduced drying potential. To avert these problems, a moisture durability protocol was developed to evaluate the probability that an energy-efficient wall design will experience mold growth. This protocol examines the effects of moisture sources in walls through a combination of simulations and lab experiments, uses the mold growth index as themore » moisture durability indicator, and is based on a probabilistic approach that utilizes stochastically varying input parameters. The simulation tools used include a new validated method for taking into account the effects of air leakage in wall assemblies This paper provides an overview of the developed protocol, discussion of the probabilistic simulation approach and describes results from the evaluation of two wall assemblies in Climate Zones 2, 4, and 6. The protocol will be used to supply builders with wall designs that are energy efficient, moisture durable and cost-effective.« less
Time-Varying Value of Energy Efficiency in Michigan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mims, Natalie; Eckman, Tom; Schwartz, Lisa C.
Quantifying the time-varying value of energy efficiency is necessary to properly account for all of its benefits and costs and to identify and implement efficiency resources that contribute to a low-cost, reliable electric system. Historically, most quantification of the benefits of efficiency has focused largely on the economic value of annual energy reduction. Due to the lack of statistically representative metered end-use load shape data in Michigan (i.e., the hourly or seasonal timing of electricity savings), the ability to confidently characterize the time-varying value of energy efficiency savings in the state, especially for weather-sensitive measures such as central air conditioning,more » is limited. Still, electric utilities in Michigan can take advantage of opportunities to incorporate the time-varying value of efficiency into their planning. For example, end-use load research and hourly valuation of efficiency savings can be used for a variety of electricity planning functions, including load forecasting, demand-side management and evaluation, capacity planning, long-term resource planning, renewable energy integration, assessing potential grid modernization investments, establishing rates and pricing, and customer service (KEMA 2012). In addition, accurately calculating the time-varying value of efficiency may help energy efficiency program administrators prioritize existing offerings, set incentive or rebate levels that reflect the full value of efficiency, and design new programs.« less
10 CFR 431.17 - Determination of efficiency.
Code of Federal Regulations, 2013 CFR
2013-01-01
... state-registered professional engineer, who is qualified to perform an evaluation of electric motor... EQUIPMENT Electric Motors Test Procedures, Materials Incorporated and Methods of Determining Efficiency § 431.17 Determination of efficiency. When a party determines the energy efficiency of an electric motor...
Franchise Agreements and Clean Energy: Issues in Illinois
This project evaluates the impact on energy efficiency of municipal franchise agreements that supply electricity or gas service without a direct charge (unbilled energy) for certain municipal government facilities in Illinois.)
Evaluation of a High-Performance Solar Home in Loveland, Colorado
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hendron, R.; Eastment, M.; Hancock, E.
2006-01-01
Building America (BA) partner McStain Neighborhoods built the Discovery House in Loveland, Colorado, with an extensive package of energy-efficient features, including a high-performance envelope, efficient mechanical systems, a solar water heater integrated with the space-heating system, a heat-recovery ventilator (HRV), and ENERGY STAR? appliances. The National Renewable Energy Laboratory (NREL) and Building Science Consortium (BSC) conducted short-term field-testing and building energy simulations to evaluate the performance of the house. These evaluations are utilized by BA to improve future prototype designs and to identify critical research needs. The Discovery House building envelope and ducts were very tight under normal operating conditions.more » The HRV provided fresh air at a rate of about 75 cfm (35 l/s), consistent with the recommendations of ASHRAE Standard 62.2. The solar hot water system is expected to meet the bulk of the domestic hot water (DHW) load (>83%), but only about 12% of the space-heating load. DOE-2.2 simulations predict whole-house source energy savings of 54% compared to the BA Benchmark [1]. The largest contributors to energy savings beyond McStain's standard practice are the solar water heater, HRV, improved air distribution, high-efficiency boiler, and compact fluorescent lighting package.« less
Evaluation of a High-Performance Solar Home in Loveland, Colorado: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hendron, R.; Eastment, M.; Hancock, E.
Building America (BA) partner McStain Neighborhoods built the Discovery House in Loveland, Colorado, with an extensive package of energy-efficient features, including a high-performance envelope, efficient mechanical systems, a solar water heater integrated with the space-heating system, a heat-recovery ventilator (HRV), and ENERGY STAR appliances. The National Renewable Energy Laboratory (NREL) and Building Science Consortium (BSC) conducted short-term field-testing and building energy simulations to evaluate the performance of the house. These evaluations are utilized by BA to improve future prototype designs and to identify critical research needs. The Discovery House building envelope and ducts were very tight under normal operating conditions.more » The HRV provided fresh air at a rate of about 35 l/s (75 cfm), consistent with the recommendations of ASHRAE Standard 62.2. The solar hot water system is expected to meet the bulk of the domestic hot water (DHW) load (>83%), but only about 12% of the space-heating load. DOE-2.2 simulations predict whole-house source energy savings of 54% compared to the BA Benchmark. The largest contributors to energy savings beyond McStain's standard practice are the solar water heater, HRV, improved air distribution, high-efficiency boiler, and compact fluorescent lighting package.« less
A high-energy-density redox flow battery based on zinc/polyhalide chemistry.
Zhang, Liqun; Lai, Qinzhi; Zhang, Jianlu; Zhang, Huamin
2012-05-01
Zn and the Art of Battery Development: A zinc/polyhalide redox flow battery employs Br(-) /ClBr(2-) and Zn/Zn(2+) redox couples in its positive and negative half-cells, respectively. The performance of the battery is evaluated by charge-discharge cycling tests and reveals a high energy efficiency of 81%, based on a Coulombic efficiency of 96% and voltage efficiency of 84%. The new battery technology can provide high performance and energy density at an acceptable cost. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Estimating returns to scale and scale efficiency for energy consuming appliances
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blum, Helcio; Okwelum, Edson O.
Energy consuming appliances accounted for over 40% of the energy use and $17 billion in sales in the U.S. in 2014. Whether such amounts of money and energy were optimally combined to produce household energy services is not straightforwardly determined. The efficient allocation of capital and energy to provide an energy service has been previously approached, and solved with Data Envelopment Analysis (DEA) under constant returns to scale. That approach, however, lacks the scale dimension of the problem and may restrict the economic efficient models of an appliance available in the market when constant returns to scale does not hold.more » We expand on that approach to estimate returns to scale for energy using appliances. We further calculate DEA scale efficiency scores for the technically efficient models that comprise the economic efficient frontier of the energy service delivered, under different assumptions of returns to scale. We then apply this approach to evaluate dishwashers available in the market in the U.S. Our results show that (a) for the case of dishwashers scale matters, and (b) the dishwashing energy service is delivered under non-decreasing returns to scale. The results further demonstrate that this method contributes to increase consumers’ choice of appliances.« less
Energy Management Control Systems: Tools for Energy Savings and Environmental Protection
NASA Technical Reports Server (NTRS)
Zsebik, Albin; Zala, Laszlo F.
2002-01-01
The change in the price of energy has encouraged the increase of energy efficiency. This report will discuss a tool to promote energy efficiency in intelligent buildings, energy management control systems (EMCS). In addition to the online control of energy production, supply, and consumption, the function of the EMCS is to support short- and long-term planning of the system operation as well as to collect, store, and regularly evaluate operation data. The strategies behind planning and implementing the EMCS as well as the manipulating the resulting data are discussed in this report.
10 CFR 436.42 - Evaluation of Life-Cycle Cost Effectiveness.
Code of Federal Regulations, 2011 CFR
2011-01-01
... the life-cycle cost analysis method in part 436, subpart A, of title 10 of the Code of Federal... 10 Energy 3 2011-01-01 2011-01-01 false Evaluation of Life-Cycle Cost Effectiveness. 436.42... PROGRAMS Agency Procurement of Energy Efficient Products § 436.42 Evaluation of Life-Cycle Cost...
NASA Astrophysics Data System (ADS)
Alam, Rabeka; Zylstra, Joshua; Fontaine, Danielle M.; Branchini, Bruce R.; Maye, Mathew M.
2013-05-01
Sequential bioluminescence resonance energy transfer (BRET) and fluorescence resonance energy transfer (FRET) from firefly luciferase to red fluorescent proteins using quantum dot or rod acceptor/donor linkers is described. The effect of morphology and tuned optical properties on the efficiency of this unique BRET-FRET system was evaluated.Sequential bioluminescence resonance energy transfer (BRET) and fluorescence resonance energy transfer (FRET) from firefly luciferase to red fluorescent proteins using quantum dot or rod acceptor/donor linkers is described. The effect of morphology and tuned optical properties on the efficiency of this unique BRET-FRET system was evaluated. Electronic supplementary information (ESI) available: Experimental details, Fig. S1 and Table S1-S4. See DOI: 10.1039/c3nr01842c
A two-hop based adaptive routing protocol for real-time wireless sensor networks.
Rachamalla, Sandhya; Kancherla, Anitha Sheela
2016-01-01
One of the most important and challenging issues in wireless sensor networks (WSNs) is to optimally manage the limited energy of nodes without degrading the routing efficiency. In this paper, we propose an energy-efficient adaptive routing mechanism for WSNs, which saves energy of nodes by removing the much delayed packets without degrading the real-time performance of the used routing protocol. It uses the adaptive transmission power algorithm which is based on the attenuation of the wireless link to improve the energy efficiency. The proposed routing mechanism can be associated with any geographic routing protocol and its performance is evaluated by integrating with the well known two-hop based real-time routing protocol, PATH and the resulting protocol is energy-efficient adaptive routing protocol (EE-ARP). The EE-ARP performs well in terms of energy consumption, deadline miss ratio, packet drop and end-to-end delay.
Barriers to Energy Efficiency and the Uptake of Green Revolving Funds in Canadian Universities
ERIC Educational Resources Information Center
Maiorano, John; Savan, Beth
2015-01-01
Purpose: The purpose of this paper is to investigate the barriers to the implementation of energy efficiency projects in Canadian universities, including access to capital, bounded rationality, hidden costs, imperfect information, risk and split incentives. Methods to address these barriers are investigated, including evaluating the efficacy of…
Evaluation of Energy Efficiency Improvements to Portable Classrooms in Florida.
ERIC Educational Resources Information Center
Callahan, Michael P.; Parker, Danny S.; Sherwin, John R.; Anello, Michael T.
Findings are presented from a 2-year experiment exploring ways to reduce energy costs and improve the learning environment in Florida's 25,000 portable classrooms. Improvements were made in two highly instrumented portable classrooms in the following areas: installation of a T8 lighting system with electronic ballasts; a high efficiency heat pump…
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-30
.... Evaluation and Testing CSA Group with the manufacturer's assistance prepares a motor control list...-0053] Energy Efficiency Program for Industrial Equipment: Petition of CSA Group for Classification as a...: This notice announces receipt of a petition from CSA Group (CSA) seeking classification as a nationally...
Evaluation of the "Lose Your Excuse" Public Service Advertising Campaign for Tweens to Save Energy
ERIC Educational Resources Information Center
Bertrand, Jane T.; Goldman, Patty; Zhivan, Natalia; Agyeman, Yaw; Barber, Erin
2011-01-01
This study evaluates the 2008-2009 "Lose your Excuse" public service advertising (PSA) campaign on energy efficiency targeting 8- to 12-year-olds, intended to increase knowledge, foster proactive attitudes, and change energy usage behaviors. Baseline and two follow-up surveys were conducted with online samples representative of the national…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bogucz, Edward A.
Healthy buildings provide high indoor environmental quality for occupants while simultaneously reducing energy consumption. This project advanced the development and marketability of envisioned healthy, energy-efficient buildings through studies that evaluated the use of emerging technologies in commercial and residential buildings. The project also provided resources required for homebuilders to participate in DOE’s Builders Challenge, concomitant with the goal to reduce energy consumption in homes by at least 30% as a first step toward achieving envisioned widespread availability of net-zero energy homes by 2030. In addition, the project included outreach and education concerning energy efficiency in buildings.
Connectivity-enhanced route selection and adaptive control for the Chevrolet Volt
Gonder, Jeffrey; Wood, Eric; Rajagopalan, Sai
2016-01-01
The National Renewable Energy Laboratory and General Motors evaluated connectivity-enabled efficiency enhancements for the Chevrolet Volt. A high-level model was developed to predict vehicle fuel and electricity consumption based on driving characteristics and vehicle state inputs. These techniques were leveraged to optimize energy efficiency via green routing and intelligent control mode scheduling, which were evaluated using prospective driving routes between tens of thousands of real-world origin/destination pairs. The overall energy savings potential of green routing and intelligent mode scheduling was estimated at 5% and 3%, respectively. Furthermore, these represent substantial opportunities considering that they only require software adjustments to implement.
Institute for Atom-Efficient Chemical Transformations Energy Frontier
Synthesis Search Argonne ... Search Argonne Home > Institute for Atom-Efficient Chemical Transformations Synthesis Characterization Computational Studies Evaluation and Mechanisms/Catalytic Experimentation Using
Energy-saving framework for passive optical networks with ONU sleep/doze mode.
Van, Dung Pham; Valcarenghi, Luca; Dias, Maluge Pubuduni Imali; Kondepu, Koteswararao; Castoldi, Piero; Wong, Elaine
2015-02-09
This paper proposes an energy-saving passive optical network framework (ESPON) that aims to incorporate optical network unit (ONU) sleep/doze mode into dynamic bandwidth allocation (DBA) algorithms to reduce ONU energy consumption. In the ESPON, the optical line terminal (OLT) schedules both downstream (DS) and upstream (US) transmissions in the same slot in an online and dynamic fashion whereas the ONU enters sleep mode outside the slot. The ONU sleep time is maximized based on both DS and US traffic. Moreover, during the slot, the ONU might enter doze mode when only its transmitter is idle to further improve energy efficiency. The scheduling order of data transmission, control message exchange, sleep period, and doze period defines an energy-efficient scheme under the ESPON. Three schemes are designed and evaluated in an extensive FPGA-based evaluation. Results show that whilst all the schemes significantly save ONU energy for different evaluation scenarios, the scheduling order has great impact on their performance. In addition, the ESPON allows for a scheduling order that saves ONU energy independently of the network reach.
Energy and Environment Guide to Action - Chapter 7.4: Customer Rates and Data Access
Provides recommendations for designing, implementing, and evaluating utility rates and providing data access to support energy efficiency, CHP, and clean energy goals. State examples are included for reference.
NASA Astrophysics Data System (ADS)
Nalladhimmu, Pavan Kumar Reddy; Priyadarshini, S.
2018-04-01
As the demand of electricity is increasing, there is need to using the renewable sources to produce the energy at present of power shortage, the use of solar energy could be beneficial to great extent and easy to get the maximum efficiency. There is an urgent in improving the efficiency of solar power generation. Current solar panels setups take a major power loss when unwanted obstructions cover the surface of the panels. To make solar energy more efficiency of solar array systems must be maximized efficiency evaluation of PV panels, that has been discussed with particular attention to the presence of dust on the efficiency of the PV panels have been highlighted. This paper gives the how the solar panel cleaning system works and designing of the cleaning system.
NASA Astrophysics Data System (ADS)
Schout, Gilian; Drijver, Benno; Gutierrez-Neri, Mariene; Schotting, Ruud
2014-01-01
High-temperature aquifer thermal energy storage (HT-ATES) is an important technique for energy conservation. A controlling factor for the economic feasibility of HT-ATES is the recovery efficiency. Due to the effects of density-driven flow (free convection), HT-ATES systems applied in permeable aquifers typically have lower recovery efficiencies than conventional (low-temperature) ATES systems. For a reliable estimation of the recovery efficiency it is, therefore, important to take the effect of density-driven flow into account. A numerical evaluation of the prime factors influencing the recovery efficiency of HT-ATES systems is presented. Sensitivity runs evaluating the effects of aquifer properties, as well as operational variables, were performed to deduce the most important factors that control the recovery efficiency. A correlation was found between the dimensionless Rayleigh number (a measure of the relative strength of free convection) and the calculated recovery efficiencies. Based on a modified Rayleigh number, two simple analytical solutions are proposed to calculate the recovery efficiency, each one covering a different range of aquifer thicknesses. The analytical solutions accurately reproduce all numerically modeled scenarios with an average error of less than 3 %. The proposed method can be of practical use when considering or designing an HT-ATES system.
7 CFR 4280.129 - Evaluation of guaranteed loan applications.
Code of Federal Regulations, 2011 CFR
2011-01-01
...-COOPERATIVE SERVICE AND RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE LOANS AND GRANTS Renewable Energy Systems and Energy Efficiency Improvements Program Section B. Guaranteed Loans § 4280.129 Evaluation of... both the borrower and project are eligible, the project has technical merit, there is reasonable...
7 CFR 4280.129 - Evaluation of guaranteed loan applications.
Code of Federal Regulations, 2010 CFR
2010-01-01
...-COOPERATIVE SERVICE AND RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE LOANS AND GRANTS Renewable Energy Systems and Energy Efficiency Improvements Program Section B. Guaranteed Loans § 4280.129 Evaluation of... both the borrower and project are eligible, the project has technical merit, there is reasonable...
Method for Evaluating Energy Use of Dishwashers, Clothes Washers, and Clothes Dryers: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eastment, M.; Hendron, R.
Building America teams are researching opportunities to improve energy efficiency for some of the more challenging end-uses, such as lighting (both fixed and occupant-provided), appliances (clothes washer, dishwasher, clothes dryer, refrigerator, and range), and miscellaneous electric loads, which are all heavily dependent on occupant behavior and product choices. These end-uses have grown to be a much more significant fraction of total household energy use (as much as 50% for very efficient homes) as energy efficient homes have become more commonplace through programs such as ENERGY STAR and Building America. As modern appliances become more sophisticated the residential energy analyst ismore » faced with a daunting task in trying to calculate the energy savings of high efficiency appliances. Unfortunately, most whole-building simulation tools do not allow the input of detailed appliance specifications. Using DOE test procedures the method outlined in this paper presents a reasonable way to generate inputs for whole-building energy-simulation tools. The information necessary to generate these inputs is available on Energy-Guide labels, the ENERGY-STAR website, California Energy Commission's Appliance website and manufacturer's literature. Building America has developed a standard method for analyzing the effect of high efficiency appliances on whole-building energy consumption when compared to the Building America's Research Benchmark building.« less
NASA Astrophysics Data System (ADS)
Song, Jingjing; Yang, Chuanchuan; Zhang, Qingxiang; Ma, Zhuang; Huang, Xingang; Geng, Dan; Wang, Ziyu
2015-09-01
Higher capacity and larger scales have always been the top targets for the evolution of optical access networks, driven by the ever-increasing demand from the end users. One thing that started to attract wide attention not long ago, but with at least equal importance as capacity and scale, is energy efficiency, a metric essential nowadays as human beings are confronted with severe environmental issues like global warming, air pollution, and so on. Here, different from the conventional energy consumption analysis of tree-topology networks, we propose an effective energy consumption calculation method to compare the energy efficiency of the tree-topology 10 gigabit ethernet passive optical network (10G-EPON) and ring-topology time- and wavelength-division-multiplexed passive optical network (TWDM-PON), two experimental networks deployed in China. Numerical results show that the ring-topology TWDM-PON networks with 2, 4, 8, and 16 wavelengths are more energy efficient than the tree-topology 10G-EPON, although 10G-EPON consumes less energy. Also, TWDM-PON with four wavelengths is the most energy-efficient network candidate and saves 58.7% more energy than 10G-EPON when fully loaded.
Implementation of the Energy Efficiency Directive: Opportunities and Challenges
NASA Astrophysics Data System (ADS)
Zīgurs, A.; Sarma, U.
2015-12-01
Discussions in Latvia are ongoing regarding the optimum solution to implementing Directive 2012/27/EU of the European Parliament and of the Council of 25 October 2012 on energy efficiency, amending Directives 2009/125/EC and 2010/30/EU and repealing Directives 2004/8/EC and 2006/32/EC (Directive 2012/27/EU). Without a doubt, increased energy efficiency contributes significantly to energy supply security, competitive performance, increased quality of life, reduced energy dependence and greenhouse gas (GHG) emissions. However, Directive 2012/27/EU should be implemented with careful planning, evaluating every aspect of the process. This study analyses a scenario, where a significant fraction of target energy efficiency is achieved by obliging energy utilities to implement user-end energy efficiency measures. With implementation of this scheme towards energy end-use savings, user payments for energy should be reduced; on the other hand, these measures will require considerable investment. The energy efficiency obligation scheme stipulates that these investments must be paid by energy utilities; however, they will actually be covered by users, because the source of energy utilities' income is user payments for energy. Thus, expenses on such measures will be included in energy prices and service tariffs. The authors analyse the ways to achieve a balance between user gains from energy end-use savings and increased energy prices and tariffs as a result of obligations imposed upon energy utilities. Similarly, the suitability of the current regulatory regime for effective implementation of Directive 2012/27/EU is analysed in the energy supply sectors, where supply tariffs are regulated.
Barta, Zsolt; Reczey, Kati; Zacchi, Guido
2010-09-15
Replacing the energy-intensive evaporation of stillage by anaerobic digestion is one way of decreasing the energy demand of the lignocellulosic biomass to the ethanol process. The biogas can be upgraded and sold as transportation fuel, injected directly into the gas grid or be incinerated on-site for combined heat and power generation. A techno-economic evaluation of the spruce-to-ethanol process, based on SO2-catalysed steam pretreatment followed by simultaneous saccharification and fermentation, has been performed using the commercial flow-sheeting program Aspen Plus™. Various process configurations of anaerobic digestion of the stillage, with different combinations of co-products, have been evaluated in terms of energy efficiency and ethanol production cost versus the reference case of evaporation. Anaerobic digestion of the stillage showed a significantly higher overall energy efficiency (87-92%), based on the lower heating values, than the reference case (81%). Although the amount of ethanol produced was the same in all scenarios, the production cost varied between 4.00 and 5.27 Swedish kronor per litre (0.38-0.50 euro/L), including the reference case. Higher energy efficiency options did not necessarily result in lower ethanol production costs. Anaerobic digestion of the stillage with biogas upgrading was demonstrated to be a favourable option for both energy efficiency and ethanol production cost. The difference in the production cost of ethanol between using the whole stillage or only the liquid fraction in anaerobic digestion was negligible for the combination of co-products including upgraded biogas, electricity and district heat.
2010-01-01
Background Replacing the energy-intensive evaporation of stillage by anaerobic digestion is one way of decreasing the energy demand of the lignocellulosic biomass to the ethanol process. The biogas can be upgraded and sold as transportation fuel, injected directly into the gas grid or be incinerated on-site for combined heat and power generation. A techno-economic evaluation of the spruce-to-ethanol process, based on SO2-catalysed steam pretreatment followed by simultaneous saccharification and fermentation, has been performed using the commercial flow-sheeting program Aspen Plus™. Various process configurations of anaerobic digestion of the stillage, with different combinations of co-products, have been evaluated in terms of energy efficiency and ethanol production cost versus the reference case of evaporation. Results Anaerobic digestion of the stillage showed a significantly higher overall energy efficiency (87-92%), based on the lower heating values, than the reference case (81%). Although the amount of ethanol produced was the same in all scenarios, the production cost varied between 4.00 and 5.27 Swedish kronor per litre (0.38-0.50 euro/L), including the reference case. Conclusions Higher energy efficiency options did not necessarily result in lower ethanol production costs. Anaerobic digestion of the stillage with biogas upgrading was demonstrated to be a favourable option for both energy efficiency and ethanol production cost. The difference in the production cost of ethanol between using the whole stillage or only the liquid fraction in anaerobic digestion was negligible for the combination of co-products including upgraded biogas, electricity and district heat. PMID:20843330
Crew Survivable Helicopter Undercarriage.
1984-01-01
used to refine the high -rate test specimens and were compared to other literature data on a specific load per length and energy per inch of perimeter...marked improvement in energy efficiency was observed with no joint failures. Seven of the eight segments shipped to NASA for high - rate testing were...provides the weight and performance criteria used to evaluate the energy absorbing efficiency of the rotated sine wave concept. Next, the low-rate and high
China’s R&D for Energy Efficient Buildings: Insights for U.S. Cooperation with China
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Sha; Evans, Meredydd
2010-04-01
This report includes an evaluation of China’s current activities and future direction in building energy efficiency R&D and its relevance to DOE’s R&D activities under the Building Technologies Program in the Office of Energy Efficiency and Renewable Energy. The researchers reviewed the major R&D programs in China including the so-called 973 Program, the 863 Program, and the Key Technology R&D Program1 as well as the research activities of major research institutes. The report also reviewed several relevant documents of the Chinese government, websites (including the International Energy Agency and national and local governments in China), newsletters, and financial information listedmore » in the program documents and websites.« less
NASA Astrophysics Data System (ADS)
Orlov, Alexandr K.
2017-10-01
The article deals with the application of sustainable construction concept within implementation of megaprojects of tourist clusters development using energy saving technologies. The concept of sustainable construction includes the elements of green construction, energy management as well as aspects of the economic efficiency of construction projects implementation. The methodical approach to the implementation of megaprojects for the creation of tourist clusters in Russia based on the concept of energy efficiency and sustainable construction is proved. The conceptual approach to the evaluation of the ecological, social and economic components of the integral indicator of the effectiveness of the megaproject for the development of the tourist cluster is provided. The algorithm for estimation of the efficiency of innovative solutions in green construction is considered.
Evaluation model of wind energy resources and utilization efficiency of wind farm
NASA Astrophysics Data System (ADS)
Ma, Jie
2018-04-01
Due to the large amount of abandoned winds in wind farms, the establishment of a wind farm evaluation model is particularly important for the future development of wind farms In this essay, consider the wind farm's wind energy situation, Wind Energy Resource Model (WERM) and Wind Energy Utilization Efficiency Model(WEUEM) are established to conduct a comprehensive assessment of the wind farm. Wind Energy Resource Model (WERM) contains average wind speed, average wind power density and turbulence intensity, which assessed wind energy resources together. Based on our model, combined with the actual measurement data of a wind farm, calculate the indicators using the model, and the results are in line with the actual situation. We can plan the future development of the wind farm based on this result. Thus, the proposed establishment approach of wind farm assessment model has application value.
Energy efficient engine component development and integration program
NASA Technical Reports Server (NTRS)
1980-01-01
The design of an energy efficient commercial turbofan engine is examined with emphasis on lower fuel consumption and operating costs. Propulsion system performance, emission standards, and noise reduction are also investigated. A detailed design analysis of the engine/aircraft configuration, engine components, and core engine is presented along with an evaluation of the technology and testing involved.
Energy-efficiency based classification of the manufacturing workstation
NASA Astrophysics Data System (ADS)
Frumuşanu, G.; Afteni, C.; Badea, N.; Epureanu, A.
2017-08-01
EU Directive 92/75/EC established for the first time an energy consumption labelling scheme, further implemented by several other directives. As consequence, nowadays many products (e.g. home appliances, tyres, light bulbs, houses) have an EU Energy Label when offered for sale or rent. Several energy consumption models of manufacturing equipments have been also developed. This paper proposes an energy efficiency - based classification of the manufacturing workstation, aiming to characterize its energetic behaviour. The concept of energy efficiency of the manufacturing workstation is defined. On this base, a classification methodology has been developed. It refers to specific criteria and their evaluation modalities, together to the definition & delimitation of energy efficiency classes. The energy class position is defined after the amount of energy needed by the workstation in the middle point of its operating domain, while its extension is determined by the value of the first coefficient from the Taylor series that approximates the dependence between the energy consume and the chosen parameter of the working regime. The main domain of interest for this classification looks to be the optimization of the manufacturing activities planning and programming. A case-study regarding an actual lathe classification from energy efficiency point of view, based on two different approaches (analytical and numerical) is also included.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gonzales, John
2015-04-02
Presentation by Senior Engineer John Gonzales on Evaluating Investments in Natural Gas Vehicles and Infrastructure for Your Fleet using the Vehicle Infrastructure Cash-flow Estimation (VICE) 2.0 model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2014-01-01
The Fleet Test and Evaluation Team at the U.S. Department of Energy's National Renewable Energy Laboratory is evaluating and documenting the performance of electric and plug-in hybrid electric drive systems in medium duty trucks across the nation. U.S. companies participating in this evaluation project received funding from the American Recovery and Reinvestment Act to cover part of the cost of purchasing these vehicles. Through this project, Navistar will build and deploy all-electric medium-duty trucks. The trucks will be deployed in diverse climates across the country.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2013-05-01
The Fleet Test and Evaluation Team at the U.S. Department of Energy's National Renewable Energy Laboratory is evaluating and documenting the performance of electric and plug-in hybrid electric drive systems in medium-duty trucks across the nation. U.S. companies participating in this evaluation project received funding from the American Recovery and Reinvestment Act to cover part of the cost of purchasing these vehicles. Through this project, Navistar will build and deploy all-electric medium-duty trucks. The trucks will be deployed in diverse climates across the country.
Treatment of emulsified oils by electrocoagulation: pulsed voltage applications.
Genc, Ayten; Bakirci, Busra
2015-01-01
The effect of pulsed voltage application on energy consumption during electrocoagulation was investigated. Three voltage profiles having the same arithmetic average with respect to time were applied to the electrodes. The specific energy consumption for these profiles were evaluated and analyzed together with oil removal efficiencies. The effects of applied voltages, electrode materials, electrode configurations, and pH on oil removal efficiency were determined. Electrocoagulation experiments were performed by using synthetic and real wastewater samples. The pulsed voltages saved energy during the electrocoagulation process. In continuous operation, energy saving was as high as 48%. Aluminum electrodes used for the treatment of emulsified oils resulted in higher oil removal efficiencies in comparison with stainless steel and iron electrodes. When the electrodes gap was less than 1 cm, higher oil removal efficiencies were obtained. The highest oil removal efficiencies were 95% and 35% for the batch and continuous operating modes, respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bozinovich, L.V.; Poyer, D.A.; Anderson, J.L.
1993-12-01
A sensitivity study was made of the potential market penetration of residential energy efficiency as energy service ratio (ESR) improvements occurred in minority households, by age of house. The study followed a Minority Energy Assessment Model analysis of the National Energy Strategy projections of household energy consumption and prices, with majority, black, and Hispanic subgroup divisions. Electricity and total energy consumption and expenditure patterns were evaluated when the households` ESR improvement followed a logistic negative growth (i.e., market penetration) path. Earlier occurrence of ESR improvements meant greater discounted savings over the 22-year period.
Airside HVAC BESTEST: HVAC Air-Distribution System Model Test Cases for ASHRAE Standard 140
DOE Office of Scientific and Technical Information (OSTI.GOV)
Judkoff, Ronald; Neymark, Joel; Kennedy, Mike D.
This paper summarizes recent work to develop new airside HVAC equipment model analytical verification test cases for ANSI/ASHRAE Standard 140, Standard Method of Test for the Evaluation of Building Energy Analysis Computer Programs. The analytical verification test method allows comparison of simulation results from a wide variety of building energy simulation programs with quasi-analytical solutions, further described below. Standard 140 is widely cited for evaluating software for use with performance-path energy efficiency analysis, in conjunction with well-known energy-efficiency standards including ASHRAE Standard 90.1, the International Energy Conservation Code, and other international standards. Airside HVAC Equipment is a common area ofmore » modelling not previously explicitly tested by Standard 140. Integration of the completed test suite into Standard 140 is in progress.« less
USING TIME VARIANT VOLTAGE TO CALCULATE ENERGY CONSUMPTION AND POWER USE OF BUILDING SYSTEMS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Makhmalbaf, Atefe; Augenbroe , Godfried
2015-12-09
Buildings are the main consumers of electricity across the world. However, in the research and studies related to building performance assessment, the focus has been on evaluating the energy efficiency of buildings whereas the instantaneous power efficiency has been overlooked as an important aspect of total energy consumption. As a result, we never developed adequate models that capture both thermal and electrical characteristics (e.g., voltage) of building systems to assess the impact of variations in the power system and emerging technologies of the smart grid on buildings energy and power performance and vice versa. This paper argues that the powermore » performance of buildings as a function of electrical parameters should be evaluated in addition to systems’ mechanical and thermal behavior. The main advantage of capturing electrical behavior of building load is to better understand instantaneous power consumption and more importantly to control it. Voltage is one of the electrical parameters that can be used to describe load. Hence, voltage dependent power models are constructed in this work and they are coupled with existing thermal energy models. Lack of models that describe electrical behavior of systems also adds to the uncertainty of energy consumption calculations carried out in building energy simulation tools such as EnergyPlus, a common building energy modeling and simulation tool. To integrate voltage-dependent power models with thermal models, the thermal cycle (operation mode) of each system was fed into the voltage-based electrical model. Energy consumption of systems used in this study were simulated using EnergyPlus. Simulated results were then compared with estimated and measured power data. The mean square error (MSE) between simulated, estimated, and measured values were calculated. Results indicate that estimated power has lower MSE when compared with measured data than simulated results. Results discussed in this paper will illustrate the significance of enhancing building energy models with electrical characteristics. This would support different studies such as those related to modernization of the power system that require micro scale building-grid interaction, evaluating building energy efficiency with power efficiency considerations, and also design and control decisions that rely on accuracy of building energy simulation results.« less
Potential Evaluation of Solar Heat Assisted Desiccant Hybrid Air Conditioning System
NASA Astrophysics Data System (ADS)
Tran, Thien Nha; Hamamoto, Yoshinori; Akisawa, Atsushi; Kashiwagi, Takao
The solar thermal driven desiccant dehumidification-absorption cooling hybrid system has superior advantage in hot-humid climate regions. The reasonable air processing of desiccant hybrid air conditioning system and the utility of clean and free energy make the system environment friendly and energy efficient. The study investigates the performance of the desiccant dehumidification air conditioning systems with solar thermal assistant. The investigation is performed for three cases which are combinations of solar thermal and absorption cooling systems with different heat supply temperature levels. Two solar thermal systems are used in the study: the flat plate collector (FPC) and the vacuum tube with compound parabolic concentrator (CPC). The single-effect and high energy efficient double-, triple-effect LiBr-water absorption cooling cycles are considered for cooling systems. COP of desiccant hybrid air conditioning systems are determined. The evaluation of these systems is subsequently performed. The single effect absorption cooling cycle combined with the flat plate collector solar system is found to be the most energy efficient air conditioning system.
The NASA Energy Conservation Program
NASA Technical Reports Server (NTRS)
Gaffney, G. P.
1977-01-01
Large energy-intensive research and test equipment at NASA installations is identified, and methods for reducing energy consumption outlined. However, some of the research facilities are involved in developing more efficient, fuel-conserving aircraft, and tradeoffs between immediate and long-term conservation may be necessary. Major programs for conservation include: computer-based systems to automatically monitor and control utility consumption; a steam-producing solid waste incinerator; and a computer-based cost analysis technique to engineer more efficient heating and cooling of buildings. Alternate energy sources in operation or under evaluation include: solar collectors; electric vehicles; and ultrasonically emulsified fuel to attain higher combustion efficiency. Management support, cooperative participation by employees, and effective reporting systems for conservation programs, are also discussed.
Energy Smart Schools--Applied Research, Field Testing, and Technology Integration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nebiat Solomon; Robin Vieira; William L. Manz
2004-12-01
The National Association of State Energy Officials (NASEO) in conjunction with the California Energy Commission, the Energy Center of Wisconsin, the Florida Solar Energy Center, the New York State Energy Research and Development Authority, and the Ohio Department of Development's Office of Energy Efficiency conducted a four-year, cost-share project with the U.S. Department of Energy (USDOE), Office of Energy Efficiency and Renewable Energy to focus on energy efficiency and high-performance technologies in our nation's schools. NASEO was the program lead for the MOU-State Schools Working group, established in conjunction with the USDOE Memorandum of Understanding process for collaboration among statemore » and federal energy research and demonstration offices and organizations. The MOU-State Schools Working Group included State Energy Offices and other state energy research organizations from all regions of the country. Through surveys and analyses, the Working Group determined the school-related energy priorities of the states and established a set of tasks to be accomplished, including the installation and evaluation of microturbines, advanced daylighting research, testing of schools and classrooms, and integrated school building technologies. The Energy Smart Schools project resulted in the adoption of advanced energy efficiency technologies in both the renovation of existing schools and building of new ones; the education of school administrators, architects, engineers, and manufacturers nationwide about the energy-saving, economic, and environmental benefits of energy efficiency technologies; and improved the learning environment for the nation's students through use of better temperature controls, improvements in air quality, and increased daylighting in classrooms. It also provided an opportunity for states to share and replicate successful projects to increase their energy efficiency while at the same time driving down their energy costs.« less
An Environmental Evaluation of Acid Scrubbers; Building 628, McClellan AFB CA
1975-08-01
found collection efficiencies ranging from 42 to 80% for 1 pm particles in low energy scrubbers . High energy scrubbers , venturi and wet dynamic, had...collection elliciency ctyi be obtained but not with low energy wet scrubbers . High energy wet scrubbers ( venturi , wet dynamic, wet fabric nitrations, etc...ENVIRONMENTAL EVALUATION OF ACID SCRUBBERS Building 628. McClellan AFB CA Jerry W. Jackson. Capt, USAF, BSC William £. Normington. Capt, USAF August 1975
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kurnik, Charles W.; Simons, George; Barsun, Stephan
The main focus of most evaluations is to determine the energy-savings impacts of the installed measure. This protocol defines a combined heat and power (CHP) measure as a system that sequentially generates both electrical energy and useful thermal energy from one fuel source at a host customer's facility or residence. This protocol is aimed primarily at regulators and administrators of ratepayer-funded CHP programs; however, project developers may find the protocol useful to understand how CHP projects are evaluated.
1994-09-23
Buildings, and Blanchfield Hospital buildings B and C. The energy conservation opportunities (ECOs) evaluated were high efficiency interior and exterior lighting, and indoor lighting controls . Cost estimates were prepared.
Ma, Ding; Chen, Wenying; Xu, Tengfang
2015-08-21
As one of the most energy-, emission- and pollution-intensive industries, iron and steel production is responsible for significant emissions of greenhouse gas (GHG) and air pollutants. Although many energy-efficiency measures have been proposed by the Chinese government to mitigate GHG emissions and to improve air quality, lacking full understanding of the costs and benefits has created barriers against implementing these measures widely. This paper sets out to advance the understanding by addressing the knowledge gap in costs, benefits, and cost-effectiveness of energy-efficiency measures in iron and steel production. Specifically, we build a new evaluation framework to quantify energy benefits andmore » environmental benefits (i.e., CO 2 emission reduction, air-pollutants emission reduction and water savings) associated with 36 energy-efficiency measures. Results show that inclusion of benefits from CO 2 and air-pollutants emission reduction affects the cost-effectiveness of energy-efficiency measures significantly, while impacts from water-savings benefits are moderate but notable when compared to the effects by considering energy benefits alone. The new information resulted from this study should be used to augment future programs and efforts in reducing energy use and environmental impacts associated with steel production.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Ding; Chen, Wenying; Xu, Tengfang
As one of the most energy-, emission- and pollution-intensive industries, iron and steel production is responsible for significant emissions of greenhouse gas (GHG) and air pollutants. Although many energy-efficiency measures have been proposed by the Chinese government to mitigate GHG emissions and to improve air quality, lacking full understanding of the costs and benefits has created barriers against implementing these measures widely. This paper sets out to advance the understanding by addressing the knowledge gap in costs, benefits, and cost-effectiveness of energy-efficiency measures in iron and steel production. Specifically, we build a new evaluation framework to quantify energy benefits andmore » environmental benefits (i.e., CO 2 emission reduction, air-pollutants emission reduction and water savings) associated with 36 energy-efficiency measures. Results show that inclusion of benefits from CO 2 and air-pollutants emission reduction affects the cost-effectiveness of energy-efficiency measures significantly, while impacts from water-savings benefits are moderate but notable when compared to the effects by considering energy benefits alone. The new information resulted from this study should be used to augment future programs and efforts in reducing energy use and environmental impacts associated with steel production.« less
Evaluation of a Silicon 90Sr Betavoltaic Power Source.
Dixon, Jefferson; Rajan, Aravindh; Bohlemann, Steven; Coso, Dusan; Upadhyaya, Ajay D; Rohatgi, Ajeet; Chu, Steven; Majumdar, Arun; Yee, Shannon
2016-12-01
Betavoltaic energy converters (i.e., β-batteries) are attractive power sources because of their potential for high energy densities (>200 MWh/kg) and long duration continuous discharge (>1 year). However, conversion efficiencies have been historically low (<3%). High efficiency devices can be achieved by matching β-radiation transport length scales with the device physics length scales. In this work, the efficiency of c-Si devices using high-energy (>1 MeV) electrons emitted from 90 Sr as a power source is investigated. We propose a design for a >10% efficient betavoltaic device, which generates 1 W of power. A Varian Clinac iX is used to simulate the high-energy electrons emitted from 90 Sr, and a high efficiency c-Si photovoltaic cell is used as the converter. The measured conversion efficiency is 16%. This relatively high value is attributed to proper length scale matching and the generation of secondary electrons in c-Si by the primary β-particles.
Evaluation of a Silicon 90Sr Betavoltaic Power Source
Dixon, Jefferson; Rajan, Aravindh; Bohlemann, Steven; Coso, Dusan; Upadhyaya, Ajay D.; Rohatgi, Ajeet; Chu, Steven; Majumdar, Arun; Yee, Shannon
2016-01-01
Betavoltaic energy converters (i.e., β-batteries) are attractive power sources because of their potential for high energy densities (>200 MWh/kg) and long duration continuous discharge (>1 year). However, conversion efficiencies have been historically low (<3%). High efficiency devices can be achieved by matching β-radiation transport length scales with the device physics length scales. In this work, the efficiency of c-Si devices using high-energy (>1 MeV) electrons emitted from 90Sr as a power source is investigated. We propose a design for a >10% efficient betavoltaic device, which generates 1 W of power. A Varian Clinac iX is used to simulate the high-energy electrons emitted from 90Sr, and a high efficiency c-Si photovoltaic cell is used as the converter. The measured conversion efficiency is 16%. This relatively high value is attributed to proper length scale matching and the generation of secondary electrons in c-Si by the primary β-particles. PMID:27905521
Evaluation of a Silicon 90Sr Betavoltaic Power Source
NASA Astrophysics Data System (ADS)
Dixon, Jefferson; Rajan, Aravindh; Bohlemann, Steven; Coso, Dusan; Upadhyaya, Ajay D.; Rohatgi, Ajeet; Chu, Steven; Majumdar, Arun; Yee, Shannon
2016-12-01
Betavoltaic energy converters (i.e., β-batteries) are attractive power sources because of their potential for high energy densities (>200 MWh/kg) and long duration continuous discharge (>1 year). However, conversion efficiencies have been historically low (<3%). High efficiency devices can be achieved by matching β-radiation transport length scales with the device physics length scales. In this work, the efficiency of c-Si devices using high-energy (>1 MeV) electrons emitted from 90Sr as a power source is investigated. We propose a design for a >10% efficient betavoltaic device, which generates 1 W of power. A Varian Clinac iX is used to simulate the high-energy electrons emitted from 90Sr, and a high efficiency c-Si photovoltaic cell is used as the converter. The measured conversion efficiency is 16%. This relatively high value is attributed to proper length scale matching and the generation of secondary electrons in c-Si by the primary β-particles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kurnik, Charles W.; Agnew, Ken; Goldberg, Mimi
Whole-building retrofits involve the installation of multiple measures. Whole-building retrofit programs take many forms. With a focus on overall building performance, these programs usually begin with an energy audit to identify cost-effective energy efficiency measures for the home. Measures are then installed, either at no cost to the homeowner or partially paid for by rebates and/or financing. The methods described here may also be applied to evaluation of single-measure retrofit programs. Related methods exist for replace-on-failure programs and for new construction, but are not the subject of this chapter.
Post occupancy evaluation of energy-efficient behavior in informal housing of high density area
NASA Astrophysics Data System (ADS)
Aulia, D. N.; Marpaung, B. O. Y.
2018-02-01
The concept of energy-efficient building emphasizes the critical of efficiency in the use of water, electrical energy, and building materials, beginning with design, construction, to the maintenance of the building in the future. This study was conducted to observe the behavior of Energy Saving of the residents in performing everyday activities in the building. The observed variables are the consumption of natural resources (energy, material, water, and land) and the emissions of air, water, and land related to the environment and health. This research is a descriptive qualitative research with the method of data collection is the distribution of questionnaires and observation. The method of analyzing data is posted occupancy evaluation undertaken to obtain patterns of community-based behavior in urban areas. The informal high-density housing area is a typology of population settlements that found in many big cities in Indonesia. This community represents various community groups regarding occupation, education, income, and race. The results of the study concluded that there are five components of energy-saving behavioral formers in housing namely: residential building components, environmental components in occupancy, external occupancy components, components of social activities and elements of business
Mafole, Prosper; Aritsugi, Masayoshi
2016-01-01
Backoff-free fragment retransmission (BFFR) scheme enhances the performance of legacy MAC layer fragmentation by eliminating contention overhead. The eliminated overhead is the result of backoff executed before a retransmission attempt is made when fragment transmission failure occurs within a fragment burst. This paper provides a mathematical analysis of BFFR energy efficiency and further assesses, by means of simulations, the energy efficiency, throughput and delay obtained when BFFR is used. The validity of the new scheme is evaluated in different scenarios namely, constant bit rate traffic, realistic bursty internet traffic, node mobility, rigid and elastic flows and their combinations at different traffic loads. We also evaluate and discuss the impact of BFFR on MAC fairness when the number of nodes is varied from 4 to 10. It is shown that BFFR has advantages over legacy MAC fragmentation scheme in all the scenarios.
Improving Energy Efficiency of Buildings in the Urals
NASA Astrophysics Data System (ADS)
Kiyanets, A. V.
2017-11-01
The article is devoted to the results of studies of energy efficiency improvements of the buildings which are constructed under the climatic conditions of the Ural Federal District of the Russian Federation. The relevance of the stated problem is corroborated. The requirements of the existing regulatory legal acts of the Russian Federation on energy conservation and energy efficiency in construction are given. The article specifies that energy efficiency in construction refers to a set of measures aimed at the reduction of energy resources which are consumed by buildings and are necessary to maintain the required microclimate parameters indoors. The main modern measures for improving the energy efficiency of buildings are presented, and their application under the climatic conditions of the Urals are analyzed and calculated. Each of the proposed methods is evaluated. Basing on the research results, it is concluded that most of the currently known measures for improving the energy efficiency of buildings are significantly limited in the Ural Federal District due to the small economic effect connected with the complexity and high cost of their implementation and operation, the peculiarities of climatic conditions and the conditions of the population density of the territories or significant ineffectiveness of the measures themselves; the most promising measures for improving the energy efficiency of buildings under the climatic and economic conditions of the Urals are the measures for reducing heat loss through the building envelopes (for improving the heat-insulation characteristics of the applied materials and structures).
Building Efficiency Evaluation and Uncertainty Analysis with DOE's Asset Score Preview
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2016-08-12
Building Energy Asset Score Tool, developed by the U.S. Department of Energy (DOE), is a program to encourage energy efficiency improvement by helping building owners and managers assess a building's energy-related systems independent of operations and maintenance. Asset Score Tool uses a simplified EnergyPlus model to provide an assessment of building systems, through minimum user inputs of basic building characteristics. Asset Score Preview is a newly developed option that allows users to assess their building's systems and the potential value of a more in-depth analysis via an even more simplified approach. This methodology provides a preliminary approach to estimating amore » building's energy efficiency and potential for improvement. This paper provides an overview of the methodology used for the development of Asset Score Preview and the scoring methodology.« less
NREL's OpenStudio Helps Design More Efficient Buildings (Fact Sheet)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2014-07-01
The National Renewable Energy Laboratory (NREL) has created the OpenStudio software platform that makes it easier for architects and engineers to evaluate building energy efficiency measures throughout the design process. OpenStudio makes energy modeling more accessible and affordable, helping professionals to design structures with lower utility bills and less carbon emissions, resulting in a healthier environment. OpenStudio includes a user-friendly application suite that makes the U.S. Department of Energy's EnergyPlus and Radiance simulation engines easier to use for whole building energy and daylighting performance analysis. OpenStudio is freely available and runs on Windows, Mac, and Linux operating systems.
Eco-efficiency model for evaluating feedlot rations in the Great Plains, United States
USDA-ARS?s Scientific Manuscript database
Environmental impacts attributable to beef feedlot production provide an opportunity for economically-linked environmental efficiency optimization. An adaptable eco-efficiency model was developed to assess the impacts of dietary rations. The hybridized model utilized California Net Energy System m...
Energy efficiency system development
NASA Astrophysics Data System (ADS)
Leman, A. M.; Rahman, K. A.; Chong, Haw Jie; Salleh, Mohd Najib Mohd; Yusof, M. Z. M.
2017-09-01
By subjecting to the massive usage of electrical energy in Malaysia, energy efficiency is now one of the key areas of focus in climate change mitigation. This paper focuses on the development of an energy efficiency system of household electrical appliances for residential areas. Distribution of Questionnaires and pay a visit to few selected residential areas are conducted during the fulfilment of the project as well as some advice on how to save energy are shared with the participants. Based on the collected data, the system developed by the UTHM Energy Team is then evaluated from the aspect of the consumers' behaviour in using electrical appliances and the potential reduction targeted by the team. By the end of the project, 60% of the participants had successfully reduced the electrical power consumption set by the UTHM Energy Team. The reasons for whether the success and the failure is further analysed in this project.
An Energy Efficient Cooperative Hierarchical MIMO Clustering Scheme for Wireless Sensor Networks
Nasim, Mehwish; Qaisar, Saad; Lee, Sungyoung
2012-01-01
In this work, we present an energy efficient hierarchical cooperative clustering scheme for wireless sensor networks. Communication cost is a crucial factor in depleting the energy of sensor nodes. In the proposed scheme, nodes cooperate to form clusters at each level of network hierarchy ensuring maximal coverage and minimal energy expenditure with relatively uniform distribution of load within the network. Performance is enhanced by cooperative multiple-input multiple-output (MIMO) communication ensuring energy efficiency for WSN deployments over large geographical areas. We test our scheme using TOSSIM and compare the proposed scheme with cooperative multiple-input multiple-output (CMIMO) clustering scheme and traditional multihop Single-Input-Single-Output (SISO) routing approach. Performance is evaluated on the basis of number of clusters, number of hops, energy consumption and network lifetime. Experimental results show significant energy conservation and increase in network lifetime as compared to existing schemes. PMID:22368459
A Bottom-up Energy Efficiency Improvement Roadmap for China’s Iron and Steel Industry up to 2050
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Qi; Hasanbeigi, Ali; Price, Lynn
Iron and steel manufacturing is energy intensive in China and in the world. China is the world largest steel producer accounting for around half of the world steel production. In this study, we use a bottom-up energy consumption model to analyze four steel-production and energy-efficiency scenarios and evaluate the potential for energy savings from energy-efficient technologies in China’s iron and steel industry between 2010 and 2050. The results show that China’s steel production will rise and peak in the year 2020 at 860 million tons (Mt) per year for the base-case scenario and 680 Mt for the advanced energy-efficiency scenario.more » From 2020 on, production will gradually decrease to about 510 Mt and 400 Mt in 2050, for the base-case and advanced scenarios, respectively. Energy intensity will decrease from 21.2 gigajoules per ton (G/t) in 2010 to 12.2 GJ/t and 9.9 GJ/t in 2050 for the base-case and advanced scenarios, respectively. In the near term, decreases in iron and steel industry energy intensity will come from adoption of energy-efficient technologies. In the long term, a shift in the production structure of China’s iron and steel industry, reducing the share of blast furnace/basic oxygen furnace production and increasing the share of electric-arc furnace production while reducing the use of pig iron as a feedstock to electric-arc furnaces will continue to reduce the sector’s energy consumption. We discuss barriers to achieving these energy-efficiency gains and make policy recommendations to support improved energy efficiency and a shift in the nature of iron and steel production in China.« less
Thermodynamics of photon-enhanced thermionic emission solar cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reck, Kasper, E-mail: kasper.reck@nanotech.dtu.dk; Hansen, Ole, E-mail: ole.hansen@nanotech.dtu.dk; CINF Center for Individual Nanoparticle Functionality, Technical University of Denmark, Kgs. Lyngby 2800
2014-01-13
Photon-enhanced thermionic emission (PETE) cells in which direct photon energy as well as thermal energy can be harvested have recently been suggested as a new candidate for high efficiency solar cells. Here, we present an analytic thermodynamical model for evaluation of the efficiency of PETE solar cells including an analysis of the entropy production due to thermionic emission of general validity. The model is applied to find the maximum efficiency of a PETE cell for given cathode and anode work functions and temperatures.
NASA Astrophysics Data System (ADS)
Feron, Krishna; Thameel, Mahir N.; Al-Mudhaffer, Mohammed F.; Zhou, Xiaojing; Belcher, Warwick J.; Fell, Christopher J.; Dastoor, Paul C.
2017-03-01
Electronic energy level engineering, with the aim to improve the power conversion efficiency in ternary organic solar cells, is a complex problem since multiple charge transfer steps and exciton dissociation driving forces must be considered. Here, we examine exciton dissociation in the ternary system poly(3-hexylthiophene): [6,6]-phenyl-C61-butyric acid methyl ester:2,4-bis[4-(N,N-diisobutylamino)-2,6-dihydroxyphenyl] squaraine (P3HT:PCBM:DIBSq). Even though the energy level diagram suggests that exciton dissociation at the P3HT:DIBSq interface should be efficient, electron paramagnetic resonance and external quantum efficiency measurements of planar devices show that this interface is not capable of generating separated charge carriers. Efficient exciton dissociation is still realised via energy transfer, which transports excitons from the P3HT:DIBSq interface to the DIBSq:PCBM interface, where separated charge carriers can be generated efficiently. This work demonstrates that energy level diagrams alone cannot be relied upon to predict the exciton dissociation and charge separation capability of an organic semiconductor interface and that energy transfer relaxes the energy level constraints for optimised multi-component organic solar cells.
Evaluating Dihydroazulene/Vinylheptafulvene Photoswitches for Solar Energy Storage Applications
Wang, Zhihang; Udmark, Jonas; Börjesson, Karl; Rodrigues, Rita; Roffey, Anna; Abrahamsson, Maria
2017-01-01
Abstract Efficient solar energy storage is a key challenge in striving toward a sustainable future. For this reason, molecules capable of solar energy storage and release through valence isomerization, for so‐called molecular solar thermal energy storage (MOST), have been investigated. Energy storage by photoconversion of the dihydroazulene/vinylheptafulvene (DHA/VHF) photothermal couple has been evaluated. The robust nature of this system is determined through multiple energy storage and release cycles at elevated temperatures in three different solvents. In a nonpolar solvent such as toluene, the DHA/VHF system can be cycled more than 70 times with less than 0.01 % degradation per cycle. Moreover, the [Cu(CH3CN)4]PF6‐catalyzed conversion of VHF into DHA was demonstrated in a flow reactor. The performance of the DHA/VHF couple was also evaluated in prototype photoconversion devices, both in the laboratory by using a flow chip under simulated sunlight and under outdoor conditions by using a parabolic mirror. Device experiments demonstrated a solar energy storage efficiency of up to 0.13 % in the chip device and up to 0.02 % in the parabolic collector. Avenues for future improvements and optimization of the system are also discussed. PMID:28644559
Carbon-free hydrogen production from low rank coal
NASA Astrophysics Data System (ADS)
Aziz, Muhammad; Oda, Takuya; Kashiwagi, Takao
2018-02-01
Novel carbon-free integrated system of hydrogen production and storage from low rank coal is proposed and evaluated. To measure the optimum energy efficiency, two different systems employing different chemical looping technologies are modeled. The first integrated system consists of coal drying, gasification, syngas chemical looping, and hydrogenation. On the other hand, the second system combines coal drying, coal direct chemical looping, and hydrogenation. In addition, in order to cover the consumed electricity and recover the energy, combined cycle is adopted as addition module for power generation. The objective of the study is to find the best system having the highest performance in terms of total energy efficiency, including hydrogen production efficiency and power generation efficiency. To achieve a thorough energy/heat circulation throughout each module and the whole integrated system, enhanced process integration technology is employed. It basically incorporates two core basic technologies: exergy recovery and process integration. Several operating parameters including target moisture content in drying module, operating pressure in chemical looping module, are observed in terms of their influence to energy efficiency. From process modeling and calculation, two integrated systems can realize high total energy efficiency, higher than 60%. However, the system employing coal direct chemical looping represents higher energy efficiency, including hydrogen production and power generation, which is about 83%. In addition, optimum target moisture content in drying and operating pressure in chemical looping also have been defined.
AVERT Main Module Quick Start Guide
Learn how to get started with the AVERT tool, which guides non-experts in evaluating county-level emissions displaced at electric power plants by energy efficiency and renewable energy policies and programs.
Kaufman, Kenton R; Levine, James A; Brey, Robert H; McCrady, Shelly K; Padgett, Denny J; Joyner, Michael J
2008-07-01
To quantify the energy efficiency of locomotion and free-living physical activity energy expenditure of transfemoral amputees using a mechanical and microprocessor-controlled prosthetic knee. Repeated-measures design to evaluate comparative functional outcomes. Exercise physiology laboratory and community free-living environment. Subjects (N=15; 12 men, 3 women; age, 42+/-9 y; range, 26-57 y) with transfemoral amputation. Research participants were long-term users of a mechanical prosthesis (20+/-10 y as an amputee; range, 3-36 y). They were fitted with a microprocessor-controlled knee prosthesis and allowed to acclimate (mean time, 18+/-8 wk) before being retested. Objective measurements of energy efficiency and total daily energy expenditure were obtained. The Prosthetic Evaluation Questionnaire was used to gather subjective feedback from the participants. Subjects demonstrated significantly increased physical activity-related energy expenditure levels in the participant's free-living environment (P=.04) after wearing the microprocessor-controlled prosthetic knee joint. There was no significant difference in the energy efficiency of walking (P=.34). When using the microprocessor-controlled knee, the subjects expressed increased satisfaction in their daily lives (P=.02). People ambulating with a microprocessor-controlled knee significantly increased their physical activity during daily life, outside the laboratory setting, and expressed an increased quality of life.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2014-10-01
The Fleet Test and Evaluation Team at the U.S. Department of Energy's National Renewable Energy Laboratory is evaluating and documenting the performance of electric and plug-in hybrid electric drive systems in medium-duty trucks across the nation. U.S. companies participating in this evaluation project received funding from the American Recovery and Reinvestment Act to cover part of the cost of purchasing these vehicles. Through this project, Smith Electric Vehicles is building and deploying 500 all-electric medium-duty trucks that will be deployed by a variety of companies in diverse climates across the country.
Efficiency transfer using the GEANT4 code of CERN for HPGe gamma spectrometry.
Chagren, S; Tekaya, M Ben; Reguigui, N; Gharbi, F
2016-01-01
In this work we apply the GEANT4 code of CERN to calculate the peak efficiency in High Pure Germanium (HPGe) gamma spectrometry using three different procedures. The first is a direct calculation. The second corresponds to the usual case of efficiency transfer between two different configurations at constant emission energy assuming a reference point detection configuration and the third, a new procedure, consists on the transfer of the peak efficiency between two detection configurations emitting the gamma ray in different energies assuming a "virtual" reference point detection configuration. No pre-optimization of the detector geometrical characteristics was performed before the transfer to test the ability of the efficiency transfer to reduce the effect of the ignorance on their real magnitude on the quality of the transferred efficiency. The obtained and measured efficiencies were found in good agreement for the two investigated methods of efficiency transfer. The obtained agreement proves that Monte Carlo method and especially the GEANT4 code constitute an efficient tool to obtain accurate detection efficiency values. The second investigated efficiency transfer procedure is useful to calibrate the HPGe gamma detector for any emission energy value for a voluminous source using one point source detection efficiency emitting in a different energy as a reference efficiency. The calculations preformed in this work were applied to the measurement exercise of the EUROMET428 project. A measurement exercise where an evaluation of the full energy peak efficiencies in the energy range 60-2000 keV for a typical coaxial p-type HpGe detector and several types of source configuration: point sources located at various distances from the detector and a cylindrical box containing three matrices was performed. Copyright © 2015 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scott, Michael J.; Roop, Joseph M.; Schultz, Robert W.
2008-07-31
To more fully evaluate its programs to increase the energy efficiency of the U.S. residential and commercial building stock, the U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy (EERE) assesses the macroeconomic impacts of those programs, specifically on national employment, wage income, and (most recently) investment. The analysis is conducted using the Impact of Sector Energy Technologies (ImSET) model, a special-purpose 188-sector input-output model of the U.S. economy designed specifically to evaluate the impacts of energy efficiency investments and saving. For the analysis described in the paper, ImSET was amended to provide estimates of sector-by-sector capital requirementsmore » and investment. In the scenario of the Fiscal Year (FY) 2005 Buildings Technology (BT) program, the technologies and building practices being developed and promoted by the BT program have the prospect of saving about 2.9×1015 Btu in buildings by the year 2030, about 27% of the expected growth in buildings energy consumption by the year 2030. The analysis reported in the paper finds that, by the year 2030, these savings have the potential to increase employment by up to 446,000 jobs, increase wage income by $7.8 billion, reduce needs for capital stock in the energy sector and closely related supporting industries by about $207 billion (and the corresponding annual level of investment by $13 billion), and create net capital savings that are available to grow the nation’s future economy.« less
Design and operation considerations for attic inlets
USDA-ARS?s Scientific Manuscript database
Improving energy efficiency and environmental control in poultry facilities is essential for profitability. Increases in energy costs have prompted evaluation of solar energy systems and passive solar systems such as attic inlets have been adopted as a means to reduce fuel usage. Successful implem...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kurnik, Charles W; Baumgartner, Robert
This chapter presents an overview of best practices for designing and executing survey research to estimate gross energy savings in energy efficiency evaluations. A detailed description of the specific techniques and strategies for designing questions, implementing a survey, and analyzing and reporting the survey procedures and results is beyond the scope of this chapter. So for each topic covered below, readers are encouraged to consult articles and books cited in References, as well as other sources that cover the specific topics in greater depth. This chapter focuses on the use of survey methods to collect data for estimating gross savingsmore » from energy efficiency programs.« less
Comparative Evaluation of Financing Programs: Insights From California’s Experience
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deason, Jeff
Berkeley Lab examines criteria for a comparative assessment of multiple financing programs for energy efficiency, developed through a statewide public process in California. The state legislature directed the California Alternative Energy and Advanced Transportation Financing Authority (CAEATFA) to develop these criteria. CAEATFA's report to the legislature, an invaluable reference for other jurisdictions considering these topics, discusses the proposed criteria and the rationales behind them in detail. Berkeley Lab's brief focuses on several salient issues that emerged during the criteria development and discussion process. Many of these issues are likely to arise in other states that plan to evaluate the impactsmore » of energy efficiency financing programs, whether for a single program or multiple programs. Issues discussed in the brief include: -The stakeholder process to develop the proposed assessment criteria -Attribution of outcomes - such as energy savings - to financing programs vs. other drivers -Choosing the outcome metric of primary interest: program take-up levels vs. savings -The use of net benefits vs. benefit-cost ratios for cost-effectiveness evaluation -Non-energy factors -Consumer protection factors -Market transformation impacts -Accommodating varying program goals in a multi-program evaluation -Accounting for costs and risks borne by various parties, including taxpayers and utility customers, in cost-effectiveness analysis -How to account for potential synergies among programs in a multi-program evaluation« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Marvin; Bose, James; Beier, Richard
2004-12-01
The assets that Citizen Potawatomi Nation holds were evaluated to help define the strengths and weaknesses to be used in pursuing economic prosperity. With this baseline assessment, a Planning Team will create a vision for the tribe to integrate into long-term energy and business strategies. Identification of energy efficiency devices, systems and technologies was made, and an estimation of cost benefits of the more promising ideas is submitted for possible inclusion into the final energy plan. Multiple energy resources and sources were identified and their attributes were assessed to determine the appropriateness of each. Methods of saving energy were evaluatedmore » and reported on and potential revenue-generating sources that specifically fit the tribe were identified and reported. A primary goal is to create long-term energy strategies to explore development of tribal utility options and analyze renewable energy and energy efficiency options. Associated goals are to consider exploring energy efficiency and renewable economic development projects involving the following topics: (1) Home-scale projects may include construction of a home with energy efficiency or renewable energy features and retrofitting an existing home to add energy efficiency or renewable energy features. (2) Community-scale projects may include medium to large scale energy efficiency building construction, retrofit project, or installation of community renewable energy systems. (3) Small business development may include the creation of a tribal enterprise that would manufacture and distribute solar and wind powered equipment for ranches and farms or create a contracting business to include energy efficiency and renewable retrofits such as geothermal heat pumps. (4) Commercial-scale energy projects may include at a larger scale, the formation of a tribal utility formed to sell power to the commercial grid, or to transmit and distribute power throughout the tribal community, or hydrogen production, and propane and natural-gas distribution systems.« less
Scaduto, David A; Tousignant, Olivier; Zhao, Wei
2017-08-01
Dual-energy contrast-enhanced imaging is being investigated as a tool to identify and localize angiogenesis in the breast, a possible indicator of malignant tumors. This imaging technique requires that x-ray images are acquired at energies above the k-shell binding energy of an appropriate radiocontrast agent. Iodinated contrast agents are commonly used for vascular imaging, and require x-ray energies greater than 33 keV. Conventional direct conversion amorphous selenium (a-Se) flat-panel imagers for digital mammography show suboptimal absorption efficiencies at these higher energies. We use spatial-frequency domain image quality metrics to evaluate the performance of a prototype direct conversion flat-panel imager with a thicker a-Se layer, specifically fabricated for dual-energy contrast-enhanced breast imaging. Imaging performance was evaluated in a prototype digital breast tomosynthesis (DBT) system. The spatial resolution, noise characteristics, detective quantum efficiency, and temporal performance of the detector were evaluated for dual-energy imaging for both conventional full-field digital mammography (FFDM) and DBT. The zero-frequency detective quantum efficiency of the prototype detector is improved by approximately 20% over the conventional detector for higher energy beams required for imaging with iodinated contrast agents. The effect of oblique entry of x-rays on spatial resolution does increase with increasing photoconductor thickness, specifically for the most oblique views of a DBT scan. Degradation of spatial resolution due to focal spot motion was also observed. Temporal performance was found to be comparable to conventional mammographic detectors. Increasing the a-Se thickness in direct conversion flat-panel imagers results in better performance for dual-energy contrast-enhanced breast imaging. The reduction in spatial resolution due to oblique entry of x-rays is appreciable in the most extreme clinically relevant cases, but may not profoundly affect reconstructed images due to the algorithms and filters employed. Degradation to projection domain spatial resolution is thus outweighed by the improvement in detective quantum efficiency for high-energy x-rays. © 2017 American Association of Physicists in Medicine.
Evaluating knowledge benefits of automotive lightweighting materials R&D projects.
Peretz, Jean H; Das, Sujit; Tonn, Bruce E
2009-08-01
This paper presents a set of metrics used to evaluate short-run knowledge benefits that accrued from research and development (R&D) projects funded in fiscal years 2000-2004 by automotive lightweighting materials (ALM) of the U.S. Department of Energy (DOE). Although DOE presents to Congress energy, environmental, and security benefits and costs of its R&D efforts under the Government Performance and Results Act, DOE has yet to include knowledge benefits in that report [U.S. Department of Energy. (2007). Projected benefits of federal energy efficiency and renewable energy programs: FY2008 budget request. NREL/TP-640-41347 (March). Washington, DC: National Renewable Energy Laboratory for DOE Energy Efficiency and Renewable Energy. Retrieved February 12, 2007 from http://www1.eere.energy.gov/ba/pba/2008_benefits.html]. ALM focuses on development and validation of advanced technologies that significantly reduce automotive vehicle body and chassis weight without compromising other attributes such as safety, performance, recyclability, and cost [U.S. Department of Energy. (2005a). Automotive lightweighting materials 2004 annual progress report. Washington, DC: DOE Energy Efficiency and Renewable Energy. Retrieved March 30, 2005 from http://www.eere.energy.gov/vehiclesandfuels/resources/fcvt_alm_fy04.shtml]. The ultimate goal of ALM to have lightweighter materials in vehicles hinges on many issues, including the (1) collaborative nature of ALMs R&D with the automobile industry and (2) manufacturing knowledge gained through the R&D effort. The ALM projects evaluated in this paper yielded numerous knowledge benefits in the short run. While these knowledge benefits are impressive, there remains uncertainty about whether the research will lead to incorporation of lightweight materials by the Big Three automakers into their manufacturing process and introduction of lightweight vehicles into the marketplace. The uncertainty illustrates a difference between (1) knowledge benefits and (2) energy, environmental, and security benefits emanating from R&D.
High-Energy, Multi-Octave-Spanning Mid-IR Sources via Adiabatic Difference Frequency Generation
2016-10-17
plan. We have evaluated a brand -new concept in nonlinear optics, adiabatic difference frequency generation (ADFG) for the efficient transfer of...achieved the main goals of our research plan. We have evaluated a brand -new concept in nonlinear optics, adiabatic difference frequency generation (ADFG...research plan. We have evaluated a brand -new concept in nonlinear optics, adiabatic difference frequency generation (ADFG) for the efficient transfer of
Service-Aware Clustering: An Energy-Efficient Model for the Internet-of-Things
Bagula, Antoine; Abidoye, Ademola Philip; Zodi, Guy-Alain Lusilao
2015-01-01
Current generation wireless sensor routing algorithms and protocols have been designed based on a myopic routing approach, where the motes are assumed to have the same sensing and communication capabilities. Myopic routing is not a natural fit for the IoT, as it may lead to energy imbalance and subsequent short-lived sensor networks, routing the sensor readings over the most service-intensive sensor nodes, while leaving the least active nodes idle. This paper revisits the issue of energy efficiency in sensor networks to propose a clustering model where sensor devices’ service delivery is mapped into an energy awareness model, used to design a clustering algorithm that finds service-aware clustering (SAC) configurations in IoT settings. The performance evaluation reveals the relative energy efficiency of the proposed SAC algorithm compared to related routing algorithms in terms of energy consumption, the sensor nodes’ life span and its traffic engineering efficiency in terms of throughput and delay. These include the well-known low energy adaptive clustering hierarchy (LEACH) and LEACH-centralized (LEACH-C) algorithms, as well as the most recent algorithms, such as DECSA and MOCRN. PMID:26703619
Service-Aware Clustering: An Energy-Efficient Model for the Internet-of-Things.
Bagula, Antoine; Abidoye, Ademola Philip; Zodi, Guy-Alain Lusilao
2015-12-23
Current generation wireless sensor routing algorithms and protocols have been designed based on a myopic routing approach, where the motes are assumed to have the same sensing and communication capabilities. Myopic routing is not a natural fit for the IoT, as it may lead to energy imbalance and subsequent short-lived sensor networks, routing the sensor readings over the most service-intensive sensor nodes, while leaving the least active nodes idle. This paper revisits the issue of energy efficiency in sensor networks to propose a clustering model where sensor devices' service delivery is mapped into an energy awareness model, used to design a clustering algorithm that finds service-aware clustering (SAC) configurations in IoT settings. The performance evaluation reveals the relative energy efficiency of the proposed SAC algorithm compared to related routing algorithms in terms of energy consumption, the sensor nodes' life span and its traffic engineering efficiency in terms of throughput and delay. These include the well-known low energy adaptive clustering hierarchy (LEACH) and LEACH-centralized (LEACH-C) algorithms, as well as the most recent algorithms, such as DECSA and MOCRN.
Development of new methodologies for evaluating the energy performance of new commercial buildings
NASA Astrophysics Data System (ADS)
Song, Suwon
The concept of Measurement and Verification (M&V) of a new building continues to become more important because efficient design alone is often not sufficient to deliver an efficient building. Simulation models that are calibrated to measured data can be used to evaluate the energy performance of new buildings if they are compared to energy baselines such as similar buildings, energy codes, and design standards. Unfortunately, there is a lack of detailed M&V methods and analysis methods to measure energy savings from new buildings that would have hypothetical energy baselines. Therefore, this study developed and demonstrated several new methodologies for evaluating the energy performance of new commercial buildings using a case-study building in Austin, Texas. First, three new M&V methods were developed to enhance the previous generic M&V framework for new buildings, including: (1) The development of a method to synthesize weather-normalized cooling energy use from a correlation of Motor Control Center (MCC) electricity use when chilled water use is unavailable, (2) The development of an improved method to analyze measured solar transmittance against incidence angle for sample glazing using different solar sensor types, including Eppley PSP and Li-Cor sensors, and (3) The development of an improved method to analyze chiller efficiency and operation at part-load conditions. Second, three new calibration methods were developed and analyzed, including: (1) A new percentile analysis added to the previous signature method for use with a DOE-2 calibration, (2) A new analysis to account for undocumented exhaust air in DOE-2 calibration, and (3) An analysis of the impact of synthesized direct normal solar radiation using the Erbs correlation on DOE-2 simulation. Third, an analysis of the actual energy savings compared to three different energy baselines was performed, including: (1) Energy Use Index (EUI) comparisons with sub-metered data, (2) New comparisons against Standards 90.1-1989 and 90.1-2001, and (3) A new evaluation of the performance of selected Energy Conservation Design Measures (ECDMs). Finally, potential energy savings were also simulated from selected improvements, including: minimum supply air flow, undocumented exhaust air, and daylighting.
West Village Student Housing Phase I: Apartment Monitoring and Evaluation
DOE Office of Scientific and Technical Information (OSTI.GOV)
German, A.; Bell, C.; Dakin, B.
Building America team Alliance for Residential Building Innovation (ARBI) worked with the University of California, Davis and the developer partner West Village Community Partnership (WVCP) to evaluate performance on 192 student apartments completed in September, 2011 as part of Phase I of the multi-purpose West Village project. West Village is the largest planned zero net energy community in the United States. The campus neighborhood is designed to enable faculty, staff, and students to affordably live near campus, take advantage of environmentally friendly transportation options, and participate fully in campus life. The aggressive energy efficiency measures that are incorporated in themore » design contribute to source energy reductions of 37% over the B10 Benchmark. These measures include increased wall and attic insulation, high performance windows, high efficiency heat pumps for heating and cooling, central heat pump water heaters (HPWHs), 100% high efficacy lighting, and ENERGY STAR major appliances. The report discusses how measured energy use compares to modeling estimates over a 10-month monitoring period and includes a cost effective evaluation.« less
Magnetic materials and devices for the 21st century: stronger, lighter, and more energy efficient.
Gutfleisch, Oliver; Willard, Matthew A; Brück, Ekkes; Chen, Christina H; Sankar, S G; Liu, J Ping
2011-02-15
A new energy paradigm, consisting of greater reliance on renewable energy sources and increased concern for energy efficiency in the total energy lifecycle, has accelerated research into energy-related technologies. Due to their ubiquity, magnetic materials play an important role in improving the efficiency and performance of devices in electric power generation, conditioning, conversion, transportation, and other energy-use sectors of the economy. This review focuses on the state-of-the-art hard and soft magnets and magnetocaloric materials, with an emphasis on their optimization for energy applications. Specifically, the impact of hard magnets on electric motor and transportation technologies, of soft magnetic materials on electricity generation and conversion technologies, and of magnetocaloric materials for refrigeration technologies, are discussed. The synthesis, characterization, and property evaluation of the materials, with an emphasis on structure-property relationships, are discussed in the context of their respective markets, as well as their potential impact on energy efficiency. Finally, considering future bottlenecks in raw materials, options for the recycling of rare-earth intermetallics for hard magnets will be discussed. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Design New Buildings To Save Energy -- and Money
ERIC Educational Resources Information Center
Rittelmann, Richard
1974-01-01
Buildings should be designed so that energy systems function with maximum efficiency. Re-evaluation of standards for ventilation and lighting is recommended. Heat recovery techniques and topography can reduce heating loads. (MF)
Solar thermal technology evaluation, fiscal year 1982. Volume 2: Technical
NASA Technical Reports Server (NTRS)
1983-01-01
The technology base of solar thermal energy is investigated. The materials, components, subsystems, and processes capable of meeting specific energy cost targets are emphasized, as are system efficiency and reliability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mims, Natalie; Schiller, Steven R.; Stuart, Elizabeth
In the last decade, a new policy area has emerged to boost energy efficiency in buildings that focuses on the simple action of measuring energy use as compared to buildings of similar type and size, and making that data publicly available. These efforts, referred to as benchmarking and transparency (B&T) policies, seek to unlock new energy efficiency opportunities in the country’s existing buildings by promoting data-driven decision-making and creating stronger market signals. This report focuses on the 24 state and local jurisdictions that (as of December 31, 2016) require owners of privately owned commercial buildings, multifamily buildings, or both tomore » comply with a B&T policy. The report provides a summary of U.S. B&T policy design and implementation characteristics, reports results and impacts for jurisdictions with B&T policies, and discusses opportunities for increasing the efficacy of B&T policies, as well as suggested areas for further research. Among the findings, all but one of the B&T policy evaluation studies reviewed indicate some reduction (from 1.6% to 14%) in energy use, energy costs, or energy intensity over the two- to four-year period of the analyses. More specifically, most of the studies reviewed indicate 3% to 8% reductions in gross energy consumption or energy use intensity over a two- to four-year period of B&T policy implementation. Two additional evaluation studies indicate that there is a causal relationship between B&T policies and energy savings or energy cost savings. These documented impacts should be reviewed with some caution. While consistently showing energy savings benefits associated with B&T policies, these savings estimates should be considered preliminary because of the limited period of analyses and inconsistencies in analysis methods for the various studies. A nationally standardized method for data collection, reporting, and evaluation of B&T policies—developed with an advisory group of state and local jurisdictions, energy efficiency and evaluation experts, building owner and real estate associations, and other stakeholders—could improve the consistency and quality of B&T impact studies, providing policymakers and others with a more complete understanding of the present and future impacts of these policies.« less
Electricity End Uses, Energy Efficiency, and Distributed Energy Resources Baseline
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schwartz, Lisa; Wei, Max; Morrow, William
This report was developed by a team of analysts at Lawrence Berkeley National Laboratory, with Argonne National Laboratory contributing the transportation section, and is a DOE EPSA product and part of a series of “baseline” reports intended to inform the second installment of the Quadrennial Energy Review (QER 1.2). QER 1.2 provides a comprehensive review of the nation’s electricity system and cover the current state and key trends related to the electricity system, including generation, transmission, distribution, grid operations and planning, and end use. The baseline reports provide an overview of elements of the electricity system. This report focuses onmore » end uses, electricity consumption, electric energy efficiency, distributed energy resources (DERs) (such as demand response, distributed generation, and distributed storage), and evaluation, measurement, and verification (EM&V) methods for energy efficiency and DERs.« less
Monitoring and Characterization of Miscellaneous Electrical Loads in a Large Retail Environment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gentile-Polese, L.; Frank, S.; Sheppy, M.
2014-02-01
Buildings account for 40% of primary energy consumption in the United States (residential 22%; commercial 18%). Most (70% residential and 79% commercial) is used as electricity. Thus, almost 30% of U.S. primary energy is used to provide electricity to buildings. Plug loads play an increasingly critical role in reducing energy use in new buildings (because of their increased efficiency requirements), and in existing buildings (as a significant energy savings opportunity). If all installed commercial building miscellaneous electrical loads (CMELs) were replaced with energy-efficient equipment, a potential annual energy saving of 175 TWh, or 35% of the 504 TWh annual energymore » use devoted to MELs, could be achieved. This energy saving is equivalent to the annual energy production of 14 average-sized nuclear power plants. To meet DOE's long-term goals of reducing commercial building energy use and carbon emissions, the energy efficiency community must better understand the components and drivers of CMEL energy use, and develop effective reduction strategies. These goals can be facilitated through improved data collection and monitoring methodologies, and evaluation of CMELs energy-saving techniques.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Popovich, Neil A
The fiscal year 2017 U.S. Department of Energy (DOE) Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting (AMR), in conjunction with DOE's Vehicle Technologies Office AMR, was held from June June 5-9, 2017, in Washington, D.C. This report is a summary of comments by AMR peer reviewers about the hydrogen and fuel cell projects funded by DOE's Office of Energy Efficiency and Renewable Energy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Popovich, Neil
The fiscal year 2016 U.S. Department of Energy (DOE) Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting (AMR), in conjunction with DOE's Vehicle Technologies Office AMR, was held from June 6-10, 2015, in Washington, D.C.. This report is a summary of comments by AMR peer reviewers about the hydrogen and fuel cell projects funded by DOE's Office of Energy Efficiency and Renewable Energy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Popovich, Neil
The fiscal year 2015 U.S. Department of Energy (DOE) Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting (AMR), in conjunction with DOE's Vehicle Technologies Office AMR, was held from June 8-12, 2015, in Arlington, Virginia. This report is a summary of comments by AMR peer reviewers about the hydrogen and fuel cell projects funded by DOE's Office of Energy Efficiency and Renewable Energy.
Vacuum boilers developed heating surfaces technic and economic efficiency evaluation
NASA Astrophysics Data System (ADS)
Slobodina, E. N.; Mikhailov, A. G.; Semenov, B. A.
2018-01-01
The vacuum boilers as manufacturing proto types application analysis was carried out, the possible directions for the heating surfaces development are identified with a view to improving the energy efficiency. Economic characteristics to evaluate the vacuum boilers application efficiency (Net Discounted Income (NDI), Internal Rate of Return (IRR), Profitability Index (PI) and Payback Period) are represented. The given type boilers application technic and economic efficiency criteria were established. NDI changing curves depending on the finning coefficient and operating pressure were obtained as a result of the conducted calculation studies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kurnik, Charles W.; Stewart, James; Todd, Annika
Residential behavior-based (BB) programs use strategies grounded in the behavioral and social sciences to influence household energy use. These may include providing households with real-time or delayed feedback about their energy use; supplying energy efficiency education and tips; rewarding households for reducing their energy use; comparing households to their peers; and establishing games, tournaments, and competitions. BB programs often target multiple energy end uses and encourage energy savings, demand savings, or both. Savings from BB programs are usually a small percentage of energy use, typically less than 5 percent. Utilities will continue to implement residential BB programs as large-scale, randomizedmore » control trials (RCTs); however, some are now experimenting with alternative program designs that are smaller scale; involve new communication channels such as the web, social media, and text messaging; or that employ novel strategies for encouraging behavior change (for example, Facebook competitions). These programs will create new evaluation challenges and may require different evaluation methods than those currently employed to verify any savings they generate. Quasi-experimental methods, however, require stronger assumptions to yield valid savings estimates and may not measure savings with the same degree of validity and accuracy as randomized experiments.« less
Evaluating the efficiency of nuclear energy policies: an empirical examination for 26 countries.
Gozgor, Giray; Demir, Ender
2017-08-01
The decarbonization of the global economy is an urgent concern. As a potential solution, it can be important to understand the efficiency of nuclear energy policies. For this purpose, the paper analyzes whether there is a unit root in nuclear energy consumption in 26 countries and it uses the unit root tests with two endogenous (unknown) structural breaks. The paper finds that nuclear energy consumption is stationary around a level and the time trend in 25 of 26 countries and nuclear energy consumption contains a unit root only in France. The paper also discusses the potential implications of the findings.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gordon, A.; Lubliner, M.; Howard, L.
2014-04-01
This project analyzes the cost effectiveness of energy savings measures installed by a large public housing authority in Salishan, a community in Tacoma Washington. Research focuses on the modeled and measured energy usage of the first six phases of construction, and compares the energy usage of those phases to phase 7. Market-ready energy solutions were also evaluated to improve the efficiency of affordable housing for new and existing (built since 2001) affordable housing in the marine climate of Washington State.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2014-03-01
This project analyzes the cost effectiveness of energy savings measures installed by a large public housing authority in Salishan, a community in Tacoma Washington. Research focuses on the modeled and measured energy usage of the first six phases of construction, and compares the energy usage of those phases to phase 7. Market-ready energy solutions were also evaluated to improve the efficiency of affordable housing for new and existing (built since 2001) affordable housing in the marine climate of Washington State.
Higher mortgages, lower energy bills: The real economics of buying an energy-efficient home
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mills, E.
1987-02-01
To measure the actual costs and benefits of buying an energy- efficient home, it is necessary to employ a cash-flow model that accounts for mortgage interest and other charges associated with the incremental costs of conservation measures. The ability to make payments gradually over the term of a mortgage, energy savings, and tax benefits contribute to increased cost effectiveness. Conversely, financial benefits are reduced by interest payments, insurance, taxes, and various fees linked to the (higher) sale price of an energy-efficient home. Accounting for these factors can yield a strikingly different picture from those given by commonly used ''engineering'' indicators,more » such as simple payback time, internal rate of return, or net present value (NPV), which are based solely on incremental costs and energy savings. This analysis uses actual energy savings data and incremental construction costs to evaluate the mortgage cash flow for 79 of the 144 energy-efficient homes constructed in Minnesota under the Energy-Efficient Housing Demonstration Program (EEHDP) initiated in 1980 by the Minnesota Housing Finance Agency. Using typical lending terms and fees, we find that the mean mortgage-NPV derived from the homeowners' real cash flow (including construction and financing costs) is 20% lower than the standard engineering-NPV of the conservation investment: $7981 versus $9810. For eight homes, the mortgage-NPV becomes negative once we account for the various mortgage-related effects. Sensitivities to interest rates, down payment, loan term, and marginal tax rate are included to illustrate the often large impact of alternative assumptions about these parameters. The most dramatic effect occurs when the loan term is reduced from 30 to 15 years and the mortgage NPV falls to -$925. We also evaluate the favorable Federal Home Administration (FHA) terms actually applied to the EEHDP homes. 8 refs., 4 figs., 3 tabs.« less
76 FR 13398 - Proposed Agency Information Collection
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-11
... DEPARTMENT OF ENERGY Office of Energy Efficiency and Renewable Energy Proposed Agency Information... collection of information to support the Weatherization Assistance Program ARRA-Period Evaluation that DOE is... request for OMB approval of this information collection; they also will become a matter of public record...
Vacuum Pump System Optimization Saves Energy at a Dairy Farm
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
In 1998, S&S Dairy optimized the vacuum pumping system at their dairy farm in Modesto, California. In an effort to reduce energy costs, S&S Dairy evaluated their vacuum pumping system to determine if efficiency gains and energy savings were possible.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karakaya, Mahmut; Qi, Hairong
This paper addresses the communication and energy efficiency in collaborative visual sensor networks (VSNs) for people localization, a challenging computer vision problem of its own. We focus on the design of a light-weight and energy efficient solution where people are localized based on distributed camera nodes integrating the so-called certainty map generated at each node, that records the target non-existence information within the camera s field of view. We first present a dynamic itinerary for certainty map integration where not only each sensor node transmits a very limited amount of data but that a limited number of camera nodes ismore » involved. Then, we perform a comprehensive analytical study to evaluate communication and energy efficiency between different integration schemes, i.e., centralized and distributed integration. Based on results obtained from analytical study and real experiments, the distributed method shows effectiveness in detection accuracy as well as energy and bandwidth efficiency.« less
NASA Astrophysics Data System (ADS)
Ochoa, K.; Carrillo, S.; Gutierrez, L.
2014-06-01
Climate change has both causes and consequences over agriculture. This paper focuses on the first element and presents scenarios for ASOLAGO -an onion cropper's association in Colombia with 250 members- to reduce their carbon footprint. It evaluates a case study at "La Primavera" farm using a methodology approved by the United Nations Framework Convention on Climate Change. Land preparation and crop irrigation were analyzed as stages in order to propose energy efficiency alternatives for both the farm and the association. They include field efficiency, fuel economy and energy efficiency from biofuels for the first stage as well as solar and wind energy supply for the second. A cost-benefit analysis to generate additional income selling additional power produced by the system to the National Grid was done.
Building an Energy-efficient Uplink and Downlink Delay Aware TDM-PON System
NASA Astrophysics Data System (ADS)
Newaz, S. H. Shah; Jang, Min Seok; Alaelddin, Fuad Yousif Mohammed; Lee, Gyu Myoung; Choi, Jun Kyun
2016-05-01
With the increasing concern over the energy expenditure due to rapid ICT expansion and growth of Internet traffic volume, there is a growing trend towards developing energy-efficient ICT solutions. Passive Optical Network (PON), which is regarded as a key enabler to facilitate high speed broadband connection to individual subscribers, is considered as one of the energy-efficient access network technologies. However, an immense amount of research effort can be noticed in academia and industries to make PON more energy-efficient. In this paper, we aim at improving energy saving performance of Time Division Multiplexing (TDM)-PON, which is the most widely deployed PON technology throughout the world. A commonly used approach to make TDM-PON energy-efficient is to use sleep mode in Optical Network Units (ONUs), which are the customer premises equipment of a TDM-PON system. However, there is a strong trade-off relationship between traffic delay performance of an ONU and its energy saving (the longer the sleep interval length of an ONU, the lower its energy consumption, but the higher the traffic delay, and vice versa). In this paper, we propose an Energy-efficient Uplink and Downlink Delay Aware (EUDDA) scheme for TDM-PON system. The prime object of EUDDA is to meet both downlink and uplink traffic delay requirement while maximizing energy saving performance of ONUs as much as possible. In EUDDA, traffic delay requirement is given more priority over energy saving. Even so, it still can improve energy saving of ONUs noticeably. We evaluate performance of EUDDA in front of two existing solutions in terms of traffic delay, jitter, and ONU energy consumption. The performance results show that EUDDA significantly outperforms the other existing solutions.
NASA Astrophysics Data System (ADS)
Siddiqui, Osamah; Dincer, Ibrahim
2017-12-01
In the present study, a new solar-based multigeneration system integrated with an ammonia fuel cell and solid oxide fuel cell-gas turbine combined cycle to produce electricity, hydrogen, cooling and hot water is developed for analysis and performance assessment. In this regard, thermodynamic analyses and modeling through both energy and exergy approaches are employed to assess and evaluate the overall system performance. Various parametric studies are conducted to study the effects of varying system parameters and operating conditions on the energy and exergy efficiencies. The results of this study show that the overall multigeneration system energy efficiency is obtained as 39.1% while the overall system exergy efficiency is calculated as 38.7%, respectively. The performance of this multigeneration system results in an increase of 19.3% in energy efficiency as compared to single generation system. Furthermore, the exergy efficiency of the multigeneration system is 17.8% higher than the single generation system. Moreover, both energy and exergy efficiencies of the solid oxide fuel cell-gas turbine combined cycle are determined as 68.5% and 55.9% respectively.
Characterization of biomass waste torrefaction under conventional and microwave heating.
Ho, Shih-Hsin; Zhang, Congyu; Chen, Wei-Hsin; Shen, Ying; Chang, Jo-Shu
2018-05-13
To evaluate the potential of microwave heating for biomass torrefaction, the torrefaction performances and energy utilization of coffee grounds and microalga residue, under conventional and microwave heating were investigated and compared with each other. For the two biomass samples, the dehydrogenation of the coffee grounds was more sensitive to torrefaction severity, whereas the microalga residue consumed more energy under the same torrefaction conditions. Microwave heating under lower torrefaction severity had a higher energy efficiency. As regard to the lower solid yields or higher torrefaction severity, the energy efficiency of microwave heating was close to that of conventional heating, irrespective of the feedstocks. This revealed the comparable energy consumption state between the two heating modes. Accordingly, it is concluded that microwave torrefaction is more efficient for biomass upgrading and densification than conventional torrefaction. Copyright © 2018 Elsevier Ltd. All rights reserved.
Commercial Building Energy Asset Score
DOE Office of Scientific and Technical Information (OSTI.GOV)
This software (Asset Scoring Tool) is designed to help building owners and managers to gain insight into the as-built efficiency of their buildings. It is a web tool where users can enter their building information and obtain an asset score report. The asset score report consists of modeled building energy use (by end use and by fuel type), building systems (envelope, lighting, heating, cooling, service hot water) evaluations, and recommended energy efficiency measures. The intended users are building owners and operators who have limited knowledge of building energy efficiency. The scoring tool collects minimum building data (~20 data entries) frommore » users and build a full-scale energy model using the inference functionalities from Facility Energy Decision System (FEDS). The scoring tool runs real-time building energy simulation using EnergyPlus and performs life-cycle cost analysis using FEDS. An API is also under development to allow the third-party applications to exchange data with the web service of the scoring tool.« less
Commercial Building Energy Asset Score System: Program Overview and Technical Protocol (Version 1.0)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Na; Gorrissen, Willy J.
2013-01-11
The U.S. Department of Energy (DOE) is developing a national voluntary energy asset score system that includes an energy asset score tool to help building owners evaluate their buildings with respect to the score system. The goal of the energy asset score system is to facilitate cost-effective investment in energy efficiency improvements of commercial buildings. The system will allow building owners and managers to compare their building infrastructure against peers and track building upgrade progress over time. The system can also help other building stakeholders (e.g., building operators, tenants, financiers, and appraisers) understand the relative efficiency of different buildings inmore » a way that is independent from their operations and occupancy. This report outlines the technical protocol used to generate the energy asset score, explains the scoring methodology, and provides additional details regarding the energy asset score tool. This report also describes alternative methods that were considered prior to developing the current approach. Finally, this report describes a few features of the program where alternative approaches are still under evaluation.« less
Case studies of energy efficiency financing in the original five pilot states, 1993-1996
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farhar, B C; Collins, N E; Walsh, R W
1997-05-01
The purpose of this report is to document progress in state-level programs in energy efficiency financing programs that are linked with home energy rating systems. Case studies are presented of programs in five states using a federal pilot program to amortize the costs of home energy improvements. The case studies present background information, describe the states` program, list preliminary evaluation data and findings, and discuss problems and solution encountered in the programs. A comparison of experiences in pilot states will be used to provide guidelines for program implementers, federal agencies, and Congress. 5 refs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gerke, Brian F; McNeil, Michael A; Tu, Thomas
A major barrier to effective appliance efficiency program design and evaluation is a lack of data for determination of market baselines and cost-effective energy savings potential. The data gap is particularly acute in developing countries, which may have the greatest savings potential per unit GDP. To address this need, we are developing the International Database of Efficient Appliances (IDEA), which automatically compiles data from a wide variety of online sources to create a unified repository of information on efficiency, price, and features for a wide range of energy-consuming products across global markets. This paper summarizes the database framework and demonstratesmore » the power of IDEA as a resource for appliance efficiency research and policy development. Using IDEA data for refrigerators in China and India, we develop robust cost-effectiveness indicators that allow rapid determination of savings potential within each market, as well as comparison of that potential across markets and appliance types. We discuss implications for future energy efficiency policy development.« less
Public policies, private choices: Consumer desire and the practice of energy efficiency
NASA Astrophysics Data System (ADS)
Deumling, Reuben Alexander
Refrigerator energy consumption has been the subject of regulatory attention in the US for some thirty years. Federal product standards, energy labels, and a variety of programs to get consumers to discard their existing refrigerators sooner and buy new, more energy efficient ones have transformed the refrigerator landscape and changed how many of us think about refrigerators. The results of these policies are celebrated as a successful model for how to combine regulatory objectives and consumer preferences in pursuit of environmental outcomes where everyone wins. Yet per capita refrigerator energy consumption today remains (much) higher in the US than anywhere else, in part because energy efficiency overlooks the ways behavior, habit, emulation, social norms, advertising, and energy efficiency policies themselves shape energy consumption patterns. To understand these dynamics I investigate how people replacing their refrigerators through a state-sponsored energy efficiency program make sense of the choices facing them, and how various types of information designed to aid in this process (Consumer Reports tests, Energy Guide labels, rebate programs) frame the issue of responsible refrigerator consumption. Using interviews and archival research I examine how this information is used to script the choice of a refrigerator, whose priorities shape the form and content of these cues, and what the social meanings generated by and through encounters with refrigerators and energy efficiency are. I also helped build a model for estimating historic refrigerator energy consumption in the US, to measure the repercussions of refrigerator energy inefficiency. My focus in this dissertation is on the ways the pursuit of energy efficiency improvements for domestic refrigerators intersects with and sometimes reinforces escalating demand for energy. My research suggests that the practice of pursuing energy efficiency improvements in refrigerators subordinates the issue of refrigerator energy consumption---what factors influence it, how and why it fluctuated historically, how to take it seriously---in pursuit of increased sales. The a priori assumption that consumers desire certain styles of refrigerator has become a compulsion to trade up. In evaluating the results of energy policies celebrating technical achievements without paying attention to the social dynamics which these regulations encounter is insufficient.
NASA Astrophysics Data System (ADS)
Krockenberger, Kyle G.
A heat pump assisted solar thermal system was designed, commissioned, tested and analyzed over a period of two years. The unique system uses solar energy whenever it is available, but switches to heat pump mode at night or whenever there is a lack of solar energy. The solar thermal energy is added by a variety of flat plat solar collectors and an evacuated tube heat pipe solar collector. The working medium in the entire system is a 50% mixture of propylene glycol and water for freeze protection. During the design and evaluation the primary / secondary pumping system was the focus of the evaluation. Testing within this research focused on the operation modes, pump stability, and system efficiency. It was found that the system was in full operation, the pumps were stable and that the efficiency factor of the system was 1.95.
An Optimal CDS Construction Algorithm with Activity Scheduling in Ad Hoc Networks
Penumalli, Chakradhar; Palanichamy, Yogesh
2015-01-01
A new energy efficient optimal Connected Dominating Set (CDS) algorithm with activity scheduling for mobile ad hoc networks (MANETs) is proposed. This algorithm achieves energy efficiency by minimizing the Broadcast Storm Problem [BSP] and at the same time considering the node's remaining energy. The Connected Dominating Set is widely used as a virtual backbone or spine in mobile ad hoc networks [MANETs] or Wireless Sensor Networks [WSN]. The CDS of a graph representing a network has a significant impact on an efficient design of routing protocol in wireless networks. Here the CDS is a distributed algorithm with activity scheduling based on unit disk graph [UDG]. The node's mobility and residual energy (RE) are considered as parameters in the construction of stable optimal energy efficient CDS. The performance is evaluated at various node densities, various transmission ranges, and mobility rates. The theoretical analysis and simulation results of this algorithm are also presented which yield better results. PMID:26221627
Development of a Prototype Low-Voltage Electron Beam Freeform Fabrication System
NASA Technical Reports Server (NTRS)
Watson, J. K.; Taminger, K. M.; Hafley, R. A.; Petersen, D. D.
2002-01-01
NASA's Langley Research Center and Johnson Space Center are developing a solid freeform fabrication system utilizing an electron beam energy source and wire feedstock. This system will serve as a testbed for exploring the influence of gravitational acceleration on the deposition process and will be a simplified prototype for future systems that may be deployed during long-duration space missions for assembly, fabrication, and production of structural and mechanical replacement components. Critical attributes for this system are compactness, minimal mass, efficiency in use of feedstock material, energy use efficiency, and safety. The use of a low-voltage (less than 15kV) electron beam energy source will reduce radiation so that massive shielding is not required to protect adjacent personnel. Feedstock efficiency will be optimized by use of wire, and energy use efficiency will be achieved by use of the electron beam energy source. This system will be evaluated in a microgravity environment using the NASA KC-135A aircraft.
The Evaluation of Feasibility of Thermal Energy Storage System at Riga TPP-2
NASA Astrophysics Data System (ADS)
Ivanova, P.; Linkevics, O.; Cers, A.
2015-12-01
The installation of thermal energy storage system (TES) provides the optimisation of energy source, energy security supply, power plant operation and energy production flexibility. The aim of the present research is to evaluate the feasibility of thermal energy system installation at Riga TPP-2. The six modes were investigated: four for non-heating periods and two for heating periods. Different research methods were used: data statistic processing, data analysis, analogy, forecasting, financial method and correlation and regression method. In the end, the best mode was chosen - the increase of cogeneration unit efficiency during the summer.
Maximize Energy Efficiency in Buildings | Climate Neutral Research Campuses
Buildings on a research campus, especially laboratory buildings, often represent the most cost-effective plans, campuses can evaluate the following: Energy Management Building Management New Buildings Design
Wu, Shaobo; Chou, Wusheng; Niu, Jianwei; Guizani, Mohsen
2018-03-18
Wireless sensor networks (WSNs) involve more mobile elements with their widespread development in industries. Exploiting mobility present in WSNs for data collection can effectively improve the network performance. However, when the sink (i.e., data collector) path is fixed and the movement is uncontrollable, existing schemes fail to guarantee delay requirements while achieving high energy efficiency. This paper proposes a delay-aware energy-efficient routing algorithm for WSNs with a path-fixed mobile sink, named DERM, which can strike a desirable balance between the delivery latency and energy conservation. We characterize the object of DERM as realizing the energy-optimal anycast to time-varying destination regions, and introduce a location-based forwarding technique tailored for this problem. To reduce the control overhead, a lightweight sink location calibration method is devised, which cooperates with the rough estimation based on the mobility pattern to determine the sink location. We also design a fault-tolerant mechanism called track routing to tackle location errors for ensuring reliable and on-time data delivery. We comprehensively evaluate DERM by comparing it with two canonical routing schemes and a baseline solution presented in this work. Extensive evaluation results demonstrate that DERM can provide considerable energy savings while meeting the delay constraint and maintaining a high delivery ratio.
Wu, Shaobo; Chou, Wusheng; Niu, Jianwei; Guizani, Mohsen
2018-01-01
Wireless sensor networks (WSNs) involve more mobile elements with their widespread development in industries. Exploiting mobility present in WSNs for data collection can effectively improve the network performance. However, when the sink (i.e., data collector) path is fixed and the movement is uncontrollable, existing schemes fail to guarantee delay requirements while achieving high energy efficiency. This paper proposes a delay-aware energy-efficient routing algorithm for WSNs with a path-fixed mobile sink, named DERM, which can strike a desirable balance between the delivery latency and energy conservation. We characterize the object of DERM as realizing the energy-optimal anycast to time-varying destination regions, and introduce a location-based forwarding technique tailored for this problem. To reduce the control overhead, a lightweight sink location calibration method is devised, which cooperates with the rough estimation based on the mobility pattern to determine the sink location. We also design a fault-tolerant mechanism called track routing to tackle location errors for ensuring reliable and on-time data delivery. We comprehensively evaluate DERM by comparing it with two canonical routing schemes and a baseline solution presented in this work. Extensive evaluation results demonstrate that DERM can provide considerable energy savings while meeting the delay constraint and maintaining a high delivery ratio. PMID:29562628
2014-04-01
technologies to improve fleet efficiency goals, and evaluate switching to biodiesel for trucks and vehicles without other alternatives (HCEI 2011...standards and biodiesel usage levels 2020 Goal 50 MGY of renewable fuels 28 working with industry to increase EV market penetration, and...Strategy Reduction Potential Purchase more efficient vehicles 10-20% Promote hybrid technologies 10-20% Evaluate biodiesel switching (freight) TBD
Research status and evaluation system of heat source evaluation method for central heating
NASA Astrophysics Data System (ADS)
Sun, Yutong; Qi, Junfeng; Cao, Yi
2018-02-01
The central heating boiler room is a regional heat source heating center. It is also a kind of the urban environment pollution, it is an important section of building energy efficiency. This article through to the evaluation method of central heating boiler room and overviews of the researches during domestic and overseas, summarized the main influence factors affecting energy consumption of industrial boiler under the condition of stable operation. According to the principle of establishing evaluation index system. We can find that is great significance in energy saving and environmental protection for the content of the evaluation index system of the centralized heating system.
Wintering With Solar: One School's Response to Scarce Energy
ERIC Educational Resources Information Center
Shore, Ron
1978-01-01
Through a course in energy conservation and domestic solar energy technology, students evaluated the thermal performance of existing campus structures and made suggestions for improvements in thermal efficiency. Besides making some of these improvements, the students also designed, built, and operated a solar greenhouse. (MA)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kurnik, Charles W.; Jacobson, David
The high-efficiency boiler and furnace measure produces gas heating savings resulting from installation of more energy-efficient heating equipment in a residence. Such equipment, which ranges in size from 60 kBtu/hr to 300 kBtu/hr, is installed primarily in single-family homes and multifamily buildings with individual heating systems for each dwelling unit. This protocol does not cover integrated heating and water heating units which can be used in lieu of space heating only equipment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, SH; Yip, NY; Cath, TY
2014-05-06
We present a novel hybrid membrane system that operates as a heat engine capable of utilizing low-grade thermal energy, which is not readily recoverable with existing technologies. The closed-loop system combines membrane distillation (MD), which generates concentrated and pure water streams by thermal separation, and pressure retarded osmosis (PRO), which converts the energy of mixing to electricity by a hydro-turbine. The PRO-MD system was modeled by coupling the mass and energy flows between the thermal separation (MD) and power generation (PRO) stages for heat source temperatures ranging from 40 to 80 degrees C and working concentrations of 1.0, 2.0, andmore » 4.0 mol/kg NaCl. The factors controlling the energy efficiency of the heat engine were evaluated for both limited and unlimited mass and heat transfer kinetics in the thermal separation stage. In both cases, the relative flow rate between the MD permeate (distillate) and feed streams is identified as an important operation parameter. There is an optimal relative flow rate that maximizes the overall energy efficiency of the PRO-MD system for given working temperatures and concentration. In the case of unlimited mass and heat transfer kinetics, the energy efficiency of the system can be analytically determined based on thermodynamics. Our assessment indicates that the hybrid PRO-MD system can theoretically achieve an energy efficiency of 9.8% (81.6% of the Carnot efficiency) with hot and cold working temperatures of 60 and 20 degrees C, respectively, and a working solution of 1.0 M NaCl. When mass and heat transfer kinetics are limited, conditions that more closely represent actual operations, the practical energy efficiency will be lower than the theoretically achievable efficiency. In such practical operations, utilizing a higher working concentration will yield greater energy efficiency. Overall, our study demonstrates the theoretical viability of the PRO-MD system and identifies the key factors for performance optimization.« less
Lin, Shihong; Yip, Ngai Yin; Cath, Tzahi Y; Osuji, Chinedum O; Elimelech, Menachem
2014-05-06
We present a novel hybrid membrane system that operates as a heat engine capable of utilizing low-grade thermal energy, which is not readily recoverable with existing technologies. The closed-loop system combines membrane distillation (MD), which generates concentrated and pure water streams by thermal separation, and pressure retarded osmosis (PRO), which converts the energy of mixing to electricity by a hydro-turbine. The PRO-MD system was modeled by coupling the mass and energy flows between the thermal separation (MD) and power generation (PRO) stages for heat source temperatures ranging from 40 to 80 °C and working concentrations of 1.0, 2.0, and 4.0 mol/kg NaCl. The factors controlling the energy efficiency of the heat engine were evaluated for both limited and unlimited mass and heat transfer kinetics in the thermal separation stage. In both cases, the relative flow rate between the MD permeate (distillate) and feed streams is identified as an important operation parameter. There is an optimal relative flow rate that maximizes the overall energy efficiency of the PRO-MD system for given working temperatures and concentration. In the case of unlimited mass and heat transfer kinetics, the energy efficiency of the system can be analytically determined based on thermodynamics. Our assessment indicates that the hybrid PRO-MD system can theoretically achieve an energy efficiency of 9.8% (81.6% of the Carnot efficiency) with hot and cold working temperatures of 60 and 20 °C, respectively, and a working solution of 1.0 M NaCl. When mass and heat transfer kinetics are limited, conditions that more closely represent actual operations, the practical energy efficiency will be lower than the theoretically achievable efficiency. In such practical operations, utilizing a higher working concentration will yield greater energy efficiency. Overall, our study demonstrates the theoretical viability of the PRO-MD system and identifies the key factors for performance optimization.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stewart, James
Strategic energy management (SEM) focuses on achieving energy-efficiency improvements through systematic and planned changes in facility operations, maintenance, and behaviors (OM&B) and capital equipment upgrades in large energy-using facilities, including industrial buildings, commercial buildings, and multi-facility organizations such as campuses or communities. Facilities can institute a spectrum of SEM actions, ranging from a simple process for regularly identifying energy-savings actions, to establishing a formal, third-party recognized or certified SEM framework for continuous improvement of energy performance. In general, SEM programs that would be considered part of a utility program will contain a set of energy-reducing goals, principles, and practices emphasizingmore » continuous improvements in energy performance or savings through energy management and an energy management system (EnMS).« less
Design of multi-energy Helds coupling testing system of vertical axis wind power system
NASA Astrophysics Data System (ADS)
Chen, Q.; Yang, Z. X.; Li, G. S.; Song, L.; Ma, C.
2016-08-01
The conversion efficiency of wind energy is the focus of researches and concerns as one of the renewable energy. The present methods of enhancing the conversion efficiency are mostly improving the wind rotor structure, optimizing the generator parameters and energy storage controller and so on. Because the conversion process involves in energy conversion of multi-energy fields such as wind energy, mechanical energy and electrical energy, the coupling effect between them will influence the overall conversion efficiency. In this paper, using system integration analysis technology, a testing system based on multi-energy field coupling (MEFC) of vertical axis wind power system is proposed. When the maximum efficiency of wind rotor is satisfied, it can match to the generator function parameters according to the output performance of wind rotor. The voltage controller can transform the unstable electric power to the battery on the basis of optimizing the parameters such as charging times, charging voltage. Through the communication connection and regulation of the upper computer system (UCS), it can make the coupling parameters configure to an optimal state, and it improves the overall conversion efficiency. This method can test the whole wind turbine (WT) performance systematically and evaluate the design parameters effectively. It not only provides a testing method for system structure design and parameter optimization of wind rotor, generator and voltage controller, but also provides a new testing method for the whole performance optimization of vertical axis wind energy conversion system (WECS).
Indicators and Metrics for Evaluating the Sustainability of Chemical Processes
A metric-based method, called GREENSCOPE, has been developed for evaluating process sustainability. Using lab-scale information and engineering assumptions the method evaluates full-scale epresentations of processes in environmental, efficiency, energy and economic areas. The m...
Evaluating Dihydroazulene/Vinylheptafulvene Photoswitches for Solar Energy Storage Applications.
Wang, Zhihang; Udmark, Jonas; Börjesson, Karl; Rodrigues, Rita; Roffey, Anna; Abrahamsson, Maria; Nielsen, Mogens Brøndsted; Moth-Poulsen, Kasper
2017-08-10
Efficient solar energy storage is a key challenge in striving toward a sustainable future. For this reason, molecules capable of solar energy storage and release through valence isomerization, for so-called molecular solar thermal energy storage (MOST), have been investigated. Energy storage by photoconversion of the dihydroazulene/vinylheptafulvene (DHA/VHF) photothermal couple has been evaluated. The robust nature of this system is determined through multiple energy storage and release cycles at elevated temperatures in three different solvents. In a nonpolar solvent such as toluene, the DHA/VHF system can be cycled more than 70 times with less than 0.01 % degradation per cycle. Moreover, the [Cu(CH 3 CN) 4 ]PF 6 -catalyzed conversion of VHF into DHA was demonstrated in a flow reactor. The performance of the DHA/VHF couple was also evaluated in prototype photoconversion devices, both in the laboratory by using a flow chip under simulated sunlight and under outdoor conditions by using a parabolic mirror. Device experiments demonstrated a solar energy storage efficiency of up to 0.13 % in the chip device and up to 0.02 % in the parabolic collector. Avenues for future improvements and optimization of the system are also discussed. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kurnik, Charles W; Huang, Robert; Masanet, Eric
This chapter focuses on IT measures in the data center and examines the techniques and analysis methods used to verify savings that result from improving the efficiency of two specific pieces of IT equipment: servers and data storage.
Flow dynamics and energy efficiency of flow in the left ventricle during myocardial infarction.
Vasudevan, Vivek; Low, Adriel Jia Jun; Annamalai, Sarayu Parimal; Sampath, Smita; Poh, Kian Keong; Totman, Teresa; Mazlan, Muhammad; Croft, Grace; Richards, A Mark; de Kleijn, Dominique P V; Chin, Chih-Liang; Yap, Choon Hwai
2017-10-01
Cardiovascular disease is a leading cause of death worldwide, where myocardial infarction (MI) is a major category. After infarction, the heart has difficulty providing sufficient energy for circulation, and thus, understanding the heart's energy efficiency is important. We induced MI in a porcine animal model via circumflex ligation and acquired multiple-slice cine magnetic resonance (MR) images in a longitudinal manner-before infarction, and 1 week (acute) and 4 weeks (chronic) after infarction. Computational fluid dynamic simulations were performed based on MR images to obtain detailed fluid dynamics and energy dynamics of the left ventricles. Results showed that energy efficiency flow through the heart decreased at the acute time point. Since the heart was observed to experience changes in heart rate, stroke volume and chamber size over the two post-infarction time points, simulations were performed to test the effect of each of the three parameters. Increasing heart rate and stroke volume were found to significantly decrease flow energy efficiency, but the effect of chamber size was inconsistent. Strong complex interplay was observed between the three parameters, necessitating the use of non-dimensional parameterization to characterize flow energy efficiency. The ratio of Reynolds to Strouhal number, which is a form of Womersley number, was found to be the most effective non-dimensional parameter to represent energy efficiency of flow in the heart. We believe that this non-dimensional number can be computed for clinical cases via ultrasound and hypothesize that it can serve as a biomarker for clinical evaluations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Torcellini, Paul A.; Bonnema, Eric; Goldwasser, David
Building energy consumption can only be measured at the site or at the point of utility interconnection with a building. Often, to evaluate the total energy impact, this site-based energy consumption is translated into source energy, that is, the energy at the point of fuel extraction. Consistent with this approach, the U.S. Department of Energy's (DOE) definition of zero energy buildings uses source energy as the metric to account for energy losses from the extraction, transformation, and delivery of energy. Other organizations, as well, use source energy to characterize the energy impacts. Four methods of making the conversion from sitemore » energy to source energy were investigated in the context of the DOE definition of zero energy buildings. These methods were evaluated based on three guiding principles--improve energy efficiency, reduce and stabilize power demand, and use power from nonrenewable energy sources as efficiently as possible. This study examines relative trends between strategies as they are implemented on very low-energy buildings to achieve zero energy. A typical office building was modeled and variations to this model performed. The photovoltaic output that was required to create a zero energy building was calculated. Trends were examined with these variations to study the impacts of the calculation method on the building's ability to achieve zero energy status. The paper will highlight the different methods and give conclusions on the advantages and disadvantages of the methods studied.« less
Kaufman, Kenton R.; Levine, James A.; Brey, Robert H.; McCrady, Shelly K.; Padgett, Denny J.; Joyner, Michael J.
2009-01-01
Objective To quantify the energy efficiency of locomotion and free-living physical activity energy expenditure of transfemoral amputees using a mechanical and microprocessor-controlled prosthetic knee. Design Repeated-measures design to evaluate comparative functional outcomes. Setting Exercise physiology laboratory and community free-living environment. Participants Subjects (N=15; 12 men, 3 women; age, 42±9y; range, 26 –57y) with transfemoral amputation. Intervention Research participants were long-term users of a mechanical prosthesis (20±10y as an amputee; range, 3–36y). They were fitted with a microprocessor-controlled knee prosthesis and allowed to acclimate (mean time, 18±8wk) before being retested. Main Outcome Measures Objective measurements of energy efficiency and total daily energy expenditure were obtained. The Prosthetic Evaluation Questionnaire was used to gather subjective feedback from the participants. Results Subjects demonstrated significantly increased physical activity–related energy expenditure levels in the participant’s free-living environment (P=.04) after wearing the microprocessor-controlled prosthetic knee joint. There was no significant difference in the energy efficiency of walking (P=.34). When using the microprocessor-controlled knee, the subjects expressed increased satisfaction in their daily lives (P=.02). Conclusions People ambulating with a microprocessor-controlled knee significantly increased their physical activity during daily life, outside the laboratory setting, and expressed an increased quality of life. PMID:18586142
Biomethane production system: Energetic analysis of various scenarios.
Wu, Bin; Zhang, Xiangping; Bao, Di; Xu, Yajing; Zhang, Suojiang; Deng, Liyuan
2016-04-01
The energy consumption models of biomethane production system were established, which are more rigorous and universal than the empirical data reported by previous biomethane system energetic assessment work. The energy efficiencies of different scenarios considering factors such as two digestion modes, two heating modes of digester, with or without heat exchange between slurry and feedstock, and four crude biogas upgrading technologies were evaluated. Results showed the scenario employing thermophilic digestion and high pressure water scrubbing technology, with heat exchange between feedstock and slurry, and heat demand of digester supplied by the energy source outside the system has the highest energy efficiency (46.5%) and lowest energy consumption (13.46 MJth/Nm(3) CH4), while scenario employing mesophilic digestion and pressure swing adsorption technology, without heat exchange and heat demand of digester supplied by combusting the biogas produced inside the system has the lowest energy efficiency (15.8%) and highest energy consumption (34.90 MJth/Nm(3) CH4). Copyright © 2016 Elsevier Ltd. All rights reserved.
Energy Efficiency and Renewable Energy Program. Bibliography, 1993 edition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vaughan, K.H.
1993-06-01
The Bibliography contains listings of publicly available reports, journal articles, and published conference papers sponsored by the DOE Office of Energy Efficiency and Renewable Energy and published between 1987 and mid-1993. The topics of Bibliography include: analysis and evaluation; building equipment research; building thermal envelope systems and materials; district heating; residential and commercial conservation program; weatherization assistance program; existing buildings research program; ceramic technology project; alternative fuels and propulsion technology; microemulsion fuels; industrial chemical heat pumps; materials for advanced industrial heat exchangers; advanced industrial materials; tribology; energy-related inventions program; electric energy systems; superconducting technology program for electric energy systems; thermalmore » energy storage; biofuels feedstock development; biotechnology; continuous chromatography in multicomponent separations; sensors for electrolytic cells; hydropower environmental mitigation; environmental control technology; continuous fiber ceramic composite technology.« less
Energy efficiency analysis and implementation of AES on an FPGA
NASA Astrophysics Data System (ADS)
Kenney, David
The Advanced Encryption Standard (AES) was developed by Joan Daemen and Vincent Rjimen and endorsed by the National Institute of Standards and Technology in 2001. It was designed to replace the aging Data Encryption Standard (DES) and be useful for a wide range of applications with varying throughput, area, power dissipation and energy consumption requirements. Field Programmable Gate Arrays (FPGAs) are flexible and reconfigurable integrated circuits that are useful for many different applications including the implementation of AES. Though they are highly flexible, FPGAs are often less efficient than Application Specific Integrated Circuits (ASICs); they tend to operate slower, take up more space and dissipate more power. There have been many FPGA AES implementations that focus on obtaining high throughput or low area usage, but very little research done in the area of low power or energy efficient FPGA based AES; in fact, it is rare for estimates on power dissipation to be made at all. This thesis presents a methodology to evaluate the energy efficiency of FPGA based AES designs and proposes a novel FPGA AES implementation which is highly flexible and energy efficient. The proposed methodology is implemented as part of a novel scripting tool, the AES Energy Analyzer, which is able to fully characterize the power dissipation and energy efficiency of FPGA based AES designs. Additionally, this thesis introduces a new FPGA power reduction technique called Opportunistic Combinational Operand Gating (OCOG) which is used in the proposed energy efficient implementation. The AES Energy Analyzer was able to estimate the power dissipation and energy efficiency of the proposed AES design during its most commonly performed operations. It was found that the proposed implementation consumes less energy per operation than any previous FPGA based AES implementations that included power estimations. Finally, the use of Opportunistic Combinational Operand Gating on an AES cipher was found to reduce its dynamic power consumption by up to 17% when compared to an identical design that did not employ the technique.
This project evaluated the effectiveness, first costs and operational costs of various types of residential ventilation systems in three different climates in the U.S. The Agency, through its Energy Star Program, recommends that builders construct homes that are energy efficient ...
ANSI/ASHRAE/IES Standard 90.1-2013 Determination of Energy Savings: Qualitative Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Halverson, Mark A.; Rosenberg, Michael I.; Hart, Philip R.
2014-09-04
This report provides a final qualitative analysis of all addenda to ANSI/ASHRAE/IES Standard 90.1-2010 (referred to as Standard 90.1-2010 or 2010 edition) that were included in ANSI/ASHRAE/IES Standard 90.1-2013 (referred to as Standard 90.1-2013 or 2013 edition). All addenda in creating Standard 90.1-2013 were evaluated for their projected impact on energy efficiency. Each addendum was characterized as having a positive, neutral, or negative impact on overall building energy efficiency.
Evaluating the quality of feed fats and oils and their effects on pig growth performance
USDA-ARS?s Scientific Manuscript database
Optimizing energy utilization efficiency of swine diets is essential because energy represents the greatest proportion of total diet cost. Various feed fats and oils, as well as other feed ingredients containing moderate amounts of lipid, provide significant amounts of energy to swine diets. However...
Fournier, Eric D; Keller, Arturo A; Geyer, Roland; Frew, James
2016-02-16
This project investigates the energy-water usage efficiency of large scale civil infrastructure projects involving the artificial recharge of subsurface groundwater aquifers via the reuse of treated municipal wastewater. A modeling framework is introduced which explores the various ways in which spatially heterogeneous variables such as topography, landuse, and subsurface infiltration capacity combine to determine the physical layout of proposed reuse system components and their associated process energy-water demands. This framework is applied to the planning and evaluation of the energy-water usage efficiency of hypothetical reuse systems in five case study regions within the State of California. Findings from these case study analyses suggest that, in certain geographic contexts, the water requirements attributable to the process energy consumption of a reuse system can exceed the volume of water that it is able to recover by as much as an order of magnitude.
Experimental investigation on the hydrodynamic performance of a wave energy converter
NASA Astrophysics Data System (ADS)
Zheng, Xiong-bo; Ma, Yong; Zhang, Liang; Jiang, Jin; Liu, Heng-xu
2017-06-01
Wave energy is an important type of marine renewable energy. A wave energy converter (WEC) moored with two floating bodies was developed in the present study. To analyze the dynamic performance of the WEC, an experimental device was designed and tested in a tank. The experiment focused on the factors which impact the motion and energy conversion performance of the WEC. Dynamic performance was evaluated by the relative displacements and velocities of the oscillator and carrier which served as the floating bodies of WEC. Four factors were tested, i.e. wave height, wave period, power take-off (PTO) damping, and mass ratio ( R M) of the oscillator and carrier. Experimental results show that these factors greatly affect the energy conversion performance, especially when the wave period matches R M and PTO damping. According to the results, we conclude that: (a) the maximization of the relative displacements and velocities leads to the maximization of the energy conversion efficiency; (b) the larger the wave height, the higher the energy conversion efficiency will be; (c) the relationships of energy conversion efficiency with wave period, PTO damping, and R M are nonlinear, but the maximum efficiency is obtained when these three factors are optimally matched. Experimental results demonstrated that the energy conversion efficiency reached the peak at 28.62% when the wave height was 120 mm, wave period was 1.0 s, R M was 0.21, and the PTO damping was corresponding to the resistance of 100 Ω.
DOE Hydrogen and Fuel Cells Program 2017 Annual Merit Review and Peer Evaluation Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
The fiscal year 2017 U.S. Department of Energy (DOE) Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting (AMR), in conjunction with DOE's Vehicle Technologies Office AMR, was held from June June 5-9, 2017, in Washington, D.C. This report is a summary of comments by AMR peer reviewers about the hydrogen and fuel cell projects funded by DOE's Office of Energy Efficiency and Renewable Energy.
DOE Hydrogen and Fuel Cells Program 2016 Annual Merit Review and Peer Evaluation Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
The fiscal year 2016 U.S. Department of Energy (DOE) Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting (AMR), in conjunction with DOE's Vehicle Technologies Office AMR, was held from June 6-10, 2016, in Washington, D.C. This report is a summary of comments by AMR peer reviewers about the hydrogen and fuel cell projects funded by DOE's Office of Energy Efficiency and Renewable Energy.
Field Evaluation of Advances in Energy-Efficiency Practices for Manufactured Homes
DOE Office of Scientific and Technical Information (OSTI.GOV)
E. Levy; Dentz, J.; Ansanelli, E.
2016-03-01
Through field-testing and analysis, this project evaluated whole-building approaches and estimated the relative contributions of select technologies toward reducing energy use related to space conditioning in new manufactured homes. Three lab houses of varying designs were built and tested side-by-side under controlled conditions in Russellville, Alabama. The tests provided a valuable indicator of how changes in the construction of manufactured homes can contribute to significant reductions in energy use.
NASA Astrophysics Data System (ADS)
Li, L.; Zhao, Y.; Wang, L.; Yang, Q.; Liu, G.; Tang, B.; Xiao, J.
2017-08-01
In this paper, the background of performance testing of in-service process flow compressors set in user field are introduced, the main technique barriers faced in the field test are summarized, and the factors that result in real efficiencies of most process flow compressors being lower than the guaranteed by manufacturer are analysed. The authors investigated the present operational situation of process flow compressors in China and found that low efficiency operation of flow compressors is because the compressed gas is generally forced to flow back into the inlet pipe for adapting to the process parameters variety. For example, the anti-surge valve is always opened for centrifugal compressor. To improve the operation efficiency of process compressors the energy efficiency monitoring technology was overviewed and some suggestions are proposed in the paper, which is the basis of research on energy efficiency evaluation and/or labelling of process compressors.
Phased Retrofits in Existing Homes in Florida Phase I: Shallow and Deep Retrofits
DOE Office of Scientific and Technical Information (OSTI.GOV)
D. Parker; Sutherland, K.; Chasar, D.
2016-02-01
The U.S. Department of Energy (DOE) Building America program, in collaboration with Florida Power and Light (FPL), conducted a phased residential energy-efficiency retrofit program. This research sought to establish impacts on annual energy and peak energy reductions from the technologies applied at two levels of retrofit - shallow and deep, with savings levels approaching the Building America program goals of reducing whole-house energy use by 40%. Under the Phased Deep Retrofit (PDR) project, we have installed phased, energy-efficiency retrofits in a sample of 56 existing, all-electric homes. End-use savings and economic evaluation results from the phased measure packages and singlemore » measures are summarized in this report.« less
NREL Evaluates Performance of Fast-Charge Electric Buses
DOE Office of Scientific and Technical Information (OSTI.GOV)
2016-09-16
This real-world performance evaluation is designed to enhance understanding of the overall usage and effectiveness of electric buses in transit operation and to provide unbiased technical information to other agencies interested in adding such vehicles to their fleets. Initial results indicate that the electric buses under study offer significant fuel and emissions savings. The final results will help Foothill Transit optimize the energy-saving potential of its transit fleet. NREL's performance evaluations help vehicle manufacturers fine-tune their designs and help fleet managers select fuel-efficient, low-emission vehicles that meet their bottom line and operational goals. help Foothill Transit optimize the energy-saving potentialmore » of its transit fleet. NREL's performance evaluations help vehicle manufacturers fine-tune their designs and help fleet managers select fuel-efficient, low-emission vehicles that meet their bottom line and operational goals.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Juan, E-mail: wangjuan_tju@163.com; Zhao, Tao; Zhang, Xiaohu
As an energy-intensive industry, the industrial sector consumes 70% of energy consumption and causes serious environmental pollution in China. Also, the government emphasized the promotion of R&D investment in the industrial sector in China's National Plan on Climate Change (2014–2020). It is meaningful and contributes to assessing energy and environmental performance, as well as R&D and industrial pollution control (IPC) investment strategies of China's industrial sector. A non-radial DEA model, as with natural and managerial disposability, was adopted to evaluate this from provincial and regional perspectives during the 2008–2012 period. Energy and environmental performance was evaluated by unified efficiency undermore » natural disposability (UEN), unified efficiency under managerial disposability (UEM), and unified efficiency under natural and managerial disposability (UENM). The empirical results indicated that Shandong and Hainan were efficient under natural and managerial disposability, while other provinces had the potential to improve their energy and environmental performance. The number of provinces that was fit for investments of R&D and IPC increased from 2008 to 2010, then decreased in 2011 and 2012. In spite of this, many provincial industrial sectors should make efforts to reduce pollution by investment on technology. Tianjin, Heilongjiang, Jiangxi and Henan were especially the best investment objects because investments of R&D and IPC turned to be effective for them during the whole study period. Moreover, western China had the highest average UENM, followed by eastern China and central China. Eastern China and central China were rewarding to expand investments. Coal consumption was the main factor to negatively affect unified efficiency whereas the increase in economic development level was primarily responsible for the improvement of unified efficiency. According to the results, differentiated suggestions to further improve energy and environmental performance were proposed.« less
District Heating Systems Performance Analyses. Heat Energy Tariff
NASA Astrophysics Data System (ADS)
Ziemele, Jelena; Vigants, Girts; Vitolins, Valdis; Blumberga, Dagnija; Veidenbergs, Ivars
2014-12-01
The paper addresses an important element of the European energy sector: the evaluation of district heating (DH) system operations from the standpoint of increasing energy efficiency and increasing the use of renewable energy resources. This has been done by developing a new methodology for the evaluation of the heat tariff. The paper presents an algorithm of this methodology, which includes not only a data base and calculation equation systems, but also an integrated multi-criteria analysis module using MADM/MCDM (Multi-Attribute Decision Making / Multi-Criteria Decision Making) based on TOPSIS (Technique for Order Performance by Similarity to Ideal Solution). The results of the multi-criteria analysis are used to set the tariff benchmarks. The evaluation methodology has been tested for Latvian heat tariffs, and the obtained results show that only half of heating companies reach a benchmark value equal to 0.5 for the efficiency closeness to the ideal solution indicator. This means that the proposed evaluation methodology would not only allow companies to determine how they perform with regard to the proposed benchmark, but also to identify their need to restructure so that they may reach the level of a low-carbon business.
Weatherization Works: Final Report of the National Weatherization Evaluation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, M.A.
2001-02-01
In 1990, the US Department of Energy (DOE) sponsored a comprehensive evaluation of its Weatherization Assistance Program, the nation's largest residential energy conservation program. Oak Ridge National Laboratory (ORNL) managed the five-part study. This document summarizes the findings of the evaluation. Its conclusions are based mainly on data from the 1989 program year. The evaluation concludes that the Program meets the objectives of its enabling legislation and fulfills its mission statement. Specifically, it saves energy, lowers fuel bills, and improves the health and safety of dwellings occupied by low-income people. In addition, the Program achieves its mission in a cost-effectivemore » manner based on each of three perspectives employed by the evaluators. Finally, the evaluation estimates that the investments made in 1989 will, over a 20-year lifetime, save the equivalent of 12 million barrels of oil, roughly the amount of oil added to the Strategic Petroleum Reserve in each of the past several years. The Program's mission is to reduce the heating and cooling costs for low-income families--particularly the elderly, persons with disabilities, and children by improving the energy efficiency of their homes and ensuring their health and safety. Substantial progress has been made, but the job is far from over. The Department of Health and Human Services (HHS) reports that the average low-income family spends 12 percent of its income on residential energy, compared to only 3% for the average-income family. Homes where low-income families live also have a greater need for energy efficiency improvements, but less money to pay for them.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2014-10-01
The fiscal year (FY) 2014 U.S. Department of Energy (DOE) Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting (AMR), in conjunction with DOE's Vehicle Technologies Office AMR, was held from June 16-20, 2014, at the Washington Marriott Wardman Park in Washington, D.C. This report is a summary of comments by AMR peer reviewers about the hydrogen and fuel cell projects funded by DOE's Office of Energy Efficiency and Renewable Energy (EERE).
Best practices and strategies for improving rail energy efficiency
DOT National Transportation Integrated Search
2014-01-28
In support of the FRA Energy, Environment, and Engine (E3) program, this study reviews and evaluates technology development opportunities, equipment upgrades, and best practices (BPs) of international and U.S. passenger and freight rail industry segm...
Campbell Creek Research Homes FY 2012 Annual Performance Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gehl, Anthony C; Munk, Jeffrey D; Jackson, Roderick K
The Campbell Creek project is funded and managed by the Tennessee Valley Authority (TVA) Technology Innovation, Energy Efficiency, Power Delivery & and Utilization Office. Technical support is provided under contract by the Oak Ridge National Laboratory (ORNL) and the Electric Power Research Institute.The project was designed to determine the relative energy efficiency of typical new home construction, energy efficiency retrofitting of existing homes, and high -performance new homes built from the ground up for energy efficiency. This project will compare three houses that represented the current construction practice as a base case (Builder House CC1); a modified house that couldmore » represent a major energy- efficient retrofit (Retrofit House CC2); and a house constructed from the ground up to be a high- performance home (High Performance House CC3). In order tTo enablehave a valid comparison, it was necessary to simulate occupancy in all three houses and heavily monitor the structural components and the energy usage by component. All three houses are two story, slab on grade, framed construction. CC1 and CC2 are approximately 2,400 square feet2. CC3 has a pantry option, that is primarily used as a mechanical equipment room, that adds approximately 100 square feet2. All three houses are all-electric (with the exception of a gas log fireplace that is not used during the testing), and use air-source heat pumps for heating and cooling. The three homes are located in Knoxville in the Campbell Creek Subdivision. CC1 and CC2 are next door to each other and CC3 is across the street and a couple of houses down. The energy data collected will be used to determine the benefits of retrofit packages and high -performance new home packages. There are over 300 channels of continuous energy performance and thermal comfort data collection in the houses (100 for each house). The data will also be used to evaluate the impact of energy -efficient upgrades ton the envelope, mechanical equipment, or demand -response options. Each retrofit will be evaluated incrementally, by both short -term measurements and computer modeling, using a calibrated model. This report is intended to document the comprehensive testing, data analysis, research, and findings within the January 2011 through October 2012 timeframe at the Campbell Creek research houses. The following sections will provide an in-depth assessment of the technology progression in each of the three research houses. A detailed assessment and evaluation of the energy performance of technologies tested will also be provided. Finally, lessons learned and concluding remarks will be highlighted.« less
Gohlke, Oliver
2009-11-01
Global warming is a focus of political interest and life-cycle assessment of waste management systems reveals that energy recovery from municipal solid waste is a key issue. This paper demonstrates how the greenhouse gas effects of waste treatment processes can be described in a simplified manner by considering energy efficiency indicators. For evaluation to be consistent, it is necessary to use reasonable system boundaries and to take the generation of electricity and the use of heat into account. The new European R1 efficiency criterion will lead to the development and implementation of optimized processes/systems with increased energy efficiency which, in turn, will exert an influence on the greenhouse gas effects of waste management in Europe. Promising technologies are: the increase of steam parameters, reduction of in-plant energy consumption, and the combined use of heat and power. Plants in Brescia and Amsterdam are current examples of good performance with highly efficient electricity generation. Other examples of particularly high heat recovery rates are the energy-from-waste (EfW) plants in Malmö and Gothenburg. To achieve the full potential of greenhouse gas reduction in waste management, it is necessary to avoid landfilling combustible wastes, for example, by means of landfill taxes and by putting incentives in place for increasing the efficiency of EfW systems.
Performance Analysis and Optimization of Concentrating Solar Thermoelectric Generator
NASA Astrophysics Data System (ADS)
Lamba, Ravita; Manikandan, S.; Kaushik, S. C.
2018-06-01
A thermodynamic model for a concentrating solar thermoelectric generator considering the Thomson effect combined with Fourier heat conduction, Peltier, and Joule heating has been developed and optimized in MATLAB environment. The temperatures at the hot and cold junctions of the thermoelectric generator were evaluated by solving the energy balance equations at both junctions. The effects of the solar concentration ratio, input electrical current, number of thermocouples, and electrical load resistance ratio on the power output and energy and exergy efficiencies of the system were studied. Optimization studies were carried out for the STEG system, and the optimum number of thermocouples, concentration ratio, and resistance ratio determined. The results showed that the optimum values of these parameters are different for conditions of maximum power output and maximum energy and exergy efficiency. The optimum values of the concentration ratio and load resistance ratio for maximum energy efficiency of 5.85% and maximum exergy efficiency of 6.29% were found to be 180 and 1.3, respectively, with corresponding power output of 4.213 W. Furthermore, at higher concentration ratio (C = 600), the optimum number of thermocouples was found to be 101 for maximum power output of 13.75 W, maximum energy efficiency of 5.73%, and maximum exergy efficiency of 6.16%. Moreover, the optimum number of thermocouple was the same for conditions of maximum power output and energy and exergy efficiency. The results of this study may provide insight for design of actual concentrated solar thermoelectric generator systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khanna, Nina; Zhou, Nan; Fridley, David
Since China introduced its first mandatory minimum energy performance standards (MEPS) for eight major household products in 1989, its MEPS program has expanded significantly to cover nearly 60 residential, industrial and commercial products. In June of 2012, the pace of standards development for new and revised standards was further accelerated with the launch of the national “100 Energy Efficiency Standards.” Initiatives. An unprecedented 21 MEPS were adopted by China from 2012 to 2013, compared to only 7 MEPS adopted from 2010 to 2011. The Chinese MEPS program now covers 15 products in the residential sector, 15 types of commercial andmore » office equipment, 14 types of industrial equipment and 13 lighting products, making it one of the most comprehensive MEPS program in the world. This study provides an updated prospective evaluation of the potential energy and CO 2 impact of 23 of the 28 MEPS adopted by China from 2010 to 2013. This study updates a previous analysis (Zhou et al. 2011) by quantifying the additional potential energy and CO 2 reductions from the newest standards that have been adopted since 2010. The most recent actual and projected sales, usage, and efficiency data were collected for 14 product categories covered under 23 MEPS adopted between 2010 and 2013. Three scenarios are then used to quantify the energy and CO 2 reduction potential of the one-time implementation of these 23 MEPS, including a baseline counterfactual scenario, the actual MEPS scenario and a best available technologies efficiency scenario. The setting of the baseline efficiency is crucial to determining the savings potential of the new and revised MEPS and international best available technology efficiency levels, as it reflects the market average in the absence of MEPS. For this study, the average baseline is based on either the reported 2010 market-average efficiency if sales-weighted efficiency data is available for new product MEPS and selected products with revised MEPS, or the minimum efficiency requirement of the previous MEPS for products with revised MEPS from 2010 to 2013 that do not have sales-weighted efficiency data. Using sales-weighted efficiency data for the baseline help capture market transformation that has already occurred prior to the implementation of the MEPS, and can better differentiate the savings that are attributable to MEPS. The efficiency levels of best available technologies are taken from recent reviews of international commercially available best available technologies.« less
Energy Efficiency in Small Server Rooms: Field Surveys and Findings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheung, Iris; Greenberg, Steve; Mahdavi, Roozbeh
Fifty-seven percent of US servers are housed in server closets, server rooms, and localized data centers, in what are commonly referred to as small server rooms, which comprise 99percent of all server spaces in the US. While many mid-tier and enterprise-class data centers are owned by large corporations that consider energy efficiency a goal to minimize business operating costs, small server rooms typically are not similarly motivated. They are characterized by decentralized ownership and management and come in many configurations, which creates a unique set of efficiency challenges. To develop energy efficiency strategies for these spaces, we surveyed 30 smallmore » server rooms across eight institutions, and selected four of them for detailed assessments. The four rooms had Power Usage Effectiveness (PUE) values ranging from 1.5 to 2.1. Energy saving opportunities ranged from no- to low-cost measures such as raising cooling set points and better airflow management, to more involved but cost-effective measures including server consolidation and virtualization, and dedicated cooling with economizers. We found that inefficiencies mainly resulted from organizational rather than technical issues. Because of the inherent space and resource limitations, the most effective measure is to operate servers through energy-efficient cloud-based services or well-managed larger data centers, rather than server rooms. Backup power requirement, and IT and cooling efficiency should be evaluated to minimize energy waste in the server space. Utility programs are instrumental in raising awareness and spreading technical knowledge on server operation, and the implementation of energy efficiency measures in small server rooms.« less
Effect of Mach number on the efficiency of microwave energy deposition in supersonic flow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lashkov, V. A., E-mail: valerial180150@gmail.com; Karpenko, A. G., E-mail: aspera.2003.ru@mail.ru; Khoronzhuk, R. S.
The article is devoted to experimental and numerical studies of the efficiency of microwave energy deposition into a supersonic flow around the blunt cylinder at different Mach numbers. Identical conditions for energy deposition have been kept in the experiments, thus allowing to evaluate the pure effect of varying Mach number on the pressure drop. Euler equations are solved numerically to model the corresponding unsteady flow compressed gas. The results of numerical simulations are compared to the data obtained from the physical experiments. It is shown that the momentum, which the body receives during interaction of the gas domain modified bymore » microwave discharge with a shock layer before the body, increases almost linearly with rising of Mach number and the efficiency of energy deposition also rises.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holzhauser, Andy; Jones, Chris; Faust, Jeremy
2013-12-30
The Greater Cincinnati Energy Alliance (Energy Alliance) is a nonprofit economic development agency dedicated to helping Greater Cincinnati and Northern Kentucky communities reduce energy consumption. The Energy Alliance has launched programs to educate homeowners, commercial property owners, and nonprofit organizations about energy efficiency opportunities they can use to drive energy use reductions and financial savings, while extending significant focus to creating/retaining jobs through these programs. The mission of the Energy Alliance is based on the premise that investment in energy efficiency can lead to transformative economic development in a region. With support from seven municipalities, the Energy Alliance began operationmore » in early 2010 and has been among the fastest growing nonprofit organizations in the Greater Cincinnati/Northern Kentucky area. The Energy Alliance offers two programs endorsed by the Department of Energy: the Home Performance with ENERGY STAR® Program for homeowners and the Better Buildings Performance Program for commercial entities. Both programs couple expert guidance, project management, and education in energy efficiency best practices with incentives and innovative energy efficiency financing to help building owners effectively invest in the energy efficiency, comfort, health, longevity, and environmental impact of their residential or commercial buildings. The Energy Alliance has raised over $23 million of public and private capital to build a robust market for energy efficiency investment. Of the $23 million, $17 million was a direct grant from the Department of Energy Better Buildings Neighborhood Program (BBNP). The organization’s investments in energy efficiency projects in the residential and commercial sector have led to well over $50 million in direct economic activity and created over 375,000 hours of labor created or retained. In addition, over 250 workers have been trained through the Building Performance Training Center, a program that was developed and funded by the Energy Alliance and housed at Cincinnati State Technical and Community College. Nearly 100 residential and commercial contractors currently participate in the Energy Alliance’s two major programs, which have together served over 2,800 residential and 100 commercial customers. Additionally, the Energy Alliance established loan programs for homeowners, nonprofits and commercial businesses. The GC-HELP program was established to provide up to ten year low interest, unsecured loans to homeowners to cover the energy efficiency products they purchased through the Energy Alliance approved contractor base. To date the Energy Alliance has financed over $1 million in energy efficiency loans for homeowners, without any loans written off. The nonprofit business community is offered five year, fixed-interest rate loans through the Building Communities Loan Fund of $250,000. Additionally, the Energy Alliance has developed GC-PACE, a commercial financing tool that enables buildings owners to finance their energy upgrades through voluntary property assessments deploying low-interest extended-term capital from the bond market. The Energy Alliance and its partners are actively evaluating additional market-based financing solutions.« less
A Case for Application Oblivious Energy-Efficient MPI Runtime
DOE Office of Scientific and Technical Information (OSTI.GOV)
Venkatesh, Akshay; Vishnu, Abhinav; Hamidouche, Khaled
Power has become the major impediment in designing large scale high-end systems. Message Passing Interface (MPI) is the {\\em de facto} communication interface used as the back-end for designing applications, programming models and runtime for these systems. Slack --- the time spent by an MPI process in a single MPI call --- provides a potential for energy and power savings, if an appropriate power reduction technique such as core-idling/Dynamic Voltage and Frequency Scaling (DVFS) can be applied without perturbing application's execution time. Existing techniques that exploit slack for power savings assume that application behavior repeats across iterations/executions. However, an increasingmore » use of adaptive, data-dependent workloads combined with system factors (OS noise, congestion) makes this assumption invalid. This paper proposes and implements Energy Aware MPI (EAM) --- an application-oblivious energy-efficient MPI runtime. EAM uses a combination of communication models of common MPI primitives (point-to-point, collective, progress, blocking/non-blocking) and an online observation of slack for maximizing energy efficiency. Each power lever incurs time overhead, which must be amortized over slack to minimize degradation. When predicted communication time exceeds a lever overhead, the lever is used {\\em as soon as possible} --- to maximize energy efficiency. When mis-prediction occurs, the lever(s) are used automatically at specific intervals for amortization. We implement EAM using MVAPICH2 and evaluate it on ten applications using up to 4096 processes. Our performance evaluation on an InfiniBand cluster indicates that EAM can reduce energy consumption by 5--41\\% in comparison to the default approach, with negligible (less than 4\\% in all cases) performance loss.« less
Mota, Lia Toledo Moreira; Mota, Alexandre de Assis; Coiado, Lorenzo Campos
2015-01-01
Nowadays, buildings environmental certifications encourage the implementation of initiatives aiming to increase energy efficiency in buildings. In these certification systems, increased energy efficiency arising from such initiatives must be demonstrated. Thus, a challenge to be faced is how to check the increase in energy efficiency related to each of the employed initiatives without a considerable building retrofit. In this context, this work presents a non-destructive method for electric current sensing to assess implemented initiatives to increase energy efficiency in buildings with environmental certification. This method proposes the use of a sensor that can be installed directly in the low voltage electrical circuit conductors that are powering the initiative under evaluation, without the need for reforms that result in significant costs, repair, and maintenance. The proposed sensor consists of three elements: an air-core transformer current sensor, an amplifying/filtering stage, and a microprocessor. A prototype of the proposed sensor was developed and tests were performed to validate this sensor. Based on laboratory tests, it was possible to characterize the proposed current sensor with respect to the number of turns and cross-sectional area of the primary and secondary coils. Furthermore, using the Least Squares Method, it was possible to determine the efficiency of the air core transformer current sensor (the best efficiency found, considering different test conditions, was 2%), which leads to a linear output response. PMID:26184208
Mota, Lia Toledo Moreira; Mota, Alexandre de Assis; Coiado, Lorenzo Campos
2015-07-10
Nowadays, buildings environmental certifications encourage the implementation of initiatives aiming to increase energy efficiency in buildings. In these certification systems, increased energy efficiency arising from such initiatives must be demonstrated. Thus, a challenge to be faced is how to check the increase in energy efficiency related to each of the employed initiatives without a considerable building retrofit. In this context, this work presents a non-destructive method for electric current sensing to assess implemented initiatives to increase energy efficiency in buildings with environmental certification. This method proposes the use of a sensor that can be installed directly in the low voltage electrical circuit conductors that are powering the initiative under evaluation, without the need for reforms that result in significant costs, repair, and maintenance. The proposed sensor consists of three elements: an air-core transformer current sensor, an amplifying/filtering stage, and a microprocessor. A prototype of the proposed sensor was developed and tests were performed to validate this sensor. Based on laboratory tests, it was possible to characterize the proposed current sensor with respect to the number of turns and cross-sectional area of the primary and secondary coils. Furthermore, using the Least Squares Method, it was possible to determine the efficiency of the air core transformer current sensor (the best efficiency found, considering different test conditions, was 2%), which leads to a linear output response.
Cheng, Wenchi; Zhang, Hailin
2017-01-01
Energy harvesting, which offers a never-ending energy supply, has emerged as a prominent technology to prolong the lifetime and reduce costs for the battery-powered wireless sensor networks. However, how to improve the energy efficiency while guaranteeing the quality of service (QoS) for energy harvesting based wireless sensor networks is still an open problem. In this paper, we develop statistical delay-bounded QoS-driven power control policies to maximize the effective energy efficiency (EEE), which is defined as the spectrum efficiency under given specified QoS constraints per unit harvested energy, for energy harvesting based wireless sensor networks. For the battery-infinite wireless sensor networks, our developed QoS-driven power control policy converges to the Energy harvesting Water Filling (E-WF) scheme and the Energy harvesting Channel Inversion (E-CI) scheme under the very loose and stringent QoS constraints, respectively. For the battery-finite wireless sensor networks, our developed QoS-driven power control policy becomes the Truncated energy harvesting Water Filling (T-WF) scheme and the Truncated energy harvesting Channel Inversion (T-CI) scheme under the very loose and stringent QoS constraints, respectively. Furthermore, we evaluate the outage probabilities to theoretically analyze the performance of our developed QoS-driven power control policies. The obtained numerical results validate our analysis and show that our developed optimal power control policies can optimize the EEE over energy harvesting based wireless sensor networks. PMID:28832509
Gao, Ya; Cheng, Wenchi; Zhang, Hailin
2017-08-23
Energy harvesting, which offers a never-ending energy supply, has emerged as a prominent technology to prolong the lifetime and reduce costs for the battery-powered wireless sensor networks. However, how to improve the energy efficiency while guaranteeing the quality of service (QoS) for energy harvesting based wireless sensor networks is still an open problem. In this paper, we develop statistical delay-bounded QoS-driven power control policies to maximize the effective energy efficiency (EEE), which is defined as the spectrum efficiency under given specified QoS constraints per unit harvested energy, for energy harvesting based wireless sensor networks. For the battery-infinite wireless sensor networks, our developed QoS-driven power control policy converges to the Energy harvesting Water Filling (E-WF) scheme and the Energy harvesting Channel Inversion (E-CI) scheme under the very loose and stringent QoS constraints, respectively. For the battery-finite wireless sensor networks, our developed QoS-driven power control policy becomes the Truncated energy harvesting Water Filling (T-WF) scheme and the Truncated energy harvesting Channel Inversion (T-CI) scheme under the very loose and stringent QoS constraints, respectively. Furthermore, we evaluate the outage probabilities to theoretically analyze the performance of our developed QoS-driven power control policies. The obtained numerical results validate our analysis and show that our developed optimal power control policies can optimize the EEE over energy harvesting based wireless sensor networks.
Devasenapathy, Deepa; Kannan, Kathiravan
2015-01-01
The traffic in the road network is progressively increasing at a greater extent. Good knowledge of network traffic can minimize congestions using information pertaining to road network obtained with the aid of communal callers, pavement detectors, and so on. Using these methods, low featured information is generated with respect to the user in the road network. Although the existing schemes obtain urban traffic information, they fail to calculate the energy drain rate of nodes and to locate equilibrium between the overhead and quality of the routing protocol that renders a great challenge. Thus, an energy-efficient cluster-based vehicle detection in road network using the intention numeration method (CVDRN-IN) is developed. Initially, sensor nodes that detect a vehicle are grouped into separate clusters. Further, we approximate the strength of the node drain rate for a cluster using polynomial regression function. In addition, the total node energy is estimated by taking the integral over the area. Finally, enhanced data aggregation is performed to reduce the amount of data transmission using digital signature tree. The experimental performance is evaluated with Dodgers loop sensor data set from UCI repository and the performance evaluation outperforms existing work on energy consumption, clustering efficiency, and node drain rate. PMID:25793221
Devasenapathy, Deepa; Kannan, Kathiravan
2015-01-01
The traffic in the road network is progressively increasing at a greater extent. Good knowledge of network traffic can minimize congestions using information pertaining to road network obtained with the aid of communal callers, pavement detectors, and so on. Using these methods, low featured information is generated with respect to the user in the road network. Although the existing schemes obtain urban traffic information, they fail to calculate the energy drain rate of nodes and to locate equilibrium between the overhead and quality of the routing protocol that renders a great challenge. Thus, an energy-efficient cluster-based vehicle detection in road network using the intention numeration method (CVDRN-IN) is developed. Initially, sensor nodes that detect a vehicle are grouped into separate clusters. Further, we approximate the strength of the node drain rate for a cluster using polynomial regression function. In addition, the total node energy is estimated by taking the integral over the area. Finally, enhanced data aggregation is performed to reduce the amount of data transmission using digital signature tree. The experimental performance is evaluated with Dodgers loop sensor data set from UCI repository and the performance evaluation outperforms existing work on energy consumption, clustering efficiency, and node drain rate.
NASA Astrophysics Data System (ADS)
Vlasayevsky, Stanislav; Klimash, Stepan; Klimash, Vladimir
2017-10-01
A set of mathematical modules was developed for evaluation the energy performance in the research of electrical systems and complexes in the MatLab. In the electrotechnical library SimPowerSystems of the MatLab software, there are no measuring modules of energy coefficients characterizing the quality of electricity and the energy efficiency of electrical apparatus. Modules are designed to calculate energy coefficients characterizing the quality of electricity (current distortion and voltage distortion) and energy efficiency indicators (power factor and efficiency) are presented. There are described the methods and principles of building the modules. The detailed schemes of modules built on the elements of the Simulink Library are presented, in this connection, these modules are compatible with mathematical models of electrical systems and complexes in the MatLab. Also there are presented the results of the testing of the developed modules and the results of their verification on the schemes that have analytical expressions of energy indicators.
Time-varying value of electric energy efficiency
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mims, Natalie A.; Eckman, Tom; Goldman, Charles
Electric energy efficiency resources save energy and may reduce peak demand. Historically, quantification of energy efficiency benefits has largely focused on the economic value of energy savings during the first year and lifetime of the installed measures. Due in part to the lack of publicly available research on end-use load shapes (i.e., the hourly or seasonal timing of electricity savings) and energy savings shapes, consideration of the impact of energy efficiency on peak demand reduction (i.e., capacity savings) has been more limited. End-use load research and the hourly valuation of efficiency savings are used for a variety of electricity planningmore » functions, including load forecasting, demand-side management and evaluation, capacity and demand response planning, long-term resource planning, renewable energy integration, assessing potential grid modernization investments, establishing rates and pricing, and customer service. This study reviews existing literature on the time-varying value of energy efficiency savings, provides examples in four geographically diverse locations of how consideration of the time-varying value of efficiency savings impacts the calculation of power system benefits, and identifies future research needs to enhance the consideration of the time-varying value of energy efficiency in cost-effectiveness screening analysis. Findings from this study include: -The time-varying value of individual energy efficiency measures varies across the locations studied because of the physical and operational characteristics of the individual utility system (e.g., summer or winter peaking, load factor, reserve margin) as well as the time periods during which savings from measures occur. -Across the four locations studied, some of the largest capacity benefits from energy efficiency are derived from the deferral of transmission and distribution system infrastructure upgrades. However, the deferred cost of such upgrades also exhibited the greatest range in value of all the components of avoided costs across the locations studied. -Of the five energy efficiency measures studied, those targeting residential air conditioning in summer-peaking electric systems have the most significant added value when the total time-varying value is considered. -The increased use of rooftop solar systems, storage, and demand response, and the addition of electric vehicles and other major new electricity-consuming end uses are anticipated to significantly alter the load shape of many utility systems in the future. Data used to estimate the impact of energy efficiency measures on electric system peak demands will need to be updated periodically to accurately reflect the value of savings as system load shapes change. -Publicly available components of electric system costs avoided through energy efficiency are not uniform across states and utilities. Inclusion or exclusion of these components and differences in their value affect estimates of the time-varying value of energy efficiency. -Publicly available data on end-use load and energy savings shapes are limited, are concentrated regionally, and should be expanded.« less
Tool to Prioritize Energy Efficiency Investments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farese, P.; Gelman, R.; Hendron, R.
2012-08-01
To provide analytic support of the U.S. Department of Energy's Office of the Building Technology Program (BTP), NREL developed a Microsoft Excel-based tool to provide an open and objective comparison of the hundreds of investment opportunities available to BTP. This tool uses established methodologies to evaluate the energy savings and cost of those savings.
Energy efficient engine high pressure turbine ceramic shroud support technology report
NASA Technical Reports Server (NTRS)
Nelson, W. A.; Carlson, R. G.
1982-01-01
This work represents the development and fabrication of ceramic HPT (high pressure turbine) shrouds for the Energy Efficient Engine (E3). Details are presented covering the work performed on the ceramic shroud development task of the NASA/GE Energy Efficient Engine (E3) component development program. The task consists of four phases which led to the selection of a ZrO2-BY2O3 ceramic shroud material system, the development of an automated plasma spray process to produce acceptable shroud structures, the fabrication of select shroud systems for evaluation in laboratory, component, and CF6-50 engine testing, and finally, the successful fabrication of ZrO2-8Y2O3/superpeg, engine quality shrouds for the E3 engine.
Brown, Emery; Ma, Chunrui; Acharya, Jagaran; Ma, Beihai; Wu, Judy; Li, Jun
2014-12-24
The energy storage properties of Pb0.92La0.08Zr0.52Ti0.48O3 (PLZT) films grown via pulsed laser deposition were evaluated at variable film thickness of 125, 250, 500, and 1000 nm. These films show high dielectric permittivity up to ∼1200. Cyclic I-V measurements were used to evaluate the dielectric properties of these thin films, which not only provide the total electric displacement, but also separate contributions from each of the relevant components including electric conductivity (D1), dielectric capacitance (D2), and relaxor-ferroelectric domain switching polarization (P). The results show that, as the film thickness increases, the material transits from a linear dielectric to nonlinear relaxor-ferroelectric. While the energy storage per volume increases with the film thickness, the energy storage efficiency drops from ∼80% to ∼30%. The PLZT films can be optimized for different energy storage applications by tuning the film thickness to optimize between the linear and nonlinear dielectric properties and energy storage efficiency.
Brown, Emery; Ma, Chunrui; Acharya, Jagaran; ...
2014-12-24
The energy storage properties of Pb 0.92La 0.08Zr 0.52Ti 0.48O 3 (PLZT) films grown via pulsed laser deposition were evaluated at variable film thickness of 125, 250, 500, and 1000 nm. These films show high dielectric permittivity up to ~1200. Cyclic I–V measurements were used to evaluate the dielectric properties of these thin films, which not only provide the total electric displacement, but also separate contributions from each of the relevant components including electric conductivity (D1), dielectric capacitance (D2), and relaxor-ferroelectric domain switching polarization (P). Our results show that, as the film thickness increases, the material transits from a linearmore » dielectric to nonlinear relaxor-ferroelectric. And while the energy storage per volume increases with the film thickness, the energy storage efficiency drops from ~80% to ~30%. The PLZT films can be optimized for different energy storage applications by tuning the film thickness to optimize between the linear and nonlinear dielectric properties and energy storage efficiency.« less
Efficient Solutions for New Homes Case Study: Savannah Gardens
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2016-03-15
The Savannah Housing Department is leading sustainable and affordable housing development in Georgia. It partnered with Southface Energy Institute, a member of the U.S. Department of Energy’s Partnership for Home Innovation Building America research team, to seek cost-effective solutions for increasing the energy efficiency of the Savannah Housing Department’s standard single-family home plans in the Savannah Gardens Community. Based on engineering, cost, and constructability analyses, the combined research team chose to pilot two technologies to evaluate efficiency and comfort impacts for homeowners: a heat-pump water heater in an encapsulated attic and an insulated exterior wall sheathing.
Information efficiency in visual communication
NASA Astrophysics Data System (ADS)
Alter-Gartenberg, Rachel; Rahman, Zia-ur
1993-08-01
This paper evaluates the quantization process in the context of the end-to-end performance of the visual-communication channel. Results show that the trade-off between data transmission and visual quality revolves around the information in the acquired signal, not around its energy. Improved information efficiency is gained by frequency dependent quantization that maintains the information capacity of the channel and reduces the entropy of the encoded signal. Restorations with energy bit-allocation lose both in sharpness and clarity relative to restorations with information bit-allocation. Thus, quantization with information bit-allocation is preferred for high information efficiency and visual quality in optimized visual communication.
Information efficiency in visual communication
NASA Technical Reports Server (NTRS)
Alter-Gartenberg, Rachel; Rahman, Zia-Ur
1993-01-01
This paper evaluates the quantization process in the context of the end-to-end performance of the visual-communication channel. Results show that the trade-off between data transmission and visual quality revolves around the information in the acquired signal, not around its energy. Improved information efficiency is gained by frequency dependent quantization that maintains the information capacity of the channel and reduces the entropy of the encoded signal. Restorations with energy bit-allocation lose both in sharpness and clarity relative to restorations with information bit-allocation. Thus, quantization with information bit-allocation is preferred for high information efficiency and visual quality in optimized visual communication.
NASA Astrophysics Data System (ADS)
Armstrong, Hannah; Boese, Matthew; Carmichael, Cody; Dimich, Hannah; Seay, Dylan; Sheppard, Nathan; Beekman, Matt
2017-01-01
Maximum thermoelectric energy conversion efficiencies are calculated using the conventional "constant property" model and the recently proposed "cumulative/average property" model (Kim et al. in Proc Natl Acad Sci USA 112:8205, 2015) for 18 high-performance thermoelectric materials. We find that the constant property model generally predicts higher energy conversion efficiency for nearly all materials and temperature differences studied. Although significant deviations are observed in some cases, on average the constant property model predicts an efficiency that is a factor of 1.16 larger than that predicted by the average property model, with even lower deviations for temperature differences typical of energy harvesting applications. Based on our analysis, we conclude that the conventional dimensionless figure of merit ZT obtained from the constant property model, while not applicable for some materials with strongly temperature-dependent thermoelectric properties, remains a simple yet useful metric for initial evaluation and/or comparison of thermoelectric materials, provided the ZT at the average temperature of projected operation, not the peak ZT, is used.
NASA Astrophysics Data System (ADS)
Ghafuri, Mohazabeh; Golfar, Bahareh; Nosrati, Mohsen; Hoseinkhani, Saman
2014-12-01
The process of ATP production is one of the most vital processes in living cells which happens with a high efficiency. Thermodynamic evaluation of this process and the factors involved in oxidative phosphorylation can provide a valuable guide for increasing the energy production efficiency in research and industry. Although energy transduction has been studied qualitatively in several researches, there are only few brief reviews based on mathematical models on this subject. In our previous work, we suggested a mathematical model for ATP production based on non-equilibrium thermodynamic principles. In the present study, based on the new discoveries on the respiratory chain of animal mitochondria, Golfar's model has been used to generate improved results for the efficiency of oxidative phosphorylation and the rate of energy loss. The results calculated from the modified coefficients for the proton pumps of the respiratory chain enzymes are closer to the experimental results and validate the model.
Gretzschel, Oliver; Schmitt, Theo G; Hansen, Joachim; Siekmann, Klaus; Jakob, Jürgen
2014-01-01
As a consequence of a worldwide increase of energy costs, the efficient use of sewage sludge as a renewable energy resource must be considered, even for smaller wastewater treatment plants (WWTPs) with design capacities between 10,000 and 50,000 population equivalent (PE). To find the lower limit for an economical conversion of an aerobic stabilisation plant into an anaerobic stabilisation plant, we derived cost functions for specific capital costs and operating cost savings. With these tools, it is possible to evaluate if it would be promising to further investigate refitting aerobic plants into plants that produce biogas. By comparing capital costs with operation cost savings, a break-even point for process conversion could be determined. The break-even point varies depending on project specific constraints and assumptions related to future energy and operation costs and variable interest rates. A 5% increase of energy and operation costs leads to a cost efficient conversion for plants above 7,500 PE. A conversion of WWTPs results in different positive effects on energy generation and plant operations: increased efficiency, energy savings, and on-site renewable power generation by digester gas which can be used in the plant. Also, the optimisation of energy efficiency results in a reduction of primary energy consumption.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carpenter, Alberta; Mann, Margaret; Gelman, Rachel
In evaluating next-generation materials and processes, the supply chain can have a large impact on the life cycle energy impacts. The Materials Flow through Industry (MFI) tool was developed for the Department of Energy's Advanced Manufacturing Office to be able to evaluate the energy impacts of the U.S. supply chain. The tool allows users to perform process comparisons, material substitutions, and grid modifications, and to see the effects of implementing sector efficiency potentials (Masanet, et al. 2009). This paper reviews the methodology of the tool and provides results around specific scenarios.
Solar energy system performance evaluation. Seasonal report for SEECO Lincoln, Lincoln, Nebraska
NASA Technical Reports Server (NTRS)
1980-01-01
The Solar Engineering and Equipment Company (SEECO) Lincoln solar energy system, designed for space heating only, is described and its operational performance for a 12 month period from April 1979 through March 1980 is evaluated. The system met 27 percent of the space heating load; however, system losses into the heated space from the storage bin and ductwork were significant. Reducing these losses would add appreciably to the system's efficiency. Net fossil energy savings were 11.31 million BTUs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kurnik, Charles W.; Keates, Steven
This protocol is intended to describe the recommended method when evaluating the whole-building performance of new construction projects in the commercial sector. The protocol focuses on energy conservation measures (ECMs) or packages of measures where evaluators can analyze impacts using building simulation. These ECMs typically require the use of calibrated building simulations under Option D of the International Performance Measurement and Verification Protocol (IPMVP).
Air-to-Water Heat Pumps With Radiant Delivery in Low-Load Homes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Backman, C.; German, A.; Dakin, B.
2013-12-01
Space conditioning represents nearly 50% of average residential household energy consumption, highlighting the need to identify alternative cost-effective, energy-efficient cooling and heating strategies. As homes are better built, there is an increasing need for strategies that are particularly well suited for high performance, low load homes. ARBI researchers worked with two test homes in hot-dry climates to evaluate the in-situ performance of air-to-water heat pump (AWHP) systems, an energy efficient space conditioning solution designed to cost-effectively provide comfort in homes with efficient, safe, and durable operation. Two monitoring projects of test houses in hot-dry climates were initiated in 2010 tomore » test this system. Both systems were fully instrumented and have been monitored over one year to capture complete performance data over the cooling and heating seasons. Results are used to quantify energy savings, cost-effectiveness, and system performance using different operating modes and strategies. A calibrated TRNSYS model was developed and used to evaluate performance in various climate regions. This strategy is most effective in tight, insulated homes with high levels of thermal mass (i.e. exposed slab floors).« less
NASA Astrophysics Data System (ADS)
Rifai, Eko Aditya; van Dijk, Marc; Vermeulen, Nico P. E.; Geerke, Daan P.
2018-01-01
Computational protein binding affinity prediction can play an important role in drug research but performing efficient and accurate binding free energy calculations is still challenging. In the context of phase 2 of the Drug Design Data Resource (D3R) Grand Challenge 2 we used our automated eTOX ALLIES approach to apply the (iterative) linear interaction energy (LIE) method and we evaluated its performance in predicting binding affinities for farnesoid X receptor (FXR) agonists. Efficiency was obtained by our pre-calibrated LIE models and molecular dynamics (MD) simulations at the nanosecond scale, while predictive accuracy was obtained for a small subset of compounds. Using our recently introduced reliability estimation metrics, we could classify predictions with higher confidence by featuring an applicability domain (AD) analysis in combination with protein-ligand interaction profiling. The outcomes of and agreement between our AD and interaction-profile analyses to distinguish and rationalize the performance of our predictions highlighted the relevance of sufficiently exploring protein-ligand interactions during training and it demonstrated the possibility to quantitatively and efficiently evaluate if this is achieved by using simulation data only.
Performance Evaluation of Low Cost LoRa Modules in IoT Applications
NASA Astrophysics Data System (ADS)
Daud, Shuhaizar; Shi Yang, Teoh; Asmi Romli, Muhamad; Awang Ahmad, Zahari; Mahrom, Norfadila; Raof, Rafikha Aliana A.
2018-03-01
LoRa is a low power long range wireless communication platform that is designed as an efficient communication platform for small, low powered devices. This makes it very suitable for battery powered devices and IoT implementation. This paper evaluates some low cost LoRa modules available on the market and their suitability, energy efficiency and performance during operation. Two low cost LoRa transceiver from Semtech Industries, the SX1272 and SX1278 were tested for their power consumption and maximum transmission range. This study have evaluated the two LoRa solutions and found that the SX1278 have a better transmission range and uses lower energy compared to the SX1272 thus making it more suitable for embedded implementation as a data gateway.
Evaluation of Cities in the Context of Energy Efficient Urban Planning Approach
NASA Astrophysics Data System (ADS)
Handan Yücel Yıldırım, H.; Burcu Gültekin, Arzuhan; Tanrıvermiş, Harun
2017-10-01
Due to the increase in energy need with urbanization as a result of industrialization and rapid population growth, preservation of natural resources has become impossible. As the energy generated particularly from non-renewable natural resources that are in danger of depletion such as coal, natural gas, petroleum is limited, and as environmental issues caused by energy resources increase, means of safe and continuous access to energy are searched in the world. Owing to the limited energy resources and energy dependence on foreign sources in the world, particularly in European Union countries, efforts of increasing the share of renewable energy sources in energy consumption increased in all industries, including urban planning as well. Concordantly, it is necessary to develop policies and approaches that enable utilization of domestic resources complying with the country’s conditions, and monitor developments in energy. Such policies and approaches, which must be implemented in urban planning as well, have great importance in terms of not deteriorating habitable environments of future generations while utilizing present-day energy resources, prevalence of utilization of renewable energy sources, and utilization of energy effectively. For that purpose, this paper puts forward a conceptual framework covering the principles, strategies, and methods on energy efficient urban planning approach, and discusses the energy efficient urban area examples within the scope of the suggested framework.
NASA Astrophysics Data System (ADS)
Newell, Richard G., Jr.
Over the long run, the impacts of environmental policies will be greatly affected by the influence these policies have on the rate and direction of technological change. In particular, the roles played by energy prices and product regulation in energy-saving technology innovation are exceptionally important considerations in modeling climate change and evaluating alternative policy options. We analyze the effects of energy prices and energy-efficiency regulations on the menu of air conditioner and water heater models available on the market over a period of more than three decades, measuring their innovation in terms of improvements in the products' underlying characteristics. Through estimation of a series of "characteristics transformation surfaces," we find that during less than four decades, substantial innovation in these products reduced the total capital and operating costs of air conditioning by one-half and water heating by more than one-fifth. Although the overall rate of innovation in these products appears to be independent of energy prices and regulations, the evidence suggests that the direction of innovation may be responsive to energy price changes. This would imply that energy price increases induced innovation in a direction that lowered the capital cost tradeoffs inherent in producing more energy-efficient products. The evidence supporting "regulation-induced" changes in these tradeoffs is much weaker. Our estimates indicate that about one- to two-fifths of the energy-efficiency improvements in these products from 1973 to 1993 were associated with historical changes in energy prices. We also find that this responsiveness to price changes increased substantially after product labeling requirements came into effect, and that minimum efficiency standards had a significant positive effect on average efficiency levels. Nonetheless, a sizeable portion of historical efficiency improvements in these technologies is associated with the products' overall rate of innovation. Looking forward, we estimate that energy taxes of 10 to 30 percent of retail prices could significantly increase the energy efficiency of the product menu. We predict that such taxes would lead to additional efficiency increases in air conditioners of 6 to 26 percent. We conclude that the price-induced component of energy-efficiency innovation should not be ignored when assessing alternative climate change policies.
Fusion energy for space missions in the 21st century: Executive summary
NASA Technical Reports Server (NTRS)
Schulze, Norman R.
1991-01-01
Future space missions were hypothesized and analyzed, and the energy source of their accomplishment investigated. The missions included manned Mars, scientific outposts to and robotic sample return missions from the outer planets and asteroids, as well as fly-by and rendezvous missions with the Oort Cloud and the nearest star, Alpha Centauri. Space system parametric requirements and operational features were established. The energy means for accomplishing missions where delta v requirements range from 90 km/sec to 30,000 km/sec (High Energy Space Mission) were investigated. The need to develop a power space of this magnitude is a key issue to address if the U.S. civil space program is to continue to advance as mandated by the National Space Policy. Potential energy options which could provide the propulsion and electrical power system and operational requirements were reviewed and evaluated. Fusion energy was considered to be the preferred option and was analyzed in depth. Candidate fusion fuels were evaluated based upon the energy output and neutron flux. Additionally, fusion energy can offer significant safety, environmental, economic, and operational advantages. Reactors exhibiting a highly efficient use of magnetic fields for space use while at the same time offering efficient coupling to an exhaust propellant or to a direct energy convertor for efficient electrical production were examined. Near term approaches were identified. A strategy that will produce fusion powered vehicles as part of the space transportation infrastructure was developed. Space program resources must be directed toward this issue as a matter of the top policy priority.
Dong, L F; Yan, T; Ferris, C P; McDowell, D A
2015-02-01
The objectives of the present study were to investigate the effects of cow group on energy expenditure and utilization efficiency. Data used were collated from 32 calorimetric chamber experiments undertaken from 1992 to 2010, with 823 observations from lactating Holstein-Friesian (HF) cows and 112 observations from other groups of lactating cows including Norwegian (n=50), Jersey × HF (n=46), and Norwegian × HF (n=16) cows. The metabolizable energy (ME) requirement for maintenance (MEm) for individual cows was calculated from heat production (HP) minus energy losses from inefficiencies of ME use for lactation, energy retention, and pregnancy. The efficiency of ME use for lactation (kl) was obtained from milk energy output adjusted to zero energy balance (El(0)) divided by ME available for production. The effects of cow groups were first evaluated using Norwegian cows against HF crossbred cows (F1 hybrid, Jersey × HF and Norwegian × HF). The results indicated no significant difference between the 2 groups in terms of energy digestibility, ratio of ME intake over gross energy intake, MEm (MJ per kg of metabolic body weight, MJ/kg(0.75)), or kl. Consequently, their data were combined (categorized as non-HF cows) and used to compare with those of HF cows. Again, we detected no significant difference in energy digestibility, ratio of ME intake over gross energy intake, MEm (MJ/kg(0.75)), or kl between non-HF and HF cows. The effects were further evaluated using linear regression to examine whether any significant differences existed between HF and non-HF cows in terms of relationships between ME intake and energetic parameters. With a common constant, no significant difference was observed between the 2 groups of cows in coefficients in each set of relationships between ME intake (MJ/kg(0.75)) and MEm (MJ/kg(0.75)), El(0) (MJ/kg(0.75)), HP (MJ/kg(0.75)), MEm:ME intake, El(0):ME intake, or HP:ME intake. However, MEm values (MJ/kg(0.75)) were positively related to ME intake (MJ/kg(0.75)), irrespective of cow group. We concluded, therefore, that cow groups evaluated in the present study had no significant effects on energy expenditure or energetic efficiency. However, the maintenance energy requirement (MJ/kg(0.75)) was not constant (as adopted in the majority of energy rationing systems across the world) but increased with increasing feed intake. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Letschert, Virginie E.; de la Rue du Can, Stephane; McNeil, Michael A.
This paper analyses several potential savings scenarios for minimum energy performance standard (MEPS) and comparable programs for governments participating i n the Super-efficient Equipment and Appliance Deployment (SEAD) Initiative, of the Clean Energy Ministerial, which represent over 60% of primary energy consumption in the world. We compare projected energy savings from the main end uses in the residential sector using three energy efficiency scenarios: (1) recent achievements, (2) cost-effective saving potential, and (3) energy efficiency technical potential. The recent achievement scenario (1) evaluates the future impact of MEPS enacted or under development between 2010 and 2012. The cost-effective potential scenariomore » (2) identifies the maximum potential for energy efficiency that results in net benefits to the consumer. The best available technology scenario (3) re presents the full potential of energy efficiency considering best available technologies as candidates for MEPS and incentive programs. We use the Bottom Up Energy Analysis System (BUENAS), developed by Lawrence Berkeley National Laboratory in collaboration with the Collaborative Labelling and Appliances Standards Program (CLASP), to provide a consistent methodology to com pare the different scenarios. This paper focuses on the main end uses in the residential sector. The comparison of the three scenarios for each economy provides possible opportunities for scaling up current policies or implementing additional policies. This comparison across economies reveals country best practices as well as end uses that present the greatest additional potential savings. The paper describes areas where methodologies and additional policy instruments can increase penetration of energy efficient technologies. First , we summarize the barriers and provide remedial policy tools/best practices, such as techno-economic analysis, in response to each barriers that prevent economies from capturing the full cost-effective potentials of MEPS (Scenario 1 to 2). Then, we consider the possible complementary policy options, such as incentive pro grams, to reach the full technical potential of energy efficiency in the residential sector (Scenario 2 to 3).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heeter, J.; Bird, L.
2012-11-01
Currently, 29 states, the District of Columbia, and Puerto Rico have instituted a renewable portfolio standard (RPS). An RPS sets a minimum threshold for how much renewable energy must be generated in a given year. Each state policy is unique, varying in percentage targets, timetables, and eligible resources. This paper examines state experience with implementing renewable portfolio standards that include energy efficiency, thermal resources, and non-renewable energy and explores compliance experience, costs, and how states evaluate, measure, and verify energy efficiency and convert thermal energy. It aims to gain insights from the experience of states for possible federal clean energymore » policy as well as to share experience and lessons for state RPS implementation.« less
FUEL-EFFICIENT SEWAGE SLUDGE INCINERATION
A study was performed to evaluate the status of incineration with low fuel use as a sludge disposal technology. The energy requirements, life-cycle costs, operation and maintenance requirements, and process capabilities of four sludge incineration facilities were evaluated. These...
NASA Astrophysics Data System (ADS)
Iskin, Ibrahim
Energy efficiency stands out with its potential to address a number of challenges that today's electric utilities face, including increasing and changing electricity demand, shrinking operating capacity, and decreasing system reliability and flexibility. Being the least cost and least risky alternative, the share of energy efficiency programs in utilities' energy portfolios has been on the rise since the 1980s, and their increasing importance is expected to continue in the future. Despite holding great promise, the ability to determine and invest in only the most promising program alternatives plays a key role in the successful use of energy efficiency as a utility-wide resource. This issue becomes even more significant considering the availability of a vast number of potential energy efficiency programs, the rapidly changing business environment, and the existence of multiple stakeholders. This dissertation introduces hierarchical decision modeling as the framework for energy efficiency program planning in electric utilities. The model focuses on the assessment of emerging energy efficiency programs and proposes to bridge the gap between technology screening and cost/benefit evaluation practices. This approach is expected to identify emerging technology alternatives which have the highest potential to pass cost/benefit ratio testing procedures and contribute to the effectiveness of decision practices in energy efficiency program planning. The model also incorporates rank order analysis and sensitivity analysis for testing the robustness of results from different stakeholder perspectives and future uncertainties in an attempt to enable more informed decision-making practices. The model was applied to the case of 13 high priority emerging energy efficiency program alternatives identified in the Pacific Northwest, U.S.A. The results of this study reveal that energy savings potential is the most important program management consideration in selecting emerging energy efficiency programs. Market dissemination potential and program development and implementation potential are the second and third most important, whereas ancillary benefits potential is the least important program management consideration. The results imply that program value considerations, comprised of energy savings potential and ancillary benefits potential; and program feasibility considerations, comprised of program development and implementation potential and market dissemination potential, have almost equal impacts on assessment of emerging energy efficiency programs. Considering the overwhelming number of value-focused studies and the few feasibility-focused studies in the literature, this finding clearly shows that feasibility-focused studies are greatly understudied. The hierarchical decision model developed in this dissertation is generalizable. Thus, other utilities or power systems can adopt the research steps employed in this study as guidelines and conduct similar assessment studies on emerging energy efficiency programs of their interest.
Design and Control of Integrated Systems for Hydrogen Production and Power Generation
NASA Astrophysics Data System (ADS)
Georgis, Dimitrios
Growing concerns on CO2 emissions have led to the development of highly efficient power plants. Options for increased energy efficiencies include alternative energy conversion pathways, energy integration and process intensification. Solid oxide fuel cells (SOFC) constitute a promising alternative for power generation since they convert the chemical energy electrochemically directly to electricity. Their high operating temperature shows potential for energy integration with energy intensive units (e.g. steam reforming reactors). Although energy integration is an essential tool for increased efficiencies, it leads to highly complex process schemes with rich dynamic behavior, which are challenging to control. Furthermore, the use of process intensification for increased energy efficiency imposes an additional control challenge. This dissertation identifies and proposes solutions on design, operational and control challenges of integrated systems for hydrogen production and power generation. Initially, a study on energy integrated SOFC systems is presented. Design alternatives are identified, control strategies are proposed for each alternative and their validity is evaluated under different operational scenarios. The operational range of the proposed control strategies is also analyzed. Next, thermal management of water gas shift membrane reactors, which are a typical application of process intensification, is considered. Design and operational objectives are identified and a control strategy is proposed employing advanced control algorithms. The performance of the proposed control strategy is evaluated and compared with classical control strategies. Finally SOFC systems for combined heat and power applications are considered. Multiple recycle loops are placed to increase design flexibility. Different operational objectives are identified and a nonlinear optimization problem is formulated. Optimal designs are obtained and their features are discussed and compared. The results of the dissertation provide a deeper understanding on the design, operational and control challenges of the above systems and can potentially guide further commercialization efforts. In addition to this, the results can be generalized and used for applications from the transportation and residential sector to large--scale power plants.
DOT National Transportation Integrated Search
2018-01-07
Connected and automated vehicles (CAV) are poised to transform surface transportation systems in the United States. Near-term CAV technologies like cooperative adaptive cruise control (CACC) have the potential to deliver energy efficiency and air qua...
Domestic refrigeration appliances in Poland: Potential for improving energy efficiency
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meyers, S.; Schipper, L.; Lebot, B.
1993-08-01
This report is based on information collected from the main Polish manufacturer of refrigeration appliances. We describe their production facilities, and show that the energy consumption of their models for domestic sale is substantially higher than the average for similar models made in W. Europe. Lack of data and uncertainty about future production costs in Poland limits our evaluation of the cost-effective potential to increase energy efficiency, but it appears likely that considerable improvement would be economic from a societal perspective. Many design options are likely to have a simple payback of less than five years. We found that themore » production facilities are in need of substantial modernization in order to produce higher quality and more efficient appliances. We discuss policy options that could help to build a market for more efficient appliances in Poland and thereby encourage investment to produce such equipment.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kurnik, Charles W.; Keeling, Josh; Bruchs, Doug
Refrigerator recycling programs are designed to save energy by removing operable, albeit less efficient, refrigerators from service. By offering free pickup, providing incentives, and disseminating information about the operating cost of less efficient refrigerators, these programs are designed to encourage consumers to: - Limit the use of secondary refrigerators -Relinquish refrigerators previously used as primary units when they are replaced (rather than keeping the existing refrigerator as a secondary unit) -Prevent the continued use of less efficient refrigerators in another household through a direct transfer (giving it away or selling it) or indirect transfer (resale on the used appliance market).more » Commonly implemented by third-party contractors (who collect and decommission participating appliances), these programs generate energy savings through the retirement of inefficient appliances. The decommissioning process captures environmentally harmful refrigerants and foam, and enables recycling of the plastic, metal, and wiring components.« less
Solar energy enhancement using down-converting particles: A rigorous approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abrams, Ze’ev R.; Niv, Avi; Zhang, Xiang
2011-06-01
The efficiency of a single band-gap solar cell is specified by the Shockley-Queisser limit, which defines the maximal output power as a function of the solar cell’s band-gap. One way to overcome this limit is by using a down-conversion process whereupon a high energy photon is split into two lower energy photons, thereby increasing the current of the cell. Here, we provide a full analysis of the possible efficiency increase when placing a down-converting material on top of a pre-existing solar cell. We show that a total 7% efficiency improvement is possible for a perfectly efficient down-converting material. Our analysismore » covers both lossless and lossy theoretical limits, as well as a thermodynamic evaluation. Finally, we describe the advantages of nanoparticles as a possible choice for a down-converting material.« less
Evaluating UV-C LED disinfection performance and ...
This study evaluated ultraviolet (UV) light emitting diodes (LEDs) emitting at 260 nm, 280 nm, and the combination of 260|280 nm together for their efficacy at inactivating Escherichia. coli, MS2 coliphage, human adenovirus type 2 (HAdV2), and Bacillus pumilus spores; research included an evaluation of genomic damage. Inactivation by the LEDs was compared with the efficacy of conventional UV sources, the low-pressure (LP) and medium-pressure (MP) mercury vapor lamps. The work also calculated the electrical energy per order of reduction of the microorganisms by the five UV sources.For E. coli, all five UV sources yielded similar inactivation rates. For MS2 coliphage, the 260 nm LED was most effective. For HAdV2 and B. pumilus, the MP UV lamp was significantly more effective than the LP UV and UVC LED sources. When considering electrical energy per order of reduction, the LP UV lamp was the most efficient for E. coli and MS2, and the MPUV and LPUV were equally efficient for HAdV2 and B. pumilus spores. Among the UVC LEDs, the 280 nm LED unit required the least energy per log reduction of E. coli and HAdV2. The 280 nm and 260|280 nm LED units were equally efficient per log reduction of B. pumilus spores, and the 260 nm LED unit required the lowest energy per order of reduction of MS2 coliphage. The combination of the 260 nm and 280 nm UV LED wavelengths was also evaluated for potential synergistic effects. No dual-wavelength synergy was detected for inactivation of
Energy-efficient building design in cold climates: Schools as a case study
NASA Astrophysics Data System (ADS)
Rangel Ruiz, Rocio
Buildings account for great amounts of greenhouse gas emissions. In terms of energy, buildings account for one third of the total amount of energy used in the country every year! Schools account for 14 percent of the energy used annually in commercial and institutional buildings. Further, schools are one of the most commonly constructed building types in Canada and spaces such as classrooms are often duplicated. This makes them preferred candidates for the research that was undertaken where energy-efficient solutions that can be transferred to different school designs were derived. Throughout the study, the Commercial Building Incentive Program (CBIP) was used as a benchmark. The objectives of the study were to demonstrate energy-efficient concepts, provide a case study to evaluate solutions, develop typological models and provide an understanding of the innovation process. The technological and societal aspects of the energy-efficient design were addressed. With respect to the technological aspects, the first step was the analysis of conventional design using a school in Calgary as a case study. The optimization of conventional design was undertaken using computer modeling to identify best practice solutions. Aspects that were included in the studies were lighting design, envelope characteristics, HVAC systems and building plant systems. The inclusion of passive design included the analysis of daylighting and natural ventilation. Computer modeling was used to assess daylighting in classrooms with unilateral and bilateral daylighting. Illuminance levels, glare and light distribution were evaluated. The study of natural ventilation was undertaken using literature review. Airflow and outdoor temperatures were the focus to identify solutions that could be incorporated into the design of classrooms. It was concluded that achieving excellence in energy efficiency in schools could be achieved using readily available technologies. Energy savings of up to 63 percent better than Canada's Model National Energy Code for Buildings (MNECB) reference case and utility cost savings of 30,000 (on a 50,000 annual cost) were achieved through conventional design optimization. Additional energy savings of three percent and utility cost savings of $7,000 were seen when passive strategies were included in the design. With respect to the societal aspects, an exploratory research study was undertaken to examine innovation. Architects and energy consultants were interviewed. All design professionals included in the study had participated in projects approved for a grant under CBIP. The purpose of the study was to identify drivers and barriers to energy efficiency. The study demonstrated that external and internal innovation pressures have a significant effect on whether or not the technology is adopted. Suggestions for reducing barriers and further promoting energy efficiency are discussed in this thesis. It is expected that the research will not only aid designers in assessing projects with regard to local priorities, but will also provide building guidelines that serve as tools for the development of the Canadian energy compliance for CO2 emissions.
Qi, Wenqiang; Chen, Taojing; Wang, Liang; Wu, Minghong; Zhao, Quanyu; Wei, Wei
2017-03-01
In this study, the sequential process of anaerobic fermentation followed by microalgae cultivation was evaluated from both nutrient and energy recovery standpoints. The effects of different fermentation type on the biogas generation, broth metabolites' composition, algal growth and nutrients' utilization, and energy conversion efficiencies for the whole processes were discussed. When the fermentation was designed to produce hydrogen-dominating biogas, the total energy conversion efficiency (TECE) of the sequential process was higher than that of the methane fermentation one. With the production of hydrogen in anaerobic fermentation, more organic carbon metabolites were left in the broth to support better algal growth with more efficient incorporation of ammonia nitrogen. By applying the sequential process, the heat value conversion efficiency (HVCE) for the wastewater could reach 41.2%, if methane was avoided in the fermentation biogas. The removal efficiencies of organic metabolites and NH 4 + -N in the better case were 100% and 98.3%, respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.
RF rectifiers for EM power harvesting in a Deep Brain Stimulating device.
Hosain, Md Kamal; Kouzani, Abbas Z; Tye, Susannah; Kaynak, Akif; Berk, Michael
2015-03-01
A passive deep brain stimulation (DBS) device can be equipped with a rectenna, consisting of an antenna and a rectifier, to harvest energy from electromagnetic fields for its operation. This paper presents optimization of radio frequency rectifier circuits for wireless energy harvesting in a passive head-mountable DBS device. The aim is to achieve a compact size, high conversion efficiency, and high output voltage rectifier. Four different rectifiers based on the Delon doubler, Greinacher voltage tripler, Delon voltage quadrupler, and 2-stage charge pumped architectures are designed, simulated, fabricated, and evaluated. The design and simulation are conducted using Agilent Genesys at operating frequency of 915 MHz. A dielectric substrate of FR-4 with thickness of 1.6 mm, and surface mount devices (SMD) components are used to fabricate the designed rectifiers. The performance of the fabricated rectifiers is evaluated using a 915 MHz radio frequency (RF) energy source. The maximum measured conversion efficiency of the Delon doubler, Greinacher tripler, Delon quadrupler, and 2-stage charge pumped rectifiers are 78, 75, 73, and 76 % at -5 dBm input power and for load resistances of 5-15 kΩ. The conversion efficiency of the rectifiers decreases significantly with the increase in the input power level. The Delon doubler rectifier provides the highest efficiency at both -5 and 5 dBm input power levels, whereas the Delon quadrupler rectifier gives the lowest efficiency for the same inputs. By considering both efficiency and DC output voltage, the charge pump rectifier outperforms the other three rectifiers. Accordingly, the optimised 2-stage charge pumped rectifier is used together with an antenna to harvest energy in our DBS device.
Center for Efficiency in Sustainable Energy Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abraham, Martin
The main goal of the Center for Efficiency in Sustainable Energy Systems is to produce a methodology that evaluates a variety of energy systems. Task I. Improved Energy Efficiency for Industrial Processes: This task, completed in partnership with area manufacturers, analyzes the operation of complex manufacturing facilities to provide flexibilities that allow them to improve active-mode power efficiency, lower standby-mode power consumption, and use low cost energy resources to control energy costs in meeting their economic incentives; (2) Identify devices for the efficient transformation of instantaneous or continuous power to different devices and sections of industrial plants; and (3) usemore » these manufacturing sites to demonstrate and validate general principles of power management. Task II. Analysis of a solid oxide fuel cell operating on landfill gas: This task consists of: (1) analysis of a typical landfill gas; (2) establishment of a comprehensive design of the fuel cell system (including the SOFC stack and BOP), including durability analysis; (3) development of suitable reforming methods and catalysts that are tailored to the specific SOFC system concept; and (4) SOFC stack fabrication with testing to demonstrate the salient operational characteristics of the stack, including an analysis of the overall energy conversion efficiency of the system. Task III. Demonstration of an urban wind turbine system: This task consists of (1) design and construction of two side-by-side wind turbine systems on the YSU campus, integrated through power control systems with grid power; (2) preliminary testing of aerodynamic control effectors (provided by a small business partner) to demonstrate improved power control, and evaluation of the system performance, including economic estimates of viability in an urban environment; and (3) computational analysis of the wind turbine system as an enabling activity for development of smart rotor blades that contain integrated sensor/actuator/controller modules to enhance energy capture and reduce aerodynamic loading and noise by way of virtual aerodynamic shaping. Accomplishments: Task I. Improved Energy Efficiency for Industrial Processes: We organized an energy management training session held on February 22, 2011, which was advertised through a regional manufacturing association to provide wide-ranging notification. Over two dozen companies were represented a the seminar, ranging from heavy manufacturing businesses with $5,000,000 per year energy expenses, to small, light manufacturing facilities. Task 2. Landfill Fuel Cell Power Generation Solid Oxide Fuel Cells (SOFCs) were constructed and evaluated as a means of obtaining electrical energy from landfill gas. Analysis of landfill gas. Attempts at collecting gas samples at the landfill and evaluating them on campus were still unsuccessful. Even a Teflon® sample bag would lose its H2S content. Evaluation of Gas Clean-up We consider this a confirmation of the CO2 effect on the solubility of H2S in water making much less sulfide available for the photocatalyst. It also means that another method should be employed to clean up landfill gas. Nonetheless, composition of impurities in landfill gas was reduced sufficiently to allow successful operation of the test fuel cell. Comparison to a PEM fuel cell system. If a PEMFC were to be operated with landfill gas as the fuel, the gas would have to be treated for sulfur removal, and then processed in a reformer large enough to drive the equilibrium far toward the products, so that negligible CO would flow into the fuel cell. Analysis of a fuel cell running on landfill gas. Using a Gow-Mac gas chromatograph with a thermal conductivity detector, unambiguous determination of CO can be made, at least as a primary constituent Task 3: Task 3 Plasma Controlled Turbine Blades Wind Turbine Selection. After carefully reviewing the various model available in the market the team selected the ARE 110 (2.5kW). The ARE 110 provides a very long life with little maintenance due to their relatively low rotational speeds (low RPM). The turbines large swept area (10.2ms2/110sq.ft), high-efficiency blades, purpose built alternator, and optimized power electronics ensure maximum energy capture from a wide range of wind speeds. Two wind turbines were installed side-by-side at the Melnick Hall site to compare their performance. Evaluate and Optimize Aerodynamically Enhanced Turbine Blades Due to delays in the installation of the wind turbines, no actual data was obtained within the contract period. At this time, the turbines are installed and operational at YSU with standard blades. We are in contact with Orbital Research and in discussion as to how best the required data can be obtained.« less
Evaluation of CNT Energy Savers Retrofit Packages Implemented in Multifamily Buildings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farley, Jenne; Ruch, Russell
This evaluation explored the feasibility of designing prescriptive retrofit measure packages for typical Chicago region multifamily buildings in order to achieve 25%-30% source energy savings through the study of three case studies. There is an urgent need to scale up energy efficiency retrofitting of Chicago's multifamily buildings in order to address rising energy costs and a rapidly depleting rental stock. Aimed at retrofit program administrators and building science professionals, this research project investigates the possibility of using prescriptive retrofit packages as a time- and resource-effective approach to the process of retrofitting multifamily buildings.
Evaluation of CNT Energy Savers Retrofit Packages Implemented in Multifamily Buildings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farley, Jenne; Ruch, Russell
This evaluation explored the feasibility of designing prescriptive retrofit measure packages for typical Chicago region multifamily buildings in order to achieve 25%-30% source energy savings through the study of three case studies. There is an urgent need to scale up energy efficiency retrofitting of Chicago's multifamily buildings in order to address rising energy costs and a rapidly depletingrental stock. Aimed at retrofit program administrators and building science professionals, this research project investigates the possibility of using prescriptive retrofit packages as a time- and resource-effective approach to the process of retrofitting multifamily buildings.
Strategy Guideline: Energy Retrofits for Low-Rise Multifamily Buildings in Cold Climates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frozyna, K.; Badger, L.
2013-04-01
This Strategy Guideline explains the benefits of evaluating and identifying energy efficiency retrofit measures that could be made during renovation and maintenance of multifamily buildings. It focuses on low-rise multifamily structures (three or fewer stories) in a cold climate. These benefits lie primarily in reduced energy use, lower operating and maintenance costs, improved durability of the structure, and increased occupant comfort. This guideline focuses on retrofit measures for roof repair or replacement, exterior wall repair or gut rehab, and eating system maintenance. All buildings are assumed to have a flat ceiling and a trussed roof, wood- or steel-framed exterior walls,more » and one or more single or staged boilers. Estimated energy savings realized from the retrofits will vary, depending on the size and condition of the building, the extent of efficiency improvements, the efficiency of the heating equipment, the cost and type of fuel, and the climate location.« less
Novel bamboo structured TiO2 nanotubes for energy storage/production applications
NASA Astrophysics Data System (ADS)
Samuel, J. J.; Beh, K. P.; Cheong, Y. L.; Yusuf, W. A. A.; Yam, F. K.
2018-04-01
Nanostructured TiO2 received much attention owing to its high surface-to-volume ratio, which can be advantageous in energy storage and production applications. However, the increase in energy consumption at present and possibly the foreseeable future has demanded energy storage and production devices of even higher performance. A direct approach would be manipulating the physical aspects of TiO2 nanostructures, particularly, nanotubes. In this work, dual voltage anodization system has been implemented to fabricate bamboo shaped TiO2 nanotubes, which offers even greater surface area. This unique nanostructure would be used in Dye Sensitized Solar Cell (DSSC) fabrication and its performance will be evaluated and compared along other forms of TiO2 nanotubes. The results showed that bamboo shaped nanotubes indeed are superior morphologically, with an increase of efficiency of 107% at 1.130% efficiency when compared to smooth walled nanotubes at 0.546% efficiency.
Dernotte, Jeremie; Dec, John E.; Ji, Chunsheng
2015-04-14
A detailed understanding of the various factors affecting the trends in gross-indicated thermal efficiency with changes in key operating parameters has been carried out, applied to a one-liter displacement single-cylinder boosted Low-Temperature Gasoline Combustion (LTGC) engine. This work systematically investigates how the supplied fuel energy splits into the following four energy pathways: gross-indicated thermal efficiency, combustion inefficiency, heat transfer and exhaust losses, and how this split changes with operating conditions. Additional analysis is performed to determine the influence of variations in the ratio of specific heat capacities (γ) and the effective expansion ratio, related to the combustion-phasing retard (CA50), onmore » the energy split. Heat transfer and exhaust losses are computed using multiple standard cycle analysis techniques. Furthermore, the various methods are evaluated in order to validate the trends.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
Continuing the tradition established in prior years, this panel encompasses one of the broadest ranges of topics and issues of any panel at the Summer Study. It includes papers addressing all sectors, low-income residential to industrial, and views energy efficiency from many perspectives including programmatic, evaluation, codes, standards, legislation, technical transfer, economic development, and least-cost planning. The papers represent work being performed in most geographic regions of the United States and in the international arena, specifically Thailand, China, Europe, and Scandinavia. This delightful smorgasbord has been organized, based on general content area, into the following eight sessions: (1) new directionsmore » for low-income weatherization; (2) pursuing efficiency through legislation and standards; (3) international perspectives on energy efficiency; (4) technical transfer strategies; (5) government energy policy; (6) commercial codes and standards; (7) innovative programs; and, (8) state-of-the-art review. For these conference proceedings, individual papers are processed separately for the Energy Data Base.« less
DOT National Transportation Integrated Search
2018-01-01
This project was initiated by the ODOT District 2 staff who were looking for more efficient ways to heat and operate their maintenance facilities. This especially applied to the idea of using radiant floor heating as an alternative to todays stand...
Design and Evaluation of Energy Efficient Modular Classroom Structures.
ERIC Educational Resources Information Center
Brown, G. Z.; And Others
This paper describes a study that developed innovations that would enable modular builders to improve the energy performance of their classrooms without increasing their first cost. The Modern Building Systems' classroom building conforms to the stringent Oregon and Washington energy codes, and, at $18 per square foot, it is at the low end of the…
Energy performance evaluation of AAC
NASA Astrophysics Data System (ADS)
Aybek, Hulya
The U.S. building industry constitutes the largest consumer of energy (i.e., electricity, natural gas, petroleum) in the world. The building sector uses almost 41 percent of the primary energy and approximately 72 percent of the available electricity in the United States. As global energy-generating resources are being depleted at exponential rates, the amount of energy consumed and wasted cannot be ignored. Professionals concerned about the environment have placed a high priority on finding solutions that reduce energy consumption while maintaining occupant comfort. Sustainable design and the judicious combination of building materials comprise one solution to this problem. A future including sustainable energy may result from using energy simulation software to accurately estimate energy consumption and from applying building materials that achieve the potential results derived through simulation analysis. Energy-modeling tools assist professionals with making informed decisions about energy performance during the early planning phases of a design project, such as determining the most advantageous combination of building materials, choosing mechanical systems, and determining building orientation on the site. By implementing energy simulation software to estimate the effect of these factors on the energy consumption of a building, designers can make adjustments to their designs during the design phase when the effect on cost is minimal. The primary objective of this research consisted of identifying a method with which to properly select energy-efficient building materials and involved evaluating the potential of these materials to earn LEED credits when properly applied to a structure. In addition, this objective included establishing a framework that provides suggestions for improvements to currently available simulation software that enhance the viability of the estimates concerning energy efficiency and the achievements of LEED credits. The primary objective was accomplished by using conducting several simulation models to determine the relative energy efficiency of wood-framed, metal-framed, and Aerated Autoclaved Concrete (AAC) wall structures for both commercial and residential buildings.
The evaluation of energy efficiency of convective heat transfer surfaces in tube bundles
NASA Astrophysics Data System (ADS)
Grigoriev, B. A.; Pronin, V. A.; Salohin, V. I.; Sidenkov, D. V.
2017-11-01
When evaluating the effectiveness of the heat exchange surfaces in the main considered characteristics such as heat flow (Q, Watt), the power required for pumps (N, Watt), and surface area of heat transfer (F, m2). The most correct comparison provides a comparison “ceteris paribus”. Carried out performance comparison “ceteris paribus” in-line and staggered configurations of bundles with a circular pipes can serve as a basis for the development of physical models of flow and heat transfer in tube bundles with tubes of other geometric shapes, considering intertubular stream with attached eddies. The effect of longitudinal and transverse steps of the pipes on the energy efficiency of different configurations would take into account by mean of physical relations between the structure of shell side flow with attached eddies and intensity of transfer processes of heat and momentum. With the aim of energy-efficient placement of tubes, such an approach opens up great opportunities for the synthesis of a plurality of tubular heat exchange surfaces, in particular, the layout of the twisted and in-line-diffuser type with a drop-shaped pipes.
Performance profiling for brachytherapy applications
NASA Astrophysics Data System (ADS)
Choi, Wonqook; Cho, Kihyeon; Yeo, Insung
2018-05-01
In many physics applications, a significant amount of software (e.g. R, ROOT and Geant4) is developed on novel computing architectures, and much effort is expended to ensure the software is efficient in terms of central processing unit (CPU) time and memory usage. Profiling tools are used during the evaluation process to evaluate the efficiency; however, few such tools are able to accommodate low-energy physics regions. To address this limitation, we developed a low-energy physics profiling system in Geant4 to profile the CPU time and memory of software applications in brachytherapy applications. This paper describes and evaluates specific models that are applied to brachytherapy applications in Geant4, such as QGSP_BIC_LIV, QGSP_BIC_EMZ, and QGSP_BIC_EMY. The physics range in this tool allows it to be used to generate low energy profiles in brachytherapy applications. This was a limitation in previous studies, which caused us to develop a new profiling tool that supports profiling in the MeV range, in contrast to the TeV range that is supported by existing high-energy profiling tools. In order to easily compare the profiling results between low-energy and high-energy modes, we employed the same software architecture as that in the SimpliCarlo tool developed at the Fermilab National Accelerator Laboratory (FNAL) for the Large Hadron Collider (LHC). The results show that the newly developed profiling system for low-energy physics (less than MeV) complements the current profiling system used for high-energy physics (greater than TeV) applications.
Evaluating opportunities to improve material and energy impacts in commodity supply chains
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hanes, Rebecca J.; Carpenter, Alberta
When evaluated at the scale of individual processes, next-generation technologies may be more energy and emissions intensive than current technology. Furthermore, many advanced technologies have the potential to reduce material and energy consumption in upstream or downstream processing stages. In order to fully understand the benefits and consequences of technology deployment, next-generation technologies should be evaluated in context, as part of a supply chain. This work presents the Materials Flow through Industry (MFI) supply chain modeling tool. The MFI tool is a cradle-to-gate linear network model of the US industrial sector that can model a wide range of manufacturing scenarios,more » including changes in production technology and increases in industrial energy efficiency. The MFI tool was developed to perform supply chain scale analyses in order to quantify the impacts and benefits of next-generation technologies and materials at that scale. For the analysis presented in this paper, the MFI tool is utilized to explore a case study comparing three lightweight vehicle supply chains to the supply chain of a conventional, standard weight vehicle. Several of the lightweight vehicle supply chains are evaluated under manufacturing scenarios that include next-generation production technologies and next-generation materials. Results indicate that producing lightweight vehicles is more energy and emission intensive than producing the non-lightweight vehicle, but the fuel saved during vehicle use offsets this increase. In this case study, greater reductions in supply chain energy and emissions were achieved through the application of the next-generation technologies than from application of energy efficiency increases.« less
Evaluating opportunities to improve material and energy impacts in commodity supply chains
Hanes, Rebecca J.; Carpenter, Alberta
2017-01-10
When evaluated at the scale of individual processes, next-generation technologies may be more energy and emissions intensive than current technology. Furthermore, many advanced technologies have the potential to reduce material and energy consumption in upstream or downstream processing stages. In order to fully understand the benefits and consequences of technology deployment, next-generation technologies should be evaluated in context, as part of a supply chain. This work presents the Materials Flow through Industry (MFI) supply chain modeling tool. The MFI tool is a cradle-to-gate linear network model of the US industrial sector that can model a wide range of manufacturing scenarios,more » including changes in production technology and increases in industrial energy efficiency. The MFI tool was developed to perform supply chain scale analyses in order to quantify the impacts and benefits of next-generation technologies and materials at that scale. For the analysis presented in this paper, the MFI tool is utilized to explore a case study comparing three lightweight vehicle supply chains to the supply chain of a conventional, standard weight vehicle. Several of the lightweight vehicle supply chains are evaluated under manufacturing scenarios that include next-generation production technologies and next-generation materials. Results indicate that producing lightweight vehicles is more energy and emission intensive than producing the non-lightweight vehicle, but the fuel saved during vehicle use offsets this increase. In this case study, greater reductions in supply chain energy and emissions were achieved through the application of the next-generation technologies than from application of energy efficiency increases.« less
Energy Efficiency Evaluation and Benchmarking of AFRL’s Condor High Performance Computer
2011-08-01
AUG 2011 2. REPORT TYPE CONFERENCE PAPER (Post Print) 3. DATES COVERED (From - To) JAN 2011 – JUN 2011 4 . TITLE AND SUBTITLE ENERGY EFFICIENCY...1716 Sony PlayStation 3s (PS3s), adding up to a total of 69,940 cores and a theoretical peak performance of 500 TFLOPS. There are 84 subcluster head...Thus, a critical component to achieving maximum performance is to find the optimum division of processing load between the CPU and GPU. 4 The
ERIC Educational Resources Information Center
Taylor, Gregory D.
2004-01-01
The Tour de Sol marked its 15th year in 2003. Sponsored by the Northeast Sustainable Energy Association (NESEA), the annual event showcases varied sustainable transportation modalities through a contest that evaluates vehicles according to numerous criteria, including safety, handling, practicality, and fuel (energy) efficiency. The only unifying…
Performance of biofuel processes utilising separate lignin and carbohydrate processing.
Melin, Kristian; Kohl, Thomas; Koskinen, Jukka; Hurme, Markku
2015-09-01
Novel biofuel pathways with increased product yields are evaluated against conventional lignocellulosic biofuel production processes: methanol or methane production via gasification and ethanol production via steam-explosion pre-treatment. The novel processes studied are ethanol production combined with methanol production by gasification, hydrocarbon fuel production with additional hydrogen produced from lignin residue gasification, methanol or methane synthesis using synthesis gas from lignin residue gasification and additional hydrogen obtained by aqueous phase reforming in synthesis gas production. The material and energy balances of the processes were calculated by Aspen flow sheet models and add on excel calculations applicable at the conceptual design stage to evaluate the pre-feasibility of the alternatives. The processes were compared using the following criteria: energy efficiency from biomass to products, primary energy efficiency, GHG reduction potential and economy (expressed as net present value: NPV). Several novel biorefinery concepts gave higher energy yields, GHG reduction potential and NPV. Copyright © 2015 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Wei; Gowri, Krishnan; Thornton, Brian A.
2010-06-30
This paper presents the process, methodology, and assumptions for development of the 50% Energy Savings Design Technology Packages for Highway Lodging Buildings, a design guidance document that provides specific recommendations for achieving 50% energy savings in roadside motels (highway lodging) above the requirements of ANSI/ASHRAE/IESNA Standard 90.1-2004. This 50% solution represents a further step toward realization of the U.S. Department of Energy’s net-zero energy building goal, and go beyond the 30% savings in the Advanced Energy Design Guide series (upon which this work was built). This work can serve as the technical feasibility study for the development of a 50%more » saving Advanced Energy Design Guide for highway lodging, and thus should greatly expedite the development process. The purpose of this design package is to provide user-friendly design assistance to designers, developers, and owners of highway lodging properties. It is intended to encourage energy-efficient design by providing prescriptive energy-efficiency recommendations for each climate zone that attains the 50% the energy savings target. This paper describes the steps that were taken to demonstrate the technical feasibility of achieving a 50% reduction in whole-building energy use with practical and commercially available technologies. The energy analysis results are presented, indicating the recommended energy-efficient measures achieved a national-weighted average energy savings of 55%, relative to Standard 90.1-2004. The cost-effectiveness of the recommended technology package is evaluated and the result shows an average simple payback of 11.3 years.« less
A Global Review of Incentive Programs to Accelerate Energy-Efficient Appliances and Equipment
DOE Office of Scientific and Technical Information (OSTI.GOV)
de la Rue du Can, Stephane; Phadke, Amol; Leventis, Greg
Incentive programs are an essential policy tool to move the market toward energy-efficient products. They offer a favorable complement to mandatory standards and labeling policies by accelerating the market penetration of energy-efficient products above equipment standard requirements and by preparing the market for increased future mandatory requirements. They sway purchase decisions and in some cases production decisions and retail stocking decisions toward energy-efficient products. Incentive programs are structured according to their regulatory environment, the way they are financed, by how the incentive is targeted, and by who administers them. This report categorizes the main elements of incentive programs, using casemore » studies from the Major Economies Forum to illustrate their characteristics. To inform future policy and program design, it seeks to recognize design advantages and disadvantages through a qualitative overview of the variety of programs in use around the globe. Examples range from rebate programs administered by utilities under an Energy-Efficiency Resource Standards (EERS) regulatory framework (California, USA) to the distribution of Eco-Points that reward customers for buying efficient appliances under a government recovery program (Japan). We found that evaluations have demonstrated that financial incentives programs have greater impact when they target highly efficient technologies that have a small market share. We also found that the benefits and drawbacks of different program design aspects depend on the market barriers addressed, the target equipment, and the local market context and that no program design surpasses the others. The key to successful program design and implementation is a thorough understanding of the market and effective identification of the most important local factors hindering the penetration of energy-efficient technologies.« less
Comparing Server Energy Use and Efficiency Using Small Sample Sizes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coles, Henry C.; Qin, Yong; Price, Phillip N.
This report documents a demonstration that compared the energy consumption and efficiency of a limited sample size of server-type IT equipment from different manufacturers by measuring power at the server power supply power cords. The results are specific to the equipment and methods used. However, it is hoped that those responsible for IT equipment selection can used the methods described to choose models that optimize energy use efficiency. The demonstration was conducted in a data center at Lawrence Berkeley National Laboratory in Berkeley, California. It was performed with five servers of similar mechanical and electronic specifications; three from Intel andmore » one each from Dell and Supermicro. Server IT equipment is constructed using commodity components, server manufacturer-designed assemblies, and control systems. Server compute efficiency is constrained by the commodity component specifications and integration requirements. The design freedom, outside of the commodity component constraints, provides room for the manufacturer to offer a product with competitive efficiency that meets market needs at a compelling price. A goal of the demonstration was to compare and quantify the server efficiency for three different brands. The efficiency is defined as the average compute rate (computations per unit of time) divided by the average energy consumption rate. The research team used an industry standard benchmark software package to provide a repeatable software load to obtain the compute rate and provide a variety of power consumption levels. Energy use when the servers were in an idle state (not providing computing work) were also measured. At high server compute loads, all brands, using the same key components (processors and memory), had similar results; therefore, from these results, it could not be concluded that one brand is more efficient than the other brands. The test results show that the power consumption variability caused by the key components as a group is similar to all other components as a group. However, some differences were observed. The Supermicro server used 27 percent more power at idle compared to the other brands. The Intel server had a power supply control feature called cold redundancy, and the data suggest that cold redundancy can provide energy savings at low power levels. Test and evaluation methods that might be used by others having limited resources for IT equipment evaluation are explained in the report.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hun, Diana E.
The US–China Clean Energy Research Center (CERC) was launched in 2009 by US Energy Secretary Steven Chu, Chinese Minister of Science and Technology Wan Gang, and Chinese National Energy Agency Administrator Zhang Guobao. This 5-year collaboration emerged from the fact that the United States and China are the world’s largest energy producers, energy consumers, and greenhouse gas emitters, and that their joint effort could have significant positive repercussions worldwide. CERC’s main goal is to develop and deploy clean energy technologies that will help both countries meet energy and climate challenges. Three consortia were established to address the most pressing energy-relatedmore » research areas: Advanced Coal Technology, Clean Vehicles, and Building Energy Efficiency (BEE). The project discussed in this report was part of the CERC-BEE consortia; its objective was to lower energy use in buildings by developing and evaluating technologies that improve the cost-effectiveness of air barrier systems for building envelopes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wood, Claire; Bremner, Brenda
2013-08-09
The Siletz Tribal Energy Program (STEP), housed in the Tribe’s Planning Department, will hire a data entry coordinator to collect, enter, analyze and store all the current and future energy efficiency and renewable energy data pertaining to administrative structures the tribe owns and operates and for homes in which tribal members live. The proposed data entry coordinator will conduct an energy options analysis in collaboration with the rest of the Siletz Tribal Energy Program and Planning Department staff. An energy options analysis will result in a thorough understanding of tribal energy resources and consumption, if energy efficiency and conservation measuresmore » being implemented are having the desired effect, analysis of tribal energy loads (current and future energy consumption), and evaluation of local and commercial energy supply options. A literature search will also be conducted. In order to educate additional tribal members about renewable energy, we will send four tribal members to be trained to install and maintain solar panels, solar hot water heaters, wind turbines and/or micro-hydro.« less
Energy landscape paving simulations of the trp-cage protein.
Schug, Alexander; Wenzel, Wolfgang; Hansmann, Ulrich H E
2005-05-15
We evaluate the efficiency of multiple variants of energy landscape paving in all-atom simulations of the trp-cage protein using a recently developed new force field. Especially, we introduce a temperature-free variant of the method and demonstrate that it allows a fast scanning of the energy landscape. Nativelike structures are found in less time than by other techniques. The sampled low-energy configurations indicate a funnel-like energy landscape.
Anaerobic digestion of food waste: A review focusing on process stability.
Li, Lei; Peng, Xuya; Wang, Xiaoming; Wu, Di
2018-01-01
Food waste (FW) is rich in biomass energy, and increasing numbers of national programs are being established to recover energy from FW using anaerobic digestion (AD). However process instability is a common operational issue for AD of FW. Process monitoring and control as well as microbial management can be used to control instability and increase the energy conversion efficiency of anaerobic digesters. Here, we review research progress related to these methods and identify existing limitations to efficient AD; recommendations for future research are also discussed. Process monitoring and control are suitable for evaluating the current operational status of digesters, whereas microbial management can facilitate early diagnosis and process optimization. Optimizing and combining these two methods are necessary to improve AD efficiency. Copyright © 2017 Elsevier Ltd. All rights reserved.
Environmental sustainability of bioethanol produced from sweet sorghum stem on saline-alkali land.
Wang, Mingxin; Pan, Xinxing; Xia, Xunfeng; Xi, Beidou; Wang, Lijun
2015-01-01
Life cycle assessment was conducted to evaluate the energy efficiency and environmental impacts of a bioethanol production system that uses sweet sorghum stem on saline-alkali land as feedstock. The system comprises a plant cultivation unit, a feedstock transport unit, and a bioethanol conversion unit, with 1000L of bioethanol as a functional unit. The net energy ratio is 3.84, and the net energy gain is 17.21MJ/L. Agrochemical production consumes 76.58% of the life cycle fossil energy. The category with the most significant impact on the environment is eutrophication, followed by acidification, fresh water aquatic ecotoxicity, human toxicity, and global warming. Allocation method, waste recycling approach, and soil salinity significantly influence the results. Using vinasse to produce pellet fuel for steam generation significantly improves energy efficiency and decreases negative environmental impacts. Promoting reasonable management practices to alleviate saline stress and increasing agrochemical utilization efficiency can further improve environmental sustainability. Copyright © 2015 Elsevier Ltd. All rights reserved.
Energy efficient engine flight propulsion system: Aircraft/engine integration evaluation
NASA Technical Reports Server (NTRS)
Patt, R. F.
1980-01-01
Results of aircraft/engine integration studies conducted on an advanced flight propulsion system are reported. Economic evaluations of the preliminary design are included and indicate that program goals will be met. Installed sfc, DOC, noise, and emissions were evaluated. Aircraft installation considerations and growth were reviewed.
Energy efficient engine flight propulsion system: Aircraft/engine integration evaluation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patt, R.F.
Results of aircraft/engine integration studies conducted on an advanced flight propulsion system are reported. Economic evaluations of the preliminary design are included and indicate that program goals will be met. Installed sfc, DOC, noise, and emissions were evaluated. Aircraft installation considerations and growth were reviewed.
Energy use in the marine transportation industry. Task III. Efficiency improvements. Draft report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1977-06-02
Research and development areas that hold promise for maritime energy conservation are identified and evaluated. The methodology used is discussed in Chapter II. The technology base of the commercial marine transportation industry relating to energy usage is made up of: main propulsion plants, propulsors, hydrodynamics, vessel operations, and fuels. Fifteen specific program areas in the first four generic technologies are identified and are evaluated. An economic and energy impact analysis and technological risk assessment was performed on the specific program areas and the results are summarized in Chapter III. The first five appendices address the generic technologies. The sixth appendixmore » contains the baseline operating and cost parameters against which the 15 program areas were evaluated, and the last appendix contains sample printouts of the MTEM model used to evaluate the energy consumption and economic impacts associated with the candidate technology areas. (MCW)« less
Efficiency of broadband terahertz rectennas based on self-switching nanodiodes
NASA Astrophysics Data System (ADS)
Briones, Edgar; Cortes-Mestizo, Irving E.; Briones, Joel; Droopad, Ravindranath; Espinosa-Vega, Leticia I.; Vilchis, Heber; Mendez-Garcia, Victor H.
2017-04-01
The authors investigate the efficiency of a series of broadband rectennas designed to harvest the free-propagating electromagnetic energy at terahertz frequencies. We analyze by simulations the case of self-complementary square- and Archimedean-spiral antennas coupled to L-shaped self-switching diodes (L-SSDs). First, the geometry (i.e., the width and length of the channel) of the L-SSD was optimized to obtain a remarkable diode-like I-V response. Subsequently, the optimized L-SSD geometry was coupled to both types of spiral antennas and their characteristic impedance was studied. Finally, the energy conversion efficiency was evaluated for both rectenna architectures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, Nina; Fridley, David; Zhou, Nan
2011-09-30
Achieving China’s goal of reducing its carbon intensity (CO{sub 2} per unit of GDP) by 40% to 45% percent below 2005 levels by 2020 will require the strengthening and expansion of energy efficiency policies across the buildings, industries and transport sectors. This study uses a bottom-up, end-use model and two scenarios -- an enhanced energy efficiency (E3) scenario and an alternative maximum technically feasible energy efficiency improvement (Max Tech) scenario – to evaluate what policies and technical improvements are needed to achieve the 2020 carbon intensity reduction target. The findings from this study show that a determined approach by Chinamore » can lead to the achievement of its 2020 goal. In particular, with full success in deepening its energy efficiency policies and programs but following the same general approach used during the 11th Five Year Plan, it is possible to achieve 49% reduction in CO{sub 2} emissions per unit of GDP (CO{sub 2} emissions intensity) in 2020 from 2005 levels (E3 case). Under the more optimistic but feasible assumptions of development and penetration of advanced energy efficiency technology (Max Tech case), China could achieve a 56% reduction in CO{sub 2} emissions intensity in 2020 relative to 2005 with cumulative reduction of energy use by 2700 Mtce and of CO{sub 2} emissions of 8107 Mt CO{sub 2} between 2010 and 2020. Energy savings and CO{sub 2} mitigation potential varies by sector but most of the energy savings potential is found in energy-intensive industry. At the same time, electricity savings and the associated emissions reduction are magnified by increasing renewable generation and improving coal generation efficiency, underscoring the dual importance of end-use efficiency improvements and power sector decarbonization.« less
Peng, Yuyang; Choi, Jaeho
2014-01-01
Improving the energy efficiency in wireless sensor networks (WSN) has attracted considerable attention nowadays. The multiple-input multiple-output (MIMO) technique has been proved as a good candidate for improving the energy efficiency, but it may not be feasible in WSN which is due to the size limitation of the sensor node. As a solution, the cooperative multiple-input multiple-output (CMIMO) technique overcomes this constraint and shows a dramatically good performance. In this paper, a new CMIMO scheme based on the spatial modulation (SM) technique named CMIMO-SM is proposed for energy-efficiency improvement. We first establish the system model of CMIMO-SM. Based on this model, the transmission approach is introduced graphically. In order to evaluate the performance of the proposed scheme, a detailed analysis in terms of energy consumption per bit of the proposed scheme compared with the conventional CMIMO is presented. Later, under the guide of this new scheme we extend our proposed CMIMO-SM to a multihop clustered WSN for further achieving energy efficiency by finding an optimal hop-length. Equidistant hop as the traditional scheme will be compared in this paper. Results from the simulations and numerical experiments indicate that by the use of the proposed scheme, significant savings in terms of total energy consumption can be achieved. Combining the proposed scheme with monitoring sensor node will provide a good performance in arbitrary deployed WSN such as forest fire detection system.
IEEE 802.21 Assisted Seamless and Energy Efficient Handovers in Mixed Networks
NASA Astrophysics Data System (ADS)
Liu, Huaiyu; Maciocco, Christian; Kesavan, Vijay; Low, Andy L. Y.
Network selection is the decision process for a mobile terminal to handoff between homogeneous or heterogeneous networks. With multiple available networks, the selection process must evaluate factors like network services/conditions, monetary cost, system conditions, user preferences etc. In this paper, we investigate network selection using a cost function and information provided by IEEE 802.21. The cost function provides flexibility to balance different factors in decision making and our research is focused on improving both seamlessness and energy efficiency of handovers. Our solution is evaluated using real WiFi, WiMax, and 3G signal strength traces. The results show that appropriate networks were selected based on selection policies, handovers were triggered at optimal times to increase overall network connectivity as compared to traditional triggering schemes, while at the same time the energy consumption of multi-radio devices for both on-going operations as well as during handovers is optimized.
[Definition of quantum efficiency of X-ray detectors].
Zelikman, M I
2001-01-01
Different definitions available in the literature on the quantum efficiency of X-ray detectors are presented and compared. The relationship of this parameter to spatial frequencies for quantum accounting receivers and energy accumulating ones is analyzed. A procedure is proposed for evaluating the quantum efficiency of the detectors in the area of zero spatial frequencies, which is rather simple and requires no special testing equipment.
Scheduling for energy and reliability management on multiprocessor real-time systems
NASA Astrophysics Data System (ADS)
Qi, Xuan
Scheduling algorithms for multiprocessor real-time systems have been studied for years with many well-recognized algorithms proposed. However, it is still an evolving research area and many problems remain open due to their intrinsic complexities. With the emergence of multicore processors, it is necessary to re-investigate the scheduling problems and design/develop efficient algorithms for better system utilization, low scheduling overhead, high energy efficiency, and better system reliability. Focusing cluster schedulings with optimal global schedulers, we study the utilization bound and scheduling overhead for a class of cluster-optimal schedulers. Then, taking energy/power consumption into consideration, we developed energy-efficient scheduling algorithms for real-time systems, especially for the proliferating embedded systems with limited energy budget. As the commonly deployed energy-saving technique (e.g. dynamic voltage frequency scaling (DVFS)) will significantly affect system reliability, we study schedulers that have intelligent mechanisms to recuperate system reliability to satisfy the quality assurance requirements. Extensive simulation is conducted to evaluate the performance of the proposed algorithms on reduction of scheduling overhead, energy saving, and reliability improvement. The simulation results show that the proposed reliability-aware power management schemes could preserve the system reliability while still achieving substantial energy saving.
SUNREL Related Links | Buildings | NREL
SUNREL Related Links SUNREL Related Links DOE Simulation Software Tools Directory a directory of 301 building software tools for evaluation of energy efficiency, renewable energy, and sustainability in buildings. TREAT Software Program a computer program that uses SUNREL and is designed to provide
The design and improvement of chemical processes can be very challenging. The earlier energy conservation, process economics and environmental aspects are incorporated into the process development, the easier and less expensive it is to alter the process design. In this work diff...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Price, Phillip N.
2014-11-01
Snohomish County Public Utilities District (the District or Snohomish PUD) provides electricity to about 325,000 customers in Snohomish County, Washington. The District has an incentive programs to encourage commercial customers to improve energy efficiency: the District partially reimburses the cost of approved retrofits if they provide a level of energy performance improvement that is specified by contract. In 2013 the District contracted with Lawrence Berkeley National Laboratory to provide a third-party review of the Monitoring and Verification (M&V) practices the District uses to evaluate whether companies are meeting their contractual obligations. This work helps LBNL understand the challenges faced bymore » real-world practitioners of M&V of energy savings, and builds on a body of related work such as Price et al. (2013). The District selected a typical project for which they had already performed an evaluation. The present report includes the District's original evaluation as well as LBNL's review of their approach. The review is based on the document itself; on investigation of the load data and outdoor air temperature data from the building evaluated in the document; and on phone discussions with Bill Harris of the Snohomish County Public Utilities District. We will call the building studied in the document the subject building, the original Snohomish PUD report will be referred to as the Evaluation, and this discussion by LBNL is called the Review.« less
Feasibility study of solar energy in residential electricity generation
NASA Astrophysics Data System (ADS)
Solanki, Divyangsinh G.
With the increasing demand for energy and the concerns about the global environment, along with the steady progress in the field of renewable energy technologies, new opportunities and possibilities are opening up for an efficient utilization of renewable energy sources. Solar energy is undoubtedly the most clean, inexhaustible and abundant source of renewable energy. Photovoltaic (PV) technology is one of the most efficient mean to utilize solar power. The focus of this study was to establish economics of a residential photovoltaic system for a typical home in south Texas. The PV system serves the needs of a typical mid-size home inhibited by a typical family. Assumptions are made for the typical daily energy consumption, and the necessary equipments like solar arrays, batteries, inverter, etc. are sized and evaluated optimally so as to reduce the life cycle cost (LCC) of the system. Calculations are done taking into consideration the economic parameters concerned with the system.
NASA Astrophysics Data System (ADS)
Ward, Patrick A.; Corgnale, Claudio; Teprovich, Joseph A.; Motyka, Theodore; Hardy, Bruce; Sheppard, Drew; Buckley, Craig; Zidan, Ragaiy
2016-04-01
Recently, there has been increasing interest in thermal energy storage (TES) systems for concentrated solar power (CSP) plants, which allow for continuous operation when sunlight is unavailable. Thermochemical energy storage materials have the advantage of much higher energy densities than latent or sensible heat materials. Furthermore, thermochemical energy storage systems based on metal hydrides have been gaining great interest for having the advantage of higher energy densities, better reversibility, and high enthalpies. However, in order to achieve higher efficiencies desired of a thermal storage system by the US Department of Energy, the system is required to operate at temperatures >600 °C. Operation at temperatures >600 °C presents challenges including material selection, hydrogen embrittlement and permeation of containment vessels, appropriate selection of heat transfer fluids, and cost. Herein, the technical difficulties and proposed solutions associated with the use of metal hydrides as TES materials in CSP applications are discussed and evaluated.
Safi, C; Cabas Rodriguez, L; Mulder, W J; Engelen-Smit, N; Spekking, W; van den Broek, L A M; Olivieri, G; Sijtsma, L
2017-09-01
Several cell disruption methods were tested on Nannochloropsis gaditana, to evaluate their efficiency in terms of cell disintegration, energy input and release of soluble proteins. High-pressure homogenization (HPH) and bead milling were the most efficient with >95% cell disintegration, ±50% (w/w) release of total proteins and low energy input (<0.5kWh.kg -1 biomass ). Enzymatic treatment required low energy input (<0.34kWh.kg -1 biomass ), but it only released ±35% protein (w/w). Pulsed Electric Field (PEF) was neither energy-efficient (10.44kWh.kg -1 biomass ) nor successful for protein release (only 10% proteins w/w) and cell disintegration. The release of proteins after applying HPH and bead milling always required less intensive operating conditions for cell disruption. The energy cost per unit of released protein ranged from 0.15-0.25 €.kg Protein -1 in case of HPH, and up to 2-20 €.kg Protein -1 in case of PEF. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Murphy, Thomas W.
2011-11-01
This article explores a variety of ways to measure, adjust, and augment home energy usage. Particular examples of using electricity and gas utility meters, power/energy meters for individual devices, whole-home energy monitoring, infrared cameras, and thermal measurements are discussed—leading to a factor-of-four reduction in home energy use in the case discussed. The net efficiency performance of a stand-alone photovoltaic system is also presented. Ideas for reducing one's energy/carbon footprint both within the home and in the larger community are quantitatively evaluated.
Effects of recent energy system changes on CO2 projections for the United States.
Lenox, Carol S; Loughlin, Daniel H
2017-09-21
Recent projections of future United States carbon dioxide (CO 2 ) emissions are considerably lower than projections made just a decade ago. A myriad of factors have contributed to lower forecasts, including reductions in end-use energy service demands, improvements in energy efficiency, and technological innovations. Policies that have encouraged these changes include renewable portfolio standards, corporate vehicle efficiency standards, smart growth initiatives, revisions to building codes, and air and climate regulations. Understanding the effects of these and other factors can be advantageous as society evaluates opportunities for achieving additional CO 2 reductions. Energy system models provide a means to develop such insights. In this analysis, the MARKet ALlocation (MARKAL) model was applied to estimate the relative effects of various energy system changes that have happened since the year 2005 on CO 2 projections for the year 2025. The results indicate that transformations in the transportation and buildings sectors have played major roles in lowering projections. Particularly influential changes include improved vehicle efficiencies, reductions in projected travel demand, reductions in miscellaneous commercial electricity loads, and higher efficiency lighting. Electric sector changes have also contributed significantly to the lowered forecasts, driven by demand reductions, renewable portfolio standards, and air quality regulations.
An Efficient Next Hop Selection Algorithm for Multi-Hop Body Area Networks
Ayatollahitafti, Vahid; Ngadi, Md Asri; Mohamad Sharif, Johan bin; Abdullahi, Mohammed
2016-01-01
Body Area Networks (BANs) consist of various sensors which gather patient’s vital signs and deliver them to doctors. One of the most significant challenges faced, is the design of an energy-efficient next hop selection algorithm to satisfy Quality of Service (QoS) requirements for different healthcare applications. In this paper, a novel efficient next hop selection algorithm is proposed in multi-hop BANs. This algorithm uses the minimum hop count and a link cost function jointly in each node to choose the best next hop node. The link cost function includes the residual energy, free buffer size, and the link reliability of the neighboring nodes, which is used to balance the energy consumption and to satisfy QoS requirements in terms of end to end delay and reliability. Extensive simulation experiments were performed to evaluate the efficiency of the proposed algorithm using the NS-2 simulator. Simulation results show that our proposed algorithm provides significant improvement in terms of energy consumption, number of packets forwarded, end to end delay and packet delivery ratio compared to the existing routing protocol. PMID:26771586
DOE Office of Scientific and Technical Information (OSTI.GOV)
Araujo, Rafael B., E-mail: rafael.barros@physics.uu.se; Almeida, J. de S; Instituto de Física, Universidade Federal da Bahia, Salvador, Bahia
The main goals of this paper are to investigate the accuracy of the Tran-Blaha modified Becke Johnson (TB-mBJ) potential to predict the electronic structure of lithium iron phosphate and the related redox reaction energy with the lithium deintercalation process. The computed electronic structures show that the TB-mBJ method is able to partially localize Fe-3d electrons in LiFePO{sub 4} and FePO{sub 4} which usually is a problem for the generalized gradient approximation (GGA) due to the self interaction error. The energy band gap is also improved by the TB-mBJ calculations in comparison with the GGA results. It turned out, however, thatmore » the redox reaction energy evaluated by the TB-mBJ technique is not in good agreement with the measured one. It is speculated that this disagreement in the computed redox energy and the experimental value is due to the lack of a formal expression to evaluate the exchange and correlation energy. Therefore, the TB-mBJ is an efficient method to improve the prediction of the electronic structures coming form the standard GGA functional in LiFePO{sub 4} and FePO{sub 4}. However, it does not appear to have the same efficiency for evaluating the redox reaction energies for the investigated system.« less
Description and modelling of the solar-hydrogen-biogas-fuel cell system in GlashusEtt
NASA Astrophysics Data System (ADS)
Hedström, L.; Wallmark, C.; Alvfors, P.; Rissanen, M.; Stridh, B.; Ekman, J.
The need to reduce pollutant emissions and utilise the world's available energy resources more efficiently has led to increased attention towards e.g. fuel cells, but also to other alternative energy solutions. In order to further understand and evaluate the prerequisites for sustainable and energy-saving systems, ABB and Fortum have equipped an environmental information centre, located in Hammarby Sjöstad, Stockholm, Sweden, with an alternative energy system. The system is being used to demonstrate and evaluate how a system based on fuel cells and solar cells can function as a complement to existing electricity and heat production. The stationary energy system is situated on the top level of a three-floor glass building and is open to the public. The alternative energy system consists of a fuel cell system, a photovoltaic (PV) cell array, an electrolyser, hydrogen storage tanks, a biogas burner, dc/ac inverters, heat exchangers and an accumulator tank. The fuel cell system includes a reformer and a polymer electrolyte fuel cell (PEFC) with a maximum rated electrical output of 4 kW el and a maximum thermal output of 6.5 kW th. The fuel cell stack can be operated with reformed biogas, or directly using hydrogen produced by the electrolyser. The cell stack in the electrolyser consists of proton exchange membrane (PEM) cells. To evaluate different automatic control strategies for the system, a simplified dynamic model has been developed in MATLAB Simulink. The model based on measurement data taken from the actual system. The evaluation is based on demand curves, investment costs, electricity prices and irradiation. Evaluation criteria included in the model are electrical and total efficiencies as well as economic parameters.
2009-11-19
Energy Density of UltraCell XX25 72 25W Mission Energy Density: 24-hr 230 Whr /kg 72-hr 360 Whr /kg UltraCell XX55 RMFC 0% 5% 10% 15% 20% 25% 30% 0% 25...Weight: 2.7 kg System Efficiency: 26.0 % 55W Mission Energy Density: 24 hr 265 Whr /kg* 72-hr 410 Whr /kg* * Calculated based on initial data only AMIe60...10.25" x 9" x 4" Start Up Time: 15min. System Dry Weight: 2.8 kg System Efficiency: 18.0 % 60W Mission Energy Density: 24 hr 400 Whr /kg 72-hr
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitchell, G.
This presentation discusses the differences between the original Vehicle and Infrastructure Cash-Flow Evaluation (VICE) Model and the revamped version, VICE 2.0. The enhanced tool can now help assess projects to acquire vehicles and infrastructure, or to acquire vehicles only.
KCH Services, Inc. manufacturers a commercial-ready energy conserving automatic covered tank system for use in the metal finishing industry. The ACTSEC technology is a system designed to provide an efficient removal of air contaminants from the workplace at a reasonable cost and ...
Some Basics for Teaching and Evaluating Energy Conservation in the Home
ERIC Educational Resources Information Center
McColl, Robert W.
1978-01-01
Examines methods for determining thermal efficiency and measuring heat loss in the home. Suggests ways to conserve energy based upon (1) climatic environment and its impact on a structure, (2) physical location of buildings and their microclimate, and (3) behavior modification of the inhabitants. (Author)
Campbell Creek Research Homes: FY2013 Annual Performance Report OCT.1, 2012 SEP. 30, 2013
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jackson, Roderick K; Boudreaux, Philip R; Munk, Jeffrey D
1.INTRODUCTION AND PROJECT OVERVIEW The Campbell Creek project is funded and managed by the Tennessee Valley Authority (TVA) Technology Innovation, Energy Efficiency, Power Delivery and Utilization Office. Technical support is provided under contract by the Oak Ridge National Laboratory (ORNL) and the Electric Power Research Institute (EPRI). The project was designed to determine the relative energy efficiency of typical new home construction, of retrofitting of existing homes, and of high-performance new homes built from the ground up for energy efficiency. This project was designed to compare three houses that represent current construction practices: a base case (Builder House CC1); amore » modified house that could represent a major energy-efficient retrofit (Retrofit House CC2); and a house constructed from the ground up to be a high-performance home (High Performance House CC3). To enable a valid comparison, it was necessary to simulate occupancy in all three houses and extensively monitor the structural components and the energy usage by component. In October 2013, the base case was also modified by replacing the builder-grade heating, ventilation, and air-conditioning (HVAC) system with a high-efficiency variable-speed unit. All three houses are two-story, slab-on-grade, framed construction. CC1 and CC2 are approximately 2,400 ft2. CC3 has a pantry option, used primarily as a mechanical equipment room, that adds approximately 100 ft2. All three houses are all-electric (with the exception of a gas log fireplace that is not used during the testing) and use air-source heat pumps for heating and cooling. The three homes are located in Knoxville in the Campbell Creek Subdivision. CC1 and CC2 are next door to each other with a south-facing orientation; CC3 has a north-facing orientation and is located across the street and a couple of houses down. The energy data collected will be used to determine the benefits of retrofit packages and high-performance new home packages. There are more than 300 channels of continuous energy performance and thermal comfort data collection in the houses (100 for each house). The data will be used to evaluate the impact of energy-efficiency upgrades on the envelope, mechanical equipment, and demand-response options. Each retrofit will be evaluated incrementally, by both short-term measurements and computer modeling, using a calibrated model. This report is intended to document the comprehensive testing, data analysis, research, and findings within the October 2012 through September 2013 (FY 2013) timeframe at the Campbell Creek research houses. The following sections will provide an in-depth assessment of the technology progression in each of the three research houses. A detailed assessment and evaluation of the energy performance of technologies tested will also be provided. Finally, lessons learned and concluding remarks will be highlighted.« less
NASA Astrophysics Data System (ADS)
Dubey, M.; Chandra, H.; Kumar, Anil
2016-02-01
A thermal modelling for the performance evaluation of gas turbine cogeneration system with reheat is presented in this paper. The Joule-Brayton cogeneration reheat cycle is based on the total useful energy rate (TUER) has been optimised and the efficiency at the maximum TUER is determined. The variation of maximum dimensionless TUER and efficiency at maximum TUER with respect to cycle temperature ratio have also been analysed. From the results, it has been found that the dimensionless maximum TUER and the corresponding thermal efficiency decrease with the increase in power to heat ratio. The result also shows that the inclusion of reheat significantly improves the overall performance of the cycle. From the thermodynamic performance point of view, this methodology may be quite useful in the selection and comparison of combined energy production systems.
Annual Performance Evaluation of a Pair of Energy Efficient Houses (WC3 and WC4) in Oak Ridge, TN
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biswas, Kaushik; Christian, Jeffrey E; Gehl, Anthony C
2012-04-01
Beginning in 2008, two pairs of energy-saver houses were built at Wolf Creek in Oak Ridge, TN. These houses were designed to maximize energy efficiency using new ultra-high-efficiency components emerging from ORNL s Cooperative Research and Development Agreement (CRADA) partners and others. The first two houses contained 3713 square feet of conditioned area and were designated as WC1 and WC2; the second pair consisted of 2721 square feet conditioned area with crawlspace foundation and they re called WC3 and WC4. This report is focused on the annual energy performance of WC3 and WC4, and how they compare against a previouslymore » benchmarked maximum energy efficient house of a similar footprint. WC3 and WC4 are both about 55-60% more efficient than traditional new construction. Each house showcases a different envelope system: WC3 is built with advanced framing featured cellulose insulation partially mixed with phase change materials (PCM); and WC4 house has cladding composed of an exterior insulation and finish system (EIFS). The previously benchmarked house was one of three built at the Campbell Creek subdivision in Knoxville, TN. This house (CC3) was designed as a transformation of a builder house (CC1) with the most advanced energy-efficiency features, including solar electricity and hot water, which market conditions are likely to permit within the 2012 2015 period. The builder house itself was representative of a standard, IECC 2006 code-certified, all-electric house built by the builder to sell around 2005 2008.« less
Xiao, Zhu; Liu, Hongjing; Havyarimana, Vincent; Li, Tong; Wang, Dong
2016-11-04
In this paper, we investigate the coverage performance and energy efficiency of multi-tier heterogeneous cellular networks (HetNets) which are composed of macrocells and different types of small cells, i.e., picocells and femtocells. By virtue of stochastic geometry tools, we model the multi-tier HetNets based on a Poisson point process (PPP) and analyze the Signal to Interference Ratio (SIR) via studying the cumulative interference from pico-tier and femto-tier. We then derive the analytical expressions of coverage probabilities in order to evaluate coverage performance in different tiers and investigate how it varies with the small cells' deployment density. By taking the fairness and user experience into consideration, we propose a disjoint channel allocation scheme and derive the system channel throughput for various tiers. Further, we formulate the energy efficiency optimization problem for multi-tier HetNets in terms of throughput performance and resource allocation fairness. To solve this problem, we devise a linear programming based approach to obtain the available area of the feasible solutions. System-level simulations demonstrate that the small cells' deployment density has a significant effect on the coverage performance and energy efficiency. Simulation results also reveal that there exits an optimal small cell base station (SBS) density ratio between pico-tier and femto-tier which can be applied to maximize the energy efficiency and at the same time enhance the system performance. Our findings provide guidance for the design of multi-tier HetNets for improving the coverage performance as well as the energy efficiency.
Xiao, Zhu; Liu, Hongjing; Havyarimana, Vincent; Li, Tong; Wang, Dong
2016-01-01
In this paper, we investigate the coverage performance and energy efficiency of multi-tier heterogeneous cellular networks (HetNets) which are composed of macrocells and different types of small cells, i.e., picocells and femtocells. By virtue of stochastic geometry tools, we model the multi-tier HetNets based on a Poisson point process (PPP) and analyze the Signal to Interference Ratio (SIR) via studying the cumulative interference from pico-tier and femto-tier. We then derive the analytical expressions of coverage probabilities in order to evaluate coverage performance in different tiers and investigate how it varies with the small cells’ deployment density. By taking the fairness and user experience into consideration, we propose a disjoint channel allocation scheme and derive the system channel throughput for various tiers. Further, we formulate the energy efficiency optimization problem for multi-tier HetNets in terms of throughput performance and resource allocation fairness. To solve this problem, we devise a linear programming based approach to obtain the available area of the feasible solutions. System-level simulations demonstrate that the small cells’ deployment density has a significant effect on the coverage performance and energy efficiency. Simulation results also reveal that there exits an optimal small cell base station (SBS) density ratio between pico-tier and femto-tier which can be applied to maximize the energy efficiency and at the same time enhance the system performance. Our findings provide guidance for the design of multi-tier HetNets for improving the coverage performance as well as the energy efficiency. PMID:27827917
Country Review of Energy-Efficiency Financial Incentives in the Residential Sector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Can, Stephane de la Rue du; Shah, Nihar; Phadke, Amol
A large variety of energy-efficiency policy measures exist. Some are mandatory, some are informative, and some use financial incentives to promote diffusion of efficient equipment. From country to country, financial incentives vary considerably in scope and form, the type of framework used to implement them, and the actors that administer them. They range from rebate programs administered by utilities under an Energy-Efficiency Resource Standards (EERS) regulatory framework (California, USA) to the distribution of Eco-points rewarding customers for buying highly efficient appliances (Japan). All have the primary objective of transforming the current market to accelerate the diffusion of efficient technologies bymore » addressing up-front cost barriers faced by consumers; in most instances, efficient technologies require a greater initial investment than conventional technologies. In this paper, we review the different market transformation measures involving the use of financial incentives in the countries belonging to the Major Economies Forum. We characterize the main types of measures, discuss their mechanisms, and provide information on program impacts to the extent that ex-ante or ex-post evaluations have been conducted. Finally, we identify best practices in financial incentive programs and opportunities for coordination between Major Economies Forum countries as envisioned under the Super Efficient Appliance Deployment (SEAD) initiative.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kurnik, Charles W.; Romberger, Jeff
The HVAC Controls Evaluation Protocol is designed to address evaluation issues for direct digital controls/energy management systems/building automation systems (DDC/EMS/BAS) that are installed to control heating, ventilation, and air-conditioning (HVAC) equipment in commercial and institutional buildings. (This chapter refers to the DDC/EMS/BAS measure as HVAC controls.) This protocol may also be applicable to industrial facilities such as clean rooms and labs, which have either significant HVAC equipment or spaces requiring special environmental conditions.
Sefuba, Maria; Walingo, Tom; Takawira, Fambirai
2015-09-18
This paper presents an Energy Efficient Medium Access Control (MAC) protocol for clustered wireless sensor networks that aims to improve energy efficiency and delay performance. The proposed protocol employs an adaptive cross-layer intra-cluster scheduling and an inter-cluster relay selection diversity. The scheduling is based on available data packets and remaining energy level of the source node (SN). This helps to minimize idle listening on nodes without data to transmit as well as reducing control packet overhead. The relay selection diversity is carried out between clusters, by the cluster head (CH), and the base station (BS). The diversity helps to improve network reliability and prolong the network lifetime. Relay selection is determined based on the communication distance, the remaining energy and the channel quality indicator (CQI) for the relay cluster head (RCH). An analytical framework for energy consumption and transmission delay for the proposed MAC protocol is presented in this work. The performance of the proposed MAC protocol is evaluated based on transmission delay, energy consumption, and network lifetime. The results obtained indicate that the proposed MAC protocol provides improved performance than traditional cluster based MAC protocols.
Sefuba, Maria; Walingo, Tom; Takawira, Fambirai
2015-01-01
This paper presents an Energy Efficient Medium Access Control (MAC) protocol for clustered wireless sensor networks that aims to improve energy efficiency and delay performance. The proposed protocol employs an adaptive cross-layer intra-cluster scheduling and an inter-cluster relay selection diversity. The scheduling is based on available data packets and remaining energy level of the source node (SN). This helps to minimize idle listening on nodes without data to transmit as well as reducing control packet overhead. The relay selection diversity is carried out between clusters, by the cluster head (CH), and the base station (BS). The diversity helps to improve network reliability and prolong the network lifetime. Relay selection is determined based on the communication distance, the remaining energy and the channel quality indicator (CQI) for the relay cluster head (RCH). An analytical framework for energy consumption and transmission delay for the proposed MAC protocol is presented in this work. The performance of the proposed MAC protocol is evaluated based on transmission delay, energy consumption, and network lifetime. The results obtained indicate that the proposed MAC protocol provides improved performance than traditional cluster based MAC protocols. PMID:26393608
Engström, Rebecka Ericsdotter; Howells, Mark; Destouni, Georgia; ...
2017-05-01
Urban water and energy systems are crucial for sustainably meeting basic service demands in cities. Therefore, this paper proposes and applies a technology-independent “reference resource-to-service system” framework for concurrent evaluation of urban water and energy system interventions and their ‘nexus’ or ‘interlinkages’. In a concrete application, data that approximate New York City conditions are used to evaluate a limited set of interventions in the residential sector, spanning from low-flow toilet shifts to extensive green roof installations. Results indicate that interventions motivated primarily by water management goals can considerably reduce energy use and contribute to mitigation of greenhouse gas emissions. Similarly,more » energy efficiency interventions can considerably reduce water use in addition to lowering emissions. However, interventions yielding the greatest reductions in energy use and emissions are not necessarily the most water conserving ones, and vice versa. Useful further research, expanding the present analysis should consider a broader set of resource interactions, towards a full climate, land, energy and water (CLEW) nexus approach. Overall, assessing the impacts, trade-offs and co-benefits from interventions in one urban resource system on others also holds promise as support for increased resource efficiency through integrated decision making.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Engström, Rebecka Ericsdotter; Howells, Mark; Destouni, Georgia
Urban water and energy systems are crucial for sustainably meeting basic service demands in cities. Therefore, this paper proposes and applies a technology-independent “reference resource-to-service system” framework for concurrent evaluation of urban water and energy system interventions and their ‘nexus’ or ‘interlinkages’. In a concrete application, data that approximate New York City conditions are used to evaluate a limited set of interventions in the residential sector, spanning from low-flow toilet shifts to extensive green roof installations. Results indicate that interventions motivated primarily by water management goals can considerably reduce energy use and contribute to mitigation of greenhouse gas emissions. Similarly,more » energy efficiency interventions can considerably reduce water use in addition to lowering emissions. However, interventions yielding the greatest reductions in energy use and emissions are not necessarily the most water conserving ones, and vice versa. Useful further research, expanding the present analysis should consider a broader set of resource interactions, towards a full climate, land, energy and water (CLEW) nexus approach. Overall, assessing the impacts, trade-offs and co-benefits from interventions in one urban resource system on others also holds promise as support for increased resource efficiency through integrated decision making.« less
Methods for assessing the energy-saving efficiency of industrial symbiosis in industrial parks.
Li, Wenfeng; Cui, Zhaojie; Han, Feng
2015-01-01
The available energy resources are being depleted worldwide. Industrial symbiosis (IS) provides a promising approach for increasing the efficiency of energy utilization, with numerous studies reporting the superiority of this technology. However, studies quantifying the energy-saving efficiency of IS remain insufficient. This paper proposes an index system for the quantitative evaluation of the energy-saving efficiency of IS. Both energy-saving and financial indexes were selected, the former include the IS energy-saving index, the contribution rate of energy saved through IS, fractional energy savings, and cut rate of energy consumption per total output value; and the latter include the IS investment payback period, IS input-output ratio, net present value (NPV), and internal rate of return (IRR) of IS. The proposed methods were applied to a case study on the XF Industrial Park (XF IP), in the city of Liaocheng in Shandong Province of China. Three energy-saving channels using IS were found in the XF IP: (a) utilizing the energy of high-temperature materials among industrial processes, (b) recovering waste heat and steam between different processes, and (c) saving energy by sharing infrastructures. The results showed that the energy efficiency index of IS was 0.326, accounting for 34.6% of the comprehensive energy-saving index in 2011, and the fractional energy-savings were 12.42%. The index of energy consumption per total industrial output value varied from 90.9 tce/MRMB to 51.6 tce/MRMB. Thus, the cut rate of energy consumption per total industrial output value was 43.42%. The average values of the IS input-output ratio was 406.2 RMB/tce, 57.2% lower than the price of standard coal. Static investment payback period in the XF IP was 8.5 months, indicating that the XF IP began to earn profit 8.5 months after the construction of all IS modes. The NVP and IRR of each IS mode in the XF IP were greater than zero, with average values equal to 1,789.96 MRMB and 140.96%, respectively. The computation result for each indicator revealed that IS could lead to the use of energy with high efficiency and lighten the financial burden of enterprises in the XF IP. And the proposed index system may help IPs and EIPs to make strategic decisions when designing IS modes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fujita, K. Sydny
Consumers regularly forgo purchases of high efficiency appliances that appear to be cost effective at a reasonable rate of return. While some argue that this is a true revelation of preferences for appliance features, this 'efficiency gap' can be largely explained by a combination of market and behavioral failures that reduce consumers ability to evaluate the relative value of appliances and skew preferences toward initial cost savings, undervaluing future reductions in operating costs. These failures and barriers include externalities of energy use, imperfect competition between manufacturers, asymmetric information, bounded rationality, split incentives, and transaction costs (Golove 1996). Recognizing the socialmore » benefit of energy conservation, several major methods are used by policymakers to ensure that efficient appliances are purchased: minimum efficiency standards, Energy Star labeling, and rebates and tax credits. There is no single market for energy services; there are hundreds of uses, thousands of intermediaries, and millions of users, and likewise, no single appropriate government intervention (Golove 1996). Complementary approaches must be implemented, considering policy and institutional limitations. In this paper, I first lay out the rationale for government intervention by addressing the market and behavioral failures and barriers that arise in the context of residential energy efficiency. I then consider the ways in which some of these failures and barriers are addressed through major federal programs and state and utility level programs that leverage them, as well as identifying barriers that are not addressed by currently implemented programs. Heterogeneity of consumers, lack of financing options, and split incentives of landlords and tenants contribute significantly to the under-adoption of efficient appliances. To quantify the size of the market most affected by these barriers, I estimate the number of appliances, and in particular the number of outdated appliances, in California rental housing. Appliances in rental housing are on average older than those in owner occupied housing. More importantly, a substantial proportion of very old appliances are in rental housing. Having established that a very old stock of appliances exists in California rental housing, I discuss tariff financing as a policy option to reduce the impact of the remaining market and behavioral barriers. In a tariff financing program, the utility pays the initial cost of an appliance, and is repaid through subsequent utility bills. By eliminating upfront costs, tying repayment to the gas or electric meter, requiring a detailed energy audit, and relying upon utility bill payment history rather than credit score in determining participant eligibility, tariff financing largely overcomes many barriers to energy efficiency. Using California as a case study, I evaluate the feasibility of implementing tariff financing. For water heaters in particular, this appears to be a cost-effective strategy. Tariff financing from utilities is particularly valuable because it improves the ability of low-income renters to lower their utility bills, without burdening landlords with unrecoverable capital costs. To implement tariff financing country-wide, regulations in many states defining private loan-making institutions or the allowable use of public benefit funds may need to be modified. Tariff financing is relatively new and in most locations is only available as a pilot program or has only recently exited pilot phase. This preliminary evaluation suggests that tariff financing is a valuable future addition to the toolkit of policymakers who aim to increase the diffusion of efficient appliances. While regulatory approval is necessary in states that wish to pursue tariff financing, at this point, the major barrier to further implementation appears to be the newness of the financing mechanism.« less
A knee-mounted biomechanical energy harvester with enhanced efficiency and safety
NASA Astrophysics Data System (ADS)
Chen, Chao; Chau, Li Yin; Liao, Wei-Hsin
2017-06-01
Energy harvesting is becoming a major limiting issue for many portable devices. When undertaking any activity, the human body generates a significant amount of biomechanical energy, which can be collected by means of a portable energy harvester. This energy provides a method of powering portable devices such as prosthetic limbs. In this paper, a knee-mounted energy harvester with enhanced efficiency and safety is proposed and developed to convert mechanical energy into electricity during human motion. This device can change the bi-directional knee input into uni-directional rotation for an electromagnetic generator using a specially designed transmission system. Without the constraint of induced impact on the human body, this device can harvest biomechanical energy from both knee flexion and extension, improving the harvesting efficiency over previous single-direction energy harvesters. It can also provide protection from device malfunction, and increase the safety of current biomechanical energy harvesters. A highly compact and light prototype is developed taking into account human kinematics. The biomechanical energy harvesting system is also modeled and analyzed. The prototype is tested under different conditions including walking, running and climbing stairs, to evaluate the energy harvesting performance and effect on the human gait. The experimental results show that the prototype can harvest an average power of 3.6 W at 1.5 m s-1 walking speed, which is promising for portable electronic devices.
Efficiency optimization of wireless power transmission systems for active capsule endoscopes.
Zhiwei, Jia; Guozheng, Yan; Jiangpingping; Zhiwu, Wang; Hua, Liu
2011-10-01
Multipurpose active capsule endoscopes have drawn considerable attention in recent years, but these devices continue to suffer from energy limitations. A wireless power supply system is regarded as a practical way to overcome the power shortage problem in such devices. This paper focuses on the efficiency optimization of a wireless energy supply system with size and safety constraints. A mathematical programming model in which these constraints are considered is proposed for transmission efficiency, optimal frequency and current, and overall system effectiveness. To verify the feasibility of the proposed method, we use a wireless active capsule endoscope as an illustrative example. The achieved efficiency can be regarded as an index for evaluating the system, and the proposed approach can be used to direct the design of transmitting and receiving coils.
NASA Astrophysics Data System (ADS)
Kumar, Khushmeet; Prajapati, D. R.; Samir, Sushant
2018-02-01
Solar air heater uses the energy coming from the sun to heat the air. The conversion rate of solar energy to heat depends upon the efficiency of the solar air heater and this efficiency can be increased by the use of artificial roughness on the surface of absorber plate. Various studies were carried out to analyse the effect of different roughness geometries on heat transfer and friction factor characteristics. The thermo-hydraulic performance of solar air heater can be evaluated in terms of effective efficiency, thermo-hydraulic performance parameter and exergetic efficiency. In this study various geometries used for artificial roughness and to improve the performance of solar air heaters were studied. Also correlations developed by various researchers are presented in this paper.
An investigation on nuclear energy policy in Turkey and public perception
NASA Astrophysics Data System (ADS)
Coskun, Mehmet Burhanettin; Tanriover, Banu
2016-11-01
Turkey, which meets nearly 70 per cent of its energy demands with import, is facing the problems of energy security and current account deficit as a result of its dependence on foreign sources in terms of energy input. It is also known that Turkey is having environmental problems due to the increases in CO2 emission. Considering these problems in Turkish economy, where energy input is commonly used, it is necessary to use energy sources efficiently and provide alternative energy sources. Due to the dependency of renewable sources on meteorological conditions (the absence of enough sun, wind, and water sources), the energy generation could not be provided efficiently and permanently from these sources. At this point, nuclear energy as analternative energy source maintains its importance as a sustainable energy source that providing energy in 7 days and 24 hours. The main purpose of this study is to evaluate the nuclear energy subject within the context of negative public perceptions emerged after Chernobyl (1986) and Fukushima (2011) disasters and to investigate in the economic framework.
Thermochemical water decomposition. [hydrogen separation for energy applications
NASA Technical Reports Server (NTRS)
Funk, J. E.
1977-01-01
At present, nearly all of the hydrogen consumed in the world is produced by reacting hydrocarbons with water. As the supply of hydrocarbons diminishes, the problem of producing hydrogen from water alone will become increasingly important. Furthermore, producing hydrogen from water is a means of energy conversion by which thermal energy from a primary source, such as solar or nuclear fusion of fission, can be changed into an easily transportable and ecologically acceptable fuel. The attraction of thermochemical processes is that they offer the potential for converting thermal energy to hydrogen more efficiently than by water electrolysis. A thermochemical hydrogen-production process is one which requires only water as material input and mainly thermal energy, or heat, as an energy input. Attention is given to a definition of process thermal efficiency, the thermodynamics of the overall process, the single-stage process, the two-stage process, multistage processes, the work of separation and a process evaluation.
NASA Technical Reports Server (NTRS)
Burrus, D.; Sabla, P. E.; Bahr, D. W.
1980-01-01
The feasibility of meeting or closely approaching the emissions goals established for the Energy Efficient Engine (E3) Project with an advanced design, single annular combustor was determined. A total of nine sector combustor configurations and one full-annular-combustor configuration were evaluated. Acceptable levels of carbon monoxide and hydrocarbon emissions were obtained with several of the sector combustor configurations tested, and several of the configurations tested demonstrated reduced levels of nitrogen oxides compared to conventional, single annular designs. None of the configurations tested demonstrated nitrogen oxide emission levels that meet the goal of the E3 Project.
Facility Energy Performance Benchmarking in a Data-Scarce Environment
2017-08-01
environment, and analyze occupant-, system-, and component-level faults contributing to energy in- efficiency. A methodology for developing DoD-specific...Research, Development, Test, and Evaluation (RDTE) Program to develop an intelligent framework, encompassing methodology and model- ing, that...energy performers by installation, climate zone, and other criteria. A methodology for creating the DoD-specific EUIs would be an important part of a
Energy efficiency analysis of reactor for torrefaction of biomass with direct heating
NASA Astrophysics Data System (ADS)
Kuzmina, J. S.; Director, L. B.; Shevchenko, A. L.; Zaichenko, V. M.
2016-11-01
Paper presents energy analysis of reactor for torrefaction with direct heating of granulated biomass by exhaust gases. Various schemes of gas flow through the reactor zones are presented. Performed is a comparative evaluation of the specific energy consumption for the considered schemes. It has been shown that one of the most expensive processes of torrefaction technology is recycling of pyrolysis gases.
Willand, Nicola; Ridley, Ian; Maller, Cecily
2015-05-01
This paper is Part 1 of a realist review that tries to explain the impacts of residential energy efficiency interventions (REEIs) on householder health. According to recent systematic reviews residential energy efficiency interventions may benefit health. It is argued that home energy improvement are complex interventions and that a better understanding of the latent mechanisms and contextual issues that may shape the outcome of interventions is needed for effective intervention design. This realist review synthesises the results of 28 energy efficiency improvement programmes. This first part provides a review of the explanatory factors of the three key pathways, namely warmth in the home, affordability of fuel and psycho-social factors, and the pitfall of inadequate indoor air quality. The review revealed that REEIs improved winter warmth and lowered relative humidity with benefits for cardiovascular and respiratory health. In addition, residential energy efficiency improvements consolidated the meaning of the home as a safe haven, strengthened the householder's perceived autonomy and enhanced social status. Although satisfaction with the home proved to be an important explanation for positive mental health outcomes, financial considerations seemed to have played a secondary role. Evidence for negative impacts was rare but the risk should not be dismissed. Comprehensive refurbishments were not necessarily more effective than thermal retrofits or upgrades. A common protocol for the quantitative and qualitative evaluation of interventions would facilitate the synthesis of future studies. Householder and contextual influences are addressed in Part 2. Copyright © 2015 Elsevier Ltd. All rights reserved.
Evidence of progress. Measurement of impacts of Australia's S and L program from 1990-2010
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lowenthal-Savy; McNeil, Michael; Harrington, Lloyd
2013-10-15
Australia first put categorical energy efficiency labels on residential appliances in the mid-1980s, and the first Minimum Energy Performance Standards (MEPS) for refrigerators was implemented in 1999. Updated in 2005, these MEPS were aligned with US 2001 levels. Considered together, these actions set Australia apart as having one of the most aggressive appliance efficiency programs in the world. For these reasons, together with good data on product sales over time, Australia represents a potentially fruitful case study for understanding the dynamics energy efficiency standards and labeling (EES and L) programs impacts on appliance markets. This analysis attempts to distinguish betweenmore » the impacts of labeling alone as opposed to MEPS, and to probe the time-dependency of such impacts. Fortunately, in the Australian case, detailed market sales data and a comprehensive registration system provides a solid basis for the empirical evaluation of these questions. This paper analyzes Australian refrigerator efficiency data covering the years 1993-2009. Sales data was purchased from a commercial market research organization (in this case, the GfK Group) and includes sales and average price in each year for each appliance model – this can be used to understand broader trends by product class and star rating category, even where data is aggregated. Statistical regression analysis is used to model market introduction and adoption of high efficiency refrigerators according to logistic adoption model formalism, and parameterizes the way in which the Australian programs accelerated adoption of high-efficiency products and phased out others. Through this analysis, the paper presents a detailed, robust and quantitative picture of the impacts of EES and L in the Australian case, but also demonstrates a methodology of the evaluation of program impacts that could form the basis of an international evaluation framework for similar programs in other countries.« less
Evidence of Progress - Measurement of Impacts of Australia's S&L Program from 1990-2010
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lowenthal-Savy, Danielle; McNeil, Michael; Harrington, Lloyd
2013-09-11
Australia first put categorical energy efficiency labels on residential appliances in the mid-1980s, and the first Minimum Energy Performance Standards (MEPS) for refrigerators was implemented in 1999. Updated in 2005, these MEPS were aligned with US 2001 levels. Considered together, these actions set Australia apart as having one of the most aggressive appliance efficiency programs in the world. For these reasons, together with good data on product sales over time, Australia represents a potentially fruitful case study for understanding the dynamics energy efficiency standards and labeling (EES&L) programs impacts on appliance markets. This analysis attempts to distinguish between the impactsmore » of labeling alone as opposed to MEPS, and to probe the time-dependency of such impacts. Fortunately, in the Australian case, detailed market sales data and a comprehensive registration system provides a solid basis for the empirical evaluation of these questions. This paper analyzes Australian refrigerator efficiency data covering the years 1993-2009. Sales data was purchased from a commercial market research organization (in this case, the GfK Group) and includes sales and average price in each year for each appliance model; this can be used to understand broader trends by product class and star rating category, even where data is aggregated. Statistical regression analysis is used to model market introduction and adoption of high efficiency refrigerators according to logistic adoption model formalism, and parameterizes the way in which the Australian programs accelerated adoption of high-efficiency products and phased out others. Through this analysis, the paper presents a detailed, robust and quantitative picture of the impacts of EES&L in the Australian case, but also demonstrates a methodology of the evaluation of program impacts that could form the basis of an international evaluation framework for similar programs in other countries.« less
Energy efficient engine component development and integration program
NASA Technical Reports Server (NTRS)
1982-01-01
The objective of the Energy Efficient Engine Component Development and Integration program is to develop, evaluate, and demonstrate the technology for achieving lower installed fuel consumption and lower operating costs in future commercial turbofan engines. Minimum goals have been set for a 12 percent reduction in thrust specific fuel consumption (TSFC), 5 percent reduction in direct operating cost (DOC), and 50 percent reduction in performance degradation for the Energy Efficient Engine (flight propulsion system) relative to the JT9D-7A reference engine. The Energy Efficienct Engine features a twin spool, direct drive, mixed flow exhaust configuration, utilizing an integrated engine nacelle structure. A short, stiff, high rotor and a single stage high pressure turbine are among the major enhancements in providing for both performance retention and major reductions in maintenance and direct operating costs. Improved clearance control in the high pressure compressor and turbines, and advanced single crystal materials in turbine blades and vanes are among the major features providing performance improvement. Highlights of work accomplished and programs modifications and deletions are presented.
NASA Astrophysics Data System (ADS)
Mukherjee, Sumanta; Naik, Yeshwant
2018-04-01
Lithium-zirconium based oxides were prepared by combustion route. Thermal analysis (TG and DTA) was used to study the combustion process. The nucleation and growth stages were identified and their activation energies were predicted. The suitability of these oxide breeders was evaluated based on their radiation stability, variation in thermal behavior upon γ irradiation, neutron absorption and tritium breeding characteristics. Nuclear properties of these oxide ceramics were evaluated with a view to use them as efficient neutron absorbers and simultaneously breed tritium. Total neutron absorption cross sections were evaluated as a function of neutron energy in the range of 0 to 20 MeV. Resonant absorption is predicted for the neutron of energy 2.3 keV manly due to contribution from neutron induced nuclear reactions of 7Li in this energy range.
Energy Efficient Community Development in California: Chula Vista Research Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gas Technology Institute
2009-03-31
In 2007, the U.S. Department of Energy joined the California Energy Commission in funding a project to begin to examine the technical, economic and institutional (policy and regulatory) aspects of energy-efficient community development. That research project was known as the Chula Vista Research Project for the host California community that co-sponsored the initiative. The researches proved that the strategic integration of the selected and economically viable buildings energy efficiency (EE) measures, photovoltaics (PV), distributed generation (DG), and district cooling can produce significant reductions in aggregate energy consumption, peak demand and emissions, compared to the developer/builder's proposed baseline approach. However, themore » central power plant emission reductions achieved through use of the EE-DG option would increase local air emissions. The electric and natural gas utility infrastructure impacts associated with the use of the EE and EE-PV options were deemed relatively insignificant while use of the EE-DG option would result in a significant reduction of necessary electric distribution facilities to serve a large-scale development project. The results of the Chula Vista project are detailed in three separate documents: (1) Energy-Efficient Community Development in California; Chula Vista Research Project report contains a detailed description of the research effort and findings. This includes the methodologies, and tools used and the analysis of the efficiency, economic and emissions impacts of alternative energy technology and community design options for two development sites. Research topics covered included: (a) Energy supply, demand, and control technologies and related strategies for structures; (b) Application of locally available renewable energy resources including solar thermal and PV technology and on-site power generation with heat recovery; (c) Integration of local energy resources into district energy systems and existing energy utility networks; (d) Alternative land-use design and development options and their impact on energy efficiency and urban runoff, emissions and the heat island effect; and (e) Alternative transportation and mobility options and their impact on local emissions. (2) Creating Energy-Efficient Communities in California: A Reference Guide to Barriers, Solutions and Resources report provides the results of an effort to identify the most innovative existing and emerging public policy, incentive and market mechanisms that encourage investment in advanced energy technologies and enabling community design options in the State of California and the nation. The report evaluates each of these mechanisms in light of the preceding research and concludes with a set of recommended mechanisms designed for consideration by relevant California State agencies, development and finance industry associations, and municipal governments. (3) Creating Energy-Efficient Communities in California: A Technical Reference Guide to Building and Site Design report contains a set of selected commercially viable energy technology and community design options for high-efficiency, low-impact community development in California. It includes a summary of the research findings referenced above and recommendations for energy technology applications and energy-efficient development strategies for residential, commercial and institutional structures and supporting municipal infrastructure for planned communities. The document also identifies design options, technology applications and development strategies that are applicable to urban infill projects.« less
NASA Astrophysics Data System (ADS)
Xing, Rui; Hanaoka, Tatsuya; Kanamori, Yuko; Dai, Hancheng; Masui, Toshihiko
2015-06-01
Recently, energy use in the urban residential sector of China has drastically increased due to higher incomes and urbanization. The fossil fuels dominant energy supply has since worsened the air quality, especially in urban areas. In this study we estimate the future energy service demands in Chinese urban residential areas, and then use an AIM/Enduse model to evaluate the emission reduction potential of CO2, SO2, NOx and PM. Considering the climate diversity and its impact on household energy service demands, our analysis is down-scaled to the provincial-level. The results show that in most of the regions, penetration of efficient technologies will bring CO2 emission reductions of over 20% compared to the baseline by the year 2030. Deployment of energy efficient technologies also co-benefits GHG emission reduction. However, efficient technology selection appears to differ across provinces due to climatic variation and economic disparity. For instance, geothermal heating technology is effective for the cold Northern areas while biomass technology contributes to emission reduction the most in the warm Southern areas.
RTU Comparison Calculator Enhancement Plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, James D.; Wang, Weimin; Katipamula, Srinivas
Over the past two years, Department of Energy’s Building Technologies Office (BTO) has been investigating ways to increase the operating efficiency of the packaged rooftop units (RTUs) in the field. First, by issuing a challenge to the RTU manufactures to increase the integrated energy efficiency ratio (IEER) by 60% over the existing ASHRAE 90.1-2010 standard. Second, by evaluating the performance of an advanced RTU controller that reduces the energy consumption by over 40%. BTO has previously also funded development of a RTU comparison calculator (RTUCC). RTUCC is a web-based tool that provides the user a way to compare energy andmore » cost savings for two units with different efficiencies. However, the RTUCC currently cannot compare savings associated with either the RTU Challenge unit or the advanced RTU controls retrofit. Therefore, BTO has asked PNNL to enhance the tool so building owners can compare energy and savings associated with this new class of products. This document provides the details of the enhancements that are required to support estimating energy savings from use of RTU challenge units or advanced controls on existing RTUs.« less
Development of a low-pressure materials pre-treatment process for improved energy efficiency
NASA Astrophysics Data System (ADS)
Lee, Kwanghee; You, Byung Don
2017-09-01
Low pressure materials pre-treatment process has been developed as an alternative to the existing high-temperature sludge drying, limestone calcination, and limonite dehydroxylation. Using the thermodynamic equilibrium relationship between temperature and pressure represented by the Clausius-Clapeyron equation, the operational temperature of these reactions could be lowered at reduced pressure for increased energy efficiency. For industrial sludge drying, the evaporation rate was controlled by interfacial kinetics showing a constant rate with time and significant acceleration in the reaction could be observed with reduced pressure. At this modified reaction rate under low pressure, the rate was also partially controlled by mass transfer. Temperature of limestone calcination was lowered, but the reaction was limited at the calculated equilibrium temperature of the Clausius-Clapeyron equation and slightly higher temperatures were required. The energy consumption during limestone calcination and limonite dehydroxylation were evaluated, where lower processing pressures could enhance the energy efficiency for limestone calcination, but limonite dehydroxylation could not achieve energy-savings due to the greater power consumption of the vacuum pump under lower pressure and reduced temperatures.
NASA Astrophysics Data System (ADS)
Ratriyanto, A.; Indreswari, R.; Nuhriawangsa, A. M. P.; Purwanti, E.
2018-03-01
The study was conducted to evaluate the feed efficiency of quail diets containing different concentrations of metabolizable energy (ME) and crude protein (CP) with constant ratio and supplemented with methionine. Four hundred laying quails (Coturnix coturnix japonica) were randomly assigned to four experimental diets in a 2×2 factorial arrangement. Each dietary treatment used 5 replicates of 20 quails. Two basal diets were formulated to contain 2,800 kcal kg-1 ME and 18.7% CP (High ME-CP) and 2,600 kcal kg-1 ME and 17.3% CP (Low ME-CP). Each basal diet was supplemented with 0 and 0.12% methionine. The High ME-CP diets generated lower feed consumption but higher egg mass and feed efficiency (P<0.01) compared with the Low ME-CP. Furthermore, supplementation of methionine increased egg mass, feed efficiency, energy efficiency ratio and protein efficiency ratio (P<0.01). The High ME-CP supplemented with methionine resulted the highest feed efficiency followed by the Low ME-CP supplemented with methionine, while both High ME-CP and Low ME-CP without methionine supplementation resulted the lowest feed efficiency (P<0.05). In addition, ME and CP consumption of the birds were not influenced by the treatments. Thus, feeding High ME-CP supplemented with 0.12% methionine provided benefit to improve the feed efficiency in laying quails.
Farooq, Shazia; Chmeliov, Jevgenij; Trinkunas, Gediminas; Valkunas, Leonas; van Amerongen, Herbert
2016-04-07
We have compared picosecond fluorescence decay kinetics for stacked and unstacked photosystem II membranes in order to evaluate the efficiency of excitation energy transfer between the neighboring layers. The measured kinetics were analyzed in terms of a recently developed fluctuating antenna model that provides information about the dimensionality of the studied system. Independently of the stacking state, all preparations exhibited virtually the same value of the apparent dimensionality, d = 1.6. Thus, we conclude that membrane stacking does not affect the efficiency of the delivery of excitation energy toward the reaction centers but ensures a more compact organization of the thylakoid membranes within the chloroplast and separation of photosystems I and II.
NASA Technical Reports Server (NTRS)
Glaser, P. E.
1977-01-01
Microwave beaming of satellite-collected solar energy to earth for conversion to useful industrial power is evaluated for feasibility, with attention given to system efficiencies and costs, ecological impact, hardware to be employed, available options for energy conversion and transmission, and orbiting and assembly. Advantages of such a power generation and conversion system are listed, plausible techniques for conversion of solar energy (thermionic, thermal electric, photovoltaic) and transmission to earth (lasers, arrays of mirrors, microwave beams) are compared. Structural fatigue likely to result from brief daily eclipses, 55% system efficiency at the present state of the art, present projections of system costs, and projected economic implications of the technology are assessed. Two-stage orbiting and assembly plans are described.
Predicting Human Thermal Comfort in Automobiles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rugh, J.; Bharathan, D.; Chaney, L.
The objects of this report are to: (1) increase national energy security by reducing fuel use for vehicle climate control systems; (2) show/demonstrate technology that can reduce the fuel used by LD vehicles' ancillary systems; and (3) develop tools to evaluate the effectiveness of energy-efficient systems including--comfort, cost, practicality, ease-of-use, and reliability.
Evaluation of the "Lose Your Excuse" public service advertising campaign for tweens to save energy.
Bertrand, Jane T; Goldman, Patty; Zhivan, Natalia; Agyeman, Yaw; Barber, Erin
2011-10-01
This study evaluates the 2008-2009 "Lose your Excuse" public service advertising (PSA) campaign on energy efficiency targeting 8- to 12-year-olds, intended to increase knowledge, foster proactive attitudes, and change energy usage behaviors. Baseline and two follow-up surveys were conducted with online samples representative of the national population of households with kids with online access. Almost half (47%) of the tweens recognized at least one ad from the campaign. Ad recognition was positively associated with knowledge, proactive attitudes, and energy-saving behavior. Propensity score analysis confirmed a small but measurable and statistically significant effect on energy-saving behavior. The discussion section compares these results to public health campaigns in terms of ghost awareness, reach, and effect size.
Biomechanical evaluation of an innovative spring-loaded axillary crutch design.
Zhang, Yanxin; Liu, Guangyu; Xie, Shengquan; Liger, Aurélien
2011-01-01
We evaluated an innovative spring-loaded crutch design by comparing its performance with standard crutches through a biomechanical approach. Gait analysis was conducted for 7 male subjects under two conditions: walking with standard crutches and with spring-loaded crutches. Three-dimensional kinematic data and ground reaction force were recorded. Spatiotemporal variables, external mechanical work, and elastic energy (for spring crutches) were calculated based on recorded data. The trajectories of vertical ground reaction forces with standard crutches had two main peaks before and after mid-stance, and those with optimized spring-loaded crutches had only one main peak. The magnitude of external mechanical work was significantly higher with spring-loaded crutches than with standard crutches for all subjects, and the transferred elastic energy made an important contribution to the total external work for spring-loaded crutches. No significant differences in the spatiotemporal parameters were observed. Optimized spring-loaded crutches can efficiently propel crutch walkers and could reduce the total energy expenditure in crutch walking. Further research using optimized spring-loaded crutches with respect to energy efficiency is recommended.
NASA Technical Reports Server (NTRS)
Natesh, R.; Smith, J. M.; Qidwai, H. A.; Bruce, T.
1979-01-01
The evaluation and prediction of the conversion efficiency for a variety of silicon samples with differences in structural defects, such as grain boundaries, twin boundaries, precipitate particles, dislocations, etc. are discussed. Quantitative characterization of these structural defects, which were revealed by etching the surface of silicon samples, is performed by using an image analyzer. Due to different crystal growth and fabrication techniques the various types of silicon contain a variety of trace impurity elements and structural defects. The two most important criteria in evaluating the various silicon types for solar cell applications are cost and conversion efficiency.
Halsey, Kimberly H.; Milligan, Allen J.; Behrenfeld, Michael J.
2014-01-01
The efficiency with which absorbed light is converted to net growth is a key property for estimating global carbon production. We previously showed that, despite considerable evolutionary distance, Dunaliella tertiolecta (Chlorophyceae) and Thalassiosira weissflogii (Bacillariophyceae) share a common strategy of photosynthetic energy utilization and nearly identical light energy conversion efficiencies. These findings suggested that a single model might be appropriate for describing relationships between measures of phytoplankton production. This conclusion was further evaluated for Ostreococcus tauri RCC1558 and Micromonas pusilla RCC299 (Chlorophyta, Prasinophyceae), two picoeukaryotes with contrasting geographic distributions and swimming abilities. Nutrient-dependent photosynthetic efficiencies in O. tauri were similar to the previously studied larger algae. Specifically, absorption-normalized gross oxygen and carbon production and net carbon production were independent of nutrient limited growth rate. In contrast, all measures of photosynthetic efficiency were strongly dependent on nutrient availability in M. pusilla. This marked difference was accompanied by a diminished relationship between Chla:C and nutrient limited growth rate and a remarkably greater efficiency of gross-to-net energy conversion than the other organisms studied. These results suggest that the cost-benefit of decoupling pigment concentration from nutrient availability enables motile organisms to rapidly exploit more frequent encounters with micro-scale nutrient patches in open ocean environments. PMID:24957026
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kurnik, Charles W; Dimetrosky, Scott; Parkinson, Katie
Given new regulations, increased complexity in the market, and the general shift from CFLs to LEDs, this evaluation protocol was updated in 2017 to shift the focus of the protocols toward LEDs and away from CFLs and to resolve evaluation uncertainties affecting residential lighting incentive programs.
Evaluation of energy efficient design competition of a public office building in North Greece
NASA Astrophysics Data System (ADS)
Chatzimanoli, Asimina
Over the past few years in Greece there have been changes in the National Environmental and Energy Policy related to sustainability and energy conservation-saving, concerning the built environment as well. In this context, in 1999, the Hellenic Public Real Estate Corporation announced a Public Open Competition for the "Design and Construction" of a Police Station in the city of Kilkis, in North Greece. The energy efficiency and bioclimatic design was part of the General Design Principles of the brief. The following Report aims at evaluating the energy performance of the building and the comfort levels in the internal environment and determining the benefits of incorporating environmental design in a Public Office Building, in terms of savings in the energy consumption for heating. The Methodology included a description of the features of the design, analysis of the differences between the initial design and the constructed building, investigation of the operation of the constructed building (monitoring, questionnaire survey, energy consumption) and evaluation of the effect of the differences mentioned, using computer simulation (TAS software). Internal Temperatures fluctuated less than the external but for most of the monitoring period (end of mid-season-beginning of summer) Maximum Temperatures were higher than the external. The occupants gave positive comments and evaluated the general working conditions in the building as good, but the majority were not aware of the Passive Solar Systems installed in the building. The actual energy consumption for heating (150.85kWh/m2) is approximately 85% of the average consumption of Public Office Buildings in North Greece but 50% higher than that of recently built Public Office Buildings. However, the figure from the simulation analysis (corresponding to Office and Common spaces) is approximately 1/3 of the actual (55.14 kWh/m2), suggesting that proper operation of the building could result in significant reduction in energy required for heating.
Stone, John E; Hallock, Michael J; Phillips, James C; Peterson, Joseph R; Luthey-Schulten, Zaida; Schulten, Klaus
2016-05-01
Many of the continuing scientific advances achieved through computational biology are predicated on the availability of ongoing increases in computational power required for detailed simulation and analysis of cellular processes on biologically-relevant timescales. A critical challenge facing the development of future exascale supercomputer systems is the development of new computing hardware and associated scientific applications that dramatically improve upon the energy efficiency of existing solutions, while providing increased simulation, analysis, and visualization performance. Mobile computing platforms have recently become powerful enough to support interactive molecular visualization tasks that were previously only possible on laptops and workstations, creating future opportunities for their convenient use for meetings, remote collaboration, and as head mounted displays for immersive stereoscopic viewing. We describe early experiences adapting several biomolecular simulation and analysis applications for emerging heterogeneous computing platforms that combine power-efficient system-on-chip multi-core CPUs with high-performance massively parallel GPUs. We present low-cost power monitoring instrumentation that provides sufficient temporal resolution to evaluate the power consumption of individual CPU algorithms and GPU kernels. We compare the performance and energy efficiency of scientific applications running on emerging platforms with results obtained on traditional platforms, identify hardware and algorithmic performance bottlenecks that affect the usability of these platforms, and describe avenues for improving both the hardware and applications in pursuit of the needs of molecular modeling tasks on mobile devices and future exascale computers.
Home energy efficiency and radon related risk of lung cancer: modelling study
Milner, James; Shrubsole, Clive; Das, Payel; Jones, Benjamin; Ridley, Ian; Chalabi, Zaid; Hamilton, Ian; Armstrong, Ben; Davies, Michael
2014-01-01
Objective To investigate the effect of reducing home ventilation as part of household energy efficiency measures on deaths from radon related lung cancer. Design Modelling study. Setting England. Intervention Home energy efficiency interventions, motivated in part by targets for reducing greenhouse gases, which entail reduction in uncontrolled ventilation in keeping with good practice guidance. Main outcome measures Modelled current and future distributions of indoor radon levels for the English housing stock and associated changes in life years due to lung cancer mortality, estimated using life tables. Results Increasing the air tightness of dwellings (without compensatory purpose-provided ventilation) increased mean indoor radon concentrations by an estimated 56.6%, from 21.2 becquerels per cubic metre (Bq/m3) to 33.2 Bq/m3. After the lag in lung cancer onset, this would result in an additional annual burden of 4700 life years lost and (at peak) 278 deaths. The increases in radon levels for the millions of homes that would contribute most of the additional burden are below the threshold at which radon remediation measures are cost effective. Fitting extraction fans and trickle ventilators to restore ventilation will help offset the additional burden but only if the ventilation related energy efficiency gains are lost. Mechanical ventilation systems with heat recovery may lower radon levels and the risk of cancer while maintaining the advantage of energy efficiency for the most airtight dwellings but there is potential for a major adverse impact on health if such systems fail. Conclusion Unless specific remediation is used, reducing the ventilation of dwellings will improve energy efficiency only at the expense of population wide adverse impact on indoor exposure to radon and risk of lung cancer. The implications of this and other consequences of changes to ventilation need to be carefully evaluated to ensure that the desirable health and environmental benefits of home energy efficiency are not compromised by avoidable negative impacts on indoor air quality. PMID:24415631
Compact representation of continuous energy surfaces for more efficient protein design
Hallen, Mark A.; Gainza, Pablo; Donald, Bruce R.
2015-01-01
In macromolecular design, conformational energies are sensitive to small changes in atom coordinates, so modeling the small, continuous motions of atoms around low-energy wells confers a substantial advantage in structural accuracy; however, modeling these motions comes at the cost of a very large number of energy function calls, which form the bottleneck in the design calculation. In this work, we remove this bottleneck by consolidating all conformational energy evaluations into the precomputation of a local polynomial expansion of the energy about the “ideal” conformation for each low-energy, “rotameric” state of each residue pair. This expansion is called Energy as Polynomials in Internal Coordinates (EPIC), where the internal coordinates can be sidechain dihedrals, backrub angles, and/or any other continuous degrees of freedom of a macromolecule, and any energy function can be used without adding any asymptotic complexity to the design. We demonstrate that EPIC efficiently represents the energy surface for both molecular-mechanics and quantum-mechanical energy functions, and apply it specifically to protein design to model both sidechain and backbone degrees of freedom. PMID:26089744
Comparison of holographic lens and filter systems for lateral spectrum splitting
NASA Astrophysics Data System (ADS)
Vorndran, Shelby; Chrysler, Benjamin; Kostuk, Raymond K.
2016-09-01
Spectrum splitting is an approach to increasing the conversion efficiency of a photovoltaic (PV) system. Several methods can be used to perform this function which requires efficient spatial separation of different spectral bands of the incident solar radiation. In this paper several of holographic methods for implementing spectrum splitting are reviewed along with the benefits and disadvantages associated with each approach. The review indicates that a volume holographic lens has many advantages for spectrum splitting in terms of both power conversion efficiency and energy yield. A specific design for a volume holographic spectrum splitting lens is discussed for use with high bandgap InGaP and low bandgap silicon PV cells. The holographic lenses are modeled using rigorous coupled wave analysis, and the optical efficiency is evaluated using non-sequential raytracing. A proof-of-concept off-axis holographic lens is also recorded in dichromated gelatin film and the spectral diffraction efficiency of the hologram is measured with multiple laser sources across the diffracted spectral band. The experimental volume holographic lens (VHL) characteristics are compared to an ideal spectrum splitting filter in terms of power conversion efficiency and energy yield in environments with high direct normal incidence (DNI) illumination and high levels of diffuse illumination. The results show that the experimental VHL can achieve 62.5% of the ideal filter power conversion efficiency, 64.8% of the ideal filter DNI environment energy yield, and 57.7% of the ideal diffuse environment energy yield performance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Dinesh; Thapliyal, Himanshu; Mohammad, Azhar
Differential Power Analysis (DPA) attack is considered to be a main threat while designing cryptographic processors. In cryptographic algorithms like DES and AES, S-Box is used to indeterminate the relationship between the keys and the cipher texts. However, S-box is prone to DPA attack due to its high power consumption. In this paper, we are implementing an energy-efficient 8-bit S-Box circuit using our proposed Symmetric Pass Gate Adiabatic Logic (SPGAL). SPGAL is energy-efficient as compared to the existing DPAresistant adiabatic and non-adiabatic logic families. SPGAL is energy-efficient due to reduction of non-adiabatic loss during the evaluate phase of the outputs.more » Further, the S-Box circuit implemented using SPGAL is resistant to DPA attacks. The results are verified through SPICE simulations in 180nm technology. SPICE simulations show that the SPGAL based S-Box circuit saves upto 92% and 67% of energy as compared to the conventional CMOS and Secured Quasi-Adiabatic Logic (SQAL) based S-Box circuit. From the simulation results, it is evident that the SPGAL based circuits are energy-efficient as compared to the existing DPAresistant adiabatic and non-adiabatic logic families. In nutshell, SPGAL based gates can be used to build secure hardware for lowpower portable electronic devices and Internet-of-Things (IoT) based electronic devices.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kurnik, Charles W; Benton, Nathanael; Burns, Patrick
Compressed-air systems are used widely throughout industry for many operations, including pneumatic tools, packaging and automation equipment, conveyors, and other industrial process operations. Compressed-air systems are defined as a group of subsystems composed of air compressors, air treatment equipment, controls, piping, pneumatic tools, pneumatically powered machinery, and process applications using compressed air. A compressed-air system has three primary functional subsystems: supply, distribution, and demand. Air compressors are the primary energy consumers in a compressed-air system and are the primary focus of this protocol. The two compressed-air energy efficiency measures specifically addressed in this protocol are: High-efficiency/variable speed drive (VSD) compressormore » replacing modulating, load/unload, or constant-speed compressor; and Compressed-air leak survey and repairs. This protocol provides direction on how to reliably verify savings from these two measures using a consistent approach for each.« less
Bergeest, Jan-Philip; Rohr, Karl
2012-10-01
In high-throughput applications, accurate and efficient segmentation of cells in fluorescence microscopy images is of central importance for the quantification of protein expression and the understanding of cell function. We propose an approach for segmenting cell nuclei which is based on active contours using level sets and convex energy functionals. Compared to previous work, our approach determines the global solution. Thus, the approach does not suffer from local minima and the segmentation result does not depend on the initialization. We consider three different well-known energy functionals for active contour-based segmentation and introduce convex formulations of these functionals. We also suggest a numeric approach for efficiently computing the solution. The performance of our approach has been evaluated using fluorescence microscopy images from different experiments comprising different cell types. We have also performed a quantitative comparison with previous segmentation approaches. Copyright © 2012 Elsevier B.V. All rights reserved.
Energy efficient engine sector combustor rig test program
NASA Technical Reports Server (NTRS)
Dubiel, D. J.; Greene, W.; Sundt, C. V.; Tanrikut, S.; Zeisser, M. H.
1981-01-01
Under the NASA-sponsored Energy Efficient Engine program, Pratt & Whitney Aircraft has successfully completed a comprehensive combustor rig test using a 90-degree sector of an advanced two-stage combustor with a segmented liner. Initial testing utilized a combustor with a conventional louvered liner and demonstrated that the Energy Efficient Engine two-stage combustor configuration is a viable system for controlling exhaust emissions, with the capability to meet all aerothermal performance goals. Goals for both carbon monoxide and unburned hydrocarbons were surpassed and the goal for oxides of nitrogen was closely approached. In another series of tests, an advanced segmented liner configuration with a unique counter-parallel FINWALL cooling system was evaluated at engine sea level takeoff pressure and temperature levels. These tests verified the structural integrity of this liner design. Overall, the results from the program have provided a high level of confidence to proceed with the scheduled Combustor Component Rig Test Program.
Status and prospect of NDT technology for nuclear energy industry in Korea
NASA Astrophysics Data System (ADS)
Lee, Joon Hyun
2016-02-01
Innovative energy technology is considered to be one of the key solutions for meeting the challenges of climate change and energy security, which is why global leaders are focusing on enhancing energy technology R&D. In accordance with the global movements to accelerate energy R&D, the Korean government has made significant investments in a broad spectrum of energy R&D programs, including energy efficiency, resources, CCS, new and renewable energy, power generation and electricity delivery, nuclear power and nuclear waste management. In order to manage government sponsored energy R&D programs in an efficient and effective way, the government established the Korea Institute of Energy technology Evaluation and Planning (KETEP) in 2009. Main activities of KETEP include developing energy technology roadmaps, planning, evaluating, and managing R&D programs, fostering experts in the field of energy, promoting international cooperation programs, gathering and analyzing energy statistics, and supporting infrastructure and commercialization. KETEP assists the Ministry of Trade, Industry and Energy in developing national R&D strategies while also working with researchers, universities, national institutes and the private sector for their successful energy technology and deployment. This presentation consists of three parts. First, I will introduce the characteristics of energy trends and mix in Korea. Then, I'll speak about the related national R&D strategies of energy technology. Finally, I'll finish up with the status and prospect of NDT technology for nuclear energy industry in Korea. The development of the on-line structural integrity monitoring systems and the related techniques in Korean nuclear power plant for the purpose of condition based maintenance is introduced. The needs of NDT techniques for inspection and condition monitoring for GEN IV including SFR, small module reactor etc., are also discussed.
Protein–protein docking by fast generalized Fourier transforms on 5D rotational manifolds
Padhorny, Dzmitry; Kazennov, Andrey; Zerbe, Brandon S.; Porter, Kathryn A.; Xia, Bing; Mottarella, Scott E.; Kholodov, Yaroslav; Ritchie, David W.; Vajda, Sandor; Kozakov, Dima
2016-01-01
Energy evaluation using fast Fourier transforms (FFTs) enables sampling billions of putative complex structures and hence revolutionized rigid protein–protein docking. However, in current methods, efficient acceleration is achieved only in either the translational or the rotational subspace. Developing an efficient and accurate docking method that expands FFT-based sampling to five rotational coordinates is an extensively studied but still unsolved problem. The algorithm presented here retains the accuracy of earlier methods but yields at least 10-fold speedup. The improvement is due to two innovations. First, the search space is treated as the product manifold SO(3)×(SO(3)∖S1), where SO(3) is the rotation group representing the space of the rotating ligand, and (SO(3)∖S1) is the space spanned by the two Euler angles that define the orientation of the vector from the center of the fixed receptor toward the center of the ligand. This representation enables the use of efficient FFT methods developed for SO(3). Second, we select the centers of highly populated clusters of docked structures, rather than the lowest energy conformations, as predictions of the complex, and hence there is no need for very high accuracy in energy evaluation. Therefore, it is sufficient to use a limited number of spherical basis functions in the Fourier space, which increases the efficiency of sampling while retaining the accuracy of docking results. A major advantage of the method is that, in contrast to classical approaches, increasing the number of correlation function terms is computationally inexpensive, which enables using complex energy functions for scoring. PMID:27412858
A System of Systems Approach to the EU Energy System
NASA Astrophysics Data System (ADS)
Jess, Tom; Madani, Kaveh; Mahlooji, Maral; Ristic, Bora
2016-04-01
Around the world, measures to prevent dangerous climate change are being adopted and may change energy systems fundamentally. The European Union (EU) is committed to reducing greenhouse gas emission by 20% by 2020 and by 80-95% by 2050. In order to achieve this, EU member states aim to increase the share of renewables in the energy mix to 20% by 2020. This commitment comes as part of a series of other aims, principles, and policies to reform the EU's energy system. Cost-efficiency in the emissions reductions measures as well as strategic goals under the Resource Efficient Europe flagship initiative which would include a more prudent approach to other natural resources such as water and land. Using the "System of Systems Approach", as from Hadian and Madani (2015), energy sources' Relative Aggregate Footprints (RAF) in the EU are evaluated. RAF aggregates across four criteria: carbon footprint, water footprint, land footprint, and economic cost. The four criteria are weighted by resource availability across the EU and for each Member State. This provides an evaluation of the overall resource use efficiency of the EU's energy portfolio and gives insight into the differences in the desirability of energy sources across Member States. Broadly, nuclear, onshore wind, and geothermal are most desirable under equal criteria weights and EU average weighting introduces only small changes in the relative performance of only few technologies. The member state specific weightings show that most countries have similar energy technology preferences. However, the UK deviates most strongly from the average, with an even stronger preference for nuclear and coal. Sweden, Malta and Finland also deviate from the typical preferences indicating the complexity in play in reforming the EU energy system. Reference Hadian S, Madani K (2015) A System of Systems Approach to Energy Sustainability Assessment: Are All Renewables Really Green? Ecological Indicators, 52, 194-206.
Advanced Energy Retrofit Guide: Practical Ways to Improve Energy Performance, K-12 Schools (Book)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The U.S. Department of Energy developed the Advanced Energy Retrofit Guides (AERGs) to provide specific methodologies, information, and guidance to help energy managers and other stakeholders plan and execute energy efficiency improvements. Detailed technical discussion is fairly limited. Instead, we emphasize actionable information, practical methodologies, diverse case studies, and unbiased evaluations of the most promising retrofit energy efficiency measures for each building type. A series of AERGs is under development, addressing key segments of the commercial building stock. K-12 schools were selected as one of the highest priority building sectors, because schools affect the lives of most Americans. They alsomore » represent approximately 8% of the energy use and 10% of the floor area in commercial buildings nationwide. U.S. K-12 school districts spend more than $8 billion each year on energy - more than they spend on computers and textbooks combined. Most occupy older buildings that often have poor operational performance - more than 30% of schools were built before 1960. The average age of a school is about 42 years - which is nearly the expected serviceable lifespan of the building. K-12 schools offer unique opportunities for deep, cost-effective energy efficiency improvements, and this guide provides convenient and practical guidance for exploiting these opportunities in the context of public, private, and parochial schools.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yazdani, Ramin, E-mail: ryazdani@sbcglobal.net; Civil and Environmental Engineering, University of California, One Shields Avenue, Ghausi Hall, Davis, CA 95616; Barlaz, Morton A., E-mail: barlaz@eos.ncsu.edu
2012-05-15
Highlights: Black-Right-Pointing-Pointer Biochemical methane potential decreased by 83% during the two-stage operation. Black-Right-Pointing-Pointer Net energy produced was 84.3 MWh or 46 kWh per million metric tons (Mg). Black-Right-Pointing-Pointer The average removal efficiency of volatile organic compounds (VOCs) was 96-99%. Black-Right-Pointing-Pointer The average removal efficiency of non-methane organic compounds (NMOCs) was 68-99%. Black-Right-Pointing-Pointer The two-stage batch digester proved to be simple to operate and cost-effective. - Abstract: The objective of this study was to evaluate a new alternative for yard waste management by constructing, operating and monitoring a landfill-based two-stage batch digester (anaerobic/aerobic) with the recovery of energy and compost. Themore » system was initially operated under anaerobic conditions for 366 days, after which the yard waste was aerated for an additional 191 days. Off gas generated from the aerobic stage was treated by biofilters. Net energy recovery was 84.3 MWh, or 46 kWh per million metric tons of wet waste (as received), and the biochemical methane potential of the treated waste decreased by 83% during the two-stage operation. The average removal efficiencies of volatile organic compounds and non-methane organic compounds in the biofilters were 96-99% and 68-99%, respectively.« less
SEEA SOUTHEAST CONSORTIUM FINAL TECHNICAL REPORT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Block, Timothy; Ball, Kia; Fournier, Ashley
In 2010 the Southeast Energy Efficiency Alliance (SEEA) received a $20 million Energy Efficiency and Conservation Block Grant (EECBG) under the U.S. Department of Energy’s Better Building Neighborhood Program (BBNP). This grant, funded by the American Recovery and Reinvestment Act, also included sub-grantees in 13 communities across the Southeast, known as the Southeast Consortium. The objective of this project was to establish a framework for energy efficiency retrofit programs to create models for replication across the Southeast and beyond. To achieve this goal, SEEA and its project partners focused on establishing infrastructure to develop and sustain the energy efficiency marketmore » in specific localities across the southeast. Activities included implementing minimum training standards and credentials for marketplace suppliers, educating and engaging homeowners on the benefits of energy efficiency through strategic marketing and outreach and addressing real or perceived financial barriers to investments in whole-home energy efficiency through a variety of financing mechanisms. The anticipated outcome of these activities would be best practice models for program design, marketing, financing, data collection and evaluation as well as increased market demand for energy efficiency retrofits and products. The Southeast Consortium’s programmatic impacts along with the impacts of the other BBNP grantees would further the progress towards the overall goal of energy efficiency market transformation. As the primary grantee SEEA served as the overall program administrator and provided common resources to the 13 Southeast Consortium sub-grantees including contracted services for contractor training, quality assurance testing, data collection, reporting and compliance. Sub-grantee programs were located in cities across eight states including Alabama, Florida, Georgia, Louisiana, North Carolina, South Carolina, Tennessee, Virginia and the U.S. Virgin Islands. Each sub-grantee program was designed to address the unique local conditions and population of its community. There was great diversity in programs design, types of financing and incentives, building stock characteristics, climate and partnerships. From 2010 through 2013, SEEA and its sub-grantee programs focused on determining best practices in program administration, workforce development, marketing and consumer education, financing, and utility partnerships. One of the common themes among programs that were most successful in each of these areas was strong partnerships and collaborations with people or organizations in the community. In many instances engaged partners proved to be the key to addressing barriers such as access to financing, workforce development opportunities and access to utility bill data. The most challenging barrier proved to be the act of building a market for energy efficiency where none previously existed. With limited time and resources, educating homeowners of the value in investing in energy efficiency while engaging electric and gas utilities served as a significant barrier for several programs. While there is still much work to be done to continue to transform the energy efficiency market in the Southeast, the programmatic activities led by SEEA and its sub-grantees resulted in 8,180 energy audits and 5,155 energy efficiency retrofits across the Southeast. In total the Southeast Consortium saved an estimated 27,915,655.93 kWh and generated an estimated $ 2,291,965.90 in annual energy cost savings in the region.« less
DEEP: Database of Energy Efficiency Performance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hong, Tianzhen; Piette, Mary; Lee, Sang Hoon
A database of energy efficiency performance (DEEP) is a presimulated database to enable quick and accurate assessment of energy retrofit of commercial buildings. DEEP was compiled from results of about 10 million EnergyPlus simulations. DEEP provides energy savings for screening and evaluation of retrofit measures targeting the small and medium-sized office and retail buildings in California. The prototype building models are developed for a comprehensive assessment of building energy performance based on DOE commercial reference buildings and the California DEER [sic] prototype buildings. The prototype buildings represent seven building types across six vintages of constructions and 16 California climate zones.more » DEEP uses these prototypes to evaluate energy performance of about 100 energy conservation measures covering envelope, lighting, heating, ventilation, air conditioning, plug loads, and domestic hot war. DEEP consists the energy simulation results for individual retrofit measures as well as packages of measures to consider interactive effects between multiple measures. The large scale EnergyPlus simulations are being conducted on the super computers at the National Energy Research Scientific Computing Center (NERSC) of Lawrence Berkeley National Laboratory. The pre-simulation database is a part of the CEC PIER project to develop a web-based retrofit toolkit for small and medium-sized commercial buildings in California, which provides real-time energy retrofit feedback by querying DEEP with recommended measures, estimated energy savings and financial payback period based on users' decision criteria of maximizing energy savings, energy cost savings, carbon reduction, or payback of investment. The pre-simulated database and associated comprehensive measure analysis enhances the ability to performance assessments of retrofits to reduce energy use for small and medium buildings and business owners who typically do not have resources to conduct costly building energy audit.« less
Thermoelectrics as elements of hybrid-electric vehicle thermal energy systems
NASA Astrophysics Data System (ADS)
Headings, Leon; Washington, Gregory; Jaworski, Christopher M.
2008-03-01
Despite vast technological improvements, the traditional internal combustion powered vehicle still achieves only 25- 30% efficiency, with the remainder lost primarily as heat. While the load leveling offered by hybrid-electric vehicle technology helps to improve this overall efficiency, part of the efficiency gains are achieved by making new systems such as regenerative braking viable. In a similar fashion, thermoelectric (TE) energy recovery has long been considered for traditional vehicles with mixed results, but little has been done to consider thermoelectrics in the framework of the unique energy systems of hybrid vehicles. Systems that may not have been viable or even possible with traditional vehicles may offer improvements to system efficiency as well as emissions, vehicle durability, passenger comfort, and cost. This research describes a simulation developed for evaluating and optimizing thermoelectric energy recovery systems and results for four different system configurations. Two novel system configurations are presented which offer the potential for additional benefits such as emissions reduction that will soon be quantified. In addition, a test setup is presented which was constructed for the testing and validation of various thermoelectric recovery systems. Actual test performance was near the expected theoretical performance and supported the conclusions reached from the computer simulations.
The effect of life-cycle cost disclosure on consumer behavior
NASA Astrophysics Data System (ADS)
Deutsch, Matthias
For more than 20 years, analysts have reported on the so-called "energy paradox" or the "energy efficiency gap", referring to the fact that economic agents could in principle lower their total cost at current prices by using more energy-efficient technology but, nevertheless, often decide not to do so. Theory suggests that providing information in a simplified way could potentially reduce this "efficiency gap". Such simplification may be achieved by providing the estimated monetary operating cost and life-cycle cost (LCC) of a given appliance---which has been a recurring theme within the energy policy and efficiency labeling community. Yet, little is known so far about the causal effects of LCC disclosure on consumer action because of the gap between the acquisition of efficiency information and consumer purchasing behavior in the real marketplace. This dissertation bridges the gap by experimentally integrating LCC disclosure into two major German commercial websites---a price comparison engine for cooling appliances, and an online shop for washing machines. Internet users arriving on these websites were randomly assigned to two experimental groups, and the groups were exposed to different visual stimuli. The control group received regular product price information, whereas the treatment group was, in addition, offered information about operating cost and total LCC. Click-stream data of consumers' shopping behavior was evaluated with multiple regression analysis by controlling for several product characteristics. This dissertation finds that LCC disclosure reduces the mean energy use of chosen cooling appliances by 2.5% (p<0.01), and the energy use of chosen washing machines by 0.8% (p<0.001). For the latter, it also reduces the mean water use by 0.7% (p<0.05). These effects suggest a potential role for public policy in promoting LCC disclosure. While I do not attempt to estimate the costs of such a policy, a simple quantification shows that the benefits amount to 100 to 200 thousand Euros per year for Germany, given current predictions regarding the price of tradable permits for CO2, and not counting other potential benefits. Future research should strive for increasing external validity, using better instruments, and evaluating the effectiveness of different information formats for LCC disclosure.
Zhou, Xiaoqin; Zhao, Junyuan; Li, Zifu; Song, Jianing; Li, Xueying; Yang, Xin; Wang, Dongling
2016-03-01
Since fecal coliforms was introduced as a standard indicator of pollutants in effluents of municipal wastewater treatment plants in China in 2003, chlorine had been widely used in many wastewater treatment plants. However, concerns about the disinfection by-products (DBPs) of chlorine have been increasing. One of the effective way to reduce the production of DBPs is to reduce the effective chlorine dosage by improving the utilization rate of disinfectant. Ultrasound (US) is proved to be effective in wastewater treatment for its multiple chemical and physical effects produced by cavitation, which could favor the disinfection process accordingly. For the purpose of improving disinfection efficiency with the help of US, following points are addressed in the current study: (1) investigate the enhancement effects of US on the disinfection efficiency of sodium hypochlorite (NaClO) for real secondary effluents of municipal wastewater treatment plants; (2) evaluate the possibility of using US specific energy consumption (kJ/L) as an parameter for disinfection efficiency evaluation; and (3) quantify the reduction in chlorine-DBPs through US application. Results demonstrated that sonication could reduce two-thirds (US pretreatment) or one-third (simultaneous US and NaClO disinfection) of the required concentrations of NaClO (available chlorine) for 4 log reduction of fecal coliforms, which could meet the Class 1A (fecal coliforms less than 1000 CFU/L) discharge standard of China. In addition, US pretreatment with NaClO disinfection performed better enhancement in disinfection efficiency compared with simultaneous US and NaClO disinfection. Furthermore, analysis on DBPs showed that US application as pretreatment could obviously reduce the contents of trichloromethane (TCM) and trichloroacetic acid (TCAA) by more than 85% and 50%, respectively, compared with NaClO disinfection alone for the same disinfection efficiency. Meanwhile, the experimental results also showed that the disinfection efficiency and DBPs concentration were only slightly affected under a constant US specific energy consumption, although input power density and irradiation time changed, indicating that specific energy consumption (kJ/L) could be considered as a better control parameter for disinfection efficiency evaluation. Copyright © 2015 Elsevier B.V. All rights reserved.
Advanced Energy Retrofit Guide: Practical Ways to Improve Energy Performance, K-12 Schools (Book)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The U.S. Department of Energy developed the K-12 Advanced Energy Retrofit Guide to provide specific methodologies, information, and guidance to help energy managers and other stakeholders plan and execute energy efficiency improvements. We emphasize actionable information, practical methodologies, diverse case studies, and unbiased evaluation of the most promising retrofit measure for each building type. K-12 schools were selected as one of the highest priority building sectors, because schools affect the lives of most Americans. They also represent approximately 8% of the energy use and 10% of the floor area in commercial buildings.
Dispenza, Jason
2017-12-27
A home energy assessment, also known as a home energy audit, is the first step to assess how much energy your home consumes and to evaluate what measures you can take to make your home more energy efficient. An assessment will show you problems that may, when corrected, save you significant amounts of money over time. This video shows some of the ways that a contractor may test your home during an assessment, and helps you understand how an assessment can help you move toward energy savings. Find out more at: http://www.energysavers.gov/your_home/energy_audits/index.cfm/mytopic=11160
Evaluating UV-C LED disinfection performance and investigating potential dual-wavelength synergy.
Beck, Sara E; Ryu, Hodon; Boczek, Laura A; Cashdollar, Jennifer L; Jeanis, Kaitlyn M; Rosenblum, James S; Lawal, Oliver R; Linden, Karl G
2017-02-01
A dual-wavelength UV-C LED unit, emitting at peaks of 260 nm, 280 nm, and the combination of 260|280 nm together was evaluated for its inactivation efficacy and energy efficiency at disinfecting Escherichia coli, MS2 coliphage, human adenovirus type 2 (HAdV2), and Bacillus pumilus spores, compared to conventional low-pressure and medium-pressure UV mercury vapor lamps. The dual-wavelength unit was also used to measure potential synergistic effects of multiple wavelengths on bacterial and viral inactivation and DNA and RNA damage. All five UV sources demonstrated similar inactivation of E. coli. For MS2, the 260 nm LED was most effective. For HAdV2 and B. pumilus, the MP UV lamp was most effective. When measuring electrical energy per order of reduction, the LP UV lamp was most efficient for inactivating E. coli and MS2; the LP UV and MP UV mercury lamps were equally efficient for HAdV2 and B. pumilus spores. Among the UV-C LEDs, there was no statistical difference in electrical efficiency for inactivating MS2, HAdV2, and B. pumilus spores. The 260 nm and 260|280 nm LEDs had a statistical energy advantage for E. coli inactivation. For UV-C LEDs to match the electrical efficiency per order of log reduction of conventional LP UV sources, they must reach efficiencies of 25-39% or be improved on by smart reactor design. No dual wavelength synergies were detected for bacterial and viral inactivation nor for DNA and RNA damage. Copyright © 2016 Elsevier Ltd. All rights reserved.
Efficient calculation of the polarizability: a simplified effective-energy technique
NASA Astrophysics Data System (ADS)
Berger, J. A.; Reining, L.; Sottile, F.
2012-09-01
In a recent publication [J.A. Berger, L. Reining, F. Sottile, Phys. Rev. B 82, 041103(R) (2010)] we introduced the effective-energy technique to calculate in an accurate and numerically efficient manner the GW self-energy as well as the polarizability, which is required to evaluate the screened Coulomb interaction W. In this work we show that the effective-energy technique can be used to further simplify the expression for the polarizability without a significant loss of accuracy. In contrast to standard sum-over-state methods where huge summations over empty states are required, our approach only requires summations over occupied states. The three simplest approximations we obtain for the polarizability are explicit functionals of an independent- or quasi-particle one-body reduced density matrix. We provide evidence of the numerical accuracy of this simplified effective-energy technique as well as an analysis of our method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heo, Yeonsook; Augenbroe, Godfried; Graziano, Diane
2015-05-01
The increasing interest in retrofitting of existing buildings is motivated by the need to make a major contribution to enhancing building energy efficiency and reducing energy consumption and CO2 emission by the built environment. This paper examines the relevance of calibration in model-based analysis to support decision-making for energy and carbon efficiency retrofits of individual buildings and portfolios of buildings. The authors formulate a set of real retrofit decision-making situations and evaluate the role of calibration by using a case study that compares predictions and decisions from an uncalibrated model with those of a calibrated model. The case study illustratesmore » both the mechanics and outcomes of a practical alternative to the expert- and time-intense application of dynamic energy simulation models for large-scale retrofit decision-making under uncertainty.« less
Techno-Economic Analysis of Indian Draft Standard Levels for RoomAir Conditioners
DOE Office of Scientific and Technical Information (OSTI.GOV)
McNeil, Michael A.; Iyer, Maithili
The Indian Bureau of Energy Efficiency (BEE) finalized its first set of efficiency standards and labels for room air conditioners in July of 2006. These regulations followed soon after the publication of levels for frost-free refrigerators in the same year. As in the case of refrigerators, the air conditioner program introduces Minimum Efficiency Performance Standards (MEPS) and comparative labels simultaneously, with levels for one to five stars. Also like the refrigerator program, BEE defined several successive program phases of increasing stringency. In support of BEE's refrigerator program, Lawrence Berkeley National Laboratory (LBNL) produced an analysis of national impacts of standardsmore » in collaboration with the Collaborative Labeling and Standards Program (CLASP). That analysis drew on LBNL's experience with standards programs in the United States, as well as many other countries. Subsequently, as part of the process for setting optimal levels for air conditioner regulations, CLASP commissioned LBNL to provide support to BEE in the form of a techno-economic evaluation of air conditioner efficiency technologies. This report describes the methodology and results of this techno-economic evaluation. The analysis consists of three components: (1) Cost effectiveness to consumers of efficiency technologies relative to current baseline. (2) Impacts on the current market from efficiency regulations. (3) National energy and financial impacts. The analysis relied on detailed and up-to-date technical data made available by BEE and industry representatives. Technical parameters were used in conjunction with knowledge about air conditioner use patterns in the residential and commercial sectors, and prevailing marginal electricity prices, in order to give an estimate of per-unit financial impacts. In addition, the overall impact of the program was evaluated by combining unit savings with market forecasts in order to yield national impacts. LBNL presented preliminary results of these analyses in May 2006, at a meeting of BEEs Technical Committee for Air Conditioners. This meeting was attended by a wide array of stakeholder, including industry representatives, engineers and consumer advocates. Comments made by stakeholders at this meeting are incorporated into the final analysis presented in this report. The current analysis begins with the Rating Plan drafted by BEE in 2006, along with an evaluation of the market baseline according to test data submitted by manufacturers. MEPS, label rating levels, and baseline efficiencies are presented in Section 2. First, we compare Indian MEPS with current standards in other countries, and assess their relative stringency. Baseline efficiencies are then used to estimate the fraction of models likely to remain on the market at each phase of the program, and the impact on market-weighted efficiency levels. Section 3 deals with cost-effectiveness of higher efficiency design options. The cost-benefit analysis is grounded in technical parameters provided by industry representatives in India. This data allows for an assessment of financial costs and benefits to consumers as a result of the standards and labeling program. A Life-Cycle Cost (LCC) calculation is used to evaluate the impacts of the program at the unit level, thus providing some insight into the appropriateness of the levels chosen, and additional opportunities for further ratcheting. In addition to LCC, we also calculate payback periods, cost of conserved energy (CCE), and return on investment (ROI). Finally, Section 4 covers national impacts. This is an extension of unit level estimates in the two previous sections. Extrapolation to the national level depends on a forecast of air conditioner purchases (shipments), which we describe here. Following the cost-benefit analysis, we construct several efficiency scenarios including the BEE plan, but also considering further potential for efficiency improvement. These are combined with shipments through a stock accounting model in order to forecast air conditioner energy consumption in each scenario, and associated electricity savings and carbon emission mitigation. Finally, financial costs and savings are scaled to the national level to evaluate net fiscal benefits.« less
Experimental thermodynamics of single molecular motor.
Toyabe, Shoichi; Muneyuki, Eiro
2013-01-01
Molecular motor is a nano-sized chemical engine that converts chemical free energy to mechanical motions. Hence, the energetics is as important as kinetics in order to understand its operation principle. We review experiments to evaluate the thermodynamic properties of a rotational F1-ATPase motor (F1-motor) at a single-molecule level. We show that the F1-motor achieves 100% thermo dynamic efficiency at the stalled state. Furthermore, the motor reduces the internal irreversible heat inside the motor to almost zero and achieves a highly-efficient free energy transduction close to 100% during rotations far from quasistatic process. We discuss the mechanism of how the F1-motor achieves such a high efficiency, which highlights the remarkable property of the nano-sized engine F1-motor.
NASA Astrophysics Data System (ADS)
Liu, Jie; Thiel, Walter
2018-04-01
We present an efficient implementation of configuration interaction with single excitations (CIS) for semiempirical orthogonalization-corrected OMx methods and standard modified neglect of diatomic overlap (MNDO)-type methods for the computation of vertical excitation energies as well as analytical gradients and nonadiabatic couplings. This CIS implementation is combined with Tully's fewest switches algorithm to enable surface hopping simulations of excited-state nonadiabatic dynamics. We introduce an accurate and efficient expression for the semiempirical evaluation of nonadiabatic couplings, which offers a significant speedup for medium-size molecules and is suitable for use in long nonadiabatic dynamics runs. As a pilot application, the semiempirical CIS implementation is employed to investigate ultrafast energy transfer processes in a phenylene ethynylene dendrimer model.
Liu, Jie; Thiel, Walter
2018-04-21
We present an efficient implementation of configuration interaction with single excitations (CIS) for semiempirical orthogonalization-corrected OMx methods and standard modified neglect of diatomic overlap (MNDO)-type methods for the computation of vertical excitation energies as well as analytical gradients and nonadiabatic couplings. This CIS implementation is combined with Tully's fewest switches algorithm to enable surface hopping simulations of excited-state nonadiabatic dynamics. We introduce an accurate and efficient expression for the semiempirical evaluation of nonadiabatic couplings, which offers a significant speedup for medium-size molecules and is suitable for use in long nonadiabatic dynamics runs. As a pilot application, the semiempirical CIS implementation is employed to investigate ultrafast energy transfer processes in a phenylene ethynylene dendrimer model.
7 CFR 1710.255 - Energy efficiency work plans-energy efficiency borrowers.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 7 Agriculture 11 2014-01-01 2014-01-01 false Energy efficiency work plans-energy efficiency... TO ELECTRIC LOANS AND GUARANTEES Construction Work Plans and Related Studies § 1710.255 Energy efficiency work plans—energy efficiency borrowers. (a) All energy efficiency borrowers must maintain a...
Effect of voltage waveform on dielectric barrier discharge ozone production efficiency
NASA Astrophysics Data System (ADS)
Mericam-Bourdet, N.; Kirkpatrick, M. J.; Tuvache, F.; Frochot, D.; Odic, E.
2012-03-01
Dielectric barrier discharges (DBDs) are commonly used for gas effluent cleanup and ozone generation. For these applications, the energy efficiency of the discharge is a major concern. This paper reports on investigations carried out on the voltage shape applied to DBD reactor electrodes, aiming to evaluate a possible energy efficiency improvement for ozone production. Two DBD reactor geometries were used: pin-to-pin and cylinder-to-cylinder, both driven either by a bi-directional power supply (voltage rise rate 1 kV/μs) or by a pulsed power supply (voltage rise rate 1 kV/ns). Ozone formed in dry air was measured at the reactor outlet. Special attention was paid to discharge input power evaluation using different methods including instantaneous current-voltage product and transferred charge-applied voltage figures. The charge transferred by the discharges was also correlated to the ozone production. It is shown that, in the case of the DBD reactors under investigation, the applied voltage shape has no influence on the ozone production efficiency. For the considered voltage rise rate, the charge deposit on the dielectric inserted inside the discharge gap is the important factor (as opposed to the voltage shape) governing the efficiency of the discharge - it does this by tailoring the duration of the current peak into the tens of nanosecond range.
Experimental Evaluation of Balance Prediction Models for Sit-to-Stand Movement in the Sagittal Plane
Pena Cabra, Oscar David; Watanabe, Takashi
2013-01-01
Evaluation of balance control ability would become important in the rehabilitation training. In this paper, in order to make clear usefulness and limitation of a traditional simple inverted pendulum model in balance prediction in sit-to-stand movements, the traditional simple model was compared to an inertia (rotational radius) variable inverted pendulum model including multiple-joint influence in the balance predictions. The predictions were tested upon experimentation with six healthy subjects. The evaluation showed that the multiple-joint influence model is more accurate in predicting balance under demanding sit-to-stand conditions. On the other hand, the evaluation also showed that the traditionally used simple inverted pendulum model is still reliable in predicting balance during sit-to-stand movement under non-demanding (normal) condition. Especially, the simple model was shown to be effective for sit-to-stand movements with low center of mass velocity at the seat-off. Moreover, almost all trajectories under the normal condition seemed to follow the same control strategy, in which the subjects used extra energy than the minimum one necessary for standing up. This suggests that the safety considerations come first than the energy efficiency considerations during a sit to stand, since the most energy efficient trajectory is close to the backward fall boundary. PMID:24187580
An Energy-Aware Hybrid ARQ Scheme with Multi-ACKs for Data Sensing Wireless Sensor Networks.
Zhang, Jinhuan; Long, Jun
2017-06-12
Wireless sensor networks (WSNs) are one of the important supporting technologies of edge computing. In WSNs, reliable communications are essential for most applications due to the unreliability of wireless links. In addition, network lifetime is also an important performance metric and needs to be considered in many WSN studies. In the paper, an energy-aware hybrid Automatic Repeat-reQuest protocol (ARQ) scheme is proposed to ensure energy efficiency under the guarantee of network transmission reliability. In the scheme, the source node sends data packets continuously with the correct window size and it does not need to wait for the acknowledgement (ACK) confirmation for each data packet. When the destination receives K data packets, it will return multiple copies of one ACK for confirmation to avoid ACK packet loss. The energy consumption of each node in flat circle network applying the proposed scheme is statistical analyzed and the cases under which it is more energy efficiency than the original scheme is discussed. Moreover, how to select parameters of the scheme is addressed to extend the network lifetime under the constraint of the network reliability. In addition, the energy efficiency of the proposed schemes is evaluated. Simulation results are presented to demonstrate that a node energy consumption reduction could be gained and the network lifetime is prolonged.
NASA Astrophysics Data System (ADS)
Chentouf, M.; Allouch, M.
2018-05-01
Producing electricity at an affordable price while taking into account environmental concerns has become a major challenge in Morocco. Moreover, the technical and financial issues related to renewable electricity plants are still hindering their efficient integration in the country. In fact, the energy sector (both electricity and heat) accounted for more than half of all Greenhouse Gases (GHG) emissions in the kingdom due to the major reliance on fossil fuels for answering the growing local demand. The key strategies to alleviate this critical situation include the integration of more renewable energies in the total energy mix and the enhancement of energy efficiency measures in different sectors. This paper strives to (1) evaluate the potential of carbon dioxide mitigation in Moroccan electricity sector following the actual and projected strategies and (2) highlight the policy schemes to be taken in order to achieve the ambitious carbon dioxide mitigation targets in the mid-term. A system dynamics model was built in order to simulate different scenarios of carbon dioxide mitigation policies up to 2030. The results shows that the achievement of renewable energies projects by 2030 could save 228.143 MtCO2 between 2020 and 2030 and an additional 18.127 MtCO2 could be avoided in the same period by enhancing energy efficiency measures.
Preliminary Investigation on Life Cycle Inventory of Powder Bed Fusion of Stainless Steel
NASA Astrophysics Data System (ADS)
Nyamekye, Patricia; Piili, Heidi; Leino, Maija; Salminen, Antti
Manufacturing of work pieces from stainless steel with laser additive manufacturing, known also as laser sintering or 3D printing may increase energy and material efficiency. The use of powder bed fusion offers advantages to make parts for dynamic applications of light weight and near-net-shape products. Due to these advantages among others, PBF may also reduce emissions and operational cost in various applications. However, there are only few life cycle assessment studies examining this subject despite its prospect to business opportunity. The application of Life Cycle Inventory (LCI) in Powder Bed Fusion (PBF) provides a distinct evaluation of material and energy consumption. LCI offers a possibility to improve knowledge of process efficiency. This study investigates effect of process sustainability in terms of raw material, energy and time consumption with PBF and CNC machining. The results of the experimental study indicated lower energy efficiency in the production process with PBF. This study revealed that specific energy consumption in PBF decreased when several components are built simultaneously than if they would be built individually. This is due to fact that energy consumption per part is lower. On the contrary, amount of energy needed to machine on part in case of CNC machining is lower when parts are done separately.
Performance and Safety of Lithium Ion Cells
NASA Technical Reports Server (NTRS)
Ratnakumar, B. V.; Smart, M. C.; Whitcanack, L.; Surampudi, S.; Marsh, R.
2001-01-01
This report evaluates the performance and safety of Lithium Ion (Li-Ion) cells when used in batteries. Issues discussed include the cycle life, energy efficiency, tolerance to higher charge voltage, tolerance to extended tapered charge voltage, charge on cycling, specific energy, low temperature discharge, low temperature charge, various charge characteristics, storage characteristics, and more of Li-Ion cells.
Silicon Schottky photovoltaic diodes for solar energy conversion
NASA Technical Reports Server (NTRS)
Anderson, W. A.
1975-01-01
Various factors in Schottky barrier solar cell fabrication are evaluated in order to improve understanding of the current flow mechanism and to isolate processing variables that improve efficiency. Results of finger design, substrate resistivity, surface finishing and activation energy studies are detailed. An increased fill factor was obtained by baking of the vacuum system to remove moisture.
Liquefaction behaviors of bamboo residues in a glycerol-based solvent using microwave energy
Jiulong Xie; Chung-Yun Hse; Todd F. Shupe; Jinqiu Qi; Hui Pan
2014-01-01
Liquefaction of bamboo was performed in glycerolâmethanol as co-solvent using microwave energy and was evaluated by characterizing the liquefied residues. High efficiency conversion of bamboo was achieved under mild reaction conditions. Liquefaction temperature and time interacted to affect the liquefaction reaction. Fourier transform infrared analyzes of the residues...
Energy Department Launches National Fuel Cell Technology Evaluation Center
technologies by strengthening data collection from fuel cell systems and components operating under real-world also houses one of the most energy efficient data centers in the world. NFCTEC will use a secure work proprietary hydrogen and fuel cell technologies in real-world operation since 2004. To date, NREL has
Wei, Qichao; Zhao, Weilong; Yang, Yang; Cui, Beiliang; Xu, Zhijun; Yang, Xiaoning
2018-03-19
Considerable interest in characterizing protein/peptide-surface interactions has prompted extensive computational studies on calculations of adsorption free energy. However, in many cases, each individual study has focused on the application of free energy calculations to a specific system; therefore, it is difficult to combine the results into a general picture for choosing an appropriate strategy for the system of interest. Herein, three well-established computational algorithms are systemically compared and evaluated to compute the adsorption free energy of small molecules on two representative surfaces. The results clearly demonstrate that the characteristics of studied interfacial systems have crucial effects on the accuracy and efficiency of the adsorption free energy calculations. For the hydrophobic surface, steered molecular dynamics exhibits the highest efficiency, which appears to be a favorable method of choice for enhanced sampling simulations. However, for the charged surface, only the umbrella sampling method has the ability to accurately explore the adsorption free energy surface. The affinity of the water layer to the surface significantly affects the performance of free energy calculation methods, especially at the region close to the surface. Therefore, a general principle of how to discriminate between methodological and sampling issues based on the interfacial characteristics of the system under investigation is proposed. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Premium Efficiency Motor Selection and Application Guide – A Handbook for Industry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gilbert A. McCoy and John G. Douglass
2014-02-01
This handbook informs new motor purchase decisions by identifying energy and cost savings that can come from replacing motors with premium efficiency units. The handbook provides an overview of current motor use in the industrial sector, including the development of motor efficiency standards, currently available and emerging advanced efficiency motor technologies, and guidance on how to evaluate motor efficiency opportunities. It also several tips on getting the most out of industrial motors, such as how to avoid adverse motor interactions with electronic adjustable speed drives and how to ensure efficiency gains are not lost to undervoltage operation or excessive voltagemore » unbalance.« less
Impact of in-band interference on a wake-up radio system in wireless sensor networks
NASA Astrophysics Data System (ADS)
Lebreton, J. M.; Murad, N. M.; Lorion, R.
2017-05-01
The energy efficiency of Wireless Sensor Networks (WSNs) is considerably improved with Wake-up Radio (WuR) systems. However, their resilience to interference is often neglected in the literature. This might be an issue due to the proliferation of wireless devices and the growing field of internet of things. In this paper, we evaluate the impact of in-band interference from wireless devices on a WuR system. The approach proves that WuR systems are still performing well when coexisting with external wireless networks, even if the energy-efficiency is slightly reduced.
Oller, Joaquim; Demirkol, Ilker; Casademont, Jordi; Paradells, Josep; Gamm, Gerd Ulrich; Reindl, Leonhard
2014-01-01
Energy-efficient communication is one of the main concerns of wireless sensor networks nowadays. A commonly employed approach for achieving energy efficiency has been the use of duty-cycled operation of the radio, where the node's transceiver is turned off and on regularly, listening to the radio channel for possible incoming communication during its on-state. Nonetheless, such a paradigm performs poorly for scenarios of low or bursty traffic because of unnecessary activations of the radio transceiver. As an alternative technology, Wake-up Radio (WuR) systems present a promising energy-efficient network operation, where target devices are only activated in an on-demand fashion by means of a special radio signal and a WuR receiver. In this paper, we analyze a novel wake-up radio approach that integrates both data communication and wake-up functionalities into one platform, providing a reconfigurable radio operation. Through physical experiments, we characterize the delay, current consumption and overall operational range performance of this approach under different transmit power levels. We also present an actual single-hop WuR application scenario, as well as demonstrate the first true multi-hop capabilities of a WuR platform and simulate its performance in a multi-hop scenario. Finally, by thorough qualitative comparisons to the most relevant WuR proposals in the literature, we state that the proposed WuR system stands out as a strong candidate for any application requiring energy-efficient wireless sensor node communications. PMID:24451452
Oller, Joaquim; Demirkol, Ilker; Casademont, Jordi; Paradells, Josep; Gamm, Gerd Ulrich; Reindl, Leonhard
2013-12-19
Energy-efficient communication is one of the main concerns of wireless sensor networks nowadays. A commonly employed approach for achieving energy efficiency has been the use of duty-cycled operation of the radio, where the node's transceiver is turned off and on regularly, listening to the radio channel for possible incoming communication during its on-state. Nonetheless, such a paradigm performs poorly for scenarios of low or bursty traffic because of unnecessary activations of the radio transceiver. As an alternative technology, Wake-up Radio (WuR) systems present a promising energy-efficient network operation, where target devices are only activated in an on-demand fashion by means of a special radio signal and a WuR receiver. In this paper, we analyze a novel wake-up radio approach that integrates both data communication and wake-up functionalities into one platform, providing a reconfigurable radio operation. Through physical experiments, we characterize the delay, current consumption and overall operational range performance of this approach under different transmit power levels. We also present an actual single-hop WuR application scenario, as well as demonstrate the first true multi-hop capabilities of a WuR platform and simulate its performance in a multi-hop scenario. Finally, by thorough qualitative comparisons to the most relevant WuR proposals in the literature, we state that the proposed WuR system stands out as a strong candidate for any application requiring energy-efficient wireless sensor node communications.
Thermodynamics Analysis of Refinery Sludge Gasification in Adiabatic Updraft Gasifier
Ahmed, Reem; Sinnathambi, Chandra M.; Eldmerdash, Usama; Subbarao, Duvvuri
2014-01-01
Limited information is available about the thermodynamic evaluation for biomass gasification process using updraft gasifier. Therefore, to minimize errors, the gasification of dry refinery sludge (DRS) is carried out in adiabatic system at atmospheric pressure under ambient air conditions. The objectives of this paper are to investigate the physical and chemical energy and exergy of product gas at different equivalent ratios (ER). It will also be used to determine whether the cold gas, exergy, and energy efficiencies of gases may be maximized by using secondary air injected to gasification zone under various ratios (0, 0.5, 1, and 1.5) at optimum ER of 0.195. From the results obtained, it is indicated that the chemical energy and exergy of producer gas are magnified by 5 and 10 times higher than their corresponding physical values, respectively. The cold gas, energy, and exergy efficiencies of DRS gasification are in the ranges of 22.9–55.5%, 43.7–72.4%, and 42.5–50.4%, respectively. Initially, all 3 efficiencies increase until they reach a maximum at the optimum ER of 0.195; thereafter, they decline with further increase in ER values. The injection of secondary air to gasification zone is also found to increase the cold gas, energy, and exergy efficiencies. A ratio of secondary air to primary air of 0.5 is found to be the optimum ratio for all 3 efficiencies to reach the maximum values. PMID:24672368
NASA Astrophysics Data System (ADS)
Shi, Wenwu; Pinto, Brian
2017-12-01
Melting and holding molten metals within crucibles accounts for a large portion of total energy demand in the resource-intensive nonferrous foundry industry. Multivariate mathematical modeling aided by detailed material characterization and advancements in crucible technologies can make a significant impact in the areas of cost-efficiency and carbon footprint reduction. Key thermal properties such as conductivity and specific heat capacity were studied to understand their influence on crucible furnace energy consumption during melting and holding processes. The effects of conductivity on thermal stresses and longevity of crucibles were also evaluated. With this information, accurate theoretical models using finite element analysis were developed to study total energy consumption and melting time. By applying these findings to recent crucible developments, considerable improvements in field performance were reported and documented as case studies in applications such as aluminum melting and holding.
Connected Equipment Maturity Model Version 1.0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Butzbaugh, Joshua B.; Mayhorn, Ebony T.; Sullivan, Greg
2017-05-01
The Connected Equipment Maturity Model (CEMM) evaluates the high-level functionality and characteristics that enable equipment to provide the four categories of energy-related services through communication with other entities (e.g., equipment, third parties, utilities, and users). The CEMM will help the U.S. Department of Energy, industry, energy efficiency organizations, and research institutions benchmark the current state of connected equipment and identify capabilities that may be attained to reach a more advanced, future state.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
The fiscal year (FY) 2013 U.S. Department of Energy (DOE) Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting (AMR), in conjunction with DOE's Vehicle Technologies Office AMR, was held from May 13-16, 2013, at the Crystal City Marriott and Crystal Gateway Marriott in Arlington, Virginia. This report is a summary of comments by AMR peer reviewers about the hydrogen and fuel cell projects funded by DOE's Office of Energy Efficiency and Renewable Energy (EERE).
United States - Japan evaluation tools and methods.
DOT National Transportation Integrated Search
2014-01-01
Cooperative systems based on intelligent transportation system (ITS) technologies can deliver significant benefits for all road users and the public, especially in terms of safer, more energy-efficient, and environmentally friendly surface transporta...
ERIC Educational Resources Information Center
CEFP Journal, 1978
1978-01-01
Summarizes findings of an experimental research program to provide a controlled and documented evaluation of the effectiveness of proprietary combustion-type fuel-oil additives and pure compounds for reducing air pollutant emissions and for increasing boiler efficiency. (Author/MLF)
Heterogeneous High Throughput Scientific Computing with APM X-Gene and Intel Xeon Phi
NASA Astrophysics Data System (ADS)
Abdurachmanov, David; Bockelman, Brian; Elmer, Peter; Eulisse, Giulio; Knight, Robert; Muzaffar, Shahzad
2015-05-01
Electrical power requirements will be a constraint on the future growth of Distributed High Throughput Computing (DHTC) as used by High Energy Physics. Performance-per-watt is a critical metric for the evaluation of computer architectures for cost- efficient computing. Additionally, future performance growth will come from heterogeneous, many-core, and high computing density platforms with specialized processors. In this paper, we examine the Intel Xeon Phi Many Integrated Cores (MIC) co-processor and Applied Micro X-Gene ARMv8 64-bit low-power server system-on-a-chip (SoC) solutions for scientific computing applications. We report our experience on software porting, performance and energy efficiency and evaluate the potential for use of such technologies in the context of distributed computing systems such as the Worldwide LHC Computing Grid (WLCG).
NASA Astrophysics Data System (ADS)
Qaddus, Muhammad Kamil
The gap between estimated and actual savings in energy efficiency and conservation (EE&C) projects or programs forms the problem statement for the scope of public and government buildings. This gap has been analyzed first on impact and then on process-level. On the impact-level, the methodology leads to categorization of the gap as 'Realization Gap'. It then views the categorization of gap within the context of past and current narratives linked to realization gap. On process-level, the methodology leads to further analysis of realization gap on process evaluation basis. The process evaluation criterion, a product of this basis is then applied to two different programs (DESEU and NYC ACE) linked to the scope of this thesis. Utilizing the synergies of impact and process level analysis, it offers proposals on program development and its structure using our process evaluation criterion. Innovative financing and benefits distribution structure is thus developed and will remain part of the proposal. Restricted Stakeholder Crowd Financing and Risk-Free Incentivized return are the products of proposed financing and benefit distribution structure respectively. These products are then complimented by proposing an alternative approach in estimating EE&C savings. The approach advocates estimation based on range-allocation rather than currently utilized unique estimated savings approach. The Way Ahead section thus explores synergy between financial and engineering ranges of energy savings as a multi-discipline approach for future research. Moreover, it provides the proposed program structure with risk aversion and incentive allocation while dealing with uncertainty. This set of new approaches are believed to better fill the realization gap between estimated and actual energy efficiency savings.
Field Assessment of Energy Audit Tools for Retrofit Programs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edwards, J.; Bohac, D.; Nelson, C.
2013-07-01
This project focused on the use of home energy ratings as a tool to promote energy retrofits in existing homes. A home energy rating provides a quantitative appraisal of a home's asset performance, usually compared to a benchmark such as the average energy use of similar homes in the same region. Home rating systems can help motivate homeowners in several ways. Ratings can clearly communicate a home's achievable energy efficiency potential, provide a quantitative assessment of energy savings after retrofits are completed, and show homeowners how they rate compared to their neighbors, thus creating an incentive to conform to amore » social standard. An important consideration is how rating tools for the retrofit market will integrate with existing home energy service programs. For residential programs that target energy savings only, home visits should be focused on key efficiency measures for that home. In order to gain wide adoption, a rating tool must be easily integrated into the field process, demonstrate consistency and reasonable accuracy to earn the trust of home energy technicians, and have a low monetary cost and time hurdle for homeowners. Along with the Home Energy Score, this project also evaluated the energy modeling performance of SIMPLE and REM/Rate.« less
Theoretical Bound of CRLB for Energy Efficient Technique of RSS-Based Factor Graph Geolocation
NASA Astrophysics Data System (ADS)
Kahar Aziz, Muhammad Reza; Heriansyah; Saputra, EfaMaydhona; Musa, Ardiansyah
2018-03-01
To support the increase of wireless geolocation development as the key of the technology in the future, this paper proposes theoretical bound derivation, i.e., Cramer Rao lower bound (CRLB) for energy efficient of received signal strength (RSS)-based factor graph wireless geolocation technique. The theoretical bound derivation is crucially important to evaluate whether the energy efficient technique of RSS-based factor graph wireless geolocation is effective as well as to open the opportunity to further innovation of the technique. The CRLB is derived in this paper by using the Fisher information matrix (FIM) of the main formula of the RSS-based factor graph geolocation technique, which is lied on the Jacobian matrix. The simulation result shows that the derived CRLB has the highest accuracy as a bound shown by its lowest root mean squared error (RMSE) curve compared to the RMSE curve of the RSS-based factor graph geolocation technique. Hence, the derived CRLB becomes the lower bound for the efficient technique of RSS-based factor graph wireless geolocation.
Measured impacts of high efficiency domestic clothes washers in a community
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tomlinson, J.; Rizy, T.
1998-07-01
The US market for domestic clothes washers is currently dominated by conventional vertical-axis washers that typically require approximately 40 gallons of water for each wash load. Although the current market for high efficiency clothes washers that use much less water and energy is quite small, it is growing slowly as manufacturers make machines based on tumble action, horizontal-axis designs available and as information about the performance and benefits of such machines is developed and made available to consumers. To help build awareness of these benefits and to accelerate markets for high efficiency washers, the Department of Energy (DOE), under itsmore » ENERGY STAR{reg_sign} Program and in cooperation with a major manufacturers of high efficiency washers, conducted a field evaluation of high efficiency washers using Bern, Kansas as a test bed. Baseline washing machine performance data as well as consumer washing behavior were obtained from data collected on the existing machines of more than 100 participants in this instrumented study. Following a 2-month initial study period, all conventional machines were replaced by high efficiency, tumble-action washers, and the study continued for 3 months. Based on measured data from over 20,000 loads of laundry, the impact of the washer replacement on (1) individual customers` energy and water consumption, (2) customers` laundry habits and perceptions, and (3) the community`s water supply and waste water systems were determined. The study, its findings, and how information from the experiment was used to improve national awareness of high efficiency clothes washer benefits are described in this paper.« less
Global Potential of Energy Efficiency Standards and Labeling Programs
DOE Office of Scientific and Technical Information (OSTI.GOV)
McNeil, Michael A; McNeil, Michael A.; Letschert, Virginie
2008-06-15
This report estimates the global potential reductions in greenhouse gas emissions by 2030 for energy efficiency improvements associated with equipment (appliances, lighting, and HVAC) in buildings by means of energy efficiency standards and labels (EES&L). A consensus has emerged among the world's scientists and many corporate and political leaders regarding the need to address the threat of climate change through emissions mitigation and adaptation. A further consensus has emerged that a central component of these strategies must be focused around energy, which is the primary generator of greenhouse gas emissions. Two important questions result from this consensus: 'what kinds ofmore » policies encourage the appropriate transformation to energy efficiency' and 'how much impact can these policies have'? This report aims to contribute to the dialogue surrounding these issues by considering the potential impacts of a single policy type, applied on a global scale. The policy addressed in this report is Energy Efficient Standards and Labeling (EES&L) for energy-consuming equipment, which has now been implemented in over 60 countries. Mandatory energy performance standards are important because they contribute positively to a nation's economy and provide relative certainty about the outcome (both timing and magnitudes). Labels also contribute positively to a nation's economy and importantly increase the awareness of the energy-consuming public. Other policies not analyzed here (utility incentives, tax credits) are complimentary to standards and labels and also contribute in significant ways to reducing greenhouse gas emissions. We believe the analysis reported here to be the first systematic attempt to evaluate the potential of savings from EES&L for all countries and for such a large set of products. The goal of the analysis is to provide an assessment that is sufficiently well-quantified and accurate to allow comparison and integration with other strategies under consideration.« less
Alabama SEP Final Technical Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grimes, Elizabeth M.
Executive Summary In the fall of 2010, the Alabama Department of Economic and Community Affairs (ADECA) launched the Multi-State Model for Catalyzing the National Home Energy Retrofit Market Project (Multi-State Project). This residential energy efficiency pilot program was a collaborative effort among the states of Alabama, Massachusetts, Virginia, and Washington, and was funded by competitive State Energy Program (SEP) awards through the U.S. Department of Energy (DOE). The objective of this project was to catalyze the home energy efficiency retrofit market in select areas within the state of Alabama. To achieve this goal, the project addressed a variety of marketplacemore » elements that did not exist, or were underdeveloped, at the outset of the effort. These included establishing minimum standards and credentials for marketplace suppliers, educating and engaging homeowners on the benefits of energy efficiency and addressing real or perceived financial barriers to investments in whole-home energy efficiency, among others. The anticipated effect of the activities would be increased market demand for retrofits, improved audit to retrofit conversion rates and growth in overall community understanding of energy efficiency. The four-state collaborative was created with the intent of accelerating market transformation by allowing each state to learn from their peers, each of whom possessed different starting points, resources, and strategies for achieving the overall objective. The four partner states engaged the National Association of State Energy Officials (NASEO) to oversee a project steering committee and to manage the project evaluation for all four states. The steering committee, comprised of key program partners, met on a regular basis to provide overall project coordination, guidance, and progress assessment. While there were variances in program design among the states, there were several common elements: use of the Energy Performance Score (EPS) platform; an audit and home energy rating tool; emphasis on community based coordination and partnerships; marketing and outreach to increase homeowner participation; training for market actors; access to financing options including rebates, incentives, and loan products; and an in depth process evaluation to support continual program improvement and analysis. In Alabama, Nexus Energy Center operated energy efficiency retrofit programs in Huntsville and Birmingham. In the Huntsville community the AlabamaWISE program was available in five Alabama counties: Cullman, Lawrence, Limestone, Madison, and Morgan. In Birmingham, the program was available to residents in Jefferson and Shelby Counties. In both communities, the program was similar in terms of program design but tailored marketing and partnerships to address the unique local conditions and population of each community. ADECA and the Southeast Energy Efficiency Alliance (SEEA) provided overall project management services and common resources to the local program administrator Nexus Energy Center, including contracted services for contractor training, quality assurance testing, data collection and reporting, and compliance. The fundamental components of the AlabamaWISE program included a vertical contractor-based business model; comprehensive energy assessments; third-party quality assurance; rebates for installation of energy saving measures; accessible, low-interest financing; targeted and inbound marketing; Energy Performance Score (EPS) tool to engage and educate homeowners; training for auditors, contractors, and real estate professionals; and online resources for education and program enrollment. Program participants were eligible to receive rebates or financing toward the assessments and upgrades to their home provided they reached at least 20 percent deemed or modeled energy savings. The design of each program focused on addressing several known barriers including: limited homeowner knowledge on the benefits of energy efficiency, lack of financing options, lack of community support for energy efficiency programs, and lack of trained market actors including contractors and real estate professionals. The programs were able to make progress on addressing all of these barriers and were most successful in offering financing options and training market actors. The most challenging barriers proved to be the act of building a market for energy efficiency where none previously existed, convincing homeowners of the value in investing in energy efficiency (and therefore completing retrofits), engaging electric and natural gas utilities to partner on delivery, and achieving the overall project target of 1,365 completed retrofits. The components that proved to be the most valuable to program success were engaged contractor networks that could promote and endorse the program, partnerships with local business and organizations, and the access to rebates, incentives and financing mechanisms. The programs were successful in building relationships with a variety of community participants including: local contractors, Associations of REALTORS, home builders associations, universities, utilities, local and state governments, and other non-profit organizations. Throughout this program, 933 building audits and 795 building retrofits were completed making homes in Alabama more comfortable, less expensive to operate, more valuable to the marketplace, and safer and healthier for families. Continuing on this momentum, Nexus Energy Center plans to continue operating and expanding operations in Alabama as a Home Performance with ENERGY STAR sponsor and will continue to provide energy services and education to communities in Alabama.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fuller, Merrian C.
Policy makers and program designers in the U.S. and abroad are deeply concerned with the question of how to scale up energy efficiency to a level that is commensurate both to the scale of the energy and climate challenges we face, and to the potential for energy savings that has been touted for decades. When policy makers ask what energy efficiency can do, the answers usually revolve around the technical and economic potential of energy efficiency - they rarely hone in on the element of energy demand that matters most for changing energy usage in existing homes: the consumer. Amore » growing literature is concerned with the behavioral underpinnings of energy consumption. We examine a narrower, related subject: How can millions of Americans be persuaded to divert valued time and resources into upgrading their homes to eliminate energy waste, avoid high utility bills, and spur the economy? With hundreds of millions of public dollars flowing into incentives, workforce training, and other initiatives to support comprehensive home energy improvements, it makes sense to review the history of these programs and begin gleaning best practices for encouraging comprehensive home energy improvements. Looking across 30 years of energy efficiency programs that targeted the residential market, many of the same issues that confronted past program administrators are relevant today: How do we cost-effectively motivate customers to take action? Who can we partner with to increase program participation? How do we get residential efficiency programs to scale? While there is no proven formula - and only limited success to date with reliably motivating large numbers of Americans to invest in comprehensive home energy improvements, especially if they are being asked to pay for a majority of the improvement costs - there is a rich and varied history of experiences that new programs can draw upon. Our primary audiences are policy makers and program designers - especially those that are relatively new to the field, such as the over 2,000 towns, cities, states, and regions who are recipients of American Reinvestment and Recovery Act funds for clean energy programs. This report synthesizes lessons from first generation programs, highlights emerging best practices, and suggests methods and approaches to use in designing, implementing, and evaluating these programs. We examined 14 residential energy efficiency programs, conducted an extensive literature review, interviewed industry experts, and surveyed residential contractors to draw out these lessons.« less
DOT National Transportation Integrated Search
2016-04-01
The United States (U.S.) and Japan have similar transportation challenges, and share a common belief that cooperative systems can deliver significant societal benefits for road users, especially in terms of safer, more energy-efficient, and environme...
Evaluation of Signal Regeneration Impact on the Power Efficiency of Long-Haul DWDM Systems
NASA Astrophysics Data System (ADS)
Pavlovs, D.; Bobrovs, V.; Parfjonovs, M.; Alsevska, A.; Ivanovs, G.
2017-10-01
Due to potential economic benefits and expected environmental impact, the power consumption issue in wired networks has become a major challenge. Furthermore, continuously increasing global Internet traffic demands high spectral efficiency values. As a result, the relationship between spectral efficiency and energy consumption of telecommunication networks has become a popular topic of academic research over the past years, where a critical parameter is power efficiency. The present research contains calculation results that can be used by optical network designers and operators as guidance for developing more power efficient communication networks if the planned system falls within the scope of this paper. The research results are presented as average aggregated traffic curves that provide more flexible data for the systems with different spectrum availability. Further investigations could be needed in order to evaluate the parameters under consideration taking into account particular spectral parameters, e.g., the entire C-band.
NASA Astrophysics Data System (ADS)
Kozlov, A. V.; Terenchenko, A. S.; Luksho, V. A.; Karpukhin, K. E.
2017-01-01
This work is devoted to the experimental investigation of the possibilities to reduce greenhouse gas emissions and to increase energy efficiency of engines that use natural gas as the main fuel and the analysis of economic efficiency of use of dual fuel engines in vehicles compared to conventional diesel. The results of experimental investigation of a 190 kW dual-fuel engine are presented; it is shown that quantitative and qualitative working process control may ensure thermal efficiency at the same level as that of the diesel engine and in certain conditions 5...8% higher. The prospects for reduction of greenhouse gas emissions have been assessed. The technical and economic evaluation of use of dual fuel engines in heavy-duty vehicles has been performed, taking into account the total life cycle. It is shown that it is possible to reduce life cycle costs by two times.
Advances in Household Appliances- A Review
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bansal, Pradeep; Vineyard, Edward Allan; Abdelaziz, Omar
2011-01-01
An overview of options and potential barriers and risks for reducing the energy consumption, peak demand, and emissions for seven key energy consuming residential products (refrigerator-freezers, dishwashers, clothes washers, clothes dryers, electric ovens, gas ovens and microwave ovens) is presented. The paper primarily concentrates on the potential energy savings from the use of advanced technologies in appliances for the U.S. market. The significance and usefulness of each technology was evaluated in order to prioritize the R&D needs to improve energy efficiency of appliances in view of energy savings, cost, and complexity. The paper provides a snapshot of the future R&Dmore » needs for each of the technologies along with the associated barriers. Although significant energy savings may be achieved, one of the major barriers in most cases is high first cost. One way of addressing this issue and promoting the introduction of new technologies is to level the playing field for all manufacturers by establishing Minimum Energy Performance Standards (MEPS) which are not cost prohibitive and promoting energy efficient products through incentives to both manufacturers and consumers.« less
WEAMR — A Weighted Energy Aware Multipath Reliable Routing Mechanism for Hotline-Based WSNs
Tufail, Ali; Qamar, Arslan; Khan, Adil Mehmood; Baig, Waleed Akram; Kim, Ki-Hyung
2013-01-01
Reliable source to sink communication is the most important factor for an efficient routing protocol especially in domains of military, healthcare and disaster recovery applications. We present weighted energy aware multipath reliable routing (WEAMR), a novel energy aware multipath routing protocol which utilizes hotline-assisted routing to meet such requirements for mission critical applications. The protocol reduces the number of average hops from source to destination and provides unmatched reliability as compared to well known reactive ad hoc protocols i.e., AODV and AOMDV. Our protocol makes efficient use of network paths based on weighted cost calculation and intelligently selects the best possible paths for data transmissions. The path cost calculation considers end to end number of hops, latency and minimum energy node value in the path. In case of path failure path recalculation is done efficiently with minimum latency and control packets overhead. Our evaluation shows that our proposal provides better end-to-end delivery with less routing overhead and higher packet delivery success ratio compared to AODV and AOMDV. The use of multipath also increases overall life time of WSN network using optimum energy available paths between sender and receiver in WDNs. PMID:23669714
WEAMR-a weighted energy aware multipath reliable routing mechanism for hotline-based WSNs.
Tufail, Ali; Qamar, Arslan; Khan, Adil Mehmood; Baig, Waleed Akram; Kim, Ki-Hyung
2013-05-13
Reliable source to sink communication is the most important factor for an efficient routing protocol especially in domains of military, healthcare and disaster recovery applications. We present weighted energy aware multipath reliable routing (WEAMR), a novel energy aware multipath routing protocol which utilizes hotline-assisted routing to meet such requirements for mission critical applications. The protocol reduces the number of average hops from source to destination and provides unmatched reliability as compared to well known reactive ad hoc protocols i.e., AODV and AOMDV. Our protocol makes efficient use of network paths based on weighted cost calculation and intelligently selects the best possible paths for data transmissions. The path cost calculation considers end to end number of hops, latency and minimum energy node value in the path. In case of path failure path recalculation is done efficiently with minimum latency and control packets overhead. Our evaluation shows that our proposal provides better end-to-end delivery with less routing overhead and higher packet delivery success ratio compared to AODV and AOMDV. The use of multipath also increases overall life time of WSN network using optimum energy available paths between sender and receiver in WDNs.
An energy and cost efficient majority-based RAM cell in quantum-dot cellular automata
NASA Astrophysics Data System (ADS)
Khosroshahy, Milad Bagherian; Moaiyeri, Mohammad Hossein; Navi, Keivan; Bagherzadeh, Nader
Nanotechnologies, notably quantum-dot cellular automata, have achieved major attentions for their prominent features as compared to the conventional CMOS circuitry. Quantum-dot cellular automata, particularly owning to its considerable reduction in size, high switching speed and ultra-low energy consumption, is considered as a potential alternative for the CMOS technology. As the memory unit is one of the most essential components in a digital system, designing a well-optimized QCA random access memory (RAM) cell is an important area of research. In this paper, a new five-input majority gate is presented which is suitable for implementing efficient single-layer QCA circuits. In addition, a new RAM cell with set and reset capabilities is designed based on the proposed majority gate, which has an efficient and low-energy structure. The functionality, performance and energy consumption of the proposed designs are evaluated based on the QCADesigner and QCAPro tools. According to the simulation results, the proposed RAM design leads to on average 38% lower total energy dissipation, 25% smaller area, 20% lower cell count, 28% lower delay and 60% lower QCA cost as compared to its previous counterparts.
High Efficiency Solar Integrated Roof Membrane Product
DOE Office of Scientific and Technical Information (OSTI.GOV)
Partyka, Eric; Shenoy, Anil
2013-05-15
This project was designed to address the Solar Energy Technology Program objective, to develop new methods to integrate photovoltaic (PV) cells or modules within a building-integrated photovoltaic (BIPV) application that will result in lower installed cost as well as higher efficiencies of the encapsulated/embedded PV module. The technology assessment and development focused on the evaluation and identification of manufacturing technologies and equipment capable of producing such low-cost, high-efficiency, flexible BIPV solar cells on single-ply roofing membranes.
Polaron effects on the performance of light-harvesting systems: a quantum heat engine perspective
NASA Astrophysics Data System (ADS)
Xu, Dazhi; Wang, Chen; Zhao, Yang; Cao, Jianshu
2016-02-01
We explore energy transfer in a generic three-level system, which is coupled to three non-equilibrium baths. Built on the concept of quantum heat engine, our three-level model describes non-equilibrium quantum processes including light-harvesting energy transfer, nano-scale heat transfer, photo-induced isomerization, and photovoltaics in double quantum-dots. In the context of light-harvesting, the excitation energy is first pumped up by sunlight, then is transferred via two excited states which are coupled to a phonon bath, and finally decays to the reaction center. The efficiency of this process is evaluated by steady state analysis via a polaron-transformed master equation; thus the entire range of the system-phonon coupling strength can be covered. We show that the coupling with the phonon bath not only modifies the steady state, resulting in population inversion, but also introduces a finite steady state coherence which optimizes the energy transfer flux and efficiency. In the strong coupling limit, the steady state coherence disappears and the efficiency recovers the heat engine limit given by Scovil and Schultz-Dubois (1959 Phys. Rev. Lett. 2 262).
Study of advanced electric propulsion system concept using a flywheel for electric vehicles
NASA Technical Reports Server (NTRS)
Younger, F. C.; Lackner, H.
1979-01-01
Advanced electric propulsion system concepts with flywheels for electric vehicles are evaluated and it is predicted that advanced systems can provide considerable performance improvement over existing electric propulsion systems with little or no cost penalty. Using components specifically designed for an integrated electric propulsion system avoids the compromises that frequently lead to a loss of efficiency and to inefficient utilization of space and weight. A propulsion system using a flywheel power energy storage device can provide excellent acceleration under adverse conditions of battery degradation due either to very low temperatures or high degrees of discharge. Both electrical and mechanical means of transfer of energy to and from the flywheel appear attractive; however, development work is required to establish the safe limits of speed and energy storage for advanced flywheel designs and to achieve the optimum efficiency of energy transfer. Brushless traction motor designs using either electronic commutation schemes or dc-to-ac inverters appear to provide a practical approach to a mass producible motor, with excellent efficiency and light weight. No comparisons were made with advanced system concepts which do not incorporate a flywheel.
NASA Astrophysics Data System (ADS)
Chakraborty, Sanjib; Hosain, Rubayet; Rahman, Toufiqur; Rabbi, Ahmead Fazle
This paper evaluates the potentiality of a 1 MW grid connected rooftop solar PV system for an Energy Efficient Building in Bangladesh, which was estimated by utilizing NASA SSE solar radiation data, PVsyst simulation software and RETScreen simulation software. Economic and environmental viability for a ten-storied building with roof area of 6,500 m2 in the Capital City of Bangladesh, Dhaka was assessed by using the RETScreen simulation software. The yearly electricity production of the proposed system was 1,581 MWh estimated by PVsyst where the technical prospective of gird-connected solar PV in Bangladesh was calculated as about 50,174 MW. The economic assessments were determined the simple payback in such a way that the generated electricity first fulfills the demand of the building, and then the rest of the energy is supplied to the grid. The result indicates that the roof top solar PV system for an Energy efficient building in Dhaka city has a favorable condition for development both in economic and environmental point of view.
Wu, Bin; Zhang, Xiangping; Shang, Dawei; Bao, Di; Zhang, Suojiang; Zheng, Tao
2016-08-01
A typical biogas system with three utilization pathways, i.e., biogas upgrading, biogas combined heat and power (CHP), biogas solid oxide fuel cells (SOFCs) were designed. It was assessed from the viewpoint of energy, environment and economy by using energy efficiency, green degree and net present value index respectively. The assessment considered the trade-off relationships among these indexes, which is more comprehensive than previous systematic evaluation work only included single or two of the pathway(s) by using one or two of the index(es). Assessment results indicated that biogas upgrading pathway has the highest systematic energy efficiency (46.5%) and shortest payback period (8.9year) with the green degree production is the lowest (9.29gd/day). While for biogas SOFC pathway, although the green degree production is the highest (21.77gd/day), the payback period is longer (14.5year) and the energy efficiency is 13.6% lower than the biogas upgrading pathway. Copyright © 2016 Elsevier Ltd. All rights reserved.
Stone, John E.; Hallock, Michael J.; Phillips, James C.; Peterson, Joseph R.; Luthey-Schulten, Zaida; Schulten, Klaus
2016-01-01
Many of the continuing scientific advances achieved through computational biology are predicated on the availability of ongoing increases in computational power required for detailed simulation and analysis of cellular processes on biologically-relevant timescales. A critical challenge facing the development of future exascale supercomputer systems is the development of new computing hardware and associated scientific applications that dramatically improve upon the energy efficiency of existing solutions, while providing increased simulation, analysis, and visualization performance. Mobile computing platforms have recently become powerful enough to support interactive molecular visualization tasks that were previously only possible on laptops and workstations, creating future opportunities for their convenient use for meetings, remote collaboration, and as head mounted displays for immersive stereoscopic viewing. We describe early experiences adapting several biomolecular simulation and analysis applications for emerging heterogeneous computing platforms that combine power-efficient system-on-chip multi-core CPUs with high-performance massively parallel GPUs. We present low-cost power monitoring instrumentation that provides sufficient temporal resolution to evaluate the power consumption of individual CPU algorithms and GPU kernels. We compare the performance and energy efficiency of scientific applications running on emerging platforms with results obtained on traditional platforms, identify hardware and algorithmic performance bottlenecks that affect the usability of these platforms, and describe avenues for improving both the hardware and applications in pursuit of the needs of molecular modeling tasks on mobile devices and future exascale computers. PMID:27516922
A detailed evaluation of heating processes in the middle atmosphere
NASA Technical Reports Server (NTRS)
Mlynczak, Martin; Solomon, Susan
1994-01-01
A fundamental problem in the study of the terrestrial middle atmosphere is to calculate accurately the local heating due to the absorption of solar radiation. Knowledge of the heat budget is essential to understanding the atmospheric thermal structure, atmospheric motions, atmospheric chemistry, and their coupling. The evaluation of heating rates is complicated (especially above the stratopause) by the fact that the heating is not a simple one-step process. That is, the absorbed solar energy does not all immediately appear as heat. Rather, substantial portions of the incident energy may appear as internal energy of excited photolysis products (e.g., O(1D) or O2(1 delta)) or as chemical potential energy of product species such as atomic oxygen. The ultimate disposition of the internal and chemical energy possessed by the photolysis products determines the efficiency and thus the rate at which the middle atmosphere is heated. In studies of the heat budget, it is also vitally important to consider transport of long lived chemical species such as atomic oxygen above approximately 80 km. In such cases, the chemical potential energy may be transported great distances (horizontally or vertically) before undergoing a reaction to release the heat. Atomic oxygen influences the heating not only by reactions with itself and with O2 but also by reactions with odd-hydrogen species, especially those involving OH (Mlynczak and Solomon, 1991a). Consequently, absorbed solar energy may finally by converted to heat a long time after and at a location far from the original deposition. The purpose of this paper is to examine the solar and chemical heating processes and to present parameterizations for the heating efficiencies readily applicable for use in numerical models and heat budget studies. In the next two sections the processes relevant to the heating efficiencies for ozone and molecular oxygen will be reviewed. In section 4 the processes for the exothermic reactions will be reviewed and parameterizations for the heating efficiencies for both the solar and chemical processes will be presented in Section 5.
Exploring efficacy of residential energy efficiency programs in Florida
NASA Astrophysics Data System (ADS)
Taylor, Nicholas Wade
Electric utilities, government agencies, and private interests in the U.S. have committed and continue to invest substantial resources in the pursuit of energy efficiency and conservation through demand-side management (DSM) programs. Program investments, and the demand for impact evaluations that accompany them, are projected to grow in coming years due to increased pressure from state-level energy regulation, costs and challenges of building additional production capacity, fuel costs and potential carbon or renewable energy regulation. This dissertation provides detailed analyses of ex-post energy savings from energy efficiency programs in three key sectors of residential buildings: new, single-family, detached homes; retrofits to existing single-family, detached homes; and retrofits to existing multifamily housing units. Each of the energy efficiency programs analyzed resulted in statistically significant energy savings at the full program group level, yet savings for individual participants and participant subgroups were highly variable. Even though savings estimates were statistically greater than zero, those energy savings did not always meet expectations. Results also show that high variability in energy savings among participant groups or subgroups can negatively impact overall program performance and can undermine marketing efforts for future participation. Design, implementation, and continued support of conservation programs based solely on deemed or projected savings is inherently counter to the pursuit of meaningful energy conservation and reductions in greenhouse gas emissions. To fully understand and optimize program impacts, consistent and robust measurement and verification protocols must be instituted in the design phase and maintained over time. Furthermore, marketing for program participation must target those who have the greatest opportunity for savings. In most utility territories it is not possible to gain access to the type of large scale datasets that would facilitate robust program analysis. Along with measuring and optimizing energy conservation programs, utilities should provide public access to historical consumption data. Open access to data, program optimization, consistent measurement and verification and transparency in reported savings are essential to reducing energy use and its associated environmental impacts.
75 FR 34657 - Energy Efficiency and Sustainable Design Standards for New Federal Buildings
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-18
... Efficiency and Sustainable Design Standards for New Federal Buildings AGENCY: Office of Energy Efficiency and....S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Federal Energy Management... June 11, 2010. Cathy Zoi, Assistant Secretary, Energy Efficiency and Renewable Energy. [FR Doc. 2010...
48 CFR 23.203 - Energy-efficient products.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 48 Federal Acquisition Regulations System 1 2011-10-01 2011-10-01 false Energy-efficient products... SOCIOECONOMIC PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Energy and Water Efficiency and Renewable Energy 23.203 Energy-efficient...
48 CFR 23.203 - Energy-efficient products.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 48 Federal Acquisition Regulations System 1 2010-10-01 2010-10-01 false Energy-efficient products... SOCIOECONOMIC PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Energy and Water Efficiency and Renewable Energy 23.203 Energy-efficient...
48 CFR 23.203 - Energy-efficient products.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 48 Federal Acquisition Regulations System 1 2014-10-01 2014-10-01 false Energy-efficient products... SOCIOECONOMIC PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Energy and Water Efficiency and Renewable Energy 23.203 Energy-efficient...
48 CFR 23.203 - Energy-efficient products.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 48 Federal Acquisition Regulations System 1 2013-10-01 2013-10-01 false Energy-efficient products... SOCIOECONOMIC PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Energy and Water Efficiency and Renewable Energy 23.203 Energy-efficient...
48 CFR 23.203 - Energy-efficient products.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 48 Federal Acquisition Regulations System 1 2012-10-01 2012-10-01 false Energy-efficient products... SOCIOECONOMIC PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Energy and Water Efficiency and Renewable Energy 23.203 Energy-efficient...
USDA-ARS?s Scientific Manuscript database
The objective of this study was to manipulate the lean to fat ratio by feeding diets differing in lysine and metabolizable energy (ME) content to replacement gilts from 100 d to 260 d of age. A secondary objective was to evaluate lysine and caloric efficiency between dietary treatments fed to develo...
Selecting a Control Strategy for Plug and Process Loads
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lobato, C.; Sheppy, M.; Brackney, L.
2012-09-01
Plug and Process Loads (PPLs) are building loads that are not related to general lighting, heating, ventilation, cooling, and water heating, and typically do not provide comfort to the building occupants. PPLs in commercial buildings account for almost 5% of U.S. primary energy consumption. On an individual building level, they account for approximately 25% of the total electrical load in a minimally code-compliant commercial building, and can exceed 50% in an ultra-high efficiency building such as the National Renewable Energy Laboratory's (NREL) Research Support Facility (RSF) (Lobato et al. 2010). Minimizing these loads is a primary challenge in the designmore » and operation of an energy-efficient building. A complex array of technologies that measure and manage PPLs has emerged in the marketplace. Some fall short of manufacturer performance claims, however. NREL has been actively engaged in developing an evaluation and selection process for PPLs control, and is using this process to evaluate a range of technologies for active PPLs management that will cap RSF plug loads. Using a control strategy to match plug load use to users' required job functions is a huge untapped potential for energy savings.« less
Comparative Evaluation of Energy Measurement Models for Transit Systems
DOT National Transportation Integrated Search
1984-02-01
Recent advances in solid state control technology have led to chopper-controlled propulsion systems in urban rail transit applications. Such systems offer the potential for superior train performance through increased train propulsion efficiency and ...
Materials Flow through Industry Supply Chain Modeling Tool | Advanced
efficiency. It also performs supply chain scale analyses to quantify the impacts and benefits of next , read Evaluating opportunities to improve material and energy impacts in commodity supply chains
Scientific challenges in sustainable energy technology
NASA Astrophysics Data System (ADS)
Lewis, Nathan
2006-04-01
We describe and evaluate the technical, political, and economic challenges involved with widespread adoption of renewable energy technologies. First, we estimate fossil fuel resources and reserves and, together with the current and projected global primary power production rates, estimate the remaining years of oil, gas, and coal. We then compare the conventional price of fossil energy with that from renewable energy technologies (wind, solar thermal, solar electric, biomass, hydroelectric, and geothermal) to evaluate the potential for a transition to renewable energy in the next 20-50 years. Secondly, we evaluate - per the Intergovernmental Panel on Climate Change - the greenhouse constraint on carbon-based power consumption as an unpriced externality to fossil-fuel use, considering global population growth, increased global gross domestic product, and increased energy efficiency per unit GDP. This constraint is projected to drive the demand for carbon-free power well beyond that produced by conventional supply/demand pricing tradeoffs, to levels far greater than current renewable energy demand. Thirdly, we evaluate the level and timescale of R&D investment needed to produce the required quantity of carbon-free power by the 2050 timeframe. Fourth, we evaluate the energy potential of various renewable energy resources to ascertain which resources are adequately available globally to support the projected demand. Fifth, we evaluate the challenges to the chemical sciences to enable the cost-effective production of carbon-free power required. Finally, we discuss the effects of a change in primary power technology on the energy supply infrastructure and discuss the impact of such a change on the modes of energy consumption by the energy consumer and additional demands on the chemical sciences to support such a transition in energy supply.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kosourov, Sergey; Murukesan, Gayathri; Seibert, Michael
Cyanobacteria and green algae harness solar energy to split water and to fix CO 2. Under specific conditions, they are capable of photoproduction of molecular hydrogen (H 2). This study compares the light-energy-to-hydrogen-energy conversion efficiency (LHCE) in two heterocystous, N 2-fixing cyanobacteria (wild-type Calothrix sp. strain 336/3 and the ΔhupL mutant of Anabaena sp. strain PCC 7120) and in the sulfur-deprived green alga, Chlamydomonas reinhardtii strain CC-124, after entrapment of the cells in thin Ca 2+-alginate films. The experiments, performed under photoautotrophic conditions, showed higher LHCEs in the cyanobacteria as compared to the green alga. The highest efficiency of ca.more » 2.5% was obtained in films of the entrapped ΔhupL strain under low light condition (2.9 W m -2). Calothrix sp. 336/3 films produced H 2 with a maximum efficiency of 0.6% under 2.9 W m -2, while C. reinhardtii films produced H 2 most efficiently under moderate light (0.14% at 12.1 W m -2). Exposure of the films to light above 16 W m -2 led to noticeable oxidative stress in all three strains, which increased with light intensity. The presence of oxidative stress was confirmed by increased (i) degradation of chlorophylls and some structural carotenoids (such as β-carotene), (ii) production of hydroxylated carotenoids (such as zeaxanthin), and (iii) carbonylation of proteins. We conclude that the H 2 photoproduction efficiency in immobilized algae and cyanobacteria can be further improved by entrapping cultures in immobilization matrices with increased permeability for gases, especially oxygen, while matrices with low porosity produced increased amounts of xanthophylls and other antioxidant compounds.« less
Kosourov, Sergey; Murukesan, Gayathri; Seibert, Michael; ...
2017-10-14
Cyanobacteria and green algae harness solar energy to split water and to fix CO 2. Under specific conditions, they are capable of photoproduction of molecular hydrogen (H 2). This study compares the light-energy-to-hydrogen-energy conversion efficiency (LHCE) in two heterocystous, N 2-fixing cyanobacteria (wild-type Calothrix sp. strain 336/3 and the ΔhupL mutant of Anabaena sp. strain PCC 7120) and in the sulfur-deprived green alga, Chlamydomonas reinhardtii strain CC-124, after entrapment of the cells in thin Ca 2+-alginate films. The experiments, performed under photoautotrophic conditions, showed higher LHCEs in the cyanobacteria as compared to the green alga. The highest efficiency of ca.more » 2.5% was obtained in films of the entrapped ΔhupL strain under low light condition (2.9 W m -2). Calothrix sp. 336/3 films produced H 2 with a maximum efficiency of 0.6% under 2.9 W m -2, while C. reinhardtii films produced H 2 most efficiently under moderate light (0.14% at 12.1 W m -2). Exposure of the films to light above 16 W m -2 led to noticeable oxidative stress in all three strains, which increased with light intensity. The presence of oxidative stress was confirmed by increased (i) degradation of chlorophylls and some structural carotenoids (such as β-carotene), (ii) production of hydroxylated carotenoids (such as zeaxanthin), and (iii) carbonylation of proteins. We conclude that the H 2 photoproduction efficiency in immobilized algae and cyanobacteria can be further improved by entrapping cultures in immobilization matrices with increased permeability for gases, especially oxygen, while matrices with low porosity produced increased amounts of xanthophylls and other antioxidant compounds.« less
Energy use in the marine transportation industry. Task II. Efficiency improvements. Draft report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1977-06-02
Research and development areas that hold promise for maritime energy conservation are identified and evaluated. The methodology used in the evaluation of potential research areas and results, conclusions, and recommendations are presented. Fifteen programs are identified in four generic technologies and these are discussed in detail in appendices A-D. The areas are: main propulsion plants, propulsors, hydrodynamics, and vessel operations. Fuels are discussed briefly in appendix E. Additional information is presented on the generic US flag baseline operational and cost parameters; a sample output model is presented. (MCW)
Experimental thermodynamics of single molecular motor
Toyabe, Shoichi; Muneyuki, Eiro
2013-01-01
Molecular motor is a nano-sized chemical engine that converts chemical free energy to mechanical motions. Hence, the energetics is as important as kinetics in order to understand its operation principle. We review experiments to evaluate the thermodynamic properties of a rotational F1-ATPase motor (F1-motor) at a single-molecule level. We show that the F1-motor achieves 100% thermo dynamic efficiency at the stalled state. Furthermore, the motor reduces the internal irreversible heat inside the motor to almost zero and achieves a highly-efficient free energy transduction close to 100% during rotations far from quasistatic process. We discuss the mechanism of how the F1-motor achieves such a high efficiency, which highlights the remarkable property of the nano-sized engine F1-motor. PMID:27493546
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parker, D.; Sutherland, K.; Chasar, D.
The U.S. Department of Energy (DOE) Building America program, in collaboration with Florida Power and Light (FPL), conducted a phased residential energy-efficiency retrofit program. This research sought to establish impacts on annual energy and peak energy reductions from the technologies applied at two levels of retrofit - shallow and deep, with savings levels approaching the Building America program goals of reducing whole-house energy use by 40%. Under the Phased Deep Retrofit (PDR) project, we have installed phased, energy-efficiency retrofits in a sample of 56 existing, all-electric homes. End-use savings and economic evaluation results from the phased measure packages and singlemore » measures are summarized in this report. Project results will be of interest to utility program designers, weatherization evaluators, and the housing remodel industry. Shallow retrofits were conducted in all homes from March to June 2013. The measures for this phase were chosen based on ease of installation, targeting lighting (CFLs and LED lamps), domestic hot water (wraps and showerheads), refrigeration (cleaning of coils), pool pump (reduction of operating hours), and the home entertainment center (smart plugs). Deep retrofits were conducted on a subset of ten PDR homes from May 2013 through March 2014. Measures included new air source heat pumps, duct repair, ceiling insulation, heat pump water heaters, variable speed pool pumps and learning thermostats. Major appliances such as refrigerators and dishwashers were replaced where they were old and inefficient.« less
Pump/Control System Minimum Operating Cost Testing
NASA Technical Reports Server (NTRS)
1977-01-01
A preliminary evaluation of pump performance was initiated to determine the efficiencies of an arbitrary group of small pumps. Trends in factors affecting energy usage in typical prime movers which might be used in liquid transport solar systems were assessed. Comparisons of centrifugal pump efficiencies were made from one manufacturer to another. Tests were also made on two positive-displacement pumps and comparisons with centrifugal pumps were observed.
Integrated photovoltaic-thermal solar energy conversion systems
NASA Technical Reports Server (NTRS)
Samara, G. A.
1975-01-01
A combined photovoltaic/thermal collector has been built and is now being tested. Initial tests have concentrated on evaluating the thermal efficiency of the collector before and after the silicon cells are mounted. With likely improvements in bonding between cells and receiver and in the absorptivity of the cells, thermal efficiencies greater than 50% can be expected for the combined receiver operating at 100 C.
NREL Fuels and Engines R&D Revs Up Vehicle Efficiency, Performance
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
NREL bridges fuels and engines R&D to maximize vehicle efficiency and performance. The lab’s fuels and engines research covers the full spectrum of innovation—from fuel chemistry, conversion, and combustion to the evaluation of how fuels interact with engine and vehicle design. This innovative approach has the potential to positively impact our economy, national energy security, and air quality.
NASA Technical Reports Server (NTRS)
Wolf, M.
1979-01-01
To facilitate the task of objectively comparing competing process options, a methodology was needed for the quantitative evaluation of their relative cost effectiveness. Such a methodology was developed and is described, together with three examples for its application. The criterion for the evaluation is the cost of the energy produced by the system. The method permits the evaluation of competing design options for subsystems, based on the differences in cost and efficiency of the subsystems, assuming comparable reliability and service life, or of competing manufacturing process options for such subsystems, which include solar cells or modules. This process option analysis is based on differences in cost, yield, and conversion efficiency contribution of the process steps considered.
A long-term, integrated impact assessment of alternative building energy code scenarios in China
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Sha; Eom, Jiyong; Evans, Meredydd
2014-04-01
China is the second largest building energy user in the world, ranking first and third in residential and commercial energy consumption. Beginning in the early 1980s, the Chinese government has developed a variety of building energy codes to improve building energy efficiency and reduce total energy demand. This paper studies the impact of building energy codes on energy use and CO2 emissions by using a detailed building energy model that represents four distinct climate zones each with three building types, nested in a long-term integrated assessment framework GCAM. An advanced building stock module, coupled with the building energy model, ismore » developed to reflect the characteristics of future building stock and its interaction with the development of building energy codes in China. This paper also evaluates the impacts of building codes on building energy demand in the presence of economy-wide carbon policy. We find that building energy codes would reduce Chinese building energy use by 13% - 22% depending on building code scenarios, with a similar effect preserved even under the carbon policy. The impact of building energy codes shows regional and sectoral variation due to regionally differentiated responses of heating and cooling services to shell efficiency improvement.« less
10 CFR 431.16 - Test procedures for the measurement of energy efficiency.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 3 2011-01-01 2011-01-01 false Test procedures for the measurement of energy efficiency. 431.16 Section 431.16 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR... Methods of Determining Efficiency § 431.16 Test procedures for the measurement of energy efficiency. For...
10 CFR 431.16 - Test procedures for the measurement of energy efficiency.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 3 2010-01-01 2010-01-01 false Test procedures for the measurement of energy efficiency. 431.16 Section 431.16 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR... Methods of Determining Efficiency § 431.16 Test procedures for the measurement of energy efficiency. For...