Sample records for energy efficiency practices

  1. Data Center Energy Efficiency Standards in India: Preliminary Findings from Global Practices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raje, Sanyukta; Maan, Hermant; Ganguly, Suprotim

    Global data center energy consumption is growing rapidly. In India, information technology industry growth, fossil-fuel generation, and rising energy prices add significant operational costs and carbon emissions from energy-intensive data centers. Adoption of energy-efficient practices can improve the global competitiveness and sustainability of data centers in India. Previous studies have concluded that advancement of energy efficiency standards through policy and regulatory mechanisms is the fastest path to accelerate the adoption of energy-efficient practices in the Indian data centers. In this study, we reviewed data center energy efficiency practices in the United States, Europe, and Asia. Using evaluation metrics, we identifiedmore » an initial set of energy efficiency standards applicable to the Indian context using the existing policy mechanisms. These preliminary findings support next steps to recommend energy efficiency standards and inform policy makers on strategies to adopt energy-efficient technologies and practices in Indian data centers.« less

  2. Industrial Energy Efficiency Practices in Indonesia: Lesson Learned from Astra Green Energy (AGen) Award

    NASA Astrophysics Data System (ADS)

    Telaga, A. S.; Hartanto, I. D.

    2017-03-01

    Many countries have used award system to promote energy efficiency practices in industry. The award system has been found to have significant impact to increase energy conservation and sustainability adoption in companies. Astra International (AI) as a holding company of more than 200 companies also organised Astra green energy (AGen) award to all affiliated companies (AFFCO) in Astra group. The event has been used to share energy efficiency best practices among AFFCO in Astra group. AFFCOs of Astra International are among the biggest and the leader in their industrial sectors Therefore, analyses from AFFO’s energy efficiency case studies represents current practices in Indonesia industrial sectors. Analyses are divided into industry, building, and renewable energy. The results from analyses found that AFFCOs already aware of energy conservation and have implemented projects to promote energy efficiency. However, the AFFCOs do not optimally use monitoring data for energy reduction.

  3. Contracting for Efficiency. A Best Practices Guide for Energy-Efficient Product Procurement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bunch, Saralyn; Payne, Christopher

    2016-04-01

    The requirement to buy energy- and water-efficient products applies to federal purchases made through any procurement pathway (e.g., purchase cards, e-retailers, and solicitations) and to a wide variety of federal projects. The Federal Energy Management Program’s (FEMP's) Buy Energy-Efficient Products buyer overview fact sheet and Contracting for Efficiency best practices guide for product procurement are designed to support federal buyers in the purchase of energy- and water-efficient products.

  4. Contracting for Efficiency: A Best Practices Guide for Energy Efficient Product Procurement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bunch, Saralyn; Payne, Christopher

    The requirement to buy energy- and water-efficient products applies to federal purchases made through any procurement pathway (e.g., purchase cards, e-retailers, and solicitations) and to a wide variety of federal projects. The Federal Energy Management Program’s (FEMP's) Buy Energy-Efficient Products buyer overview fact sheet and Contracting for Efficiency best practices guide for product procurement are designed to support federal buyers in the purchase of energy- and water-efficient products.

  5. Storying energy consumption: Collective video storytelling in energy efficiency social marketing.

    PubMed

    Gordon, Ross; Waitt, Gordon; Cooper, Paul; Butler, Katherine

    2018-05-01

    Despite calls for more socio-technical research on energy, there is little practical advice to how narratives collected through qualitative research may be melded with technical knowledge from the physical sciences such as engineering and then applied in energy efficiency social action strategies. This is despite established knowledge in the environmental management literature about domestic energy use regarding the utility of social practice theory and narrative framings that socialise everyday consumption. Storytelling is positioned in this paper both as a focus for socio-technical energy research, and as one potential practical tool that can arguably enhance energy efficiency interventions. We draw upon the literature on everyday social practices, and storytelling, to present our framework called 'collective video storytelling' that combines scientific and lay knowledge about domestic energy use to offer a practical tool for energy efficiency management. Collective video storytelling is discussed in the context of Energy+Illawarra, a 3-year cross-disciplinary collaboration between social marketers, human geographers, and engineers to target energy behavioural change within older low-income households in regional NSW, Australia. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Southwest Energy Efficiency Project (SWEEP) Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geller, Howard; Meyers, Jim

    SWEEP worked with Energy Efficiency and Renewable Energy (EERE) programs to foster greater energy efficiency throughout the Southwest. SWEEP accomplished this through a combination of analysis and support; preparation and distribution of materials on best practice technologies, policies and programs; and technical assistance and information dissemination to states and municipalities in the southwest supporting BTO, AMO, OWIP for advancement of efficiency in products and practices. These efforts were accomplished during the period 2012 through 2017.

  7. Reducing electrocoagulation harvesting costs for practical microalgal biodiesel production.

    PubMed

    Dassey, Adam J; Theegala, Chandra S

    2014-01-01

    Electrocoagulation has shown potential to be a primary microalgae harvesting technique for biodiesel production. However, methods to reduce energy and electrode costs are still necessary for practical application. Electrocoagulation tests were conducted on Nannochloris sp. and Dunaliella sp. using perforated aluminium and iron electrodes under various charge densities. Aluminium electrodes were shown to be more efficient than iron electrodes when harvesting both algal species. Despite the lower harvesting efficiency, however, the iron electrodes were more energy and cost efficient. Operational costs of less than $0.03/L oil were achieved when harvesting Nannochloris sp. with iron electrodes at 35% harvest efficiency, whereas aluminium electrodes cost $0.75/L oil with 42% harvesting efficiency. Increasing the harvesting efficiencies for both aluminium and iron electrodes also increased the overall cost per litre of oil, therefore lower harvesting efficiencies with lower energy inputs was recommended. Also, increasing the culturing salinity to 2 ppt sodium chloride for freshwater Nannochloris sp. was determined practical to improve the electrocoagulation energy efficiency despite a 25% reduction in cell growth.

  8. Barriers to Industrial Energy Efficiency - Report to Congress, June 2015

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2015-06-01

    This report examines barriers that impede the adoption of energy efficient technologies and practices in the industrial sector, and identifies successful examples and opportunities to overcome these barriers. Three groups of energy efficiency technologies and measures were examined: industrial end-use energy efficiency, industrial demand response, and industrial combined heat and power. This report also includes the estimated economic benefits from hypothetical Federal energy efficiency matching grants, as directed by the Act.

  9. Clean Energy Manufacturing Initiative Industrial Efficiency and Energy Productivity

    ScienceCinema

    Selldorff, John; Atwell, Monte

    2018-05-18

    Industrial efficiency and low-cost energy resources are key components to increasing U.S. energy productivity and makes the U.S. manufacturing sector more competitive. Companies find a competitive advantage in implementing efficiency technologies and practices, and technologies developed and manufactured in the U.S. enable greater competitiveness economy-wide.

  10. Approaches to the Organization of the Energy Efficient Activity at the Regional Level in the Context of Limited Budget Resources during the Transformation of Energy Market Paradigm

    NASA Astrophysics Data System (ADS)

    Vakulenko, Ihor; Myroshnychenko, Iuliia

    2015-12-01

    The research is devoted to the problem of the assessment of the integrated projects investment efficiency, energy saving and energy efficiency measures for social and municipal buildings within the course aimed at the reduction of the natural gas consumption and its replacement by alternative fuel types, that is important for a number of European countries, and Ukraine in particular. The objectives of the research are as follows: comparative assessment of the quality of integrated and element-by-element approaches to energy saving encompassing investment, environmental, social and organizational aspects; the formulation of practical recommendations to improve the efficiency of development and implementation of integrated programs in the field of energy saving and energy efficiency. It is proposed to use the methodology of system analysis with the elements of deduction that is practical and that allows to set key factors that influence the processes of energy replacement and energy efficiency increase, as well as factors that constrain them.

  11. Current On-Campus Attitudes toward Energy Usage, Efficiency, and Emerging Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lennon, Liz; Sintov, Nicole; Orosz, Michael

    Context & Background for Energy Survey Methods & Survey Overview Respondent Demographics Results Demand Response Current Environmental Comfort Perceptions Smart Meters Perceived Smart Meter Benefits Motivators of Energy Efficient Practices Summary & Implications

  12. Final Technical Report: "Achieving Regional Energy Efficiency Potential in the Southeast”

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahoney, Mandy

    The overall objective of this award was to facilitate sharing of DOE resources and best practices as well as provide technical assistance to key stakeholders to support greater compliance with energy efficiency standards and increased energy savings. The outcomes of this award include greater awareness among key stakeholders on energy efficiency topics, increased deployment and utilization of DOE resources, and effective policies and programs to support energy efficiency in the Southeast.

  13. Cyber physical systems based on cloud computing and internet of things for energy efficiency

    NASA Astrophysics Data System (ADS)

    Suciu, George; Butca, Cristina; Suciu, Victor; Cretu, Alexandru; Fratu, Octavian

    2016-12-01

    Cyber Physical Systems (CPS) and energy efficiency play a major role in the context of industry expansion. Management practices for improving efficiency in the field of energy consumption became a priority of many major industries who are inefficient in terms of exploitation costs. The effort of adopting energy management means in an organization is quite challenging due to the lack of resources and expertise. One major problem consists in the lack of knowledge for energy management and practices. This paper aims to present authors' concept in creating a Cyber Physical Energy System (CPES) that will change organizations' way of consuming energy, by making them aware of their use. The presented concept will consider the security of the whole system and the easy integration with the existing electric network infrastructure.

  14. O&M Best Practices - A Guide to Achieving Operational Efficiency (Release 2.0)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sullivan, Gregory P.; Pugh, Ray; Melendez, Aldo P.

    2004-07-31

    This guide, sponsored by DOE's Federal Energy Management Program, highlights operations and maintenance (O&M) programs targeting energy efficiency that are estimated to save 5% to 20% on energy bills without a significant capital investment. The purpose of this guide is to provide the federal O&M energy manager and practitioner with useful information about O&M management, technologies, energy efficiency and cost-reduction approaches.

  15. Energy conservation awareness and practice in restaurants of Hennepin County, Minnesota.

    PubMed

    Brondum, Jack; Palchick, Susan

    2012-12-01

    Greenhouse gases result mainly from the combustion of fossil fuels in energy use. Restaurants use large amounts of energy in their operation but systematically gathered information about such use is lacking. Hennepin County Human Services and Public Health Department surveyed owners of licensed restaurants to assess their energy use and awareness of energy conservation measures. Of 434 owners surveyed, 276 (63.6%) returned completed surveys. Responses indicated that large pluralities or majorities of restaurant owners often were aware of energy-efficient methods of operation and the means to achieve greater efficiency but used such means much less frequently. For example, 57% of respondents were familiar with the U.S. Environmental Protection Agency's Energy Star program, but only 33% of this group actually used Energy Star appliances. Given the gap between awareness and practice, opportunities for consultation and outreach to restaurant owners about energy-efficient business operation are manifold.

  16. Financial Incentives to Enable Clean Energy Deployment: Policy Overview and Good Practices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cox, Sadie

    Financial incentives have been widely implemented by governments around the world to support scaled up deployment of renewable energy and energy efficiency technologies and practices. As of 2015, at least 48 countries have adopted financial incentives to support renewable energy and energy efficiency deployment. Broader clean energy strategies and plans provide a crucial foundation for financial incentives that often complement regulatory policies such as renewable energy targets, standards, and other mandates. This policy brief provides a primer on key financial incentive design elements, lessons from different country experiences, and curated support resources for more detailed and country-specific financial incentive designmore » information.« less

  17. Certifying Industrial Energy Efficiency Performance: AligningManagement, Measurement, and Practice to Create Market Value

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McKane, Aimee; Scheihing, Paul; Williams, Robert

    2007-07-01

    More than fifteen years after the launch of programs in theU.K. and U.S., industry still offers one of the largest opportunities forenergy savings worldwide. The International Energy Agency (IEA) estimatesthe savings potential from cost-optimization of industrial motor-drivensystems alone at 7 percent of global electricity use. The U.S. Departmentof Energy (USDOE) Industrial Technologies Program estimates 7 percentsavings potential in total US industrial energy use through theapplication of proven best practice. Simple paybacks for these types ofprojects are frequently two years or less. The technology required toachieve these savings is widely available; the technical skills requiredto identify energy saving opportunities are knownmore » and transferable.Although programs like USDOE's Best Practices have been highlysuccessful, most plants, as supported by 2002 MECS data, remain eitherunaware or unmotivated to improve their energy efficiency--as evidencedby the 98 percent of US industrial facilities reporting to MECS say thatthey lack a full-time energy manager. With the renewed interest in energyefficiency worldwide and the emergence of carbon trading and newfinancial instruments such as white certificates1, there is a need tointroduce greater transparency into the way that industrial facilitiesidentify, develop, and document energy efficiency projects. Historically,industrial energy efficiency projects have been developed by plantengineers, frequently with assistance from consultants and/or supplierswith highly specialized technical skills. Under this scenario,implementation of energy efficiency improvements is dependent onindividuals. These individuals typically include "champions" within anindustrial facility or corporation, working in cooperation withconsultants or suppliers who have substantial knowledge based on years ofexperience. This approach is not easily understood by others without thisspecialized technical knowledge, penetrates the market fairly slowly, andhas no assurance of persistence, since champions may leave the company orbe reassigned after project completion.This paper presents an alternatescenario that builds on the body of expert knowledge concerning energymanagement best practices and the experience of industrial champions toengage industry in continuous energy efficiency improvement at thefacility rather than the individual level. Under this scenario,standardized methodologies for applying and validating energy managementbest practices in industrial facilities will be developed through aconsensus process involving both plant personnel and specializedconsultants and suppliers. The resulting protocols will describe aprocess or framework for conducting an energy savings assessment andverifying the results that will be transparent to policymakers, managers,and the financial community, and validated by a third-party organization.Additionally, a global dialogue is being initiated by the United NationsIndustrial Development Organization (UNIDO) concerning the development ofan international industrial energy management standard that would be ISOcompatible. The proposed scenario will combine the resulting standardwith the best practice protocols for specific energy systems (i.e.,steam, process heating, compressed air, pumping systems, etc.) to formthe foundation of a third party, performance-based certification programfor the overall industrial facility that is compatible with existingmanagement systems, including ISO 9001:2000, 14001:2004 and 6 Sigma. Thelong term goal of this voluntary, industry designed certification programis to develop a transparent, globally accepted system for validatingenergy efficiency projects and management practices. This system wouldcreate a verified record of energy savings with potential market valuethat could be recognized among sectors and countries.« less

  18. Data-Driven Benchmarking of Building Energy Efficiency Utilizing Statistical Frontier Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kavousian, A; Rajagopal, R

    2014-01-01

    Frontier methods quantify the energy efficiency of buildings by forming an efficient frontier (best-practice technology) and by comparing all buildings against that frontier. Because energy consumption fluctuates over time, the efficiency scores are stochastic random variables. Existing applications of frontier methods in energy efficiency either treat efficiency scores as deterministic values or estimate their uncertainty by resampling from one set of measurements. Availability of smart meter data (repeated measurements of energy consumption of buildings) enables using actual data to estimate the uncertainty in efficiency scores. Additionally, existing applications assume a linear form for an efficient frontier; i.e.,they assume that themore » best-practice technology scales up and down proportionally with building characteristics. However, previous research shows that buildings are nonlinear systems. This paper proposes a statistical method called stochastic energy efficiency frontier (SEEF) to estimate a bias-corrected efficiency score and its confidence intervals from measured data. The paper proposes an algorithm to specify the functional form of the frontier, identify the probability distribution of the efficiency score of each building using measured data, and rank buildings based on their energy efficiency. To illustrate the power of SEEF, this paper presents the results from applying SEEF on a smart meter data set of 307 residential buildings in the United States. SEEF efficiency scores are used to rank individual buildings based on energy efficiency, to compare subpopulations of buildings, and to identify irregular behavior of buildings across different time-of-use periods. SEEF is an improvement to the energy-intensity method (comparing kWh/sq.ft.): whereas SEEF identifies efficient buildings across the entire spectrum of building sizes, the energy-intensity method showed bias toward smaller buildings. The results of this research are expected to assist researchers and practitioners compare and rank (i.e.,benchmark) buildings more robustly and over a wider range of building types and sizes. Eventually, doing so is expected to result in improved resource allocation in energy-efficiency programs.« less

  19. Energy-Efficient Schools: Three Case Studies from Oregon.

    ERIC Educational Resources Information Center

    2003

    This document presents case studies of three schools or districts in Oregon that have implemented steps to promote energy efficiency. Steps taken by the schools include daylighting, energy audits, special energy loans, new ventilation design, and sustainable building practices. The facilities described are Ash Creek Intermediate School in…

  20. Gaining Campaign Support through Peer Networking: An Impact Analysis of Energy Efficiency Projects in Malaysia

    ERIC Educational Resources Information Center

    Mustafa, Hasrina

    2010-01-01

    This article presents a comprehensive evaluation of the impact of two community projects on energy efficiency held in Malaysia in January 2008. Specifically, the study was undertaken to compare levels of attitudes and practices of energy efficiency between baseline and post-campaign survey; compare electricity consumptions before, one month after,…

  1. Study on improving rail energy efficiency (E2) : best practices and strategies

    DOT National Transportation Integrated Search

    2015-03-23

    A recent Volpe Center report [1] for the Federal Railroad Administrations (FRA) Rail Energy, Environment, and Engine (E3) Technology research and development program reviewed rail industry best practices (BPs) and strategies for improving energy e...

  2. Electrochemistry of the Zinc-Silver Oxide System. Part 2: Practical Measurements of Energy Conversion Using Commercial Miniature Cells.

    ERIC Educational Resources Information Center

    Smith, Michael J.; Vincent, Colin A.

    1989-01-01

    Summarizes the quantitative relationships pertaining to the operation of electrochemical cells. Energy conversion efficiency, cycle efficiency, battery power, and energy/power density of two types of zinc-silver oxide cells are discussed. (YP)

  3. Energy Efficient Cryogenics

    NASA Technical Reports Server (NTRS)

    Meneghelli, Barry J.; Notardonato, William; Fesmire, James E.

    2016-01-01

    The Cryogenics Test Laboratory, NASA Kennedy Space Center, works to provide practical solutions to low-temperature problems while focusing on long-term technology targets for the energy-efficient use of cryogenics on Earth and in space.

  4. Potential for Increasing the Output of Existing Hydroelectric Plants.

    DTIC Science & Technology

    1981-06-01

    existing units to higher generating capacity by rehabilitating, modifying or replacing turbines and/or generators; increasing the effective...loss in converting fluid energy (flow and head) to mechanical energy ( turbine output) to electrical energy (generator output). The significant practical...opportunity is improvement of the energy conversion efficiency of the hydraulic turbine since the energy conversion efficiency of electrical

  5. Energy Efficient Cryogenics on Earth and in Space

    NASA Technical Reports Server (NTRS)

    Fesmire, James E.

    2012-01-01

    The Cryogenics Test Laboratory, NASA Kennedy Space Center, works to provide practical solutions to low-temperature problems while focusing on long-term technology targets for energy-efficient cryogenics on Earth and in space.

  6. Transforming State-of-the-Art into Best Practice: A Guide for High-Performance Energy Efficient Buildings in India

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Reshma; Ravache, Baptiste; Sartor, Dale

    India launched the Energy Conservation Building Code (ECBC) in 2007, and a revised version in 2017 as ambitious first steps towards promoting energy efficiency in the building sector. Pioneering early adopters—building owners, A&E firms, and energy consultants—have taken the lead to design customized solutions for their energy-efficient buildings. This Guide offers a synthesizing framework, critical lessons, and guidance to meet and exceed ECBC. Its whole-building lifecycle assurance framework provides a user-friendly methodology to achieve high performance in terms of energy, environmental, and societal impact. Class A offices are selected as a target typology, being a high-growth sector, with significant opportunitiesmore » for energy savings. The practices may be extrapolated to other commercial building sectors, as well as extended to other regions with similar cultural, climatic, construction, and developmental contexts« less

  7. Prediction of 4H-SiC betavoltaic microbattery characteristics based on practical Ni-63 sources.

    PubMed

    Gui, Gui; Zhang, Kan; Blanchard, James P; Ma, Zhenqiang

    2016-01-01

    We have investigated the performance of 4H-SiC betavoltaic microbatteries under exposure to the practical Ni-63 sources using the Monte Carlo method and Synopsys® Medici device simulator. A typical planar p-n junction betavoltaic device with the Ni-63 source of 20% purity on top is modeled in the simulation. The p-n junction structure includes a p+ layer, a p- layer, an n+ layer, and an n- layer. In order to obtain an accurate and valid predication, our simulations consider several practical factors, including isotope impurities, self-absorption, and full beta energy spectra. By simulating the effects of both the p-n junction configuration and the isotope source thickness on the battery output performance, we have achieved the optimal design of the device and maximum energy conversion efficiency. Our simulation results show that the energy conversion efficiency increases as the doping concentration and thickness of the p- layer increase, whereas it is independent of the total depth of the p-n junction. Furthermore, the energy conversion efficiency decreases as the thickness of the practical Ni-63 source increases, because of self-absorption in the isotope source. Therefore, we propose that a p-n junction betavoltaic cell with a thicker and heavily doped p- layer under exposure to a practical Ni-63 source with an appreciable thickness could produce the optimal energy conversion efficiency. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Operations & Maintenance Best Practices - A Guide to Achieving Operational Efficiency Release 3.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    This Operations and Maintenance (O&M) Best Practices Guide was developed under the direction of the U.S. Department of Energy’s Federal Energy Management Program (FEMP). The mission of FEMP is to facilitate the Federal Government’s implementation of sound, cost effective energy management and investment practices to enhance the nation’s energy security and environmental stewardship.

  9. Building Technologies Office FY 2017 Budget At-A-Glance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2016-03-01

    Buildings and homes use more than 73% of the electrical energy consumed in the United States. They also consume 40% of the nation’s total energy, with an annual energy bill of $430 billion. These energy bills can be cost effectively reduced by 20%–50% or more through various energy-efficient technologies and techniques. The Building Technologies Office (BTO) will continue to develop and demonstrate advanced building efficiency technologies and practices to make buildings in the United States more efficient, affordable, and comfortable.

  10. A scalable and flexible hybrid energy storage system design and implementation

    NASA Astrophysics Data System (ADS)

    Kim, Younghyun; Koh, Jason; Xie, Qing; Wang, Yanzhi; Chang, Naehyuck; Pedram, Massoud

    2014-06-01

    Energy storage systems (ESS) are becoming one of the most important components that noticeably change overall system performance in various applications, ranging from the power grid infrastructure to electric vehicles (EV) and portable electronics. However, a homogeneous ESS is subject to limited characteristics in terms of cost, efficiency, lifetime, etc., by the energy storage technology that comprises the ESS. On the other hand, hybrid ESS (HESS) are a viable solution for a practical ESS with currently available technologies as they have potential to overcome such limitations by exploiting only advantages of heterogeneous energy storage technologies while hiding their drawbacks. However, the HESS concept basically mandates sophisticated design and control to actually make the benefits happen. The HESS architecture should be able to provide controllability of many parts, which are often fixed in homogeneous ESS, and novel management policies should be able to utilize the control features. This paper introduces a complete design practice of a HESS prototype to demonstrate scalability, flexibility, and energy efficiency. It is composed of three heterogenous energy storage elements: lead-acid batteries, lithium-ion batteries, and supercapacitors. We demonstrate a novel system control methodology and enhanced energy efficiency through this design practice.

  11. An Assessment Model for Energy Efficiency Program Planning in Electric Utilities: Case of the Pacific of Northwest U.S.A

    NASA Astrophysics Data System (ADS)

    Iskin, Ibrahim

    Energy efficiency stands out with its potential to address a number of challenges that today's electric utilities face, including increasing and changing electricity demand, shrinking operating capacity, and decreasing system reliability and flexibility. Being the least cost and least risky alternative, the share of energy efficiency programs in utilities' energy portfolios has been on the rise since the 1980s, and their increasing importance is expected to continue in the future. Despite holding great promise, the ability to determine and invest in only the most promising program alternatives plays a key role in the successful use of energy efficiency as a utility-wide resource. This issue becomes even more significant considering the availability of a vast number of potential energy efficiency programs, the rapidly changing business environment, and the existence of multiple stakeholders. This dissertation introduces hierarchical decision modeling as the framework for energy efficiency program planning in electric utilities. The model focuses on the assessment of emerging energy efficiency programs and proposes to bridge the gap between technology screening and cost/benefit evaluation practices. This approach is expected to identify emerging technology alternatives which have the highest potential to pass cost/benefit ratio testing procedures and contribute to the effectiveness of decision practices in energy efficiency program planning. The model also incorporates rank order analysis and sensitivity analysis for testing the robustness of results from different stakeholder perspectives and future uncertainties in an attempt to enable more informed decision-making practices. The model was applied to the case of 13 high priority emerging energy efficiency program alternatives identified in the Pacific Northwest, U.S.A. The results of this study reveal that energy savings potential is the most important program management consideration in selecting emerging energy efficiency programs. Market dissemination potential and program development and implementation potential are the second and third most important, whereas ancillary benefits potential is the least important program management consideration. The results imply that program value considerations, comprised of energy savings potential and ancillary benefits potential; and program feasibility considerations, comprised of program development and implementation potential and market dissemination potential, have almost equal impacts on assessment of emerging energy efficiency programs. Considering the overwhelming number of value-focused studies and the few feasibility-focused studies in the literature, this finding clearly shows that feasibility-focused studies are greatly understudied. The hierarchical decision model developed in this dissertation is generalizable. Thus, other utilities or power systems can adopt the research steps employed in this study as guidelines and conduct similar assessment studies on emerging energy efficiency programs of their interest.

  12. DOE Zero Energy Ready Home Case Study: Amaris Custom Homes, St.Paul, Minnesota; DOE Zero Energy Ready Home Case Study, Energy Efficiency & Renewable Energy (EERE)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2015-06-01

    For this project Amaris worked with U.S. Department of Energy (DOE) team, NorthernSTAR Building America Partnership, to approach zero energy in Minnesota's cold climate using reasonable, cost-effective, and replicable construction materials and practices. The result is a passive solar, super-efficient 3542-ft2 walkout rambler with all the creature comforts.

  13. Best practices and strategies for improving rail energy efficiency

    DOT National Transportation Integrated Search

    2014-01-28

    In support of the FRA Energy, Environment, and Engine (E3) program, this study reviews and evaluates technology development opportunities, equipment upgrades, and best practices (BPs) of international and U.S. passenger and freight rail industry segm...

  14. Evaluating Domestic Hot Water Distribution System Options With Validated Analysis Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weitzel, E.; Hoeschele, M.

    2014-09-01

    A developing body of work is forming that collects data on domestic hot water consumption, water use behaviors, and energy efficiency of various distribution systems. A full distribution system developed in TRNSYS has been validated using field monitoring data and then exercised in a number of climates to understand climate impact on performance. This study builds upon previous analysis modelling work to evaluate differing distribution systems and the sensitivities of water heating energy and water use efficiency to variations of climate, load, distribution type, insulation and compact plumbing practices. Overall 124 different TRNSYS models were simulated. Of the configurations evaluated,more » distribution losses account for 13-29% of the total water heating energy use and water use efficiency ranges from 11-22%. The base case, an uninsulated trunk and branch system sees the most improvement in energy consumption by insulating and locating the water heater central to all fixtures. Demand recirculation systems are not projected to provide significant energy savings and in some cases increase energy consumption. Water use is most efficient with demand recirculation systems, followed by the insulated trunk and branch system with a central water heater. Compact plumbing practices and insulation have the most impact on energy consumption (2-6% for insulation and 3-4% per 10 gallons of enclosed volume reduced). The results of this work are useful in informing future development of water heating best practices guides as well as more accurate (and simulation time efficient) distribution models for annual whole house simulation programs.« less

  15. Chapter 1: Introduction. The Uniform Methods Project: Methods for Determining Energy-Efficiency Savings for Specific Measures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Michael; Haeri, Hossein; Reynolds, Arlis

    This chapter provides a set of model protocols for determining energy and demand savings that result from specific energy efficiency measures implemented through state and utility efficiency programs. The methods described here are approaches that are or are among the most commonly used and accepted in the energy efficiency industry for certain measures or programs. As such, they draw from the existing body of research and best practices for energy efficiency program evaluation, measurement, and verification (EM&V). These protocols were developed as part of the Uniform Methods Project (UMP), funded by the U.S. Department of Energy (DOE). The principal objectivemore » for the project was to establish easy-to-follow protocols based on commonly accepted methods for a core set of widely deployed energy efficiency measures.« less

  16. Work with Us | State, Local, and Tribal Governments | NREL

    Science.gov Websites

    take advantage of our policy, market, and technical expertise. Here's how you can work with us to meet (STAT)-solar market expertise and policy best practices Energy Efficiency Technical Assistance Team -energy efficiency policy and program expertise for states Tribal energy decision support-resources and

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    The Best Practices Manual was written as a part of the promotional effort for EnergySmart Schools, provided by the US Department of Energy, to educate school districts around the country about energy efficiency and renewable energy.

  18. Understanding Cost-Effectiveness of Energy Efficiency Programs: Best Practices, Technical Methods, and Emerging Issues for Policy-Makers

    EPA Pesticide Factsheets

    Reviews the issues and approaches involved in considering and adopting cost-effectiveness tests for energy efficiency, including discussing each perspective represented by the five standard cost-effectiveness tests and clarifying key terms.

  19. Simulation and energy analysis of distributed electric heating system

    NASA Astrophysics Data System (ADS)

    Yu, Bo; Han, Shenchao; Yang, Yanchun; Liu, Mingyuan

    2018-02-01

    Distributed electric heating system assistssolar heating systemby using air-source heat pump. Air-source heat pump as auxiliary heat sourcecan make up the defects of the conventional solar thermal system can provide a 24 - hour high - efficiency work. It has certain practical value and practical significance to reduce emissions and promote building energy efficiency. Using Polysun software the system is simulated and compared with ordinary electric boiler heating system. The simulation results show that upon energy request, 5844.5kW energy is saved and 3135kg carbon - dioxide emissions are reduced and5844.5 kWhfuel and energy consumption is decreased with distributed electric heating system. Theeffect of conserving energy and reducing emissions using distributed electric heating systemis very obvious.

  20. Solar energy receiver

    DOEpatents

    Schwartz, Jacob

    1978-01-01

    An improved long-life design for solar energy receivers provides for greatly reduced thermally induced stress and permits the utilization of less expensive heat exchanger materials while maintaining receiver efficiencies in excess of 85% without undue expenditure of energy to circulate the working fluid. In one embodiment, the flow index for the receiver is first set as close as practical to a value such that the Graetz number yields the optimal heat transfer coefficient per unit of pumping energy, in this case, 6. The convective index for the receiver is then set as closely as practical to two times the flow index so as to obtain optimal efficiency per unit mass of material.

  1. Low-cost and no-cost practice to achieve energy efficiency of government office buildings: A case study in federal territory of Malaysia

    NASA Astrophysics Data System (ADS)

    Tahir, Mohamad Zamhari; Nawi, Mohd Nasrun Mohd; Ibrahim, Amlus

    2016-08-01

    This paper presents the findings of a case study to achieve energy-efficient performance of conventional office buildings in Malaysia. Two multi-storey office buildings in Federal Territory of Malaysia have been selected. The aim is to study building energy saving potential then to highlight the appropriate measures that can be implemented. Data was collected using benchmarking method by comparing the measured consumption to other similar office buildings and a series of preliminary audit which involves interviews, a brief review of utility and operating data as well as a walkthrough in the buildings. Additionally, in order to get a better understanding of major energy consumption in the selected buildings, general audit have been conducted to collect more detailed information about building operation. In the end, this study emphasized low-cost and no-cost practice to achieve energy efficiency with significant results in some cases.

  2. Building America Best Practices Series Volume 12: Builders Challenge Guide to 40% Whole-House Energy Savings in the Cold and Very Cold Climates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baechler, Michael C.; Gilbride, Theresa L.; Hefty, Marye G.

    2011-02-01

    This best practices guide is the twelfth in a series of guides for builders produced by PNNL for the U.S. Department of Energy’s Building America program. This guide book is a resource to help builders design and construct homes that are among the most energy-efficient available, while addressing issues such as building durability, indoor air quality, and occupant health, safety, and comfort. With the measures described in this guide, builders in the cold and very cold climates can build homes that have whole-house energy savings of 40% over the Building America benchmark with no added overall costs for consumers. Themore » best practices described in this document are based on the results of research and demonstration projects conducted by Building America’s research teams. Building America brings together the nation’s leading building scientists with over 300 production builders to develop, test, and apply innovative, energy-efficient construction practices. Building America builders have found they can build homes that meet these aggressive energy-efficiency goals at no net increased costs to the homeowners. Currently, Building America homes achieve energy savings of 40% greater than the Building America benchmark home (a home built to mid-1990s building practices roughly equivalent to the 1993 Model Energy Code). The recommendations in this document meet or exceed the requirements of the 2009 IECC and 2009 IRC and thos erequirements are highlighted in the text. This document will be distributed via the DOE Building America website: www.buildingamerica.gov.« less

  3. Advanced Energy Retrofit Guide: Practical Ways to Improve Energy Performance, K-12 Schools (Book)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The U.S. Department of Energy developed the Advanced Energy Retrofit Guides (AERGs) to provide specific methodologies, information, and guidance to help energy managers and other stakeholders plan and execute energy efficiency improvements. Detailed technical discussion is fairly limited. Instead, we emphasize actionable information, practical methodologies, diverse case studies, and unbiased evaluations of the most promising retrofit energy efficiency measures for each building type. A series of AERGs is under development, addressing key segments of the commercial building stock. K-12 schools were selected as one of the highest priority building sectors, because schools affect the lives of most Americans. They alsomore » represent approximately 8% of the energy use and 10% of the floor area in commercial buildings nationwide. U.S. K-12 school districts spend more than $8 billion each year on energy - more than they spend on computers and textbooks combined. Most occupy older buildings that often have poor operational performance - more than 30% of schools were built before 1960. The average age of a school is about 42 years - which is nearly the expected serviceable lifespan of the building. K-12 schools offer unique opportunities for deep, cost-effective energy efficiency improvements, and this guide provides convenient and practical guidance for exploiting these opportunities in the context of public, private, and parochial schools.« less

  4. Rising Above the Water: New Orleans Implements Energy Efficiency and Sustainability Practices Following Hurricanes Katrina and Rita (Fact Sheet)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This fact sheet describes the technical assistance that the U.S. Department of Energy, through its National Renewable Energy Laboratory, provided to New Orleans, Louisiana, which helped the city incorporate energy efficiency into its rebuilding efforts for K-12 schools and homes following Hurricanes Katrina and Rita. NREL also provided support and analysis on energy policy efforts.

  5. Public policies, private choices: Consumer desire and the practice of energy efficiency

    NASA Astrophysics Data System (ADS)

    Deumling, Reuben Alexander

    Refrigerator energy consumption has been the subject of regulatory attention in the US for some thirty years. Federal product standards, energy labels, and a variety of programs to get consumers to discard their existing refrigerators sooner and buy new, more energy efficient ones have transformed the refrigerator landscape and changed how many of us think about refrigerators. The results of these policies are celebrated as a successful model for how to combine regulatory objectives and consumer preferences in pursuit of environmental outcomes where everyone wins. Yet per capita refrigerator energy consumption today remains (much) higher in the US than anywhere else, in part because energy efficiency overlooks the ways behavior, habit, emulation, social norms, advertising, and energy efficiency policies themselves shape energy consumption patterns. To understand these dynamics I investigate how people replacing their refrigerators through a state-sponsored energy efficiency program make sense of the choices facing them, and how various types of information designed to aid in this process (Consumer Reports tests, Energy Guide labels, rebate programs) frame the issue of responsible refrigerator consumption. Using interviews and archival research I examine how this information is used to script the choice of a refrigerator, whose priorities shape the form and content of these cues, and what the social meanings generated by and through encounters with refrigerators and energy efficiency are. I also helped build a model for estimating historic refrigerator energy consumption in the US, to measure the repercussions of refrigerator energy inefficiency. My focus in this dissertation is on the ways the pursuit of energy efficiency improvements for domestic refrigerators intersects with and sometimes reinforces escalating demand for energy. My research suggests that the practice of pursuing energy efficiency improvements in refrigerators subordinates the issue of refrigerator energy consumption---what factors influence it, how and why it fluctuated historically, how to take it seriously---in pursuit of increased sales. The a priori assumption that consumers desire certain styles of refrigerator has become a compulsion to trade up. In evaluating the results of energy policies celebrating technical achievements without paying attention to the social dynamics which these regulations encounter is insufficient.

  6. Hybrid Pressure Retarded Osmosis-Membrane Distillation System for Power Generation from Low-Grade Heat: Thermodynamic Analysis and Energy Efficiency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, SH; Yip, NY; Cath, TY

    2014-05-06

    We present a novel hybrid membrane system that operates as a heat engine capable of utilizing low-grade thermal energy, which is not readily recoverable with existing technologies. The closed-loop system combines membrane distillation (MD), which generates concentrated and pure water streams by thermal separation, and pressure retarded osmosis (PRO), which converts the energy of mixing to electricity by a hydro-turbine. The PRO-MD system was modeled by coupling the mass and energy flows between the thermal separation (MD) and power generation (PRO) stages for heat source temperatures ranging from 40 to 80 degrees C and working concentrations of 1.0, 2.0, andmore » 4.0 mol/kg NaCl. The factors controlling the energy efficiency of the heat engine were evaluated for both limited and unlimited mass and heat transfer kinetics in the thermal separation stage. In both cases, the relative flow rate between the MD permeate (distillate) and feed streams is identified as an important operation parameter. There is an optimal relative flow rate that maximizes the overall energy efficiency of the PRO-MD system for given working temperatures and concentration. In the case of unlimited mass and heat transfer kinetics, the energy efficiency of the system can be analytically determined based on thermodynamics. Our assessment indicates that the hybrid PRO-MD system can theoretically achieve an energy efficiency of 9.8% (81.6% of the Carnot efficiency) with hot and cold working temperatures of 60 and 20 degrees C, respectively, and a working solution of 1.0 M NaCl. When mass and heat transfer kinetics are limited, conditions that more closely represent actual operations, the practical energy efficiency will be lower than the theoretically achievable efficiency. In such practical operations, utilizing a higher working concentration will yield greater energy efficiency. Overall, our study demonstrates the theoretical viability of the PRO-MD system and identifies the key factors for performance optimization.« less

  7. Hybrid pressure retarded osmosis-membrane distillation system for power generation from low-grade heat: thermodynamic analysis and energy efficiency.

    PubMed

    Lin, Shihong; Yip, Ngai Yin; Cath, Tzahi Y; Osuji, Chinedum O; Elimelech, Menachem

    2014-05-06

    We present a novel hybrid membrane system that operates as a heat engine capable of utilizing low-grade thermal energy, which is not readily recoverable with existing technologies. The closed-loop system combines membrane distillation (MD), which generates concentrated and pure water streams by thermal separation, and pressure retarded osmosis (PRO), which converts the energy of mixing to electricity by a hydro-turbine. The PRO-MD system was modeled by coupling the mass and energy flows between the thermal separation (MD) and power generation (PRO) stages for heat source temperatures ranging from 40 to 80 °C and working concentrations of 1.0, 2.0, and 4.0 mol/kg NaCl. The factors controlling the energy efficiency of the heat engine were evaluated for both limited and unlimited mass and heat transfer kinetics in the thermal separation stage. In both cases, the relative flow rate between the MD permeate (distillate) and feed streams is identified as an important operation parameter. There is an optimal relative flow rate that maximizes the overall energy efficiency of the PRO-MD system for given working temperatures and concentration. In the case of unlimited mass and heat transfer kinetics, the energy efficiency of the system can be analytically determined based on thermodynamics. Our assessment indicates that the hybrid PRO-MD system can theoretically achieve an energy efficiency of 9.8% (81.6% of the Carnot efficiency) with hot and cold working temperatures of 60 and 20 °C, respectively, and a working solution of 1.0 M NaCl. When mass and heat transfer kinetics are limited, conditions that more closely represent actual operations, the practical energy efficiency will be lower than the theoretically achievable efficiency. In such practical operations, utilizing a higher working concentration will yield greater energy efficiency. Overall, our study demonstrates the theoretical viability of the PRO-MD system and identifies the key factors for performance optimization.

  8. Nissan Showcases the Results of an Energy-Wise Corporate Culture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2010-06-11

    The corporate leadership at Nissan cultivates a culture of energy efficiency, encouraging employees to practice good energy management at work and in every part of their lives. Read about Nissan's energy-conscience culture.

  9. Energy and Environment Guide to Action- Executive Summary

    EPA Pesticide Factsheets

    Summarizes the key messages and purpose of the Energy and Environment Guide to Action, which describes the latest best practices and opportunities that states are using to invest in energy efficiency, renewable energy, and CHP.

  10. Energy Efficiency Finance Programs: Use Case Analysis to Define Data Needs and Guidelines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thompson, Peter; Larsen, Peter; Kramer, Chris

    There are over 200 energy efficiency loan programs—across 49 U.S. states—administered by utilities, state/local government agencies, or private lenders.1 This distributed model has led to significant variation in program design and implementation practices including how data is collected and used. The challenge of consolidating and aggregating data across independently administered programs has been illustrated by a recent pilot of an open source database for energy efficiency financing program data. This project was led by the Environmental Defense Fund (EDF), the Investor Confidence Project, the Clean Energy Finance Center (CEFC), and the University of Chicago. This partnership discussed data collection practicesmore » with a number of existing energy efficiency loan programs and identified four programs that were suitable and willing to participate in the pilot database (Diamond 2014).2 The partnership collected information related to ~12,000 loans with an aggregate value of ~$100M across the four programs. Of the 95 data fields collected across the four programs, 30 fields were common between two or more programs and only seven data fields were common across all programs. The results of that pilot study illustrate the inconsistencies in current data definition and collection practices among energy efficiency finance programs and may contribute to certain barriers.« less

  11. Commercial mortgages: An underutilized channel for scaling energy efficiency investments?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mathew, Paul; Wallace, Nancy; Alschuler, Elena

    2016-02-01

    Commercial mortgages currently do not fully account for energy factors in underwriting and valuation, particularly as it relates to the impact of energy costs and volatility on an owner’s net operating income. As a consequence, energy efficiency is not properly valued and energy risks are not properly assessed and mitigated. Commercial mortgages are a large lever and could be a significant channel for scaling energy efficiency investments. A pilot analysis of loans with different mortgage contract structures and locations showed that when energy cost volatility was included in mortgage valuation, a 20% reduction in energy use resulted in a 1.3%more » average increase in mortgage value. This suggests that the explicit inclusion of energy use and volatility in mortgage valuation can send a strong price signal that financially rewards and values energy efficiency in commercial properties. This paper presents findings from a scoping study addressing energy factors in commercial mortgages. First, we present a review of current practices as it relates to incorporating energy factors into commercial mortgage underwriting and valuation. Next, we detail the impacts of energy factors on property values, net operating income and mortgage valuation. Building operational practices alone can result in energy use variations from -17% to 87%. Finally, we present a set of proposed interventions to properly address energy factors in commercial mortgages, based on extensive discussions with stakeholders including mortgage originators, underwriters, building owners and regulators.« less

  12. Building America Best Practices Series Volume 15: 40% Whole-House Energy Savings in the Hot-Humid Climate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baechler, Michael C.; Gilbride, Theresa L.; Hefty, Marye G.

    2011-09-01

    This best practices guide is the 15th in a series of guides for builders produced by PNNL for the U.S. Department of Energy’s Building America program. This guide book is a resource to help builders design and construct homes that are among the most energy-efficient available, while addressing issues such as building durability, indoor air quality, and occupant health, safety, and comfort. With the measures described in this guide, builders in the hot-humid climate can build homes that have whole-house energy savings of 40% over the Building America benchmark with no added overall costs for consumers. The best practices describedmore » in this document are based on the results of research and demonstration projects conducted by Building America’s research teams. Building America brings together the nation’s leading building scientists with over 300 production builders to develop, test, and apply innovative, energy-efficient construction practices. Building America builders have found they can build homes that meet these aggressive energy-efficiency goals at no net increased costs to the homeowners. Currently, Building America homes achieve energy savings of 40% greater than the Building America benchmark home (a home built to mid-1990s building practices roughly equivalent to the 1993 Model Energy Code). The recommendations in this document meet or exceed the requirements of the 2009 IECC and 2009 IRC and those requirements are highlighted in the text. Requirements of the 2012 IECC and 2012 IRC are also noted in text and tables throughout the guide. This document will be distributed via the DOE Building America website: www.buildingamerica.gov.« less

  13. Building America Best Practices Series Volume 16: 40% Whole-House Energy Savings in the Mixed-Humid Climate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baechler, Michael C.; Gilbride, Theresa L.; Hefty, Marye G.

    2011-09-01

    This best practices guide is the 16th in a series of guides for builders produced by PNNL for the U.S. Department of Energy’s Building America program. This guide book is a resource to help builders design and construct homes that are among the most energy-efficient available, while addressing issues such as building durability, indoor air quality, and occupant health, safety, and comfort. With the measures described in this guide, builders in the mixed-humid climate can build homes that have whole-house energy savings of 40% over the Building America benchmark with no added overall costs for consumers. The best practices describedmore » in this document are based on the results of research and demonstration projects conducted by Building America’s research teams. Building America brings together the nation’s leading building scientists with over 300 production builders to develop, test, and apply innovative, energy-efficient construction practices. Building America builders have found they can build homes that meet these aggressive energy-efficiency goals at no net increased costs to the homeowners. Currently, Building America homes achieve energy savings of 40% greater than the Building America benchmark home (a home built to mid-1990s building practices roughly equivalent to the 1993 Model Energy Code). The recommendations in this document meet or exceed the requirements of the 2009 IECC and 2009 IRC and those requirements are highlighted in the text. Requirements of the 2012 IECC and 2012 IRC are also noted in text and tables throughout the guide. This document will be distributed via the DOE Building America website: www.buildingamerica.gov.« less

  14. Energy Efficiency: An Experiential-Based Energy Unit for Youth Ages 13-18

    ERIC Educational Resources Information Center

    Poorman, Myken D.; Webster, Nicole

    2010-01-01

    Not all 16 year olds can buy hybrid cars to help save gas emissions, but they can learn new, easy ways to save energy. Youth are more likely to develop a greater sense of positive impact on the environment if they learn easy and creative ways to use energy more efficiently at a young age. Through the use of practical applications, youth can begin…

  15. International Review of Frameworks for Impact Evaluation of Appliance Standards, Labeling, and Incentives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Nan; Romankiewicz, John; Vine, Edward

    2012-12-15

    In recent years, the number of energy efficiency policies implemented has grown very rapidly as energy security and climate change have become top policy issues for many governments around the world. Within the sphere of energy efficiency policy, governments (federal and local), electric utilities, and other types of businesses and institutions are implementing a wide variety of programs to spread energy efficiency practices in industry, buildings, transport, and electricity. As programs proliferate, there is an administrative and business imperative to evaluate the savings and processes of these programs to ensure that program funds spent are indeed leading to a moremore » energy-efficient economy.« less

  16. Residential Building Energy Code Field Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    R. Bartlett, M. Halverson, V. Mendon, J. Hathaway, Y. Xie

    This document presents a methodology for assessing baseline energy efficiency in new single-family residential buildings and quantifying related savings potential. The approach was developed by Pacific Northwest National Laboratory (PNNL) for the U.S. Department of Energy (DOE) Building Energy Codes Program with the objective of assisting states as they assess energy efficiency in residential buildings and implementation of their building energy codes, as well as to target areas for improvement through energy codes and broader energy-efficiency programs. It is also intended to facilitate a consistent and replicable approach to research studies of this type and establish a transparent data setmore » to represent baseline construction practices across U.S. states.« less

  17. Review of Evaluation, Measurement and Verification Approaches Used to Estimate the Load Impacts and Effectiveness of Energy Efficiency Programs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Messenger, Mike; Bharvirkar, Ranjit; Golemboski, Bill

    Public and private funding for end-use energy efficiency actions is expected to increase significantly in the United States over the next decade. For example, Barbose et al (2009) estimate that spending on ratepayer-funded energy efficiency programs in the U.S. could increase frommore » $3.1 billion in 2008 to $$7.5 and 12.4 billion by 2020 under their medium and high scenarios. This increase in spending could yield annual electric energy savings ranging from 0.58% - 0.93% of total U.S. retail sales in 2020, up from 0.34% of retail sales in 2008. Interest in and support for energy efficiency has broadened among national and state policymakers. Prominent examples include {approx}$$18 billion in new funding for energy efficiency programs (e.g., State Energy Program, Weatherization, and Energy Efficiency and Conservation Block Grants) in the 2009 American Recovery and Reinvestment Act (ARRA). Increased funding for energy efficiency should result in more benefits as well as more scrutiny of these results. As energy efficiency becomes a more prominent component of the U.S. national energy strategy and policies, assessing the effectiveness and energy saving impacts of energy efficiency programs is likely to become increasingly important for policymakers and private and public funders of efficiency actions. Thus, it is critical that evaluation, measurement, and verification (EM&V) is carried out effectively and efficiently, which implies that: (1) Effective program evaluation, measurement, and verification (EM&V) methodologies and tools are available to key stakeholders (e.g., regulatory agencies, program administrators, consumers, and evaluation consultants); and (2) Capacity (people and infrastructure resources) is available to conduct EM&V activities and report results in ways that support program improvement and provide data that reliably compares achieved results against goals and similar programs in other jurisdictions (benchmarking). The National Action Plan for Energy Efficiency (2007) presented commonly used definitions for EM&V in the context of energy efficiency programs: (1) Evaluation (E) - The performance of studies and activities aimed at determining the effects and effectiveness of EE programs; (2) Measurement and Verification (M&V) - Data collection, monitoring, and analysis associated with the calculation of gross energy and demand savings from individual measures, sites or projects. M&V can be a subset of program evaluation; and (3) Evaluation, Measurement, and Verification (EM&V) - This term is frequently seen in evaluation literature. EM&V is a catchall acronym for determining both the effectiveness of program designs and estimates of load impacts at the portfolio, program and project level. This report is a scoping study that assesses current practices and methods in the evaluation, measurement and verification (EM&V) of ratepayer-funded energy efficiency programs, with a focus on methods and practices currently used for determining whether projected (ex-ante) energy and demand savings have been achieved (ex-post). M&V practices for privately-funded energy efficiency projects (e.g., ESCO projects) or programs where the primary focus is greenhouse gas reductions were not part of the scope of this study. We identify and discuss key purposes and uses of current evaluations of end-use energy efficiency programs, methods used to evaluate these programs, processes used to determine those methods; and key issues that need to be addressed now and in the future, based on discussions with regulatory agencies, policymakers, program administrators, and evaluation practitioners in 14 states and national experts in the evaluation field. We also explore how EM&V may evolve in a future in which efficiency funding increases significantly, innovative mechanisms for rewarding program performance are adopted, the role of efficiency in greenhouse gas mitigation is more closely linked, and programs are increasingly funded from multiple sources often with multiple program administrators and intended to meet multiple purposes.« less

  18. Energy and Environment Guide to Action - Chapter 1: Introduction and Background

    EPA Pesticide Factsheets

    Introduces the Energy and Environment Guide to Action which documents best practices for designing and implementing state policies and the benefits of energy efficiency, renewable energy, and combined heat and power policies and programs.

  19. BUILDING ENVELOPE OPTIMIZATION USING EMERGY ANALYSIS

    EPA Science Inventory

    Energy analysis is an integral component of sustainable building practices. Energy analysis coupled with optimization techniques may offer solutions for greater energy efficiency over the lifetime of the building. However, all such computationsemploy the energy used for operation...

  20. 75 FR 4062 - Peer Review Best Practices Workshop

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-26

    ...:15 a.m. Panel 2: Applied Research, Technology Development--NIST, ARPA-E, ONR, MIT 12:30 p.m. Lunch 1... Energy Efficiency and Renewable Energy (EERE) funds a diverse portfolio of research, development...-federal organizations have chosen to select research and development projects, and on ``best practices...

  1. Sustainable NREL: From Integration to Innovation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2015-09-01

    NREL's sustainability practices are integrated throughout the laboratory and are essential to our mission to develop clean energy and energy efficiency technologies and practices, advance related science and engineering, and provide knowledge and innovations to integrate energy systems at all scales. Sustainability initiatives are integrated through our campus, our staff, and our environment allowing NREL to provide leadership in modeling a sustainability energy future for companies, organizations, governments, and communities.

  2. Energy Efficiency Improvement and Cost Saving Opportunities for the Fruit and Vegetable Processing Industry. An ENERGY STAR Guide for Energy and Plant Managers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Masanet, Eric; Masanet, Eric; Worrell, Ernst

    2008-01-01

    The U.S. fruit and vegetable processing industry--defined in this Energy Guide as facilities engaged in the canning, freezing, and drying or dehydrating of fruits and vegetables--consumes over $800 million worth of purchased fuels and electricity per year. Energy efficiency improvement isan important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There are a variety of opportunities available at individual plants in the U.S. fruit and vegetable processing industry to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy-efficient technologies that can be implementedmore » at the component, process, facility, and organizational levels. A discussion of the trends, structure, and energy consumption characteristics of the U.S. fruit and vegetable processing industry is provided along with a description of the major process technologies used within the industry. Next, a wide variety of energy efficiency measures applicable to fruit and vegetable processing plants are described. Many measure descriptions include expected savings in energy and energy-related costs, based on case study data from real-world applications in fruit and vegetable processing facilities and related industries worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. Given the importance of water in fruit and vegetable processing, a summary of basic, proven measures for improving plant-level water efficiency are also provided. The information in this Energy Guide is intended to help energy and plant managers in the U.S. fruit and vegetable processing industry reduce energy and water consumption in a cost-effective manner while maintaining the quality of products manufactured. Further research on the economics of all measures--as well as on their applicability to different production practices--is needed to assess their cost effectiveness at individual plants.« less

  3. Pollutant Emissions and Energy Efficiency under Controlled Conditions for Household Biomass Cookstoves and Implications for Metrics Useful in Setting International Test Standards

    EPA Science Inventory

    Realistic metrics and methods for testing household biomass cookstoves are required to develop standards needed by international policy makers, donors, and investors. Application of consistent test practices allows emissions and energy efficiency performance to be benchmarked and...

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The Best Practices Manual was written as a part of the promotional effort for EnergySmart Schools, provided by the US Department of Energy, to educate school districts around the country about energy efficiency and renewable energy. Written specifically for architects and engineers, The Best Practices Manual is designed to help those who are responsible for designing or retrofitting schools, as well as their project managers. This manual will help design staff make informed decisions about energy and environmental issues important to the school systems and communities.

  5. Chapter 21: Estimating Net Savings - Common Practices. The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurnik, Charles W; Violette, Daniel M.; Rathbun, Pamela

    This chapter focuses on the methods used to estimate net energy savings in evaluation, measurement, and verification (EM and V) studies for energy efficiency (EE) programs. The chapter provides a definition of net savings, which remains an unsettled topic both within the EE evaluation community and across the broader public policy evaluation community, particularly in the context of attribution of savings to a program. The chapter differs from the measure-specific Uniform Methods Project (UMP) chapters in both its approach and work product. Unlike other UMP resources that provide recommended protocols for determining gross energy savings, this chapter describes and comparesmore » the current industry practices for determining net energy savings but does not prescribe methods.« less

  6. Achieving Regional Energy Efficiency Potential in the Northeast

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Angelo, Laura

    With this grant, NEEP sought to accelerate the adoption of energy efficiency in the Northeast and Mid-Atlantic region through regional partnership projects that bring together leadership and staff from state and local government, utilities, industry, environmental and consumer groups, and other related interests to make efficiency visible and understood, reduce energy use in buildings, speed the adoption of high efficiency products, and advance knowledge and best practices. At the time of this grant, the NEEP region included the states of Maine, New Hampshire, Vermont, Massachusetts, New York, Connecticut, Rhode Island, Washington DC, Pennsylvania, Delaware, New Jersey, and Maryland.

  7. Practical considerations for solar energy thermally enhanced photo-luminescence (TEPL) (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Kruger, Nimrod; Manor, Assaf; Kurtulik, Matej; Sabapathy, Tamilarasan; Rotschild, Carmel

    2017-04-01

    While single-junction photovoltaics (PV's) are considered limited in conversion efficiency according to the Shockley-Queisser limit, concepts such as solar thermo-photovoltaics aim to harness lost heat and overcome this barrier. We claim the novel concept of Thermally Enhanced Photoluminescence (TEPL) as an easier route to achieve this goal. Here we present a practical TEPL device where a thermally insulated photo-luminescent (PL) absorber, acts as a mediator between a photovoltaic cell and the sun. This high temperature absorber emits blue-shifted PL at constant flux, then coupled to a high band gap PV cell. This scheme promotes PV conversion efficiencies, under ideal conditions, higher than 62% at temperatures lower than 1300K. Moreover, for a PV and absorber band-gaps of 1.45eV (GaAs PV's) and 1.1eV respectively, under practical conditions, solar concentration of 1000 suns, and moderate thermal insulation; the conversion efficiencies potentially exceed 46%. Some of these practical conditions belong to the realm of optical design; including high photon recycling (PR) and absorber external quantum efficiency (EQE). High EQE values, a product of the internal QE of the active PL materials and the extraction efficiency of each photon (determined by the absorber geometry and interfaces), have successfully been reached by experts in laser cooling technology. PR is the part of emitted low energy photons (in relation to the PV band-gap) that are reabsorbed and consequently reemitted with above band-gap energies. PV back-reflector reflectivity, also successfully achieved by those who design the cutting edge high efficiency PV cells, plays a major role here.

  8. Energy efficiency of mobile soft robots.

    PubMed

    Shui, Langquan; Zhu, Liangliang; Yang, Zhe; Liu, Yilun; Chen, Xi

    2017-11-15

    The performance of mobile soft robots is usually characterized by their locomotion/velocity efficiency, whereas the energy efficiency is a more intrinsic and fundamental criterion for the performance evaluation of independent or integrated soft robots. In this work, a general framework is established to evaluate the energy efficiency of mobile soft robots by considering the efficiency of the energy source, actuator and locomotion, and some insights for improving the efficiency of soft robotic systems are presented. Proposed as the ratio of the desired locomotion kinetic energy to the input mechanical energy, the energy efficiency of locomotion is found to play a critical role in determining the overall energy efficiency of soft robots. Four key factors related to the locomotion energy efficiency are identified, that is, the locomotion modes, material properties, geometric sizes, and actuation states. It is found that the energy efficiency of most mobile soft robots reported in the literature is surprisingly low (mostly below 0.1%), due to the inefficient mechanical energy that essentially does not contribute to the desired locomotion. A comparison of the locomotion energy efficiency for several representative locomotion modes in the literature is presented, showing a descending ranking as: jumping ≫ fish-like swimming > snake-like slithering > rolling > rising/turning over > inchworm-like inching > quadruped gait > earthworm-like squirming. Besides, considering the same locomotion mode, soft robots with lower stiffness, higher density and larger size tend to have higher locomotion energy efficiency. Moreover, a periodic pulse actuation instead of a continuous actuation mode may significantly reduce the input mechanical energy, thus improving the locomotion energy efficiency, especially when the pulse actuation matches the resonant states of the soft robots. The results presented herein indicate a large and necessary space for improving the locomotion energy efficiency, which is of practical significance for the future development and application of soft robots.

  9. Energy Resources for State and Local Governments

    EPA Pesticide Factsheets

    Hosts capacity building and decision-support tools and data, best practice policy and program implementation information.Technical information tailored to the needs of state, local, and tribal governments use energy efficiency and renewable energy policies

  10. Alison Holm | NREL

    Science.gov Websites

    renewable energy and energy efficiency into local planning, zoning, and permitting practices; residential and commercial sector solar financing; and resilience planning. Education Master's, Urban and Regional

  11. Introduction and Program Finder

    EPA Pesticide Factsheets

    Explore promising practices and successful models that state and local officials can use to reduce greenhouse gas emissions by bringing energy efficiency and renewable energy in low-income communities.

  12. School Operations and Maintenance: Best Practices For Controlling Energy Costs. A Guidebook for K-12 School System Business Officers and Facilities Managers

    ERIC Educational Resources Information Center

    US Department of Energy, 2004

    2004-01-01

    Operations and maintenance (O&M) offers not only strategies for maintaining facilities, but also opportunities for reducing energy costs and increasing energy efficiency at existing schools, regardless of age. This Guidebook provides detailed and practical guidance on how K-12 school districts can plan and implement enhancements to their current…

  13. Teaching the Fundamentals of Energy Efficiency

    NASA Astrophysics Data System (ADS)

    Meier, Alan

    2010-02-01

    A course on energy efficiency is a surprisingly valuable complement to a student's education in physics and many other disciplines. The Univ. of California, Davis, offers a 1-quarter course on ``understanding the other side of the meter.'' Lectures begin by giving students a demand-side perspective on how, where, and why energy is used. Students measure energy use of appliances in their homes and then report results. This gives students a practical sense of the difference between energy and power and learn how appliances transform energy into useful services. Lectures introduce the types of direct conservation measures--reducing demand, reducing fixed consumptions, and increasing efficiency. Practical examples draw upon simple concepts in heat transfer, thermodynamics, and mechanics. Graphical techniques, strengthened through problem sets, explain the interdependence of conservation measures. Lectures then examine indirect energy savings from measures and consider questions like ``where can one achieve the greatest fuel savings in a car by removing one gram of mass?'' Finally, students learn about conservation measures that circumvent physical limits by adopting new processes. By the end of the course, students have a gained a new perspective on energy consumption and the opportunities to reduce it. )

  14. Industrial Energy Audit Guidebook: Guidelines for Conducting an Energy Audit in Industrial Facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hasanbeigi, Ali; Price, Lynn

    Various studies in different countries have shown that significant energy-efficiency improvement opportunities exist in the industrial sector, many of which are cost-effective. These energy-efficiency options include both cross-cutting as well as sector-specific measures. However, industrial plants are not always aware of energy-efficiency improvement potentials. Conducting an energy audit is one of the first steps in identifying these potentials. Even so, many plants do not have the capacity to conduct an effective energy audit. In some countries, government policies and programs aim to assist industry to improve competitiveness through increased energy efficiency. However, usually only limited technical and financial resources formore » improving energy efficiency are available, especially for small and medium-sized enterprises. Information on energy auditing and practices should, therefore, be prepared and disseminated to industrial plants. This guidebook provides guidelines for energy auditors regarding the key elements for preparing for an energy audit, conducting an inventory and measuring energy use, analyzing energy bills, benchmarking, analyzing energy use patterns, identifying energy-efficiency opportunities, conducting cost-benefit analysis, preparing energy audit reports, and undertaking post-audit activities. The purpose of this guidebook is to assist energy auditors and engineers in the plant to conduct a well-structured and effective energy audit.« less

  15. Citizens Utilities Company's successful residential new construction market transformation program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caulfield, T.O.; Shepherd, M.A.

    1998-07-01

    Citizens Utilities Company, Arizona Electric Division (CUC/AED) fielded a Residential New Construction Program (RNC) in the forth quarter of 1994 that had been designed from conception as a market transformation program. The CUC RNC Program encouraged builders to adopt energy efficient building practices for new homes by supplying builders estimates of energy savings, supplying inspections services to assist builders in applying energy efficient building practices while verifying compliance, and posting and promoting the home as energy efficient during the sales period. Measures generally required to qualify for the program were R-38 ceiling insulation, R-21 wall insulation, polysealing of all infiltrationmore » gaps during construction, well sealed air-conditioning ducts, and an air conditioner Seasonal Energy Efficiency Rating (SEER) of 11.0 or greater. In less than two years the program achieved over 17% market penetration without offering rebates to builders. This paper reviews the design of the program, including a discussion of the features felt to be primarily responsible for its success. It reviews the levels of penetration achieved, free-ridership, spillover, and market barriers encountered. Finally it proposes improvements to the program designed to carry it the next step toward a self-sustaining market transformation program.« less

  16. Adopting Energy Efficiency in Connected Homes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christensen, Dane T; Kemper, Emily

    This presentation on connected homes was presented at the 11th Rocky Mountain Utility Efficiency Exchange on September 28, 2017. The discussion covered the integration of energy efficiency measures and practices with Internet of Things (IoT) awareness and adoption of smart technologies and services via WiFi/ Bluetooth enabled home and office equipment. The presentation also describes the benefits to the home and business and benefits/challenges for the utility/implementer.

  17. High-energy redox-flow batteries with hybrid metal foam electrodes.

    PubMed

    Park, Min-Sik; Lee, Nam-Jin; Lee, Seung-Wook; Kim, Ki Jae; Oh, Duk-Jin; Kim, Young-Jun

    2014-07-09

    A nonaqueous redox-flow battery employing [Co(bpy)3](+/2+) and [Fe(bpy)3](2+/3+) redox couples is proposed for use in large-scale energy-storage applications. We successfully demonstrate a redox-flow battery with a practical operating voltage of over 2.1 V and an energy efficiency of 85% through a rational cell design. By utilizing carbon-coated Ni-FeCrAl and Cu metal foam electrodes, the electrochemical reactivity and stability of the nonaqueous redox-flow battery can be considerably enhanced. Our approach intoduces a more efficient conversion of chemical energy into electrical energy and enhances long-term cell durability. The cell exhibits an outstanding cyclic performance of more than 300 cycles without any significant loss of energy efficiency. Considering the increasing demands for efficient energy storage, our achievement provides insight into a possible development pathway for nonaqueous redox-flow batteries with high energy densities.

  18. Energy Efficiency Appliance Standards: Where do we stand, how far can we go and how do we get there? An analysis across several economies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Letschert, Virginie E.; de la Rue du Can, Stephane; McNeil, Michael A.

    This paper analyses several potential savings scenarios for minimum energy performance standard (MEPS) and comparable programs for governments participating i n the Super-efficient Equipment and Appliance Deployment (SEAD) Initiative, of the Clean Energy Ministerial, which represent over 60% of primary energy consumption in the world. We compare projected energy savings from the main end uses in the residential sector using three energy efficiency scenarios: (1) recent achievements, (2) cost-effective saving potential, and (3) energy efficiency technical potential. The recent achievement scenario (1) evaluates the future impact of MEPS enacted or under development between 2010 and 2012. The cost-effective potential scenariomore » (2) identifies the maximum potential for energy efficiency that results in net benefits to the consumer. The best available technology scenario (3) re presents the full potential of energy efficiency considering best available technologies as candidates for MEPS and incentive programs. We use the Bottom Up Energy Analysis System (BUENAS), developed by Lawrence Berkeley National Laboratory in collaboration with the Collaborative Labelling and Appliances Standards Program (CLASP), to provide a consistent methodology to com pare the different scenarios. This paper focuses on the main end uses in the residential sector. The comparison of the three scenarios for each economy provides possible opportunities for scaling up current policies or implementing additional policies. This comparison across economies reveals country best practices as well as end uses that present the greatest additional potential savings. The paper describes areas where methodologies and additional policy instruments can increase penetration of energy efficient technologies. First , we summarize the barriers and provide remedial policy tools/best practices, such as techno-economic analysis, in response to each barriers that prevent economies from capturing the full cost-effective potentials of MEPS (Scenario 1 to 2). Then, we consider the possible complementary policy options, such as incentive pro grams, to reach the full technical potential of energy efficiency in the residential sector (Scenario 2 to 3).« less

  19. Energy Efficiency Collaboratives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Michael; Bryson, Joe

    2015-09-01

    Collaboratives for energy efficiency have a long and successful history and are currently used, in some form, in more than half of the states. Historically, many state utility commissions have used some form of collaborative group process to resolve complex issues that emerge during a rate proceeding. Rather than debate the issues through the formality of a commission proceeding, disagreeing parties are sent to discuss issues in a less-formal setting and bring back resolutions to the commission. Energy efficiency collaboratives take this concept and apply it specifically to energy efficiency programs—often in anticipation of future issues as opposed to reactingmore » to a present disagreement. Energy efficiency collaboratives can operate long term and can address the full suite of issues associated with designing, implementing, and improving energy efficiency programs. Collaboratives can be useful to gather stakeholder input on changing program budgets and program changes in response to performance or market shifts, as well as to provide continuity while regulators come and go, identify additional energy efficiency opportunities and innovations, assess the role of energy efficiency in new regulatory contexts, and draw on lessons learned and best practices from a diverse group. Details about specific collaboratives in the United States are in the appendix to this guide. Collectively, they demonstrate the value of collaborative stakeholder processes in producing successful energy efficiency programs.« less

  20. Reclamation of landfills and dumps of municipal solid waste in a energy efficient waste management system: methodology and practice

    NASA Astrophysics Data System (ADS)

    Orlova, Tatyana; Melnichuk, Aleksandr; Klimenko, Kseniya; Vitvitskaya, Valentina; Popovych, Valentina; Dunaieva, Ielizaveta; Terleev, Vitaly; Nikonorov, Aleksandr; Togo, Issa; Volkova, Yulia; Mirschel, Wilfried; Garmanov, Vitaly

    2017-10-01

    The article considers the methodological and practical aspects of reclamation of landfills and dumps of municipal solid waste in a waste management system. The general tendencies of system development in the context of elements of the international concept of waste hierarchy are analyzed. Statistics of the formation and burial of domestic waste indicate a strategic non-alternative to the rejection of landfill technologies in favor of environmentally, energy efficient and economically expedient ways of utilization of municipal waste as a world trend. Practical approaches to the study of territories on which there are dumps and landfills are considered to justify the design solutions for reclamation.

  1. Planning energy-efficient bipedal locomotion on patterned terrain

    NASA Astrophysics Data System (ADS)

    Zamani, Ali; Bhounsule, Pranav A.; Taha, Ahmad

    2016-05-01

    Energy-efficient bipedal walking is essential in realizing practical bipedal systems. However, current energy-efficient bipedal robots (e.g., passive-dynamics-inspired robots) are limited to walking at a single speed and step length. The objective of this work is to address this gap by developing a method of synthesizing energy-efficient bipedal locomotion on patterned terrain consisting of stepping stones using energy-efficient primitives. A model of Cornell Ranger (a passive-dynamics inspired robot) is utilized to illustrate our technique. First, an energy-optimal trajectory control problem for a single step is formulated and solved. The solution minimizes the Total Cost Of Transport (TCOT is defined as the energy used per unit weight per unit distance travelled) subject to various constraints such as actuator limits, foot scuffing, joint kinematic limits, ground reaction forces. The outcome of the optimization scheme is a table of TCOT values as a function of step length and step velocity. Next, we parameterize the terrain to identify the location of the stepping stones. Finally, the TCOT table is used in conjunction with the parameterized terrain to plan an energy-efficient stepping strategy.

  2. Energy Digest.

    ERIC Educational Resources Information Center

    Gaddy, Carol T., Ed.; Wells, Kathy, Ed.

    This collection of reprints offers practical solutions, not readily available elsewhere, to everyday energy problems, such as high utility bills, insulating windows, getting more gas mileage, or buying a more efficient washer or refrigerator. The Arkansas Energy Office provides a weekly column of energy news and conservation tips to newspapers,…

  3. Project Earth Lover

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Slobotski, Stephanie,

    2011-09-01

    Under this project, the Ponca Tribe of Nebraska (PTN) will conduct An Energy Options Analysis (EOA) to empower Tribal Leadership with critical information to allow them to effectively screen energy options that will further develop the Tribe's long-term strategic plan and energy vision. The PTN will also provide community workshops to enhance Tribal Members' capabilities, skills and awareness of energy efficiency and conservation technology and practices. A 90- minute workshop will be conducted at each of the 5 sites and one-hundred tribal members will receive an erergy efficiency kit.

  4. Energy efficiency opportunities in the brewery industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Worrell, Ernst; Galitsky, Christina; Martin, Nathan

    2002-06-28

    Breweries in the United States spend annually over $200 Million on energy. Energy consumption is equal to 3-8% of the production costs of beer, making energy efficiency improvement an important way to reduce costs, especially in times of high energy price volatility. After a summary of the beer making process and energy use, we examine energy efficiency opportunities available for breweries. We provide specific primary energy savings for each energy efficiency measure based on case studies that have implemented the measures, as well as references to technical literature. If available, we have also listed typical payback periods. Our findings suggestmore » that there may still be opportunities to reduce energy consumption cost-effectively for breweries. Major brewing companies have and will continue to spend capital on cost effective measures that do not impact the quality of the beer. Further research on the economics of the measures, as well as their applicability to different brewing practices, is needed to assess implementation of selected technologies at individual breweries.« less

  5. Advanced Energy Retrofit Guide: Practical Ways to Improve Energy Performance, K-12 Schools (Book)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The U.S. Department of Energy developed the K-12 Advanced Energy Retrofit Guide to provide specific methodologies, information, and guidance to help energy managers and other stakeholders plan and execute energy efficiency improvements. We emphasize actionable information, practical methodologies, diverse case studies, and unbiased evaluation of the most promising retrofit measure for each building type. K-12 schools were selected as one of the highest priority building sectors, because schools affect the lives of most Americans. They also represent approximately 8% of the energy use and 10% of the floor area in commercial buildings.

  6. Harvesting waste thermal energy using a carbon-nanotube-based thermo-electrochemical cell.

    PubMed

    Hu, Renchong; Cola, Baratunde A; Haram, Nanda; Barisci, Joseph N; Lee, Sergey; Stoughton, Stephanie; Wallace, Gordon; Too, Chee; Thomas, Michael; Gestos, Adrian; Cruz, Marilou E Dela; Ferraris, John P; Zakhidov, Anvar A; Baughman, Ray H

    2010-03-10

    Low efficiencies and costly electrode materials have limited harvesting of thermal energy as electrical energy using thermo-electrochemical cells (or "thermocells"). We demonstrate thermocells, in practical configurations (from coin cells to cells that can be wrapped around exhaust pipes), that harvest low-grade thermal energy using relatively inexpensive carbon multiwalled nanotube (MWNT) electrodes. These electrodes provide high electrochemically accessible surface areas and fast redox-mediated electron transfer, which significantly enhances thermocell current generation capacity and overall efficiency. Thermocell efficiency is further improved by directly synthesizing MWNTs as vertical forests that reduce electrical and thermal resistance at electrode/substrate junctions. The efficiency of thermocells with MWNT electrodes is shown to be as high as 1.4% of Carnot efficiency, which is 3-fold higher than for previously demonstrated thermocells. With the cost of MWNTs decreasing, MWNT-based thermocells may become commercially viable for harvesting low-grade thermal energy.

  7. BEST Winery Guidebook: Benchmarking and Energy and Water SavingsTool for the Wine Industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galitsky, Christina; Worrell, Ernst; Radspieler, Anthony

    2005-10-15

    Not all industrial facilities have the staff or the opportunity to perform a detailed audit of their operations. The lack of knowledge of energy efficiency opportunities provides an important barrier to improving efficiency. Benchmarking has demonstrated to help energy users understand energy use and the potential for energy efficiency improvement, reducing the information barrier. In California, the wine making industry is not only one of the economic pillars of the economy; it is also a large energy consumer, with a considerable potential for energy-efficiency improvement. Lawrence Berkeley National Laboratory and Fetzer Vineyards developed an integrated benchmarking and self-assessment tool formore » the California wine industry called ''BEST''(Benchmarking and Energy and water Savings Tool) Winery. BEST Winery enables a winery to compare its energy efficiency to a best practice winery, accounting for differences in product mix and other characteristics of the winery. The tool enables the user to evaluate the impact of implementing energy and water efficiency measures. The tool facilitates strategic planning of efficiency measures, based on the estimated impact of the measures, their costs and savings. BEST Winery is available as a software tool in an Excel environment. This report serves as background material, documenting assumptions and information on the included energy and water efficiency measures. It also serves as a user guide for the software package.« less

  8. E3: Economy, Energy and Environment

    EPA Pesticide Factsheets

    E3 is a technical assistance framework helping communities, manufacturers, and manufacturing supply chains adapt and thrive in today's green economy. Find information on pollution prevention, sustainable business practices, and energy efficiency.

  9. Energy efficiency of conventional, organic, and alternative cropping systems for food and fuel at a site in the U.S. Midwest.

    PubMed

    Gelfand, Ilya; Snapp, Sieglinde S; Robertson, G Philip

    2010-05-15

    The prospect of biofuel production on a large scale has focused attention on energy efficiencies associated with different agricultural systems and production goals. We used 17 years of detailed data on agricultural practices and yields to calculate an energy balance for different cropping systems under both food and fuel scenarios. We compared four grain and one forage systems in the U.S. Midwest: corn (Zea mays) - soybean (Glycine max) - wheat (Triticum aestivum) rotations managed with (1) conventional tillage, (2) no till, (3) low chemical input, and (4) biologically based (organic) practices, and (5) continuous alfalfa (Medicago sativa). We compared energy balances under two scenarios: all harvestable biomass used for food versus all harvestable biomass used for biofuel production. Among the annual grain crops, average energy costs of farming for the different systems ranged from 4.8 GJ ha(-1) y(-1) for the organic system to 7.1 GJ ha(-1) y(-1) for the conventional; the no-till system was also low at 4.9 GJ ha(-1) y(-1) and the low-chemical input system intermediate (5.2 GJ ha(-1) y(-1)). For each system, the average energy output for food was always greater than that for fuel. Overall energy efficiencies ranged from output:input ratios of 10 to 16 for conventional and no-till food production and from 7 to 11 for conventional and no-till fuel production, respectively. Alfalfa for fuel production had an efficiency similar to that of no-till grain production for fuel. Our analysis points to a more energetically efficient use of cropland for food than for fuel production and large differences in efficiencies attributable to management, which suggests multiple opportunities for improvement.

  10. Current Practices in Efficiency Financing: An Overview for State and Local Governments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leventis, Greg; Fadrhonc, Emily Martin; Kramer, Chris

    In recent years there has been significant growth in the size and sheer number of energy efficiency financing programs. The term “energy efficiency financing” refers to debt or debt-like products that support the installation of energy efficiency measures by allowing costs to be spread over time. The implementation of the American Recovery and Reinvestment Act (ARRA) led to a proliferation of energy efficiency financing programs, which was followed in subsequent years by the launch of green banks in several states and the ramp up of other ratepayer-supported financing initiatives in various jurisdictions. These activities have brought increased attention to energymore » efficiency financing as an area of programmatic interest. Yet the propagation of various types of financing in a growing number of markets may have also left some policymakers and program administrators with questions as to what categories of products and programs are best suited for their situation.« less

  11. Energy Efficiency Maximization of Practical Wireless Communication Systems

    NASA Astrophysics Data System (ADS)

    Eraslan, Eren

    Energy consumption of the modern wireless communication systems is rapidly growing due to the ever-increasing data demand and the advanced solutions employed in order to address this demand, such as multiple-input multiple-output (MIMO) and orthogonal frequency division multiplexing (OFDM) techniques. These MIMO systems are power hungry, however, they are capable of changing the transmission parameters, such as number of spatial streams, number of transmitter/receiver antennas, modulation, code rate, and transmit power. They can thus choose the best mode out of possibly thousands of modes in order to optimize an objective function. This problem is referred to as the link adaptation problem. In this work, we focus on the link adaptation for energy efficiency maximization problem, which is defined as choosing the optimal transmission mode to maximize the number of successfully transmitted bits per unit energy consumed by the link. We model the energy consumption and throughput performances of a MIMO-OFDM link and develop a practical link adaptation protocol, which senses the channel conditions and changes its transmission mode in real-time. It turns out that the brute force search, which is usually assumed in previous works, is prohibitively complex, especially when there are large numbers of transmit power levels to choose from. We analyze the relationship between the energy efficiency and transmit power, and prove that energy efficiency of a link is a single-peaked quasiconcave function of transmit power. This leads us to develop a low-complexity algorithm that finds a near-optimal transmit power and take this dimension out of the search space. We further prune the search space by analyzing the singular value decomposition of the channel and excluding the modes that use higher number of spatial streams than the channel can support. These algorithms and our novel formulations provide simpler computations and limit the search space into a much smaller set; hence reducing the computational complexity by orders of magnitude without sacrificing the performance. The result of this work is a highly practical link adaptation protocol for maximizing the energy efficiency of modern wireless communication systems. Simulation results show orders of magnitude gain in the energy efficiency of the link. We also implemented the link adaptation protocol on real-time MIMO-OFDM radios and we report on the experimental results. To the best of our knowledge, this is the first reported testbed that is capable of performing energy-efficient fast link adaptation using PHY layer information.

  12. A socio-technical approach to improving retail energy efficiency behaviours.

    PubMed

    Christina, Sian; Waterson, Patrick; Dainty, Andrew; Daniels, Kevin

    2015-03-01

    In recent years, the UK retail sector has made a significant contribution to societal responses on carbon reduction. We provide a novel and timely examination of environmental sustainability from a systems perspective, exploring how energy-related technologies and strategies are incorporated into organisational life. We use a longitudinal case study approach, looking at behavioural energy efficiency from within one of the UK's leading retailers. Our data covers a two-year period, with qualitative data from a total of 131 participants gathered using phased interviews and focus groups. We introduce an adapted socio-technical framework approach in order to describe an existing organisational behavioural strategy to support retail energy efficiency. Our findings point to crucial socio-technical and goal-setting factors which both impede and/or enable energy efficient behaviours, these include: tensions linked to store level perception of energy management goals; an emphasis on the importance of technology for underpinning change processes; and, the need for feedback and incentives to support the completion of energy-related tasks. We also describe the evolution of a practical operational intervention designed to address issues raised in our findings. Our study provides fresh insights into how sustainable workplace behaviours can be achieved and sustained over time. Secondly, we discuss in detail a set of issues arising from goal conflict in the workplace; these include the development of a practical energy management strategy to facilitate secondary organisational goals through job redesign. Copyright © 2014 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  13. 2020 Leadership Agenda for Existing Commercial and Multifamily Buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burr, Andrew; Goldthwaite, Carolyn Sarno; Coffman, Eric

    Leadership by state and local governments is critical to unlock national energy efficiency opportunities and deliver the benefits of efficiency to all Americans. But related to building energy efficiency, what will it mean to be a public sector leader over the next several years? What are the energy efficiency solutions that cities, counties, and states are implementing today that will make their communities more affordable, livable, healthy, and economically competitive? The SEE Action Network 2020 Leadership Agenda for Existing Commercial and Multifamily Buildings establishes a benchmark for state and local government leadership on improving the energy efficiency of buildings andmore » seeks two-way collaboration among state, local, and federal officials. It defines a suite of innovative, yet practical policies and programs for policymakers to consider implementing by 2020, focusing on six important areas.« less

  14. Industrial energy-efficiency improvement program

    NASA Astrophysics Data System (ADS)

    1980-12-01

    The industrial energy efficiency improvement program to accelerate market penetration of new and emerging industrial technologies is described. Practices which will improve energy efficiency, encourage substitution of more plentiful domestic fuels, and enhance recovery of energy and materials from industrial waste streams are enumerated. Specific reports from the chemicals and allied products; primary metals; petroleum and coal products; stone, clay, and glass, paper and allied products; food and kindred products; fabricated metals; transportation equipment; machinery (except electrical); textile mill products; rubber and miscellaneous plastics; electrical and electronic equipment; lumber and wood; and tobacco products are discussed. A summary on progress in the utilization of recovered materials, and an analysis of industrial fuel mix is presented.

  15. Economic efficiency of application of solar window

    NASA Astrophysics Data System (ADS)

    Shapoval, Stepan

    2017-12-01

    Priority and qualitatively new direction in the fuel and energy sector is renewable energy. This paper describes a feasibility study of using solar window in the system of solar heat supply. The article presents literature data about the effectiveness of the use of solar systems in other countries. The results confirm a sufficient efficiency of solar heat supply with using solar Windows. Insights based on practical experience and mathematical calculations, which are aimed at a detailed explanation of economic efficiency of the proposed construction.

  16. The effect of repeated bouts of backward walking on physiologic efficiency.

    PubMed

    Childs, John D; Gantt, Christy; Higgins, Dan; Papazis, Janet A; Franklin, Ronald; Metzler, Terri; Underwood, Frank B

    2002-08-01

    Previous studies have demonstrated an increased energy expenditure with novel tasks. With practice, the energy cost decreases as the body more efficiently recruits motor units. This study examined whether one becomes more efficient after repeated bouts of backward walking. The subjects were 7 healthy subjects between the ages of 23 and 49 years. A backward walking speed was calculated to elicit a VO(2) equal to 60% of the VO(2)max. There were 18 training sessions at the prescribed walking speed 3 d x wk(-1) for 20 min x d(-1). The backward walking speed required to elicit a fixed VO(2) increased between weeks 4 and 6 of the training period. This finding suggests that backward walking is indeed a novel task and that motor learning occurs as a result of practice, leading to a more efficient recruitment of motor units.

  17. Sustainable Practices Innovation

    EPA Pesticide Factsheets

    Better sustainability means more environmentally conscious and efficient businesses and communities. EPA helps modify the way we consume energy, deal with waste, and grow our economy through programs such as Energy Star, E3, Smart Growth, and WaterSense.

  18. Efficiency Analysis of Waveform Shape for Electrical Excitation of Nerve Fibers

    PubMed Central

    Wongsarnpigoon, Amorn; Woock, John P.; Grill, Warren M.

    2011-01-01

    Stimulation efficiency is an important consideration in the stimulation parameters of implantable neural stimulators. The objective of this study was to analyze the effects of waveform shape and duration on the charge, power, and energy efficiency of neural stimulation. Using a population model of mammalian axons and in vivo experiments on cat sciatic nerve, we analyzed the stimulation efficiency of four waveform shapes: square, rising exponential, decaying exponential, and rising ramp. No waveform was simultaneously energy-, charge-, and power-optimal, and differences in efficiency among waveform shapes varied with pulse width (PW) For short PWs (≤ 0.1 ms), square waveforms were no less energy-efficient than exponential waveforms, and the most charge-efficient shape was the ramp. For long PWs (≥0.5 ms), the square was the least energy-efficient and charge-efficient shape, but across most PWs, the square was the most power-efficient shape. Rising exponentials provided no practical gains in efficiency over the other shapes, and our results refute previous claims that the rising exponential is the energy-optimal shape. An improved understanding of how stimulation parameters affect stimulation efficiency will help improve the design and programming of implantable stimulators to minimize tissue damage and extend battery life. PMID:20388602

  19. Beyond the Petroleum Age: Designing a Solar Economy. Worldwatch Paper 100.

    ERIC Educational Resources Information Center

    Flavin, Christopher; Lenssen, Nicholas

    Alternatives to fossil fuels as energy resources are discussed. Energy from the sun and other renewable resources are cited as the alternatives. Constructed is a practical energy scenario for the year 2030 that involves a 55-percent cut in carbon dioxide emissions, greatly improved energy efficiency, and an energy production system that relies…

  20. A Digital Game-Based Learning System for Energy Education: An Energy COnservation PET

    ERIC Educational Resources Information Center

    Yang, Jie Chi; Chien, Kun Huang; Liu, Tzu Chien

    2012-01-01

    Energy education has been conducted to equip learners with relevant energy conservation knowledge for many years. However, learners seldom put the knowledge into practice and even have few ideas about how to reduce energy consumption. To this end, there is a need to address this issue to improve the efficiency of energy education. One of the…

  1. Practicing Sustainability in an Urban University: A Case Study of a Behavior Based Energy Conservation Project

    ERIC Educational Resources Information Center

    Chan, Stuart; Dolderman, Dan; Savan, Beth; Wakefield, Sarah

    2012-01-01

    This case study of the University of Toronto Sustainability Office's energy conservation project, Rewire, explores the implementation of a social marketing campaign that encourages energy efficient behavior. Energy conservation activities have reached approximately 3,000 students and staff members annually, and have saved electricity, thermal…

  2. NET-ZERO ENERGY BUILDING OPERATOR TRAINING PROGRAM (NZEBOT)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brizendine, Anthony; Byars, Nan; Sleiti, Ahmad

    2012-12-31

    The primary objective of the Net-Zero Energy Building Operator Training Program (NZEBOT) was to develop certificate level training programs for commercial building owners, managers and operators, principally in the areas of energy / sustainability management. The expected outcome of the project was a multi-faceted mechanism for developing the skill-based competency of building operators, owners, architects/engineers, construction professionals, tenants, brokers and other interested groups in energy efficient building technologies and best practices. The training program draws heavily on DOE supported and developed materials available in the existing literature, as well as existing, modified, and newly developed curricula from the Department ofmore » Engineering Technology & Construction Management (ETCM) at the University of North Carolina at Charlotte (UNC-Charlotte). The project goal is to develop a certificate level training curriculum for commercial energy and sustainability managers and building operators that: 1) Increases the skill-based competency of building professionals in energy efficient building technologies and best practices, and 2) Increases the workforce pool of expertise in energy management and conservation techniques. The curriculum developed in this project can subsequently be used to establish a sustainable energy training program that can contribute to the creation of new “green” job opportunities in North Carolina and throughout the Southeast region, and workforce training that leads to overall reductions in commercial building energy consumption. Three energy training / education programs were developed to achieve the stated goal, namely: 1. Building Energy/Sustainability Management (BESM) Certificate Program for Building Managers and Operators (40 hours); 2. Energy Efficient Building Technologies (EEBT) Certificate Program (16 hours); and 3. Energy Efficent Buildings (EEB) Seminar (4 hours). Training Program 1 incorporates the following topics in the primary five-day Building Energy/Sustainability Management Certificate program in five training modules, namely: 1) Strategic Planning, 2) Sustainability Audits, 3) Information Analysis, 4) Energy Efficiency, and 5) Communication. Training Program 2 addresses the following technical topics in the two-day Building Technologies workshop: 1) Energy Efficient Building Materials, 2) Green Roofing Systems, 3) Energy Efficient Lighting Systems, 4) Alternative Power Systems for Buildings, 5) Innovative Building Systems, and 6) Application of Building Performance Simulation Software. Program 3 is a seminar which provides an overview of elements of programs 1 and 2 in a seminar style presentation designed for the general public to raise overall public awareness of energy and sustainability topics.« less

  3. 16 CFR Appendix J2 to Part 305 - Pool Heaters-Oil

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Commercial Practices FEDERAL TRADE COMMISSION REGULATIONS UNDER SPECIFIC ACTS OF CONGRESS ENERGY AND WATER USE LABELING FOR CONSUMER PRODUCTS UNDER THE ENERGY POLICY AND CONSERVATION ACT (âENERGY LABELING... heating capacity Range of thermal efficiencies(percent) Low High All capacities * * * No data submitted...

  4. Energy Efficient Image/Video Data Transmission on Commercial Multi-Core Processors

    PubMed Central

    Lee, Sungju; Kim, Heegon; Chung, Yongwha; Park, Daihee

    2012-01-01

    In transmitting image/video data over Video Sensor Networks (VSNs), energy consumption must be minimized while maintaining high image/video quality. Although image/video compression is well known for its efficiency and usefulness in VSNs, the excessive costs associated with encoding computation and complexity still hinder its adoption for practical use. However, it is anticipated that high-performance handheld multi-core devices will be used as VSN processing nodes in the near future. In this paper, we propose a way to improve the energy efficiency of image and video compression with multi-core processors while maintaining the image/video quality. We improve the compression efficiency at the algorithmic level or derive the optimal parameters for the combination of a machine and compression based on the tradeoff between the energy consumption and the image/video quality. Based on experimental results, we confirm that the proposed approach can improve the energy efficiency of the straightforward approach by a factor of 2∼5 without compromising image/video quality. PMID:23202181

  5. Energy-efficient sensing in wireless sensor networks using compressed sensing.

    PubMed

    Razzaque, Mohammad Abdur; Dobson, Simon

    2014-02-12

    Sensing of the application environment is the main purpose of a wireless sensor network. Most existing energy management strategies and compression techniques assume that the sensing operation consumes significantly less energy than radio transmission and reception. This assumption does not hold in a number of practical applications. Sensing energy consumption in these applications may be comparable to, or even greater than, that of the radio. In this work, we support this claim by a quantitative analysis of the main operational energy costs of popular sensors, radios and sensor motes. In light of the importance of sensing level energy costs, especially for power hungry sensors, we consider compressed sensing and distributed compressed sensing as potential approaches to provide energy efficient sensing in wireless sensor networks. Numerical experiments investigating the effectiveness of compressed sensing and distributed compressed sensing using real datasets show their potential for efficient utilization of sensing and overall energy costs in wireless sensor networks. It is shown that, for some applications, compressed sensing and distributed compressed sensing can provide greater energy efficiency than transform coding and model-based adaptive sensing in wireless sensor networks.

  6. Modeling Energy Efficiency As A Green Logistics Component In Vehicle Assembly Line

    NASA Astrophysics Data System (ADS)

    Oumer, Abduaziz; Mekbib Atnaw, Samson; Kie Cheng, Jack; Singh, Lakveer

    2016-11-01

    This paper uses System Dynamics (SD) simulation to investigate the concept green logistics in terms of energy efficiency in automotive industry. The car manufacturing industry is considered to be one of the highest energy consuming industries. An efficient decision making model is proposed that capture the impacts of strategic decisions on energy consumption and environmental sustainability. The sources of energy considered in this research are electricity and fuel; which are the two main types of energy sources used in a typical vehicle assembly plant. The model depicts the performance measurement for process- specific energy measures of painting, welding, and assembling processes. SD is the chosen simulation method and the main green logistics issues considered are Carbon Dioxide (CO2) emission and energy utilization. The model will assist decision makers acquire an in-depth understanding of relationship between high level planning and low level operation activities on production, environmental impacts and costs associated. The results of the SD model signify the existence of positive trade-offs between green practices of energy efficiency and the reduction of CO2 emission.

  7. Advanced lighting guidelines: 1993. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eley, C.; Tolen, T.M.; Benya, J.R.

    1993-12-31

    The 1993 Advanced Lighting Guidelines document consists of twelve guidelines that provide an overview of specific lighting technologies and design application techniques utilizing energy-efficient lighting practice. Lighting Design Practice assesses energy-efficient lighting strategies, discusses lighting issues, and explains how to obtain quality lighting design and consulting services. Luminaires and Lighting Systems surveys luminaire equipment designed to take advantage of advanced technology lamp products and includes performance tables that allow for accurate estimation of luminaire light output and power input. The additional ten guidelines -- Computer-Aided Lighting Design, Energy-Efficient Fluorescent Ballasts, Full-Size Fluorescent Lamps, Compact Fluorescent Lamps, Tungsten-Halogen Lamps, Metal Halidemore » and HPS Lamps, Daylighting and Lumen Maintenance, Occupant Sensors, Time Scheduling Systems, and Retrofit Control Technologies -- each provide a product technology overview, discuss current products on the lighting equipment market, and provide application techniques. This document is intended for use by electric utility personnel involved in lighting programs, lighting designers, electrical engineers, architects, lighting manufacturers` representatives, and other lighting professionals.« less

  8. Energy Efficiency Improvement and Cost Saving Opportunities for Breweries: An ENERGY STAR(R) Guide for Energy and Plant Managers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galitsky, Christina; Martin, Nathan; Worrell, Ernst

    2003-09-01

    Annually, breweries in the United States spend over $200 million on energy. Energy consumption is equal to 38 percent of the production costs of beer, making energy efficiency improvement an important way to reduce costs, especially in times of high energy price volatility. After a summary of the beer making process and energy use, we examine energy efficiency opportunities available for breweries. We provide specific primary energy savings for each energy efficiency measure based on case studies that have implemented the measures, as well as references to technical literature. If available, we have also listed typical payback periods. Our findingsmore » suggest that given available technology, there are still opportunities to reduce energy consumption cost-effectively in the brewing industry. Brewers value highly the quality, taste and drinkability of their beer. Brewing companies have and are expected to continue to spend capital on cost-effective energy conservation measures that meet these quality, taste and drinkability requirements. For individual plants, further research on the economics of the measures, as well as their applicability to different brewing practices, is needed to assess implementation of selected technologies.« less

  9. Evaluating the prospects for sustainable energy development in a sample of Chinese villages.

    PubMed

    Mortimer, Nigel D; Grant, John F

    2008-04-01

    This paper describes the methods used to evaluate the potential for achieving sustainable energy development in six Chinese villages included in the Sustainable Users' Concepts for China Engaging Scientific Scenarios (SUCCESS) Project by examining energy efficiency potential and local renewable energy prospects. The approaches needed to obtain and analyse information on possible energy efficiency measures and renewable energy resources are summarised. Results are presented in terms of cumulative net savings in primary energy consumption, as an indicator of energy resource depletion, and associated carbon dioxide emissions, as an indicator of global climate change. Options for sustainable energy development are ranked in order of likely implementation and practical actions which could be considered in each village are identified.

  10. 16 CFR Appendix J1 to Part 305 - Pool Heaters-Gas

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Commercial Practices FEDERAL TRADE COMMISSION REGULATIONS UNDER SPECIFIC ACTS OF CONGRESS ENERGY AND WATER USE LABELING FOR CONSUMER PRODUCTS UNDER THE ENERGY POLICY AND CONSERVATION ACT (âENERGY LABELING... heating capacity Range of thermal efficiencies(percent) Natural gas Low High Propane Low High Low High All...

  11. Major Energy Conservation Retrofits: A Planning Guide for Northern Climates.

    ERIC Educational Resources Information Center

    Quivik, Fredric

    Energy-efficient retrofits are suggested as alternatives to conventional weatherization practices in this three-chapter report. Chapter 1 provides information necessary to help readers decide if a major energy retrofit is the right approach to a particular housing situation. Chapter 2 examines various aspects of retrofit designing, considering…

  12. Efficient Cryosolid Positron Moderators

    DTIC Science & Technology

    2012-08-01

    high purity germanium KE .............................. kinetic energies KED ........................... kinetic energy ...12 10 9 E 160 GJ 160 MJ 160 kJ 160 J 160 mJ 160 µJ practical positron energy storage tabletop γ- laser Ps BEC demo Ps 2 formation demo state of the...magnitude larger than the energy densities of chemical explosives or propellants (!) [5]. Since this annihilation energy is released primarily as low

  13. The energy audit process for universities accommodation in Malaysia: a preliminary study

    NASA Astrophysics Data System (ADS)

    Dzulkefli Muhammad, Hilmi

    2017-05-01

    The increase of energy consumption in the Malaysian Universities has raised national concerns due to the fact that its consumption increase government fiscal budget and at the same time contributes negative impacts towards the environment. The purpose of this research is to focus on the process of energy audit conducted in the Malaysian universities and to identify the significant practice that can improve energy consumption of the selected universities. The significant criteria in energy audit may be found by comparing the energy implementation process of selected Malaysian universities through the investigation of energy consumption behavior and the number of electrical appliances, equipment, machinery and buildings activities that have an impact on energy consumption that can improve energy-efficiency in building. The Energy Efficiency Index (EEI) will be used as an indicator and combined with the suggested application of HOMER software to obtain solution and possible improvement of energy consumption during energy audit implementation. A document analysis approach will also be obtained in order to identify the best practice through the selected energy documentations. The result of this research may be used as a guideline for other universities that consume high energy in order to help improving the implementation of energy audit process in their universities.

  14. Metering Best Practices, A Guide to Achieving Utility Resource Efficiency, Release 2.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sullivan, Greg; Hunt, W. D.; Pugh, Ray

    2011-08-31

    This release is an update and expansion of the information provided in Release 1.0 of the Metering Best Practice Guide that was issued in October 2007. This release, as was the previous release, was developed under the direction of the U.S. Department of Energy's Federal Energy Management Program (FEMP). The mission of FEMP is to facilitate the Federal Government's implementation of sound cost-effective energy management and investment practices to enhance the nation's energy security and environmental stewardship. Each of these activities is directly related to achieving requirements set forth in the Energy Policy Acts of 1992 and 2005, the Energymore » Independence and Security Act (EISA) of 2007, and the goals that have been established in Executive Orders 13423 and 13514 - and also those practices that are inherent in sound management of Federal financial and personnel resources.« less

  15. Efficient Solar Energy Harvesting and Storage through a Robust Photocatalyst Driving Reversible Redox Reactions.

    PubMed

    Zhou, Yangen; Zhang, Shun; Ding, Yu; Zhang, Leyuan; Zhang, Changkun; Zhang, Xiaohong; Zhao, Yu; Yu, Guihua

    2018-06-14

    Simultaneous solar energy conversion and storage is receiving increasing interest for better utilization of the abundant yet intermittently available sunlight. Photoelectrodes driving nonspontaneous reversible redox reactions in solar-powered redox cells (SPRCs), which can deliver energy via the corresponding reverse reactions, present a cost-effective and promising approach for direct solar energy harvesting and storage. However, the lack of photoelectrodes having both high conversion efficiency and high durability becomes a bottleneck that hampers practical applications of SPRCs. Here, it is shown that a WO 3 -decorated BiVO 4 photoanode, without the need of extra electrocatalysts, can enable a single-photocatalyst-driven SPRC with a solar-to-output energy conversion efficiency as high as 1.25%. This SPRC presents stable performance over 20 solar energy storage/delivery cycles. The high efficiency and stability are attributed to the rapid redox reactions, the well-matched energy level, and the efficient light harvesting and charge separation of the prepared BiVO 4 . This demonstrated device system represents a potential alternative toward the development of low-cost, durable, and easy-to-implement solar energy technologies. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Chapter 12: Survey Design and Implementation for Estimating Gross Savings Cross-Cutting Protocol. The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurnik, Charles W; Baumgartner, Robert

    This chapter presents an overview of best practices for designing and executing survey research to estimate gross energy savings in energy efficiency evaluations. A detailed description of the specific techniques and strategies for designing questions, implementing a survey, and analyzing and reporting the survey procedures and results is beyond the scope of this chapter. So for each topic covered below, readers are encouraged to consult articles and books cited in References, as well as other sources that cover the specific topics in greater depth. This chapter focuses on the use of survey methods to collect data for estimating gross savingsmore » from energy efficiency programs.« less

  17. Advanced Energy Retrofit Guide: Practical Ways to Improve Energy Performance; Grocery Stores (Revised) (Book)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hendron, B.

    2013-07-01

    The U.S. Department of Energy developed the Advanced Energy Retrofit Guides (AERGs) to provide specific methodologies, information, and guidance to help energy managers and other stakeholders successfully plan and execute energy efficiency improvements. Detailed technical discussion is fairly limited in these guides. Instead, we emphasize actionable information, practical methodologies, diverse case studies, and unbiased evaluations of the most promising retrofit measures for each building type. A series of AERGs is under development, addressing key segments of the commercial building stock. Grocery stores were selected as one of the highest priority sectors, because they represent one of the most energy-intensive marketmore » segments.« less

  18. 48 CFR 23.904 - Policy.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE... on community health and the environment. (b) Federal agencies, to the greatest extent practicable... environment. [60 FR 55307, Oct. 30, 1995. Redesignated at 68 FR 43869, July 24, 2003] ...

  19. Electrorheology for energy production and conservation

    NASA Astrophysics Data System (ADS)

    Huang, Ke

    Recently, based on the physics of viscosity, we developed a new technology, which utilizes electric or magnetic fields to change the rheology of complex fluids to reduce the viscosity, while keeping the temperature unchanged. The method is universal and applicable to all complex fluids with suspended particles of nano-meter, submicrometer, or micrometer size. Completely different from the traditional viscosity reduction method, raising the temperature, this technology is energy-efficient, as it only requires small amount of energy to aggregate the suspended particles. In this thesis, we will first discuss this new technology in detail, both in theory and practice. Then, we will report applications of our technology to energy science research. Presently, 80% of all energy sources are liquid fuels. The viscosity of liquid fuels plays an important role in energy production and energy conservation. With an electric field, we can reduce the viscosity of asphalt-based crude oil. This is important and useful for heavy crude oil and off-shore crude oil production and transportation. Especially, since there is no practical way to raise the temperature of crude oil inside the deepwater pipelines, our technology may play a key role in future off-shore crude oil production. Electrorehology can also be used to reduce the viscosity of refinery fuels, such as diesel fuel and gasoline. When we apply this technology to fuel injection, the fuel droplets in the fuel atomization become smaller, leading to faster combustion in the engine chambers. As the fuel efficiency of internal combustion engines depends on the combustion speed and timing, the fast combustion produces much higher fuel efficiency. Therefore, adding our technology on existing engines improves the engine efficiency significantly. A theoretical model for the engine combustion, which explains how fast combustion improves the engine efficiency, is also presented in the thesis. As energy is the key to our national security, we believe that our technology is important and will have a strong impact on energy production and conversation in the future.

  20. Practical internal combustion engine laser spark plug development

    NASA Astrophysics Data System (ADS)

    Myers, Michael J.; Myers, John D.; Guo, Baoping; Yang, Chengxin; Hardy, Christopher R.

    2007-09-01

    Fundamental studies on laser ignition have been performed by the US Department of Energy under ARES (Advanced Reciprocating Engines Systems) and by the California Energy Commission under ARICE (Advanced Reciprocating Internal Combustion Engine). These and other works have reported considerable increases in fuel efficiencies along with substantial reductions in green-house gas emissions when employing laser spark ignition. Practical commercial applications of this technology require low cost high peak power lasers. The lasers must be small, rugged and able to provide stable laser beam output operation under adverse mechanical and environmental conditions. New DPSS (Diode Pumped Solid State) lasers appear to meet these requirements. In this work we provide an evaluation of HESP (High Efficiency Side Pumped) DPSS laser design and performance with regard to its application as a practical laser spark plug for use in internal combustion engines.

  1. Initial Skill Acquisition of Handrim Wheelchair Propulsion: A New Perspective.

    PubMed

    Vegter, Riemer J K; de Groot, Sonja; Lamoth, Claudine J; Veeger, Dirkjan Hej; van der Woude, Lucas H V

    2014-01-01

    To gain insight into cyclic motor learning processes, hand rim wheelchair propulsion is a suitable cyclic task, to be learned during early rehabilitation and novel to almost every individual. To propel in an energy efficient manner, wheelchair users must learn to control bimanually applied forces onto the rims, preserving both speed and direction of locomotion. The purpose of this study was to evaluate mechanical efficiency and propulsion technique during the initial stage of motor learning. Therefore, 70 naive able-bodied men received 12-min uninstructed wheelchair practice, consisting of three 4-min blocks separated by 2 min rest. Practice was performed on a motor-driven treadmill at a fixed belt speed and constant power output relative to body mass. Energy consumption and the kinetics of propulsion technique were continuously measured. Participants significantly increased their mechanical efficiency and changed their propulsion technique from a high frequency mode with a lot of negative work to a longer-slower movement pattern with less power losses. Furthermore a multi-level model showed propulsion technique to relate to mechanical efficiency. Finally improvers and non-improvers were identified. The non-improving group was already more efficient and had a better propulsion technique in the first block of practice (i.e., the fourth minute). These findings link propulsion technique to mechanical efficiency, support the importance of a correct propulsion technique for wheelchair users and show motor learning differences.

  2. A cautionary approach in transitioning to 'green' energy technologies and practices is required.

    PubMed

    Matatiele, Puleng; Gulumian, Mary

    2016-06-01

    Renewable energy technologies (wind turbines, solar cells, biofuels, etc.) are often referred to as 'clean' or 'green' energy sources, while jobs linked to the field of environmental protection and energy efficiency are referred to as 'green' jobs. The energy efficiency of clean technologies, which is likely to reduce and/or eliminate reliance on fossil fuels, is acknowledged. However, the potential contribution of green technologies and associated practices to ill health and environmental pollution resulting from consumption of energy and raw materials, generation of waste, and the negative impacts related to some life cycle phases of these technologies are discussed. Similarly, a point is made that the green jobs theme is mistakenly oversold because the employment opportunities generated by transitioning to green technologies are not necessarily safe and healthy jobs. Emphasis is put on identifying the hazards associated with these green designs, assessing the risks to the environment and worker health and safety, and either eliminating the hazards or minimizing the risks as essential elements to the design, construction, operation, and maintenance of green technologies. The perception that it is not always economically possible to consider all risk factors associated with renewable energy technologies at the beginning without hampering their implementation, especially in the poor developing countries, is dismissed. Instead, poor countries are encouraged to start implementing environmentally sound practices while transitioning to green technologies in line with their technological development and overall economic growth.

  3. National Hydroelectric Power Resources Study: Potential for Increasing the Output of Existing Hydroelectric Plants. Volume 9

    DTIC Science & Technology

    1981-07-01

    expanding the powerhouse) or uprating existing units to higher generating capacity by rehabilitating, modifying or replacing turbines and/or...fluid energy loss in flow passage and energy loss in converting fluid energy (flow and head) to mechanical energy ( turbine output) to electrical...energy (generator output). The significant practical opportunity is improvement of the energy conversion efficiency of the hydraulic turbine since the

  4. High Performance Schools Best Practices Manual. Volume I: Planning [and] Volume II: Design [and] Volume III: Criteria.

    ERIC Educational Resources Information Center

    Eley, Charles, Ed.

    This three-volume manual, focusing on California's K-12 public schools, presents guidelines for establishing schools that are healthy, comfortable, energy efficient, resource efficient, water efficient, secure, adaptable, and easy to operate and maintain. The first volume describes why high performance schools are important, what components are…

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Romm, J.J.

    Many American companies have found that saving energy and cutting pollution dramatically improves the bottom line. But beyond these gains, businesses that launch energy efficiency programs to save money are often astonished to discover unforeseen benefits: energy efficient lighting, heating, cooling, motors, and industrial processes can increase worker productivity, decrease absenteeism, and improve the quality of work performed. Profits created by the jump in worker productivity can exceed energy savings by a factor of ten. Energy efficiency and pollution prevention represent the next wave in manufacturing, following the quality revolution launched by the Japanese in the 1960s. Unless America leadsmore » the lean and clean revolution, economic health will be undermined as other countries develop clean processes and products and US companies suffer competitively. Also, developing countries will leapfrog their wasteful model and buy products and manufacturing processes from foreign firms already practicing lean and clean.« less

  6. India Commercial Buildings Data Framework: A Summary of Potential Use Cases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mathew, Paul; Mathew, Sangeeta; Kumar, Satish

    This report details a potential set of use cases for India’s Commercial Buildings Data Framework. The use cases are aimed at enabling data-driven, evidence-based policy making and at transforming the market for energy efficiency in the building sector by facilitating the adoption of (1) superior energy-efficient building design and operation and maintenance practices, and (2) better specification and procurement of end-use equipment and systems.

  7. Particle and Photon Detection: Counting and Energy Measurement

    PubMed Central

    Janesick, James; Tower, John

    2016-01-01

    Fundamental limits for photon counting and photon energy measurement are reviewed for CCD and CMOS imagers. The challenges to extend photon counting into the visible/nIR wavelengths and achieve energy measurement in the UV with specific read noise requirements are discussed. Pixel flicker and random telegraph noise sources are highlighted along with various methods used in reducing their contribution on the sensor’s read noise floor. Practical requirements for quantum efficiency, charge collection efficiency, and charge transfer efficiency that interfere with photon counting performance are discussed. Lastly we will review current efforts in reducing flicker noise head-on, in hopes to drive read noise substantially below 1 carrier rms. PMID:27187398

  8. All-silicon tandem solar cells: Practical limits for energy conversion and possible routes for improvement

    NASA Astrophysics Data System (ADS)

    Jia, Xuguang; Puthen-Veettil, Binesh; Xia, Hongze; Yang, Terry Chien-Jen; Lin, Ziyun; Zhang, Tian; Wu, Lingfeng; Nomoto, Keita; Conibeer, Gavin; Perez-Wurfl, Ivan

    2016-06-01

    Silicon nanocrystals (Si NCs) embedded in a dielectric matrix is regarded as one of the most promising materials for the third generation photovoltaics, owing to their tunable bandgap that allows fabrication of optimized tandem devices. Previous work has demonstrated fabrication of Si NCs based tandem solar cells by sputter-annealing of thin multi-layers of silicon rich oxide and SiO2. However, these device efficiencies were much lower than expected given that their theoretical values are much higher. Thus, it is necessary to understand the practical conversion efficiency limits for these devices. In this article, practical efficiency limits of Si NC based double junction tandem cells determined by fundamental material properties such as minority carrier, mobility, and lifetime are investigated. The practical conversion efficiency limits for these devices are significantly different from the reported efficiency limits which use Shockley-Queisser assumptions. Results show that the practical efficiency limit of a double junction cell (1.6 eV Si NC top cell and a 25% efficient c-Si PERL cell as the bottom cell) is 32%. Based on these results suggestions for improvement to the performance of Si nanocrystal based tandem solar cells in terms of the different parameters that were simulated are presented.

  9. SEEA SOUTHEAST CONSORTIUM FINAL TECHNICAL REPORT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Block, Timothy; Ball, Kia; Fournier, Ashley

    In 2010 the Southeast Energy Efficiency Alliance (SEEA) received a $20 million Energy Efficiency and Conservation Block Grant (EECBG) under the U.S. Department of Energy’s Better Building Neighborhood Program (BBNP). This grant, funded by the American Recovery and Reinvestment Act, also included sub-grantees in 13 communities across the Southeast, known as the Southeast Consortium. The objective of this project was to establish a framework for energy efficiency retrofit programs to create models for replication across the Southeast and beyond. To achieve this goal, SEEA and its project partners focused on establishing infrastructure to develop and sustain the energy efficiency marketmore » in specific localities across the southeast. Activities included implementing minimum training standards and credentials for marketplace suppliers, educating and engaging homeowners on the benefits of energy efficiency through strategic marketing and outreach and addressing real or perceived financial barriers to investments in whole-home energy efficiency through a variety of financing mechanisms. The anticipated outcome of these activities would be best practice models for program design, marketing, financing, data collection and evaluation as well as increased market demand for energy efficiency retrofits and products. The Southeast Consortium’s programmatic impacts along with the impacts of the other BBNP grantees would further the progress towards the overall goal of energy efficiency market transformation. As the primary grantee SEEA served as the overall program administrator and provided common resources to the 13 Southeast Consortium sub-grantees including contracted services for contractor training, quality assurance testing, data collection, reporting and compliance. Sub-grantee programs were located in cities across eight states including Alabama, Florida, Georgia, Louisiana, North Carolina, South Carolina, Tennessee, Virginia and the U.S. Virgin Islands. Each sub-grantee program was designed to address the unique local conditions and population of its community. There was great diversity in programs design, types of financing and incentives, building stock characteristics, climate and partnerships. From 2010 through 2013, SEEA and its sub-grantee programs focused on determining best practices in program administration, workforce development, marketing and consumer education, financing, and utility partnerships. One of the common themes among programs that were most successful in each of these areas was strong partnerships and collaborations with people or organizations in the community. In many instances engaged partners proved to be the key to addressing barriers such as access to financing, workforce development opportunities and access to utility bill data. The most challenging barrier proved to be the act of building a market for energy efficiency where none previously existed. With limited time and resources, educating homeowners of the value in investing in energy efficiency while engaging electric and gas utilities served as a significant barrier for several programs. While there is still much work to be done to continue to transform the energy efficiency market in the Southeast, the programmatic activities led by SEEA and its sub-grantees resulted in 8,180 energy audits and 5,155 energy efficiency retrofits across the Southeast. In total the Southeast Consortium saved an estimated 27,915,655.93 kWh and generated an estimated $ 2,291,965.90 in annual energy cost savings in the region.« less

  10. Progress Towards Highly Efficient Windows for Zero—Energy Buildings

    NASA Astrophysics Data System (ADS)

    Selkowitz, Stephen

    2008-09-01

    Energy efficient windows could save 4 quads/year, with an additional 1 quad/year gain from daylighting in commercial buildings. This corresponds to 13% of energy used by US buildings and 5% of all energy used by the US. The technical potential is thus very large and the economic potential is slowly becoming a reality. This paper describes the progress in energy efficient windows that employ low-emissivity glazing, electrochromic switchable coatings and other novel materials. Dynamic systems are being developed that use sensors and controls to modulate daylighting and shading contributions in response to occupancy, comfort and energy needs. Improving the energy performance of windows involves physics in a variety of application: optics, heat transfer, materials science and applied engineering. Technical solutions must also be compatible with national policy, codes and standards, economics, business practice and investment, real and perceived risks, comfort, health, safety, productivity, amenities, and occupant preference and values. The challenge is to optimize energy performance by understanding and reinforcing the synergetic coupling between these many issues.

  11. High-Performance Home Technologies: Solar Thermal & Photovoltaic Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baechler, M.; Gilbride, T.; Ruiz, K.

    This document is the sixth volume of the Building America Best Practices Series. It presents information that is useful throughout the United States for enhancing the energy efficiency practices in the specific climate zones that are presented in the first five Best Practices volumes. It provides an introduction to current photovoltaic and solar thermal building practices. Information about window selection and shading is included.

  12. Potential reduction of energy consumption in public university library

    NASA Astrophysics Data System (ADS)

    Noranai, Z.; Azman, ADF

    2017-09-01

    Efficient electrical energy usage has been recognized as one of the important factor to reduce cost of electrical energy consumption. Various parties have been emphasized about the importance of using electrical energy efficiently. Inefficient usage of electrical energy usage lead to biggest factor increasing of administration cost in Universiti Tun Hussein Onn Malaysia. With this in view, a project the investigate potential reduction electrical energy consumption in Universiti Tun Hussein Onn Malaysia was carried out. In this project, a case study involving electrical energy consumption of Perpustakaan Tunku Tun Aminah was conducted. The scopes of this project are to identify energy consumption in selected building and to find the factors that contributing to wastage of electrical energy. The MS1525:2001, Malaysian Standard - Code of practice on energy efficiency and use of renewable energy for non-residential buildings was used as reference. From the result, 4 saving measure had been proposed which is change type of the lamp, install sensor, decrease the number of lamp and improve shading coefficient on glass. This saving measure is suggested to improve the efficiency of electrical energy consumption. Improve of human behaviour toward saving energy measure can reduce 10% from the total of saving cost while on building technical measure can reduce 90% from total saving cost.

  13. Chapter 24: Strategic Energy Management (SEM) Evaluation Protocol. The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stewart, James

    Strategic energy management (SEM) focuses on achieving energy-efficiency improvements through systematic and planned changes in facility operations, maintenance, and behaviors (OM&B) and capital equipment upgrades in large energy-using facilities, including industrial buildings, commercial buildings, and multi-facility organizations such as campuses or communities. Facilities can institute a spectrum of SEM actions, ranging from a simple process for regularly identifying energy-savings actions, to establishing a formal, third-party recognized or certified SEM framework for continuous improvement of energy performance. In general, SEM programs that would be considered part of a utility program will contain a set of energy-reducing goals, principles, and practices emphasizingmore » continuous improvements in energy performance or savings through energy management and an energy management system (EnMS).« less

  14. Energy management study: A proposed case of government building

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tahir, Mohamad Zamhari; Nawi, Mohd Nasrun Mohd; Baharum, Mohd Faizal

    Align with the current needs of the sustainable and green technology in Malaysian construction industry, this research is conducted to seek and identify opportunities to better manage energy use including the process of understand when, where, and how energy is used in a building. The purpose of this research is to provide a best practice guideline as a practical tool to assist construction industry in Malaysia to improve the energy efficiency of the office building during the post-production by reviewing the current practice of the building operation and maintenance in order to optimum the usage and reduce the amount ofmore » energy input into the building. Therefore, this paper will review the concept of maintenance management, current issue in energy management, and on how the research process will be conducted. There are several process involves and focuses on technical and management techniques such as energy metering, tracing, harvesting, and auditing based on the case study that will be accomplish soon. Accordingly, a case study is appropriate to be selected as a strategic research approach in which involves an empirical investigation of a particular contemporary phenomenon within its real life context using multiple sources of evidence for the data collection process. A Government office building will be selected as an appropriate case study for this research. In the end of this research, it will recommend a strategic approach or model in a specific guideline for enabling energy-efficient operation and maintenance in the office building.« less

  15. Energy management study: A proposed case of government building

    NASA Astrophysics Data System (ADS)

    Tahir, Mohamad Zamhari; Nawi, Mohd Nasrun Mohd; Baharum, Mohd Faizal

    2015-05-01

    Align with the current needs of the sustainable and green technology in Malaysian construction industry, this research is conducted to seek and identify opportunities to better manage energy use including the process of understand when, where, and how energy is used in a building. The purpose of this research is to provide a best practice guideline as a practical tool to assist construction industry in Malaysia to improve the energy efficiency of the office building during the post-production by reviewing the current practice of the building operation and maintenance in order to optimum the usage and reduce the amount of energy input into the building. Therefore, this paper will review the concept of maintenance management, current issue in energy management, and on how the research process will be conducted. There are several process involves and focuses on technical and management techniques such as energy metering, tracing, harvesting, and auditing based on the case study that will be accomplish soon. Accordingly, a case study is appropriate to be selected as a strategic research approach in which involves an empirical investigation of a particular contemporary phenomenon within its real life context using multiple sources of evidence for the data collection process. A Government office building will be selected as an appropriate case study for this research. In the end of this research, it will recommend a strategic approach or model in a specific guideline for enabling energy-efficient operation and maintenance in the office building.

  16. Driving Demand for Home Energy Improvements: Motivating residential customers to invest in comprehensive upgrades that eliminate energy waste, avoid high utility bills, and spur the economy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fuller, Merrian C.

    Policy makers and program designers in the U.S. and abroad are deeply concerned with the question of how to scale up energy efficiency to a level that is commensurate both to the scale of the energy and climate challenges we face, and to the potential for energy savings that has been touted for decades. When policy makers ask what energy efficiency can do, the answers usually revolve around the technical and economic potential of energy efficiency - they rarely hone in on the element of energy demand that matters most for changing energy usage in existing homes: the consumer. Amore » growing literature is concerned with the behavioral underpinnings of energy consumption. We examine a narrower, related subject: How can millions of Americans be persuaded to divert valued time and resources into upgrading their homes to eliminate energy waste, avoid high utility bills, and spur the economy? With hundreds of millions of public dollars flowing into incentives, workforce training, and other initiatives to support comprehensive home energy improvements, it makes sense to review the history of these programs and begin gleaning best practices for encouraging comprehensive home energy improvements. Looking across 30 years of energy efficiency programs that targeted the residential market, many of the same issues that confronted past program administrators are relevant today: How do we cost-effectively motivate customers to take action? Who can we partner with to increase program participation? How do we get residential efficiency programs to scale? While there is no proven formula - and only limited success to date with reliably motivating large numbers of Americans to invest in comprehensive home energy improvements, especially if they are being asked to pay for a majority of the improvement costs - there is a rich and varied history of experiences that new programs can draw upon. Our primary audiences are policy makers and program designers - especially those that are relatively new to the field, such as the over 2,000 towns, cities, states, and regions who are recipients of American Reinvestment and Recovery Act funds for clean energy programs. This report synthesizes lessons from first generation programs, highlights emerging best practices, and suggests methods and approaches to use in designing, implementing, and evaluating these programs. We examined 14 residential energy efficiency programs, conducted an extensive literature review, interviewed industry experts, and surveyed residential contractors to draw out these lessons.« less

  17. Final review of the Campbell Creek demonstrations showcased by Tennessee Valley Authority

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gehl, Anthony C.; Munk, Jeffrey D.; Jackson, Roderick K.

    The Tennessee Valley Authority (TVA) Technology Innovation, Energy Efficiency, Power Delivery and Utilization Office funded and managed a showcase demonstration located in the suburbs of west Knox county, Tennessee. Work started March 2008 with the goal of documenting best practices for retrofitting existing homes and for building new high-efficiency homes. The Oak Ridge National Laboratory and the Electric Power Research Institute (EPRI) provided technical support. An analytical base was developed for helping homeowners, homebuyers, builders, practitioners and the TVA make informed economic decisions for the materials and incentives necessary to build a new high-efficiency home or retrofit an existing home.more » New approaches to more efficiently control active energy subsystems and information for selecting or upgrading to Energy Star appliances, changing all lights to 100% CFL s and upgrading windows to low-E gas filled glazing yields a 40% energy savings with neutral cash flow for the homeowner. Passive designs were reviewed and recommendations made for envelope construction that is durable and energy efficient. The Campbell Creek project complements the DOE Building Technologies Program strategic goal. Results of the project created technologies and design approaches that will yield affordable energy efficient homes. The 2010 DOE retrofit goals are to find retrofit packages that attain 30% whole house energy savings as documented by pre and post Home Energy rating scores (HERS). Campbell Creek met these goals.« less

  18. Energy conversion approaches and materials for high-efficiency photovoltaics.

    PubMed

    Green, Martin A; Bremner, Stephen P

    2016-12-20

    The past five years have seen significant cost reductions in photovoltaics and a correspondingly strong increase in uptake, with photovoltaics now positioned to provide one of the lowest-cost options for future electricity generation. What is becoming clear as the industry develops is that area-related costs, such as costs of encapsulation and field-installation, are increasingly important components of the total costs of photovoltaic electricity generation, with this trend expected to continue. Improved energy-conversion efficiency directly reduces such costs, with increased manufacturing volume likely to drive down the additional costs associated with implementing higher efficiencies. This suggests the industry will evolve beyond the standard single-junction solar cells that currently dominate commercial production, where energy-conversion efficiencies are fundamentally constrained by Shockley-Queisser limits to practical values below 30%. This Review assesses the overall prospects for a range of approaches that can potentially exceed these limits, based on ultimate efficiency prospects, material requirements and developmental outlook.

  19. Making Homes Part of the Climate Solution: Policy Options To Promote Energy Efficiency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Dr. Marilyn Ann; Chandler, Jess; Lapsa, Melissa Voss

    In the area of energy efficiency, advanced technologies combined with best practices appear to afford not only large, but also cost-effective options to conserve energy and reduce greenhouse gas emissions (McKinsey & Company, 2007). In practice, however, the realization of this potential has often proven difficult. Progress appears to require large numbers of individuals to act knowledgeably, and each individual must often act with enabling assistance from others. Even when consumer education is effective and social norms are supportive, the actions of individuals and businesses can be impeded by a broad range of barriers, many of which are non-technical inmore » nature. Title XVI of the Energy Policy Act of 2005 included a mandate to examine barriers to progress and make recommendations in this regard. A detailed report on barriers as well as the National strategy for overcoming barriers met this requirement (Brown et al, 2008; CCCSTI, 2009). Following up on this mandate, the U.S. Climate Change Technology Program (CCTP) chose to focus next on the development of policy options to improve energy efficiency in residential buildings, with supporting analysis of pros and cons, informed in part by behavioral research. While this work is sponsored by CCTP, it has been undertaken in coordination with DOE's Building Technologies Program and Office of Electricity Delivery and Energy Reliability.« less

  20. Energy efficiency in nonprofit agencies: Creating effective program models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, M.A.; Prindle, B.; Scherr, M.I.

    Nonprofit agencies are a critical component of the health and human services system in the US. It has been clearly demonstrated by programs that offer energy efficiency services to nonprofits that, with minimal investment, they can educe their energy consumption by ten to thirty percent. This energy conservation potential motivated the Department of Energy and Oak Ridge National Laboratory to conceive a project to help states develop energy efficiency programs for nonprofits. The purpose of the project was two-fold: (1) to analyze existing programs to determine which design and delivery mechanisms are particularly effective, and (2) to create model programsmore » for states to follow in tailoring their own plans for helping nonprofits with energy efficiency programs. Twelve existing programs were reviewed, and three model programs were devised and put into operation. The model programs provide various forms of financial assistance to nonprofits and serve as a source of information on energy efficiency as well. After examining the results from the model programs (which are still on-going) and from the existing programs, several replicability factors'' were developed for use in the implementation of programs by other states. These factors -- some concrete and practical, others more generalized -- serve as guidelines for states devising program based on their own particular needs and resources.« less

  1. Hail to the Vegginator!

    ERIC Educational Resources Information Center

    Taylor, Gregory D.

    2004-01-01

    The Tour de Sol marked its 15th year in 2003. Sponsored by the Northeast Sustainable Energy Association (NESEA), the annual event showcases varied sustainable transportation modalities through a contest that evaluates vehicles according to numerous criteria, including safety, handling, practicality, and fuel (energy) efficiency. The only unifying…

  2. Building Energy Codes: Policy Overview and Good Practices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cox, Sadie

    2016-02-19

    Globally, 32% of total final energy consumption is attributed to the building sector. To reduce energy consumption, energy codes set minimum energy efficiency standards for the building sector. With effective implementation, building energy codes can support energy cost savings and complementary benefits associated with electricity reliability, air quality improvement, greenhouse gas emission reduction, increased comfort, and economic and social development. This policy brief seeks to support building code policymakers and implementers in designing effective building code programs.

  3. Challenge Students to Design an Energy-Efficient Home

    ERIC Educational Resources Information Center

    Griffith, Jack

    2008-01-01

    This article presents an activity that gives students a practical understanding of how much energy the average home consumes and wastes, and shows how the construction technologies used in home design affect overall energy usage. In this activity, students will outline the cost of a home's electrical system, give a breakdown of how much power the…

  4. Design High-Efficiency III-V Nanowire/Si Two-Junction Solar Cell.

    PubMed

    Wang, Y; Zhang, Y; Zhang, D; He, S; Li, X

    2015-12-01

    In this paper, we report the electrical simulation results of a proposed GaInP nanowire (NW)/Si two-junction solar cell. The NW physical dimensions are determined for optimized solar energy absorption and current matching between each subcell. Two key factors (minority carrier lifetime, surface recombination velocity) affecting power conversion efficiency (PCE) of the solar cell are highlighted, and a practical guideline to design high-efficiency two-junction solar cell is thus provided. Considering the practical surface and bulk defects in GaInP semiconductor, a promising PCE of 27.5 % can be obtained. The results depict the usefulness of integrating NWs to construct high-efficiency multi-junction III-V solar cells.

  5. Unitary limit in crossed Andreev transport

    DOE PAGES

    Sadovskyy, I. A.; Lesovik, G. B.; Vinokur, V. M.

    2015-10-08

    One of the most promising approaches for generating spin- and energy-entangled electron pairs is splitting a Cooper pair into the metal through spatially separated terminals. Utilizing hybrid systems with the energy-dependent barriers at the superconductor/normal metal (NS) interfaces, one can achieve a practically 100% efficiency outcome of entangled electrons. We investigate a minimalistic one-dimensional model comprising a superconductor and two metallic leads and derive an expression for an electron-to-hole transmission probability as a measure of splitting efficiency. We find the conditions for achieving 100% efficiency and present analytical results for the differential conductance and differential noise.

  6. Innovative, energy-efficient lighting for New York state roadways : opportunities for incorporating mesopic visibility considerations into roadway lighting practice

    DOT National Transportation Integrated Search

    2008-04-01

    The present report outlines activities undertaken to assess the potential for implementing research on visibility at mesopic light levels into lighting practices for roadways in New York State. Through measurements of light levels at several roadway ...

  7. Energy and Exergy Analysis of Vapour Absorption Refrigeration Cycle—A Review

    NASA Astrophysics Data System (ADS)

    Kanabar, Bhaveshkumar Kantilal; Ramani, Bharatkumar Maganbhai

    2016-07-01

    In recent years, an energy crisis and the energy consumption have become global problems which restrict the sustainable growth. In these scenarios the scientific energy recovery and the utilization of various kinds of waste heat become very important. The waste heat can be utilized in many ways and one of the best practices is to use it for vapour absorption refrigeration system. To ensure efficient working of absorption cycle and utilization of optimum heat, exergy is the best tool for analysis. This paper provides the comprehensive picture of research and development of absorption refrigeration technology, practical and theoretical analysis with different arrangements of the cycle.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    After progressively incorporating ENERGY STAR for Homes Versions 1, 2, and 3 into its standard practices over the years, builder Brookside Development was seeking to build an even more sustainable product that would further increase energy efficiency, while also addressing indoor air quality, water conservation, renewable-ready, and resiliency. These objectives align with the framework of the U.S. Department of Energy Zero Energy Ready Home program, which builds upon the comprehensive building science requirements of ENERGY STAR for Homes Version 3 and proven Building America innovations and best practices. To meet this goal, Consortium for Advanced Residential Buildings partnered with Brooksidemore » Development to design and construct the first zero energy ready home in a development of seven new homes on the old Singer Estate in Derby, Connecticut.« less

  9. Best Practices Manual, 2002 Edition.

    ERIC Educational Resources Information Center

    Collaborative for High Performance Schools, CA.

    The goal of this manual is to create a new generation of high performance school facilities in California. The focus is on public schools and levels K-12, althoughmany of the design principals apply to private schools and higher education facilities as well. High performance schools are healthy, comfortable, energy efficient, resource efficient,…

  10. La-CTP: Loop-Aware Routing for Energy-Harvesting Wireless Sensor Networks.

    PubMed

    Sun, Guodong; Shang, Xinna; Zuo, Yan

    2018-02-02

    In emerging energy-harvesting wireless sensor networks (EH-WSN), the sensor nodes can harvest environmental energy to drive their operation, releasing the user's burden in terms of frequent battery replacement, and even enabling perpetual sensing systems. In EH-WSN applications, usually, the node in energy-harvesting or recharging state has to stop working until it completes the energy replenishment. However, such temporary departures of recharging nodes severely impact the packet routing, and one immediate result is the routing loop problem. Controlling loops in connectivity-intermittent EH-WSN in an efficient way is a big challenge in practice, and so far, users still lack of effective and practicable routing protocols with loop handling. Based on the Collection Tree Protocol (CTP) widely used in traditional wireless sensor networks, this paper proposes a loop-aware routing protocol for real-world EH-WSNs, called La-CTP, which involves a new parent updating metric and a proactive, adaptive beaconing scheme to effectively suppress the occurrence of loops and unlock unavoidable loops, respectively. We constructed a 100-node testbed to evaluate La-CTP, and the experimental results showed its efficacy and efficiency.

  11. Introduction of Nano-seconds Pulsed Discharge Plasma and its Applications

    NASA Astrophysics Data System (ADS)

    Namihira, Takao; Wang, Douyan; Matsumoto, Takao; Okada, Sho; Akiyama, Hidenori

    During the decades, the developments of high power semiconductor switch, magnetic core and etc have allowed us to manufacture the pulsed power source having higher energy transfer efficiency. As the results, the pulsed discharge has been recognized as one of the promised non-thermal plasma to practical use. In this paper, a generation process, electron energy, impedance and a temperature of the pulsed discharge plasma would be explained. In addition, a nano-seconds pulsed discharge plasma would be introduced as the non-thermal plasma processing giving us the highest energy efficiency and be demonstrated it.

  12. Distributed Wireless Power Transfer With Energy Feedback

    NASA Astrophysics Data System (ADS)

    Lee, Seunghyun; Zhang, Rui

    2017-04-01

    Energy beamforming (EB) is a key technique for achieving efficient radio-frequency (RF) transmission enabled wireless energy transfer (WET). By optimally designing the waveforms from multiple energy transmitters (ETs) over the wireless channels, they can be constructively combined at the energy receiver (ER) to achieve an EB gain that scales with the number of ETs. However, the optimal design of EB waveforms requires accurate channel state information (CSI) at the ETs, which is challenging to obtain practically, especially in a distributed system with ETs at separate locations. In this paper, we study practical and efficient channel training methods to achieve optimal EB in a distributed WET system. We propose two protocols with and without centralized coordination, respectively, where distributed ETs either sequentially or in parallel adapt their transmit phases based on a low-complexity energy feedback from the ER. The energy feedback only depends on the received power level at the ER, where each feedback indicates one particular transmit phase that results in the maximum harvested power over a set of previously used phases. Simulation results show that the two proposed training protocols converge very fast in practical WET systems even with a large number of distributed ETs, while the protocol with sequential ET phase adaptation is also analytically shown to converge to the optimal EB design with perfect CSI by increasing the training time. Numerical results are also provided to evaluate the performance of the proposed distributed EB and training designs as compared to other benchmark schemes.

  13. Building America Best Practices Series Volume 13: Energy Performance Techniques and Technologies: Preserving Historic Homes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Britt, Michelle L.; Baechler, Michael C.; Gilbride, Theresa L.

    2011-03-01

    This guide is a resource to help contractors renovate historic houses, while addressing issues such as building durability, indoor air quality, and occupant health, safety, and comfort. The best practices described in this document are based on the results of research and demonstration projects conducted by Building America’s research teams. Building America brings together the nation’s leading building scientists with over 300 production builders to develop, test, and apply innovative, energy-efficient construction practices. The guide is available for download from the DOE Building America website www.buildingamerica.gov.

  14. Sustaining high-energy orbits of bi-stable energy harvesters by attractor selection

    NASA Astrophysics Data System (ADS)

    Udani, Janav P.; Arrieta, Andres F.

    2017-11-01

    Nonlinear energy harvesters have the potential to efficiently convert energy over a wide frequency range; however, difficulties in attaining and sustaining high-energy oscillations restrict their applicability in practical scenarios. In this letter, we propose an actuation methodology to switch the state of bi-stable harvesters from the low-energy intra-well configuration to the coexisting high-energy inter-well configuration by controlled phase shift perturbations. The strategy is designed to introduce a change in the system state without creating distinct metastable attractors by exploiting the basins of attraction of the coexisting stable attractors. Experimental results indicate that the proposed switching strategy yields a significant improvement in energy transduction capabilities, is highly economical, enabling the rapid recovery of energy spent in the disturbance, and can be practically implemented with widely used low-strain piezoelectric transducers.

  15. Re-Form: FPGA-Powered True Codesign Flow for High-Performance Computing In The Post-Moore Era

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cappello, Franck; Yoshii, Kazutomo; Finkel, Hal

    Multicore scaling will end soon because of practical power limits. Dark silicon is becoming a major issue even more than the end of Moore’s law. In the post-Moore era, the energy efficiency of computing will be a major concern. FPGAs could be a key to maximizing the energy efficiency. In this paper we address severe challenges in the adoption of FPGA in HPC and describe “Re-form,” an FPGA-powered codesign flow.

  16. Communication of Energy Efficiency Information to Remodelers. Lessons From Current Practice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liaukus, C.

    2012-10-01

    The effective communication of energy efficiency and building science information to remodeling contractors is achieved through varying formats, timelines, and modes depending on who is delivering the information, who is intended to receive it, and what technical, intellectual, and time resources the recipients have at their disposal. This report reviews communications that are deemed effective, and selects a group to be further analyzed to determine why they are effective and how less successful formats or strategies can be revised for greater effectiveness.

  17. Public sector energy management: A strategy for catalyzing energy efficiency in Malaysia

    NASA Astrophysics Data System (ADS)

    Roy, Anish Kumar

    To date the public sector role in facilitating the transition to a sustainable energy future has been envisaged mainly from a regulatory perspective. In such a role, the public sector provides the push factors---enforcing regulations and providing incentives---to correct market imperfections that impede energy transitions. An alternative and complementary role of the public sector that is now gaining increasing attention is that of catalyzing energy transitions through public sector energy management initiatives. This dissertation offers a conceptual framework to rationalize such a role for the public sector by combining recent theories of sustainable energy transition and public management. In particular, the framework identifies innovative public management strategies (such as performance contracting and procurement) for effectively implementing sustainable energy projects in government facilities. The dissertation evaluates a model of sustainable public sector energy management for promoting energy efficiency in Malaysia. The public sector in Malaysia can be a major player in leading and catalyzing energy efficiency efforts as it is not only the largest and one of the most influential energy consumers, but it also plays a central role in setting national development strategy. The dissertation makes several recommendations on how a public sector energy management strategy can be implemented in Malaysia. The US Federal Energy Management Program (FEMP) is used as a practical model. The analysis, however, shows that in applying the FEMP model to the Malaysian context, there are a number of limitations that will have to be taken into consideration to enable a public sector energy management strategy to be effectively implemented. Overall the analysis of this dissertation contributes to a rethinking of the public sector role in sustainable energy development that can strengthen the sector's credibility both in terms of governance and institutional performance. In addition, it links theory with practice by offering a strategy that can effectively address critical issues arising from the energy-development-policy nexus of the sustainable energy development debate.

  18. Energy Efficiency Improvement and Cost Saving Opportunities for the Baking Industry: An ENERGY STAR ® Guide for Plant and Energy Managers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Masanet, Eric; Therkelsen, Peter; Worrell, Ernst

    The U.S. baking industry—defined in this Energy Guide as facilities engaged in the manufacture of commercial bakery products such as breads, rolls, frozen cakes, pies, pastries, and cookies and crackers—consumes over $800 million worth of purchased fuels and electricity per year. Energy efficiency improvement is an important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There are a variety of opportunities available at individual plants to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy-efficient technologies that can be implemented at the component,more » process, facility, and organizational levels. Many measure descriptions include expected savings in energy and energy-related costs, based on case study data from real-world applications in food processing facilities and related industries worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. A summary of basic, proven measures for improving plant-level water efficiency is also provided. The information in this Energy Guide is intended to help energy and plant managers in the U.S. baking industry reduce energy and water consumption in a cost-effective manner while maintaining the quality of products manufactured. Further research on the economics of all measures—as well as on their applicability to different production practices—is needed to assess their cost effectiveness at individual plants.« less

  19. Energy efficiency improvement and cost saving opportunities for the Corn Wet Milling Industry: An ENERGY STAR Guide for Energy and Plant Managers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galitsky, Christina; Worrell, Ernst; Ruth, Michael

    2003-07-01

    Corn wet milling is the most energy intensive industry within the food and kindred products group (SIC 20), using 15 percent of the energy in the entire food industry. After corn, energy is the second largest operating cost for corn wet millers in the United States. A typical corn wet milling plant in the United States spends approximately $20 to $30 million per year on energy, making energy efficiency improvement an important way to reduce costs and increase predictable earnings, especially in times of high energy-price volatility. This report shows energy efficiency opportunities available for wet corn millers. It beginsmore » with descriptions of the trends, structure and production of the corn wet milling industry and the energy used in the milling and refining process. Specific primary energy savings for each energy efficiency measure based on case studies of plants and references to technical literature are provided. If available, typical payback periods are also listed. The report draws upon the experiences of corn, wheat and other starch processing plants worldwide for energy efficiency measures. The findings suggest that given available resources and technology, there are opportunities to reduce energy consumption cost-effectively in the corn wet milling industry while maintaining the quality of the products manufactured. Further research on the economics of the measures, as well as the applicability of these to different wet milling practices, is needed to assess the feasibility of implementation of selected technologies at individual plants.« less

  20. Numerical modeling and experimental testing of a solar grill

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olwi, I.; Khalifa, A.

    1993-02-01

    The sun provides a free, nonpolluting and everlasting source of energy. Considerable research has been carried out to utilize solar energy for purposes such as water heating, high temperature ovens, and conversion to electrical energy. One of the interesting forms for utilizing solar energy is cooking. The main disadvantage of solar energy systems has been the low efficiency attained in most of its practical applications. It is expected, however, that due to continuing decreases in the availability of other energy sources such as oil and coal, along with the safety problems associated with nuclear energy, man's need for utilization ofmore » solar energy will increase, thus leading him to find the ways and means to develop adequate and efficient solar-powered systems. In camps, where tents are used to accommodate people, cooking is done via conventional gas stoves. This usually takes place in extremely crowded areas which become highly fireprone. Solar oven cookers seem to be a viable alternative considering both economy and safety. Among the various forms of solar cookers, the oven-type solar cooker is known to be the best in terms of efficiency. One of the most practical and efficient forms of solar oven cookers is the outdoor portable solar grill (Bar-B-Q), developed by Khalifa et al. The solar grill is a light and portable unit that utilizes solar energy to grill meat. One of the best types of grilling with this cooker is the well-known Shish Kebab or Bar-B-Q. A detailed description for the design of the solar grill is provided as follows. This paper is aimed at providing experimental results and formulating a numerical model for the solar grill. Results of the two approaches are then compared to verify the validity of the numerical simulation. An experimental and theoretical investigation was conducted on the solar grill in order to study the factors that affect its design and performance.« less

  1. Corporate Energy Conservation Program for Alcoa North American Extrusions: Office of Industrial Technologies (OIT) Aluminum BestPractices Management Case Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    U.S. Department of Energy

    2001-08-06

    This case study is the latest in a series on industrial firms who are implementing energy efficient technologies and system improvements into their manufacturing processes. The case studies document the activities, savings, and lessons learned on these projects.

  2. Converge & Conquer

    ERIC Educational Resources Information Center

    Korzeniowski, Paul

    2008-01-01

    State-of-the-art, energy-efficient facilities are now emerging on campuses across the US, and for a variety of reasons: One practical consideration is that such buildings bring down energy costs, which are now soaring. Facing rising expenditures and a tightening of potential revenue, universities are looking for ways to reduce operating costs, and…

  3. 7 CFR 4280.114 - Laws that contain other compliance requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Renewable Energy Systems and Energy Efficiency Improvements Program Section A. Grants § 4280.114 Laws that... of this title. Initial reviews will be conducted after Form RD 400-4 is signed and all subsequent... practicable after they decide to pursue any form of financial assistance directly or indirectly available...

  4. 3 CFR 13514 - Executive Order 13514 of October 5, 2009. Federal Leadership in Environmental, Energy, and...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... goals and support their respective missions, agencies shall prioritize actions based on a full... exclude direct emissions from excluded vehicles and equipment and from electric power produced and sold... equipment; (v) implementing best management practices for energy-efficient management of servers and Federal...

  5. Efficient Convex Optimization for Energy-Based Acoustic Sensor Self-Localization and Source Localization in Sensor Networks.

    PubMed

    Yan, Yongsheng; Wang, Haiyan; Shen, Xiaohong; Leng, Bing; Li, Shuangquan

    2018-05-21

    The energy reading has been an efficient and attractive measure for collaborative acoustic source localization in practical application due to its cost saving in both energy and computation capability. The maximum likelihood problems by fusing received acoustic energy readings transmitted from local sensors are derived. Aiming to efficiently solve the nonconvex objective of the optimization problem, we present an approximate estimator of the original problem. Then, a direct norm relaxation and semidefinite relaxation, respectively, are utilized to derive the second-order cone programming, semidefinite programming or mixture of them for both cases of sensor self-location and source localization. Furthermore, by taking the colored energy reading noise into account, several minimax optimization problems are formulated, which are also relaxed via the direct norm relaxation and semidefinite relaxation respectively into convex optimization problems. Performance comparison with the existing acoustic energy-based source localization methods is given, where the results show the validity of our proposed methods.

  6. Efficient Convex Optimization for Energy-Based Acoustic Sensor Self-Localization and Source Localization in Sensor Networks

    PubMed Central

    Yan, Yongsheng; Wang, Haiyan; Shen, Xiaohong; Leng, Bing; Li, Shuangquan

    2018-01-01

    The energy reading has been an efficient and attractive measure for collaborative acoustic source localization in practical application due to its cost saving in both energy and computation capability. The maximum likelihood problems by fusing received acoustic energy readings transmitted from local sensors are derived. Aiming to efficiently solve the nonconvex objective of the optimization problem, we present an approximate estimator of the original problem. Then, a direct norm relaxation and semidefinite relaxation, respectively, are utilized to derive the second-order cone programming, semidefinite programming or mixture of them for both cases of sensor self-location and source localization. Furthermore, by taking the colored energy reading noise into account, several minimax optimization problems are formulated, which are also relaxed via the direct norm relaxation and semidefinite relaxation respectively into convex optimization problems. Performance comparison with the existing acoustic energy-based source localization methods is given, where the results show the validity of our proposed methods. PMID:29883410

  7. Greening Federal Facilities: An Energy, Environmental, and Economic Resource Guide for Federal Facility Managers and Designers; Second Edition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, A.

    2001-05-16

    Greening Federal Facilities, Second Edition, is a nuts-and-bolts resource guide compiled to increase energy and resource efficiency, cut waste, and improve the performance of Federal buildings and facilities. The guide highlights practical actions that facility managers, design and construction staff, procurement officials, and facility planners can take to save energy and money, improve the comfort and productivity of employees, and benefit the environment. It supports a national effort to promote energy and environmental efficiency in the nation's 500,000 Federal buildings and facilities. Topics covered include current Federal regulations; environmental and energy decision-making; site and landscape issues; building design; energy systems;more » water and wastewater; materials; waste management, and recycling; indoor environmental quality; and managing buildings.« less

  8. High Energy, Single-Mode, All-Solid-State and Tunable UV Laser Transmitter

    NASA Technical Reports Server (NTRS)

    Prasad, Narasimha S.; Singh, Upendra N.; Hovis, FLoyd

    2007-01-01

    A high energy, single mode, all solid-state Nd:YAG laser primarily for pumping an UV converter is developed. Greater than 1 J/pulse at 50 HZ PRF and pulse widths around 22 ns have been demonstrated. Higher energy, greater efficiency may be possible. Refinements are known and practical to implement. Technology Demonstration of a highly efficient, high-pulse-energy, single mode UV wavelength generation using flash lamp pumped laser has been achieved. Greater than 90% pump depletion is observed. 190 mJ extra-cavity SFG; IR to UV efficiency > 21% (> 27% for 1 mJ seed). 160 mJ intra-cavity SFG; IR to UV efficiency up to 24% Fluence < 1 J/sq cm for most beams. The pump beam quality of the Nd:YAG pump laser is being refined to match or exceed the above UV converter results. Currently the Nd:YAG pump laser development is a technology demonstration. System can be engineered for compact packaging.

  9. Reversible thermodynamic cycle for AMTEC power conversion. [Alkali Metal Thermal-to-Electric Converter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vining, C.B.; Williams, R.M.; Underwood, M.L.

    1993-10-01

    An AMTEC cell, may be described as performing two distinct energy conversion processes: (i) conversion of heat to mechanical energy via a sodium-based heat engine and (ii) conversion of mechanical energy to electrical energy by utilizing the special properties of the electrolyte material. The thermodynamic cycle appropriate to an alkali metal thermal-to-electric converter cell is discussed for both liquid- and vapor-fed modes of operation, under the assumption that all processes can be performed reversibly. In the liquid-fed mode, the reversible efficiency is greater than 89.6% of Carnot efficiency for heat input and rejection temperatures (900--1,300 and 400--800 K, respectively) typicalmore » of practical devices. Vapor-fed cells can approach the efficiency of liquid-fed cells. Quantitative estimates confirm that the efficiency is insensitive to either the work required to pressurize the sodium liquid or the details of the state changes associated with cooling the low pressure sodium gas to the heat rejection temperature.« less

  10. Solid State Lasers from an Efficiency Perspective

    NASA Technical Reports Server (NTRS)

    Barnes, Norman P.

    2007-01-01

    Solid state lasers have remained a vibrant area of research because several major innovations expanded their capability. Major innovations are presented with emphasis focused on the laser efficiency. A product of efficiencies approach is developed and applied to describe laser performance. Efficiency factors are presented in closed form where practical and energy transfer effects are included where needed. In turn, efficiency factors are used to estimate threshold and slope efficiency, allowing a facile estimate of performance. Spectroscopic, thermal, and mechanical data are provided for common solid state laser materials.

  11. Building Energy-Efficiency Best Practice Policies and Policy Packages

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levine, Mark; de la Rue de Can, Stephane; Zheng, Nina

    2012-10-26

    This report addresses the single largest source of greenhouse gas emissions and the greatest opportunity to reduce these emissions. The IPCC 4 th Assessment Report estimates that globally 35% to 40% of all energy-related CO2 emissions (relative to a growing baseline) result from energy use in buildings. Emissions reductions from a combination of energy efficiency and conservation (using less energy) in buildings have the potential to cut emissions as much as all other energy-using sectors combined. This is especially the case for China, India and other developing countries that are expected to account for 80% or more of growth inmore » building energy use worldwide over the coming decades. In short, buildings constitute the largest opportunity to mitigate climate change and special attention needs to be devoted to developing countries.« less

  12. From Tragedy to Triumph - Rebuilding Green Homes after Disaster (Fact Sheet)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2009-04-01

    Energy Efficiency/Renewable Energy Fact Sheets, No. 1. Series to include practical, useful info to help people change their behavior around energy usage and "greenness". Greensburg is hanging its future on sustainable development; these fact sheet sheets should help citizens understand what they can do to be a part of that focus. Fact Sheets cover: saving energy and water, using renewable energy (particular interest in small wind), driving "green", general sustainability, living green.

  13. Process Performances of 2 ns Pulsed Discharge Plasma

    NASA Astrophysics Data System (ADS)

    Matsumoto, Takao; Wang, Douyan; Namihira, Takao; Akiyama, Hidenori

    2011-08-01

    Pulsed discharge plasmas have been used to treat exhaust gases. Since pulse duration and the rise time of applied voltage to the discharge electrode has a strong influence on the energy efficiency of pollutant removal, the development of a short-pulse generator is of paramount importance for practical applications. In this work, it is demonstrated that the non thermal plasma produced by the 2 ns pulsed discharge has a higher energy efficiency than the 5 ns pulsed discharge plasma for NO removal and ozone generation. Typically, the NO removal efficiency was 1.0 mol kW-1 h-1 for 70% NO removal (initial NO concentration = 200 ppm, gas flow = 10 L/min). Meanwhile, the ozone yield was 500 g kW-1 h-1 for 20 g/m3 ozone concentration in the case of oxygen feeding. These energy efficiencies are the highest in the literature.

  14. Greening EPA

    EPA Pesticide Factsheets

    EPA ensures its buildings and practices reflect our mission by implementing strategies to reduce the environmental impact of its facilities and operations by building sustainable structures and improving the energy efficiency of older buildings.

  15. Investigating power capping toward energy-efficient scientific applications: Investigating Power Capping toward Energy-Efficient Scientific Applications

    DOE PAGES

    Haidar, Azzam; Jagode, Heike; Vaccaro, Phil; ...

    2018-03-22

    The emergence of power efficiency as a primary constraint in processor and system design poses new challenges concerning power and energy awareness for numerical libraries and scientific applications. Power consumption also plays a major role in the design of data centers, which may house petascale or exascale-level computing systems. At these extreme scales, understanding and improving the energy efficiency of numerical libraries and their related applications becomes a crucial part of the successful implementation and operation of the computing system. In this paper, we study and investigate the practice of controlling a compute system's power usage, and we explore howmore » different power caps affect the performance of numerical algorithms with different computational intensities. Further, we determine the impact, in terms of performance and energy usage, that these caps have on a system running scientific applications. This analysis will enable us to characterize the types of algorithms that benefit most from these power management schemes. Our experiments are performed using a set of representative kernels and several popular scientific benchmarks. Lastly, we quantify a number of power and performance measurements and draw observations and conclusions that can be viewed as a roadmap to achieving energy efficiency in the design and execution of scientific algorithms.« less

  16. Investigating power capping toward energy-efficient scientific applications: Investigating Power Capping toward Energy-Efficient Scientific Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haidar, Azzam; Jagode, Heike; Vaccaro, Phil

    The emergence of power efficiency as a primary constraint in processor and system design poses new challenges concerning power and energy awareness for numerical libraries and scientific applications. Power consumption also plays a major role in the design of data centers, which may house petascale or exascale-level computing systems. At these extreme scales, understanding and improving the energy efficiency of numerical libraries and their related applications becomes a crucial part of the successful implementation and operation of the computing system. In this paper, we study and investigate the practice of controlling a compute system's power usage, and we explore howmore » different power caps affect the performance of numerical algorithms with different computational intensities. Further, we determine the impact, in terms of performance and energy usage, that these caps have on a system running scientific applications. This analysis will enable us to characterize the types of algorithms that benefit most from these power management schemes. Our experiments are performed using a set of representative kernels and several popular scientific benchmarks. Lastly, we quantify a number of power and performance measurements and draw observations and conclusions that can be viewed as a roadmap to achieving energy efficiency in the design and execution of scientific algorithms.« less

  17. Comparison of energy efficiency between Wearable Power-Assist Locomotor (WPAL) and two types of knee-ankle-foot orthoses with a medial single hip joint (MSH-KAFO).

    PubMed

    Yatsuya, Kanan; Hirano, Satoshi; Saitoh, Eiichi; Tanabe, Shigeo; Tanaka, Hirotaka; Eguchi, Masayuki; Katoh, Masaki; Shimizu, Yasuhiro; Uno, Akito; Kagaya, Hitoshi

    2018-01-01

    To compare the energy efficiency of Wearable Power-Assist Locomotor (WPAL) with conventional knee-ankle-foot orthoses (MSH-KAFO) such as Hip and Ankle Linked Orthosis (HALO) or Primewalk. Cross over case-series. Chubu Rosai Hospital, Aichi, Japan, which is affiliated with the Japan Organization of Occupational Health and Safety. Six patients were trained with MSH-KAFO (either HALO or Primewalk) and WPAL. They underwent 6-minute walk tests with each orthosis. Energy efficiency was estimated using physiological cost index (PCI) as well as heart rate (HR) and modified Borg score. Trial energy efficiency with MSH-KAFO was compared with WPAL to assess if differences in PCI became greater between MSH-KAFO and WPAL as time goes on during the 6-minute walk. Spearman correlation coefficient of time (range: 0.5-6.0 minutes) with the difference was calculated. The same statistical procedures were repeated for HR and modified Borg score. Greater energy efficiency, representing a lower gait demand, was observed in trials with WPAL compared with MSH-KAFO (Spearman correlation coefficients for PCI, HR and modified Borg were 0.93, 0.90 and 0.97, respectively, all P < 0.0001). WPAL is a practical and energy efficient type of robotics that may be used by patients with paraplegia.

  18. Engaging Tenants in Reducing Plug Load Energy Use

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schantz, Marta; Langner, Rois

    Plug and Process Loads (PPLs) account for an increasingly large percentage of commercial building energy use in the U.S. due to the rising number of energy intensive plug-in devices. In addition, buildings are becoming more and more efficient and plug load energy use has become an increasingly pertinent component to achieving aggressive energy targets and netzero energy status. For multi-tenant buildings, controlling plug loads in tenant spaces can be a significant challenge. Luckily, there are a number of PPL reduction strategies, best practices, and lessons learned from numerous commercial real estate and higher education leaders who have successfully engaged buildingmore » occupants and tenants in reducing PPL energy use. This paper provides actionable PPL reduction strategies and best practices that building owners and managers can immediately apply to their own buildings.« less

  19. Scaling up the energy service company business: market status and company feedback in the Russian Federation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roshchanka, Volha; Evans, Meredydd

    Many energy efficiency professionals have proposed using Energy Performance Contracts (EPCs) as a mechanism to improve public sector energy efficiency in countries with restrictive government budgets. However, in practice, most middle-income countries have used this mechanism only in a limited way. Russia offers an interesting case study because of its huge energy savings opportunities, increasing energy prices, robust political backing for public sector energy efficiency, and evolving legislation that supports EPCs. In 2009, the Russian Federation launched a program to reduce the energy intensity of the country’s large public sector, which accounts for 9 percent of Russia’s total energy consumption.more » To achieve energy efficiency goals, Russia experimented with its public procurement rules, adjusting them to encourage EPCs. We conducted structured interviews with Energy Service Companies (ESCOs) in Russia and supplemented them with online research. Our review shows that, to date, nearly 50 ESCOs signed about 150 contracts in public facilities. Most ESCO contracts in Russia are for 5 years, and they generally are small (under $100,000). ESCOs in Russia face a challenging environment, which leads to smaller projects. ESCOs also are concerned about costly and risky tender procedures, uncertainty regarding repayment from public facilities, the inability to expand projects, and financing. We discuss these challenges and propose potential solutions at policy and company levels. The ESCOs feedback regarding Russia’s experimental model can inform the country’s program for public sector energy efficiency and offer lessons for other countries attempting to develop the EPC mechanism.« less

  20. Modeling and Simulation of HVAC Faulty Operations and Performance Degradation due to Maintenance Issues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Liping; Hong, Tianzhen

    Almost half of the total energy used in the U.S. buildings is consumed by heating, ventilation and air conditionings (HVAC) according to EIA statistics. Among various driving factors to energy performance of building, operations and maintenance play a significant role. Many researches have been done to look at design efficiencies and operational controls for improving energy performance of buildings, but very few study the impacts of HVAC systems maintenance. Different practices of HVAC system maintenance can result in substantial differences in building energy use. If a piece of HVAC equipment is not well maintained, its performance will degrade. If sensorsmore » used for control purpose are not calibrated, not only building energy usage could be dramatically increased, but also mechanical systems may not be able to satisfy indoor thermal comfort. Properly maintained HVAC systems can operate efficiently, improve occupant comfort, and prolong equipment service life. In the paper, maintenance practices for HVAC systems are presented based on literature reviews and discussions with HVAC engineers, building operators, facility managers, and commissioning agents. We categorize the maintenance practices into three levels depending on the maintenance effort and coverage: 1) proactive, performance-monitored maintenance; 2) preventive, scheduled maintenance; and 3) reactive, unplanned or no maintenance. A sampled list of maintenance issues, including cooling tower fouling, boiler/chiller fouling, refrigerant over or under charge, temperature sensor offset, outdoor air damper leakage, outdoor air screen blockage, outdoor air damper stuck at fully open position, and dirty filters are investigated in this study using field survey data and detailed simulation models. The energy impacts of both individual maintenance issue and combined scenarios for an office building with central VAV systems and central plant were evaluated by EnergyPlus simulations using three approaches: 1) direct modeling with EnergyPlus, 2) using the energy management system feature of EnergyPlus, and 3) modifying EnergyPlus source code. The results demonstrated the importance of maintenance for HVAC systems on energy performance of buildings. The research is intended to provide a guideline to help practitioners and building operators to gain the knowledge of maintaining HVAC systems in efficient operations, and prioritize HVAC maintenance work plan. The paper also discusses challenges of modeling building maintenance issues using energy simulation programs.« less

  1. Effects of variable practice on the motor learning outcomes in manual wheelchair propulsion.

    PubMed

    Leving, Marika T; Vegter, Riemer J K; de Groot, Sonja; van der Woude, Lucas H V

    2016-11-23

    Handrim wheelchair propulsion is a cyclic skill that needs to be learned during rehabilitation. It has been suggested that more variability in propulsion technique benefits the motor learning process of wheelchair propulsion. The purpose of this study was to determine the influence of variable practice on the motor learning outcomes of wheelchair propulsion in able-bodied participants. Variable practice was introduced in the form of wheelchair basketball practice and wheelchair-skill practice. Motor learning was operationalized as improvements in mechanical efficiency and propulsion technique. Eleven Participants in the variable practice group and 12 participants in the control group performed an identical pre-test and a post-test. Pre- and post-test were performed in a wheelchair on a motor-driven treadmill (1.11 m/s) at a relative power output of 0.23 W/kg. Energy consumption and the propulsion technique variables with their respective coefficient of variation were calculated. Between the pre- and the post-test the variable practice group received 7 practice sessions. During the practice sessions participants performed one-hour of variable practice, consisting of five wheelchair-skill tasks and a 30 min wheelchair basketball game. The control group did not receive any practice between the pre- and the post-test. Comparison of the pre- and the post-test showed that the variable practice group significantly improved the mechanical efficiency (4.5 ± 0.6% → 5.7 ± 0.7%) in contrast to the control group (4.5 ± 0.6% → 4.4 ± 0.5%) (group x time interaction effect p < 0.001).With regard to propulsion technique, both groups significantly reduced the push frequency and increased the contact angle of the hand with the handrim (within group, time effect). No significant group × time interaction effects were found for propulsion technique. With regard to propulsion variability, the variable practice group increased variability when compared to the control group (interaction effect p < 0.001). Compared to a control, variable practice, resulted in an increase in mechanical efficiency and increased variability. Interestingly, the large relative improvement in mechanical efficiency was concomitant with only moderate improvements in the propulsion technique, which were similar in the control group, suggesting that other factors besides propulsion technique contributed to the lower energy expenditure.

  2. Energy Efficiency Improvement and Cost Saving Opportunities for the Dairy Processing Industry: An ENERGY STAR? Guide for Energy and Plant Managers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brush, Adrian; Masanet, Eric; Worrell, Ernst

    The U.S. dairy processing industry—defined in this Energy Guide as facilities engaged in the conversion of raw milk to consumable dairy products—consumes around $1.5 billion worth of purchased fuels and electricity per year. Energy efficiency improvement is an important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There are a variety of opportunities available at individual plants in the U.S. dairy processing industry to reduce energy consumption and greenhouse gas emissions in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy-efficient technologies that can be implemented atmore » the component, process, facility, and organizational levels. A discussion of the trends, structure, and energy consumption characteristics of the U.S. dairy processing industry is provided along with a description of the major process technologies used within the industry. Next, a wide variety of energy efficiency measures applicable to dairy processing plants are described. Many measure descriptions include expected savings in energy and energy-related costs, based on case study data from real-world applications in dairy processing facilities and related industries worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. Given the importance of water in dairy processing, a summary of basic, proven measures for improving water efficiency are also provided. The information in this Energy Guide is intended to help energy and plant managers in the U.S. dairy processing industry reduce energy and water consumption in a cost-effective manner while maintaining the quality of products manufactured. Further research on the economics of all measures—as well as on their applicability to different production practices—is needed to assess their cost effectiveness at individual plants.« less

  3. Alcoa North American Extrusions Implements Energy Use Assessments at Multiple Facilities: Office of Industrial Technologies (OIT) BestPractices Aluminum Assessment Case Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    U.S. Department of Energy

    2001-08-05

    This case study is the latest in a series on industrial firms who are implementing energy efficient technologies and system improvements into their manufacturing processes. The case studies document the activities, savings, and lessons learned on these projects.

  4. Predicting Human Thermal Comfort in Automobiles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rugh, J.; Bharathan, D.; Chaney, L.

    The objects of this report are to: (1) increase national energy security by reducing fuel use for vehicle climate control systems; (2) show/demonstrate technology that can reduce the fuel used by LD vehicles' ancillary systems; and (3) develop tools to evaluate the effectiveness of energy-efficient systems including--comfort, cost, practicality, ease-of-use, and reliability.

  5. Ireland's Generic Repeat Design Schools Programme

    ERIC Educational Resources Information Center

    Sheppard, Tony

    2011-01-01

    The Irish Department of Education and Skills (DoE) is strongly committed to energy efficiency and to reducing CO[subscript 2] by developing and implementing energy level ceilings in relation to school design that aim to remain below half of the accepted good practice in the field. This approach works within normal departmental budgetary limits to…

  6. Best Practices Case Study: Tommy Williams Homes -Gainesville, FL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    none,

    2011-04-01

    Case study of Tommy Williams Homes who has continued to outsell the competition with sales increasing despite the recession thanks to a systems-engineering approach developed with DOE’s Building America that yields high energy efficiency, comfort, and indoor air quality. The company offers to pay buyers’ energy bills for the first year.

  7. Production efficiencies of U.S. electric generation plants: Effects of data aggregation and greenhouse gas and renewable energy policy

    NASA Astrophysics Data System (ADS)

    Lynes, Melissa Kate

    Over the last few decades there has been a shift in electricity production in the U.S. Renewable energy sources are becoming more widely used. In addition, electric generation plants that use coal inputs are more heavily regulated than a couple decades ago. This shift in electricity production was brought on by changes in federal policy -- a desire for electricity produced in the U.S. which led to policies being adopted that encourage the use of renewable energy. The change in production practices due to policies may have led to changes in the productivity of electric generation plants. Multiple studies have examined the most efficient electric generation plants using the data envelopment analysis (DEA) approach. This study builds on past research to answer three questions: 1) Does the level of aggregation of fuel input variables affect the plant efficiency scores and how does the efficiency of renewable energy input compare to nonrenewable energy inputs; 2) Are policies geared toward directly or indirectly reducing greenhouse gas emissions affecting the production efficiencies of greenhouse gas emitting electric generation plants; and 3) Do renewable energy policies and the use of intermittent energy sources (i.e. wind and solar) affect the productivity growth of electric generation plants. All three analysis, presented in three essays, use U.S. plant level data obtained from the Energy Information Administration to answer these questions. The first two essays use DEA to determine the pure technical, overall technical, and scale efficiencies of electric generation plants. The third essay uses DEA within the Malmquist index to assess the change in productivity over time. Results indicate that the level of aggregation does matter particularly for scale efficiency. This implies that valuable information is likely lost when fuel inputs are aggregated together. Policies directly focused on reducing greenhouse gas emissions may improve the production efficiencies of greenhouse gas emitting electric generation plants. However, renewable energy policies do not have an effect on productivity growth. Renewable energy inputs are found to be as efficient if not more efficient than traditional energy sources.

  8. Facilitating adaptive management in a government program: A household energy efficiency case study.

    PubMed

    Curtis, Jim; Graham, Alex; Ghafoori, Eraj; Pyke, Susan; Kaufman, Stefan; Boulet, Mark

    2017-02-01

    Interim evaluations of government programs can sometimes reveal lower than expected outcomes, leading to the question of how adjustments can be made while the program is still underway. Although adaptive management frameworks can provide a practical roadmap to address this question, a lack of successful learnings and poor implementation have hampered the progress and wider application of adaptive management. Using a case study involving an energy efficiency government program targeting low-income households, this article provides supporting evidence on how adaptive management can be facilitated and applied. Factors such as proactive and responsive leadership, establishing a research-practice interface, and recognizing the skills, expertise, and contributions of multiple stakeholders guided adjustments to the program, and later paved the way for longer-term organizational learning that impacted how other programs are delivered. Implications for knowledge and practice, and a discussion of the challenges faced in the program, advance current thinking in adaptive management. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Environmental sustainability of bioethanol produced from sweet sorghum stem on saline-alkali land.

    PubMed

    Wang, Mingxin; Pan, Xinxing; Xia, Xunfeng; Xi, Beidou; Wang, Lijun

    2015-01-01

    Life cycle assessment was conducted to evaluate the energy efficiency and environmental impacts of a bioethanol production system that uses sweet sorghum stem on saline-alkali land as feedstock. The system comprises a plant cultivation unit, a feedstock transport unit, and a bioethanol conversion unit, with 1000L of bioethanol as a functional unit. The net energy ratio is 3.84, and the net energy gain is 17.21MJ/L. Agrochemical production consumes 76.58% of the life cycle fossil energy. The category with the most significant impact on the environment is eutrophication, followed by acidification, fresh water aquatic ecotoxicity, human toxicity, and global warming. Allocation method, waste recycling approach, and soil salinity significantly influence the results. Using vinasse to produce pellet fuel for steam generation significantly improves energy efficiency and decreases negative environmental impacts. Promoting reasonable management practices to alleviate saline stress and increasing agrochemical utilization efficiency can further improve environmental sustainability. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Metering Best Practices Applied in the National Renewable Energy Laboratory's Research Support Facility: A Primer to the 2011 Measured and Modeled Energy Consumption Datasets

    DOE Data Explorer

    Sheppy, Michael; Beach, A.; Pless, Shanti

    2016-08-09

    Modern buildings are complex energy systems that must be controlled for energy efficiency. The Research Support Facility (RSF) at the National Renewable Energy Laboratory (NREL) has hundreds of controllers -- computers that communicate with the building's various control systems -- to control the building based on tens of thousands of variables and sensor points. These control strategies were designed for the RSF's systems to efficiently support research activities. Many events that affect energy use cannot be reliably predicted, but certain decisions (such as control strategies) must be made ahead of time. NREL researchers modeled the RSF systems to predict how they might perform. They then monitor these systems to understand how they are actually performing and reacting to the dynamic conditions of weather, occupancy, and maintenance.

  11. Institute for Sustainable Energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agrawal, Ajay

    2016-03-28

    Alternate fuels offer unique challenges and opportunities as energy source for power generation, vehicular transportation, and industrial applications. Institute for Sustainable Energy (ISE) at UA conducts innovative research to utilize the complex mix of domestically-produced alternate fuels to achieve low-emissions, high energy-efficiency, and fuel-flexibility. ISE also provides educational and advancement opportunities to students and researchers in the energy field. Basic research probing the physics and chemistry of alternative fuels has generated practical concepts investigated in a burner and engine test platforms.

  12. La-CTP: Loop-Aware Routing for Energy-Harvesting Wireless Sensor Networks

    PubMed Central

    Sun, Guodong; Shang, Xinna; Zuo, Yan

    2018-01-01

    In emerging energy-harvesting wireless sensor networks (EH-WSN), the sensor nodes can harvest environmental energy to drive their operation, releasing the user’s burden in terms of frequent battery replacement, and even enabling perpetual sensing systems. In EH-WSN applications, usually, the node in energy-harvesting or recharging state has to stop working until it completes the energy replenishment. However, such temporary departures of recharging nodes severely impact the packet routing, and one immediate result is the routing loop problem. Controlling loops in connectivity-intermittent EH-WSN in an efficient way is a big challenge in practice, and so far, users still lack of effective and practicable routing protocols with loop handling. Based on the Collection Tree Protocol (CTP) widely used in traditional wireless sensor networks, this paper proposes a loop-aware routing protocol for real-world EH-WSNs, called La-CTP, which involves a new parent updating metric and a proactive, adaptive beaconing scheme to effectively suppress the occurrence of loops and unlock unavoidable loops, respectively. We constructed a 100-node testbed to evaluate La-CTP, and the experimental results showed its efficacy and efficiency. PMID:29393876

  13. Strategies to improve industrial energy efficiency

    NASA Astrophysics Data System (ADS)

    O'Rielly, Kristine M.

    A lack of technical expertise, fueled by a lack of positive examples, can lead to companies opting not to implement energy reduction projects unless mandated by legislation. As a result, companies are missing out on exceptional opportunities to improve not only their environmental record but also save considerably on fuel costs. This study investigates the broad topic of energy efficiency within the context of the industrial sector by means of a thorough review of existing energy reduction strategies and a demonstration of their successful implementation. The study begins by discussing current industrial energy consumption trends around the globe and within the Canadian manufacturing sector. This is followed by a literature review which outlines 3 prominent energy efficiency improvement strategies currently available to companies: 1) Waste heat recovery, 2) Idle power loss reduction and production rate optimization, and lastly 3) Auxiliary equipment operational performance. Next, a broad overview of the resources and tools available to organizations looking to improve their industrial energy efficiency is provided. Following this, several case studies are presented which demonstrate the potential benefits that are available to Canadian organizations looking to improve their energy efficiency. Lastly, a discussion of a number of issues and barriers pertaining to the wide-scale implementation of industrial efficiency strategies is presented. It discusses a number of potential roadblocks, including a lack of energy consumption monitoring and data transparency. While this topic has been well researched in the past in terms of the losses encountered during various general manufacturing process streams, practically no literature exists which attempts to provide real data from companies who have implemented energy efficiency strategies. By obtaining original data directly from companies, this thesis demonstrates the potential for companies to save money and reduce GHG (greenhouse gas) emissions through the implementation of energy efficiency projects and publishes numbers which are almost impossible to find directly. By publishing success stories, it is hoped that other companies, especially SMEs (small and medium enterprises) will be able to learn from these case studies and be inspired to embark on energy efficiency projects of their own.

  14. Quenching And Luminescence Efficiency Of Nd3+ In YAG

    NASA Astrophysics Data System (ADS)

    Lupei, Voicu; Lupei, Aurelia; Georgescu, Serban; Ionescu, Christian I.; Yen, William M.

    1989-05-01

    The effect of the concentration luminescence quenching of the 4F 3/2, level of Nd3+ in YAG on the relative efficiency is presented. Based on the analysis of the decay curves in terms of the energy transfer theory, an analytical expression for the relative luminescence efficiency is obtained. In the low concentration range (up to q,1.5 at % Nd3+), the efficiency linearly decreases when Nd3+ concentration increases. It is also stressed that pairs quenching contribute about 20 % to the nonradiative energy transfer losses. Quantum efficiency of luminescence is an important parameter for the characterization of laser active media; its lowering is due to either multiphonon relaxation or energy transfer processes. The multiphonon non-radiative probability depends on the energy gap between levels, on the phonon energy and temperature; usually at low activator doping it is practically independent on concentration. On the other hand, energy transfer losses show a marked dependence on activator concentration, a fact that severely limits the range of useful con-centration of active centers in some laser crystals. In the YAG:Nd case the minimum energy gap between the Stark components of the 4F,I.) and the next lower level 4F15/2 is of about 4700 cm-1. Since in YAG tree phonons most effdbtively coupled to the Rare pi.th ions have an energy of 1, 700 cm-1, the probability for multiphonon relaxation from the 'F3/, level, even at room temperature, is very low and therefore for low Nd 3+ concentrations quantum efficiency is expected to be close to 1.

  15. Exploring high dimensional free energy landscapes: Temperature accelerated sliced sampling

    NASA Astrophysics Data System (ADS)

    Awasthi, Shalini; Nair, Nisanth N.

    2017-03-01

    Biased sampling of collective variables is widely used to accelerate rare events in molecular simulations and to explore free energy surfaces. However, computational efficiency of these methods decreases with increasing number of collective variables, which severely limits the predictive power of the enhanced sampling approaches. Here we propose a method called Temperature Accelerated Sliced Sampling (TASS) that combines temperature accelerated molecular dynamics with umbrella sampling and metadynamics to sample the collective variable space in an efficient manner. The presented method can sample a large number of collective variables and is advantageous for controlled exploration of broad and unbound free energy basins. TASS is also shown to achieve quick free energy convergence and is practically usable with ab initio molecular dynamics techniques.

  16. Large-Scale Fabrication of Silicon Nanowires for Solar Energy Applications.

    PubMed

    Zhang, Bingchang; Jie, Jiansheng; Zhang, Xiujuan; Ou, Xuemei; Zhang, Xiaohong

    2017-10-11

    The development of silicon (Si) materials during past decades has boosted up the prosperity of the modern semiconductor industry. In comparison with the bulk-Si materials, Si nanowires (SiNWs) possess superior structural, optical, and electrical properties and have attracted increasing attention in solar energy applications. To achieve the practical applications of SiNWs, both large-scale synthesis of SiNWs at low cost and rational design of energy conversion devices with high efficiency are the prerequisite. This review focuses on the recent progresses in large-scale production of SiNWs, as well as the construction of high-efficiency SiNW-based solar energy conversion devices, including photovoltaic devices and photo-electrochemical cells. Finally, the outlook and challenges in this emerging field are presented.

  17. Electrochemically driven mechanical energy harvesting.

    PubMed

    Kim, Sangtae; Choi, Soon Ju; Zhao, Kejie; Yang, Hui; Gobbi, Giorgia; Zhang, Sulin; Li, Ju

    2016-01-06

    Efficient mechanical energy harvesters enable various wearable devices and auxiliary energy supply. Here we report a novel class of mechanical energy harvesters via stress-voltage coupling in electrochemically alloyed electrodes. The device consists of two identical Li-alloyed Si as electrodes, separated by electrolyte-soaked polymer membranes. Bending-induced asymmetric stresses generate chemical potential difference, driving lithium ion flux from the compressed to the tensed electrode to generate electrical current. Removing the bending reverses ion flux and electrical current. Our thermodynamic analysis reveals that the ideal energy-harvesting efficiency of this device is dictated by the Poisson's ratio of the electrodes. For the thin-film-based energy harvester used in this study, the device has achieved a generating capacity of 15%. The device demonstrates a practical use of stress-composition-voltage coupling in electrochemically active alloys to harvest low-grade mechanical energies from various low-frequency motions, such as everyday human activities.

  18. Electrochemically driven mechanical energy harvesting

    PubMed Central

    Kim, Sangtae; Choi, Soon Ju; Zhao, Kejie; Yang, Hui; Gobbi, Giorgia; Zhang, Sulin; Li, Ju

    2016-01-01

    Efficient mechanical energy harvesters enable various wearable devices and auxiliary energy supply. Here we report a novel class of mechanical energy harvesters via stress–voltage coupling in electrochemically alloyed electrodes. The device consists of two identical Li-alloyed Si as electrodes, separated by electrolyte-soaked polymer membranes. Bending-induced asymmetric stresses generate chemical potential difference, driving lithium ion flux from the compressed to the tensed electrode to generate electrical current. Removing the bending reverses ion flux and electrical current. Our thermodynamic analysis reveals that the ideal energy-harvesting efficiency of this device is dictated by the Poisson's ratio of the electrodes. For the thin-film-based energy harvester used in this study, the device has achieved a generating capacity of 15%. The device demonstrates a practical use of stress-composition–voltage coupling in electrochemically active alloys to harvest low-grade mechanical energies from various low-frequency motions, such as everyday human activities. PMID:26733282

  19. Independent-Trajectory Thermodynamic Integration: a practical guide to protein-drug binding free energy calculations using distributed computing.

    PubMed

    Lawrenz, Morgan; Baron, Riccardo; Wang, Yi; McCammon, J Andrew

    2012-01-01

    The Independent-Trajectory Thermodynamic Integration (IT-TI) approach for free energy calculation with distributed computing is described. IT-TI utilizes diverse conformational sampling obtained from multiple, independent simulations to obtain more reliable free energy estimates compared to single TI predictions. The latter may significantly under- or over-estimate the binding free energy due to finite sampling. We exemplify the advantages of the IT-TI approach using two distinct cases of protein-ligand binding. In both cases, IT-TI yields distributions of absolute binding free energy estimates that are remarkably centered on the target experimental values. Alternative protocols for the practical and general application of IT-TI calculations are investigated. We highlight a protocol that maximizes predictive power and computational efficiency.

  20. An international survey of building energy codes and their implementation

    DOE PAGES

    Evans, Meredydd; Roshchanka, Volha; Graham, Peter

    2017-08-01

    Buildings are key to low-carbon development everywhere, and many countries have introduced building energy codes to improve energy efficiency in buildings. Yet, building energy codes can only deliver results when the codes are implemented. For this reason, studies of building energy codes need to consider implementation of building energy codes in a consistent and comprehensive way. This research identifies elements and practices in implementing building energy codes, covering codes in 22 countries that account for 70% of global energy use in buildings. These elements and practices include: comprehensive coverage of buildings by type, age, size, and geographic location; an implementationmore » framework that involves a certified agency to inspect construction at critical stages; and building materials that are independently tested, rated, and labeled. Training and supporting tools are another element of successful code implementation. Some countries have also introduced compliance evaluation studies, which suggested that tightening energy requirements would only be meaningful when also addressing gaps in implementation (Pitt&Sherry, 2014; U.S. DOE, 2016b). Here, this article provides examples of practices that countries have adopted to assist with implementation of building energy codes.« less

  1. An international survey of building energy codes and their implementation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Evans, Meredydd; Roshchanka, Volha; Graham, Peter

    Buildings are key to low-carbon development everywhere, and many countries have introduced building energy codes to improve energy efficiency in buildings. Yet, building energy codes can only deliver results when the codes are implemented. For this reason, studies of building energy codes need to consider implementation of building energy codes in a consistent and comprehensive way. This research identifies elements and practices in implementing building energy codes, covering codes in 22 countries that account for 70% of global energy use in buildings. These elements and practices include: comprehensive coverage of buildings by type, age, size, and geographic location; an implementationmore » framework that involves a certified agency to inspect construction at critical stages; and building materials that are independently tested, rated, and labeled. Training and supporting tools are another element of successful code implementation. Some countries have also introduced compliance evaluation studies, which suggested that tightening energy requirements would only be meaningful when also addressing gaps in implementation (Pitt&Sherry, 2014; U.S. DOE, 2016b). Here, this article provides examples of practices that countries have adopted to assist with implementation of building energy codes.« less

  2. An exergy approach to efficiency evaluation of desalination

    NASA Astrophysics Data System (ADS)

    Ng, Kim Choon; Shahzad, Muhammad Wakil; Son, Hyuk Soo; Hamed, Osman A.

    2017-05-01

    This paper presents an evaluation process efficiency based on the consumption of primary energy for all types of practical desalination methods available hitherto. The conventional performance ratio has, thus far, been defined with respect to the consumption of derived energy, such as the electricity or steam, which are susceptible to the conversion losses of power plants and boilers that burned the input primary fuels. As derived energies are usually expressed by the units, either kWh or Joules, these units cannot differentiate the grade of energy supplied to the processes accurately. In this paper, the specific energy consumption is revisited for the efficacy of all large-scale desalination plants. In today's combined production of electricity and desalinated water, accomplished with advanced cogeneration concept, the input exergy of fuels is utilized optimally and efficiently in a temperature cascaded manner. By discerning the exergy destruction successively in the turbines and desalination processes, the relative contribution of primary energy to the processes can be accurately apportioned to the input primary energy. Although efficiency is not a law of thermodynamics, however, a common platform for expressing the figures of merit explicit to the efficacy of desalination processes can be developed meaningfully that has the thermodynamic rigor up to the ideal or thermodynamic limit of seawater desalination for all scientists and engineers to aspire to.

  3. Chinese hotel general managers' perspectives on energy-saving practices

    NASA Astrophysics Data System (ADS)

    Zhu, Yidan

    As hotels' concern about sustainability and budget-control is growing steadily, energy-saving issues have become one of the important management concerns hospitality industry face. By executing proper energy-saving practices, previous scholars believed that hotel operation costs can decrease dramatically. Moreover, they believed that conducting energy-saving practices may eventually help the hotel to gain other benefits such as an improved reputation and stronger competitive advantage. The energy-saving issue also has become a critical management problem for the hotel industry in China. Previous research has not investigated energy-saving in China's hotel segment. To achieve a better understanding of the importance of energy-saving, this document attempts to present some insights into China's energy-saving practices in the tourist accommodations sector. Results of the study show the Chinese general managers' attitudes toward energy-saving issues and the differences among the diverse hotel managers who responded to the study. Study results indicate that in China, most of the hotels' energy bills decrease due to the implementation of energy-saving equipments. General managers of hotels in operation for a shorter period of time are typically responsible for making decisions about energy-saving issues; older hotels are used to choosing corporate level concerning to this issue. Larger Chinese hotels generally have official energy-saving usage training sessions for employees, but smaller Chinese hotels sometimes overlook the importance of employee training. The study also found that for the Chinese hospitality industry, energy-saving practices related to electricity are the most efficient and common way to save energy, but older hotels also should pay attention to other ways of saving energy such as water conservation or heating/cooling system.

  4. Generalized Simulation Model for a Switched-Mode Power Supply Design Course Using MATLAB/SIMULINK

    ERIC Educational Resources Information Center

    Liao, Wei-Hsin; Wang, Shun-Chung; Liu, Yi-Hua

    2012-01-01

    Switched-mode power supplies (SMPS) are becoming an essential part of many electronic systems as the industry drives toward miniaturization and energy efficiency. However, practical SMPS design courses are seldom offered. In this paper, a generalized MATLAB/SIMULINK modeling technique is first presented. A proposed practical SMPS design course at…

  5. Commercial Building Energy Asset Rating Program -- Market Research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCabe, Molly J.; Wang, Na

    2012-04-19

    Under contract to Pacific Northwest National Laboratory, HaydenTanner, LLC conducted an in-depth analysis of the potential market value of a commercial building energy asset rating program for the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy. The market research objectives were to: (1) Evaluate market interest and need for a program and tool to offer asset rating and rapidly identify potential energy efficiency measures for the commercial building sector. (2) Identify key input variables and asset rating outputs that would facilitate increased investment in energy efficiency. (3) Assess best practices and lessons learned from existing nationalmore » and international energy rating programs. (4) Identify core messaging to motivate owners, investors, financiers, and others in the real estate sector to adopt a voluntary asset rating program and, as a consequence, deploy high-performance strategies and technologies across new and existing buildings. (5) Identify leverage factors and incentives that facilitate increased investment in these buildings. To meet these objectives, work consisted of a review of the relevant literature, examination of existing and emergent asset and operational rating systems, interviews with industry stakeholders, and an evaluation of the value implication of an asset label on asset valuation. This report documents the analysis methodology and findings, conclusion, and recommendations. Its intent is to support and inform the DOE Office of Energy Efficiency and Renewable Energy on the market need and potential value impacts of an asset labeling and diagnostic tool to encourage high-performance new buildings and building efficiency retrofit projects.« less

  6. Solar-to-Chemical Energy Conversion with Photoelectrochemical Tandem Cells.

    PubMed

    Sivula, Kevin

    2013-01-01

    Efficiently and inexpensively converting solar energy into chemical fuels is an important goal towards a sustainable energy economy. An integrated tandem cell approach could reasonably convert over 20% of the sun's energy directly into chemical fuels like H2 via water splitting. Many different systems have been investigated using various combinations of photovoltaic cells and photoelectrodes, but in order to be economically competitive with the production of H2 from fossil fuels, a practical water splitting tandem cell must optimize cost, longevity and performance. In this short review, the practical aspects of solar fuel production are considered from the perspective of a semiconductor-based tandem cell and the latest advances with a very promising technology - metal oxide photoelectrochemical tandem cells - are presented.

  7. Driving R&D for the Next Generation Work Truck; NREL (National Renewable Energy Laboratory)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melendez, M.

    2015-03-04

    Improvements in medium- and heavy-duty work truck energy efficiency can dramatically reduce the use of petroleum-based fuels and the emissions of greenhouse gases. The National Renewable Energy Laboratory (NREL) is working with industry partners to develop fuel-saving, high-performance vehicle technologies, while examining fleet operational practices that can simulateneously improve fuel economy, decrease emissions, and support bottom-line goals.

  8. Robinson Rancheria Strategic Energy Plan; Middletown Rancheria Strategic Energy Plan, Scotts Valley Rancheria Strategic Energy Plan, Elem Indian Colony Strategic Energy Plan, Upperlake Rancheria Strategic Energy Plan, Big Valley Rancheria Strategic Energy Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGinnis and Associates LLC

    2008-08-01

    The Scotts Valley Band of Pomo Indians is located in Lake County in Northern California. Similar to the other five federally recognized Indian Tribes in Lake County participating in this project, Scotts Valley Band of Pomo Indians members are challenged by generally increasing energy costs and undeveloped local energy resources. Currently, Tribal decision makers lack sufficient information to make informed decisions about potential renewable energy resources. To meet this challenge efficiently, the Tribes have committed to the Lake County Tribal Energy Program, a multi Tribal program to be based at the Robinson Rancheria and including The Elem Indian Colony, Bigmore » Valley Rancheria, Middletown Rancheria, Habematolel Pomo of Upper Lake and the Scotts Valley Pomo Tribe. The mission of this program is to promote Tribal energy efficiency and create employment opportunities and economic opportunities on Tribal Lands through energy resource and energy efficiency development. This program will establish a comprehensive energy strategic plan for the Tribes based on Tribal specific plans that capture economic and environmental benefits while continuing to respect Tribal cultural practices and traditions. The goal is to understand current and future energy consumption and develop both regional and Tribe specific strategic energy plans, including action plans, to clearly identify the energy options for each Tribe.« less

  9. Improving Gas Furnace Performance: A Field and Laboratory Study at End of Life

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brand, L.; Yee, S.; Baker, J.

    2015-02-01

    In 2010, natural gas provided 54% of total residential space heating energy the U.S. on a source basis, or 3.5 Quadrillion Btu. Natural gas burned in furnaces accounted for 92% of that total, and boilers and other equipment made up the remainder. A better understanding of installed furnace performance is a key to energy savings for this significant energy usage. In this project, the U.S. Department of Energy Building America team Partnership for Advanced Residential Retrofit examined the impact that common installation practices and age-induced equipment degradation may have on the installed performance of natural gas furnaces over the lifemore » of the product, as measured by steady-state efficiency and annual efficiency. The team identified 12 furnaces of various ages and efficiencies that were operating in residential homes in the Des Moines, Iowa, metropolitan area and worked with a local heating, ventilation, and air conditioning contractor to retrieve furnaces and test them at the Gas Technology Institute laboratory for steady-state efficiency and annual efficiency. Prior to removal, system airflow, static pressure, equipment temperature rise, and flue loss measurements were recorded for each furnace as installed in the house.« less

  10. Efficiency optimization of wireless power transmission systems for active capsule endoscopes.

    PubMed

    Zhiwei, Jia; Guozheng, Yan; Jiangpingping; Zhiwu, Wang; Hua, Liu

    2011-10-01

    Multipurpose active capsule endoscopes have drawn considerable attention in recent years, but these devices continue to suffer from energy limitations. A wireless power supply system is regarded as a practical way to overcome the power shortage problem in such devices. This paper focuses on the efficiency optimization of a wireless energy supply system with size and safety constraints. A mathematical programming model in which these constraints are considered is proposed for transmission efficiency, optimal frequency and current, and overall system effectiveness. To verify the feasibility of the proposed method, we use a wireless active capsule endoscope as an illustrative example. The achieved efficiency can be regarded as an index for evaluating the system, and the proposed approach can be used to direct the design of transmitting and receiving coils.

  11. Simulation of value stream mapping and discrete optimization of energy consumption in modular construction

    NASA Astrophysics Data System (ADS)

    Chowdhury, Md Mukul

    With the increased practice of modularization and prefabrication, the construction industry gained the benefits of quality management, improved completion time, reduced site disruption and vehicular traffic, and improved overall safety and security. Whereas industrialized construction methods, such as modular and manufactured buildings, have evolved over decades, core techniques used in prefabrication plants vary only slightly from those employed in traditional site-built construction. With a focus on energy and cost efficient modular construction, this research presents the development of a simulation, measurement and optimization system for energy consumption in the manufacturing process of modular construction. The system is based on Lean Six Sigma principles and loosely coupled system operation to identify the non-value adding tasks and possible causes of low energy efficiency. The proposed system will also include visualization functions for demonstration of energy consumption in modular construction. The benefits of implementing this system include a reduction in the energy consumption in production cost, decrease of energy cost in the production of lean-modular construction, and increase profit. In addition, the visualization functions will provide detailed information about energy efficiency and operation flexibility in modular construction. A case study is presented to validate the reliability of the system.

  12. Drivers for innovation in waste-to-energy technology.

    PubMed

    Gohlke, Oliver; Martin, Johannes

    2007-06-01

    This paper summarizes developments made in the field of waste-to-energy technology between the 1980s and the present. In the USA, many waste-to-energy systems were developed in the 1980s and early 1990s. These plants generated power relatively efficiently (typically 23%) in 60 bar/ 443 degrees C boilers. Unfortunately, the development came to a stop when the US Supreme Court rejected the practice of waste flow control in 1994. Consequently, waste was directed to mega-landfills, associated with very negative environmental impacts. However, given landfill taxes and increased fuel prices, new waste-to-energy projects have recently been developed. Attractive premiums for renewable power production from municipal waste have been introduced in several European countries. This triggered important innovations in the field of improved energy recovery. Examples of modern waste-to-energy plants are Brescia and Amsterdam with net efficiencies of 24 and 30%, respectively. Incineration is traditionally preferred in Japan due to space constraints. New legislation promoted ash melting or gasification to obtain improved ash quality. However, these processes reduce the efficiency in terms of energy, cost and availability. A new oxygen-enriched waste-to-energy system is under development in order to better achieve the required inert ash quality.

  13. Technologies for decreasing the tap temperature to save energy in steel foundries

    NASA Astrophysics Data System (ADS)

    Biswas, Siddhartha

    Steel foundries are one of the most energy intensive industries. The increasing concerns over volatile energy cost and carbon dioxide emission have pushed foundries to improve efficiency and hence decrease electrical energy consumption. Statistical analysis of industrial survey data was combined with computational fluid dynamics (CFD) modeling to investigate the best industrial practices and opportunities to improve energy efficiency. Reducing tap temperature was identified as one of the important ways of reducing energy consumption. Steel foundries typically tap at 1650-1800°C (3000-3300°F) which is 100-250°C (150-450°F) higher than the pouring temperature. The steel temperature is elevated to compensate for the temperature loss associated with tapping, holding and transporting the liquid steel from the furnace to the pouring floor. Based on experimental investigations and CFD modeling of heat losses during holding in the ladle for different foundry practices, a spreadsheet calculator has been developed to calculate the optimum tap temperature for the specific foundry practices which will eliminate unnecessary superheating. The calculated results were compared and validated with industrial measurements. Improving the lining refractory is one significant way of reducing heat losses during holding of the steel in ladle. Silica sand linings are being used in steel foundries as an inexpensive and convenient material for short holding times and small volumes. The possibilities of improvements of silica sand linings by the addition of lower density cenospheres (hollow spheres), a byproduct of coal fired power plants, was studied through property measurements and laboratory trials.

  14. Transforming the market for commercial and industrial distribution transformers: A government, manufacturer, and utility collaboration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeLaski, A.; Gauthier, J.; Shugars, J.

    Distribution transformers offer a largely untapped opportunity for efficiency improvements in buildings. Application of energy-efficient equipment can reduce transformer losses by about 20%, substantially cutting a facility's total electricity bill and offering typical paybacks less than three years. Since nearly all of the electricity powering the commercial and industrial sectors is stepped down in voltage by facility-owned distribution transformers, broad application of energy-efficient equipment will lead to huge economy-wide energy and dollar savings as well as associated environmental benefits. This opportunity has led to a multi-party coordinated effort that offers a new model for national partnerships to pursue market transformation.more » The model, called the Informal Collaborative Model for the purposes of this paper, is characterized by voluntary commitments of multiple stakeholders to carry out key market interventions in a coordinated fashion, but without pooling resources or control. Collaborative participants are joined by a common interest in establishing and expanding the market for a new product, service, or practice that will yield substantial energy savings. This paper summarizes the technical efficiency opportunity available in distribution transformers; discusses the market barriers to widespread adoption of energy-efficient transformers; and details an overall market transformation strategy to address the identified market barriers. The respective roles of each of the diverse players--manufacturers, government agencies, and utility and regional energy efficiency programs--are given particular attention. Each of the organizations involved brings a particular set of tools and capabilities for addressing the market barriers to more efficient transformers.« less

  15. Highly Efficient Simplified Single-Emitting-Layer Hybrid WOLEDs with Low Roll-off and Good Color Stability through Enhanced Förster Energy Transfer.

    PubMed

    Zhang, Dongdong; Cai, Minghan; Zhang, Yunge; Zhang, Deqiang; Duan, Lian

    2015-12-30

    Single-emitting layer hybrid white organic light-emitting diodes (SEL-hybrid-WOLEDs) usually suffer from low efficiency, significant roll-off, and poor color stability, attributed to the incomplete energy transfer from the triplet states of the blue fluorophores to the phosphors. Here, we demonstrate highly efficient SEL-hybrid-WOLEDs with low roll-off and good color-stability utilizing blue thermally activated delayed fluorescence (TADF) materials as the host emitters. The triplet states of the blue TADF host emitter can be up-converted into its singlet states, and then the energy is transferred to the complementary phosphors through the long-range Förster energy transfer, enhancing the energy transfer from the host to the dopant. Simplified SEL-hybrid-WOLEDs achieve the highest forward-viewing external quantum efficiency (EQE) of 20.8% and power efficiency of 51.2 lm/W with CIE coordinates of (0.398, 0.456) at a luminance of 500 cd/m(2). The device EQE only slightly drops to 19.6% at a practical luminance of 1000 cd/m(2) with a power efficiency of 38.7 lm/W. Furthermore, the spectra of the device are rather stable with the raising voltage. The reason can be assigned to the enhanced Förster energy transfer, wide charge recombination zone, as well as the bipolar charge transporting ability of the host emitter. We believe that our work may shed light on the future development of highly efficient SEL-hybrid-WOLEDs with simultaneous low roll-off and good color stability.

  16. EFFECTS OF LASER RADIATION ON MATTER. LASER PLASMA: Generation of currents and propagation of plasma fronts in the case of two-pulse interaction with a target in air

    NASA Astrophysics Data System (ADS)

    Barkhudarov, É. M.; Gelashvili, G. V.; Gumberidze, G. G.; Taktakishvili, M. I.

    1990-06-01

    An investigation was made of the enhancement in the efficiency of generation of currents when a target in air was subjected to two consecutive CO2 laser radiation pulses. Preliminary interaction with a low-energy (1.5-5 J) pulse increased by more than one order of magnitude the currents generated by the second pulse and this was true in a wide range of energies of the latter pulse. The energy conversion efficiency was practically unaffected. The results were in qualitative agreement with the proposed pattern of plasma formation and propagation of shock waves near a target.

  17. Energy Efficiency Opportunities in Highway Lodging Buildings: Development of 50% Energy Savings Design Technology Packages

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Wei; Gowri, Krishnan; Thornton, Brian A.

    2010-06-30

    This paper presents the process, methodology, and assumptions for development of the 50% Energy Savings Design Technology Packages for Highway Lodging Buildings, a design guidance document that provides specific recommendations for achieving 50% energy savings in roadside motels (highway lodging) above the requirements of ANSI/ASHRAE/IESNA Standard 90.1-2004. This 50% solution represents a further step toward realization of the U.S. Department of Energy’s net-zero energy building goal, and go beyond the 30% savings in the Advanced Energy Design Guide series (upon which this work was built). This work can serve as the technical feasibility study for the development of a 50%more » saving Advanced Energy Design Guide for highway lodging, and thus should greatly expedite the development process. The purpose of this design package is to provide user-friendly design assistance to designers, developers, and owners of highway lodging properties. It is intended to encourage energy-efficient design by providing prescriptive energy-efficiency recommendations for each climate zone that attains the 50% the energy savings target. This paper describes the steps that were taken to demonstrate the technical feasibility of achieving a 50% reduction in whole-building energy use with practical and commercially available technologies. The energy analysis results are presented, indicating the recommended energy-efficient measures achieved a national-weighted average energy savings of 55%, relative to Standard 90.1-2004. The cost-effectiveness of the recommended technology package is evaluated and the result shows an average simple payback of 11.3 years.« less

  18. 41 CFR 102-74.185 - What heating and cooling policy must Federal agencies follow in Federal facilities?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... overall energy efficient and economical manner; (b) Maintain temperatures to maximize customer satisfaction by conforming to local commercial equivalent temperature levels and operating practices; (c) Set...

  19. 76 FR 55403 - Announcement of Funding Awards for Fiscal Year 2010 Transformation Initiative: Sustainable...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-07

    ... broad area of sustainability. Research proposals were submitted in five subject categories: (a... community design; (d) ``green'' and energy-efficient practices; and, (e) an open research category. The...

  20. Energy Efficiency and Conservation Block Grant (EECBG) - Better Buildings Neighborhood Program at Greater Cincinnati Energy Alliance: Home Performance with Energy Star® and Better Buildings Performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holzhauser, Andy; Jones, Chris; Faust, Jeremy

    2013-12-30

    The Greater Cincinnati Energy Alliance (Energy Alliance) is a nonprofit economic development agency dedicated to helping Greater Cincinnati and Northern Kentucky communities reduce energy consumption. The Energy Alliance has launched programs to educate homeowners, commercial property owners, and nonprofit organizations about energy efficiency opportunities they can use to drive energy use reductions and financial savings, while extending significant focus to creating/retaining jobs through these programs. The mission of the Energy Alliance is based on the premise that investment in energy efficiency can lead to transformative economic development in a region. With support from seven municipalities, the Energy Alliance began operationmore » in early 2010 and has been among the fastest growing nonprofit organizations in the Greater Cincinnati/Northern Kentucky area. The Energy Alliance offers two programs endorsed by the Department of Energy: the Home Performance with ENERGY STAR® Program for homeowners and the Better Buildings Performance Program for commercial entities. Both programs couple expert guidance, project management, and education in energy efficiency best practices with incentives and innovative energy efficiency financing to help building owners effectively invest in the energy efficiency, comfort, health, longevity, and environmental impact of their residential or commercial buildings. The Energy Alliance has raised over $23 million of public and private capital to build a robust market for energy efficiency investment. Of the $23 million, $17 million was a direct grant from the Department of Energy Better Buildings Neighborhood Program (BBNP). The organization’s investments in energy efficiency projects in the residential and commercial sector have led to well over $50 million in direct economic activity and created over 375,000 hours of labor created or retained. In addition, over 250 workers have been trained through the Building Performance Training Center, a program that was developed and funded by the Energy Alliance and housed at Cincinnati State Technical and Community College. Nearly 100 residential and commercial contractors currently participate in the Energy Alliance’s two major programs, which have together served over 2,800 residential and 100 commercial customers. Additionally, the Energy Alliance established loan programs for homeowners, nonprofits and commercial businesses. The GC-HELP program was established to provide up to ten year low interest, unsecured loans to homeowners to cover the energy efficiency products they purchased through the Energy Alliance approved contractor base. To date the Energy Alliance has financed over $1 million in energy efficiency loans for homeowners, without any loans written off. The nonprofit business community is offered five year, fixed-interest rate loans through the Building Communities Loan Fund of $250,000. Additionally, the Energy Alliance has developed GC-PACE, a commercial financing tool that enables buildings owners to finance their energy upgrades through voluntary property assessments deploying low-interest extended-term capital from the bond market. The Energy Alliance and its partners are actively evaluating additional market-based financing solutions.« less

  1. Energy demand for materials in an international context.

    PubMed

    Worrell, Ernst; Carreon, Jesus Rosales

    2017-06-13

    Materials are everywhere and have determined society. The rapid increase in consumption of materials has led to an increase in the use of energy and release of greenhouse gas (GHG) emissions. Reducing emissions in material-producing industries is a key challenge. If all of industry switched to current best practices, the energy-efficiency improvement potential would be between 20% and 35% for most sectors. While these are considerable potentials, especially for sectors that have historically paid a lot of attention to energy-efficiency improvement, realization of these potentials under current 'business as usual' conditions is slow due to a large variety of barriers and limited efforts by industry and governments around the world. Importantly, the potentials are not sufficient to achieve the deep reductions in carbon emissions that will be necessary to stay within the climate boundaries as agreed in the 2015 Paris Conference of Parties. Other opportunities need to be included in the menu of options to mitigate GHG emissions. It is essential to develop integrated policies combining energy efficiency, renewable energy and material efficiency and material demand reduction, offering the most economically attractive way to realize deep reductions in carbon emissions.This article is part of the themed issue 'Material demand reduction'. © 2017 The Author(s).

  2. Engineering Strategies and Methods for Avoiding Air-Quality Externalities: Dispersion Modeling, Home Energy Conservation, and Scenario Planning

    NASA Astrophysics Data System (ADS)

    Knox, Andrew James

    Energy conservation can improve air quality by reducing emissions from fuel combustion. The human health value retained through better air quality can then offset the cost of energy conservation. Through this thesis' innovative yet widely-accessible combination of air pollution dispersion modeling and atmospheric chemistry, it is estimated that the health value retained by avoiding emissions from Ontario's former coal-fired generating stations is 5.74/MWh (using an upper-bound value of 265,000 per year of life lost). This value is combined with energy modeling of homes in the first-ever assessment of the air-quality health benefits of low-energy buildings. It is shown that avoided health damages can equal 7% of additional construction costs of energy efficient buildings in Ontario. At 7%, health savings are a significant item in the cost analysis of efficient buildings. Looking to energy efficiency in the context of likely future low-resource natural gas scenarios, building efficient buildings today is shown to be more economically efficient than any building retrofit option. Considering future natural gas scarcity in the context of Ontario's Long-Term Energy Plan reveals that Ontario may be forced to return to coal-fired electricity. Projected coal use would result in externalities greater than $600 million/year; 80% more than air-quality externalities from Ontario's electricity in 1985. Radically aggressive investment in electricity conservation (75% reduction per capita by 2075) is one promising path forward that keeps air-quality externalities below 1985 levels. Non-health externalities are an additional concern, the quantification, and ultimately monetization, of which could be practical using emerging air pollution monitoring technologies. Energy, conservation, energy planning, and energy's externalities form a complex situation in which today's decisions are critical to a successful future. It is clear that reducing the demand for energy is essential and that there are economically efficient conservation opportunities, particularly in the building sector, being missed.

  3. Applying Best Practices to Florida Local Government Retrofit Programs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McIlvaine, J.; Sutherland, K.

    In some communities, local government and non-profit entities have funds to purchase and renovate distressed, foreclosed homes for resale in the affordable housing market. Numerous opportunities to improve whole house energy efficiency are inherent in these comprehensive renovations. BA-PIRC worked together in a multi-year field study making recommendations in individual homes, meanwhile compiling improvement costs, projected energy savings, practical challenges, and labor force factors surrounding common energy-related renovation measures. The field study, Phase 1 of this research, resulted in a set of best practices appropriate to the current labor pool and market conditions in central Florida to achieve projected annualmore » energy savings of 15-30% and higher. This report describes Phase 2 of the work where researchers worked with a local government partner to implement and refine the 'current best practices.' A simulation study was conducted to characterize savings potential under three sets of conditions representing varying replacement needs for energy-related equipment and envelope components. The three scenarios apply readily to the general remodeling industry as for renovation of foreclosed homes for the affordable housing market. Our new local government partner, the City of Melbourne, implemented the best practices in a community-scale renovation program that included ten homes in 2012.« less

  4. Existing Whole-House Solutions Case Study: Applying Best Practices to Florida Local Government Retrofit Programs - Central Florida

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    In some communities, local government and non-profit entities have funds to purchase and renovate distressed, foreclosed homes for resale in the affordable housing market. Numerous opportunities to improve whole house energy efficiency are inherent in these comprehensive renovations. BA-PIRC worked together in a multiyear field study making recommendations in individual homes, meanwhile compiling improvement costs, projected energy savings, practical challenges, and labor force factors surrounding common energy-related renovation measures. The field study, Phase 1 of this research, resulted in a set of best practices appropriate to the current labor pool and market conditions in central Florida to achieve projected annualmore » energy savings of 15%-30% and higher. This case study describes Phase 2 of the work where researchers worked with a local government partner to implement and refine the "current best practices". A simulation study was conducted to characterize savings potential under three sets of conditions representing varying replacement needs for energy-related equipment and envelope components. The three scenarios apply readily to the general remodeling industry as for renovation of foreclosed homes for the affordable housing market. The new local government partner, the City of Melbourne, implemented the best practices in a community-scale renovation program that included ten homes in 2012.« less

  5. Applying Best Practices to Florida Local Government Retrofit Programs, Central Florida (Fact Sheet)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    In some communities, local government and non-profit entities have funds to purchase and renovate distressed, foreclosed homes for resale in the affordable housing market. Numerous opportunities to improve whole house energy efficiency are inherent in these comprehensive renovations. BA-PIRC worked together in a multi-year field study making recommendations in individual homes, meanwhile compiling improvement costs, projected energy savings, practical challenges, and labor force factors surrounding common energy-related renovation measures. The field study, Phase 1 of this research, resulted in a set of best practices appropriate to the current labor pool and market conditions in central Florida to achieve projected annualmore » energy savings of 15-30% and higher. This report describes Phase 2 of the work where researchers worked with a local government partner to implement and refine the "current best practices". A simulation study was conducted to characterize savings potential under three sets of conditions representing varying replacement needs for energy-related equipment and envelope components. The three scenarios apply readily to the general remodeling industry as for renovation of foreclosed homes for the affordable housing market. Our new local government partner, the City of Melbourne, implemented the best practices in a community-scale renovation program that included ten homes in 2012.« less

  6. Applying Best Practices to Florida Local Government Retrofit Programs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McIlvaine, J.; Sutherland, K.

    In some communities, local government and non-profit entities have funds to purchase and renovate distressed, foreclosed homes for resale in the affordable housing market. Numerous opportunities to improve whole house energy efficiency are inherent in these comprehensive renovations. BA-PIRC worked together in a multiyear field study making recommendations in individual homes, meanwhile compiling improvement costs, projected energy savings, practical challenges, and labor force factors surrounding common energy-related renovation measures. The field study, Phase 1 of this research, resulted in a set of best practices appropriate to the current labor pool and market conditions in central Florida to achieve projected annualmore » energy savings of 15%-30% and higher. This report describes Phase 2 of the work where researchers worked with a local government partner to implement and refine the "current best practices". A simulation study was conducted to characterize savings potential under three sets of conditions representing varying replacement needs for energy-related equipment and envelope components. The three scenarios apply readily to the general remodeling industry as for renovation of foreclosed homes for the affordable housing market. The new local government partner, the City of Melbourne, implemented the best practices in a community-scale renovation program that included ten homes in 2012.« less

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This publication is one in an ongoing series of case studies for "Laboratories for the 21st Century," a joint program of the U.S. Environmental Protection Agency and the U.S. Department of Energy Federal Energy Management Program. It is intended for all those who plan, design, and construct public and private-sector laboratory buildings. This study describes how the Nidus Center, a nonprofit incubator for life sciences and plan biotechnology established by Monsanto Company, employs daylighting, an energy-efficient mechanical system featuring energy recovery, and water conservation practices, among others, to save energy and money and help conserve natural resources.

  8. Absorption of solar radiation by alkali vapors. [for efficient high temperature energy converters

    NASA Technical Reports Server (NTRS)

    Mattick, A. T.

    1978-01-01

    A theoretical study of the direct absorption of solar radiation by the working fluid of high temperature, high efficiency energy converters has been carried out. Alkali vapors and potassium vapor in particular were found to be very effective solar absorbers and suitable thermodynamically for practical high temperature cycles. Energy loss via reradiation from a solar boiler was shown to reduce the overall efficiency of radiation-heated energy converters, although a simple model of radiation transfer in a potassium vapor solar boiler revealed that self-trapping of the reradiation may reduce this loss considerably. A study was also made of the requirements for a radiation boiler window. It was found that for sapphire, one of the best solar transmitting materials, the severe environment in conjunction with high radiation densities will require some form of window protection. An aerodynamic shield is particularly advantageous in this capacity, separating the window from the absorbing vapor to prevent condensation and window corrosion and to reduce the radiation density at the window.

  9. Monitoring trends in civil engineering and their effect on indoor radon.

    PubMed

    Ringer, W

    2014-07-01

    In this paper, the importance of monitoring new building concepts is discussed. The effect of energy-efficient construction technologies on indoor radon is presented in more detail. Comparing the radon levels of about 100 low-energy and passive houses in Austria with radon levels in conventional new houses show that, in energy-efficient new houses, the radon level is about one-third lower than in conventional new houses. Nevertheless, certain features or bad practice may cause high radon levels in energy-efficient new houses. Recommendations to avoid adverse effects were set up. Furthermore, the paper deals with the effect of thermal retrofitting on indoor radon. Results from a Swiss study where 163 dwellings were measured before and after thermal retrofit yield an increase of the radon level of 26% in average. Among the various retrofit measures, replacing windows has the greatest impact on the indoor radon level. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Desroches, Louis-Benoit; Garbesi, Karina

    It is well established that energy efficiency is most often the lowest cost approach to reducing national energy use and minimizing carbon emissions. National investments in energy efficiency to date have been highly cost-effective. The cumulative impacts (out to 2050) of residential energy efficiency standards are expected to have a benefit-to-cost ratio of 2.71:1. This project examined energy end-uses in the residential, commercial, and in some cases the industrial sectors. The scope is limited to appliances and equipment, and does not include building materials, building envelopes, and system designs. This scope is consistent with the scope of DOE's appliance standardsmore » program, although many products considered here are not currently subject to energy efficiency standards. How much energy could the United States save if the most efficient design options currently feasible were adopted universally? What design features could produce those savings? How would the savings from various technologies compare? With an eye toward identifying promising candidates and strategies for potential energy efficiency standards, the Max Tech and Beyond project aims to answer these questions. The analysis attempts to consolidate, in one document, the energy savings potential and design characteristics of best-on-market products, best-engineered products (i.e., hypothetical products produced using best-on-market components and technologies), and emerging technologies in research & development. As defined here, emerging technologies are fundamentally new and are as yet unproven in the market, although laboratory studies and/or emerging niche applications offer persuasive evidence of major energy-savings potential. The term 'max tech' is used to describe both best-engineered and emerging technologies (whichever appears to offer larger savings). Few best-on-market products currently qualify as max tech, since few apply all available best practices and components. The three primary analyses presented in this report are: Nevertheless, it is important to analyze best-on-market products, since data on truly max tech technologies are limited. (1) an analysis of the cross-cutting strategies most promising for reducing appliance and equipment energy use in the U.S.; (2) a macro-analysis of the U.S. energy-saving potential inherent in promising ultra-efficient appliance technologies; and (3) a product-level analysis of the energy-saving potential.« less

  11. Analysis of recovery efficiency in high-temperature aquifer thermal energy storage: a Rayleigh-based method

    NASA Astrophysics Data System (ADS)

    Schout, Gilian; Drijver, Benno; Gutierrez-Neri, Mariene; Schotting, Ruud

    2014-01-01

    High-temperature aquifer thermal energy storage (HT-ATES) is an important technique for energy conservation. A controlling factor for the economic feasibility of HT-ATES is the recovery efficiency. Due to the effects of density-driven flow (free convection), HT-ATES systems applied in permeable aquifers typically have lower recovery efficiencies than conventional (low-temperature) ATES systems. For a reliable estimation of the recovery efficiency it is, therefore, important to take the effect of density-driven flow into account. A numerical evaluation of the prime factors influencing the recovery efficiency of HT-ATES systems is presented. Sensitivity runs evaluating the effects of aquifer properties, as well as operational variables, were performed to deduce the most important factors that control the recovery efficiency. A correlation was found between the dimensionless Rayleigh number (a measure of the relative strength of free convection) and the calculated recovery efficiencies. Based on a modified Rayleigh number, two simple analytical solutions are proposed to calculate the recovery efficiency, each one covering a different range of aquifer thicknesses. The analytical solutions accurately reproduce all numerically modeled scenarios with an average error of less than 3 %. The proposed method can be of practical use when considering or designing an HT-ATES system.

  12. Country Review of Energy-Efficiency Financial Incentives in the Residential Sector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Can, Stephane de la Rue du; Shah, Nihar; Phadke, Amol

    A large variety of energy-efficiency policy measures exist. Some are mandatory, some are informative, and some use financial incentives to promote diffusion of efficient equipment. From country to country, financial incentives vary considerably in scope and form, the type of framework used to implement them, and the actors that administer them. They range from rebate programs administered by utilities under an Energy-Efficiency Resource Standards (EERS) regulatory framework (California, USA) to the distribution of Eco-points rewarding customers for buying highly efficient appliances (Japan). All have the primary objective of transforming the current market to accelerate the diffusion of efficient technologies bymore » addressing up-front cost barriers faced by consumers; in most instances, efficient technologies require a greater initial investment than conventional technologies. In this paper, we review the different market transformation measures involving the use of financial incentives in the countries belonging to the Major Economies Forum. We characterize the main types of measures, discuss their mechanisms, and provide information on program impacts to the extent that ex-ante or ex-post evaluations have been conducted. Finally, we identify best practices in financial incentive programs and opportunities for coordination between Major Economies Forum countries as envisioned under the Super Efficient Appliance Deployment (SEAD) initiative.« less

  13. Energy Conversion Alternatives Study (ECAS), Westinghouse phase 1. Volume 6: Closed-cycle gas turbine systems. [energy conversion efficiency in electric power plants

    NASA Technical Reports Server (NTRS)

    Amos, D. J.; Fentress, W. K.; Stahl, W. F.

    1976-01-01

    Both recuperated and bottomed closed cycle gas turbine systems in electric power plants were studied. All systems used a pressurizing gas turbine coupled with a pressurized furnace to heat the helium for the closed cycle gas turbine. Steam and organic vapors are used as Rankine bottoming fluids. Although plant efficiencies of over 40% are calculated for some plants, the resultant cost of electricity was found to be 8.75 mills/MJ (31.5 mills/kWh). These plants do not appear practical for coal or oil fired plants.

  14. Best Practices Case Study: Shaw Construction Burlingame Ranch Ph.1, Aspen, CO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pacific Northwest National Laboratory & Oak Ridge National Laboratory

    Shaw Construction built 84 energy efficient, affordable condominiums forthe City of Aspen that achieved HERS scores of less than 62 with help from Building America’s research team lead Building Science Corporation.

  15. Water Management Planning: A Case Study at Blue Grass Army Depot

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Solana, Amy E.; Mcmordie, Katherine

    2006-04-03

    Executive Order 13123, Greening the Government Through Efficient Energy Management, mandates an aggressive policy for reducing potable water consumption at federal facilities. Implementation guid¬ance from the U.S. Department of Energy (DOE) set a requirement for each federal agency to “reduce potable water usage by implementing life cycle, cost-effective water efficiency programs that include a water management plan, and not less than four Federal Energy Management Program (FEMP) Best Manage¬ment Practices (BMPs).” The objective of this plan is to gain full compliance with Executive Order 13123 and associated DOE implementation guidance on behalf of Blue Grass Army Depot (BGAD), Richmond, Kentucky.more » In accordance with this plan, BGAD must: • Incorporate the plan as a component of the Installation energy conservation plan • Investigate the water savings potential and life-cycle cost effectiveness of the Operations and Maintenance (O&M) and retrofit/replacement options associated with the ten FEMP BMPs • Put into practice all applicable O&M options • Identify retrofit/replacement options appropriate for implementation (based upon calculation of the simple payback periods) • Establish a schedule for implementation of applicable and cost-effective retrofit/replacement options.« less

  16. Evaluating architecture impact on system energy efficiency

    PubMed Central

    Yu, Shijie; Wang, Rui; Luan, Zhongzhi; Qian, Depei

    2017-01-01

    As the energy consumption has been surging in an unsustainable way, it is important to understand the impact of existing architecture designs from energy efficiency perspective, which is especially valuable for High Performance Computing (HPC) and datacenter environment hosting tens of thousands of servers. One obstacle hindering the advance of comprehensive evaluation on energy efficiency is the deficient power measuring approach. Most of the energy study relies on either external power meters or power models, both of these two methods contain intrinsic drawbacks in their practical adoption and measuring accuracy. Fortunately, the advent of Intel Running Average Power Limit (RAPL) interfaces has promoted the power measurement ability into next level, with higher accuracy and finer time resolution. Therefore, we argue it is the exact time to conduct an in-depth evaluation of the existing architecture designs to understand their impact on system energy efficiency. In this paper, we leverage representative benchmark suites including serial and parallel workloads from diverse domains to evaluate the architecture features such as Non Uniform Memory Access (NUMA), Simultaneous Multithreading (SMT) and Turbo Boost. The energy is tracked at subcomponent level such as Central Processing Unit (CPU) cores, uncore components and Dynamic Random-Access Memory (DRAM) through exploiting the power measurement ability exposed by RAPL. The experiments reveal non-intuitive results: 1) the mismatch between local compute and remote memory node caused by NUMA effect not only generates dramatic power and energy surge but also deteriorates the energy efficiency significantly; 2) for multithreaded application such as the Princeton Application Repository for Shared-Memory Computers (PARSEC), most of the workloads benefit a notable increase of energy efficiency using SMT, with more than 40% decline in average power consumption; 3) Turbo Boost is effective to accelerate the workload execution and further preserve the energy, however it may not be applicable on system with tight power budget. PMID:29161317

  17. Evaluating architecture impact on system energy efficiency.

    PubMed

    Yu, Shijie; Yang, Hailong; Wang, Rui; Luan, Zhongzhi; Qian, Depei

    2017-01-01

    As the energy consumption has been surging in an unsustainable way, it is important to understand the impact of existing architecture designs from energy efficiency perspective, which is especially valuable for High Performance Computing (HPC) and datacenter environment hosting tens of thousands of servers. One obstacle hindering the advance of comprehensive evaluation on energy efficiency is the deficient power measuring approach. Most of the energy study relies on either external power meters or power models, both of these two methods contain intrinsic drawbacks in their practical adoption and measuring accuracy. Fortunately, the advent of Intel Running Average Power Limit (RAPL) interfaces has promoted the power measurement ability into next level, with higher accuracy and finer time resolution. Therefore, we argue it is the exact time to conduct an in-depth evaluation of the existing architecture designs to understand their impact on system energy efficiency. In this paper, we leverage representative benchmark suites including serial and parallel workloads from diverse domains to evaluate the architecture features such as Non Uniform Memory Access (NUMA), Simultaneous Multithreading (SMT) and Turbo Boost. The energy is tracked at subcomponent level such as Central Processing Unit (CPU) cores, uncore components and Dynamic Random-Access Memory (DRAM) through exploiting the power measurement ability exposed by RAPL. The experiments reveal non-intuitive results: 1) the mismatch between local compute and remote memory node caused by NUMA effect not only generates dramatic power and energy surge but also deteriorates the energy efficiency significantly; 2) for multithreaded application such as the Princeton Application Repository for Shared-Memory Computers (PARSEC), most of the workloads benefit a notable increase of energy efficiency using SMT, with more than 40% decline in average power consumption; 3) Turbo Boost is effective to accelerate the workload execution and further preserve the energy, however it may not be applicable on system with tight power budget.

  18. Aggressive Strategies for Residential Energy and Carbon Savings by 2025

    NASA Astrophysics Data System (ADS)

    Ling, F. H.; Kammen, D. M.

    2004-12-01

    Energy efficiency technologies and practices have long been recognized as a low-cost, often least cost, option that can be deployed widely throughout the economy (Steve Nadel, 2002; Donald A. Hanson and John A. Laitner, 2003). We are engaged in a review of technology-based energy savings options throughout the U. S. economy with a joint focus on both immediate savings opportunities and long-term strategies for accelerating the innovation process and pipeline. For the near term, we developed scenarios based on available 'off the shelf' technologies and practices for achieving minimum energy consumption in lighting, standby power in electronics, and miscellaneous end-uses in the U.S. residential sector. In the business-as-usual (BAU) case, energy consumption continues to grow despite innovations at a current rate of 1.7 percent/year (Laitner, 2004). Nevertheless, the need for developing new energy supplies can be mitigated through the use of 'best current technologies' as the industry norm in 2025. Figure 1 (see URL below) shows this reduction in energy consumption and greenhouse gas emissions. The BAU model corresponds to the current rate of 'decarbonization' in the overall U.S. economy (Energy Information Administration, 2004). Over a twenty-year period, about 2 billion metric tons of carbon dioxide and 30 quads of primary fuel could be saved through the introduction of "best current technology" with the greatest reductions in the area of lighting technologies. In 2025, 1.5 quads of primary energy is saved with the breakdown in end-use electricity saved as follows: 113 TWh (0.39 quads), 70.8 TWh (0.24 quads), and 62 TWh (0.21 quads) for residential lighting, appliance standards, and standby power respectively. In addition, there is empirical evidence from specific technology sectors, from statewide programs in California, as well as on theoretical grounds (Laitner, 2004) that innovation and decarbonization rates of 3 to 5 percent/year have at times been, and could again be achieved. While such high rates of innovation do not usually sustain themselves for more than a few years, innovation rates higher than the current 1.7 percent/year are also explored in this study. Acknowledgement: Alliance to Save Energy (ASE) and Energy Foundation References: Energy Information Administration. "Annual Energy Outlook 2004." Washington, DC: U.S. Department of Energy, 2004. Hanson, Donald A. and Laitner, John A. "Skip". "An Integrated Analysis of Policies That Increase Investments in Advanced Energy-Efficient/Low-Carbon Technologies." Energy Economics, 2003. Laitner, J. A. "How far energy efficiency." 2004. Nadel, Steve. "Appliance and Equipment Efficiency Standards." Annual Reviews, 2002.

  19. Diffusion Dynamics of Energy Saving Practices in Large Heterogeneous Online Networks

    PubMed Central

    Mohammadi, Neda; Wang, Qi; Taylor, John E.

    2016-01-01

    Online social networks are today’s fastest growing communications channel and a popular source of information for many, so understanding their contribution to building awareness and shaping public perceptions of climate change is of utmost importance. Today’s online social networks are composed of complex combinations of entities and communication channels and it is not clear which communicators are the most influential, what the patterns of communication flow are, or even whether the widely accepted two-step flow of communication model applies in this new arena. This study examines the diffusion of energy saving practices in a large online social network across organizations, opinion leaders, and the public by tracking 108,771 communications on energy saving practices among 1,084 communicators, then analyzing the flow of information and influence over a 28 day period. Our findings suggest that diffusion networks of messages advocating energy saving practices are predominantly led by the activities of dedicated organizations but their attempts do not result in substantial public awareness, as most of these communications are effectively trapped in organizational loops in which messages are simply shared between organizations. Despite their comparably significant influential values, opinion leaders played a weak role in diffusing energy saving practices to a wider audience. Thus, the two-step flow of communication model does not appear to describe the sharing of energy conservation practices in large online heterogeneous networks. These results shed new light on the underlying mechanisms driving the diffusion of important societal issues such as energy efficiency, particularly in the context of large online social media outlets. PMID:27736912

  20. Diffusion Dynamics of Energy Saving Practices in Large Heterogeneous Online Networks.

    PubMed

    Mohammadi, Neda; Wang, Qi; Taylor, John E

    2016-01-01

    Online social networks are today's fastest growing communications channel and a popular source of information for many, so understanding their contribution to building awareness and shaping public perceptions of climate change is of utmost importance. Today's online social networks are composed of complex combinations of entities and communication channels and it is not clear which communicators are the most influential, what the patterns of communication flow are, or even whether the widely accepted two-step flow of communication model applies in this new arena. This study examines the diffusion of energy saving practices in a large online social network across organizations, opinion leaders, and the public by tracking 108,771 communications on energy saving practices among 1,084 communicators, then analyzing the flow of information and influence over a 28 day period. Our findings suggest that diffusion networks of messages advocating energy saving practices are predominantly led by the activities of dedicated organizations but their attempts do not result in substantial public awareness, as most of these communications are effectively trapped in organizational loops in which messages are simply shared between organizations. Despite their comparably significant influential values, opinion leaders played a weak role in diffusing energy saving practices to a wider audience. Thus, the two-step flow of communication model does not appear to describe the sharing of energy conservation practices in large online heterogeneous networks. These results shed new light on the underlying mechanisms driving the diffusion of important societal issues such as energy efficiency, particularly in the context of large online social media outlets.

  1. Thin film solar cells grown by organic vapor phase deposition

    NASA Astrophysics Data System (ADS)

    Yang, Fan

    Organic solar cells have the potential to provide low-cost photovoltaic devices as a clean and renewable energy resource. In this thesis, we focus on understanding the energy conversion process in organic solar cells, and improving the power conversion efficiencies via controlled growth of organic nanostructures. First, we explain the unique optical and electrical properties of organic materials used for photovoltaics, and the excitonic energy conversion process in donor-acceptor heterojunction solar cells that place several limiting factors of their power conversion efficiency. Then, strategies for improving exciton diffusion and carrier collection are analyzed using dynamical Monte Carlo models for several nanostructure morphologies. Organic vapor phase deposition is used for controlling materials crystallization and film morphology. We improve the exciton diffusion efficiency while maintaining good carrier conduction in a bulk heterojunction solar cell. Further efficiency improvement is obtained in a novel nanocrystalline network structure with a thick absorbing layer, leading to the demonstration of an organic solar cell with 4.6% efficiency. In addition, solar cells using simultaneously active heterojunctions with broad spectral response are presented. We also analyze the efficiency limits of single and multiple junction organic solar cells, and discuss the challenges facing their practical implementations.

  2. Phase-controlled synthesis of polymorphic tungsten diphosphide with hybridization of monoclinic and orthorhombic phases as a novel electrocatalyst for efficient hydrogen evolution

    NASA Astrophysics Data System (ADS)

    Pi, Mingyu; Wu, Tianli; Guo, Weimeng; Wang, Xiaodeng; Zhang, Dingke; Wang, Shuxia; Chen, Shijian

    2017-05-01

    The design and development of high-efficiency and non-noble-metal hydrogen evolution reaction (HER) electrocatalysts for future clean and renewable energy system has excited significant research interests over the recent years. In this communication, the polymorphic tungsten diphosphide (p-WP2) nanoparticles with mixed monoclinic (α-) and orthorhombic (β-) phases are synthesized by phase-controlled phosphidation route via vacuum capsulation and explored as a novel efficient electrocatalyst towards HER. The p-WP2 catalyst delivers superior performance with excellent stability under both acidic and alkaline conditions over its single phases of α-WP2 and β-WP2. This finding demonstrates that a highly efficient hybrid electrocatalyst can be achieved via precise composition controlling and may open up exciting opportunities for their practical applications toward energy conversion.

  3. Reducing Plug Loads in Office Spaces: Hawaii and Guam Energy Improvement Technology Demonstration Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheppy, M.; Metzger, I.; Cutler, D.

    2014-01-01

    As part of its overall strategy to meet its energy goals, the Naval Facilities Engineering Command (NAVFAC) partnered with the Department of Energy's National Renewable Energy Laboratory (NREL) to rapidly demonstrate and deploy cost-effective renewable energy and energy efficiency technologies. This project was one of several demonstrations of new or underutilized commercial energy technologies. The common goal was to demonstrate and measure the performance and economic benefit of the system while monitoring any ancillary impacts to related standards of service and operation and maintenance (O&M) practices. In short, demonstrations at naval facilities simultaneously evaluate the benefits and compatibility of themore » technology with the U.S. Department of Defense (DOD) mission, and with NAVFAC's design, construction, operations, and maintenance practices, in particular. This project demonstrated the performance of commercially available advanced power strips (APSs) for plug load energy reductions in building A4 at Joint Base Pearl Harbor-Hickam (JBPHH), Hawaii.« less

  4. NASA Marshall Space Flight Center Improves Cooling System Performance: Best Management Practice Case Study #10: Cooling Towers (Fact Sheet)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    National Aeronautics and Space Administration's (NASA) Marshall Space Flight Center (MSFC) has a longstanding sustainability program that revolves around energy and water efficiency as well as environmental protection. MSFC identified a problematic cooling loop with six separate compressor heat exchangers and a history of poor efficiency. The facility engineering team at MSFC partnered with Flozone Services, Incorporated to implement a comprehensive water treatment platform to improve the overall efficiency of the system.

  5. NASA's Marshall Space Flight Center Saves Water With High-Efficiency Toilet and Urinal Program: Best Management Practice Case Study #6 - Toilets and Urinals (Fact Sheet)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2011-02-01

    The National Aeronautics and Space Administration's (NASA) Marshall Space Flight Center (MSFC) has a longstanding, successful sustainability program that focuses on energy and water efficiency as well as environmental protection. Because MSFC was built in the 1960s, most of the buildings house outdated, inefficient restroom fixtures. The facility engineering team at MSFC developed an innovative efficiency model for replacing these older toilets and urinals.

  6. Energy Efficiency Strategies for Municipal Wastewater Treatment Facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daw, J.; Hallett, K.; DeWolfe, J.

    2012-01-01

    Water and wastewater systems are significant energy consumers with an estimated 3%-4% of total U.S. electricity consumption used for the movement and treatment of water and wastewater. Water-energy issues are of growing importance in the context of water shortages, higher energy and material costs, and a changing climate. In this economic environment, it is in the best interest for utilities to find efficiencies, both in water and energy use. Performing energy audits at water and wastewater treatment facilities is one way community energy managers can identify opportunities to save money, energy, and water. In this paper the importance of energymore » use in wastewater facilities is illustrated by a case study of a process energy audit performed for Crested Butte, Colorado's wastewater treatment plant. The energy audit identified opportunities for significant energy savings by looking at power intensive unit processes such as influent pumping, aeration, ultraviolet disinfection, and solids handling. This case study presents best practices that can be readily adopted by facility managers in their pursuit of energy and financial savings in water and wastewater treatment. This paper is intended to improve community energy managers understanding of the role that the water and wastewater sector plays in a community's total energy consumption. The energy efficiency strategies described provide information on energy savings opportunities, which can be used as a basis for discussing energy management goals with water and wastewater treatment facility managers.« less

  7. Scalable methodology for large scale building energy improvement: Relevance of calibration in model-based retrofit analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heo, Yeonsook; Augenbroe, Godfried; Graziano, Diane

    2015-05-01

    The increasing interest in retrofitting of existing buildings is motivated by the need to make a major contribution to enhancing building energy efficiency and reducing energy consumption and CO2 emission by the built environment. This paper examines the relevance of calibration in model-based analysis to support decision-making for energy and carbon efficiency retrofits of individual buildings and portfolios of buildings. The authors formulate a set of real retrofit decision-making situations and evaluate the role of calibration by using a case study that compares predictions and decisions from an uncalibrated model with those of a calibrated model. The case study illustratesmore » both the mechanics and outcomes of a practical alternative to the expert- and time-intense application of dynamic energy simulation models for large-scale retrofit decision-making under uncertainty.« less

  8. Field Evaluation of Advances in Energy-Efficiency Practices for Manufactured Homes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    E. Levy; Dentz, J.; Ansanelli, E.

    2016-03-01

    Through field-testing and analysis, this project evaluated whole-building approaches and estimated the relative contributions of select technologies toward reducing energy use related to space conditioning in new manufactured homes. Three lab houses of varying designs were built and tested side-by-side under controlled conditions in Russellville, Alabama. The tests provided a valuable indicator of how changes in the construction of manufactured homes can contribute to significant reductions in energy use.

  9. Challenges and Strength of Current Industrial Energy Efficiency Management Practices in Steam Industries

    NASA Astrophysics Data System (ADS)

    Nkosi, S. B.; Pretorius, J. H. C.

    2017-07-01

    The aim of this study is to achieve greater output by examining the existing way of coordinating the determined attempts of Steam Industries in South Africa to successfully reach a sustainable industrial development by using energy source adequately in a more competent way. Furthermore into the study we look at obstacles that prevent and those that leads to maximum utilization of energy management measures and also highlights the effects of implementing cheap available energy source in South Africa. The investigation and analysis have shown that energy is not well managed in Steam Industries and that the use of energy is minimized and not fully utilized due to poor management and lack of knowledge. Another detection was that lack of government structured and strategic measures of implementing and motivating the use of energy effectively. The effective and rational use of available power by Steam Industries in South Africa is a key player in developing a sustainable industrial development. The use of energy efficiency management strategies has contributed an increase in economic and improve environmentally friendly in the industrial sector. The slow pace adoption of energy saving and cost effective management programmes are negatively impacting on the benefits to Steam Industries in South Africa. In conclusion the study finds that the economy can be boosted by implementing energy efficiency management programmes and environmentally friendly. These will also stabilize the negative impact of energy raising prices.

  10. Interaction Entropy: A New Paradigm for Highly Efficient and Reliable Computation of Protein-Ligand Binding Free Energy.

    PubMed

    Duan, Lili; Liu, Xiao; Zhang, John Z H

    2016-05-04

    Efficient and reliable calculation of protein-ligand binding free energy is a grand challenge in computational biology and is of critical importance in drug design and many other molecular recognition problems. The main challenge lies in the calculation of entropic contribution to protein-ligand binding or interaction systems. In this report, we present a new interaction entropy method which is theoretically rigorous, computationally efficient, and numerically reliable for calculating entropic contribution to free energy in protein-ligand binding and other interaction processes. Drastically different from the widely employed but extremely expensive normal mode method for calculating entropy change in protein-ligand binding, the new method calculates the entropic component (interaction entropy or -TΔS) of the binding free energy directly from molecular dynamics simulation without any extra computational cost. Extensive study of over a dozen randomly selected protein-ligand binding systems demonstrated that this interaction entropy method is both computationally efficient and numerically reliable and is vastly superior to the standard normal mode approach. This interaction entropy paradigm introduces a novel and intuitive conceptual understanding of the entropic effect in protein-ligand binding and other general interaction systems as well as a practical method for highly efficient calculation of this effect.

  11. Good Practices in Free-energy Calculations

    NASA Technical Reports Server (NTRS)

    Pohorille, Andrew; Jarzynski, Christopher; Chipot, Christopher

    2013-01-01

    As access to computational resources continues to increase, free-energy calculations have emerged as a powerful tool that can play a predictive role in drug design. Yet, in a number of instances, the reliability of these calculations can be improved significantly if a number of precepts, or good practices are followed. For the most part, the theory upon which these good practices rely has been known for many years, but often overlooked, or simply ignored. In other cases, the theoretical developments are too recent for their potential to be fully grasped and merged into popular platforms for the computation of free-energy differences. The current best practices for carrying out free-energy calculations will be reviewed demonstrating that, at little to no additional cost, free-energy estimates could be markedly improved and bounded by meaningful error estimates. In energy perturbation and nonequilibrium work methods, monitoring the probability distributions that underlie the transformation between the states of interest, performing the calculation bidirectionally, stratifying the reaction pathway and choosing the most appropriate paradigms and algorithms for transforming between states offer significant gains in both accuracy and precision. In thermodynamic integration and probability distribution (histogramming) methods, properly designed adaptive techniques yield nearly uniform sampling of the relevant degrees of freedom and, by doing so, could markedly improve efficiency and accuracy of free energy calculations without incurring any additional computational expense.

  12. System and Method for Obtaining Simultaneous Levitation and Rotation of a Ferromagnetic Object

    NASA Astrophysics Data System (ADS)

    Banerjee, Subrata; Sarkar, Mrinal Kanti; Ghosh, Arnab

    2017-02-01

    In this work a practical demonstration for simultaneous levitation and rotation for a ferromagnetic cylindrical object is presented. A hollow steel cylinder has been arranged to remain suspended stably under I-core electromagnet utilizing dc attraction type levitation principle and then arranged to rotate the levitated object around 1000 rpm speed based on eddy current based energy meter principle. Since the object is to be rotating during levitated condition the device will be frictionless, energy-efficient and robust. This technology may be applied to frictionless energy meter, wind turbine, machine tool applications, precision instruments and many other devices where easy energy-efficient stable rotation will be required. The cascade lead compensation control scheme has been applied for stabilization of unstable levitation system. The proposed device is successfully tested in the laboratory and experimental results have been produced.

  13. Analysis of mixing conditions and multistage irradiation impact on NOx removal efficiency in the electron beam flue gas treatment process.

    PubMed

    Pawelec, Andrzej; Dobrowolski, Andrzej

    2017-01-01

    In the process of electron beam flue gas treatment (EBFGT), most energy is spent on NO x removal. The dose distribution in the reactor is not uniform and the flue gas flow pattern plays an important role in the process efficiency. It was found that proper construction of the reactor may increase the energy efficiency of the process. The impact of the number of irradiation stages and mixing conditions on NO x removal efficiency was investigated for an ideal case and a practical solution was presented and compared with previously known EBFGT reactor constructions. The research was performed by means of computational fluid dynamics methods in combination with empirical Wittig formula. Two versions of dose distribution were taken for calculations. The results of the research show that for an ideal case, application of multistage irradiation and interstage mixing may reduce the energy consumption in the process by up to 39%. On the other side, simulation of reactor construction modification for two-stage irradiation results in 25% energy consumption reduction. The results of presented case study may be applied for improving the existing reactors and proper design of future installations.

  14. CHARACTERIZING COSTS, SAVINGS AND BENEFITS OF A SELECTION OF ENERGY EFFICIENT EMERGING TECHNOLOGIES IN THE UNITED STATES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, T.; Slaa, J.W.; Sathaye, J.

    2010-12-15

    Implementation and adoption of efficient end-use technologies have proven to be one of the key measures for reducing greenhouse gas (GHG) emissions throughout the industries. In many cases, implementing energy efficiency measures is among one of the most cost effective investments that the industry could make in improving efficiency and productivity while reducing CO2 emissions. Over the years, there have been incentives to use resources and energy in a cleaner and more efficient way to create industries that are sustainable and more productive. With the working of energy programs and policies on GHG inventory and regulation, understanding and managing themore » costs associated with mitigation measures for GHG reductions is very important for the industry and policy makers around the world. Successful implementation of emerging technologies not only can help advance productivities and competitiveness but also can play a significant role in mitigation efforts by saving energy. Providing evaluation and estimation of the costs and energy savings potential of emerging technologies is the focus of our work in this project. The overall goal of the project is to identify and select emerging and under-utilized energy-efficient technologies and practices as they are important to reduce energy consumption in industry while maintaining economic growth. This report contains the results from performing Task 2"Technology evaluation" for the project titled"Research Opportunities in Emerging and Under-Utilized Energy-Efficient Industrial Technologies," which was sponsored by California Energy Commission and managed by CIEE. The project purpose is to analyze market status, market potential, and economic viability of selected technologies applicable to the U.S. In this report, LBNL first performed re-assessments of all of the 33 emerging energy-efficient industrial technologies, including re-evaluation of the 26 technologies that were previously identified by Martin et al. (2000) and their potential significance to energy use in the industries, and new evaluation of additional seven technologies. The re-assessments were essentially updated with recent information that we searched and collected from literature to the extent possible. The progress of selected technologies as they diffused into the marketplace from 2000 to 2010 was then discussed in this report. The report also includes updated detailed characterizations of 15 technologies studied in 2000, with comparisons noted.« less

  15. Sunlight absorption engineering for thermophotovoltaics: contributions from the optical design.

    PubMed

    Míguez, Hernán

    2015-03-01

    Nowadays, solar thermophotovoltaic systems constitute a platform in which sophisticated optical material designs are put into practice with the aim of achieving the long sought after dream of developing an efficient energy conversion device based on this concept. Recent advances demonstrate that higher efficiencies are at reach using photonic nanostructures amenable to mass production and scale-up. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. 48 CFR 970.2301-2 - Contract clauses.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Transportation Management, in such contracts. (b) Insert the clause at 970.5223-6, Sustainable and Environmentally Preferable Purchasing Practices, or its Alternate I in contracts for the management and operation... SUPPLEMENTARY REGULATIONS DOE MANAGEMENT AND OPERATING CONTRACTS Environment, Energy and Water Efficiency...

  17. Energy Efficiency Feasibility Study and Resulting Plan for the Bay Mills Indian Community

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kushman, Chris

    In 2011 the Inter-Tribal Council of Michigan, Inc. was awarded an Energy Efficiency Development and Deployment in Indian Country grant from the U.S. Department of Energy’s Tribal Energy Program. This grant aimed to study select Bay Mills Indian Community community/government buildings to determine what is required to reduce each building’s energy consumption by 30%. The Bay Mills Indian Community (BMIC) buildings with the largest expected energy use were selected for this study and included the Bay Mills Ellen Marshall Health Center building, Bay Mills Indian Community Administration Building, Bay Mills Community College main campus, Bay Mills Charter School and themore » Waishkey Community Center buildings. These five sites are the largest energy consuming Community buildings and comprised the study area of this project titled “Energy Efficiency Feasibility Study and Resulting Plan for the Bay Mills Indian Community”. The end objective of this study, plan and the Tribe is to reduce the energy consumption at the Community’s most energy intensive buildings that will, in turn, reduce emissions at the source of energy production, reduce energy expenditures, create long lasting energy conscious practices and positively affect the quality of the natural environment. This project’s feasibility study and resulting plan is intended to act as a guide to the Community’s first step towards planned energy management within its buildings/facilities. It aims to reduce energy consumption by 30% or greater within the subject facilities with an emphasis on energy conservation and efficiency. The energy audits and related power consumption analyses conducted for this study revealed numerous significant energy conservation and efficiency opportunities for all of the subject sites/buildings. In addition, many of the energy conservation measures require no cost and serve to help balance other measures requiring capital investment. Reoccurring deficiencies relating to heating, cooling, thermostat setting inefficiencies, powering computers, lighting, items linked to weatherization and numerous other items were encountered that can be mitigated with the energy conservation measures developed and specified during the course of this project.« less

  18. Do photovoltaics have a future

    NASA Technical Reports Server (NTRS)

    Williams, B. F.

    1979-01-01

    There is major concern as to the economic practicality of widespread terrestrial use because of the high cost of the photovoltaic arrays themselves. Based on their high efficiency, photovoltaic collectors should be one of the cheapest forms of energy generators known. Present photovoltaic panels are violating the trend of lower costs with increasing efficiency due to their reliance on expensive materials. A medium technology solution should provide electricity competitive with the existing medium to high technology energy generators such as oil, coal, gas, and nuclear fission thermal plants. Programs to reduce the cost of silicon and develop reliable thin film materials have a realistic chance of producing cost effective photovoltaic panels.

  19. Higher Efficiency for Quasi-Solid State Dye Sensitized Solar Cells Under Low Light Irradiance

    NASA Astrophysics Data System (ADS)

    Desilva, Ajith; Bandara, T. M. W. J.; Fernado, H. D. N. S.; Fernando, P. S. L.; Dissanayake, M. A. K. L.; Jayasundara, W. J. M. J. S. R.; Furlani, M.; Mellander, B.-E.

    2014-03-01

    Dye-sensitized solar cells (DSSCs), lower cost solar energy conversion devices are alternative green energy source. The liquid based electrolyte DSSCs have higher efficiencies with many practical issues while the quasi-solid-state DSSCs resolve the key problems but efficiencies are relatively low. Polyacrylonitrile (PAN) based gel polymer electrolytes were fabricated as DSSCs by incorporating ethylene carbonate and propylene carbonate plasticizers and tetrapropylammonium iodide salt. A thin layer of electrolyte was sandwiched between the TiO2 anode (sensitized with N719 dye) and the Pt counter electrode. The electrolyte had an ionic conductivity of 2.6 mS/cm at 25 degrees of Celsius. DSSCs incorporating this gel electrolyte revealed Vsc circuit, Jsc, fill factor (FF) and efficiency values of 0.71 V, 11.8 mA, 51 percent and 4.2 percent respectively under 1 sun irradiation. The efficiency of the cell increased with decreasing solar irradiance achieving up to 10 percent efficiency and 80 percent FF at low irradiance values. This work uncovers that quasi-solid state DSSCs can reach efficiencies close to that of liquid electrolytes based cells.

  20. International Review of the Development and Implementation of Energy Efficiency Standards and Labeling Programs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Nan; Zheng, Nina; Fridley, David

    2012-02-28

    Appliance energy efficiency standards and labeling (S&L) programs have been important policy tools for regulating the efficiency of energy-using products for over 40 years and continue to expand in terms of geographic and product coverage. The most common S&L programs include mandatory minimum energy performance standards (MEPS) that seek to push the market for efficient products, and energy information and endorsement labels that seek to pull the market. This study seeks to review and compare some of the earliest and most well-developed S&L programs in three countries and one region: the U.S. MEPS and ENERGY STAR, Australia MEPS and Energymore » Label, European Union MEPS and Ecodesign requirements and Energy Label and Japanese Top Runner programs. For each program, key elements of S&L programs are evaluated and comparative analyses across the programs undertaken to identify best practice examples of individual elements as well as cross-cutting factors for success and lessons learned in international S&L program development and implementation. The international review and comparative analysis identified several overarching themes and highlighted some common factors behind successful program elements. First, standard-setting and programmatic implementation can benefit significantly from a legal framework that stipulates a specific timeline or schedule for standard-setting and revision, product coverage and legal sanctions for non-compliance. Second, the different MEPS programs revealed similarities in targeting efficiency gains that are technically feasible and economically justified as the principle for choosing a standard level, in many cases at a level that no product on the current market could reach. Third, detailed survey data such as the U.S. Residential Energy Consumption Survey (RECS) and rigorous analyses provide a strong foundation for standard-setting while incorporating the participation of different groups of stakeholders further strengthen the process. Fourth, sufficient program resources for program implementation and evaluation are critical to the effectiveness of standards and labeling programs and cost-sharing between national and local governments can help ensure adequate resources and uniform implementation. Lastly, check-testing and punitive measures are important forms of enforcement while the cancellation of registration or product sales-based fines have also proven effective in reducing non-compliance. The international comparative analysis also revealed the differing degree to which the level of government decentralization has influenced S&L programs and while no single country has best practices in all elements of standards and labeling development and implementation, national examples of best practices for specific elements do exist. For example, the U.S. has exemplified the use of rigorous analyses for standard-setting and robust data source with the RECS database while Japan's Top Runner standard-setting principle has motivated manufacturers to exceed targets. In terms of standards implementation and enforcement, Australia has demonstrated success with enforcement given its long history of check-testing and enforcement initiatives while mandatory information-sharing between EU jurisdictions on compliance results is another important enforcement mechanism. These examples show that it is important to evaluate not only the drivers of different paths of standards and labeling development, but also the country-specific context for best practice examples in order to understand how and why certain elements of specific S&L programs have been effective.« less

  1. Harnessing the genetics of the modern dairy cow to continue improvements in feed efficiency.

    PubMed

    VandeHaar, M J; Armentano, L E; Weigel, K; Spurlock, D M; Tempelman, R J; Veerkamp, R

    2016-06-01

    Feed efficiency, as defined by the fraction of feed energy or dry matter captured in products, has more than doubled for the US dairy industry in the past 100 yr. This increased feed efficiency was the result of increased milk production per cow achieved through genetic selection, nutrition, and management with the desired goal being greater profitability. With increased milk production per cow, more feed is consumed per cow, but a greater portion of the feed is partitioned toward milk instead of maintenance and body growth. This dilution of maintenance has been the overwhelming driver of enhanced feed efficiency in the past, but its effect diminishes with each successive increment in production relative to body size and therefore will be less important in the future. Instead, we must also focus on new ways to enhance digestive and metabolic efficiency. One way to examine variation in efficiency among animals is residual feed intake (RFI), a measure of efficiency that is independent of the dilution of maintenance. Cows that convert feed gross energy to net energy more efficiently or have lower maintenance requirements than expected based on body weight use less feed than expected and thus have negative RFI. Cows with low RFI likely digest and metabolize nutrients more efficiently and should have overall greater efficiency and profitability if they are also healthy, fertile, and produce at a high multiple of maintenance. Genomic technologies will help to identify these animals for selection programs. Nutrition and management also will continue to play a major role in farm-level feed efficiency. Management practices such as grouping and total mixed ration feeding have improved rumen function and therefore efficiency, but they have also decreased our attention on individual cow needs. Nutritional grouping is key to helping each cow reach its genetic potential. Perhaps new computer-driven technologies, combined with genomics, will enable us to optimize management for each individual cow within a herd, or to optimize animal selection to match management environments. In the future, availability of feed resources may shift as competition for land increases. New approaches combining genetic, nutrition, and other management practices will help optimize feed efficiency, profitability, and environmental sustainability. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  2. Innovation on Energy Power Technology (7)Development and Practical Application of Sodium-Sulfur Battery for Electric Energy Storage System

    NASA Astrophysics Data System (ADS)

    Rachi, Hideki

    Sodium-Sulfur battery (NAS battery), which has more than 3 times of energy density compared with the conventional lead-acid battery and can be compactly established, has a great installation effects as a distributed energy storage system in the urban area which consumes big electric power. For the power company, NAS battery contributes to the load leveling, the supply capability up at the peak period, the efficient operation of the electric power equipment and the reduction of the capital expenditure. And for the customer, it is possible to enjoy the reduction of the electricity charges by utilizing nighttime electric power and the securing of a security. The contribution to the highly sophisticated information society where the higher electric power quality is desired, mainly office buildings and factories by the progress of IT, is very big. Tokyo Electric Power Company (TEPCO) developed the elementary technology of NAS battery from 1984 and ended the development of practical battery which has long-term durability and the safety and the performance verification of the megawatt scale. Finally TEPCO accomplished the practical application and commercialization of the stationary energy storage technology by NAS battery. In this paper, we introduces about conquered problems until practical application and commercialization.

  3. Dramatically Enhanced Spin Dynamo with Plasmonic Diabolo Cavity.

    PubMed

    Gou, Peng; Qian, Jie; Xi, Fuchun; Zou, Yuexin; Cao, Jun; Yu, Haochi; Zhao, Ziyi; Yang, Le; Xu, Jie; Wang, Hengliang; Zhang, Lijian; An, Zhenghua

    2017-07-13

    The applications of spin dynamos, which could potentially power complex nanoscopic devices, have so far been limited owing to their extremely low energy conversion efficiencies. Here, we present a unique plasmonic diabolo cavity (PDC) that dramatically improves the spin rectification signal (enhancement of more than three orders of magnitude) under microwave excitation; further, it enables an energy conversion efficiency of up to ~0.69 mV/mW, compared with ~0.27 μV/mW without a PDC. This remarkable improvement arises from the simultaneous enhancement of the microwave electric field (~13-fold) and the magnetic field (~195-fold), which cooperate in the spin precession process generates photovoltage (PV) efficiently under ferromagnetic resonance (FMR) conditions. The interplay of the microwave electromagnetic resonance and the ferromagnetic resonance originates from a hybridized mode based on the plasmonic resonance of the diabolo structure and Fabry-Perot-like modes in the PDC. Our work sheds light on how more efficient spin dynamo devices for practical applications could be realized and paves the way for future studies utilizing both artificial and natural magnetism for applications in many disciplines, such as for the design of future efficient wireless energy conversion devices, high frequent resonant spintronic devices, and magnonic metamaterials.

  4. Mixotrophic cultivation of Chlorella for local protein production using agro-food by-products.

    PubMed

    Salati, Silvia; D'Imporzano, Giuliana; Menin, Barbara; Veronesi, Davide; Scaglia, Barbara; Abbruscato, Pamela; Mariani, Paola; Adani, Fabrizio

    2017-04-01

    A local strain of Chlorella vulgaris was cultivated by using cheese whey (CW), white wine lees (WL) and glycerol (Gly), coming from local agro-industrial activities, as C sources (2.2gCL -1 ) to support algae production under mixotrophic conditions in Lombardy. In continuous mode, Chlorella increased biomass production compared with autotrophic conditions by 1.5-2 times, with the best results obtained for the CW substrate, i.e. 0.52gL -1 d -1 of algal biomass vs. 0.24gL -1 d -1 of algal biomass for autotrophic conditions, and protein content for both conditions adopted close to 500gkg -1 DM. Mixotrophic conditions gave a much higher energy recovery efficiency (EF) than autotrophic conditions, i.e. organic carbon energy efficiency (EF oc ) of 32% and total energy efficiency (Ef t ) of 8%, respectively, suggesting the potential for the culture of algae as a sustainable practice to recover efficiently waste-C and a means of local protein production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. A novel minimum cost maximum power algorithm for future smart home energy management.

    PubMed

    Singaravelan, A; Kowsalya, M

    2017-11-01

    With the latest development of smart grid technology, the energy management system can be efficiently implemented at consumer premises. In this paper, an energy management system with wireless communication and smart meter are designed for scheduling the electric home appliances efficiently with an aim of reducing the cost and peak demand. For an efficient scheduling scheme, the appliances are classified into two types: uninterruptible and interruptible appliances. The problem formulation was constructed based on the practical constraints that make the proposed algorithm cope up with the real-time situation. The formulated problem was identified as Mixed Integer Linear Programming (MILP) problem, so this problem was solved by a step-wise approach. This paper proposes a novel Minimum Cost Maximum Power (MCMP) algorithm to solve the formulated problem. The proposed algorithm was simulated with input data available in the existing method. For validating the proposed MCMP algorithm, results were compared with the existing method. The compared results prove that the proposed algorithm efficiently reduces the consumer electricity consumption cost and peak demand to optimum level with 100% task completion without sacrificing the consumer comfort.

  6. Energy-Performance-Based Design-Build Process: Strategies for Procuring High-Performance Buildings on Typical Construction Budgets: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scheib, J.; Pless, S.; Torcellini, P.

    NREL experienced a significant increase in employees and facilities on our 327-acre main campus in Golden, Colorado over the past five years. To support this growth, researchers developed and demonstrated a new building acquisition method that successfully integrates energy efficiency requirements into the design-build requests for proposals and contracts. We piloted this energy performance based design-build process with our first new construction project in 2008. We have since replicated and evolved the process for large office buildings, a smart grid research laboratory, a supercomputer, a parking structure, and a cafeteria. Each project incorporated aggressive efficiency strategies using contractual energy usemore » requirements in the design-build contracts, all on typical construction budgets. We have found that when energy efficiency is a core project requirement as defined at the beginning of a project, innovative design-build teams can integrate the most cost effective and high performance efficiency strategies on typical construction budgets. When the design-build contract includes measurable energy requirements and is set up to incentivize design-build teams to focus on achieving high performance in actual operations, owners can now expect their facilities to perform. As NREL completed the new construction in 2013, we have documented our best practices in training materials and a how-to guide so that other owners and owner's representatives can replicate our successes and learn from our experiences in attaining market viable, world-class energy performance in the built environment.« less

  7. Energy efficient neural stimulation: coupling circuit design and membrane biophysics.

    PubMed

    Foutz, Thomas J; Ackermann, D Michael; Kilgore, Kevin L; McIntyre, Cameron C

    2012-01-01

    The delivery of therapeutic levels of electrical current to neural tissue is a well-established treatment for numerous indications such as Parkinson's disease and chronic pain. While the neuromodulation medical device industry has experienced steady clinical growth over the last two decades, much of the core technology underlying implanted pulse generators remain unchanged. In this study we propose some new methods for achieving increased energy-efficiency during neural stimulation. The first method exploits the biophysical features of excitable tissue through the use of a centered-triangular stimulation waveform. Neural activation with this waveform is achieved with a statistically significant reduction in energy compared to traditional rectangular waveforms. The second method demonstrates energy savings that could be achieved by advanced circuitry design. We show that the traditional practice of using a fixed compliance voltage for constant-current stimulation results in substantial energy loss. A portion of this energy can be recuperated by adjusting the compliance voltage to real-time requirements. Lastly, we demonstrate the potential impact of axon fiber diameter on defining the energy-optimal pulse-width for stimulation. When designing implantable pulse generators for energy efficiency, we propose that the future combination of a variable compliance system, a centered-triangular stimulus waveform, and an axon diameter specific stimulation pulse-width has great potential to reduce energy consumption and prolong battery life in neuromodulation devices.

  8. Home energy efficiency and radon related risk of lung cancer: modelling study

    PubMed Central

    Milner, James; Shrubsole, Clive; Das, Payel; Jones, Benjamin; Ridley, Ian; Chalabi, Zaid; Hamilton, Ian; Armstrong, Ben; Davies, Michael

    2014-01-01

    Objective To investigate the effect of reducing home ventilation as part of household energy efficiency measures on deaths from radon related lung cancer. Design Modelling study. Setting England. Intervention Home energy efficiency interventions, motivated in part by targets for reducing greenhouse gases, which entail reduction in uncontrolled ventilation in keeping with good practice guidance. Main outcome measures Modelled current and future distributions of indoor radon levels for the English housing stock and associated changes in life years due to lung cancer mortality, estimated using life tables. Results Increasing the air tightness of dwellings (without compensatory purpose-provided ventilation) increased mean indoor radon concentrations by an estimated 56.6%, from 21.2 becquerels per cubic metre (Bq/m3) to 33.2 Bq/m3. After the lag in lung cancer onset, this would result in an additional annual burden of 4700 life years lost and (at peak) 278 deaths. The increases in radon levels for the millions of homes that would contribute most of the additional burden are below the threshold at which radon remediation measures are cost effective. Fitting extraction fans and trickle ventilators to restore ventilation will help offset the additional burden but only if the ventilation related energy efficiency gains are lost. Mechanical ventilation systems with heat recovery may lower radon levels and the risk of cancer while maintaining the advantage of energy efficiency for the most airtight dwellings but there is potential for a major adverse impact on health if such systems fail. Conclusion Unless specific remediation is used, reducing the ventilation of dwellings will improve energy efficiency only at the expense of population wide adverse impact on indoor exposure to radon and risk of lung cancer. The implications of this and other consequences of changes to ventilation need to be carefully evaluated to ensure that the desirable health and environmental benefits of home energy efficiency are not compromised by avoidable negative impacts on indoor air quality. PMID:24415631

  9. Energy recovery with turboexpander processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holm, J.

    1985-07-01

    Although the primary function of turboexpanders has been to provide efficient, low-temperature refrigeration, the energy thus extracted has also been an important additional feature. Today, turboexpanders are proven reliable and used widely in the following applications discussed in this article: industrial gases; natural gas (NG) processing; production of liquefied natural gas (LNG); flashing hydrocarbon liquids; NG pressure letdown energy recovery; oilfield cogeneration; and recovery of energy from waste heat. Turboexpander applications for energy conservation resulted because available turboexpanders have the required high-performance capabilities and reliability. At the same time, the development of these energy conservation practices and processes helped furthermore » improve turboexpanders.« less

  10. Methods and analysis of factors impact on the efficiency of the photovoltaic generation

    NASA Astrophysics Data System (ADS)

    Tianze, Li; Xia, Zhang; Chuan, Jiang; Luan, Hou

    2011-02-01

    First of all, the thesis elaborates two important breakthroughs which happened In the field of the application of solar energy in the 1950s.The 21st century the development of solar photovoltaic power generation will have the following characteristics: the continued high growth of industrial development, the significantly reducing cost of the solar cell, the large-scale high-tech development of photovoltaic industries, the breakthroughs of the film battery technology, the rapid development of solar PV buildings integration and combined to the grids. The paper makes principles of solar cells the theoretical analysis. On the basis, we study the conversion efficiency of solar cells, find the factors impact on the efficiency of the photovoltaic generation, solve solar cell conversion efficiency of technical problems through the development of new technology, and open up new ways to improve the solar cell conversion efficiency. Finally, the paper connecting with the practice establishes policies and legislation to the use of encourage renewable energy, development strategy, basic applied research etc.

  11. Techno-economical efficiency and productivity change of wastewater treatment plants: the role of internal and external factors.

    PubMed

    Hernández-Sancho, F; Molinos-Senante, M; Sala-Garrido, R

    2011-12-01

    Efficiency and productivity are important measures for identifying best practice in businesses and optimising resource-use. This study analyses how these two measures change across the period 2003-2008 for 196 wastewater treatment plants (WWTPs) in Spain, by using the benchmarking methods of Data Envelopment Analysis and the Malmquist Productivity Index. To identify which variables contribute to the sustainability of the WWTPs, differences in efficiency scores and productivity indices for external factors are also investigated. Our results indicate that both efficiency and productivity decreased over the five years. We verify that the productivity drop is primarily explained by technical change. Furthermore, certain external variables affected WWTP efficiency, including plant size, treatment technology and energy consumption. However, plants with low energy consumption are the only ones which improve their productivity. Finally, the benchmarking analyses proved to be useful as management tools in the wastewater sector, by providing vital information for improving the sustainability of plants.

  12. 10 CFR 706.2 - Basis and scope.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... ENERGY SECURITY POLICIES AND PRACTICES RELATING TO LABOR-MANAGEMENT RELATIONS General § 706.2 Basis and... objectives for labor-management relations in the DOE program, namely: (a) Wholehearted acceptance by... efficient management expected from DOE contractors; (e) Minimum interference with the traditional rights and...

  13. Coupled-Double-Quantum-Dot Environmental Information Engines: A Numerical Analysis

    NASA Astrophysics Data System (ADS)

    Tanabe, Katsuaki

    2016-06-01

    We conduct numerical simulations for an autonomous information engine comprising a set of coupled double quantum dots using a simple model. The steady-state entropy production rate in each component, heat and electron transfer rates are calculated via the probability distribution of the four electronic states from the master transition-rate equations. We define an information-engine efficiency based on the entropy change of the reservoir, implicating power generators that employ the environmental order as a new energy resource. We acquire device-design principles, toward the realization of corresponding practical energy converters, including that (1) higher energy levels of the detector-side reservoir than those of the detector dot provide significantly higher work production rates by faster states' circulation, (2) the efficiency is strongly dependent on the relative temperatures of the detector and system sides and becomes high in a particular Coulomb-interaction strength region between the quantum dots, and (3) the efficiency depends little on the system dot's energy level relative to its reservoir but largely on the antisymmetric relative amplitudes of the electronic tunneling rates.

  14. Study of advanced electric propulsion system concept using a flywheel for electric vehicles

    NASA Technical Reports Server (NTRS)

    Younger, F. C.; Lackner, H.

    1979-01-01

    Advanced electric propulsion system concepts with flywheels for electric vehicles are evaluated and it is predicted that advanced systems can provide considerable performance improvement over existing electric propulsion systems with little or no cost penalty. Using components specifically designed for an integrated electric propulsion system avoids the compromises that frequently lead to a loss of efficiency and to inefficient utilization of space and weight. A propulsion system using a flywheel power energy storage device can provide excellent acceleration under adverse conditions of battery degradation due either to very low temperatures or high degrees of discharge. Both electrical and mechanical means of transfer of energy to and from the flywheel appear attractive; however, development work is required to establish the safe limits of speed and energy storage for advanced flywheel designs and to achieve the optimum efficiency of energy transfer. Brushless traction motor designs using either electronic commutation schemes or dc-to-ac inverters appear to provide a practical approach to a mass producible motor, with excellent efficiency and light weight. No comparisons were made with advanced system concepts which do not incorporate a flywheel.

  15. Building America Top Innovations 2012: Building Science-Based Climate Maps

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    none,

    2013-01-01

    This Building America Top Innovations profile describes the Building America-developed climate zone map, which serves as a consistent framework for energy-efficiency requirements in the national model energy code starting with the 2004 IECC Supplement and the ASHRAE 90.1 2004 edition. The map also provides a critical foundation for climate-specific guidance in the widely disseminated EEBA Builder Guides and Building America Best Practice Guides.

  16. Analysis of a fuel cell on-site integrated energy system for a residential complex

    NASA Technical Reports Server (NTRS)

    Simons, S. N.; Maag, W. L.

    1979-01-01

    Declining supplies of domestic oil and gas and the increased cost of energy resulted in a renewed emphasis in utilizing available resources in the most efficient manner possible. This, in turn, brought about a reassessment of a number of methods for converting fossil fuels to end uses at the highest practical efficiency. One of these is the on-site integrated energy system (OS/IES). This system provides electric power from an on-site power plant and recovers heat from the power plant that would normally be rejected to the environment. An OS/IES is potentially useful in any application that requires both electricity and heat. Several OS/IES are analyzed for a residential complex. The paper is divided into two sections; the first compares three energy supply systems, the second compares various designs for fuel cell OS/IES.

  17. Plant-microbe genomic systems optimization for energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hazen, Samuel P.

    The overall objective of this project was to identify genetic variation within grasses that results in increased biomass yield and biofuel conversion efficiency. Improving energy crops hinges on identifying the genetic mechanisms underlying traits that benefit energy production. The exploitation of natural variation in plant species is an ideal approach to identify both the traits and the genes of interest in the production of biofuels. The specific goals of this project were to (1) quantify relevant genetic diversity for biofuel feedstock bioconversion efficiency and biomass accumulation, (2) identify genetic loci that control these traits, and (3) characterize genes for improvedmore » energy crop systems. Determining the key genetic contributors influencing biofuel traits is required in order to determine the viability of these traits as targets for improvement; only then will we be able to apply modern breeding practices and genetic engineering for the rapid improvement of feedstocks.« less

  18. Mechanical Computing Redux: Limitations at the Nanoscale

    NASA Astrophysics Data System (ADS)

    Liu, Tsu-Jae King

    2014-03-01

    Technology solutions for overcoming the energy efficiency limits of nanoscale complementary metal oxide semiconductor (CMOS) technology ultimately will be needed in order to address the growing issue of integrated-circuit chip power density. Off-state leakage current sets a fundamental lower limit in energy per operation for any voltage-level-based digital logic implemented with transistors (CMOS and beyond), which leads to practical limits for device density (i.e. cost) and operating frequency (i.e. system performance). Mechanical switches have zero off-state leakag and hence can overcome this fundamental limit. Contact adhesive force sets a lower limit for the switching energy of a mechanical switch, however, and also directly impacts its performance. This paper will review recent progress toward the development of nano-electro-mechanical relay technology and discuss remaining challenges for realizing the promise of mechanical computing for ultra-low-power computing. Supported by the Center for Energy Efficient Electronics Science (NSF Award 0939514).

  19. Energy efficient reconcentration of diluted human urine using ion exchange membranes in bioelectrochemical systems.

    PubMed

    Tice, Ryan C; Kim, Younggy

    2014-11-01

    Nutrients can be recovered from source separated human urine; however, nutrient reconcentration (i.e., volume reduction of collected urine) requires energy-intensive treatment processes, making it practically difficult to utilize human urine. In this study, energy-efficient nutrient reconcentration was demonstrated using ion exchange membranes (IEMs) in a microbial electrolysis cell (MEC) where substrate oxidation at the MEC anode provides energy for the separation of nutrient ions (e.g., NH4(+), HPO4(2-)). The rate of nutrient separation was magnified with increasing number of IEM pairs and electric voltage application (Eap). Ammonia and phosphate were reconcentrated from diluted human urine by a factor of up to 4.5 and 3.0, respectively (Eap = 1.2 V; 3-IEM pairs). The concentrating factor increased with increasing degrees of volume reduction, but it remained stationary when the volume ratio between the diluate (urine solution that is diluted in the IEM stack) and concentrate (urine solution that is reconcentrated) was 6 or greater. The energy requirement normalized by the mass of nutrient reconcentrated was 6.48 MJ/kg-N (1.80 kWh/kg-N) and 117.6 MJ/kg-P (32.7 kWh/kg-P). In addition to nutrient separation, the examined MEC reactor with three IEM pairs showed 54% removal of COD (chemical oxygen demand) in 47-hr batch operation. The high sulfate concentration in human urine resulted in substantial growth of both of acetate-oxidizing and H2-oxidizing sulfate reducing bacteria, greatly diminishing the energy recovery and Coulombic efficiency. However, the high microbial activity of sulfate reducing bacteria hardly affected the rate of nutrient reconcentration. With the capability to reconcentrate nutrients at a minimal energy consumption and simultaneous COD removal, the examined bioelectrochemical treatment method with an IEM application has a potential for practical nutrient recovery and sustainable treatment of source-separated human urine. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Assessing National Employment Impacts of Investment in Residential and Commercial Sector Energy Efficiency: Review and Example Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, David M.; Belzer, David B.; Livingston, Olga V.

    Pacific Northwest National Laboratory (PNNL) modeled the employment impacts of a major national initiative to accelerate energy efficiency trends at one of two levels: • 15 percent savings by 2030. In this scenario, efficiency activities save about 15 percent of the Annual Energy Outlook (AEO) Reference Case electricity consumption by 2030. It is assumed that additional energy savings in both the residential and commercial sectors begin in 2015 at zero, and then increase in an S-shaped market penetration curve, with the level of savings equal to about 7.0 percent of the AEO 2014 U.S. national residential and commercial electricity consumptionmore » saved by 2020, 14.8 percent by 2025, and 15 percent by 2030. • 10 percent savings by 2030. In this scenario, additional savings begin at zero in 2015, increase to 3.8 percent in 2020, 9.8 percent by 2025, and 10 percent of the AEO reference case value by 2030. The analysis of the 15 percent case indicates that by 2030 more than 300,000 new jobs would likely result from such policies, including an annual average of more than 60,000 jobs directly supporting the installation and maintenance of energy efficiency measures and practices. These are new jobs resulting initially from the investment associated with the construction of more energy-efficient new buildings or the retrofit of existing buildings and would be sustained for as long as the investment continues. Based on what is known about the current level of building-sector energy efficiency jobs, this would represent an increase of more than 10 percent from the current estimated level of over 450,000 such jobs. The more significant and longer-lasting effect comes from the redirection of energy bill savings toward the purchase of other goods and services in the general economy, with its attendant influence on increasing the total number of jobs. This example analysis utilized PNNL’s ImSET model, a modeling framework that PNNL has used over the past two decades to assess the economic impacts of the U.S. Department of Energy’s (DOE’s) energy efficiency programs in the buildings sector.« less

  1. An international survey of building energy codes and their implementation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Evans, Meredydd; Roshchanka, Volha; Graham, Peter

    Buildings are key to low-carbon development everywhere, and many countries have introduced building energy codes to improve energy efficiency in buildings. Yet, building energy codes can only deliver results when the codes are implemented. For this reason, studies of building energy codes need to consider implementation of building energy codes in a consistent and comprehensive way. This research identifies elements and practices in implementing building energy codes, covering codes in 22 countries that account for 70% of global energy demand from buildings. Access to benefits of building energy codes depends on comprehensive coverage of buildings by type, age, size, andmore » geographic location; an implementation framework that involves a certified agency to inspect construction at critical stages; and independently tested, rated, and labeled building energy materials. Training and supporting tools are another element of successful code implementation, and their role is growing in importance, given the increasing flexibility and complexity of building energy codes. Some countries have also introduced compliance evaluation and compliance checking protocols to improve implementation. This article provides examples of practices that countries have adopted to assist with implementation of building energy codes.« less

  2. The Impact of DOE Building Technology Energy Efficiency Programs on U.S. Employment, Income, and Investment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scott, Michael J.; Roop, Joseph M.; Schultz, Robert W.

    2008-07-31

    To more fully evaluate its programs to increase the energy efficiency of the U.S. residential and commercial building stock, the U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy (EERE) assesses the macroeconomic impacts of those programs, specifically on national employment, wage income, and (most recently) investment. The analysis is conducted using the Impact of Sector Energy Technologies (ImSET) model, a special-purpose 188-sector input-output model of the U.S. economy designed specifically to evaluate the impacts of energy efficiency investments and saving. For the analysis described in the paper, ImSET was amended to provide estimates of sector-by-sector capital requirementsmore » and investment. In the scenario of the Fiscal Year (FY) 2005 Buildings Technology (BT) program, the technologies and building practices being developed and promoted by the BT program have the prospect of saving about 2.9×1015 Btu in buildings by the year 2030, about 27% of the expected growth in buildings energy consumption by the year 2030. The analysis reported in the paper finds that, by the year 2030, these savings have the potential to increase employment by up to 446,000 jobs, increase wage income by $7.8 billion, reduce needs for capital stock in the energy sector and closely related supporting industries by about $207 billion (and the corresponding annual level of investment by $13 billion), and create net capital savings that are available to grow the nation’s future economy.« less

  3. An Efficient Bifunctional Electrocatalyst for a Zinc-Air Battery Derived from Fe/N/C and Bimetallic Metal-Organic Framework Composites.

    PubMed

    Wang, Mengfan; Qian, Tao; Zhou, Jinqiu; Yan, Chenglin

    2017-02-15

    Efficient bifunctional electrocatalysts with desirable oxygen activities are closely related to practical applications of renewable energy systems including metal-air batteries, fuel cells, and water splitting. Here a composite material derived from a combination of bimetallic zeolitic imidazolate frameworks (denoted as BMZIFs) and Fe/N/C framework was reported as an efficient bifunctional catalyst. Although BMZIF or Fe/N/C alone exhibits undesirable oxygen reaction activity, a combination of these materials shows unprecedented ORR (half-wave potential of 0.85 V as well as comparatively superior OER activities (potential@10 mA cm -2 of 1.64 V), outperforming not only a commercial Pt/C electrocatalyst but also most reported bifunctional electrocatalysts. We then tested its practical application in Zn-air batteries. The primary batteries exhibit a high peak power density of 235 mW cm -2 , and the batteries are able to be operated smoothly for 100 cycles at a curent density of 10 mA cm -2 . The unprecedented catalytic activity can be attritued to chemical coupling effects between Fe/N/C and BMZIF and will aid the development of highly active electrocatalysts and applications for electrochemical energy devices.

  4. Building America Best Practices Series, Volume 6: High-Performance Home Technologies: Solar Thermal & Photovoltaic Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baechler, Michael C.; Gilbride, Theresa L.; Ruiz, Kathleen A.

    This guide is was written by PNNL for the US Department of Energy's Building America program to provide information for residential production builders interested in building near zero energy homes. The guide provides indepth descriptions of various roof-top photovoltaic power generating systems for homes. The guide also provides extensive information on various designs of solar thermal water heating systems for homes. The guide also provides construction company owners and managers with an understanding of how solar technologies can be added to their homes in a way that is cost effective, practical, and marketable. Twelve case studies provide examples of productionmore » builders across the United States who are building energy-efficient homes with photovoltaic or solar water heating systems.« less

  5. Semantic Catalog of Things, Services, and Data to Support a Wind Data Management Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stephan, E. G.; Elsethagen, T. O.; Berg, L. K.

    The purpose of this paper is to discuss how community vocabularies and linked open data best practices are being used to seamlessly link things, data, and off the shelf services to support scientific offshore wind energy research for the U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy (EERE) Wind and Water Power Program. This is largely made possible by leveraging collaborative advances in the Internet of Things (IoT), Semantic Web, Linked Services, Linked Open Data (LOD), and RDF vocabulary communities, which provide the foundation for our design. By adapting these linked community best practices, we designed amore » wind characterization data management facility capable of continually collecting, processing, and preservation of in situ and remote sensing instrume« less

  6. A Game Theoretic Optimization Method for Energy Efficient Global Connectivity in Hybrid Wireless Sensor Networks

    PubMed Central

    Lee, JongHyup; Pak, Dohyun

    2016-01-01

    For practical deployment of wireless sensor networks (WSN), WSNs construct clusters, where a sensor node communicates with other nodes in its cluster, and a cluster head support connectivity between the sensor nodes and a sink node. In hybrid WSNs, cluster heads have cellular network interfaces for global connectivity. However, when WSNs are active and the load of cellular networks is high, the optimal assignment of cluster heads to base stations becomes critical. Therefore, in this paper, we propose a game theoretic model to find the optimal assignment of base stations for hybrid WSNs. Since the communication and energy cost is different according to cellular systems, we devise two game models for TDMA/FDMA and CDMA systems employing power prices to adapt to the varying efficiency of recent wireless technologies. The proposed model is defined on the assumptions of the ideal sensing field, but our evaluation shows that the proposed model is more adaptive and energy efficient than local selections. PMID:27589743

  7. Efficient Determination of Free Energy Landscapes in Multiple Dimensions from Biased Umbrella Sampling Simulations Using Linear Regression.

    PubMed

    Meng, Yilin; Roux, Benoît

    2015-08-11

    The weighted histogram analysis method (WHAM) is a standard protocol for postprocessing the information from biased umbrella sampling simulations to construct the potential of mean force with respect to a set of order parameters. By virtue of the WHAM equations, the unbiased density of state is determined by satisfying a self-consistent condition through an iterative procedure. While the method works very effectively when the number of order parameters is small, its computational cost grows rapidly in higher dimension. Here, we present a simple and efficient alternative strategy, which avoids solving the self-consistent WHAM equations iteratively. An efficient multivariate linear regression framework is utilized to link the biased probability densities of individual umbrella windows and yield an unbiased global free energy landscape in the space of order parameters. It is demonstrated with practical examples that free energy landscapes that are comparable in accuracy to WHAM can be generated at a small fraction of the cost.

  8. Efficient Determination of Free Energy Landscapes in Multiple Dimensions from Biased Umbrella Sampling Simulations Using Linear Regression

    PubMed Central

    2015-01-01

    The weighted histogram analysis method (WHAM) is a standard protocol for postprocessing the information from biased umbrella sampling simulations to construct the potential of mean force with respect to a set of order parameters. By virtue of the WHAM equations, the unbiased density of state is determined by satisfying a self-consistent condition through an iterative procedure. While the method works very effectively when the number of order parameters is small, its computational cost grows rapidly in higher dimension. Here, we present a simple and efficient alternative strategy, which avoids solving the self-consistent WHAM equations iteratively. An efficient multivariate linear regression framework is utilized to link the biased probability densities of individual umbrella windows and yield an unbiased global free energy landscape in the space of order parameters. It is demonstrated with practical examples that free energy landscapes that are comparable in accuracy to WHAM can be generated at a small fraction of the cost. PMID:26574437

  9. Engage States on Energy Assurance and Energy Security

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kara Colton; John Ratliff; Sue Gander

    2008-09-30

    The NGA Center's 'Engaging States on Energy Security and Energy Assurance' has been successful in achieving the stated project purposes and objectives both in the initial proposal as well as in subsequent revisions to it. Our activities, which involve the NGA Center for Best Practices (The NGA Center) Homeland Security and Technology Division, included conducting tabletop exercises to help federal and state homeland security and energy officials determine roles and actions for various emergency scenarios. This included efforts to education state official on developing an energy assurance plan, harmonizing approaches to controlling price volatility, implementing reliability standards, understanding short andmore » long-term energy outlooks and fuel diversification, and capitalizing on DOE's research and development activities. Regarding our work on energy efficiency and renewable energy, the NGA Center's Environment, Energy and Natural Resources Division hosted three workshops which engaged states on the clean energy and alternative transportation fuel and also produced several reports on related topics. In addition, we convened 18 meetings, via conference call, of the Energy Working Group. Finally, through the NGA Center's Front and Center newsletter articles, the NGA Center disseminated promising practices to a wide audience of state policymakers. The NGA Center also hosted a number of workshops and web conferences designed to directly engage states on the deliverables under this Cooperative Agreement. Through the NGA Center's written products and newsletter articles, the NGA Center was able to disseminate promising practices to a wide audience of state policymakers.« less

  10. Nonlinear vibration analysis of the high-efficiency compressive-mode piezoelectric energy harvester

    NASA Astrophysics Data System (ADS)

    Yang, Zhengbao; Zu, Jean

    2015-04-01

    Power source is critical to achieve independent and autonomous operations of electronic mobile devices. The vibration-based energy harvesting is extensively studied recently, and recognized as a promising technology to realize inexhaustible power supply for small-scale electronics. Among various approaches, the piezoelectric energy harvesting has gained the most attention due to its high conversion efficiency and simple configurations. However, most of piezoelectric energy harvesters (PEHs) to date are based on bending-beam structures and can only generate limited power with a narrow working bandwidth. The insufficient electric output has greatly impeded their practical applications. In this paper, we present an innovative lead zirconate titanate (PZT) energy harvester, named high-efficiency compressive-mode piezoelectric energy harvester (HC-PEH), to enhance the performance of energy harvesters. A theoretical model was developed analytically, and solved numerically to study the nonlinear characteristics of the HC-PEH. The results estimated by the developed model agree well with the experimental data from the fabricated prototype. The HC-PEH shows strong nonlinear responses, favorable working bandwidth and superior power output. Under a weak excitation of 0.3 g (g = 9.8 m/s2), a maximum power output 30 mW is generated at 22 Hz, which is about ten times better than current energy harvesters. The HC-PEH demonstrates the capability of generating enough power for most of wireless sensors.

  11. Exceeding the solar cell Shockley-Queisser limit via thermal up-conversion of low-energy photons

    NASA Astrophysics Data System (ADS)

    Boriskina, Svetlana V.; Chen, Gang

    2014-03-01

    Maximum efficiency of ideal single-junction photovoltaic (PV) cells is limited to 33% (for 1 sun illumination) by intrinsic losses such as band edge thermalization, radiative recombination, and inability to absorb below-bandgap photons. This intrinsic thermodynamic limit, named after Shockley and Queisser (S-Q), can be exceeded by utilizing low-energy photons either via their electronic up-conversion or via the thermophotovoltaic (TPV) conversion process. However, electronic up-conversion systems have extremely low efficiencies, and practical temperature considerations limit the operation of TPV converters to the narrow-gap PV cells. Here we develop a conceptual design of a hybrid TPV platform, which exploits thermal up-conversion of low-energy photons and is compatible with conventional silicon PV cells by using spectral and directional selectivity of the up-converter. The hybrid platform offers sunlight-to-electricity conversion efficiency exceeding that imposed by the S-Q limit on the corresponding PV cells across a broad range of bandgap energies, under low optical concentration (1-300 suns), operating temperatures in the range 900-1700 K, and in simple flat panel designs. We demonstrate maximum conversion efficiency of 73% under illumination by non-concentrated sunlight. A detailed analysis of non-ideal hybrid platforms that allows for up to 15% of absorption/re-emission losses yields limiting efficiency value of 45% for Si PV cells.

  12. Utilizing hot electrons

    DOE PAGES

    Nozik, Arthur J.

    2018-03-01

    In current solar cells, any photon energy exceeding the semiconductor bandgap is lost before being collected, limiting the cell performance. Hot carrier solar cells could avoid these losses. Now, a detailed experimental study and analysis shows that this strategy could lead to an improvement of the photoconversion efficiency in practice.

  13. Best practices: Product category rule creation and use

    EPA Science Inventory

    Benefits of life cycle-based claims For most products, the majority of impact occurs upstream or downstream of product use . Single-stage claims for products (e.g., recycled content; energy efficient) don’t capture the relevance of that attribute in life-cycle environmental per...

  14. Utilizing hot electrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nozik, Arthur J.

    In current solar cells, any photon energy exceeding the semiconductor bandgap is lost before being collected, limiting the cell performance. Hot carrier solar cells could avoid these losses. Now, a detailed experimental study and analysis shows that this strategy could lead to an improvement of the photoconversion efficiency in practice.

  15. A metamaterial electromagnetic energy rectifying surface with high harvesting efficiency

    NASA Astrophysics Data System (ADS)

    Duan, Xin; Chen, Xing; Zhou, Lin

    2016-12-01

    A novel metamaterial rectifying surface (MRS) for electromagnetic energy capture and rectification with high harvesting efficiency is presented. It is fabricated on a three-layer printed circuit board, which comprises an array of periodic metamaterial particles in the shape of mirrored split rings, a metal ground, and integrated rectifiers employing Schottky diodes. Perfect impedance matching is engineered at two interfaces, i.e. one between free space and the surface, and the other between the metamaterial particles and the rectifiers, which are connected through optimally positioned vias. Therefore, the incident electromagnetic power is captured with almost no reflection by the metamaterial particles, then channeled maximally to the rectifiers, and finally converted to direct current efficiently. Moreover, the rectifiers are behind the metal ground, avoiding the disturbance of high power incident electromagnetic waves. Such a MRS working at 2.45 GHz is designed, manufactured and measured, achieving a harvesting efficiency up to 66.9% under an incident power density of 5 mW/cm2, compared with a simulated efficiency of 72.9%. This high harvesting efficiency makes the proposed MRS an effective receiving device in practical microwave power transmission applications.

  16. Evaluation of a High-Performance Solar Home in Loveland, Colorado

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hendron, R.; Eastment, M.; Hancock, E.

    2006-01-01

    Building America (BA) partner McStain Neighborhoods built the Discovery House in Loveland, Colorado, with an extensive package of energy-efficient features, including a high-performance envelope, efficient mechanical systems, a solar water heater integrated with the space-heating system, a heat-recovery ventilator (HRV), and ENERGY STAR? appliances. The National Renewable Energy Laboratory (NREL) and Building Science Consortium (BSC) conducted short-term field-testing and building energy simulations to evaluate the performance of the house. These evaluations are utilized by BA to improve future prototype designs and to identify critical research needs. The Discovery House building envelope and ducts were very tight under normal operating conditions.more » The HRV provided fresh air at a rate of about 75 cfm (35 l/s), consistent with the recommendations of ASHRAE Standard 62.2. The solar hot water system is expected to meet the bulk of the domestic hot water (DHW) load (>83%), but only about 12% of the space-heating load. DOE-2.2 simulations predict whole-house source energy savings of 54% compared to the BA Benchmark [1]. The largest contributors to energy savings beyond McStain's standard practice are the solar water heater, HRV, improved air distribution, high-efficiency boiler, and compact fluorescent lighting package.« less

  17. A novel application of concentrated solar thermal energy in foundries.

    PubMed

    Selvaraj, J; Harikesavan, V; Eshwanth, A

    2016-05-01

    Scrap preheating in foundries is a technology that saves melting energy, leading to economic and environmental benefits. The proposed method in this paper utilizes solar thermal energy for preheating scrap, effected through a parabolic trough concentrator that focuses sunlight onto a receiver which carries the metallic scrap. Scraps of various thicknesses were placed on the receiver to study the heat absorption by them. Experimental results revealed the pattern with which heat is gained by the scrap, the efficiency of the process and how it is affected as the scrap gains heat. The inferences from them gave practical guidelines on handling scraps for best possible energy savings. Based on the experiments conducted, preheat of up to 160 °C and a maximum efficiency of 70 % and a minimum efficiency of 40 % could be achieved across the time elapsed and heat gained by the scrap. Calculations show that this technology has the potential to save around 8 % of the energy consumption in foundries. Cumulative benefits are very encouraging: 180.45 million kWh of energy savings and 203,905 t of carbon emissions cut per year across the globe. This research reveals immense scope for this technology to be adopted by foundries throughout the world.

  18. Evaluation of a High-Performance Solar Home in Loveland, Colorado: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hendron, R.; Eastment, M.; Hancock, E.

    Building America (BA) partner McStain Neighborhoods built the Discovery House in Loveland, Colorado, with an extensive package of energy-efficient features, including a high-performance envelope, efficient mechanical systems, a solar water heater integrated with the space-heating system, a heat-recovery ventilator (HRV), and ENERGY STAR appliances. The National Renewable Energy Laboratory (NREL) and Building Science Consortium (BSC) conducted short-term field-testing and building energy simulations to evaluate the performance of the house. These evaluations are utilized by BA to improve future prototype designs and to identify critical research needs. The Discovery House building envelope and ducts were very tight under normal operating conditions.more » The HRV provided fresh air at a rate of about 35 l/s (75 cfm), consistent with the recommendations of ASHRAE Standard 62.2. The solar hot water system is expected to meet the bulk of the domestic hot water (DHW) load (>83%), but only about 12% of the space-heating load. DOE-2.2 simulations predict whole-house source energy savings of 54% compared to the BA Benchmark. The largest contributors to energy savings beyond McStain's standard practice are the solar water heater, HRV, improved air distribution, high-efficiency boiler, and compact fluorescent lighting package.« less

  19. Producing Hydrogen With Sunlight

    NASA Technical Reports Server (NTRS)

    Biddle, J. R.; Peterson, D. B.; Fujita, T.

    1987-01-01

    Costs high but reduced by further research. Producing hydrogen fuel on large scale from water by solar energy practical if plant costs reduced, according to study. Sunlight attractive energy source because it is free and because photon energy converts directly to chemical energy when it breaks water molecules into diatomic hydrogen and oxygen. Conversion process low in efficiency and photochemical reactor must be spread over large area, requiring large investment in plant. Economic analysis pertains to generic photochemical processes. Does not delve into details of photochemical reactor design because detailed reactor designs do not exist at this early stage of development.

  20. Quantum design of photosynthesis for bio-inspired solar-energy conversion.

    PubMed

    Romero, Elisabet; Novoderezhkin, Vladimir I; van Grondelle, Rienk

    2017-03-15

    Photosynthesis is the natural process that converts solar photons into energy-rich products that are needed to drive the biochemistry of life. Two ultrafast processes form the basis of photosynthesis: excitation energy transfer and charge separation. Under optimal conditions, every photon that is absorbed is used by the photosynthetic organism. Fundamental quantum mechanics phenomena, including delocalization, underlie the speed, efficiency and directionality of the charge-separation process. At least four design principles are active in natural photosynthesis, and these can be applied practically to stimulate the development of bio-inspired, human-made energy conversion systems.

  1. Pressure retarded osmosis for energy production: membrane materials and operating conditions.

    PubMed

    Kim, H; Choi, J-S; Lee, S

    2012-01-01

    Pressure retarded osmosis (PRO) is a novel membrane process to produce energy. PRO has the potential to convert the osmotic pressure difference between fresh water (i.e. river water) and seawater to electricity. Moreover, it can recover energy from highly concentrated brine in seawater desalination. Nevertheless, relatively little research has been undertaken for fundamental understanding of the PRO process. In this study, the characteristics of the PRO process were examined using a proof-of-concept device. Forward osmosis (FO), reverse osmosis (RO), and nanofiltration (NF) membranes were compared in terms of flux rate and concentration polarization ratio. The results indicated that the theoretical energy production by PRO depends on the membrane type as well as operating conditions (i.e. back pressure). The FO membrane had the highest energy efficiency while the NF membrane had the lowest efficiency. However, the energy production rate was low due to high internal concentration polarization (ICP) in the PRO membrane. This finding suggests that the control of the ICP is essential for practical application of PRO for energy production.

  2. The Shifting Landscape of Ratepayer-Funded Energy Efficiency in the U.S.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barbose, Galen L; Goldman, Charles; Schlegel, Jeff

    Over the last two decades, utility ratepayer funding for energy efficiency programs - and the associated energy savings - has seen both booms and busts. Currently, about 35 states implement ratepayer-funded energy efficiency programs, with a total U.S. budget of $3.1 billion in 2008, approximately 80% of which is concentrated in just ten states (CEE 2008).2 However, a proliferation of new state-level policies enacted over the past several years suggests that the next decade may see a dramatic and sustained increase in overall funding levels, and a fundamental re-drawing of the energy efficiency map. These new state energy efficiency policiesmore » reflect a variety of concerns, including the increasing cost and siting challenges of building new generation and transmission, fuel cost and supply risks, and the potential cost of future carbon regulations. Within the past three years, for example, eleven states have adopted energy efficiency portfolio (or resource) standards (EEPS or EERS) that establish specific long-term savings targets that utilities are obligated to meet, and at least three other states are currently considering the same. A growing number of states have recently established laws requiring utilities to acquire all available cost-effective energy efficiency. Regulators in several Western states have also recently revised integrated resource planning (IRP) and demand-side management (DSM) planning rules to require more robust analysis of the resource potential and benefits of energy efficiency, which has resulted in increased savings targets for their energy efficiency portfolios (Hopper et al. 2008). Finally, regulators and utilities in many states are beginning to look more closely at regulatory incentive mechanisms to better align utility financial interests with improvements in customer energy efficiency. We examined energy efficiency policies on the books or in the pipeline in all 50 states, along with recent IRPs and DSM plans, and developed low, medium and high projections of future energy efficiency spending and savings. Depending on how aggressively and effectively states implement these policies, we estimate that spending on ratepayer-funded energy efficiency could increase from $3.1 billion in 2008 to more than $12 billion (nominal dollars) per year by 2020 in our high case, a growth rate in spending of about 12% per year. Annual electricity savings nationally could triple from an estimated 0.3% of retail electricity sales in 2008 to 0.9% of retail electricity sales in 2020. In the low and medium scenarios, ratepayer funding for electric and gas energy efficiency in the U.S. would increase to $5.4 and $7.5 billion, respectively, by 2020. What are the implications of such a scale-up of ratepayer-funded energy efficiency activity for national energy policy, such as a national EEPS or future carbon regulations? Can a ramp-up of this scale be achieved, and what practical constraints might slow these efforts? This paper addresses these questions by first providing an overview of recent trends in state policies pertaining to ratepayer-funded energy efficiency programs in the U.S. The paper then presents our set of projections of future spending and savings from such programs, highlighting key themes. Projected energy savings are compared to what might be required under a future national EEPS (or broader clean energy standard that includes energy efficiency), in order to gauge the potential incremental impact of such policies. In addition, the carbon emission reductions associated with our projection of energy savings from ratepayer-funded programs is compared to the total emission reductions that might be required under the American Clean Energy and Security Act of 2009 (aka, the Waxman-Markey bill), which was passed by the U.S. House of Representatives in June 2009 and would establish a cap on total greenhouse gas emission for many sectors of the U.S. economy. Last, the paper discusses some of the major obstacles and challenges that states and program administrators may face over the coming decade, as they seek to dramatically ramp-up ratepayer-funded energy efficiency program activity, as projected.« less

  3. Optimal PGU operation strategy in CHP systems

    NASA Astrophysics Data System (ADS)

    Yun, Kyungtae

    Traditional power plants only utilize about 30 percent of the primary energy that they consume, and the rest of the energy is usually wasted in the process of generating or transmitting electricity. On-site and near-site power generation has been considered by business, labor, and environmental groups to improve the efficiency and the reliability of power generation. Combined heat and power (CHP) systems are a promising alternative to traditional power plants because of the high efficiency and low CO2 emission achieved by recovering waste thermal energy produced during power generation. A CHP operational algorithm designed to optimize operational costs must be relatively simple to implement in practice such as to minimize the computational requirements from the hardware to be installed. This dissertation focuses on the following aspects pertaining the design of a practical CHP operational algorithm designed to minimize the operational costs: (a) real-time CHP operational strategy using a hierarchical optimization algorithm; (b) analytic solutions for cost-optimal power generation unit operation in CHP Systems; (c) modeling of reciprocating internal combustion engines for power generation and heat recovery; (d) an easy to implement, effective, and reliable hourly building load prediction algorithm.

  4. Performance Contracting and Energy Efficiency in the State Government Market

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bharvirkar, Ranjit; Goldman, Charles; Gilligan, Donald

    There is growing interest in energy efficiency (EE) among state policymakers as a result of increasing environmental concerns, rising electricity and natural gas prices, and lean economic times that motivate states to look more aggressively for cost-saving opportunities in public sector buildings. One logical place for state policymakers to demonstrate their commitment to energy efficiency is to 'lead by example' by developing and implementing strategies to reduce the energy consumption of state government facilities through investments in energy efficient technologies. Traditionally, energy efficiency improvements at state government facilities are viewed as a subset in the general category of building maintenancemore » and construction. These projects are typically funded through direct appropriations. However, energy efficiency projects are often delayed or reduced in scope whereby not all cost-effective measures are implemented because many states have tight capital budgets. Energy Savings Performance Contracting (ESPC) offers a potentially useful strategy for state program and facility managers to proactively finance and develop energy efficiency projects. In an ESPC project, Energy Service Companies (ESCOs) typically guarantee that the energy and cost savings produced by the project will equal or exceed all costs associated with implementing the project over the term of the contract. ESCOs typically provide turnkey design, installation, and maintenance services and also help arrange project financing. Between 1990 and 2006, U.S. ESCOs reported market activity of {approx}$28 Billion, with about {approx}75-80% of that activity concentrated in the institutional markets (K-12 schools, colleges/universities, state/local/federal government and hospitals). In this study, we review the magnitude of energy efficiency investment in state facilities and identify 'best practices' while employing performance contracting in the state government sector. The state government market is defined to include state offices, state universities, correctional facilities, and other state facilities. This study is part of a series of reports prepared by Lawrence Berkeley National Laboratory (LBNL) and the National Association of Energy Services Companies (NAESCO) on the ESCO market and industry trends. The scope of previous reports was much broader: Goldman et al. (2002) analyzed ESCO project costs and savings in public and private sector facilities, Hopper et al. (2005) focused on ESCO project activity in all public and institutional sectors, while Hopper et al (2007) provided aggregate results of a comprehensive survey of ESCOs on current industry activity and future prospects. We decided to focus the current study on ESCO and energy efficiency activity and potential market barriers in the state government market because previous studies suggested that this institutional sector has significant remaining energy efficiency opportunities. Moreover, ESCO activity in the state government market has lagged behind other institutional markets (e.g., K-12 schools, local governments, and the federal market). Our primary objectives were as follows: (1) Assess existing state agency energy information and data sources that could be utilized to develop performance metrics to assess progress among ESPC programs in states; (2) Conduct a comparative review of the performance of selected state ESPC programs in reducing energy usage and costs in state government buildings; and (3) Delineate the extent to which state government sector facilities are implementing energy efficiency projects apart from ESPC programs using other strategies (e.g. utility ratepayer-funded energy efficiency programs, loan funds).« less

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Makarov, Nikolay S.; Lin, Qianglu; Pietryga, Jeffrey M.

    One source of efficiency losses in photovoltaic cells is their transparency toward solar photons with energies below the band gap of the absorbing layer. This loss can be reduced using a process of up-conversion whereby two or more sub-band-gap photons generate a single above-gap exciton. Traditional approaches to up-conversion, such as nonlinear two-photon absorption (2PA) or triplet fusion, suffer from low efficiency at solar light intensities, a narrow absorption bandwidth, nonoptimal absorption energies, and difficulties for implementing in practical devices. We show that these deficiencies can be alleviated using the effect of Auger up-conversion in thick-shell PbSe/CdSe quantum dots. Thismore » process relies on Auger recombination whereby two low-energy, core-based excitons are converted into a single higher-energy, shell-based exciton. When compared to their monocomponent counterparts, the tailored PbSe/CdSe heterostructures feature enhanced absorption cross-sections, a higher efficiency of the “productive” Auger pathway involving re-excitation of a hole, and longer lifetimes of both core- and shell-localized excitons. These features lead to effective up-conversion cross-sections that are more than 6 orders of magnitude higher than for standard nonlinear 2PA, which allows for efficient up-conversion of continuous wave infrared light at intensities as low as a few watts per square centimeter.« less

  6. Towards efficient solar hydrogen production by intercalated carbon nitride photocatalyst.

    PubMed

    Gao, Honglin; Yan, Shicheng; Wang, Jiajia; Huang, Yu An; Wang, Peng; Li, Zhaosheng; Zou, Zhigang

    2013-11-07

    The development of efficient photocatalytic material for converting solar energy to hydrogen energy as viable alternatives to fossil-fuel technologies is expected to revolutionize energy shortage and environment issues. However, to date, the low quantum yield for solar hydrogen production over photocatalysts has hindered advances in the practical applications of photocatalysis. Here, we show that a carbon nitride intercalation compound (CNIC) synthesized by a simple molten salt route is an efficient polymer photocatalyst with a high quantum yield. We found that coordinating the alkali metals into the C-N plane of carbon nitride will induce the un-uniform spatial charge distribution. The electrons are confined in the intercalated region while the holes are in the far intercalated region, which promoted efficient separation of photogenerated carriers. The donor-type alkali metal ions coordinating into the nitrogen pots of carbon nitrides increase the free carrier concentration and lead to the formation of novel nonradiative paths. This should favor improved transport of the photogenerated electron and hole and decrease the electron-hole recombination rate. As a result, the CNIC exhibits a quantum yield as high as 21.2% under 420 nm light irradiation for solar hydrogen production. Such high quantum yield opens up new opportunities for using cheap semiconducting polymers as energy transducers.

  7. Early motor learning changes in upper-limb dynamics and shoulder complex loading during handrim wheelchair propulsion.

    PubMed

    Vegter, Riemer J K; Hartog, Johanneke; de Groot, Sonja; Lamoth, Claudine J; Bekker, Michel J; van der Scheer, Jan W; van der Woude, Lucas H V; Veeger, Dirkjan H E J

    2015-03-10

    To propel in an energy-efficient manner, handrim wheelchair users must learn to control the bimanually applied forces onto the rims, preserving both speed and direction of locomotion. Previous studies have found an increase in mechanical efficiency due to motor learning associated with changes in propulsion technique, but it is unclear in what way the propulsion technique impacts the load on the shoulder complex. The purpose of this study was to evaluate mechanical efficiency, propulsion technique and load on the shoulder complex during the initial stage of motor learning. 15 naive able-bodied participants received 12-minutes uninstructed wheelchair practice on a motor driven treadmill, consisting of three 4-minute blocks separated by two minutes rest. Practice was performed at a fixed belt speed (v = 1.1 m/s) and constant low-intensity power output (0.2 W/kg). Energy consumption, kinematics and kinetics of propulsion technique were continuously measured. The Delft Shoulder Model was used to calculate net joint moments, muscle activity and glenohumeral reaction force. With practice mechanical efficiency increased and propulsion technique changed, reflected by a reduced push frequency and increased work per push, performed over a larger contact angle, with more tangentially applied force and reduced power losses before and after each push. Contrary to our expectations, the above mentioned propulsion technique changes were found together with an increased load on the shoulder complex reflected by higher net moments, a higher total muscle power and higher peak and mean glenohumeral reaction forces. It appears that the early stages of motor learning in handrim wheelchair propulsion are indeed associated with improved technique and efficiency due to optimization of the kinematics and dynamics of the upper extremity. This process goes at the cost of an increased muscular effort and mechanical loading of the shoulder complex. This seems to be associated with an unchanged stable function of the trunk and could be due to the early learning phase where participants still have to learn to effectively use the full movement amplitude available within the wheelchair-user combination. Apparently whole body energy efficiency has priority over mechanical loading in the early stages of learning to propel a handrim wheelchair.

  8. On real-space Density Functional Theory for non-orthogonal crystal systems: Kronecker product formulation of the kinetic energy operator

    NASA Astrophysics Data System (ADS)

    Sharma, Abhiraj; Suryanarayana, Phanish

    2018-05-01

    We present an accurate and efficient real-space Density Functional Theory (DFT) framework for the ab initio study of non-orthogonal crystal systems. Specifically, employing a local reformulation of the electrostatics, we develop a novel Kronecker product formulation of the real-space kinetic energy operator that significantly reduces the number of operations associated with the Laplacian-vector multiplication, the dominant cost in practical computations. In particular, we reduce the scaling with respect to finite-difference order from quadratic to linear, thereby significantly bridging the gap in computational cost between non-orthogonal and orthogonal systems. We verify the accuracy and efficiency of the proposed methodology through selected examples.

  9. Spatial analysis of participation in the Waterloo Residential Energy Efficiency Project

    NASA Astrophysics Data System (ADS)

    Song, Ge Bella

    Researchers are in broad agreement that energy-conserving actions produce economic as well as energy savings. Household energy rating systems (HERS) have been established in many countries to inform households of their house's current energy performance and to help reduce their energy consumption and greenhouse gas emissions. In Canada, the national EnerGuide for Houses (EGH) program is delivered by many local delivery agents, including non-profit green community organizations. Waterloo Region Green Solutions is the local non-profit that offers the EGH residential energy evaluation service to local households. The purpose of this thesis is to explore the determinants of household's participation in the residential energy efficiency program (REEP) in Waterloo Region, to explain the relationship between the explanatory variables and REEP participation, and to propose ways to improve this kind of program. A spatial (trend) analysis was conducted within a geographic information system (GIS) to determine the spatial patterns of the REEP participation in Waterloo Region from 1999 to 2006. The impact of sources of information on participation and relationships between participation rates and explanatory variables were identified. GIS proved successful in presenting a visual interpretation of spatial patterns of the REEP participation. In general, the participating households tend to be clustered in urban areas and scattered in rural areas. Different sources of information played significant roles in reaching participants in different years. Moreover, there was a relationship between each explanatory variable and the REEP participation rates. Statistical analysis was applied to obtain a quantitative assessment of relationships between hypothesized explanatory variables and participation in the REEP. The Poisson regression model was used to determine the relationship between hypothesized explanatory variables and REEP participation at the CDA level. The results show that all of the independent variables have a statistically significant positive relationship with REEP participation. These variables include level of education, average household income, employment rate, home ownership, population aged 65 and over, age of home, and number of eligible dwellings. The logistic regression model was used to assess the ability of the hypothesized explanatory variables to predict whether or not households would participate in a second follow-up evaluation after completing upgrades to their home. The results show all the explanatory variables have significant relationships with the dependent variable. The increased rating score, average household income, aged population, and age of home are positively related to the dependent variable. While the dwelling size and education has negative relationships with the dependent variable. In general, the contribution of this work provides a practical understanding of how the energy efficiency program operates, and insight into the type of variables that may be successful in bringing about changes in performance in the energy efficiency project in Waterloo Region. Secondly, with the completion of this research, future residential energy efficiency programs can use the information from this research and emulate or expand upon the efforts and lessons learned from the Residential Energy Efficiency Project in Waterloo Region case study. Thirdly, this research also contributes to practical experience on how to integrate different datasets using GIS.

  10. Programming models for energy-aware systems

    NASA Astrophysics Data System (ADS)

    Zhu, Haitao

    Energy efficiency is an important goal of modern computing, with direct impact on system operational cost, reliability, usability and environmental sustainability. This dissertation describes the design and implementation of two innovative programming languages for constructing energy-aware systems. First, it introduces ET, a strongly typed programming language to promote and facilitate energy-aware programming, with a novel type system design called Energy Types. Energy Types is built upon a key insight into today's energy-efficient systems and applications: despite the popular perception that energy and power can only be described in joules and watts, real-world energy management is often based on discrete phases and modes, which in turn can be reasoned about by type systems very effectively. A phase characterizes a distinct pattern of program workload, and a mode represents an energy state the program is expected to execute in. Energy Types is designed to reason about energy phases and energy modes, bringing programmers into the optimization of energy management. Second, the dissertation develops Eco, an energy-aware programming language centering around sustainability. A sustainable program built from Eco is able to adaptively adjusts its own behaviors to stay on a given energy budget, avoiding both deficit that would lead to battery drain or CPU overheating, and surplus that could have been used to improve the quality of the program output. Sustainability is viewed as a form of supply and demand matching, and a sustainable program consistently maintains the equilibrium between supply and demand. ET is implemented as a prototyped compiler for smartphone programming on Android, and Eco is implemented as a minimal extension to Java. Programming practices and benchmarking experiments in these two new languages showed that ET can lead to significant energy savings for Android Apps and Eco can efficiently promote battery awareness and temperature awareness in real-world Java programs.

  11. Study of Hydrogen Recovery Systems for Gas Vented While Refueling Liquid-Hydrogen Fueled Aircraft

    NASA Technical Reports Server (NTRS)

    Baker, C. R.

    1979-01-01

    Methods of capturing and reliquefying the cold hydrogen vapor produced during the fueling of aircraft designed to utilize liquid hydrogen fuel were investigated. An assessment of the most practical, economic, and energy efficient of the hydrogen recovery methods is provided.

  12. Enhancing soil begins with soil biology and a stable soil microclimate

    USDA-ARS?s Scientific Manuscript database

    Protection of the soil resource from erosion requires reducing the surface impact from raindrop energy and maintaining soil structure and stability to allow more efficient infiltration of water into the soil column. These two processes are linked with practices associated with enhancing and maintain...

  13. The School Facilities Children Are Forced to Attend.

    ERIC Educational Resources Information Center

    Hansen, Shirley J.

    1993-01-01

    As many as 25% of American school buildings are inadequate. However, many districts have reduced maintenance to pay utility bills. An active energy-management program can lower utility costs through efficient operation and maintenance practices and retrofits that pay back in less than three years. (MLF)

  14. Continuous Energy Improvement in Motor Driven Systems - A Guidebook for Industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilbert A. McCoy and John G. Douglass

    2014-02-01

    This guidebook provides a step-by-step approach to developing a motor system energy-improvement action plan. An action plan includes which motors should be repaired or replaced with higher efficiency models, recommendations on maintaining a spares inventory, and discussion of improvements in maintenance practices. The guidebook is the successor to DOE’s 1997 Energy Management for Motor Driven Systems. It builds on its predecessor publication by including topics such as power transmission systems and matching driven equipment to process requirements in addition to motors.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seeley, E.J.

    An apple orchard can be a very efficient mechanism for harvesting and storing energy in a usable form. The challenge is to define how the genetic, microclimatic, soil, water and cultural practice interactions limit the productive potential of apple plantings and at the same time to look ahead toward increasing the efficiency of the plant to assume continued increases in productivity for the future. Five papers were presented as summaries of some of the current and past research efforts into the factors affecting apple tree photosynthesis. (DP).

  16. Agile Electro-Mechanical Product Accelerator - Final Research Performance Progress Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmidt, Brian

    2016-07-29

    NCDMM recognized the need to focus on the most efficient use of limited resources while ensuring compliance with regulations and minimizing the energy intensity and environmental impact of manufactured components. This was accomplished through the evaluation of current machining and processing practices, and their efficiencies, to further the sustainability of manufacturing as a whole. Additionally, the activities also identified, and furthered the implementation of new “best practices” within the southwestern Pennsylvania manufacturing sector.

  17. Modernised Portuguese schools - From IAQ and thermal comfort towards energy efficiency plans

    NASA Astrophysics Data System (ADS)

    Pereira, Luisa Maria Dias

    A major rehabilitation and refurbishment programme of secondary school buildings has been carried out in the last few years in Portugal, led by the state-owned company Parque Escolar E.P.E. (PE), known as Secondary School Buildings Modernisation Programme. This programme took into consideration renewable energy systems, mostly solar panels for domestic hot water (DHW) production. Nevertheless, with the introduction of HVAC systems in buildings that were previously naturally ventilated, an increase on energy consumption has been verified. During the first occupancy phase of new and refurbished buildings, energy and indoor climate quality (ICQ) audits are important strategies to improve the buildings’ energy use. In new buildings, the most common errors are due to poor operation and management. Schools energy management programmes often result in a list of energy efficiency measures that do not necessarily reflect occupants’ conditions or satisfaction. They are more directed to management control and comparison with benchmarks of energy use/m2 or cost/student to assess energy efficiency. In all cases, monitoring and consumption patterns are mandatory. In this context, this thesis aims at developing energy efficiency plans (EEP) for modernised Portuguese school buildings. The framework of the thesis starts with the development of an international overview of the recent research and development in the field of energy consumption in schools [searching for statistical benchmarks that could contribute to an accurate school building indicator (SBI)]. Then, based on a database provided by Parque Escolar, an energy consumption assessment of Portuguese school buildings is presented, between the pre and post intervention phases. Drawing on this procedure, eight representative modernised secondary schools were selected, geographically and climatically distributed. After, an energy audit and indoor environment quality (IEQ) monitoring is performed in this schools selection. The continuous monitoring period varied between schools, from a minimum of 48h monitoring up to three weeks, during the mid-season [spring - autumn period (excluding summer vacation) in 2013]. Air exchange rates (AER), more specifically infiltration rates, are quantified aiming at determining the current airtightness condition of the refurbished schools. A subjective IEQ assessment is also performed, focusing on occupants’ feedback, providing insight on the potential linkages between energy use and occupants’ satisfaction and comfort. The thesis builds on the current EEP panorama and practice, which is based only on cost/energy control, extending it to address the equilibrium between IEQ evaluation and occupants’ perceived conditions/preferences. This approach is applied in two schools - selected based on the previous study on energy and IEQ conditions of the eight schools. The EEP methodology starts by deepening the knowledge of each school, mostly focusing on crossing the schools occupancy schedule with systems operation [(mainly those controlled by the building management system (BMS)]. An analysis on recently updated legislation is also performed (in particular fresh air flow rates requirements). It is shown that some potential energy savings can be achieved and that IEQ conditions can be improved at very low or even negligible costs. Other considerations, namely addressing the thermal energy production systems of the schools (e.g., boilers scheduling), the lighting systems (e.g., lighting circuits) and non-controlled plug loads, are also mentioned. Based upon all these findings, a handbook of good practice is drafted for secondary school buildings in Portugal. This EEP is accompanied by a list of Energy Efficiency Measures (EEM). It is proposed that this document is headed by a School - Energy Performance Certificate (S-EPC) based on the billed energy consumption. This document suggests the establishment of the figure of the Energy Manager.

  18. Recent progress and perspectives in the photocatalytic CO2 reduction of Ti-oxide-based nanomaterials

    NASA Astrophysics Data System (ADS)

    Sohn, Youngku; Huang, Weixin; Taghipour, Fariborz

    2017-02-01

    The conversion of CO2 with H2O to valuable chemicals and fuels is a new solution to current environmental and energy problems, and the high energy barrier of these reactions can be overcome by the input of solar and electrical energy. However, the reduction efficiencies and selectivities of these reactions are insufficient for practical use, and significant effort and strategy are required to overcome the many obstacles preventing the large-scale application of photocatalytic CO2 reduction. This article reviews recent progress in CO2 reduction using titanium oxide-based materials and various strategic factors for increasing photocatalytic efficiency. This article also highlights non-titanium-oxide catalysts, the photoelectrocatalytic reduction of CO2, and other recent review articles concerning the recycling of CO2 to value-added carbon compounds.

  19. Practical water production from desert air.

    PubMed

    Fathieh, Farhad; Kalmutzki, Markus J; Kapustin, Eugene A; Waller, Peter J; Yang, Jingjing; Yaghi, Omar M

    2018-06-01

    Energy-efficient production of water from desert air has not been developed. A proof-of-concept device for harvesting water at low relative humidity was reported; however, it used external cooling and was not desert-tested. We report a laboratory-to-desert experiment where a prototype using up to 1.2 kg of metal-organic framework (MOF)-801 was tested in the laboratory and later in the desert of Arizona, USA. It produced 100 g of water per kilogram of MOF-801 per day-and-night cycle, using only natural cooling and ambient sunlight as a source of energy. We also report an aluminum-based MOF-303, which delivers more than twice the amount of water. The desert experiment uncovered key parameters pertaining to the energy, material, and air requirements for efficient production of water from desert air, even at a subzero dew point.

  20. Characteristics of feed efficiency within and across lactation in dairy cows and the effect of genetic selection.

    PubMed

    Hurley, A M; Lopez-Villalobos, N; McParland, S; Lewis, E; Kennedy, E; O'Donovan, M; Burke, J L; Berry, D P

    2018-02-01

    The objective of the present study was to investigate the phenotypic inter- and intra-relationships within and among alternative feed efficiency metrics across different stages of lactation and parities; the expected effect of genetic selection for feed efficiency on the resulting phenotypic lactation profiles was also quantified. A total of 8,199 net energy intake (NE I ) test-day records from 2,505 lactations on 1,290 cows were used. Derived efficiency traits were either ratio based or residual based; the latter were derived from least squares regression models. Residual energy intake (REI) was defined as NE I minus predicted energy requirements based on lactation performance; residual energy production (REP) was defined as net energy for lactation minus predicted energy requirements based on lactation performance. Energy conversion efficiency was defined as net energy for lactation divided by NE I . Pearson phenotypic correlations among traits were computed across lactation stages and parities, and the significance of the differences was determined using the Fisher r-to-z transformation. Sources of variation in the feed efficiency metrics were investigated using linear mixed models, which included the fixed effects of contemporary group, breed, parity, stage of lactation, and the 2-way interaction of parity by stage of lactation. With the exception of REI, parity was associated with all efficiency and production traits. Stage of lactation, as well as the 2-way interaction of parity by stage of lactation, were associated with all efficiency and production traits. Phenotypic correlations among the efficiency and production traits differed not only by stage of lactation but also by parity. For example, the strong phenotypic correlation between REI and energy balance (EB; 0.89) for cows in parity 3 or greater and early lactation was weaker for parity 1 cows at the same lactation stage (0.81), suggesting primiparous cows use the ingested energy for both milk production and growth. Nonetheless, these strong phenotypic correlations between REI and EB suggested negative REI animals (i.e., more efficient) are also in more negative EB. These correlations were further supported when assessing the effect on phenotypic performance of animals genetically divergent for feed intake and efficiency based on parental average. Animals genetically selected to have lower REI resulted in cows who consumed less NE I but were also in negative EB throughout the entire lactation. Nonetheless, such repercussions of negative EB do not imply that selection for negative REI (as defined here) should not be practiced, but instead should be undertaken within the framework of a balanced breeding objective, which includes traits such as reproduction and health. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  1. Towards Efficient Wireless Body Area Network Using Two-Way Relay Cooperation.

    PubMed

    Waheed, Maham; Ahmad, Rizwan; Ahmed, Waqas; Drieberg, Micheal; Alam, Muhammad Mahtab

    2018-02-13

    The fabrication of lightweight, ultra-thin, low power and intelligent body-borne sensors leads to novel advances in wireless body area networks (WBANs). Depending on the placement of the nodes, it is characterized as in/on body WBAN; thus, the channel is largely affected by body posture, clothing, muscle movement, body temperature and climatic conditions. The energy resources are limited and it is not feasible to replace the sensor's battery frequently. In order to keep the sensor in working condition, the channel resources should be reserved. The lifetime of the sensor is very crucial and it highly depends on transmission among sensor nodes and energy consumption. The reliability and energy efficiency in WBAN applications play a vital role. In this paper, the analytical expressions for energy efficiency (EE) and packet error rate (PER) are formulated for two-way relay cooperative communication. The results depict better reliability and efficiency compared to direct and one-way relay communication. The effective performance range of direct vs. cooperative communication is separated by a threshold distance. Based on EE calculations, an optimal packet size is observed that provides maximum efficiency over a certain link length. A smart and energy efficient system is articulated that utilizes all three communication modes, namely direct, one-way relay and two-way relay, as the direct link performs better for a certain range, but the cooperative communication gives better results for increased distance in terms of EE. The efficacy of the proposed hybrid scheme is also demonstrated over a practical quasi-static channel. Furthermore, link length extension and diversity is achieved by joint network-channel (JNC) coding the cooperative link.

  2. Towards Efficient Wireless Body Area Network Using Two-Way Relay Cooperation

    PubMed Central

    Waheed, Maham; Ahmad, Rizwan; Ahmed, Waqas

    2018-01-01

    The fabrication of lightweight, ultra-thin, low power and intelligent body-borne sensors leads to novel advances in wireless body area networks (WBANs). Depending on the placement of the nodes, it is characterized as in/on body WBAN; thus, the channel is largely affected by body posture, clothing, muscle movement, body temperature and climatic conditions. The energy resources are limited and it is not feasible to replace the sensor’s battery frequently. In order to keep the sensor in working condition, the channel resources should be reserved. The lifetime of the sensor is very crucial and it highly depends on transmission among sensor nodes and energy consumption. The reliability and energy efficiency in WBAN applications play a vital role. In this paper, the analytical expressions for energy efficiency (EE) and packet error rate (PER) are formulated for two-way relay cooperative communication. The results depict better reliability and efficiency compared to direct and one-way relay communication. The effective performance range of direct vs. cooperative communication is separated by a threshold distance. Based on EE calculations, an optimal packet size is observed that provides maximum efficiency over a certain link length. A smart and energy efficient system is articulated that utilizes all three communication modes, namely direct, one-way relay and two-way relay, as the direct link performs better for a certain range, but the cooperative communication gives better results for increased distance in terms of EE. The efficacy of the proposed hybrid scheme is also demonstrated over a practical quasi-static channel. Furthermore, link length extension and diversity is achieved by joint network-channel (JNC) coding the cooperative link. PMID:29438278

  3. Characteristics and Energy Use of Volume Servers in the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fuchs, H.; Shehabi, A.; Ganeshalingam, M.

    Servers’ field energy use remains poorly understood, given heterogeneous computing loads, configurable hardware and software, and operation over a wide range of management practices. This paper explores various characteristics of 1- and 2-socket volume servers that affect energy consumption, and quantifies the difference in power demand between higher-performing SPEC and ENERGY STAR servers and our best understanding of a typical server operating today. We first establish general characteristics of the U.S. installed base of volume servers from existing IDC data and the literature, before presenting information on server hardware configurations from data collection events at a major online retail website.more » We then compare cumulative distribution functions of server idle power across three separate datasets and explain the differences between them via examination of the hardware characteristics to which power draw is most sensitive. We find that idle server power demand is significantly higher than ENERGY STAR benchmarks and the industry-released energy use documented in SPEC, and that SPEC server configurations—and likely the associated power-scaling trends—are atypical of volume servers. Next, we examine recent trends in server power draw among high-performing servers across their full load range to consider how representative these trends are of all volume servers before inputting weighted average idle power load values into a recently published model of national server energy use. Finally, we present results from two surveys of IT managers (n=216) and IT vendors (n=178) that illustrate the prevalence of more-efficient equipment and operational practices in server rooms and closets; these findings highlight opportunities to improve the energy efficiency of the U.S. server stock.« less

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ortiz-Ramírez, Pablo, E-mail: rapeitor@ug.uchile.cl; Ruiz, Andrés

    The Monte Carlo simulation of the gamma spectroscopy systems is a common practice in these days. The most popular softwares to do this are MCNP and Geant4 codes. The intrinsic spatial efficiency method is a general and absolute method to determine the absolute efficiency of a spectroscopy system for any extended sources, but this was only demonstrated experimentally for cylindrical sources. Due to the difficulty that the preparation of sources with any shape represents, the simplest way to do this is by the simulation of the spectroscopy system and the source. In this work we present the validation of themore » intrinsic spatial efficiency method for sources with different geometries and for photons with an energy of 661.65 keV. In the simulation the matrix effects (the auto-attenuation effect) are not considered, therefore these results are only preliminaries. The MC simulation is carried out using the FLUKA code and the absolute efficiency of the detector is determined using two methods: the statistical count of Full Energy Peak (FEP) area (traditional method) and the intrinsic spatial efficiency method. The obtained results show total agreement between the absolute efficiencies determined by the traditional method and the intrinsic spatial efficiency method. The relative bias is lesser than 1% in all cases.« less

  5. Building America Best Practices Series Volume 11. Builders Challenge Guide to 40% Whole-House Energy Savings in the Marine Climate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baechler, Michael C.; Gilbride, Theresa L.; Hefty, Marye G.

    2010-09-01

    This best practices guide is the eleventh in a series of guides for builders produced by the U.S. Department of Energy’s Building America Program. This guide book is a resource to help builders design and construct homes that are among the most energy-efficient available, while addressing issues such as building durability, indoor air quality, and occupant health, safety, and comfort. With the measures described in this guide, builders in the marine climate (portions of Washington, Oregon, and California) can achieve homes that have whole house energy savings of 40% over the Building America benchmark (a home built to mid-1990s buildingmore » practices roughly equivalent to the 1993 Model Energy Code) with no added overall costs for consumers. These best practices are based on the results of research and demonstration projects conducted by Building America’s research teams. The guide includes information for managers, designers, marketers, site supervisors, and subcontractors, as well as case studies of builders who are successfully building homes that cut energy use by 40% in the marine climate. This document is available on the web at www.buildingamerica.gov. This report was originally cleared 06-29-2010. This version is Rev 1 cleared in Nov 2010. The only change is the reference to the Energy Star Windows critieria shown on pg 8.25 was updated to match the criteria - Version 5.0, 04/07/2009, effective 01/04/2010.« less

  6. Creating space plasma from the ground

    NASA Astrophysics Data System (ADS)

    Carlson, H. C.; Djuth, F. T.; Zhang, L. D.

    2017-01-01

    We have performed an experiment to compare as directly as realizable the ionization production rate by HF radio wave energy versus by solar EUV. We take advantage of the commonality that ionization production by both ground-based high-power HF radio waves and by solar EUV is driven by primary and secondary suprathermal electrons near and above 20 eV. Incoherent scatter radar (ISR) plasma-line amplitudes are used as a measure of suprathermal electron fluxes for ISR wavelengths near those for 430 MHz and are indeed a clean measure of such for those fluxes sufficiently weak to have negligible self-damping. We present data from an HF heating experiment on November 2015 at Arecibo, which even more directly confirm the only prior midlatitude estimate, of order 10% efficiency for conversion of HF energy to ionospheric ionization. We note the theoretical maximum possible is 1/3, while 1% or less reduces the question to near practical irrelevance. Our measurements explicitly confirm the prediction that radio-frequency production of artificial ionospheres can be practicable, even at midlatitudes. Furthermore, that this midlatitude efficiency is comparable to efficiencies measured at high latitudes (which include enhancements unique to high latitudes including magnetic zenith effect, gyrofrequency multiples, and double resonances) requires reexamination of current theoretical thinking about soft-electron acceleration processes in weakly magnetized plasmas. The implications are that electron acceleration by any of a variety of processes may be a fundamental underpinning to energy redistribution in space plasmas.

  7. Plasma-Assisted Synthesis and Surface Modification of Electrode Materials for Renewable Energy.

    PubMed

    Dou, Shuo; Tao, Li; Wang, Ruilun; El Hankari, Samir; Chen, Ru; Wang, Shuangyin

    2018-05-01

    Renewable energy technology has been considered as a "MUST" option to lower the use of fossil fuels for industry and daily life. Designing critical and sophisticated materials is of great importance in order to realize high-performance energy technology. Typically, efficient synthesis and soft surface modification of nanomaterials are important for energy technology. Therefore, there are increasing demands on the rational design of efficient electrocatalysts or electrode materials, which are the key for scalable and practical electrochemical energy devices. Nevertheless, the development of versatile and cheap strategies is one of the main challenges to achieve the aforementioned goals. Accordingly, plasma technology has recently appeared as an extremely promising alternative for the synthesis and surface modification of nanomaterials for electrochemical devices. Here, the recent progress on the development of nonthermal plasma technology is highlighted for the synthesis and surface modification of advanced electrode materials for renewable energy technology including electrocatalysts for fuel cells, water splitting, metal-air batteries, and electrode materials for batteries and supercapacitors, etc. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Implementing the Data Center Energy Productivity Metric in a High Performance Computing Data Center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sego, Landon H.; Marquez, Andres; Rawson, Andrew

    2013-06-30

    As data centers proliferate in size and number, the improvement of their energy efficiency and productivity has become an economic and environmental imperative. Making these improvements requires metrics that are robust, interpretable, and practical. We discuss the properties of a number of the proposed metrics of energy efficiency and productivity. In particular, we focus on the Data Center Energy Productivity (DCeP) metric, which is the ratio of useful work produced by the data center to the energy consumed performing that work. We describe our approach for using DCeP as the principal outcome of a designed experiment using a highly instrumented,more » high-performance computing data center. We found that DCeP was successful in clearly distinguishing different operational states in the data center, thereby validating its utility as a metric for identifying configurations of hardware and software that would improve energy productivity. We also discuss some of the challenges and benefits associated with implementing the DCeP metric, and we examine the efficacy of the metric in making comparisons within a data center and between data centers.« less

  9. Energy efficiency in membrane bioreactors.

    PubMed

    Barillon, B; Martin Ruel, S; Langlais, C; Lazarova, V

    2013-01-01

    Energy consumption remains the key factor for the optimisation of the performance of membrane bioreactors (MBRs). This paper presents the results of the detailed energy audits of six full-scale MBRs operated by Suez Environnement in France, Spain and the USA based on on-site energy measurement and analysis of plant operation parameters and treatment performance. Specific energy consumption is compared for two different MBR configurations (flat sheet and hollow fibre membranes) and for plants with different design, loads and operation parameters. The aim of this project was to understand how the energy is consumed in MBR facilities and under which operating conditions, in order to finally provide guidelines and recommended practices for optimisation of MBR operation and design to reduce energy consumption and environmental impacts.

  10. Comparing colour discrimination and proofreading performance under compact fluorescent and halogen lamp lighting.

    PubMed

    Mayr, Susanne; Köpper, Maja; Buchner, Axel

    2013-01-01

    Legislation in many countries has banned inefficient household lighting. Consequently, classic incandescent lamps have to be replaced by more efficient alternatives such as halogen and compact fluorescent lamps (CFL). Alternatives differ in their spectral power distributions, implying colour-rendering differences. Participants performed a colour discrimination task - the Farnsworth-Munsell 100 Hue Test--and a proofreading task under CFL or halogen lighting of comparable correlated colour temperatures at low (70 lx) or high (800 lx) illuminance. Illuminance positively affected colour discrimination and proofreading performance, whereas the light source was only relevant for colour discrimination. Discrimination was impaired with CFL lighting. There were no differences between light sources in terms of self-reported physical discomfort and mood state, but the majority of the participants correctly judged halogen lighting to be more appropriate for discriminating colours. The findings hint at the colour-rendering deficiencies associated with energy-efficient CFLs. In order to compare performance under energy-efficient alternatives of classic incandescent lighting, colour discrimination and proofreading performance was compared under CFL and halogen lighting. Colour discrimination was impaired under CFLs, which hints at the practical drawbacks associated with the reduced colour-rendering properties of energy-efficient CFLs.

  11. Blocking Energy-Loss Pathways for Ideal Fluorescent Organic Light-Emitting Diodes with Thermally Activated Delayed Fluorescent Sensitizers.

    PubMed

    Zhang, Dongdong; Song, Xiaozeng; Cai, Minghan; Duan, Lian

    2018-02-01

    Organic light-emitting diodes (OLEDs) based on thermally activated delayed fluorescence-sensitized fluorescence (TSF) offer the possibility of attaining an ultimate high efficiency with low roll-off utilizing noble-metal free, easy-to-synthesize, pure organic fluorescent emitters. However, the performances of TSF-OLEDs are still unsatisfactory. Here, TSF-OLEDs with breakthrough efficiencies even at high brightnesses by suppressing the competitive deactivation processes, including direct charge recombination on conventional fluorescent dopants (CFDs) and Dexter energy transfer from the host to the CFDs, are demonstrated. On the one hand, electronically inert terminal-substituents are introduced to protect the electronically active core of the CFDs; on the other hand, delicate device structures are designed to provide multiple energy-funneling paths. As a result, unprecedentedly high maximum external quantum efficiency/power efficiency of 24%/71.4 lm W -1 in a green TSF-OLED are demonstrated, which remain at 22.6%/52.3 lm W -1 even at a high luminance of 5000 cd m -2 . The work unlocks the potential of TSF-OLEDs, paving the way toward practical applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Survey study of the efficiency and economics of hydrogen liquefaction

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The production of liquid hydrogen, with coal as the starting material, is reported. The minimum practicable energy and cost for liquefaction of gaseous hydrogen in the 1985-2000 time period is presented to investigate the possible benefits of the integration of coal gasification processes with the liquefaction process.

  13. Curriculum for Environmental Education of the Disabled (C.E.E.D.).

    ERIC Educational Resources Information Center

    Abrams, William; And Others

    The activities included in the Curriculum for Environmental Education of the Disabled (CEED) are based on current best-practices in the area of pollution prevention and address the following major areas: recycling, water and energy efficiency, transportation, citizenship, and outdoor appreciation. The activities emphasize the development of…

  14. Toward large-scale solar energy systems with peak concentrations of 20,000 suns

    NASA Astrophysics Data System (ADS)

    Kribus, Abraham

    1997-10-01

    The heliostat field plays a crucial role in defining the achievable limits for central receiver system efficiency and cost. Increasing system efficiency, thus reducing the reflective area and system cost, can be achieved by increasing the concentration and the receiver temperature. The concentration achievable in central receiver plants, however, is constrained by current heliostat technology and design practices. The factors affecting field performance are surface and tracking errors, astigmatism, shadowing, blocking and dilution. These are geometric factors that can be systematically treated and reduced. We present improvements in collection optics and technology that may boost concentration (up to 20,000 peak), achievable temperature (2,000 K), and efficiency in solar central receiver plants. The increased performance may significantly reduce the cost of solar energy in existing applications, and enable solar access to new ultra-high-temperature applications, such as: future gas turbines approaching 60% combined cycle efficiency; high-temperature thermo-chemical processes; and gas-dynamic processes.

  15. Multimedia learning for increasing knowledge on energy efficiency and promotion of proenvironmental behavior: A study of undergraduate students in Costa Rica

    NASA Astrophysics Data System (ADS)

    Walsh-Zuniga, Yoselyn

    Promotion of energy efficiency practices among household has been employed in many interventions with a varying degree of success, mainly on developed countries. The purpose of the study is to promote and measure knowledge of proenvironmental behavior in undergraduate students in the Costa Rica Institute of Technology. The intervention used for this purpose provided personal and altruistic information about the impact of energy consumption activities in household. People's perceptions and attitudes about behaviors that contribute and mitigate climate change were also investigated. Participants were students from undergraduate programs who are also inhabitants of the residence hall provided by the institution. The participation consisted in two surveys and a learning module. Students responded a survey before and after exposure to a learning module. Surveys focused on identifying knowledge, attitudes and intentions. The learning module provided information about three hypothetical scenarios and corresponding energy consumption estimates for each one. Participants did not significantly improve their knowledge on energy efficiency topics and did not change perceptions about the topic of climate change. Yet for both, knowledge and perceptions, participants demonstrated an average knowledge on topics associated to climate change. In addition, participants did not use technical information to explain concepts and perceptions. Another important finding was that participants wrote their responses more third-person than in first person singular or plural, meaning that, excluding themselves from the solution and the problem. Results suggest that there is an average knowledge among participants about 2.5 out of 5 points that represent a start point to design more successful interventions that promote energy efficiency behaviors. A major recommendation to improve energy efficiency behaviors is to place a greater emphasis and awareness in personal consequences of the misuse of energy in household as part of future interventions. More studies based on real consumption data along with more engaging visualizations are highly encouraged.

  16. Efficient solar-to-fuels production from a hybrid microbial-water-splitting catalyst system.

    PubMed

    Torella, Joseph P; Gagliardi, Christopher J; Chen, Janice S; Bediako, D Kwabena; Colón, Brendan; Way, Jeffery C; Silver, Pamela A; Nocera, Daniel G

    2015-02-24

    Photovoltaic cells have considerable potential to satisfy future renewable-energy needs, but efficient and scalable methods of storing the intermittent electricity they produce are required for the large-scale implementation of solar energy. Current solar-to-fuels storage cycles based on water splitting produce hydrogen and oxygen, which are attractive fuels in principle but confront practical limitations from the current energy infrastructure that is based on liquid fuels. In this work, we report the development of a scalable, integrated bioelectrochemical system in which the bacterium Ralstonia eutropha is used to efficiently convert CO2, along with H2 and O2 produced from water splitting, into biomass and fusel alcohols. Water-splitting catalysis was performed using catalysts that are made of earth-abundant metals and enable low overpotential water splitting. In this integrated setup, equivalent solar-to-biomass yields of up to 3.2% of the thermodynamic maximum exceed that of most terrestrial plants. Moreover, engineering of R. eutropha enabled production of the fusel alcohol isopropanol at up to 216 mg/L, the highest bioelectrochemical fuel yield yet reported by >300%. This work demonstrates that catalysts of biotic and abiotic origin can be interfaced to achieve challenging chemical energy-to-fuels transformations.

  17. A CLS-based survivable and energy-saving WDM-PON architecture

    NASA Astrophysics Data System (ADS)

    Zhu, Min; Zhong, Wen-De; Zhang, Zhenrong; Luan, Feng

    2013-11-01

    We propose and demonstrate an improved survivable and energy-saving WDM-PON with colorless ONUs. It incorporates both energy-saving and self-healing operations. A simple effective energy-saving scheme is proposed by including an energy-saving control unit in the OLT and a control unit at each ONU. The energy-saving scheme realizes both dozing and sleep (offline) modes, which greatly improves the energy-saving efficiency for WDM-PONs. An intelligent protection switching scheme is designed in the OLT, which can distinguish if an ONU is in dozing/sleep (offline) state or a fiber is faulty. Moreover, by monitoring the optical power of each channel on both working and protection paths, the OLT can know the connection status of every fiber path, thus facilitating an effective protection switching and a faster failure recovery. The improved WDM-PON architecture not only significantly reduces energy consumption, but also performs self-healing operation in practical operation scenarios. The scheme feasibility is experimentally verified with 10 Gbit/s downstream and 1.25 Gbit/s upstream transmissions. We also examine the energy-saving efficiency of our proposed energy-saving scheme by simulation, which reveals that energy saving mainly arises from the dozing mode, not from the sleep mode when the ONU is in the online state.

  18. Demand response-enabled model predictive HVAC load control in buildings using real-time electricity pricing

    NASA Astrophysics Data System (ADS)

    Avci, Mesut

    A practical cost and energy efficient model predictive control (MPC) strategy is proposed for HVAC load control under dynamic real-time electricity pricing. The MPC strategy is built based on a proposed model that jointly minimizes the total energy consumption and hence, cost of electricity for the user, and the deviation of the inside temperature from the consumer's preference. An algorithm that assigns temperature set-points (reference temperatures) to price ranges based on the consumer's discomfort tolerance index is developed. A practical parameter prediction model is also designed for mapping between the HVAC load and the inside temperature. The prediction model and the produced temperature set-points are integrated as inputs into the MPC controller, which is then used to generate signal actions for the AC unit. To investigate and demonstrate the effectiveness of the proposed approach, a simulation based experimental analysis is presented using real-life pricing data. An actual prototype for the proposed HVAC load control strategy is then built and a series of prototype experiments are conducted similar to the simulation studies. The experiments reveal that the MPC strategy can lead to significant reductions in overall energy consumption and cost savings for the consumer. Results suggest that by providing an efficient response strategy for the consumers, the proposed MPC strategy can enable the utility providers to adopt efficient demand management policies using real-time pricing. Finally, a cost-benefit analysis is performed to display the economic feasibility of implementing such a controller as part of a building energy management system, and the payback period is identified considering cost of prototype build and cost savings to help the adoption of this controller in the building HVAC control industry.

  19. Minimizing lighting power density in office rooms equipped with Anidolic Daylighting Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Linhart, Friedrich; Scartezzini, Jean-Louis

    2010-04-15

    Electric lighting is responsible for up to one third of an office building's electricity needs. Making daylight more available in office buildings can not only contribute to significant energy savings but also enhance the occupants' performance and wellbeing. Anidolic Daylighting Systems (ADS) are one type of very effective facade-integrated daylighting systems. All south-facing office rooms within the LESO solar experimental building in Lausanne (Switzerland) are equipped with a given type of ADS. A recent study has shown that these offices' occupants are highly satisfied with their lighting environment. The most energy-efficient south-facing offices have a lighting power density of lessmore » than 5W/m{sup 2}. The lighting situation within these ''best practice''-offices has been assessed using the lighting simulation software RELUX Vision. Because this lighting situation is very much appreciated by the occupants, it was used as a starting point for developing even more energy-efficient office lighting designs. Two new lighting designs, leading to lighting power densities of 3.9W/m{sup 2} and 3W/m{sup 2}, respectively, have been suggested and simulated with RELUX Vision. Simulation results have shown that the expected performances of these new systems are comparable to that of the current lighting installation within the ''best practice''-offices or even better. These simulation results have been confirmed during experiments on 20 human subjects in a test office room recently set up within the LESO building. This article gives engineers, architects and light planers valuable information and ideas on how to design energy-efficient and comfortable electric lighting systems in office rooms with abundant access to daylight. (author)« less

  20. From sunlight to phytomass: on the potential efficiency of converting solar radiation to phyto-energy.

    PubMed

    Amthor, Jeffrey S

    2010-12-01

    The relationship between solar radiation capture and potential plant growth is of theoretical and practical importance. The key processes constraining the transduction of solar radiation into phyto-energy (i.e. free energy in phytomass) were reviewed to estimate potential solar-energy-use efficiency. Specifically, the out-put:input stoichiometries of photosynthesis and photorespiration in C(3) and C(4) systems, mobilization and translocation of photosynthate, and biosynthesis of major plant biochemical constituents were evaluated. The maintenance requirement, an area of important uncertainty, was also considered. For a hypothetical C(3) grain crop with a full canopy at 30°C and 350 ppm atmospheric [CO(2) ], theoretically potential efficiencies (based on extant plant metabolic reactions and pathways) were estimated at c. 0.041 J J(-1) incident total solar radiation, and c. 0.092 J J(-1) absorbed photosynthetically active radiation (PAR). At 20°C, the calculated potential efficiencies increased to 0.053 and 0.118 J J(-1) (incident total radiation and absorbed PAR, respectively). Estimates for a hypothetical C(4) cereal were c. 0.051 and c. 0.114 J J(-1), respectively. These values, which cannot be considered as precise, are less than some previous estimates, and the reasons for the differences are considered. Field-based data indicate that exceptional crops may attain a significant fraction of potential efficiency. © The Author (2010). Journal compilation © New Phytologist Trust (2010).

  1. Pulse sequences for efficient multi-cycle terahertz generation in periodically poled lithium niobate.

    PubMed

    Ravi, Koustuban; Schimpf, Damian N; Kärtner, Franz X

    2016-10-31

    The use of laser pulse sequences to drive the cascaded difference frequency generation of high energy, high peak-power and multi-cycle terahertz pulses in cryogenically cooled (100 K) periodically poled Lithium Niobate is proposed and studied. Detailed simulations considering the coupled nonlinear interaction of terahertz and optical waves (or pump depletion), show that unprecedented optical-to-terahertz energy conversion efficiencies > 5%, peak electric fields of hundred(s) of mega volts/meter at terahertz pulse durations of hundred(s) of picoseconds can be achieved. The proposed methods are shown to circumvent laser induced damage limitations at Joule-level pumping by 1µm lasers to enable multi-cycle terahertz sources with pulse energies > 10 milli-joules. Various pulse sequence formats are proposed and analyzed. Numerical calculations for periodically poled structures accounting for cascaded difference frequency generation, self-phase-modulation, cascaded second harmonic generation and laser induced damage are introduced. The physics governing terahertz generation using pulse sequences in this high conversion efficiency regime, limitations and practical considerations are discussed. It is shown that varying the poling period along the crystal length and further reduction of absorption can lead to even higher energy conversion efficiencies >10%. In addition to numerical calculations, an analytic formulation valid for arbitrary pulse formats and closed-form expressions for important cases are presented. Parameters optimizing conversion efficiency in the 0.1-1 THz range, the corresponding peak electric fields, crystal lengths and terahertz pulse properties are furnished.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scientists set a new world record for converting non-concentrated sunlight into electricity using a dual-junction III-V/Si solar cell. National Renewable Energy Laboratory (NREL) and Swiss Center for Electronics and Microtechnology (CSEM) scientists have collaborated to create a novel tandem solar cell that operates at 29.8% conversion efficiency under non-concentrator (1-sun) conditions. In comparison, the 1-sun efficiency of a silicon (Si) single-junction solar cell is probably still a few years away from converging on its practical limit of about 26%.

  3. Energy-efficient downlink resource management in self-organized OFDMA-based two-tier femtocell networks

    NASA Astrophysics Data System (ADS)

    Shahid, Adnan; Aslam, Saleem; Kim, Hyung Seok; Lee, Kyung-Geun

    2015-12-01

    Femtocell is a novel technology that is used for escalating indoor coverage as well as the capacity of traditional cellular networks. However, interference is the limiting factor for performance improvement due to co-channel deployment between macrocells and femtocells. The traditional network planning is not feasible because of the random deployment of femtocells. Therefore, self-organization approaches are the key to having successful deployment of femtocells. This study presents the joint resource block (RB) and power allocation task for the two-tier femtocell network in a self-organizing manner, with the concern to minimizing the impact of interference and maximizing the energy efficiency. In this study, we analyze the performance of the system in terms of the energy efficiency, which is composed of both the transmission and circuit power. Most of the previous studies investigate the performance regarding the throughput requirement of the two-tier femtocell network while the energy efficiency aspect is largely ignored. Here, the joint allocation task is modeled as a non-cooperative game which is demonstrated to exhibit pure and unique Nash equilibrium. In order to reduce the complexity of the proposed non-cooperative game, the joint RB and power allocation task is divided into two subproblems: an RB allocation and a particle swarm optimization-based power allocation. The analysis of the proposed game is carried out in terms of not only energy efficiency but also throughput. With practical 3rd Generation Partnership Project (3GPP) Long-Term Evolution (LTE) parameters, the simulation results illustrate the superior performance of the proposed game as compared to the traditional methods. Also, the comparison is carried out with the joint allocation scheme which only considers the throughput as the objective function. The results illustrate that significant performance improvement is achieved in terms of energy efficiency with slight loss in the throughput. The analysis in regard to energy efficiency and throughput of the two-tier femtocell network is carried out in terms of the performance metrics, which include convergence, impact of varying RBs, impact of femtocell density, and the fairness index.

  4. Energy Dissipation and Transport in Carbon Nanotube Devices

    NASA Astrophysics Data System (ADS)

    Pop, Eric

    2011-03-01

    Power consumption is a significant challenge in electronics, often limiting the performance of integrated circuits from mobile devices to massive data centers. Carbon nanotubes have emerged as potentially energy-efficient future devices and interconnects, with both large mobility and thermal conductivity. This talk will focus on understanding and controlling energy dissipation [1-3] and transport [4-6] in carbon nanotubes, with applications to low-energy devices, interconnects, heat sinks, and memory elements. Experiments have been used to gain new insight into the fundamental behavior of such devices, and to better inform practical device models. The results suggest much room for energy optimization in nanoelectronics through the design of geometry, interfaces, and materials..

  5. Integrating Reverse-Electrodialysis Stacks with Flow Batteries for Improved Energy Recovery from Salinity Gradients and Energy Storage.

    PubMed

    Zhu, Xiuping; Kim, Taeyoung; Rahimi, Mohammad; Gorski, Christopher A; Logan, Bruce E

    2017-02-22

    Salinity gradient energy can be directly converted into electrical power by using reverse electrodialysis (RED) and other technologies, but reported power densities have been too low for practical applications. Herein, the RED stack performance was improved by using 2,6-dihydroxyanthraquinone and ferrocyanide as redox couples. These electrolytes were then used in a flow battery to produce an integrated RED stack and flow battery (RED-FB) system capable of capturing, storing, and discharging salinity gradient energy. Energy captured from the RED stack was discharged in the flow battery at a maximum power density of 3.0 kW m -2 -anode, which was similar to the flow batteries charged by electrical power and could be used for practical applications. Salinity gradient energy captured from the RED stack was recovered from the electrolytes as electricity with 30 % efficiency, and the maximum energy density of the system was 2.4 kWh m -3 -anolyte. The combined RED-FB system overcomes many limitations of previous approaches to capture, store, and use salinity gradient energy from natural or engineered sources. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Advanced Energy Retrofit Guide (AERG): Practical Ways to Improve Energy Performance; Healthcare Facilities (Book)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hendron, R.; Leach, M.; Bonnema, E.

    The Advanced Energy Retrofit Guide for Healthcare Facilities is part of a series of retrofit guides commissioned by the U.S. Department of Energy. By presenting general project planning guidance as well as detailed descriptions and financial payback metrics for the most important and relevant energy efficiency measures (EEMs), the guides provide a practical roadmap for effectively planning and implementing performance improvements in existing buildings. The Advanced Energy Retrofit Guides (AERGs) are intended to address key segments of the U.S. commercial building stock: retail stores, office buildings, K-12 schools, grocery stores, and healthcare facilities. The guides' general project planning considerations aremore » applicable nationwide; the energy and cost savings estimates for recommended EEMs were developed based on energy simulations and cost estimates for an example hospital tailored to five distinct climate regions. These results can be extrapolated to other U.S. climate zones. Analysis is presented for individual EEMs, and for packages of recommended EEMs for two project types: existing building commissioning projects that apply low-cost and no-cost measures, and whole-building retrofits involving more capital-intensive measures.« less

  7. On Maximizing the Throughput of Packet Transmission under Energy Constraints.

    PubMed

    Wu, Weiwei; Dai, Guangli; Li, Yan; Shan, Feng

    2018-06-23

    More and more Internet of Things (IoT) wireless devices have been providing ubiquitous services over the recent years. Since most of these devices are powered by batteries, a fundamental trade-off to be addressed is the depleted energy and the achieved data throughput in wireless data transmission. By exploiting the rate-adaptive capacities of wireless devices, most existing works on energy-efficient data transmission try to design rate-adaptive transmission policies to maximize the amount of transmitted data bits under the energy constraints of devices. Such solutions, however, cannot apply to scenarios where data packets have respective deadlines and only integrally transmitted data packets contribute. Thus, this paper introduces a notion of weighted throughput, which measures how much total value of data packets are successfully and integrally transmitted before their own deadlines. By designing efficient rate-adaptive transmission policies, this paper aims to make the best use of the energy and maximize the weighted throughput. What is more challenging but with practical significance, we consider the fading effect of wireless channels in both offline and online scenarios. In the offline scenario, we develop an optimal algorithm that computes the optimal solution in pseudo-polynomial time, which is the best possible solution as the problem undertaken is NP-hard. In the online scenario, we propose an efficient heuristic algorithm based on optimal properties derived for the optimal offline solution. Simulation results validate the efficiency of the proposed algorithm.

  8. Firm behavior, environmental externalities and public policy

    NASA Astrophysics Data System (ADS)

    Curtis, Earnest Markell, IV

    This dissertation consists of three essays which examine environmental policy, employer mandates and energy consumption. The essays explore how firms respond to government policies such as environmental regulation and employer mandates. Understanding how firms adjust to government policies is crucial to law makers attempting to design optimal policies that maximize net benefits to society. The first essay, titled Who Loses under Power Plant Cap-and-Trade Programs tests how a major cap-and-trade program, known as the NOx Budget Trading Program (NBP), affected labor markets in the region where it was implemented. The cap-and-trade program dramatically decreased levels of NOx emissions and added substantial costs to energy producers. Using a triple-differences approach that takes advantage of the geographic and time variation of the program as well as variation in industry energy-intensity levels, I examine how employment dynamics changed in manufacturing industries whose production process requires high levels of energy. After accounting for a variety of flexible state, county and industry trends, I find that employment in the manufacturing sector dropped by 1.7% as a result of the NBP. Young workers experienced the largest employment declines and earnings of newly hired workers fell after the regulation began. Employment declines are shown to have occurred primarily through decreased hiring rates rather than increased separation rates, thus mitigating the impact on incumbent workers. The second essay, titled Evaluating Workplace Mandates with Flows versus Stocks: An Application to California Paid Family Leave uses an underexploited data set to examine the impact of the California Paid Family Leave program on employment outcomes for young women. Most papers on mandated benefits examine labor outcomes by looking at earnings and employment levels of all workers. Examining these levels will be imprecise if the impacts of the program develop over time and firms are wary to immediately adjust employment and wages for existing workers. Using Quarterly Workforce Indicator data, we are able to measure the impact on hires, new hire earnings, separations and extended leaves among young women. Earnings for young female new hires fell in California relative to other workers, but changed little relative to country-wide comparison groups. We find strong evidence that separations (of at least three months) among young women and the number and shares of young female new hires increased. Many young women that separate (leave the payroll) eventually return to the same firm. Increased separation and hiring rates among young women in the labor market ("churning") may reflect both increased time spent with children and greater job mobility (i.e., reduced job lock) as the result of mandated paid family leave across the labor market. The third essay, Evidence of an Energy Management Gap in U.S. Manufacturing: Spillovers from Firm Management Practices to Energy Efficiency, merge a well-cited survey of firm management practices into confidential plant level U.S. Census manufacturing data to examine whether generic, i.e. non-energy specific, firm management practices, "spillover" to enhance energy efficiency in the United States. For U.S. manufacturing plants we find this relationship to be more nuanced than prior research on UK plants. Most management techniques are shown to have beneficial spillovers to energy efficiency, but an emphasis on generic targets, conditional on other management practices, results in spillovers that increase energy intensity. Our specification controls for industry specific effects at a detailed 6-digit NAICS level and finds the relationship between management and energy use to be strongest for firms in energy intensive industries. We interpret the empirical result that generic management practices do not necessarily spillover to improved energy performance as evidence of an "energy management gap."

  9. Guide to Operating and Maintaining EnergySmart Schools

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    Through a commitment to high performance, school districts are discovering that smart energy choices can create lasting benefits for students, communities, and the environment. For example, an energy efficient school district with 4,000 students can save as much as $160,000 a year in energy costs. Over 10 years, those savings can reach $1.6 million, translating into the ability to hire more teachers, purchase more textbooks and computers, or invest in additional high performance facilities. Beyond these bottomline benefits, schools can better foster student health, decrease absenteeism, and serve as centers of community life. The U.S. Department of Energy's EnergySmart Schoolsmore » Program promotes a 30 percent improvement in existing school energy use. It also encourages the building of new schools that exceed code (ASHRAE 90.11999) by 50 percent or more. The program provides resources like this Guide to Operating and Maintaining EnergySmart Schools to assist school decisionmakers in planning, financing, operating, and maintaining energy efficient, high performance schools. It also offers education and training for building industry professionals. Operations and maintenance refer to all scheduled and unscheduled actions for preventing equipment failure or decline with the goal of increasing efficiency, reliability, and safety. A preventative maintenance program is the organized and planned performance of maintenance activities in order to prevent system or production problems or failures from occurring. In contrast, deferred maintenance or reactive maintenance (also called diagnostic or corrective maintenance) is conducted to address an existing problem. This guide is a primary resource for developing and implementing a districtor schoolwide operations and maintenance (O&M) program that focuses on energy efficiency. The EnergySmart Schools Solutions companion CD contains additional supporting information for design, renovation, and retrofit projects. The objective of this guide is to provide organizational and technical information for integrating energy and high performance facility management into existing O&M practices. The guide allows users to adapt and implement suggested O&M strategies to address specific energy efficiency goals. It recognizes and expands on existing tools and resources that are widely used throughout the high performance school industry. External resources are referenced throughout the guide and are also listed within the EnergySmart Schools O&M Resource List (Appendix J). While this guide emphasizes the impact of the energy efficiency component of O&M, it encourages taking a holistic approach to maintaining a high-performance school. This includes considering various environmental factors where energy plays an indirect or direct role. For example, indoor air quality, site selection, building orientation, and water efficiency should be considered. Resources to support these overlapping aspects will be cited throughout the guide.« less

  10. Quantifying the Financial Benefits of Multifamily Retrofits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Philbrick, D.; Scheu, R.; Brand, L.

    Increasing the adoption of energy efficient building practices will require the energy sector to increase their understanding of the way that retrofits affect multifamily financial performance as well as how those indicators are interpreted by the lending and appraisal industries. This project analyzed building, energy, and financial program data as well as other public and private data to examine the relationship between energy efficiency retrofits and financial performance on three levels: building, city, and community. The project goals were to increase the data and analysis in the growing body of multifamily financial benefits work as well provide a framework formore » other geographies to produce similar characterization. The goals are accomplished through three tasks. Task one: A pre- and post-retrofit analysis of thirteen Chicago multifamily buildings. Task two: A comparison of Chicago income and expenses to two national datasets. Task three: An in-depth look at multifamily market sales data and the subsequent impact of buildings that undergo retrofits.« less

  11. Direct Detection Electron Energy-Loss Spectroscopy: A Method to Push the Limits of Resolution and Sensitivity.

    PubMed

    Hart, James L; Lang, Andrew C; Leff, Asher C; Longo, Paolo; Trevor, Colin; Twesten, Ray D; Taheri, Mitra L

    2017-08-15

    In many cases, electron counting with direct detection sensors offers improved resolution, lower noise, and higher pixel density compared to conventional, indirect detection sensors for electron microscopy applications. Direct detection technology has previously been utilized, with great success, for imaging and diffraction, but potential advantages for spectroscopy remain unexplored. Here we compare the performance of a direct detection sensor operated in counting mode and an indirect detection sensor (scintillator/fiber-optic/CCD) for electron energy-loss spectroscopy. Clear improvements in measured detective quantum efficiency and combined energy resolution/energy field-of-view are offered by counting mode direct detection, showing promise for efficient spectrum imaging, low-dose mapping of beam-sensitive specimens, trace element analysis, and time-resolved spectroscopy. Despite the limited counting rate imposed by the readout electronics, we show that both core-loss and low-loss spectral acquisition are practical. These developments will benefit biologists, chemists, physicists, and materials scientists alike.

  12. Driving Extreme Efficiency to Market

    NASA Astrophysics Data System (ADS)

    Garbesi, Karina

    2014-03-01

    The rapid development of extremely energy efficient appliances and equipment is essential to curtail catastrophic climate disruption. This will require the on-going development of products that apply all best-practices and that take advantage of the synergies of hybridization and building integration. Beyond that, it requires the development of new disruptive technologies and concepts. To facilitate these goals, in 2011 the Lawrence Berkeley National Laboratory and the U.S. Department of Energy launched the Max Tech and Beyond Design Competition for Ultra-Low-Energy-Use Appliances and Equipment. Now in its third year, the competition supports faculty-lead student design teams at U.S. universities to develop and test new technology prototypes. This talk describes what the competition and the Max Tech Program are doing to drive such rapid technology progress and to facilitate the entry to the market of successful Max Tech prototypes. The talk also initiates a discussion of physicists' unique role in driving that technology progress faster and farther. Emerging Technologies, Building Technologies Office, U.S. Department of Energy.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    A new report from the National Renewable Energy Laboratory (NREL) explores the role of alternative fuels and energy efficient vehicles in motor fuel taxes. Throughout the United States, it is common practice for federal, state, and local governments to tax motor fuels on a per gallon basis to fund construction and maintenance of our transportation infrastructure. In recent years, however, expenses have outpaced revenues creating substantial funding shortfalls that have required supplemental funding sources. While rising infrastructure costs and the decreasing purchasing power of the gas tax are significant factors contributing to the shortfall, the increased use of alternative fuelsmore » and more stringent fuel economy standards are also exacerbating revenue shortfalls. The current dynamic places vehicle efficiency and petroleum use reduction polices at direct odds with policies promoting robust transportation infrastructure. Understanding the energy, transportation, and environmental tradeoffs of motor fuel tax policies can be complicated, but recent experiences at the state level are helping policymakers align their energy and environmental priorities with highway funding requirements.« less

  14. Building America Case Study: Quantifying the Financial Benefits of Multifamily Retrofits, Chicago, Illinois

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Increasing the adoption of energy efficient building practices will require the energy sector to increase their understanding of the way that retrofits affect multifamily financial performance as well as how those indicators are interpreted by the lending and appraisal industries. This project analyzed building, energy, and financial program data as well as other public and private data to examine the relationship between energy efficiency retrofits and financial performance on three levels: building, city, and community. The project goals were to increase the data and analysis in the growing body of multifamily financial benefits work as well provide a framework formore » other geographies to produce similar characterization. The goals are accomplished through three tasks: Task one: A pre- and post-retrofit analysis of thirteen Chicago multifamily buildings. Task two: A comparison of Chicago income and expenses to two national datasets. Task three: An in-depth look at multifamily market sales data and the subsequent impact of buildings that undergo retrofits.« less

  15. The production of consuming less: Energy efficiency, climate change, and light bulbs in North Carolina

    NASA Astrophysics Data System (ADS)

    Thoyre, Autumn

    In this research, I have analyzed the production of consuming less electricity through a case study of promotions of compact fluorescent light bulbs (CFLs). I focused on the CFL because it has been heavily promoted by environmentalists and electricity companies as a key tool for solving climate change, yet such promotions appear counter-intuitive. The magnitude of CFL promotions by environmentalists is surprising because CFLs can only impact less than 1% of U.S. greenhouse gas emissions. CFL promotions by electricity providers are surprising given such companies' normal incentives to sell more of their product. I used political ecological and symbolic interactionist theories, qualitative methods of data collection (including interviews, participant-observation, texts, and images), and a grounded theory analysis to understand this case. My findings suggest that, far from being a self-evident technical entity, energy efficiency is produced as an idea, a part of identities, a resource, and a source of value through social, political, and economic processes. These processes include identity formation and subjectification; gender-coded household labor; and corporate appropriation of household value resulting from environmental governance. I show how environmentalists use CFLs to make and claim neoliberal identities, proposing the concept of green neoliberal identity work as a mechanism through which neoliberal ideologies are translated into practices. I analyze how using this seemingly easy energy efficient technology constitutes labor that is gendered in ways that reflect and reproduce inequalities. I show how electricity companies have used environmental governance to valorize and appropriate home energy efficiency as an accumulation strategy. I conclude by discussing the symbolic power of CFLs, proposing a theory of green obsolescence, and framing the production of energy efficiency as a global production network. I found that promoting energy efficiency involves consuming less energy by consuming more technologies. This research contributes to understandings of how environmentalists become laboring subjects in an era of neoliberalism and how energy companies are responding to the threat of climate change by turning mitigation into an opportunity for profit.

  16. Residential energy use and potential conservation through reduced laundering temperatures in the United States and Canada.

    PubMed

    Sabaliunas, Darius; Pittinger, Charles; Kessel, Cristy; Masscheleyn, Patrick

    2006-04-01

    A residential energy-use model was developed to estimate energy budgets for household laundering practices in the United States and Canada. The thermal energy for heating water and mechanical energy for agitating clothes in conventional washing machines were calculated for representative households in the United States and Canada. Comparisons in energy consumption among hot-, warm-, and cold-water wash and rinse cycles, horizontal- and vertical-axis washing machines, and gas and electric water heaters, were calculated on a per-wash-load basis. Demographic data for current laundering practices in the United States and Canada were then incorporated to estimate household and national energy consumption on an annual basis for each country. On average, the thermal energy required to heat water using either gas or electric energy constitutes 80% to 85% of the total energy consumed per wash in conventional, vertical-axis (top-loading) washing machines. The balance of energy used is mechanical energy. Consequently, the potential energy savings per load in converting from hot-and-warm- to cold-wash temperatures can be significant. Annual potential energy and cost savings and reductions in carbon dioxide emissions are also estimated for each country, assuming full conversion to cold-wash water temperatures. This study provides useful information to consumers for conserving energy in the home, as well as to, manufacturers in the design of more energy-efficient laundry formulations and appliances.

  17. A path to practical Solar Pumped Lasers via Radiative Energy Transfer

    DOE PAGES

    Reusswig, Philip D.; Nechayev, Sergey; Scherer, Jennifer M.; ...

    2015-10-05

    The optical conversion of incoherent solar radiation into a bright, coherent laser beam enables the application of nonlinear optics to solar energy conversion and storage. Here, we present an architecture for solar pumped lasers that uses a luminescent solar concentrator to decouple the conventional trade-off between solar absorption efficiency and the mode volume of the optical gain material. We report a 750-μm-thick Nd 3+ -doped YAG planar waveguide sensitized by a luminescent CdSe/CdZnS (core/shell) colloidal nanocrystal, yielding a peak cascade energy transfer of 14%, a broad spectral response in the visible portion of the solar spectrum, and an equivalent quasi-CWmore » solar lasing threshold of 23 W-cm -2, or approximately 230 suns. The efficient coupling of incoherent, spectrally broad sunlight in small gain volumes should allow the generation of coherent laser light from intensities of less than 100 suns.« less

  18. Practical water production from desert air

    PubMed Central

    Kalmutzki, Markus J.; Kapustin, Eugene A.

    2018-01-01

    Energy-efficient production of water from desert air has not been developed. A proof-of-concept device for harvesting water at low relative humidity was reported; however, it used external cooling and was not desert-tested. We report a laboratory-to-desert experiment where a prototype using up to 1.2 kg of metal-organic framework (MOF)–801 was tested in the laboratory and later in the desert of Arizona, USA. It produced 100 g of water per kilogram of MOF-801 per day-and-night cycle, using only natural cooling and ambient sunlight as a source of energy. We also report an aluminum-based MOF-303, which delivers more than twice the amount of water. The desert experiment uncovered key parameters pertaining to the energy, material, and air requirements for efficient production of water from desert air, even at a subzero dew point. PMID:29888332

  19. A path to practical Solar Pumped Lasers via Radiative Energy Transfer

    PubMed Central

    Reusswig, Philip D.; Nechayev, Sergey; Scherer, Jennifer M.; Hwang, Gyu Weon; Bawendi, Moungi G.; Baldo, Marc. A.; Rotschild, Carmel

    2015-01-01

    The optical conversion of incoherent solar radiation into a bright, coherent laser beam enables the application of nonlinear optics to solar energy conversion and storage. Here, we present an architecture for solar pumped lasers that uses a luminescent solar concentrator to decouple the conventional trade-off between solar absorption efficiency and the mode volume of the optical gain material. We report a 750-μm-thick Nd3+-doped YAG planar waveguide sensitized by a luminescent CdSe/CdZnS (core/shell) colloidal nanocrystal, yielding a peak cascade energy transfer of 14%, a broad spectral response in the visible portion of the solar spectrum, and an equivalent quasi-CW solar lasing threshold of 23 W-cm−2, or approximately 230 suns. The efficient coupling of incoherent, spectrally broad sunlight in small gain volumes should allow the generation of coherent laser light from intensities of less than 100 suns. PMID:26434400

  20. High-flux solar-driven thermochemical dissociation of CO2 and H2O using nonstoichiometric ceria.

    PubMed

    Chueh, William C; Falter, Christoph; Abbott, Mandy; Scipio, Danien; Furler, Philipp; Haile, Sossina M; Steinfeld, Aldo

    2010-12-24

    Because solar energy is available in large excess relative to current rates of energy consumption, effective conversion of this renewable yet intermittent resource into a transportable and dispatchable chemical fuel may ensure the goal of a sustainable energy future. However, low conversion efficiencies, particularly with CO(2) reduction, as well as utilization of precious materials have limited the practical generation of solar fuels. By using a solar cavity-receiver reactor, we combined the oxygen uptake and release capacity of cerium oxide and facile catalysis at elevated temperatures to thermochemically dissociate CO(2) and H(2)O, yielding CO and H(2), respectively. Stable and rapid generation of fuel was demonstrated over 500 cycles. Solar-to-fuel efficiencies of 0.7 to 0.8% were achieved and shown to be largely limited by the system scale and design rather than by chemistry.

  1. A path to practical Solar Pumped Lasers via Radiative Energy Transfer.

    PubMed

    Reusswig, Philip D; Nechayev, Sergey; Scherer, Jennifer M; Hwang, Gyu Weon; Bawendi, Moungi G; Baldo, Marc A; Rotschild, Carmel

    2015-10-05

    The optical conversion of incoherent solar radiation into a bright, coherent laser beam enables the application of nonlinear optics to solar energy conversion and storage. Here, we present an architecture for solar pumped lasers that uses a luminescent solar concentrator to decouple the conventional trade-off between solar absorption efficiency and the mode volume of the optical gain material. We report a 750-μm-thick Nd(3+)-doped YAG planar waveguide sensitized by a luminescent CdSe/CdZnS (core/shell) colloidal nanocrystal, yielding a peak cascade energy transfer of 14%, a broad spectral response in the visible portion of the solar spectrum, and an equivalent quasi-CW solar lasing threshold of 23 W-cm(-2), or approximately 230 suns. The efficient coupling of incoherent, spectrally broad sunlight in small gain volumes should allow the generation of coherent laser light from intensities of less than 100 suns.

  2. Criteria for extending the operation periods of thermoelectric converters based on IV-VI compounds

    NASA Astrophysics Data System (ADS)

    Sadia, Yatir; Ohaion-Raz, Tsion; Ben-Yehuda, Ohad; Korngold, Meidad; Gelbstein, Yaniv

    2016-09-01

    The recent energy demands affected by the dilution of conventional energy resources and the growing awareness of environmental considerations, had positioned the research of renewable energy conversion methods in general and of thermoelectric direct conversion of thermal into electrical energies in particular, in the forefront of the currently active applicative sciences. IV-VI thermoelectric compounds (e.g. GeTe, PbTe and SnTe) and their alloys comprise some of the most efficient thermoelectric compositions ever reported. Yet a proper utilization of such materials in practical thermoelectric devices, still requires an overcoming the so-called technological "valley of death", including among others, transport properties' degradation, due to sublimation of volatile Te rich species, while being subjected to elevated temperatures for long periods of time. In an attempt to establish practical operation criteria for extending the operation periods of such thermoelectric converters, it is currently shown based on thermal gravimetric and metallurgical considerations that such harmful sublimation can be practically bridged over by limiting the maximal operating temperatures to the 410-430 °C range for GeTe rich alloys and to 510-530 °C for PbTe and SnTe rich alloys, depending of the thermoelectric leg's diameter.

  3. Supported versus colloidal zinc oxide for advanced oxidation processes

    NASA Astrophysics Data System (ADS)

    Laxman, Karthik; Al Rashdi, Manal; Al Sabahi, Jamal; Al Abri, Mohammed; Dutta, Joydeep

    2017-07-01

    Photocatalysis is a green technology which typically utilizes either supported or colloidal catalysts for the mineralization of aqueous organic contaminants. Catalyst surface area and surface energy are the primary factors determining its efficiency, but correlation between the two is still unclear. This work explores their relation and hierarchy in a photocatalytic process involving both supported and colloidal catalysts. In order to do this the active surface areas of supported zinc oxide nanorods (ZnO NR's) and colloidal zinc oxide nanoparticles (having different surface energies) were equalized and their phenol oxidation mechanism and capacity was analyzed. It was observed that while surface energy had subtle effects on the oxidation rate of the catalysts, the degradation efficiency was primarily a function of the surface area; which makes it a better parameter for comparison when studying different catalyst forms of the same material. Thus we build a case for the use of supported catalysts, wherein their catalytic efficiency was tested to be unaltered over several days under both natural and artificial light, suggesting their viability for practical applications.

  4. Effect of temperature on the performances and in situ polarization analysis of zinc-nickel single flow batteries

    NASA Astrophysics Data System (ADS)

    Cheng, Yuanhui; Zhang, Huamin; Lai, Qinzhi; Li, Xianfeng; Zheng, Qiong; Xi, Xiaoli; Ding, Cong

    2014-03-01

    The recently proposed high power density zinc-nickel single flow batteries (ZNBs) exhibit great potential for larger scale energy storage. The urgent needs are in the research into temperature adaptability of ZNBs before practical utilization. Furthermore, making clear their polarization distribution is essential to direct the further improvement of battery performance. Here, we focus on the trends in the polarization distribution and effect of temperature on the performance of ZNBs. The result shows that ZNBs can operate in the temperature range from 0 °C to 40 °C with acceptable energy efficiency (53%-79.1%) at 80 mA cm-2. The temperature sensitivity of coulombic efficiency and energy efficiency are 0.65% °C-1 and 0.98% °C-1 at 0 °C-20 °C, respectively. The positive polarization is much larger than the negative polarization at all studied temperatures. The charge overpotential of the positive electrode is more sensitive to temperature. These results enable us to better evaluate the application prospect of ZNBs and point a clear struggling orientation to further improve the battery performance.

  5. Auger Up-Conversion of Low-Intensity Infrared Light in Engineered Quantum Dots

    DOE PAGES

    Makarov, Nikolay S.; Lin, Qianglu; Pietryga, Jeffrey M.; ...

    2016-11-29

    One source of efficiency losses in photovoltaic cells is their transparency toward solar photons with energies below the band gap of the absorbing layer. This loss can be reduced using a process of up-conversion whereby two or more sub-band-gap photons generate a single above-gap exciton. Traditional approaches to up-conversion, such as nonlinear two-photon absorption (2PA) or triplet fusion, suffer from low efficiency at solar light intensities, a narrow absorption bandwidth, nonoptimal absorption energies, and difficulties for implementing in practical devices. We show that these deficiencies can be alleviated using the effect of Auger up-conversion in thick-shell PbSe/CdSe quantum dots. Thismore » process relies on Auger recombination whereby two low-energy, core-based excitons are converted into a single higher-energy, shell-based exciton. When compared to their monocomponent counterparts, the tailored PbSe/CdSe heterostructures feature enhanced absorption cross-sections, a higher efficiency of the “productive” Auger pathway involving re-excitation of a hole, and longer lifetimes of both core- and shell-localized excitons. These features lead to effective up-conversion cross-sections that are more than 6 orders of magnitude higher than for standard nonlinear 2PA, which allows for efficient up-conversion of continuous wave infrared light at intensities as low as a few watts per square centimeter.« less

  6. Energy Sprawl or Energy Efficiency: Climate Policy Impacts on Natural Habitat for the United States of America

    PubMed Central

    McDonald, Robert I.; Fargione, Joseph; Kiesecker, Joe; Miller, William M.; Powell, Jimmie

    2009-01-01

    Concern over climate change has led the U.S. to consider a cap-and-trade system to regulate emissions. Here we illustrate the land-use impact to U.S. habitat types of new energy development resulting from different U.S. energy policies. We estimated the total new land area needed by 2030 to produce energy, under current law and under various cap-and-trade policies, and then partitioned the area impacted among habitat types with geospatial data on the feasibility of production. The land-use intensity of different energy production techniques varies over three orders of magnitude, from 1.9–2.8 km2/TW hr/yr for nuclear power to 788–1000 km2/TW hr/yr for biodiesel from soy. In all scenarios, temperate deciduous forests and temperate grasslands will be most impacted by future energy development, although the magnitude of impact by wind, biomass, and coal to different habitat types is policy-specific. Regardless of the existence or structure of a cap-and-trade bill, at least 206,000 km2 will be impacted without substantial increases in energy efficiency, which saves at least 7.6 km2 per TW hr of electricity conserved annually and 27.5 km2 per TW hr of liquid fuels conserved annually. Climate policy that reduces carbon dioxide emissions may increase the areal impact of energy, although the magnitude of this potential side effect may be substantially mitigated by increases in energy efficiency. The possibility of widespread energy sprawl increases the need for energy conservation, appropriate siting, sustainable production practices, and compensatory mitigation offsets. PMID:19707570

  7. Energy sprawl or energy efficiency: climate policy impacts on natural habitat for the United States of America.

    PubMed

    McDonald, Robert I; Fargione, Joseph; Kiesecker, Joe; Miller, William M; Powell, Jimmie

    2009-08-26

    Concern over climate change has led the U.S. to consider a cap-and-trade system to regulate emissions. Here we illustrate the land-use impact to U.S. habitat types of new energy development resulting from different U.S. energy policies. We estimated the total new land area needed by 2030 to produce energy, under current law and under various cap-and-trade policies, and then partitioned the area impacted among habitat types with geospatial data on the feasibility of production. The land-use intensity of different energy production techniques varies over three orders of magnitude, from 1.9-2.8 km(2)/TW hr/yr for nuclear power to 788-1000 km(2)/TW hr/yr for biodiesel from soy. In all scenarios, temperate deciduous forests and temperate grasslands will be most impacted by future energy development, although the magnitude of impact by wind, biomass, and coal to different habitat types is policy-specific. Regardless of the existence or structure of a cap-and-trade bill, at least 206,000 km(2) will be impacted without substantial increases in energy efficiency, which saves at least 7.6 km(2) per TW hr of electricity conserved annually and 27.5 km(2) per TW hr of liquid fuels conserved annually. Climate policy that reduces carbon dioxide emissions may increase the areal impact of energy, although the magnitude of this potential side effect may be substantially mitigated by increases in energy efficiency. The possibility of widespread energy sprawl increases the need for energy conservation, appropriate siting, sustainable production practices, and compensatory mitigation offsets.

  8. Activities of the National Institutes of Health relating to energy efficiency and pollution prevention.

    PubMed Central

    Ficca, S A; Chyun, Y D; Ebrahimi, M; Kutlak, F; Memarzadeh, F

    2000-01-01

    The National Institutes of Health (NIH) is one of the world's premier biomedical research centers. Although NIH owns and operates more than 1,300 acres and 197 buildings across the country, the main campus is in Bethesda, Maryland. This campus consists of over 312 acres and 75 laboratories and other buildings, which consume vast amounts of energy. Aware of the NIH role in setting biomedical research agendas and priorities, its administrators strive to set good examples in energy efficiency and pollution prevention. Three current projects are presented as "best practices" examples of meeting the stated commitment of NIH to leadership in environmental stewardship: a) design and current construction of a 250-bed clinical research hospital designed to allow conversion of patient care units to research laboratories and vice-versa; b) design and construction of a six-story research laboratory that combines energy-saving innovations with breakthroughs in research technologies; and c) a massive, $200-million modernization of the campus utility infrastructure that involves generation systems for steam and chilled water and distribution systems for chilled water, steam, potable water, electricity, communications and computer networking, compressed air, and natural gas. Based on introduction of energy-efficiency measures, millions of dollars in savings for energy needs are projected; already the local electric utility has granted several million dollars in rebates. The guiding principles of NIH environmental stewardship help to ensure that energy conservation measures maximize benefits versus cost and also balance expediency with efficiency within available funding resources. This is a committee report for the Leadership Conference: Biomedical Research and the Environment held 1--2 November 1999 at the National Institutes of Health, Bethesda, Maryland. PMID:11121359

  9. Low noise niobium dc SQUID with a planar input coil

    NASA Astrophysics Data System (ADS)

    de Waal, V. J.; van den Hamer, P.; Klapwijk, T. M.

    1983-02-01

    A practical all-niobium dc superconducting quantum interference device (SQUID) with a niobium spiral input coil has been developed. The SQUID utilizes submicron Josephson junctions. The best intrinsic energy resolution obtained with a 1-nH SQUID is 4×10-32 J/Hz. A 20-turn 1.2-μH input coil is coupled to a 2.3-nH SQUID with an efficiency of 0.5. The energy resolution with respect to the coil is 1×10-30 J/Hz.

  10. 41 CFR 102-74.185 - What heating and cooling policy must Federal agencies follow in Federal facilities?

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... overall energy efficient and economical manner; (b) Maintain temperatures to maximize customer satisfaction by conforming to local commercial equivalent temperature levels and operating practices; (c) Set...-conditioning during non-working hours, except as necessary to return space temperatures to a suitable level for...

  11. Zero-reabsorption doped-nanocrystal luminescent solar concentrators.

    PubMed

    Erickson, Christian S; Bradshaw, Liam R; McDowall, Stephen; Gilbertson, John D; Gamelin, Daniel R; Patrick, David L

    2014-04-22

    Optical concentration can lower the cost of solar energy conversion by reducing photovoltaic cell area and increasing photovoltaic efficiency. Luminescent solar concentrators offer an attractive approach to combined spectral and spatial concentration of both specular and diffuse light without tracking, but they have been plagued by luminophore self-absorption losses when employed on practical size scales. Here, we introduce doped semiconductor nanocrystals as a new class of phosphors for use in luminescent solar concentrators. In proof-of-concept experiments, visibly transparent, ultraviolet-selective luminescent solar concentrators have been prepared using colloidal Mn(2+)-doped ZnSe nanocrystals that show no luminescence reabsorption. Optical quantum efficiencies of 37% are measured, yielding a maximum projected energy concentration of ∼6× and flux gain for a-Si photovoltaics of 15.6 in the large-area limit, for the first time bounded not by luminophore self-absorption but by the transparency of the waveguide itself. Future directions in the use of colloidal doped nanocrystals as robust, processable spectrum-shifting phosphors for luminescent solar concentration on the large scales required for practical application of this technology are discussed.

  12. Communication of Energy Efficiency Information to Remodelers: Lessons From Current Practice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liaukus, C.

    2012-10-01

    The effective communication of energy efficiency and building science information to remodeling contractors is achieved through varying formats, timelines, and modes depending on who is delivering the information, who is intended to receive it, and what technical, intellectual,and time resources the recipients have at their disposal. Determining what type of communication is effective does not lend itself to a clearly quantifiable test but rather a qualitative one. That qualitative judgment can be supported by the research of current practices deemed effective for one or more of the following reasons: it has led to the successful completion of a certifying testmore » or other evaluation, it has been widely used for the remodeling industry, it has been considered effective by a sampling of remodeling contractors, and/or it has proven effective in the field for the BARA team. These criteria were used to create a select list of communications to be further analyzed to determine why they are effective and how less successful formats or strategies can be revised for greater effectiveness.« less

  13. From Zero Energy Buildings to Zero Energy Districts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Polly, Ben; Kutscher, Chuck; Macumber, Dan

    Some U.S. cities are planning advanced districts that have goals for zero energy, water, waste, and/or greenhouse gas emissions. From an energy perspective, zero energy districts present unique opportunities to cost-effectively achieve high levels of energy efficiency and renewable energy penetration across a collection of buildings that may be infeasible at the individual building scale. These high levels of performance are accomplished through district energy systems that harness renewable and wasted energy at large scales and flexible building loads that coordinate with variable renewable energy supply. Unfortunately, stakeholders face a lack of documented processes, tools, and best practices to assistmore » them in achieving zero energy districts. The National Renewable Energy Laboratory (NREL) is partnering on two new district projects in Denver: the National Western Center and the Sun Valley Neighborhood. We are working closely with project stakeholders in their zero energy master planning efforts to develop the resources needed to resolve barriers and create replicable processes to support future zero energy district efforts across the United States. Initial results of these efforts include the identification and description of key zero energy district design principles (maximizing building efficiency, solar potential, renewable thermal energy, and load control), economic drivers, and master planning principles. The work has also resulted in NREL making initial enhancements to the U.S. Department of Energy's open source building energy modeling platform (OpenStudio and EnergyPlus) with the long-term goal of supporting the design and optimization of energy districts.« less

  14. Accelerated weight histogram method for exploring free energy landscapes

    NASA Astrophysics Data System (ADS)

    Lindahl, V.; Lidmar, J.; Hess, B.

    2014-07-01

    Calculating free energies is an important and notoriously difficult task for molecular simulations. The rapid increase in computational power has made it possible to probe increasingly complex systems, yet extracting accurate free energies from these simulations remains a major challenge. Fully exploring the free energy landscape of, say, a biological macromolecule typically requires sampling large conformational changes and slow transitions. Often, the only feasible way to study such a system is to simulate it using an enhanced sampling method. The accelerated weight histogram (AWH) method is a new, efficient extended ensemble sampling technique which adaptively biases the simulation to promote exploration of the free energy landscape. The AWH method uses a probability weight histogram which allows for efficient free energy updates and results in an easy discretization procedure. A major advantage of the method is its general formulation, making it a powerful platform for developing further extensions and analyzing its relation to already existing methods. Here, we demonstrate its efficiency and general applicability by calculating the potential of mean force along a reaction coordinate for both a single dimension and multiple dimensions. We make use of a non-uniform, free energy dependent target distribution in reaction coordinate space so that computational efforts are not wasted on physically irrelevant regions. We present numerical results for molecular dynamics simulations of lithium acetate in solution and chignolin, a 10-residue long peptide that folds into a β-hairpin. We further present practical guidelines for setting up and running an AWH simulation.

  15. Accelerated weight histogram method for exploring free energy landscapes.

    PubMed

    Lindahl, V; Lidmar, J; Hess, B

    2014-07-28

    Calculating free energies is an important and notoriously difficult task for molecular simulations. The rapid increase in computational power has made it possible to probe increasingly complex systems, yet extracting accurate free energies from these simulations remains a major challenge. Fully exploring the free energy landscape of, say, a biological macromolecule typically requires sampling large conformational changes and slow transitions. Often, the only feasible way to study such a system is to simulate it using an enhanced sampling method. The accelerated weight histogram (AWH) method is a new, efficient extended ensemble sampling technique which adaptively biases the simulation to promote exploration of the free energy landscape. The AWH method uses a probability weight histogram which allows for efficient free energy updates and results in an easy discretization procedure. A major advantage of the method is its general formulation, making it a powerful platform for developing further extensions and analyzing its relation to already existing methods. Here, we demonstrate its efficiency and general applicability by calculating the potential of mean force along a reaction coordinate for both a single dimension and multiple dimensions. We make use of a non-uniform, free energy dependent target distribution in reaction coordinate space so that computational efforts are not wasted on physically irrelevant regions. We present numerical results for molecular dynamics simulations of lithium acetate in solution and chignolin, a 10-residue long peptide that folds into a β-hairpin. We further present practical guidelines for setting up and running an AWH simulation.

  16. Improving health, safety and energy efficiency in New Zealand through measuring and applying basic housing standards.

    PubMed

    Gillespie-Bennett, Julie; Keall, Michael; Howden-Chapman, Philippa; Baker, Michael G

    2013-08-02

    Substandard housing is a problem in New Zealand. Historically there has been little recognition of the important aspects of housing quality that affect people's health and safety. In this viewpoint article we outline the importance of assessing these factors as an essential step to improving the health and safety of New Zealanders and household energy efficiency. A practical risk assessment tool adapted to New Zealand conditions, the Healthy Housing Index (HHI), measures the physical characteristics of houses that affect the health and safety of the occupants. This instrument is also the only tool that has been validated against health and safety outcomes and reported in the international peer-reviewed literature. The HHI provides a framework on which a housing warrant of fitness (WOF) can be based. The HHI inspection takes about one hour to conduct and is performed by a trained building inspector. To maximise the effectiveness of this housing quality assessment we envisage the output having two parts. The first would be a pass/fail WOF assessment showing whether or not the house meets basic health, safety and energy efficiency standards. The second component would rate each main assessment area (health, safety and energy efficiency), potentially on a five-point scale. This WOF system would establish a good minimum standard for rental accommodation as well encouraging improved housing performance over time. In this article we argue that the HHI is an important, validated, housing assessment tool that will improve housing quality, leading to better health of the occupants, reduced home injuries, and greater energy efficiency. If required, this tool could be extended to also cover resilience to natural hazards, broader aspects of sustainability, and the suitability of the dwelling for occupants with particular needs.

  17. [Environmental efficiency evaluation under carbon emission constraint in Western China].

    PubMed

    Rong, Jian-bo; Yan, Li-jiao; Huang, Shao-rong; Zhang, Ge

    2015-06-01

    This research used the SBM model based on undesirable outputs to measure the static environmental efficiency of Western China under carbon emission constraint from 2000 to 2012. The researchers also utilized the Malmquist index to further analyze the change tendency of environmental efficiency. Additionally, Tobit regression analysis was used to study the factors relevant to environmental efficiency. Practical solutions to improve environmental quality in Western China were put forward. The study showed that in Western China, environmental efficiency with carbon emission constraint was significantly lower than that without carbon emission constraint, and the difference could be described as an inverse U-shaped curve which increased at first and then decreased. Guang-xi and Inner Mongolia, the two provinces met the effective environmental efficiency levels all the time under carbon emission constraint. However, the five provinces of Guizhou, Gansu, Qinghai, Ningxia and Xinjiang did not. Furthermore, Ningxia had the lowest level of environmental efficiency, with a score between 0.281-0.386. Although the environmental efficiency of most provinces was currently at an ineffective level, the environmental efficiency quality was gradually improving at an average speed of 6.6%. Excessive CO2 emission and a large amount of energy consumption were the primary factors causing environmental inefficiency in Western China, and energy intensity had the most negative impact on the environmental efficiency. The increase of import and export trade reduced the environmental efficiency significantly in Western China, while the increase of foreign direct investment had a positive effect on its environmental efficiency.

  18. Bioleaching mechanism of Zn, Pb, In, Ag, Cd and As from Pb/Zn smelting slag by autotrophic bacteria.

    PubMed

    Wang, Jia; Huang, Qifei; Li, Ting; Xin, Baoping; Chen, Shi; Guo, Xingming; Liu, Changhao; Li, Yuping

    2015-08-15

    A few studies have focused on release of valuable/toxic metals from Pb/Zn smelting slag by heterotrophic bioleaching using expensive yeast extract as an energy source. The high leaching cost greatly limits the practical potential of the method. In this work, autotrophic bioleaching using cheap sulfur or/and pyrite as energy matter was firstly applied to tackle the smelting slag and the bioleaching mechanisms were explained. The results indicated autotrophic bioleaching can solubilize valuable/toxic metals from slag, yielding maximum extraction efficiencies of 90% for Zn, 86% for Cd and 71% for In, although the extraction efficiencies of Pb, As and Ag were poor. The bioleaching performance of Zn, Cd and Pb was independent of leaching system, and leaching mechanism was acid dissolution. A maximum efficiency of 25% for As was achieved by acid dissolution in sulfursulfur oxidizing bacteria (S-SOB), but the formation of FeAsO4 reduced extraction efficiency in mixed energy source - mixed culture (MS-MC). Combined works of acid dissolution and Fe(3+) oxidation in MS-MC was responsible for the highest extraction efficiency of 71% for In. Ag was present in the slag as refractory AgPb4(AsO4)3 and AgFe2S3, so extraction did not occur. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. The High Field Path to Practical Fusion Energy

    NASA Astrophysics Data System (ADS)

    Mumgaard, Robert; Whyte, D.; Greenwald, M.; Hartwig, Z.; Brunner, D.; Sorbom, B.; Marmar, E.; Minervini, J.; Bonoli, P.; Irby, J.; Labombard, B.; Terry, J.; Vieira, R.; Wukitch, S.

    2017-10-01

    We propose a faster, lower cost development path for fusion energy enabled by high temperature superconductors, devices at high magnetic field, innovative technologies and modern approaches to technology development. Timeliness, scale, and economic-viability are the drivers for fusion energy to combat climate change and aid economic development. The opportunities provided by high-temperature superconductors, innovative engineering and physics, and new organizational structures identified over the last few years open new possibilities for realizing practical fusion energy that could meet mid-century de-carbonization needs. We discuss re-factoring the fusion energy development path with an emphasis on concrete risk retirement strategies utilizing a modular approach based on the high-field tokamak that leverages the broader tokamak physics understanding of confinement, stability, and operational limits. Elements of this plan include development of high-temperature superconductor magnets, simplified immersion blankets, advanced long-leg divertors, a compact divertor test tokamak, efficient current drive, modular construction, and demountable magnet joints. An R&D plan culminating in the construction of an integrated pilot plant and test facility modeled on the ARC concept is presented.

  20. An insight into actual energy use and its drivers in high-performance buildings

    DOE PAGES

    Li, Cheng; Hong, Tianzhen; Yan, Da

    2014-07-12

    Using portfolio analysis and individual detailed case studies, we studied the energy performance and drivers of energy use in 51 high-performance office buildings in the U.S., Europe, China, and other parts of Asia. Portfolio analyses revealed that actual site energy use intensity (EUI) of the study buildings varied by a factor of as much as 11, indicating significant variation in real energy use in HPBs worldwide. Nearly half of the buildings did not meet the American Society of Heating, Refrigerating, and Air Conditioning Engineers (ASHRAE) Standard 90.1-2004 energy target, raising questions about whether a building’s certification as high performing accuratelymore » indicates that a building is energy efficient and suggesting that improvement in the design and operation of HPBs is needed to realize their energy-saving potential. We studied the influence of climate, building size, and building technologies on building energy performance and found that although all are important, none are decisive factors in building energy use. EUIs were widely scattered in all climate zones. There was a trend toward low energy use in small buildings, but the correlation was not absolute; some small HPBs exhibited high energy use, and some large HPBs exhibited low energy use. We were unable to identify a set of efficient technologies that correlated directly to low EUIs. In two case studies, we investigated the influence of occupant behavior as well as operation and maintenance on energy performance and found that both play significant roles in realizing energy savings. We conclude that no single factor determines the actual energy performance of HPBs, and adding multiple efficient technologies does not necessarily improve building energy performance; therefore, an integrated design approach that takes account of climate, technology, occupant behavior, and operations and maintenance practices should be implemented to maximize energy savings in HPBs. As a result, these findings are intended to help architects, engineers, operators, and policy makers improve the design and operation of HPBs.« less

  1. Disorder engineering of undoped TiO2 nanotube arrays for highly efficient solar-driven oxygen evolution.

    PubMed

    Salari, M; Aboutalebi, S H; Aghassi, A; Wagner, P; Mozer, A J; Wallace, G G

    2015-02-28

    The trade-off between performance and complexity of the device manufacturing process should be balanced to enable the economic harvest of solar energy. Here, we demonstrate a conceptual, yet practical and well-regulated strategy to achieve efficient solar photocatalytic activity in TiO2 through controlled phase transformation and disorder engineering in the surface layers of TiO2 nanotubes. This approach enabled us to fine-tune the bandgap structure of undoped TiO2 according to our needs while simultaneously obtaining robust separation of photo-excited charge carriers. Introduction of specific surface defects also assisted in utilization of the visible part of sunlight to split water molecules for the production of oxygen. The strategy proposed here can serve as a guideline to overcome the practical limitation in the realization of efficient, non-toxic, chemically stable photoelectrochemical systems with high catalytic activity at neutral pH under visible illumination conditions. We also successfully incorporated TiO2 nanotube arrays (TNTAs) with free-based porphyrin affording a pathway with an overall 140% enhanced efficiency, an oxygen evolution rate of 436 μL h(-1) and faradic efficiencies over 100%.

  2. An overview of solar energy applications in buildings in Greece

    NASA Astrophysics Data System (ADS)

    Papamanolis, Nikos

    2016-09-01

    This work classifies and describes the main fields of solar energy exploitation in buildings in Greece, a country with high solar energy capacities. The study focuses on systems and technologies that apply to residential and commercial buildings following the prevailing design and construction practices (conventional buildings) and investigates the effects of the architectural and constructional characteristics of these buildings on the respective applications. In addition, it examines relevant applications in other building categories and in buildings with increased ecological sensitivity in their design and construction (green buildings). Through its findings, the study seeks to improve the efficiency and broaden the scope of solar energy applications in buildings in Greece to the benefit of their energy and environmental performance.

  3. Statistical Properties of Maximum Likelihood Estimators of Power Law Spectra Information

    NASA Technical Reports Server (NTRS)

    Howell, L. W., Jr.

    2003-01-01

    A simple power law model consisting of a single spectral index, sigma(sub 2), is believed to be an adequate description of the galactic cosmic-ray (GCR) proton flux at energies below 10(exp 13) eV, with a transition at the knee energy, E(sub k), to a steeper spectral index sigma(sub 2) greater than sigma(sub 1) above E(sub k). The maximum likelihood (ML) procedure was developed for estimating the single parameter sigma(sub 1) of a simple power law energy spectrum and generalized to estimate the three spectral parameters of the broken power law energy spectrum from simulated detector responses and real cosmic-ray data. The statistical properties of the ML estimator were investigated and shown to have the three desirable properties: (Pl) consistency (asymptotically unbiased), (P2) efficiency (asymptotically attains the Cramer-Rao minimum variance bound), and (P3) asymptotically normally distributed, under a wide range of potential detector response functions. Attainment of these properties necessarily implies that the ML estimation procedure provides the best unbiased estimator possible. While simulation studies can easily determine if a given estimation procedure provides an unbiased estimate of the spectra information, and whether or not the estimator is approximately normally distributed, attainment of the Cramer-Rao bound (CRB) can only be ascertained by calculating the CRB for an assumed energy spectrum- detector response function combination, which can be quite formidable in practice. However, the effort in calculating the CRB is very worthwhile because it provides the necessary means to compare the efficiency of competing estimation techniques and, furthermore, provides a stopping rule in the search for the best unbiased estimator. Consequently, the CRB for both the simple and broken power law energy spectra are derived herein and the conditions under which they are stained in practice are investigated.

  4. Improving Energy Efficiency in CNC Machining

    NASA Astrophysics Data System (ADS)

    Pavanaskar, Sushrut S.

    We present our work on analyzing and improving the energy efficiency of multi-axis CNC milling process. Due to the differences in energy consumption behavior, we treat 3- and 5-axis CNC machines separately in our work. For 3-axis CNC machines, we first propose an energy model that estimates the energy requirement for machining a component on a specified 3-axis CNC milling machine. Our model makes machine-specific predictions of energy requirements while also considering the geometric aspects of the machining toolpath. Our model - and the associated software tool - facilitate direct comparison of various alternative toolpath strategies based on their energy-consumption performance. Further, we identify key factors in toolpath planning that affect energy consumption in CNC machining. We then use this knowledge to propose and demonstrate a novel toolpath planning strategy that may be used to generate new toolpaths that are inherently energy-efficient, inspired by research on digital micrography -- a form of computational art. For 5-axis CNC machines, the process planning problem consists of several sub-problems that researchers have traditionally solved separately to obtain an approximate solution. After illustrating the need to solve all sub-problems simultaneously for a truly optimal solution, we propose a unified formulation based on configuration space theory. We apply our formulation to solve a problem variant that retains key characteristics of the full problem but has lower dimensionality, allowing visualization in 2D. Given the complexity of the full 5-axis toolpath planning problem, our unified formulation represents an important step towards obtaining a truly optimal solution. With this work on the two types of CNC machines, we demonstrate that without changing the current infrastructure or business practices, machine-specific, geometry-based, customized toolpath planning can save energy in CNC machining.

  5. Comment to: "Martini straight: Boosting performance using a shorter cutoff and GPUs" by D.H. de Jong, S. Baoukina, H.I. Ingólfsson, and S.J. Marrink

    NASA Astrophysics Data System (ADS)

    Benedetti, Florian; Loison, Claire

    2018-07-01

    In a recent study published in this journal, de Jong et al. investigated the efficiency improvement reached thanks to new parameter sets for molecular dynamics simulations using the coarse-grained Martini force-field and its implementation in the Gromacs simulation package (de Jong et al., 2016). The advantages of the new sets are the computational efficiency and the conservation of the equilibrium properties of the Martini model. This article reports additional tests on the total energy conservation for zwitterionic lipid bilayer membranes. The results show that the conclusion by de Jong et al. on the total energy conservation of the new parameter sets, based on short simulations and homogeneous systems, is not generalizable to long lipid bilayer simulations. The energy conservation of the three parameter sets compared in their article (common, new and new-RF) differ if one analyzes sufficiently long trajectories or if one measures the total energy drifts. In practice, when total energy conservation is important for a Martini lipid bilayer simulation, we would consider either keeping the common set, or carefully testing the new-RF set for energy leaks or sources before production use.

  6. Sun/Earth: how to use solar and climatic energies today

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crowther, R.L.

    1976-01-01

    This book graphically presents many concepts that are cost-effective today for the utilization of free natural energy sources in homes and other buildings. All of the natural energy concepts presented are in a process of continuing development. Many of them are immediately economic and practical, while some are not. It takes the application of money to construct devices to harness natural energy or to construct energy efficient forms of architecture. In numerous cases operational energy is not required to employ the Sun, wind, water, and Earth as free anti-inflationary energy sources. In other cases a very small input of operationalmore » energy in comparison to the total energy output is required. All land and buildings are solar collectors. The problem is how to cost effectively make them efficient collectors of solar radiation in winter and how to use natural forms of energy to cool and ventilate them during summer and other seasons of the year. Regional and microclimatic conditions vary throughout the world. Topography and landscaping can play an important role in climatic control and climatic effect upon architecture. The examples presented for optimized energy conservation and solar active and passive systems are generic to most northern latitudes, but need modification or adaption to specific locations and climates. An annotated bibliography, containing additional reference, is included.« less

  7. Energy technology X - A decade of progress; Proceedings of the Tenth Conference, Washington, DC, February 28-March 2, 1983

    NASA Astrophysics Data System (ADS)

    Hill, R. F.

    The characterization, development, and availability of various energy sources for large scale energy production are discussed. Attention is given to government, industry, and international policies on energy resource development and implementation. Techniques for energy analysis, planning, and regulation are examined, with consideration given to conservation practices, military energy programs, and financing schemes. Efficient energy use is examined, including energy and load management, building retrofits, and cogeneration installations, as well as waste heat recovery. The state of the art of nuclear, fossil, and geothermal power extraction is investigated, with note taken of synthetic fuels, fluidized bed combustion, and pollution control in coal-powered plants. Finally, progress in renewable energy technologies, including solar heating and cooling, biomass, and large and small wind energy conversion devices is described. No individual items are abstracted in this volume

  8. Design of a Solar Tracking System Using the Brightest Region in the Sky Image Sensor

    PubMed Central

    Wei, Ching-Chuan; Song, Yu-Chang; Chang, Chia-Chi; Lin, Chuan-Bi

    2016-01-01

    Solar energy is certainly an energy source worth exploring and utilizing because of the environmental protection it offers. However, the conversion efficiency of solar energy is still low. If the photovoltaic panel perpendicularly tracks the sun, the solar energy conversion efficiency will be improved. In this article, we propose an innovative method to track the sun using an image sensor. In our method, it is logical to assume the points of the brightest region in the sky image representing the location of the sun. Then, the center of the brightest region is assumed to be the solar-center, and is mathematically calculated using an embedded processor (Raspberry Pi). Finally, the location information on the sun center is sent to the embedded processor to control two servo motors that are capable of moving both horizontally and vertically to track the sun. In comparison with the existing sun tracking methods using image sensors, such as the Hough transform method, our method based on the brightest region in the sky image remains accurate under conditions such as a sunny day and building shelter. The practical sun tracking system using our method was implemented and tested. The results reveal that the system successfully captured the real sun center in most weather conditions, and the servo motor system was able to direct the photovoltaic panel perpendicularly to the sun center. In addition, our system can be easily and practically integrated, and can operate in real-time. PMID:27898002

  9. Design of a Solar Tracking System Using the Brightest Region in the Sky Image Sensor.

    PubMed

    Wei, Ching-Chuan; Song, Yu-Chang; Chang, Chia-Chi; Lin, Chuan-Bi

    2016-11-25

    Solar energy is certainly an energy source worth exploring and utilizing because of the environmental protection it offers. However, the conversion efficiency of solar energy is still low. If the photovoltaic panel perpendicularly tracks the sun, the solar energy conversion efficiency will be improved. In this article, we propose an innovative method to track the sun using an image sensor. In our method, it is logical to assume the points of the brightest region in the sky image representing the location of the sun. Then, the center of the brightest region is assumed to be the solar-center, and is mathematically calculated using an embedded processor (Raspberry Pi). Finally, the location information on the sun center is sent to the embedded processor to control two servo motors that are capable of moving both horizontally and vertically to track the sun. In comparison with the existing sun tracking methods using image sensors, such as the Hough transform method, our method based on the brightest region in the sky image remains accurate under conditions such as a sunny day and building shelter. The practical sun tracking system using our method was implemented and tested. The results reveal that the system successfully captured the real sun center in most weather conditions, and the servo motor system was able to direct the photovoltaic panel perpendicularly to the sun center. In addition, our system can be easily and practically integrated, and can operate in real-time.

  10. A Low-Cost Energy-Efficient Cableless Geophone Unit for Passive Surface Wave Surveys.

    PubMed

    Dai, Kaoshan; Li, Xiaofeng; Lu, Chuan; You, Qingyu; Huang, Zhenhua; Wu, H Felix

    2015-09-25

    The passive surface wave survey is a practical, non-invasive seismic exploration method that has increasingly been used in geotechnical engineering. However, in situ deployment of traditional wired geophones is labor intensive for a dense sensor array. Alternatively, stand-alone seismometers can be used, but they are bulky, heavy, and expensive because they are usually designed for long-term monitoring. To better facilitate field applications of the passive surface wave survey, a low-cost energy-efficient geophone system was developed in this study. The hardware design is presented in this paper. To validate the system's functionality, both laboratory and field experiments were conducted. The unique feature of this newly-developed cableless geophone system allows for rapid field applications of the passive surface wave survey with dense array measurements.

  11. Efficient solar-to-fuels production from a hybrid microbial–water-splitting catalyst system

    PubMed Central

    Torella, Joseph P.; Gagliardi, Christopher J.; Chen, Janice S.; Bediako, D. Kwabena; Colón, Brendan; Way, Jeffery C.; Silver, Pamela A.; Nocera, Daniel G.

    2015-01-01

    Photovoltaic cells have considerable potential to satisfy future renewable-energy needs, but efficient and scalable methods of storing the intermittent electricity they produce are required for the large-scale implementation of solar energy. Current solar-to-fuels storage cycles based on water splitting produce hydrogen and oxygen, which are attractive fuels in principle but confront practical limitations from the current energy infrastructure that is based on liquid fuels. In this work, we report the development of a scalable, integrated bioelectrochemical system in which the bacterium Ralstonia eutropha is used to efficiently convert CO2, along with H2 and O2 produced from water splitting, into biomass and fusel alcohols. Water-splitting catalysis was performed using catalysts that are made of earth-abundant metals and enable low overpotential water splitting. In this integrated setup, equivalent solar-to-biomass yields of up to 3.2% of the thermodynamic maximum exceed that of most terrestrial plants. Moreover, engineering of R. eutropha enabled production of the fusel alcohol isopropanol at up to 216 mg/L, the highest bioelectrochemical fuel yield yet reported by >300%. This work demonstrates that catalysts of biotic and abiotic origin can be interfaced to achieve challenging chemical energy-to-fuels transformations. PMID:25675518

  12. Reducing domestic heating demand: Managing the impact of behavior-changing feedback devices via marketing.

    PubMed

    Jensen, Thorben; Chappin, Émile J L

    2017-07-15

    Feedback devices can be used to inform households about their energy-consumption behavior. This may persuade them to practice energy conservation. The use of feedback devices can also-via word of mouth-spread among households and thereby support the spread of the incentivized behavior, e.g. energy-efficient heating behavior. This study investigates how to manage the impact of these environmental innovations via marketing. Marketing activities can support the diffusion of devices. This study aims to identify the most effective strategies of marketing feedback devices. We did this by adapting an agent-based model to simulate the roll-out of a novel feedback technology and heating behavior within households in a virtual city. The most promising marketing strategies were simulated and their impacts were analyzed. We found it particularly effective to lend out feedback devices to consumers, followed by leveraging the social influence of well-connected individuals, and giving away the first few feedback devices for free. Making households aware of the possibility of purchasing feedback devices was found to be least effective. However, making households aware proved to be most cost-efficient. This study shows that actively managing the roll-out of feedback devices can increase their impacts on energy-conservation both effectively and cost-efficiently. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. A shape-adaptive thin-film-based approach for 50% high-efficiency energy generation through micro-grating sliding electrification.

    PubMed

    Zhu, Guang; Zhou, Yu Sheng; Bai, Peng; Meng, Xian Song; Jing, Qingshen; Chen, Jun; Wang, Zhong Lin

    2014-06-18

    Effectively harvesting ambient mechanical energy is the key for realizing self-powered and autonomous electronics, which addresses limitations of batteries and thus has tremendous applications in sensor networks, wireless devices, and wearable/implantable electronics, etc. Here, a thin-film-based micro-grating triboelectric nanogenerator (MG-TENG) is developed for high-efficiency power generation through conversion of mechanical energy. The shape-adaptive MG-TENG relies on sliding electrification between complementary micro-sized arrays of linear grating, which offers a unique and straightforward solution in harnessing energy from relative sliding motion between surfaces. Operating at a sliding velocity of 10 m/s, a MG-TENG of 60 cm(2) in overall area, 0.2 cm(3) in volume and 0.6 g in weight can deliver an average output power of 3 W (power density of 50 mW cm(-2) and 15 W cm(-3)) at an overall conversion efficiency of ∼ 50%, making it a sufficient power supply to regular electronics, such as light bulbs. The scalable and cost-effective MG-TENG is practically applicable in not only harvesting various mechanical motions but also possibly power generation at a large scale. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. High temperature semiconductor diode laser pumps for high energy laser applications

    NASA Astrophysics Data System (ADS)

    Campbell, Jenna; Semenic, Tadej; Guinn, Keith; Leisher, Paul O.; Bhunia, Avijit; Mashanovitch, Milan; Renner, Daniel

    2018-02-01

    Existing thermal management technologies for diode laser pumps place a significant load on the size, weight and power consumption of High Power Solid State and Fiber Laser systems, thus making current laser systems very large, heavy, and inefficient in many important practical applications. To mitigate this thermal management burden, it is desirable for diode pumps to operate efficiently at high heat sink temperatures. In this work, we have developed a scalable cooling architecture, based on jet-impingement technology with industrial coolant, for efficient cooling of diode laser bars. We have demonstrated 60% electrical-to-optical efficiency from a 9xx nm two-bar laser stack operating with propylene-glycolwater coolant, at 50 °C coolant temperature. To our knowledge, this is the highest efficiency achieved from a diode stack using 50 °C industrial fluid coolant. The output power is greater than 100 W per bar. Stacks with additional laser bars are currently in development, as this cooler architecture is scalable to a 1 kW system. This work will enable compact and robust fiber-coupled diode pump modules for high energy laser applications.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herbert, Christine

    SPEER will provide assistance and develop strategies for successfully deploying best practices to advance energy efficiency on a regional basis through work with state and local governmental entities. SPEER will work with regional stakeholders and DOE to coordinate and assist the development, management, and implementation of market transformation policies and programs that remove implementation barriers, and create regional synergies and facilitate peer-to-peer exchange.

  16. Energy-Efficient Neuromorphic Classifiers.

    PubMed

    Martí, Daniel; Rigotti, Mattia; Seok, Mingoo; Fusi, Stefano

    2016-10-01

    Neuromorphic engineering combines the architectural and computational principles of systems neuroscience with semiconductor electronics, with the aim of building efficient and compact devices that mimic the synaptic and neural machinery of the brain. The energy consumptions promised by neuromorphic engineering are extremely low, comparable to those of the nervous system. Until now, however, the neuromorphic approach has been restricted to relatively simple circuits and specialized functions, thereby obfuscating a direct comparison of their energy consumption to that used by conventional von Neumann digital machines solving real-world tasks. Here we show that a recent technology developed by IBM can be leveraged to realize neuromorphic circuits that operate as classifiers of complex real-world stimuli. Specifically, we provide a set of general prescriptions to enable the practical implementation of neural architectures that compete with state-of-the-art classifiers. We also show that the energy consumption of these architectures, realized on the IBM chip, is typically two or more orders of magnitude lower than that of conventional digital machines implementing classifiers with comparable performance. Moreover, the spike-based dynamics display a trade-off between integration time and accuracy, which naturally translates into algorithms that can be flexibly deployed for either fast and approximate classifications, or more accurate classifications at the mere expense of longer running times and higher energy costs. This work finally proves that the neuromorphic approach can be efficiently used in real-world applications and has significant advantages over conventional digital devices when energy consumption is considered.

  17. Numerical Analysis of Combined Well and Open-Closed Loops Geothermal (CWG) Systems

    NASA Astrophysics Data System (ADS)

    Park, Yu-Chul

    2016-04-01

    Open-loop geothermal heat pump (GHP) system and closed-loop heat pump systems have been used in Korea to reduce emission of greenhouse gases such as carbon dioxide (CO2). The GHP systems have the pros and cons, for example, the open-loop GHP system is good energy-efficient and the closed-loop GHP system requires minimum maintenance costs. The open-loop GHP system can be used practically only with large amount of groundwater supply. The closed-loop GHP system can be used with high costs of initial installation. The performance and efficiency of the GHP system depend on the characteristics of the GHP system itself in addition to the geologic conditions. To overcome the cons of open-loop or closed-loop GHP system, the combined well and open-closed loops geothermal (CWG) system was designed. The open-loop GHP system is surrounded with closed-loop GHP systems in the CWG system. The geothermal energy in closed-loop GHP systems is supplied by the groundwater pumped by the open-loop GHP system. In this study, 2 different types of the CWG systems (small aperture hybrid CWG system and large aperture CWG system) are estimated using numerical simulation models in the aspect of energy efficiency. This work was supported by the New & Renewable Energy Core Technology Program of the Korea Institute of Energy Technology Evaluation and Planning (KETEP), granted financial resource from the Ministry of Trade, Industry & Energy, Republic of Korea. (No.20153030111120).

  18. Efficient triplet harvesting of hybrid white organic light-emitting diodes using thermally activated delayed fluorescence green emitter

    NASA Astrophysics Data System (ADS)

    Lee, Song Eun; Lee, Ho Won; Baek, Hyun Jung; Yun, Tae Jun; Yun, Geum Jae; Kim, Woo Young; Kim, Young Kwan

    2016-10-01

    Hybrid white organic light-emitting diodes (WOLEDs) were fabricated by applying triplet harvesting (TH) using a green thermally activated delayed fluorescence (TADF) emitter. The triplet exciton of the green TADF emitter can be upconverted to its singlet state. The TH involved energy transfer of triplet exciton from a blue fluorescent emitter to a green TADF and red phosphorescent emitters, where they can decay radiatively. In addition, the triplet exciton of the green TADF emitter was energy transferred to its singlet state for a reverse intersystem crossing by green emission. Enhanced hybrid WOLEDs were demonstrated using an efficient green TADF emitter combined with red phosphorescent and blue fluorescent emitters. Hybrid WOLEDs were fabricated with various hole-electron recombination zones as changing blue emitting layer thicknesses. Among these, hybrid WOLEDs showed a maximum external quantum efficiency of 11.23%, luminous efficiency of 29.20 cd/A, and a power efficiency of 26.21 lm/W. Moreover, the WOLED exhibited electroluminescence spectra with Commission International de L'Éclairage chromaticity of (0.38, 0.36) at 1000 cd/m2 and a color rendering index of 82 at a practical brightness of 20,000 cd/m2.

  19. Large-scale cauliflower-shaped hierarchical copper nanostructures for efficient photothermal conversion.

    PubMed

    Fan, Peixun; Wu, Hui; Zhong, Minlin; Zhang, Hongjun; Bai, Benfeng; Jin, Guofan

    2016-08-14

    Efficient solar energy harvesting and photothermal conversion have essential importance for many practical applications. Here, we present a laser-induced cauliflower-shaped hierarchical surface nanostructure on a copper surface, which exhibits extremely high omnidirectional absorption efficiency over a broad electromagnetic spectral range from the UV to the near-infrared region. The measured average hemispherical absorptance is as high as 98% within the wavelength range of 200-800 nm, and the angle dependent specular reflectance stays below 0.1% within the 0-60° incident angle. Such a structured copper surface can exhibit an apparent heating up effect under the sunlight illumination. In the experiment of evaporating water, the structured surface yields an overall photothermal conversion efficiency over 60% under an illuminating solar power density of ∼1 kW m(-2). The presented technology provides a cost-effective, reliable, and simple way for realizing broadband omnidirectional light absorptive metal surfaces for efficient solar energy harvesting and utilization, which is highly demanded in various light harvesting, anti-reflection, and photothermal conversion applications. Since the structure is directly formed by femtosecond laser writing, it is quite suitable for mass production and can be easily extended to a large surface area.

  20. Solar fuels via artificial photosynthesis.

    PubMed

    Gust, Devens; Moore, Thomas A; Moore, Ana L

    2009-12-21

    Because sunlight is diffuse and intermittent, substantial use of solar energy to meet humanity's needs will probably require energy storage in dense, transportable media via chemical bonds. Practical, cost effective technologies for conversion of sunlight directly into useful fuels do not currently exist, and will require new basic science. Photosynthesis provides a blueprint for solar energy storage in fuels. Indeed, all of the fossil-fuel-based energy consumed today derives from sunlight harvested by photosynthetic organisms. Artificial photosynthesis research applies the fundamental scientific principles of the natural process to the design of solar energy conversion systems. These constructs use different materials, and researchers tune them to produce energy efficiently and in forms useful to humans. Fuel production via natural or artificial photosynthesis requires three main components. First, antenna/reaction center complexes absorb sunlight and convert the excitation energy to electrochemical energy (redox equivalents). Then, a water oxidation complex uses this redox potential to catalyze conversion of water to hydrogen ions, electrons stored as reducing equivalents, and oxygen. A second catalytic system uses the reducing equivalents to make fuels such as carbohydrates, lipids, or hydrogen gas. In this Account, we review a few general approaches to artificial photosynthetic fuel production that may be useful for eventually overcoming the energy problem. A variety of research groups have prepared artificial reaction center molecules. These systems contain a chromophore, such as a porphyrin, covalently linked to one or more electron acceptors, such as fullerenes or quinones, and secondary electron donors. Following the excitation of the chromophore, photoinduced electron transfer generates a primary charge-separated state. Electron transfer chains spatially separate the redox equivalents and reduce electronic coupling, slowing recombination of the charge-separated state to the point that catalysts can use the stored energy for fuel production. Antenna systems, employing a variety of chromophores that absorb light throughout the visible spectrum, have been coupled to artificial reaction centers and have incorporated control and photoprotective processes borrowed from photosynthesis. Thus far, researchers have not discovered practical solar-driven catalysts for water oxidation and fuel production that are robust and use earth-abundant elements, but they have developed artificial systems that use sunlight to produce fuel in the laboratory. For example, artificial reaction centers, where electrons are injected from a dye molecule into the conduction band of nanoparticulate titanium dioxide on a transparent electrode, coupled to catalysts, such as platinum or hydrogenase enzymes, can produce hydrogen gas. Oxidizing equivalents from such reaction centers can be coupled to iridium oxide nanoparticles, which can oxidize water. This system uses sunlight to split water to oxygen and hydrogen fuel, but efficiencies are low and an external electrical potential is required. Although attempts at artificial photosynthesis fall short of the efficiencies necessary for practical application, they illustrate that solar fuel production inspired by natural photosynthesis is achievable in the laboratory. More research will be needed to identify the most promising artificial photosynthetic systems and realize their potential.

  1. Quantifying the benefits of a building retrofit using an integrated system approach: A case study

    DOE PAGES

    Regnier, Cynthia; Sun, Kaiyu; Hong, Tianzhen; ...

    2017-11-11

    Building retrofits provide a large opportunity to significantly reduce energy consumption in the buildings sector. Traditional building retrofits focus on equipment upgrades, often at the end of equipment life or failure, and result in replacement with marginally improved similar technology and limited energy savings. The Integrated System (IS) retrofit approach enables much greater energy savings by leveraging interactive effects between end use systems, enabling downsized or lower energy technologies. This work presents a case study in Hawaii quantifying the benefits of an IS retrofit approach compared to two traditional retrofit approaches: a Standard Practice of upgrading equipment to meet minimummore » code requirements, and an Improved Practice of upgrading equipment to a higher efficiency. The IS approach showed an energy savings of 84% over existing building energy use, much higher than the traditional approaches of 13% and 33%. The IS retrofit also demonstrated the greatest energy cost savings potential. While the degree of savings realized from the IS approach will vary by building and climate, these findings indicate that savings on the order of 50% and greater are not possible without an IS approach. It is therefore recommended that the IS approach be universally adopted to achieve deep energy savings.« less

  2. Quantifying the benefits of a building retrofit using an integrated system approach: A case study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Regnier, Cynthia; Sun, Kaiyu; Hong, Tianzhen

    Building retrofits provide a large opportunity to significantly reduce energy consumption in the buildings sector. Traditional building retrofits focus on equipment upgrades, often at the end of equipment life or failure, and result in replacement with marginally improved similar technology and limited energy savings. The Integrated System (IS) retrofit approach enables much greater energy savings by leveraging interactive effects between end use systems, enabling downsized or lower energy technologies. This work presents a case study in Hawaii quantifying the benefits of an IS retrofit approach compared to two traditional retrofit approaches: a Standard Practice of upgrading equipment to meet minimummore » code requirements, and an Improved Practice of upgrading equipment to a higher efficiency. The IS approach showed an energy savings of 84% over existing building energy use, much higher than the traditional approaches of 13% and 33%. The IS retrofit also demonstrated the greatest energy cost savings potential. While the degree of savings realized from the IS approach will vary by building and climate, these findings indicate that savings on the order of 50% and greater are not possible without an IS approach. It is therefore recommended that the IS approach be universally adopted to achieve deep energy savings.« less

  3. Building energy information systems: Synthesis of costs, savings, and best-practice uses

    DOE PAGES

    Granderson, Jessica; Lin, Guanjing

    2016-02-19

    Building energy information systems (EIS) are a powerful customer-facing monitoring and analytical technology that can enable up to 20% site energy savings for buildings. Few technologies are as heavily marketed, but in spite of their potential, EIS remain an under-adopted emerging technology. One reason is the lack of information on purchase costs and associated energy savings. While insightful, the growing body of individual case studies has not provided industry the information needed to establish the business case for investment. Vastly different energy and economic metrics prevent generalizable conclusions. This paper addresses three common questions concerning EIS use: what are themore » costs, what have users saved, and which best practices drive deeper savings? We present a large-scale assessment of the value proposition for EIS use based on data from over two-dozen organizations. Participants achieved year-over-year median site and portfolio savings of 17% and 8%, respectively; they reported that this performance would not have been possible without the EIS. The median five-year cost of EIS software ownership (up-front and ongoing costs) was calculated to be $1,800 per monitoring point (kilowatt meter points were most common), with a median portfolio-wide implementation size of approximately 200 points. In this paper, we present an analysis of the relationship between key implementation factors and achieved energy reductions. Extent of efficiency projects, building energy performance prior to EIS installation, depth of metering, and duration of EIS were strongly correlated with greater savings. As a result, we also identify the best practices use of EIS associated with greater energy savings.« less

  4. Building energy information systems: Synthesis of costs, savings, and best-practice uses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Granderson, Jessica; Lin, Guanjing

    Building energy information systems (EIS) are a powerful customer-facing monitoring and analytical technology that can enable up to 20% site energy savings for buildings. Few technologies are as heavily marketed, but in spite of their potential, EIS remain an under-adopted emerging technology. One reason is the lack of information on purchase costs and associated energy savings. While insightful, the growing body of individual case studies has not provided industry the information needed to establish the business case for investment. Vastly different energy and economic metrics prevent generalizable conclusions. This paper addresses three common questions concerning EIS use: what are themore » costs, what have users saved, and which best practices drive deeper savings? We present a large-scale assessment of the value proposition for EIS use based on data from over two-dozen organizations. Participants achieved year-over-year median site and portfolio savings of 17% and 8%, respectively; they reported that this performance would not have been possible without the EIS. The median five-year cost of EIS software ownership (up-front and ongoing costs) was calculated to be $1,800 per monitoring point (kilowatt meter points were most common), with a median portfolio-wide implementation size of approximately 200 points. In this paper, we present an analysis of the relationship between key implementation factors and achieved energy reductions. Extent of efficiency projects, building energy performance prior to EIS installation, depth of metering, and duration of EIS were strongly correlated with greater savings. As a result, we also identify the best practices use of EIS associated with greater energy savings.« less

  5. Optical design applications for enhanced illumination performance

    NASA Astrophysics Data System (ADS)

    Gilray, Carl; Lewin, Ian

    1995-08-01

    Nonimaging optical design techniques have been applied in the illumination industry for many years. Recently however, powerful software has been developed which allows accurate simulation and optimization of illumination devices. Wide experience has been obtained in using such design techniques for practical situations. These include automotive lighting where safety is of greatest importance, commercial lighting systems designed for energy efficiency, and numerous specialized applications. This presentation will discuss the performance requirements of a variety of illumination devices. It will further cover design methodology and present a variety of examples of practical applications for enhanced system performance.

  6. Superoxide radical and UV irradiation in ultrasound assisted oxidative desulfurization (UAOD): A potential alternative for greener fuels

    NASA Astrophysics Data System (ADS)

    Chan, Ngo Yeung

    This study is aimed at improving the current ultrasound assisted oxidative desulfurization (UAOD) process by utilizing superoxide radical as oxidant. Research was also conducted to investigate the feasibility of ultraviolet (UV) irradiation-assisted desulfurization. These modifications can enhance the process with the following achievements: (1) Meet the upcoming sulfur standards on various fuels including diesel fuel oils and residual oils; (2) More efficient oxidant with significantly lower consumption in accordance with stoichiometry; (3) Energy saving by 90%; (4) Greater selectivity in petroleum composition. Currently, the UAOD process and subsequent modifications developed in University of Southern California by Professor Yen's research group have demonstrated high desulfurization efficiencies towards various fuels with the application of 30% wt. hydrogen peroxide as oxidant. The UAOD process has demonstrated more than 50% desulfurization of refractory organic sulfur compounds with the use of Venturella type catalysts. Application of quaternary ammonium fluoride as phase transfer catalyst has significantly improved the desulfurization efficiency to 95%. Recent modifications incorporating ionic liquids have shown that the modified UAOD process can produce ultra-low sulfur, or near-zero sulfur diesels under mild conditions with 70°C and atmospheric pressure. Nevertheless, the UAOD process is considered not to be particularly efficient with respect to oxidant and energy consumption. Batch studies have demonstrated that the UAOD process requires 100 fold more oxidant than the stoichiometic requirement to achieve high desulfurization yield. The expected high costs of purchasing, shipping and storage of the oxidant would reduce the practicability of the process. The excess use of oxidant is not economically desirable, and it also causes environmental and safety issues. Post treatments would be necessary to stabilize the unspent oxidant residual to prevent the waste stream from becoming reactive or even explosive. High energy consumption is another drawback in the UAOD process. A typical 10 minutes ultrasonication applied in the UAOD process to achieve 95% desulfurization for 20g of diesel requires 450 kJ of energy, which is equivalent to approximately 50% of the energy that can be provided by the treated diesel. This great expenditure of energy is impractical for industries to adopt. In this study, modifications of the UAOD process, including the application of superoxide and selection of catalysts, were applied to lower the oxidant dosage and to improve the applicability towards heavy-distillates such as residual oil. The results demonstrated that the new system required 80% less oxidant as compared to previous generations of UAOD process without the loss of desulfurization efficiency. The new system demonstrated its suitability towards desulfurizing commercial mid-distillates including jet fuels, marine gas oil and sour diesel. This process also demonstrated a new method to desulfurize residual oil with high desulfurization yields. The new process development has been supported by Eco Energy Solutions Inc., Reno, Nevada and Intelligent Energy Inc., Long Beach, California. A feasibility study on UV assisted desulfurization by replacing ultrasound with UV irradiation was also conducted. The study demonstrated that the UV assisted desulfurization process consumes 90% less energy than the comparable process using ultrasonication. These process modifications demonstrated over 98% desulfurization efficiency on diesel oils and more than 75% on residual oils with significantly less oxidant and energy consumption. Also the feasibility to desulfurize commercial sour heavy oil was demonstrated. Based on the UAOD process and the commercialized modifications by Wan and Cheng, the feasible applications of superoxide and UV irradiation in the UAOD process could provide deep-desulfurization on various fuels with practical cost.

  7. Thermodynamic and energy efficiency analysis of power generation from natural salinity gradients by pressure retarded osmosis.

    PubMed

    Yip, Ngai Yin; Elimelech, Menachem

    2012-05-01

    The Gibbs free energy of mixing dissipated when fresh river water flows into the sea can be harnessed for sustainable power generation. Pressure retarded osmosis (PRO) is one of the methods proposed to generate power from natural salinity gradients. In this study, we carry out a thermodynamic and energy efficiency analysis of PRO work extraction. First, we present a reversible thermodynamic model for PRO and verify that the theoretical maximum extractable work in a reversible PRO process is identical to the Gibbs free energy of mixing. Work extraction in an irreversible constant-pressure PRO process is then examined. We derive an expression for the maximum extractable work in a constant-pressure PRO process and show that it is less than the ideal work (i.e., Gibbs free energy of mixing) due to inefficiencies intrinsic to the process. These inherent inefficiencies are attributed to (i) frictional losses required to overcome hydraulic resistance and drive water permeation and (ii) unutilized energy due to the discontinuation of water permeation when the osmotic pressure difference becomes equal to the applied hydraulic pressure. The highest extractable work in constant-pressure PRO with a seawater draw solution and river water feed solution is 0.75 kWh/m(3) while the free energy of mixing is 0.81 kWh/m(3)-a thermodynamic extraction efficiency of 91.1%. Our analysis further reveals that the operational objective to achieve high power density in a practical PRO process is inconsistent with the goal of maximum energy extraction. This study demonstrates thermodynamic and energetic approaches for PRO and offers insights on actual energy accessible for utilization in PRO power generation through salinity gradients. © 2012 American Chemical Society

  8. Energy-efficient building design in cold climates: Schools as a case study

    NASA Astrophysics Data System (ADS)

    Rangel Ruiz, Rocio

    Buildings account for great amounts of greenhouse gas emissions. In terms of energy, buildings account for one third of the total amount of energy used in the country every year! Schools account for 14 percent of the energy used annually in commercial and institutional buildings. Further, schools are one of the most commonly constructed building types in Canada and spaces such as classrooms are often duplicated. This makes them preferred candidates for the research that was undertaken where energy-efficient solutions that can be transferred to different school designs were derived. Throughout the study, the Commercial Building Incentive Program (CBIP) was used as a benchmark. The objectives of the study were to demonstrate energy-efficient concepts, provide a case study to evaluate solutions, develop typological models and provide an understanding of the innovation process. The technological and societal aspects of the energy-efficient design were addressed. With respect to the technological aspects, the first step was the analysis of conventional design using a school in Calgary as a case study. The optimization of conventional design was undertaken using computer modeling to identify best practice solutions. Aspects that were included in the studies were lighting design, envelope characteristics, HVAC systems and building plant systems. The inclusion of passive design included the analysis of daylighting and natural ventilation. Computer modeling was used to assess daylighting in classrooms with unilateral and bilateral daylighting. Illuminance levels, glare and light distribution were evaluated. The study of natural ventilation was undertaken using literature review. Airflow and outdoor temperatures were the focus to identify solutions that could be incorporated into the design of classrooms. It was concluded that achieving excellence in energy efficiency in schools could be achieved using readily available technologies. Energy savings of up to 63 percent better than Canada's Model National Energy Code for Buildings (MNECB) reference case and utility cost savings of 30,000 (on a 50,000 annual cost) were achieved through conventional design optimization. Additional energy savings of three percent and utility cost savings of $7,000 were seen when passive strategies were included in the design. With respect to the societal aspects, an exploratory research study was undertaken to examine innovation. Architects and energy consultants were interviewed. All design professionals included in the study had participated in projects approved for a grant under CBIP. The purpose of the study was to identify drivers and barriers to energy efficiency. The study demonstrated that external and internal innovation pressures have a significant effect on whether or not the technology is adopted. Suggestions for reducing barriers and further promoting energy efficiency are discussed in this thesis. It is expected that the research will not only aid designers in assessing projects with regard to local priorities, but will also provide building guidelines that serve as tools for the development of the Canadian energy compliance for CO2 emissions.

  9. Annual report to the President and the Congress on the State Energy Conservation Program for calendar year 1989

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1990-12-01

    The Department is required by Section 365(c) of Title 3, Part C, of the Energy Policy and Conservation Act (EPCA), 42 U.S.C. 6321-6327, as amended by Title 4, Part B of the Energy Conservation and Production Act (ECPA), to report annually to the President and the Congress on the operation of the State Energy Conservation Program. The report is to include an estimate of the energy conservation achieved, and the degree of state participation and achievement as well as a description of innovative conservation programs undertaken by individual states. Together the EPCA and the ECPA constitute the State Energy Conservationmore » Program (SECP) which has provided the states (any one of the 50 states, the District of Columbia, Puerto Rico, and the Territories and possessions of the United States) with funding to help establish and maintain their capability to plan, design, implement and coordinate a variety of programs and initiatives designed to promote energy conservation and efficiency at state and local levels. All states have operational programs funded under EPCA (no monies have been appropriated under ECPA since FY 1981). In addition, the majority of states have augmented the SECP with oil overcharge funding they have received over the past several years. Each state is required to provide a twenty-percent match for the Federal funds received, and its Base Plan must include the following program measures: (1) mandatory lighting efficiency standards for state public buildings; (2) programs to promote the availability and use of carpool, vanpool, and public transportation; (3) mandatory standards and policies relating to energy efficiency to govern the state procurement practices; (4) mandatory thermal efficiency standards and insulation requirements for new and renovated buildings; and (5) a traffic law or regulation, which permits the operator of a motor vehicle to turn right at a red stop light after stopping. 6 tabs.« less

  10. Design of a portable artificial heart drive system based on efficiency analysis.

    PubMed

    Kitamura, T

    1986-11-01

    This paper discusses a computer simulation of a pneumatic portable piston-type artificial heart drive system with a linear d-c-motor. The purpose of the design is to obtain an artificial heart drive system with high efficiency and small dimensions to enhance portability. The design employs two factors contributing the total efficiency of the drive system. First, the dimensions of the pneumatic actuator were optimized under a cost function of the total efficiency. Second, the motor performance was studied in terms of efficiency. More than 50 percent of the input energy of the actuator with practical loads is consumed in the armature circuit in all linear d-c-motors with brushes. An optimal design is: the piston cross-sectional area of 10.5 cm2 cylinder longitudinal length of 10 cm. The total efficiency could be up to 25 percent by improving the gasket to reduce the frictional force.

  11. Data-Aware Retrodiction for Asynchronous Harmonic Measurement in a Cyber-Physical Energy System.

    PubMed

    Liu, Youda; Wang, Xue; Liu, Yanchi; Cui, Sujin

    2016-08-18

    Cyber-physical energy systems provide a networked solution for safety, reliability and efficiency problems in smart grids. On the demand side, the secure and trustworthy energy supply requires real-time supervising and online power quality assessing. Harmonics measurement is necessary in power quality evaluation. However, under the large-scale distributed metering architecture, harmonic measurement faces the out-of-sequence measurement (OOSM) problem, which is the result of latencies in sensing or the communication process and brings deviations in data fusion. This paper depicts a distributed measurement network for large-scale asynchronous harmonic analysis and exploits a nonlinear autoregressive model with exogenous inputs (NARX) network to reorder the out-of-sequence measuring data. The NARX network gets the characteristics of the electrical harmonics from practical data rather than the kinematic equations. Thus, the data-aware network approximates the behavior of the practical electrical parameter with real-time data and improves the retrodiction accuracy. Theoretical analysis demonstrates that the data-aware method maintains a reasonable consumption of computing resources. Experiments on a practical testbed of a cyber-physical system are implemented, and harmonic measurement and analysis accuracy are adopted to evaluate the measuring mechanism under a distributed metering network. Results demonstrate an improvement of the harmonics analysis precision and validate the asynchronous measuring method in cyber-physical energy systems.

  12. Simulation analysis of a novel high efficiency silicon solar cell

    NASA Technical Reports Server (NTRS)

    Mokashi, Anant R.; Daud, T.; Kachare, A. H.

    1985-01-01

    It is recognized that crystalline silicon photovoltaic module efficiency of 15 percent or more is required for cost-effective photovoltaic energy utilization. This level of module efficiency requires large-area encapsulated production cell efficiencies in the range of 18 to 20 percent. Though the theoretical maximum of silicon solar cell efficiency for an idealized case is estimated to be around 30 percent, practical performance of cells to-date are considerably below this limit. This is understood to be largely a consequence of minority carrier losses in the bulk as well as at all surfaces including those under the metal contacts. In this paper a novel device design with special features to reduce bulk and surface recombination losses is evaluated using numerical analysis technique. Details of the numerical model, cell design, and analysis results are presented.

  13. Holistic processes and practices for clean energy in strengthening bioeconomic strategies (INDO-NORDEN)

    NASA Astrophysics Data System (ADS)

    Shurpali, Narasinha J.; Parameswaran, Binod; Raud, Merlin; Pumpanen, Jukka; Sippula, Olli; Jokiniemi, Jorma; Lusotarinen, Sari; Virkajarvi, Perttu

    2017-04-01

    We are proud to introduce the project, INDO-NORDEN, funded in response to the Science and Technology call of the INNO INDIGO Partnership Program (IPP) on Biobased Energy. The project is scheduled to begin from April 2017. The proposed project aims to address both subtopics of the call, Biofuels and From Waste to Energy with research partners from Finland (coordinating unit), India and Estonia. The EU and India share common objectives in enhancing energy security, promoting energy efficiency and energy safety, and the pursuit of sustainable development of clean and renewable energy source. The main objective of INDO-NORDEN is to investigate, evaluate and develop efficient processes and land use practices of transforming forest and agricultural biomass, agricultural residues and farm waste into clean fuels (solid, liquid or gas), by thermochemical or biochemical conversions. Forestry and agriculture are the major bioenergy sectors in Finland. Intensive forest harvesting techniques are being used in Finland to enhance the share of bioenergy in the total energy consumption in the future. However, there are no clear indications how environmentally safe are these intensive forestry practices in Finland. We address this issue through field studies addressing the climate impacts on the ecosystem carbon balance and detailed life cycle assessment. The role of agriculture in Finland is expected to grow significantly in the years to come. Here, we follow a holistic field experimental approach addressing several major issues relevant to Nordic agriculture under changing climatic conditions - soil nutrient management, recycling of nutrients, farm and agricultural waste management, biogas production potentials, greenhouse gas inventorying and entire production chain analysis. There is a considerable potential for process integration in the biofuel sector. This project plans to develop biofuel production processes adopted in Estonia and India with a major aim of enhancing biofuel yields. Additionally, the effects of biomass raw material on ash characteristics and behavior as well as on the fine particle and gas emissions in biomass-fired combustion plants will be evaluated. Thus, the project goes an extra mile in addressing both technological and environmental effects of bioenergy production with combustion processes. Finally, with a voluntary participation of companies with excellent track record in biogas production and CHP technology in participating countries, the project aims to bridge the gap between science, technology and industries.

  14. Quaternary organic solar cells enhanced by cocrystalline squaraines with power conversion efficiencies >10%

    DOE PAGES

    Goh, Tenghooi; Huang, Jing -Shun; Yager, Kevin G.; ...

    2016-08-11

    The incorporation of multiple donors into the bulk-heterojunction layer of organic polymer solar cells (PSCs) has been demonstrated as a practical and elegant strategy to improve photovoltaics performance. However, it is challenging to successfully design and blend multiple donors, while minimizing unfavorable interactions (e.g., morphological traps, recombination centers, etc.). Here, a new Förster resonance energy transfer-based design is shown utilizing the synergistic nature of three light active donors (two small molecules and a high-performance donor–acceptor polymer) with a fullerene acceptor to create highly efficient quaternary PSCs with power conversion efficiencies (PCEs) of up to 10.7%. Within this quaternary architecture, itmore » is revealed that the addition of small molecules in low concentrations broadens the absorption bandwidth, induces cocrystalline molecular conformations, and promotes rapid (picosecond) energy transfer processes. Finally, these results provide guidance for the design of multiple-donor systems using simple processing techniques to realize single-junction PSC designs with unprecedented PCEs.« less

  15. Engineering a Robust Photovoltaic Device with Quantum Dots and Bacteriorhodopsin

    PubMed Central

    2015-01-01

    We present a route toward a radical improvement in solar cell efficiency using resonant energy transfer and sensitization of semiconductor metal oxides with a light-harvesting quantum dot (QD)/bacteriorhodopsin (bR) layer designed by protein engineering. The specific aims of our approach are (1) controlled engineering of highly ordered bR/QD complexes; (2) replacement of the liquid electrolyte by a thin layer of gold; (3) highly oriented deposition of bR/QD complexes on a gold layer; and (4) use of the Forster resonance energy transfer coupling between bR and QDs to achieve an efficient absorbing layer for dye-sensitized solar cells. This proposed approach is based on the unique optical characteristics of QDs, on the photovoltaic properties of bR, and on state-of-the-art nanobioengineering technologies. It permits spatial and optical coupling together with control of hybrid material components on the bionanoscale. This method paves the way to the development of the solid-state photovoltaic device with the efficiency increased to practical levels. PMID:25383133

  16. Management system to a photovoltaic panel based on the measurement of short-circuit currents

    NASA Astrophysics Data System (ADS)

    Dordescu, M.

    2016-12-01

    This article is devoted to fundamental issues arising from operation in terms of increased energy efficiency for photovoltaic panel (PV). By measuring the current from functioning cage determine the current value prescribed amount corresponding to maximum power point results obtained by requiring proof of pregnancy with this method are the maximum energy possible, thus justifying the usefulness of this process very simple and inexpensive to implement in practice. The proposed adjustment method is much simpler and more economical than conventional methods that rely on measuring power cut.

  17. A transmission power optimization with a minimum node degree for energy-efficient wireless sensor networks with full-reachability.

    PubMed

    Chen, Yi-Ting; Horng, Mong-Fong; Lo, Chih-Cheng; Chu, Shu-Chuan; Pan, Jeng-Shyang; Liao, Bin-Yih

    2013-03-20

    Transmission power optimization is the most significant factor in prolonging the lifetime and maintaining the connection quality of wireless sensor networks. Un-optimized transmission power of nodes either interferes with or fails to link neighboring nodes. The optimization of transmission power depends on the expected node degree and node distribution. In this study, an optimization approach to an energy-efficient and full reachability wireless sensor network is proposed. In the proposed approach, an adjustment model of the transmission range with a minimum node degree is proposed that focuses on topology control and optimization of the transmission range according to node degree and node density. The model adjusts the tradeoff between energy efficiency and full reachability to obtain an ideal transmission range. In addition, connectivity and reachability are used as performance indices to evaluate the connection quality of a network. The two indices are compared to demonstrate the practicability of framework through simulation results. Furthermore, the relationship between the indices under the conditions of various node degrees is analyzed to generalize the characteristics of node densities. The research results on the reliability and feasibility of the proposed approach will benefit the future real deployments.

  18. A Transmission Power Optimization with a Minimum Node Degree for Energy-Efficient Wireless Sensor Networks with Full-Reachability

    PubMed Central

    Chen, Yi-Ting; Horng, Mong-Fong; Lo, Chih-Cheng; Chu, Shu-Chuan; Pan, Jeng-Shyang; Liao, Bin-Yih

    2013-01-01

    Transmission power optimization is the most significant factor in prolonging the lifetime and maintaining the connection quality of wireless sensor networks. Un-optimized transmission power of nodes either interferes with or fails to link neighboring nodes. The optimization of transmission power depends on the expected node degree and node distribution. In this study, an optimization approach to an energy-efficient and full reachability wireless sensor network is proposed. In the proposed approach, an adjustment model of the transmission range with a minimum node degree is proposed that focuses on topology control and optimization of the transmission range according to node degree and node density. The model adjusts the tradeoff between energy efficiency and full reachability to obtain an ideal transmission range. In addition, connectivity and reachability are used as performance indices to evaluate the connection quality of a network. The two indices are compared to demonstrate the practicability of framework through simulation results. Furthermore, the relationship between the indices under the conditions of various node degrees is analyzed to generalize the characteristics of node densities. The research results on the reliability and feasibility of the proposed approach will benefit the future real deployments. PMID:23519351

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    M., Zimring,; Hoffman, I.; Fuller, M.

    The Federal Housing Finance Agency (FHFA) regulates Fannie Mae, Freddie Mac, and the 12 Federal Home Loan Banks (the government-sponsored enterprises - GSEs). On July 6, 2010, FHFA and the Office of the Comptroller of the Currency (OCC) concluded that Property Assessed Clean Energy (PACE) programs 'present significant safety and soundness concerns' to the housing finance industry. This statement came after a year of discussions with state and federal agencies in which PACE, a novel mechanism for financing energy efficiency and renewable energy improvements, has gone from receiving support from the White House, canonization as one of Scientific American's 'Worldmore » Changing Ideas' and legislative adoption in 24 states to questionable relevance, at least in the residential sector. Whether PACE resumes its expansion as an innovative tool for financing energy efficiency and clean generation depends on outcomes in each of the three branches of government - discussions on a PACE pilot phase among federal agencies, litigation in federal court, and legislation in Congress - all highly uncertain. This policy brief addresses the practical impacts of these possible outcomes on existing and emerging PACE programs across the United States and potential paths forward.« less

  20. Research on the influencing factors of reverse logistics carbon footprint under sustainable development.

    PubMed

    Sun, Qiang

    2017-10-01

    With the concerns of ecological and circular economy along with sustainable development, reverse logistics has attracted the attention of enterprise. How to achieve sustainable development of reverse logistics has important practical significance of enhancing low carbon competitiveness. In this paper, the system boundary of reverse logistics carbon footprint is presented. Following the measurement of reverse logistics carbon footprint and reverse logistics carbon capacity is provided. The influencing factors of reverse logistics carbon footprint are classified into five parts such as intensity of reverse logistics, energy structure, energy efficiency, reverse logistics output, and product remanufacturing rate. The quantitative research methodology using ADF test, Johansen co-integration test, and impulse response is utilized to interpret the relationship between reverse logistics carbon footprint and the influencing factors more accurately. This research finds that energy efficiency, energy structure, and product remanufacturing rate are more capable of inhibiting reverse logistics carbon footprint. The statistical approaches will help practitioners in this field to structure their reverse logistics activities and also help academics in developing better decision models to reduce reverse logistics carbon footprint.

  1. Exploration, Sampling, And Reconstruction of Free Energy Surfaces with Gaussian Process Regression.

    PubMed

    Mones, Letif; Bernstein, Noam; Csányi, Gábor

    2016-10-11

    Practical free energy reconstruction algorithms involve three separate tasks: biasing, measuring some observable, and finally reconstructing the free energy surface from those measurements. In more than one dimension, adaptive schemes make it possible to explore only relatively low lying regions of the landscape by progressively building up the bias toward the negative of the free energy surface so that free energy barriers are eliminated. Most schemes use the final bias as their best estimate of the free energy surface. We show that large gains in computational efficiency, as measured by the reduction of time to solution, can be obtained by separating the bias used for dynamics from the final free energy reconstruction itself. We find that biasing with metadynamics, measuring a free energy gradient estimator, and reconstructing using Gaussian process regression can give an order of magnitude reduction in computational cost.

  2. Development of a Suite of Analytical Tools for Energy and Water Infrastructure Knowledge Discovery

    NASA Astrophysics Data System (ADS)

    Morton, A.; Piburn, J.; Stewart, R.; Chandola, V.

    2017-12-01

    Energy and water generation and delivery systems are inherently interconnected. With demand for energy growing, the energy sector is experiencing increasing competition for water. With increasing population and changing environmental, socioeconomic, and demographic scenarios, new technology and investment decisions must be made for optimized and sustainable energy-water resource management. This also requires novel scientific insights into the complex interdependencies of energy-water infrastructures across multiple space and time scales. To address this need, we've developed a suite of analytical tools to support an integrated data driven modeling, analysis, and visualization capability for understanding, designing, and developing efficient local and regional practices related to the energy-water nexus. This work reviews the analytical capabilities available along with a series of case studies designed to demonstrate the potential of these tools for illuminating energy-water nexus solutions and supporting strategic (federal) policy decisions.

  3. Can We Practically Bring Physics-based Modeling Into Operational Analytics Tools?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Granderson, Jessica; Bonvini, Marco; Piette, Mary Ann

    We present that analytics software is increasingly used to improve and maintain operational efficiency in commercial buildings. Energy managers, owners, and operators are using a diversity of commercial offerings often referred to as Energy Information Systems, Fault Detection and Diagnostic (FDD) systems, or more broadly Energy Management and Information Systems, to cost-effectively enable savings on the order of ten to twenty percent. Most of these systems use data from meters and sensors, with rule-based and/or data-driven models to characterize system and building behavior. In contrast, physics-based modeling uses first-principles and engineering models (e.g., efficiency curves) to characterize system and buildingmore » behavior. Historically, these physics-based approaches have been used in the design phase of the building life cycle or in retrofit analyses. Researchers have begun exploring the benefits of integrating physics-based models with operational data analytics tools, bridging the gap between design and operations. In this paper, we detail the development and operator use of a software tool that uses hybrid data-driven and physics-based approaches to cooling plant FDD and optimization. Specifically, we describe the system architecture, models, and FDD and optimization algorithms; advantages and disadvantages with respect to purely data-driven approaches; and practical implications for scaling and replicating these techniques. Finally, we conclude with an evaluation of the future potential for such tools and future research opportunities.« less

  4. Comparison of CDE data in phacoemulsification between an open hospital-based ambulatory surgical center and a free-standing ambulatory surgical center

    PubMed Central

    Chen, Ming; Chen, Mindy

    2010-01-01

    Mean CDE (cumulative dissipated energy) values were compared for an open hospital- based surgical center and a free-standing surgical center. The same model of phacoemulsifier (Alcon Infiniti Ozil) was used. Mean CDE values showed that surgeons (individual private practice) at the free-standing surgical center were more efficient than surgeons (individual private practice) at the open hospital-based surgical center (mean CDE at the hospital-based surgical center 18.96 seconds [SD = 12.51]; mean CDE at the free-standing surgical center 13.2 seconds [SD = 9.5]). CDE can be used to monitor the efficiency of a cataract surgeon and surgical center in phacoemulsification. The CDE value may be used by institutions as one of the indicators for quality control and audit in phacoemulsification. PMID:21151334

  5. Comparison of CDE data in phacoemulsification between an open hospital-based ambulatory surgical center and a free-standing ambulatory surgical center.

    PubMed

    Chen, Ming; Chen, Mindy

    2010-11-12

    Mean CDE (cumulative dissipated energy) values were compared for an open hospital- based surgical center and a free-standing surgical center. The same model of phacoemulsifier (Alcon Infiniti Ozil) was used. Mean CDE values showed that surgeons (individual private practice) at the free-standing surgical center were more efficient than surgeons (individual private practice) at the open hospital-based surgical center (mean CDE at the hospital-based surgical center 18.96 seconds [SD = 12.51]; mean CDE at the free-standing surgical center 13.2 seconds [SD = 9.5]). CDE can be used to monitor the efficiency of a cataract surgeon and surgical center in phacoemulsification. The CDE value may be used by institutions as one of the indicators for quality control and audit in phacoemulsification.

  6. Energy conservation and efficiency in manufacturing: Employee decisions and actions

    NASA Astrophysics Data System (ADS)

    Corson, Marla D.

    Energy conservation and intensity reduction efforts are becoming increasingly more prevalent and ultimately necessary, especially for energy-intensive manufacturing companies in particular to stay in business. Typical actions are to change technology, and thus, realize an energy cost savings in overall utilities. However, in today's competitive market, with climate change and other environmental impacts as well, it is necessary for the cost of energy to be valued as a cost of making a product, and thus, managed at the same level as the cost of labor or materials. This research assessed human behavior at the individual and organizational levels both at work and at home that either prompted or prohibited employees from taking daily action to conserve energy or develop greater energy efficient practices. Ultimately, the questions began with questions regarding employee views and knowledge of energy at work and at home and what drives both behaviors toward conservation or efficiency. And, the contribution identifies the key drivers, barriers, and/or incentives that affect those behaviors. The results of this study show that the key driver and motivator for energy conservation both at home and work is cost savings. The study showed that to further motivate individuals to conserve energy at home and work, more knowledge of the impact their actions have or could have as well as tools would be needed. The most poinient aspect of the research was the level of importance placed on energy conservation and the desire to conserve. The feedback given to the open ended questions was quite impressive regarding what employees have done and continue to do particularly within their homes to conserve energy. These findings brought about final recommendations that were in fact not expected but could significantly influence an increase in energy conservation at work by leveraging the existing desire to conserve which is a key component to decision making.

  7. Telemedicine can make healthcare greener.

    PubMed

    Yellowlees, Peter M; Chorba, Kathy; Burke Parish, Michelle; Wynn-Jones, Hannah; Nafiz, Najia

    2010-03-01

    The American healthcare industry is generally lacking environmentally sustainable practices. The environmental impact of healthcare practices in the country has been largely disregarded due to ambivalence, ignorance, and fears of additional costs and regulations. The current practices continue to pollute the environment by requiring large amounts of travel and paperwork by both the patient and the clinician. Telemedicine and health information technology help save time, energy, raw materials (such as paper and plastic), and fuel, thereby lowering the carbon footprint of the health industry. By implementing green practices, for instance, by engaging in carbon credit programs, the health industry could benefit financially as well as reduce its negative impact on the health of our planet. Companies that reduce their carbon emissions by implementing energy-saving practices can sell their carbon credits to companies that emit more carbon than permissible by their legally binding commitment. These carbon profits can then be used for healthcare research or to provide healthcare to the underserved. Alternatively, the savings could be used for green purchasing and to implement other carbon-reducing activities. This report reviews the numerous possible options for the American health industry to become greener and lower its carbon footprint while at the same time becoming more time- and cost efficient.

  8. The design of an energy harvesting device for prolonging the working time of DC equipment

    NASA Astrophysics Data System (ADS)

    Wen, Yayuan; Deng, Huaxia; Zhang, Jin; Yu, Liandong

    2016-01-01

    Energy harvesting (EH) derives from the idea of converting the ambient energy into electric energy, which can solve the problem of DC supply for some electronic equipment. PZT is a typical piezoelectric material of inorganic, which has been developed as EH devices to transfer ambient vibration energy into electric energy. However, these PZT devices require relatively violent excitation, and easy to be fatigue fracture under the resonance condition. In this paper, PVDF, which is a kind of soft piezoelectric polymer, is adopted for developing transducer. The PVDF devices are flexible and have longer life time than PZT devices under the harmonic environment. The EH researches are mainly focused on the development of energy transfer efficiency either by the mechanical structure of transducer or the improvement of circuit. However, the practicality and stability of the EH devices are important in the practical engineering applications. In this paper, a charge amplifier is introduced in the circuit in order to guarantee the stability of the battery charging under small ambient vibration conditions. The model of the mechanical structure of PVDF and the electric performance of circuit are developed. The experimental results and simulation show that the stability of battery charging is improved and the working time of DC equipment is prolonged.

  9. Analysis of energy requirement in the irrigation sector and its application in groundwater over-pumping control at a local scale - A case study in the North China Plain

    NASA Astrophysics Data System (ADS)

    Wang, L.; Kinzelbach, W.; Yao, H.; Hagmann, A.; Li, N.; Steiner, J. F.

    2017-12-01

    The North China Plain is one of the most important agricultural regions which relies heavily on groundwater pumping for irrigation powered by electric energy. This region is also facing a severe problem of groundwater over-pumping. Stopping groundwater depletion by controlling pumping for irrigation may harm the agricultural production and affect the interests of the electricity utility who is a direct participant in the irrigation management. Water-saving infrastructures such as sprinklers can be effective means for water conservation but are often difficult to implement due to farmers' unwillingness to pay for the additional electricity consumption. Understanding this food-energy-water nexus is fundamental to implement effective and practical strategies for groundwater over-pumping control in the North China Plain. However, this understanding can be obscured by the missing groundwater pumping monitoring and a lack of access to specific energy data for irrigation use as well as the field observations of pump efficiency. Taking the example of a typical agricultural county (Guantao) in the North China Plain with irrigation pumps generally powered by electricity, this study is focused on the analysis of the energy requirement in the irrigation sector and its application in developing strategies for groundwater over-pumping control at the county scale. 1) Field measurements from pumping tests are used to adjust the pumps' theoretical characteristics. A simple empirical equation is derived to estimate the energy use rate for irrigation given the depth of the groundwater table. Field measurements show that pump efficiency is around 30% in the tested region. 2) We hypothesize that the inter-annual variability of rural energy consumption is caused by the randomness in annual precipitation. This assumption is examined and then applied to separate the energy consumption for irrigation from the total rural energy consumption. 3) Based on the groundwater pumping rate reconstructed from the energy use, the interaction of agricultural production, groundwater resources and energy requirement is analysed and will help in developing practical strategies for groundwater over-pumping control in Guantao County.

  10. Optimising the efficiency of pulsed diode pumped Yb:YAG laser amplifiers for ns pulse generation.

    PubMed

    Ertel, K; Banerjee, S; Mason, P D; Phillips, P J; Siebold, M; Hernandez-Gomez, C; Collier, J C

    2011-12-19

    We present a numerical model of a pulsed, diode-pumped Yb:YAG laser amplifier for the generation of high energy ns-pulses. This model is used to explore how optical-to-optical efficiency depends on factors such as pump duration, pump spectrum, pump intensity, doping concentration, and operating temperature. We put special emphasis on finding ways to achieve high efficiency within the practical limitations imposed by real-world laser systems, such as limited pump brightness and limited damage fluence. We show that a particularly advantageous way of improving efficiency within those constraints is operation at cryogenic temperature. Based on the numerical findings we present a concept for a scalable amplifier based on an end-pumped, cryogenic, gas-cooled multi-slab architecture.

  11. Unbiased Sunlight-Driven Artificial Photosynthesis of Carbon Monoxide from CO2 Using a ZnTe-Based Photocathode and a Perovskite Solar Cell in Tandem.

    PubMed

    Jang, Youn Jeong; Jeong, Inyoung; Lee, Jaehyuk; Lee, Jinwoo; Ko, Min Jae; Lee, Jae Sung

    2016-07-26

    Solar fuel production, mimicking natural photosynthesis of converting CO2 into useful fuels and storing solar energy as chemical energy, has received great attention in recent years. Practical large-scale fuel production needs a unique device capable of CO2 reduction using only solar energy and water as an electron source. Here we report such a system composed of a gold-decorated triple-layered ZnO@ZnTe@CdTe core-shell nanorod array photocathode and a CH3NH3PbI3 perovskite solar cell in tandem. The assembly allows effective light harvesting of higher energy photons (>2.14 eV) from the front-side photocathode and lower energy photons (>1.5 eV) from the back-side-positioned perovskite solar cell in a single-photon excitation. This system represents an example of a photocathode-photovoltaic tandem device operating under sunlight without external bias for selective CO2 conversion. It exhibited a steady solar-to-CO conversion efficiency over 0.35% and a solar-to-fuel conversion efficiency exceeding 0.43% including H2 as a minor product.

  12. Better Buildings Alliance 2013 Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2014-01-31

    We are pleased to share with you a copy of the 2013 Annual Report. Inside, you’ll find significant program accomplishments, profiles on highlighted members, and plans for 2014. With your contributions, support, and leadership over the past 12 months, the program has reached significant milestones, including: Growing membership to over 200 members, to represent over 10 billion square feet of U.S. commercial building space and one-seventh of the market; Increasing participation in the 15 Solutions Teams by 75%; Developing 3 new high-efficiency technology specifications that if widely implemented, could save more than $5 billion in energy costs per year; Launchingmore » the Advanced RTU Campaign and Wireless Meter Challenge, and surpassing 100 million sq. ft. in the Lighting Energy Efficiency in Parking (LEEP) Campaign; Welcoming partners in new sectors, including K-12 schools and local governments; The program is a critical element of the Better Buildings Initiative, driving 20% energy savings in the building sector by 2020 through innovation, new technologies, and profiling leadership. Thank you for your ongoing participation, we are looking forward to working with you in the new year on your energy saving targets and advancing technical and market practices that promote energy savings at your organization.« less

  13. Control of electrothermal heating during regeneration of activated carbon fiber cloth.

    PubMed

    Johnsen, David L; Mallouk, Kaitlin E; Rood, Mark J

    2011-01-15

    Electrothermal swing adsorption (ESA) of organic gases generated by industrial processes can reduce atmospheric emissions and allow for reuse of recovered product. Desorption energy efficiency can be improved through control of adsorbent heating, allowing for cost-effective separation and concentration of these gases for reuse. ESA experiments with an air stream containing 2000 ppm(v) isobutane and activated carbon fiber cloth (ACFC) were performed to evaluate regeneration energy consumption. Control logic based on temperature feedback achieved select temperature and power profiles during regeneration cycles while maintaining the ACFC's mean regeneration temperature (200 °C). Energy requirements for regeneration were independent of differences in temperature/power oscillations (1186-1237 kJ/mol of isobutane). ACFC was also heated to a ramped set-point, and the average absolute error between the actual and set-point temperatures was small (0.73%), demonstrating stable control as set-point temperatures vary, which is necessary for practical applications (e.g., higher temperatures for higher boiling point gases). Additional logic that increased the maximum power application at lower ACFC temperatures resulted in a 36% decrease in energy consumption. Implementing such control logic improves energy efficiency for separating and concentrating organic gases for post-desorption liquefaction of the organic gas for reuse.

  14. Cyanopyridine Based Bipolar Host Materials for Green Electrophosphorescence with Extremely Low Turn-On Voltages and High Power Efficiencies.

    PubMed

    Li, Wei; Li, Jiuyan; Liu, Di; Li, Deli; Wang, Fang

    2016-08-24

    Low driving voltage and high power efficiency are basic requirements when practical applications of organic light emitting diodes (OLEDs) in displays and lighting are considered. Two novel host materials m-PyCNmCP and 3-PyCNmCP incorporating cyanopyridine moiety as electron-transporting unit are developed for use in fac-tris(2-phenylpyridine)iridium(III) (Ir(ppy)3) based green phosphorescent OLEDs (PhOLEDs). Extremely low turn-on voltages of 2.01 and 2.27 V are realized, which are even lower than the theoretical limit of the emitted photon energy (hv)/electron charge (e) (2.37 V) of Ir(ppy)3. High power efficiency of 101.4 lm/W (corresponding to a maximum external quantum efficiency of 18.4%) and 119.3 lm/W (24.7%) are achieved for m-PyCNmCP and 3-PyCNmCP based green PhOLEDs. The excellent EL performance benefits from the ideal parameters of host materials by combining cyano and pyridine to enhance the n-type feature. The energetic favorable alignment of HOMO/LUMO levels of hosts with adjacent layers and the dopant for easy charge injections and direct charge trapping by dopant, their bipolar feature to balance charge transportations, sufficiently high triplet energy and small singlet/triplet energy difference (0.38 and 0.43 eV) combine to be responsible for the extremely low driving voltages and high power efficiencies of the green PhOLEDs.

  15. Sustainable hydropower in Lower Mekong Countries: Technical assessment and training travel report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hadjerioua, Boualem; Witt, Adam M.

    The U.S. Agency for International Development (USAID), through their partnership with the U.S. Department of the Interior (DOI), requested the support of Oak Ridge National Laboratory (ORNL) to provide specialized technical assistance as part of the Smart Infrastructure for the Mekong (SIM) Program in Thailand. Introduced in July 2013 by U.S. Secretary of State John Kerry, SIM is a U.S. Government Inter-Agency program that provides Lower Mekong partner countries with targeted, demand-driven technical and scientific assistance to support environmentally sound, climate conscious and socially equitable infrastructure, clean energy development, and water resources optimization. The U.S. Government is committed to supportingmore » sustainable economic development within the region by providing tools, best practices, technical assistance, and lessons learned for the benefit of partner countries. In response to a request from the Electricity Generating Authority of Thailand (EGAT), a SIM project was developed with two main activities: 1) to promote hydropower sustainability and efficiency through technical assessment training at two existing hydropower assets in Thailand, and 2) the design and implementation of one national and two or three regional science and policy workshops, to be co-hosted with EGAT, to build common understanding of and commitment to environmental and social safeguards for Mekong Basin hydropower projects. The U.S. Department of Energy (DOE) is leading the technical assessment (Activity 1), and has contracted ORNL to provide expert technical assistance focused on increasing efficiency at existing projects, with the goal of increasing renewable energy generation at little to no capital cost. ORNL is the leading national laboratory in hydropower analysis, with a nationally recognized and highly qualified team of scientists addressing small to large-scale systems (basin-, regional-, and national-scale) energy generation optimization analysis for DOE. The mission of the ORNL Water Power Program is to develop technologies, decision-support tools, and methods of analysis that enable holistic management of water-dependent energy infrastructure and natural resources in support of the DOE Energy Efficiency and Renewable Energy Office (DOE-EERE), Federal hydropower agencies, Federal Energy Regulatory Commission (FERC), Nuclear Regulatory Commission (NRC), energy producers, and other entities. In support of SIM, ORNL completed technical assessments of two hydropower plants owned and operated by the Electricity Generating Authority of Thailand (EGAT): Vajiralongkorn (VRK), with an installed capacity of 300 MW, and Rajjaprabha (RPB), with an installed capacity of 240MW. Technical assessment is defined as the assessment of hydropower operation and performance, and the identification of potential opportunities for performance improvement through plant optimization. At each plant, the assessment included an initial analysis of hydropower operating and performance metrics, provided by dam owners. After this analysis, ORNL engaged with the plant management team in a skills exchange, where best practices, operational methods, and technical challenges were discussed. The technical assessment process was outlined to plant management followed by a presentation of preliminary results and analysis based on 50 days of operational data. EGAT has agreed to provide a full year of operational data so a complete and detailed assessment that captures seasonal variability can be completed. The results of these assessments and discussions will be used to develop a set of best practices, training, and procedure recommendations to improve the efficiency of the two assessed plants« less

  16. A random-key encoded harmony search approach for energy-efficient production scheduling with shared resources

    NASA Astrophysics Data System (ADS)

    Garcia-Santiago, C. A.; Del Ser, J.; Upton, C.; Quilligan, F.; Gil-Lopez, S.; Salcedo-Sanz, S.

    2015-11-01

    When seeking near-optimal solutions for complex scheduling problems, meta-heuristics demonstrate good performance with affordable computational effort. This has resulted in a gravitation towards these approaches when researching industrial use-cases such as energy-efficient production planning. However, much of the previous research makes assumptions about softer constraints that affect planning strategies and about how human planners interact with the algorithm in a live production environment. This article describes a job-shop problem that focuses on minimizing energy consumption across a production facility of shared resources. The application scenario is based on real facilities made available by the Irish Center for Manufacturing Research. The formulated problem is tackled via harmony search heuristics with random keys encoding. Simulation results are compared to a genetic algorithm, a simulated annealing approach and a first-come-first-served scheduling. The superior performance obtained by the proposed scheduler paves the way towards its practical implementation over industrial production chains.

  17. Designing train-speed trajectory with energy efficiency and service quality

    NASA Astrophysics Data System (ADS)

    Jia, Jiannan; Yang, Kai; Yang, Lixing; Gao, Yuan; Li, Shukai

    2018-05-01

    With the development of automatic train operations, optimal trajectory design is significant to the performance of train operations in railway transportation systems. Considering energy efficiency and service quality, this article formulates a bi-objective train-speed trajectory optimization model to minimize simultaneously the energy consumption and travel time in an inter-station section. This article is distinct from previous studies in that more sophisticated train driving strategies characterized by the acceleration/deceleration gear, the cruising speed, and the speed-shift site are specifically considered. For obtaining an optimal train-speed trajectory which has equal satisfactory degree on both objectives, a fuzzy linear programming approach is applied to reformulate the objectives. In addition, a genetic algorithm is developed to solve the proposed train-speed trajectory optimization problem. Finally, a series of numerical experiments based on a real-world instance of Beijing-Tianjin Intercity Railway are implemented to illustrate the practicability of the proposed model as well as the effectiveness of the solution methodology.

  18. Representing energy efficiency diagnosis strategies in cognitive work analysis.

    PubMed

    Hilliard, Antony; Jamieson, Greg A

    2017-03-01

    This article describes challenges encountered in applying Jens Rasmussen's Cognitive Work Analysis (CWA) framework to the practice of energy efficiency Monitoring & Targeting (M&T). Eight theoretic issues encountered in the analysis are described with respect to Rasmussen's work and the modeling solutions we adopted. We grappled with how to usefully apply Work Domain Analysis (WDA) to analyze categories of domains with secondary purposes and no ideal grain of decomposition. This difficulty encouraged us to pursue Control Task (ConTA) and Strategies (StrA) analysis, which are under-explored as bases for interface design. In ConTA we found M&T was best represented by two interlinked work functions; one controlling energy, the other maintaining knowledge representations. From StrA, we identified a popular representation-dependent strategy and inferred information required to diagnose faults in system performance and knowledge representation. This article presents and discusses excerpts from our analysis, and outlines their application to diagnosis support tools. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. A climate responsive urban design tool: a platform to improve energy efficiency in a dry hot climate

    NASA Astrophysics Data System (ADS)

    El Dallal, Norhan; Visser, Florentine

    2017-09-01

    In the Middle East and North Africa (MENA) region, new urban developments should address the climatic conditions to improve outdoor comfort and to reduce the energy consumption of buildings. This article describes a design tool that supports climate responsive design for a dry hot climate. The approach takes the climate as an initiator for the conceptual urban form with a more energy-efficient urban morphology. The methodology relates the different passive strategies suitable for major climate conditions in MENA region (dry-hot) to design parameters that create the urban form. This parametric design approach is the basis for a tool that generates conceptual climate responsive urban forms so as to assist the urban designer early in the design process. Various conceptual scenarios, generated by a computational model, are the results of the proposed platform. A practical application of the approach is conducted on a New Urban Community in Aswan (Egypt), showing the economic feasibility of the resulting urban form and morphology, and the proposed tool.

  20. Large-area high-power VCSEL pump arrays optimized for high-energy lasers

    NASA Astrophysics Data System (ADS)

    Wang, Chad; Geske, Jonathan; Garrett, Henry; Cardellino, Terri; Talantov, Fedor; Berdin, Glen; Millenheft, David; Renner, Daniel; Klemer, Daniel

    2012-06-01

    Practical, large-area, high-power diode pumps for one micron (Nd, Yb) as well as eye-safer wavelengths (Er, Tm, Ho) are critical to the success of any high energy diode pumped solid state laser. Diode efficiency, brightness, availability and cost will determine how realizable a fielded high energy diode pumped solid state laser will be. 2-D Vertical-Cavity Surface-Emitting Laser (VCSEL) arrays are uniquely positioned to meet these requirements because of their unique properties, such as low divergence circular output beams, reduced wavelength drift with temperature, scalability to large 2-D arrays through low-cost and high-volume semiconductor photolithographic processes, high reliability, no catastrophic optical damage failure, and radiation and vacuum operation tolerance. Data will be presented on the status of FLIR-EOC's VCSEL pump arrays. Analysis of the key aspects of electrical, thermal and mechanical design that are critical to the design of a VCSEL pump array to achieve high power efficient array performance will be presented.

  1. Practical Study on HVAC Control Technology Based on the Learning Function and Optimum Multiple Objective Processes

    NASA Astrophysics Data System (ADS)

    Ueda, Haruka; Dazai, Ryota; Kaseda, Chosei; Ikaga, Toshiharu; Kato, Akihiro

    Demand among large office buildings for the energy-saving benefits of the HVAC (Heating, Ventilating and Air-Conditioning) System are increasing as more and more people become concerned with global environmental issues. However, immoderate measures taken in the interest of energy conservation may encroach on the thermal comfort and productivity level of office workers. Building management should satisfy both indoor thermal comfort and energy conservation while adapting to the many regulatory, social, climate, and other changes that occur during the lifespan of the building. This paper demonstrates how optimal control of the HVAC system, based on data modeling and the multi-objective optimal method, achieves an efficient equilibrium between thermal comfort and energy conservation.

  2. DOE Zero Energy Ready Home Case Study: Amaris Custom Homes, St. Paul, Minnesota

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    For this project, Amaris worked with U.S. Department of Energy (DOE) team, NorthernSTAR Building America Partnership, to develop the first Zero Energy Ready Home (ZERH) in Minnesota's cold climate using reasonable, cost-effective, and replicable construction materials and practices. The result is a passive solar, super-efficient 3542-ft2 walkout ranch-style home with all the creature comforts. Along with meeting ZERH standards, Amaris also achieved certifications for Leadership in Energy & Environmental Design for Homes v4, MN Green Path Emerald, and a Builders Association of the Twin Cities Reggie Award of Excellence. The home achieves a HERS score of 41 without photovoltaics; withmore » PV, the home achieves a HERS score of 5.« less

  3. NREL Case Study Leads to International Partnership (Fact Sheet)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2013-12-01

    In 2012, NREL analysts produced a case study, "Integrating Variable Renewable Energy in Electric Power Markets: Best Practices from International Experience," which drew upon dozens of interviews with international experts involved in crafting effective policies and markets. The report proposed a cross-cutting initiative to transform the world's power systems by implementing two complementary strategies: the large‐scale deployment of renewable energy, and a combination of comprehensive energy efficiency and smarter grids. This recommendation led to the launch of the 21st Century Power Partnership in April 2012, and its membership has since grown to include Denmark, Finland, Germany, India, Mexico, Spain, andmore » the United States. NREL, together with its affiliated Joint Institute for Strategic Energy Analysis, are the operating agents.« less

  4. Bioelectrochemical oxidation of water.

    PubMed

    Pita, Marcos; Mate, Diana M; Gonzalez-Perez, David; Shleev, Sergey; Fernandez, Victor M; Alcalde, Miguel; De Lacey, Antonio L

    2014-04-23

    The electrolysis of water provides a link between electrical energy and hydrogen, a high energy density fuel and a versatile energy carrier, but the process is very expensive. Indeed, the main challenge is to reduce energy consumption for large-scale applications using efficient renewable catalysts that can be produced at low cost. Here we present for the first time that laccase can catalyze electrooxidation of H2O to molecular oxygen. Native and laboratory-evolved laccases immobilized onto electrodes serve as bioelectrocatalytic systems with low overpotential and a high O2 evolution ratio against H2O2 production during H2O electrolysis. Our results open new research ground on H2O splitting, as they overcome serious practical limitations associated with artificial electrocatalysts currently used for O2 evolution.

  5. Tune-Up Your Fan Systems for Improved Performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fans are used extensively in commercial buildings and represent approximately 6% of total energy consumed by commercial buildings. The U.S. Department of Energy (DOE) estimates that fans in commercial buildings consume 158 billion kWh of electricity annually. Maintaining fan systems in proper condition provides energy savings and ensures a comfortable and healthy environment. While many fan systems have significant energy savings opportunities available through improvements in fan selection, system design, and operational practices, it is not always apparent when a fan system needs maintenance or what opportunities are available for improvements. This resource is designed for facility managers and maintenancemore » staff to provide easy-to-implement actionable guidance on fan efficiency measures for existing ducted air systems.« less

  6. Energy management and cooperation in microgrids

    NASA Astrophysics Data System (ADS)

    Rahbar, Katayoun

    Microgrids are key components of future smart power grids, which integrate distributed renewable energy generators to efficiently serve the load demand locally. However, random and intermittent characteristics of renewable energy generations may hinder the reliable operation of microgrids. This thesis is thus devoted to investigating new strategies for microgrids to optimally manage their energy consumption, energy storage system (ESS) and cooperation in real time to achieve the reliable and cost-effective operation. This thesis starts with a single microgrid system. The optimal energy scheduling and ESS management policy is derived to minimize the energy cost of the microgrid resulting from drawing conventional energy from the main grid under both the off-line and online setups, where the renewable energy generation/load demand are assumed to be non-causally known and causally known at the microgrid, respectively. The proposed online algorithm is designed based on the optimal off-line solution and works under arbitrary (even unknown) realizations of future renewable energy generation/load demand. Therefore, it is more practically applicable as compared to solutions based on conventional techniques such as dynamic programming and stochastic programming that require the prior knowledge of renewable energy generation and load demand realizations/distributions. Next, for a group of microgrids that cooperate in energy management, we study efficient methods for sharing energy among them for both fully and partially cooperative scenarios, where microgrids are of common interests and self-interested, respectively. For the fully cooperative energy management, the off-line optimization problem is first formulated and optimally solved, where a distributed algorithm is proposed to minimize the total (sum) energy cost of microgrids. Inspired by the results obtained from the off-line optimization, efficient online algorithms are proposed for the real-time energy management, which are of low complexity and work given arbitrary realizations of renewable energy generation/load demand. On the other hand, for self-interested microgrids, the partially cooperative energy management is formulated and a distributed algorithm is proposed to optimize the energy cooperation such that energy costs of individual microgrids reduce simultaneously over the case without energy cooperation while limited information is shared among the microgrids and the central controller.

  7. Energy-efficient Public Procurement: Best Practice in Program Delivery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Payne, Christopher; Weber, Andrew; Semple, Abby

    2013-02-15

    This document illustrates the key issues and considerations involved in implementing energy-efficient public procurement. Our primary sources of information have been our partners in the Super Efficient Equipment and Appliance Deployment (SEAD) Initiative Procurement Working Group. Where applicable, we have highlighted specific ways in which working group participants have successfully overcome barriers to delivering effective programs. The following key points emerge from this analysis of programs for energy-efficient public procurement. Lessons for both developed and developing programs are highlighted throughout the guide. 1. Policy: Policy provides the initiative to begin a transition from first cost to life-cycle cost based purchasingmore » methods and culture. Effective policy is well-communicated, establishes accountability from top to bottom of organizations and simplifies the processes necessary to comply. Flexibility and responsiveness are essential in policy development and implementation. Mandatory and voluntary policies may complement one another. 2. Procurement Criteria: Procurement staff must be confident that energy-efficient procurement criteria offer the best long-term value for their organization’s money and represent real environmental gains. Involving multiple stakeholders at the early stages of the criteria creation process can result in greater levels of cooperation from private industry. Criteria should make comparison of products easy for purchasers and require minimal additional calculations. Criteria will need to be regularly updated to reflect market developments. 3. Training: Resources for the creation of training programs are usually very limited, but well-targeted training is necessary in order for a program to be effective. Training must emphasize a process that is efficient for purchasers and simplifies compliance. Purchaser resources and policy must be well designed for training to be effective. Training program development is an excellent opportunity for collaboration amongst public authorities. 4. Procurement Processes: Many tools and guides intended to help buyers comply with energy-efficient procurement policy are designed without detailed knowledge of the procurement process. A deeper understanding of purchasing pathways allows resources to be better directed. Current research by national and international bodies aims to analyze purchasing pathways and can assist in developing future resources.« less

  8. Microbial desulfurization of coal

    NASA Technical Reports Server (NTRS)

    Dastoor, M. N.; Kalvinskas, J. J.

    1978-01-01

    Experiments indicate that several sulfur-oxidizing bacteria strains have been very efficient in desulfurizing coal. Process occurs at room temperature and does not require large capital investments of high energy inputs. Process may expand use of abundant reserves of high-sulfur bituminous coal, which is currently restricted due to environmental pollution. On practical scale, process may be integrated with modern coal-slurry transportation lines.

  9. High-Efficiency Food Production in a Renewable Energy Based Micro-Grid Power System

    NASA Technical Reports Server (NTRS)

    Bubenheim, David; Meiners, Dennis

    2016-01-01

    Controlled Environment Agriculture (CEA) systems can be used to produce high-quality, desirable food year round, and the fresh produce can positively contribute to the health and well being of residents in communities with difficult supply logistics. While CEA has many positive outcomes for a remote community, the associated high electric demands have prohibited widespread implementation in what is typically already a fully subscribed power generation and distribution system. Recent advances in CEA technologies as well as renewable power generation, storage, and micro-grid management are increasing system efficiency and expanding the possibilities for enhancing community supporting infrastructure without increasing demands for outside supplied fuels. We will present examples of how new lighting, nutrient delivery, and energy management and control systems can enable significant increases in food production efficiency while maintaining high yields in CEA. Examples from Alaskan communities where initial incorporation of renewable power generation, energy storage and grid management techniques have already reduced diesel fuel consumption for electric generation by more than 40% and expanded grid capacity will be presented. We will discuss how renewable power generation, efficient grid management to extract maximum community service per kW, and novel energy storage approaches can expand the food production, water supply, waste treatment, sanitation and other community support services without traditional increases of consumable fuels supplied from outside the community. These capabilities offer communities with a range of choices to enhance their communities. The examples represent a synergy of technology advancement efforts to develop sustainable community support systems for future space-based human habitats and practical implementation of infrastructure components to increase efficiency and enhance health and well being in remote communities today and tomorrow.

  10. High-Efficiency Food Production in a Renewable Energy Based Micro-Grid

    NASA Technical Reports Server (NTRS)

    Bubenheim, David L.

    2017-01-01

    Controlled Environment Agriculture (CEA) systems can be used to produce high-quality, desirable food year round, and the fresh produce can positively contribute to the health and well being of residents in communities with difficult supply logistics. While CEA has many positive outcomes for a remote community, the associated high electric demands have prohibited widespread implementation in what is typically already a fully subscribed power generation and distribution system. Recent advances in CEA technologies as well as renewable power generation, storage, and micro-grid management are increasing system efficiency and expanding the possibilities for enhancing community supporting infrastructure without increasing demands for outside supplied fuels. We will present examples of how new lighting, nutrient delivery, and energy management and control systems can enable significant increases in food production efficiency while maintaining high yields in CEA.Examples from Alaskan communities where initial incorporation of renewable power generation, energy storage and grid management techniques have already reduced diesel fuel consumption for electric generation by more than 40 and expanded grid capacity will be presented. We will discuss how renewable power generation, efficient grid management to extract maximum community service per kW, and novel energy storage approaches can expand the food production, water supply, waste treatment, sanitation and other community support services without traditional increases of consumable fuels supplied from outside the community. These capabilities offer communities with a range of choices to enhance their communities. The examples represent a synergy of technology advancement efforts to develop sustainable community support systems for future space-based human habitats and practical implementation of infrastructure components to increase efficiency and enhance health and well-being in remote communities today and tomorrow.

  11. Guide to good practices for operations and administration updates through required reading

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-12-01

    This Guide to Good Practices is written to enhance understanding of, and provide direction for, Required Reading, Chapter XIV of Department of Energy (DOE) Order 5480.19, Conduct of Operations Requirements for DOE Facilities. The practices in this guide should be considered when planning or reviewing programs for updating personnel with operations and administration information through required reading. Contractors are advised to adopt procedures that meet the intent of DOE Order 5480.19. Required Reading is an element of an effective Conduct of Operations program. The complexity and array of activities performed in DOE facilities dictate the necessity for a coordinated requiredmore » reading program to promote safe and efficient operations.« less

  12. Carbon and energy balances for cellulosic biofuel crops in U.S. Midwest

    NASA Astrophysics Data System (ADS)

    Gerlfand, I.; Hamilton, S. K.; Robertson, G. P.

    2012-04-01

    Cellulosic biofuels produced on lands not used for food production have the potential to avoid competition for food and associated indirect land use costs. Understanding the carbon and energy balance implications for different cellulosic production systems is important for the development of decision making tools and policies. Here we present carbon and energy balances of alternative agricultural management. We use 20 years of data from KBS LTER experiments to produce farm level CO2 and energy balances for different management practices. Our analyses include four grain and four perrenial systems in the U.S. Midwest: corn (Zea mays) - soybean (Glycine max) - wheat (Triticum aestivum) rotations managed with (1) conventional tillage, (2) no till, (3) low chemical input, and (4) biologically-based (organic) practices; (5) continuous alfalfa (Medicago sativa); (6) Poplar; and (7,8) Successionnal fields, both fertilized and unfertilized. Measurements include fluxes of N2O and CH4, soil organic carbon change, agricultural yields, and agricultural inputs (e.g. fertilization and farm fuel use). Our results indicate that management decisions such as tillage and plant types have a great influence on the net carbon and energy balances and benefits of cellulosic biofuels production. Specifically, we show that cellulosic biofuels produced from an early successional, minimally managed system have a net C sequestration (i.e., negative C balance) of -841±46 gCO2e m-2 yr-1 vs. -594±93 gCO2e m-2 yr-1 for more productive and management intensive alfalfa, and vs. 232±157 gCO2e m-2 for poplar. The reference agricultural system (a conventionally tilled corn-soybean-wheat rotation) has net sequestration of -149±33 g CO2e m-2 yr-1. Among the annual grain crops, average energy costs of farming for the different systems ranged from 4.8 GJ ha-1 for the organic system to 7.1 GJ ha-1 for the conventional; the no-till system was also low at 4.9 GJ ha-1 and the low-chemical input system intermediate (5.2 GJ ha-1). For each system, the average energy output for food was always greater than that for fuel. Overall energy efficiencies ranged from output: input ratios of 10 to 16 for conventional and no-till food production, respectively, and from 7 to 11 for conventional and no-till fuel production. Alfalfa for fuel production had an efficiency similar to that of no-till grain production for fuel. Our analysis points to a more energetically efficient use of cropland for food than for fuel production, and large differences in efficiencies attributable to management.

  13. Eucalyptus plantations for energy production in Hawaii. 1980 annual report, January 1980-December 1980

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whitesell, C. D.

    1980-01-01

    In 1980 200 acres of eucalyptus trees were planted for a research and development biomass energy plantation bringing the total area under cultivation to 300 acres. Of this total acreage, 90 acres or 30% was planted in experimental plots. The remaining 70% of the cultivated area was closely monitored to determine the economic cost/benefit ratio of large scale biomass energy production. In the large scale plantings, standard field practices were set up for all phases of production: nursery, clearing, planting, weed control and fertilization. These practices were constantly evaluated for potential improvements in efficiency and reduced cost. Promising experimental treatmentsmore » were implemented on a large scale to test their effectiveness under field production conditions. In the experimental areas all scheduled data collection in 1980 has been completed and most measurements have been keypunched and analyzed. Soil samples and leaf samples have been analyzed for nutrient concentrations. Crop logging procedures have been set up to monitor tree growth through plant tissue analysis. An intensive computer search on biomass, nursery practices, harvesting equipment and herbicide applications has been completed through the services of the US Forest Service.« less

  14. A Low-Cost Energy-Efficient Cableless Geophone Unit for Passive Surface Wave Surveys

    PubMed Central

    Dai, Kaoshan; Li, Xiaofeng; Lu, Chuan; You, Qingyu; Huang, Zhenhua; Wu, H. Felix

    2015-01-01

    The passive surface wave survey is a practical, non-invasive seismic exploration method that has increasingly been used in geotechnical engineering. However, in situ deployment of traditional wired geophones is labor intensive for a dense sensor array. Alternatively, stand-alone seismometers can be used, but they are bulky, heavy, and expensive because they are usually designed for long-term monitoring. To better facilitate field applications of the passive surface wave survey, a low-cost energy-efficient geophone system was developed in this study. The hardware design is presented in this paper. To validate the system’s functionality, both laboratory and field experiments were conducted. The unique feature of this newly-developed cableless geophone system allows for rapid field applications of the passive surface wave survey with dense array measurements. PMID:26404270

  15. Porphyrin-sensitized solar cells: systematic molecular optimization, coadsorption and cosensitization.

    PubMed

    Song, Heli; Liu, Qingyun; Xie, Yongshu

    2018-02-15

    As a promising low-cost solar energy conversion technique, dye-sensitized solar cells have undergone spectacular development since 1991. For practical applications, improvement of power conversion efficiency has always been one of the major research topics. Porphyrins are outstanding sensitizers endowed with strong sunlight harvesting ability in the visible region and multiple reaction sites available for functionalization. However, judicious molecular design in consideration of light-harvest, energy levels, operational dynamics, adsorption geometry and suppression of back reactions is specifically required for achieving excellent photovoltaic performance. This feature article highlights some of the recently developed porphyrin sensitizers, especially focusing on the systematic dye structure optimization approach in combination with coadsorption and cosensitization methods in pursuing higher efficiencies. Herein, we expect to provide more insights into the structure-performance correlation and molecular engineering strategies in a stepwise manner.

  16. Er:YAG laser for endodontics: efficiency and safety

    NASA Astrophysics Data System (ADS)

    Hibst, Raimund; Stock, Karl; Gall, Robert; Keller, Ulrich

    1997-12-01

    Recently it has been shown that bacterias can be sterilized by Er:YAG laser irradiation. By optical fiber transmission the bactericidal effect can also be used in endodontics. In order to explore potential laser parameters, we further investigated sterilization of caries and measured temperatures in models simulating endodontic treatment. It was found out that the bactericidal effect is cumulative, with single pulses being active. This offers to choose all laser parameters except pulse energy (radiant exposure) from technical, practical or safety considerations. For clinical studies the following parameter set is proposed for efficient and safe application (teeth with a root wall thickness > 1 mm, and prepared up to ISO 50): pulse energy: 50 mJ, repetition rate: 15 Hz, fiber withdrawal velocity: 2 mm/s. With these settings 4 passes must be performed to accumulate the total dose for sterilization.

  17. Downward Slope Driving Control for Electric Powered Wheelchair Based on Capacitor Regenerative Brake

    NASA Astrophysics Data System (ADS)

    Seki, Hirokazu; Takahashi, Yoshiaki

    This paper describes a novel capacitor regenerative braking control scheme of electric powered wheelchairs for efficient driving on downward slopes. An electric powered wheelchair, which generates the driving force by electric motors, is expected to be widely used as a mobility support system for elderly people and disabled people; however the energy efficiency has to be further improved because it is driven only by battery energy. This study proposes a capacitor regenerative braking circuit and two types of velocity control schemes with variable duty ratio. The proposed regenerative braking circuit is based on the step-up/down circuit with additional resistance and connects right and left motors in series in order to obtain a larger braking power. Some driving experiments on a practical downward slope show the effectiveness of the proposed control system.

  18. The potential of net zero energy buildings (NZEBs) concept at design stage for healthcare buildings towards sustainable development

    NASA Astrophysics Data System (ADS)

    Hazli Abdellah, Roy; Asrul Nasid Masrom, Md; Chen, Goh Kai; Mohamed, Sulzakimin; Omar, Roshartini

    2017-11-01

    The focus on net-zero energy buildings (NZEBs) has been widely analysed and discussed particularly when European Union Parliament are progressively moving towards regulation that promotes the improvement of energy efficiency (EE). Additionally, it also to reduce energy consumption through the recast of the EU Directive on Energy Performance of Buildings (EPBD) in which all new buildings to be “nearly Zero-Energy” Buildings by 2020. Broadly, there is a growing trend to explore the feasibility of net zero energy in healthcare sector as the level energy consumption for healthcare sector is found significantly high. Besides that, healthcare buildings energy consumption also exceeds of many other nondomestic building types, and this shortcoming is still undetermined yet especially for developing countries. This paper aims to review the potential of NZEBs in healthcare buildings by considering its concept in design features. Data are gathered through a comprehensive energy management literature review from previous studies. The review is vital to encourage construction players to increase their awareness, practices, and implementation of NZEBs in healthcare buildings. It suggests that NZEBs concept has a potential to be adapted in healthcare buildings through emphasizing of passive approach as well as the utilization of energy efficiency systems and renewable energy systems in buildings. This paper will provide a basis knowledge for construction key players mainly architects to promote NZEBs concept at design stage for healthcare buildings development.

  19. 7 CFR 1710.255 - Energy efficiency work plans-energy efficiency borrowers.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 11 2014-01-01 2014-01-01 false Energy efficiency work plans-energy efficiency... TO ELECTRIC LOANS AND GUARANTEES Construction Work Plans and Related Studies § 1710.255 Energy efficiency work plans—energy efficiency borrowers. (a) All energy efficiency borrowers must maintain a...

  20. Microbial fuel cells as an alternative energy source: current status.

    PubMed

    Javed, Muhammad Mohsin; Nisar, Muhammad Azhar; Ahmad, Muhammad Usman; Yasmeen, Nighat; Zahoor, Sana

    2018-06-22

    Microbial fuel cell (MFC) technology is an emerging area for alternative renewable energy generation and it offers additional opportunities for environmental bioremediation. Recent scientific studies have focused on MFC reactor design as well as reactor operations to increase energy output. The advancement in alternative MFC models and their performance in recent years reflect the interests of scientific community to exploit this technology for wider practical applications and environmental benefit. This is reflected in the diversity of the substrates available for use in MFCs at an economically viable level. This review provides an overview of the commonly used MFC designs and materials along with the basic operating parameters that have been developed in recent years. Still, many limitations and challenges exist for MFC development that needs to be further addressed to make them economically feasible for general use. These include continued improvements in fuel cell design and efficiency as well scale-up with economically practical applications tailored to local needs.

  1. Removal of several pesticides in a falling water film DBD reactor with activated carbon textile: Energy efficiency.

    PubMed

    Vanraes, Patrick; Ghodbane, Houria; Davister, Dries; Wardenier, Niels; Nikiforov, Anton; Verheust, Yannick P; Van Hulle, Stijn W H; Hamdaoui, Oualid; Vandamme, Jeroen; Van Durme, Jim; Surmont, Pieter; Lynen, Frederic; Leys, Christophe

    2017-06-01

    Bio-recalcitrant micropollutants are often insufficiently removed by modern wastewater treatment plants to meet the future demands worldwide. Therefore, several advanced oxidation techniques, including cold plasma technology, are being investigated as effective complementary water treatment methods. In order to permit industrial implementation, energy demand of these techniques needs to be minimized. To this end, we have developed an electrical discharge reactor where water treatment by dielectric barrier discharge (DBD) is combined with adsorption on activated carbon textile and additional ozonation. The reactor consists of a DBD plasma chamber, including the adsorptive textile, and an ozonation chamber, where the DBD generated plasma gas is bubbled. In the present paper, this reactor is further characterized and optimized in terms of its energy efficiency for removal of the five pesticides α-HCH, pentachlorobenzene, alachlor, diuron and isoproturon, with initial concentrations ranging between 22 and 430 μg/L. Energy efficiency of the reactor is found to increase significantly when initial micropollutant concentration is decreased, when duty cycle is decreased and when oxygen is used as feed gas as compared to air and argon. Overall reactor performance is improved as well by making it work in single-pass operation, where water is flowing through the system only once. The results are explained with insights found in literature and practical implications are discussed. For the used operational conditions and settings, α-HCH is the most persistent pesticide in the reactor, with a minimal achieved electrical energy per order of 8 kWh/m 3 , while a most efficient removal of 3 kWh/m 3 or lower was reached for the four other pesticides. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Maximization of current efficiency for organic pollutants oxidation at BDD, Ti/SnO2-Sb/PbO2, and Ti/SnO2-Sb anodes.

    PubMed

    Xing, Xuan; Ni, Jinren; Zhu, Xiuping; Jiang, Yi; Xia, Jianxin

    2018-08-01

    Whereas electrochemical oxidation is noted for its ability to degrade bio-refractory organics, it has also been incorrectly criticized for excessive energy consumption. The present paper rectifies this misunderstanding by demonstrating that the energy actually consumed in the degradation process is much less than that wasted in the side reaction of oxygen evolution. To minimize the side reaction, the possible highest instantaneous current efficiency (PHICE) for electrochemical oxidation of phenol at Boron-doped Diamond (BDD), Ti/SnO 2 -Sb/PbO 2 (PbO 2 ), and Ti/SnO 2 -Sb (SnO 2 ) anodes has been investigated systematically, and found to reach almost 100% at the BDD anode compared with 23% at the PbO 2 anode and 9% at the SnO 2 anode. The significant discrepancy between PHICE values at the various anodes is interpreted in terms of different existing forms of hydroxyl radicals. For each anode system, the PHICEs are maintained experimentally using a computer-controlled exponential decay current mode throughout the electrolysis process. For applications, the minimized energy consumption is predicted by response surface methodology, and demonstrated for the BDD anode system. Consequently, almost 100% current efficiency is achieved (for a relatively meagre energy consumption of 17.2 kWh kgCOD -1 ) along with excellent COD degradation efficiency by optimizing the initial current density, flow rate, electrolysis time, and exponential decay constant. Compared with galvanostatic conditions, over 70% of the energy is saved in the present study, thus demonstrating the great potential of electrochemical oxidation for practical applications. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. DOE Voluntary Partnership Program with Utilities and Local Governments Supports the Design of New Data Access Solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shah, Monisha; Burr, Andrew; Schulte, Andrew

    2016-08-26

    The Better Buildings Energy Data Accelerator (BBEDA) is a unique effort that has supported 22 pairs of local governments and their utility companies to help building owners gain access to their whole-building energy data. Municipal and Utility BBEDA Partners committed to develop streamlined and easy-to-use solutions to provide whole-building energy data, especially for multitenant commercial buildings, by the end of 2015. As a result, building owners would be able to make data-driven decisions about their buildings by utilizing readily available energy consumption data for entire buildings. Traditionally, data access was difficult to implement due to technical barriers and the lackmore » of clear value propositions for the utilities. During the past two years, BBEDA has taken a hands-on approach to overcome these barriers by offering a platform for the partners to discuss their challenges and solutions. Customized support was also provided to Partners building their local strategies. Based on the lessons learned from the partners, BBEDA developed a final toolkit with guiding documents that addressed key barriers and served as a resource for the other cities and utilities attempting to establish whole-building data access, including an exploration of opportunities to apply the whole-building data to various aspects of utility demand-side management (DSM) programs. BBEDA has been a catalyst for market transformation by addressing the upstream (to efficiency implementation) barrier of data access, demonstrated through the success of the BBEDA partners to address policy, engagement, and technical hurdles and arrive at replicable solutions to make data access a standard practice nationwide. As a result of best practices identified by the BBEDA, 18 utilities serving more than 2.6 million commercial customers nationwide will provide whole-building energy data access to building owners by 2017. This historic expansion of data accessibility will increase building energy benchmarking, the first step many building owners take to improve the energy efficiency of their buildings.« less

  4. Envisioning a metropolitan foodshed: potential environmental consequences of increasing food-crop production around Chicago

    NASA Astrophysics Data System (ADS)

    Bowen, E. E.; Martin, P. A.; Schuble, T. J.

    2009-12-01

    Nationwide, cities are increasingly developing policies aimed at greater sustainability, particularly focusing on reducing environmental impact. Such policies commonly emphasize more efficiently using energy to decrease the greenhouse gas (GHG) footprint of the city. However, most plans ignore the food system as a factor in regional energy use and GHG emissions. Yet, the food system in the United States accounts for ~20% of per capita greenhouse gas emissions. Local, sustainable food production is cited as one strategy for mitigating GHG emissions of large metropolitan areas. “Sustainable” for regional agriculture is often identified as small-scale, diversified food crop production using best practices management. Localized food production (termed “foodshed”) using sustainable agriculture could mitigate climate change in multiple ways: (1) energy and therefore CO2-intensive portions of the conventional food system might be replaced by local, lower-input food production resulting in carbon offsets; (2) increased regional carbon storage might result from well-managed food crop production vs. commodity crop production; and (3) averted N2O emissions might result from closing nutrient cycles on agricultural lands following changes in management practices. The broader implications for environmental impact of widespread conversion to sustainable food crop agriculture, however, remain largely unknown. We examine the Chicago metropolitan region to quantify the impact of increased local food production on regional energy efficiency and GHG emissions. Geospatial analysis is used to quantify the resource potential for establishing a Chicago metropolitan foodshed. A regional foodshed is defined by minimizing cost through transportation mode (road, rail, or water) and maximizing the production potential of different soil types. Simple biogeochemical modeling is used to predict changes in N2O emissions and nutrient flows following changes in land management practices. Ultimately, quantification of impacts from changes in regional land use can inform regional planning for climate change mitigation strategies.

  5. Space-planning and structural solutions of low-rise buildings: Optimal selection methods

    NASA Astrophysics Data System (ADS)

    Gusakova, Natalya; Minaev, Nikolay; Filushina, Kristina; Dobrynina, Olga; Gusakov, Alexander

    2017-11-01

    The present study is devoted to elaboration of methodology used to select appropriately the space-planning and structural solutions in low-rise buildings. Objective of the study is working out the system of criteria influencing the selection of space-planning and structural solutions which are most suitable for low-rise buildings and structures. Application of the defined criteria in practice aim to enhance the efficiency of capital investments, energy and resource saving, create comfortable conditions for the population considering climatic zoning of the construction site. Developments of the project can be applied while implementing investment-construction projects of low-rise housing at different kinds of territories based on the local building materials. The system of criteria influencing the optimal selection of space-planning and structural solutions of low-rise buildings has been developed. Methodological basis has been also elaborated to assess optimal selection of space-planning and structural solutions of low-rise buildings satisfying the requirements of energy-efficiency, comfort and safety, and economical efficiency. Elaborated methodology enables to intensify the processes of low-rise construction development for different types of territories taking into account climatic zoning of the construction site. Stimulation of low-rise construction processes should be based on the system of approaches which are scientifically justified; thus it allows enhancing energy efficiency, comfort, safety and economical effectiveness of low-rise buildings.

  6. A comprehensive framework to assess, model, and enhance the human role in conserving energy in commercial buildings

    NASA Astrophysics Data System (ADS)

    Azar, Elie

    Energy conservation and sustainability are subjects of great interest today, especially in the commercial building sector which is witnessing a very high and growing demand for energy. Traditionally, efforts to reduce energy consumption in this sector consisted of researching and developing energy efficient building technologies and systems. On the other hand, recent studies indicate that human actions are major determinants of building energy performance and can lead to excessive energy use even in advanced low-energy buildings. As a result, it is essential to determine if the approach to future energy reduction initiatives should remain solely technology-focused, or if a human-focused approach is also needed to complement advancements in technology and improve building operation and performance. In practice, while technology-focused solutions have been extensively researched, promoted, and adopted in commercial buildings, research efforts on the role of human actions and energy use behaviors in energy conservation remain very limited. This study fills the missing gap in literature by presenting a comprehensive framework to (1) understand and quantify the influence of human actions on building energy performance, (2) model building occupants' energy use behaviors and account for potential changes in these behaviors over time, and (3) test and optimize different human-focused energy reduction interventions to increase their adoption in commercial buildings. Results are significant and prove that human actions have a major role to play in reducing the energy intensity of the commercial building sector. This sheds the light on the need for a shift in how people currently use and control different buildings systems, as this is crucial to ensure efficient building operation and to maximize the return on investment in energy-efficient technologies. Furthermore, this study proposes methods and tools that can be applied on any individual or groups of commercial buildings to evaluate the human impact on their energy performance. This is expected to boost research on the topic and promote the integration of human-focused interventions in large-scale energy reduction initiatives and policies. Finally, this dissertation presents a roadmap for the future challenges to energy conservation and the steps to take towards a more sustainable building sector and society.

  7. Large-scale cauliflower-shaped hierarchical copper nanostructures for efficient photothermal conversion

    NASA Astrophysics Data System (ADS)

    Fan, Peixun; Wu, Hui; Zhong, Minlin; Zhang, Hongjun; Bai, Benfeng; Jin, Guofan

    2016-07-01

    Efficient solar energy harvesting and photothermal conversion have essential importance for many practical applications. Here, we present a laser-induced cauliflower-shaped hierarchical surface nanostructure on a copper surface, which exhibits extremely high omnidirectional absorption efficiency over a broad electromagnetic spectral range from the UV to the near-infrared region. The measured average hemispherical absorptance is as high as 98% within the wavelength range of 200-800 nm, and the angle dependent specular reflectance stays below 0.1% within the 0-60° incident angle. Such a structured copper surface can exhibit an apparent heating up effect under the sunlight illumination. In the experiment of evaporating water, the structured surface yields an overall photothermal conversion efficiency over 60% under an illuminating solar power density of ~1 kW m-2. The presented technology provides a cost-effective, reliable, and simple way for realizing broadband omnidirectional light absorptive metal surfaces for efficient solar energy harvesting and utilization, which is highly demanded in various light harvesting, anti-reflection, and photothermal conversion applications. Since the structure is directly formed by femtosecond laser writing, it is quite suitable for mass production and can be easily extended to a large surface area.Efficient solar energy harvesting and photothermal conversion have essential importance for many practical applications. Here, we present a laser-induced cauliflower-shaped hierarchical surface nanostructure on a copper surface, which exhibits extremely high omnidirectional absorption efficiency over a broad electromagnetic spectral range from the UV to the near-infrared region. The measured average hemispherical absorptance is as high as 98% within the wavelength range of 200-800 nm, and the angle dependent specular reflectance stays below 0.1% within the 0-60° incident angle. Such a structured copper surface can exhibit an apparent heating up effect under the sunlight illumination. In the experiment of evaporating water, the structured surface yields an overall photothermal conversion efficiency over 60% under an illuminating solar power density of ~1 kW m-2. The presented technology provides a cost-effective, reliable, and simple way for realizing broadband omnidirectional light absorptive metal surfaces for efficient solar energy harvesting and utilization, which is highly demanded in various light harvesting, anti-reflection, and photothermal conversion applications. Since the structure is directly formed by femtosecond laser writing, it is quite suitable for mass production and can be easily extended to a large surface area. Electronic supplementary information (ESI) available: XRD patterns of the fs laser structured Cu surface as produced and after the photothermal conversion test, directly measured temperature values on Cu surfaces, temperature rise on Cu surfaces at varied solar irradiation angles, comparison of the white light and IR images of the structured Cu surface with the polished Cu surface, temperature rise on the peripheral zones of the blue coating surface. See DOI: 10.1039/c6nr03662g

  8. Operations & Maintenance Best Practices - A Guide to Achieving Operational Efficiency (Release 3)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sullivan, Greg; Pugh, Ray; Melendez, Aldo P.

    This guide highlights operations and maintenance programs targeting energy and water efficiency that are estimated to save 5% to 20% on energy bills without a significant capital investment. The purpose of this guide is to provide you, the Operations and Maintenance (O&M)/Energy manager and practitioner, with useful information about O&M management, technologies, energy and water efficiency, and cost-reduction approaches. To make this guide useful and to reflect your needs and concerns, the authors met with O&M and Energy managers via Federal Energy Management Program (FEMP) workshops. In addition, the authors conducted extensive literature searches and contacted numerous vendors and industrymore » experts. The information and case studies that appear in this guide resulted from these activities. It needs to be stated at the outset that this guide is designed to provide information on effective O&M as it applies to systems and equipment typically found at Federal facilities. This guide is not designed to provide the reader with step-by-step procedures for performing O&M on any specific piece of equipment. Rather, this guide first directs the user to the manufacturer's specifications and recommendations. In no way should the recommendations in this guide be used in place of manufacturer's recommendations. The recommendations in this guide are designed to supplement those of the manufacturer, or, as is all too often the case, provide guidance for systems and equipment for which all technical documentation has been lost. As a rule, this guide will first defer to the manufacturer's recommendations on equipment operation and maintenance.« less

  9. A 2.4-GHz Energy-Efficient Transmitter for Wireless Medical Applications.

    PubMed

    Qi Zhang; Peng Feng; Zhiqing Geng; Xiaozhou Yan; Nanjian Wu

    2011-02-01

    A 2.4-GHz energy-efficient transmitter (TX) for wireless medical applications is presented in this paper. It consists of four blocks: a phase-locked loop (PLL) synthesizer with a direct frequency presetting technique, a class-B power amplifier, a digital processor, and nonvolatile memory (NVM). The frequency presetting technique can accurately preset the carrier frequency of the voltage-controlled oscillator and reduce the lock-in time of the PLL synthesizer, further increasing the data rate of communication with low power consumption. The digital processor automatically compensates preset frequency variation with process, voltage, and temperature. The NVM stores the presetting signals and calibration data so that the TX can avoid the repetitive calibration process and save the energy in practical applications. The design is implemented in 0.18- μm radio-frequency complementary metal-oxide semiconductor process and the active area is 1.3 mm (2). The TX achieves 0-dBm output power with a maximum data rate of 4 Mb/s/2 Mb/s and dissipates 2.7-mA/5.4-mA current from a 1.8-V power supply for on-off keying/frequency-shift keying modulation, respectively. The corresponding energy efficiency is 1.2 nJ/b·mW and 4.8 nJ/b· mW when normalized to the transmitting power.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The report is an overview of electric energy efficiency programs. It takes a concise look at what states are doing to encourage energy efficiency and how it impacts electric utilities. Energy efficiency programs began to be offered by utilities as a response to the energy crises of the 1970s. These regulatory-driven programs peaked in the early-1990s and then tapered off as deregulation took hold. Today, rising electricity prices, environmental concerns, and national security issues have renewed interest in increasing energy efficiency as an alternative to additional supply. In response, new methods for administering, managing, and delivering energy efficiency programs aremore » being implemented. Topics covered in the report include: Analysis of the benefits of energy efficiency and key methods for achieving energy efficiency; evaluation of the business drivers spurring increased energy efficiency; Discussion of the major barriers to expanding energy efficiency programs; evaluation of the economic impacts of energy efficiency; discussion of the history of electric utility energy efficiency efforts; analysis of the impact of energy efficiency on utility profits and methods for protecting profitability; Discussion of non-utility management of energy efficiency programs; evaluation of major methods to spur energy efficiency - systems benefit charges, resource planning, and resource standards; and, analysis of the alternatives for encouraging customer participation in energy efficiency programs.« less

  11. Economics, energy, and environmental assessment of diversified crop rotations in sub-Himalayas of India.

    PubMed

    Singh, Raman Jeet; Meena, Roshan Lal; Sharma, N K; Kumar, Suresh; Kumar, Kuldeep; Kumar, Dileep

    2016-02-01

    Reducing the carbon footprint and increasing energy use efficiency of crop rotations are the two most important sustainability issues of the modern agriculture. Present study was undertaken to assess economics, energy, and environmental parameters of common diversified crop rotations (maize-tomato, and maize-toria-wheat) vis-a-vis traditional crop rotations like maize-wheat, maize + ginger and rice-wheat of the north-western Himalayan region of India. Results revealed that maize-tomato and maize + ginger crop rotations being on par with each other produced significantly higher system productivity in terms of maize equivalent yield (30.2-36.2 t/ha) than other crop rotations (5.04-7.68 t/ha). But interestingly in terms of energy efficiencies, traditional maize-wheat system (energy efficiency 7.9, human energy profitability of 177.8 and energy profitability of 6.9 MJ/ha) was significantly superior over other systems. Maize + ginger rotation showed greater competitive advantage over other rotations because of less consumption of non-renewable energy resources. Similarly, maize-tomato rotation had ability of the production process to exploit natural resources due to 14-38% less use of commercial or purchased energy sources over other crop rotations. Vegetable-based crop rotations (maize + ginger and maize-tomato) maintained significantly the least carbon footprint (0.008 and 0.019 kg CO2 eq./kg grain, respectively) and the highest profitability (154,322 and 274,161 Rs./ha net return, respectively) over other crop rotations. As the greatest inputs of energy and carbon across the five crop rotations were nitrogen fertilizer (15-29% and 17-28%, respectively), diesel (14-24% and 8-19%, respectively) and irrigation (10-27% and 11-44%, respectively), therefore, alternative sources like organic farming, conservation agriculture practices, soil and water conservation measures, rain water harvesting etc. should be encouraged to reduce dependency of direct energy and external carbon inputs particularly in sub-Himalayas of India.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malikopoulos, Andreas; Djouadi, Seddik M; Kuruganti, Teja

    We consider the optimal stochastic control problem for home energy systems with solar and energy storage devices when the demand is realized from the grid. The demand is subject to Brownian motions with both drift and variance parameters modulated by a continuous-time Markov chain that represents the regime of electricity price. We model the systems as pure stochastic differential equation models, and then we follow the completing square technique to solve the stochastic home energy management problem. The effectiveness of the efficiency of the proposed approach is validated through a simulation example. For practical situations with constraints consistent to thosemore » studied here, our results imply the proposed framework could reduce the electricity cost from short-term purchase in peak hour market.« less

  13. International Comparison of Product Certification and Verification Methods for Appliances

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Nan; Romankiewicz, John; Fridley, David

    2012-06-01

    Enforcement of appliance standards and consumer trust in appliance labeling are important foundations of growing a more energy efficient economy. Product certification and verification increase compliance rates which in turn increase both energy savings and consumer trust. This paper will serve two purposes: 1) to review international practices for product certification and verification as they relate to the enforcement of standards and labeling programs in the U.S., E.U., Australia, Japan, Canada, and China; and 2) to make recommendations for China to implement improved certification processes related to their mandatory standards and labeling program such as to increase compliance rates andmore » energy savings potential.« less

  14. Energy weighting improves dose efficiency in clinical practice: implementation on a spectral photon-counting mammography system

    PubMed Central

    Berglund, Johan; Johansson, Henrik; Lundqvist, Mats; Cederström, Björn; Fredenberg, Erik

    2014-01-01

    Abstract. In x-ray imaging, contrast information content varies with photon energy. It is, therefore, possible to improve image quality by weighting photons according to energy. We have implemented and evaluated so-called energy weighting on a commercially available spectral photon-counting mammography system. The technique was evaluated using computer simulations, phantom experiments, and analysis of screening mammograms. The CNR benefit of energy weighting for a number of relevant target-background combinations measured by the three methods fell in the range of 2.2 to 5.2% when using optimal weight factors. This translates to a potential dose reduction at constant CNR in the range of 4.5 to 11%. We expect the choice of weight factor in practical implementations to be straightforward because (1) the CNR improvement was not very sensitive to weight, (2) the optimal weight was similar for all investigated target-background combinations, (3) aluminum/PMMA phantoms were found to represent clinically relevant tasks well, and (4) the optimal weight could be calculated directly from pixel values in phantom images. Reasonable agreement was found between the simulations and phantom measurements. Manual measurements on microcalcifications and automatic image analysis confirmed that the CNR improvement was detectable in energy-weighted screening mammograms. PMID:26158045

  15. Food Waste to Energy: How Six Water Resource Recovery ...

    EPA Pesticide Factsheets

    Water Resource Recovery Facilities (WRRFs) with anaerobic digestion have been harnessing biogas for heat and power since at least the 1920’s. A few are approaching “energy neutrality” and some are becoming “energy positive” through a combination of energy efficiency measures and the addition of outside organic wastes. Enhancing biogas production by adding fats, oil and grease (FOG) to digesters has become a familiar practice. Less widespread is the addition of other types of food waste, ranging from municipally collected food scraps to the byproducts of food processing facilities and agricultural production. Co-digesting with food waste, however, is becoming more common. As energy prices rise and as tighter regulations increase the cost of compliance, WRRFs across the county are tapping excess capacity while tempering rates. This report presents the co-digestion practices, performance, and the experiences of six such WRRFs. The report describes the types of food waste co-digested and the strategies--specifically, the tools, timing, and partnerships--employed to manage the material. Additionally, the report describes how the facilities manage wastewater solids, providing information about power production, biosolids use, and program costs. This product is intended to describe the available infrastructure for energy recovery from co-digestion of food waste and wastewater treatment facilities.

  16. Will the Measurement Robots Take Our Jobs? An Update on the State of Automated M&V for Energy Efficiency Programs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Granderson, Jessica; Touzani, Samir; Taylor, Cody

    Trustworthy savings calculations are critical to convincing regulators of both the cost-effectiveness of energy efficiency program investments and their ability to defer supply-side capital investments. Today’s methods for measurement and verification (M&V) of energy savings constitute a significant portion of the total costs of energy efficiency programs. They also require time-consuming data acquisition. A spectrum of savings calculation approaches is used, with some relying more heavily on measured data and others relying more heavily on estimated, modeled, or stipulated data. The rising availability of “smart” meters and devices that report near-real time data, combined with new analytical approaches to quantifyingmore » savings, offers potential to conduct M&V more quickly and at lower cost, with comparable or improved accuracy. Commercial energy management and information systems (EMIS) technologies are beginning to offer M&V capabilities, and program administrators want to understand how they might assist programs in quickly and accurately measuring energy savings. This paper presents the results of recent testing of the ability to use automation to streamline some parts of M&V. Here in this paper, we detail metrics to assess the performance of these new M&V approaches, and a framework to compute the metrics. We also discuss the accuracy, cost, and time trade-offs between more traditional M&V, and these emerging streamlined methods that use high-resolution energy data and automated computational intelligence. Finally we discuss the potential evolution of M&V and early results of pilots currently underway to incorporate M&V automation into ratepayer-funded programs and professional implementation and evaluation practice.« less

  17. Efficient and Selective Electrochemical and Photoelectrochemical Reduction of 5-Hydroxymethylfurfural to 2,5-Bis(hydroxymethyl)furan using Water as the Hydrogen Source

    DOE PAGES

    Roylance, John J.; Kim, Tae Woo; Choi, Kyoung-Shin

    2016-02-17

    Reductive biomass conversion has been conventionally conducted using H 2 gas under high-temperature and-pressure conditions. Here, efficient electrochemical reduction of 5-hydroxymethylfurfural (HMF), a key intermediate for biomass conversion, to 2,5-bis(hydroxymethyl)furan (BHMF), an important monomer for industrial processes, was demonstrated using Ag catalytic electrodes. This process uses water as the hydrogen source under ambient conditions and eliminates the need to generate and consume H 2 for hydrogenation, providing a practical and efficient route for BHMF production. By systematic investigation of HMF reduction on the Ag electrode surface, BHMF production was achieved with the Faradaic efficiency and selectivity nearing 100%, and plausiblemore » reduction mechanisms were also elucidated. Furthermore, construction of a photoelectrochemical cell (PEC) composed of an n-type BiVO 4 semiconductor anode, which uses photogenerated holes for water oxidation, and a catalytic Ag cathode, which uses photoexcited electrons from BiVO 4 for the reduction of HMF to BHMF, was demonstrated to utilize solar energy to significantly decrease the external voltage necessary for HMF reduction. This shows the possibility of coupling electrochemical HMF reduction and solar energy conversion, which can provide more efficient and environmentally benign routes for reductive biomass conversion.« less

  18. In Situ-Grown ZnCo2O4 on Single-Walled Carbon Nanotubes as Air Electrode Materials for Rechargeable Lithium–Oxygen Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Bin; Xu, Wu; Yan, Pengfei

    2015-10-12

    Although lithium-oxygen (Li-O2) batteries have great potential to be used as one of the next generation energy storage systems due to their ultrahigh theoretical specific energy, there are still many significant barriers before their practical applications. These barriers include electrolyte and electrode instability, poor ORR/OER efficiency and cycling capability, etc. Development of a highly efficient catalyst will not only enhance ORR/OER efficiency, it may also improve the stability of electrolyte because the reduced charge voltage. Here we report the synthesis of nano-sheet-assembled ZnCo2O4 spheres/single walled carbon nanotubes (ZCO/SWCNTs) composites as high performance air electrode materials for Li-O2 batteries. The ZCOmore » catalyzed SWCNTs electrodes delivered high discharge capacities, decreased the onset of oxygen evolution reaction by 0.9 V during charge processes, and led to more stable cycling stability. These results indicate that ZCO/SWCNTs composite can be used as highly efficient air electrode for oxygen reduction and evolution reactions. The highly enhanced catalytic activity by uniformly dispersed ZnCo2O4 catalyst on nanostructured electrodes is expected to inspire« less

  19. Electrondriven processes in polyatomic molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McKoy, Vincent

    2017-03-20

    This project developed and applied scalable computational methods to obtain information about low-energy electron collisions with larger polyatomic molecules. Such collisions are important in modeling radiation damage to living systems, in spark ignition and combustion, and in plasma processing of materials. The focus of the project was to develop efficient methods that could be used to obtain both fundamental scientific insights and data of practical value to applications.

  20. The Relationship of Dairy Farm Eco-Efficiency with Intensification and Self-Sufficiency. Evidence from the French Dairy Sector Using Life Cycle Analysis, Data Envelopment Analysis and Partial Least Squares Structural Equation Modelling.

    PubMed

    Soteriades, Andreas Diomedes; Stott, Alistair William; Moreau, Sindy; Charroin, Thierry; Blanchard, Melanie; Liu, Jiayi; Faverdin, Philippe

    2016-01-01

    We aimed at quantifying the extent to which agricultural management practices linked to animal production and land use affect environmental outcomes at a larger scale. Two practices closely linked to farm environmental performance at a larger scale are farming intensity, often resulting in greater off-farm environmental impacts (land, non-renewable energy use etc.) associated with the production of imported inputs (e.g. concentrates, fertilizer); and the degree of self-sufficiency, i.e. the farm's capacity to produce goods from its own resources, with higher control over nutrient recycling and thus minimization of losses to the environment, often resulting in greater on-farm impacts (eutrophication, acidification etc.). We explored the relationship of these practices with farm environmental performance for 185 French specialized dairy farms. We used Partial Least Squares Structural Equation Modelling to build, and relate, latent variables of environmental performance, intensification and self-sufficiency. Proxy indicators reflected the latent variables for intensification (milk yield/cow, use of maize silage etc.) and self-sufficiency (home-grown feed/total feed use, on-farm energy/total energy use etc.). Environmental performance was represented by an aggregate 'eco-efficiency' score per farm derived from a Data Envelopment Analysis model fed with LCA and farm output data. The dataset was split into two spatially heterogeneous (bio-physical conditions, production patterns) regions. For both regions, eco-efficiency was significantly negatively related with milk yield/cow and the use of maize silage and imported concentrates. However, these results might not necessarily hold for intensive yet more self-sufficient farms. This requires further investigation with latent variables for intensification and self-sufficiency that do not largely overlap- a modelling challenge that occurred here. We conclude that the environmental 'sustainability' of intensive dairy farming depends on particular farming systems and circumstances, although we note that more self-sufficient farms may be preferable when they may benefit from relatively low land prices and agri-environment schemes aimed at maintaining grasslands.

  1. Analysis and evaluation in the production process and equipment area of the low-cost solar array project

    NASA Technical Reports Server (NTRS)

    Goldman, H.; Wolf, M.

    1979-01-01

    Analyses of slicing processes and junction formation processes are presented. A simple method for evaluation of the relative economic merits of competing process options with respect to the cost of energy produced by the system is described. An energy consumption analysis was developed and applied to determine the energy consumption in the solar module fabrication process sequence, from the mining of the SiO2 to shipping. The analysis shows that, in current technology practice, inordinate energy use in the purification step, and large wastage of the invested energy through losses, particularly poor conversion in slicing, as well as inadequate yields throughout. The cell process energy expenditures already show a downward trend based on increased throughput rates. The large improvement, however, depends on the introduction of a more efficient purification process and of acceptable ribbon growing techniques.

  2. Using cooperative control to manage uncertainties for Aquifer Thermal Energy Storage (ATES)

    NASA Astrophysics Data System (ADS)

    Jaxa-Rozen, Marc; Rostampour, Vahab; Kwakkel, Jan; Bloemendal, Martin

    2017-04-01

    Aquifer Thermal Energy Storage (ATES) technology can lead to major reductions in energy demand for heating and cooling in buildings. ATES systems rely on shallow aquifers to seasonally store thermal energy and have become popular in the Netherlands, where a combination of easily accessible aquifers and strict energy regulations makes the technology especially relevant. However, this rapid adoption has made their management in dense urban areas more challenging. For instance, thermal interferences between neighboring systems can degrade storage efficiency. Policies for the permitting and spatial layout of ATES thus tend to be conservative to ensure the performance of individual systems, but this limits the space available for new systems - leading to a trade-off between individual system performance, and the overall energy savings obtained from ATES in a given area. Furthermore, recent studies show that operational uncertainties contribute to poor outcomes under current planning practices; systems in the Netherlands typically use less than half of their permitted water volume. This further reduces energy savings compared to expectations and also leads to an over-allocation of subsurface space. In this context, this work investigates the potential of a more flexible approach for ATES planning and operation, under which neighboring systems coordinate their operation. This is illustrated with a three-building idealized case, using a model predictive control approach for two control schemes: a decoupled formulation, and a centralized scheme that aims to avoid interferences between neighboring systems (assuming perfect information exchange). These control schemes are compared across a range of scenarios for spatial layout, building energy demand, and climate, using a coupled agent-based/geohydrological simulation. The simulation indicates that centralized operation could significantly improve the spatial layout efficiency of ATES systems, by allowing systems to be placed more densely without penalizing their individual performance. This effectively relaxes the trade-off between individual system performance and collective energy savings as observed in the decoupled case. The continued adoption of ATES technology provides a window of opportunity to revisit existing practices for the layout and operation of urban ATES systems, as information exchange - supported by appropriate spatial planning - could offer significant potential towards improved performance under operational uncertainties.

  3. High-Energy-Density Metal-Oxygen Batteries: Lithium-Oxygen Batteries vs Sodium-Oxygen Batteries.

    PubMed

    Song, Kyeongse; Agyeman, Daniel Adjei; Park, Mihui; Yang, Junghoon; Kang, Yong-Mook

    2017-12-01

    The development of next-generation energy-storage devices with high power, high energy density, and safety is critical for the success of large-scale energy-storage systems (ESSs), such as electric vehicles. Rechargeable sodium-oxygen (Na-O 2 ) batteries offer a new and promising opportunity for low-cost, high-energy-density, and relatively efficient electrochemical systems. Although the specific energy density of the Na-O 2 battery is lower than that of the lithium-oxygen (Li-O 2 ) battery, the abundance and low cost of sodium resources offer major advantages for its practical application in the near future. However, little has so far been reported regarding the cell chemistry, to explain the rate-limiting parameters and the corresponding low round-trip efficiency and cycle degradation. Consequently, an elucidation of the reaction mechanism is needed for both lithium-oxygen and sodium-oxygen cells. An in-depth understanding of the differences and similarities between Li-O 2 and Na-O 2 battery systems, in terms of thermodynamics and a structural viewpoint, will be meaningful to promote the development of advanced metal-oxygen batteries. State-of-the-art battery design principles for high-energy-density lithium-oxygen and sodium-oxygen batteries are thus reviewed in depth here. Major drawbacks, reaction mechanisms, and recent strategies to improve performance are also summarized. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Data-Aware Retrodiction for Asynchronous Harmonic Measurement in a Cyber-Physical Energy System

    PubMed Central

    Liu, Youda; Wang, Xue; Liu, Yanchi; Cui, Sujin

    2016-01-01

    Cyber-physical energy systems provide a networked solution for safety, reliability and efficiency problems in smart grids. On the demand side, the secure and trustworthy energy supply requires real-time supervising and online power quality assessing. Harmonics measurement is necessary in power quality evaluation. However, under the large-scale distributed metering architecture, harmonic measurement faces the out-of-sequence measurement (OOSM) problem, which is the result of latencies in sensing or the communication process and brings deviations in data fusion. This paper depicts a distributed measurement network for large-scale asynchronous harmonic analysis and exploits a nonlinear autoregressive model with exogenous inputs (NARX) network to reorder the out-of-sequence measuring data. The NARX network gets the characteristics of the electrical harmonics from practical data rather than the kinematic equations. Thus, the data-aware network approximates the behavior of the practical electrical parameter with real-time data and improves the retrodiction accuracy. Theoretical analysis demonstrates that the data-aware method maintains a reasonable consumption of computing resources. Experiments on a practical testbed of a cyber-physical system are implemented, and harmonic measurement and analysis accuracy are adopted to evaluate the measuring mechanism under a distributed metering network. Results demonstrate an improvement of the harmonics analysis precision and validate the asynchronous measuring method in cyber-physical energy systems. PMID:27548171

  5. Energy harvesting: small scale energy production from ambient sources

    NASA Astrophysics Data System (ADS)

    Yeatman, Eric M.

    2009-03-01

    Energy harvesting - the collection of otherwise unexploited energy in the local environment - is attracting increasing attention for the powering of electronic devices. While the power levels that can be reached are typically modest (microwatts to milliwatts), the key motivation is to avoid the need for battery replacement or recharging in portable or inaccessible devices. Wireless sensor networks are a particularly important application: the availability of essentially maintenance free sensor nodes, as enabled by energy harvesting, will greatly increase the feasibility of large scale networks, in the paradigm often known as pervasive sensing. Such pervasive sensing networks, used to monitor buildings, structures, outdoor environments or the human body, offer significant benefits for large scale energy efficiency, health and safety, and many other areas. Sources of energy for harvesting include light, temperature differences, and ambient motion, and a wide range of miniature energy harvesters based on these sources have been proposed or demonstrated. This paper reviews the principles and practice in miniature energy harvesters, and discusses trends, suitable applications, and possible future developments.

  6. 75 FR 34657 - Energy Efficiency and Sustainable Design Standards for New Federal Buildings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-18

    ... Efficiency and Sustainable Design Standards for New Federal Buildings AGENCY: Office of Energy Efficiency and....S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Federal Energy Management... June 11, 2010. Cathy Zoi, Assistant Secretary, Energy Efficiency and Renewable Energy. [FR Doc. 2010...

  7. 48 CFR 23.203 - Energy-efficient products.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 1 2011-10-01 2011-10-01 false Energy-efficient products... SOCIOECONOMIC PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Energy and Water Efficiency and Renewable Energy 23.203 Energy-efficient...

  8. 48 CFR 23.203 - Energy-efficient products.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 1 2010-10-01 2010-10-01 false Energy-efficient products... SOCIOECONOMIC PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Energy and Water Efficiency and Renewable Energy 23.203 Energy-efficient...

  9. 48 CFR 23.203 - Energy-efficient products.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 1 2014-10-01 2014-10-01 false Energy-efficient products... SOCIOECONOMIC PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Energy and Water Efficiency and Renewable Energy 23.203 Energy-efficient...

  10. 48 CFR 23.203 - Energy-efficient products.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 1 2013-10-01 2013-10-01 false Energy-efficient products... SOCIOECONOMIC PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Energy and Water Efficiency and Renewable Energy 23.203 Energy-efficient...

  11. 48 CFR 23.203 - Energy-efficient products.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 1 2012-10-01 2012-10-01 false Energy-efficient products... SOCIOECONOMIC PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Energy and Water Efficiency and Renewable Energy 23.203 Energy-efficient...

  12. Measuring Building Insulation

    NASA Astrophysics Data System (ADS)

    Parks, Beth

    2013-03-01

    Currently, the only way for homeowners to learn about the effectiveness of their home insulation is to hire an energy auditor. This difficulty deters homeowners from taking action to improve energy efficiency. In principle, measuring the temperature difference between a wall surface and the interior of a home is sufficient to determine the wall insulation, but in practice, temperature cycles from the heating system make a single measurement unreliable. I will describe a simple and inexpensive thermocouple-based device to measure this temperature difference and report results obtained by monitoring this temperature difference over multiple heating cycles in a range of buildings. Patent application 12/555371

  13. Improving the global efficiency in small hydropower practice

    NASA Astrophysics Data System (ADS)

    Razurel, P.; Gorla, L.; Crouzy, B.; Perona, P.

    2015-12-01

    The global increase in energy production from renewable sources has seen river exploitation for small hydropower plants to also grow considerably in the last decade. River intakes used to divert water from the main course to the power plant are at the base of such practice. A key issue concern with finding innovative concepts to both design and manage such structures in order to improve classic operational rules. Among these, the Minimal Flow Release (MFR) concept has long been used in spite of its environmental inconsistency.In this work, we show that the economical and ecological efficiency of diverting water for energy production in small hydropower plants can be improved towards sustainability by engineering a novel class of flow-redistribution policies. We use the mathematical form of the Fermi-Dirac statistical distribution to define non-proportional dynamic flow-redistribution rules, which broadens the spectrum of dynamic flow releases based on proportional redistribution. The theoretical background as well as the economic interpretation is presented and applied to three case studies in order to systematically test the global performance of such policies. Out of numerical simulations, a Pareto frontier emerges in the economic vs environmental efficiency plot, which show that non-proportional distribution policies improve both efficiencies with respect to those obtained from some traditional MFR and proportional policies. This picture is shown also for long term climatic scenarios affecting water availability and the natural flow regime.In a time of intense and increasing exploitation close to resource saturation, preserving natural river reaches requires to abandon inappropriate static release policies in favor of non-proportional ones towards a sustainable use of the water resource.

  14. A Linked Fusion of Things, Services, and Data to Support a Collaborative Data Management Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stephan, Eric G.; Elsethagen, Todd O.; Wynne, Adam S.

    The purpose of this paper is to illustrate the use of semantic technologies and approaches to seamlessly link things, services, and data in the proposed design of a scientific offshore wind energy research for the U.S. Department of Energy Wind and Water Technology Office of the Office of Energy Efficiency and Renewable Energy (EERE). By adapting linked community best practices, we were able to design a collaborative facility supporting both operational staff and end users that incorporates off-the-shelf components and overcome traditional barriers between devices, resulting data, and processing services. This was made largely possible through complementary advances in themore » Internet of Things (IoT), semantic web, Linked Services, and Linked Data communities, which provide the foundation for our design.« less

  15. Direct solar heating for Space Station application

    NASA Technical Reports Server (NTRS)

    Simon, W. E.

    1985-01-01

    Early investigations have shown that a large percentage of the power generated on the Space Station will be needed in the form of high-temperature thermal energy. The most efficient method of satisfying this requirement is through direct utilization of available solar energy. A system concept for the direct use of solar energy on the Space Station, including its benefits to customers, technologists, and designers of the station, is described. After a brief discussion of energy requirements and some possible applications, results of selective tradeoff studies are discussed, showing area reduction benefits and some possible configurations for the practical use of direct solar heating. Following this is a description of system elements and required technologies. Finally, an assessment of available contributive technologies is presented, and a Space Shuttle Orbiter flight experiment is proposed.

  16. Using instability to reconfigure smart structures in a spring-mass model

    NASA Astrophysics Data System (ADS)

    Zhang, Jiaying; McInnes, Colin R.

    2017-07-01

    Multistable phenomenon have long been used in mechanism design. In this paper a subset of unstable configurations of a smart structure model will be used to develop energy-efficient schemes to reconfigure the structure. This new concept for reconfiguration uses heteroclinic connections to transition the structure between different unstable equal-energy states. In an ideal structure model zero net energy input is required for the reconfiguration, compared to transitions between stable equilibria across a potential barrier. A simple smart structure model is firstly used to identify sets of equal-energy unstable configurations using dynamical systems theory. Dissipation is then added to be more representative of a practical structure. A range of strategies are then used to reconfigure the smart structure using heteroclinic connections with different approaches to handle dissipation.

  17. Leveraging Human-environment Systems in Residential Buildings for Aggregate Energy Efficiency and Sustainability

    NASA Astrophysics Data System (ADS)

    Xu, Xiaoqi

    Reducing the energy consumed in the built environment is a key objective in many sustainability initiatives. Existing energy saving methods have consisted of physical interventions to buildings and/or behavioral modifications of occupants. However, such methods may not only suffer from their own disadvantages, e.g. high cost and transient effect, but also lose aggregate energy saving potential due to the oftentimes-associated single-building-focused view and an isolated examination of occupant behaviors. This dissertation attempts to overcome the limitations of traditional energy saving research and practical approaches, and enhance residential building energy efficiency and sustainability by proposing innovative energy strategies from a holistic perspective of the aggregate human-environment systems. This holistic perspective features: (1) viewing buildings as mutual influences in the built environment, (2) leveraging both the individual and contextualized social aspects of occupant behaviors, and (3) incorporating interactions between the built environment and human behaviors. First, I integrate three interlinked components: buildings, residents, and the surrounding neighborhood, and quantify the potential energy savings to be gained from renovating buildings at the inter-building level and leveraging neighborhood-contextualized occupant social networks. Following the confirmation of both the inter-building effect among buildings and occupants' interpersonal influence on energy conservation, I extend the research further by examining the synergy that may exist at the intersection between these "engineered" building networks and "social" peer networks, focusing specifically on the additional energy saving potential that could result from interactions between the two components. Finally, I seek to reach an alignment of the human and building environment subsystems by matching the thermostat preferences of each household with the thermal conditions within their apartment, and develop the Energy Saving Alignment Strategy to be considered in public housing assignment policy. This strategy and the inter-building level energy management strategies developed in my preceding research possess large-scale cost-effectiveness and may engender long-lasting influence compared with existing energy saving approaches. Building from the holistic framework of coupled human-environment systems, the findings of this research will advance knowledge of energy efficiency in the built environment and lead to the development of novel strategies to conserve energy in residential buildings.

  18. DOD can save millions by using energy efficient centralized aircraft support systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1982-05-07

    The ways the Department of Defense can save millions of dollars annually by using new energy efficient centralized aircraft support systems at certain Air Force and Navy bases are discussed. The Air Force and Navy have developed and installed several different systems and have realized some degree of success. However, each service has developed its systems independently. Consequently, there is no commonality between the services' systems which could permit economical procurements for standard servicewide systems. Standardization would also prevent duplication of design efforts by the services and minimize proliferation of aircraft support equipment. It also would allow the services tomore » further reduce costs by combining requirements to assure the most economical quantities for buying system components. GAO makes specific recommendations to the Secretaries of Defense and the Air Force to develop standard systems and to install them at all bases where feasible and practical.« less

  19. The drive for Aircraft Energy Efficiency

    NASA Technical Reports Server (NTRS)

    James, R. L., Jr.; Maddalon, D. V.

    1984-01-01

    NASA's Aircraft Energy Efficiency (ACEE) program, which began in 1976, has mounted a development effort in four major transport aircraft technology fields: laminar flow systems, advanced aerodynamics, flight controls, and composite structures. ACEE has explored two basic methods for achieving drag-reducing boundary layer laminarization: the use of suction through the wing structure (via slots or perforations) to remove boundary layer turbulence, and the encouragement of natural laminar flow maintenance through refined design practices. Wind tunnel tests have been conducted for wide bodied aircraft equipped with high aspect ratio supercritical wings and winglets. Maneuver load control and pitch-active stability augmentation control systems reduce fuel consumption by reducing the drag associated with high aircraft stability margins. Composite structures yield lighter airframes that in turn call for smaller wing and empennage areas, reducing induced drag for a given payload. In combination, all four areas of development are expected to yield a fuel consumption reduction of 40 percent.

  20. Self-assembled monolayers of n-alkanethiols suppress hydrogen evolution and increase the efficiency of rechargeable iron battery electrodes.

    PubMed

    Malkhandi, Souradip; Yang, Bo; Manohar, Aswin K; Prakash, G K Surya; Narayanan, S R

    2013-01-09

    Iron-based rechargeable batteries, because of their low cost, eco-friendliness, and durability, are extremely attractive for large-scale energy storage. A principal challenge in the deployment of these batteries is their relatively low electrical efficiency. The low efficiency is due to parasitic hydrogen evolution that occurs on the iron electrode during charging and idle stand. In this study, we demonstrate for the first time that linear alkanethiols are very effective in suppressing hydrogen evolution on alkaline iron battery electrodes. The alkanethiols form self-assembled monolayers on the iron electrodes. The degree of suppression of hydrogen evolution by the alkanethiols was found to be greater than 90%, and the effectiveness of the alkanethiol increased with the chain length. Through steady-state potentiostatic polarization studies and impedance measurements on high-purity iron disk electrodes, we show that the self-assembly of alkanethiols suppressed the parasitic reaction by reducing the interfacial area available for the electrochemical reaction. We have modeled the effect of chain length of the alkanethiol on the surface coverage, charge-transfer resistance, and double-layer capacitance of the interface using a simple model that also yields a value for the interchain interaction energy. We have verified the improvement in charging efficiency resulting from the use of the alkanethiols in practical rechargeable iron battery electrodes. The results of battery tests indicate that alkanethiols yield among the highest faradaic efficiencies reported for the rechargeable iron electrodes, enabling the prospect of a large-scale energy storage solution based on low-cost iron-based rechargeable batteries.

Top