Shared Savings Financing for College and University Energy Efficiency Investments.
ERIC Educational Resources Information Center
Business Officer, 1984
1984-01-01
Shared savings arrangements for campus energy efficient investments are discussed. Shared savings is a term for an agreement in which a private company offers to implement an energy efficiency program, including capital improvements, in exchange for a portion of the energy cost savings. Attention is directed to: types of shared savings…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feibel, C.E.
This study uses multiple data collection and research methods including in depth interviews, 271 surveys of shared taxi and minibus operators, participant observation, secondary sources, and the literature on public transport from low, medium, and high-income countries. Extensive use is also made of a survey administered in Istanbul in 1976 to 1935 paratransit operators. Primary findings are that private buses are more efficient than public buses on a cost per passenger-km basis, and that private minibuses are as efficient as public buses. In terms of energy efficiency, minibuses are almost as efficient as public and private buses using actual-occupancy levels.more » Large shared taxis are twice as cost and energy efficient as cars, and small shared taxis 50% more efficient. In terms of investment cost per seat, large shared taxis have the lowest cost followed by smaller shared taxis, minibuses, and buses. Considering actual occupancy levels, minibuses are only slightly less effective in terms of congestion than buses, and large and small shared taxis are twice as effective as cars. It is also shown that minibuses and shared taxis have better service quality than buses because of higher frequencies and speeds, and because they provide a much higher probability of getting a seat than buses. Analysis of regulation and policy suggests that there are many unintended cost of public-transport regulations.« less
Final Technical Report: "Achieving Regional Energy Efficiency Potential in the Southeast”
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mahoney, Mandy
The overall objective of this award was to facilitate sharing of DOE resources and best practices as well as provide technical assistance to key stakeholders to support greater compliance with energy efficiency standards and increased energy savings. The outcomes of this award include greater awareness among key stakeholders on energy efficiency topics, increased deployment and utilization of DOE resources, and effective policies and programs to support energy efficiency in the Southeast.
Alternative Fuels Data Center: Ten Ways You Can Implement Alternative Fuels
and Energy-Efficient Vehicle Technologies Ten Ways You Can Implement Alternative Fuels and Energy-Efficient Vehicle Technologies to someone by E-mail Share Alternative Fuels Data Center: Ten Ways You Can Implement Alternative Fuels and Energy-Efficient Vehicle Technologies on Facebook Tweet about
Optimal Rate Schedules with Data Sharing in Energy Harvesting Communication Systems.
Wu, Weiwei; Li, Huafan; Shan, Feng; Zhao, Yingchao
2017-12-20
Despite the abundant research on energy-efficient rate scheduling polices in energy harvesting communication systems, few works have exploited data sharing among multiple applications to further enhance the energy utilization efficiency, considering that the harvested energy from environments is limited and unstable. In this paper, to overcome the energy shortage of wireless devices at transmitting data to a platform running multiple applications/requesters, we design rate scheduling policies to respond to data requests as soon as possible by encouraging data sharing among data requests and reducing the redundancy. We formulate the problem as a transmission completion time minimization problem under constraints of dynamical data requests and energy arrivals. We develop offline and online algorithms to solve this problem. For the offline setting, we discover the relationship between two problems: the completion time minimization problem and the energy consumption minimization problem with a given completion time. We first derive the optimal algorithm for the min-energy problem and then adopt it as a building block to compute the optimal solution for the min-completion-time problem. For the online setting without future information, we develop an event-driven online algorithm to complete the transmission as soon as possible. Simulation results validate the efficiency of the proposed algorithm.
Optimal Rate Schedules with Data Sharing in Energy Harvesting Communication Systems
Wu, Weiwei; Li, Huafan; Shan, Feng; Zhao, Yingchao
2017-01-01
Despite the abundant research on energy-efficient rate scheduling polices in energy harvesting communication systems, few works have exploited data sharing among multiple applications to further enhance the energy utilization efficiency, considering that the harvested energy from environments is limited and unstable. In this paper, to overcome the energy shortage of wireless devices at transmitting data to a platform running multiple applications/requesters, we design rate scheduling policies to respond to data requests as soon as possible by encouraging data sharing among data requests and reducing the redundancy. We formulate the problem as a transmission completion time minimization problem under constraints of dynamical data requests and energy arrivals. We develop offline and online algorithms to solve this problem. For the offline setting, we discover the relationship between two problems: the completion time minimization problem and the energy consumption minimization problem with a given completion time. We first derive the optimal algorithm for the min-energy problem and then adopt it as a building block to compute the optimal solution for the min-completion-time problem. For the online setting without future information, we develop an event-driven online algorithm to complete the transmission as soon as possible. Simulation results validate the efficiency of the proposed algorithm. PMID:29261135
The High Cost of Saving Energy Dollars.
ERIC Educational Resources Information Center
Rose, Patricia
1985-01-01
In alternative financing a private company provides the capital and expertise for improving school energy efficiency. Savings are split between the school system and the company. Options for municipal leasing, cost sharing, and shared savings are explained along with financial, procedural, and legal considerations. (MLF)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Katz, Jessica; Denholm, Paul; Cochran, Jaquelin
2015-06-01
Greening the Grid provides technical assistance to energy system planners, regulators, and grid operators to overcome challenges associated with integrating variable renewable energy into the grid. Coordinating balancing area operation can promote more cost and resource efficient integration of variable renewable energy, such as wind and solar, into power systems. This efficiency is achieved by sharing or coordinating balancing resources and operating reserves across larger geographic boundaries.
Energy Smart Schools--Applied Research, Field Testing, and Technology Integration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nebiat Solomon; Robin Vieira; William L. Manz
2004-12-01
The National Association of State Energy Officials (NASEO) in conjunction with the California Energy Commission, the Energy Center of Wisconsin, the Florida Solar Energy Center, the New York State Energy Research and Development Authority, and the Ohio Department of Development's Office of Energy Efficiency conducted a four-year, cost-share project with the U.S. Department of Energy (USDOE), Office of Energy Efficiency and Renewable Energy to focus on energy efficiency and high-performance technologies in our nation's schools. NASEO was the program lead for the MOU-State Schools Working group, established in conjunction with the USDOE Memorandum of Understanding process for collaboration among statemore » and federal energy research and demonstration offices and organizations. The MOU-State Schools Working Group included State Energy Offices and other state energy research organizations from all regions of the country. Through surveys and analyses, the Working Group determined the school-related energy priorities of the states and established a set of tasks to be accomplished, including the installation and evaluation of microturbines, advanced daylighting research, testing of schools and classrooms, and integrated school building technologies. The Energy Smart Schools project resulted in the adoption of advanced energy efficiency technologies in both the renovation of existing schools and building of new ones; the education of school administrators, architects, engineers, and manufacturers nationwide about the energy-saving, economic, and environmental benefits of energy efficiency technologies; and improved the learning environment for the nation's students through use of better temperature controls, improvements in air quality, and increased daylighting in classrooms. It also provided an opportunity for states to share and replicate successful projects to increase their energy efficiency while at the same time driving down their energy costs.« less
A Bottom-up Energy Efficiency Improvement Roadmap for China’s Iron and Steel Industry up to 2050
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Qi; Hasanbeigi, Ali; Price, Lynn
Iron and steel manufacturing is energy intensive in China and in the world. China is the world largest steel producer accounting for around half of the world steel production. In this study, we use a bottom-up energy consumption model to analyze four steel-production and energy-efficiency scenarios and evaluate the potential for energy savings from energy-efficient technologies in China’s iron and steel industry between 2010 and 2050. The results show that China’s steel production will rise and peak in the year 2020 at 860 million tons (Mt) per year for the base-case scenario and 680 Mt for the advanced energy-efficiency scenario.more » From 2020 on, production will gradually decrease to about 510 Mt and 400 Mt in 2050, for the base-case and advanced scenarios, respectively. Energy intensity will decrease from 21.2 gigajoules per ton (G/t) in 2010 to 12.2 GJ/t and 9.9 GJ/t in 2050 for the base-case and advanced scenarios, respectively. In the near term, decreases in iron and steel industry energy intensity will come from adoption of energy-efficient technologies. In the long term, a shift in the production structure of China’s iron and steel industry, reducing the share of blast furnace/basic oxygen furnace production and increasing the share of electric-arc furnace production while reducing the use of pig iron as a feedstock to electric-arc furnaces will continue to reduce the sector’s energy consumption. We discuss barriers to achieving these energy-efficiency gains and make policy recommendations to support improved energy efficiency and a shift in the nature of iron and steel production in China.« less
Share of Energy Used by Appliances and Consumer Electronics Increases in U.S. Homes
2011-01-01
Over the past three decades, the share of residential electricity used by appliances and electronics in U.S. homes has nearly doubled from 17% to 3% , growing from 1.77 quadrillion Btu (quads) to 3.25 quads. This rise has occurred while federal energy efficiency standards were enacted on every major appliance, overall household energy consumption actually decreased from 10.58 quads to 10.55 quads, and energy use per household fell 31%.
NASA Astrophysics Data System (ADS)
Telaga, A. S.; Hartanto, I. D.
2017-03-01
Many countries have used award system to promote energy efficiency practices in industry. The award system has been found to have significant impact to increase energy conservation and sustainability adoption in companies. Astra International (AI) as a holding company of more than 200 companies also organised Astra green energy (AGen) award to all affiliated companies (AFFCO) in Astra group. The event has been used to share energy efficiency best practices among AFFCO in Astra group. AFFCOs of Astra International are among the biggest and the leader in their industrial sectors Therefore, analyses from AFFO’s energy efficiency case studies represents current practices in Indonesia industrial sectors. Analyses are divided into industry, building, and renewable energy. The results from analyses found that AFFCOs already aware of energy conservation and have implemented projects to promote energy efficiency. However, the AFFCOs do not optimally use monitoring data for energy reduction.
TV Energy Consumption Trends and Energy-Efficiency Improvement Options
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Won Young; Phadke, Amol; Shah, Nihar
2011-07-01
The SEAD initiative aims to transform the global market by increasing the penetration of highly efficient equipment and appliances. SEAD is a government initiative whose activities and projects engage the private sector to realize the large global energy savings potential from improved appliance and equipment efficiency. SEAD seeks to enable high-level global action by informing the Clean Energy Ministerial dialogue as one of the initiatives in the Global Energy Efficiency Challenge. In keeping with its goal of achieving global energy savings through efficiency, SEAD was approved as a task within the International Partnership for Energy Efficiency Cooperation (IPEEC) in Januarymore » 2010. SEAD partners work together in voluntary activities to: (1) ?raise the efficiency ceiling? by pulling super-efficient appliances and equipment into the market through cooperation on measures like incentives, procurement, awards, and research and development (R&D) investments; (2) ?raise the efficiency floor? by working together to bolster national or regional policies like minimum efficiency standards; and (3) ?strengthen the efficiency foundations? of programs by coordinating technical work to support these activities. Although not all SEAD partners may decide to participate in every SEAD activity, SEAD partners have agreed to engage actively in their particular areas of interest through commitment of financing, staff, consultant experts, and other resources. In addition, all SEAD partners are committed to share information, e.g., on implementation schedules for and the technical detail of minimum efficiency standards and other efficiency programs. Information collected and created through SEAD activities will be shared among all SEAD partners and, to the extent appropriate, with the global public.As of April 2011, the governments participating in SEAD are: Australia, Brazil, Canada, the European Commission, France, Germany, India, Japan, Korea, Mexico, Russia, South Africa, Sweden, the United Arab Emirates, the United Kingdom, and the United States. More information on SEAD is available from its website at http://www.superefficient.org/.« less
The roles of users in shaping transitions to new energy systems
NASA Astrophysics Data System (ADS)
Schot, Johan; Kanger, Laur; Verbong, Geert
2016-05-01
Current government information policies and market-based instruments aimed at influencing the energy choices of consumers often ignore the fact that consumer behaviour is not fully reducible to individuals making rational conscious decisions all the time. The decisions of consumers are largely configured by shared routines embedded in socio-technical systems. To achieve a transition towards a decarbonized and energy-efficient system, an approach that goes beyond individual consumer choice and puts shared routines and system change at its centre is needed. Here, adopting a transitions perspective, we argue that consumers should be reconceptualized as users who are important stakeholders in the innovation process shaping new routines and enacting system change. We review the role of users in shifts to new decarbonized and energy-efficient systems and provide a typology of user roles.
Standard Energy Efficiency Data Platform
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheifetz, D. Magnus
2014-07-15
The SEED platform is expected to be a building energy performance data management tool that provides federal, state and local governments, building owners and operators with an easy, flexible and cost-effective method to collect information about groups of buildings, oversee compliance with energy disclosure laws and demonstrate the economic and environmental benefits of energy efficiency. It will allow users to leverage a local application to manage data disclosure and large data sets without the IT investment of developing custom applications. The first users of SEED will be agencies that need to collect, store, and report/share large data sets generated bymore » benchmarking, energy auditing, retro-commissioning or retrofitting of many buildings. Similarly, building owners and operators will use SEED to manage their own energy data in a common format and centralized location. SEED users will also control the disclosure of their information for compliance requirements, recognition programs such as ENERGY STAR, or data sharing with the Buildings Performance Database and/or other third parties at their discretion.« less
Everyone wins - a program to upgrade energy efficiency in manufactured housing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, A.D.; Onisko, S.A.; Sandahl, L.J.
1994-03-01
Other regions might well benefit from this case history, illustrating how a region marshalled its resources to bring manufactured housing--a significant share of its new residential sector--into the modern era of energy efficiency. Everyone was a winner. In the Pacific Northwest, as in many parts of the country, a significant proportion of new homes are HUD-code manufactured, or so-called mobile, homes. About 25% of new single-family houses in the Pacific Northwest are manufactured homes. They represent an even larger share - nearly 40% - of new electrically heated housing in the region, and this share has been growing. When Congressmore » enacted the Pacific Northwest Power Planning Act of 1980, it also permitted the four Northwest states to establish an interstate compact body - the Northwest Power Planning Council - and required the Council to produce an integrated resource plan for the region served by the Bonneville Power Administration, the federal power marketing and transmission agency that operates the region's major transmission grid and sells most of its bulk power. Both the law and the plan charge Bonneville with developing cost-effective programs to save electricity in all end-use sectors through improved energy efficiency.« less
A survey on human behavior towards energy efficiency for office worker in malaysia
NASA Astrophysics Data System (ADS)
Mustafa, N. H.; Husain, M. N.; Abd Aziz, M. Z. A.; Othman, M. A.; Malek, F.
2014-04-01
Green environment has become an important topic around the world. This campaign can be realized if everybody understands and shares similar objectives on managing energy in an efficient way. This paper will present and analyse the survey on energy usage by office workers in Malaysia. The survey will focus on the workers in government sector. In social science surveys, it is important to support the tested data for a project. For issues related to human behaviour we must compare with real situations to verify the tested data and the results in energy monitoring system. The energy monitoring system will improve energy usage efficiency for the basic human activities in different situations and environments.
Sharing success: State energy program special projects results
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
2000-03-15
The State Energy Program was created in 1996 by an act of Congress through the consolidation of the State Energy Conservation Program (SECP) and the Institutional Conservation Program (ICP). Formerly, SECP provided funding for a variety of energy efficiency and renewable energy projects, and ICP assisted schools and hospitals with technical analysis and installation of energy conservation measures. Through these programs, more than 8,000 specific State conservation projects have been implemented since 1983 and more than 69,000 buildings have been made more energy efficient since 1979. The Department of Energy's Office of Energy Efficiency and Renewable Energy recognized the valuemore » of delivering programs through the States and created Special Projects in 1996. This report is an overview of State Energy Program operations, strategic focus, activities and accomplishments.« less
Key Drivers of Marines Willingness to Adopt Energy-Efficient Technologies
2013-12-01
influences the rate of adoption. Communication is “the process by which participants create and share information with one another in order to reach a...more likely to assess the value of the innovation themselves rather than the value of the implementer’s market . Kleijnen, Lee, and Wetzels (2009...willingness to ucc (~pt energy cftid(’nt technologil~. The adaptation of energy efficient technologies will significantly reduce fossil fuel der>endency
Biogas - the calculable energy
NASA Astrophysics Data System (ADS)
Kith, Károly; Nagy, Orsolya; Balla, Zoltán; Tamás, András
2015-04-01
EU actions against climate change are rising energy prices, both have emphasized the use of renewable energy,increase investments and energy efficiency. A number of objectives formulated in the EC decree no. 29/2009 by 2020. This document is based on the share of renewable energies in energy consumption should be increased to 20% (EC, 2009). The EU average is 20% but the share of renewables vary from one member state to another. In Hungary in 2020, 14.65% renewable energy share is planned to be achieved. According to the latest Eurostat data, the share of renewable energy in energy consumption of the EU average was 14.1%, while in Hungary, this share was 9.6% in 2012. (EUROSTAT, 2014). The use of renewable energy plant level is influenced by several factors. The most important of these is the cost savings and efficiency gains. Hungarian investments in renewable energy production usually have high associated costs and the payback period is substantially more than five years, depending on the support rate. For example, the payback period is also influenced by the green electricity generated feed prices, which is one of the lowest in Hungary compared the Member States of the European Union. Consequently, it is important to increase the production of green energy. Nowadays, predictable biogas energy is an outstanding type of decentralized energy production. It follows directly that agricultural by-products can be used to produce energy and they also create jobs by the construction of a biogas plant. It is important to dispose of and destroy hazardous and noxious substances in energy production. It follows from this that the construction of biogas plants have a positive impact, in addition to green energy which is prepared to reduce the load on the environment. The production of biogas and green electricity is one of the most environment friendly forms of energy production. Biogas production also has other important ecological effects, such as the substitution of fertilizers, reducing its use in agriculture, which protects groundwater and surface water conditions and reduces the amount of greenhouse gases in the atmosphere. In the future more emphasis should be given to increase the effectiveness of existing technologies and other types of innovation could be expanded in energy production. It can be concluded that green energy investments can be rewarding if accurate planning is carried out before the investment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen, Bo; Price, Lynn; Liu, Manzhi
2015-09-15
Energy performance contracting (EPC) is a mechanism that uses private sector investment and expertise to deploy energy efficiency retrofits in buildings, industries, and other types of facilities. China and the United States both have large, growing EPC markets. This White Paper shares key insights on each market, including strengths and barriers inherent to these markets, compares the two markets, and sets forth options for enhancing EPC markets in each country. The White Paper concludes with recommendations structured around common goals of both countries.
Effects of turning and through lane sharing on traffic performance at intersections
NASA Astrophysics Data System (ADS)
Li, Xiang; Sun, Jian-Qiao
2016-02-01
Turning vehicles strongly influence traffic flows at intersections. Effective regulation of turning vehicles is important to achieve better traffic performance. This paper studies the impact of lane sharing and turning signals on traffic performance at intersections by using cellular automata. Both right-turn and left-turn lane sharing are studied. Interactions between vehicles and pedestrians are considered. The transportation efficiency, road safety and energy economy are the traffic performance metrics. Extensive simulations are carried out to study the traffic performance indices. It is observed that shared turning lanes and permissive left-turn signal improve the transportation efficiency and reduce the fuel consumption in most cases, but the safety is usually sacrificed. It is not always beneficial for the through vehicles when they are allowed to be in the turning lanes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakicenovic, Nebojsa; Kammen, Daniel; Jewell, Jessica
The UN Secretary General established the Sustainable Energy for All initiative in order to guide and support efforts to achieve universal access to modern energy, rapidly increase energy efficiency, and expand the use of renewable energies. Task forces were formed involving prominent energy leaders and experts from business, government, academia and civil society worldwide. The goal of the Task Forces is to inform the implementation of the initiative by identifying challenges and opportunities for achieving its objectives. This report contains the findings of Task Force Two which is dedicated energy efficiency and renewable energy objectives. The report shows that doublingmore » the rate of energy efficiency improvements and doubling the share of energy from renewable sources by 2030 is challenging but feasible if sufficient actions are implemented. Strong and well-informed government policies as well as extensive private investment should focus on the high impact areas identified by the task force.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Woohyun; Lutes, Robert G.; Katipamula, Srinivas
This document is a users guide for OpenEIS, a software code designed to provide standard methods for authoring, sharing, testing, using and improving algorithms for operational building energy efficiency.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brogan, J. J.; Aeppli, A. E.; Beagan, D. F.
2013-03-01
Truck, rail, water, air, and pipeline modes each serve a distinct share of the freight transportation market. The current allocation of freight by mode is the product of technologic, economic, and regulatory frameworks, and a variety of factors -- price, speed, reliability, accessibility, visibility, security, and safety -- influence mode. Based on a comprehensive literature review, this report considers how analytical methods can be used to project future modal shares and offers insights on federal policy decisions with the potential to prompt shifts to energy-efficient, low-emission modes. There are substantial opportunities to reduce the energy used for freight transportation, butmore » it will be difficult to shift large volumes from one mode to another without imposing considerable additional costs on businesses and consumers. This report explores federal government actions that could help trigger the shifts in modal shares needed to reduce energy consumption and emissions. This is one in a series of reports produced as a result of the Transportation Energy Futures project, a Department of Energy-sponsored multi-agency effort to pinpoint underexplored strategies for reducing GHGs and petroleum dependence related to transportation.« less
Brioschi, A; Capolongo, S; Buffoli, M
2010-01-01
The research moves from the current global and local context and from shared development strategies. From the observation and the analysis of contemporary environmental and energy issues and redefined directions of growth of human activity, it is addressing the question of environmental sustainability and energy conservation of building hospital systems. The work has developed a field survey relating the specific topic of energy saving and efficiency of the Park Hospital in the Italian Lombardy Region. This has been articulated in a diagnosis of technology and efficiency of regional hospitals, implemented through a census, and in a subsequent identification of interventional cases, in order to show its economic, environmental and health performance of the energy efficiency consumption and the environmentally sound.
A Mulit-State Model for Catalyzing the Home Energy Efficiency Market
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blackmon, Glenn
The RePower Kitsap partnership sought to jump-start the market for energy efficiency upgrades in Kitsap County, an underserved market on Puget Sound in Washington State. The Washington State Department of Commerce partnered with Washington State University (WSU) Energy Program to supplement and extend existing utility incentives offered by Puget Sound Energy (PSE) and Cascade Natural Gas and to offer energy efficiency finance options through the Kitsap Credit Union and Puget Sound Cooperative Credit Union (PSCCU). RePower Kitsap established a coordinated approach with a second Better Buildings Neighborhood Program project serving the two largest cities in the county – Bainbridge Islandmore » and Bremerton. These two projects shared both the “RePower” brand and implementation team (Conservation Services Group (CSG) and Earth Advantage).« less
Energy data sourcebook for the US residential sector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wenzel, T.P.; Koomey, J.G.; Sanchez, M.
Analysts assessing policies and programs to improve energy efficiency in the residential sector require disparate input data from a variety of sources. This sourcebook, which updates a previous report, compiles these input data into a single location. The data provided include information on end-use unit energy consumption (UEC) values of appliances and equipment efficiency; historical and current appliance and equipment market shares; appliances and equipment efficiency and sales trends; appliance and equipment efficiency standards; cost vs. efficiency data for appliances and equipment; product lifetime estimates; thermal shell characteristics of buildings; heating and cooling loads; shell measure cost data for newmore » and retrofit buildings; baseline housing stocks; forecasts of housing starts; and forecasts of energy prices and other economic drivers. This report is the essential sourcebook for policy analysts interested in residential sector energy use. The report can be downloaded from the Web at http://enduse.lbl. gov/Projects/RED.html. Future updates to the report, errata, and related links, will also be posted at this address.« less
Energy efficiency system development
NASA Astrophysics Data System (ADS)
Leman, A. M.; Rahman, K. A.; Chong, Haw Jie; Salleh, Mohd Najib Mohd; Yusof, M. Z. M.
2017-09-01
By subjecting to the massive usage of electrical energy in Malaysia, energy efficiency is now one of the key areas of focus in climate change mitigation. This paper focuses on the development of an energy efficiency system of household electrical appliances for residential areas. Distribution of Questionnaires and pay a visit to few selected residential areas are conducted during the fulfilment of the project as well as some advice on how to save energy are shared with the participants. Based on the collected data, the system developed by the UTHM Energy Team is then evaluated from the aspect of the consumers' behaviour in using electrical appliances and the potential reduction targeted by the team. By the end of the project, 60% of the participants had successfully reduced the electrical power consumption set by the UTHM Energy Team. The reasons for whether the success and the failure is further analysed in this project.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mittal, Sparsh; Zhang, Zhao
With each CMOS technology generation, leakage energy consumption has been dramatically increasing and hence, managing leakage power consumption of large last-level caches (LLCs) has become a critical issue in modern processor design. In this paper, we present EnCache, a novel software-based technique which uses dynamic profiling-based cache reconfiguration for saving cache leakage energy. EnCache uses a simple hardware component called profiling cache, which dynamically predicts energy efficiency of an application for 32 possible cache configurations. Using these estimates, system software reconfigures the cache to the most energy efficient configuration. EnCache uses dynamic cache reconfiguration and hence, it does not requiremore » offline profiling or tuning the parameter for each application. Furthermore, EnCache optimizes directly for the overall memory subsystem (LLC and main memory) energy efficiency instead of the LLC energy efficiency alone. The experiments performed with an x86-64 simulator and workloads from SPEC2006 suite confirm that EnCache provides larger energy saving than a conventional energy saving scheme. For single core and dual-core system configurations, the average savings in memory subsystem energy over a shared baseline configuration are 30.0% and 27.3%, respectively.« less
Heuristic approaches for energy-efficient shared restoration in WDM networks
NASA Astrophysics Data System (ADS)
Alilou, Shahab
In recent years, there has been ongoing research on the design of energy-efficient Wavelength Division Multiplexing (WDM) networks. The explosive growth of Internet traffic has led to increased power consumption of network components. Network survivability has also been a relevant research topic, as it plays a crucial role in assuring continuity of service with no disruption, regardless of network component failure. Network survivability mechanisms tend to utilize considerable resources such as spare capacity in order to protect and restore information. This thesis investigates techniques for reducing energy demand and enhancing energy efficiency in the context of network survivability. We propose two novel heuristic energy-efficient shared protection approaches for WDM networks. These approaches intend to save energy by setting on sleep mode devices that are not being used while providing shared backup paths to satisfy network survivability. The first approach exploits properties of a math series in order to assign weight to the network links. It aims at reducing power consumption at the network indirectly by aggregating traffic on a set of nodes and links with high traffic load level. Routing traffic on links and nodes that are already under utilization makes it possible for the links and nodes with no load to be set on sleep mode. The second approach is intended to dynamically route traffic through nodes and links with high traffic load level. Similar to the first approach, this approach computes a pair of paths for every newly arrived demand. It computes these paths for every new demand by comparing the power consumption of nodes and links in the network before the demand arrives with their potential power consumption if they are chosen along the paths of this demand. Simulations of two different networks were used to compare the total network power consumption obtained using the proposed techniques against a standard shared-path restoration scheme. Shared-path restoration is a network survivability method in which a link-disjoint backup path and wavelength is reserved at the time of call setup for a working path. However, in order to reduce spare capacity consumption, this reserved backup path and wavelength may be shared with other backup paths. Pool Sharing Scheme (PSS) is employed to implement shared-path restoration scheme [1]. In an optical network, the failure of a single link leads to the failure of all the lightpaths that pass through that particular link. PSS ensures that the amount of backup bandwidth required on a link to restore the failed connections will not be more than the total amount of reserved backup bandwidth on that link. Simulation results indicate that the proposed approaches lead to up to 35% power savings in WDM networks when traffic load is low. However, power saving decreases to 14% at high traffic load level. Furthermore, in terms of the total capacity consumption for working paths, PSS outperforms the two proposed approaches, as expected. In terms of total capacity consumption all the approaches behave similarly. In general, at low traffic load level, the two proposed approaches behave similar to PSS in terms of average link load, and the ratio of block demands. Nevertheless, at high traffic load, the proposed approaches result in higher ratio of blocked demands than PSS. They also lead to higher average link load than PSS for the equal number of generated demands.
Energy Efficiency and Importance of Renewable Energy Sources in Latvia
NASA Astrophysics Data System (ADS)
Skapare, I.; Kreslins, A.
2007-10-01
The main goal of Latvian energy policy is to ensure safe and environmentally friendly long-term energy supply at cost-effective prices, contributing to enhance competitiveness, and to ensure safe energy transit. The Latvian Parliament approved an Energy Efficiency Strategy in 2000. Its objective is to decrease energy consumption per unit of GDP by 25% by 2010. Awareness raising, implementation of standards and economic incentives for self financing are the main instruments to increase energy efficiency, mentioned in the strategy. Latvia, as many other European Union member states, is dependent on the import of primary energy resources. The Latvian Renewable Energy strategy is still under development. The only recent study on RES was developed in the framework of a PHARE program in year 2000: "Renewable energy resource program", where three main objectives for a future RES strategy were proposed: 1. To increase the use of wood waste and low value wood and forest residues. 2. To improve efficiency of combustion technologies and to replace outdated plants. 3. To increase the use of renewables in Combined Heat and Power plants (CHP). Through the Renewable Energy and Energy Efficiency Partnership, partners will develop a set of new shared activities, and coordinate and strengthen existing efforts in this area.
Chiller plant design rules...Have they changed?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eppelheimer, D.
1995-09-01
Chilled water plants are often viewed as energy consumers, actually they are only energy movers. In just the simple process of chilling water, there are four discrete energy moving functions. The chilled water pumps, condenser water pumps, and cooling tower fans are all forms of transport energy. The chiller is a heat pump where energy is consumed to raise the temperature of the heat stream. Insight into improved chiller plant performance can be obtained by tracking the power consumption of these four functions. The performance of centrifugal chillers has improved dramatically in the past 25 years. Certainly some of thismore » improvement is due to technology improvements in heat transfer and compressor efficiency. However, the lion`s share of gain in chiller efficiency is a result of chiller owners budgeting more funds to energy conservation and purchasing more efficient chillers. Since 1970, the efficiency of electric water chillers has improved by nearly 4 percent! The intent of this presentation is to review the energy cost associated with central chilled water plants and identify opportunities in design that may reduce energy costs.« less
Towards Energy Efficient and Shared Mobility Services
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rames, Clement L
Throughout the 20th century, automobiles have shaped urban and suburban landscapes, especially in North America. Globally, the car-centric transportation paradigm has contributed to unprecedented issues in terms of air quality, fossil-fuel dependence, carbon emissions lock-in, traffic congestion, road safety, parking scarcity, serious public health concerns, and socioeconomic inequality. Nonetheless, in the United States the percentage of single-occupant vehicle (SOV) commuters has continued to rise since 1960 while the proportion of carpooling has decreased by more than half since 1980. Evolving mobility services, in conjunction with new behavioral insights, have motivated recent inquiries in how to best foster sustainable growth whilemore » reducing traffic congestion and improving health outcomes. Few studies have assessed their true effectiveness, unanticipated effects (e.g., 'dead-head' or 'empty-vehicle' ride-hailing trips) or measured their impact on a specific city (e.g., modal shift, changes in personal miles traveled/vehicle miles traveled). This effort aims to answer the following questions: to what extent can shared mobility help invert the trend of increasing SOV trips? What are the energy risks and benefits of shared mobility? How do interactions between technology, policy, urban design, and behavioral change shape the transition to energy-efficient transportation? To this end, an assessment framework for sustainable urban mobility is developed, incorporating behavioral metrics (percent active transportation, percent transit ridership, percent shared trips), energy use (vehicle miles traveled per capita, percent SOV trips) and urban planning (population density, average commute time). We apply this framework to three cities (Denver, CO; San Francisco, CA; and Paris, France) to evaluate the sustainability of their transportation systems and explore their potential for shared mobility. The influence of incentives, social norms, and public perceptions on the uptake of energy-efficient mobility is further investigated through a review of current policy initiatives and identified best practices. The results from these three cities show strikingly different profiles: SOV trips range from 70% in Denver to 30% in San Francisco and 17% in Paris while transit ridership is 7%, 25%, and 64% of trips, respectively. These figures seem to correlate strongly with population density and degree of mixed-use development, with a ten-fold increase in density from Denver to Paris. Factors such as urban governance structures and level of public transit service further help to explain the observed differences. The framework presented here will help understand the long-term impacts of novel shared mobility solutions to better inform future policy making and investments.« less
Data Products | Energy Analysis | NREL
Project Finance Provides information on the Solar Access to Public Capital working group, Market Insights in the NSRDB Viewer. Open EI (Open Energy Information) OpenEI is a knowledge sharing online community efficiency. The Open PV Project A collaborative effort between government, industry, and the public to
NASA Astrophysics Data System (ADS)
Garcia-Santiago, C. A.; Del Ser, J.; Upton, C.; Quilligan, F.; Gil-Lopez, S.; Salcedo-Sanz, S.
2015-11-01
When seeking near-optimal solutions for complex scheduling problems, meta-heuristics demonstrate good performance with affordable computational effort. This has resulted in a gravitation towards these approaches when researching industrial use-cases such as energy-efficient production planning. However, much of the previous research makes assumptions about softer constraints that affect planning strategies and about how human planners interact with the algorithm in a live production environment. This article describes a job-shop problem that focuses on minimizing energy consumption across a production facility of shared resources. The application scenario is based on real facilities made available by the Irish Center for Manufacturing Research. The formulated problem is tackled via harmony search heuristics with random keys encoding. Simulation results are compared to a genetic algorithm, a simulated annealing approach and a first-come-first-served scheduling. The superior performance obtained by the proposed scheduler paves the way towards its practical implementation over industrial production chains.
Determinants of energy efficiency across countries
NASA Astrophysics Data System (ADS)
Yao, Guolin
With economic development, environmental concerns become more important. Economies cannot be developed without energy consumption, which is the major source of greenhouse gas emissions. Higher energy efficiency is one means of reducing emissions, but what determines energy efficiency? In this research we attempt to find answers to this question by using cross-sectional country data; that is, we examine a wide range of possible determinants of energy efficiency at the country level in an attempt to find the most important causal factors. All countries are divided into three income groups: high-income countries, middle-income countries, and low-income countries. Energy intensity is used as a measurement of energy efficiency. All independent variables belong to two categories: quantitative and qualitative. Quantitative variables are measures of the economic conditions, development indicators and energy usage situations. Qualitative variables mainly measure political, societal and economic strengths of a country. The three income groups have different economic and energy attributes. Each group has different sets of variables to explain energy efficiency. Energy prices and winter temperature are both important in high-income and middle-income countries. No qualitative variables appear in the model of high-income countries. Basic economic factors, such as institutions, political stability, urbanization level, population density, are important in low-income countries. Besides similar variables, such as macroeconomic stability and index of rule of law, the hydroelectricity share in total electric generation is also a driver of energy efficiency in middle-income countries. These variables have different policy implications for each group of countries.
Market leadership by example: Government sector energy efficiency in developing countries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Wie McGrory, Laura; Harris, Jeffrey; Breceda, Miguel
2002-05-20
Government facilities and services are often the largest energy users and major purchasers of energy-using equipment within a country. In developing as well as industrial countries, government ''leadership by example'' can be a powerful force to shift the market toward energy efficiency, complementing other elements of a national energy efficiency strategy. Benefits from more efficient energy management in government facilities and operations include lower government energy bills, reduced greenhouse gas emissions, less demand on electric utility systems, and in many cases reduced dependence on imported oil. Even more significantly, the government sector's buying power and example to others can generatemore » broader demand for energy-efficient products and services, creating entry markets for domestic suppliers and stimulating competition in providing high-efficiency products and services. Despite these benefits, with the exception of a few countries government sector actions have often lagged behind other energy efficiency policies. This is especially true in developing countries and transition economies - even though energy used by public agencies in these countries may represent at least as large a share of total energy use as the public sector in industrial economies. This paper summarizes work in progress to inventory current programs and policies for government sector energy efficiency in developing countries, and describes successful case studies from Mexico's implementation of energy management in the public sector. We show how these policies in Mexico, begun at the federal level, have more recently been extended to state and local agencies, and consider the applicability of this model to other developing countries.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bozeman, Jeffrey; Chen, Kuo-Huey
2014-12-09
On November 3, 2009, General Motors (GM) accepted U.S. Department of Energy (DOE) Cooperative Agreement award number DE-EE0000014 from the National Energy Technology Laboratory (NETL). GM was selected to execute a three-year cost shared research and development project on Solid State Energy Conversion for Vehicular Heating, Ventilation & Air Conditioning (HVAC) and for Waste Heat Recovery.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heeter, J.; Bird, L.
2012-11-01
Currently, 29 states, the District of Columbia, and Puerto Rico have instituted a renewable portfolio standard (RPS). An RPS sets a minimum threshold for how much renewable energy must be generated in a given year. Each state policy is unique, varying in percentage targets, timetables, and eligible resources. This paper examines state experience with implementing renewable portfolio standards that include energy efficiency, thermal resources, and non-renewable energy and explores compliance experience, costs, and how states evaluate, measure, and verify energy efficiency and convert thermal energy. It aims to gain insights from the experience of states for possible federal clean energymore » policy as well as to share experience and lessons for state RPS implementation.« less
Mobil`s Energy Management Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schoeneborn, F.C.
1997-06-01
Mobil`s Facilities Management Network sponsored a cross-divisional team to reduce energy costs. This team developed an Energy Management Plan to reduce energy costs by $25 million annually throughout all Mobil divisions over the next five years (total of $125 million committed savings). The core of this plan is the belief that energy costs are controllable and should be managed with the expertise that Mobil manages other parts of the business. Areas of focus are economic procurement, efficient consumption, and expertise sharing.
Energy Tracking Software Platform
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ryan Davis; Nathan Bird; Rebecca Birx
2011-04-04
Acceleration has created an interactive energy tracking and visualization platform that supports decreasing electric, water, and gas usage. Homeowners have access to tools that allow them to gauge their use and track progress toward a smaller energy footprint. Real estate agents have access to consumption data, allowing for sharing a comparison with potential home buyers. Home builders have the opportunity to compare their neighborhood's energy efficiency with competitors. Home energy raters have a tool for gauging the progress of their clients after efficiency changes. And, social groups are able to help encourage members to reduce their energy bills and helpmore » their environment. EnergyIT.com is the business umbrella for all energy tracking solutions and is designed to provide information about our energy tracking software and promote sales. CompareAndConserve.com (Gainesville-Green.com) helps homeowners conserve energy through education and competition. ToolsForTenants.com helps renters factor energy usage into their housing decisions.« less
Singh, Raman Jeet; Ahlawat, I P S
2015-05-01
Two of the most pressing sustainability issues are the depletion of fossil energy resources and the emission of atmospheric green house gases like carbon dioxide to the atmosphere. The aim of this study was to assess energy budgeting and carbon footprint in transgenic cotton-wheat cropping system through peanut intercropping with using 25-50% substitution of recommended dose of nitrogen (RDN) of cotton through farmyard manure (FYM) along with 100% RDN through urea and control (0 N). To quantify the residual effects of previous crops and their fertility levels, a succeeding crop of wheat was grown with varying rates of nitrogen, viz. 0, 50, 100, and 150 kg ha(-1). Cotton + peanut-wheat cropping system recorded 21% higher system productivity which ultimately helped to maintain higher net energy return (22%), energy use efficiency (12%), human energy profitability (3%), energy productivity (7%), carbon outputs (20%), carbon efficiency (17%), and 11% lower carbon footprint over sole cotton-wheat cropping system. Peanut addition in cotton-wheat system increased the share of renewable energy inputs from 18 to 21%. With substitution of 25% RDN of cotton through FYM, share of renewable energy resources increased in the range of 21% which resulted into higher system productivity (4%), net energy return (5%), energy ratio (6%), human energy profitability (74%), energy productivity (6%), energy profitability (5%), and 5% lower carbon footprint over no substitution. The highest carbon footprint (0.201) was recorded under control followed by 50 % substitution of RDN through FYM (0.189). With each successive increase in N dose up to 150 kg N ha(-1) to wheat, energy productivity significantly reduced and share of renewable energy inputs decreased from 25 to 13%. Application of 100 kg N ha(-1) to wheat maintained the highest grain yield (3.71 t ha(-1)), net energy return (105,516 MJ ha(-1)), and human energy profitability (223.4) over other N doses applied to wheat. Application of 50 kg N ha(-1) to wheat maintained the least carbon footprint (0.091) followed by 100 kg N ha(-1) (0.100). Our study indicates that system productivity as well as energy and carbon use efficiencies of transgenic cotton-wheat production system can be enhanced by inclusion of peanut as an intercrop in cotton and substitution of 25% RDN of cotton through FYM, as well as application of 100 kg N ha(-1) to succeeding wheat crop.
A Comparison of Iron and Steel Production Energy Use and Energy Intensity in China and the U.S.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hasanbeigi, Ali; Price, Lynn; Aden, Nathaniel
Production of iron and steel is an energy-intensive manufacturing process. In 2006, the iron and steel industry accounted for 13.6% and 1.4% of primary energy consumption in China and the U.S., respectively (U.S. DOE/EIA, 2010a; Zhang et al., 2010). The energy efficiency of steel production has a direct impact on overall energy consumption and related carbon dioxide (CO2) emissions. The goal of this study is to develop a methodology for making an accurate comparison of the energy intensity (energy use per unit of steel produced) of steel production. The methodology is applied to the steel industry in China and themore » U.S. The methodology addresses issues related to boundary definitions, conversion factors, and indicators in order to develop a common framework for comparing steel industry energy use. This study uses a bottom-up, physical-based method to compare the energy intensity of China and U.S. crude steel production in 2006. This year was chosen in order to maximize the availability of comparable steel-sector data. However, data published in China and the U.S. are not always consistent in terms of analytical scope, conversion factors, and information on adoption of energy-saving technologies. This study is primarily based on published annual data from the China Iron & Steel Association and National Bureau of Statistics in China and the Energy Information Agency in the U.S. This report found that the energy intensity of steel production is lower in the United States than China primarily due to structural differences in the steel industry in these two countries. In order to understand the differences in energy intensity of steel production in both countries, this report identified key determinants of sector energy use in both countries. Five determinants analyzed in this report include: share of electric arc furnaces in total steel production, sector penetration of energy-efficiency technologies, scale of production equipment, fuel shares in the iron and steel industry, and final steel product mix in both countries. The share of lower energy intensity electric arc furnace production in each country was a key determinant of total steel sector energy efficiency. Overall steel sector structure, in terms of average plant vintage and production capacity, is also an important variable though data were not available to quantify this in a scenario. The methodology developed in this report, along with the accompanying quantitative and qualitative analyses, provides a foundation for comparative international assessment of steel sector energy intensity.« less
Programming and Runtime Support to Blaze FPGA Accelerator Deployment at Datacenter Scale
Huang, Muhuan; Wu, Di; Yu, Cody Hao; Fang, Zhenman; Interlandi, Matteo; Condie, Tyson; Cong, Jason
2017-01-01
With the end of CPU core scaling due to dark silicon limitations, customized accelerators on FPGAs have gained increased attention in modern datacenters due to their lower power, high performance and energy efficiency. Evidenced by Microsoft’s FPGA deployment in its Bing search engine and Intel’s 16.7 billion acquisition of Altera, integrating FPGAs into datacenters is considered one of the most promising approaches to sustain future datacenter growth. However, it is quite challenging for existing big data computing systems—like Apache Spark and Hadoop—to access the performance and energy benefits of FPGA accelerators. In this paper we design and implement Blaze to provide programming and runtime support for enabling easy and efficient deployments of FPGA accelerators in datacenters. In particular, Blaze abstracts FPGA accelerators as a service (FaaS) and provides a set of clean programming APIs for big data processing applications to easily utilize those accelerators. Our Blaze runtime implements an FaaS framework to efficiently share FPGA accelerators among multiple heterogeneous threads on a single node, and extends Hadoop YARN with accelerator-centric scheduling to efficiently share them among multiple computing tasks in the cluster. Experimental results using four representative big data applications demonstrate that Blaze greatly reduces the programming efforts to access FPGA accelerators in systems like Apache Spark and YARN, and improves the system throughput by 1.7 × to 3× (and energy efficiency by 1.5× to 2.7×) compared to a conventional CPU-only cluster. PMID:28317049
Programming and Runtime Support to Blaze FPGA Accelerator Deployment at Datacenter Scale.
Huang, Muhuan; Wu, Di; Yu, Cody Hao; Fang, Zhenman; Interlandi, Matteo; Condie, Tyson; Cong, Jason
2016-10-01
With the end of CPU core scaling due to dark silicon limitations, customized accelerators on FPGAs have gained increased attention in modern datacenters due to their lower power, high performance and energy efficiency. Evidenced by Microsoft's FPGA deployment in its Bing search engine and Intel's 16.7 billion acquisition of Altera, integrating FPGAs into datacenters is considered one of the most promising approaches to sustain future datacenter growth. However, it is quite challenging for existing big data computing systems-like Apache Spark and Hadoop-to access the performance and energy benefits of FPGA accelerators. In this paper we design and implement Blaze to provide programming and runtime support for enabling easy and efficient deployments of FPGA accelerators in datacenters. In particular, Blaze abstracts FPGA accelerators as a service (FaaS) and provides a set of clean programming APIs for big data processing applications to easily utilize those accelerators. Our Blaze runtime implements an FaaS framework to efficiently share FPGA accelerators among multiple heterogeneous threads on a single node, and extends Hadoop YARN with accelerator-centric scheduling to efficiently share them among multiple computing tasks in the cluster. Experimental results using four representative big data applications demonstrate that Blaze greatly reduces the programming efforts to access FPGA accelerators in systems like Apache Spark and YARN, and improves the system throughput by 1.7 × to 3× (and energy efficiency by 1.5× to 2.7×) compared to a conventional CPU-only cluster.
Energy Efficiency of D2D Multi-User Cooperation.
Zhang, Zufan; Wang, Lu; Zhang, Jie
2017-03-28
The Device-to-Device (D2D) communication system is an important part of heterogeneous networks. It has great potential to improve spectrum efficiency, throughput and energy efficiency cooperation of multiple D2D users with the advantage of direct communication. When cooperating, D2D users expend extraordinary energy to relay data to other D2D users. Hence, the remaining energy of D2D users determines the life of the system. This paper proposes a cooperation scheme for multiple D2D users who reuse the orthogonal spectrum and are interested in the same data by aiming to solve the energy problem of D2D users. Considering both energy availability and the Signal to Noise Ratio (SNR) of each D2D user, the Kuhn-Munkres algorithm is introduced in the cooperation scheme to solve relay selection problems. Thus, the cooperation issue is transformed into a maximum weighted matching (MWM) problem. In order to enhance energy efficiency without the deterioration of Quality of Service (QoS), the link outage probability is derived according to the Shannon Equation by considering the data rate and delay. The simulation studies the relationships among the number of cooperative users, the length of shared data, the number of data packets and energy efficiency.
Strategies for Energy Efficient Resource Management of Hybrid Programming Models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Dong; Supinski, Bronis de; Schulz, Martin
2013-01-01
Many scientific applications are programmed using hybrid programming models that use both message-passing and shared-memory, due to the increasing prevalence of large-scale systems with multicore, multisocket nodes. Previous work has shown that energy efficiency can be improved using software-controlled execution schemes that consider both the programming model and the power-aware execution capabilities of the system. However, such approaches have focused on identifying optimal resource utilization for one programming model, either shared-memory or message-passing, in isolation. The potential solution space, thus the challenge, increases substantially when optimizing hybrid models since the possible resource configurations increase exponentially. Nonetheless, with the accelerating adoptionmore » of hybrid programming models, we increasingly need improved energy efficiency in hybrid parallel applications on large-scale systems. In this work, we present new software-controlled execution schemes that consider the effects of dynamic concurrency throttling (DCT) and dynamic voltage and frequency scaling (DVFS) in the context of hybrid programming models. Specifically, we present predictive models and novel algorithms based on statistical analysis that anticipate application power and time requirements under different concurrency and frequency configurations. We apply our models and methods to the NPB MZ benchmarks and selected applications from the ASC Sequoia codes. Overall, we achieve substantial energy savings (8.74% on average and up to 13.8%) with some performance gain (up to 7.5%) or negligible performance loss.« less
Efficient Use of Cogeneration and Fuel Diversification
NASA Astrophysics Data System (ADS)
Kunickis, M.; Balodis, M.; Sarma, U.; Cers, A.; Linkevics, O.
2015-12-01
Energy policy of the European Community is implemented by setting various goals in directives and developing support mechanisms to achieve them. However, very often these policies and legislation come into contradiction with each other, for example Directive 2009/28/EC on the promotion of the use of energy from renewable sources and Directive 2012/27/EU on energy efficiency, repealing Directive 2004/8/EC on the promotion of cogeneration based on a useful heat demand. In this paper, the authors attempt to assess the potential conflicts between policy political objectives to increase the share of high-efficiency co-generation and renewable energy sources (RES), based on the example of Riga district heating system (DHS). If a new heat source using biomass is built on the right bank of Riga DHS to increase the share of RES, the society could overpay for additional heat production capacities, such as a decrease in the loading of existing generating units, thereby contributing to an inefficient use of existing capacity. As a result, the following negative consequences may arise: 1) a decrease in primary energy savings (PES) from high-efficiency cogeneration in Riga DHS, 2) an increase in greenhouse gas (GHG) emissions in the Baltic region, 3) the worsening security situation of electricity supply in the Latvian power system, 4) an increase in the electricity market price in the Lithuanian and Latvian price areas of Nord Pool power exchange. Within the framework of the research, calculations of PES and GHG emission volumes have been performed for the existing situation and for the situation with heat source, using biomass. The effect of construction of biomass heat source on power capacity balances and Nord Pool electricity prices has been evaluated.
Microgrid Study: Energy Security for DoD Installations
2012-06-18
security, efficiency, and the incorporation of renewable and distributed energy resources into microgrids, as well as the factors that might facilitate...better understand how different environmental factors affected the choice of optimal microgrid architecture. Environmental factors in this context...lower costs—Networking generation assets allow for load sharing, allowing fewer generators to run at higher load factors and therefore with greater
Retail battle for conservation dollars
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCaughey, J.
1981-07-16
Large companies are entering the profitable retail market with conservation equipment and services that will compete for a share of the $10 to $80 billion Americans will spend on energy efficiency this year. Energy centers and clinics are also opening around the country to market products and compete with the utilities for energy audit business. The new retailing efforts are counting on homeowners' willingness to spend money to lower their energy bills. The smaller companies hope to hold their own against competition from large corporations. (DCK)
A new strategy for efficient solar energy conversion: Parallel-processing with surface plasmons
NASA Technical Reports Server (NTRS)
Anderson, L. M.
1982-01-01
This paper introduces an advanced concept for direct conversion of sunlight to electricity, which aims at high efficiency by tailoring the conversion process to separate energy bands within the broad solar spectrum. The objective is to obtain a high level of spectrum-splitting without sequential losses or unique materials for each frequency band. In this concept, sunlight excites a spectrum of surface plasma waves which are processed in parallel on the same metal film. The surface plasmons transport energy to an array of metal-barrier-semiconductor diodes, where energy is extracted by inelastic tunneling. Diodes are tuned to different frequency bands by selecting the operating voltage and geometry, but all diodes share the same materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, Jeongwoo; Elgowainy, Amgad; Wang, Michael
2015-07-14
In this study, we evaluated the impacts of producing HOF with a RON of 100, using a range of ethanol blending levels (E10, E25, and E40), vehicle efficiency gains, and HOF market penetration scenarios (3.4% to 70%), on WTW petroleum use and GHG emissions. In particular, we conducted LP modeling of petroleum refineries to examine the impacts of different HOF production scenarios on petroleum refining energy use and GHG emissions. We compared two cases of HOF vehicle fuel economy gains of 5% and 10% in terms of MPGGE to baseline regular gasoline vehicles. We incorporated three key factors in GREETmore » — (1) refining energy intensities of gasoline components for the various ethanol blending options and market shares, (2) vehicle efficiency gains, and (3) upstream energy use and emissions associated with the production of different crude types and ethanol — to compare the WTW GHG emissions of various HOF/vehicle scenarios with the business-as-usual baseline regular gasoline (87 AKI E10) pathway.« less
Intelligent Energy Management System for PV-Battery-based Microgrids in Future DC Homes
NASA Astrophysics Data System (ADS)
Chauhan, R. K.; Rajpurohit, B. S.; Gonzalez-Longatt, F. M.; Singh, S. N.
2016-06-01
This paper presents a novel intelligent energy management system (IEMS) for a DC microgrid connected to the public utility (PU), photovoltaic (PV) and multi-battery bank (BB). The control objectives of the proposed IEMS system are: (i) to ensure the load sharing (according to the source capacity) among sources, (ii) to reduce the power loss (high efficient) in the system, and (iii) to enhance the system reliability and power quality. The proposed IEMS is novel because it follows the ideal characteristics of the battery (with some assumptions) for the power sharing and the selection of the closest source to minimize the power losses. The IEMS allows continuous and accurate monitoring with intelligent control of distribution system operations such as battery bank energy storage (BBES) system, PV system and customer utilization of electric power. The proposed IEMS gives the better operational performance for operating conditions in terms of load sharing, loss minimization, and reliability enhancement of the DC microgrid.
Energy management and cooperation in microgrids
NASA Astrophysics Data System (ADS)
Rahbar, Katayoun
Microgrids are key components of future smart power grids, which integrate distributed renewable energy generators to efficiently serve the load demand locally. However, random and intermittent characteristics of renewable energy generations may hinder the reliable operation of microgrids. This thesis is thus devoted to investigating new strategies for microgrids to optimally manage their energy consumption, energy storage system (ESS) and cooperation in real time to achieve the reliable and cost-effective operation. This thesis starts with a single microgrid system. The optimal energy scheduling and ESS management policy is derived to minimize the energy cost of the microgrid resulting from drawing conventional energy from the main grid under both the off-line and online setups, where the renewable energy generation/load demand are assumed to be non-causally known and causally known at the microgrid, respectively. The proposed online algorithm is designed based on the optimal off-line solution and works under arbitrary (even unknown) realizations of future renewable energy generation/load demand. Therefore, it is more practically applicable as compared to solutions based on conventional techniques such as dynamic programming and stochastic programming that require the prior knowledge of renewable energy generation and load demand realizations/distributions. Next, for a group of microgrids that cooperate in energy management, we study efficient methods for sharing energy among them for both fully and partially cooperative scenarios, where microgrids are of common interests and self-interested, respectively. For the fully cooperative energy management, the off-line optimization problem is first formulated and optimally solved, where a distributed algorithm is proposed to minimize the total (sum) energy cost of microgrids. Inspired by the results obtained from the off-line optimization, efficient online algorithms are proposed for the real-time energy management, which are of low complexity and work given arbitrary realizations of renewable energy generation/load demand. On the other hand, for self-interested microgrids, the partially cooperative energy management is formulated and a distributed algorithm is proposed to optimize the energy cooperation such that energy costs of individual microgrids reduce simultaneously over the case without energy cooperation while limited information is shared among the microgrids and the central controller.
NASA Astrophysics Data System (ADS)
Ogutu, K. B. Z.; D'Andrea, F.; Ghil, M.; Nyandwi, C.; Manene, M. M.; Muthama, J. N.
2015-04-01
The Coupled Climate-Economy-Biosphere (CoCEB) model described herein takes an integrated assessment approach to simulating global change. By using an endogenous economic growth module with physical and human capital accumulation, this paper considers the sustainability of economic growth, as economic activity intensifies greenhouse gas emissions that in turn cause economic damage due to climate change. Different types of fossil fuels and different technologies produce different volumes of carbon dioxide in combustion. The shares of different fuels and their future evolution are not known. We assume that the dynamics of hydrocarbon-based energy share and their replacement with renewable energy sources in the global energy balance can be modeled into the 21st century by use of logistic functions. Various climate change mitigation policy measures are considered. While many integrated assessment models treat abatement costs merely as an unproductive loss of income, we consider abatement activities also as an investment in overall energy efficiency of the economy and decrease of overall carbon intensity of the energy system. The paper shows that these efforts help to reduce the volume of industrial carbon dioxide emissions, lower temperature deviations, and lead to positive effects in economic growth.
Understanding biorefining efficiency--the case of agrifood waste.
Kuisma, Miia; Kahiluoto, Helena; Havukainen, Jouni; Lehtonen, Eeva; Luoranen, Mika; Myllymaa, Tuuli; Grönroos, Juha; Horttanainen, Mika
2013-05-01
The aim of this study was to determine biorefining efficiency according to the choices made in the entire value chain. The importance of the share of biomass volume biorefined or products substituted was investigated. Agrifood-waste-based biorefining represented the case. Anticipatory scenarios were designed for contrasting targets and compared with the current situation in two Finnish regions. Biorefining increases nutrient and energy efficiency in comparison with current use of waste. System boundaries decisively influence the relative efficiency of biorefining designs. For nutrient efficiency, full exploitation of biomass potential and anaerobic digestion increase nutrient efficiency, but the main determinant is efficient substitution for mineral fertilisers. For energy efficiency, combustion and location of biorefining close to heat demand are crucial. Regional differences in agricultural structure, the extent of the food industry and population density have a major impact on biorefining. High degrees of exploitation of feedstock potential and substitution efficiency are the keys. Copyright © 2012 Elsevier Ltd. All rights reserved.
Comparison of Vehicle Choice Models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stephens, Thomas S.; Levinson, Rebecca S.; Brooker, Aaron
Five consumer vehicle choice models that give projections of future sales shares of light-duty vehicles were compared by running each model using the same inputs, where possible, for two scenarios. The five models compared — LVCFlex, MA3T, LAVE-Trans, ParaChoice, and ADOPT — have been used in support of the Energy Efficiency and Renewable Energy (EERE) Vehicle Technologies Office in analyses of future light-duty vehicle markets under different assumptions about future vehicle technologies and market conditions. The models give projections of sales shares by powertrain technology. Projections made using common, but not identical, inputs showed qualitative agreement, with the exception ofmore » ADOPT. ADOPT estimated somewhat lower advanced vehicle shares, mostly composed of hybrid electric vehicles. Other models projected large shares of multiple advanced vehicle powertrains. Projections of models differed in significant ways, including how different technologies penetrated cars and light trucks. Since the models are constructed differently and take different inputs, not all inputs were identical, but were the same or very similar where possible.« less
Water footprint and carbon footprint of the energy consumption in sunflower agroecosystems.
Yousefi, Mohammad; Khoramivafa, Mahmud; Damghani, Abdolmajid Mahdavi
2017-08-01
The aims of this study were to assess the energy requirements, carbon footprint, and water footprint of sunflower production in Kermanshah province, western Iran. Data were collected from 70 sunflower production agroecosystems which were selected based on random sampling method in summer 2012. Results indicated that total input and output energy in sunflower production were 26,973.87 and 64,833.92 MJha -1 , respectively. The highest share of total input energy in sunflower agroecosystems was recorded for electricity power, N fertilizer, and diesel fuel with 35, 19, and 17%, respectively. Also, energy use efficiency, water footprint, greenhouse gas (GHG) emission, and carbon footprint were calculated as 2.40, 3.41 m 3 kg -1 , 2042.091 kg CO 2eq ha -1 , and 0.875 kg CO 2eq kg -1 , respectively. 0.18 of sunflower water footprint was related to green water footprint and the remaining 82% was related to blue water footprint. Also, the highest share of carbon footprint was related to electricity power (nearby 80%). Due to the results of this study, reducing use of fossil fuel and non-renewable energy resource and application of sufficient irrigation systems by efficient use of water resource are essential in order to achieve low carbon footprint, environmental challenges, and also sustainability of agricultural production systems.
Interregional sharing of energy conservation targets in China: Efficiency and equity
NASA Astrophysics Data System (ADS)
Wei, Dan
Energy conservation is a long-term strategic policy in China to support its economic and social development. This policy strategy is important for saving resources, protecting the environment, and ensuring the secure supply of energy to all economic activities. However, energy conservation often involves large amounts of investment and may also have dampening impacts on some local and regional economies. Moreover, energy conservation and efficiency improvement have many features of a public good. Therefore, government policy and intervention play a strong role to foster regional efforts and cooperative interregional actions on this issue. This dissertation introduces and analyzes a promising policy instrument---an interregional energy conservation-quota trading system---to help China fulfill its national energy conservation objective in an efficient and equitable way. To analyze the workings of the energy conservation-quota trading system, trading entities are first determined. In this study, statistical analyses (principal component analysis and cluster analysis) are applied to identify regional aggregations of provinces of China to act as the trading units. The marginal energy conservation cost curves of these regions are developed using engineering-economic methods and regression analysis. Simulations of interregional conservation-quota trading are undertaken after China's conservation goals in 2010 are allocated among regions according to several equity criteria. Various equity criteria are applied and analyzed in this study because of the philosophical differences in the appropriate definition of the concept. The trading simulations yield several important findings. First, the introduction of an interregional quota trading system can minimize both regional net compliance costs and national total conservation costs, irrespective of how the conservation tasks are initially allocated among regions according to different equity rules. Second, regional welfare implications differ across the applications of various equity criteria. However, for the energy production-based sovereignty and egalitarian equity criteria, the poorest region (in terms of per capita gross regional product) can enjoy net profits from trading, while the clustered region of wealthy coastal provinces shoulders the highest cost. This indicates that a conservation-quota trading system applying these two equity criteria is consistent with the national strategy in China to reduce regional income disparities and to develop the interior and western less-developed regions of the country. Third, compared with trading among conventional regions, trading among statistically clustered regions can more sharply apply the equity criteria to burden sharing and utilize larger differences in marginal conservation costs between regions to achieve a lower total net cost for the country as a whole. In sum, this research develops a useful methodology and identifies an operational way to attain energy conservation targets in China. It offers insights for similar interregional burden-sharing or benefit-sharing policies for China in the future, such as greenhouse gas emission trading, which is closely related to the energy conservation issue.
Improving Biofuel Recovery Processes For Efficiency and Sustainability
The 2007 Energy Independence and Security Act (EISA) provided for increased production of biofuels with, among other provisions, a specified share to be derived from non-sugar or cellulose feedstocks. The EISA further established standards for renewable fuels achieving 20, 50, a...
Agent-based power sharing scheme for active hybrid power sources
NASA Astrophysics Data System (ADS)
Jiang, Zhenhua
The active hybridization technique provides an effective approach to combining the best properties of a heterogeneous set of power sources to achieve higher energy density, power density and fuel efficiency. Active hybrid power sources can be used to power hybrid electric vehicles with selected combinations of internal combustion engines, fuel cells, batteries, and/or supercapacitors. They can be deployed in all-electric ships to build a distributed electric power system. They can also be used in a bulk power system to construct an autonomous distributed energy system. An important aspect in designing an active hybrid power source is to find a suitable control strategy that can manage the active power sharing and take advantage of the inherent scalability and robustness benefits of the hybrid system. This paper presents an agent-based power sharing scheme for active hybrid power sources. To demonstrate the effectiveness of the proposed agent-based power sharing scheme, simulation studies are performed for a hybrid power source that can be used in a solar car as the main propulsion power module. Simulation results clearly indicate that the agent-based control framework is effective to coordinate the various energy sources and manage the power/voltage profiles.
Timepix Device Efficiency for Pattern Recognition of Tracks Generated by Ionizing Radiation
NASA Astrophysics Data System (ADS)
Leroy, Claude; Asbah, Nedaa; Gagnon, Louis-Guilaume; Larochelle, Jean-Simon; Pospisil, Stanislav; Soueid, Paul
2014-06-01
A hybrid silicon pixelated TIMEPIX detector (256 × 256 pixels with 55 μm pitch) operated in Time Over Threshold (TOT) mode was exposed to radioactive sources (241Am, 106Ru, 137Cs), protons and alpha-particles after Rutherford Backscattering on a thin gold foil of protons and alpha-particles beams delivered by the Tandem Accelerator of Montreal University. Measurements were also performed with different mixed radiation fields of heavy charged particles (protons and alpha-particles), photons and electrons produced by simultaneous exposure of TIMEPIX to the radioactive sources and to protons beams on top of the radioactive sources. All measurements were performed in vacuum. The TOT mode of operation has allowed the direct measurement of the energy deposited in each pixel. The efficiency of track recognition with this device was tested by comparing the experimental activities (determined from number of tracks measurements) of the radioactive sources with their expected activities. The efficiency of track recognition of incident protons and alpha-particles of different energies as a function of the incidence angle was measured. The operation of TIMEPIX in TOT mode has allowed a 3D mapping of the charge sharing effect in the whole volume of the silicon sensor. The effect of the bias voltage on charge sharing was investigated as the level of charge sharing is related to the local profile of the electric field in the sensor. The results of the present measurements demonstrate the TIMEPIX capability of differentiating between different types of particles species from mixed radiation fields and measuring their energy deposition. Single track analysis gives a good precision (significantly better than the 55 μm size of one detector pixel) on the coordinates of the impact point of protons interacting in the TIMEPIX silicon layer.
About opportunities of the sharing of city infrastructure centralized warmly - and water supply
NASA Astrophysics Data System (ADS)
Zamaleev, M. M.; Gubin, I. V.; Sharapov, V. I.
2017-11-01
It is shown that joint use of engineering infrastructure of centralized heat and water supply of consumers will be the cost-efficient decision for municipal services of the city. The new technology for regulated heating of drinking water in the condenser of steam turbines of combined heat and power plant is offered. Calculation of energy efficiency from application of new technology is executed.
Evaluation of Cities in the Context of Energy Efficient Urban Planning Approach
NASA Astrophysics Data System (ADS)
Handan Yücel Yıldırım, H.; Burcu Gültekin, Arzuhan; Tanrıvermiş, Harun
2017-10-01
Due to the increase in energy need with urbanization as a result of industrialization and rapid population growth, preservation of natural resources has become impossible. As the energy generated particularly from non-renewable natural resources that are in danger of depletion such as coal, natural gas, petroleum is limited, and as environmental issues caused by energy resources increase, means of safe and continuous access to energy are searched in the world. Owing to the limited energy resources and energy dependence on foreign sources in the world, particularly in European Union countries, efforts of increasing the share of renewable energy sources in energy consumption increased in all industries, including urban planning as well. Concordantly, it is necessary to develop policies and approaches that enable utilization of domestic resources complying with the country’s conditions, and monitor developments in energy. Such policies and approaches, which must be implemented in urban planning as well, have great importance in terms of not deteriorating habitable environments of future generations while utilizing present-day energy resources, prevalence of utilization of renewable energy sources, and utilization of energy effectively. For that purpose, this paper puts forward a conceptual framework covering the principles, strategies, and methods on energy efficient urban planning approach, and discusses the energy efficient urban area examples within the scope of the suggested framework.
1.88 Micrometers InGaAsP Pumped, Room Temperature Ho: LuAG Laser
NASA Technical Reports Server (NTRS)
Barnes, Norman P.; Amzajerdian, Farzin; Reichle, Donald J.; Busch, George; Leisher, Paul
2009-01-01
A room temperature, directly diode pumped Ho:LuAG laser oscillated for the first time. Direct pumping of the Ho upper laser manifold maximizes efficiency, minimizes heating, and eliminates Ho:Tm energy sharing. Design and performance are presented.
Intelligent Energy Systems As a Modern Basis For Improving Energy Efficiency
NASA Astrophysics Data System (ADS)
Vidyaev, Igor G.; Ivashutenko, Alexandr S.; Samburskaya, Maria A.
2017-01-01
This work presents data on the share of energy costs in the cost structure for different countries. The information is provided on reducing the use of energy resources by means of introducing the intelligent control systems in the industrial enterprises. The structure and the use of such intelligent systems in the energy industry are under our consideration. It is shown that the constructing an intelligent system should be the strategic direction for the development of the distribution grid complex implying the four main areas for improvement: intellectualization of the equipment, management, communication and automation.
Ethanol for a sustainable energy future.
Goldemberg, José
2007-02-09
Renewable energy is one of the most efficient ways to achieve sustainable development. Increasing its share in the world matrix will help prolong the existence of fossil fuel reserves, address the threats posed by climate change, and enable better security of the energy supply on a global scale. Most of the "new renewable energy sources" are still undergoing large-scale commercial development, but some technologies are already well established. These include Brazilian sugarcane ethanol, which, after 30 years of production, is a global energy commodity that is fully competitive with motor gasoline and appropriate for replication in many countries.
Energy Systems Integration Facility | NREL
influence how electric power systems operate far into the future. LEARN MORE Sharing Knowledge Recent 2017 Journal Article Wind and Solar Resource Data Sets Technical Report Innovation Incubator , Liquid Submerged Server for High-Efficiency Data Centers News and Announcements News More News News
International Review of Standards and Labeling Programs for Distribution Transformers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Letschert, Virginie; Scholand, Michael; Carreño, Ana MarÃa
Transmission and distribution (T&D) losses in electricity networks represent 8.5% of final energy consumption in the world. In Latin America, T&D losses range between 6% and 20% of final energy consumption, and represent 7% in Chile. Because approximately one-third of T&D losses take place in distribution transformers alone, there is significant potential to save energy and reduce costs and carbon emissions through policy intervention to increase distribution transformer efficiency. A large number of economies around the world have recognized the significant impact of addressing distribution losses and have implemented policies to support market transformation towards more efficient distribution transformers. Asmore » a result, there is considerable international experience to be shared and leveraged to inform countries interested in reducing distribution losses through policy intervention. The report builds upon past international studies of standards and labeling (S&L) programs for distribution transformers to present the current energy efficiency programs for distribution transformers around the world.« less
Displacement efficiency of alternative energy and trans-provincial imported electricity in China.
Hu, Yuanan; Cheng, Hefa
2017-02-17
China has invested heavily on alternative energy, but the effectiveness of such energy sources at substituting the dominant coal-fired generation remains unknown. Here we analyse the displacement of fossil-fuel-generated electricity by alternative energy, primarily hydropower, and by trans-provincial imported electricity in China between 1995 and 2014 using two-way fixed-effects panel regression models. Nationwide, each unit of alternative energy displaces nearly one-quarter of a unit of fossil-fuel-generated electricity, while each unit of imported electricity (regardless of the generation source) displaces ∼0.3 unit of fossil-fuel electricity generated locally. Results from the six regional grids indicate that significant displacement of fossil-fuel-generated electricity occurs once the share of alternative energy in the electricity supply mix exceeds ∼10%, which is accompanied by 10-50% rebound in the consumption of fossil-fuel-generated electricity. These findings indicate the need for a policy that integrates carbon taxation, alternative energy and energy efficiency to facilitate China's transition towards a low-carbon economy.
Displacement efficiency of alternative energy and trans-provincial imported electricity in China
NASA Astrophysics Data System (ADS)
Hu, Yuanan; Cheng, Hefa
2017-02-01
China has invested heavily on alternative energy, but the effectiveness of such energy sources at substituting the dominant coal-fired generation remains unknown. Here we analyse the displacement of fossil-fuel-generated electricity by alternative energy, primarily hydropower, and by trans-provincial imported electricity in China between 1995 and 2014 using two-way fixed-effects panel regression models. Nationwide, each unit of alternative energy displaces nearly one-quarter of a unit of fossil-fuel-generated electricity, while each unit of imported electricity (regardless of the generation source) displaces ~0.3 unit of fossil-fuel electricity generated locally. Results from the six regional grids indicate that significant displacement of fossil-fuel-generated electricity occurs once the share of alternative energy in the electricity supply mix exceeds ~10%, which is accompanied by 10-50% rebound in the consumption of fossil-fuel-generated electricity. These findings indicate the need for a policy that integrates carbon taxation, alternative energy and energy efficiency to facilitate China's transition towards a low-carbon economy.
Karthikayan, S; Sankaranarayanan, G; Karthikeyan, R
2015-11-01
Present energy strategies focus on environmental issues, especially environmental pollution prevention and control by eco-friendly green technologies. This includes, increase in the energy supplies, encouraging cleaner and more efficient energy management, addressing air pollution, greenhouse effect, global warming, and climate change. Biofuels provide the panorama of new fiscal opportunities for people in rural area for meeting their need and also the demand of the local market. Biofuels concern protection of the environment and job creation. Renewable energy sources are self-reliance resources, have the potential in energy management with less emissions of air pollutants. Biofuels are expected to reduce dependability on imported crude oil with connected economic susceptibility, reduce greenhouse gases, other pollutants and invigorate the economy by increasing demand and prices for agricultural products. The use of neat paradise tree oil and induction of eco-friendly material Hydrogen through inlet manifold in a constant pressure heat addition cycle engine (diesel engine) with optimized engine operating parameters such as injection timing, injection pressure and compression ratio. The results shows the heat utilization efficiency for neat vegetable oil is 29% and neat oil with 15% Hydrogen as 33%. The exhaust gas temperature (EGT) for 15% of H2 share as 450°C at full load and the heat release of 80J/deg. crank angle for 15% Hydrogen energy share. Copyright © 2015 Elsevier Inc. All rights reserved.
Process development for single-crystal silicon solar cells
NASA Astrophysics Data System (ADS)
Bohra, Mihir H.
Solar energy is a viable, rapidly growing and an important renewable alternative to other sources of energy generation because of its abundant supply and low manufacturing cost. Silicon still remains the major contributor for manufacturing solar cells accounting for 80% of the market share. Of this, single-crystal solar cells account for half of the share. Laboratory cells have demonstrated 25% efficiency; however, commercial cells have efficiencies of 16% - 20% resulting from a focus on implementation processes geared to rapid throughput and low cost, thereby reducing the energy pay-back time. An example would be the use of metal pastes which dissolve the dielectric during the firing process as opposed to lithographically defined contacts. With current trends of single-crystal silicon photovoltaic (PV) module prices down to 0.60/W, almost all other PV technologies are challenged to remain cost competitive. This presents a unique opportunity in revisiting the PV cell fabrication process and incorporating moderately more expensive IC process practices into PV manufacturing. While they may drive the cost toward a 1/W benchmark, there is substantial room to "experiment", leading to higher efficiencies which will help maintain the overall system cost. This work entails a turn-key process designed to provide a platform for rapid evaluation of novel materials and processes. A two-step lithographic process yielding a baseline 11% - 13% efficient cell is described. Results of three studies have shown improvements in solar cell output parameters due to the inclusion of a back-surface field implant, a higher emitter doping and also an additional RCA Clean.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tolmasquim, M.T.; Szklo, A.S.; Cohen, C.
This paper presents the development of energy consumption in the Brazilian industrial sector and energy efficiency potential based on the analysis undertaken through a model developed in the Energy Planning Program at COPPE/UFRJ, known as the Integrated Energy Planning Model (IEPM). The study starts by presenting the IEPM, which is a technical and economic parameter-based model designed to forecast energy supplies and consumption for all economic sectors in Brazil, within three scenarios. Outlines of all three scenarios are presented, as they were constructed according to certain specific assumptions. The industrial sector was broken down into eleven sub-sectors: food and beverages,more » ceramics, cement, iron and steel, mining and pelletizing, ferroalloys, non-ferrous metals and others (metallurgy), chemicals, pulp and paper, textiles and other industries (MME, 1998). All these sub-sectors will also be presented as well as the results of the scenario forecasts. Results deriving from these forecasts come from very specific studies that analyze all process steps in each sub-sector in order to propose energy replacements, efficiency improvements of structural production alterations that result in major potential energy consumption reductions. Last but not least, this paper gives the development forecasts deriving from the three scenarios over ten years, with their contributions to energy efficiency in the Brazilian industrial sector, showing that the authors can reduce energy consumption in the Brazilian industrial sector by: substituting less efficient processes by more efficient ones, through the conversion of final energy into usable energy, basically, in the cement and aluminum industries; replacing equipment and energy sources; modifying product mix of several industries (pulp and paper), assigning top priority to producing goods with higher added value that are less energy intensive, and, finally, reducing the share held by some energy intensive sectors in the industrial output.« less
Multi-Dimensional Optimization for Cloud Based Multi-Tier Applications
ERIC Educational Resources Information Center
Jung, Gueyoung
2010-01-01
Emerging trends toward cloud computing and virtualization have been opening new avenues to meet enormous demands of space, resource utilization, and energy efficiency in modern data centers. By being allowed to host many multi-tier applications in consolidated environments, cloud infrastructure providers enable resources to be shared among these…
ERIC Educational Resources Information Center
Johnson, William C.; Ormond, Paul
2013-01-01
If properly installed, optimized geoexchange systems can be one of the most cost effective, powerful options to accomplish the goal of improved energy efficiency and reduced carbon emissions. Accurately quantifying field performance is an important step in designing a system that is the proper size and capacity. The authors share the real life…
NASA Technical Reports Server (NTRS)
Lansing, F. L.
1977-01-01
Various configurations combining solar-Rankine and fuel-Brayton cycles were analyzed in order to find the arrangement which has the highest thermal efficiency and the smallest fuel share. A numerical example is given to evaluate both the thermodynamic performance and the economic feasibility of each configuration. The solar-assisted regenerative Rankine cycle was found to be leading the candidates from both points of energy utilization and fuel conservation.
Preliminary Performance of CdZnTe Imaging Detector Prototypes
NASA Technical Reports Server (NTRS)
Ramsey, B.; Sharma, D. P.; Meisner, J.; Gostilo, V.; Ivanov, V.; Loupilov, A.; Sokolov, A.; Sipila, H.
1999-01-01
The promise of good energy and spatial resolution coupled with high efficiency and near-room-temperature operation has fuelled a large International effort to develop Cadmium-Zinc-Telluride (CdZnTe) for the hard-x-ray region. We present here preliminary results from our development of small-pixel imaging arrays fabricated on 5x5x1-mm and 5x5x2-mm spectroscopy and discriminator-grade material. Each array has 16 (4x4) 0.65-mm gold readout pads on a 0.75-mm pitch, with each pad connected to a discrete preamplifier via a pulse-welded gold wire. Each array is mounted on a 3-stage Peltier cooler and housed in an ion-pump-evacuated housing which also contains a hybrid micro-assembly for the 16 channels of electronics. We have investigated the energy resolution and approximate photopeak efficiency for each pixel at several energies and have used an ultra-fine beam x-ray generator to probe the performance at the pixel boundaries. Both arrays gave similar results, and at an optimum temperature of -20 C we achieved between 2 and 3% FWHM energy resolution at 60 keV and around 15% at 5.9 keV. We found that all the charge was contained within 1 pixel until very close to the pixels edge, where it would start to be shared with its neighbor. Even between pixels, all the charge would be appropriately shared with no apparently loss of efficiency or resolution. Full details of these measurements will be presented, together with their implications for future imaging-spectroscopy applications.
MedBlock: Efficient and Secure Medical Data Sharing Via Blockchain.
Fan, Kai; Wang, Shangyang; Ren, Yanhui; Li, Hui; Yang, Yintang
2018-06-21
With the development of electronic information technology, electronic medical records (EMRs) have been a common way to store the patients' data in hospitals. They are stored in different hospitals' databases, even for the same patient. Therefore, it is difficult to construct a summarized EMR for one patient from multiple hospital databases due to the security and privacy concerns. Meanwhile, current EMRs systems lack a standard data management and sharing policy, making it difficult for pharmaceutical scientists to develop precise medicines based on data obtained under different policies. To solve the above problems, we proposed a blockchain-based information management system, MedBlock, to handle patients' information. In this scheme, the distributed ledger of MedBlock allows the efficient EMRs access and EMRs retrieval. The improved consensus mechanism achieves consensus of EMRs without large energy consumption and network congestion. In addition, MedBlock also exhibits high information security combining the customized access control protocols and symmetric cryptography. MedBlock can play an important role in the sensitive medical information sharing.
Characterization of spectrometric photon-counting X-ray detectors at different pitches
NASA Astrophysics Data System (ADS)
Jurdit, M.; Brambilla, A.; Moulin, V.; Ouvrier-Buffet, P.; Radisson, P.; Verger, L.
2017-09-01
There is growing interest in energy-sensitive photon-counting detectors based on high flux X-ray imaging. Their potential applications include medical imaging, non-destructive testing and security. Innovative detectors of this type will need to count individual photons and sort them into selected energy bins, at several million counts per second and per mm2. Cd(Zn)Te detector grade materials with a thickness of 1.5 to 3 mm and pitches from 800 μm down to 200 μm were assembled onto interposer boards. These devices were tested using in-house-developed full-digital fast readout electronics. The 16-channel demonstrators, with 256 energy bins, were experimentally characterized by determining spectral resolution, count rate, and charge sharing, which becomes challenging at low pitch. Charge sharing correction was found to efficiently correct X-ray spectra up to 40 × 106 incident photons.s-1.mm-2.
Innovations in Advanced Materials and Metals Manufacturing Project (IAM2)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scott, Elizabeth
This project, under the Jobs and Innovation Accelerator Challenge, Innovations in Advanced Materials and Metals Manufacturing Project, contracted with Cascade Energy to provide a shared energy project manager engineer to work with five different companies throughout the Portland metro grant region to implement ten energy efficiency projects and develop a case study to analyze the project model. As a part of the project, the energy project manager also looked into specific new technologies and methodologies that could change the way energy is consumed by manufacturers—from game-changing equipment and technology to monitor energy use to methodologies that change the way companiesmore » interact and use their machines to reduce energy consumption.« less
A Global Review of Incentive Programs to Accelerate Energy-Efficient Appliances and Equipment
DOE Office of Scientific and Technical Information (OSTI.GOV)
de la Rue du Can, Stephane; Phadke, Amol; Leventis, Greg
Incentive programs are an essential policy tool to move the market toward energy-efficient products. They offer a favorable complement to mandatory standards and labeling policies by accelerating the market penetration of energy-efficient products above equipment standard requirements and by preparing the market for increased future mandatory requirements. They sway purchase decisions and in some cases production decisions and retail stocking decisions toward energy-efficient products. Incentive programs are structured according to their regulatory environment, the way they are financed, by how the incentive is targeted, and by who administers them. This report categorizes the main elements of incentive programs, using casemore » studies from the Major Economies Forum to illustrate their characteristics. To inform future policy and program design, it seeks to recognize design advantages and disadvantages through a qualitative overview of the variety of programs in use around the globe. Examples range from rebate programs administered by utilities under an Energy-Efficiency Resource Standards (EERS) regulatory framework (California, USA) to the distribution of Eco-Points that reward customers for buying efficient appliances under a government recovery program (Japan). We found that evaluations have demonstrated that financial incentives programs have greater impact when they target highly efficient technologies that have a small market share. We also found that the benefits and drawbacks of different program design aspects depend on the market barriers addressed, the target equipment, and the local market context and that no program design surpasses the others. The key to successful program design and implementation is a thorough understanding of the market and effective identification of the most important local factors hindering the penetration of energy-efficient technologies.« less
2016-09-01
micro-sources can include sources such as micro- turbines and battery banks. Among the many benefits provided by an EMS is the ability to allow...efficient and reliable sharing of grid loads by several disparate power sources, which allows alternative energy sources such as solar and wind energy to...positions associated with the applicable configuration, with wires and components greyed out when they are not being used. a. SC Bank Disconnected
Halsey, Kimberly H.; Milligan, Allen J.; Behrenfeld, Michael J.
2014-01-01
The efficiency with which absorbed light is converted to net growth is a key property for estimating global carbon production. We previously showed that, despite considerable evolutionary distance, Dunaliella tertiolecta (Chlorophyceae) and Thalassiosira weissflogii (Bacillariophyceae) share a common strategy of photosynthetic energy utilization and nearly identical light energy conversion efficiencies. These findings suggested that a single model might be appropriate for describing relationships between measures of phytoplankton production. This conclusion was further evaluated for Ostreococcus tauri RCC1558 and Micromonas pusilla RCC299 (Chlorophyta, Prasinophyceae), two picoeukaryotes with contrasting geographic distributions and swimming abilities. Nutrient-dependent photosynthetic efficiencies in O. tauri were similar to the previously studied larger algae. Specifically, absorption-normalized gross oxygen and carbon production and net carbon production were independent of nutrient limited growth rate. In contrast, all measures of photosynthetic efficiency were strongly dependent on nutrient availability in M. pusilla. This marked difference was accompanied by a diminished relationship between Chla:C and nutrient limited growth rate and a remarkably greater efficiency of gross-to-net energy conversion than the other organisms studied. These results suggest that the cost-benefit of decoupling pigment concentration from nutrient availability enables motile organisms to rapidly exploit more frequent encounters with micro-scale nutrient patches in open ocean environments. PMID:24957026
Alternative Fuels Data Center: Widgets
Efficiency and Renewable Energy Get Widget Code à Widget Code Select All Close Vehicle Cost Calculator Share a tool to calculate annual fuel cost and greenhouse gas emissions for alternative fuel and advanced technology vehicles. Vehicle Cost Calculator Choose a vehicle to compare fuel cost and emissions with a
DOT National Transportation Integrated Search
2016-04-01
The United States (U.S.) and Japan have similar transportation challenges, and share a common belief that cooperative systems can deliver significant societal benefits for road users, especially in terms of safer, more energy-efficient, and environme...
The influence of mechanical gear on the efficiency of small hydropower
NASA Astrophysics Data System (ADS)
Ferenc, Zbigniew; Sambor, Aleksandra
2017-11-01
Pursuant to the "Strategy of development of renewable energy", an increase in the share of renewable energy sources in the national fuel-energy balance up to 14% by 2020 is planned in the structure of usage of primary energy carriers. The change in the participation of the clean energy in the energy balance may be done not only by the erection of new and renovation of the already existing plants, but also through an improvement of their energetic efficiency. The study presents the influence of the mechanical gear used on the quantity of energy produced by a small hydropower on the basis of SHP Rzepcze in Opole province in 2005-2010. The primary kinematic system was composed of a Francis turbine of a vertical axis, a toothed intersecting axis gear of 1:1 ratio, a belt gear of a double ratio. After a modernization the system was simplified by means of reducing the intersecting axis gear and the double ratio of the belt gear. The new kinematic system utilized a single-ratio belt gear of a vertical axis. After the kinematic system was rearranged, a significant improvement of efficiency of the small hydropower was concluded, which translates into an increase of the amount of energy produced.
Jiang, Shunrong; Zhu, Xiaoyan; Wang, Liangmin
2015-01-01
Mobile healthcare social networks (MHSNs) have emerged as a promising next-generation healthcare system, which will significantly improve the quality of life. However, there are many security and privacy concerns before personal health information (PHI) is shared with other parities. To ensure patients’ full control over their PHI, we propose a fine-grained and scalable data access control scheme based on attribute-based encryption (ABE). Besides, policies themselves for PHI sharing may be sensitive and may reveal information about underlying PHI or about data owners or recipients. In our scheme, we let each attribute contain an attribute name and its value and adopt the Bloom filter to efficiently check attributes before decryption. Thus, the data privacy and policy privacy can be preserved in our proposed scheme. Moreover, considering the fact that the computational cost grows with the complexity of the access policy and the limitation of the resource and energy in a smart phone, we outsource ABE decryption to the cloud while preventing the cloud from learning anything about the content and access policy. The security and performance analysis is carried out to demonstrate that our proposed scheme can achieve fine-grained access policies for PHI sharing in MHSNs. PMID:26404300
Jiang, Shunrong; Zhu, Xiaoyan; Wang, Liangmin
2015-09-03
Mobile healthcare social networks (MHSNs) have emerged as a promising next-generation healthcare system, which will significantly improve the quality of life. However, there are many security and privacy concerns before personal health information (PHI) is shared with other parities. To ensure patients' full control over their PHI, we propose a fine-grained and scalable data access control scheme based on attribute-based encryption (ABE). Besides, policies themselves for PHI sharing may be sensitive and may reveal information about underlying PHI or about data owners or recipients. In our scheme, we let each attribute contain an attribute name and its value and adopt the Bloom filter to efficiently check attributes before decryption. Thus, the data privacy and policy privacy can be preserved in our proposed scheme. Moreover, considering the fact that the computational cost grows with the complexity of the access policy and the limitation of the resource and energy in a smart phone, we outsource ABE decryption to the cloud while preventing the cloud from learning anything about the content and access policy. The security and performance analysis is carried out to demonstrate that our proposed scheme can achieve fine-grained access policies for PHI sharing in MHSNs.
Mode shift strategies in intercity transportation and their effect on energy consumption
NASA Technical Reports Server (NTRS)
Sokolsky, S.
1975-01-01
Policies are examined which, if implemented, could lead to significant energy savings in intercity travel in the northeast corridor arena, without restricting the traveler's freedom of mode choice. The effects on arena energy consumption of introducing new, more energy-efficient aircraft are investigated; and several strategies unrelated to the implementation of new aircraft are introduced to yield reductions in overall intercity energy use. In both parts of this analysis, resulting changes in patronage (modal share) and energy use are demonstrated, leading to new insights into the effectiveness of different potential policies for achieving energy conservation. Some observations on induced demand trends that could be associated with certain strategies and the resultant potential effect on energy conservation are provided.
Displacement efficiency of alternative energy and trans-provincial imported electricity in China
Hu, Yuanan; Cheng, Hefa
2017-01-01
China has invested heavily on alternative energy, but the effectiveness of such energy sources at substituting the dominant coal-fired generation remains unknown. Here we analyse the displacement of fossil-fuel-generated electricity by alternative energy, primarily hydropower, and by trans-provincial imported electricity in China between 1995 and 2014 using two-way fixed-effects panel regression models. Nationwide, each unit of alternative energy displaces nearly one-quarter of a unit of fossil-fuel-generated electricity, while each unit of imported electricity (regardless of the generation source) displaces ∼0.3 unit of fossil-fuel electricity generated locally. Results from the six regional grids indicate that significant displacement of fossil-fuel-generated electricity occurs once the share of alternative energy in the electricity supply mix exceeds ∼10%, which is accompanied by 10–50% rebound in the consumption of fossil-fuel-generated electricity. These findings indicate the need for a policy that integrates carbon taxation, alternative energy and energy efficiency to facilitate China's transition towards a low-carbon economy. PMID:28211467
Stocker, Andrea; Großmann, Anett; Madlener, Reinhard; Wolter, Marc Ingo
2011-10-01
This paper reports on the Austrian research project "Renewable energy in Austria: Modeling possible development trends until 2020". The project investigated possible economic and ecological effects of a substantially increased use of renewable energy sources in Austria. Together with stakeholders and experts, three different scenarios were defined, specifying possible development trends for renewable energy in Austria. The scenarios were simulated for the period 2006-2020, using the integrated environment-energy-economy model "e3.at". The modeling results indicate that increasing the share of renewable energy sources in total energy use is an important but insufficient step towards achieving a sustainable energy system in Austria. A substantial increase in energy efficiency and a reduction of residential energy consumption also form important cornerstones of a sustainable energy policy.
Evaluating architecture impact on system energy efficiency
Yu, Shijie; Wang, Rui; Luan, Zhongzhi; Qian, Depei
2017-01-01
As the energy consumption has been surging in an unsustainable way, it is important to understand the impact of existing architecture designs from energy efficiency perspective, which is especially valuable for High Performance Computing (HPC) and datacenter environment hosting tens of thousands of servers. One obstacle hindering the advance of comprehensive evaluation on energy efficiency is the deficient power measuring approach. Most of the energy study relies on either external power meters or power models, both of these two methods contain intrinsic drawbacks in their practical adoption and measuring accuracy. Fortunately, the advent of Intel Running Average Power Limit (RAPL) interfaces has promoted the power measurement ability into next level, with higher accuracy and finer time resolution. Therefore, we argue it is the exact time to conduct an in-depth evaluation of the existing architecture designs to understand their impact on system energy efficiency. In this paper, we leverage representative benchmark suites including serial and parallel workloads from diverse domains to evaluate the architecture features such as Non Uniform Memory Access (NUMA), Simultaneous Multithreading (SMT) and Turbo Boost. The energy is tracked at subcomponent level such as Central Processing Unit (CPU) cores, uncore components and Dynamic Random-Access Memory (DRAM) through exploiting the power measurement ability exposed by RAPL. The experiments reveal non-intuitive results: 1) the mismatch between local compute and remote memory node caused by NUMA effect not only generates dramatic power and energy surge but also deteriorates the energy efficiency significantly; 2) for multithreaded application such as the Princeton Application Repository for Shared-Memory Computers (PARSEC), most of the workloads benefit a notable increase of energy efficiency using SMT, with more than 40% decline in average power consumption; 3) Turbo Boost is effective to accelerate the workload execution and further preserve the energy, however it may not be applicable on system with tight power budget. PMID:29161317
Evaluating architecture impact on system energy efficiency.
Yu, Shijie; Yang, Hailong; Wang, Rui; Luan, Zhongzhi; Qian, Depei
2017-01-01
As the energy consumption has been surging in an unsustainable way, it is important to understand the impact of existing architecture designs from energy efficiency perspective, which is especially valuable for High Performance Computing (HPC) and datacenter environment hosting tens of thousands of servers. One obstacle hindering the advance of comprehensive evaluation on energy efficiency is the deficient power measuring approach. Most of the energy study relies on either external power meters or power models, both of these two methods contain intrinsic drawbacks in their practical adoption and measuring accuracy. Fortunately, the advent of Intel Running Average Power Limit (RAPL) interfaces has promoted the power measurement ability into next level, with higher accuracy and finer time resolution. Therefore, we argue it is the exact time to conduct an in-depth evaluation of the existing architecture designs to understand their impact on system energy efficiency. In this paper, we leverage representative benchmark suites including serial and parallel workloads from diverse domains to evaluate the architecture features such as Non Uniform Memory Access (NUMA), Simultaneous Multithreading (SMT) and Turbo Boost. The energy is tracked at subcomponent level such as Central Processing Unit (CPU) cores, uncore components and Dynamic Random-Access Memory (DRAM) through exploiting the power measurement ability exposed by RAPL. The experiments reveal non-intuitive results: 1) the mismatch between local compute and remote memory node caused by NUMA effect not only generates dramatic power and energy surge but also deteriorates the energy efficiency significantly; 2) for multithreaded application such as the Princeton Application Repository for Shared-Memory Computers (PARSEC), most of the workloads benefit a notable increase of energy efficiency using SMT, with more than 40% decline in average power consumption; 3) Turbo Boost is effective to accelerate the workload execution and further preserve the energy, however it may not be applicable on system with tight power budget.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leventis, Greg; Schiller, Steve; Kramer, Chris
The city of Dubuque, Iowa, aimed for a twofer — lower energy costs for public facilities and reduced air emissions. To achieve that goal, the city partnered with the Iowa Economic Development Authority to establish a revolving loan fund to finance energy efficiency and other energy projects at city facilities. But the city needed to understand approaches for financing energy projects to achieve both of their goals in a manner that would not be considered debt — in this case, obligations booked as a liability on the city’s balance sheet. With funding from the U.S. Department of Energy’s Climate Actionmore » Champions Initiative, Lawrence Berkeley National Laboratory (Berkeley Lab) provided technical assistance to the city to identify strategies to achieve these goals. Revolving loans use a source of money to fund initial cost-saving projects, such as energy efficiency investments, then use the repayments and interest from these loans to support subsequent projects. Berkeley Lab and the city examined two approaches to explore whether revolving loans could potentially be treated as non-debt: 1) financing arrangements containing a non-appropriation clause and 2) shared savings agreements. This fact sheet discusses both, including considerations that may factor into their treatment as debt from an accounting perspective.« less
Games and teams with shared constraints.
Kulkarni, Ankur A
2017-08-13
Energy systems of the future are envisaged to encompass multiple interacting autonomous entities. The theory of games provides the foundations for the design and analysis of such systems. This paper reviews models and results that would be of use for such analysis. Classically, games have involved players whose strategies are coupled only through the dependence of utility functions on strategies of other players. However, in many practical settings in the energy domain, system-level limitations bind the choices players can make. In 1965, Rosen ( Econometrica 33 , 520-534 (doi:10.2307/1911749)) pioneered the study of a class of games where there is a common constraint, called a shared constraint , that couples the strategies available to the players. We discuss how this seemingly benign extension has important ramifications, ranging from the very definition of an equilibrium concept, to other key issues such as existence, uniqueness and efficiency of equilibria. We show how the presence of a shared constraint naturally leads to notions of a price and forms the motivations for more recent models. Although most of the paper has the character of a survey, occasionally we also prove new results.This article is part of the themed issue 'Energy management: flexibility, risk and optimization'. © 2017 The Author(s).
Power and Performance Trade-offs for Space Time Adaptive Processing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gawande, Nitin A.; Manzano Franco, Joseph B.; Tumeo, Antonino
Computational efficiency – performance relative to power or energy – is one of the most important concerns when designing RADAR processing systems. This paper analyzes power and performance trade-offs for a typical Space Time Adaptive Processing (STAP) application. We study STAP implementations for CUDA and OpenMP on two computationally efficient architectures, Intel Haswell Core I7-4770TE and NVIDIA Kayla with a GK208 GPU. We analyze the power and performance of STAP’s computationally intensive kernels across the two hardware testbeds. We also show the impact and trade-offs of GPU optimization techniques. We show that data parallelism can be exploited for efficient implementationmore » on the Haswell CPU architecture. The GPU architecture is able to process large size data sets without increase in power requirement. The use of shared memory has a significant impact on the power requirement for the GPU. A balance between the use of shared memory and main memory access leads to an improved performance in a typical STAP application.« less
NASA Astrophysics Data System (ADS)
Madani, K.; Jess, T.; Mahlooji, M.; Ristic, B.
2015-12-01
The world's energy sector is experiencing a serious transition from reliance on fossil fuel energy sources to extensive reliance on renewable energies. Europe is leading the way in this transition to a low carbon economy in an attempt to keep climate change below 2oC. Member States have committed themselves to reducing greenhouse gas emissions by 20% and increasing the share of renewables in the EU's energy mix to 20% by 2020. The EU has now gone a step further with the objective of reducing greenhouse gas emissions by 80-95% by 2050. Nevertheless, the short-term focus of the European Commission is at "cost-efficient ways" to cut its greenhouse gas emissions which forgoes the unintended impacts of a large expansion of low-carbon energy technologies on major natural resources such as water and land. This study uses the "System of Systems (SoS) Approach to Energy Sustainability Assessment" (Hadian and Madani, 2015) to evaluate the Relative Aggregate Footprint (RAF) of energy sources in different European Union (EU) member states. RAF reflects the overall resource-use efficiency of energy sources with respect to four criteria: carbon footprint, water footprint, land footprint, and economic cost. Weights are assigned to the four resource use efficiency criteria based on each member state's varying natural and economic resources to examine the changes in the desirability of energy sources based on regional resource availability conditions, and to help evaluating the overall resource use efficiency of the EU's energy portfolio. A longer-term strategy in Europe has been devised under the "Resource Efficient Europe" flagship imitative intended to put the EU on course to using resources in a sustainable way. This study will highlight the resource efficiency of the EU's energy sector in order to assist in a sustainable transition to a low carbon economy in Europe. ReferenceHadian S, Madani K (2015) A System of Systems Approach to Energy Sustainability Assessment: Are All Renewables Really Green? Ecological Indicators, 52, 194-206.
Efficient Windows Collaborative
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nils Petermann
2010-02-28
The project goals covered both the residential and commercial windows markets and involved a range of audiences such as window manufacturers, builders, homeowners, design professionals, utilities, and public agencies. Essential goals included: (1) Creation of 'Master Toolkits' of information that integrate diverse tools, rating systems, and incentive programs, customized for key audiences such as window manufacturers, design professionals, and utility programs. (2) Delivery of education and outreach programs to multiple audiences through conference presentations, publication of articles for builders and other industry professionals, and targeted dissemination of efficient window curricula to professionals and students. (3) Design and implementation of mechanismsmore » to encourage and track sales of more efficient products through the existing Window Products Database as an incentive for manufacturers to improve products and participate in programs such as NFRC and ENERGY STAR. (4) Development of utility incentive programs to promote more efficient residential and commercial windows. Partnership with regional and local entities on the development of programs and customized information to move the market toward the highest performing products. An overarching project goal was to ensure that different audiences adopt and use the developed information, design and promotion tools and thus increase the market penetration of energy efficient fenestration products. In particular, a crucial success criterion was to move gas and electric utilities to increase the promotion of energy efficient windows through demand side management programs as an important step toward increasing the market share of energy efficient windows.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lindberg, James
The America Saves! Energizing Main Street Small Businesses project engaged the 1,200-member National Main Street Center (NMSC) network of downtown organizations and other local, regional, and national partners to test a methodology for sharing customized energy efficiency information with owners of commercial buildings smaller than 50,000 square feet. Led by the National Trust for Historic Preservation’s Preservation Green Lab, the project marshalled local staff and volunteers to gather voluntarily-disclosed energy use information from participating businesses. This information was analyzed using a remote auditing tool (validated by the National Renewable Energy Lab) to assess energy savings opportunities and design retrofit strategiesmore » targeting seven building types (food service and sales, attached mixed-use, strip mall, retail, office, lodging, and schools). The original project design contemplated extensive leveraging of the Green Button protocol for sharing annualized utility data at a district scale. Due the lack of adoption of Green Button, the project partners developed customized approaches to data collection in each of twelve pilot communities. The project team encountered considerable challenges in gathering standardized annual utility data from local partners. After overcoming these issues, the data was uploaded to a data storehouse. Over 450 properties were benchmarked and the remote auditing tool was tested using full building profiles and utility records for more than 100 commercial properties in three of the pilot communities. The audit tool demonstrated potential for quickly capturing, analyzing, and communicating energy efficiency opportunities in small commercial buildings. However, the project team found that the unique physical characteristics and use patterns (partial vacancy, periodic intensive uses) of small commercial buildings required more trouble-shooting and data correction than was anticipated. In addition, the project revealed that remote technology alone (such as audits) is not sufficient to convince most owners of commercial buildings or businesses to invest in energy efficiency. Additional, one-on-one personal communication is critical. A combination of technology and well-planned direct contact is likely to produce the highest rate of energy efficiency implementation in the small commercial building market sector. Note that only two of the three planned phases of this project were completed. As a result, research and testing were not fully implemented and thus all results and conclusions from the America Saves! Energizing Main Street Small Businesses project should be considered preliminary. In addition to the National Main Street Center, local organizations, and regional utilities, the America Saves! project partners included the National Renewable Energy Laboratory, Energy Center of Wisconsin (Seventh Wave), Lend Lease, Building Energy, and Energy RM.« less
An efficient coordination protocol for wireless sensor networks
NASA Astrophysics Data System (ADS)
Paruchuri, Vamsi; Durresi, Arjan; Durresi, Mimoza; Barolli, Leonard
2005-10-01
Backbones infrastructures in wireless sensor networks reduce the communication overhead and energy consumption. In this paper, we present BackBone Routing (BBR), a fully distributed protocol for construction and rotation of backbone networks. BBR reduces energy consumption without significantly diminishing the capacity or connectivity of the network. Another key feature of BBR is its energy balancing nature by distributing the role of being Backbone Node among all the nodes. BBR builds on the observation that when a region of a shared-channel wireless network has a sufficient density of nodes, only a small number of them need be on at any time to forward traffic for active connections. Improvement in system lifetime due to BBR increases as the ratio of idle-to-sleep energy consumption increases, and increases as the density of the network increases. Our experiments show that BBR is more efficient in saving energy and extending network life without deteriorating network performance when compared with geographical shortest path routing.
NASA Astrophysics Data System (ADS)
Zhu, Liping
2017-05-01
New energy car charging equipment is the development and popularization of new energy vehicles. It has the nature of quasi-public goods. Due to the large number of construction projects, wide distribution, big investment, it needs huge sums of money. PPP mode is a new financing model and has the inherent driving force to lead the idea the technology and the system innovation. The government and the social subject cooperate on the basis of the spirit of contract thus achieve benefit sharing. This mode effectively improve the operation of new energy vehicle charging facilities operating efficiency
Efficient Numeric and Geometric Computations using Heterogeneous Shared Memory Architectures
2017-10-04
Report: Efficient Numeric and Geometric Computations using Heterogeneous Shared Memory Architectures The views, opinions and/or findings contained in this...Chapel Hill Title: Efficient Numeric and Geometric Computations using Heterogeneous Shared Memory Architectures Report Term: 0-Other Email: dm...algorithms for scientific and geometric computing by exploiting the power and performance efficiency of heterogeneous shared memory architectures . These
A Path to Successful Energy Retrofits: Early Collaboration through Integrated Project Delivery Teams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parrish, Kristen
2012-10-01
This document guides you through a process for the early design phases of retrofit projects to help you mitigate frustrations commonly experienced by building owners and designers. It outlines the value of forming an integrated project delivery team and developing a communication and information-sharing infrastructure that fosters collaboration. This guide does not present a complete process for designing an energy retrofit for a building. Instead, it focuses on the early design phase tasks related to developing and selecting energy efficiency measures (EEMs) that benefit from collaboration, and highlights the resulting advantages.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sikes, Karen; Blackburn, Julia; Grubbs, Tyler
Despite a steady record of energy efficiency improvements in residential refrigerators and freezers over recent decades, these products still account for 4% of the site energy consumption for the average U.S. household. The Oak Ridge National Laboratory (ORNL) – along with partners Sandia National Laboratories (SNL) and the University of Maryland – are pursuing further efficiency improvements in this market sector by using a novel/prototype rotating heat exchanger (RHX) based on a Sandia Cooler technology as an evaporator in a residential refrigerator-freezer. The purpose of this study is to investigate the market potential of refrigerator-freezer products equipped with RHX evaporatorsmore » in the United States, including projections of maximum annual market share and unit shipments and maximum direct and indirect job creation.« less
Powder Materials and Energy Efficiency in Transportation: Opportunities and Challenges
NASA Astrophysics Data System (ADS)
Marquis, Fernand D. S.
2012-03-01
The transportation industry accounts for one quarter of global energy use and has by far the largest share of global oil consumption. It used 51.5% of the oil worldwide in 2003. Mobility projections show that it is expected to triple by 2050 with associated energy use. Considerable achievements recently have been obtained in the development of powder and powder-processed metallic alloys, metal matrix composites, intermetallics, and carbon fiber composites. These achievements have resulted in their introduction to the transportation industry in a wide variety of transportation components with significant impact on energy efficiency. A significant number of nano, nanostructured, and nanohybrid materials systems have been deployed. Others, some of them incorporating carbon nanotubes and graphene, are under research and development and exhibit considerable potential. Airplane redesign using a materials and functional systems integration approach was used resulting in considerable system improvements and energy efficiency. It is expected that this materials and functional systems integration soon will be adopted in the design and manufacture of other advanced aircrafts and extended to the automotive industry and then to the marine transportation industry. The opportunities for the development and application of new powder materials in the transportation industry are extensive, with considerable potential to impact energy utilization. However, significant challenges need to be overcome in several critical areas.
NASA Astrophysics Data System (ADS)
Iskin, Ibrahim
Energy efficiency stands out with its potential to address a number of challenges that today's electric utilities face, including increasing and changing electricity demand, shrinking operating capacity, and decreasing system reliability and flexibility. Being the least cost and least risky alternative, the share of energy efficiency programs in utilities' energy portfolios has been on the rise since the 1980s, and their increasing importance is expected to continue in the future. Despite holding great promise, the ability to determine and invest in only the most promising program alternatives plays a key role in the successful use of energy efficiency as a utility-wide resource. This issue becomes even more significant considering the availability of a vast number of potential energy efficiency programs, the rapidly changing business environment, and the existence of multiple stakeholders. This dissertation introduces hierarchical decision modeling as the framework for energy efficiency program planning in electric utilities. The model focuses on the assessment of emerging energy efficiency programs and proposes to bridge the gap between technology screening and cost/benefit evaluation practices. This approach is expected to identify emerging technology alternatives which have the highest potential to pass cost/benefit ratio testing procedures and contribute to the effectiveness of decision practices in energy efficiency program planning. The model also incorporates rank order analysis and sensitivity analysis for testing the robustness of results from different stakeholder perspectives and future uncertainties in an attempt to enable more informed decision-making practices. The model was applied to the case of 13 high priority emerging energy efficiency program alternatives identified in the Pacific Northwest, U.S.A. The results of this study reveal that energy savings potential is the most important program management consideration in selecting emerging energy efficiency programs. Market dissemination potential and program development and implementation potential are the second and third most important, whereas ancillary benefits potential is the least important program management consideration. The results imply that program value considerations, comprised of energy savings potential and ancillary benefits potential; and program feasibility considerations, comprised of program development and implementation potential and market dissemination potential, have almost equal impacts on assessment of emerging energy efficiency programs. Considering the overwhelming number of value-focused studies and the few feasibility-focused studies in the literature, this finding clearly shows that feasibility-focused studies are greatly understudied. The hierarchical decision model developed in this dissertation is generalizable. Thus, other utilities or power systems can adopt the research steps employed in this study as guidelines and conduct similar assessment studies on emerging energy efficiency programs of their interest.
Bolanča, Tomislav; Strahovnik, Tomislav; Ukić, Šime; Stankov, Mirjana Novak; Rogošić, Marko
2017-07-01
This study describes the development of tool for testing different policies for reduction of greenhouse gas (GHG) emissions in energy sector using artificial neural networks (ANNs). The case study of Croatia was elaborated. Two different energy consumption scenarios were used as a base for calculations and predictions of GHG emissions: the business as usual (BAU) scenario and sustainable scenario. Both of them are based on predicted energy consumption using different growth rates; the growth rates within the second scenario resulted from the implementation of corresponding energy efficiency measures in final energy consumption and increasing share of renewable energy sources. Both ANN architecture and training methodology were optimized to produce network that was able to successfully describe the existing data and to achieve reliable prediction of emissions in a forward time sense. The BAU scenario was found to produce continuously increasing emissions of all GHGs. The sustainable scenario was found to decrease the GHG emission levels of all gases with respect to BAU. The observed decrease was attributed to the group of measures termed the reduction of final energy consumption through energy efficiency measures.
Stocker, Andrea; Großmann, Anett; Madlener, Reinhard; Wolter, Marc Ingo
2011-01-01
This paper reports on the Austrian research project “Renewable energy in Austria: Modeling possible development trends until 2020”. The project investigated possible economic and ecological effects of a substantially increased use of renewable energy sources in Austria. Together with stakeholders and experts, three different scenarios were defined, specifying possible development trends for renewable energy in Austria. The scenarios were simulated for the period 2006–2020, using the integrated environment–energy–economy model “e3.at”. The modeling results indicate that increasing the share of renewable energy sources in total energy use is an important but insufficient step towards achieving a sustainable energy system in Austria. A substantial increase in energy efficiency and a reduction of residential energy consumption also form important cornerstones of a sustainable energy policy. PMID:21976785
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poore, WP
The vision of the Distributed Energy Research Program (DER) program of the U.S. Department of Energy (DOE) is that the United States will have the cleanest and most efficient and reliable energy system in the world by maximizing the use of affordable distributed energy resources. Electricity consumers will be able to choose from a diverse number of efficient, cost-effective, and environmentally friendly distributed energy options and easily connect them into the nation's energy infrastructure while providing benefits to their owners and other stakeholders. The long-term goal of this vision is that DER will achieve a 20% share of new electricmore » capacity additions in the United States by 2010, thereby helping to make the nation's electric power generation and delivery system more efficient, reliable, secure, clean, economical, and diverse in terms of fuel use (oil, natural gas, solar, hydroelectric, etc.) and prime mover resource (solar, wind, gas turbines, etc.). Near- and mid-term goals are to develop new technologies for implementing and operating DER and address barriers associated with DER usage and then to reduce costs and emissions and improve the efficiency and reliability of DER. Numerous strategies for meeting these goals have been developed into a research, development, and demonstration (RD&D) program that supports generation and delivery systems architecture, including modeling and simulation tools. The benefits associated with DER installations are often significant and numerous. They almost always provide tangible economic benefits, such as energy savings or transmission and distribution upgrade deferrals, as well as intangible benefits, such as power quality improvements that lengthen maintenance or repair intervals for power equipment. Also, the benefits routinely are dispersed among end users, utilities, and the public. For instance, an end user may use the DER to reduce their peak demand and save money due to lower demand charges. Reduced end user peak demand, in turn, may lower a distribution system peak load such that upgrades are deferred or avoided. This could benefit other consumers by providing them with higher reliability and power quality as well as avoiding their cost share of a distribution system upgrade. In this example, the costs of the DER may be born by the end user, but that user reaps only a share of the benefits. This report, the first product of a study to quantify the value of DER, documents initial project efforts to develop an assessment methodology. The focus of currently available site-specific DER assessment techniques are typically limited to two parties, the owner/user and the local utility. Rarely are the impacts on other stakeholders, including interconnected distribution utilities, transmission system operators, generating system operators, other local utility customers, local and regional industry and business, various levels of government, and the environment considered. The goal of this assessment is to quantify benefits and cost savings that accrue broadly across a region, recognizing that DER installations may have local, regional, or national benefits.« less
Yousefi, Mohammad; Mahdavi Damghani, Abdolmajid; Khoramivafa, Mahmud
2016-04-01
The aims of this study were to determine energy requirement and global warming potential (GWP) in low and high input wheat production systems in western of Iran. For this purpose, data were collected from 120 wheat farms applying questionnaires via face-to-face interviews. Results showed that total energy input and output were 60,000 and 180,000 MJ ha(-1) in high input systems and 14,000 and 56,000 MJ ha(-1) in low input wheat production systems, respectively. The highest share of total input energy in high input systems recorded for electricity power, N fertilizer, and diesel fuel with 36, 18, and 13 %, respectively, while the highest share of input energy in low input systems observed for N fertilizer, diesel fuel, and seed with 32, 31, and 27 %. Energy use efficiency in high input systems (3.03) was lower than of low input systems (3.94). Total CO2, N2O, and CH4 emissions in high input systems were 1981.25, 31.18, and 1.87 kg ha(-1), respectively. These amounts were 699.88, 0.02, and 0.96 kg ha(-1) in low input systems. In high input wheat production systems, total GWP was 11686.63 kg CO2eq ha(-1) wheat. This amount was 725.89 kg CO2eq ha(-1) in low input systems. The results show that 1 ha of high input system will produce greenhouse effect 17 times of low input systems. So, high input production systems need to have an efficient and sustainable management for reducing environmental crises such as change climate.
25. anniversary of the 1973 oil embargo: Energy trends since the first major U.S. energy crisis
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
The purpose of this publication is not to assess the causes of the 1973 energy crisis or the measures that were adopted to resolve it. The intent is to present some data on which such analyses can be based. Many of the trends presented here fall into two distinct periods. From 1973 to the mid-1980`s, prices continued at very high levels, in part because of a second oil shock in 1979--80. During this period, rapid progress was made in raising American oil production, reducing dependence on oil imports, and improving end-use efficiency. After the oil price collapse of the mid-1980`s,more » however, prices retreated to more moderate levels, the pace of efficiency gains slowed, American oil production fell, and the share of imports rose. 30 figs.« less
Unlocking the potential of smart grid technologies with behavioral science
Sintov, Nicole D.; Schultz, P. Wesley
2015-01-01
Smart grid systems aim to provide a more stable and adaptable electricity infrastructure, and to maximize energy efficiency. Grid-linked technologies vary widely in form and function, but generally share common potentials: to reduce energy consumption via efficiency and/or curtailment, to shift use to off-peak times of day, and to enable distributed storage and generation options. Although end users are central players in these systems, they are sometimes not central considerations in technology or program design, and in some cases, their motivations for participating in such systems are not fully appreciated. Behavioral science can be instrumental in engaging end-users and maximizing the impact of smart grid technologies. In this paper, we present emerging technologies made possible by a smart grid infrastructure, and for each we highlight ways in which behavioral science can be applied to enhance their impact on energy savings. PMID:25914666
Energy-aware virtual network embedding in flexi-grid networks.
Lin, Rongping; Luo, Shan; Wang, Haoran; Wang, Sheng
2017-11-27
Network virtualization technology has been proposed to allow multiple heterogeneous virtual networks (VNs) to coexist on a shared substrate network, which increases the utilization of the substrate network. Efficiently mapping VNs on the substrate network is a major challenge on account of the VN embedding (VNE) problem. Meanwhile, energy efficiency has been widely considered in the network design in terms of operation expenses and the ecological awareness. In this paper, we aim to solve the energy-aware VNE problem in flexi-grid optical networks. We provide an integer linear programming (ILP) formulation to minimize the electricity cost of each arriving VN request. We also propose a polynomial-time heuristic algorithm where virtual links are embedded sequentially to keep a reasonable acceptance ratio and maintain a low electricity cost. Numerical results show that the heuristic algorithm performs closely to the ILP for a small size network, and we also demonstrate its applicability to larger networks.
Photon counting microstrip X-ray detectors with GaAs sensors
NASA Astrophysics Data System (ADS)
Ruat, M.; Andrä, M.; Bergamaschi, A.; Barten, R.; Brückner, M.; Dinapoli, R.; Fröjdh, E.; Greiffenberg, D.; Lopez-Cuenca, C.; Lozinskaya, A. D.; Mezza, D.; Mozzanica, A.; Novikov, V. A.; Ramilli, M.; Redford, S.; Ruder, C.; Schmitt, B.; Shi, X.; Thattil, D.; Tinti, G.; Tolbanov, O. P.; Tyazhev, A.; Vetter, S.; Zarubin, A. N.; Zhang, J.
2018-01-01
High-Z sensors are increasingly used to overcome the poor efficiency of Si sensors above 15 keV, and further extend the energy range of synchrotron and FEL experiments. Detector-grade GaAs sensors of 500 μm thickness offer 98% absorption efficiency at 30 keV and 50% at 50 keV . In this work we assess the usability of GaAs sensors in combination with the MYTHEN photon-counting microstrip readout chip developed at PSI. Different strip length and pitch are compared, and the detector performance is evaluated in regard of the sensor material properties. Despite increased leakage current and noise, photon-counting strips mounted with GaAs sensors can be used with photons of energy as low as 5 keV, and exhibit excellent linearity with energy. The charge sharing is doubled as compared to silicon strips, due to the high diffusion coefficient of electrons in GaAs.
Unlocking the potential of smart grid technologies with behavioral science.
Sintov, Nicole D; Schultz, P Wesley
2015-01-01
Smart grid systems aim to provide a more stable and adaptable electricity infrastructure, and to maximize energy efficiency. Grid-linked technologies vary widely in form and function, but generally share common potentials: to reduce energy consumption via efficiency and/or curtailment, to shift use to off-peak times of day, and to enable distributed storage and generation options. Although end users are central players in these systems, they are sometimes not central considerations in technology or program design, and in some cases, their motivations for participating in such systems are not fully appreciated. Behavioral science can be instrumental in engaging end-users and maximizing the impact of smart grid technologies. In this paper, we present emerging technologies made possible by a smart grid infrastructure, and for each we highlight ways in which behavioral science can be applied to enhance their impact on energy savings.
Unlocking the potential of smart grid technologies with behavioral science
Sintov, Nicole D.; Schultz, P. Wesley
2015-04-09
Smart grid systems aim to provide a more stable and adaptable electricity infrastructure, and to maximize energy efficiency. Grid-linked technologies vary widely in form and function, but generally share common potentials: to reduce energy consumption via efficiency and/or curtailment, to shift use to off-peak times of day, and to enable distributed storage and generation options. Although end users are central players in these systems, they are sometimes not central considerations in technology or program design, and in some cases, their motivations for participating in such systems are not fully appreciated. Behavioral science can be instrumental in engaging end-users and maximizingmore » the impact of smart grid technologies. In this study, we present emerging technologies made possible by a smart grid infrastructure, and for each we highlight ways in which behavioral science can be applied to enhance their impact on energy savings.« less
Unlocking the potential of smart grid technologies with behavioral science
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sintov, Nicole D.; Schultz, P. Wesley
Smart grid systems aim to provide a more stable and adaptable electricity infrastructure, and to maximize energy efficiency. Grid-linked technologies vary widely in form and function, but generally share common potentials: to reduce energy consumption via efficiency and/or curtailment, to shift use to off-peak times of day, and to enable distributed storage and generation options. Although end users are central players in these systems, they are sometimes not central considerations in technology or program design, and in some cases, their motivations for participating in such systems are not fully appreciated. Behavioral science can be instrumental in engaging end-users and maximizingmore » the impact of smart grid technologies. In this study, we present emerging technologies made possible by a smart grid infrastructure, and for each we highlight ways in which behavioral science can be applied to enhance their impact on energy savings.« less
NASA Astrophysics Data System (ADS)
Akhmetova, I. G.; Chichirova, N. D.
2017-11-01
When conducting an energy survey of heat supply enterprise operating several boilers located not far from each other, it is advisable to assess the degree of heat supply efficiency from individual boiler, the possibility of energy consumption reducing in the whole enterprise by switching consumers to a more efficient source, to close in effective boilers. It is necessary to consider the temporal dynamics of perspective load connection, conditions in the market changes. To solve this problem the radius calculation of the effective heat supply from the thermal energy source can be used. The disadvantage of existing methods is the high complexity, the need to collect large amounts of source data and conduct a significant amount of computational efforts. When conducting an energy survey of heat supply enterprise operating a large number of thermal energy sources, rapid assessment of the magnitude of the effective heating radius requires. Taking into account the specifics of conduct and objectives of the energy survey method of calculation of effective heating systems radius, to use while conducting the energy audit should be based on data available heat supply organization in open access, minimize efforts, but the result should be to match the results obtained by other methods. To determine the efficiency radius of Kazan heat supply system were determined share of cost for generation and transmission of thermal energy, capital investment to connect new consumers. The result were compared with the values obtained with the previously known methods. The suggested Express-method allows to determine the effective radius of the centralized heat supply from heat sources, in conducting energy audits with the effort minimum and the required accuracy.
NASA Astrophysics Data System (ADS)
Ji, Xu; Zhang, Ran; Chen, Guang-Hong; Li, Ke
2018-05-01
Inter-pixel communication and anti-charge sharing (ACS) technologies have been introduced to photon counting detector (PCD) systems to address the undesirable charge sharing problem. In addition to improving the energy resolution of PCD, ACS may also influence other aspects of PCD performance such as detector multiplicity (i.e. the number of pixels triggered by each interacted photon) and detective quantum efficiency (DQE). In this work, a theoretical model was developed to address how ACS impacts the multiplicity and zero-frequency DQE [DQE(0)] of PCD systems. The work focused on cadmium telluride (CdTe)-based PCD that often involves the generation and transport of K-fluorescence photons. Under the parallel cascaded systems analysis framework, the theory takes both photoelectric and scattering effects into account, and it also considers both the reabsorption and escape of photons. In a new theoretical treatment of ACS, it was considered as a modified version of the conventional single pixel (i.e. non-ACS) mode, but with reduced charge spreading distance and K-fluorescence travel distance. The proposed theoretical model does not require prior knowledge of the detailed ACS implementation method for each specific PCD, and its parameters can be experimentally determined using a radioisotope without invoking any Monte-Carlo simulation. After determining the model parameters, independent validation experiments were performed using a diagnostic x-ray tube and four different polychromatic beams (from 50 to 120 kVp). Both the theoretical and experimental results demonstrate that ACS increased the first and second moments of multiplicity for a majority of the x-ray energy and threshold levels tested, except when the threshold level was much lower than the x-ray energy level. However, ACS always improved DQE(0) at all energy and threshold levels tested.
Hybrid Vehicle Technologies and their potential for reducing oil use
NASA Astrophysics Data System (ADS)
German, John
2006-04-01
Vehicles with hybrid gasoline-electric powertrains are starting to gain market share. Current hybrid vehicles add an electric motor, battery pack, and power electronics to the conventional powertrain. A variety of engine/motor configurations are possible, each with advantages and disadvantages. In general, efficiency is improved due to engine shut-off at idle, capture of energy during deceleration that is normally lost as heat in the brakes, downsizing of the conventional engine, and, in some cases, propulsion on the electric motor alone. Ongoing increases in hybrid market share are dependent on cost reduction, especially the battery pack, efficiency synergies with other vehicle technologies, use of the high electric power to provide features desired by customers, and future fuel price and availability. Potential barriers include historically low fuel prices, high discounting of the fuel savings by new vehicle purchasers, competing technologies, and tradeoffs with other factors desired by customers, such as performance, utility, safety, and luxury features.
The EGS Data Collaboration Platform: Enabling Scientific Discovery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weers, Jonathan D; Johnston, Henry; Huggins, Jay V
Collaboration in the digital age has been stifled in recent years. Reasonable responses to legitimate security concerns have created a virtual landscape of silos and fortified castles incapable of sharing information efficiently. This trend is unfortunately opposed to the geothermal scientific community's migration toward larger, more collaborative projects. To facilitate efficient sharing of information between team members from multiple national labs, universities, and private organizations, the 'EGS Collab' team has developed a universally accessible, secure data collaboration platform and has fully integrated it with the U.S. Department of Energy's (DOE) Geothermal Data Repository (GDR) and the National Geothermal Data Systemmore » (NGDS). This paper will explore some of the challenges of collaboration in the modern digital age, highlight strategies for active data management, and discuss the integration of the EGS Collab data management platform with the GDR to enable scientific discovery through the timely dissemination of information.« less
Energy-aware virtual network embedding in flexi-grid optical networks
NASA Astrophysics Data System (ADS)
Lin, Rongping; Luo, Shan; Wang, Haoran; Wang, Sheng; Chen, Bin
2018-01-01
Virtual network embedding (VNE) problem is to map multiple heterogeneous virtual networks (VN) on a shared substrate network, which mitigate the ossification of the substrate network. Meanwhile, energy efficiency has been widely considered in the network design. In this paper, we aim to solve the energy-aware VNE problem in flexi-grid optical networks. We provide an integer linear programming (ILP) formulation to minimize the power increment of each arriving VN request. We also propose a polynomial-time heuristic algorithm where virtual links are embedded sequentially to keep a reasonable acceptance ratio and maintain a low energy consumption. Numerical results show the functionality of the heuristic algorithm in a 24-node network.
Methods for assessing the energy-saving efficiency of industrial symbiosis in industrial parks.
Li, Wenfeng; Cui, Zhaojie; Han, Feng
2015-01-01
The available energy resources are being depleted worldwide. Industrial symbiosis (IS) provides a promising approach for increasing the efficiency of energy utilization, with numerous studies reporting the superiority of this technology. However, studies quantifying the energy-saving efficiency of IS remain insufficient. This paper proposes an index system for the quantitative evaluation of the energy-saving efficiency of IS. Both energy-saving and financial indexes were selected, the former include the IS energy-saving index, the contribution rate of energy saved through IS, fractional energy savings, and cut rate of energy consumption per total output value; and the latter include the IS investment payback period, IS input-output ratio, net present value (NPV), and internal rate of return (IRR) of IS. The proposed methods were applied to a case study on the XF Industrial Park (XF IP), in the city of Liaocheng in Shandong Province of China. Three energy-saving channels using IS were found in the XF IP: (a) utilizing the energy of high-temperature materials among industrial processes, (b) recovering waste heat and steam between different processes, and (c) saving energy by sharing infrastructures. The results showed that the energy efficiency index of IS was 0.326, accounting for 34.6% of the comprehensive energy-saving index in 2011, and the fractional energy-savings were 12.42%. The index of energy consumption per total industrial output value varied from 90.9 tce/MRMB to 51.6 tce/MRMB. Thus, the cut rate of energy consumption per total industrial output value was 43.42%. The average values of the IS input-output ratio was 406.2 RMB/tce, 57.2% lower than the price of standard coal. Static investment payback period in the XF IP was 8.5 months, indicating that the XF IP began to earn profit 8.5 months after the construction of all IS modes. The NVP and IRR of each IS mode in the XF IP were greater than zero, with average values equal to 1,789.96 MRMB and 140.96%, respectively. The computation result for each indicator revealed that IS could lead to the use of energy with high efficiency and lighten the financial burden of enterprises in the XF IP. And the proposed index system may help IPs and EIPs to make strategic decisions when designing IS modes.
Open Energy Information System version 2.0
DOE Office of Scientific and Technical Information (OSTI.GOV)
OpenEIS was created to provide standard methods for authoring, sharing, testing, using, and improving algorithms for operational building energy efficiency with building managers and building owners. OpenEIS is designed as a no-cost/low-cost solution that will propagate the fault detection and diagnostic (FDD) solutions into the marketplace by providing state- of- the-art analytical and diagnostic algorithms. As OpenEIS penetrates the market, demand by control system manufacturers and integrators serving small and medium commercial customers will help push these types of commercial software tool offerings into the broader marketplace.
Developments and applications of accelerator system at the Wakasa Wan Energy Research Center
NASA Astrophysics Data System (ADS)
Hatori, S.; Kurita, T.; Hayashi, Y.; Yamada, M.; Yamada, H.; Mori, J.; Hamachi, H.; Kimura, S.; Shimoda, T.; Hiroto, M.; Hashimoto, T.; Shimada, M.; Yamamoto, H.; Ohtani, N.; Yasuda, K.; Ishigami, R.; Sasase, M.; Ito, Y.; Hatashita, M.; Takagi, K.; Kume, K.; Fukuda, S.; Yokohama, N.; Kagiya, G.; Fukumoto, S.; Kondo, M.
2005-12-01
At the Wakasa Wan Energy Research Center (WERC), an accelerator system with a 5 MV tandem accelerator and a 200 MeV proton synchrotron is used for ion beam analyses and irradiation experiments. The study of cancer therapy with a proton beam is also performed. Therefore, the stable operation and efficient sharing of beam time of the system are required, based on the treatment standard. Recent developments and the operation status of the system put stress on the tandem accelerator operation, magnifying the problems.
Novel Approach to Increase the Energy-related Process Efficiency and Performance of Laser Brazing
NASA Astrophysics Data System (ADS)
Mittelstädt, C.; Seefeld, T.; Radel, T.; Vollertsen, F.
Although laser brazing is well established, the energy-related efficiency of this joining method is quite low. That is because of low absorptivity of solid-state laser radiation, especially when copper base braze metals are used. Conventionally the laser beam is set close to the vertical axis and the filler wire is delivered under a flat angle. Therefore, the most of the utilized laser power is reflected and thus left unexploited. To address this situation an alternative processing concept for laser brazing, where the laser beam is leading the filler wire, has been investigated intending to make use of reflected shares of the laser radiation. Process monitoring shows, that the reflection of the laser beam can be used purposefully to preheat the substrate which is supporting the wetting and furthermore increasing the efficiency of the process. Experiments address a standard application from the automotive industry joining zinc coated steels using CuSi3Mn1 filler wire. Feasibility of the alternative processing concept is demonstrated, showing that higher processing speeds can be attained, reducing the required energy per unit length while maintaining joint properties.
A comparative assessment of resource efficiency in petroleum refining
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, Jeongwoo; Forman, Grant S.; Elgowainy, Amgad
Because of increasing environmental and energy security concerns, a detailed understanding of energy efficiency and greenhouse gas (GHG) emissions in the petroleum refining industry is critical for fair and equitable energy and environmental policies. To date, this has proved challenging due in part to the complex nature and variability within refineries. In an effort to simplify energy and emissions refinery analysis, we delineated LP modeling results from 60 large refineries from the US and EU into broad categories based on crude density (API gravity) and heavy product (HP) yields. Product-specific efficiencies and process fuel shares derived from this study weremore » incorporated in Argonne National Laboratory’s GREET life-cycle model, along with regional upstream GHG intensities of crude, natural gas and electricity specific to the US and EU regions. The modeling results suggest that refineries that process relatively heavier crude inputs and have lower yields of HPs generally have lower energy efficiencies and higher GHG emissions than refineries that run lighter crudes with lower yields of HPs. The former types of refineries tend to utilize energy-intensive units which are significant consumers of utilities (heat and electricity) and hydrogen. Among the three groups of refineries studied, the major difference in the energy intensities is due to the amount of purchased natural gas for utilities and hydrogen, while the sum of refinery feed inputs are generally constant. These results highlight the GHG emissions cost a refiner pays to process deep into the barrel to produce more of the desirable fuels with low carbon to hydrogen ratio.« less
A Comparative Assessment of Resource Efficiency in Petroleum Refining
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, Jeongwoo; Forman, G; Elgowainy, Amgad
2015-10-01
Because of increasing environmental and energy security concerns, a detailed understanding of energy efficiency and greenhouse gas (GHG) emissions in the petroleum refining industry is critical for fair and equitable energy and environmental policies. To date, this has proved challenging due in part to the complex nature and variability within refineries. In an effort to simplify energy and emissions refinery analysis, we delineated LP modeling results from 60 large refineries from the US and EU into broad categories based on crude density (API gravity) and heavy product (HP) yields. Product-specific efficiencies and process fuel shares derived from this study weremore » incorporated in Argonne National Laboratory's GREET life-cycle model, along with regional upstream GHG intensities of crude, natural gas and electricity specific to the US and EU regions. The modeling results suggest that refineries that process relatively heavier crude inputs and have lower yields of HPs generally have lower energy efficiencies and higher GHG emissions than refineries that run lighter crudes with lower yields of HPs. The former types of refineries tend to utilize energy-intensive units which are significant consumers of utilities (heat and electricity) and hydrogen. Among the three groups of refineries studied, the major difference in the energy intensities is due to the amount of purchased natural gas for utilities and hydrogen, while the sum of refinery feed inputs are generally constant. These results highlight the GHG emissions cost a refiner pays to process deep into the barrel to produce more of the desirable fuels with low carbon to hydrogen ratio. (c) 2015 Argonne National Laboratory. Published by Elsevier Ltd.« less
A comparative assessment of resource efficiency in petroleum refining
Han, Jeongwoo; Forman, Grant S.; Elgowainy, Amgad; ...
2015-03-25
Because of increasing environmental and energy security concerns, a detailed understanding of energy efficiency and greenhouse gas (GHG) emissions in the petroleum refining industry is critical for fair and equitable energy and environmental policies. To date, this has proved challenging due in part to the complex nature and variability within refineries. In an effort to simplify energy and emissions refinery analysis, we delineated LP modeling results from 60 large refineries from the US and EU into broad categories based on crude density (API gravity) and heavy product (HP) yields. Product-specific efficiencies and process fuel shares derived from this study weremore » incorporated in Argonne National Laboratory’s GREET life-cycle model, along with regional upstream GHG intensities of crude, natural gas and electricity specific to the US and EU regions. The modeling results suggest that refineries that process relatively heavier crude inputs and have lower yields of HPs generally have lower energy efficiencies and higher GHG emissions than refineries that run lighter crudes with lower yields of HPs. The former types of refineries tend to utilize energy-intensive units which are significant consumers of utilities (heat and electricity) and hydrogen. Among the three groups of refineries studied, the major difference in the energy intensities is due to the amount of purchased natural gas for utilities and hydrogen, while the sum of refinery feed inputs are generally constant. These results highlight the GHG emissions cost a refiner pays to process deep into the barrel to produce more of the desirable fuels with low carbon to hydrogen ratio.« less
A Novel High-Efficiency Rear-Contact Solar Cell with Bifacial Sensitivity
NASA Astrophysics Data System (ADS)
Hezel, R.
At present, wafer-based silicon solar cells have a share of more than 90% of the photovoltaic market. Despite rapid growth in the manufacturing volume, accompanied by a significant drop in the module selling price, the high costs currently associated with photovoltaic power generation are one of the most important obstacles to widespread global use of solar electricity. Up to a certain level, a higher production volume is a key driver in cost reduction. However, apart from a drastic reduction of the silicon wafer thickness in conjunction with improved light-trapping schemes, innovative processing sequences combining very high solar cell efficiencies with simple and cost-effective fabrication techniques are needed to become competitive with conventional energy sources and thus to move solar energy from niche to mainstream.
Investigation on effective promotion of geothermal energy development
NASA Astrophysics Data System (ADS)
1991-03-01
Efficient and effective measures for promoting geothermal energy development are studied considering the present status and the problems of the geothermal energy development in Japan. To promote it smoothly, solutions to technical and socioeconomic problems are needed: There are many unclear points about the location and amount of geothermal resources. For geothermal energy development, it is necessary to establish a consensus of procedures for surveying the development and settlement of selling prices, and risk sharing in the development. It is indispensable to consider an adjustment with natural parks and hot springs for the development. Troubles in making an adjustment are seen in many cases, and it is necessary to make efforts for that understanding. Improvement of economical efficiency of geothermal power generation is an important subject. From the above mentioned studies, the conclusion is obtained that it is most effective to make rules for development and to expand and strengthen resource prospecting by the government. If the rules are made, reduction of the development cost and shortening of the development period are planned, and the future of the geothermal energy business is expected to be promising.
NASA Astrophysics Data System (ADS)
Latosov, Eduard; Volkova, Anna; Siirde, Andres; Kurnitski, Jarek; Thalfeldt, Martin
2017-05-01
District heating (DH) offers the most effective way to enhance the efficiency of primary energy use, increasing the share of renewable energy in energy consumption and decreasing the amount of CO2 emissions. According to Article 9 section 1 of the Directive 2010/31/EU of the European Parliament and of the Council of 19 May 2010 on the energy performance of buildings, the Member states of the European Union are obligated to draw up National Plans for increasing the number of nearly zero-energy buildings [1]. Article 2 section 2 of the same Directive states that the energy used in nearly zero-energy buildings should be created covered to a very significant extent by energy from renewable sources, including energy from renewable sources produced on-site or nearby. Thus, the heat distributed by DH systems and produced by manufacturing devices located in close vicinity of the building also have to be taken into account in determining the energy consumption of the building and the share of renewable energy used in the nearly zero-energy buildings. With regard to the spreading of nearly zero-energy and zero-energy houses, the feasibility of on-site energy (heat and/or electricity) production and consumption in DH areas energy (i.e. parallel consumption, when the consumer, connected to DH system, consumes energy for heat production from other sources besides the DH system as well) needs to be examined. In order to do that, it is necessary to implement a versatile methodological approach based on the principles discussed in this article.
Sheau-Ting, Low; Mohammed, Abdul Hakim; Weng-Wai, Choong
2013-12-15
This study attempts to identify the optimum social marketing mix for marketing energy conservation behaviour to students in Malaysian universities. A total of 2000 students from 5 major Malaysian universities were invited to provide their preferred social marketing mix. A choice-based conjoint analysis identified a mix of five social marketing attributes to promote energy conservation behaviour; the mix is comprised of the attributes of Product, Price, Place, Promotion, and Post-purchase Maintenance. Each attribute of the mix is associated with a list of strategies. The Product and Post-purchase Maintenance attributes were identified by students as the highest priority attributes in the social marketing mix for energy conservation behaviour marketing, with shares of 27.12% and 27.02%, respectively. The least preferred attribute in the mix is Promotion, with a share of 11.59%. This study proposes an optimal social marketing mix to university management when making decisions about marketing energy conservation behaviour to students, who are the primary energy consumers in the campus. Additionally, this study will assist university management to efficiently allocate scarce resources in fulfilling its social responsibility and to overcome marketing shortcomings by selecting the right marketing mix. Copyright © 2013 Elsevier Ltd. All rights reserved.
Liobikienė, Genovaitė; Butkus, Mindaugas
2018-06-18
Climate change policy confronts with many challenges and opportunities. Thus the aim of this study was to analyse the impact of gross domestic product (hereinafter GDP), trade, foreign direct investment (hereinafter FDI), energy efficiency (hereinafter EF) and renewable energy (hereinafter RE) consumption on greenhouse gas (hereinafter GHG) emissions in 1990-2013 and reveal the main challenges and opportunities of climate policy for which policy makers should take the most attention under different stages of economic development. The results showed that the economic growth significantly contributed to the increase of GHG emissions and remains the main challenge in all groups of countries. Analysing the trade impact on pollution, the results revealed that the growth of export (hereinafter EX) significantly reduced GHG emissions only in high income countries. However, the export remains a challenge in low income countries. FDI insignificantly determined the changes in GHG emissions in all groups of countries. Meanwhile, energy efficiency and share of renewable energy consumption are the main opportunities of climate change policy because they reduce the GHG emissions in all groups of countries. Thus, technological processes, the increase of energy efficiency and the shift from carbon to renewable energy sources are the main tools implementing the climate change policy in all countries despite the different stage of economic development. Copyright © 2018 Elsevier B.V. All rights reserved.
Modeling an impact of road geometric design on vehicle energy consumption
NASA Astrophysics Data System (ADS)
Luin, Blaž; Petelin, Stojan; Al-Mansour, Fouad
2017-11-01
Some roads connect traffic origins and destinations directly, some use winding, indirect routes. Indirect connections result in longer distances driven and increased fuel consumption. A similar effect is observed on congested roads and mountain roads with many changes in altitude. Therefore a framework to assess road networks based on energy consumption is proposed. It has been shown that road geometry has significant impact on overall traffic energy consumption and emissions. The methodology presented in the paper analyzes impact of traffic volume, shares of vehicle classes, road network configuration on the energy used by the vehicles. It can be used to optimize energy consumption with efficient traffic management and to choose optimum new road in the design phase. This is especially important as the energy consumed by the vehicles shortly after construction supersedes the energy spent for the road construction.
Facilitating NASA Earth Science Data Processing Using Nebula Cloud Computing
NASA Technical Reports Server (NTRS)
Pham, Long; Chen, Aijun; Kempler, Steven; Lynnes, Christopher; Theobald, Michael; Asghar, Esfandiari; Campino, Jane; Vollmer, Bruce
2011-01-01
Cloud Computing has been implemented in several commercial arenas. The NASA Nebula Cloud Computing platform is an Infrastructure as a Service (IaaS) built in 2008 at NASA Ames Research Center and 2010 at GSFC. Nebula is an open source Cloud platform intended to: a) Make NASA realize significant cost savings through efficient resource utilization, reduced energy consumption, and reduced labor costs. b) Provide an easier way for NASA scientists and researchers to efficiently explore and share large and complex data sets. c) Allow customers to provision, manage, and decommission computing capabilities on an as-needed bases
Collaboration Mechanism for Equipment Instruction of Multiple Energy Systems
NASA Astrophysics Data System (ADS)
Wang, Dong; Wang, Tuo; Wang, Qi; Zhang, Zhao; Zhao, Mingyu; Wang, Yinghui
2018-01-01
When multiple energy systems execute optimization instructions simultaneously, and the same equipment is Shared, the instruction conflict may occur. Aiming at the above problems, taking into account the control objectives of each system, the characteristics of different systems, such as comprehensive clean energy, energy efficiency, and peak filling, etc., designed the instruction coordination mechanism for the daemon. This mechanism mainly acts on the main station of the system, and form a final optimization instruction. For some specific scenarios, the collaboration mechanism of unlocking the terminal is supplemented. The mechanism determines the specific execution instructions based on the arrival time of the instruction. Finally, the experiment in Tianjin eco-city shows that this algorithm can meet the instruction and collaboration requirements of multi-energy systems, and ensure the safe operation of the equipment.
Sensitivity of projected long-term CO2 emissions across the Shared Socioeconomic Pathways
NASA Astrophysics Data System (ADS)
Marangoni, G.; Tavoni, M.; Bosetti, V.; Borgonovo, E.; Capros, P.; Fricko, O.; Gernaat, D. E. H. J.; Guivarch, C.; Havlik, P.; Huppmann, D.; Johnson, N.; Karkatsoulis, P.; Keppo, I.; Krey, V.; Ó Broin, E.; Price, J.; van Vuuren, D. P.
2017-01-01
Scenarios showing future greenhouse gas emissions are needed to estimate climate impacts and the mitigation efforts required for climate stabilization. Recently, the Shared Socioeconomic Pathways (SSPs) have been introduced to describe alternative social, economic and technical narratives, spanning a wide range of plausible futures in terms of challenges to mitigation and adaptation. Thus far the key drivers of the uncertainty in emissions projections have not been robustly disentangled. Here we assess the sensitivities of future CO2 emissions to key drivers characterizing the SSPs. We use six state-of-the-art integrated assessment models with different structural characteristics, and study the impact of five families of parameters, related to population, income, energy efficiency, fossil fuel availability, and low-carbon energy technology development. A recently developed sensitivity analysis algorithm allows us to parsimoniously compute both the direct and interaction effects of each of these drivers on cumulative emissions. The study reveals that the SSP assumptions about energy intensity and economic growth are the most important determinants of future CO2 emissions from energy combustion, both with and without a climate policy. Interaction terms between parameters are shown to be important determinants of the total sensitivities.
Lenssen, N
1993-01-01
China is emerging as a serious producer of carbon emissions from its burning of coal. China contributes 11% of global carbon emissions, which is still less than its population share. Economic reforms are likely to boost emissions. 33% of all fuel burned in China produces useful energy compared to 50-60% in the USA and Japan. Low prices encourage wasteful use. The Chinese government responds to energy shortages by investing scarce capital in building more mines, power plants, and oil wells. It is unlikely that investing in expanding conventional energy supplies will be a viable solution, regardless of the availability of capital to invest, because air pollution threatens life. Particulate suspension is 14 times greater in China than in the USA. 14% of the country is affected by acid rain. Global warming may be affecting the northern drought prone areas. The solutions must involve greater efficiency. Industrial consumption of energy is more than 66% of energy produced. Energy use for a typical steel or cement factory is 7-75% greater per ton than Western countries, i.e., 55-60% efficiency versus 80% in Europe. The inefficiency is due to poor maintenance and operating procedures and old or obsolete technology. The savings in building a compact, fluorescent light bulb factory is compared to the cost of building coal-fired power plants and transmission facilities. Conservation of heat in northern buildings could be accomplished with boiler improvements, insulation, and double- glazed windows. A $3 billion/year investment could yield a cut in energy demand by nearly 50%. The carbon emissions would be reduced from 1.4 billion tons to 1 billion tons in 2025. Between 1980 and 1985 the energy efficiency program was able to reduce growth in energy from 7% to 4% without slowing growth in industrial production. Since 1985, the government has directed expenditures toward expanding the energy supply, which reduced efficiency expenditures from 10% to 6% of total investment. Alternatives are natural gas or solar, wind, biomass, and geothermal energy. Alternatives are natural gas or solar, wind, biomass, and geothermal energy. International lending agencies must now shift their support to renewable resource development and efficiency improvement and education; an example from industrialized countries would also be very persuasive.
Study of a GaAs:Cr-based Timepix detector using synchrotron facility
NASA Astrophysics Data System (ADS)
Smolyanskiy, P.; Kozhevnikov, D.; Bakina, O.; Chelkov, G.; Dedovich, D.; Kuper, K.; Leyva Fabelo, A.; Zhemchugov, A.
2017-11-01
High resistivity gallium arsenide compensated by chromium fabricated by Tomsk State University has demonstrated a good suitability as a sensor material for hybrid pixel detectors used in X-ray imaging systems with photon energies up to 60 keV. The material is available with a thickness up to 1 mm and due to its Z number a high absorption efficiency in this energy region is provided. However, the performance of thick GaAs:Cr-based detectors in spectroscopic applications is limited by readout electronics with relatively small pixels due to the charge sharing effect. In this paper, we present the experimental investigation of the charge sharing effect contribution in the GaAs:Cr-based Timepix detector. By means of scanning the detector with a pencil photon beam generated by the synchrotron facility, the geometrical mapping of pixel sensitivity is obtained, as well as the energy resolution of a single pixel. The experimental results are supported by numerical simulations. The observed limitation of the GaAs:Cr-based Timepix detector for the high flux X-ray imaging is discussed.
Comparing Waste-to-Energy technologies by applying energy system analysis.
Münster, Marie; Lund, Henrik
2010-07-01
Even when policies of waste prevention, re-use and recycling are prioritised, a fraction of waste will still be left which can be used for energy recovery. This article asks the question: How to utilise waste for energy in the best way seen from an energy system perspective? Eight different Waste-to-Energy technologies are compared with a focus on fuel efficiency, CO(2) reductions and costs. The comparison is carried out by conducting detailed energy system analyses of the present as well as a potential future Danish energy system with a large share of combined heat and power as well as wind power. The study shows potential of using waste for the production of transport fuels. Biogas and thermal gasification technologies are hence interesting alternatives to waste incineration and it is recommended to support the use of biogas based on manure and organic waste. It is also recommended to support research into gasification of waste without the addition of coal and biomass. Together the two solutions may contribute to alternate use of one third of the waste which is currently incinerated. The remaining fractions should still be incinerated with priority to combined heat and power plants with high electric efficiency. Copyright (c) 2009 Elsevier Ltd. All rights reserved.
10 CFR 455.102 - Energy conservation measure cost-share credit.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 3 2014-01-01 2014-01-01 false Energy conservation measure cost-share credit. 455.102 Section 455.102 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION GRANT PROGRAMS FOR SCHOOLS AND HOSPITALS... Energy conservation measure cost-share credit. To the extent a State provides in its State Plan, DOE may...
10 CFR 455.102 - Energy conservation measure cost-share credit.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 3 2010-01-01 2010-01-01 false Energy conservation measure cost-share credit. 455.102 Section 455.102 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION GRANT PROGRAMS FOR SCHOOLS AND HOSPITALS... Energy conservation measure cost-share credit. To the extent a State provides in its State Plan, DOE may...
10 CFR 455.102 - Energy conservation measure cost-share credit.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 3 2012-01-01 2012-01-01 false Energy conservation measure cost-share credit. 455.102 Section 455.102 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION GRANT PROGRAMS FOR SCHOOLS AND HOSPITALS... Energy conservation measure cost-share credit. To the extent a State provides in its State Plan, DOE may...
An Energy-Efficient MAC Protocol for Medical Emergency Monitoring Body Sensor Networks
Zhang, Chongqing; Wang, Yinglong; Liang, Yongquan; Shu, Minglei; Chen, Changfang
2016-01-01
Medical emergency monitoring body sensor networks (BSNs) monitor the occurrence of medical emergencies and are helpful for the daily care of the elderly and chronically ill people. Such BSNs are characterized by rare traffic when there is no emergency occurring, high real-time and reliable requirements of emergency data and demand for a fast wake-up mechanism for waking up all nodes when an emergency happens. A beacon-enabled MAC protocol is specially designed to meet the demands of medical emergency monitoring BSNs. The rarity of traffic is exploited to improve energy efficiency. By adopting a long superframe structure to avoid unnecessary beacons and allocating most of the superframe to be inactive periods, the duty cycle is reduced to an extremely low level to save energy. Short active time slots are interposed into the superframe and shared by all of the nodes to deliver the emergency data in a low-delay and reliable way to meet the real-time and reliable requirements. The interposition slots can also be used by the coordinator to broadcast network demands to wake-up all nodes in a low-delay and energy-efficient way. Experiments display that the proposed MAC protocol works well in BSNs with low emergency data traffic. PMID:26999145
Secondary Heat Exchanger Design and Comparison for Advanced High Temperature Reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Piyush Sabharwall; Ali Siahpush; Michael McKellar
2012-06-01
The goals of next generation nuclear reactors, such as the high temperature gas-cooled reactor and advance high temperature reactor (AHTR), are to increase energy efficiency in the production of electricity and provide high temperature heat for industrial processes. The efficient transfer of energy for industrial applications depends on the ability to incorporate effective heat exchangers between the nuclear heat transport system and the industrial process heat transport system. The need for efficiency, compactness, and safety challenge the boundaries of existing heat exchanger technology, giving rise to the following study. Various studies have been performed in attempts to update the secondarymore » heat exchanger that is downstream of the primary heat exchanger, mostly because its performance is strongly tied to the ability to employ more efficient conversion cycles, such as the Rankine super critical and subcritical cycles. This study considers two different types of heat exchangers—helical coiled heat exchanger and printed circuit heat exchanger—as possible options for the AHTR secondary heat exchangers with the following three different options: (1) A single heat exchanger transfers all the heat (3,400 MW(t)) from the intermediate heat transfer loop to the power conversion system or process plants; (2) Two heat exchangers share heat to transfer total heat of 3,400 MW(t) from the intermediate heat transfer loop to the power conversion system or process plants, each exchanger transfers 1,700 MW(t) with a parallel configuration; and (3) Three heat exchangers share heat to transfer total heat of 3,400 MW(t) from the intermediate heat transfer loop to the power conversion system or process plants. Each heat exchanger transfers 1,130 MW(t) with a parallel configuration. A preliminary cost comparison will be provided for all different cases along with challenges and recommendations.« less
Flexible operation of thermal plants with integrated energy storage technologies
NASA Astrophysics Data System (ADS)
Koytsoumpa, Efthymia Ioanna; Bergins, Christian; Kakaras, Emmanouil
2017-08-01
The energy system in the EU requires today as well as towards 2030 to 2050 significant amounts of thermal power plants in combination with the continuously increasing share of Renewables Energy Sources (RES) to assure the grid stability and to secure electricity supply as well as to provide heat. The operation of the conventional fleet should be harmonised with the fluctuating renewable energy sources and their intermittent electricity production. Flexible thermal plants should be able to reach their lowest minimum load capabilities while keeping the efficiency drop moderate as well as to increase their ramp up and down rates. A novel approach for integrating energy storage as an evolutionary measure to overcome many of the challenges, which arise from increasing RES and balancing with thermal power is presented. Energy storage technologies such as Power to Fuel, Liquid Air Energy Storage and Batteries are investigated in conjunction with flexible power plants.
The latest developments and outlook for hydrogen liquefaction technology
NASA Astrophysics Data System (ADS)
Ohlig, K.; Decker, L.
2014-01-01
Liquefied hydrogen is presently mainly used for space applications and the semiconductor industry. While clean energy applications, for e.g. the automotive sector, currently contribute to this demand with a small share only, their demand may see a significant boost in the next years with the need for large scale liquefaction plants exceeding the current plant sizes by far. Hydrogen liquefaction for small scale plants with a maximum capacity of 3 tons per day (tpd) is accomplished with a Brayton refrigeration cycle using helium as refrigerant. This technology is characterized by low investment costs but lower process efficiency and hence higher operating costs. For larger plants, a hydrogen Claude cycle is used, characterized by higher investment but lower operating costs. However, liquefaction plants meeting the potentially high demand in the clean energy sector will need further optimization with regard to energy efficiency and hence operating costs. The present paper gives an overview of the currently applied technologies, including their thermodynamic and technical background. Areas of improvement are identified to derive process concepts for future large scale hydrogen liquefaction plants meeting the needs of clean energy applications with optimized energy efficiency and hence minimized operating costs. Compared to studies in this field, this paper focuses on application of new technology and innovative concepts which are either readily available or will require short qualification procedures. They will hence allow implementation in plants in the close future.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barbose, Galen; Goldman, Charles; Hoffman, Ian
2012-09-11
We develop projections of future spending on, and savings from, energy efficiency programs funded by electric and gas utility customers in the United States, under three scenarios through 2025. Our analysis, which updates a previous LBNL study, relies on detailed bottom-up modeling of current state energy efficiency policies, regulatory decisions, and demand-side management and utility resource plans. The three scenarios are intended to represent a range of potential outcomes under the current policy environment (i.e., without considering possible major new policy developments). By 2025, spending on electric and gas efficiency programs (excluding load management programs) is projected to double frommore » 2010 levels to $9.5 billion in the medium case, compared to $15.6 billion in the high case and $6.5 billion in the low case. Compliance with statewide legislative or regulatory savings or spending targets is the primary driver for the increase in electric program spending through 2025, though a significant share of the increase is also driven by utility DSM planning activity and integrated resource planning. Our analysis suggests that electric efficiency program spending may approach a more even geographic distribution over time in terms of absolute dollars spent, with the Northeastern and Western states declining from over 70% of total U.S. spending in 2010 to slightly more than 50% in 2025, with the South and Midwest splitting the remainder roughly evenly. Under our medium case scenario, annual incremental savings from customer-funded electric energy efficiency programs increase from 18.4 TWh in 2010 in the U.S. (which is about 0.5% of electric utility retail sales) to 28.8 TWh in 2025 (0.8% of retail sales). These savings would offset the majority of load growth in the Energy Information Administration’s most recent reference case forecast, given specific assumptions about the extent to which future energy efficiency program savings are captured in that forecast. However, the pathway that customer-funded efficiency programs ultimately take will depend on a series of key challenges and uncertainties associated both with the broader market and policy context and with the implementation and regulatory oversight of the energy efficiency programs themselves.« less
Industrial energy systems and assessment opportunities
NASA Astrophysics Data System (ADS)
Barringer, Frank Leonard, III
Industrial energy assessments are performed primarily to increase energy system efficiency and reduce energy costs in industrial facilities. The most common energy systems are lighting, compressed air, steam, process heating, HVAC, pumping, and fan systems, and these systems are described in this document. ASME has produced energy assessment standards for four energy systems, and these systems include compressed air, steam, process heating, and pumping systems. ASHRAE has produced an energy assessment standard for HVAC systems. Software tools for energy systems were developed for the DOE, and there are software tools for almost all of the most common energy systems. The software tools are AIRMaster+ and LogTool for compressed air systems, SSAT and 3E Plus for steam systems, PHAST and 3E Plus for process heating systems, eQUEST for HVAC systems, PSAT for pumping systems, and FSAT for fan systems. The recommended assessment procedures described in this thesis are used to set up an energy assessment for an industrial facility, collect energy system data, and analyze the energy system data. The assessment recommendations (ARs) are opportunities to increase efficiency and reduce energy consumption for energy systems. A set of recommended assessment procedures and recommended assessment opportunities are presented for each of the most common energy systems. There are many assessment opportunities for industrial facilities, and this thesis describes forty-three ARs for the seven different energy systems. There are seven ARs for lighting systems, ten ARs for compressed air systems, eight ARs for boiler and steam systems, four ARs for process heating systems, six ARs for HVAC systems, and four ARs for both pumping and fan systems. Based on a history of past assessments, average potential energy savings and typical implementation costs are shared in this thesis for most ARs. Implementing these ARs will increase efficiency and reduce energy consumption for energy systems in industrial facilities. This thesis does not explain all energy saving ARs that are available, but does describe the most common ARs.
10 CFR 420.34 - Matching contributions or cost-sharing.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 3 2013-01-01 2013-01-01 false Matching contributions or cost-sharing. 420.34 Section 420.34 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION STATE ENERGY PROGRAM Implementation of Special Projects Financial Assistance § 420.34 Matching contributions or cost-sharing. DOE may require (as set...
10 CFR 420.34 - Matching contributions or cost-sharing.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 3 2011-01-01 2011-01-01 false Matching contributions or cost-sharing. 420.34 Section 420.34 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION STATE ENERGY PROGRAM Implementation of Special Projects Financial Assistance § 420.34 Matching contributions or cost-sharing. DOE may require (as set...
10 CFR 420.34 - Matching contributions or cost-sharing.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 3 2012-01-01 2012-01-01 false Matching contributions or cost-sharing. 420.34 Section 420.34 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION STATE ENERGY PROGRAM Implementation of Special Projects Financial Assistance § 420.34 Matching contributions or cost-sharing. DOE may require (as set...
10 CFR 420.34 - Matching contributions or cost-sharing.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 3 2014-01-01 2014-01-01 false Matching contributions or cost-sharing. 420.34 Section 420.34 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION STATE ENERGY PROGRAM Implementation of Special Projects Financial Assistance § 420.34 Matching contributions or cost-sharing. DOE may require (as set...
10 CFR 420.34 - Matching contributions or cost-sharing.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 3 2010-01-01 2010-01-01 false Matching contributions or cost-sharing. 420.34 Section 420.34 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION STATE ENERGY PROGRAM Implementation of Special Projects Financial Assistance § 420.34 Matching contributions or cost-sharing. DOE may require (as set...
Better Buildings Alliance 2013 Annual Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2014-01-31
We are pleased to share with you a copy of the 2013 Annual Report. Inside, you’ll find significant program accomplishments, profiles on highlighted members, and plans for 2014. With your contributions, support, and leadership over the past 12 months, the program has reached significant milestones, including: Growing membership to over 200 members, to represent over 10 billion square feet of U.S. commercial building space and one-seventh of the market; Increasing participation in the 15 Solutions Teams by 75%; Developing 3 new high-efficiency technology specifications that if widely implemented, could save more than $5 billion in energy costs per year; Launchingmore » the Advanced RTU Campaign and Wireless Meter Challenge, and surpassing 100 million sq. ft. in the Lighting Energy Efficiency in Parking (LEEP) Campaign; Welcoming partners in new sectors, including K-12 schools and local governments; The program is a critical element of the Better Buildings Initiative, driving 20% energy savings in the building sector by 2020 through innovation, new technologies, and profiling leadership. Thank you for your ongoing participation, we are looking forward to working with you in the new year on your energy saving targets and advancing technical and market practices that promote energy savings at your organization.« less
An optimization method of VON mapping for energy efficiency and routing in elastic optical networks
NASA Astrophysics Data System (ADS)
Liu, Huanlin; Xiong, Cuilian; Chen, Yong; Li, Changping; Chen, Derun
2018-03-01
To improve resources utilization efficiency, network virtualization in elastic optical networks has been developed by sharing the same physical network for difference users and applications. In the process of virtual nodes mapping, longer paths between physical nodes will consume more spectrum resources and energy. To address the problem, we propose a virtual optical network mapping algorithm called genetic multi-objective optimize virtual optical network mapping algorithm (GM-OVONM-AL), which jointly optimizes the energy consumption and spectrum resources consumption in the process of virtual optical network mapping. Firstly, a vector function is proposed to balance the energy consumption and spectrum resources by optimizing population classification and crowding distance sorting. Then, an adaptive crossover operator based on hierarchical comparison is proposed to improve search ability and convergence speed. In addition, the principle of the survival of the fittest is introduced to select better individual according to the relationship of domination rank. Compared with the spectrum consecutiveness-opaque virtual optical network mapping-algorithm and baseline-opaque virtual optical network mapping algorithm, simulation results show the proposed GM-OVONM-AL can achieve the lowest bandwidth blocking probability and save the energy consumption.
NASA Astrophysics Data System (ADS)
Alhamwi, Alaa; Kleinhans, David; Weitemeyer, Stefan; Vogt, Thomas
2014-12-01
Renewable Energy sources are gaining importance in the Middle East and North Africa (MENA) region. The purpose of this study is to quantify the optimal mix of renewable power generation in the MENA region, taking Morocco as a case study. Based on hourly meteorological data and load data, a 100% solar-plus-wind only scenario for Morocco is investigated. For the optimal mix analyses, a mismatch energy modelling approach is adopted with the objective to minimise the required storage capacities. For a hypothetical Moroccan energy supply system which is entirely based on renewable energy sources, our results show that the minimum storage capacity is achieved at a share of 63% solar and 37% wind power generations.
Negotiating designs of multi-purpose reservoir systems in international basins
NASA Astrophysics Data System (ADS)
Geressu, Robel; Harou, Julien
2016-04-01
Given increasing agricultural and energy demands, coordinated management of multi-reservoir systems could help increase production without further stressing available water resources. However, regional or international disputes about water-use rights pose a challenge to efficient expansion and management of many large reservoir systems. Even when projects are likely to benefit all stakeholders, agreeing on the design, operation, financing, and benefit sharing can be challenging. This is due to the difficulty of considering multiple stakeholder interests in the design of projects and understanding the benefit trade-offs that designs imply. Incommensurate performance metrics, incomplete knowledge on system requirements, lack of objectivity in managing conflict and difficulty to communicate complex issue exacerbate the problem. This work proposes a multi-step hybrid multi-objective optimization and multi-criteria ranking approach for supporting negotiation in water resource systems. The approach uses many-objective optimization to generate alternative efficient designs and reveal the trade-offs between conflicting objectives. This enables informed elicitation of criteria weights for further multi-criteria ranking of alternatives. An ideal design would be ranked as best by all stakeholders. Resource-sharing mechanisms such as power-trade and/or cost sharing may help competing stakeholders arrive at designs acceptable to all. Many-objective optimization helps suggests efficient designs (reservoir site, its storage size and operating rule) and coordination levels considering the perspectives of multiple stakeholders simultaneously. We apply the proposed approach to a proof-of-concept study of the expansion of the Blue Nile transboundary reservoir system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eilert, P.L.; Hoeschele, M.
This paper discussed a market-transformation program to reduce energy use in modular school classrooms, a large part of new construction activities in California's schools. Today's modular classrooms cost more to operate than is necessary to provide effective, comfortable learning conditions for students and teachers. Although past resource acquisition programs have created a demand for efficient products and services, modular classrooms remain poorly differentiated in this respect. The cost-effectiveness of a range of potential energy efficiency measures (EEM's) were evaluated including lighting, alternative HVAC options, and improved envelope features. Viable EEM's were combined in two separate packages. The first includes measuresmore » that can easily be implemented and are projected to reduce operating costs by 30%. The second implements a daylighting system, a two-stage evaporative cooler, and radiant heating, resulting in projected annual energy cost savings over 60%. Transforming the market for modular classrooms is accomplished using natural market forces, rather than financial incentives directed at an entire industry. Proactive efforts are focused on the manufacturing industry's change leaders to commercialize energy-efficient products. Lost market share and peer pressure do the heavy lifting of convincing market followers to upgrade their products. Demand for efficient classrooms is increased by educating schools about the new products' financial advantages, comfort enhancements, and environmental benefits. As new products become established in the marketplace, support will be gradually withdrawn. The relevance of this work extends beyond California, given other States' programs to reduce class size, and the Presidents initiative to reduce class size nationally.« less
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 4 2010-01-01 2010-01-01 false Cost sharing. 602.12 Section 602.12 Energy DEPARTMENT OF ENERGY (CONTINUED) ASSISTANCE REGULATIONS EPIDEMIOLOGY AND OTHER HEALTH STUDIES FINANCIAL ASSISTANCE PROGRAM § 602.12 Cost sharing. Cost sharing is not required, nor will it be considered, as a criterion in...
2017 Publications Demonstrate Advancements in Wind Energy Research
DOE Office of Scientific and Technical Information (OSTI.GOV)
In 2017, wind energy experts at the National Renewable Energy Laboratory (NREL) made significant strides to advance wind energy. Many of these achievements were presented in articles published in scientific and engineering journals and technical reports that detailed research accomplishments in new and progressing wind energy technologies. During fiscal year 2017, NREL wind energy thought leaders shared knowledge and insights through 45 journal articles and 25 technical reports, benefiting academic and national-lab research communities; industry stakeholders; and local, state, and federal decision makers. Such publications serve as important outreach, informing the public of how NREL wind research, analysis, and deploymentmore » activities complement advanced energy growth in the United States and around the world. The publications also illustrate some of the noteworthy outcomes of U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) and Laboratory Directed Research and Development funding, as well as funding and facilities leveraged through strategic partnerships and other collaborations.« less
Design and Implementation of Geothermal Energy Systems at West Chester University
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lewis, James
West Chester University has launched a comprehensive transformation of its campus heating and cooling systems from traditional fossil fuels to geothermal. This change will significantly decrease the institution's carbon footprint and serve as a national model for green campus efforts. The institution has designed a phased series of projects to build a district geo-exchange system with shared well fields, central pumping station and distribution piping to provide the geo-exchange water to campus buildings as their internal building HVAC systems are changed to be able to use the geo-exchange water. This project addresses the US Department of Energy Office of Energymore » Efficiency and Renewable Energy (EERE) goal to invest in clean energy technologies that strengthen the economy, protect the environment, and reduce dependence on foreign oil. In addition, this project advances EERE's efforts to establish geothermal energy as an economically competitive contributor to the US energy supply.« less
A System of Systems (SoS) Approach to Sustainable Energy Planning in MENA
NASA Astrophysics Data System (ADS)
Mahlooji, Maral; Ristic, Bora; Price, Katherine; Madani, Kaveh
2016-04-01
The global issue of climate change has put pressure on governments to de-carbonise their energy portfolios by transitioning from the dominant use of fossil fuels energy to extensive use of renewable energies. The lack of renewable energy laws and credible targets and valid roadmaps for energy policies within the MENA region has let to ambitious and unrealistic renewable targets, where countries such as Djibouti and Morocco are aiming for 100% and 42% renewables respectively, by 2020, while Kuwait and Qatar are only aiming for 5% and 6% respectively. Nevertheless, this demonstrates the commitment and desirability of the members of the MENA region on increasing their share of renewables in their energy mix to reduce the greenhouse gas emissions of the region and minimise the unintended impacts of energy technologies on major natural resources through use of cost efficient technologies. The Relative Aggregate Footprint (RAF) of energy sources among the member states of the MENA region is assessed by applying the "System of Systems (SoS) Approach to Energy Sustainability Assessment" (Hadian and Madani, 2015). RAF demonstrates the efficiency of the overall resource-use of energy resources through creating a trade-off between carbon footprint, land footprint, water footprint, and economic cost. Using the resource availability of each member states, weights are assigned to the four criteria. This allows the evaluation of the desirability of energy sources with respect to regional resource availability and therefore, the efficiency of the overall resource-use of the energy portfolio of the MENA region is determined. This study has recognised the need for reform and radical changes within the MENA region's energy profile to make a significant contribution to the reduction of carbon emissions in order to use the resources in a sustainable way and increase the regional energy security of the member states across MENA. Reference: Hadian S, Madani K (2015) A System of Systems Approach to Energy Sustainability Assessment: Are All Renewables Really Green? Ecological Indicators, 52, 194-206.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Horttanainen, M., E-mail: mika.horttanainen@lut.fi; Teirasvuo, N.; Kapustina, V.
Highlights: • New experimental data of mixed MSW properties in a Finnish case region. • The share of renewable energy of mixed MSW. • The results were compared with earlier international studies. • The average share of renewable energy was 30% and the average LHVar 19 MJ/kg. • Well operating source separation decreases the renewable energy content of MSW. - Abstract: For the estimation of greenhouse gas emissions from waste incineration it is essential to know the share of the renewable energy content of the combusted waste. The composition and heating value information is generally available, but the renewable energymore » share or heating values of different fractions of waste have rarely been determined. In this study, data from Finnish studies concerning the composition and energy content of mixed MSW were collected, new experimental data on the compositions, heating values and renewable share of energy were presented and the results were compared to the estimations concluded from earlier international studies. In the town of Lappeenranta in south-eastern Finland, the share of renewable energy ranged between 25% and 34% in the energy content tests implemented for two sample trucks. The heating values of the waste and fractions of plastic waste were high in the samples compared to the earlier studies in Finland. These high values were caused by good source separation and led to a low share of renewable energy content in the waste. The results showed that in mixed municipal solid waste the renewable share of the energy content can be significantly lower than the general assumptions (50–60%) when the source separation of organic waste, paper and cardboard is carried out successfully. The number of samples was however small for making extensive conclusions on the results concerning the heating values and renewable share of energy and additional research is needed for this purpose.« less
Saud, Shah; Danish; Chen, Songsheng
2018-06-14
The rapid mode of globalization is experienced in the last few years. The acceleration in globalization expands economic activities through a share of knowledge and transfer of technology which influence energy demand. So, the objective of this empirical work is to explore the impact of financial development on energy demand incorporating globalization. The empirical finding is based on autoregressive distributed lag (ARDL) bound testing approach from 1980 to 2016 in case of China. Overall, we infer that financial development increases energy demand in China. Furthermore, the finding shows that globalization has a negative and significant impact on energy demand. The additional determinants, such as economic growth, and urbanization stimulate energy consumption. Besides, energy consumption granger cause financial development in the long-run path. Similarly, unidirectional causality is detected between globalization and energy consumption. The result gives direction to policymakers to preserve as well as to enhance efficient energy consumption and sustain economic growth in China with acceleration in globalization.
Optimizing the Energy and Throughput of a Water-Quality Monitoring System.
Olatinwo, Segun O; Joubert, Trudi-H
2018-04-13
This work presents a new approach to the maximization of energy and throughput in a wireless sensor network (WSN), with the intention of applying the approach to water-quality monitoring. Water-quality monitoring using WSN technology has become an interesting research area. Energy scarcity is a critical issue that plagues the widespread deployment of WSN systems. Different power supplies, harvesting energy from sustainable sources, have been explored. However, when energy-efficient models are not put in place, energy harvesting based WSN systems may experience an unstable energy supply, resulting in an interruption in communication, and low system throughput. To alleviate these problems, this paper presents the joint maximization of the energy harvested by sensor nodes and their information-transmission rate using a sum-throughput technique. A wireless information and power transfer (WIPT) method is considered by harvesting energy from dedicated radio frequency sources. Due to the doubly near-far condition that confronts WIPT systems, a new WIPT system is proposed to improve the fairness of resource utilization in the network. Numerical simulation results are presented to validate the mathematical formulations for the optimization problem, which maximize the energy harvested and the overall throughput rate. Defining the performance metrics of achievable throughput and fairness in resource sharing, the proposed WIPT system outperforms an existing state-of-the-art WIPT system, with the comparison based on numerical simulations of both systems. The improved energy efficiency of the proposed WIPT system contributes to addressing the problem of energy scarcity.
Optimizing the Energy and Throughput of a Water-Quality Monitoring System
Olatinwo, Segun O.
2018-01-01
This work presents a new approach to the maximization of energy and throughput in a wireless sensor network (WSN), with the intention of applying the approach to water-quality monitoring. Water-quality monitoring using WSN technology has become an interesting research area. Energy scarcity is a critical issue that plagues the widespread deployment of WSN systems. Different power supplies, harvesting energy from sustainable sources, have been explored. However, when energy-efficient models are not put in place, energy harvesting based WSN systems may experience an unstable energy supply, resulting in an interruption in communication, and low system throughput. To alleviate these problems, this paper presents the joint maximization of the energy harvested by sensor nodes and their information-transmission rate using a sum-throughput technique. A wireless information and power transfer (WIPT) method is considered by harvesting energy from dedicated radio frequency sources. Due to the doubly near–far condition that confronts WIPT systems, a new WIPT system is proposed to improve the fairness of resource utilization in the network. Numerical simulation results are presented to validate the mathematical formulations for the optimization problem, which maximize the energy harvested and the overall throughput rate. Defining the performance metrics of achievable throughput and fairness in resource sharing, the proposed WIPT system outperforms an existing state-of-the-art WIPT system, with the comparison based on numerical simulations of both systems. The improved energy efficiency of the proposed WIPT system contributes to addressing the problem of energy scarcity. PMID:29652866
Center for Building Science: Annual report, FY 1986
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cairns, E.J.; Rosenfeld, A.H.
1987-05-01
The Center for Building Science consists of four programs in the Applied Science Division: energy analysis, buildings energy systems, windows and lighting, and indoor environment. It was established to provide an umbrella so that goups in different programs but with similar interests could combine to perform joint research, develop new research areas, share resources, and produce joint publications. As detailed below, potential savings for the U.S. society from energy efficient buildings are enormous. But these savings can only be realized through an expanding federal RandD program that develops expertise in this new area. The Center for Building Science develops efficientmore » new building componenets, computer models, data and information systems, and trains needed builidng scientists. 135 refs., 72 figs., 18 tabs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Lining; Patel, Pralit L.; Yu, Sha
The rapid growth of energy consumption in China has led to increased emissions of air pollutants. As a response, in its 12th Five Year Plan the Chinese government proposed mitigation targets for SO2 and NOx emissions. Herein we have investigated mitigation measures taken in different sectors and their corresponding impacts on the energy system. Additionally, as non-fossil energy development has gained traction in addressing energy and environmental challenges in China, we further investigated the impact of non-fossil energy development on air pollutant emissions, and then explored interactions and co-benefits between these two types of policies. An extended Global Change Assessmentmore » Model (GCAM) was used in this study, which includes an additional air pollutant emissions control module coupling multiple end-of-pipe (EOP) control technologies with energy technologies, as well as more detailed end-use sectors in China. We find that implementing EOP control technologies would reduce air pollution in the near future, but with little room left to implement these EOP technologies, other cleaner and more efficient technologies are also effective. These technologies would reduce final energy consumption, increase electricity’s share in final energy, and increase the share of non-fossil fuels in primary energy and electricity consumption. Increasing non-fossil energy usage at China’s proposed adoption rate would in turn also reduce SO2 and NOx emissions, however, the reductions from this policy alone still lag behind the targeted requirements of air pollutant reduction. Fortunately, a combination of air pollutant controls and non-fossil energy development could synergistically help realize the respective individual targets, and would result in lower costs than would addressing these issues separately.« less
MinT: Middleware for Cooperative Interaction of Things
Jeon, Soobin; Jung, Inbum
2017-01-01
This paper proposes an Internet of Things (IoT) middleware called Middleware for Cooperative Interaction of Things (MinT). MinT supports a fully distributed IoT environment in which IoT devices directly connect to peripheral devices easily construct a local or global network, and share their data in an energy efficient manner. MinT provides a sensor abstract layer, a system layer and an interaction layer. These enable integrated sensing device operations, efficient resource management, and active interconnection between peripheral IoT devices. In addition, MinT provides a high-level API to develop IoT devices easily for IoT device developers. We aim to enhance the energy efficiency and performance of IoT devices through the performance improvements offered by MinT resource management and request processing. The experimental results show that the average request rate increased by 25% compared to Californium, which is a middleware for efficient interaction in IoT environments with powerful performance, an average response time decrease of 90% when resource management was used, and power consumption decreased by up to 68%. Finally, the proposed platform can reduce the latency and power consumption of IoT devices. PMID:28632182
MinT: Middleware for Cooperative Interaction of Things.
Jeon, Soobin; Jung, Inbum
2017-06-20
This paper proposes an Internet of Things (IoT) middleware called Middleware for Cooperative Interaction of Things (MinT). MinT supports a fully distributed IoT environment in which IoT devices directly connect to peripheral devices easily construct a local or global network, and share their data in an energy efficient manner. MinT provides a sensor abstract layer, a system layer and an interaction layer. These enable integrated sensing device operations, efficient resource management, and active interconnection between peripheral IoT devices. In addition, MinT provides a high-level API to develop IoT devices easily for IoT device developers. We aim to enhance the energy efficiency and performance of IoT devices through the performance improvements offered by MinT resource management and request processing. The experimental results show that the average request rate increased by 25% compared to Californium, which is a middleware for efficient interaction in IoT environments with powerful performance, an average response time decrease of 90% when resource management was used, and power consumption decreased by up to 68%. Finally, the proposed platform can reduce the latency and power consumption of IoT devices.
Energy efficiency and greenhouse gas emission intensity of petroleum products at U.S. refineries.
Elgowainy, Amgad; Han, Jeongwoo; Cai, Hao; Wang, Michael; Forman, Grant S; DiVita, Vincent B
2014-07-01
This paper describes the development of (1) a formula correlating the variation in overall refinery energy efficiency with crude quality, refinery complexity, and product slate; and (2) a methodology for calculating energy and greenhouse gas (GHG) emission intensities and processing fuel shares of major U.S. refinery products. Overall refinery energy efficiency is the ratio of the energy present in all product streams divided by the energy in all input streams. Using linear programming (LP) modeling of the various refinery processing units, we analyzed 43 refineries that process 70% of total crude input to U.S. refineries and cover the largest four Petroleum Administration for Defense District (PADD) regions (I, II, III, V). Based on the allocation of process energy among products at the process unit level, the weighted-average product-specific energy efficiencies (and ranges) are estimated to be 88.6% (86.2%-91.2%) for gasoline, 90.9% (84.8%-94.5%) for diesel, 95.3% (93.0%-97.5%) for jet fuel, 94.5% (91.6%-96.2%) for residual fuel oil (RFO), and 90.8% (88.0%-94.3%) for liquefied petroleum gas (LPG). The corresponding weighted-average, production GHG emission intensities (and ranges) (in grams of carbon dioxide-equivalent (CO2e) per megajoule (MJ)) are estimated to be 7.8 (6.2-9.8) for gasoline, 4.9 (2.7-9.9) for diesel, 2.3 (0.9-4.4) for jet fuel, 3.4 (1.5-6.9) for RFO, and 6.6 (4.3-9.2) for LPG. The findings of this study are key components of the life-cycle assessment of GHG emissions associated with various petroleum fuels; such assessment is the centerpiece of legislation developed and promulgated by government agencies in the United States and abroad to reduce GHG emissions and abate global warming.
Economic analysis for transmission operation and planning
NASA Astrophysics Data System (ADS)
Zhou, Qun
2011-12-01
Restructuring of the electric power industry has caused dramatic changes in the use of transmission system. The increasing congestion conditions as well as the necessity of integrating renewable energy introduce new challenges and uncertainties to transmission operation and planning. Accurate short-term congestion forecasting facilitates market traders in bidding and trading activities. Cost sharing and recovery issue is a major impediment for long-term transmission investment to integrate renewable energy. In this research, a new short-term forecasting algorithm is proposed for predicting congestion, LMPs, and other power system variables based on the concept of system patterns. The advantage of this algorithm relative to standard statistical forecasting methods is that structural aspects underlying power market operations are exploited to reduce the forecasting error. The advantage relative to previously proposed structural forecasting methods is that data requirements are substantially reduced. Forecasting results based on a NYISO case study demonstrate the feasibility and accuracy of the proposed algorithm. Moreover, a negotiation methodology is developed to guide transmission investment for integrating renewable energy. Built on Nash Bargaining theory, the negotiation of investment plans and payment rate can proceed between renewable generation and transmission companies for cost sharing and recovery. The proposed approach is applied to Garver's six bus system. The numerical results demonstrate fairness and efficiency of the approach, and hence can be used as guidelines for renewable energy investors. The results also shed light on policy-making of renewable energy subsidies.
Deconstructing Biomass [part of The frontiers of energy
Armstrong, Robert C.; Wolfram, Catherine; de Jong, Krijn P.; ...
2016-01-11
Great strides have been made over the past century in our ability to harness energy sources, leading to profound transformations — both good and bad — in society. Looking at the energy system of today, it is clear that meeting the energy needs of the world now and in the years to come requires the concerted efforts of many different actors across a range of technologies and approaches. In this Feature, ten leading experts in energy research share their vision of what challenges their respective fields need to address in the coming decades. The issues being faced are diverse andmore » multifaceted, from the search for better materials for fuels, to the design of energy policy and markets for the developing world. However, a common theme emerges: changes to adapt and improve our energy system are greatly needed. As a result, by improving our mutual understanding of the issues faced by each area of energy research, these changes can happen more smoothly, efficiently and rapidly.« less
The latest developments and outlook for hydrogen liquefaction technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ohlig, K.; Decker, L.
2014-01-29
Liquefied hydrogen is presently mainly used for space applications and the semiconductor industry. While clean energy applications, for e.g. the automotive sector, currently contribute to this demand with a small share only, their demand may see a significant boost in the next years with the need for large scale liquefaction plants exceeding the current plant sizes by far. Hydrogen liquefaction for small scale plants with a maximum capacity of 3 tons per day (tpd) is accomplished with a Brayton refrigeration cycle using helium as refrigerant. This technology is characterized by low investment costs but lower process efficiency and hence highermore » operating costs. For larger plants, a hydrogen Claude cycle is used, characterized by higher investment but lower operating costs. However, liquefaction plants meeting the potentially high demand in the clean energy sector will need further optimization with regard to energy efficiency and hence operating costs. The present paper gives an overview of the currently applied technologies, including their thermodynamic and technical background. Areas of improvement are identified to derive process concepts for future large scale hydrogen liquefaction plants meeting the needs of clean energy applications with optimized energy efficiency and hence minimized operating costs. Compared to studies in this field, this paper focuses on application of new technology and innovative concepts which are either readily available or will require short qualification procedures. They will hence allow implementation in plants in the close future.« less
Comparison of Vehicle Choice Models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stephens, Thomas S.; Levinson, Rebecca S.; Brooker, Aaron
Five consumer vehicle choice models that give projections of future sales shares of light-duty vehicles were compared by running each model using the same inputs, where possible, for two scenarios. The five models compared — LVCFlex, MA3T, LAVE-Trans, ParaChoice, and ADOPT — have been used in support of the Energy Efficiency and Renewable Energy (EERE) Vehicle Technologies Office in analyses of future light-duty vehicle markets under different assumptions about future vehicle technologies and market conditions. The models give projections of sales shares by powertrain technology. Projections made using common, but not identical, inputs showed qualitative agreement, with the exception ofmore » ADOPT. ADOPT estimated somewhat lower advanced vehicle shares, mostly composed of hybrid electric vehicles. Other models projected large shares of multiple advanced vehicle powertrains. Projections of models differed in significant ways, including how different technologies penetrated cars and light trucks. Since the models are constructed differently and take different inputs, not all inputs were identical, but were the same or very similar where possible. Projections by all models were in close agreement only in the first few years. Although the projections from LVCFlex, MA3T, LAVE-Trans, and ParaChoice were in qualitative agreement, there were significant differences in sales shares given by the different models for individual powertrain types, particularly in later years (2030 and later). For example, projected sales shares of conventional spark-ignition vehicles in 2030 for a given scenario ranged from 35% to 74%. Reasons for such differences are discussed, recognizing that these models were not developed to give quantitatively accurate predictions of future sales shares, but to represent vehicles markets realistically and capture the connections between sales and important influences. Model features were also compared at a high level, and suggestions for further comparison of models are given to enable better understanding of how different features and algorithms used in these models may give different projections.« less
10 CFR 603.530 - Acceptable cost sharing.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Evaluation Cost Sharing § 603.530 Acceptable cost sharing. The contracting officer may accept any cash or in... 10 Energy 4 2010-01-01 2010-01-01 false Acceptable cost sharing. 603.530 Section 603.530 Energy..., they represent meaningful cost sharing that demonstrates the recipient's commitment to the success of...
Heat pump study: Tricks of the trade that can pump up efficiency
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jenkins, V.
Two years ago, many homeowners in an area near Auburn, California were unhappy with their heat pumps. The local utility, Pacific Gas Electric (PG E), received unusually large numbers of complaints from them of high electricity bills and poor system operation. PG E wanted to know whether correctable mechanical problems were to blame. It hired John Proctor, then of Building Resources Management Corp., to design and implement a study to address the heat pump customers' complaints. The Pacific Gas Electric Heat Pump Efficiency and Super Weatherization Pilot Project was the result. The first objective of the Pilot Project was tomore » identify the major problems and their prevalence in the existing residential heat pump installations. The second was to design a correction strategy that would cost PG E $400 or less per site. Participating homeowners would also share some of the costs. Project goals were improved homeowner comfort and satisfaction, increased energy efficiency of mechanical systems, and 10-20% space heating energy savings. By improving system operations, the project wished to increase customer acceptance of heat pumps in general.« less
Horttanainen, M; Teirasvuo, N; Kapustina, V; Hupponen, M; Luoranen, M
2013-12-01
For the estimation of greenhouse gas emissions from waste incineration it is essential to know the share of the renewable energy content of the combusted waste. The composition and heating value information is generally available, but the renewable energy share or heating values of different fractions of waste have rarely been determined. In this study, data from Finnish studies concerning the composition and energy content of mixed MSW were collected, new experimental data on the compositions, heating values and renewable share of energy were presented and the results were compared to the estimations concluded from earlier international studies. In the town of Lappeenranta in south-eastern Finland, the share of renewable energy ranged between 25% and 34% in the energy content tests implemented for two sample trucks. The heating values of the waste and fractions of plastic waste were high in the samples compared to the earlier studies in Finland. These high values were caused by good source separation and led to a low share of renewable energy content in the waste. The results showed that in mixed municipal solid waste the renewable share of the energy content can be significantly lower than the general assumptions (50-60%) when the source separation of organic waste, paper and cardboard is carried out successfully. The number of samples was however small for making extensive conclusions on the results concerning the heating values and renewable share of energy and additional research is needed for this purpose. Copyright © 2013 Elsevier Ltd. All rights reserved.
PVMirror: A New Concept for Tandem Solar Cells and Hybrid Solar Converters
Yu, Zhengshan J.; Fisher, Kathryn C.; Wheelwright, Brian M.; ...
2015-08-25
As the solar electricity market has matured, energy conversion efficiency and storage have joined installed system cost as significant market drivers. In response, manufacturers of flatplate silicon photovoltaic (PV) cells have pushed cell efficiencies above 25%—nearing the 29.4% detailed-balance efficiency limit— and both solar thermal and battery storage technologies have been deployed at utility scale. This paper introduces a new tandem solar collector employing a “PVMirror” that has the potential to both increase energy conversion efficiency and provide thermal storage. A PVMirror is a concentrating mirror, spectrum splitter, and light-to-electricity converter all in one: It consists of a curved arrangementmore » of PV cells that absorb part of the solar spectrum and reflect the remainder to their shared focus, at which a second solar converter is placed. A strength of the design is that the solar converter at the focus can be of a radically different technology than the PV cells in the PVMirror; another is that the PVMirror converts a portion of the diffuse light to electricity in addition to the direct light. Here, we consider two case studies—a PV cell located at the focus of the PVMirror to form a four-terminal PV–PV tandem, and a thermal receiver located at the focus to form a PV–CSP (concentrating solar thermal power) tandem—and compare the outdoor energy outputs to those of competing technologies. PVMirrors can outperform (idealized) monolithic PV–PV tandems that are under concentration, and they can also generate nearly as much energy as silicon flat-plate PV while simultaneously providing the full energy storage benefit of CSP.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2013-12-01
The National Renewable Energy Laboratory (NREL) has developed OpenEI.org, a public, open, data-sharing platform where consumers, analysts, industry experts, and energy decision makers can go to boost their energy IQs, search for energy data, share data, and get access to energy applications. The free site blends elements of social media, linked open-data practices, and MediaWiki-based technology to build a collaborative environment for creating and sharing energy data with the world. The result is a powerful platform that is helping government and industry leaders around the world define policy options, make informed investment decisions, and create new businesses.
Matroids and quantum-secret-sharing schemes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sarvepalli, Pradeep; Raussendorf, Robert
A secret-sharing scheme is a cryptographic protocol to distribute a secret state in an encoded form among a group of players such that only authorized subsets of the players can reconstruct the secret. Classically, efficient secret-sharing schemes have been shown to be induced by matroids. Furthermore, access structures of such schemes can be characterized by an excluded minor relation. No such relations are known for quantum secret-sharing schemes. In this paper we take the first steps toward a matroidal characterization of quantum-secret-sharing schemes. In addition to providing a new perspective on quantum-secret-sharing schemes, this characterization has important benefits. While previousmore » work has shown how to construct quantum-secret-sharing schemes for general access structures, these schemes are not claimed to be efficient. In this context the present results prove to be useful; they enable us to construct efficient quantum-secret-sharing schemes for many general access structures. More precisely, we show that an identically self-dual matroid that is representable over a finite field induces a pure-state quantum-secret-sharing scheme with information rate 1.« less
NASA Astrophysics Data System (ADS)
Cantore, Nicola; Nussbaumer, Patrick; Wei, Max; Kammen, Daniel M.
2017-03-01
The ongoing debate over the cost-effectiveness of renewable energy (RE) and energy efficiency (EE) deployment often hinges on the current cost of incumbent fossil-fuel technologies versus the long-term benefit of clean energy alternatives. This debate is often focused on mature or ‘industrialized’ economies and externalities such as job creation. In many ways, however, the situation in developing economies is at least as or even more interesting due to the generally faster current rate of economic growth and of infrastructure deployment. On the one hand, RE and EE could help decarbonize economies in developing countries, but on the other hand, higher upfront costs of RE and EE could hamper short-term growth. The methodology developed in this paper confirms the existence of this trade-off for some scenarios, yet at the same time provides considerable evidence about the positive impact of EE and RE from a job creation and employment perspective. By extending and adopting a methodology for Africa designed to calculate employment from electricity generation in the U.S., this study finds that energy savings and the conversion of the electricity supply mix to renewable energy generates employment compared to a reference scenario. It also concludes that the costs per additional job created tend to decrease with increasing levels of both EE adoption and RE shares.
Towards hybrid pixel detectors for energy-dispersive or soft X-ray photon science
Jungmann-Smith, J. H.; Bergamaschi, A.; Brückner, M.; Cartier, S.; Dinapoli, R.; Greiffenberg, D.; Huthwelker, T.; Maliakal, D.; Mayilyan, D.; Medjoubi, K.; Mezza, D.; Mozzanica, A.; Ramilli, M.; Ruder, Ch.; Schädler, L.; Schmitt, B.; Shi, X.; Tinti, G.
2016-01-01
JUNGFRAU (adJUstiNg Gain detector FoR the Aramis User station) is a two-dimensional hybrid pixel detector for photon science applications at free-electron lasers and synchrotron light sources. The JUNGFRAU 0.4 prototype presented here is specifically geared towards low-noise performance and hence soft X-ray detection. The design, geometry and readout architecture of JUNGFRAU 0.4 correspond to those of other JUNGFRAU pixel detectors, which are charge-integrating detectors with 75 µm × 75 µm pixels. Main characteristics of JUNGFRAU 0.4 are its fixed gain and r.m.s. noise of as low as 27 e− electronic noise charge (<100 eV) with no active cooling. The 48 × 48 pixels JUNGFRAU 0.4 prototype can be combined with a charge-sharing suppression mask directly placed on the sensor, which keeps photons from hitting the charge-sharing regions of the pixels. The mask consists of a 150 µm tungsten sheet, in which 28 µm-diameter holes are laser-drilled. The mask is aligned with the pixels. The noise and gain characterization, and single-photon detection as low as 1.2 keV are shown. The performance of JUNGFRAU 0.4 without the mask and also in the charge-sharing suppression configuration (with the mask, with a ‘software mask’ or a ‘cluster finding’ algorithm) is tested, compared and evaluated, in particular with respect to the removal of the charge-sharing contribution in the spectra, the detection efficiency and the photon rate capability. Energy-dispersive and imaging experiments with fluorescence X-ray irradiation from an X-ray tube and a synchrotron light source are successfully demonstrated with an r.m.s. energy resolution of 20% (no mask) and 14% (with the mask) at 1.2 keV and of 5% at 13.3 keV. The performance evaluation of the JUNGFRAU 0.4 prototype suggests that this detection system could be the starting point for a future detector development effort for either applications in the soft X-ray energy regime or for an energy-dispersive detection system. PMID:26917124
NASA Astrophysics Data System (ADS)
Kibria, Mirza Golam; Villardi, Gabriel Porto; Ishizu, Kentaro; Kojima, Fumihide; Yano, Hiroyuki
2016-12-01
In this paper, we study inter-operator spectrum sharing and intra-operator resource allocation in shared spectrum access communication systems and propose efficient dynamic solutions to address both inter-operator and intra-operator resource allocation optimization problems. For inter-operator spectrum sharing, we present two competent approaches, namely the subcarrier gain-based sharing and fragmentation-based sharing, which carry out fair and flexible allocation of the available shareable spectrum among the operators subject to certain well-defined sharing rules, traffic demands, and channel propagation characteristics. The subcarrier gain-based spectrum sharing scheme has been found to be more efficient in terms of achieved throughput. However, the fragmentation-based sharing is more attractive in terms of computational complexity. For intra-operator resource allocation, we consider resource allocation problem with users' dissimilar service requirements, where the operator supports users with delay constraint and non-delay constraint service requirements, simultaneously. This optimization problem is a mixed-integer non-linear programming problem and non-convex, which is computationally very expensive, and the complexity grows exponentially with the number of integer variables. We propose less-complex and efficient suboptimal solution based on formulating exact linearization, linear approximation, and convexification techniques for the non-linear and/or non-convex objective functions and constraints. Extensive simulation performance analysis has been carried out that validates the efficiency of the proposed solution.
Design and Implementation of Geothermal Energy Systems at West Chester University
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cuprak, Greg
West Chester University has launched a comprehensive transformation of its campus heating and cooling systems from traditional fossil fuels (coal, oil and natural gas) to geothermal. This change will significantly decrease the institution’s carbon footprint and serve as a national model for green campus efforts. The institution has designed a phased series of projects to build a district geo-exchange system with shared well fields, central pumping station and distribution piping to provide the geo-exchange water to campus buildings as their internal building HVAC systems is changed to be able to use the geo-exchange water. This project addresses the US Departmentmore » of Energy Office of Energy Efficiency and Renewable Energy (EERE) goal to invest in clean energy technologies that strengthen the economy, protect the environment, and reduce dependence on foreign oil. In addition, this project advances EERE’s efforts to establish geothermal energy as an economically competitive contributor to the US energy supply.« less
Huang, Xuezhen; Zhang, Xi; Jiang, Hongrui
2014-02-15
To study the fundamental energy storage mechanism of photovoltaically self-charging cells (PSCs) without involving light-responsive semiconductor materials such as Si powder and ZnO nanowires, we fabricate a two-electrode PSC with the dual functions of photocurrent output and energy storage by introducing a PVDF film dielectric on the counterelectrode of a dye-sensitized solar cell. A layer of ultrathin Au film used as a quasi-electrode establishes a shared interface for the I - /I 3 - redox reaction and for the contact between the electrolyte and the dielectric for the energy storage, and prohibits recombination during the discharging period because of its discontinuity. PSCs with a 10-nm-thick PVDF provide a steady photocurrent output and achieve a light-to-electricity conversion efficiency ( η) of 3.38%, and simultaneously offer energy storage with a charge density of 1.67 C g -1 . Using this quasi-electrode design, optimized energy storage structures may be used in PSCs for high energy storage density.
Energy-Efficient Hosting Rich Content from Mobile Platforms with Relative Proximity Sensing.
Park, Ki-Woong; Lee, Younho; Baek, Sung Hoon
2017-08-08
In this paper, we present a tiny networked mobile platform, termed Tiny-Web-Thing ( T-Wing ), which allows the sharing of data-intensive content among objects in cyber physical systems. The object includes mobile platforms like a smartphone, and Internet of Things (IoT) platforms for Human-to-Human (H2H), Human-to-Machine (H2M), Machine-to-Human (M2H), and Machine-to-Machine (M2M) communications. T-Wing makes it possible to host rich web content directly on their objects, which nearby objects can access instantaneously. Using a new mechanism that allows the Wi-Fi interface of the object to be turned on purely on-demand, T-Wing achieves very high energy efficiency. We have implemented T-Wing on an embedded board, and present evaluation results from our testbed. From the evaluation result of T-Wing , we compare our system against alternative approaches to implement this functionality using only the cellular or Wi-Fi (but not both), and show that in typical usage, T-Wing consumes less than 15× the energy and is faster by an order of magnitude.
NASA Astrophysics Data System (ADS)
Grover, S.; Tayal, S.
2014-12-01
Interdependency between water and energy is generally transacted in trade-off mode; where either of the resource gets affected because of the other. Generally this trade-off is commonly known as water-energy nexus. Many studies have been undertaken in various parts of the world using various approaches to tease out the intricate nexus. This research has adopted a different approach to quantify the inter-dependency. The adopted approach made an attempt to tease out the nexus from demand side for both the resources. For water demand assessment PODIUM Sim model was used and for other parameters available secondary data was used. Using this approach percentage share of water for energy and energy for water was estimated. For an informed decision making and sustainable development, assessment was carried out at state level as most of the policies are made specifically for the state. The research was done for the southernmost state of India, Tamil Nadu which is a rapidly growing industrial hub. Tamil Nadu is energy and water intensive state and the analysis shows that the share of water demand from energy sector compared to water demand from other major sectors is miniscule. While, the energy demand in water sector for various processes in different sectors compared to energy demand as total has a comparable share of range 15-25%. This analysis indicated the relative risk sectors face in competition for the resource. It point outs that water sector faces fierce competition with other sectors for energy. Moreover, the results of the study has assessed that state has negative water balance, which may make access to water more energy intensive with time. But, a projection into future scenario with an assumption based on the ongoing policy program of improving irrigation efficiency was made. It provided a solution of a potential positive equilibrium which conserves both water and energy. This scenario gave promising results which indicated less of water demand from agricultural sector which is the most water intensive sector in the state, less requirement of energy for irrigation and improvement in overall water balance of the state.With the changing climate and growing population, resources at crisis can be managed sustainably if this nexus is decoded to understand the interdependency.
Efficient multiparty quantum-secret-sharing schemes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiao Li; Deng Fuguo; Key Laboratory for Quantum Information and Measurements, MOE, Beijing 100084
In this work, we generalize the quantum-secret-sharing scheme of Hillery, Buzek, and Berthiaume [Phys. Rev. A 59, 1829 (1999)] into arbitrary multiparties. Explicit expressions for the shared secret bit is given. It is shown that in the Hillery-Buzek-Berthiaume quantum-secret-sharing scheme the secret information is shared in the parity of binary strings formed by the measured outcomes of the participants. In addition, we have increased the efficiency of the quantum-secret-sharing scheme by generalizing two techniques from quantum key distribution. The favored-measuring-basis quantum-secret-sharing scheme is developed from the Lo-Chau-Ardehali technique [H. K. Lo, H. F. Chau, and M. Ardehali, e-print quant-ph/0011056] wheremore » all the participants choose their measuring-basis asymmetrically, and the measuring-basis-encrypted quantum-secret-sharing scheme is developed from the Hwang-Koh-Han technique [W. Y. Hwang, I. G. Koh, and Y. D. Han, Phys. Lett. A 244, 489 (1998)] where all participants choose their measuring basis according to a control key. Both schemes are asymptotically 100% in efficiency, hence nearly all the Greenberger-Horne-Zeilinger states in a quantum-secret-sharing process are used to generate shared secret information.« less
Chapter 11. Fuel Economy: The Case for Market Failure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greene, David L; German, John; Delucchi, Mark A
2009-01-01
The efficiency of energy using durable goods, from automobiles to home air conditioners, is not only a key determinant of economy-wide energy use but also of greenhouse gas (GHG) emissions, climate change and energy insecurity. Energy analysts have long noted that consumers appear to have high implicit discount rates for future fuel savings when choosing among energy using durable goods (Howarth and Sanstad, 1995). In modeling consumers choices of appliances, the Energy Information Administration (EIA) has used discount rates of 30 percent for heating systems, 69 percent for choice of refrigerator and up to 111 percent for choice of watermore » heater (U.S. DOE/EIA, 1996). Several explanations have been offered for this widespread phenomenon, including asymmetric information, bounded rationality and transaction costs. This chapter argues that uncertainty combined with loss aversion by consumers is sufficient to explain the failure to adopt cost effective energy efficiency improvements in the market for automotive fuel economy, although other market failures appear to be present as well. Understanding how markets for energy efficiency function is crucial to formulating effective energy policies (see Pizer, 2006). Fischer et al., (2004), for example, demonstrated that if consumers fully value the discounted present value of future fuel savings, fuel economy standards are largely redundant and produce small welfare losses. However, if consumers value only the first three years of fuel savings, then fuel economy standards can significantly increase consumer welfare. The nature of any market failure that might be present in the market for energy efficiency would also affect the relative efficacy of energy taxes versus regulatory standards (CBO, 2003). If markets function efficiently, energy taxes would generally be more efficient than regulatory standards in increasing energy efficiency and reducing energy use. If markets are decidedly inefficient, standards would likely be more effective. The chapter explores the roles of uncertainty and loss-aversion in the market for automotive fuel economy. The focus is on the determination of the technical efficiency of the vehicle rather than consumers choices among vehicles. Over the past three decades, changes in the mix of vehicles sold has played little if any role in raising the average fuel economy of new light-duty vehicles from 13 miles per gallon (mpg) in 1975 to 21 mpg today (Heavenrich, 2006). Over that same time period, average vehicle weight is up 2 percent, horsepower is up 60 percent, passenger car interior volume increased by 2 percent and the market share of light trucks grew by 31 percentage points. Historically, at least, increasing light-duty vehicle fuel economy in the United States has been a matter of manufacturers decisions to apply technology to increase the technical efficiency of cars and light trucks. Understanding how efficiently the market determines the technical fuel economy of new vehicles would seem to be critical to formulating effective policies to encourage future fuel economy improvement. The central issue is whether or not the market for fuel economy is economically efficient. Rubenstein (1998) lists the key assumptions of the rational economic decision model. The decision maker must have a clear picture of the choice problem he or she faces. He should be fully aware of the set of alternatives from which to choose and have the skill necessary to make complicated calculations needed to discover the optimal course of action. Finally, the decision maker should have the unlimited ability to calculate and be indifferent to alternatives and choice sets.« less
Bacteria like sharing their sweets.
Cuccui, Jon; Wren, Brendan W
2013-09-01
Protein glycosylation and capsular polysaccharide formation are increasingly recognized as playing central roles in the survival and virulence of bacterial pathogens. In this issue of Molecular Microbiology, structural analysis in Acinetobacter baumannii 17978 revealed that a pentasaccharide that decorates glycoproteins is formed of the same building blocks used for capsule biosynthesis demonstrating split roles for this glycan. Disruption of PglC, the initiating glycosyltransferase responsible for attachment of the first sugar to undecaprenylphosphate abolished glycoprotein production and capsule biosynthesis. Both pathways are demonstrated to be important in biofilm formation and pathogenesis, and disabling their synthesis should provide a useful route for antimicrobial design. Shared polysaccharide usage reduces the genetic and metabolic burden in a bacterial cell and is an emerging theme among bacterial pathogens that need to be energy efficient for their streamlined lifestyle. © 2013 Crown copyright.
Diffusion Dynamics of Energy Saving Practices in Large Heterogeneous Online Networks
Mohammadi, Neda; Wang, Qi; Taylor, John E.
2016-01-01
Online social networks are today’s fastest growing communications channel and a popular source of information for many, so understanding their contribution to building awareness and shaping public perceptions of climate change is of utmost importance. Today’s online social networks are composed of complex combinations of entities and communication channels and it is not clear which communicators are the most influential, what the patterns of communication flow are, or even whether the widely accepted two-step flow of communication model applies in this new arena. This study examines the diffusion of energy saving practices in a large online social network across organizations, opinion leaders, and the public by tracking 108,771 communications on energy saving practices among 1,084 communicators, then analyzing the flow of information and influence over a 28 day period. Our findings suggest that diffusion networks of messages advocating energy saving practices are predominantly led by the activities of dedicated organizations but their attempts do not result in substantial public awareness, as most of these communications are effectively trapped in organizational loops in which messages are simply shared between organizations. Despite their comparably significant influential values, opinion leaders played a weak role in diffusing energy saving practices to a wider audience. Thus, the two-step flow of communication model does not appear to describe the sharing of energy conservation practices in large online heterogeneous networks. These results shed new light on the underlying mechanisms driving the diffusion of important societal issues such as energy efficiency, particularly in the context of large online social media outlets. PMID:27736912
Diffusion Dynamics of Energy Saving Practices in Large Heterogeneous Online Networks.
Mohammadi, Neda; Wang, Qi; Taylor, John E
2016-01-01
Online social networks are today's fastest growing communications channel and a popular source of information for many, so understanding their contribution to building awareness and shaping public perceptions of climate change is of utmost importance. Today's online social networks are composed of complex combinations of entities and communication channels and it is not clear which communicators are the most influential, what the patterns of communication flow are, or even whether the widely accepted two-step flow of communication model applies in this new arena. This study examines the diffusion of energy saving practices in a large online social network across organizations, opinion leaders, and the public by tracking 108,771 communications on energy saving practices among 1,084 communicators, then analyzing the flow of information and influence over a 28 day period. Our findings suggest that diffusion networks of messages advocating energy saving practices are predominantly led by the activities of dedicated organizations but their attempts do not result in substantial public awareness, as most of these communications are effectively trapped in organizational loops in which messages are simply shared between organizations. Despite their comparably significant influential values, opinion leaders played a weak role in diffusing energy saving practices to a wider audience. Thus, the two-step flow of communication model does not appear to describe the sharing of energy conservation practices in large online heterogeneous networks. These results shed new light on the underlying mechanisms driving the diffusion of important societal issues such as energy efficiency, particularly in the context of large online social media outlets.
Impacts of feeding less food-competing feedstuffs to livestock on global food system sustainability.
Schader, Christian; Muller, Adrian; Scialabba, Nadia El-Hage; Hecht, Judith; Isensee, Anne; Erb, Karl-Heinz; Smith, Pete; Makkar, Harinder P S; Klocke, Peter; Leiber, Florian; Schwegler, Patrizia; Stolze, Matthias; Niggli, Urs
2015-12-06
Increasing efficiency in livestock production and reducing the share of animal products in human consumption are two strategies to curb the adverse environmental impacts of the livestock sector. Here, we explore the room for sustainable livestock production by modelling the impacts and constraints of a third strategy in which livestock feed components that compete with direct human food crop production are reduced. Thus, in the outmost scenario, animals are fed only from grassland and by-products from food production. We show that this strategy could provide sufficient food (equal amounts of human-digestible energy and a similar protein/calorie ratio as in the reference scenario for 2050) and reduce environmental impacts compared with the reference scenario (in the most extreme case of zero human-edible concentrate feed: greenhouse gas emissions -18%; arable land occupation -26%, N-surplus -46%; P-surplus -40%; non-renewable energy use -36%, pesticide use intensity -22%, freshwater use -21%, soil erosion potential -12%). These results occur despite the fact that environmental efficiency of livestock production is reduced compared with the reference scenario, which is the consequence of the grassland-based feed for ruminants and the less optimal feeding rations based on by-products for non-ruminants. This apparent contradiction results from considerable reductions of animal products in human diets (protein intake per capita from livestock products reduced by 71%). We show that such a strategy focusing on feed components which do not compete with direct human food consumption offers a viable complement to strategies focusing on increased efficiency in production or reduced shares of animal products in consumption. © 2015 The Authors.
Impacts of feeding less food-competing feedstuffs to livestock on global food system sustainability
Hecht, Judith; Isensee, Anne; Smith, Pete; Makkar, Harinder P. S.; Klocke, Peter; Leiber, Florian; Stolze, Matthias; Niggli, Urs
2015-01-01
Increasing efficiency in livestock production and reducing the share of animal products in human consumption are two strategies to curb the adverse environmental impacts of the livestock sector. Here, we explore the room for sustainable livestock production by modelling the impacts and constraints of a third strategy in which livestock feed components that compete with direct human food crop production are reduced. Thus, in the outmost scenario, animals are fed only from grassland and by-products from food production. We show that this strategy could provide sufficient food (equal amounts of human-digestible energy and a similar protein/calorie ratio as in the reference scenario for 2050) and reduce environmental impacts compared with the reference scenario (in the most extreme case of zero human-edible concentrate feed: greenhouse gas emissions −18%; arable land occupation −26%, N-surplus −46%; P-surplus −40%; non-renewable energy use −36%, pesticide use intensity −22%, freshwater use −21%, soil erosion potential −12%). These results occur despite the fact that environmental efficiency of livestock production is reduced compared with the reference scenario, which is the consequence of the grassland-based feed for ruminants and the less optimal feeding rations based on by-products for non-ruminants. This apparent contradiction results from considerable reductions of animal products in human diets (protein intake per capita from livestock products reduced by 71%). We show that such a strategy focusing on feed components which do not compete with direct human food consumption offers a viable complement to strategies focusing on increased efficiency in production or reduced shares of animal products in consumption. PMID:26674194
NASA Astrophysics Data System (ADS)
Fan, Haifeng
2011-12-01
The distributed renewable energy generation and utilization are constantly growing, and are expected to be integrated with the conventional grid. The growing pressure for innovative solutions will demand power electronics to take an even larger role in future electric energy delivery and management systems, since power electronics are required for the conversion and control of electric energy by most dispersed generation systems Furthermore, power electronics systems can provide additional intelligent energy management, grid stability and power quality capabilities. Medium-voltage isolated dc-dc converter will become one of the key interfaces for grid components with moderate power ratings. To address the demand of medium voltage (MV) and high power capability for future electric energy delivery and management systems, the power electronics community and industry have been reacting in two different ways: developing semiconductor technology or directly connecting devices in series/parallel to reach higher nominal voltages and currents while maintaining conventional converter topologies; and by developing new converter topologies with traditional semiconductor technology, known as multilevel converters or modular converters. The modular approach uses the well-known, mature, and cheaper power semiconductor devices by adopting new converter topologies. The main advantages of the modular approach include: significant improvement in reliability by introducing desired level of redundancy; standardization of components leading to reduction in manufacturing cost and time; power systems can be easily reconfigured to support varying input-output specifications; and possibly higher efficiency and power density of the overall system. Input-series output-parallel (ISOP) modular configuration is a good choice to realize MV to low voltage (LV) conversion for utility application. However, challenges still remain. First of all, for the high-frequency MV utility application, the low switching loss and conduction loss are must-haves for high efficiency, while bidirectional power flow capability is a must for power management requirement. To address the demand, the phase-shift dual-halfbridge (DHB) is proposed as the constituent module of ISOP configuration for MV application. The proposed ISOP DHB converter employs zero-voltage-switching (ZVS) technique combined with LV MOSFETs to achieve low switching and conduction losses under high frequency operation, and therefore high efficiency and high power density, and bidirectional power flow as well. Secondly, a large load range of high efficiency is desired rather than only a specific load point due to the continuous operation and large load variation range of utility application, which is of high importance because of the rising energy cost. This work proposes a novel DHB converter with an adaptive commutation inductor. By utilizing an adaptive inductor as the main energy transfer element, the output power can be controlled by not only the phase shift but also the commutation inductance, which allows the circulating energy to be optimized for different load conditions to maintain ZVS under light load conditions and minimize additional conduction losses under heavy load conditions as well. As a result, the efficiency at both light and heavy load can be significantly improved compared with the conventional DHB converter, and therefore extended high-efficiency range can be achieved. In addition, current stress of switch devices can be reduced. The theoretical analysis is presented and validated by the experimental results on a 50 kHz, 1 kW dc-dc converter module. Thirdly, input-voltage sharing and output-current sharing are critical to assure the advantages of the ISOP modular configuration. To solve this issue, an identically distributed control scheme is proposed in this work. The proposed control scheme, using only one distributed voltage loop to realize both input-voltage and output-current sharing, provides plug-and-play capability, possible high-level fault tolerance, and easy implementation. Another unique advantage of the proposed ISOP DHB converter is the power rating can be easily extended further by directly connecting multiple ISOP DHB converters in input-parallel-outparallel (IPOP) while no additional control is needed. The proposed control scheme is elaborated using the large-signal average model. Further, the stability of the control schemes is analyzed in terms of the constituent modules' topology as well as the configuration, and then an important fact that the stability of control scheme depends on not only the configuration but also the constituent module topology is first revealed in this work. Finally, the simulation and experimental results of an ISOP DHB converter consisting of three modules are presented to verify the proposed control scheme and the high frequency high efficiency operation.
10 CFR 603.575 - Repayment of Federal cost share.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 4 2010-01-01 2010-01-01 false Repayment of Federal cost share. 603.575 Section 603.575 Energy DEPARTMENT OF ENERGY (CONTINUED) ASSISTANCE REGULATIONS TECHNOLOGY INVESTMENT AGREEMENTS Pre-Award Business Evaluation Accounting, Payments, and Recovery of Funds § 603.575 Repayment of Federal cost share...
Impacts of population growth and economic development on the nitrogen cycle in Asia.
Zhu, Zhaoliang; Xiong, Guangxi; Xing, Zhengqin
2005-12-01
Asia is the major consumer of fertilizer nitrogen and energy in the world, and consequently shares a considerable proportion of the world creation of reactive nitrogen (Nr). However, if estimated on per capita basis, Asia is characterized by a lower arable land area, fertilizer nitrogen consumption, energy consumption, and gross domestic product, as well as lower daily protein intake. To meet the increasing needs for food and energy for the growing population combined with the improvement of living standards, Nr will inevitably increase. The present study estimates the creation of Nr and the emissions of various N compounds into environment in Asia currently and in 2030. In comparison with the world averages, the lower fertilizer nitrogen and energy use efficiencies, and the lower use of animal wastes for agriculture imply that there is potential for moderating the increase in Nr and its impacts on the environment. Strategies for moderating the increase are discussed.
Impacts of population growth and economic development on the nitrogen cycle in Asia.
Zhu, Zhaoliang; Xiong, Zhengqin; Xing, Guangxi
2005-09-01
Asia is the major consumer of fertilizer nitrogen and energy in the world, and consequently shares a considerable proportion of the world creation of reactive nitrogen (Nr). However, if estimated on per capita basis, Asia is characterized by a lower arable land area, fertilizer nitrogen consumption, energy consumption, and gross domestic product, as well as lower daily protein intake. To meet the increasing needs for food and energy for the growing population combined with the improvement of living standards, Nr will inevitably increase. The present study estimates the creation of Nr and the emissions of various N compounds into environment in Asia currently and in 2030. In comparison with the world averages, the lower fertilizer nitrogen and energy use efficiencies, and the lower use of animal wastes for agriculture imply that there is potential for moderating the increase in Nr and its impacts on the environment. Strategies for moderating the increase are discussed.
A System of Systems Approach to the EU Energy System
NASA Astrophysics Data System (ADS)
Jess, Tom; Madani, Kaveh; Mahlooji, Maral; Ristic, Bora
2016-04-01
Around the world, measures to prevent dangerous climate change are being adopted and may change energy systems fundamentally. The European Union (EU) is committed to reducing greenhouse gas emission by 20% by 2020 and by 80-95% by 2050. In order to achieve this, EU member states aim to increase the share of renewables in the energy mix to 20% by 2020. This commitment comes as part of a series of other aims, principles, and policies to reform the EU's energy system. Cost-efficiency in the emissions reductions measures as well as strategic goals under the Resource Efficient Europe flagship initiative which would include a more prudent approach to other natural resources such as water and land. Using the "System of Systems Approach", as from Hadian and Madani (2015), energy sources' Relative Aggregate Footprints (RAF) in the EU are evaluated. RAF aggregates across four criteria: carbon footprint, water footprint, land footprint, and economic cost. The four criteria are weighted by resource availability across the EU and for each Member State. This provides an evaluation of the overall resource use efficiency of the EU's energy portfolio and gives insight into the differences in the desirability of energy sources across Member States. Broadly, nuclear, onshore wind, and geothermal are most desirable under equal criteria weights and EU average weighting introduces only small changes in the relative performance of only few technologies. The member state specific weightings show that most countries have similar energy technology preferences. However, the UK deviates most strongly from the average, with an even stronger preference for nuclear and coal. Sweden, Malta and Finland also deviate from the typical preferences indicating the complexity in play in reforming the EU energy system. Reference Hadian S, Madani K (2015) A System of Systems Approach to Energy Sustainability Assessment: Are All Renewables Really Green? Ecological Indicators, 52, 194-206.
Renewable energy for an environmentally sustainable energy future
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sunderman, D.N.
1993-12-31
One of the major objectives of the renewable energy program is to allow the employment of environmentally benign energy technologies based upon the sun. Other objectives include national energy independence and industrial competitiveness in future energy technology markets. The National Renewable Energy Laboratory (formerly SERI) in Golden, Colorado, has for 15 years been the lead U.S. laboratory in research on photovoltaics, wind energy systems, and ethanol from biomass. During this period, substantional cost reductions were achieved and efficiencies improved. NREL also works closely with industry to facilitate the commercialization of these and related technologies. As much as 50% of NRELmore » funding goes to industry in cost-shared contracts for research and development, planned with industry representatives and the U.S. Department of Energy. Besides lessening dependence on fossil fuels and their short-term environmental impacts, these technologies will also alleviate the impact on the potential global warming issue. Other direct environmental research at NREL is the solar-detox program, in which solar radiation is employed to destroy hazardous organic materials in ground water and other waste streams.« less
Seidl, Roman; Moser, Corinne; Blumer, Yann
2017-01-01
Many countries have some kind of energy-system transformation either planned or ongoing for various reasons, such as to curb carbon emissions or to compensate for the phasing out of nuclear energy. One important component of these transformations is the overall reduction in energy demand. It is generally acknowledged that the domestic sector represents a large share of total energy consumption in many countries. Increased energy efficiency is one factor that reduces energy demand, but behavioral approaches (known as "sufficiency") and their respective interventions also play important roles. In this paper, we address citizens' heterogeneity regarding both their current behaviors and their willingness to realize their sufficiency potentials-that is, to reduce their energy consumption through behavioral change. We collaborated with three Swiss cities for this study. A survey conducted in the three cities yielded thematic sets of energy-consumption behavior that various groups of participants rated differently. Using this data, we identified four groups of participants with different patterns of both current behaviors and sufficiency potentials. The paper discusses intervention types and addresses citizens' heterogeneity and behaviors from a city-based perspective.
Energy and emission aspects of co-combustion solid recovered fuel with coal in a stoker boiler
NASA Astrophysics Data System (ADS)
Wasielewski, Ryszard; Głód, Krzysztof; Telenga-Kopyczyńska, Jolanta
2018-01-01
The results of industrial research on co-combustion of solid recovered fuel (SRF) with hard coal in a stoker boiler type WR-25 has been presented. The share of SRF in the fuel mixture was 10%. During the co-combustion of SRF, no technological disturbances or significant reduction in energy efficiency of the boiler were noted. Obtained SO2, NOx and CO emissions were comparable with coal combustion but dust emissions increased. During combustion of the coal mixture with a 10% share of SRF in the test boiler WR-25, the emission standards established for the combustion of the dedicated fuel were met. However, comparison of obtained emission results with the emission standards established for co-incineration of waste, revealed the exceedance of permissible levels of HCl, dust, heavy metals, dioxins and furans. Additionally, the residence time of flue gases in over 850°C conditions for the test boiler WR-25 was too short (1.3 seconds) in refer to the legislative requirements (2 seconds) for the thermal conversion of waste.
Autonomous taxis could greatly reduce greenhouse-gas emissions of US light-duty vehicles
NASA Astrophysics Data System (ADS)
Greenblatt, Jeffery B.; Saxena, Samveg
2015-09-01
Autonomous vehicles (AVs) are conveyances to move passengers or freight without human intervention. AVs are potentially disruptive both technologically and socially, with claimed benefits including increased safety, road utilization, driver productivity and energy savings. Here we estimate 2014 and 2030 greenhouse-gas (GHG) emissions and costs of autonomous taxis (ATs), a class of fully autonomous shared AVs likely to gain rapid early market share, through three synergistic effects: (1) future decreases in electricity GHG emissions intensity, (2) smaller vehicle sizes resulting from trip-specific AT deployment, and (3) higher annual vehicle-miles travelled (VMT), increasing high-efficiency (especially battery-electric) vehicle cost-effectiveness. Combined, these factors could result in decreased US per-mile GHG emissions in 2030 per AT deployed of 87-94% below current conventionally driven vehicles (CDVs), and 63-82% below projected 2030 hybrid vehicles, without including other energy-saving benefits of AVs. With these substantial GHG savings, ATs could enable GHG reductions even if total VMT, average speed and vehicle size increased substantially. Oil consumption would also be reduced by nearly 100%.
10 CFR 603.525 - Value and reasonableness of the recipient's cost sharing contribution.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 4 2010-01-01 2010-01-01 false Value and reasonableness of the recipient's cost sharing contribution. 603.525 Section 603.525 Energy DEPARTMENT OF ENERGY (CONTINUED) ASSISTANCE REGULATIONS TECHNOLOGY INVESTMENT AGREEMENTS Pre-Award Business Evaluation Cost Sharing § 603.525 Value and reasonableness of the...
Transitioning to High Performance Homes: Successes and Lessons Learned From Seven Builders
DOE Office of Scientific and Technical Information (OSTI.GOV)
Widder, Sarah H.; Kora, Angela R.; Baechler, Michael C.
2013-03-01
As homebuyers are becoming increasingly concerned about rising energy costs and the impact of fossil fuels as a major source of greenhouse gases, the returning new home market is beginning to demand energy-efficient and comfortable high-performance homes. In response to this, some innovative builders are gaining market share because they are able to market their homes’ comfort, better indoor air quality, and aesthetics, in addition to energy efficiency. The success and marketability of these high-performance homes is creating a builder demand for house plans and information about how to design, build, and sell their own low-energy homes. To help makemore » these and other builders more successful in the transition to high-performance construction techniques, Pacific Northwest National Laboratory (PNNL) partnered with seven interested builders in the hot humid and mixed humid climates to provide technical and design assistance through two building science firms, Florida Home Energy and Resources Organization (FL HERO) and Calcs-Plus, and a designer that offers a line of stock plans designed specifically for energy efficiency, called Energy Smart Home Plans (ESHP). This report summarizes the findings of research on cost-effective high-performance whole-house solutions, focusing on real-world implementation and challenges and identifying effective solutions. The ensuing sections provide project background, profile each of the builders who participated in the program, and describe their houses’ construction characteristics, key challenges the builders encountered during the construction and transaction process); and present primary lessons learned to be applied to future projects. As a result of this technical assistance, 17 homes have been built featuring climate-appropriate efficient envelopes, ducts in conditioned space, and correctly sized and controlled heating, ventilation, and air-conditioning systems. In addition, most builders intend to integrate high-performance features into most or all their homes in the future. As these seven builders have demonstrated, affordable, high-performance homes are possible, but require attention to detail and flexibility in design to accommodate specific regional geographic or market-driven constraints that can increase cost. With better information regarding how energy-efficiency trade-offs or design choices affect overall home performance, builders can make informed decisions regarding home design and construction to minimize cost without sacrificing performance and energy savings.« less
'Part of the solution': Developing sustainable energy through co-operatives and learning
NASA Astrophysics Data System (ADS)
Duguid, Fiona C. B.
After five years of development, WindShare Co-operative in Toronto, Ontario became the first urban wind turbine in North America and the first co-operatively owned and operated wind turbine in Canada. The development of WindShare Co-operative has spurred the growth of a green energy co-operative sector in Ontario. This study, which included 27 interviews and a focus group with members of WindShare Co-operative, focuses on the roles of community-based green energy co-operatives in advancing sustainable energy development and energy literacy. Sustainable energy development is firmly rooted in the triple bottom line of environmental, social and economic success, and green energy co-operatives can be a way to help achieve those successes. Green energy co-operatives are structures for providing renewable energy generation or energy conservation practices, both of which have important environmental impacts regarding climate change and pollution levels. Co-operative structures are supported by processes that include local ownership, democracy, participation, community organizing, learning and social change. These processes have a significant social impact by creating a venue for people to be directly involved in the energy industry, by involving learning through participation in a community-based organization, and by advancing energy literacy within the membership and the general public. In regards to the economic impacts, green energy co-operatives foster a local economy and local investment opportunities, which have repercussions regarding building expertise within Ontario's green energy and co-operative development future, and more generally, captures members' interest because they have a direct stake in the co-operative. This thesis shows that green energy co-operatives, like WindShare, play an important role in advancing sustainable energy development, energy literacy and the triple bottom line. Members of WindShare expressed resounding feelings of pride, efficacy and understanding of WindShare's role in sustainable energy. WindShare Co-operative provided the structure whereby members felt a part of the solution in terms of sustainable energy development. Policies and practices at all levels of government should encourage the advancement of green energy co-operatives to support Canada's efforts at public involvement in combating climate change and pollution.
Gondret, Florence; Vincent, Annie; Houée-Bigot, Magalie; Siegel, Anne; Lagarrigue, Sandrine; Causeur, David; Gilbert, Hélène; Louveau, Isabelle
2017-03-21
Animal's efficiency in converting feed into lean gain is a critical issue for the profitability of meat industries. This study aimed to describe shared and specific molecular responses in different tissues of pigs divergently selected over eight generations for residual feed intake (RFI). Pigs from the low RFI line had an improved gain-to-feed ratio during the test period and displayed higher leanness but similar adiposity when compared with pigs from the high RFI line at 132 days of age. Transcriptomics data were generated from longissimus muscle, liver and two adipose tissues using a porcine microarray and analyzed for the line effect (n = 24 pigs per line). The most apparent effect of the line was seen in muscle, whereas subcutaneous adipose tissue was the less affected tissue. Molecular data were analyzed by bioinformatics and subjected to multidimensional statistics to identify common biological processes across tissues and key genes participating to differences in the genetics of feed efficiency. Immune response, response to oxidative stress and protein metabolism were the main biological pathways shared by the four tissues that distinguished pigs from the low or high RFI lines. Many immune genes were under-expressed in the four tissues of the most efficient pigs. The main genes contributing to difference between pigs from the low vs high RFI lines were CD40, CTSC and NTN1. Different genes associated with energy use were modulated in a tissue-specific manner between the two lines. The gene expression program related to glycogen utilization was specifically up-regulated in muscle of pigs from the low RFI line (more efficient). Genes involved in fatty acid oxidation were down-regulated in muscle but were promoted in adipose tissues of the same pigs when compared with pigs from the high RFI line (less efficient). This underlined opposite line-associated strategies for energy use in skeletal muscle and adipose tissue. Genes related to cholesterol synthesis and efflux in liver and perirenal fat were also differentially regulated in pigs from the low vs high RFI lines. Non-productive functions such as immunity, defense against pathogens and oxidative stress contribute likely to inter-individual variations in feed efficiency.
A Low-Cost and Energy-Efficient Multiprocessor System-on-Chip for UWB MAC Layer
NASA Astrophysics Data System (ADS)
Xiao, Hao; Isshiki, Tsuyoshi; Khan, Arif Ullah; Li, Dongju; Kunieda, Hiroaki; Nakase, Yuko; Kimura, Sadahiro
Ultra-wideband (UWB) technology has attracted much attention recently due to its high data rate and low emission power. Its media access control (MAC) protocol, WiMedia MAC, promises a lot of facilities for high-speed and high-quality wireless communication. However, these benefits in turn involve a large amount of computational load, which challenges the traditional uniprocessor architecture based implementation method to provide the required performance. However, the constrained cost and power budget, on the other hand, makes using commercial multiprocessor solutions unrealistic. In this paper, a low-cost and energy-efficient multiprocessor system-on-chip (MPSoC), which tackles at once the aspects of system design, software migration and hardware architecture, is presented for the implementation of UWB MAC layer. Experimental results show that the proposed MPSoC, based on four simple RISC processors and shared-memory infrastructure, achieves up to 45% performance improvement and 65% power saving, but takes 15% less area than the uniprocessor implementation.
Fay, Nicolas; Walker, Bradley; Swoboda, Nik; Garrod, Simon
2018-05-01
Human cognition and behavior are dominated by symbol use. This paper examines the social learning strategies that give rise to symbolic communication. Experiment 1 contrasts an individual-level account, based on observational learning and cognitive bias, with an inter-individual account, based on social coordinative learning. Participants played a referential communication game in which they tried to communicate a range of recurring meanings to a partner by drawing, but without using their conventional language. Individual-level learning, via observation and cognitive bias, was sufficient to produce signs that became increasingly effective, efficient, and shared over games. However, breaking a referential precedent eliminated these benefits. The most effective, most efficient, and most shared signs arose when participants could directly interact with their partner, indicating that social coordinative learning is important to the creation of shared symbols. Experiment 2 investigated the contribution of two distinct aspects of social interaction: behavior alignment and concurrent partner feedback. Each played a complementary role in the creation of shared symbols: Behavior alignment primarily drove communication effectiveness, and partner feedback primarily drove the efficiency of the evolved signs. In conclusion, inter-individual social coordinative learning is important to the evolution of effective, efficient, and shared symbols. Copyright © 2018 Cognitive Science Society, Inc.
The importance of geospatial data to calculate the optimal distribution of renewable energies
NASA Astrophysics Data System (ADS)
Díaz, Paula; Masó, Joan
2013-04-01
Specially during last three years, the renewable energies are revolutionizing the international trade while they are geographically diversifying markets. Renewables are experiencing a rapid growth in power generation. According to REN21 (2012), during last six years, the total renewables capacity installed grew at record rates. In 2011, the EU raised its share of global new renewables capacity till 44%. The BRICS nations (Brazil, Russia, India and China) accounted for about 26% of the total global. Moreover, almost twenty countries in the Middle East, North Africa, and sub-Saharan Africa have currently active markets in renewables. The energy return ratios are commonly used to calculate the efficiency of the traditional energy sources. The Energy Return On Investment (EROI) compares the energy returned for a certain source and the energy used to get it (explore, find, develop, produce, extract, transform, harvest, grow, process, etc.). These energy return ratios have demonstrated a general decrease of efficiency of the fossil fuels and gas. When considering the limitations of the quantity of energy produced by some sources, the energy invested to obtain them and the difficulties of finding optimal locations for the establishment of renewables farms (e.g. due to an ever increasing scarce of appropriate land) the EROI becomes relevant in renewables. A spatialized EROI, which uses variables with spatial distribution, enables the optimal position in terms of both energy production and associated costs. It is important to note that the spatialized EROI can be mathematically formalized and calculated the same way for different locations in a reproducible way. This means that having established a concrete EROI methodology it is possible to generate a continuous map that will highlight the best productive zones for renewable energies in terms of maximum energy return at minimum cost. Relevant variables to calculate the real energy invested are the grid connections between production and consumption, transportation loses and efficiency of the grid. If appropriate, the spatialized EROI analysis could include any indirect costs that the source of energy might produce, such as visual impacts, food market impacts and land price. Such a spatialized study requires GIS tools to compute operations using both spatial relations like distances and frictions, and topological relations like connectivity, not easy to consider in the way that EROI is currently calculated. In a broader perspective, by applying the EROI to various energy sources, a comparative analysis of the efficiency to obtain different source can be done in a quantitative way. The increase in energy investment is also accompanied by the increase of manufactures and policies. Further efforts will be necessary in the coming years to provide energy access through smart grids and to determine the efficient areas in terms of cost of production and energy returned on investment. The authors present the EROI as a reliable solution to address the input and output energy relationship and increase the efficiency in energy investment considering the appropriate geospatial variables. The spatialized EROI can be a useful tool to consider by decision makers when designing energy policies and programming energy funds, because it is an objective demonstration of which energy sources are more convenient in terms of costs and efficiency.
Economic Analysis of Solar Energy Using in Oil Sector Economy in Republic of Tatarstan
NASA Astrophysics Data System (ADS)
Kulikova, L. I.; Goshunova, A. V.; Nutfullina, D. I.
2017-11-01
In the current economic conditions further increase of the profit or maintenance of its current level on the base of extensive development factors is no longer possible. The example of the oil-extracting company in the Republic of Tatarstan demonstrates that in the future it will be possible to replace traditional energy sources with solar energy; it will reduce energy costs for oil extraction, production costs and provide an increase of corporate efficiency. The economic analysis results show that the use of solar electricity can lead to 4.68% reduction in total electricity costs. In addition, the energy consumption per ton of oil produced is reduced. The share of electricity costs in the oil cost is reducing from 12.13% to 11.56%. Consequently, in the long term, the impact of total energy costs reduction can become more significant. In this way solar energy can become quite a real alternative in ensuring the energy needs of the economy of the oil-extracting sector of the Republic of Tatarstan and become a driver of intensive economic development.
Innovative Commercialization Efforts Underway at the National Renewable Energy Laboratory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheesbrough, Kate; Bader, Meghan
New clean energy and energy efficiency technology solutions hold the promise of significant reductions in energy consumption. However, proven barriers for these technologies, including the technological and commercialization valleys of death, result in promising technologies falling to the wayside. To address these gaps, NREL's Innovation & Entrepreneurship Center designs and manages advanced programs aimed at supporting the development and commercialization of early stage clean energy technologies with the goal of accelerating new technologies to market. These include: Innovation Incubator (IN2) in partnership with Wells Fargo: this technology incubator supports energy efficiency building-related startups to overcome market gaps by providing accessmore » to technical support at NREL; Small Business Voucher Pilot: this program offers paid vouchers for applicants to access a unique skill, capability, or facility at any of the 17 DOE National Laboratories to bring next-generation clean energy technologies to market; Energy Innovation Portal: NREL designed and developed the Energy Innovation Portal, providing access to EERE focused intellectual property available for licensing from all of the DOE National Laboratories; Lab-Corps: Lab-Corps aims to better train and empower national lab researchers to understand market drivers and successfully transition their discoveries into high-impact, real world technologies in the private sector; Incubatenergy Network: the Network provides nationwide coordination of clean energy business incubators, share best practices, support clean energy entrepreneurs, and help facilitate a smoother transition to a more sustainable clean energy economy; Industry Growth Forum: the Forum is the perfect venue for clean energy innovators to maximize their exposure to receptive capital and strategic partners. Since 2003, presenting companies have collectively raised more than $5 billion in growth financing.« less
Pishgar-Komleh, Seyyed Hassan; Akram, Asadollah; Keyhani, Alireza; van Zelm, Rosalie
2017-07-01
In order to achieve sustainable development in agriculture, it is necessary to quantify and compare the energy, economic, and environmental aspects of products. This paper studied the energy, economic, and greenhouse gas (GHG) emission patterns in broiler chicken farms in the Alborz province of Iran. We studied the effect of the broiler farm size as different production systems on the energy, economic, and environmental indices. Energy use efficiency (EUE) and benefit-cost ratio (BCR) were 0.16 and 1.11, respectively. Diesel fuel and feed contributed the most in total energy inputs, while feed and chicks were the most important inputs in economic analysis. GHG emission calculations showed that production of 1000 birds produces 19.13 t CO 2-eq and feed had the highest share in total GHG emission. Total GHG emissions based on different functional units were 8.5 t CO 2-eq per t of carcass and 6.83 kg CO 2-eq per kg live weight. Results of farm size effect on EUE revealed that large farms had better energy management. For BCR, there was no significant difference between farms. Lower total GHG emissions were reported for large farms, caused by better management of inputs and fewer bird losses. Large farms with more investment had more efficient equipment, resulting in a decrease of the input consumption. In view of our study, it is recommended to support the small-scale broiler industry by providing subsidies to promote the use of high-efficiency equipment. To decrease the amount of energy usage and GHG emissions, replacing heaters (which use diesel fuel) with natural gas heaters can be considered. In addition to the above recommendations, the use of energy saving light bulbs may reduce broiler farm electricity consumption.
NASA Astrophysics Data System (ADS)
Shurpali, Narasinha J.; Parameswaran, Binod; Raud, Merlin; Pumpanen, Jukka; Sippula, Olli; Jokiniemi, Jorma; Lusotarinen, Sari; Virkajarvi, Perttu
2017-04-01
We are proud to introduce the project, INDO-NORDEN, funded in response to the Science and Technology call of the INNO INDIGO Partnership Program (IPP) on Biobased Energy. The project is scheduled to begin from April 2017. The proposed project aims to address both subtopics of the call, Biofuels and From Waste to Energy with research partners from Finland (coordinating unit), India and Estonia. The EU and India share common objectives in enhancing energy security, promoting energy efficiency and energy safety, and the pursuit of sustainable development of clean and renewable energy source. The main objective of INDO-NORDEN is to investigate, evaluate and develop efficient processes and land use practices of transforming forest and agricultural biomass, agricultural residues and farm waste into clean fuels (solid, liquid or gas), by thermochemical or biochemical conversions. Forestry and agriculture are the major bioenergy sectors in Finland. Intensive forest harvesting techniques are being used in Finland to enhance the share of bioenergy in the total energy consumption in the future. However, there are no clear indications how environmentally safe are these intensive forestry practices in Finland. We address this issue through field studies addressing the climate impacts on the ecosystem carbon balance and detailed life cycle assessment. The role of agriculture in Finland is expected to grow significantly in the years to come. Here, we follow a holistic field experimental approach addressing several major issues relevant to Nordic agriculture under changing climatic conditions - soil nutrient management, recycling of nutrients, farm and agricultural waste management, biogas production potentials, greenhouse gas inventorying and entire production chain analysis. There is a considerable potential for process integration in the biofuel sector. This project plans to develop biofuel production processes adopted in Estonia and India with a major aim of enhancing biofuel yields. Additionally, the effects of biomass raw material on ash characteristics and behavior as well as on the fine particle and gas emissions in biomass-fired combustion plants will be evaluated. Thus, the project goes an extra mile in addressing both technological and environmental effects of bioenergy production with combustion processes. Finally, with a voluntary participation of companies with excellent track record in biogas production and CHP technology in participating countries, the project aims to bridge the gap between science, technology and industries.
Advanced control for ground source heat pump systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hughes, Patrick; Gehl, Anthony C.; Liu, Xiaobing
Ground source heat pumps (GSHP), also known as geothermal heat pumps (GHP), are proven advanced HVAC systems that utilize clean and renewable geothermal energy, as well as the massive thermal storage capacity of the ground, to provide space conditioning and water heating for both residential and commercial buildings. GSHPs have higher energy efficiencies than conventional HVAC systems. It is estimated, if GSHPs achieve a 10% market share in the US, in each year, 0.6 Quad Btu primary energy consumption can be saved and 36 million tons carbon emissions can be avoided (Liu et al. 2017). However, the current market sharemore » of GSHPs is less than 1%. The foremost barrier preventing wider adoption of GSHPs is their high installation costs. To enable wider adoption of GSHPs, the costeffectiveness of GSHP applications must be improved.« less
Environmental aspects of the geothermal energy utilisation in Poland
NASA Astrophysics Data System (ADS)
Sowiżdżał, Anna; Tomaszewska, Barbara; Drabik, Anna
2017-11-01
Geothermal energy is considered as a strategic and sustainable source of renewable energy that can be effectively managed in several economic sectors. In Poland, despite the abundant potential of such resources, its share in the energy mix of renewable energy sources remains insubstantial. The utilisation of geothermal resources in Poland is related to the hydrogeothermal resources, however, numerous researches related to petrogeothermal energy resources are being performed. The utilisation of each type of energy, including geothermal, has an impact on the natural environment. In case of the effective development of geothermal energy resources, many environmental benefits are pointed out. The primary one is the extraction of clean, green energy that is characterised by the zero-emission rate of pollutants into the atmosphere, what considering the current environmental pollution in many Polish cities remains the extremely important issue. On the other hand, the utilisation of geothermal energy might influence the natural environment negatively. Beginning from the phase of drilling, which strongly interferes with the local landscape or acoustic climate, to the stage of energy exploitation. It should be noted that the efficient and sustainable use of geothermal energy resources is closely linked with the current law regulations at national and European level.
Energy and Greenhouse Gas Emissions in China: Growth, Transition, and Institutional Change
NASA Astrophysics Data System (ADS)
Kahrl, Fredrich James
Global energy markets and climate change in the twenty first century depend, to an extraordinary extent, on China. China is now, or will soon be, the world's largest energy consumer. Since 2007, China has been the world's largest emitter of greenhouse gases (GHGs). Despite its large and rapidly expanding influence on global energy markets and the global atmosphere, on a per capita basis energy consumption and GHG emissions in China are low relative to developed countries. The Chinese economy, and with it energy use and GHG emissions, are expected to grow vigorously for at least the next two decades, raising a question of critical historical significance: How can China's economic growth imperative be meaningfully reconciled with its goals of greater energy security and a lower carbon economy? Most scholars, governments, and practitioners have looked to technology---energy efficiency, nuclear power, carbon capture and storage---for answers to this question. Alternatively, this study seeks to root China's future energy and emissions trajectory in the political economy of its multiple transitions, from a centrally planned to a market economy and from an agrarian to a post-industrial society. The study draws on five case studies, each a dedicated chapter, which are organized around three perspectives on energy and GHG emissions: the macroeconomy; electricity supply and demand; and nitrogen fertilizer production and use. Chapters 2 and 3 examine how growth and structural change in China's macroeconomy have shaped energy demand, finding that most of the dramatic growth in the country's energy use over the 2000s was driven by an acceleration of its investment-dominated, energy-intensive growth model, rather than from structural change. Chapters 4 and 5 examine efforts to improve energy efficiency and increase the share of renewable generation in the electric power sector, concluding that China's power system lacks the flexibility in generation, pricing, and demand to support further improvements in efficiency and scale up renewable generation at an acceptable level of cost and reliability. Chapter 6 examines energy use and GHG emissions from nitrogen fertilizer use, arguing that energy use and GHG emissions from nitrogen fertilizer use in China are high relative to other countries because of China's historical support for small and medium-sized enterprises using domestic technology; its continued provision of energy subsidies to fertilizer producers; and its lack of a well-functioning agricultural extension system. The case studies illustrate the limits of energy and climate policy in China without institutional reform. China's leaders have historically relied on economic growth to defer the difficult changes in political economy that accompany economic and social transition. However, many of the challenges of energy and climate policy require political decisions that reallocate resources among stakeholders. For instance, restructuring the Chinese economy away from heavy industrial investment and toward a higher GDP share of consumption will require financial sector reforms, such as interest rate liberalization or higher dividend payments for state-owned enterprises, that reallocate income from the industrial sector to households. Increasing power system flexibility will require price reforms that reallocate revenues and costs among generators, between generators and the grid companies, between producers and ratepayers, among ratepayer classes, and between and among provinces. Strong public interest institutions are needed to make these changes, which suggests that China's energy and GHG emissions trajectories will be determined, to a large extent, by the politics of institutional reform.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Nan; Zheng, Nina; Fridley, David
2012-02-28
Appliance energy efficiency standards and labeling (S&L) programs have been important policy tools for regulating the efficiency of energy-using products for over 40 years and continue to expand in terms of geographic and product coverage. The most common S&L programs include mandatory minimum energy performance standards (MEPS) that seek to push the market for efficient products, and energy information and endorsement labels that seek to pull the market. This study seeks to review and compare some of the earliest and most well-developed S&L programs in three countries and one region: the U.S. MEPS and ENERGY STAR, Australia MEPS and Energymore » Label, European Union MEPS and Ecodesign requirements and Energy Label and Japanese Top Runner programs. For each program, key elements of S&L programs are evaluated and comparative analyses across the programs undertaken to identify best practice examples of individual elements as well as cross-cutting factors for success and lessons learned in international S&L program development and implementation. The international review and comparative analysis identified several overarching themes and highlighted some common factors behind successful program elements. First, standard-setting and programmatic implementation can benefit significantly from a legal framework that stipulates a specific timeline or schedule for standard-setting and revision, product coverage and legal sanctions for non-compliance. Second, the different MEPS programs revealed similarities in targeting efficiency gains that are technically feasible and economically justified as the principle for choosing a standard level, in many cases at a level that no product on the current market could reach. Third, detailed survey data such as the U.S. Residential Energy Consumption Survey (RECS) and rigorous analyses provide a strong foundation for standard-setting while incorporating the participation of different groups of stakeholders further strengthen the process. Fourth, sufficient program resources for program implementation and evaluation are critical to the effectiveness of standards and labeling programs and cost-sharing between national and local governments can help ensure adequate resources and uniform implementation. Lastly, check-testing and punitive measures are important forms of enforcement while the cancellation of registration or product sales-based fines have also proven effective in reducing non-compliance. The international comparative analysis also revealed the differing degree to which the level of government decentralization has influenced S&L programs and while no single country has best practices in all elements of standards and labeling development and implementation, national examples of best practices for specific elements do exist. For example, the U.S. has exemplified the use of rigorous analyses for standard-setting and robust data source with the RECS database while Japan's Top Runner standard-setting principle has motivated manufacturers to exceed targets. In terms of standards implementation and enforcement, Australia has demonstrated success with enforcement given its long history of check-testing and enforcement initiatives while mandatory information-sharing between EU jurisdictions on compliance results is another important enforcement mechanism. These examples show that it is important to evaluate not only the drivers of different paths of standards and labeling development, but also the country-specific context for best practice examples in order to understand how and why certain elements of specific S&L programs have been effective.« less
Where-Fi: a dynamic energy-efficient multimedia distribution framework for MANETs
NASA Astrophysics Data System (ADS)
Mohapatra, Shivajit; Carbunar, Bogdan; Pearce, Michael; Chaudhri, Rohit; Vasudevan, Venu
2008-01-01
Next generation mobile ad-hoc applications will revolve around users' need for sharing content/presence information with co-located devices. However, keeping such information fresh requires frequent meta-data exchanges, which could result in significant energy overheads. To address this issue, we propose distributed algorithms for energy efficient dissemination of presence and content usage information between nodes in mobile ad-hoc networks. First, we introduce a content dissemination protocol (called CPMP) for effectively distributing frequent small meta-data updates between co-located devices using multicast. We then develop two distributed algorithms that use the CPMP protocol to achieve "phase locked" wake up cycles for all the participating nodes in the network. The first algorithm is designed for fully-connected networks and then extended in the second to handle hidden terminals. The "phase locked" schedules are then exploited to adaptively transition the network interface to a deep sleep state for energy savings. We have implemented a prototype system (called "Where-Fi") on several Motorola Linux-based cell phone models. Our experimental results show that for all network topologies our algorithms were able to achieve "phase locking" between nodes even in the presence of hidden terminals. Moreover, we achieved battery lifetime extensions of as much as 28% for fully connected networks and about 20% for partially connected networks.
Power-to-Syngas: An Enabling Technology for the Transition of the Energy System?
Foit, Severin R; Vinke, Izaak C; de Haart, Lambertus G J; Eichel, Rüdiger-A
2017-05-08
Power-to-X concepts promise a reduction of greenhouse gas emissions simultaneously guaranteeing a safe energy supply even at high share of renewable power generation, thus becoming a cornerstone of a sustainable energy system. Power-to-syngas, that is, the electrochemical conversion of steam and carbon dioxide with the use of renewably generated electricity to syngas for the production of synfuels and high-value chemicals, offers an efficient technology to couple different energy-intense sectors, such as "traffic and transportation" and "chemical industry". Syngas produced by co-electrolysis can thus be regarded as a key-enabling step for a transition of the energy system, which offers additionally features of CO 2 -valorization and closed carbon cycles. Here, we discuss advantages and current limitations of low- and high-temperature co-electrolysis. Advances in both fundamental understanding of the basic reaction schemes and stable high-performance materials are essential to further promote co-electrolysis. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
A sliding windows approach to analyse the evolution of bank shares in the European Union
NASA Astrophysics Data System (ADS)
Ferreira, Paulo; Dionísio, Andreia; Guedes, Everaldo Freitas; Zebende, Gilney Figueira
2018-01-01
Both sub-prime and Eurozone debt crisis problems caused severe financial crisis, which affected European markets in general, but particularly the banking sector. The continuous devaluation of bank shares in the financial sector caused a great decrease in market capitalization, and in citizen and investor confidence. Panic among investors led them to sell shares, while other agents took the opportunity to buy them. Therefore, the study of bank shares is important, particularly of their efficiency. In this paper, adopting a sliding windows detrended fluctuation approach, we analyse the efficiency concept dynamically with 63 European banks (both in and outside the Eurozone). The main results show that the crisis had an effect on changing the efficiency pattern.
Khiarak, Mehdi Noormohammadi; Martianova, Ekaterina; Bories, Cyril; Martel, Sylvain; Proulx, Christophe D; De Koninck, Yves; Gosselin, Benoit
2018-06-01
Fluorescence biophotometry measurements require wide dynamic range (DR) and high-sensitivity laboratory apparatus. Indeed, it is often very challenging to accurately resolve the small fluorescence variations in presence of noise and high-background tissue autofluorescence. There is a great need for smaller detectors combining high linearity, high sensitivity, and high-energy efficiency. This paper presents a new biophotometry sensor merging two individual building blocks, namely a low-noise sensing front-end and a order continuous-time modulator (CTSDM), into a single module for enabling high-sensitivity and high energy-efficiency photo-sensing. In particular, a differential CMOS photodetector associated with a differential capacitive transimpedance amplifier-based sensing front-end is merged with an incremental order 1-bit CTSDM to achieve a large DR, low hardware complexity, and high-energy efficiency. The sensor leverages a hardware sharing strategy to simplify the implementation and reduce power consumption. The proposed CMOS biosensor is integrated within a miniature wireless head mountable prototype for enabling biophotometry with a single implantable fiber in the brain of live mice. The proposed biophotometry sensor is implemented in a 0.18- CMOS technology, consuming from a 1.8- supply voltage, while achieving a peak dynamic range of over a 50- input bandwidth, a sensitivity of 24 mV/nW, and a minimum detectable current of 2.46- at a 20- sampling rate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, Fei; Lin, Zhenhong; Nealer, Rachael
This paper conducted an analysis of regulatory documents on current energy- and greenhouse gas–relevant conventional vehicle efficiency technologies in the corporate average fuel economy standards (2017 to 2025) and greenhouse gas rulemaking context by NHTSA and EPA. The focus was on identifying what technologies today—as estimated now (2015 to 2016)—receive higher or lower expectations with regard to effectiveness, cost, and consumer adoption than what experts projected during the 2010 to 2011 rulemaking period. A broad range of conventional vehicle efficiency technologies, including gasoline engine and diesel engine, transmission, accessory, hybrid, and vehicle body technologies, was investigated in this analysis. Finally,more » most assessed technologies were found to have had better competitiveness than expected with regard to effectiveness or costs, or both, with costs and market penetration more difficult to predict than technology effectiveness.« less
Xie, Fei; Lin, Zhenhong; Nealer, Rachael
2017-09-30
This paper conducted an analysis of regulatory documents on current energy- and greenhouse gas–relevant conventional vehicle efficiency technologies in the corporate average fuel economy standards (2017 to 2025) and greenhouse gas rulemaking context by NHTSA and EPA. The focus was on identifying what technologies today—as estimated now (2015 to 2016)—receive higher or lower expectations with regard to effectiveness, cost, and consumer adoption than what experts projected during the 2010 to 2011 rulemaking period. A broad range of conventional vehicle efficiency technologies, including gasoline engine and diesel engine, transmission, accessory, hybrid, and vehicle body technologies, was investigated in this analysis. Finally,more » most assessed technologies were found to have had better competitiveness than expected with regard to effectiveness or costs, or both, with costs and market penetration more difficult to predict than technology effectiveness.« less
Advanced air distribution: improving health and comfort while reducing energy use.
Melikov, A K
2016-02-01
Indoor environment affects the health, comfort, and performance of building occupants. The energy used for heating, cooling, ventilating, and air conditioning of buildings is substantial. Ventilation based on total volume air distribution in spaces is not always an efficient way to provide high-quality indoor environments at the same time as low-energy consumption. Advanced air distribution, designed to supply clean air where, when, and as much as needed, makes it possible to efficiently achieve thermal comfort, control exposure to contaminants, provide high-quality air for breathing and minimizing the risk of airborne cross-infection while reducing energy use. This study justifies the need for improving the present air distribution design in occupied spaces, and in general the need for a paradigm shift from the design of collective environments to the design of individually controlled environments. The focus is on advanced air distribution in spaces, its guiding principles and its advantages and disadvantages. Examples of advanced air distribution solutions in spaces for different use, such as offices, hospital rooms, vehicle compartments, are presented. The potential of advanced air distribution, and individually controlled macro-environment in general, for achieving shared values, that is, improved health, comfort, and performance, energy saving, reduction of healthcare costs and improved well-being is demonstrated. Performance criteria are defined and further research in the field is outlined. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Briggs, C. K.; Borg, I. Y.
1982-10-01
Flow diagrams to describe the US energy situation are given. In 1981 the energy consumption was 73 quads (or 73 times 10 to the 15th power Btu). Use was down from 75 quads in 1980. Oil continues to dominate the picture as it comprises 45% of the total energy used. Net oil use (exclusive of oil purchased for the Strategic Petroleum Reserve and Exports) fell 8%; oil imports declined 14%. In contrast to oil, use of natural gas and coal remained at 1980 levels. Decreased use of residual oils, principally for electric power generating, account for much of the drop in oil use. Increased use of coal and nuclear energy for power generation almost compensated for the decrease in use of oil in that end use. Transmitted power remained at 1980 levels. The remainder of the drop in energy usage is attributed to price driven conservation, increased efficiencies in end use and the recession that prevailed during most of the year. The share of the energy drop attributable to the recession is estimated by various analysts to be on the order of 40 to 50%.
Modeling urban building energy use: A review of modeling approaches and procedures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Wenliang; Zhou, Yuyu; Cetin, Kristen
With rapid urbanization and economic development, the world has been experiencing an unprecedented increase in energy consumption and greenhouse gas (GHG) emissions. While reducing energy consumption and GHG emissions is a common interest shared by major developed and developing countries, actions to enable these global reductions are generally implemented at the city scale. This is because baseline information from individual cities plays an important role in identifying economical options for improving building energy efficiency and reducing GHG emissions. Numerous approaches have been proposed for modeling urban building energy use in the past decades. This paper aims to provide an up-to-datemore » review of the broad categories of energy models for urban buildings and describes the basic workflow of physics-based, bottom-up models and their applications in simulating urban-scale building energy use. Because there are significant differences across models with varied potential for application, strengths and weaknesses of the reviewed models are also presented. This is followed by a discussion of challenging issues associated with model preparation and calibration.« less
Modeling urban building energy use: A review of modeling approaches and procedures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Wenliang; Zhou, Yuyu; Cetin, Kristen
With rapid urbanization and economic development, the world has been experiencing an unprecedented increase in energy consumption and greenhouse gas (GHG) emissions. While reducing energy consumption and GHG emissions is a common interest shared by major developed and developing countries, actions to enable these global reductions are generally implemented at the city scale. This is because baseline information from individual cities plays an important role in identifying economical options for improving building energy efficiency and reducing GHG emissions. Numerous approaches have been proposed for modeling urban building energy use in the past decades. Our paper aims to provide an up-to-datemore » review of the broad categories of energy models for urban buildings and describes the basic workflow of physics-based, bottom-up models and their applications in simulating urban-scale building energy use. Because there are significant differences across models with varied potential for application, strengths and weaknesses of the reviewed models are also presented. We then follow this with a discussion of challenging issues associated with model preparation and calibration.« less
Modeling urban building energy use: A review of modeling approaches and procedures
Li, Wenliang; Zhou, Yuyu; Cetin, Kristen; ...
2017-11-13
With rapid urbanization and economic development, the world has been experiencing an unprecedented increase in energy consumption and greenhouse gas (GHG) emissions. While reducing energy consumption and GHG emissions is a common interest shared by major developed and developing countries, actions to enable these global reductions are generally implemented at the city scale. This is because baseline information from individual cities plays an important role in identifying economical options for improving building energy efficiency and reducing GHG emissions. Numerous approaches have been proposed for modeling urban building energy use in the past decades. Our paper aims to provide an up-to-datemore » review of the broad categories of energy models for urban buildings and describes the basic workflow of physics-based, bottom-up models and their applications in simulating urban-scale building energy use. Because there are significant differences across models with varied potential for application, strengths and weaknesses of the reviewed models are also presented. We then follow this with a discussion of challenging issues associated with model preparation and calibration.« less
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 4 2013-01-01 2013-01-01 false Cost sharing. 605.13 Section 605.13 Energy DEPARTMENT OF ENERGY (CONTINUED) ASSISTANCE REGULATIONS THE OFFICE OF ENERGY RESEARCH FINANCIAL ASSISTANCE PROGRAM... evaluation and selection process unless otherwise provided under § 605.10(d)(5). ...
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 4 2011-01-01 2011-01-01 false Cost sharing. 605.13 Section 605.13 Energy DEPARTMENT OF ENERGY (CONTINUED) ASSISTANCE REGULATIONS THE OFFICE OF ENERGY RESEARCH FINANCIAL ASSISTANCE PROGRAM... evaluation and selection process unless otherwise provided under § 605.10(d)(5). ...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 4 2010-01-01 2010-01-01 false Cost sharing. 605.13 Section 605.13 Energy DEPARTMENT OF ENERGY (CONTINUED) ASSISTANCE REGULATIONS THE OFFICE OF ENERGY RESEARCH FINANCIAL ASSISTANCE PROGRAM... evaluation and selection process unless otherwise provided under § 605.10(d)(5). ...
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 4 2012-01-01 2012-01-01 false Cost sharing. 605.13 Section 605.13 Energy DEPARTMENT OF ENERGY (CONTINUED) ASSISTANCE REGULATIONS THE OFFICE OF ENERGY RESEARCH FINANCIAL ASSISTANCE PROGRAM... evaluation and selection process unless otherwise provided under § 605.10(d)(5). ...
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 4 2014-01-01 2014-01-01 false Cost sharing. 605.13 Section 605.13 Energy DEPARTMENT OF ENERGY (CONTINUED) ASSISTANCE REGULATIONS THE OFFICE OF ENERGY RESEARCH FINANCIAL ASSISTANCE PROGRAM... evaluation and selection process unless otherwise provided under § 605.10(d)(5). ...
Network Coded Cooperative Communication in a Real-Time Wireless Hospital Sensor Network.
Prakash, R; Balaji Ganesh, A; Sivabalan, Somu
2017-05-01
The paper presents a network coded cooperative communication (NC-CC) enabled wireless hospital sensor network architecture for monitoring health as well as postural activities of a patient. A wearable device, referred as a smartband is interfaced with pulse rate, body temperature sensors and an accelerometer along with wireless protocol services, such as Bluetooth and Radio-Frequency transceiver and Wi-Fi. The energy efficiency of wearable device is improved by embedding a linear acceleration based transmission duty cycling algorithm (NC-DRDC). The real-time demonstration is carried-out in a hospital environment to evaluate the performance characteristics, such as power spectral density, energy consumption, signal to noise ratio, packet delivery ratio and transmission offset. The resource sharing and energy efficiency features of network coding technique are improved by proposing an algorithm referred as network coding based dynamic retransmit/rebroadcast decision control (LA-TDC). From the experimental results, it is observed that the proposed LA-TDC algorithm reduces network traffic and end-to-end delay by an average of 27.8% and 21.6%, respectively than traditional network coded wireless transmission. The wireless architecture is deployed in a hospital environment and results are then successfully validated.
Energy-Efficient Hosting Rich Content from Mobile Platforms with Relative Proximity Sensing
Baek, Sung Hoon
2017-01-01
In this paper, we present a tiny networked mobile platform, termed Tiny-Web-Thing (T-Wing), which allows the sharing of data-intensive content among objects in cyber physical systems. The object includes mobile platforms like a smartphone, and Internet of Things (IoT) platforms for Human-to-Human (H2H), Human-to-Machine (H2M), Machine-to-Human (M2H), and Machine-to-Machine (M2M) communications. T-Wing makes it possible to host rich web content directly on their objects, which nearby objects can access instantaneously. Using a new mechanism that allows the Wi-Fi interface of the object to be turned on purely on-demand, T-Wing achieves very high energy efficiency. We have implemented T-Wing on an embedded board, and present evaluation results from our testbed. From the evaluation result of T-Wing, we compare our system against alternative approaches to implement this functionality using only the cellular or Wi-Fi (but not both), and show that in typical usage, T-Wing consumes less than 15× the energy and is faster by an order of magnitude. PMID:28786942
Plasma for electrification of chemical industry: a case study on CO2 reduction
NASA Astrophysics Data System (ADS)
van Rooij, G. J.; Akse, H. N.; Bongers, W. A.; van de Sanden, M. C. M.
2018-01-01
Significant growth of the share of (intermittent) renewable power in the chemical industry is imperative to meet increasingly stricter limits on CO2 exhaust that are being implemented within Europe. This paper aims to evaluate the potential of a plasma process that converts input CO2 into a pure stream of CO to aid in renewable energy penetration in this sector. A realistic process design is constructed to serve as a basis for an economical analysis. The manufacturing cost price of CO is estimated at 1.2 kUS ton-1 CO. A sensitivity analysis shows that separation is the dominant cost factor, so that improving conversion is currently more effective to lower the price than e.g. energy efficiency.
Computational assessment of organic photovoltaic candidate compounds
NASA Astrophysics Data System (ADS)
Borunda, Mario; Dai, Shuo; Olivares-Amaya, Roberto; Amador-Bedolla, Carlos; Aspuru-Guzik, Alan
2015-03-01
Organic photovoltaic (OPV) cells are emerging as a possible renewable alternative to petroleum based resources and are needed to meet our growing demand for energy. Although not as efficient as silicon based cells, OPV cells have as an advantage that their manufacturing cost is potentially lower. The Harvard Clean Energy Project, using a cheminformatic approach of pattern recognition and machine learning strategies, has ranked a molecular library of more than 2.6 million candidate compounds based on their performance as possible OPV materials. Here, we present a ranking of the top 1000 molecules for use as photovoltaic materials based on their optical absorption properties obtained via time-dependent density functional theory. This computational search has revealed the molecular motifs shared by the set of most promising molecules.
NASA Astrophysics Data System (ADS)
Ohsaki, H.; Matsushita, N.; Koseki, T.; Tomita, M.
2014-05-01
The application of superconducting power cables to DC electric railway systems has been studied. It could leads to an effective use of regenerative brake, improved energy efficiency, effective load sharing among the substations, etc. In this study, an electric circuit model of a DC feeding system is built and numerical simulation is carried out using MATLAB-Simulink software. A modified electric circuit model with an AC power grid connection taken into account is also created to simulate the influence of the grid connection. The analyses have proved that a certain amount of energy can be conserved by introducing superconducting cables, and that electric load distribution and concentration among the substations depend on the substation output voltage distribution.
Environmental costs and renewable energy: re-visiting the Environmental Kuznets Curve.
López-Menéndez, Ana Jesús; Pérez, Rigoberto; Moreno, Blanca
2014-12-01
The environmental costs of economic development have received increasing attention during the last years. According to the World Energy Outlook (2013) sustainable energy policies should be promoted in order to spur economic growth and environmental protection in a global context, particularly in terms of reducing greenhouse gas emissions that contribute to climate change. Within this framework, the European Union aims to achieve the "20-20-20" targets, including a 20% reduction in EU greenhouse gas emissions from 1990 levels, a raise in the share of EU energy consumption produced from renewable resources to 20% and a 20% improvement in the EU's energy efficiency. Furthermore, the EU "Energy Roadmap 2050" has been recently adopted as a basis for developing a long-term European energy framework, fighting against climate change through the implementation of energy efficiency measures and the reduction of emissions. This paper focuses on the European context and attempts to explain the impact of economic growth on CO2 emissions through the estimation of an Environmental Kuznets Curve (EKC) using panel data. Moreover, since energy seems to be at the heart of the environmental problem it should also form the core of the solution, and therefore we provide some extensions of the EKC by including renewable energy sources as explanatory variables in the proposed models. Our data sets are referred to the 27 countries of the European Union during the period 1996-2010. With this information, our empirical results provide some interesting evidence about the significant impacts of renewable energies on CO2 emissions, suggesting the existence of an extended EKC. Copyright © 2014 Elsevier Ltd. All rights reserved.
Enhancing Privacy in Participatory Sensing Applications with Multidimensional Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Forrest, Stephanie; He, Wenbo; Groat, Michael
2013-01-01
Participatory sensing applications rely on individuals to share personal data to produce aggregated models and knowledge. In this setting, privacy concerns can discourage widespread adoption of new applications. We present a privacy-preserving participatory sensing scheme based on negative surveys for both continuous and multivariate categorical data. Without relying on encryption, our algorithms enhance the privacy of sensed data in an energy and computation efficient manner. Simulations and implementation on Android smart phones illustrate how multidimensional data can be aggregated in a useful and privacy-enhancing manner.
Battery Test Manual For Electric Vehicles, Revision 3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Christophersen, Jon P.
2015-06-01
This battery test procedure manual was prepared for the United States Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Office. It is based on technical targets for commercial viability established for energy storage development projects aimed at meeting system level DOE goals for Electric Vehicles (EV). The specific procedures defined in this manual support the performance and life characterization of advanced battery devices under development for EVs. However, it does share some methods described in the previously published battery test manual for plug-in hybrid electric vehicles. Due to the complexity of some of themore » procedures and supporting analysis, future revisions including some modifications and clarifications of these procedures are expected. As in previous battery and capacitor test manuals, this version of the manual defines testing methods for full-size battery systems, along with provisions for scaling these tests for modules, cells or other subscale level devices. The DOE-United States Advanced Battery Consortium (USABC), Technical Advisory Committee (TAC) supported the development of the manual. Technical Team points of contact responsible for its development and revision are Chul Bae of Ford Motor Company and Jon P. Christophersen of the Idaho National Laboratory. The development of this manual was funded by the Unites States Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Office. Technical direction from DOE was provided by David Howell, Energy Storage R&D Manager and Hybrid Electric Systems Team Leader. Comments and questions regarding the manual should be directed to Jon P. Christophersen at the Idaho National Laboratory (jon.christophersen@inl.gov).« less
Energy Transmission and Infrastructure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mathison, Jane
2012-12-31
The objective of Energy Transmission and Infrastructure Northern Ohio (OH) was to lay the conceptual and analytical foundation for an energy economy in northern Ohio that will: • improve the efficiency with which energy is used in the residential, commercial, industrial, agricultural, and transportation sectors for Oberlin, Ohio as a district-wide model for Congressional District OH-09; • identify the potential to deploy wind and solar technologies and the most effective configuration for the regional energy system (i.e., the ratio of distributed or centralized power generation); • analyze the potential within the district to utilize farm wastes to produce biofuels; •more » enhance long-term energy security by identifying ways to deploy local resources and building Ohio-based enterprises; • identify the policy, regulatory, and financial barriers impeding development of a new energy system; and • improve energy infrastructure within Congressional District OH-09. This objective of laying the foundation for a renewable energy system in Ohio was achieved through four primary areas of activity: 1. district-wide energy infrastructure assessments and alternative-energy transmission studies; 2. energy infrastructure improvement projects undertaken by American Municipal Power (AMP) affiliates in the northern Ohio communities of Elmore, Oak Harbor, and Wellington; 3. Oberlin, OH-area energy assessment initiatives; and 4. a district-wide conference held in September 2011 to disseminate year-one findings. The grant supported 17 research studies by leading energy, policy, and financial specialists, including studies on: current energy use in the district and the Oberlin area; regional potential for energy generation from renewable sources such as solar power, wind, and farm-waste; energy and transportation strategies for transitioning the City of Oberlin entirely to renewable resources and considering pedestrians, bicyclists, and public transportation as well as drivers in developing transportation policies; energy audits and efficiency studies for Oberlin-area businesses and Oberlin College; identification of barriers to residential energy efficiency and development of programming to remove these barriers; mapping of the solar-photovoltaic and wind-energy supply chains in northwest Ohio; and opportunities for vehicle sharing and collaboration among the ten organizations in Lorain County from the private, government, non-profit, and educational sectors. With non-grant funds, organizations have begun or completed projects that drew on the findings of the studies, including: creation of a residential energy-efficiency program for the Oberlin community; installation of energy-efficient lighting in Oberlin College facilities; and development by the City of Oberlin and Oberlin College of a 2.27 megawatt solar photovoltaic facility that is expected to produce 3,000 megawatt-hours of renewable energy annually, 12% of the College’s yearly power needs. Implementation of these and other projects is evidence of the economic feasibility and technical effectiveness of grant-supported studies, and additional projects are expected to advance to implementation in the coming years. The public has benefited through improved energydelivery systems and reduced energy use for street lighting in Elmore, Oak Harbor, and Wellington; new opportunities for assistance and incentives for residential energy efficiency in the Oberlin community; new opportunities for financial and energy savings through vehicle collaboration within Lorain County; and decreased reliance on fossil fuels and expanded production of renewable energy in the region. The dissemination conference and the summary report developed for the conference also benefited the public, but making the findings and recommendations of the regional studies broadly available to elected officials, city managers, educators, representatives of the private sector, and the general public.« less
NASA Astrophysics Data System (ADS)
Pfeil, Thomas; Jordan, Jakob; Tetzlaff, Tom; Grübl, Andreas; Schemmel, Johannes; Diesmann, Markus; Meier, Karlheinz
2016-04-01
High-level brain function, such as memory, classification, or reasoning, can be realized by means of recurrent networks of simplified model neurons. Analog neuromorphic hardware constitutes a fast and energy-efficient substrate for the implementation of such neural computing architectures in technical applications and neuroscientific research. The functional performance of neural networks is often critically dependent on the level of correlations in the neural activity. In finite networks, correlations are typically inevitable due to shared presynaptic input. Recent theoretical studies have shown that inhibitory feedback, abundant in biological neural networks, can actively suppress these shared-input correlations and thereby enable neurons to fire nearly independently. For networks of spiking neurons, the decorrelating effect of inhibitory feedback has so far been explicitly demonstrated only for homogeneous networks of neurons with linear subthreshold dynamics. Theory, however, suggests that the effect is a general phenomenon, present in any system with sufficient inhibitory feedback, irrespective of the details of the network structure or the neuronal and synaptic properties. Here, we investigate the effect of network heterogeneity on correlations in sparse, random networks of inhibitory neurons with nonlinear, conductance-based synapses. Emulations of these networks on the analog neuromorphic-hardware system Spikey allow us to test the efficiency of decorrelation by inhibitory feedback in the presence of hardware-specific heterogeneities. The configurability of the hardware substrate enables us to modulate the extent of heterogeneity in a systematic manner. We selectively study the effects of shared input and recurrent connections on correlations in membrane potentials and spike trains. Our results confirm that shared-input correlations are actively suppressed by inhibitory feedback also in highly heterogeneous networks exhibiting broad, heavy-tailed firing-rate distributions. In line with former studies, cell heterogeneities reduce shared-input correlations. Overall, however, correlations in the recurrent system can increase with the level of heterogeneity as a consequence of diminished effective negative feedback.
The use of gaseous fuels mixtures for SI engines propulsion
NASA Astrophysics Data System (ADS)
Flekiewicz, M.; Kubica, G.
2016-09-01
Paper presents results of SI engine tests, carried on for different gaseous fuels. Carried out analysis made it possible to define correlation between fuel composition and engine operating parameters. Tests covered various gaseous mixtures: of methane and hydrogen and LPG with DME featuring different shares. The first group, considered as low carbon content fuels can be characterized by low CO2 emissions. Flammability of hydrogen added in those mixtures realizes the function of combustion process activator. That is why hydrogen addition improves the energy conversion by about 3%. The second group of fuels is constituted by LPG and DME mixtures. DME mixes perfectly with LPG, and differently than in case of other hydrocarbon fuels consists also of oxygen makes the stoichiometric mixture less oxygen demanding. In case of this fuel an improvement in engine volumetric and overall engine efficiency has been noticed, when compared to LPG. For the 11% DME share in the mixture an improvement of 2% in the efficiency has been noticed. During the tests standard CNG/LPG feeding systems have been used, what underlines utility value of the research. The stand tests results have been followed by combustion process simulation including exhaust forming and charge exchange.
Quantum secret sharing with identity authentication based on Bell states
NASA Astrophysics Data System (ADS)
Abulkasim, Hussein; Hamad, Safwat; Khalifa, Amal; El Bahnasy, Khalid
Quantum secret sharing techniques allow two parties or more to securely share a key, while the same number of parties or less can efficiently deduce the secret key. In this paper, we propose an authenticated quantum secret sharing protocol, where a quantum dialogue protocol is adopted to authenticate the identity of the parties. The participants simultaneously authenticate the identity of each other based on parts of a prior shared key. Moreover, the whole prior shared key can be reused for deducing the secret data. Although the proposed scheme does not significantly improve the efficiency performance, it is more secure compared to some existing quantum secret sharing scheme due to the identity authentication process. In addition, the proposed scheme can stand against participant attack, man-in-the-middle attack, impersonation attack, Trojan-horse attack as well as information leaks.
First results from the new double velocity-double energy spectrometer VERDI
NASA Astrophysics Data System (ADS)
Frégeau, M. O.; Oberstedt, S.; Gamboni, Th.; Geerts, W.; Hambsch, F.-J.; Vidali, M.
2016-05-01
The VERDI spectrometer (VElocity foR Direct mass Identification) is a two arm time-of-flight spectrometer built at the European Commission Joint Research Centre IRMM. It determines fragment masses and kinetic energy distributions produced in nuclear fission by means of the double velocity and double energy (2v-2E) method. The simultaneous measurement of pre- and post neutron fragment characteristics allows studying the share of excitation energy between the two fragments. In particular, the evolution of fission modes and neutron multiplicity may be studied as a function of the available excitation energy. Both topics are of great importance for the development of models used in the evaluation of nuclear data, and also have important implications for the fundamental understanding of the fission process. The development of VERDI focus on maximum geometrical efficiency while striving for highest possible mass resolution. An innovative transmission start detector, using electrons ejected from the target itself, was developed. Stop signal and kinetic energy of both fragments are provided by two arrays of silicon detectors. The present design provides about 200 times higher geometrical efficiency than that of the famous COSI FAN TUTTE spectrometer [Nuclear Instruments and Methods in Physics Research 219 (1984) 569]. We report about a commissioning experiment of the VERDI spectrometer, present first results from a 2v-2E measurement of 252Cf spontaneous fission and discuss the potential of this instrument to contribute to the investigation prompt fission neutron characteristics as a function of fission fragment properties.
NASA Astrophysics Data System (ADS)
Li, Jun; Zhang, Song Bin; Ye, Bang Jiao; Wang, Jian Guo; Janev, R. K.
2016-12-01
Low energy electron-impact ionization of hydrogen atom in Debye plasmas has been investigated by employing the exterior complex scaling method. The interactions between the charged particles in the plasma have been represented by Debye-Hückel potentials. Triple differential cross sections (TDCS) in the coplanar equal-energy-sharing geometry at an incident energy of 15.6 eV for different screening lengths are reported. As the screening strength increases, TDCS change significantly. The evolutions of dominant typical peak structures of the TDCS are studied in detail for different screening lengths and for different coplanar equal-energy-sharing geometries.
Bargaining over an international water resource based on cooperative game theory concepts
NASA Astrophysics Data System (ADS)
Madani, K.; Gholizadeh, S.
2011-12-01
Prior the collapse of the Soviet Union in 1991, Caspian Sea was peacefully shared by Iran and the USSR, based on the two historic treaties between Iran (Persia) and Russia. Collapse of the USSR gave birth to one of the world's serious conflicts over international water resources. Since then, the five littoral states of the Caspian Sea, namely Azerbaijan, Iran, Kazakhstan, Russia, and Turkmenistan have been negotiating over finding an appropriate allocation scheme for sharing the sea and its valuable energy and environmental resources. Although several solution methods have been proposed, the negotiating parties have been unsuccessful in developing a compromise solution. A range of bargaining solutions are used here to show how cooperative game theory can be used to develop fair and efficient allocation schemes to resolve the Caspian Sea conflict. It is also examined how the negotiators may use their powers to change their shares from the Caspian Sea resources. Finally, the stability of the suggested game theoretic solutions are tested to find the solution which is more acceptable by the negotiating parties.
Estimation of solar collector area for water heating in buildings of Malaysia
NASA Astrophysics Data System (ADS)
Manoj Kumar, Nallapaneni; Sudhakar, K.; Samykano, M.
2018-04-01
Solar thermal energy (STE) utilization for water heating at various sectorial levels became popular and still growing especially for buildings in the residential area. This paper aims to study and identify the solar collector area needed based on the user requirements in an efficient manner. A step by step mathematical approach is followed to estimate the area in Sq. m. Four different cases each having different hot water temperatures (45°, 50°C, 55°C, and 60°C) delivered by the solar water heating system (SWHS) for typical residential application at Kuala Lumpur City, Malaysia is analysed for the share of hot and cold water mix. As the hot water temperature levels increased the share of cold water mix is increased to satisfy the user requirement temperature, i.e. 40°C. It is also observed that as the share of hot water mix is reduced, the collector area can also be reduced. Following this methodology at the installation stage would help both the user and installers in the effective use of the solar resource.
Comprehensive Study on Wastages of Supply Chain Information Sharing in Automotive Industries
NASA Astrophysics Data System (ADS)
Sendhil Kumar, R.; Pugazhendhi, S.; Muralidharan, C.; Murali, S.
2017-03-01
A supply chain is a very extensive concept, which encompasses many problems and features when it comes to controlling. Now a day’s lean concept is a very common method to several areas, such as service sectors and manufacturing. Applying the lean concept to supply chain management is a very popular study part, it has attracted many industrial practices and researchers with different applications. Information sharing and technology remain one of the key factors of integrating the supply chain members. Current scenario the competition is no longer between the competing companies, but it happens between the supply chains. So the efficiency of the supply chain is very important. And the effective sharing of information can enhance the supply chain efficiency through minimizing the inventories and Information sharing can increase supply chain efficiency by reducing inventories and stabilizing the production. This paper describes and discusses about the seven deadly wastes of supply chain information with the comparative principle of Toyota production system (TPS) principle approach. How the TPS can be applied to supply chain information sharing And lean tool of 5S concept possibility improve the information sharing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ding, Huanjun; Cho, Hyo-Min; Molloi, Sabee, E-mail: symolloi@uci.edu
Purpose: To investigate the feasibility of characterizing a Si strip photon-counting detector using x-ray fluorescence. Methods: X-ray fluorescence was generated by using a pencil beam from a tungsten anode x-ray tube with 2 mm Al filtration. Spectra were acquired at 90° from the primary beam direction with an energy-resolved photon-counting detector based on an edge illuminated Si strip detector. The distances from the source to target and the target to detector were approximately 19 and 11 cm, respectively. Four different materials, containing silver (Ag), iodine (I), barium (Ba), and gadolinium (Gd), were placed in small plastic containers with a diametermore » of approximately 0.7 cm for x-ray fluorescence measurements. Linear regression analysis was performed to derive the gain and offset values for the correlation between the measured fluorescence peak center and the known fluorescence energies. The energy resolutions and charge-sharing fractions were also obtained from analytical fittings of the recorded fluorescence spectra. An analytical model, which employed four parameters that can be determined from the fluorescence calibration, was used to estimate the detector response function. Results: Strong fluorescence signals of all four target materials were recorded with the investigated geometry for the Si strip detector. The average gain and offset of all pixels for detector energy calibration were determined to be 6.95 mV/keV and −66.33 mV, respectively. The detector’s energy resolution remained at approximately 2.7 keV for low energies, and increased slightly at 45 keV. The average charge-sharing fraction was estimated to be 36% within the investigated energy range of 20–45 keV. The simulated detector output based on the proposed response function agreed well with the experimental measurement. Conclusions: The performance of a spectral imaging system using energy-resolved photon-counting detectors is very dependent on the energy calibration of the detector. The proposed x-ray fluorescence technique offers an accurate and efficient way to calibrate the energy response of a photon-counting detector.« less
Moser, Corinne; Blumer, Yann
2017-01-01
Many countries have some kind of energy-system transformation either planned or ongoing for various reasons, such as to curb carbon emissions or to compensate for the phasing out of nuclear energy. One important component of these transformations is the overall reduction in energy demand. It is generally acknowledged that the domestic sector represents a large share of total energy consumption in many countries. Increased energy efficiency is one factor that reduces energy demand, but behavioral approaches (known as “sufficiency”) and their respective interventions also play important roles. In this paper, we address citizens’ heterogeneity regarding both their current behaviors and their willingness to realize their sufficiency potentials—that is, to reduce their energy consumption through behavioral change. We collaborated with three Swiss cities for this study. A survey conducted in the three cities yielded thematic sets of energy-consumption behavior that various groups of participants rated differently. Using this data, we identified four groups of participants with different patterns of both current behaviors and sufficiency potentials. The paper discusses intervention types and addresses citizens’ heterogeneity and behaviors from a city-based perspective. PMID:29016642
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pellegrino, Joan; Jamison, Keith
2015-12-01
This report is based on the proceedings of the U.S. DOE Roundtable and Workshop on Advanced Steel Technologies Workshop hosted by Oak Ridge National Laboratory (ORNL) in cooperation with the U.S. Department of Energy s (DOE s) Advanced Manufacturing Office (AMO) on held on June 23, 2015. Representatives from industry, government, and academia met at the offices of the National Renewable Energy Laboratory in Washington, DC, to share information on emerging steel technologies, issues impacting technology investment and deployment, gaps in research and development (R&D), and opportunities for greater energy efficiency. The results of the workshop are summarized in thismore » report. They reflect a snapshot of the perspectives and ideas generated by the individuals who attended and not all-inclusive of the steel industry and stakeholder community.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, A.; Repac, B.; Gonder, J.
This poster presents initial estimates of the net energy impacts of automated vehicles (AVs). Automated vehicle technologies are increasingly recognized as having potential to decrease carbon dioxide emissions and petroleum consumption through mechanisms such as improved efficiency, better routing, lower traffic congestion, and by enabling advanced technologies. However, some effects of AVs could conceivably increase fuel consumption through possible effects such as longer distances traveled, increased use of transportation by underserved groups, and increased travel speeds. The net effect on petroleum use and climate change is still uncertain. To make an aggregate system estimate, we first collect best estimates formore » the energy impacts of approximately ten effects of AVs. We then use a modified Kaya Identity approach to estimate the range of aggregate effects and avoid double counting. We find that depending on numerous factors, there is a wide range of potential energy impacts. Adoption of automated personal or shared vehicles can lead to significant fuel savings but has potential for backfire.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blackman, Harold; Moore, Joseph
2014-06-30
The ultimate goal of the National Geothermal Data System (NGDS) is to support the discovery and generation of geothermal sources of energy. The NGDS was designed and has been implemented to provide online access to important geothermal-related data from a network of data providers in order to: • Increase the efficiency of exploration, development and usage of geothermal energy by providing a basis for financial risk analysis of potential sites • Assist state and federal agencies in making land and resource management assessments • Foster the discovery of new geothermal resources by supporting ongoing and future geothermal-related research • Increasemore » public awareness of geothermal energy It is through the implementation of this distributed data system and its subsequent use that substantial increases to the general access and understanding of geothermal related data will result. NGDS provides a mechanism for the sharing of data thereby fostering the discovery of new resources and supporting ongoing geothermal research.« less
Impacts of the transformation of the German energy system on the transmission grid
NASA Astrophysics Data System (ADS)
Pesch, T.; Allelein, H.-J.; Hake, J.-F.
2014-10-01
The German Energiewende, the transformation of the energy system, has deep impacts on all parts of the system. This paper presents an approach that has been developed to simultaneously analyse impacts on the energy system as a whole and on the electricity system in particular. In the analysis, special emphasis is placed on the transmission grid and the efficiency of recommended grid extensions according to the German Network Development Plan. The analysis reveals that the measures in the concept are basically suitable for integrating the assumed high share of renewables in the future electricity system. Whereas a high feed-in from PV will not cause problems in the transmission grid in 2022, congestion may occur in situations with a high proportion of wind feed-in. Moreover, future bottlenecks in the grid are located in the same regions as today.
Internet-based wide area measurement applications in deregulated power systems
NASA Astrophysics Data System (ADS)
Khatib, Abdel-Rahman Amin
Since the deregulation of power systems was started in 1989 in the UK, many countries have been motivated to undergo deregulation. The United State started deregulation in the energy sector in California back in 1996. Since that time many other states have also started the deregulation procedures in different utilities. Most of the deregulation market in the United States now is in the wholesale market area, however, the retail market is still undergoing changes. Deregulation has many impacts on power system network operation and control. The number of power transactions among the utilities has increased and many Independent Power Producers (IPPs) now have a rich market for competition especially in the green power market. The Federal Energy Regulatory Commission (FERC) called upon utilities to develop the Regional Transmission Organization (RTO). The RTO is a step toward the national transmission grid. RTO is an independent entity that will operate the transmission system in a large region. The main goal of forming RTOs is to increase the operation efficiency of the power network under the impact of the deregulated market. The objective of this work is to study Internet based Wide Area Information Sharing (WAIS) applications in the deregulated power system. The study is the first step toward building a national transmission grid picture using information sharing among utilities. Two main topics are covered as applications for the WAIS in the deregulated power system, state estimation and Total Transfer Capability (TTC) calculations. As a first step for building this national transmission grid picture, WAIS and the level of information sharing of the state estimation calculations have been discussed. WAIS impacts to the TTC calculations are also covered. A new technique to update the TTC using on line measurements based on WAIS created by sharing state estimation is presented.
An efficient (t,n) threshold quantum secret sharing without entanglement
NASA Astrophysics Data System (ADS)
Qin, Huawang; Dai, Yuewei
2016-04-01
An efficient (t,n) threshold quantum secret sharing (QSS) scheme is proposed. In our scheme, the Hash function is used to check the eavesdropping, and no particles need to be published. So the utilization efficiency of the particles is real 100%. No entanglement is used in our scheme. The dealer uses the single particles to encode the secret information, and the participants get the secret through measuring the single particles. Compared to the existing schemes, our scheme is simpler and more efficient.
Feasibility study of shared-ride auto transit. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kocur, G.; Zaelke, D.; Neumann, L.
1977-09-01
The report examines the feasibility of the implementation of shared-ride auto transit (SRAT), which is an innovative approach for increasing auto occupancy in rural and urban areas. The report focuses on operational concepts, potential usage, legal and regulatory issues, and institutional issues. Formulation of the SRAT concept was motivated by several concerns, such as: (1) energy conservation; (2) transit service to areas unable to economically justify conventional transit services, and to travel disadvantaged groups; (3) transit service replacement to achieve greater efficiency and to reduce transit deficits; (4) provision of inexpensive transit service; and (5) the increase of safety andmore » reliability of hitchhiking. Four case study sites (Boulder, Colorado; Boston, Massachusetts; Portland, Oregon; and Tidewater, Virginia), were used to identify the specific institutional issues likely to impact SRAT implementation for that site, and to identify the opportunities for designing, implementing and operating SRAT in a variety of institutional settings.« less
Industry 4.0 - How will the nonwoven production of tomorrow look like?
NASA Astrophysics Data System (ADS)
Cloppenburg, F.; Münkel, A.; Gloy, Y.; Gries, T.
2017-10-01
Industry 4.0 stands for the on-going fourth industrial revolution, which uses cyber physical systems. In the textile industry the terms of industry 4.0 are not sufficiently known yet. First developments of industry 4.0 are mainly visible in the weaving industry. The cost structure of the nonwoven industry is unique in the textile industry. High shares of personnel, energy and machine costs are distinctive for nonwoven producers. Therefore the industry 4.0 developments in the nonwoven industry should concentrate on reducing these shares by using the work force efficiently and by increasing the productivity of first-rate quality and therefore decreasing waste production and downtimes. Using the McKinsey digital compass three main working fields are necessary: Self-optimizing nonwoven machines, big data analytics and assistance systems. Concepts for the nonwoven industry are shown, like the “EasyNonwoven” concept, which aims on economically optimizing the machine settings using self-optimization routines.
The Louisiana State University waste-to-energy incinerator
NASA Astrophysics Data System (ADS)
1994-10-01
This proposed action is for cost-shared construction of an incinerator/steam-generation facility at Louisiana State University under the State Energy Conservation Program (SECP). The SECP, created by the Energy Policy and Conservation Act, calls upon DOE to encourage energy conservation, renewable energy, and energy efficiency by providing Federal technical and financial assistance in developing and implementing comprehensive state energy conservation plans and projects. Currently, LSU runs a campus-wide recycling program in order to reduce the quantity of solid waste requiring disposal. This program has removed recyclable paper from the waste stream; however, a considerable quantity of other non-recyclable combustible wastes are produced on campus. Until recently, these wastes were disposed of in the Devil's Swamp landfill (also known as the East Baton Rouge Parish landfill). When this facility reached its capacity, a new landfill was opened a short distance away, and this new site is now used for disposal of the University's non-recyclable wastes. While this new landfill has enough capacity to last for at least 20 years (from 1994), the University has identified the need for a more efficient and effective manner of waste disposal than landfilling. The University also has non-renderable biological and potentially infectious waste materials from the School of Veterinary Medicine and the Student Health Center, primarily the former, whose wastes include animal carcasses and bedding materials. Renderable animal wastes from the School of Veterinary Medicine are sent to a rendering plant. Non-renderable, non-infectious animal wastes currently are disposed of in an existing on-campus incinerator near the School of Veterinary Medicine building.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frazar, Sarah L.; Winters, Samuel T.; Kreyling, Sean J.
In 2016, the Office of International Nuclear Safeguards at the National Nuclear Security Administration (NNSA) within the Department of Energy (DOE) commissioned the Pacific Northwest National Laboratory (PNNL) to explore the potential implications of the digital currency bitcoin and its underlying technologies on the safeguards system. The authors found that one category of technologies referred to as Shared Ledger Technology (SLT) offers a spectrum of benefits to the safeguards system. While further research is needed to validate assumptions and findings in the paper, preliminary analysis suggests that both the International Atomic Energy Agency (IAEA) and Member States can use SLTmore » to promote efficient, effective, accurate, and timely reporting, and increase transparency in the safeguards system without sacrificing confidentiality of safeguards data. This increased transparency and involvement of Member States in certain safeguards transactions could lead to increased trust and cooperation among States and the public, which generates a number of benefits. This paper describes these benefits and the analytical framework for assessing SLT applications for specific safeguards problems. The paper will also describe other national security areas where SLT could provide benefits.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Christophersen, Jon P.
2014-09-01
This battery test procedure manual was prepared for the United States Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Office. It is based on technical targets for commercial viability established for energy storage development projects aimed at meeting system level DOE goals for Plug-in Hybrid Electric Vehicles (PHEV). The specific procedures defined in this manual support the performance and life characterization of advanced battery devices under development for PHEV’s. However, it does share some methods described in the previously published battery test manual for power-assist hybrid electric vehicles. Due to the complexity of somemore » of the procedures and supporting analysis, future revisions including some modifications and clarifications of these procedures are expected. As in previous battery and capacitor test manuals, this version of the manual defines testing methods for full-size battery systems, along with provisions for scaling these tests for modules, cells or other subscale level devices. The DOE-United States Advanced Battery Consortium (USABC), Technical Advisory Committee (TAC) supported the development of the manual. Technical Team points of contact responsible for its development and revision are Renata M. Arsenault of Ford Motor Company and Jon P. Christophersen of the Idaho National Laboratory. The development of this manual was funded by the Unites States Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Office. Technical direction from DOE was provided by David Howell, Energy Storage R&D Manager and Hybrid Electric Systems Team Leader. Comments and questions regarding the manual should be directed to Jon P. Christophersen at the Idaho National Laboratory (jon.christophersen@inl.gov).« less
A Secure and Efficient Audit Mechanism for Dynamic Shared Data in Cloud Storage
2014-01-01
With popularization of cloud services, multiple users easily share and update their data through cloud storage. For data integrity and consistency in the cloud storage, the audit mechanisms were proposed. However, existing approaches have some security vulnerabilities and require a lot of computational overheads. This paper proposes a secure and efficient audit mechanism for dynamic shared data in cloud storage. The proposed scheme prevents a malicious cloud service provider from deceiving an auditor. Moreover, it devises a new index table management method and reduces the auditing cost by employing less complex operations. We prove the resistance against some attacks and show less computation cost and shorter time for auditing when compared with conventional approaches. The results present that the proposed scheme is secure and efficient for cloud storage services managing dynamic shared data. PMID:24959630
A secure and efficient audit mechanism for dynamic shared data in cloud storage.
Kwon, Ohmin; Koo, Dongyoung; Shin, Yongjoo; Yoon, Hyunsoo
2014-01-01
With popularization of cloud services, multiple users easily share and update their data through cloud storage. For data integrity and consistency in the cloud storage, the audit mechanisms were proposed. However, existing approaches have some security vulnerabilities and require a lot of computational overheads. This paper proposes a secure and efficient audit mechanism for dynamic shared data in cloud storage. The proposed scheme prevents a malicious cloud service provider from deceiving an auditor. Moreover, it devises a new index table management method and reduces the auditing cost by employing less complex operations. We prove the resistance against some attacks and show less computation cost and shorter time for auditing when compared with conventional approaches. The results present that the proposed scheme is secure and efficient for cloud storage services managing dynamic shared data.
Battery Test Manual For Plug-In Hybrid Electric Vehicles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jeffrey R. Belt
2010-09-01
This battery test procedure manual was prepared for the United States Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Program. It is based on technical targets established for energy storage development projects aimed at meeting system level DOE goals for Plug-in Hybrid Electric Vehicles (PHEV). The specific procedures defined in this manual support the performance and life characterization of advanced battery devices under development for PHEV’s. However, it does share some methods described in the previously published battery test manual for power-assist hybrid electric vehicles. Due to the complexity of some of the proceduresmore » and supporting analysis, a revision including some modifications and clarifications of these procedures is expected. As in previous battery and capacitor test manuals, this version of the manual defines testing methods for full-size battery systems, along with provisions for scaling these tests for modules, cells or other subscale level devices.« less
Battery Test Manual For Plug-In Hybrid Electric Vehicles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jeffrey R. Belt
2010-12-01
This battery test procedure manual was prepared for the United States Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Program. It is based on technical targets established for energy storage development projects aimed at meeting system level DOE goals for Plug-in Hybrid Electric Vehicles (PHEV). The specific procedures defined in this manual support the performance and life characterization of advanced battery devices under development for PHEV’s. However, it does share some methods described in the previously published battery test manual for power-assist hybrid electric vehicles. Due to the complexity of some of the proceduresmore » and supporting analysis, a revision including some modifications and clarifications of these procedures is expected. As in previous battery and capacitor test manuals, this version of the manual defines testing methods for full-size battery systems, along with provisions for scaling these tests for modules, cells or other subscale level devices.« less
Energy in the Developing World
NASA Astrophysics Data System (ADS)
Gadgil, Ashok; Fridley, David; Zheng, Nina; Sosler, Andree; Kirchstetter, Thomas; Phadke, Amol
2011-11-01
The five billion persons at the lower economic levels are not only poor, but commonly use technologies that are less efficient and more polluting, wasting their money, hurting their health, polluting their cites, and increasing carbon dioxide in the atmosphere. Many first-world researchers, including the authors, are seeking to help these persons achieve a better life by collaborating on need-driven solutions to energy problems. Here we examine three specific examples of solutions to energy problems, and mitigation strategies in the developing world: (1) Energy Efficiency Standards and Labeling in China. Between 1990 and 2025, China will add 675 million new urban residents, all of whom expect housing, electricity, water, transportation, and other energy services. Policies and institutions must be rapidly set up to manage the anticipated rapid rise in household and commercial energy consumption. This process has progressed from legislating, and setting up oversight of minimum energy performance standards in 1989 (now on 30 products) to voluntary efficiency labels in 1999 (now on 40 products) and to mandatory energy labels in 2005 (now on 21 products). The savings from just the standards and labels in place by 2007 would result in cumulative savings of 1188 teraWatt—hours (TWh) between 2000-2020. By 2020, China would save 110 TWh/yr, or the equivalent of 12 gigaWatts (GW) of power operating continuously. (2) Fuel-efficient biomass cookstoves to reduce energy consumption and reduce pollution. Compared to traditional cooking methods in Darfur, the BDS cooks faster, reduces fuel requirement, and emits less carbon monoxide air pollution. A 2010 survey of 100 households showed that users reduced spending on fuelwood in North Darfur camps from 1/2 of household non-fuelwood budget to less than 1/4 of that budget. The survey showed that each 20 stove puts 330/year in the pocket of the women using the stove, worth 1600 over the stove-life of 5 years. Per capita income of these households is about 300/year. (3) Super Efficient Appliance Deployment. Global domestic electricity consumption is expected to double in 25 years, from 5,700 TWh/yr in 2005 to 11,500 TWh/yr in 2030. The four appliances using largest shares of domestic electricity (lighting, refrigeration, air-conditioning, television) would use some 5,000 TWh/yr in 2030, or 43% of the total, in the baseline scenario. More than 50% of this consumption will be in China, India, European Union and US. We outline efforts to save up to 1.5 gigatons of carbon dioxide emissions per year in 2030 by helping deploy the most efficient commercially available technologies in these four categories. Furthermore, if this effort is extended to twenty-four categories of appliances and equipment, the projected savings in CO2 emissions increase to 6.7 gigatons per year by 2030.
Essays on Industry Response to Energy and Environmental Policy
NASA Astrophysics Data System (ADS)
Sweeney, Richard Leonard
This dissertation consists of three essays on the relationship between firm incentives and energy and environmental policy outcomes. Chapters 1 and 2 study the impact of the 1990 Clean Air Act Amendments on the United States oil refining industry. This legislation imposed extensive restrictions on refined petroleum product markets, requiring select end users to purchase new cleaner versions of gasoline and diesel. In Chapter 2, I estimate the static impact of this intervention on refining costs, product prices and consumer welfare. Isolating these effects is complicated by several challenges likely to appear in other regulatory settings, including overlap between regulated and non-regulated markets and deviations from perfect competition. Using a rich database of refinery operations, I estimate a structural model that incorporates each of these dimensions, and then use this cost structure to simulate policy counterfactuals. I find that the policies increased gasoline production costs by 7 cents per gallon and diesel costs by 3 cents per gallon on average, although these costs varied considerably across refineries. As a result of these restrictions, consumers in regulated markets experienced welfare losses on the order of 3.7 billion per year, but this welfare loss was partially offset by gains of 1.5 billion dollars per year among consumers in markets not subject to regulation. The results highlight the importance of accounting for imperfect competition and market spillovers when assessing the cost of environmental regulation. Chapter 2 estimates the sunk costs incurred by United States oil refineries as a result of the low sulfur diesel program. The complex, regionally integrated nature of the industry poses many challenges for estimating these costs. I overcome them by placing the decision to invest in sulfur removal technology within the framework of a two period model and estimate the model using moment inequalities. I find that the regulation induced between 2.8 and 3.3 billion worth of investment in order to produce this new fuel. The results highlight the importance of accounting for sunk costs when evaluating environmental regulation, and suggest that the estimation approach used here might provide a viable way to estimate the sunk costs of other environmental policies. Chapter 3, coauthored with Hunt Allcott, turns the to retail market for water heaters to study the topic of energy efficiency. We run a natural field experiment at a large nationwide retailer to measure the effects of energy use information disclosure, customer rebates, and sales agent incentives on demand for energy efficient durable goods. We find that while a combination of large rebates plus sales incentives substantially increases market share, information and sales incentives alone each have zero statistical effect and explain at most a small fraction of the low baseline market share. Sales agents strategically comply only partially with the experiment, targeting information at more interested consumers but not discussing energy efficiency with the disinterested majority. These results suggest that at current prices in this context, seller-provided information is not a major barrier to energy efficiency investments. We theoretically and empirically explore the novel policy option of combining customer subsidies with government-provided sales incentives.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 4 2014-01-01 2014-01-01 false Cost sharing. 602.12 Section 602.12 Energy DEPARTMENT OF ENERGY (CONTINUED) ASSISTANCE REGULATIONS EPIDEMIOLOGY AND OTHER HEALTH STUDIES FINANCIAL ASSISTANCE... the evaluation and selection process unless otherwise provided under § 602.9(d)(5). ...
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 4 2012-01-01 2012-01-01 false Cost sharing. 602.12 Section 602.12 Energy DEPARTMENT OF ENERGY (CONTINUED) ASSISTANCE REGULATIONS EPIDEMIOLOGY AND OTHER HEALTH STUDIES FINANCIAL ASSISTANCE... the evaluation and selection process unless otherwise provided under § 602.9(d)(5). ...
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 4 2013-01-01 2013-01-01 false Cost sharing. 602.12 Section 602.12 Energy DEPARTMENT OF ENERGY (CONTINUED) ASSISTANCE REGULATIONS EPIDEMIOLOGY AND OTHER HEALTH STUDIES FINANCIAL ASSISTANCE... the evaluation and selection process unless otherwise provided under § 602.9(d)(5). ...
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 4 2011-01-01 2011-01-01 false Cost sharing. 602.12 Section 602.12 Energy DEPARTMENT OF ENERGY (CONTINUED) ASSISTANCE REGULATIONS EPIDEMIOLOGY AND OTHER HEALTH STUDIES FINANCIAL ASSISTANCE... the evaluation and selection process unless otherwise provided under § 602.9(d)(5). ...
NASA Astrophysics Data System (ADS)
Cuca, Branka; Brumana, Raffaella; Oreni, Daniela; Iannaccone, Giuliana; Sesana, Marta Maria
2014-03-01
Steady technological progress has led to a noticeable advancement in disciplines associated with Earth observation. This has enabled information transition regarding changing scenarios, both natural and urban, to occur in (almost) real time. In particular, the need for integration on a local scale with the wider territorial framework has occurred in analysis and monitoring of built environments over the last few decades. The progress of Geographic Information (GI) science has provided significant advancements when it comes to spatial analysis, while the almost free availability of the internet has ensured a fast and constant exchange of geo-information, even for everyday users' requirements. Due to its descriptive and semantic nature, geo-spatial information is capable of providing a complete overview of a certain phenomenon and of predicting the implications within the natural, social and economic context. However, in order to integrate geospatial data into decision making processes, it is necessary to provide a specific context, which is well supported by verified data. This paper investigates the potentials of geo-portals as planning instruments developed to share multi-temporal/multi-scale spatial data, responding to specific end-users' demands in the case of Energy efficiency in Buildings (EeB) across European countries. The case study regards the GeoCluster geo-portal and mapping tool (Project GE2O, FP7), built upon a GeoClustering methodology for mapping of indicators relevant for energy efficiency technologies in the construction sector.
NASA Astrophysics Data System (ADS)
Bartlett, Philip L.; Stelbovics, Andris T.; Bray, Igor
2004-02-01
A newly-derived iterative coupling procedure for the propagating exterior complex scaling (PECS) method is used to efficiently calculate the electron-impact wavefunctions for atomic hydrogen. An overview of this method is given along with methods for extracting scattering cross sections. Differential scattering cross sections at 30 eV are presented for the electron-impact excitation to the n = 1, 2, 3 and 4 final states, for both PECS and convergent close coupling (CCC), which are in excellent agreement with each other and with experiment. PECS results are presented at 27.2 eV and 30 eV for symmetric and asymmetric energy-sharing triple differential cross sections, which are in excellent agreement with CCC and exterior complex scaling calculations, and with experimental data. At these intermediate energies, the efficiency of the PECS method with iterative coupling has allowed highly accurate partial-wave solutions of the full Schrödinger equation, for L les 50 and a large number of coupled angular momentum states, to be obtained with minimal computing resources.
Tutorial on X-ray photon counting detector characterization.
Ren, Liqiang; Zheng, Bin; Liu, Hong
2018-01-01
Recent advances in photon counting detection technology have led to significant research interest in X-ray imaging. As a tutorial level review, this paper covers a wide range of aspects related to X-ray photon counting detector characterization. The tutorial begins with a detailed description of the working principle and operating modes of a pixelated X-ray photon counting detector with basic architecture and detection mechanism. Currently available methods and techniques for charactering major aspects including energy response, noise floor, energy resolution, count rate performance (detector efficiency), and charge sharing effect of photon counting detectors are comprehensively reviewed. Other characterization aspects such as point spread function (PSF), line spread function (LSF), contrast transfer function (CTF), modulation transfer function (MTF), noise power spectrum (NPS), detective quantum efficiency (DQE), bias voltage, radiation damage, and polarization effect are also remarked. A cadmium telluride (CdTe) pixelated photon counting detector is employed for part of the characterization demonstration and the results are presented. This review can serve as a tutorial for X-ray imaging researchers and investigators to understand, operate, characterize, and optimize photon counting detectors for a variety of applications.
Zhang, Doudou; Shi, Jingying; Zi, Wei; Wang, Pengpeng; Liu, Shengzhong Frank
2017-11-23
Photoelectrochemical (PEC) technology for the conversion of solar energy into chemicals requires cost-effective photoelectrodes to efficiently and stably drive anodic and/or cathodic half-reactions to complete the overall reactions for storing solar energy in chemical bonds. The shared properties among semiconducting photoelectrodes and photovoltaic (PV) materials are light absorption, charge separation, and charge transfer. Earth-abundant silicon materials have been widely applied in the PV industry, and have demonstrated their efficiency as alternative photoabsorbers for photoelectrodes. Many efforts have been made to fabricate silicon photoelectrodes with enhanced performance, and significant progress has been achieved in recent years. Herein, recent developments in crystalline and thin-film silicon-based photoelectrodes (including amorphous, microcrystalline, and nanocrystalline silicon) immersed in aqueous solution for PEC hydrogen production from water splitting are summarized, as well as applications in PEC CO 2 reduction and PEC regeneration of discharged species in redox flow batteries. Silicon is an ideal material for the cost-effective production of solar chemicals through PEC methods. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Design and building of new spin polarized Positron Annihilation Induced Auger Electron Spectrometer
NASA Astrophysics Data System (ADS)
Lim, Zheng Hui; Mishler, Michael; Joglekar, Prasad; Shastry, Karthik; Koymen, Ali; Sharma, Suresh; Weiss, Alexander
2014-03-01
We propose to develop a next generation high flux variable energy spin-polarized position beam facility for materials studies. This new system will have a higher efficiency than our current system, and it will also be the first in the world to combine spin polarization with a time of flight Positron Annihilation induced Auger Electron Spectroscopy (PAES). The spin polarized positrons are electromagnetically guided towards the sample with an axial magnetic field and perpendicular electric fields. These incident positrons get annihilated at the surface of the sample creating two gamma rays and auger electrons via Auger transitions. These signals are useful in characterizing material surface, surface magnetization, and energy sharing in valence band. This new spectrometer, which is currently under construction, will be a next generation positron system. NSF.
Calculation of absolute protein-ligand binding free energy using distributed replica sampling.
Rodinger, Tomas; Howell, P Lynne; Pomès, Régis
2008-10-21
Distributed replica sampling [T. Rodinger et al., J. Chem. Theory Comput. 2, 725 (2006)] is a simple and general scheme for Boltzmann sampling of conformational space by computer simulation in which multiple replicas of the system undergo a random walk in reaction coordinate or temperature space. Individual replicas are linked through a generalized Hamiltonian containing an extra potential energy term or bias which depends on the distribution of all replicas, thus enforcing the desired sampling distribution along the coordinate or parameter of interest regardless of free energy barriers. In contrast to replica exchange methods, efficient implementation of the algorithm does not require synchronicity of the individual simulations. The algorithm is inherently suited for large-scale simulations using shared or heterogeneous computing platforms such as a distributed network. In this work, we build on our original algorithm by introducing Boltzmann-weighted jumping, which allows moves of a larger magnitude and thus enhances sampling efficiency along the reaction coordinate. The approach is demonstrated using a realistic and biologically relevant application; we calculate the standard binding free energy of benzene to the L99A mutant of T4 lysozyme. Distributed replica sampling is used in conjunction with thermodynamic integration to compute the potential of mean force for extracting the ligand from protein and solvent along a nonphysical spatial coordinate. Dynamic treatment of the reaction coordinate leads to faster statistical convergence of the potential of mean force than a conventional static coordinate, which suffers from slow transitions on a rugged potential energy surface.
Calculation of absolute protein-ligand binding free energy using distributed replica sampling
NASA Astrophysics Data System (ADS)
Rodinger, Tomas; Howell, P. Lynne; Pomès, Régis
2008-10-01
Distributed replica sampling [T. Rodinger et al., J. Chem. Theory Comput. 2, 725 (2006)] is a simple and general scheme for Boltzmann sampling of conformational space by computer simulation in which multiple replicas of the system undergo a random walk in reaction coordinate or temperature space. Individual replicas are linked through a generalized Hamiltonian containing an extra potential energy term or bias which depends on the distribution of all replicas, thus enforcing the desired sampling distribution along the coordinate or parameter of interest regardless of free energy barriers. In contrast to replica exchange methods, efficient implementation of the algorithm does not require synchronicity of the individual simulations. The algorithm is inherently suited for large-scale simulations using shared or heterogeneous computing platforms such as a distributed network. In this work, we build on our original algorithm by introducing Boltzmann-weighted jumping, which allows moves of a larger magnitude and thus enhances sampling efficiency along the reaction coordinate. The approach is demonstrated using a realistic and biologically relevant application; we calculate the standard binding free energy of benzene to the L99A mutant of T4 lysozyme. Distributed replica sampling is used in conjunction with thermodynamic integration to compute the potential of mean force for extracting the ligand from protein and solvent along a nonphysical spatial coordinate. Dynamic treatment of the reaction coordinate leads to faster statistical convergence of the potential of mean force than a conventional static coordinate, which suffers from slow transitions on a rugged potential energy surface.
Lu, Yi; Chen, Bin; Feng, Kuishuang; Hubacek, Klaus
2015-06-16
Energy production and industrial processes are crucial economic sectors accounting for about 62% of greenhouse gas (GHG) emissions globally in 2012. Eco-industrial parks are practical attempts to mitigate GHG emissions through cooperation among businesses and the local community in order to reduce waste and pollution, efficiently share resources, and help with the pursuit of sustainable development. This work developed a framework based on ecological network analysis to trace carbon metabolic processes in eco-industrial parks and applied it to a typical eco-industrial park in Beijing. Our findings show that the entire metabolic system is dominated by supply of primary goods from the external environment and final demand. The more carbon flows through a sector, the more influence it would exert upon the whole system. External environment and energy providers are the most active and dominating part of the carbon metabolic system, which should be the first target to mitigate emissions by increasing efficiencies. The carbon metabolism of the eco-industrial park can be seen as an evolutionary system with high levels of efficiency, but this may come at the expense of larger levels of resilience. This work may provide a useful modeling framework for low-carbon design and management of industrial parks.
NASA Astrophysics Data System (ADS)
Luo, Ye; Esler, Kenneth; Kent, Paul; Shulenburger, Luke
Quantum Monte Carlo (QMC) calculations of giant molecules, surface and defect properties of solids have been feasible recently due to drastically expanding computational resources. However, with the most computationally efficient basis set, B-splines, these calculations are severely restricted by the memory capacity of compute nodes. The B-spline coefficients are shared on a node but not distributed among nodes, to ensure fast evaluation. A hybrid representation which incorporates atomic orbitals near the ions and B-spline ones in the interstitial regions offers a more accurate and less memory demanding description of the orbitals because they are naturally more atomic like near ions and much smoother in between, thus allowing coarser B-spline grids. We will demonstrate the advantage of hybrid representation over pure B-spline and Gaussian basis sets and also show significant speed-up like computing the non-local pseudopotentials with our new scheme. Moreover, we discuss a new algorithm for atomic orbital initialization which used to require an extra workflow step taking a few days. With this work, the highly efficient hybrid representation paves the way to simulate large size even in-homogeneous systems using QMC. This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Computational Materials Sciences Program.
NASA Astrophysics Data System (ADS)
Gao, Gan; Wang, Li-Ping
2010-11-01
We propose a quantum secret sharing protocol, in which Bell states in the high dimension Hilbert space are employed. The biggest advantage of our protocol is the high source capacity. Compared with the previous secret sharing protocol, ours has the higher controlling efficiency. In addition, as decoy states in the high dimension Hilbert space are used, we needn’t destroy quantum entanglement for achieving the goal to check the channel security.
Mobilization of energy and space technology (The Durand Lecture for Public Service, AIAA)
NASA Astrophysics Data System (ADS)
Seamans, R. C., Jr.
1986-04-01
Energy developments in the U.S. from 1973-86 are discussed with an eye to the role of governement and the lessons learned from the Apollo project. The 1973 oil embargo spurred Federal actions to manage national energy resources, plan for crises, promote energy efficiency and explore new energy sources. Initiatives included guaranteed loans and cost-sharing with business through the Synthetic Fuels Corporation, speed limits, tax credits for renewable energy and energy conservation projects, etc. Plans for energy independence for the U.S. by 1980 did not account for the complexity of the energy production, transport, storage and use system. Fuel consumption trends of the main demand centers, transportation, private dwellings, commercial buildings, and manufacturing, are now monitored with data gathered by the DOE Energy Information Agency. It is asserted that coal is favored by utilities due to the need to reduce the burning of oil and gas, the unsure future of nuclear power, and the availability of indigenous fuel supply. The Apollo project revealed the benefits that can accrue to private enterprise from massive government investments in cutting-edge technologies, and provides a lesson that continued funding is necessary to ensure the identification, effectiveness and large scale implementation of alternative energy technologies before the next fuel crisis.
NASA Technical Reports Server (NTRS)
Stadler, H. L.
1984-01-01
Oil is still a problem for the U.S. and its allies. Transportation uses 61 percent of U.S. oil and its share is increasing, so more efficient technology should be concentrated there. Trucks' share of oil use is increasing because they are already much more efficient than autos. The primary truck opportunities are streamlining, more efficient engines, and shifting freight to railroads. More efficient engines are possible using ceramics to allow elimination of cooling systems and better use of waste exhaust heat. A 60 percent improvement seems possible if ceramics can be made tough enough and durable enough.
Wireless sensor and actuator networks for lighting energy efficiency and user satisfaction
NASA Astrophysics Data System (ADS)
Wen, Yao-Jung
Buildings consume more than one third of the primary energy generated in the U.S., and lighting alone accounts for approximately 30% of the energy usage in commercial buildings. As the largest electricity consumer of all building electrical systems, lighting harbors the greatest potential for energy savings in the commercial sector. Fifty percent of current energy consumption could be reduced with energy-efficient lighting management strategies. While commercial products do exist, they are poorly received due to exorbitant retrofitting cost and unsatisfactory performance. As a result, most commercial buildings, especially legacy buildings, have not taken advantage of the opportunity to generate savings from lighting. The emergence of wireless sensor and actuator network (WSAN) technologies presents an alternative that circumvents costly rewiring and promises better performance than existing commercial lighting systems. The goal of this dissertation research is to develop a framework for wireless-networked lighting systems with increased cost effectiveness, energy efficiency, and user satisfaction. This research is realized through both theoretical developments and implementations. The theoretical research aims at developing techniques for harnessing WSAN technologies to lighting hardware and control strategies. Leveraging redundancy, a sensor validation and fusion algorithm is developed for extracting pertinent lighting information from the disturbance-prone desktop-mounted photosensors. An adaptive sensing strategy optimizes the timing of data acquisition and power-hungry wireless transmission of sensory feedback in real-time lighting control. Exploiting the individual addressability of wireless-enabled luminaires, a lighting optimization algorithm is developed to create the optimal lighting that minimizes energy usage while satisfying occupants' diverse lighting preferences. The wireless-networked lighting system was implemented and tested in a number of real-life settings. A human subject study conducted in a private office concluded that the research system was competitive with the commercial lighting system with much fewer retrofitting requirements. The system implemented in a shared-space office realized a self-configuring mesh network with wireless photosensors and light actuators, and demonstrated a 50% energy savings and increased performance when harvesting daylight through windows is possible. The cost analysis revealed a reasonable payback period after the system is optimized for commercialization and confirms the marketing feasibility.
Coordinating Resource Usage through Adaptive Service Provisioning in Wireless Sensor Networks
NASA Astrophysics Data System (ADS)
Fok, Chien-Liang; Roman, Gruia-Catalin; Lu, Chenyang
Wireless sensor networks (WSNs) exhibit high levels of network dynamics and consist of devices with limited energy. This results in the need to coordinate applications not only at the functional level, as is traditionally done, but also in terms of resource utilization. In this paper, we present a middleware that does this using adaptive service provisioning. Novel service binding strategies automatically adapt application behavior when opportunities for energy savings surface, and switch providers when the network topology changes. The former is accomplished by providing limited information about the energy consumption associated with using various services, systematically exploiting opportunities for sharing service invocations, and exploiting the broadcast nature of wireless communication in WSNs. The middleware has been implemented and evaluated on two disparate WSN platforms, the TelosB and Imote2. Empirical results show that adaptive service provisioning can enable energy-aware service binding decisions that result in increased energy efficiency and significantly increase service availability, while imposing minimal additional burden on the application, service, and device developers. Two applications, medical patient monitoring and structural health monitoring, demonstrate the middleware's efficacy.
MOIL-opt: Energy-Conserving Molecular Dynamics on a GPU/CPU system
Ruymgaart, A. Peter; Cardenas, Alfredo E.; Elber, Ron
2011-01-01
We report an optimized version of the molecular dynamics program MOIL that runs on a shared memory system with OpenMP and exploits the power of a Graphics Processing Unit (GPU). The model is of heterogeneous computing system on a single node with several cores sharing the same memory and a GPU. This is a typical laboratory tool, which provides excellent performance at minimal cost. Besides performance, emphasis is made on accuracy and stability of the algorithm probed by energy conservation for explicit-solvent atomically-detailed-models. Especially for long simulations energy conservation is critical due to the phenomenon known as “energy drift” in which energy errors accumulate linearly as a function of simulation time. To achieve long time dynamics with acceptable accuracy the drift must be particularly small. We identify several means of controlling long-time numerical accuracy while maintaining excellent speedup. To maintain a high level of energy conservation SHAKE and the Ewald reciprocal summation are run in double precision. Double precision summation of real-space non-bonded interactions improves energy conservation. In our best option, the energy drift using 1fs for a time step while constraining the distances of all bonds, is undetectable in 10ns simulation of solvated DHFR (Dihydrofolate reductase). Faster options, shaking only bonds with hydrogen atoms, are also very well behaved and have drifts of less than 1kcal/mol per nanosecond of the same system. CPU/GPU implementations require changes in programming models. We consider the use of a list of neighbors and quadratic versus linear interpolation in lookup tables of different sizes. Quadratic interpolation with a smaller number of grid points is faster than linear lookup tables (with finer representation) without loss of accuracy. Atomic neighbor lists were found most efficient. Typical speedups are about a factor of 10 compared to a single-core single-precision code. PMID:22328867
Technology Thresholds for Microgravity: Status and Prospects
NASA Technical Reports Server (NTRS)
Noever, D. A.
1996-01-01
The technological and economic thresholds for microgravity space research are estimated in materials science and biotechnology. In the 1990s, the improvement of materials processing has been identified as a national scientific priority, particularly for stimulating entrepreneurship. The substantial US investment at stake in these critical technologies includes six broad categories: aerospace, transportation, health care, information, energy, and the environment. Microgravity space research addresses key technologies in each area. The viability of selected space-related industries is critically evaluated and a market share philosophy is developed, namely that incremental improvements in a large markets efficiency is a tangible reward from space-based research.
Visibility-Based Hypothesis Testing Using Higher-Order Optical Interference
NASA Astrophysics Data System (ADS)
Jachura, Michał; Jarzyna, Marcin; Lipka, Michał; Wasilewski, Wojciech; Banaszek, Konrad
2018-03-01
Many quantum information protocols rely on optical interference to compare data sets with efficiency or security unattainable by classical means. Standard implementations exploit first-order coherence between signals whose preparation requires a shared phase reference. Here, we analyze and experimentally demonstrate the binary discrimination of visibility hypotheses based on higher-order interference for optical signals with a random relative phase. This provides a robust protocol implementation primitive when a phase lock is unavailable or impractical. With the primitive cost quantified by the total detected optical energy, optimal operation is typically reached in the few-photon regime.
Solar cooling - comparative study between thermal and electrical use in industrial buildings
NASA Astrophysics Data System (ADS)
Badea, N.; Badea, G. V.; Epureanu, A.; Frumuşanu, G.
2016-08-01
The increase in the share of renewable energy sources together with the emphasis on the need for energy security bring to a spotlight the field of trigeneration autonomous microsystems, as a solution to cover the energy consumptions, not only for isolated industrial buildings, but also for industrial buildings located in urban areas. The use of solar energy for cooling has been taken into account to offer a cooling comfort in the building. Cooling and air- conditioned production are current applications promoting the use of solar energy technologies. Solar cooling systems can be classified, depending on the used energy, in electrical systems using mechanical compression chillers and systems using thermal compression by absorption or adsorption. This comparative study presents the main strengths and weaknesses of solar cooling obtained: i) through the transformation of heat resulted from thermal solar panels combined with adsorption chillers, and ii) through the multiple conversion of electricity - photovoltaic panels - battery - inverter - combined with mechanical compression chillers. Both solutions are analyzed from the standpoints of energy efficiency, dynamic performances (demand response), and costs sizes. At the end of the paper, experimental results obtained in the climatic condition of Galafi city, Romania, are presented.
Guo, Wenzhong; Hong, Wei; Zhang, Bin; Chen, Yuzhong; Xiong, Naixue
2014-01-01
Mobile security is one of the most fundamental problems in Wireless Sensor Networks (WSNs). The data transmission path will be compromised for some disabled nodes. To construct a secure and reliable network, designing an adaptive route strategy which optimizes energy consumption and network lifetime of the aggregation cost is of great importance. In this paper, we address the reliable data aggregation route problem for WSNs. Firstly, to ensure nodes work properly, we propose a data aggregation route algorithm which improves the energy efficiency in the WSN. The construction process achieved through discrete particle swarm optimization (DPSO) saves node energy costs. Then, to balance the network load and establish a reliable network, an adaptive route algorithm with the minimal energy and the maximum lifetime is proposed. Since it is a non-linear constrained multi-objective optimization problem, in this paper we propose a DPSO with the multi-objective fitness function combined with the phenotype sharing function and penalty function to find available routes. Experimental results show that compared with other tree routing algorithms our algorithm can effectively reduce energy consumption and trade off energy consumption and network lifetime. PMID:25215944
Sensitivity and feeding efficiency of the black garden ant Lasius niger to sugar resources.
Detrain, Claire; Prieur, Jacques
2014-05-01
Carbohydrate sources such as plant exudates, nectar and honeydew represent the main source of energy for many ant species and contribute towards maintaining their mutualistic relationships with plants or aphid colonies. Here we characterise the sensitivity, feeding response curve and food intake efficiency of the aphid tending ant, Lasius niger for major sugars found in nectar, honeydew and insect haemolymph (i.e. fructose, glucose, sucrose, melezitose and trehalose). We found that sucrose concentrations - ranging from 0.1 to 2.5 M - triggered food acceptance by L.niger workers with their food intake efficiency being enhanced by sugar concentrations of 1M or higher at which points energy intake was maximised. The range of sucrose concentrations that elicit a feeding response by L. niger scouts thus overlaps with that of natural sugar resources. The response curves of feeding acceptance by scouts consistently increased with sugar concentration, except for trehalose which was disregarded by the ants. Ants are highly sensitive to sucrose and melezitose exhibiting low response thresholds. Sucrose, fructose and glucose share a same potential to act as phagostimulants as they had similar half feeding efficiency concentration values when expressed as the energetic content of sugar solution. Aphid-biosynthezised melezitose generated the highest sensitivity and phagostimulant potential. The feeding behavior of ants appears to be primarily regulated by the energy content of the food solution for the main sugars present in nectar and honeydew. However, feeding by scouts is also influenced by the informative value of individual sugars when it serves as a cue for the presence of aphid partners such as the aphid-biosynthesised melezitose. Copyright © 2014 Elsevier Ltd. All rights reserved.
Fallback accretion on to a newborn magnetar: long GRBs with giant X-ray flares
NASA Astrophysics Data System (ADS)
Gibson, S. L.; Wynn, G. A.; Gompertz, B. P.; O'Brien, P. T.
2018-05-01
Flares in the X-ray afterglow of gamma-ray bursts (GRBs) share more characteristics with the prompt emission than the afterglow, such as pulse profile and contained fluence. As a result, they are believed to originate from late-time activity of the central engine and can be used to constrain the overall energy budget. In this paper, we collect a sample of 19 long GRBs observed by Swift-XRT that contain giant flares in their X-ray afterglows. We fit this sample with a version of the magnetar propeller model, modified to include fallback accretion. This model has already successfully reproduced extended emission in short GRBs. Our best fits provide a reasonable morphological match to the light curves. However, 16 out of 19 of the fits require efficiencies for the propeller mechanism that approach 100%. The high efficiency parameters are a direct result of the high energy contained in the flares and the extreme duration of the dipole component, which forces either slow spin periods or low magnetic fields. We find that even with the inclusion of significant fallback accretion, in all but a few cases it is energetically challenging to produce prompt emission, afterglow and giant flares within the constraints of the rotational energy budget of a magnetar.
Spectral response characterization of CdTe sensors of different pixel size with the IBEX ASIC
NASA Astrophysics Data System (ADS)
Zambon, P.; Radicci, V.; Trueb, P.; Disch, C.; Rissi, M.; Sakhelashvili, T.; Schneebeli, M.; Broennimann, C.
2018-06-01
We characterized the spectral response of CdTe sensors with different pixel sizes - namely 75, 150 and 300 μm - bonded to the latest generation IBEX single photon counting ASIC developed at DECTRIS, to detect monochromatic X-ray energy in the range 10-60 keV. We present a comparison of pulse height spectra recorded for several energies, showing the dependence on the pixel size of the non-trivial atomic fluorescence and charge sharing effects that affect the detector response. The extracted energy resolution, in terms of full width at half maximum or FWHM, ranges from 1.5 to 4 keV according to the pixel size and chip configuration. We devoted a careful analysis to the Quantum Efficiency and to the Spectral Efficiency - a newly-introduced measure that quantifies the impact of fluorescence and escape phenomena on the spectrum integrity in high- Z material based detectors. We then investigated the influence of the photon flux on the aforementioned quantities up to 180 ṡ 106 cts/s/mm2 and 50 ṡ 106 cts/s/mm2 for the 150 μm and 300 μm pixel case, respectively. Finally, we complemented the experimental data with analytical and with Monte Carlo simulations - taking into account the stochastic nature of atomic fluorescence - with an excellent agreement.
Scientists + Artists: An Introduction to Mutually Beneficial Partnerships
NASA Astrophysics Data System (ADS)
Sparks, A.
2017-12-01
As world leaders, climate and energy scientists, and others examine our future climate, new ways of collaborating and communicating across different social sectors are becoming more crucial. What images and stories are evoked when you think about the future of the planet? Storytelling and images are basic tools for artists, and are increasingly recognized as critical tools for scientists, educators, and people interested in communicating science to broader public audiences. Science/arts collaborations have numerous benefits and can be challenging when partners have different lexicons for making sense of the world. This participatory session will explore the benefits and role of science/arts partnerships when communicating and engaging with stakeholders from varying backgrounds. Attendees will develop shared vocabulary and examine collaborative tools that can help both non-artists and non-scientists better communicate about climate change, energy policies, and other topics. For newcomers, this will be a 101 primer to community engagement and using the arts and/or collaborating with artists to reach broader audiences with your work. Experienced attendees will examine their own previous partnerships to reflect on the successes and learn from the challenges. Topics to be covered include: 1) understanding shared values between artists/scientists; 2) clarifying target audiences; and 3) identifying factors and components critical for healthy partnerships across sectors. Theater director and engagement strategist Ashley Sparks leads this interactive session and reflects on learnings from her partnership with the Energy Foundation, the Network for Energy, Water, and Health in Affordable Buildings, and the Natural Resources Defense Council. In partnership with engineers and technical experts she has been leading efforts to create a story bank focused on increasing energy efficiency in affordable multifamily housing.
An overview of LED applications for general illumination
NASA Astrophysics Data System (ADS)
Pelka, David G.; Patel, Kavita
2003-11-01
This paper begins by reviewing the current state of development of LEDs, their existing markets as well as their potential for energy conservation and their potential for gaining market share in the general illumination market. It discusses LED metrics such as chip size, lumens per watt, thermal resistance, and the recommended maximum current rating. The paper then goes on to consider the importance of non-imaging optics for both optically efficient and extremely compact LED lighting systems. Finally, microstructures useful for controlling the fields-of-view of LED lighting systems are considered and described in some detail. An extremely efficient and cost effective microstructure, called kinoform diffusers, is shown to have very unique properties that make this technology almost ideal for shaping the output beams of LED lighting systems. It concludes by illustrating some general illumination LED lighting systems
NASA Astrophysics Data System (ADS)
Cajueiro, Daniel O.; Tabak, Benjamin M.
2004-11-01
In this paper, the efficient market hypothesis is tested for China, Hong Kong and Singapore by means of the long memory dependence approach. We find evidence suggesting that Hong Kong is the most efficient market followed by Chinese A type shares and Singapore and finally by Chinese B type shares, which suggests that liquidity and capital restrictions may play a role in explaining results of market efficiency tests.
Energetic evolution of cellular Transportomes.
Darbani, Behrooz; Kell, Douglas B; Borodina, Irina
2018-05-30
Transporter proteins mediate the translocation of substances across the membranes of living cells. Many transport processes are energetically expensive and the cells use 20 to 60% of their energy to power the transportomes. We hypothesized that there may be an evolutionary selection pressure for lower energy transporters. We performed a genome-wide analysis of the compositional reshaping of the transportomes across the kingdoms of bacteria, archaea, and eukarya. We found that the share of ABC transporters is much higher in bacteria and archaea (ca. 27% of the transportome) than in primitive eukaryotes (13%), algae and plants (10%) and in fungi and animals (5-6%). This decrease is compensated by an increased occurrence of secondary transporters and ion channels. The share of ion channels is particularly high in animals (ca. 30% of the transportome) and algae and plants with (ca. 13%), when compared to bacteria and archaea with only 6-7%. Therefore, our results show a move to a preference for the low-energy-demanding transporters (ion channels and carriers) over the more energy-costly transporter classes (ATP-dependent families, and ABCs in particular) as part of the transition from prokaryotes to eukaryotes. The transportome analysis also indicated seven bacterial species, including Neorickettsia risticii and Neorickettsia sennetsu, as likely origins of the mitochondrion in eukaryotes, based on the phylogenetically restricted presence therein of clear homologues of modern mitochondrial solute carriers. The results indicate that the transportomes of eukaryotes evolved strongly towards a higher energetic efficiency, as ATP-dependent transporters diminished and secondary transporters and ion channels proliferated. These changes have likely been important in the development of tissues performing energetically costly cellular functions.
Optimization of Light-Harvesting Pigment Improves Photosynthetic Efficiency.
Jin, Honglei; Li, Mengshu; Duan, Sujuan; Fu, Mei; Dong, Xiaoxiao; Liu, Bing; Feng, Dongru; Wang, Jinfa; Wang, Hong-Bin
2016-11-01
Maximizing light capture by light-harvesting pigment optimization represents an attractive but challenging strategy to improve photosynthetic efficiency. Here, we report that loss of a previously uncharacterized gene, HIGH PHOTOSYNTHETIC EFFICIENCY1 (HPE1), optimizes light-harvesting pigments, leading to improved photosynthetic efficiency and biomass production. Arabidopsis (Arabidopsis thaliana) hpe1 mutants show faster electron transport and increased contents of carbohydrates. HPE1 encodes a chloroplast protein containing an RNA recognition motif that directly associates with and regulates the splicing of target RNAs of plastid genes. HPE1 also interacts with other plastid RNA-splicing factors, including CAF1 and OTP51, which share common targets with HPE1. Deficiency of HPE1 alters the expression of nucleus-encoded chlorophyll-related genes, probably through plastid-to-nucleus signaling, causing decreased total content of chlorophyll (a+b) in a limited range but increased chlorophyll a/b ratio. Interestingly, this adjustment of light-harvesting pigment reduces antenna size, improves light capture, decreases energy loss, mitigates photodamage, and enhances photosynthetic quantum yield during photosynthesis. Our findings suggest a novel strategy to optimize light-harvesting pigments that improves photosynthetic efficiency and biomass production in higher plants. © 2016 American Society of Plant Biologists. All Rights Reserved.
Optimization of Light-Harvesting Pigment Improves Photosynthetic Efficiency1[OPEN
Jin, Honglei; Li, Mengshu; Duan, Sujuan; Fu, Mei; Dong, Xiaoxiao; Feng, Dongru; Wang, Jinfa
2016-01-01
Maximizing light capture by light-harvesting pigment optimization represents an attractive but challenging strategy to improve photosynthetic efficiency. Here, we report that loss of a previously uncharacterized gene, HIGH PHOTOSYNTHETIC EFFICIENCY1 (HPE1), optimizes light-harvesting pigments, leading to improved photosynthetic efficiency and biomass production. Arabidopsis (Arabidopsis thaliana) hpe1 mutants show faster electron transport and increased contents of carbohydrates. HPE1 encodes a chloroplast protein containing an RNA recognition motif that directly associates with and regulates the splicing of target RNAs of plastid genes. HPE1 also interacts with other plastid RNA-splicing factors, including CAF1 and OTP51, which share common targets with HPE1. Deficiency of HPE1 alters the expression of nucleus-encoded chlorophyll-related genes, probably through plastid-to-nucleus signaling, causing decreased total content of chlorophyll (a+b) in a limited range but increased chlorophyll a/b ratio. Interestingly, this adjustment of light-harvesting pigment reduces antenna size, improves light capture, decreases energy loss, mitigates photodamage, and enhances photosynthetic quantum yield during photosynthesis. Our findings suggest a novel strategy to optimize light-harvesting pigments that improves photosynthetic efficiency and biomass production in higher plants. PMID:27609860
Nonlinear secret image sharing scheme.
Shin, Sang-Ho; Lee, Gil-Je; Yoo, Kee-Young
2014-01-01
Over the past decade, most of secret image sharing schemes have been proposed by using Shamir's technique. It is based on a linear combination polynomial arithmetic. Although Shamir's technique based secret image sharing schemes are efficient and scalable for various environments, there exists a security threat such as Tompa-Woll attack. Renvall and Ding proposed a new secret sharing technique based on nonlinear combination polynomial arithmetic in order to solve this threat. It is hard to apply to the secret image sharing. In this paper, we propose a (t, n)-threshold nonlinear secret image sharing scheme with steganography concept. In order to achieve a suitable and secure secret image sharing scheme, we adapt a modified LSB embedding technique with XOR Boolean algebra operation, define a new variable m, and change a range of prime p in sharing procedure. In order to evaluate efficiency and security of proposed scheme, we use the embedding capacity and PSNR. As a result of it, average value of PSNR and embedding capacity are 44.78 (dB) and 1.74t⌈log2 m⌉ bit-per-pixel (bpp), respectively.
Nonlinear Secret Image Sharing Scheme
Shin, Sang-Ho; Yoo, Kee-Young
2014-01-01
Over the past decade, most of secret image sharing schemes have been proposed by using Shamir's technique. It is based on a linear combination polynomial arithmetic. Although Shamir's technique based secret image sharing schemes are efficient and scalable for various environments, there exists a security threat such as Tompa-Woll attack. Renvall and Ding proposed a new secret sharing technique based on nonlinear combination polynomial arithmetic in order to solve this threat. It is hard to apply to the secret image sharing. In this paper, we propose a (t, n)-threshold nonlinear secret image sharing scheme with steganography concept. In order to achieve a suitable and secure secret image sharing scheme, we adapt a modified LSB embedding technique with XOR Boolean algebra operation, define a new variable m, and change a range of prime p in sharing procedure. In order to evaluate efficiency and security of proposed scheme, we use the embedding capacity and PSNR. As a result of it, average value of PSNR and embedding capacity are 44.78 (dB) and 1.74t⌈log2m⌉ bit-per-pixel (bpp), respectively. PMID:25140334
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cimpan, Ciprian, E-mail: cic@kbm.sdu.dk; Wenzel, Henrik
2013-07-15
Highlights: • Compared systems achieve primary energy savings between 34 and 140 MJ{sub primary}/100 MJ{sub input} {sub waste.} • Savings magnitude is foremost determined by chosen primary energy and materials production. • Energy consumption and process losses can be upset by increased technology efficiency. • Material recovery accounts for significant shares of primary energy savings. • Direct waste-to-energy is highly efficient if cogeneration (CHP) is possible. - Abstract: Primary energy savings potential is used to compare five residual municipal solid waste treatment systems, including configurations with mechanical (MT) and mechanical–biological (MBT) pre-treatment, which produce waste-derived fuels (RDF and SRF), biogasmore » and/or recover additional materials for recycling, alongside a system based on conventional mass burn waste-to-energy and ash treatment. To examine the magnitude of potential savings we consider two energy efficiency levels (state-of-the-art and best available technology), the inclusion/exclusion of heat recovery (CHP vs. PP) and three different background end-use energy production systems (coal condensing electricity and natural gas heat, Nordic electricity mix and natural gas heat, and coal CHP energy quality allocation). The systems achieved net primary energy savings in a range between 34 and 140 MJ{sub primary}/100 MJ{sub input} {sub waste}, in the different scenario settings. The energy footprint of transportation needs, pre-treatment and reprocessing of recyclable materials was 3–9.5%, 1–18% and 1–8% respectively, relative to total energy savings. Mass combustion WtE achieved the highest savings in scenarios with CHP production, nonetheless, MBT-based systems had similarly high performance if SRF streams were co-combusted with coal. When RDF and SRF was only used in dedicated WtE plants, MBT-based systems totalled lower savings due to inherent system losses and additional energy costs. In scenarios without heat recovery, the biodrying MBS-based system achieved the highest savings, on the condition of SRF co-combustion. As a sensitivity scenario, alternative utilisation of SRF in cement kilns was modelled. It supported similar or higher net savings for all pre-treatment systems compared to mass combustion WtE, except when WtE CHP was possible in the first two background energy scenarios. Recovery of plastics for recycling before energy recovery increased net energy savings in most scenario variations, over those of full stream combustion. Sensitivity to assumptions regarding virgin plastic substitution was tested and was found to mostly favour plastic recovery.« less
Sharing water and benefits in transboundary river basins
NASA Astrophysics Data System (ADS)
Arjoon, Diane; Tilmant, Amaury; Herrmann, Markus
2016-06-01
The equitable sharing of benefits in transboundary river basins is necessary to solve disputes among riparian countries and to reach a consensus on basin-wide development and management activities. Benefit-sharing arrangements must be collaboratively developed to be perceived not only as efficient, but also as equitable in order to be considered acceptable to all riparian countries. The current literature mainly describes what is meant by the term benefit sharing in the context of transboundary river basins and discusses this from a conceptual point of view, but falls short of providing practical, institutional arrangements that ensure maximum economic welfare as well as collaboratively developed methods for encouraging the equitable sharing of benefits. In this study, we define an institutional arrangement that distributes welfare in a river basin by maximizing the economic benefits of water use and then sharing these benefits in an equitable manner using a method developed through stakeholder involvement. We describe a methodology in which (i) a hydrological model is used to allocate scarce water resources, in an economically efficient manner, to water users in a transboundary basin, (ii) water users are obliged to pay for water, and (iii) the total of these water charges is equitably redistributed as monetary compensation to users in an amount determined through the application of a sharing method developed by stakeholder input, thus based on a stakeholder vision of fairness, using an axiomatic approach. With the proposed benefit-sharing mechanism, the efficiency-equity trade-off still exists, but the extent of the imbalance is reduced because benefits are maximized and redistributed according to a key that has been collectively agreed upon by the participants. The whole system is overseen by a river basin authority. The methodology is applied to the Eastern Nile River basin as a case study. The described technique not only ensures economic efficiency, but may also lead to more equitable solutions in the sharing of benefits in transboundary river basins because the definition of the sharing rule is not in question, as would be the case if existing methods, such as game theory, were applied, with their inherent definitions of fairness.
Multi-party semi-quantum key distribution-convertible multi-party semi-quantum secret sharing
NASA Astrophysics Data System (ADS)
Yu, Kun-Fei; Gu, Jun; Hwang, Tzonelih; Gope, Prosanta
2017-08-01
This paper proposes a multi-party semi-quantum secret sharing (MSQSS) protocol which allows a quantum party (manager) to share a secret among several classical parties (agents) based on GHZ-like states. By utilizing the special properties of GHZ-like states, the proposed scheme can easily detect outside eavesdropping attacks and has the highest qubit efficiency among the existing MSQSS protocols. Then, we illustrate an efficient way to convert the proposed MSQSS protocol into a multi-party semi-quantum key distribution (MSQKD) protocol. The proposed approach is even useful to convert all the existing measure-resend type of semi-quantum secret sharing protocols into semi-quantum key distribution protocols.
The Louisiana State University waste-to-energy incinerator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1994-10-26
This proposed action is for cost-shared construction of an incinerator/steam-generation facility at Louisiana State University under the State Energy Conservation Program (SECP). The SECP, created by the Energy Policy and Conservation Act, calls upon DOE to encourage energy conservation, renewable energy, and energy efficiency by providing Federal technical and financial assistance in developing and implementing comprehensive state energy conservation plans and projects. Currently, LSU runs a campus-wide recycling program in order to reduce the quantity of solid waste requiring disposal. This program has removed recyclable paper from the waste stream; however, a considerable quantity of other non-recyclable combustible wastes aremore » produced on campus. Until recently, these wastes were disposed of in the Devil`s Swamp landfill (also known as the East Baton Rouge Parish landfill). When this facility reached its capacity, a new landfill was opened a short distance away, and this new site is now used for disposal of the University`s non-recyclable wastes. While this new landfill has enough capacity to last for at least 20 years (from 1994), the University has identified the need for a more efficient and effective manner of waste disposal than landfilling. The University also has non-renderable biological and potentially infectious waste materials from the School of Veterinary Medicine and the Student Health Center, primarily the former, whose wastes include animal carcasses and bedding materials. Renderable animal wastes from the School of Veterinary Medicine are sent to a rendering plant. Non-renderable, non-infectious animal wastes currently are disposed of in an existing on-campus incinerator near the School of Veterinary Medicine building.« less
How energy policies affect public health.
Romm, J J; Ervin, C A
1996-01-01
The connection between energy policy and increased levels of respiratory and cardiopulmonary disease has become clearer in the past few years. People living in cities with high levels of pollution have a higher risk of mortality than those living in less polluted cities. The pollutants most directly linked to increased morbidity and mortality include ozone, particulates, carbon monoxide, sulfur dioxide, volatile organic compounds, and oxides of nitrogen. Energy-related emissions generate the vast majority of these polluting chemicals. Technologies to prevent pollution in the transportation, manufacturing, building, and utility sectors can significantly reduce these emissions while reducing the energy bills of consumers and businesses. In short, clean energy technologies represent a very cost-effective investment in public health. Some 72% of the Federal government's investment in the research, development, and demonstration of pollution prevention technologies is made by the Department of Energy, with the largest share provided by the Office of Energy Efficiency and Renewable Energy. This article will examine the connections between air pollution and health problems and will discuss what the Department of Energy is doing to prevent air pollution now and in the future. Images p390-a p391-a p392-a p393-a p394-a p395-a p396-a p397-a PMID:8837627
Energy intensity and the energy mix: what works for the environment?
El Anshasy, Amany A; Katsaiti, Marina-Selini
2014-04-01
In the absence of carbon sequestration, mitigating carbon emissions can be achieved through a mix of two broad policy approaches: (i) reducing energy intensity by improving energy efficiency and conservation, and (ii) changing the fuel mix. This paper investigates the long-run relationship between energy intensity, the energy mix, and per capita carbon emissions; while controlling for the level of economic activity, the economic structure measured by the relative size of the manufacturing sector, and the differences in institutional qualities across countries. We aim to answer two particularly important policy questions. First, to what extent these policy approaches are effective in mitigating emissions in the long-run? Second, which institutional qualities significantly contribute to better long-run environmental performance? We use historical data for 131 countries in a heterogeneous panel framework for the period 1972-2010. We find that less dependence on fossil fuel and lower energy intensity reduce emissions in the long run. A goal of 10% reduction in CO2 levels in the long-run requires reducing the share of fossil fuel in total energy use by 11%, or reducing energy intensity by 13%. In addition, specific institutional qualities such as better corruption control and judiciary independence contribute to mitigating levels of emissions. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
D'Emilia, G.; Di Gasbarro, D.; Gaspari, A.; Natale, E.
2015-11-01
A methodology is proposed assuming high-level Energy Performance Indicators (EnPIs) uncertainty as quantitative indicator of the evolution of an Energy Management System (EMS). Motivations leading to the selection of the EnPIs, uncertainty evaluation techniques and criteria supporting decision-making are discussed, in order to plan and pursue reliable measures for energy performance improvement. In this paper, problems, priorities, operative possibilities and reachable improvement limits are examined, starting from the measurement uncertainty assessment. Two different industrial cases are analysed with reference to the following aspects: absence/presence of energy management policy and action plans; responsibility level for the energy issues; employees’ training and motivation in respect of the energy problems; absence/presence of adequate infrastructures for monitoring and sharing of energy information; level of standardization and integration of methods and procedures linked to the energy activities; economic and financial resources for the improvement of energy efficiency. A critic and comparative analysis of the obtained results is realized. The methodology, experimentally validated, allows developing useful considerations for effective, realistic and economically feasible improvement plans, depending on the specific situation. Recursive application of the methodology allows getting reliable and resolved assessment of the EMS status, also in dynamic industrial contexts.
Characterization of energy response for photon-counting detectors using x-ray fluorescence
Ding, Huanjun; Cho, Hyo-Min; Barber, William C.; Iwanczyk, Jan S.; Molloi, Sabee
2014-01-01
Purpose: To investigate the feasibility of characterizing a Si strip photon-counting detector using x-ray fluorescence. Methods: X-ray fluorescence was generated by using a pencil beam from a tungsten anode x-ray tube with 2 mm Al filtration. Spectra were acquired at 90° from the primary beam direction with an energy-resolved photon-counting detector based on an edge illuminated Si strip detector. The distances from the source to target and the target to detector were approximately 19 and 11 cm, respectively. Four different materials, containing silver (Ag), iodine (I), barium (Ba), and gadolinium (Gd), were placed in small plastic containers with a diameter of approximately 0.7 cm for x-ray fluorescence measurements. Linear regression analysis was performed to derive the gain and offset values for the correlation between the measured fluorescence peak center and the known fluorescence energies. The energy resolutions and charge-sharing fractions were also obtained from analytical fittings of the recorded fluorescence spectra. An analytical model, which employed four parameters that can be determined from the fluorescence calibration, was used to estimate the detector response function. Results: Strong fluorescence signals of all four target materials were recorded with the investigated geometry for the Si strip detector. The average gain and offset of all pixels for detector energy calibration were determined to be 6.95 mV/keV and −66.33 mV, respectively. The detector’s energy resolution remained at approximately 2.7 keV for low energies, and increased slightly at 45 keV. The average charge-sharing fraction was estimated to be 36% within the investigated energy range of 20–45 keV. The simulated detector output based on the proposed response function agreed well with the experimental measurement. Conclusions: The performance of a spectral imaging system using energy-resolved photon-counting detectors is very dependent on the energy calibration of the detector. The proposed x-ray fluorescence technique offers an accurate and efficient way to calibrate the energy response of a photon-counting detector. PMID:25471962
Network Computing Infrastructure to Share Tools and Data in Global Nuclear Energy Partnership
NASA Astrophysics Data System (ADS)
Kim, Guehee; Suzuki, Yoshio; Teshima, Naoya
CCSE/JAEA (Center for Computational Science and e-Systems/Japan Atomic Energy Agency) integrated a prototype system of a network computing infrastructure for sharing tools and data to support the U.S. and Japan collaboration in GNEP (Global Nuclear Energy Partnership). We focused on three technical issues to apply our information process infrastructure, which are accessibility, security, and usability. In designing the prototype system, we integrated and improved both network and Web technologies. For the accessibility issue, we adopted SSL-VPN (Security Socket Layer-Virtual Private Network) technology for the access beyond firewalls. For the security issue, we developed an authentication gateway based on the PKI (Public Key Infrastructure) authentication mechanism to strengthen the security. Also, we set fine access control policy to shared tools and data and used shared key based encryption method to protect tools and data against leakage to third parties. For the usability issue, we chose Web browsers as user interface and developed Web application to provide functions to support sharing tools and data. By using WebDAV (Web-based Distributed Authoring and Versioning) function, users can manipulate shared tools and data through the Windows-like folder environment. We implemented the prototype system in Grid infrastructure for atomic energy research: AEGIS (Atomic Energy Grid Infrastructure) developed by CCSE/JAEA. The prototype system was applied for the trial use in the first period of GNEP.
NASA Technical Reports Server (NTRS)
2014-01-01
Topics covered include: Innovative Software Tools Measure Behavioral Alertness; Miniaturized, Portable Sensors Monitor Metabolic Health; Patient Simulators Train Emergency Caregivers; Solar Refrigerators Store Life-Saving Vaccines; Monitors Enable Medication Management in Patients' Homes; Handheld Diagnostic Device Delivers Quick Medical Readings; Experiments Result in Safer, Spin-Resistant Aircraft; Interfaces Visualize Data for Airline Safety, Efficiency; Data Mining Tools Make Flights Safer, More Efficient; NASA Standards Inform Comfortable Car Seats; Heat Shield Paves the Way for Commercial Space; Air Systems Provide Life Support to Miners; Coatings Preserve Metal, Stone, Tile, and Concrete; Robots Spur Software That Lends a Hand; Cloud-Based Data Sharing Connects Emergency Managers; Catalytic Converters Maintain Air Quality in Mines; NASA-Enhanced Water Bottles Filter Water on the Go; Brainwave Monitoring Software Improves Distracted Minds; Thermal Materials Protect Priceless, Personal Keepsakes; Home Air Purifiers Eradicate Harmful Pathogens; Thermal Materials Drive Professional Apparel Line; Radiant Barriers Save Energy in Buildings; Open Source Initiative Powers Real-Time Data Streams; Shuttle Engine Designs Revolutionize Solar Power; Procedure-Authoring Tool Improves Safety on Oil Rigs; Satellite Data Aid Monitoring of Nation's Forests; Mars Technologies Spawn Durable Wind Turbines; Programs Visualize Earth and Space for Interactive Education; Processor Units Reduce Satellite Construction Costs; Software Accelerates Computing Time for Complex Math; Simulation Tools Prevent Signal Interference on Spacecraft; Software Simplifies the Sharing of Numerical Models; Virtual Machine Language Controls Remote Devices; Micro-Accelerometers Monitor Equipment Health; Reactors Save Energy, Costs for Hydrogen Production; Cameras Monitor Spacecraft Integrity to Prevent Failures; Testing Devices Garner Data on Insulation Performance; Smart Sensors Gather Information for Machine Diagnostics; Oxygen Sensors Monitor Bioreactors and Ensure Health and Safety; Vision Algorithms Catch Defects in Screen Displays; and Deformable Mirrors Capture Exoplanet Data, Reflect Lasers.
International Symposium on Clusters and Nanostructures (Energy, Environment, and Health)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jena, Puru
The international Symposium on Clusters and Nanostructures was held in Richmond, Virginia during November 7-10, 2011. The symposium focused on the roles clusters and nanostructures play in solving outstanding problems in clean and sustainable energy, environment, and health; three of the most important issues facing science and society. Many of the materials issues in renewable energies, environmental impacts of energy technologies as well as beneficial and toxicity issues of nanoparticles in health are intertwined. Realizing that both fundamental and applied materials issues require a multidisciplinary approach the symposium provided a forum by bringing researchers from physics, chemistry, materials science, andmore » engineering fields to share their ideas and results, identify outstanding problems, and develop new collaborations. Clean and sustainable energy sessions addressed challenges in production, storage, conversion, and efficiency of renewable energies such as solar, wind, bio, thermo-electric, and hydrogen. Environmental issues dealt with air- and water-pollution and conservation, environmental remediation and hydrocarbon processing. Topics in health included therapeutic and diagnostic methods as well as health hazards attributed to nanoparticles. Cross-cutting topics such as reactions, catalysis, electronic, optical, and magnetic properties were also covered.« less
Raggad, Bechir
2018-05-01
This study investigates the existence of long-run relationship between CO 2 emissions, economic growth, energy use, and urbanization in Saudi Arabia over the period 1971-2014. The autoregressive distributed lag (ARDL) approach with structural breaks, where structural breaks are identified with the recently impulse saturation break tests, is applied to conduct the analysis. The bounds test result supports the existence of long-run relationship among the variables. The existence of environmental Kuznets curve (EKC) hypothesis has also been tested. The results reveal the non-validity of the EKC hypothesis for Saudi Arabia as the relationship between GDP and pollution is positive in both the short and the long run. Moreover, energy use increases pollution both in short and long run in the country. On the contrary, the results show a negative and significant impact of urbanization on carbon emissions in Saudi Arabia, which means that urban development is not an obstacle to the improvement of environmental quality. Consequently, policy-makers in Saudi Arabia should consider the efficiency enhancement, frugality in energy consumption, and especially increase the share of renewable energies in the total energy mix.
The Role of Industrial Parks in Mitigating Greenhouse Gas Emissions from China.
Guo, Yang; Tian, Jinping; Zang, Na; Gao, Yang; Chen, Lujun
2018-06-14
This study uncovered the direct and indirect energy-related GHG emissions of 213 Chinese national-level industrial parks, providing 11% of China's GDP, from a life-cycle perspective. Direct emissions are sourced from fuel combustion, and indirect emissions are embodied in energy production. The results indicated that in 2015, the direct and indirect GHG emissions of the parks were 1042 and 181 million tonne CO2 eq., respectively, totally accounting for 11% of national GHG emissions. The total energy consumption of the parks accounted for 10% of national energy consumption. Coal constituted 74% of total energy consumption in these parks. Baseline and low-carbon scenarios are established for 2030, and five GHG mitigation measures targeting energy consumption are modeled. The GHG mitigation potential for these parks in 2030 is quantified as 116 million tonne, equivalent to 9.5% of the parks' total emission in 2015. The measures that increase the share of natural gas consumption, reduce the GHG emission factor of electricity grid, and improve the average efficiency of industrial coal-fired boilers, will totally contribute 94% and 98% in direct and indirect GHG emissions reductions, respectively. These findings will provide a solid foundation for the low-carbon development of Chinese industrial parks.
Gabe-Thomas, Elizabeth; Walker, Ian; Verplanken, Bas; Shaddick, Gavin
2016-01-01
If in-home displays and other interventions are to successfully influence people's energy consumption, they need to communicate about energy in terms that make sense to users. Here we explore householders' perceptions of energy consumption, using a novel combination of card-sorting and clustering to reveal shared patterns in the way people think about domestic energy consumption. The data suggest that, when participants were asked to group appliances which they felt naturally 'went together', there are relatively few shared ideas about which appliances are conceptually related. To the extent participants agreed on which appliances belonged together, these groupings were based on activities (e.g., entertainment) and location within the home (e.g., kitchen); energy consumption was not an important factor in people's categorisations. This suggests messages about behaviour change aimed at reducing energy consumption might better be tied to social practices than to consumption itself.
Integrated decision-making about housing, energy and wellbeing: a qualitative system dynamics model.
Macmillan, Alexandra; Davies, Michael; Shrubsole, Clive; Luxford, Naomi; May, Neil; Chiu, Lai Fong; Trutnevyte, Evelina; Bobrova, Yekatherina; Chalabi, Zaid
2016-03-08
The UK government has an ambitious goal to reduce carbon emissions from the housing stock through energy efficiency improvements. This single policy goal is a strong driver for change in the housing system, but comes with positive and negative "unintended consequences" across a broad range of outcomes for health, equity and environmental sustainability. The resulting policies are also already experiencing under-performance through a failure to consider housing as a complex system. This research aimed to move from considering disparate objectives of housing policies in isolation to mapping the links between environmental, economic, social and health outcomes as a complex system. We aimed to support a broad range of housing policy stakeholders to improve their understanding of housing as a complex system through a collaborative learning process. We used participatory system dynamics modelling to develop a qualitative causal theory linking housing, energy and wellbeing. Qualitative interviews were followed by two interactive workshops to develop the model, involving representatives from national and local government, housing industries, non-government organisations, communities and academia. More than 50 stakeholders from 37 organisations participated. The process resulted in a shared understanding of wellbeing as it relates to housing; an agreed set of criteria against which to assess to future policy options; and a comprehensive set of causal loop diagrams describing the housing, energy and wellbeing system. The causal loop diagrams cover seven interconnected themes: community connection and quality of neighbourhoods; energy efficiency and climate change; fuel poverty and indoor temperature; household crowding; housing affordability; land ownership, value and development patterns; and ventilation and indoor air pollution. The collaborative learning process and the model have been useful for shifting the thinking of a wide range of housing stakeholders towards a more integrated approach to housing. The qualitative model has begun to improve the assessment of future policy options across a broad range of outcomes. Future work is needed to validate the model and increase its utility through computer simulation incorporating best quality data and evidence. Combining system dynamics modelling with other methods for weighing up policy options, as well as methods to support shifts in the conceptual frameworks underpinning policy, will be necessary to achieve shared housing goals across physical, mental, environmental, economic and social wellbeing.
Alternative Energy Development and China's Energy Future
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, Nina; Fridley, David
2011-06-15
In addition to promoting energy efficiency, China has actively pursued alternative energy development as a strategy to reduce its energy demand and carbon emissions. One area of particular focus has been to raise the share of alternative energy in China’s rapidly growing electricity generation with a 2020 target of 15% share of total primary energy. Over the last ten years, China has established several major renewable energy regulations along with programs and subsidies to encourage the growth of non-fossil alternative energy including solar, wind, nuclear, hydro, geothermal and biomass power as well as biofuels and coal alternatives. This study thusmore » seeks to examine China’s alternative energy in terms of what has and will continue to drive alternative energy development in China as well as analyze in depth the growth potential and challenges facing each specific technology. This study found that despite recent policies enabling extraordinary capacity and investment growth, alternative energy technologies face constraints and barriers to growth. For relatively new technologies that have not achieved commercialization such as concentrated solar thermal, geothermal and biomass power, China faces technological limitations to expanding the scale of installed capacity. While some alternative technologies such as hydropower and coal alternatives have been slowed by uneven and often changing market and policy support, others such as wind and solar PV have encountered physical and institutional barriers to grid integration. Lastly, all alternative energy technologies face constraints in human resources and raw material resources including land and water, with some facing supply limitations in critical elements such as uranium for nuclear, neodymium for wind and rare earth metals for advanced solar PV. In light of China’s potential for and barriers to growth, the resource and energy requirement for alternative energy technologies were modeled and scenario analysis used to evaluate the energy and emission impact of two pathways of alternative energy development. The results show that China can only meets its 2015 and 2020 targets for non-fossil penetration if it successfully achieves all of its capacity targets for 2020 with continued expansion through 2030. To achieve this level of alternative generation, significant amounts of raw materials including 235 Mt of concrete, 54 Mt of steel, 5 Mt of copper along with 3 billion tons of water and 64 thousand square kilometers of land are needed. China’s alternative energy supply will likely have relatively high average energy output to fossil fuel input ratio of 42 declining to 26 over time, but this ratio is largely skewed by nuclear and hydropower capacity. With successful alternative energy development, 32% of China’s electricity and 21% of its total primary energy will be supplied by alternative energy by 2030. Compared to the counterfactual baseline in which alternative energy development stumbles and China does not meet its capacity targets until 2030, alternative energy development can displace 175 Mtce of coal inputs per year and 2080 Mtce cumulatively from power generation by 2030. In carbon terms, this translates into 5520 Mt of displaced CO 2 emissions over the twenty year period, with more than half coming from expanded nuclear and wind power generation. These results illustrate the critical role that alternative energy development can play alongside energy efficiency in reducing China’s energy-related carbon emissions.« less
NASA Astrophysics Data System (ADS)
Granderson, Jessica Ann
2007-12-01
The need for sustainable, efficient energy systems is the motivation that drove this research, which targeted the design of an intelligent commercial lighting system. Lighting in commercial buildings consumes approximately 13% of all the electricity generated in the US. Advanced lighting controls1 intended for use in commercial office spaces have proven to save up to 45% in electricity consumption. However, they currently comprise only a fraction of the market share, resulting in a missed opportunity to conserve energy. The research goals driving this dissertation relate directly to barriers hindering widespread adoption---increase user satisfaction, and provide increased energy savings through more sophisticated control. To satisfy these goals an influence diagram was developed to perform daylighting actuation. This algorithm was designed to balance the potentially conflicting lighting preferences of building occupants, with the efficiency desires of building facilities management. A supervisory control policy was designed to implement load shedding under a demand response tariff. Such tariffs offer incentives for customers to reduce their consumption during periods of peak demand, trough price reductions. In developing the value function occupant user testing was conducted to determine that computer and paper tasks require different illuminance levels, and that user preferences are sufficiently consistent to attain statistical significance. Approximately ten facilities managers were also interviewed and surveyed to isolate their lighting preferences with respect to measures of lighting quality and energy savings. Results from both simulation and physical implementation and user testing indicate that the intelligent controller can increase occupant satisfaction, efficiency, cost savings, and management satisfaction, with respect to existing commercial daylighting systems. Several important contributions were realized by satisfying the research goals. A general model of a daylighted environment was designed, and a practical means of user preference identification was defined. Further, a set of general procedures were identified for the design of human-centered sensor-based decision-analytic systems, and for the identification of the allowable uncertainty in nodes of interest. To confirm generality, a vehicle health monitoring problem was defined and solved using these two procedures. 1'Daylighting' systems use sensors to determine room occupancy and available sunlight, and automatically dim the lights in response.
Rhodanese Functions as Sulfur Supplier for Key Enzymes in Sulfur Energy Metabolism
Aussignargues, Clément; Giuliani, Marie-Cécile; Infossi, Pascale; Lojou, Elisabeth; Guiral, Marianne; Giudici-Orticoni, Marie-Thérèse; Ilbert, Marianne
2012-01-01
How microorganisms obtain energy is a challenging topic, and there have been numerous studies on the mechanisms involved. Here, we focus on the energy substrate traffic in the hyperthermophilic bacterium Aquifex aeolicus. This bacterium can use insoluble sulfur as an energy substrate and has an intricate sulfur energy metabolism involving several sulfur-reducing and -oxidizing supercomplexes and enzymes. We demonstrate that the cytoplasmic rhodanese SbdP participates in this sulfur energy metabolism. Rhodaneses are a widespread family of proteins known to transfer sulfur atoms. We show that SbdP has also some unusual characteristics compared with other rhodaneses; it can load a long sulfur chain, and it can interact with more than one partner. Its partners (sulfur reductase and sulfur oxygenase reductase) are key enzymes of the sulfur energy metabolism of A. aeolicus and share the capacity to use long sulfur chains as substrate. We demonstrate a positive effect of SbdP, once loaded with sulfur chains, on sulfur reductase activity, most likely by optimizing substrate uptake. Taken together, these results lead us to propose a physiological role for SbdP as a carrier and sulfur chain donor to these key enzymes, therefore enabling channeling of sulfur substrate in the cell as well as greater efficiency of the sulfur energy metabolism of A. aeolicus. PMID:22496367
Energy conditions of high quality laser-oxygen cutting of mild steel
NASA Astrophysics Data System (ADS)
Shulyatyev, V. B.; Orishich, A. M.; Malikov, A. G.
2011-02-01
In our previous work we found experimentally the scaling laws for the oxygen-assisted laser cutting of low-carbon steel of 5 - 25 mm. No dross and minimal roughness of the cut surface were chosen as criteria of quality. Formulas were obtained to determine the optimum values of the laser power and cutting speed for the given sheet thickness. In the present paper, the energy balance of the oxygen-assisted laser cutting is studied experimentally at these optimum parameters. The absorbed laser energy and heat conduction losses and cut width were measured experimentally, and then the energy of exothermic reaction of oxidation was found from the balance equation. To define the integral coefficient of absorption, the laser power was measured on the cutting channel exit during the cutting. The heat conduction losses were measured by the calorimetric method. It has been established that the absorbed laser energy, oxidation energy, thermal losses and melting enthalpy related to a sheet thickness unit, do not depend on the sheet thickness at the cutting with the minimal roughness. The results enable to determine the fraction of the oxidized iron in the melt and thermal efficiency at the cutting with the minimal roughness. The share of the oxidation reaction energy is 50 - 60% in the total contributed energy.
Efficient Access Control in Multimedia Social Networks
NASA Astrophysics Data System (ADS)
Sachan, Amit; Emmanuel, Sabu
Multimedia social networks (MMSNs) have provided a convenient way to share multimedia contents such as images, videos, blogs, etc. Contents shared by a person can be easily accessed by anybody else over the Internet. However, due to various privacy, security, and legal concerns people often want to selectively share the contents only with their friends, family, colleagues, etc. Access control mechanisms play an important role in this situation. With access control mechanisms one can decide the persons who can access a shared content and who cannot. But continuously growing content uploads and accesses, fine grained access control requirements (e.g. different access control parameters for different parts in a picture), and specific access control requirements for multimedia contents can make the time complexity of access control to be very large. So, it is important to study an efficient access control mechanism suitable for MMSNs. In this chapter we present an efficient bit-vector transform based access control mechanism for MMSNs. The proposed approach is also compatible with other requirements of MMSNs, such as access rights modification, content deletion, etc. Mathematical analysis and experimental results show the effectiveness and efficiency of our proposed approach.
NASA Astrophysics Data System (ADS)
Ying, Yutong; Lin, Fujiang; Bai, Xuefei
2018-03-01
This paper explores an energy-efficient pulsed ultra-wideband (UWB) radio-frequency (RF) front-end chip fabricated in 0.18-μm CMOS technology, including a transmitter, receiver, and fractional synthesizer. The transmitter adopts a digital offset quadrature phase-shift keying (O-QPSK) modulator and passive direct-phase multiplexing technology, which are energy- and hardware-efficient, to enhance the data rate for a given spectrum. A passive mixer and a capacitor cross-coupled (CCC) source-follower driving amplifier (DA) are also designed for the transmitter to further reduce the low power consumption. For the receiver, a power-aware low-noise amplifier (LNA) and a quadrature mixer are applied. The LNA adopts a CCC boost common-gate amplifier as the input stage, and its current is reused for the second stage to save power. The mixer uses a shared amplification stage for the following passive IQ mixer. Phase noise suppression of the phase-locked loop (PLL) is achieved by utilizing an even-harmonics-nulled series-coupled quadrature oscillator (QVCO) and an in-band noise-aware charge pump (CP) design. The transceiver achieves a measured data rate of 0.8 Gbps with power consumption of 16 mW and 31.5 mW for the transmitter and the receiver, respectively. The optimized integrated phase noise of the PLL is 0.52° at 4.025 GHz. Project supported by the National Science and Technology Major Project of China (No. 2011ZX03004-002-01).
Phillips, Jordan J; Peralta, Juan E
2011-11-14
We introduce a method for evaluating magnetic exchange couplings based on the constrained density functional theory (C-DFT) approach of Rudra, Wu, and Van Voorhis [J. Chem. Phys. 124, 024103 (2006)]. Our method shares the same physical principles as C-DFT but makes use of the fact that the electronic energy changes quadratically and bilinearly with respect to the constraints in the range of interest. This allows us to use coupled perturbed Kohn-Sham spin density functional theory to determine approximately the corrections to the energy of the different spin configurations and construct a priori the relevant energy-landscapes obtained by constrained spin density functional theory. We assess this methodology in a set of binuclear transition-metal complexes and show that it reproduces very closely the results of C-DFT. This demonstrates a proof-of-concept for this method as a potential tool for studying a number of other molecular phenomena. Additionally, routes to improving upon the limitations of this method are discussed. © 2011 American Institute of Physics
NASA Astrophysics Data System (ADS)
Shi, W.; Nolte, C. G.; Loughlin, D. H.; Ou, Y.; Smith, S. J.
2017-12-01
We use GCAM-USA to examine the sensitivity of energy demands and resulting pollutant emissions and health impacts to differing population projections. The population projections are based on future fertility, mortality, migration and education assumptions consistent with the five Shared Socioeconomic Pathways (SSPs) (Jones and O'Neill, 2016). By using a state-level integrated assessment model, we capture the energy and emissions implications of population changes. Additionally, we overlay heating degree days and cooling degree days calculated from climate change projections to assess the individual and combined impacts of population shifts and climate change. A unique aspect of this work is the explicit representation of important regulatory drivers, such as the Cross-State Air Pollution Rule and vehicle efficiency standards. Preliminary results indicate there are significant differences across population scenarios in both U.S. national and state-level emissions. In this presentation, we will examine the influence of underlying factors such as climate, population, and technology changes on emissions and environmental impacts at 2050.
A Shared-Electrode-Based Hybridized Electromagnetic-Triboelectric Nanogenerator.
Quan, Ting; Wang, Zhong Lin; Yang, Ya
2016-08-03
Integration of electromagnetic generators (EMGs) and triboelectric nanogenerators (TENGs) can increase the total energy conversion efficiency from one mechanical motion by connecting the two devices in parallel after using power management circuits. A critical issue is how to realize the integration of the EMG and TENG in the same current circuits. Here, a hybridized nanogenerator, including an EMG and a TENG with the same set of electrodes, has been utilized to simultaneously scavenge mechanical energy. The hybridized nanogenerator can deliver a high output current of about 3.8 mA and a high output voltage of about 245 V when the switch in the device circuit was turned on and off, respectively. A acceleration sensor can be achieved by using the hybridized nanogenerator, where the detection sensitivities are about 143.2 V/(m/s(2)) for TENG and 291.7 μA/(m/s(2)) for EMG. The fabricated hybridized nanogenerator may have practical use for scavenging mechanical energy and self-powered acceleration sensor systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, J.H.
The separation of the Czech and Slovak Republics has highlighted differences in regional energy development activities, specifically, the privatization of electric power projects. It has also highlighted differences in the investment opportunities in electric power generating projects. Although the terms of the velvet divorce are now relatively final, one area where some sharing, use or investment in common assets will continue to occur is in the energy sector. The main reason is it serves neither party to completely separate its assets, and both republics have some strategic leverage over the other regarding energy matters. Strategic/financial cooperation is necessary for bothmore » republics to move forward efficiently, but especially for Slovakia since it is the less resource-rich. On the other hand, Slovakia maintains the right-of-way for crucial pipelines from the Ukraine that supply both republics. There is no question though, the Czech region is the greater beneficiary of foreign investment in electric generation, transmission and distribution, retrofitting, environmental rehabilitation, and fuel supply development projects.« less
Flexible Friction Stir Joining Technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng, Zhili; Lim, Yong Chae; Mahoney, Murray
2015-07-23
Reported herein is the final report on a U.S. Department of Energy (DOE) Advanced Manufacturing Office (AMO) project with industry cost-share that was jointly carried out by Oak Ridge National Laboratory (ORNL), ExxonMobil Upstream Research Company (ExxonMobil), and MegaStir Technologies (MegaStir). The project was aimed to advance the state of the art of friction stir welding (FSW) technology, a highly energy-efficient solid-state joining process, for field deployable, on-site fabrications of large, complex and thick-sectioned structures of high-performance and high-temperature materials. The technology innovations developed herein attempted to address two fundamental shortcomings of FSW: 1) the inability for on-site welding andmore » 2) the inability to weld thick section steels, both of which have impeded widespread use of FSW in manufacturing. Through this work, major advance has been made toward transforming FSW technology from a “specialty” process to a mainstream materials joining technology to realize its pervasive energy, environmental, and economic benefits across industry.« less
Solar energy an investment in our nations energy and economic security
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barnett, A.; Sklar, A.
1996-07-01
The solar energy industries are engaged in aggressive efforts to develop, validate, and deploy solar energy systems for a wide variety of applications in every sector of the economy. In many cases, efforts are in partnership with the United States Departmet of Energy (DOE) and it`s laboratories. These partnerships are heavily cost shared by industry and were entered into with good faith by companies and corporations willing to include their significant cost-share in their budget planning.
The Sustainable Nuclear Future: Fission and Fusion E.M. Campbell Logos Technologies
NASA Astrophysics Data System (ADS)
Campbell, E. Michael
2010-02-01
Global industrialization, the concern over rising CO2 levels in the atmosphere and other negative environmental effects due to the burning of hydrocarbon fuels and the need to insulate the cost of energy from fuel price volatility have led to a renewed interest in nuclear power. Many of the plants under construction are similar to the existing light water reactors but incorporate modern engineering and enhanced safety features. These reactors, while mature, safe and reliable sources of electrical power have limited efficiency in converting fission power to useful work, require significant amounts of water, and must deal with the issues of nuclear waste (spent fuel), safety, and weapons proliferation. If nuclear power is to sustain its present share of the world's growing energy needs let alone displace carbon based fuels, more than 1000 reactors will be needed by mid century. For this to occur new reactors that are more efficient, versatile in their energy markets, require minimal or no water, produce less waste and more robust waste forms, are inherently safe and minimize proliferation concerns will be necessary. Graphite moderated, ceramic coated fuel, and He cooled designs are reactors that can satisfy these requirements. Along with other generation IV fast reactors that can further reduce the amounts of spent fuel and extend fuel resources, such a nuclear expansion is possible. Furthermore, facilities either in early operations or under construction should demonstrate the next step in fusion energy development in which energy gain is produced. This demonstration will catalyze fusion energy development and lead to the ultimate development of the next generation of nuclear reactors. In this presentation the role of advanced fission reactors and future fusion reactors in the expansion of nuclear power will be discussed including synergies with the existing worldwide nuclear fleet. )
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crowe, Tracey
2013-06-30
The Clean Energy Ministerial (CEM) is a high-level global forum to share best practices and promote policies and programs that advance clean energy technologies and accelerate the transition to a global clean energy economy. The CEM works to increase energy efficiency, expand clean energy supply, and enhance clean energy access worldwide. To achieve these goals, the CEM pursues a three-part strategy that includes high-level policy dialogue, technical cooperation, and engagement with the private sector and other stakeholders. Each year, energy ministers and other high-level delegates from the 23 participating CEM governments come together to discuss clean energy, review clean energymore » progress, and identify tangible next steps to accelerate the clean energy transition. The U.S. Department of Energy, which played a crucial role in launching the CEM, hosted the first annual meeting of energy ministers in Washington, DC, in June 2010. The United Arab Emirates hosted the second Clean Energy Ministerial in 2011, and the United Kingdom hosted the third Clean Energy Ministerial in 2012. In April 2013, India hosted the fourth Clean Energy Ministerial (CEM4) in New Delhi. Key insights from CEM4 are summarized in the report. It captures the ideas and recommendations of the government and private sector leaders who participated in the discussions on six discussion topics: reducing soft costs of solar PV; energy management systems; renewables policy and finance; clean vehicle adoption; mini-grid development; and power systems in emerging economies.« less
Multifunction devices and their impacts on energy use
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amorosano, D.
1995-12-01
Integrated multifunctional office equipment will have ramifications for energy efficiency and use. Specifically discussed here is Canon`s Digital Imaging System, also known as the GP55 Series, currently under development. Integrated office equipment combines the capabilities of single-function, stand-alone devices, increasing efficiency by eliminating steps in the production and distribution of documents. Canon and other vendors are now introducing these products into the office equipment industry in response to four trends: (1) Implementation of local area networks (LANs). It`s estimated that by 1997, 73% of all personal computers (PCs) in offices will be networked in some way. Vendors are looking tomore » tie their office equipment into that network connection and shared-resource capability. (2) Adoption of the {open_quotes}More with less{close_quotes} attitude by most companies is forcing new approaches to the way in which they increase efficiency. (3) Continuing workgroup requirements for both electronic and hard copy input/output capabilities. (4) Persistence of the {open_quotes}Sneaker{close_quotes} network. Research commissioned by Canon has shown that in spite of LAN penetration, this {open_quotes}Sneakernet{close_quotes} is still significant, meaning that users must still leave their desks an average of 11 times a day to make copies, send faxes, etc. The idea behind integrated technology is to eliminate those steps in the document processing procedure.« less
Particle-in-cell simulations on graphic processing units
NASA Astrophysics Data System (ADS)
Ren, C.; Zhou, X.; Li, J.; Huang, M. C.; Zhao, Y.
2014-10-01
We will show our recent progress in using GPU's to accelerate the PIC code OSIRIS [Fonseca et al. LNCS 2331, 342 (2002)]. The OISRIS parallel structure is retained and the computation-intensive kernels are shipped to GPU's. Algorithms for the kernels are adapted for the GPU, including high-order charge-conserving current deposition schemes with few branching and parallel particle sorting [Kong et al., JCP 230, 1676 (2011)]. These algorithms make efficient use of the GPU shared memory. This work was supported by U.S. Department of Energy under Grant No. DE-FC02-04ER54789 and by NSF under Grant No. PHY-1314734.
Authentication and Key Establishment in Dynamic Wireless Sensor Networks
Qiu, Ying; Zhou, Jianying; Baek, Joonsang; Lopez, Javier
2010-01-01
When a sensor node roams within a very large and distributed wireless sensor network, which consists of numerous sensor nodes, its routing path and neighborhood keep changing. In order to provide a high level of security in this environment, the moving sensor node needs to be authenticated to new neighboring nodes and a key established for secure communication. The paper proposes an efficient and scalable protocol to establish and update the authentication key in a dynamic wireless sensor network environment. The protocol guarantees that two sensor nodes share at least one key with probability 1 (100%) with less memory and energy cost, while not causing considerable communication overhead. PMID:22319321
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Allan; Mills, Evan; Vine, Edward.
The promotion of technologies and services for insurance loss reduction and loss prevention is as old as the fields of insurance and risk management. This report addresses a new category of risk management opportunity involving technologies and procedures that use energy more efficiently or supply renewable energy. While the economic benefits of these measures are of interest to energy consumers seeking to reduce their energy expenditures, we have found that they also offer a novel and largely untapped pathway for achieving traditional risk management objectives. Most of the technologies described in this report were supported by government- sponsored RD Dmore » programs over many years of effort. These technologies have many benefits, including insurance loss reduction and prevention. The insurance and risk management communities could take advantage of these technologies, either independently or in cost-sharing partnerships with existing R D programs. In this report, we present a compilation of energy-efficiency and renewable energy projects (e.g., energy-efficient halogen torchiere replacements) and techniques (e.g., infrared cameras to detect fire hazards) that are currently being investigated at the U.S. Department of Energy's national laboratories and which the insurance and risk management communities could encourage their customers to use to address their short-term and long-term needs. Once the loss-prevention benefits of these technologies and techniques (many of which are not yet available in the marketplace) are sufficiently demonstrated, insurers can promote their use through informational programs and perhaps financial incentives (e.g., risk-adjusted insurance premium schemes) through the insurance regulatory and rate-making processes. We identified 78 technologies and techniques being investigated by nine national laboratories which can help to reduce insurance losses and manage risks, especially those associated with power failures, fire and wind damage, and home or workplace indoor air quality hazards. All help to reduce insurance losses in one or more of the following categories: boiler and machinery, builder's risk, business interruption, commercial property insurance, completed operations liability, comprehensive general liability, contractors liability, environmental liability, product liability, professional liability, service interruption, workers' compensation, health/life insurance, and homeowners insurance. We identify examples of existing collaborations between the national laboratories and the insurance industry, and indicate research activities being conducted by the insurance and risk management communities that would benefit from the work of the national laboratories. We also describe some of the risk factors associated with energy-efficient and renewable energy technologies. For the future, significant progress could be made through interdisciplinary collaborative applied research (i.e., integrating the actuarial sciences with the physical or engineering sciences). This collaboration could be sponsored jointly by the U.S. Department of Energy and the insurance and risk management communities (as well as working through the insurance regulatory and rate-making processes).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Allan; Mills, Evan; Vine, Edward
The promotion of technologies and services for insurance loss reduction and loss prevention is as old as the fields of insurance and risk management. This report addresses a new category of risk management opportunity involving technologies and procedures that use energy more efficiently or supply renewable energy. While the economic benefits of these measures are of interest to energy consumers seeking to reduce their energy expenditures, we have found that they also offer a novel and largely untapped pathway for achieving traditional risk management objectives. Most of the technologies described in this report were supported by government- sponsored RD&D programsmore » over many years of effort. These technologies have many benefits, including insurance loss reduction and prevention. The insurance and risk management communities could take advantage of these technologies, either independently or in cost-sharing partnerships with existing R&D programs. In this report, we present a compilation of energy-efficiency and renewable energy projects (e.g., energy-efficient halogen torchiere replacements) and techniques (e.g., infrared cameras to detect fire hazards) that are currently being investigated at the U.S. Department of Energy's national laboratories and which the insurance and risk management communities could encourage their customers to use to address their short-term and long-term needs. Once the loss-prevention benefits of these technologies and techniques (many of which are not yet available in the marketplace) are sufficiently demonstrated, insurers can promote their use through informational programs and perhaps financial incentives (e.g., risk-adjusted insurance premium schemes) through the insurance regulatory and rate-making processes. We identified 78 technologies and techniques being investigated by nine national laboratories which can help to reduce insurance losses and manage risks, especially those associated with power failures, fire and wind damage, and home or workplace indoor air quality hazards. All help to reduce insurance losses in one or more of the following categories: boiler and machinery, builder's risk, business interruption, commercial property insurance, completed operations liability, comprehensive general liability, contractors liability, environmental liability, product liability, professional liability, service interruption, workers' compensation, health/life insurance, and homeowners insurance. We identify examples of existing collaborations between the national laboratories and the insurance industry, and indicate research activities being conducted by the insurance and risk management communities that would benefit from the work of the national laboratories. We also describe some of the risk factors associated with energy-efficient and renewable energy technologies. For the future, significant progress could be made through interdisciplinary collaborative applied research (i.e., integrating the actuarial sciences with the "physical" or "engineering" sciences). This collaboration could be sponsored jointly by the U.S. Department of Energy and the insurance and risk management communities (as well as working through the insurance regulatory and rate-making processes).« less
Mori, Toshifumi; Hamers, Robert J; Pedersen, Joel A; Cui, Qiang
2014-07-17
Motivated by specific applications and the recent work of Gao and co-workers on integrated tempering sampling (ITS), we have developed a novel sampling approach referred to as integrated Hamiltonian sampling (IHS). IHS is straightforward to implement and complementary to existing methods for free energy simulation and enhanced configurational sampling. The method carries out sampling using an effective Hamiltonian constructed by integrating the Boltzmann distributions of a series of Hamiltonians. By judiciously selecting the weights of the different Hamiltonians, one achieves rapid transitions among the energy landscapes that underlie different Hamiltonians and therefore an efficient sampling of important regions of the conformational space. Along this line, IHS shares similar motivations as the enveloping distribution sampling (EDS) approach of van Gunsteren and co-workers, although the ways that distributions of different Hamiltonians are integrated are rather different in IHS and EDS. Specifically, we report efficient ways for determining the weights using a combination of histogram flattening and weighted histogram analysis approaches, which make it straightforward to include many end-state and intermediate Hamiltonians in IHS so as to enhance its flexibility. Using several relatively simple condensed phase examples, we illustrate the implementation and application of IHS as well as potential developments for the near future. The relation of IHS to several related sampling methods such as Hamiltonian replica exchange molecular dynamics and λ-dynamics is also briefly discussed.
Collaborative patient-provider communication and uptake of adolescent vaccines.
Moss, Jennifer L; Reiter, Paul L; Rimer, Barbara K; Brewer, Noel T
2016-06-01
Recommendations from healthcare providers are one of the most consistent correlates of adolescent vaccination, but few studies have investigated other elements of patient-provider communication and their relevance to uptake. We examined competing hypotheses about the relationship of patient-driven versus provider-driven communication styles with vaccination. We gathered information about vaccine uptake from healthcare provider-verified data in the 2010 National Immunization Survey-Teen for tetanus, diphtheria, and pertussis (Tdap) booster, meningococcal vaccine, and human papillomavirus (HPV) vaccine (initiation among females) for adolescents ages 13-17. We categorized communication style in parents' conversations with healthcare providers about vaccines, based on parents' reports (of whether a provider recommended a vaccine and, if so, if conversations were informed, shared, or efficient) (N = 9021). Most parents reported either no provider recommendation (Tdap booster: 35%; meningococcal vaccine: 46%; and HPV vaccine: 31%) or reported a provider recommendation and shared patient-provider communication (43%, 38%, and 49%, respectively). Provider recommendations were associated with increased odds of vaccination (all ps < 0.001). In addition, more provider-driven communication styles were associated with higher rates of uptake for meningococcal vaccine (efficient style: 82% vs. shared style: 77% vs. informed style: 68%; p < 0.001 for shared vs. informed) and HPV vaccine (efficient style: 90% vs. shared style: 70% vs. informed style: 33%; p < 0.05 for all comparisons). Efficient communication styles were used rarely (≤2% across vaccines) but were highly effective for encouraging meningococcal and HPV vaccination. Intervention studies are needed to confirm that efficient communication approaches increase HPV vaccination among adolescents. Copyright © 2016 Elsevier Ltd. All rights reserved.
Vanthournout, Bram; Greve, Michelle; Bruun, Anne; Bechsgaard, Jesper; Overgaard, Johannes; Bilde, Trine
2016-01-01
Group living carries a price: it inherently entails increased competition for resources and reproduction, and may also be associated with mating among relatives, which carries costs of inbreeding. Nonetheless, group living and sociality is found in many animals, and understanding the direct and indirect benefits of cooperation that override the inherent costs remains a challenge in evolutionary ecology. Individuals in groups may benefit from more efficient management of energy or water reserves, for example in the form of reduced water or heat loss from groups of animals huddling, or through reduced energy demands afforded by shared participation in tasks. We investigated the putative benefits of group living in the permanently social spider Stegodyphus dumicola by comparing the effect of group size on standard metabolic rate, lipid/protein content as a body condition measure, feeding efficiency, per capita web investment, and weight/water loss and survival during desiccation. Because energetic expenditure is temperature sensitive, some assays were performed under varying temperature conditions. We found that feeding efficiency increased with group size, and the rate of weight loss was higher in solitary individuals than in animals in groups of various sizes during desiccation. Interestingly, this was not translated into differences in survival or in standard metabolic rate. We did not detect any group size effects for other parameters, and group size effects did not co-vary with experimental temperature in a predictive manner. Both feeding efficiency and mass loss during desiccation are relevant ecological factors as the former results in lowered predator exposure time, and the latter benefits social spiders which occupy arid, hot environments. PMID:26869936
ERIC Educational Resources Information Center
Yang, Tung-Mou
2011-01-01
Information sharing and integration has long been considered an important approach for increasing organizational efficiency and performance. With advancements in information and communication technologies, sharing and integrating information across organizations becomes more attractive and practical to organizations. However, achieving…
Walker, Ian; Verplanken, Bas; Shaddick, Gavin
2016-01-01
If in-home displays and other interventions are to successfully influence people’s energy consumption, they need to communicate about energy in terms that make sense to users. Here we explore householders’ perceptions of energy consumption, using a novel combination of card-sorting and clustering to reveal shared patterns in the way people think about domestic energy consumption. The data suggest that, when participants were asked to group appliances which they felt naturally ‘went together’, there are relatively few shared ideas about which appliances are conceptually related. To the extent participants agreed on which appliances belonged together, these groupings were based on activities (e.g., entertainment) and location within the home (e.g., kitchen); energy consumption was not an important factor in people’s categorisations. This suggests messages about behaviour change aimed at reducing energy consumption might better be tied to social practices than to consumption itself. PMID:27467206
Development and manufacture of reactive-transfer-printed CIGS photovoltaic modules
NASA Astrophysics Data System (ADS)
Eldada, Louay; Sang, Baosheng; Lu, Dingyuan; Stanbery, Billy J.
2010-09-01
In recent years, thin-film photovoltaic (PV) companies started realizing their low manufacturing cost potential, and grabbing an increasingly larger market share from multicrystalline silicon companies. Copper Indium Gallium Selenide (CIGS) is the most promising thin-film PV material, having demonstrated the highest energy conversion efficiency in both cells and modules. However, most CIGS manufacturers still face the challenge of delivering a reliable and rapid manufacturing process that can scale effectively and deliver on the promise of this material system. HelioVolt has developed a reactive transfer process for CIGS absorber formation that has the benefits of good compositional control, high-quality CIGS grains, and a fast reaction. The reactive transfer process is a two stage CIGS fabrication method. Precursor films are deposited onto substrates and reusable print plates in the first stage, while in the second stage, the CIGS layer is formed by rapid heating with Se confinement. High quality CIGS films with large grains were produced on a full-scale manufacturing line, and resulted in high-efficiency large-form-factor modules. With 14% cell efficiency and 12% module efficiency, HelioVolt started to commercialize the process on its first production line with 20 MW nameplate capacity.
A market-based approach to share water and benefits in transboundary river basins
NASA Astrophysics Data System (ADS)
Arjoon, Diane; Tilmant, Amaury; Herrmann, Markus
2016-04-01
The equitable sharing of benefits in transboundary river basins is necessary to reach a consensus on basin-wide development and management activities. Benefit sharing arrangements must be collaboratively developed to be perceived as efficient, as well as equitable, in order to be considered acceptable to all riparian countries. The current literature falls short of providing practical, institutional arrangements that ensure maximum economic welfare as well as collaboratively developed methods for encouraging the equitable sharing of benefits. In this study we define an institutional arrangement that distributes welfare in a river basin by maximizing the economic benefits of water use and then sharing these benefits in an equitable manner using a method developed through stakeholder involvement. In this methodology (i) a hydro-economic model is used to efficiently allocate scarce water resources to water users in a transboundary basin, (ii) water users are obliged to pay for water, and (iii) the total of these water charges are equitably redistributed as monetary compensation to users. The amount of monetary compensation, for each water user, is determined through the application of a sharing method developed by stakeholder input, based on a stakeholder vision of fairness, using an axiomatic approach. The whole system is overseen by a river basin authority. The methodology is applied to the Eastern Nile River basin as a case study. The technique ensures economic efficiency and may lead to more equitable solutions in the sharing of benefits in transboundary river basins because the definition of the sharing rule is not in question, as would be the case if existing methods, such as game theory, were applied, with their inherent definitions of fairness.
Optimizing Distributed Energy Resources and building retrofits with the strategic DER-CAModel
Stadler, M.; Groissböck, M.; Cardoso, G.; ...
2014-08-05
The pressuring need to reduce the import of fossil fuels as well as the need to dramatically reduce CO 2 emissions in Europe motivated the European Commission (EC) to implement several regulations directed to building owners. Most of these regulations focus on increasing the number of energy efficient buildings, both new and retrofitted, since retrofits play an important role in energy efficiency. Overall, this initiative results from the realization that buildings will have a significant impact in fulfilling the 20/20/20-goals of reducing the greenhouse gas emissions by 20%, increasing energy efficiency by 20%, and increasing the share of renewables tomore » 20%, all by 2020. The Distributed Energy Resources Customer Adoption Model (DER-CAM) is an optimization tool used to support DER investment decisions, typically by minimizing total annual costs or CO 2 emissions while providing energy services to a given building or microgrid site. This document shows enhancements made to DER-CAM to consider building retrofit measures along with DER investment options. Specifically, building shell improvement options have been added to DER-CAM as alternative or complementary options to investments in other DER such as PV, solar thermal, combined heat and power, or energy storage. The extension of the mathematical formulation required by the new features introduced in DER-CAM is presented and the resulting model is demonstrated at an Austrian Campus building by comparing DER-CAM results with and without building shell improvement options. Strategic investment results are presented and compared to the observed investment decision at the test site. Results obtained considering building shell improvement options suggest an optimal weighted average U value of about 0.53 W/(m 2K) for the test site. This result is approximately 25% higher than what is currently observed in the building, suggesting that the retrofits made in 2002 were not optimal. Furthermore, the results obtained with DER-CAM illustrate the complexity of interactions between DER and passive measure options, showcasing the need for a holistic optimization approach to effectively optimize energy costs and CO 2 emissions. Lastly, the simultaneous optimization of building shell improvements and DER investments enables building owners to take one step further towards nearly zero energy buildings (nZEB) or nearly zero carbon emission buildings (nZCEB), and therefore support the 20/20/20 goals.« less
Optimizing Distributed Energy Resources and building retrofits with the strategic DER-CAModel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stadler, M.; Groissböck, M.; Cardoso, G.
The pressuring need to reduce the import of fossil fuels as well as the need to dramatically reduce CO 2 emissions in Europe motivated the European Commission (EC) to implement several regulations directed to building owners. Most of these regulations focus on increasing the number of energy efficient buildings, both new and retrofitted, since retrofits play an important role in energy efficiency. Overall, this initiative results from the realization that buildings will have a significant impact in fulfilling the 20/20/20-goals of reducing the greenhouse gas emissions by 20%, increasing energy efficiency by 20%, and increasing the share of renewables tomore » 20%, all by 2020. The Distributed Energy Resources Customer Adoption Model (DER-CAM) is an optimization tool used to support DER investment decisions, typically by minimizing total annual costs or CO 2 emissions while providing energy services to a given building or microgrid site. This document shows enhancements made to DER-CAM to consider building retrofit measures along with DER investment options. Specifically, building shell improvement options have been added to DER-CAM as alternative or complementary options to investments in other DER such as PV, solar thermal, combined heat and power, or energy storage. The extension of the mathematical formulation required by the new features introduced in DER-CAM is presented and the resulting model is demonstrated at an Austrian Campus building by comparing DER-CAM results with and without building shell improvement options. Strategic investment results are presented and compared to the observed investment decision at the test site. Results obtained considering building shell improvement options suggest an optimal weighted average U value of about 0.53 W/(m 2K) for the test site. This result is approximately 25% higher than what is currently observed in the building, suggesting that the retrofits made in 2002 were not optimal. Furthermore, the results obtained with DER-CAM illustrate the complexity of interactions between DER and passive measure options, showcasing the need for a holistic optimization approach to effectively optimize energy costs and CO 2 emissions. Lastly, the simultaneous optimization of building shell improvements and DER investments enables building owners to take one step further towards nearly zero energy buildings (nZEB) or nearly zero carbon emission buildings (nZCEB), and therefore support the 20/20/20 goals.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Milardi, C.; Alesini, D.; Biagini, M.E.
DAFNE is an accelerator complex consisting of a double ring lepton collider working at the c.m. energy of the {Phi}-resonance (1.02 GeV) and an injection system. In its original configuration the collider consisted of two independent rings, each {approx}97 m long, sharing two 10 m long interaction regions (IR1 and IR2) where the KLOE and FINUDA or DEAR detectors were respectively installed. A full energy injection system, including an S-band linac, 180 m long transfer lines and an accumulator/damping ring, provides fast and high efficiency electron positron injection also in topping-up mode during collisions. Recently the DAFNE collider has beenmore » upgraded in order to implement a new collision scheme based on large Piwinski angle and cancellation of the synchro-betatron resonances by means of electromagnetic sextupoles (Crab-Waist compensation). The novel approach has proved to be effective in improving beam-beam interaction and collider luminosity.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Torcellini, Paul A; Eley, Charles; Gupta, Smita
Recently, zero net energy (ZNE) buildings have moved from state-of-the-art small project demonstrations to a more widely adopted approach across the country among various building types and sizes. States such as California set policy goals of all new residential construction to be NZE by 2020 and all commercial buildings to be NZE by 2030. However, the market for designing, constructing, and operating ZNE buildings is still relatively small. We bring together distinguished experts to share their thoughts on making ZNE buildings more widespread and mainstream from a broad perspective, including governments, utilities, energy-efficiency research institutes, and building owners. This conversationmore » also presents the benefits of ZNE and ways to achieve that goal in the design and operation of buildings. The following is a roundtable conducted by ASHRAE Journal and Bing Liu with Charles Eley, Smita Gupta, Cathy Higgins, Jessica Iplikci, Jon McHugh, Michael Rosenberg, and Paul Torcellini.« less
7 CFR 1710.255 - Energy efficiency work plans-energy efficiency borrowers.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 7 Agriculture 11 2014-01-01 2014-01-01 false Energy efficiency work plans-energy efficiency... TO ELECTRIC LOANS AND GUARANTEES Construction Work Plans and Related Studies § 1710.255 Energy efficiency work plans—energy efficiency borrowers. (a) All energy efficiency borrowers must maintain a...
Corgnet, Brice; Espín, Antonio M.; Hernán-González, Roberto
2017-01-01
Groups make decisions on both the production and the distribution of resources. These decisions typically involve a tension between increasing the total level of group resources (i.e. social efficiency) and distributing these resources among group members (i.e. individuals' relative shares). This is the case because the redistribution process may destroy part of the resources, thus resulting in socially inefficient allocations. Here we apply a dual-process approach to understand the cognitive underpinnings of this fundamental tension. We conducted a set of experiments to examine the extent to which different allocation decisions respond to intuition or deliberation. In a newly developed approach, we assess intuition and deliberation at both the trait level (using the Cognitive Reflection Test, henceforth CRT) and the state level (through the experimental manipulation of response times). To test for robustness, experiments were conducted in two countries: the USA and India. Despite absolute-level differences across countries, in both locations we show that: (i) time pressure and low CRT scores are associated with individuals' concerns for their relative shares and (ii) time delay and high CRT scores are associated with individuals' concerns for social efficiency. These findings demonstrate that deliberation favours social efficiency by overriding individuals' intuitive tendency to focus on relative shares. PMID:28386421
Energy efficient low-noise neural recording amplifier with enhanced noise efficiency factor.
Majidzadeh, V; Schmid, A; Leblebici, Y
2011-06-01
This paper presents a neural recording amplifier array suitable for large-scale integration with multielectrode arrays in very low-power microelectronic cortical implants. The proposed amplifier is one of the most energy-efficient structures reported to date, which theoretically achieves an effective noise efficiency factor (NEF) smaller than the limit that can be achieved by any existing amplifier topology, which utilizes a differential pair input stage. The proposed architecture, which is referred to as a partial operational transconductance amplifier sharing architecture, results in a significant reduction of power dissipation as well as silicon area, in addition to the very low NEF. The effect of mismatch on crosstalk between channels and the tradeoff between noise and crosstalk are theoretically analyzed. Moreover, a mathematical model of the nonlinearity of the amplifier is derived, and its accuracy is confirmed by simulations and measurements. For an array of four neural amplifiers, measurement results show a midband gain of 39.4 dB and a -3-dB bandwidth ranging from 10 Hz to 7.2 kHz. The input-referred noise integrated from 10 Hz to 100 kHz is measured at 3.5 μVrms and the power consumption is 7.92 μW from a 1.8-V supply, which corresponds to NEF = 3.35. The worst-case crosstalk and common-mode rejection ratio within the desired bandwidth are - 43.5 dB and 70.1 dB, respectively, and the active silicon area of each amplifier is 256 μm × 256 μm in 0.18-μm complementary metal-oxide semiconductor technology.
Building Energy Model Development for Retrofit Homes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chasar, David; McIlvaine, Janet; Blanchard, Jeremy
2012-09-30
Based on previous research conducted by Pacific Northwest National Laboratory and Florida Solar Energy Center providing technical assistance to implement 22 deep energy retrofits across the nation, 6 homes were selected in Florida and Texas for detailed post-retrofit energy modeling to assess realized energy savings (Chandra et al, 2012). However, assessing realized savings can be difficult for some homes where pre-retrofit occupancy and energy performance are unknown. Initially, savings had been estimated using a HERS Index comparison for these homes. However, this does not account for confounding factors such as occupancy and weather. This research addresses a method to moremore » reliably assess energy savings achieved in deep energy retrofits for which pre-retrofit utility bills or occupancy information in not available. A metered home, Riverdale, was selected as a test case for development of a modeling procedure to account occupancy and weather factors, potentially creating more accurate estimates of energy savings. This “true up” procedure was developed using Energy Gauge USA software and post-retrofit homeowner information and utility bills. The 12 step process adjusts the post-retrofit modeling results to correlate with post-retrofit utility bills and known occupancy information. The “trued” post retrofit model is then used to estimate pre-retrofit energy consumption by changing the building efficiency characteristics to reflect the pre-retrofit condition, but keeping all weather and occupancy-related factors the same. This creates a pre-retrofit model that is more comparable to the post-retrofit energy use profile and can improve energy savings estimates. For this test case, a home for which pre- and post- retrofit utility bills were available was selected for comparison and assessment of the accuracy of the “true up” procedure. Based on the current method, this procedure is quite time intensive. However, streamlined processing spreadsheets or incorporation into existing software tools would improve the efficiency of the process. Retrofit activity appears to be gaining market share, and this would be a potentially valuable capability with relevance to marketing, program management, and retrofit success metrics.« less
Membrane transfer of crystalline silicon thin film solar cells
NASA Astrophysics Data System (ADS)
Vempati, Venkata Kesari Nandan
Silicon has been dominating the solar industry for many years and has been touted as the gold standard of the photovoltaic world. The factors for its dominance: government subsidies and ease of processing. Silicon holds close to 90% of the market share in the material being used for solar cell production. Of which 14% belongs to single-crystalline Silicon. Although 24% efficient bulk crystalline solar cells have been reported, the industry has been looking for thin film alternatives to reduce the cost of production. Moreover with the new avenues like flexible consumer electronics opening up, there is a need to introduce the flexibility into the solar cells. Thin film films make up for their inefficiency keeping their mechanical properties intact by incorporating Anti-reflective schemes such as surface texturing, textured back reflectors and low reflective surfaces. This thesis investigates the possibility of using thin film crystalline Silicon for fabricating solar cells and has demonstrated a low cost and energy efficient way for fabricating 2microm thick single crystalline Silicon solar cells with an efficiency of 0.8% and fill factor of 35%.
17 CFR 210.4-07 - Discount on shares.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 1940, AND ENERGY POLICY AND CONSERVATION ACT OF 1975 Rules of General Application § 210.4-07 Discount on shares. Discount on shares, or any unamortized balance thereof, shall be shown separately as a...
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
The report is an overview of electric energy efficiency programs. It takes a concise look at what states are doing to encourage energy efficiency and how it impacts electric utilities. Energy efficiency programs began to be offered by utilities as a response to the energy crises of the 1970s. These regulatory-driven programs peaked in the early-1990s and then tapered off as deregulation took hold. Today, rising electricity prices, environmental concerns, and national security issues have renewed interest in increasing energy efficiency as an alternative to additional supply. In response, new methods for administering, managing, and delivering energy efficiency programs aremore » being implemented. Topics covered in the report include: Analysis of the benefits of energy efficiency and key methods for achieving energy efficiency; evaluation of the business drivers spurring increased energy efficiency; Discussion of the major barriers to expanding energy efficiency programs; evaluation of the economic impacts of energy efficiency; discussion of the history of electric utility energy efficiency efforts; analysis of the impact of energy efficiency on utility profits and methods for protecting profitability; Discussion of non-utility management of energy efficiency programs; evaluation of major methods to spur energy efficiency - systems benefit charges, resource planning, and resource standards; and, analysis of the alternatives for encouraging customer participation in energy efficiency programs.« less
10 CFR 470.16 - Cost sharing and funds from other sources.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 3 2010-01-01 2010-01-01 false Cost sharing and funds from other sources. 470.16 Section... § 470.16 Cost sharing and funds from other sources. Proposers are encouraged to offer to share in the... other entities to obtain supplemental funding. ...
The Caspian Sea Negotiation Support System 2.0
NASA Astrophysics Data System (ADS)
Rouhani, O. M.; Madani, K.
2012-12-01
The Caspian Sea is one of the most resourceful (both in energy and biological resources) areas of the world. The share allocation of Caspian Sea has been the subject of many disputes. Up to now, the negotiations to reach an agreement regarding the ownership status of the sea have not been completely successful. To facilitate reaching an agreement among littoral countries, research studies can provide valuable information. Researchers should examine different options for dividing the sea closely and determine the benefits of each of the options for the parties involved. Following an earlier effort, Caspian Sea Negotiation Support System is further developed in this regard. The model estimates countries' areal and utility shares under different legal methods/scenarios, attempting to minimize transportation costs of exploiting the resource. The applied model is more efficient than the earlier model and the used data includes more variables/attributes such as depth, the differentiation between gas and oil, and various fish resources than the previously employed data. Consequently, the estimates are calculated in more details than are calculated in the earlier study. The results still show a high sensitivity of outputs to the proposed division rules, suggesting a need to clarify the countries' utility and areal shares under any suggested legal regime. Compared to the previous results, the new results confirm the significant effect of the addition of the more variables/attributes to the analysis, in terms of the areal shares and allocations, valuation of resources, and asset management.
External costs as a measure of environmental impact in the generation of electricity in Poland
NASA Astrophysics Data System (ADS)
Cel, W.; Czechowska-Kosacka, A.; Kujawska, Justyna; Wasąg, H.
2018-05-01
The depletion of natural resources, rising fossil fuel prices and growing environmental awareness, are leading to an increase in the popularity of renewable energy sources. In Poland, the share of energy derived from renewable sources continues to grow and now stands at 12.9% of the country’s gross electricity consumption. Energy from renewable sources in Poland is 60€ more expensive per MWh than energy from conventional sources. According to the European Climate and Energy Package, Poland is committed to increasing its share of renewable energy to 15% in 2020, and a further 5% by 2030. It is very important to ensure that the increase in the share of renewable energy will increase the price of energy for the end users. To convince the public of the need to incur greater costs in the purchase of “green” power, we should put forward arguments showing the benefits of its use. The aim of this paper is to demonstrate the viability of support through a system of certification for renewable energy sources and also to estimate the potential increase in energy prices caused by raising RES contribution.
Energy and material flows of megacities
Kennedy, Christopher A.; Stewart, Iain; Facchini, Angelo; Cersosimo, Igor; Mele, Renata; Chen, Bin; Uda, Mariko; Kansal, Arun; Chiu, Anthony; Kim, Kwi-gon; Dubeux, Carolina; Lebre La Rovere, Emilio; Cunha, Bruno; Pincetl, Stephanie; Keirstead, James; Barles, Sabine; Pusaka, Semerdanta; Gunawan, Juniati; Adegbile, Michael; Nazariha, Mehrdad; Hoque, Shamsul; Marcotullio, Peter J.; González Otharán, Florencia; Genena, Tarek; Ibrahim, Nadine; Farooqui, Rizwan; Cervantes, Gemma; Sahin, Ahmet Duran
2015-01-01
Understanding the drivers of energy and material flows of cities is important for addressing global environmental challenges. Accessing, sharing, and managing energy and material resources is particularly critical for megacities, which face enormous social stresses because of their sheer size and complexity. Here we quantify the energy and material flows through the world’s 27 megacities with populations greater than 10 million people as of 2010. Collectively the resource flows through megacities are largely consistent with scaling laws established in the emerging science of cities. Correlations are established for electricity consumption, heating and industrial fuel use, ground transportation energy use, water consumption, waste generation, and steel production in terms of heating-degree-days, urban form, economic activity, and population growth. The results help identify megacities exhibiting high and low levels of consumption and those making efficient use of resources. The correlation between per capita electricity use and urbanized area per capita is shown to be a consequence of gross building floor area per capita, which is found to increase for lower-density cities. Many of the megacities are growing rapidly in population but are growing even faster in terms of gross domestic product (GDP) and energy use. In the decade from 2001–2011, electricity use and ground transportation fuel use in megacities grew at approximately half the rate of GDP growth. PMID:25918371
Energy and material flows of megacities.
Kennedy, Christopher A; Stewart, Iain; Facchini, Angelo; Cersosimo, Igor; Mele, Renata; Chen, Bin; Uda, Mariko; Kansal, Arun; Chiu, Anthony; Kim, Kwi-Gon; Dubeux, Carolina; Lebre La Rovere, Emilio; Cunha, Bruno; Pincetl, Stephanie; Keirstead, James; Barles, Sabine; Pusaka, Semerdanta; Gunawan, Juniati; Adegbile, Michael; Nazariha, Mehrdad; Hoque, Shamsul; Marcotullio, Peter J; González Otharán, Florencia; Genena, Tarek; Ibrahim, Nadine; Farooqui, Rizwan; Cervantes, Gemma; Sahin, Ahmet Duran
2015-05-12
Understanding the drivers of energy and material flows of cities is important for addressing global environmental challenges. Accessing, sharing, and managing energy and material resources is particularly critical for megacities, which face enormous social stresses because of their sheer size and complexity. Here we quantify the energy and material flows through the world's 27 megacities with populations greater than 10 million people as of 2010. Collectively the resource flows through megacities are largely consistent with scaling laws established in the emerging science of cities. Correlations are established for electricity consumption, heating and industrial fuel use, ground transportation energy use, water consumption, waste generation, and steel production in terms of heating-degree-days, urban form, economic activity, and population growth. The results help identify megacities exhibiting high and low levels of consumption and those making efficient use of resources. The correlation between per capita electricity use and urbanized area per capita is shown to be a consequence of gross building floor area per capita, which is found to increase for lower-density cities. Many of the megacities are growing rapidly in population but are growing even faster in terms of gross domestic product (GDP) and energy use. In the decade from 2001-2011, electricity use and ground transportation fuel use in megacities grew at approximately half the rate of GDP growth.
Heat demand mapping and district heating grid expansion analysis: Case study of Velika Gorica
NASA Astrophysics Data System (ADS)
Dorotić, Hrvoje; Novosel, Tomislav; Duić, Neven; Pukšec, Tomislav
2017-10-01
Highly efficient cogeneration and district heating systems have a significant potential for primary energy savings and the reduction of greenhouse gas emissions through the utilization of a waste heat and renewable energy sources. These potentials are still highly underutilized in most European countries. They also play a key role in the planning of future energy systems due to their positive impact on the increase of integration of intermittent renewable energy sources, for example wind and solar in a combination with power to heat technologies. In order to ensure optimal levels of district heating penetration into an energy system, a comprehensive analysis is necessary to determine the actual demands and the potential energy supply. Economical analysis of the grid expansion by using the GIS based mapping methods hasn't been demonstrated so far. This paper presents a heat demand mapping methodology and the use of its output for the district heating network expansion analysis. The result are showing that more than 59% of the heat demand could be covered by the district heating in the city of Velika Gorica, which is two times more than the present share. The most important reason of the district heating's unfulfilled potential is already existing natural gas infrastructure.
Dols, W Stuart; Emmerich, Steven J; Polidoro, Brian J
2016-08-01
Building modelers need simulation tools capable of simultaneously considering building energy use, airflow and indoor air quality (IAQ) to design and evaluate the ability of buildings and their systems to meet today's demanding energy efficiency and IAQ performance requirements. CONTAM is a widely-used multizone building airflow and contaminant transport simulation tool that requires indoor temperatures as input values. EnergyPlus is a prominent whole-building energy simulation program capable of performing heat transfer calculations that require interzone and infiltration airflows as input values. On their own, each tool is limited in its ability to account for thermal processes upon which building airflow may be significantly dependent and vice versa. This paper describes the initial phase of coupling of CONTAM with EnergyPlus to capture the interdependencies between airflow and heat transfer using co-simulation that allows for sharing of data between independently executing simulation tools. The coupling is accomplished based on the Functional Mock-up Interface (FMI) for Co-simulation specification that provides for integration between independently developed tools. A three-zone combined heat transfer/airflow analytical BESTEST case was simulated to verify the co-simulation is functioning as expected, and an investigation of a two-zone, natural ventilation case designed to challenge the coupled thermal/airflow solution methods was performed.
Geng, Yong; Liu, Zuoxi; Xue, Bing; Dong, Huijuan; Fujita, Tsuyoshi; Chiu, Anthony
2014-12-01
Industrial symbiosis is the sharing of services, utility, and by-product resources among industries. This is usually made in order to add value, reduce costs, and improve the environment, and therefore has been taken as an effective approach for developing an eco-industrial park, improving resource efficiency, and reducing pollutant emission. Most conventional evaluation approaches ignored the contribution of natural ecosystem to the development of industrial symbiosis and cannot reveal the interrelations between economic development and environmental protection, leading to a need of an innovative evaluation method. Under such a circumstance, we present an emergy analysis-based evaluation method by employing a case study at Shenyang Economic and Technological Development Zone (SETDZ). Specific emergy indicators on industrial symbiosis, including emergy savings and emdollar value of total emergy savings, were developed so that the holistic picture of industrial symbiosis can be presented. Research results show that nonrenewable inputs, imported resource inputs, and associated services could be saved by 89.3, 32.51, and 15.7 %, and the ratio of emergy savings to emergy of the total energy used would be about 25.58 %, and the ratio of the emdollar value of total emergy savings to the total gross regional product (GRP) of SETDZ would be 34.38 % through the implementation of industrial symbiosis. In general, research results indicate that industrial symbiosis could effectively reduce material and energy consumption and improve the overall eco-efficiency. Such a method can provide policy insights to industrial park managers so that they can raise appropriate strategies on developing eco-industrial parks. Useful strategies include identifying more potential industrial symbiosis opportunities, optimizing energy structure, increasing industrial efficiency, recovering local ecosystems, and improving public and industrial awareness of eco-industrial park policies.
NASA Astrophysics Data System (ADS)
Liang, Jiejunyi; Yang, Haitao; Wu, Jinglai; Zhang, Nong; Walker, Paul D.
2018-05-01
To improve the overall efficiency of electric vehicles and guarantee the driving comfort and vehicle drivability under the concept of simplifying mechanism complexity and minimizing manufacturing cost, this paper proposes a novel clutchless power-shifting transmission system with shifting control strategy and power sharing control strategy. The proposed shifting strategy takes advantage of the transmission architecture to achieve power-on shifting, which greatly improves the driving comfort compared with conventional automated manual transmission, with a bump function based shifting control method. To maximize the overall efficiency, a real-time power sharing control strategy is designed to solve the power distribution problem between the two motors. Detailed mathematical model is built to verify the effectiveness of the proposed methods. The results demonstrate the proposed strategies considerably improve the overall efficiency while achieve non-interrupted power-on shifting and maintain the vehicle jerk during shifting under an acceptable threshold.
An interactive environmental model for economic growth: evidence from a panel of countries.
Ramakrishnan, Suresh; Hishan, Sanil S; Nabi, Agha Amad; Arshad, Zeeshan; Kanjanapathy, Malini; Zaman, Khalid; Khan, Faisal
2016-07-01
This study aims to determine an interactive environmental model for economic growth that would be supported by the "sustainability principles" across the globe. The study examines the relationship between environmental pollutants (i.e., carbon dioxide emission, sulfur dioxide emission, mono-nitrogen oxide, and nitrous oxide emission); population growth; energy use; trade openness; per capita food production; and it's resulting impact on the real per capita GDP and sectoral growth (i.e., share of agriculture, industry, and services in GDP) in a panel of 34 high-income OECD, high-income non-OECD, and Europe and Central Asian countries, for the period of 1995-2014. The results of the panel fixed effect regression show that per capita GDP are influenced by sulfur dioxide emission, population growth, and per capita food production variability, while energy and trade openness significantly increases per capita income of the region. The results of the panel Seemingly Unrelated Regression (SUR) show that carbon dioxide emission significantly decreases the share of agriculture and industry in GDP, while it further supports the share of services sector to GDP. Both the sulfur dioxide and mono-nitrogen oxide emission decreases the share of services in GDP; nitrous oxide decreases the share of industry in GDP; while mono-nitrogen oxide supports the industrial activities. The following key growth-specific results has been obtained from the panel SUR estimation, i.e., (i) Both the food production per capita and trade openness significantly associated with the increasing share of agriculture, (ii) food production and energy use significantly increases the service sectors' productivity; (iii) food production decreases the industrial activities; (iv) trade openness decreases the share of services to GDP while it supports the industrial share to GDP; and finally, (v) energy demand decreases along with the increase agricultural share in the region. The results emphasize the need for an interactive environmental model that facilitates the process of sustainable development across the globe.
Water-energy nexus in the Sava River Basin: energy security in a transboundary perspective
NASA Astrophysics Data System (ADS)
Ramos, Eunice; Howells, Mark
2016-04-01
Resource management policies are frequently designed and planned to target specific needs of particular sectors, without taking into account the interests of other sectors who share the same resources. In a climate of resource depletion, population growth, increase in energy demand and climate change awareness, it is of great importance to promote the assessment of intersectoral linkages and, by doing so, understand their effects and implications. This need is further augmented when common use of resources might not be solely relevant at national level, but also when the distribution of resources spans over different nations. This paper focuses on the study of the energy systems of five south eastern European countries, which share the Sava River Basin (SRB), using a water-food(agriculture)-energy nexus approach. In the case of the electricity generation sector, the use of water is essential for the integrity of the energy systems, as the electricity production in the riparian countries relies on two major technology types dependent on water resources: hydro and thermal power plants. For example, in 2012, an average of 37% of the electricity production in the SRB countries was generated by hydropower and 61% in thermal power plants. Focusing on the SRB, in terms of existing installed capacities, the basin accommodates close to a tenth of all hydropower capacity while providing water for cooling to 42% of the net capacity of thermal power currently in operation in the basin. This energy-oriented nexus study explores the dependency on the basin's water resources of the energy systems in the region for the period between 2015 and 2030. To do so, a multi-country electricity model was developed to provide a quantification ground to the analysis, using the open-source software modelling tool OSeMOSYS. Three main areas are subject to analysis: first, the impact of energy efficiency and renewable energy strategies in the electricity generation mix; secondly, the potential impacts of climate change under a moderate climate change projection scenario; and finally, deriving from the latter point, the cumulative impact of an increase in water demand in the agriculture sector, for irrigation. Additionally, electricity trade dynamics are compared across the different scenarios under scrutiny, as an effort to investigate the response of the regional energy systems in simulated trade conditions.
Cointegration of output, capital, labor, and energy
NASA Astrophysics Data System (ADS)
Stresing, R.; Lindenberger, D.; Kã¼mmel, R.
2008-11-01
Cointegration analysis is applied to the linear combinations of the time series of (the logarithms of) output, capital, labor, and energy for Germany, Japan, and the USA since 1960. The computed cointegration vectors represent the output elasticities of the aggregate energy-dependent Cobb-Douglas function. The output elasticities give the economic weights of the production factors capital, labor, and energy. We find that they are for labor much smaller and for energy much larger than the cost shares of these factors. In standard economic theory output elasticities equal cost shares. Our heterodox findings support results obtained with LINEX production functions.
75 FR 34657 - Energy Efficiency and Sustainable Design Standards for New Federal Buildings
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-18
... Efficiency and Sustainable Design Standards for New Federal Buildings AGENCY: Office of Energy Efficiency and....S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Federal Energy Management... June 11, 2010. Cathy Zoi, Assistant Secretary, Energy Efficiency and Renewable Energy. [FR Doc. 2010...
48 CFR 23.203 - Energy-efficient products.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 48 Federal Acquisition Regulations System 1 2011-10-01 2011-10-01 false Energy-efficient products... SOCIOECONOMIC PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Energy and Water Efficiency and Renewable Energy 23.203 Energy-efficient...
48 CFR 23.203 - Energy-efficient products.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 48 Federal Acquisition Regulations System 1 2010-10-01 2010-10-01 false Energy-efficient products... SOCIOECONOMIC PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Energy and Water Efficiency and Renewable Energy 23.203 Energy-efficient...
48 CFR 23.203 - Energy-efficient products.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 48 Federal Acquisition Regulations System 1 2014-10-01 2014-10-01 false Energy-efficient products... SOCIOECONOMIC PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Energy and Water Efficiency and Renewable Energy 23.203 Energy-efficient...
48 CFR 23.203 - Energy-efficient products.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 48 Federal Acquisition Regulations System 1 2013-10-01 2013-10-01 false Energy-efficient products... SOCIOECONOMIC PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Energy and Water Efficiency and Renewable Energy 23.203 Energy-efficient...
48 CFR 23.203 - Energy-efficient products.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 48 Federal Acquisition Regulations System 1 2012-10-01 2012-10-01 false Energy-efficient products... SOCIOECONOMIC PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Energy and Water Efficiency and Renewable Energy 23.203 Energy-efficient...
ERIC Educational Resources Information Center
Diffin, Jennifer; Chirombo, Fanuel; Nangle, Dennis; de Jong, Mark
2010-01-01
This article explains how the document management team (circulation and interlibrary loan) at the University of Maryland University College implemented Microsoft's SharePoint product to create a central hub for online collaboration, communication, and storage. Enhancing the team's efficiency, organization, and cooperation was the primary goal.…
A Study on the Methods of Assessment and Strategy of Knowledge Sharing in Computer Course
ERIC Educational Resources Information Center
Chan, Pat P. W.
2014-01-01
With the advancement of information and communication technology, collaboration and knowledge sharing through technology is facilitated which enhances the learning process and improves the learning efficiency. The purpose of this paper is to review the methods of assessment and strategy of collaboration and knowledge sharing in a computer course,…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cai, H.; Wang, M.; Elgowainy, A.
Greenhouse gas (CO{sub 2}, CH{sub 4} and N{sub 2}O, hereinafter GHG) and criteria air pollutant (CO, NO{sub x}, VOC, PM{sub 10}, PM{sub 2.5} and SO{sub x}, hereinafter CAP) emission factors for various types of power plants burning various fuels with different technologies are important upstream parameters for estimating life-cycle emissions associated with alternative vehicle/fuel systems in the transportation sector, especially electric vehicles. The emission factors are typically expressed in grams of GHG or CAP per kWh of electricity generated by a specific power generation technology. This document describes our approach for updating and expanding GHG and CAP emission factors inmore » the GREET (Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation) model developed at Argonne National Laboratory (see Wang 1999 and the GREET website at http://greet.es.anl.gov/main) for various power generation technologies. These GHG and CAP emissions are used to estimate the impact of electricity use by stationary and transportation applications on their fuel-cycle emissions. The electricity generation mixes and the fuel shares attributable to various combustion technologies at the national, regional and state levels are also updated in this document. The energy conversion efficiencies of electric generating units (EGUs) by fuel type and combustion technology are calculated on the basis of the lower heating values of each fuel, to be consistent with the basis used in GREET for transportation fuels. On the basis of the updated GHG and CAP emission factors and energy efficiencies of EGUs, the probability distribution functions (PDFs), which are functions that describe the relative likelihood for the emission factors and energy efficiencies as random variables to take on a given value by the integral of their own probability distributions, are updated using best-fit statistical curves to characterize the uncertainties associated with GHG and CAP emissions in life-cycle modeling with GREET.« less
Communicate or pay the price of silence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Derry, F.E.
The electric utility industry's efforts to communicate with its customers through advertising, while highly criticized by consumer interest and other groups, is an important link in providing information that is in the public interest and which the industry has the right and obligation to provide. Advertising represents an efficient and economical way to share information and increase public understanding of the factors affecting utility reliability and cost. Surveys of utility customers show that they want an accounting of what the utility does with its money and consider advertising an appropriate vehicle. By pinpointing cost-related issues, advertising also helps to marketmore » programs that will reduce utility costs, such as off-peak energy use.« less
CENDI - A strategic interagency alliance in the 1990s
NASA Technical Reports Server (NTRS)
Caponio, Joseph; Buffum, Elizabeth; Cotter, Gladys; Smith, Kent; Molholm, Kurt
1991-01-01
The goals, functions, and accomplishments of the CENDI Group, a government interagency cooperative organization formed to improve federal research and development productivity and R&D information management systems through information exchange, are briefly reviewed. The five member agencies are the Departments of Commerce, Energy, Defense, and Health and Human Services, and NASA. CENDI provides a means for its members to share technologies, resources, ideas, information, management activities, and standards. The top priorities of CENDI are: work with R&D managers to improve productivity; provide technical data and information to all users; improve the effectiveness and efficiency of all CENDI agency operations; and familiarize R&D managers and policy makers with the value of STI.
30 CFR 585.541 - What is a qualified project for revenue sharing purposes?
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 2 2012-07-01 2012-07-01 false What is a qualified project for revenue sharing purposes? 585.541 Section 585.541 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE RENEWABLE ENERGY AND ALTERNATE USES OF EXISTING FACILITIES ON THE OUTER CONTINENTAL SHELF...
30 CFR 285.541 - What is a qualified project for revenue sharing purposes?
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 2 2011-07-01 2011-07-01 false What is a qualified project for revenue sharing purposes? 285.541 Section 285.541 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, REGULATION, AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE RENEWABLE ENERGY ALTERNATE USES OF EXISTING FACILITIES ON THE...
30 CFR 585.541 - What is a qualified project for revenue sharing purposes?
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 2 2014-07-01 2014-07-01 false What is a qualified project for revenue sharing purposes? 585.541 Section 585.541 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE RENEWABLE ENERGY AND ALTERNATE USES OF EXISTING FACILITIES ON THE OUTER CONTINENTAL SHELF...
30 CFR 585.541 - What is a qualified project for revenue sharing purposes?
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 2 2013-07-01 2013-07-01 false What is a qualified project for revenue sharing purposes? 585.541 Section 585.541 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE RENEWABLE ENERGY AND ALTERNATE USES OF EXISTING FACILITIES ON THE OUTER CONTINENTAL SHELF...
10 CFR 431.16 - Test procedures for the measurement of energy efficiency.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 3 2011-01-01 2011-01-01 false Test procedures for the measurement of energy efficiency. 431.16 Section 431.16 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR... Methods of Determining Efficiency § 431.16 Test procedures for the measurement of energy efficiency. For...
10 CFR 431.16 - Test procedures for the measurement of energy efficiency.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 3 2010-01-01 2010-01-01 false Test procedures for the measurement of energy efficiency. 431.16 Section 431.16 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR... Methods of Determining Efficiency § 431.16 Test procedures for the measurement of energy efficiency. For...
Space-Filling Supercapacitor Carpets: Highly scalable fractal architecture for energy storage
NASA Astrophysics Data System (ADS)
Tiliakos, Athanasios; Trefilov, Alexandra M. I.; Tanasǎ, Eugenia; Balan, Adriana; Stamatin, Ioan
2018-04-01
Revamping ground-breaking ideas from fractal geometry, we propose an alternative micro-supercapacitor configuration realized by laser-induced graphene (LIG) foams produced via laser pyrolysis of inexpensive commercial polymers. The Space-Filling Supercapacitor Carpet (SFSC) architecture introduces the concept of nested electrodes based on the pre-fractal Peano space-filling curve, arranged in a symmetrical equilateral setup that incorporates multiple parallel capacitor cells sharing common electrodes for maximum efficiency and optimal length-to-area distribution. We elucidate on the theoretical foundations of the SFSC architecture, and we introduce innovations (high-resolution vector-mode printing) in the LIG method that allow for the realization of flexible and scalable devices based on low iterations of the Peano algorithm. SFSCs exhibit distributed capacitance properties, leading to capacitance, energy, and power ratings proportional to the number of nested electrodes (up to 4.3 mF, 0.4 μWh, and 0.2 mW for the largest tested model of low iteration using aqueous electrolytes), with competitively high energy and power densities. This can pave the road for full scalability in energy storage, reaching beyond the scale of micro-supercapacitors for incorporating into larger and more demanding applications.
1996-2004 Trends in the Single-Family Housing Market: Spatial Analysis of the Residential Sector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, Dave M.; Elliott, Douglas B.
2006-09-05
This report provides a detailed geographic analysis of two specific topics affecting the residential sector. First, we performed an analysis of new construction market trends using annual building permit data. We report summarized tables and national maps to help illustrate market conditions. Second, we performed a detailed geographic analysis of the housing finance market. We analyzed mortgage application data to provide citable statistics and detailed geographic summarization of the residential housing picture in the US for each year in the 1996-2004 period. The databases were linked to geographic information system tools to provide various map series detailing the results geographically.more » Looking at these results geographically may suggest potential new markets for TD programs addressing the residential sector that have not been considered previously. For example, we show which lenders affect which regions and which income or mortgage product classes. These results also highlight the issue of housing affordability. Energy efficiency R&D programs focused on developing new technology for the residential sector must be conscious of the costs of products resulting from research that will eventually impact the home owner or new home buyer. Results indicate that home values as a proportion of median family income in Building America communities are closely aligned with the national average of home value as a proportion of median income. Other key findings: • The share of home building and home buying activity continues to rise steadily in the Hot-Dry and Hot-Humid climate zones, while the Mixed-Humid and Cold climate zone shares continue to decline. Other zones remain relatively stable in terms of share of housing activity. • The proportion of home buyers having three times the median family income for their geography has been steadily increasing during the study period. • Growth in the Hispanic/Latino population and to a lesser degree in the Asian population has translated into proportional increases in share of home purchasing by both groups. White home buyers continue to decline as a proportion all home buyers. • Low interest rate climate resulted in lenders moving back to conventional financing, as opposed to government-backed financing, for cases that would be harder to financing in higher rate environments. Government loan products are one mechanism for affecting energy efficiency gains in the residential sector. • The rate environment and concurrent deregulation of the finance industry resulted unprecedented merger and acquisition activity among financial institutions during the study period. This study conducted a thorough accounting of this merger activity to inform the market share analysis provided. • The home finance industry quartiles feature 5 lenders making up the first quartile of home purchase loans, 18 lenders making up the second quartile, 111 lenders making up the third quartile, and the remaining nearly 8,000 lenders make up the fourth quartile.« less
75 FR 69655 - Energy Efficiency and Renewable Energy Advisory Committee (ERAC)
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-15
... DEPARTMENT OF ENERGY Office of Energy Efficiency and Renewable Energy Energy Efficiency and Renewable Energy Advisory Committee (ERAC) AGENCY: Department of Energy, Office of Energy Efficiency and Renewable Energy. ACTION: Notice of open meeting. SUMMARY: This notice announces the first meeting of the...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Torcellini, Paul A; Scheib, Jennifer G; Pless, Shanti
New construction could account for more than 25% of the U.S. energy consumption by 2030. Millions of square feet are built every year that will not perform as expected - despite advancing codes, rating systems, super-efficient technologies, and advanced utility programs. With retrofits of these under-performers decades away, savings potential will be lost for years to come. Only the building owner is in the driver's seat to demand - and verify - higher-performing buildings. Yet our current policy and market interventions really target the design team, not the owner. Accelerate Performance, a U.S. Department of Energy funded initiative, is changingmore » the building procurement approach to drive deeper, verified savings in three pilot states: Illinois, Minnesota, and Connecticut. Performance-based procurement ties energy performance to design and contractor team compensation while freeing them to meet energy targets with strategies most familiar to them. The process teases out the creativity of the design and contracting teams to deliver energy performance - without driving up the construction cost. The paper will share early results and lessons learned from new procurement and contract approaches in government, public, and private sector building projects. The paper provides practical guidance for building owners, facilities managers, design, and contractor teams who wish to incorporate effective performance-based procurement for deeper energy savings in their buildings.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Figueroa, M.J.; Sathaye, J.
1993-08-01
This report identifies the most important results of a comparative analysis of household commercial energy use in Venezuelan urban cities. The use of modern fuels is widespread among all cities. Cooking consumes the largest share of urban household energy use. The survey documents no use of biomass and a negligible use of kerosene for cooking. LPG, natural gas, and kerosene are the main fuels available. LPG is the fuel choice of low-income households in all cities except Maracaibo, where 40% of all households use natural gas. Electricity consumption in Venezuela`s urban households is remarkably high compared with the levels usedmore » in households in comparable Latin American countries and in households of industrialized nations which confront harsher climatic conditions and, therefore, use electricity for water and space heating. The penetration of appliances in Venezuela`s urban households is very high. The appliances available on the market are inefficient, and there are inefficient patterns of energy use among the population. Climate conditions and the urban built form all play important roles in determining the high level of energy consumption in Venezuelan urban households. It is important to acknowledge the opportunities for introducing energy efficiency and conservation in Venezuela`s residential sector, particularly given current economic and financial constraints, which may hamper the future provision of energy services.« less
Techniques for precise energy calibration of particle pixel detectors
NASA Astrophysics Data System (ADS)
Kroupa, M.; Campbell-Ricketts, T.; Bahadori, A.; Empl, A.
2017-03-01
We demonstrate techniques to improve the accuracy of the energy calibration of Timepix pixel detectors, used for the measurement of energetic particles. The typical signal from such particles spreads among many pixels due to charge sharing effects. As a consequence, the deposited energy in each pixel cannot be reconstructed unless the detector is calibrated, limiting the usability of such signals for calibration. To avoid this shortcoming, we calibrate using low energy X-rays. However, charge sharing effects still occur, resulting in part of the energy being deposited in adjacent pixels and possibly lost. This systematic error in the calibration process results in an error of about 5% in the energy measurements of calibrated devices. We use FLUKA simulations to assess the magnitude of charge sharing effects, allowing a corrected energy calibration to be performed on several Timepix pixel detectors and resulting in substantial improvement in energy deposition measurements. Next, we address shortcomings in calibration associated with the huge range (from kiloelectron-volts to megaelectron-volts) of energy deposited per pixel which result in a nonlinear energy response over the full range. We introduce a new method to characterize the non-linear response of the Timepix detectors at high input energies. We demonstrate improvement using a broad range of particle types and energies, showing that the new method reduces the energy measurement errors, in some cases by more than 90%.
Techniques for precise energy calibration of particle pixel detectors.
Kroupa, M; Campbell-Ricketts, T; Bahadori, A; Empl, A
2017-03-01
We demonstrate techniques to improve the accuracy of the energy calibration of Timepix pixel detectors, used for the measurement of energetic particles. The typical signal from such particles spreads among many pixels due to charge sharing effects. As a consequence, the deposited energy in each pixel cannot be reconstructed unless the detector is calibrated, limiting the usability of such signals for calibration. To avoid this shortcoming, we calibrate using low energy X-rays. However, charge sharing effects still occur, resulting in part of the energy being deposited in adjacent pixels and possibly lost. This systematic error in the calibration process results in an error of about 5% in the energy measurements of calibrated devices. We use FLUKA simulations to assess the magnitude of charge sharing effects, allowing a corrected energy calibration to be performed on several Timepix pixel detectors and resulting in substantial improvement in energy deposition measurements. Next, we address shortcomings in calibration associated with the huge range (from kiloelectron-volts to megaelectron-volts) of energy deposited per pixel which result in a nonlinear energy response over the full range. We introduce a new method to characterize the non-linear response of the Timepix detectors at high input energies. We demonstrate improvement using a broad range of particle types and energies, showing that the new method reduces the energy measurement errors, in some cases by more than 90%.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2011-09-01
Guide to the student-designed houses, ten contests, exhibits, and workshops of the U.S. Department of Energy 2011 Solar Decathlon, held in Washington, D.C., from September 23 through October 2, 2011. Teams of college students designed and built the solar-powered houses on display here. They represent 13 U.S. states, five countries, and four continents. Now the teams are rising to the challenge by competing in 10 contests over nine days, with the championship trophy on the line. This is their time to shine. The 2011 teams may share a common goal - to design and build the best energy-efficient house poweredmore » by the sun - but their strategies are different. One house is made of precast concrete, while another 'dances' in response to its environment. Another house is meant to sit atop a building, proving the sky's the limit for energy innovation. Whatever your idea of sustainable living may be, you are bound to find it at the Solar Decathlon.« less
Dent, Kevin
2014-05-01
Dent, Humphreys, and Braithwaite (2011) showed substantial costs to search when a moving target shared its color with a group of ignored static distractors. The present study further explored the conditions under which such costs to performance occur. Experiment 1 tested whether the negative color-sharing effect was specific to cases in which search showed a highly serial pattern. The results showed that the negative color-sharing effect persisted in the case of a target defined as a conjunction of movement and form, even when search was highly efficient. In Experiment 2, the ease with which participants could find an odd-colored target amongst a moving group was examined. Participants searched for a moving target amongst moving and stationary distractors. In Experiment 2A, participants performed a highly serial search through a group of similarly shaped moving letters. Performance was much slower when the target shared its color with a set of ignored static distractors. The exact same displays were used in Experiment 2B; however, participants now responded "present" for targets that shared the color of the static distractors. The same targets that had previously been difficult to find were now found efficiently. The results are interpreted in a flexible framework for attentional control. Targets that are linked with irrelevant distractors by color tend to be ignored. However, this cost can be overridden by top-down control settings.
76 FR 6605 - Energy Efficiency and Renewable Energy Advisory Committee (ERAC)
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-07
... DEPARTMENT OF ENERGY Office of Energy Efficiency and Renewable Energy Energy Efficiency and Renewable Energy Advisory Committee (ERAC) AGENCY: Department of Energy, Office of Energy Efficiency and Renewable Energy. ACTION: Notice of open meeting. SUMMARY: The purpose of the ERAC is to provide advice and...
77 FR 32531 - Renewable Energy and Energy Efficiency Advisory Committee
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-01
... DEPARTMENT OF COMMERCE International Trade Administration Renewable Energy and Energy Efficiency... of an Open Meeting. SUMMARY: The Renewable Energy and Energy Efficiency Advisory Committee (RE&EEAC... energy and energy efficiency industries, including specific challenges associated with exporting. The...
Energy and Water Efficiency on Campus | NREL
Energy and Water Efficiency on Campus Energy and Water Efficiency on Campus NREL ensures the resiliency of our future energy and water systems through energy efficiency strategies and technologies , renewable energy, and water efficiency on the NREL campus. FY17 Energy Intensity. The South Table Mountain
Data sharing for public health research: A qualitative study of industry and academia.
Saunders, Pamela A; Wilhelm, Erin E; Lee, Sinae; Merkhofer, Elizabeth; Shoulson, Ira
2014-01-01
Data sharing is a key biomedical research theme for the 21st century. Biomedical data sharing is the exchange of data among (non)affiliated parties under mutually agreeable terms to promote scientific advancement and the development of safe and effective medical products. Wide sharing of research data is important for scientific discovery, medical product development, and public health. Data sharing enables improvements in development of medical products, more attention to rare diseases, and cost-efficiencies in biomedical research. We interviewed 11 participants about their attitudes and beliefs about data sharing. Using a qualitative, thematic analysis approach, our analysis revealed a number of themes including: experiences, approaches, perceived challenges, and opportunities for sharing data.
76 FR 80355 - Energy Efficiency and Renewable Energy Advisory Committee (ERAC)
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-23
... DEPARTMENT OF ENERGY Energy Efficiency and Renewable Energy Advisory Committee (ERAC) AGENCY: Department of Energy, Office of Energy Efficiency and Renewable Energy. ACTION: Notice of open teleconference... efficiency and renewable energy. The Federal Advisory Committee Act, Public Law 92- 463, 86 Stat. 770...
76 FR 54224 - Energy Efficiency and Renewable Energy Advisory Committee (ERAC)
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-31
... DEPARTMENT OF ENERGY Energy Efficiency and Renewable Energy Advisory Committee (ERAC) AGENCY: Department of Energy, Office of Energy Efficiency and Renewable Energy. ACTION: Notice of open meeting... efficiency and renewable energy. The Federal Advisory Committee Act, Public Law 92-463, 86 Stat. 770...
76 FR 71312 - Renewable Energy and Energy Efficiency Advisory Committee Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-17
... DEPARTMENT OF COMMERCE International Trade Administration Renewable Energy and Energy Efficiency...: Notice of an Open Meeting. SUMMARY: The Renewable Energy and Energy Efficiency Advisory Committee (RE... competitiveness of the U.S. renewable energy and energy efficiency industries, including specific challenges...
78 FR 78340 - Renewable Energy and Energy Efficiency Advisory Committee
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-26
... DEPARTMENT OF COMMERCE International Trade Administration Renewable Energy and Energy Efficiency... of an Open Meeting. SUMMARY: The Renewable Energy and Energy Efficiency Advisory Committee (RE&EEAC... affecting U.S. competitiveness in exporting renewable energy and energy efficiency (RE&EE) products and...
76 FR 54431 - Renewable Energy and Energy Efficiency Advisory Committee
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-01
... DEPARTMENT OF COMMERCE International Trade Administration Renewable Energy and Energy Efficiency... of an Open Meeting. SUMMARY: The Renewable Energy and Energy Efficiency Advisory Committee (RE&EEAC... competitiveness of the U.S. renewable energy and energy efficiency industries, including specific challenges...
ERIC Educational Resources Information Center
Kiveu, Noah Murumba; Mayio, Julius
2009-01-01
Adoption of cost sharing policy in education has witnessed the return to communities and parents a substantial proportion of financial responsibility for schooling. With increased poverty levels, many parents and communities have not been able to meet the cost requirements under cost sharing policy. Thus their investment in education and support…
Measuring energy efficiency in economics: Shadow value approach
NASA Astrophysics Data System (ADS)
Khademvatani, Asgar
For decades, academic scholars and policy makers have commonly applied a simple average measure, energy intensity, for studying energy efficiency. In contrast, we introduce a distinctive marginal measure called energy shadow value (SV) for modeling energy efficiency drawn on economic theory. This thesis demonstrates energy SV advantages, conceptually and empirically, over the average measure recognizing marginal technical energy efficiency and unveiling allocative energy efficiency (energy SV to energy price). Using a dual profit function, the study illustrates how treating energy as quasi-fixed factor called quasi-fixed approach offers modeling advantages and is appropriate in developing an explicit model for energy efficiency. We address fallacies and misleading results using average measure and demonstrate energy SV advantage in inter- and intra-country energy efficiency comparison. Energy efficiency dynamics and determination of efficient allocation of energy use are shown through factors impacting energy SV: capital, technology, and environmental obligations. To validate the energy SV, we applied a dual restricted cost model using KLEM dataset for the 35 US sectors stretching from 1958 to 2000 and selected a sample of the four sectors. Following the empirical results, predicted wedges between energy price and the SV growth indicate a misallocation of energy use in stone, clay and glass (SCG) and communications (Com) sectors with more evidence in the SCG compared to the Com sector, showing overshoot in energy use relative to optimal paths and cost increases from sub-optimal energy use. The results show that energy productivity is a measure of technical efficiency and is void of information on the economic efficiency of energy use. Decomposing energy SV reveals that energy, capital and technology played key roles in energy SV increases helping to consider and analyze policy implications of energy efficiency improvement. Applying the marginal measure, we also contributed to energy efficiency convergence analysis employing the delta-convergence and unconditional & conditional beta-convergence concepts, investigating economic energy efficiency differences across the four US sectors using panel data models. The results show that, in terms of technical and allocative energy efficiency, the energy-intensive sectors, SCG and textile mill products, tend to catch the energy extensive sectors, the Com and furniture & fixtures, being conditional on sector-specific characteristics. Conditional convergence results indicate that technology, capital and energy are crucial factors in determining energy efficiency differences across the US sectors, implying that environmental or energy policies, and technological changes should be industry specific across the US sectors. The main finding is that the marginal value measure conveys information on both technical and allocative energy efficiency and accounts for all costs and benefits of energy consumption including environmental and externality costs.
Rather than resonance, flapping wing flyers may play on aerodynamics to improve performance.
Ramananarivo, Sophie; Godoy-Diana, Ramiro; Thiria, Benjamin
2011-04-12
Saving energy and enhancing performance are secular preoccupations shared by both nature and human beings. In animal locomotion, flapping flyers or swimmers rely on the flexibility of their wings or body to passively increase their efficiency using an appropriate cycle of storing and releasing elastic energy. Despite the convergence of many observations pointing out this feature, the underlying mechanisms explaining how the elastic nature of the wings is related to propulsive efficiency remain unclear. Here we use an experiment with a self-propelled simplified insect model allowing to show how wing compliance governs the performance of flapping flyers. Reducing the description of the flapping wing to a forced oscillator model, we pinpoint different nonlinear effects that can account for the observed behavior--in particular a set of cubic nonlinearities coming from the clamped-free beam equation used to model the wing and a quadratic damping term representing the fluid drag associated to the fast flapping motion. In contrast to what has been repeatedly suggested in the literature, we show that flapping flyers optimize their performance not by especially looking for resonance to achieve larger flapping amplitudes with less effort, but by tuning the temporal evolution of the wing shape (i.e., the phase dynamics in the oscillator model) to optimize the aerodynamics.
NASA Astrophysics Data System (ADS)
Loik, Michael E.; Carter, Sue A.; Alers, Glenn; Wade, Catherine E.; Shugar, David; Corrado, Carley; Jokerst, Devin; Kitayama, Carol
2017-10-01
Global renewable electricity generation capacity has rapidly increased in the past decade. Increasing the sustainability of electricity generation and the market share of solar photovoltaics (PV) will require continued cost reductions or higher efficiencies. Wavelength-Selective Photovoltaic Systems (WSPVs) combine luminescent solar cell technology with conventional silicon-based PV, thereby increasing efficiency and lowering the cost of electricity generation. WSPVs absorb some of the blue and green wavelengths of the solar spectrum but transmit the remaining wavelengths that can be utilized by photosynthesis for plants growing below. WSPVs are ideal for integrating electricity generation with glasshouse production, but it is not clear how they may affect plant development and physiological processes. The effects of tomato photosynthesis under WSPVs showed a small decrease in water use, whereas there were minimal effects on the number and fresh weight of fruit for a number of commercial species. Although more research is required on the impacts of WSPVs, they are a promising technology for greater integration of distributed electricity generation with food production operations, for reducing water loss in crops grown in controlled environments, as building-integrated solar facilities, or as alternatives to high-impact PV for energy generation over agricultural or natural ecosystems.
Understanding GPU Power. A Survey of Profiling, Modeling, and Simulation Methods
Bridges, Robert A.; Imam, Neena; Mintz, Tiffany M.
2016-09-01
Modern graphics processing units (GPUs) have complex architectures that admit exceptional performance and energy efficiency for high throughput applications.Though GPUs consume large amounts of power, their use for high throughput applications facilitate state-of-the-art energy efficiency and performance. Consequently, continued development relies on understanding their power consumption. Our work is a survey of GPU power modeling and profiling methods with increased detail on noteworthy efforts. Moreover, as direct measurement of GPU power is necessary for model evaluation and parameter initiation, internal and external power sensors are discussed. Hardware counters, which are low-level tallies of hardware events, share strong correlation to powermore » use and performance. Statistical correlation between power and performance counters has yielded worthwhile GPU power models, yet the complexity inherent to GPU architectures presents new hurdles for power modeling. Developments and challenges of counter-based GPU power modeling is discussed. Often building on the counter-based models, research efforts for GPU power simulation, which make power predictions from input code and hardware knowledge, provide opportunities for optimization in programming or architectural design. Noteworthy strides in power simulations for GPUs are included along with their performance or functional simulator counterparts when appropriate. Lastly, possible directions for future research are discussed.« less
Rather than resonance, flapping wing flyers may play on aerodynamics to improve performance
Ramananarivo, Sophie; Godoy-Diana, Ramiro; Thiria, Benjamin
2011-01-01
Saving energy and enhancing performance are secular preoccupations shared by both nature and human beings. In animal locomotion, flapping flyers or swimmers rely on the flexibility of their wings or body to passively increase their efficiency using an appropriate cycle of storing and releasing elastic energy. Despite the convergence of many observations pointing out this feature, the underlying mechanisms explaining how the elastic nature of the wings is related to propulsive efficiency remain unclear. Here we use an experiment with a self-propelled simplified insect model allowing to show how wing compliance governs the performance of flapping flyers. Reducing the description of the flapping wing to a forced oscillator model, we pinpoint different nonlinear effects that can account for the observed behavior—in particular a set of cubic nonlinearities coming from the clamped-free beam equation used to model the wing and a quadratic damping term representing the fluid drag associated to the fast flapping motion. In contrast to what has been repeatedly suggested in the literature, we show that flapping flyers optimize their performance not by especially looking for resonance to achieve larger flapping amplitudes with less effort, but by tuning the temporal evolution of the wing shape (i.e., the phase dynamics in the oscillator model) to optimize the aerodynamics. PMID:21444774
Understanding GPU Power. A Survey of Profiling, Modeling, and Simulation Methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bridges, Robert A.; Imam, Neena; Mintz, Tiffany M.
Modern graphics processing units (GPUs) have complex architectures that admit exceptional performance and energy efficiency for high throughput applications.Though GPUs consume large amounts of power, their use for high throughput applications facilitate state-of-the-art energy efficiency and performance. Consequently, continued development relies on understanding their power consumption. Our work is a survey of GPU power modeling and profiling methods with increased detail on noteworthy efforts. Moreover, as direct measurement of GPU power is necessary for model evaluation and parameter initiation, internal and external power sensors are discussed. Hardware counters, which are low-level tallies of hardware events, share strong correlation to powermore » use and performance. Statistical correlation between power and performance counters has yielded worthwhile GPU power models, yet the complexity inherent to GPU architectures presents new hurdles for power modeling. Developments and challenges of counter-based GPU power modeling is discussed. Often building on the counter-based models, research efforts for GPU power simulation, which make power predictions from input code and hardware knowledge, provide opportunities for optimization in programming or architectural design. Noteworthy strides in power simulations for GPUs are included along with their performance or functional simulator counterparts when appropriate. Lastly, possible directions for future research are discussed.« less
How, When, and Where? Assessing Renewable Energy Self-Sufficiency at the Neighborhood Level.
Grosspietsch, David; Thömmes, Philippe; Girod, Bastien; Hoffmann, Volker H
2018-02-20
Self-sufficient decentralized systems challenge the centralized energy paradigm. Although scholars have assessed specific locations and technological aspects, it remains unclear how, when, and where energy self-sufficiency could become competitive. To address this gap, we develop a techno-economic model for energy self-sufficient neighborhoods that integrates solar photovoltaics (PV), conversion, and storage technologies. We assess the cost of 100% self-sufficiency for both electricity and heat, comparing different technical configurations for a stylized neighborhood in Switzerland and juxtaposing these findings with projections on market and technology development. We then broaden the scope and vary the neighborhood's composition (residential share) and geographic position (along different latitudes). Regarding how to design self-sufficient neighborhoods, we find two promising technical configurations. The "PV-battery-hydrogen" configuration is projected to outperform a fossil-fueled and grid-connected reference configuration when energy prices increase by 2.5% annually and cost reductions in hydrogen-related technologies by a factor of 2 are achieved. The "PV-battery" configuration would allow achieving parity with the reference configuration sooner, at 21% cost reduction. Additionally, more cost-efficient deployment is found in neighborhoods where the end-use is small commercial or mixed and in regions where seasonal fluctuations are low and thus allow for reducing storage requirements.
The new double energy-velocity spectrometer VERDI
NASA Astrophysics Data System (ADS)
Jansson, Kaj; Frégeau, Marc Olivier; Al-Adili, Ali; Göök, Alf; Gustavsson, Cecilia; Hambsch, Franz-Josef; Oberstedt, Stephan; Pomp, Stephan
2017-09-01
VERDI (VElocity foR Direct particle Identification) is a fission-fragment spectrometer recently put into operation at JRC-Geel. It allows measuring the kinetic energy and velocity of both fission fragments simultaneously. The velocity provides information about the pre-neutron mass of each fission fragment when isotropic prompt-neutron emission from the fragments is assumed. The kinetic energy, in combination with the velocity, provides the post-neutron mass. From the difference between pre- and post-neutron masses, the number of neutrons emitted by each fragment can be determined. Multiplicity as a function of fragment mass and total kinetic energy is one important ingredient, essential for understanding the sharing of excitation energy between fission fragments at scission, and may be used to benchmark nuclear de-excitation models. The VERDI spectrometer design is a compromise between geometrical efficiency and mass resolution. The spectrometer consists of an electron detector located close to the target and two arrays of silicon detectors, each located 50 cm away from the target. In the present configuration pre-neutron and post-neutron mass distributions are in good agreement with reference data were obtained. Our latest measurements performed with spontaneously fissioning 252Cf is presented along with the developed calibration procedure to obtain pulse height defect and plasma delay time corrections.
Preliminary Design of Industrial Symbiosis of Smes Using Material Flow Cost Accounting (MFCA) Method
NASA Astrophysics Data System (ADS)
Astuti, Rahayu Siwi Dwi; Astuti, Arieyanti Dwi; Hadiyanto
2018-02-01
Industrial symbiosis is a collaboration of several industries to share their necessities such material, energy, technology as well as waste management. As a part of industrial ecology, in principle, this system attempts to emulate ecosystem where waste of an organism is being used by another organism, therefore there is no waste in the nature. This system becomes an effort to optimize resources (material and energy) as well as minimize waste. Considerable, in a symbiosis incure material and energy flows among industries. Material and energy in an industry are known as cost carriers, thus flow analysis in this system can be conducted in perspective of material, energy and cost, or called as material flow cost accounting (MFCA) that is an economic and ecological appraisal approach. Previous researches shown that MFCA implementation could be used to evaluate an industry's environmental-related efficiency as well as in planning, business control and decision making. Moreover, the MFCA has been extended to assess environmental performance of SMEs Cluster or industrial symbiosis in SMEs Cluster, even to make preliminary design of an industrial symbiosis base on a major industry. This paper describes the use of MFCA to asses performance of SMEs industrial symbiosis and to improve the performance.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-22
... DEPARTMENT OF ENERGY Office of Energy Efficiency and Renewable Energy Establishment of the Energy Efficiency and Renewable Energy Advisory Committee and Request for Member Nominations AGENCY: Office of Energy Efficiency and Renewable Energy, U.S. Department of Energy. ACTION: Notice of Intent to Establish...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-21
... DEPARTMENT OF ENERGY Office of Energy Efficiency and Renewable Energy; Agency Information Collection Extension AGENCY: Office of Energy Efficiency and Renewable Energy, U.S. Department of Energy (DOE..., DC 20503 And to Mr. Dana O'Hara, Office of Energy Efficiency and Renewable Energy (EE- 2G), U.S...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-01
... DEPARTMENT OF ENERGY Office of Energy Efficiency and Renewable Energy [Case No. CW-022] Decision...: Office of Energy Efficiency and Renewable Energy, Department of Energy. ACTION: Decision and Order.... Hogan, Deputy Assistant Secretary for Energy Efficiency, Energy Efficiency and Renewable Energy...
NASA Astrophysics Data System (ADS)
Vijayajayanthi, M.; Kanna, T.; Murali, K.; Lakshmanan, M.
2018-06-01
The energy-sharing collision of bright optical solitons in the Manakov system, governing pulse propagation in high birefringent fiber, is employed theoretically to realize optical logic gates. In particular, we successfully construct (theoretically) the universal NOR gate and the OR gate from the energy-sharing collisions of just four bright solitons which can be well described by the exact bright four-soliton solution of the Manakov system. This construction procedure has important merits such as realizing the two input gates with a minimal number of soliton collisions and possibilities of multistate logic. The recent experiments on Manakov solitons suggest the possibility of implementation of this theoretical construction of such gates and ultimately an all-optical computer.
77 FR 23224 - Renewable Energy and Energy Efficiency Advisory Committee
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-18
... DEPARTMENT OF COMMERCE International Trade Administration Renewable Energy and Energy Efficiency... of an open meeting. SUMMARY: The Renewable Energy and Energy Efficiency Advisory Committee (RE&EEAC.... competitiveness in exporting renewable energy and energy efficiency (RE&EE) products and services, such as access...
10 CFR 435.4 - Energy efficiency performance standard.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 3 2010-01-01 2010-01-01 false Energy efficiency performance standard. 435.4 Section 435.4 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY STANDARDS FOR NEW FEDERAL LOW-RISE RESIDENTIAL BUILDINGS Mandatory Energy Efficiency Standards for Federal Low-Rise Residential...
10 CFR 435.4 - Energy efficiency performance standard.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 3 2012-01-01 2012-01-01 false Energy efficiency performance standard. 435.4 Section 435.4 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY STANDARDS FOR NEW FEDERAL LOW-RISE RESIDENTIAL BUILDINGS Mandatory Energy Efficiency Standards for Federal Low-Rise Residential...
10 CFR 435.4 - Energy efficiency performance standard.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 3 2013-01-01 2013-01-01 false Energy efficiency performance standard. 435.4 Section 435.4 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY STANDARDS FOR NEW FEDERAL LOW-RISE RESIDENTIAL BUILDINGS Mandatory Energy Efficiency Standards for Federal Low-Rise Residential...
10 CFR 435.4 - Energy efficiency performance standard.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 3 2014-01-01 2014-01-01 false Energy efficiency performance standard. 435.4 Section 435.4 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY STANDARDS FOR NEW FEDERAL LOW-RISE RESIDENTIAL BUILDINGS Mandatory Energy Efficiency Standards for Federal Low-Rise Residential...
10 CFR 433.7 - Water used to achieve energy efficiency. [Reserved
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 3 2010-01-01 2010-01-01 false Water used to achieve energy efficiency. [Reserved] 433.7 Section 433.7 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY STANDARDS FOR THE DESIGN... Water used to achieve energy efficiency. [Reserved] ...
10 CFR 435.4 - Energy efficiency performance standard.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 3 2011-01-01 2011-01-01 false Energy efficiency performance standard. 435.4 Section 435.4 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY STANDARDS FOR NEW FEDERAL LOW-RISE RESIDENTIAL BUILDINGS Mandatory Energy Efficiency Standards for Federal Low-Rise Residential...
10 CFR 433.7 - Water used to achieve energy efficiency. [Reserved
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 3 2011-01-01 2011-01-01 false Water used to achieve energy efficiency. [Reserved] 433.7 Section 433.7 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY STANDARDS FOR THE DESIGN... Water used to achieve energy efficiency. [Reserved] ...
Caring and professional practice settings: the impact of technology, change, and efficiency.
Crow, G
2001-01-01
Technology, change, efficiency, and caring are not necessarily concepts that are used in the same sentence when describing motivational and professional practice settings. Caring within health care organizations can take many forms. One of the most significant and meaningful forms is through building networks for shared decision making and shared accountability. While caring can save the life of a patient and convey trust and commitment to patients, families, and staff, it can also save the life of your organization.
Integrating Telco interoffice fiber transport with coaxial distribution
NASA Astrophysics Data System (ADS)
McCarthy, Steven M.
1993-02-01
Real success in the residential broadband market is contingent on a platform that most efficiently shares broadband port costs while at the same time affords us an elegant, and cost efficient, upgrade from today's analog to tomorrow's digital world. Spectrum transport, whether it be over new or existing fiber/coax systems or FTTC, is that platform. It is compatible with today's home entertainment market, can be evolved to future digital transport, and effectively shares the cost of interfacing with a broadband network.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Levine, Mark D.; Price, Lynn; Zhou, Nan
2010-04-28
During the period 1980 to 2002, China experienced a 5% average annual reduction in energy consumption per unit of gross domestic product (GDP). The period 2002-2005 saw a dramatic reversal of the historic relationship between energy use and GDP growth: energy use per unit of GDP increased an average of 3.8% per year during this period (NBS, various years). China's 11th Five Year Plan (FYP), which covers the period 2006-2010, required all government divisions at different levels to reduce energy intensity by 20% in five years in order to regain the relationship between energy and GDP growth experienced during themore » 1980s and 1990s. This report provides an assessment of selected policies and programs that China has instituted in its quest to fulfill the national goal of a 20% reduction in energy intensity by 2010. The report finds that China has made substantial progress toward its goal of achieving 20% energy intensity reduction from 2006 to 2010 and that many of the energy-efficiency programs implemented during the 11th FYP in support of China's 20% energy/GDP reduction goal appear to be on track to meet - or in some cases even exceed - their energy-saving targets. It appears that most of the Ten Key Projects, the Top-1000 Program, and the Small Plant Closure Program are on track to meet or surpass the 11th FYP savings goals. China's appliance standards and labeling program, which was established prior to the 11th FYP, has become very robust during the 11th FYP period. China has greatly enhanced its enforcement of new building energy standards but energy-efficiency programs for buildings retrofits, as well as the goal of adjusting China's economic structure to reduce the share of energy consumed by industry, do not appear to be on track to meet the stated goals. With the implementation of the 11th FYP now bearing fruit, it is important to maintain and strengthen the existing energy-saving policies and programs that are successful while revising programs or adding new policy mechanisms to improve the programs that are not on track to achieve the stated goals.« less
78 FR 2952 - Renewable Energy and Energy Efficiency Advisory Committee
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-15
... DEPARTMENT OF COMMERCE International Trade Administration Renewable Energy and Energy Efficiency... of an open meeting. SUMMARY: The Renewable Energy and Energy Efficiency Advisory Committee (RE&EEAC... competitiveness of U.S. renewable energy and energy efficiency exports. The meeting is open to the public and the...
10 CFR 433.4 - Energy efficiency performance standard.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 3 2014-01-01 2014-01-01 false Energy efficiency performance standard. 433.4 Section 433.4 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY STANDARDS FOR NEW FEDERAL COMMERCIAL AND MULTI-FAMILY HIGH-RISE RESIDENTIAL BUILDINGS § 433.4 Energy efficiency performance standard...
10 CFR 433.4 - Energy efficiency performance standard.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 3 2012-01-01 2012-01-01 false Energy efficiency performance standard. 433.4 Section 433.4 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY STANDARDS FOR NEW FEDERAL COMMERCIAL AND MULTI-FAMILY HIGH-RISE RESIDENTIAL BUILDINGS § 433.4 Energy efficiency performance standard...
10 CFR 433.4 - Energy efficiency performance standard.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 3 2013-01-01 2013-01-01 false Energy efficiency performance standard. 433.4 Section 433.4 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY STANDARDS FOR NEW FEDERAL COMMERCIAL AND MULTI-FAMILY HIGH-RISE RESIDENTIAL BUILDINGS § 433.4 Energy efficiency performance standard...
How much electrical energy storage do we need? A synthesis for the U.S., Europe, and Germany
Cebulla, Felix; Haas, Jannik; Eichman, Josh; ...
2018-02-03
Electrical energy storage (EES) is a promising flexibility source for prospective low-carbon energy systems. In the last couple of years, many studies for EES capacity planning have been produced. However, these resulted in a very broad range of power and energy capacity requirements for storage, making it difficult for policymakers to identify clear storage planning recommendations. Therefore, we studied 17 recent storage expansion studies pertinent to the U.S., Europe, and Germany. We then systemized the storage requirement per variable renewable energy (VRE) share and generation technology. Our synthesis reveals that with increasing VRE shares, the EES power capacity increases linearly;more » and the energy capacity, exponentially. Further, by analyzing the outliers, the EES energy requirements can be at least halved. It becomes clear that grids dominated by photovoltaic energy call for more EES, while large shares of wind rely more on transmission capacity. Taking into account the energy mix clarifies - to a large degree - the apparent conflict of the storage requirements between the existing studies. Finally, there might exist a negative bias towards storage because transmission costs are frequently optimistic (by neglecting execution delays and social opposition) and storage can cope with uncertainties, but these issues are rarely acknowledged in the planning process.« less
How much electrical energy storage do we need? A synthesis for the U.S., Europe, and Germany
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cebulla, Felix; Haas, Jannik; Eichman, Josh
Electrical energy storage (EES) is a promising flexibility source for prospective low-carbon energy systems. In the last couple of years, many studies for EES capacity planning have been produced. However, these resulted in a very broad range of power and energy capacity requirements for storage, making it difficult for policymakers to identify clear storage planning recommendations. Therefore, we studied 17 recent storage expansion studies pertinent to the U.S., Europe, and Germany. We then systemized the storage requirement per variable renewable energy (VRE) share and generation technology. Our synthesis reveals that with increasing VRE shares, the EES power capacity increases linearly;more » and the energy capacity, exponentially. Further, by analyzing the outliers, the EES energy requirements can be at least halved. It becomes clear that grids dominated by photovoltaic energy call for more EES, while large shares of wind rely more on transmission capacity. Taking into account the energy mix clarifies - to a large degree - the apparent conflict of the storage requirements between the existing studies. Finally, there might exist a negative bias towards storage because transmission costs are frequently optimistic (by neglecting execution delays and social opposition) and storage can cope with uncertainties, but these issues are rarely acknowledged in the planning process.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-20
... DEPARTMENT OF ENERGY Office of Energy Efficiency and Renewable Energy [Case No. RF-021] Decision... Refrigerator-Freezer Test Procedures AGENCY: Office of Energy Efficiency and Renewable Energy, Department of... Assistant Secretary for Energy Efficiency, Energy Efficiency and Renewable Energy. Decision and Order In the...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-29
... Freezers AGENCY: Office of Energy Efficiency and Renewable Energy, Department of Energy. ACTION: Extension... INFORMATION CONTACT: Mr. Lucas Adin, U.S. Department of Energy, Office of Energy Efficiency and Renewable... Energy Efficiency, Energy Efficiency and Renewable Energy. [FR Doc. 2013-21115 Filed 8-28-13; 8:45 am...
Describing functional requirements for knowledge sharing communities
NASA Technical Reports Server (NTRS)
Garrett, Sandra; Caldwell, Barrett
2002-01-01
Human collaboration in distributed knowledge sharing groups depends on the functionality of information and communication technologies (ICT) to support performance. Since many of these dynamic environments are constrained by time limits, knowledge must be shared efficiently by adapting the level of information detail to the specific situation. This paper focuses on the process of knowledge and context sharing with and without mediation by ICT, as well as issues to be resolved when determining appropriate ICT channels. Both technology-rich and non-technology examples are discussed.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-12
... DEPARTMENT OF ENERGY [Docket No. EESEP0216] State Energy Program and Energy Efficiency and Conservation Block Grant (EECBG) Program; Request for Information AGENCY: Office of Energy Efficiency and... (SEP) and Energy Efficiency and Conservation Block Grant (EECBG) program, in support of energy...
10 CFR 435.7 - Water used to achieve energy efficiency. [Reserved
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 3 2011-01-01 2011-01-01 false Water used to achieve energy efficiency. [Reserved] 435.7 Section 435.7 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY STANDARDS FOR NEW FEDERAL LOW-RISE RESIDENTIAL BUILDINGS Mandatory Energy Efficiency Standards for Federal Low-Rise Residential...
10 CFR 431.97 - Energy efficiency standards and their effective dates.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 3 2011-01-01 2011-01-01 false Energy efficiency standards and their effective dates. 431.97 Section 431.97 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND INDUSTRIAL EQUIPMENT Commercial Air Conditioners and Heat Pumps Energy Efficiency...
10 CFR 435.7 - Water used to achieve energy efficiency. [Reserved
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 3 2014-01-01 2014-01-01 false Water used to achieve energy efficiency. [Reserved] 435.7 Section 435.7 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY STANDARDS FOR NEW FEDERAL LOW-RISE RESIDENTIAL BUILDINGS Mandatory Energy Efficiency Standards for Federal Low-Rise Residential...
10 CFR 431.97 - Energy efficiency standards and their compliance dates.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 3 2013-01-01 2013-01-01 false Energy efficiency standards and their compliance dates. 431.97 Section 431.97 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND INDUSTRIAL EQUIPMENT Commercial Air Conditioners and Heat Pumps Energy Efficiency...
10 CFR 431.97 - Energy efficiency standards and their effective dates.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 3 2010-01-01 2010-01-01 false Energy efficiency standards and their effective dates. 431.97 Section 431.97 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND INDUSTRIAL EQUIPMENT Commercial Air Conditioners and Heat Pumps Energy Efficiency...
10 CFR 435.7 - Water used to achieve energy efficiency. [Reserved
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 3 2012-01-01 2012-01-01 false Water used to achieve energy efficiency. [Reserved] 435.7 Section 435.7 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY STANDARDS FOR NEW FEDERAL LOW-RISE RESIDENTIAL BUILDINGS Mandatory Energy Efficiency Standards for Federal Low-Rise Residential...
10 CFR 431.97 - Energy efficiency standards and their compliance dates.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 3 2014-01-01 2014-01-01 false Energy efficiency standards and their compliance dates. 431.97 Section 431.97 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND INDUSTRIAL EQUIPMENT Commercial Air Conditioners and Heat Pumps Energy Efficiency...
10 CFR 435.7 - Water used to achieve energy efficiency. [Reserved
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 3 2010-01-01 2010-01-01 false Water used to achieve energy efficiency. [Reserved] 435.7 Section 435.7 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY STANDARDS FOR NEW FEDERAL LOW-RISE RESIDENTIAL BUILDINGS Mandatory Energy Efficiency Standards for Federal Low-Rise Residential...
10 CFR 431.97 - Energy efficiency standards and their effective dates.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 3 2012-01-01 2012-01-01 false Energy efficiency standards and their effective dates. 431.97 Section 431.97 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND INDUSTRIAL EQUIPMENT Commercial Air Conditioners and Heat Pumps Energy Efficiency...
NASA Astrophysics Data System (ADS)
Li, Chenggang; Feng, Yujia
2018-03-01
This paper mainly studies the influence factors of financing efficiency of Guizhou big data industry, and selects the financial and macro data of 20 Guizhou big data enterprises from 2010 to 2016. Using the DEA model to obtain the financing efficiency of Guizhou big data enterprises. A panel data model is constructed to select the six macro and micro influencing factors for panel data analysis. The results show that the external economic environment, the turnover rate of the total assets of the enterprises, the increase of operating income, the increase of the revenue per share of each share of the business income have positive impact on the financing efficiency of of the big data industry in Guizhou. The key to improve the financing efficiency of Guizhou big data enterprises is to improve.
Energy Efficiency Roadmap for Uganda, Making Energy Efficiency Count. Executive Summary
DOE Office of Scientific and Technical Information (OSTI.GOV)
de la Rue du Can, Stephane; Pudleiner, David; Jones, David
Like many countries in Sub-Saharan Africa, Uganda has focused its energy sector investments largely on increasing energy access by increasing energy supply. The links between energy efficiency and energy access, the importance of energy efficiency in new energy supply, and the multiple benefits of energy efficiency for the level and quality of energy available, have been largely overlooked. Implementing energy efficiency in parallel with expanding both the electricity grid and new clean energy generation reduces electricity demand and helps optimize the power supply so that it can serve more customers reliably at minimum cost. Ensuring efficient appliances are incorporated intomore » energy access efforts provides improved energy services to customers. Energy efficiency is an important contributor to access to modern energy. This Energy Efficiency Roadmap for Uganda (Roadmap) is a response to the important role that electrical energy efficiency can play in meeting Uganda’s energy goals. Power Africa and the United Nations Sustainable Energy for All (SEforALL) initiatives collaborated with more than 24 stakeholders in Uganda to develop this document. The document estimates that if the most efficient technologies on the market were adopted, 2,224 gigawatt hours could be saved in 2030 across all sectors, representing 31% of the projected load. This translates into 341 megawatts of peak demand reductions, energy access to an additional 6 million rural customers and reduction of carbon dioxide emissions by 10.6 million tonnes in 2030. The Roadmap also finds that 91% of this technical potential is cost-effective, and 47% is achievable under conservative assumptions. The Roadmap prioritizes recommendations for implementing energy efficiency and maximizing benefits to meet the goals and priorities established in Uganda’s 2015 SEforALL Action Agenda. One important step is to create and increase demand for efficiency through long-term enabling policies and financial incentives combined with development of technical expertise in the labor force to allow for the promotion of new business models, such as energy service companies. A combination of enabling policies, financial schemes, regulations, enforcement, and skill development are needed to open the energy efficiency market.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-30
...-AC46 Energy Conservation Program: Alternative Efficiency Determination Methods and Alternative Rating Methods: Public Meeting AGENCY: Office of Energy Efficiency and Renewable Energy, Department of Energy... regulations authorizing the use of alternative methods of determining energy efficiency or energy consumption...
Energy efficiency of mobile soft robots.
Shui, Langquan; Zhu, Liangliang; Yang, Zhe; Liu, Yilun; Chen, Xi
2017-11-15
The performance of mobile soft robots is usually characterized by their locomotion/velocity efficiency, whereas the energy efficiency is a more intrinsic and fundamental criterion for the performance evaluation of independent or integrated soft robots. In this work, a general framework is established to evaluate the energy efficiency of mobile soft robots by considering the efficiency of the energy source, actuator and locomotion, and some insights for improving the efficiency of soft robotic systems are presented. Proposed as the ratio of the desired locomotion kinetic energy to the input mechanical energy, the energy efficiency of locomotion is found to play a critical role in determining the overall energy efficiency of soft robots. Four key factors related to the locomotion energy efficiency are identified, that is, the locomotion modes, material properties, geometric sizes, and actuation states. It is found that the energy efficiency of most mobile soft robots reported in the literature is surprisingly low (mostly below 0.1%), due to the inefficient mechanical energy that essentially does not contribute to the desired locomotion. A comparison of the locomotion energy efficiency for several representative locomotion modes in the literature is presented, showing a descending ranking as: jumping ≫ fish-like swimming > snake-like slithering > rolling > rising/turning over > inchworm-like inching > quadruped gait > earthworm-like squirming. Besides, considering the same locomotion mode, soft robots with lower stiffness, higher density and larger size tend to have higher locomotion energy efficiency. Moreover, a periodic pulse actuation instead of a continuous actuation mode may significantly reduce the input mechanical energy, thus improving the locomotion energy efficiency, especially when the pulse actuation matches the resonant states of the soft robots. The results presented herein indicate a large and necessary space for improving the locomotion energy efficiency, which is of practical significance for the future development and application of soft robots.
Factors Influencing Renewable Energy Production & Supply - A Global Analysis
NASA Astrophysics Data System (ADS)
Ali, Anika; Saqlawi, Juman Al
2016-04-01
Renewable energy is one of the key technologies through which the energy needs of the future can be met in a sustainable and carbon-neutral manner. Increasing the share of renewable energy in the total energy mix of each country is therefore a critical need. While different countries have approached this in different ways, there are some common aspects which influence the pace and effectiveness of renewable energy incorporation. This presentation looks at data and information from 34 selected countries, analyses the patterns, compares the different parameters and identifies the common factors which positively influence renewable energy incorporation. The most successful countries are analysed for their renewable energy performance against their GDP, policy/regulatory initiatives in the field of renewables, landmass, climatic conditions and population to identify the most influencing factors to bring about positive change in renewable energy share.
Shared-Ride Taxi Computer Control System Requirements Study
DOT National Transportation Integrated Search
1977-08-01
The technical problem of scheduling and routing shared-ride taxi service is so great that only computers can handle it efficiently. This study is concerned with defining the requirements of such a computer system. The major objective of this study is...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-01
... DEPARTMENT OF ENERGY Office of Energy Efficiency and Renewable Energy [Case No. VHE-001... Heating Equipment Test Procedure AGENCY: Office of Energy Efficiency and Renewable Energy, Department of... Energy Efficiency, Energy Efficiency and Renewable Energy. [FR Doc. 2012-2181 Filed 1-31-12; 8:45 am...
An Analysis of Medical Imaging Costs in Military Treatment Facilities
2014-09-01
authority to completely control the medical systems of each service, the DHA 7 was given management responsibility for specific shared services , functions...efficient health operations through enhanced enterprise-wide shared services . • Deliver more comprehensive primary care and integrated health...of shared services that will fall under central control: • facility planning • medical logistics • health information technology • Tricare health
ERIC Educational Resources Information Center
Zhu, Lijuan
2011-01-01
Along with the greater productivity that CAD automation provides nowadays, the product data of engineering applications needs to be shared and managed efficiently to gain a competitive edge for the engineering product design. However, exchanging and sharing the heterogeneous product data is still challenging. This dissertation first presents a…
10 CFR 431.444 - Test procedures for the measurement of energy efficiency.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 3 2011-01-01 2011-01-01 false Test procedures for the measurement of energy efficiency. 431.444 Section 431.444 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR... procedures for the measurement of energy efficiency. (a) Scope. Pursuant to section 346(b)(1) of EPCA, this...
10 CFR 431.444 - Test procedures for the measurement of energy efficiency.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 3 2010-01-01 2010-01-01 false Test procedures for the measurement of energy efficiency. 431.444 Section 431.444 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR... procedures for the measurement of energy efficiency. (a) Scope. Pursuant to section 346(b)(1) of EPCA, this...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-03
.... EERE-2010-BT-STD-0011] RIN 1904-AC22 Energy Efficiency Program: Energy Conservation Standards Furnace Fans: Public Meeting and Availability of the Framework Document AGENCY: Office of Energy Efficiency and... Energy, Office of Energy Efficiency and Renewable Energy, Building Technologies, EE-2J, 1000 Independence...
10 CFR 433.7 - Water used to achieve energy efficiency. [Reserved
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 3 2014-01-01 2014-01-01 false Water used to achieve energy efficiency. [Reserved] 433.7 Section 433.7 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY STANDARDS FOR NEW FEDERAL COMMERCIAL AND MULTI-FAMILY HIGH-RISE RESIDENTIAL BUILDINGS § 433.7 Water used to achieve energy efficiency...
10 CFR 433.7 - Water used to achieve energy efficiency. [Reserved
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 3 2012-01-01 2012-01-01 false Water used to achieve energy efficiency. [Reserved] 433.7 Section 433.7 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY STANDARDS FOR NEW FEDERAL COMMERCIAL AND MULTI-FAMILY HIGH-RISE RESIDENTIAL BUILDINGS § 433.7 Water used to achieve energy efficiency...
Simulation of load-sharing in standalone distributed generation system
NASA Astrophysics Data System (ADS)
Ajewole, Titus O.; Craven, Robert P. M.; Kayode, Olakunle; Babalola, Olufisayo S.
2018-05-01
This paper presents a study on load-sharing among the component generating units of a multi-source electric microgrid that is operated as an autonomous ac supply-mode system. Emerging trend in power system development permits deployment of microgrids for standalone or stand-by applications, thereby requiring active- and reactive power sharing among the discrete generating units contained in hybrid-source microgrids. In this study, therefore, a laboratory-scale model of a microgrid energized with three renewable energy-based sources is employed as a simulation platform to investigate power sharing among the power-generating units. Each source is represented by a source emulator that captures the real operational characteristics of the mimicked generating unit and, with implementation of real-life weather data and load profiles on the model; the sharing of the load among the generating units is investigated. There is a proportionate generation of power by the three source emulators, with their frequencies perfectly synchronized at the point of common coupling as a result of balance flow of power among them. This hybrid topology of renewable energy-based microgrid could therefore be seamlessly adapted into national energy mix by the indigenous electric utility providers in Nigeria.
Data Center Energy Efficiency Standards in India: Preliminary Findings from Global Practices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raje, Sanyukta; Maan, Hermant; Ganguly, Suprotim
Global data center energy consumption is growing rapidly. In India, information technology industry growth, fossil-fuel generation, and rising energy prices add significant operational costs and carbon emissions from energy-intensive data centers. Adoption of energy-efficient practices can improve the global competitiveness and sustainability of data centers in India. Previous studies have concluded that advancement of energy efficiency standards through policy and regulatory mechanisms is the fastest path to accelerate the adoption of energy-efficient practices in the Indian data centers. In this study, we reviewed data center energy efficiency practices in the United States, Europe, and Asia. Using evaluation metrics, we identifiedmore » an initial set of energy efficiency standards applicable to the Indian context using the existing policy mechanisms. These preliminary findings support next steps to recommend energy efficiency standards and inform policy makers on strategies to adopt energy-efficient technologies and practices in Indian data centers.« less
Discussion of future cooperative actions and closing remarks
Patricia L. Pettit
1996-01-01
The knowledge shared and the energy generated by this symposium should not be lost as we leave for our homes and our jobs. We have a great wealth of experience, knowledge, and energy assembled. How can we continue to communicate with each other, share information, involve others, and influence decision makers? The steering committee for this symposium in hopes of...
Energy characteristics of the CO2 laser cutting of thick steel sheets
NASA Astrophysics Data System (ADS)
Orishich, A. M.
2012-01-01
In the present paper the scaling laws for the oxygen-assisted laser cutting of low-carbon steel of 5-25 mm is studied experimentally. No dross and minimal roughness of the cut surface were chosen as criteria of quality. The paper also studies the possibility to describe the cutting process by the similarity method and as ratios between dimensionless variables. Normalized power W/ktT, normalized velocity Vcb/a (Peclet number) and kerf width have special optimum numb. Formulas were obtained to determine the optimum values of the laser power and cutting speed for the given sheet thickness. The energy balance of the oxygen-assisted laser cutting is studied experimentally at these optimum parameters. The absorbed laser energy, heat conduction losses and cut width were measured experimentally, and then the energy of exothermic reaction of oxidation was found from the balance equation. To define the integral coefficient of absorption, the laser power was measured on the cutting channel exit during the cutting. The heat conduction losses were measured by the calorimetric method. It has been established that the absorbed laser energy, oxidation energy, thermal losses and melting enthalpy related to a sheet thickness unit, do not depend on the sheet thickness at the cutting with the minimal roughness. The results enable to determine the fraction of the oxidized iron in the melt and thermal efficiency at the cutting with the minimal roughness. The share of the oxidation reaction energy is 50-60% in the total contributed energy.
Measurement of the Positron Annihilation Induced Auger Electron Spectrum from Ag(100)
NASA Astrophysics Data System (ADS)
Joglekar, P.; Shastry, K.; Fazleev, N. G.; Weiss, A. H.
2013-06-01
Research has demonstrated that Positron Annihilation Induced Auger Spectroscopy (PAES) can be used to probe the top-most atomic layer of surfaces and to obtain Auger spectra that are completely free of beam-impact induced secondary background. The high degree of surface selectivity in PAES is a result of the fact that positrons implanted at low energies are trapped with high efficiency at an image-correlation potential well at the surface resulting in almost all of the positrons annihilating with atoms in the top-most layer. Secondary electrons associated with the impact of the incident positrons can be eliminated by a suitable choice of an incident beam energy. In this paper we present the results of measurements of the energy spectrum of electrons emitted as a result of positron annihilation induced Auger electron emission from a clean Ag(100) surface using a series of incident beam energies ranging from 20 eV down to 2 eV. A peak in the spectrum was observed at ~40 eV corresponding to the N2,3VV Auger transition in agreement with previous PAES studies. This peak was accompanied by an even larger low energy tail which persisted even at the lowest beam energies. Our results for Ag(100) are consistent with previous studies of Cu and Au and indicate that a significant fraction of electrons leaving the sample are emitted in the low energy tail and suggest a strong mechanism for energy sharing in the Auger process.
Implications of Deep Decarbonization for Carbon Cycle Science
NASA Astrophysics Data System (ADS)
Jones, A. D.; Williams, J.; Torn, M. S.
2016-12-01
The energy-system transformations required to achieve deep decarbonization in the United States, defined as a reduction of greenhouse gas emissions of 80% or more below 1990 levels by 2050, have profound implications for carbon cycle science, particularly with respect to 4 key objectives: understanding and enhancing the terrestrial carbon sink, using bioenergy sustainably, controlling non-CO2 GHGs, and emissions monitoring and verification. (1) As a source of mitigation, the terrestrial carbon sink is pivotal but uncertain, and changes in the expected sink may significantly affect the overall cost of mitigation. Yet the dynamics of the sink under changing climatic conditions, and the potential to protect and enhance the sink through land management, are poorly understood. Policy urgently requires an integrative research program that links basic science knowledge to land management practices. (2) Biomass resources can fill critical energy needs in a deeply decarbonized system, but current understanding of sustainability and lifecycle carbon aspects is limited. Mitigation policy needs better understanding of the sustainable amount, types, and cost of bioenergy feedstocks, their interactions with other land uses, and more efficient and reliable monitoring of embedded carbon. (3) As CO2 emissions from energy decrease under deep decarbonization, the relative share of non-CO2 GHGs grows larger and their mitigation more important. Because the sources tend to be distributed, variable, and uncertain, they have been under-researched. Policy needs a better understanding of mitigation priorities and costs, informed by deeper research in key areas such as fugitive CH4, fertilizer-derived N2O, and industrial F-gases. (4) The M&V challenge under deep decarbonization changes with a steep decrease in the combustion CO2 sources due to widespread electrification, while a greater share of CO2 releases is net-carbon-neutral. Similarly, gas pipelines may carry an increasing share of methane from biogenic or other net carbon-neutral sources. Improved lifecycle analysis will be needed to verify carbon neutrality, while the signal-to-noise challenge for attributing CO2 to fossil or biogenic fuels becomes more challenging.
Detector motion method to increase spatial resolution in photon-counting detectors
NASA Astrophysics Data System (ADS)
Lee, Daehee; Park, Kyeongjin; Lim, Kyung Taek; Cho, Gyuseong
2017-03-01
Medical imaging requires high spatial resolution of an image to identify fine lesions. Photon-counting detectors in medical imaging have recently been rapidly replacing energy-integrating detectors due to the former`s high spatial resolution, high efficiency and low noise. Spatial resolution in a photon counting image is determined by the pixel size. Therefore, the smaller the pixel size, the higher the spatial resolution that can be obtained in an image. However, detector redesigning is required to reduce pixel size, and an expensive fine process is required to integrate a signal processing unit with reduced pixel size. Furthermore, as the pixel size decreases, charge sharing severely deteriorates spatial resolution. To increase spatial resolution, we propose a detector motion method using a large pixel detector that is less affected by charge sharing. To verify the proposed method, we utilized a UNO-XRI photon-counting detector (1-mm CdTe, Timepix chip) at the maximum X-ray tube voltage of 80 kVp. A similar spatial resolution of a 55- μm-pixel image was achieved by application of the proposed method to a 110- μm-pixel detector with a higher signal-to-noise ratio. The proposed method could be a way to increase spatial resolution without a pixel redesign when pixels severely suffer from charge sharing as pixel size is reduced.
Efficient ICCG on a shared memory multiprocessor
NASA Technical Reports Server (NTRS)
Hammond, Steven W.; Schreiber, Robert
1989-01-01
Different approaches are discussed for exploiting parallelism in the ICCG (Incomplete Cholesky Conjugate Gradient) method for solving large sparse symmetric positive definite systems of equations on a shared memory parallel computer. Techniques for efficiently solving triangular systems and computing sparse matrix-vector products are explored. Three methods for scheduling the tasks in solving triangular systems are implemented on the Sequent Balance 21000. Sample problems that are representative of a large class of problems solved using iterative methods are used. We show that a static analysis to determine data dependences in the triangular solve can greatly improve its parallel efficiency. We also show that ignoring symmetry and storing the whole matrix can reduce solution time substantially.
Cho, Na-Eun; Ke, Weiling; Atems, Bebonchu; Chang, Jongwha
2018-01-01
This research was motivated by the large investment in health information technology (IT) by hospitals and the inconsistent findings related to the effects of health IT adoption on hospital performance. Building on resource orchestration theory and the information systems literature, the authors developed a research model to investigate how the configuration strategies for sharing information under health IT systems affect hospital efficiency. The hypotheses were tested using data from the 2010 annual and IT surveys of the American Hospital Association, Centers for Medicare & Medicaid Services case mix index, and U.S. Census Bureau's small-area income and poverty estimates. The study revealed that in health IT systems, the breadth (extent) and depth (level of detail) of digital information sharing among stakeholders each has a curvilinear relationship with hospital efficiency. In addition, breadth and depth reinforce each other's positive effects and attenuate each other's negative effects, and their balance has a positive effect on hospital efficiency. The results of this research have the potential to enrich the literature on the value of adopting health IT systems as well as in providing practitioner guidelines for meaningful use.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brogan, J. J.; Aeppli, A. E.; Brown, D. F.
2013-03-01
Freight transportation modes—truck, rail, water, air, and pipeline—each serve a distinct share of the freight transportation market. A variety of factors influence the modes chosen by shippers, carriers, and others involved in freight supply chains. Analytical methods can be used to project future modal shares, and federal policy actions could influence future freight mode choices. This report considers how these topics have been addressed in existing literature and offers insights on federal policy decisions with the potential to prompt mode choices that reduce energy use and greenhouse gas emissions.
Emission of a Dual-Fuel Turbocharged Compression Ignition Engine
NASA Astrophysics Data System (ADS)
Rózycki, Andrzej
2012-02-01
The paper describes the results of a four-cylinder dual fuel turbocharged compression ignition engine. The aim of the study was to determine the maximum CNG share in thefuel mixture delivered into the cylinder. Analysis of the investigation results showed that the CNG energy share in the fuel charge delivered into the cylinder can reach 45%. At that level of CNG energy share a 15% reduction in maximum torque is achieved in comparison with the standard fuelling. The unburnt hydrocarbon emission increases significantly. Emissions of other principal pollutants reach values comparable with those obtained at standard fuelling.
Wang, Zhuo; Li, Min; Zhou, Yueming; Lan, Pengfei; Lu, Peixiang
2017-02-20
The partition of the photon energy into the subsystems of molecules determines many photon-induced chemical and physical dynamics in laser-molecule interactions. The electron-nuclear energy sharing from multiphoton ionization of molecules has been used to uncover the correlated dynamics of the electron and fragments. However, most previous studies focus on symmetric molecules. Here we study the electron-nuclear energy sharing in strong-field photoionization of HeH 2+ by solving the one-dimensional time-dependent Schrödinger equation (TDSE). Compared with symmetric molecules, the joint electron-nuclear energy spectrum (JES) of HeH 2+ reveals an anomalous energy shift at certain nuclear energies, while it disappears at higher and lower nuclear energies. Through tracing the time evolution of the wavepacket of bound states, we identify that this energy shift originates from the joint effect of the Stark shift, associated with the permanent dipole, and the Autler-Townes effect due to the coupling of the 2pσ and 2sσ states in strong fields. The energy shift in the JES appears at certain nuclear distances only when both Stark effect and Autler-Townes effect play important roles. We further demonstrate that the electron-nuclei energy sharing can be controlled by varying laser intensity for asymmetric molecules, providing alternative approaches to manipulate photochemical reactions for more complex molecules.
Zhou, Lianjie; Chen, Nengcheng; Yuan, Sai; Chen, Zeqiang
2016-10-29
The efficient sharing of spatio-temporal trajectory data is important to understand traffic congestion in mass data. However, the data volumes of bus networks in urban cities are growing rapidly, reaching daily volumes of one hundred million datapoints. Accessing and retrieving mass spatio-temporal trajectory data in any field is hard and inefficient due to limited computational capabilities and incomplete data organization mechanisms. Therefore, we propose an optimized and efficient spatio-temporal trajectory data retrieval method based on the Cloudera Impala query engine, called ESTRI, to enhance the efficiency of mass data sharing. As an excellent query tool for mass data, Impala can be applied for mass spatio-temporal trajectory data sharing. In ESTRI we extend the spatio-temporal trajectory data retrieval function of Impala and design a suitable data partitioning method. In our experiments, the Taiyuan BeiDou (BD) bus network is selected, containing 2300 buses with BD positioning sensors, producing 20 million records every day, resulting in two difficulties as described in the Introduction section. In addition, ESTRI and MongoDB are applied in experiments. The experiments show that ESTRI achieves the most efficient data retrieval compared to retrieval using MongoDB for data volumes of fifty million, one hundred million, one hundred and fifty million, and two hundred million. The performance of ESTRI is approximately seven times higher than that of MongoDB. The experiments show that ESTRI is an effective method for retrieving mass spatio-temporal trajectory data. Finally, bus distribution mapping in Taiyuan city is achieved, describing the buses density in different regions at different times throughout the day, which can be applied in future studies of transport, such as traffic scheduling, traffic planning and traffic behavior management in intelligent public transportation systems.
An Effective Belt Conveyor for Underground Ore Transportation Systems
NASA Astrophysics Data System (ADS)
Krol, Robert; Kawalec, Witold; Gladysiewicz, Lech
2017-12-01
Raw material transportation generates a substantial share of costs in the mining industry. Mining companies are therefore determined to improve the effectiveness of their transportation system, focusing on solutions that increase both its energy efficiency and reliability while keeping maintenance costs low. In the underground copper ore operations in Poland’s KGHM mines vast and complex belt conveyor systems have been used for horizontal haulage of the run-of-mine ore from mining departments to shafts. Basing upon a long-time experience in the field of analysing, testing, designing and computing of belt conveyor equipment with regard to specific operational conditions, the improvements to the standard design of an underground belt conveyor for ore transportation have been proposed. As the key elements of a belt conveyor, the energy-efficient conveyor belt and optimised carrying idlers have been developed for the new generation of underground conveyors. The proposed solutions were tested individually on the specially constructed test stands in the laboratory and in the experimental belt conveyor that was built up with the use of prototype parts and commissioned for the regular ore haulage in a mining department in the KGHM underground mine “Lubin”. Its work was monitored and the recorded operational parameters (loadings, stresses and strains, energy dissipation, belt tracking) were compared with those previously collected on a reference (standard) conveyor. These in-situ measurements have proved that the proposed solutions will return with significant energy savings and lower maintenance costs. Calculations made on the basis of measurement results in the specialized belt conveyor designing software allow to estimate the possible savings if the modernized conveyors supersede the standard ones in a large belt conveying system.
DOT National Transportation Integrated Search
1996-03-01
Fiber-optic communications technology offers benefits for government agencies that want to set up communications networks for Intelligent Transportation Systems (ITS). One way to do this efficiently is to offer the public resource of highway right-of...
DOT National Transportation Integrated Search
1998-09-01
Commercial Vehicle Administrative (CVO) Processes Cross-Cutting report summarizes and interprets the results of several Field Operational Tests (FOTs) conducted to evaluate systems that increase the efficiency of commercial vehicle administrative pro...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-07
... DEPARTMENT OF ENERGY Office of Energy Efficiency and Renewable Energy [Docket Number EERE-BT-PET-0024] Energy Efficiency Program for Consumer Products: Commonwealth of Massachusetts Petition for Exemption From Federal Preemption of Massachusetts' Energy Efficiency Standard for Residential Non...
10 CFR 431.383 - Enforcement process for electric motors.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 431.383 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN... not be in compliance with the applicable energy efficiency standard, or upon undertaking to ascertain... its labeled efficiency, or the applicable energy efficiency standard, shall be based on the testing...
Voluntary Green Power Procurement | Energy Analysis | NREL
state renewable portfolio standards (RPSs). Pie chart depicting the voluntary market share of non -hydropower renewable generation. And, chart depicting the voluntary market share of non-hydropower renewable generation over time, from 2006 to 2015. Voluntary market share of U.S. non-hydropower renewable generation
Spatial econometric analysis of factors influencing regional energy efficiency in China.
Song, Malin; Chen, Yu; An, Qingxian
2018-05-01
Increased environmental pollution and energy consumption caused by the country's rapid development has raised considerable public concern, and has become the focus of the government and public. This study employs the super-efficiency slack-based model-data envelopment analysis (SBM-DEA) to measure the total factor energy efficiency of 30 provinces in China. The estimation model for the spatial interaction intensity of regional total factor energy efficiency is based on Wilson's maximum entropy model. The model is used to analyze the factors that affect the potential value of total factor energy efficiency using spatial dynamic panel data for 30 provinces during 2000-2014. The study found that there are differences and spatial correlations of energy efficiency among provinces and regions in China. The energy efficiency in the eastern, central, and western regions fluctuated significantly, and was mainly because of significant energy efficiency impacts on influences of industrial structure, energy intensity, and technological progress. This research is of great significance to China's energy efficiency and regional coordinated development.
Application of desktop computers in nuclear engineering education
DOE Office of Scientific and Technical Information (OSTI.GOV)
Graves, H.W. Jr.
1990-01-01
Utilization of desktop computers in the academic environment is based on the same objectives as in the industrial environment - increased quality and efficiency. Desktop computers can be extremely useful teaching tools in two general areas: classroom demonstrations and homework assignments. Although differences in emphasis exist, tutorial programs share many characteristics with interactive software developed for the industrial environment. In the Reactor Design and Fuel Management course at the University of Maryland, several interactive tutorial programs provided by Energy analysis Software Service have been utilized. These programs have been designed to be sufficiently structured to permit an orderly, disciplined solutionmore » to the problem being solved, and yet be flexible enough to accommodate most problem solution options.« less
Significant growth in. LED use predicted.
Simpson, Mike
2012-03-01
Although LED lighting has its critics, a number of whom (see article 'LED--panacea or marketing hype', HEJ--February 2012) are concerned about what they claim are some manufacturers' 'exaggerated claims' about lighting efficiency and lamp lifetime, Philips Lighting believes that, such are the advances being made in this innovative lighting technology, that LED's overall share of the European lighting market will have risen from around 7% in 2008 to 25% by 2020 and that, a decade later, it will account for a remarkable 75% of lighting sales. In the UK, Philips' technical and design director for Lighting, Mike Simpson, told HEJ editor, Jonathan Baillie, healthcare estates and facilities managers are increasingly recognising the potential to save energy, reduce carbon emissions, and cut maintenance costs, using LED.
76 FR 25683 - State Energy Advisory Board (STEAB); Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-05
... DEPARTMENT OF ENERGY Energy Efficiency and Renewable Energy State Energy Advisory Board (STEAB); Meeting AGENCY: Energy Efficiency and Renewable Energy, Department of Energy. ACTION: Notice of Open... Energy Efficiency and Renewable Energy, 1000 Independence Avenue, SW., Washington DC 20585; or e-mail...
Catalysis of heat-to-work conversion in quantum machines
Ghosh, A.; Latune, C. L.; Davidovich, L.; Kurizki, G.
2017-01-01
We propose a hitherto-unexplored concept in quantum thermodynamics: catalysis of heat-to-work conversion by quantum nonlinear pumping of the piston mode which extracts work from the machine. This concept is analogous to chemical reaction catalysis: Small energy investment by the catalyst (pump) may yield a large increase in heat-to-work conversion. Since it is powered by thermal baths, the catalyzed machine adheres to the Carnot bound, but may strongly enhance its efficiency and power compared with its noncatalyzed counterparts. This enhancement stems from the increased ability of the squeezed piston to store work. Remarkably, the fraction of piston energy that is convertible into work may then approach unity. The present machine and its counterparts powered by squeezed baths share a common feature: Neither is a genuine heat engine. However, a squeezed pump that catalyzes heat-to-work conversion by small investment of work is much more advantageous than a squeezed bath that simply transduces part of the work invested in its squeezing into work performed by the machine. PMID:29087326
Directional Charge Separation in Isolated Organic Semiconductor Crystalline Nanowires
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barnes, Michael; Labastide, Joelle; Bond-Thompson, Hilary
2017-03-01
In the conventional view of organic photovoltaics (OPV), localized electronic excitations (excitons) formed in the active layer are transported by random 3D diffusion to an interface where charge separation and extraction take place. Because radiative de-excitation is usually strongly allowed in organic semiconductors, efficient charge separation requires high exciton mobility, with much of the diffusive motion ‘wasted’ in directions that don’t result in an interface encounter. Our research efforts are focused on ways to enforce a preferred directionality in energy and/or charge transport using ordered crystalline nanowires in which the intermolecular interactions that facilitate transport along, for example, the pi-stackingmore » axis, can be made several orders of magnitude stronger than those in a transverse direction. The results presented in our recent work (Nature Communications) is a first step towards realizing the goal of directional control of both energy transport and charge separation, where excitons shared between adjacent molecules dissociate exclusively along the pi-stacking direction.« less
Catalysis of heat-to-work conversion in quantum machines
NASA Astrophysics Data System (ADS)
Ghosh, A.; Latune, C. L.; Davidovich, L.; Kurizki, G.
2017-11-01
We propose a hitherto-unexplored concept in quantum thermodynamics: catalysis of heat-to-work conversion by quantum nonlinear pumping of the piston mode which extracts work from the machine. This concept is analogous to chemical reaction catalysis: Small energy investment by the catalyst (pump) may yield a large increase in heat-to-work conversion. Since it is powered by thermal baths, the catalyzed machine adheres to the Carnot bound, but may strongly enhance its efficiency and power compared with its noncatalyzed counterparts. This enhancement stems from the increased ability of the squeezed piston to store work. Remarkably, the fraction of piston energy that is convertible into work may then approach unity. The present machine and its counterparts powered by squeezed baths share a common feature: Neither is a genuine heat engine. However, a squeezed pump that catalyzes heat-to-work conversion by small investment of work is much more advantageous than a squeezed bath that simply transduces part of the work invested in its squeezing into work performed by the machine.
Scientific and Technical Information (STI) for Financial Assistance and Non-M&O/M&I
DOE Office of Scientific and Technical Information (OSTI.GOV)
LaGrandeur, John; Crane, Doug
2012-07-02
BSST (hereafter referred to as Amerigon) began work in November 2004 under a cost share contract [1] awarded by the U.S. Department of Energy Freedom Car Office to develop a high efficiency Thermoelectric Waste Energy Recovery System for passenger vehicle applications. The system increases fuel economy by partially replacing the electric power produced by the alternator with electric power produced by conversion of exhaust gas in a Thermoelectric Generator (TEG). Amerigon’s team members included the BMW Group and Ford Motor Company, with both OEMs demonstrating the TEG system in their vehicles in the final program phase. Significant progress was mademore » in modeling, building and testing the TEG system from the lowest subassembly levels through an entire vehicle system. By the program’s conclusion, the team had successfully overcome the challenges of integrating TE materials into an exhaust system component and evaluated the system behavior in bench and over the road testing for over six months.« less
Catalysis of heat-to-work conversion in quantum machines.
Ghosh, A; Latune, C L; Davidovich, L; Kurizki, G
2017-11-14
We propose a hitherto-unexplored concept in quantum thermodynamics: catalysis of heat-to-work conversion by quantum nonlinear pumping of the piston mode which extracts work from the machine. This concept is analogous to chemical reaction catalysis: Small energy investment by the catalyst (pump) may yield a large increase in heat-to-work conversion. Since it is powered by thermal baths, the catalyzed machine adheres to the Carnot bound, but may strongly enhance its efficiency and power compared with its noncatalyzed counterparts. This enhancement stems from the increased ability of the squeezed piston to store work. Remarkably, the fraction of piston energy that is convertible into work may then approach unity. The present machine and its counterparts powered by squeezed baths share a common feature: Neither is a genuine heat engine. However, a squeezed pump that catalyzes heat-to-work conversion by small investment of work is much more advantageous than a squeezed bath that simply transduces part of the work invested in its squeezing into work performed by the machine.
76 FR 30143 - Agency Information Collection Extension
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-24
... DEPARTMENT OF ENERGY Office of Energy Efficiency and Renewable Energy Agency Information..., Buy American Coordinator, Office of Energy Efficiency and Renewable Energy (EERE), Department of... Energy Efficiency and Renewable Energy (EERE), Department of Energy, 1000 Independence Avenue, SW...
NASA Astrophysics Data System (ADS)
Elghali, Siddig
Middle East and North Africa countries have been criticized for failing to utilize foreign direct investment energy resources efficiently. The changing of energy resources environment of the past decades with its growing emphasis on the importance of imminent energy supply challenges require strategists to consider different types of energy resources investment to improve energy supply. One type of energy investment will show effectiveness and efficiency in utilizing foreign direct investment in exposing RE, fossil fuels, natural gas, and reducing CO2 emissions. The purpose of this quantitative correlational study was to utilize foreign direct investment to predict total primary energy supply in the Middle East and North Africa region between 1971 and 2013. The study was conducted using a sample size of 43 years of energy supply resources and foreign direct investment from 1971 to 2013, which includes all of the years for which FDI is available. RE potential may equip Middle East and North Africa countries with sustainable and clean electricity for centuries to come, as non-renewable energy resources may not meet the demands globally and domestically or environmentally. As demands for fossil fuels grow, carbon emissions will increase. RE may be a better option of CO 2 emissions sequestration and will increase electricity to rural areas without government subsidies and complex decision-making policies. RE infrastructure will reduce water desalinization costs, cooling systems, and be useful in heating. Establishing concentrated solar power may be useful for the region cooperation, negotiations, and integration to share this energy. The alternative sought to fossil fuels was nuclear power. However, nuclear power depends on depleting, non-renewable uranium resources. The cost of uranium will increase if widely used and the presence of a nuclear plant in an unstable region is unsafe. Thus, renewable energy as a long-term option is efficient. A nonlinear regression analysis performed to test the foreign direct investment and energy supply predictor variables with the control variables relate to renewable energy resources, fossil fuels, natural gas, nuclear energy, and CO2 emissions. FDI to predict the total primary energy supply in the MENA region between 1971 and 2013. The predictor variable was FDI evaluated for all years between 1971 and 2013. The criterion variables were total primary energy supply from four distinct sources: fossil fuels (including crude oil, natural gas liquid, and refinery feedstocks); natural gas; renewables and waste; and electricity. The results of the nonlinear regression supported FDI inflow was significantly predictive of the total primary energy supply in the Middle East between 1971 and 2013. A future quantitative study could examine FDI and Energy Supply in the MENA for strategic energy and investment policies indicators. Significant prediction between FDI and energy supply should serve as a red flag to researchers and cause them to research further. The study outlines steps that could be followed in making a determination whether selected FDI were consistent with energy data, which would then suggest the need for further FDI and energy supply investigation.
DOT National Transportation Integrated Search
1999-01-01
This brochure discusses how electronic screening of commercial vehicles can aid both state agencies and motor carriers. Benefits include: enhancing enforcement, increasing operations efficiency reducing pollution levels, promotes economic viability a...
DOT National Transportation Integrated Search
1999-01-01
This brochure discusses how electronic screening of commercial vehicles can aid both state agencies and motor carriers. Benefits include: enhancing enforcement, increasing operations efficiency reducing pollution levels, promoting economic viability ...
Global warming, energy use, and economic growth
NASA Astrophysics Data System (ADS)
Khanna, Neha
The dissertation comprises four papers that explore the interactions between global warming, energy use, and economic growth. While the papers are separate entities, they share the underlying theme of highlighting national differences in the growth experience and their implications for long-term energy use and climate change. The first paper provides an overview of some key economic issues in the climate change literature. In doing so, the paper critically appraises the 1995 draft report of Working Group III of the Intergovernmental Panel on Climate Change. The focus is the choice of a pure rate of time preference in the economic modeling of climate change, abatement costs differentials between developed and developing countries, and contrasting implications of standard discount rates and value of life estimates for these two country groups. The second paper develops a global model that takes account of the depletion of oil resources in the context of a geo-economic model for climate change. It is found that in the presence of non-decreasing carbon and energy intensities and declining petroleum availability, the carbon emissions trajectory is much higher than that typically projected by other models of this genre. Furthermore, by introducing price and income sensitive demand functions for fossil fuels, the model provides a framework to assess the effectiveness of fuel specific carbon taxes in reducing the COsb2 emissions trajectory. Cross-price substitution effects necessitate unrealistically high tax rates in order to lower the projected emissions trajectory to the optimal level. The economic structure of five integrated assessment models for climate change is reviewed in the third paper, with a special focus on the macroeconomic and damage assessment modules. The final paper undertakes an econometric estimation of the changing shares of capital, labour, energy, and technical change in explaining the growth patterns of 38 countries. Production elasticities vary by country group and also in response to the levels of factor use. It is found that classifying countries according to the GDP growth rate yields statistically different slope coefficients. Using the estimated translog production function, the capital and labour requirements of reductions in energy use are approximated. Analytical expressions for the elasticity of energy intensity with respect to factor inputs and also autonomous energy efficiency improvements are provided.
Energy Efficiency Resources to Support State Energy Planning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Office of Strategic Programs, Strategic Priorities and Impact Analysis Team
An early step for most energy efficiency planning is to identify and quantify energy savings opportunities, and then to understand how to access this potential. The U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy offers resources that can help with both of these steps. This fact sheet presents those resources. The resources are also available on the DOE State and Local Solution Center on the "Energy Efficiency: Savings Opportunities and Benefits" page: https://energy.gov/eere/slsc/energy-efficiency-savings-opportunities-and-benefits.