Sample records for energy efficient ventilation

  1. Indoor Environmental Quality in Mechanically Ventilated, Energy-Efficient Buildings vs. Conventional Buildings.

    PubMed

    Wallner, Peter; Munoz, Ute; Tappler, Peter; Wanka, Anna; Kundi, Michael; Shelton, Janie F; Hutter, Hans-Peter

    2015-11-06

    Energy-efficient buildings need mechanical ventilation. However, there are concerns that inadequate mechanical ventilation may lead to impaired indoor air quality. Using a semi-experimental field study, we investigated if exposure of occupants of two types of buildings (mechanical vs. natural ventilation) differs with regard to indoor air pollutants and climate factors. We investigated living and bedrooms in 123 buildings (62 highly energy-efficient and 61 conventional buildings) built in the years 2010 to 2012 in Austria (mainly Vienna and Lower Austria). Measurements of indoor parameters (climate, chemical pollutants and biological contaminants) were conducted twice. In total, more than 3000 measurements were performed. Almost all indoor air quality and room climate parameters showed significantly better results in mechanically ventilated homes compared to those relying on ventilation from open windows and/or doors. This study does not support the hypothesis that occupants in mechanically ventilated low energy houses are exposed to lower indoor air quality.

  2. Home energy efficiency and radon related risk of lung cancer: modelling study

    PubMed Central

    Milner, James; Shrubsole, Clive; Das, Payel; Jones, Benjamin; Ridley, Ian; Chalabi, Zaid; Hamilton, Ian; Armstrong, Ben; Davies, Michael

    2014-01-01

    Objective To investigate the effect of reducing home ventilation as part of household energy efficiency measures on deaths from radon related lung cancer. Design Modelling study. Setting England. Intervention Home energy efficiency interventions, motivated in part by targets for reducing greenhouse gases, which entail reduction in uncontrolled ventilation in keeping with good practice guidance. Main outcome measures Modelled current and future distributions of indoor radon levels for the English housing stock and associated changes in life years due to lung cancer mortality, estimated using life tables. Results Increasing the air tightness of dwellings (without compensatory purpose-provided ventilation) increased mean indoor radon concentrations by an estimated 56.6%, from 21.2 becquerels per cubic metre (Bq/m3) to 33.2 Bq/m3. After the lag in lung cancer onset, this would result in an additional annual burden of 4700 life years lost and (at peak) 278 deaths. The increases in radon levels for the millions of homes that would contribute most of the additional burden are below the threshold at which radon remediation measures are cost effective. Fitting extraction fans and trickle ventilators to restore ventilation will help offset the additional burden but only if the ventilation related energy efficiency gains are lost. Mechanical ventilation systems with heat recovery may lower radon levels and the risk of cancer while maintaining the advantage of energy efficiency for the most airtight dwellings but there is potential for a major adverse impact on health if such systems fail. Conclusion Unless specific remediation is used, reducing the ventilation of dwellings will improve energy efficiency only at the expense of population wide adverse impact on indoor exposure to radon and risk of lung cancer. The implications of this and other consequences of changes to ventilation need to be carefully evaluated to ensure that the desirable health and environmental benefits of home energy efficiency are not compromised by avoidable negative impacts on indoor air quality. PMID:24415631

  3. Night ventilation control strategies in office buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Zhaojun; Yi, Lingli; Gao, Fusheng

    2009-10-15

    In moderate climates night ventilation is an effective and energy-efficient approach to improve the indoor thermal environment for office buildings during the summer months, especially for heavyweight construction. However, is night ventilation a suitable strategy for office buildings with lightweight construction located in cold climates? In order to answer this question, the whole energy-consumption analysis software EnergyPlus was used to simulate the indoor thermal environment and energy consumption in typical office buildings with night mechanical ventilation in three cities in northern China. The summer outdoor climate data was analyzed, and three typical design days were chosen. The most important factorsmore » influencing night ventilation performance such as ventilation rates, ventilation duration, building mass and climatic conditions were evaluated. When night ventilation operation time is closer to active cooling time, the efficiency of night ventilation is higher. With night ventilation rate of 10 ach, the mean radiant temperature of the indoor surface decreased by up to 3.9 C. The longer the duration of operation, the more efficient the night ventilation strategy becomes. The control strategies for three locations are given in the paper. Based on the optimized strategies, the operation consumption and fees are calculated. The results show that more energy is saved in office buildings cooled by a night ventilation system in northern China than ones that do not employ this strategy. (author)« less

  4. Contaminants in ventilated filling boxes

    NASA Astrophysics Data System (ADS)

    Bolster, D. T.; Linden, P. F.

    While energy efficiency is important, the adoption of energy-efficient ventilation systems still requires the provision of acceptable indoor air quality. Many low-energy systems, such as displacement or natural ventilation, rely on temperature stratification within the interior environment, always extracting the warmest air from the top of the room. Understanding buoyancy-driven convection in a confined ventilated space is key to understanding the flow that develops with many of these modern low-energy ventilation schemes. In this work we study the transport of an initially uniformly distributed passive contaminant in a displacement-ventilated space. Representing a heat source as an ideal sourced of buoyancy, analytical and numerical models are developed that allow us to compare the average efficiency of contaminant removal between traditional mixing and modern low-energy systems. A set of small-scale analogue laboratory experiments was also conducted to further validate our analytical and numerical solutions.We find that on average traditional and low-energy ventilation methods are similar with regard to pollutant flushing efficiency. This is because the concentration being extracted from the system at any given time is approximately the same for both systems. However, very different vertical concentration gradients exist. For the low-energy system, a peak in contaminant concentration occurs at the temperature interface that is established within the space. This interface is typically designed to sit at some intermediate height in the space. Since this peak does not coincide with the extraction point, displacement ventilation does not offer the same benefits for pollutant flushing as it does for buoyancy removal.

  5. Particle transport in low-energy ventilation systems. Part 1: theory of steady states.

    PubMed

    Bolster, D T; Linden, P F

    2009-04-01

    Many modern low-energy ventilation schemes, such as displacement or natural ventilation, take advantage of temperature stratification in a space, extracting the warmest air from the top of the room. The adoption of these energy-efficient ventilation systems still requires the provision of acceptable indoor air quality. In this work we study the steady state transport of particulate contaminants in a displacement-ventilated space. Representing heat sources as ideal sources of buoyancy, analytical models are developed that allow us to compare the average efficiency of contaminant removal between traditional and modern low-energy systems. We found that on average traditional and low-energy systems are similar in overall pollutant removal efficiency, although quite different vertical distributions of contaminant can exist, thus affecting individual exposure. While the main focus of this work is on particles where the dominant mode of deposition is by gravitational settling, we also discuss additional deposition mechanisms and show that the qualitative observations we make carry over to cases where such mechanisms must be included. We illustrate that while average concentration of particles for traditional mixing systems and low energy displacement systems are similar, local concentrations can vary significantly with displacement systems. Depending on the source of the particles this can be better or worse in terms of occupant exposure and engineers should take due diligence accordingly when designing ventilation systems.

  6. Radon safety in terms of energy efficiency classification of buildings

    NASA Astrophysics Data System (ADS)

    Vasilyev, A.; Yarmoshenko, I.; Zhukovsky, M.

    2017-06-01

    According to the results of survey in Ekaterinburg, Russia, indoor radon concentrations above city average level have been found in each of the studied buildings with high energy efficiency class. Measures to increase energy efficiency were confirmed to decrease the air exchange rate and accumulation of high radon concentrations indoors. Despite of recommendations to use mechanical ventilation with heat recovery as the main scenario for reducing elevated radon concentrations in energy-efficient buildings, the use of such systems did not show an obvious advantage. In real situation, mechanical ventilation system is not used properly both in the automatic and manual mode, which does not give an obvious advantage over natural ventilation in the climate of the Middle Urals in Ekaterinburg. Significant number of buildings with a high class of energy efficiency and built using modern space-planning decisions contributes to an increase in the average radon concentration. Such situation contradicts to “as low as reasonable achievable” principle of the radiation protection.

  7. Indoor environment program. 1994 annual report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daisey, J.M.

    1995-04-01

    Buildings use approximately one-third of the energy consumed in the United States. The potential energy savings derived from reduced infiltration and ventilation in buildings are substantial, since energy use associated with conditioning and distributing ventilation air is about 5.5 EJ per year. However, since ventilation is the dominant mechanism for removing pollutants from indoor sources, reduction of ventilation can have adverse effects on indoor air quality, and on the health, comfort, and productivity of building occupants. The Indoor Environment Program in LBL`s Energy and Environment Division was established in 1977 to conduct integrated research on ventilation, indoor air quality, andmore » energy use and efficiency in buildings for the purpose of reducing energy liabilities associated with airflows into, within, and out of buildings while maintaining or improving occupant health and comfort. The Program is part of LBL`s Center for Building Science. Research is conducted on building energy use and efficiency, ventilation and infiltration, and thermal distribution systems; on the nature, sources, transport, transformation, and deposition of indoor air pollutants; and on exposure and health risks associated with indoor air pollutants. Pollutants of particular interest include radon; volatile, semivolatile, and particulate organic compounds; and combustion emissions, including environmental tobacco smoke, CO, and NO{sub x}.« less

  8. Ventilating Air-Conditioner

    NASA Technical Reports Server (NTRS)

    Dinh, Khanh

    1994-01-01

    Air-conditioner provides ventilation designed to be used alone or incorporated into cooling or heating system operates efficiently only by recirculating stale air within building. Energy needed to operate overall ventilating cooling or heating system slightly greater than operating nonventilating cooling or heating system. Helps to preserve energy efficiency while satisfying need for increased forced ventilation to prevent accumulation of undesired gases like radon and formaldehyde. Provides fresh treated air to variety of confined spaces: hospital surgeries, laboratories, clean rooms, and printing shops and other places where solvents used. In mobile homes and portable classrooms, eliminates irritant chemicals exuded by carpets, panels, and other materials, ensuring healthy indoor environment for occupants.

  9. RESIDENTIAL VENTILATION STUDY

    EPA Science Inventory

    This project evaluated the effectiveness, first costs and operational costs of various types of residential ventilation systems in three different climates in the U.S. The Agency, through its Energy Star Program, recommends that builders construct homes that are energy efficient ...

  10. Energy Efficiency in Libraries.

    ERIC Educational Resources Information Center

    Lewis, Eleanor J.; And Others

    1993-01-01

    Shows how libraries can save money and energy with energy-efficient technologies, improving maintenance, and encouraging staff efforts to conserve energy. Specific techniques such as life-cycle cost analysis and energy audits focusing on lighting, heating, ventilation, air conditioning, and water efficiency are described. Funding options and…

  11. ENERGY STAR Certified Ventilating Fans

    EPA Pesticide Factsheets

    Certified models meet all ENERGY STAR requirements as listed in the Version 4.0 ENERGY STAR Program Requirements for Ventilating Fans that are effective as of October 1, 2015. A detailed listing of key efficiency criteria are available at http://www.energystar.gov/index.cfm?c=vent_fans.pr_crit_vent_fans

  12. Modeling the resiliency of energy-efficient retrofits in low-income multifamily housing.

    PubMed

    Underhill, L J; Fabian, M P; Vermeer, K; Sandel, M; Adamkiewicz, G; Leibler, J H; Levy, J I

    2018-05-01

    Residential energy efficiency and ventilation retrofits (eg, building weatherization, local exhaust ventilation, HVAC filtration) can influence indoor air quality (IAQ) and occupant health, but these measures' impact varies by occupant activity. In this study, we used the multizone airflow and IAQ analysis program CONTAM to simulate the impacts of energy retrofits on indoor concentrations of PM 2.5 and NO 2 in a low-income multifamily housing complex in Boston, Massachusetts (USA). We evaluated the differential impact of residential activities, such as low- and high-emission cooking, cigarette smoking, and window opening, on IAQ across two seasons. We found that a comprehensive package of energy and ventilation retrofits was resilient to a range of occupant activities, while less holistic approaches without ventilation improvements led to increases in indoor PM 2.5 or NO 2 for some populations. In general, homes with simulated concentration increases included those with heavy cooking and no local exhaust ventilation, and smoking homes without HVAC filtration. Our analytical framework can be used to identify energy-efficient home interventions with indoor retrofit resiliency (ie, those that provide IAQ benefits regardless of occupant activity), as well as less resilient retrofits that can be coupled with behavioral interventions (eg, smoking cessation) to provide cost-effective, widespread benefits. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. A Systems Approach to High Performance Buildings: A Computational Systems Engineering R&D Program to Increase DoD Energy Efficiency

    DTIC Science & Technology

    2012-02-01

    for Low Energy Building Ventilation and Space Conditioning Systems...Building Energy Models ................... 162 APPENDIX D: Reduced-Order Modeling and Control Design for Low Energy Building Systems .... 172 D.1...Design for Low Energy Building Ventilation and Space Conditioning Systems This section focuses on the modeling and control of airflow in buildings

  14. Health, Energy Efficiency and Climate Change

    EPA Pesticide Factsheets

    Climate change is becoming a driving force for improving energy efficiency because saving energy can help reduce the greenhouse gas emissions that contribute to climate change. However, it is important to balance energy saving measures with ventilation...

  15. Indoor Air Quality: Is Increased Ventilation the Answer?

    ERIC Educational Resources Information Center

    Hansen, Shirley

    1989-01-01

    Explains how indoor air quality is affected by pollutants in the air and also by temperature, humidity, and ventilation. Increased ventilation alone seldom solves the "sick building syndrome." Lists ways to improve indoor air quality and optimize energy efficiency. (MLF)

  16. Javanese House’s Roof (Joglo) with the Opening as a Cooling Energy Provider

    NASA Astrophysics Data System (ADS)

    Pranoto S, M.

    2018-01-01

    Natural ventilation and air movement could be considered under the heading structural controls as it does not rely on any form of energy supply or mechanical installation but due to its importance for human comfort, it deserves a separate section. Air infiltration can destroy the performance of ventilation systems. Good ventilation design combined with optimum air tightness is needed to ensure energy efficient ventilation. Ultimately, ventilation needs depend on occupancy pattern and building use. A full cost and energy analysis is therefore needed to select an optimum ventilation strategy.The contains of paper is about the element of Javanese house (the roof) as the element of natural ventilation and a cooling energy provider. In this research, The Computational Fluid Dynamics Program, is used to draw and analysis. That tool can be track the pattern and the direction of movement of air also the air velocity in the object of ventilation of the roof Javanese house based. Finally, the ventilation of the roof of this Javanese house can add the velocity of air at indoor, average 0.4 m/s and give the effect of cooling, average 0.7°C.

  17. Particle transport in low-energy ventilation systems. Part 2: Transients and experiments.

    PubMed

    Bolster, D T; Linden, P F

    2009-04-01

    Providing adequate indoor air quality while reducing energy consumption is a must for efficient ventilation system design. In this work, we study the transport of particulate contaminants in a displacement-ventilated space, using the idealized 'emptying filling box' model (P.F. Linden, G.F. Lane-serff and D.A. Smeed (1990) Emptying filling boxes: the fluid mechanics of natural ventilation, J. fluid Mech., 212, 309-335.). In this paper, we focused on transient contaminant transport by modeling three transient contamination scenarios, namely the so called 'step-up', 'step-down', and point source cases. Using analytical integral models and numerical models we studied the transient behavior of each of these three cases. We found that, on average, traditional and low-energy systems can be similar in overall pollutant removal efficiency, although quite different vertical gradients can exist. This plays an important role in estimating occupant exposure to contaminant. A series of laboratory experiments were conducted to validate the developed models. The results presented here illustrate that the source location plays a very important role in the distribution of contaminant concentration for spaces ventilated by low energy displacement-ventilation systems. With these results and the knowledge of typical contaminant sources for a given type of space practitioners can design or select more effective systems for the purpose at hand.

  18. 10 CFR 429.43 - Commercial heating, ventilating, air conditioning (HVAC) equipment.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... seasonal energy efficiency ratio (SEER in British thermal units per Watt-hour (Btu/Wh)), the heating...) Package terminal air conditioners: The energy efficiency ratio (EER in British thermal units per Watt-hour... package vertical air conditioner: The energy efficiency ratio (EER in British thermal units per Watt-hour...

  19. 10 CFR 429.43 - Commercial heating, ventilating, air conditioning (HVAC) equipment.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... seasonal energy efficiency ratio (SEER in British thermal units per Watt-hour (Btu/Wh)), the heating...) Package terminal air conditioners: The energy efficiency ratio (EER in British thermal units per Watt-hour... package vertical air conditioner: The energy efficiency ratio (EER in British thermal units per Watt-hour...

  20. Energy-Efficient Renovation of Educational Buildings

    ERIC Educational Resources Information Center

    Erhorn-Kluttig, Heike; Morck, Ove

    2005-01-01

    Case studies demonstrating energy-efficient renovation of educational buildings collected by the International Energy Agency (IEA) provide information on retrofit technologies, energy-saving approaches and ventilation strategies. Some general findings are presented here along with one case study, Egebjerg School in Denmark, which shows how natural…

  1. A Case Study in Market Transformation for Residential Energy Efficiency Programs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Building Technologies Office

    This case study describes how the Midwest Energy Efficiency Alliance (MEEA) partnered with gas and electric utilities in Iowa to establish the Iowa residential heating, ventilation, and air conditioning System Adjustment and Verified Efficiency (HVAC SAVE) program, taking it to scale improving the performance and energy efficiency of HVAC systems, growing businesses, and gaining consumer trust.

  2. Energy efficiency buildings program

    NASA Astrophysics Data System (ADS)

    1981-05-01

    Progress is reported in developing techniques for auditing the energy performance of buildings. The ventilation of buildings and indoor air quality is discussed from the viewpoint of (1) combustion generated pollutants; (2) organic contaminants; (3) radon emanation, measurements, and control; (4) strategies for the field monitoring of indoor air quality; and (5) mechanical ventilation systems using air-to-air heat exchanges. The development of energy efficient windows to provide optimum daylight with minimal thermal losses in cold weather and minimum thermal gain in hot weather is considered as well as the production of high frequency solid state ballasts for fluorescent lights to provide more efficient lighting at a 25% savings over conventional core ballasts. Data compilation, analysis, and demonstration activities are summarized.

  3. Economic, Environmental and Health Implications of Enhanced Ventilation in Office Buildings.

    PubMed

    MacNaughton, Piers; Pegues, James; Satish, Usha; Santanam, Suresh; Spengler, John; Allen, Joseph

    2015-11-18

    Current building ventilation standards are based on acceptable minimums. Three decades of research demonstrates the human health benefits of increased ventilation above these minimums. Recent research also shows the benefits on human decision-making performance in office workers, which translates to increased productivity. However, adoption of enhanced ventilation strategies is lagging. We sought to evaluate two of the perceived potential barriers to more widespread adoption-Economic and environmental costs. We estimated the energy consumption and associated per building occupant costs for office buildings in seven U.S. cities, representing different climate zones for three ventilation scenarios (standard practice (20 cfm/person), 30% enhanced ventilation, and 40 cfm/person) and four different heating, ventilation and air conditioning (HVAC) system strategies (Variable Air Volume (VAV) with reheat and a Fan Coil Unit (FCU), both with and without an energy recovery ventilator). We also estimated emissions of greenhouse gases associated with this increased energy usage, and, for comparison, converted this to the equivalent number of vehicles using greenhouse gas equivalencies. Lastly, we paired results from our previous research on cognitive function and ventilation with labor statistics to estimate the economic benefit of increased productivity associated with increasing ventilation rates. Doubling the ventilation rate from the American Society of Heating, Refrigeration and Air-Conditioning Engineers minimum cost less than $40 per person per year in all climate zones investigated. Using an energy recovery ventilation system significantly reduced energy costs, and in some scenarios led to a net savings. At the highest ventilation rate, adding an ERV essentially neutralized the environmental impact of enhanced ventilation (0.03 additional cars on the road per building across all cities). The same change in ventilation improved the performance of workers by 8%, equivalent to a $6500 increase in employee productivity each year. Reduced absenteeism and improved health are also seen with enhanced ventilation. The health benefits associated with enhanced ventilation rates far exceed the per-person energy costs relative to salary costs. Environmental impacts can be mitigated at regional, building, and individual-level scales through the transition to renewable energy sources, adoption of energy efficient systems and ventilation strategies, and promotion of other sustainable policies.

  4. Economic, Environmental and Health Implications of Enhanced Ventilation in Office Buildings

    PubMed Central

    MacNaughton, Piers; Pegues, James; Satish, Usha; Santanam, Suresh; Spengler, John; Allen, Joseph

    2015-01-01

    Introduction: Current building ventilation standards are based on acceptable minimums. Three decades of research demonstrates the human health benefits of increased ventilation above these minimums. Recent research also shows the benefits on human decision-making performance in office workers, which translates to increased productivity. However, adoption of enhanced ventilation strategies is lagging. We sought to evaluate two of the perceived potential barriers to more widespread adoption—Economic and environmental costs. Methods: We estimated the energy consumption and associated per building occupant costs for office buildings in seven U.S. cities, representing different climate zones for three ventilation scenarios (standard practice (20 cfm/person), 30% enhanced ventilation, and 40 cfm/person) and four different heating, ventilation and air conditioning (HVAC) system strategies (Variable Air Volume (VAV) with reheat and a Fan Coil Unit (FCU), both with and without an energy recovery ventilator). We also estimated emissions of greenhouse gases associated with this increased energy usage, and, for comparison, converted this to the equivalent number of vehicles using greenhouse gas equivalencies. Lastly, we paired results from our previous research on cognitive function and ventilation with labor statistics to estimate the economic benefit of increased productivity associated with increasing ventilation rates. Results: Doubling the ventilation rate from the American Society of Heating, Refrigeration and Air-Conditioning Engineers minimum cost less than $40 per person per year in all climate zones investigated. Using an energy recovery ventilation system significantly reduced energy costs, and in some scenarios led to a net savings. At the highest ventilation rate, adding an ERV essentially neutralized the environmental impact of enhanced ventilation (0.03 additional cars on the road per building across all cities). The same change in ventilation improved the performance of workers by 8%, equivalent to a $6500 increase in employee productivity each year. Reduced absenteeism and improved health are also seen with enhanced ventilation. Conclusions: The health benefits associated with enhanced ventilation rates far exceed the per-person energy costs relative to salary costs. Environmental impacts can be mitigated at regional, building, and individual-level scales through the transition to renewable energy sources, adoption of energy efficient systems and ventilation strategies, and promotion of other sustainable policies. PMID:26593933

  5. 10 CFR 429.43 - Commercial heating, ventilating, air conditioning (HVAC) equipment.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... conditioners: The energy efficiency ratio (EER in British thermal units per Watt-hour (Btu/Wh)), the cooling...) Package terminal heat pumps: The energy efficiency ratio (EER in British thermal units per Watt-hour (Btu...: The energy efficiency ratio (EER in British thermal units per Watt-hour (Btu/Wh)) and the cooling...

  6. Energy-Efficient Schools: Three Case Studies from Oregon.

    ERIC Educational Resources Information Center

    2003

    This document presents case studies of three schools or districts in Oregon that have implemented steps to promote energy efficiency. Steps taken by the schools include daylighting, energy audits, special energy loans, new ventilation design, and sustainable building practices. The facilities described are Ash Creek Intermediate School in…

  7. Natural ventilation of buildings: opposing wind and buoyancy

    NASA Astrophysics Data System (ADS)

    Linden, Paul; Hunt, Gary

    1998-11-01

    The use of natural ventilation in buildings is an attractive way to reduce energy usage thereby reducing costs and CO2 emissions. Generally, it is necessary to remove excess heat from a building and the designer can use the buoyancy forces associated with the above ambient temperatures within the building to drive a flow - 'stack' ventilation. The most efficient mode is displacement ventilation where warm air accumulates near the top of the building and flows out through upper level vents and cooler air flows in at lower levels. Ventilation will also be driven between these lower and upper openings by the wind. We report on laboratory modeling and theory which investigates the effects of an opposing wind on stack ventilation driven by a constant source of heat within a space under displacement ventilation. We show that there is a critical wind speed, expressed in dimensionless terms as a critical Froude number, above which displacement ventilation is replaced by (less efficient) mixing ventilation with reversed flow. Below this critical speed, displacement ventilation, in which the interior has a two-layer stratification, is maintained. The criterion for the change in ventilation mode is derived from general considerations of mixing efficiencies in stratified flows. We conclude that even when wind effects might appear to be dominant, the inhibition of mixing by the stable stratification within the space ensures that stack ventilation can operate over a wide range of apparently adverse conditions.

  8. Energy Use Consequences of Ventilating a Net-Zero Energy House

    PubMed Central

    Ng, Lisa C.; Payne, W. Vance

    2016-01-01

    A Net-Zero Energy Residential Test Facility (NZERTF) has been constructed at the National Institute of Standards and Technology (NIST) in Gaithersburg, Maryland to demonstrate that a home similar in size, aesthetics, and amenities to those in the surrounding communities can achieve net-zero energy use over the course of a year while meeting the average electricity and water use needs of a family of four in the United States. The facility incorporates renewable energy and energy efficient technologies, including an air-to-air heat pump system, a solar photovoltaic system, a solar thermal domestic hot water system, and a heat recovery ventilation system sized to meet American Society of Heating, Refrigeration, and Air-Conditioning Engineers (ASHRAE) Standard 62.2-2010 ventilation requirements. The largest energy end use within the home was space conditioning, which included heat loss through the building envelope, ventilation air supplied by the heat recovery ventilator (HRV), and internal loads. While HRVs are often described as being able to save energy when compared to ventilating without heat recovery, there have been no studies using a full year of measured data that determine the thermal load and energy impacts of HRV-based ventilation on the central heating and cooling system. Over the course of a year, continuous operation of the HRV at the NZERTF resulted in an annual savings of 7 % in heat pump energy use compared with the hypothetical case of ventilating without heat recovery. The heat pump electrical use varied from an increase of 5 % in the cooling months to 36 % savings in the heating months compared with ventilation without heat recovery. The increase in the cooling months occurred when the outdoor temperature was lower than the indoor temperature, during which the availability of an economizer mode would have been beneficial. Nevertheless, the fan energy required to operate the selected HRV at the NZERTF paid for itself in the heat pump energy saved compared with ventilation without heat recovery. PMID:26903776

  9. Energy Use Consequences of Ventilating a Net-Zero Energy House.

    PubMed

    Ng, Lisa C; Payne, W Vance

    2016-03-05

    A Net-Zero Energy Residential Test Facility (NZERTF) has been constructed at the National Institute of Standards and Technology (NIST) in Gaithersburg, Maryland to demonstrate that a home similar in size, aesthetics, and amenities to those in the surrounding communities can achieve net-zero energy use over the course of a year while meeting the average electricity and water use needs of a family of four in the United States. The facility incorporates renewable energy and energy efficient technologies, including an air-to-air heat pump system, a solar photovoltaic system, a solar thermal domestic hot water system, and a heat recovery ventilation system sized to meet American Society of Heating, Refrigeration, and Air-Conditioning Engineers (ASHRAE) Standard 62.2-2010 ventilation requirements. The largest energy end use within the home was space conditioning, which included heat loss through the building envelope, ventilation air supplied by the heat recovery ventilator (HRV), and internal loads. While HRVs are often described as being able to save energy when compared to ventilating without heat recovery, there have been no studies using a full year of measured data that determine the thermal load and energy impacts of HRV-based ventilation on the central heating and cooling system. Over the course of a year, continuous operation of the HRV at the NZERTF resulted in an annual savings of 7 % in heat pump energy use compared with the hypothetical case of ventilating without heat recovery. The heat pump electrical use varied from an increase of 5 % in the cooling months to 36 % savings in the heating months compared with ventilation without heat recovery. The increase in the cooling months occurred when the outdoor temperature was lower than the indoor temperature, during which the availability of an economizer mode would have been beneficial. Nevertheless, the fan energy required to operate the selected HRV at the NZERTF paid for itself in the heat pump energy saved compared with ventilation without heat recovery.

  10. Health and Wellbeing of Occupants in Highly Energy Efficient Buildings: A Field Study.

    PubMed

    Wallner, Peter; Tappler, Peter; Munoz, Ute; Damberger, Bernhard; Wanka, Anna; Kundi, Michael; Hutter, Hans-Peter

    2017-03-19

    Passive houses and other highly energy-efficient buildings need mechanical ventilation. However, ventilation systems in such houses are regarded with a certain degree of skepticism by parts of the public due to alleged negative health effects. Within a quasi-experimental field study, we investigated if occupants of two types of buildings (mechanical vs. natural ventilation) experience different health, wellbeing and housing satisfaction outcomes and if associations with indoor air quality exist. We investigated 123 modern homes (test group: with mechanical ventilation; control group: naturally ventilated) built in the years 2010 to 2012 in the same geographic area and price range. Interviews of occupants based on standardized questionnaires and measurements of indoor air quality parameters were conducted twice (three months after moving in and one year later). In total, 575 interviews were performed (respondents' mean age 37.9 ± 9 years in the test group, 37.7 ± 9 years in the control group). Occupants of the test group rated their overall health status and that of their children not significantly higher than occupants of the control group at both time points. Adult occupants of the test group reported dry eyes statistically significantly more frequently compared to the control group (19.4% vs. 12.5%). Inhabitants of energy-efficient, mechanically ventilated homes rated the quality of indoor air and climate significantly higher. Self-reported health improved more frequently in the mechanically ventilated new homes ( p = 0.005). Almost no other significant differences between housing types and measuring time points were observed concerning health and wellbeing or housing satisfaction. Associations between vegetative symptoms (dizziness, nausea, headaches) and formaldehyde concentrations as well as between CO₂ levels and perceived stale air were observed. However, both associations were independent of the type of ventilation. In summary, occupants of the mechanically ventilated homes rated their health status slightly higher and their health improved significantly more frequently than in occupants of the control group. As humidity in homes with mechanical ventilation was lower, it seems plausible that the inhabitants reported dry eyes more frequently.

  11. Energy-Efficient Management of Mechanical Ventilation and Relative Humidity in Hot-Humid Climates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Withers, Jr., Charles R.

    2016-12-01

    In hot and humid climates, it is challenging to energy-efficiently maintain indoor RH at acceptable levels while simultaneously providing required ventilation, particularly in high performance low cooling load homes. The fundamental problem with solely relying on fixed capacity central cooling systems to manage moisture during low sensible load periods is that they are oversized for cooler periods of the year despite being 'properly sized' for a very hot design cooling day. The primary goals of this project were to determine the impact of supplementing a central space conditioning system with 1) a supplemental dehumidifier and 2) a ductless mini-split onmore » seasonal energy use and summer peak power use as well as the impact on thermal distribution and humidity control inside a completely furnished lab home that was continuously ventilated in accordance with ASHRAE 62.2-2013.« less

  12. Building America Case Study: Energy Efficient Management of Mechanical Ventilation and Relative Humidity in Hot-Humid Climates, Cocoa, Florida

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2017-01-01

    In hot and humid climates, it is challenging to energy-efficiently maintain indoor RH at acceptable levels while simultaneously providing required ventilation, particularly in high performance low cooling load homes. The fundamental problem with solely relying on fixed capacity central cooling systems to manage moisture during low sensible load periods is that they are oversized for cooler periods of the year despite being 'properly sized' for a very hot design cooling day. The primary goals of this project were to determine the impact of supplementing a central space conditioning system with 1) a supplemental dehumidifier and 2) a ductless mini-split onmore » seasonal energy use and summer peak power use as well as the impact on thermal distribution and humidity control inside a completely furnished lab home that was continuously ventilated in accordance with ASHRAE 62.2-2013.« less

  13. Positioning Your Library for Solar (and Financial) Gain. Improving Energy Efficiency, Lighting, and Ventilation with Primarily Passive Techniques

    ERIC Educational Resources Information Center

    Shane, Jackie

    2012-01-01

    This article stresses the importance of building design above technology as a relatively inexpensive way to reduce energy costs for a library. Emphasis is placed on passive solar design for heat and daylighting, but also examines passive ventilation and cooling, green roofs, and building materials. Passive design is weighed against technologies…

  14. 10 CFR 431.171 - Purpose and scope. [Reserved

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND INDUSTRIAL EQUIPMENT Provisions for Commercial Heating, Ventilating, Air-Conditioning and Water Heating Products § 431.171 Purpose and scope. [Reserved] ...

  15. Short-term airing by natural ventilation - implication on IAQ and thermal comfort.

    PubMed

    Heiselberg, P; Perino, M

    2010-04-01

    The need to improve the energy efficiency of buildings requires new and more efficient ventilation systems. It has been demonstrated that innovative operating concepts that make use of natural ventilation seem to be more appreciated by occupants. Among the available ventilation strategies that are currently available, buoyancy driven, single-sided natural ventilation has proved to be very effective and can provide high air change rates for temperature and Indoor Air Quality (IAQ) control. However, to promote a wider distribution of these systems an improvement in the knowledge of their working principles is necessary. The present study analyses and presents the results of an experimental evaluation of airing performance in terms of ventilation characteristics, IAQ and thermal comfort. It includes investigations of the consequences of opening time, opening frequency, opening area and expected airflow rate, ventilation efficiency, thermal comfort and dynamic temperature conditions. A suitable laboratory test rig was developed to perform extensive experimental analyses of the phenomenon under controlled and repeatable conditions. The results showed that short-term window airing is very effective and can provide both acceptable IAQ and thermal comfort conditions in buildings. Practical Implications This study gives the necessary background and in-depth knowledge of the performance of window airing by single-sided natural ventilation necessary for the development of control strategies for window airing (length of opening period and opening frequency) for optimum IAQ and thermal comfort in naturally ventilated buildings.

  16. Climate Change, Indoor Environment and Health

    EPA Pesticide Factsheets

    Climate change is becoming a driving force for improving energy efficiency because saving energy can help reduce the greenhouse gas emissions that contribute to climate change. However, it is important to balance energy saving measures with ventilation...

  17. Operating and maintaining your heat recovery ventilator (HRV) -- Revised edition. Home heating and cooling series, Number 8

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    Heat recovery ventilators (HRVs) differ from other mechanical ventilation devices by their ability to exchange heat between supply and exhaust air streams, which reduces the cost of heating or cooling fresh air. This booklet discusses the need for mechanical ventilation in conventional and energy-efficient homes, an explains the components of a HRV system, how to operate and maintain the system, and how to solve operating problems. A maintenance chart and schedule and a HRV troubleshooting guide are included.

  18. Design New Buildings To Save Energy -- and Money

    ERIC Educational Resources Information Center

    Rittelmann, Richard

    1974-01-01

    Buildings should be designed so that energy systems function with maximum efficiency. Re-evaluation of standards for ventilation and lighting is recommended. Heat recovery techniques and topography can reduce heating loads. (MF)

  19. Sustainability Actions in Higher Education

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    This brochure details common sustainability actions taken by universities to reduce their energy consumption. Some of the most common actions include energy efficiency (existing building commissioning; lighting; heating, ventilation, and air conditioning upgrades; plug loads) and renewable energy (RE) (on-site or off-site solar deployment, RE procurement). We focus on the costs and benefits of energy efficiency measures and RE through the brochure while highlighting resources where readers can find more information.

  20. Complex analysis of energy efficiency in operated high-rise residential building: Case study

    NASA Astrophysics Data System (ADS)

    Korniyenko, Sergey

    2018-03-01

    Energy conservation and human thermal comfort enhancement in buildings is a topical issue of modern architecture and construction. The innovative solution of this problem makes it possible to enhance building ecological and maintenance safety, to reduce hydrocarbon fuel consumption, and to improve life standard of people. The requirements to increase of energy efficiency in buildings should be provided at all the stages of building's life cycle that is at the stage of design, construction and maintenance of buildings. The research purpose is complex analysis of energy efficiency in operated high-rise residential building. Many actions for building energy efficiency are realized according to the project; mainly it is the effective building envelope and engineering systems. Based on results of measurements the energy indicators of the building during annual period have been calculated. The main reason of increase in heat losses consists in the raised infiltration of external air in the building through a building envelope owing to the increased air permeability of windows and balcony doors (construction defects). Thermorenovation of the building based on ventilating and infiltration heat losses reduction through a building envelope allows reducing annual energy consumption. Energy efficiency assessment based on the total annual energy consumption of building, including energy indices for heating and a ventilation, hot water supply and electricity supply, in comparison with heating is more complete. The account of various components in building energy balance completely corresponds to modern direction of researches on energy conservation and thermal comfort enhancement in buildings.

  1. 10 CFR 431.172 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND INDUSTRIAL EQUIPMENT Provisions for Commercial Heating, Ventilating, Air-Conditioning and Water Heating Products § 431.172... conservation standard for that product. Basic model means, with respect to a commercial HVAC & WH product, all...

  2. Smart Energy Choices Free Up Dollars for Capital Improvements.

    ERIC Educational Resources Information Center

    Ritchey, David

    2003-01-01

    Describes several ways to design or renovate school building to save thousand of dollars of energy costs. Considers site design, energy-efficient building envelope, renewable energy systems, lighting and electrical systems, mechanical and ventilation systems, water conservation, and transportation. Describes how to obtain information about the…

  3. Towards energy efficient operation of Heating, Ventilation and Air Conditioning systems via advanced supervisory control design

    NASA Astrophysics Data System (ADS)

    Oswiecinska, A.; Hibbs, J.; Zajic, I.; Burnham, K. J.

    2015-11-01

    This paper presents conceptual control solution for reliable and energy efficient operation of heating, ventilation and air conditioning (HVAC) systems used in large volume building applications, e.g. warehouse facilities or exhibition centres. Advanced two-level scalable control solution, designed to extend capabilities of the existing low-level control strategies via remote internet connection, is presented. The high-level, supervisory controller is based on Model Predictive Control (MPC) architecture, which is the state-of-the-art for indoor climate control systems. The innovative approach benefits from using passive heating and cooling control strategies for reducing the HVAC system operational costs, while ensuring that required environmental conditions are met.

  4. Optimization of Ventilation Energy Demands and Indoor Air Quality in High-Performance Homes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hun, Diana E; Jackson, Mark C; Shrestha, Som S

    2014-01-01

    High-performance homes require that ventilation energy demands and indoor air quality (IAQ) be simultaneously optimized. We attempted to bridge these two areas by conducting tests in a research house located in Oak Ridge, TN, that was 20 months old, energy-efficient (i.e., expected to consume 50% less energy than a house built per the 2006 IRC), tightly-built (i.e., natural ventilation rate ~0.02 h-1), unoccupied, and unfurnished. We identified air pollutants of concern in the test home that could generally serve as indicators of IAQ, and conduced field experiments and computer simulations to determine the effectiveness and energy required by various techniquesmore » that lessened the concentration of these contaminants. Formaldehyde was selected as the main pollutant of concern among the contaminants that were sampled in the initial survey because it was the only compound that showed concentrations that were greater than the recommended exposure levels. Field data indicate that concentrations were higher during the summer primarily because emissions from sources rise with increases in temperature. Furthermore, supply ventilation and gas-phase filtration were effective means to reduce formaldehyde concentrations; however, exhaust ventilation had minimal influence on this pollutant. Results from simulations suggest that formaldehyde concentrations obtained while ventilating per ASHRAE 62.2-2010 could be decreased by about 20% from May through September through three strategies: 1) increasing ASHRAE supply ventilation by a factor of two, 2) reducing the thermostat setpoint from 76 to 74 F, or 3) running a gas-phase filtration system while decreasing supply ventilation per ASHRAE by half. In the mixed-humid climate of Oak Ridge, these strategies caused increases in electricity cost of ~$5 to ~$15/month depending on outdoor conditions.« less

  5. Contaminant levels, source strengths, and ventilation rates in California retail stores.

    PubMed

    Chan, W R; Cohn, S; Sidheswaran, M; Sullivan, D P; Fisk, W J

    2015-08-01

    This field study measured ventilation rates and indoor air quality in 21 visits to retail stores in California. Three types of stores, such as grocery, furniture/hardware stores, and apparel, were sampled. Ventilation rates measured using a tracer gas decay method exceeded the minimum requirement of California's Title 24 Standard in all but one store. Concentrations of volatile organic compounds (VOCs), ozone, and carbon dioxide measured indoors and outdoors were analyzed. Even though there was adequate ventilation according to standard, concentrations of formaldehyde and acetaldehyde exceeded the most stringent chronic health guidelines in many of the sampled stores. The whole-building emission rates of VOCs were estimated from the measured ventilation rates and the concentrations measured indoor and outdoor. Estimated formaldehyde emission rates suggest that retail stores would need to ventilate at levels far exceeding the current Title 24 requirement to lower indoor concentrations below California's stringent formaldehyde reference level. Given the high costs of providing ventilation, effective source control is an attractive alternative. Field measurements suggest that California retail stores were well ventilated relative to the minimum ventilation rate requirement specified in the Building Energy Efficiency Standards Title 24. Concentrations of formaldehyde found in retail stores were low relative to levels found in homes but exceeded the most stringent chronic health guideline. Looking ahead, California is mandating zero energy commercial buildings by 2030. To reduce the energy use from building ventilation while maintaining or even lowering formaldehyde in retail stores, effective formaldehyde source control measures are vitally important. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.

  6. Determining the Return of Energy Efficiency Investments in Domestic and Deployed Military Installations

    DTIC Science & Technology

    2007-12-01

    Ventilation, and Air Conditioning IED Improvised Explosive Device IG DoD Inspector General, Department of Defense IGA Investment Grade Audit JLTV...that certain energy efficient improvements will be achieved (Hansen, 2003). Investment Grade Audit (IGA). Based on the premise that energy...low- grade propane; and a modified diesel engine that can burn gas, ethanol, and diesel fuel in variable proportions (Hamilton, 2007). The TGER

  7. Application of acoustic agglomeration to enhance air filtration efficiency in air-conditioning and mechanical ventilation (ACMV) systems.

    PubMed

    Ng, Bing Feng; Xiong, Jin Wen; Wan, Man Pun

    2017-01-01

    The recent episodes of haze in Southeast Asia have caused some of the worst regional atmospheric pollution ever recorded in history. In order to control the levels of airborne fine particulate matters (PM) indoors, filtration systems providing high PM capturing efficiency are often sought, which inadvertently also results in high airflow resistance (or pressure drop) that increases the energy consumption for air distribution. A pre-conditioning mechanism promoting the formation of particle clusters to enhance PM capturing efficiency without adding flow resistance in the air distribution ductwork could provide an energy-efficient solution. This pre-conditioning mechanism can be fulfilled by acoustic agglomeration, which is a phenomenon that promotes the coagulation of suspended particles by acoustic waves propagating in the fluid medium. This paper discusses the basic mechanisms of acoustic agglomeration along with influencing factors that could affect the agglomeration efficiency. The feasibility to apply acoustic agglomeration to improve filtration in air-conditioning and mechanical ventilation (ACMV) systems is investigated experimentally in a small-scale wind tunnel. Experimental results indicate that this novel application of acoustic pre-conditioning improves the PM2.5 filtration efficiency of the test filters by up to 10% without introducing additional pressure drop. The fan energy savings from not having to switch to a high capturing efficiency filter largely outstrip the additional energy consumed by the acoustics system. This, as a whole, demonstrates potential energy savings from the combined acoustic-enhanced filtration system without compromising on PM capturing efficiency.

  8. Application of acoustic agglomeration to enhance air filtration efficiency in air-conditioning and mechanical ventilation (ACMV) systems

    PubMed Central

    Xiong, Jin Wen; Wan, Man Pun

    2017-01-01

    The recent episodes of haze in Southeast Asia have caused some of the worst regional atmospheric pollution ever recorded in history. In order to control the levels of airborne fine particulate matters (PM) indoors, filtration systems providing high PM capturing efficiency are often sought, which inadvertently also results in high airflow resistance (or pressure drop) that increases the energy consumption for air distribution. A pre-conditioning mechanism promoting the formation of particle clusters to enhance PM capturing efficiency without adding flow resistance in the air distribution ductwork could provide an energy-efficient solution. This pre-conditioning mechanism can be fulfilled by acoustic agglomeration, which is a phenomenon that promotes the coagulation of suspended particles by acoustic waves propagating in the fluid medium. This paper discusses the basic mechanisms of acoustic agglomeration along with influencing factors that could affect the agglomeration efficiency. The feasibility to apply acoustic agglomeration to improve filtration in air-conditioning and mechanical ventilation (ACMV) systems is investigated experimentally in a small-scale wind tunnel. Experimental results indicate that this novel application of acoustic pre-conditioning improves the PM2.5 filtration efficiency of the test filters by up to 10% without introducing additional pressure drop. The fan energy savings from not having to switch to a high capturing efficiency filter largely outstrip the additional energy consumed by the acoustics system. This, as a whole, demonstrates potential energy savings from the combined acoustic-enhanced filtration system without compromising on PM capturing efficiency. PMID:28594862

  9. Sizing up skylights

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warner, J.L.

    1993-11-01

    This article discusses various aspects of skylights. Designers, builders, and homeowners who understand the energy aspects of skylights can best select them for comfort as well as appearance. Topics covered include heat loss problems (convection, radiation); the sun and the sun angles; ventilation; skylight ratings for efficiency; pointers about what to look for; comparison of skylight and window U-Factors; ventilation. 3 figs., 1 tab.

  10. 10 CFR 431.408 - Preemption of State regulations for covered equipment other than electric motors and commercial...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... conservation standard, or water conservation standard (in the case of commercial prerinse spray valves or... other than electric motors and commercial heating, ventilating, air-conditioning and water heating products. 431.408 Section 431.408 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM...

  11. Designing for Energy Conservation.

    ERIC Educational Resources Information Center

    Estes, R. C.

    This document is a description of the energy efficient designs for new schools in the Alief Independent School District of Houston, Texas. Exhibit A shows how four major school projects differ from conventional designs. Parameters and designs for heating, ventilating, air conditioning, and lighting are given. Twenty year projected energy costs and…

  12. 78 FR 22431 - Appliance Standards and Rulemaking Federal Advisory Committee: Notice of Open Meeting for the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-16

    ... for the Commercial HVAC, WH, and Refrigeration Certification Working Group and Announcement of Working... Refrigeration Equipment AGENCY: Office of Energy Efficiency and Renewable Energy, Department of Energy. ACTION..., Ventilation, and Air-conditioning (HVAC), Water Heating (WH), and Refrigeration Certification Working Group...

  13. 78 FR 49699 - Appliance Standards and Rulemaking Federal Advisory Committee: Notice of Open Meetings for the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-15

    ... Meetings for the Commercial HVAC, WH, and Refrigeration Certification Working Group and Announcement of... Refrigeration Equipment AGENCY: Office of Energy Efficiency and Renewable Energy, Department of Energy. ACTION..., Ventilation, and Air-conditioning (HVAC), Water Heating (WH), and Refrigeration Certification Working Group...

  14. Health effects of home energy efficiency interventions in England: a modelling study

    PubMed Central

    Milner, James; Chalabi, Zaid; Das, Payel; Jones, Benjamin; Shrubsole, Clive; Davies, Mike; Wilkinson, Paul

    2015-01-01

    Objective To assess potential public health impacts of changes to indoor air quality and temperature due to energy efficiency retrofits in English dwellings to meet 2030 carbon reduction targets. Design Health impact modelling study. Setting England. Participants English household population. Intervention Three retrofit scenarios were modelled: (1) fabric and ventilation retrofits installed assuming building regulations are met; (2) as with scenario (1) but with additional ventilation for homes at risk of poor ventilation; (3) as with scenario (1) but with no additional ventilation to illustrate the potential risk of weak regulations and non-compliance. Main outcome Primary outcomes were changes in quality adjusted life years (QALYs) over 50 years from cardiorespiratory diseases, lung cancer, asthma and common mental disorders due to changes in indoor air pollutants, including secondhand tobacco smoke, PM2.5 from indoor and outdoor sources, radon, mould, and indoor winter temperatures. Results The modelling study estimates showed that scenario (1) resulted in positive effects on net mortality and morbidity of 2241 (95% credible intervals (CI) 2085 to 2397) QALYs per 10 000 persons over 50 years follow-up due to improved temperatures and reduced exposure to indoor pollutants, despite an increase in exposure to outdoor-generated particulate matter with a diameter of 2.5 μm or less (PM2.5). Scenario (2) resulted in a negative impact of −728 (95% CI −864 to −592) QALYs per 10 000 persons over 50 years due to an overall increase in indoor pollutant exposures. Scenario (3) resulted in −539 (95% CI −678 to -399) QALYs per 10 000 persons over 50 years follow-up due to an increase in indoor exposures despite the targeting of pollutants. Conclusions If properly implemented alongside ventilation, energy efficiency retrofits in housing can improve health by reducing exposure to cold and air pollutants. Maximising the health benefits requires careful understanding of the balance of changes in pollutant exposures, highlighting the importance of ventilation to mitigate the risk of poor indoor air quality. PMID:25916488

  15. Energy-Efficient Supermarket Heating, Ventilation, and Air Conditioning in Humid Climates in the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, J.

    2015-03-01

    Supermarkets are energy-intensive buildings that consume the greatest amount of electricity per square foot of building of any building type in the United States and represent 5% of total U.S. commercial building primary energy use (EIA 2005). Refrigeration and heating, ventilation, and air-conditioning (HVAC) systems are responsible for a large proportion of supermarkets’ total energy use. These two systems sometimes work together and sometimes compete, but the performance of one system always affects the performance of the other. To better understand these challenges and opportunities, the Commercial Buildings team at the National Renewable Energy Laboratory investigated several of the mostmore » promising strategies for providing energy-efficient HVAC for supermarkets and quantified the resulting energy use and costs using detailed simulations. This research effort was conducted on behalf of the U.S. Department of Energy (DOE) Commercial Building Partnerships (CBP) (Baechler et al. 2012; Parrish et al. 2013; Antonopoulos et al. 2014; Hirsch et al. 2014). The goal of CBP was to reduce energy use in the commercial building sector by creating, testing, and validating design concepts on the pathway to net zero energy commercial buildings. Several CBP partners owned or operated buildings containing supermarkets and were interested in optimizing the energy efficiency of supermarket HVAC systems in hot-humid climates. These partners included Walmart, Target, Whole Foods Market, SUPERVALU, and the Defense Commissary Agency.« less

  16. Measure Guideline: Guide to Attic Air Sealing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lstiburek, Joseph

    2014-09-01

    The purpose of this measure guideline is to provide information and recommendations for the preparation work necessary prior to adding attic insulation. Even though the purpose of this guide is to save energy, health, safety, and durability should not be compromised by energy efficiency. Accordingly, combustion safety and ventilation for indoor air quality are addressed first. Durability and attic ventilation then follow. Finally, to maximize energy savings, air sealing is completed prior to insulating. The guide is intended for home remodelers, builders, insulation contractors, mechanical contractors, general contractors who have previously done remodeling and homeowners as a guide to themore » work that needs to be done.« less

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fisk, William J.; Destaillats, H.; Apte, M.G.

    Heating, ventilating, and cooling classrooms in California consume substantial electrical energy. Indoor air quality (IAQ) in classrooms affects studenthealth and performance. In addition to airborne pollutants that are emitted directly by indoor sources and those generated outdoors, secondary pollutants can be formed indoors by chemical reaction of ozone with other chemicals and materials. Filters are used in nearly all classroom heating, ventilation and air?conditioning (HVAC) systems to maintain energy-efficient HVAC performance and improve indoor air quality; however, recent evidence indicates that ozone reactions with filters may, in fact, be a source of secondary pollutants. This project quantitatively evaluated ozone depositionmore » in HVAC filters and byproduct formation, and provided a preliminary assessment of the extent towhich filter systems are degrading indoor air quality. The preliminary information obtained will contribute to the design of subsequent research efforts and the identification of energy efficient solutions that improve indoor air quality in classrooms and the health and performance of students.« less

  18. Low-Flow Liquid Desiccant Air Conditioning: General Guidance and Site Considerations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kozubal, E.; Herrmann, L.; Deru, M.

    2014-09-01

    Dehumidification or latent cooling in buildings is an area of growing interest that has been identified as needing more research and improved technologies for higher performance. Heating, ventilating, and air-conditioning (HVAC) systems typically expend excessive energy by using overcool-and-reheat strategies to dehumidify buildings. These systems first overcool ventilation air to remove moisture and then reheat the air to meet comfort requirements. Another common strategy incorporates solid desiccant rotors that remove moisture from the air more efficiently; however, these systems increase fan energy consumption because of the high airside pressure drop of solid desiccant rotors and can add heat of absorptionmore » to the ventilation air. Alternatively, liquid desiccant air-conditioning (LDAC) technology provides an innovative dehumidification solution that: (1) eliminates the need for overcooling and reheating from traditional cooling systems; and (2) avoids the increased fan energy and air heating from solid desiccant rotor systems.« less

  19. 10 CFR 431.408 - Preemption of State regulations for covered equipment other than electric motors and commercial...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Preemption of State regulations for covered equipment other than electric motors and commercial heating, ventilating, air-conditioning and water heating products. 431.408 Section 431.408 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND INDUSTRIAL EQUIPMEN...

  20. Short-term airing by natural ventilation - modeling and control strategies.

    PubMed

    Perino, M; Heiselberg, P

    2009-10-01

    The need to improve the energy efficiency of buildings requires new and more efficient ventilation systems. It has been demonstrated that innovative operating concepts that make use of natural ventilation seem to be more appreciated by occupants. This kind of system frequently integrates traditional mechanical ventilation components with natural ventilation devices, such as motorized windows and louvers. Among the various ventilation strategies that are currently available, buoyancy driven single-sided natural ventilation has proved to be very effective and can provide high air change rates for temperature and IAQ control. However, in order to promote a wider applications of these systems, an improvement in the knowledge of their working principles and the availability of new design and simulation tools is necessary. In this context, the paper analyses and presents the results of a research that was aimed at developing and validating numerical models for the analysis of buoyancy driven single-sided natural ventilation systems. Once validated, these models can be used to optimize control strategies in order to achieve satisfactory indoor comfort conditions and IAQ. Practical Implications Numerical and experimental analyses have proved that short-term airing by intermittent ventilation is an effective measure to satisfactorily control IAQ. Different control strategies have been investigated to optimize the capabilities of the systems. The proposed zonal model has provided good performances and could be adopted as a design tool, while CFD simulations can be profitably used for detailed studies of the pollutant concentration distribution in a room and to address local discomfort problems.

  1. Methods to reduce the CO(2) concentration of educational buildings utilizing internal ventilation by transferred air.

    PubMed

    Kalema, T; Viot, M

    2014-02-01

    The aim of this study is to develop internal ventilation by transferred air to achieve a good indoor climate with low energy consumption in educational buildings with constant air volume (CAV) ventilation. Both measurements of CO2 concentration and a multi-room calculation model are presented. The study analyzes how to use more efficiently the available spaces and the capacity of CAV ventilation systems in existing buildings and the impact this has on the indoor air quality and the energy consumption of the ventilation. The temperature differences can be used to create natural ventilation airflows between neighboring spaces. The behavior of temperature-driven airflows between rooms was studied and included in the calculation model. The effect of openings between neighboring spaces, such as doors or large apertures in the walls, on the CO2 concentration was studied in different classrooms. The air temperatures and CO2 concentrations were measured using a wireless, internet-based measurement system. The multi-room calculation model predicted the CO2 concentration in the rooms, which was then compared with the measured ones. Using transferred air between occupied and unoccupied spaces can noticeably reduce the total mechanical ventilation rates needed to keep a low CO2 concentration. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Fresh air indoors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kull, K.

    1988-09-01

    This article describes and compares ventilation systems for the control of indoor air pollution in residential housing. These include: local exhaust fans, whole-house fans, central exhaust with wall ports, and heat-recovery central ventilation (HRV). HRV's have a higher initial cost than the other systems but they are the only ones that save energy. Homeowners are given guidelines for choosing the system best suited for their homes in terms of efficiency and payback period.

  3. Energy saving effect of desiccant ventilation system using Wakkanai siliceous shale

    NASA Astrophysics Data System (ADS)

    Nabeshima, Yuki; Togawa, Jun-ya; Nagano, Katsunori; Kazuyo, Tsuzuki

    2017-10-01

    The nuclear power station accident resulting from the Great East Japan Earthquake disaster has resulted in a constrained electricity supply. However, in this Asian region there is high temperature and high humidity and consequently dehumidification process requires a huge amount of energy. This is the reason for the increasing energy consumption in the residential and commercial sectors. Accordingly, a high efficiency air-conditioning system is needed to be developed. The desiccant ventilation system is effective to reduce energy consumption for the dehumidification process. This system is capable of dehumidifying without dew condensing unlike a conventional air-conditioning system. Then we focused on Wakkanai Siliceous Shale (WSS) as a desiccant material to develop a new desiccant ventilation system. This is low priced, high performance, new type of thing. The aim of this study is to develop a desiccant ventilation unit using the WSS rotor which can be regenerated with low-temperature by numerical calculation. The results of performance prediction of the desiccant unit, indicate that it is possible to regenerate the WSS rotor at low-temperature of between 35 - 45 °C. In addition, we produced an actual measurement for the desiccant unit and air-conditioning unit. This air-conditioning system was capable to reduce roughly 40 % of input energy consumption.

  4. An Attempt to Design a Naturally Ventilated Tower in Subtropical Climate of the Developing Country; Pakistan

    NASA Astrophysics Data System (ADS)

    Sohail, Maha

    2017-12-01

    A large proportion of the world's population resides in developing countries where there is a lack of rigorous studies in designing energy efficient buildings. This study is a step in designing a naturally ventilated high rise residential building in a tropical climatic context of the developing country, Pakistan. Karachi, the largest city of Pakistan, lies in the subtropical hot desert region with constant high temperature of average 32 °C throughout the summer and no particular winter season. The Design Builder software package is used to design a 25 storey high rise residential building relying primarily on natural ventilation. A final conceptual design is proposed after optimization of massing, geometry, orientation, and improved building envelope design including extensive shading devices in the form of trees. It has been observed that a reduction of 8 °C in indoor ambient temperature is possible to achieve with passive measures and use of night time ventilation. A fully naturally ventilated building can reduce the energy consumption for cooling and heating by 96 % compared to a building using air conditioning systems.

  5. Cooperation of Horizontal Ground Heat Exchanger with the Ventilation Unit During Summer - Case Study

    NASA Astrophysics Data System (ADS)

    Romańska-Zapała, Anna; Furtak, Marcin; Dechnik, Mirosław

    2017-10-01

    Renewable energy sources are used in the modern energy-efficient buildings to improve their energy balance. One of them is used in the mechanical ventilation system ground air heat exchanger (earth-air heat exchanger - EAHX). This solution, right after heat recovery from exhaust air (recuperation), allows the reduction in the energy needed to obtain the desired temperature of supply air. The article presents the results of "in situ" measurements of pipe ground air heat exchanger cooperating with the air handling unit, supporting cooling the building in the summer season, in Polish climatic conditions. The laboratory consists of a ventilation unit intake - exhaust with rotor for which the source of fresh air is the air intake wall and two air intakes field cooperating with the tube with ground air heat exchangers. Selection of the source of fresh air is performed using sprocket with actuators. This system is part of the ventilation system of the Malopolska Laboratory of Energy-Efficient Building (MLBE) building of Cracow University of Technology. The measuring system are, among others, the sensors of parameters of air inlets and outlets of the heat exchanger channels EAHX and weather station that senses the local weather conditions. The measurement data are recorded and archived by the integrated process control system in the building of MLBE. During the study measurements of operating parameters of the ventilation unit cooperating with the selected source of fresh air were performed. Two cases of operation of the system: using EAHX heat exchanger and without it, were analyzed. Potentially the use of ground air heat exchanger in the mechanical ventilation system can reduce the energy demand for heating or cooling rooms by the pre-adjustment of the supply air temperature. Considering the results can be concluded that the continuous use of these exchangers is not optimal. This relationship is appropriate not only on an annual basis for the transitional periods (spring and autumn), but also in individual days in the potentially most favorable periods of work exchanger (summer and winter). Inappropriate operation of the heat exchanger, will lead to a temporary increase in energy consumption for the preparation of the desired air temperature, relative to the fresh air unit which is non-pretreated. For optimal energy system operation: exchanger EAHX - air handling unit, to preserve the most favourable parameters of inlet air to handling unit, there is a need to dynamically adjust the source of fresh air, depending on changing external conditions and the required outlet temperature of central unit (temperature of air forced to the rooms).

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Apte, Michael G.; Buchanan, Ian S.; Faulkner, David

    The primary goals of this research effort are to develop, evaluate, and demonstrate a very practical HVAC system for classrooms that consistently provides classrooms with the quantity of ventilation in current minimum standards, while saving energy, and reducing HVAC-related noise levels. This research is motivated by the public benefits of energy efficiency, evidence that many classrooms are under-ventilated, and public concerns about indoor environmental quality in classrooms. This report presents an interim status update and preliminary findings from energy and indoor environmental quality (IEQ) measurements in sixteen relocatable classrooms in California. The field study includes measurements of HVAC energy use,more » ventilation rates, and IEQ conditions. Ten of the classrooms were equipped with a new HVAC technology and six control classrooms were equipped with a standard HVAC system. Energy use and many IEQ parameters have been monitored continuously, while unoccupied acoustic measurements were measured in one of four planned seasonal measurement campaigns. Continuously monitored data are remotely accessed via a LonWorks{reg_sign} network and stored in a relational database at LBNL. Preliminary results are presented here.« less

  7. Retail Buildings: Assessing and Reducing Plug and Process Loads in Retail Buildings (Fact Sheet)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2013-04-01

    Plug and process loads (PPLs) in commercial buildings account for almost 5% of U.S. primary energy consumption. Minimizing these loads is a primary challenge in the design and operation of an energy-efficient building. PPLs are not related to general lighting, heating, ventilation, cooling, and water heating, and typically do not provide comfort to the occupants. They use an increasingly large fraction of the building energy use pie because the number and variety of electrical devices have increased along with building system efficiency. Reducing PPLs is difficult because energy efficiency opportunities and the equipment needed to address PPL energy use inmore » retail spaces are poorly understood.« less

  8. The influence of opening windows and doors on the natural ventilation rate of a residential building

    EPA Science Inventory

    Increased building energy efficiency is important in reducing national energy use and greenhouse gas emissions. An analysis of air change rates due to door and window openings in a research test house located in a residential environment are presented. These data inform developme...

  9. Energy saving technologies of the decentralized ventilation of buildings

    NASA Astrophysics Data System (ADS)

    Mansurov, R. Sh; Rafalskaya, T. A.

    2017-11-01

    The growing aspiration to energy saving and efficiency of energy leads to necessity to build tight enough buildings. As a result of this the quantity of infiltration air appears insufficient for realization of necessary air exchange in. One of decisions of the given problem is development and application for ventilation of premises of the decentralized forced-air and exhaust systems (DFAES) with recuperative or regenerative heat-exchangers. For an estimation of efficiency of DFAES following basic parameters have been certain: factor of energy saving; factor of efficiency of energy; factor of a heat transfer; factor of an effective utilization of a surface of heat exchange. Were estimated temperature of forced air; actual speed of an air jet on an entrance in a served zone; actual noise level; the charge of external air. Tests of DFAES were spent in natural conditions at which DFAES influenced all set of factors both an external climate, and an internal microclimate of a premise, and also the arrangement on a wind side or behind wind side of a building, influence of surrounding building, fluctuation of temperature of external air is considered. Proceeding from results and the analysis of the lead researches recommendations have been developed for development and manufacture of new sample of DFAES.

  10. Investigation of Condensing Ice Heat Exchangers for MTSA Technology Development

    NASA Technical Reports Server (NTRS)

    Padilla, Sebastian; Powers, Aaron; Ball, Tyler; Lacomini, Christie; Paul, Heather L.

    2009-01-01

    Metabolic heat regenerated Temperature Swing Adsorption (MTSA) technology is being developed for thermal, carbon dioxide (CO2) and humidity control for a Portable Life Support Subsystem (PLSS). Metabolically-produced CO2 present in the ventilation gas of a PLSS is collected using a CO2-selective adsorbent via temperature swing adsorption. The temperature swing is initiated through cooling to well below metabolic temperatures. Cooling is achieved with a sublimation heat exchanger using water or liquid carbon dioxide (L CO2) expanded below sublimation temperature when exposed to low pressure or vacuum. Subsequent super heated vapor, as well as additional coolant, is used to further cool the astronaut. The temperature swing on the adsorbent is then completed by warming the adsorbent with a separate condensing ice heat exchanger (CIHX) using metabolic heat from moist ventilation gas. The condensed humidity in the ventilation gas is recycled at the habitat. The water condensation from the ventilation gas represents a significant source of potential energy for the warming of the adsorbent bed as it represents as much as half of the energy potential in the moist ventilation gas. Designing a heat exchanger to efficiently transfer this energy to the adsorbent bed and allow the collection of the water is a challenge since the CIHX will operate in a temperature range from 210K to 280K. The ventilation gas moisture will first freeze and then thaw, sometimes existing in three phases simultaneously.

  11. Applied patent RFID systems for building reacting HEPA air ventilation system in hospital operation rooms.

    PubMed

    Lin, Jesun; Pai, Jar-Yuan; Chen, Chih-Cheng

    2012-12-01

    RFID technology, an automatic identification and data capture technology to provide identification, tracing, security and so on, was widely applied to healthcare industry in these years. Employing HEPA ventilation system in hospital is a way to ensure healthful indoor air quality to protect patients and healthcare workers against hospital-acquired infections. However, the system consumes lots of electricity which cost a lot. This study aims to apply the RFID technology to offer a unique medical staff and patient identification, and reacting HEPA air ventilation system in order to reduce the cost, save energy and prevent the prevalence of hospital-acquired infection. The system, reacting HEPA air ventilation system, contains RFID tags (for medical staffs and patients), sensor, and reacting system which receives the information regarding the number of medical staff and the status of the surgery, and controls the air volume of the HEPA air ventilation system accordingly. A pilot program was carried out in a unit of operation rooms of a medical center with 1,500 beds located in central Taiwan from Jan to Aug 2010. The results found the air ventilation system was able to function much more efficiently with less energy consumed. Furthermore, the indoor air quality could still keep qualified and hospital-acquired infection or other occupational diseases could be prevented.

  12. A Breath of Fresh Air.

    ERIC Educational Resources Information Center

    Freeman, Laurie

    1996-01-01

    A new elementary school in New Hampshire uses innovative European ventilation technology to ensure excellent air quality. Combined with high-efficiency lighting, the system should reduce energy consumption by 10 to 20%, compared with a traditional facility. (MLF)

  13. Ventilation Transport Trade Study for Future Space Suit Life Support Systems

    NASA Technical Reports Server (NTRS)

    Kempf, Robert; Vogel, Matthew; Paul, Heather L.

    2008-01-01

    A new and advanced portable life support system (PLSS) for space suit surface exploration will require a durable, compact, and energy efficient system to transport the ventilation stream through the space suit. Current space suits used by NASA circulate the ventilation stream via a ball-bearing supported centrifugal fan. As NASA enters the design phase for the next generation PLSS, it is necessary to evaluate available technologies to determine what improvements can be made in mass, volume, power, and reliability for a ventilation transport system. Several air movement devices already designed for commercial, military, and space applications are optimized in these areas and could be adapted for EVA use. This paper summarizes the efforts to identify and compare the latest fan and bearing technologies to determine candidates for the next generation PLSS.

  14. Experimental study of airflow characteristics of stratum ventilation in a multi-occupant room with comparison to mixing ventilation and displacement ventilation.

    PubMed

    Cheng, Y; Lin, Z

    2015-12-01

    The motivation of this study is stimulated by a lack of knowledge about the difference of airflow characteristics between a novel air distribution method [i.e., stratum ventilation (SV)] and conventional air distribution methods [i.e., mixing ventilation (MV) and displacement ventilation (DV)]. Detailed air velocity and temperature measurements were conducted in the occupied zone of a classroom with dimensions of 8.8 m (L) × 6.1 m (W) × 2.4 m (H). Turbulence intensity and power spectrum of velocity fluctuation were calculated using the measured data. Thermal comfort and cooling efficiency were also compared. The results show that in the occupied zone, the airflow characteristics among MV, DV, and SV are different. The turbulent airflow fluctuation is enhanced in this classroom with multiple thermal manikins due to thermal buoyancy and airflow mixing effect. Thermal comfort evaluations indicate that in comparison with MV and DV, a higher supply air temperature should be adopted for SV to achieve general thermal comfort with low draft risk. Comparison of the mean air temperatures in the occupied zone reveals that SV is of highest cooling efficiency, followed by DV and then MV. This study reports the unique profiles of flow, temperature, turbulence intensity, and power spectrum of stratum ventilation, which can have a number of implications for both knowledge and understanding of the flow characteristics in a stratum-ventilated room. With respect to the former, it expounds the fundamental characteristics of this air distribution method; and with respect to the latter, it reveals the mechanism of thermal comfort and energy saving under stratum ventilation. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Case Study for the ARRA-funded Ground Source Heat Pump (GSHP) Demonstration at Wilders Grove Solid Waste Service Center in Raleigh, NC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Xiaobing; Malhotra, Mini; Xiong, Zeyu

    High initial costs and lack of public awareness of ground-source heat pump (GSHP) technology are the two major barriers preventing rapid deployment of this energy-saving technology in the United States. Under the American Recovery and Reinvestment Act (ARRA), 26 GSHP projects have been competitively selected and carried out to demonstrate the benefits of GSHP systems and innovative technologies for cost reduction and/or performance improvement. This paper highlights the findings of a case study of one of the ARRA-funded GSHP demonstration projects, a distributed GSHP system for providing all the space conditioning, outdoor air ventilation, and 100% domestic hot water tomore » the Wilders Grove Solid Waste Service Center of City of Raleigh, North Carolina. This case study is based on the analysis of measured performance data, construction costs, and simulations of the energy consumption of conventional central heating, ventilation, and air-conditioning (HVAC) systems providing the same level of space conditioning and outdoor air ventilation as the demonstrated GSHP system. The evaluated performance metrics include the energy efficiency of the heat pump equipment and the overall GSHP system, pumping performance, energy savings, carbon emission reductions, and cost-effectiveness of the GSHP system compared with conventional HVAC systems. This case study also identified opportunities for reducing uncertainties in the performance evaluation and improving the operational efficiency of the demonstrated GSHP system.« less

  16. Pre-Packaged Commercial PACE Financing Solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wallander, Michael

    The objective of this project was to demonstrate a more streamlined method for facilitating commercial property assessed clean energy (PACE) retrofits. The Recipient aimed to prove that energy efficiency performance of simple, pre-packaged technologies (e.g., lighting and heating, ventilation and air conditioning (HVAC)) can be accurately estimated without the need for a detailed energy audit. A successful project would inspire consumer confidence in undertaking cost-effective retrofits.

  17. New Whole-House Solutions Case Study: Testing Ductless Heat Pumps in High-Performance Affordable Housing, the Woods at Golden Given - Tacoma, Washington

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2015-06-01

    The Woods is a 30-home, high- performance, energy efficient sustainable community built by Habitat for Humanity (HFH). With Support from Tacoma Public Utilities, Washington State University (part of the Building America Partnership for Improved Residential Construction) is researching the energy performance of these homes and the ductless heat pumps (DHP) they employ. This project provides Building America with an opportunity to: field test HVAC equipment, ventilation system air flows, building envelope tightness, lighting, appliance, and other input data that are required for preliminary Building Energy Optimization (BEopt™) modeling and ENERGY STAR® field verification; analyze cost data from HFH and othermore » sources related to building-efficiency measures that focus on the DHP/hybrid heating system and heat recovery ventilation system; evaluate the thermal performance and cost benefit of DHP/hybrid heating systems in these homes from the perspective of homeowners; compare the space heating energy consumption of a DHP/electric resistance (ER) hybrid heating system to that of a traditional zonal ER heating system; conduct weekly "flip-flop tests" to compare space heating, temperature, and relative humidity in ER zonal heating mode to DHP/ER mode.« less

  18. Synergic effects of thermal mass and natural ventilation on the thermal behaviour of traditional massive buildings

    NASA Astrophysics Data System (ADS)

    Gagliano, A.; Nocera, F.; Patania, F.; Moschella, A.; Detommaso, M.; Evola, G.

    2016-05-01

    The energy policies about energy efficiency in buildings currently focus on new buildings and on existing buildings in case of energy retrofit. However, historic and heritage buildings, that are the trademark of numerous European cities, should also deserve attention; nevertheless, their energy efficiency is nowadays not deeply investigated. In this context, this study evaluates the thermal performance of a traditional massive building situated in a Mediterranean city. Dynamic numerical simulations were carried out on a yearly basis through the software DesignBuilder, both in free-running conditions and in the presence of an air-conditioning (AC) system. The results highlight that the massive envelope of traditional residential buildings helps in maintaining small fluctuations of the indoor temperature, thus limiting the need for AC in the mid-season and in summer. This feature is highly emphasised by exploiting natural ventilation at night, which allows reducing the building energy demand for cooling by about 30%.The research also indicates that, for Mediterranean climate, the increase in thermal insulation does not always induce positive effects on the thermal performance in summer, and that it might even produce an increase in the heat loads due to the transmission through the envelope.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Apte, Michael G.; Norman, Bourassa; Faulkner, David

    An improved HVAC system for portable classrooms was specified to address key problems in existing units. These included low energy efficiency, poor control of and provision for adequate ventilation, and excessive acoustic noise. Working with industry, a prototype improved heat pump air conditioner was developed to meet the specification. A one-year measurement-intensive field-test of ten of these IHPAC systems was conducted in occupied classrooms in two distinct California climates. These measurements are compared to those made in parallel in side by side portable classrooms equipped with standard 10 SEER heat pump air conditioner equipment. The IHPAC units were found tomore » work as designed, providing predicted annual energy efficiency improvements of about 36 percent to 42 percent across California's climate zones, relative to 10 SEER units. Classroom ventilation was vastly improved as evidenced by far lower indoor minus outdoor CO2 concentrations. TheIHPAC units were found to provide ventilation that meets both California State energy and occupational codes and the ASHRAE minimum ventilation requirements; the classrooms equipped with the 10 SEER equipment universally did not meet these targets. The IHPAC system provided a major improvement in indoor acoustic conditions. HVAC system generated background noise was reduced in fan-only and fan and compressor modes, reducing the nose levels to better than the design objective of 45 dB(A), and acceptable for additional design points by the Collaborative on High Performance Schools. The IHPAC provided superior ventilation, with indoor minus outdoor CO2 concentrations that showed that the Title 24 minimum ventilation requirement of 15 CFM per occupant was nearly always being met. The opposite was found in the classrooms utilizing the 10 SEER system, where the indoor minus outdoor CO2 concentrations frequently exceeded levels that reflect inadequate ventilation. Improved ventilation conditions in the IHPAC lead to effective removal of volatile organic compounds and aldehydes, on average lowering the concentrations by 57 percent relative to the levels in the 10 SEER classrooms. The average IHPAC to 10 SEER formaldehyde ratio was about 67 percent, indicating only a 33 percent reduction of this compound in indoor air. The IHPAC thermal control system provided less variability in occupied classroom temperature than the 10 SEER thermostats. The average room temperatures in all seasons tended to be slightly lower in the IHPAC classrooms, often below the lower limit of the ASHRAE 55 thermal comfort band. State-wide and national energy modeling provided conservative estimates of potential energy savings by use of the IHPAC system that would provide payback a the range of time far lower than the lifetime of the equipment. Assuming electricity costs of $0.15/kWh, the perclassroom range of savings is from about $85 to $195 per year in California, and about $89 to $250 per year in the U.S., depending upon the city. These modelsdid not include the non-energy benefits to the classrooms including better air quality and acoustic conditions that could lead to improved health and learning in school. Market connection efforts that were part of the study give all indication that this has been a very successful project. The successes include the specification of the IHPAC equipment in the CHPS portable classroom standards, the release of a commercial product based on the standards that is now being installed in schools around the U.S., and the fact that a public utility company is currently considering the addition of the technology to its customer incentive program. These successes indicate that the IHPAC may reach its potential to improve ventilation and save energy in classrooms.« less

  20. Flexible HVAC System for Lab or Classroom.

    ERIC Educational Resources Information Center

    Friedan, Jonathan

    2001-01-01

    Discusses an effort to design a heating, ventilation, and air conditioning system flexible enough to accommodate an easy conversion of classrooms to laboratories and dry labs to wet labs. The design's energy efficiency and operations and maintenance are examined. (GR)

  1. Develop and test fuel cell powered on-site integrated total energy systems: Phase 3: Full-scale power plant development

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The development of a commercially viable and cost-effective phospheric acid fuel cell powered on-site integrated energy system (OS/IES) is described. The fuel cell offers energy efficients in the range of 35-40% of the higher heating value of available fuels in the form of electrical energy. In addition, by utilizing the thermal energy generated for heating, ventilating and air-conditioning (HVAC), a fuel cell OS/IES could provide total energy efficiencies in the neighborhood of 80%. Also, the Engelhard fuel cell OS/IES offers the important incentive of replacing imported oil with domestically produced methanol, including coal-derived methanol.

  2. General Motors LLC Final Project Report: Improving Energy Efficiency by Developing Components for Distributed Cooling and Heating Based on Thermal Comfort Modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bozeman, Jeffrey; Chen, Kuo-Huey

    2014-12-09

    On November 3, 2009, General Motors (GM) accepted U.S. Department of Energy (DOE) Cooperative Agreement award number DE-EE0000014 from the National Energy Technology Laboratory (NETL). GM was selected to execute a three-year cost shared research and development project on Solid State Energy Conversion for Vehicular Heating, Ventilation & Air Conditioning (HVAC) and for Waste Heat Recovery.

  3. Simulation of thermal environment in a three-layer vinyl greenhouse by natural ventilation control

    NASA Astrophysics Data System (ADS)

    Jin, Tea-Hwan; Shin, Ki-Yeol; Yoon, Si-Won; Im, Yong-Hoon; Chang, Ki-Chang

    2017-11-01

    A high energy, efficient, harmonious, ecological greenhouse has been highlighted by advanced future agricultural technology recently. This greenhouse is essential for expanding the production cycle toward growth conditions through combined thermal environmental control. However, it has a negative effect on farming income via huge energy supply expenses. Because not only production income, but operating costs related to thermal load for thermal environment control is important in farming income, it needs studies such as a harmonious ecological greenhouse using natural ventilation control. This study is simulated for energy consumption and thermal environmental conditions in a three-layered greenhouse by natural ventilation using window opening. A virtual 3D model of a three-layered greenhouse was designed based on the real one in the Gangneung area. This 3D model was used to calculate a thermal environment state such as indoor temperature, relative humidity, and thermal load in the case of a window opening rate from 0 to 100%. There was also a heat exchange operated for heating or cooling controlled by various setting temperatures. The results show that the cooling load can be reduced by natural ventilation control in the summer season, and the heat exchange capacity for heating can also be simulated for growth conditions in the winter season.

  4. Energy efficiency evaluation of hospital building office

    NASA Astrophysics Data System (ADS)

    Fitriani, Indah; Sangadji, Senot; Kristiawan, S. A.

    2017-01-01

    One of the strategy employed in building design is reducing energy consumption while maintaining the best comfort zone in building indoor climate. The first step to improve office buildings energy performance by evaluating its existing energy usage using energy consumption intensity (Intensitas Konsumsi Energi, IKE) index. Energy evaluation of office building for hospital dr. Sayidiman at Kabupaten Magetan has been carried out in the initial investigation. The office building is operated with active cooling (air conditioning, AC) and use limited daylighting which consumes 14.61 kWh/m2/month. This IKE value is attributed into a slightly inefficient category. Further investigation was carried out by modeling and simulating thermal energy load and room lighting in every building zone using of Ecotect from Autodesk. Three scenarios of building energy and lighting retrofit have been performed simulating representing energy efficiency using cross ventilation, room openings, and passive cooling. The results of the numerical simulation indicate that the third scenario by employing additional windows, reflector media and skylight exhibit the best result and in accordance with SNI 03-6575-2001 lighting standard. Total thermal load of the existing building which includes fabric gains, indirect solar gains, direct solar gains, ventilation fans, internal gains, inter-zonal gains and cooling load were 162,145.40 kWh. Based on the three scenarios, the thermal load value (kWh) obtained was lowest achieved scenario 2 with the thermal value of 117,539.08 kWh.The final results are interpreted from the total energy emissions evaluated using the Ecotect software, the heating and cooling demand value and specific design of the windows are important factors to determine the energy efficiency of the buildings.

  5. An approach to optimised control of HVAC systems in indoor swimming pools

    NASA Astrophysics Data System (ADS)

    Ribeiro, Eliseu M. A.; Jorge, Humberto M. M.; Quintela, Divo A. A.

    2016-04-01

    Indoor swimming pools are recognised as having a high level of energy consumption and present a great potential for energy saving. The energy is spent in several ways such as evaporation heat loss from the pool, high rates of ventilation required to guarantee the indoor air quality, and ambient temperatures with expressive values (typically 28-30°C) required to maintain conditions of comfort. This paper presents an approach to optimising control of heat ventilation and air conditioning systems that could be implemented in a building energy management system. It is easily adapted to any kind of pool and results in significant energy consumption reduction. The development and validation of the control model were carried out with a building thermal simulation software. The use of this control model in the case study building could reduce the energy efficiency index by 7.14 points (7.4% of total) which adds up to an energy cost saving of 15,609€ (7.5% of total).

  6. Full-Scale Schlieren Visualization of Commercial Kitchen Ventilation Aerodynamics

    NASA Astrophysics Data System (ADS)

    Miller, J. D.; Settles, G. S.

    1996-11-01

    The efficient removal of cooking effluents from commercial kitchens has been identified as the most pressing energy-related issue in the food service industry. A full-scale schlieren optical system with a 2.1x2.7m field-of-view, described at previous APS/DFD meetings, images the convective airflow associated with a typical gas-fired cooking griddle and ventilation hood. Previous attempts to visualize plumes from cooking equipment by smoke and neutrally-buoyant bubbles were not sufficiently keyed to thermal convection. Here, the point where the ventilation hood fails to capture the effluent plume is clearly visible, thus determining the boundary condition for a balanced ventilation system. Further, the strong influence of turbulent entrainment is seen in the behavior of the combustion products vented by the griddle and the interference caused by a makeup-air outlet located too close to the lip of the ventilation hood. Such applications of traditional fluid dynamics techniques and principles are believed to be important to the maturing of ventilation technology. (Research supported by EPRI and IFMA, Inc.)

  7. A tale of two cities: Comparison of impacts on CO2 emissions, the indoor environment and health of home energy efficiency strategies in London and Milton Keynes

    NASA Astrophysics Data System (ADS)

    Shrubsole, C.; Das, P.; Milner, J.; Hamilton, I. G.; Spadaro, J. V.; Oikonomou, E.; Davies, M.; Wilkinson, P.

    2015-11-01

    Dwellings are a substantial source of global CO2 emissions. The energy used in homes for heating, cooking and running electrical appliances is responsible for a quarter of current total UK emissions and is a key target of government policies for greenhouse gas abatement. Policymakers need to understand the potential impact that such decarbonization policies have on the indoor environment and health for a full assessment of costs and benefits. We investigated these impacts in two contrasting settings of the UK: London, a predominantly older city and Milton Keynes, a growing new town. We employed SCRIBE, a building physics-based health impact model of the UK housing stock linked to the English Housing Survey, to examine changes, 2010-2050, in end-use energy demand, CO2 emissions, winter indoor temperatures, airborne pollutant concentrations and associated health impacts. For each location we modelled the existing (2010) housing stock and three future scenarios with different levels of energy efficiency interventions combined with either a business-as-usual, or accelerated decarbonization of the electricity grid approach. The potential for CO2 savings was appreciably greater in London than Milton Keynes except when substantial decarbonization of the electricity grid was assumed, largely because of the lower level of current energy efficiency in London and differences in the type and form of the housing stock. The average net impact on health per thousand population was greater in magnitude under all scenarios in London compared to Milton Keynes and more beneficial when it was assumed that purpose-provided ventilation (PPV) would be part of energy efficiency interventions, but more detrimental when interventions were assumed not to include PPV. These findings illustrate the importance of considering ventilation measures for health protection and the potential variation in the impact of home energy efficiency strategies, suggesting the need for tailored policy approaches in different locations, rather than adopting a universally rolled out strategy.

  8. Today's Leaders for a Sustainable Tomorrow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wood, Bryan

    2013-02-27

    Today's Leaders for a Sustainable Tomorrow is a collaboration of five residential environmental learning centers (Audubon Center of the North Woods, Deep Portage Learning Center, Laurentian Environmental Center, Long Lake Conservation Center and Wolf Ridge Environmental Learning Center) that together increased energy efficiency, energy conservation and renewable energy technologies through a number of different means appropriate for each unique center. For energy efficiency upgrades the centers installed envelope improvements to seal air barriers through better insulation in walls, ceilings, windows, doors as well as the installation of more energy efficient windows, doors, lighting and air ventilation systems. Through energy sub-metermore » monitoring the centers are able to accurately chart the usage of energy at each of their campuses and eliminate unnecessary energy usage. Facilities reduced their dependence on fossil fuel energy sources through the installation of renewable energy technologies including wood gasification, solar domestic hot water, solar photovoltaic, solar air heat, geothermal heating and wind power. Centers also installed energy education displays on the specific renewable energy technologies used at the center.« less

  9. Using a Ventilation Controller to Optimize Residential Passive Ventilation For Energy and Indoor Air Quality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turner, William; Walker, Iain

    One way to reduce the energy impact of providing residential ventilation is to use passive and hybrid systems. However, these passive and hybrid (sometimes called mixed-mode) systems must still meet chronic and acute health standards for ventilation. This study uses a computer simulation approach to examine the energy and indoor air quality (IAQ) implications of passive and hybrid ventilation systems, in 16 California climate zones. Both uncontrolled and flow controlled passive stacks are assessed. A new hybrid ventilation system is outlined that uses an intelligent ventilation controller to minimise energy use, while ensuring chronic and acute IAQ standards are met.more » ASHRAE Standard 62.2-2010 – the United States standard for residential ventilation - is used as the chronic standard, and exposure limits for PM 2.5, formaldehyde and NO 2 are used as the acute standards.The results show that controlled passive ventilation and hybrid ventilation can be used in homes to provide equivalent IAQ to continuous mechanical ventilation, for less use of energy.« less

  10. Higher energy efficient homes are associated with increased risk of doctor diagnosed asthma in a UK subpopulation.

    PubMed

    Sharpe, Richard A; Thornton, Christopher R; Nikolaou, Vasilis; Osborne, Nicholas J

    2015-02-01

    The United Kingdom (UK) has one of the highest prevalence of asthma in the world, which represents a significant economic and societal burden. Reduced ventilation resulting from increased energy efficiency measures acts as a modifier for mould contamination and risk of allergic diseases. To our knowledge no previous study has combined detailed asset management property and health data together to assess the impact of household energy efficiency (using the UK Government's Standard Assessment Procedure) on asthma outcomes in an adult population residing in social housing. Postal questionnaires were sent to 3867 social housing properties to collect demographic, health and environmental information on all occupants. Detailed property data, residency periods, indices of multiple deprivation (IMD) and household energy efficiency ratings were also investigated. Logistic regression was used to calculate odds ratios and confidence intervals while allowing for clustering of individuals coming from the same location. Eighteen percent of our target social housing population were recruited into our study. Adults had a mean age of 59 (SD±17.3) years and there was a higher percentage of female (59%) and single occupancy (58%) respondents. Housing demographic characteristics were representative of the target homes. A unit increase in household Standard Assessment Procedure (SAP) rating was associated with a 2% increased risk of current asthma, with the greatest risk in homes with SAP >71. We assessed exposure to mould and found that the presence of a mouldy/musty odour was associated with a two-fold increased risk of asthma (OR 2.2 95%; CI 1.3-3.8). A unit increase in SAP led to a 4-5% reduction in the risk of visible mould growth and a mouldy/musty odour. In contrast to previous research, we report that residing in energy efficient homes may increase the risk of adult asthma. We report that mould contamination increased the risk of asthma, which is in agreement with existing knowledge. Exposure to mould contamination could not fully explain the association between increased energy efficiency and asthma. Our findings may be explained by increased energy efficiency combined with the provision of inadequate heating, ventilation, and increased concentrations of other biological, chemical and physical contaminants. This is likely to be modified by a complex interaction between occupant behaviours and changes to the built environment. Our findings may also be confounded by our response rate, demographic and behavioural differences between those residing in low versus high energy efficient homes, and use of self-reported exposures and outcomes. Energy efficiency may increase the risk of current adult asthma in a population residing in social housing. This association was not significantly modified by the presence of visible mould growth, although further research is needed to investigate the interaction between other demographic and housing characteristic risk factors, especially the impact of fuel poverty on indoor exposures and health outcomes. A multidisciplinary approach is required to assess the interaction between energy efficiency measures and fuel poverty behaviours on health outcomes prior to the delivery of physical interventions aimed at improving the built environment. Policy incentives are required to address fuel poverty issues alongside measures to achieve SAP ratings of 71 or greater, which must be delivered with the provision of adequate heating and ventilation strategies to minimise indoor dampness. Changes in the built environment without changes in behaviour of domicile residents may lead to negative health outcomes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Small Changes Yield Large Results at NIST's Net-Zero Energy Residential Test Facility.

    PubMed

    Fanney, A Hunter; Healy, William; Payne, Vance; Kneifel, Joshua; Ng, Lisa; Dougherty, Brian; Ullah, Tania; Omar, Farhad

    2017-12-01

    The Net-Zero Energy Residential Test Facility (NZERTF) was designed to be approximately 60 % more energy efficient than homes meeting the 2012 International Energy Conservation Code (IECC) requirements. The thermal envelope minimizes heat loss/gain through the use of advanced framing and enhanced insulation. A continuous air/moisture barrier resulted in an air exchange rate of 0.6 air changes per hour at 50 Pa. The home incorporates a vast array of extensively monitored renewable and energy efficient technologies including an air-to-air heat pump system with a dedicated dehumidification cycle; a ducted heat-recovery ventilation system; a whole house dehumidifier; a photovoltaic system; and a solar domestic hot water system. During its first year of operation the NZERTF produced an energy surplus of 1023 kWh. Based on observations during the first year, changes were made to determine if further improvements in energy performance could be obtained. The changes consisted of installing a thermostat that incorporated control logic to minimize the use of auxiliary heat, using a whole house dehumidifier in lieu of the heat pump's dedicated dehumidification cycle, and reducing the ventilation rate to a value that met but did not exceed code requirements. During the second year of operation the NZERTF produced an energy surplus of 2241 kWh. This paper describes the facility, compares the performance data for the two years, and quantifies the energy impact of the weather conditions and operational changes.

  12. Energy Efficiency on Parade

    Science.gov Websites

    heating, ventilation and air conditioning (HVAC) systems, structural insulated panels to improve products and systems. NREL building engineers estimate the combination of advanced products and design Building America program manager George James. "All of the technologies and systems used in this house

  13. Stochastic Control of Energy Efficient Buildings: A Semidefinite Programming Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Xiao; Dong, Jin; Djouadi, Seddik M

    2015-01-01

    The key goal in energy efficient buildings is to reduce energy consumption of Heating, Ventilation, and Air- Conditioning (HVAC) systems while maintaining a comfortable temperature and humidity in the building. This paper proposes a novel stochastic control approach for achieving joint performance and power control of HVAC. We employ a constrained Stochastic Linear Quadratic Control (cSLQC) by minimizing a quadratic cost function with a disturbance assumed to be Gaussian. The problem is formulated to minimize the expected cost subject to a linear constraint and a probabilistic constraint. By using cSLQC, the problem is reduced to a semidefinite optimization problem, wheremore » the optimal control can be computed efficiently by Semidefinite programming (SDP). Simulation results are provided to demonstrate the effectiveness and power efficiency by utilizing the proposed control approach.« less

  14. Designing a dormitory with emphasis on renewable energy

    NASA Astrophysics Data System (ADS)

    Daneshvar Tarigh, F.; Daneshvar Tarigh, A.; Habib, F.

    2018-05-01

    The majority of universities provides on- and off-campus residential quarters for students during their studies which enables them to keep connected to other students and focus on their studies usually with a small amount of money. The manner of designing a dormitory has a direct impact on the performance of the students and therefore requires a lot of attention. This includes but not limited to a mostly independent and private quiet room maintaining good indoor air quality through adequate ventilation and air conditioning. Undoubtedly, the most important aspect of such a place is saving energy in a way that does not influence the quality of student's life. The type of usage of such buildings causes different presence time and different ideas about the lights and temperature's set point. In this paper, we will discuss aspects of designing a dormitory as well as optimization of occupants comfort and energy efficiency using renewable energies such as solar energy to produce electricity, wind energy for natural ventilation and above all using architectural techniques to lower the energy consumption.

  15. Energy Savings by Treating Buildings as Systems

    NASA Astrophysics Data System (ADS)

    Harvey, L. D. Danny

    2008-09-01

    This paper reviews the opportunities for dramatically reducing energy use in buildings by treating buildings as systems, rather than focusing on device efficiencies. Systems-level considerations are relevant for the operation of heat pumps (where the temperatures at which heat or coldness are distributed are particularly important); the joint or separate provision of heating, cooling, and ventilation; the joint or separate removal of sensible heat and moisture; and in the operation of fluid systems having pumps. Passive heating, cooling, and ventilation, as well as daylighting (use of sunlight for lighting purposes) also require consideration of buildings as systems. In order to achieve the significant (50-75%) energy savings that are possible through a systems approach, the design process itself has to involve a high degree of integration between the architect and various engineering disciplines (structural, mechanical, electrical), and requires the systematic examination and adjustment of alternative designs using computer simulation models.

  16. This School Is for Kids and Community.

    ERIC Educational Resources Information Center

    American School Board Journal, 1982

    1982-01-01

    In Avon (Indiana), a community lacking public buildings, a middle school was built with community uses in mind. The swimming pool, gymnasium, and commons area can be blocked off for community use by using floor-to-ceiling gates. The school's heating, ventilating, and air conditioning systems are also energy-efficient. (Author/MLF)

  17. 10 CFR 431.174 - Additional requirements applicable to Voluntary Independent Certification Program participants.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND INDUSTRIAL EQUIPMENT Provisions for Commercial Heating, Ventilating, Air-Conditioning and Water Heating Products § 431.174 Additional... commercial HVAC and WH product, as described in § 431.176, and that complies with all requirements imposed by...

  18. 10 CFR 431.175 - Additional requirements applicable to non-Voluntary Independent Certification Program participants.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND INDUSTRIAL EQUIPMENT Provisions for Commercial Heating, Ventilating, Air-Conditioning and Water Heating Products § 431.175 Additional... manufacturer that is not a VICP participant with respect to a particular type of commercial HVAC and WH product...

  19. Smart ventilation energy and indoor air quality performance in residential buildings: A review

    DOE PAGES

    Guyot, Gaelle; Sherman, Max H.; Walker, Iain S.

    2017-12-30

    To better address energy and indoor air quality issues, ventilation needs to become smarter. A key smart ventilation concept is to use controls to ventilate more at times it provides either an energy or indoor air quality (IAQ) advantage (or both) and less when it provides a disadvantage. A favorable context exists in many countries to include some of the existing smart ventilation strategies in codes and standards. As a result, demand-controlled ventilation (DCV) systems are widely and easily available on the market, with more than 20 DCV systems approved and available in countries such as Belgium, France and themore » Netherlands. This paper provides a literature review on smart ventilation used in residential buildings, based on energy and indoor air quality performance. This meta-analysis includes 38 studies of various smart ventilation systems with control based on CO 2, humidity, combined CO 2 and total volatile organic compounds (TVOC), occupancy, or outdoor temperature. In conclusion, these studies show that ventilation energy savings up to 60% can be obtained without compromising IAQ, even sometimes improving it. However, the meta-analysis included some less than favorable results, with 26% energy overconsumption in some cases.« less

  20. Smart ventilation energy and indoor air quality performance in residential buildings: A review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guyot, Gaelle; Sherman, Max H.; Walker, Iain S.

    To better address energy and indoor air quality issues, ventilation needs to become smarter. A key smart ventilation concept is to use controls to ventilate more at times it provides either an energy or indoor air quality (IAQ) advantage (or both) and less when it provides a disadvantage. A favorable context exists in many countries to include some of the existing smart ventilation strategies in codes and standards. As a result, demand-controlled ventilation (DCV) systems are widely and easily available on the market, with more than 20 DCV systems approved and available in countries such as Belgium, France and themore » Netherlands. This paper provides a literature review on smart ventilation used in residential buildings, based on energy and indoor air quality performance. This meta-analysis includes 38 studies of various smart ventilation systems with control based on CO 2, humidity, combined CO 2 and total volatile organic compounds (TVOC), occupancy, or outdoor temperature. In conclusion, these studies show that ventilation energy savings up to 60% can be obtained without compromising IAQ, even sometimes improving it. However, the meta-analysis included some less than favorable results, with 26% energy overconsumption in some cases.« less

  1. [Neurally adjusted ventilatory assist (NAVA). A new mode of assisted mechanical ventilation].

    PubMed

    Moerer, O; Barwing, J; Quintel, M

    2008-10-01

    The aim of mechanical ventilation is to assure gas exchange while efficiently unloading the respiratory muscles and mechanical ventilation is an integral part of the care of patients with acute respiratory failure. Modern lung protective strategies of mechanical ventilation include low-tidal-volume ventilation and the continuation of spontaneous breathing which has been shown to be beneficial in reducing atelectasis and improving oxygenation. Poor patient-ventilator interaction is a major issue during conventional assisted ventilation. Neurally adjusted ventilator assist (NAVA) is a new mode of mechanical ventilation that uses the electrical activity of the diaphragm (EAdi) to control the ventilator. First experimental studies showed an improved patient-ventilator synchrony and an efficient unloading of the respiratory muscles. Future clinical studies will have to show that NAVA is of clinical advantage when compared to conventional modes of assisted mechanical ventilation. This review characterizes NAVA according to current publications on this topic.

  2. Ventilation Cooling: An Old Solution to New Problems. Part 1: The Economics.

    ERIC Educational Resources Information Center

    DiMercurio, C.

    1981-01-01

    This first article in a series about cooling classrooms by ventilation explains that energy consumption for one day of refrigeration cooling is equal to energy use for 35 days of ventilation cooling. Schools using only refrigeration cooling are passing up energy savings that could be provided by ventilation cooling. (Author/MLF)

  3. Sustainable Building in China -- A Green Leap Forward?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diamond, Richard; Ye, Qing; Feng, Wei

    2013-09-01

    China is constructing new commercial buildings at an enormous rate -- roughly 2 billion square meters per year, with considerable interest and activity in green design and construction. We review the context of commercial building design and construction in China, and look at a specific project as an example of a high performance, sustainable design, the Shenzhen Institute of Building Research (IBR). The IBR building incorporates over 40 sustainable technologies and strategies, including daylighting, natural ventilation, gray-water recycling, solar-energy generation, and highly efficient Heating Ventilation and Air Conditioning (HVAC) systems. We present measured data on the performance of the building,more » including detailed analysis by energy end use, water use, and occupant comfort and satisfaction. Total building energy consumption in 2011 was 1151 MWh, with an Energy Use Intensity (EUI) of 63 kWh/m 2 (20 kBtu/ft 2), which is 61% of the mean EUI value of 103 kWh/m 2 (33 kBtu/ft 2) for similar buildings in the region. We also comment on the unique design process, which incorporated passive strategies throughout the building, and has led to high occupant satisfaction with the natural ventilation, daylighting, and green patio work areas. Lastly we present thoughts on how the design philosophy of the IBR building can be a guide for low-energy design in different climate regions throughout China and elsewhere.« less

  4. Advanced air distribution: improving health and comfort while reducing energy use.

    PubMed

    Melikov, A K

    2016-02-01

    Indoor environment affects the health, comfort, and performance of building occupants. The energy used for heating, cooling, ventilating, and air conditioning of buildings is substantial. Ventilation based on total volume air distribution in spaces is not always an efficient way to provide high-quality indoor environments at the same time as low-energy consumption. Advanced air distribution, designed to supply clean air where, when, and as much as needed, makes it possible to efficiently achieve thermal comfort, control exposure to contaminants, provide high-quality air for breathing and minimizing the risk of airborne cross-infection while reducing energy use. This study justifies the need for improving the present air distribution design in occupied spaces, and in general the need for a paradigm shift from the design of collective environments to the design of individually controlled environments. The focus is on advanced air distribution in spaces, its guiding principles and its advantages and disadvantages. Examples of advanced air distribution solutions in spaces for different use, such as offices, hospital rooms, vehicle compartments, are presented. The potential of advanced air distribution, and individually controlled macro-environment in general, for achieving shared values, that is, improved health, comfort, and performance, energy saving, reduction of healthcare costs and improved well-being is demonstrated. Performance criteria are defined and further research in the field is outlined. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Metabolic Requirement of Septic Shock Patients Before and After Liberation From Mechanical Ventilation.

    PubMed

    Lee, Peggy Siu-Pik; Lee, Kar Lung; Betts, James A; Law, Kin Ip

    2017-08-01

    This study identified the difference in energy expenditure and substrate utilization of patients during and upon liberation from mechanical ventilation. Patients under intensive care who were diagnosed with septic shock and dependent on mechanical ventilation were recruited. Indirect calorimetry measurements were performed during and upon liberation from mechanical ventilation. Thirty-five patients were recruited (20 men and 15 women; mean age, 69 ± 10 years). Measured energy expenditures during ventilation and upon liberation were 2090 ± 489 kcal·d -1 and 1910 ± 579 kcal·d -1 , respectively ( P < .05). Energy intake was provided at 1148 ± 495 kcal·d -1 and differed significantly from all measured energy expenditures ( P < .05). Mean carbohydrate utilization was 0.19 ± 0.1 g·min -1 when patients were on mechanical ventilation compared with 0.15 ± 0.09 g·min -1 upon liberation ( P < .05). Mean lipid oxidation was 0.08 ± 0.05 g·min -1 during and 0.09 ± 0.07 g·min -1 upon liberation from mechanical ventilation ( P > .05). Measured energy expenditure was higher during than upon liberation from mechanical ventilation. This could be the increase in work of breathing from the continuous positive pressure support, repeated weaning cycles from mechanical ventilation, and/or the asynchronization between patients' respiration and ventilator support. Future studies should examine whether more appropriately matching energy expenditure with energy intake would promote positive health outcomes.

  6. Healthy Zero Energy Buildings (HZEB) Program - Cross-Sectional Study of Contaminant Levels, Source, Strengths, and Ventilation Rates in Retail Stores

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chan, Wanyu R.; Sidheswaran, Meera; Cohn, Sebastian

    2014-02-01

    This field study measured ventilation rates and indoor air quality parameters in 21 visits to retail stores in California. The data was collected to guide the development of new, science-based commercial building ventilation rate standards that balance the dual objectives of increasing energy efficiency and maintaining acceptable indoor air quality. Data collection occurred between September 2011 and March 2013. Three types of stores participated in this study: grocery stores, furniture/hardware stores, and apparel stores. Ventilation rates and indoor air contaminant concentrations were measured on a weekday, typically between 9 am and 6 pm. Ventilation rates measured using a tracer gasmore » decay method exceeded the minimum requirement of California’s Title 24 Standard in all but one store. Even though there was adequate ventilation according to Title 24, concentrations of formaldehyde, acetaldehyde, and acrolein exceeded the most stringent chronic health guidelines. Other indoor air contaminants measured included carbon dioxide (CO{sub 2}), carbon monoxide (CO), ozone (O{sub 3}), and particulate matter (PM). Concentrations of CO{sub 2} were kept low by adequate ventilation, and were assumed low also because the sampling occurred on a weekday when retail stores were less busy. CO concentrations were also low. The indoor-outdoor ratios of O{sub 3} showed that the first-order loss rate may vary by store trade types and also by ventilation mode (mechanical versus natural). Analysis of fine and ultrafine PM measurements showed that a substantial portion of the particle mass in grocery stores with cooking-related emissions was in particles less than 0.3 μm. Stores without cooking as an indoor source had PM size distributions that were more similar indoors and outdoors. The whole-building emission rates of volatile organic compounds (VOCs) and PM were estimated from the measured ventilation rates and indoor and outdoor contaminant concentrations. Mass balance models were then used to determine the ventilation rates, filtration strategies, or source reductions needed to maintain indoor contaminant concentrations below reference levels. Several scenarios of potential concern were considered: (i) formaldehyde levels in furniture/hardware stores, (ii) contaminants associated with cooking (e.g., PM, acrolein, and acetaldehyde) in grocery stores, and (iii) outdoor contaminants (e.g., PM and O{sub 3}) impacting stores that use natural ventilation. Estimated formaldehyde emission rates suggest that retail stores would need to ventilate at levels far exceeding the current Title 24 requirement to lower indoor concentrations below California’s stringent formaldehyde reference level. Given the high costs of providing ventilation but only modest chronic health benefit is expected, effective source control is an attractive alternative, as demonstrated by some retail stores in this study. Predictions showed that grocery stores need MERV 13 air filters, instead of MERV 8 filters that are more commonly used, to maintain indoor PM at levels that meet the chronic health standards for PM. Exposure to acrolein is a potential health concern in grocery stores, and should be addressed by increasing the use of kitchen range hoods or improving their contaminant removal efficiency. In stores that rely on natural ventilation, indoor PM can be a health concern if the stores are located in areas with high outdoor PM. This concern may be addressed by switching to mechanical ventilation when the outdoor air quality is poor, while continuing natural ventilation when outdoor air quality is good.« less

  7. Evaluation of Savings in Energy-Efficient Public Housing in the Pacific Northwest

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gordon, A.; Lubliner, M.; Howard, L.

    2013-10-01

    This report presents the results of an energy performance and cost-effectiveness analysis. The Salishan phase 7 and demonstration homes were compared to Salishan phase 6 homes built to 2006 Washington State Energy Code specifications 2. Predicted annual energy savings (over Salishan phase 6) was 19% for Salishan phase 7, and between 19-24% for the demonstration homes (depending on ventilation strategy). Approximately two-thirds of the savings are attributable to the DHP. Working with the electric utility provider, Tacoma Public Utilities, researchers conducted a billing analysis for Salishan phase 7.

  8. Temperature-controlled airflow ventilation in operating rooms compared with laminar airflow and turbulent mixed airflow.

    PubMed

    Alsved, M; Civilis, A; Ekolind, P; Tammelin, A; Andersson, A Erichsen; Jakobsson, J; Svensson, T; Ramstorp, M; Sadrizadeh, S; Larsson, P-A; Bohgard, M; Šantl-Temkiv, T; Löndahl, J

    2018-02-01

    To evaluate three types of ventilation systems for operating rooms with respect to air cleanliness [in colony-forming units (cfu/m 3 )], energy consumption and comfort of working environment (noise and draught) as reported by surgical team members. Two commonly used ventilation systems, vertical laminar airflow (LAF) and turbulent mixed airflow (TMA), were compared with a newly developed ventilation technique, temperature-controlled airflow (T c AF). The cfu concentrations were measured at three locations in an operating room during 45 orthopaedic procedures: close to the wound (<40cm), at the instrument table and peripherally in the room. The operating team evaluated the comfort of the working environment by answering a questionnaire. LAF and T c AF, but not TMA, resulted in less than 10cfu/m 3 at all measurement locations in the room during surgery. Median values of cfu/m 3 close to the wound (250 samples) were 0 for LAF, 1 for T c AF and 10 for TMA. Peripherally in the room, the cfu concentrations were lowest for T c AF. The cfu concentrations did not scale proportionally with airflow rates. Compared with LAF, the power consumption of T c AF was 28% lower and there was significantly less disturbance from noise and draught. T c AF and LAF remove bacteria more efficiently from the air than TMA, especially close to the wound and at the instrument table. Like LAF, the new T c AF ventilation system maintained very low levels of cfu in the air, but T c AF used substantially less energy and provided a more comfortable working environment than LAF. This enables energy savings with preserved air quality. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. Measured performance of filtration and ventilation systems for fine and ultrafine particles and ozone in an unoccupied modern California house.

    PubMed

    Singer, B C; Delp, W W; Black, D R; Walker, I S

    2017-07-01

    This study evaluated nine ventilation and filtration systems in an unoccupied 2006 house located 250 m downwind of the I-80 freeway in Sacramento, California. Systems were evaluated for reducing indoor concentrations of outdoor particles in summer and fall/winter, ozone in summer, and particles from stir-fry cooking. Air exchange rate was measured continuously. Energy use was estimated for year-round operation in California. Exhaust ventilation without enhanced filtration provided indoor PM 2.5 that was 70% lower than outdoors. Supply ventilation with MERV13 filtration provided slightly less protection, whereas supply MERV16 filtration reduced PM 2.5 by 97-98% relative to outdoors. Supply filtration systems used little energy but provided no benefits for indoor-generated particles. Systems with MERV13-16 filter in the recirculating heating and cooling unit (FAU) operating continuously or 20 min/h reduced PM 2.5 by 93-98%. Across all systems, removal percentages were higher for ultrafine particles and lower for black carbon, relative to PM 2.5 . Indoor ozone was 3-4% of outdoors for all systems except an electronic air cleaner that produced ozone. Filtration via the FAU or portable filtration units lowered PM 2.5 by 25-75% when operated over the hour following cooking. The energy for year-round operation of FAU filtration with an efficient blower motor was estimated at 600 kWh/year. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Measured performance of filtration and ventilation systems for fine and ultrafine particles and ozone in an unoccupied modern California house

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singer, Brett C.; Delp, William W.; Black, Douglas R.

    This study evaluated nine ventilation and filtration systems in an unoccupied 2006 house located 250m downwind of the I-80 freeway in Sacramento, California. Systems were evaluated for reducing indoor concentrations of outdoor particles in summer and fall/winter, ozone in summer, and particles from stir-fry cooking. Air exchange rate was measured continuously. Energy use was estimated for year-round operation in California. Exhaust ventilation without enhanced filtration produced indoor PM 2.5 that was 70% lower than outdoors. Supply ventilation with MERV13 filtration provided slightly less protection whereas supply MERV16 filtration reduced PM 2.55 by 97-98% relative to outdoors. Supply filtration systems usedmore » little energy but provided no benefits for indoor-generated particles. Systems with MERV13-16 filters in the recirculating heating and cooling unit (FAU) operating continuously or 20 min/h reduced PM 2.5 by 93-98%. Across all systems, removal percentages were higher for ultrafine particles and lower for black carbon, relative to PM 2.5. Indoor ozone was 3-4% of outdoors for all systems except an electronic air cleaner that produced ozone. Filtration via the FAU or portable filtration units lowered PM 2.5 by 25-75% when operated over the hour following cooking. The energy for year-round operation of FAU filtration with an efficient blower motor was estimated at 600 kWh/year.« less

  11. Measured performance of filtration and ventilation systems for fine and ultrafine particles and ozone in an unoccupied modern California house

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singer, B. C.; Delp, W. W.; Black, D. R.

    This study evaluated nine ventilation and filtration systems in an unoccupied 2006 house located 250 m downwind of the I-80 freeway in Sacramento, California. Systems were evaluated for reducing indoor concentrations of outdoor particles in summer and fall/winter, ozone in summer, and particles from stir-fry cooking. Air exchange rate was measured continuously. Energy use was estimated for year-round operation in California. Exhaust ventilation without enhanced filtration provided indoor PM 2.5 that was 70% lower than outdoors. Supply ventilation with MERV13 filtration provided slightly less protection, whereas supply MERV16 filtration reduced PM 2.5 by 97-98% relative to outdoors. Supply filtration systems usedmore » little energy but provided no benefits for indoor-generated particles. Systems with MERV13-16 fil ter in the recirculating heating and cooling unit (FAU) operating continuously or 20 min/h reduced PM 2.5 by 93-98%. Across all systems, removal percentages were higher for ultrafine particles and lower for black carbon, relative to PM 2.5 . Indoor ozone was 3-4% of outdoors for all systems except an electronic air cleaner that produced ozone. Filtration via the FAU or portable filtration units lowered PM 2.5 by 25-75% when operated over the hour following cooking. The energy for year-round operation of FAU filtration with an efficient blower motor was estimated at 600 kWh/year.« less

  12. Measured performance of filtration and ventilation systems for fine and ultrafine particles and ozone in an unoccupied modern California house

    DOE PAGES

    Singer, B. C.; Delp, W. W.; Black, D. R.; ...

    2016-12-05

    This study evaluated nine ventilation and filtration systems in an unoccupied 2006 house located 250 m downwind of the I-80 freeway in Sacramento, California. Systems were evaluated for reducing indoor concentrations of outdoor particles in summer and fall/winter, ozone in summer, and particles from stir-fry cooking. Air exchange rate was measured continuously. Energy use was estimated for year-round operation in California. Exhaust ventilation without enhanced filtration provided indoor PM 2.5 that was 70% lower than outdoors. Supply ventilation with MERV13 filtration provided slightly less protection, whereas supply MERV16 filtration reduced PM 2.5 by 97-98% relative to outdoors. Supply filtration systems usedmore » little energy but provided no benefits for indoor-generated particles. Systems with MERV13-16 fil ter in the recirculating heating and cooling unit (FAU) operating continuously or 20 min/h reduced PM 2.5 by 93-98%. Across all systems, removal percentages were higher for ultrafine particles and lower for black carbon, relative to PM 2.5 . Indoor ozone was 3-4% of outdoors for all systems except an electronic air cleaner that produced ozone. Filtration via the FAU or portable filtration units lowered PM 2.5 by 25-75% when operated over the hour following cooking. The energy for year-round operation of FAU filtration with an efficient blower motor was estimated at 600 kWh/year.« less

  13. Effect of ventilation rate on air cleanliness and energy consumption in operation rooms at rest.

    PubMed

    Lee, Shih-Tseng; Liang, Ching-Chieh; Chien, Tsung-Yi; Wu, Feng-Jen; Fan, Kuang-Chung; Wan, Gwo-Hwa

    2018-02-27

    The interrelationships between ventilation rate, indoor air quality, and energy consumption in operation rooms at rest are yet to be understood. We investigate the effect of ventilation rate on indoor air quality indices and energy consumption in ORs at rest. The study investigates the air temperature, relative humidity, concentrations of carbon dioxide, particulate matter (PM), and airborne bacteria at different ventilation rates in operation rooms at rest of a medical center. The energy consumption and cost analysis of the heating, ventilating, and air conditioning (HVAC) system in the operation rooms at rest were also evaluated for all ventilation rates. No air-conditioned operation rooms had very highest PM and airborne bacterial concentrations in the operation areas. The bacterial concentration in the operation areas with 6-30 air changes per hour (ACH) was below the suggested level set by the United Kingdom (UK) for an empty operation room. A 70% of reduction in annual energy cost by reducing the ventilation rate from 30 to 6 ACH was found in the operation rooms at rest. Maintenance of operation rooms at ventilation rate of 6 ACH could save considerable amounts of energy and achieve the goal of air cleanliness.

  14. New Design Tool Can Help Cut building Energy Use

    Science.gov Websites

    help almost any architect or engineer evaluate passive solar and efficiency design strategies in a tool that enables them to walk through the design process and understand the consequences of design , a feature that tells designers how large of a heating, ventilation and air conditioning (HVAC

  15. Health and economic benefits of building ventilation interventions for reducing indoor PM2.5 exposure from both indoor and outdoor origins in urban Beijing, China.

    PubMed

    Yuan, Ye; Luo, Zhiwen; Liu, Jing; Wang, Yaowu; Lin, Yaoyu

    2018-06-01

    China is confronted with serious PM 2.5 pollution, especially in the capital city of Beijing. Exposure to PM 2.5 could lead to various negative health impacts including premature mortality. As people spend most of their time indoors, the indoor exposure to PM 2.5 from both indoor and outdoor origins constitutes the majority of personal exposure to PM 2.5 pollution. Different building interventions have been introduced to mitigate indoor PM 2.5 exposure, but always at the cost of energy expenditure. In this study, the health and economic benefits of different ventilation intervention strategies for reducing indoor PM 2.5 exposure are modeled using a representative urban residence in Beijing, with consideration of different indoor PM 2.5 emission strengths and outdoor pollution. Our modeling results show that the increase of envelope air-tightness can achieve significant economic benefits when indoor PM 2.5 emissions are absent; however, if an indoor PM 2.5 source is present, the benefits only increase slightly in mechanically ventilated buildings, but may show negative benefit without mechanical ventilation. Installing mechanical ventilation in Beijing can achieve annual economic benefits ranging from 200yuan/capita to 800yuan/capita if indoor PM 2.5 sources exist. If there is no indoor emission, the annual benefits above 200yuan/capita can be achieved only when the PM 2.5 filtration efficiency is no <90% and the envelope air-tightness is above Chinese National Standard Level 7. Introducing mechanical ventilation with low PM 2.5 filtration efficiency to current residences in urban Beijing will increase the indoor PM 2.5 exposure and result in excess costs to the residents. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Energy efficiency in new museum build: THEpUBLIC

    NASA Astrophysics Data System (ADS)

    Battle, G.; Yuen, C. H. N.; Zanchetta, M.; D'Cruz, P.

    2006-12-01

    The project MUSEUMS, awarded the Thermie Grant from the European Commission, has applied and tested new and innovative technologies for optimizing energy efficiency and sustainability in nine retrofitted and new museum buildings in Europe. The project will significantly contribute to the acceptance of innovative and renewable technologies in public buildings by demonstrating that retrofitted and new museum buildings can fully meet architectural, functional, comfort, control and safety requirements as well as achieve total energy savings of over 35% and reduce CO2 emissions by over 50%. THEpUBLIC will be a stunning and modern flagship building containing six storeys, with a total area of 11,000Âm2 of galleries for exhibitions, digital art and hands-on displays. In addition, there will be workspaces, creative spaces, retail opportunities, restaurant facilities, public areas, conference rooms and other multi-function spaces. Initiated by Jubilee Arts, the THEpUBLIC, designed by Alsop Architects, will introduce and engage its 400,000 expected visitors in the principles of energy and the environment through a display of art, education, technology and entertainment in the centre of West Bromwich, Sandwell. It will serve as a catalyst for urban regeneration within Sandwell.Battle McCarthy's key environmental design solutions for THEpUBLIC include natural daylighting, mixed-mode ventilation system with operable windows, low energy and maintenance cost systems, potential for integrating renewable energy collection systems, borehole water systems for cooling and water supply, an intelligent facade system with external shading and natural ventilation and night cooling systems.

  17. Fuel poverty increases risk of mould contamination, regardless of adult risk perception & ventilation in social housing properties.

    PubMed

    Sharpe, Richard A; Thornton, Christopher R; Nikolaou, Vasilis; Osborne, Nicholas J

    2015-06-01

    Fuel poverty affects 2.4 million UK homes leading to poor hygrothermal conditions and risk of mould and house dust mite contaminations, which in turn increases risk of asthma exacerbation. For the first time we assess how fuel poverty, occupants' risk perception and use of mechanical ventilation mediate the risk of mould contamination in social housing. Postal questionnaires were sent to 3867 social housing properties to collect adult risk perception, and demographic and environmental information on occupants. Participant details were linked to data pertaining to the individual properties. Multiple logistic regression was used to calculate odds ratios and confidence intervals while allowing for clustering of individuals coming from the same housing estate. We used Structured Equation Modelling and Goodness of Fit analysis in mediation analyses to examine the role of fuel poverty, risk perception, use of ventilation and energy efficiency. Eighteen percent of our target social housing populations (671 households) were included into our study. High risk perception (score of 8-10) was associated with reduced risk of mould contamination in the bedrooms of children (OR 0.5 95% CI; 0.3-0.9) and adults (OR 0.4 95% CI; 0.3-0.7). High risk perception of living with inadequate heating and ventilation reduced the risk of mould contamination (OR 0.5 95% CI; 0.3-0.8 and OR 0.5 95% CI; 0.3-0.7, respectively). Participants living with inadequate heating and not heating due to the cost of fuel had an increased risk of mould contamination (OR 3.4 95% CI; 2.0-5.8 and OR 2.2 95% CI; 1.5-3.2, respectively). Increased risk perception and use of extractor fans did not mediate the association between fuel poverty behaviours and increased risk of mould contamination. Fuel poverty behaviours increased the risk of mould contamination, which corresponds with existing literature. For the first time we used mediation analysis to assess how this association maybe modified by occupant behaviours. Increased risk perception and use of extractor fans did not modify the association between fuel poverty and mould contamination. This suggests that fuel poor populations may not benefit from energy efficiency interventions due to ineffective heating and ventilation practices of those occupants residing participating households. Our findings may be modified by a complex interaction between occupant behaviours and the built environment. We found that participant age, occupancy, SES, pets, drying washing indoors, geographic location, architectural design/age of the property, levels of insulation and type of heating regulated risk of mould contamination. Fuel poverty behaviours affected around a third of participating households and represent a risk factor for increased exposures to damp and mouldy conditions, regardless of adult risk perception, heating and ventilation practices. This requires multidisciplinary approach to assess the complex interaction between occupant behaviours, risk perception, the built environment and the effective use of heating and ventilation practices. Our findings have implications for housing policies and future housing interventions. Effective communication strategies focusing on awareness and perception of risk may help address indoor air quality issues. This must be supported by improved household energy efficiency with the provision of more effective heating and ventilation strategies, specifically to help alleviate those suffering from fuel poverty. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Energy Savings Modeling and Inspection Guidelines for Commercial Building Federal Tax Deductions for Buildings in 2016 and Later

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deru, Michael; Field-Macumber, Kristin

    This document provides guidance for modeling and inspecting energy-efficient property in commercial buildings for certification of the energy and power cost savings related to Section 179D of the Internal Revenue Code (IRC) enacted in Section 1331 of the 2005 Energy Policy Act (EPAct) of 2005, noted in Internal Revenue Service (IRS) Notices 2006-52 (IRS 2006), 2008-40 (IRS 2008) and 2012-26 (IRS 2012), and updated by the Protecting Americans from Tax Hikes (PATH) Act of 2015. Specifically, Section 179D provides federal tax deductions for energy-efficient property related to a commercial building's envelope; interior lighting; heating, ventilating, and air conditioning (HVAC); andmore » service hot water (SHW) systems. This document applies to buildings placed in service on or after January 1, 2016.« less

  19. Assessment of Energy Savings Potential from the Use of Demand Control Ventilation Systems in General Office Spaces in California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, Tianzhen; Fisk, William J.

    2009-07-08

    Demand controlled ventilation (DCV) was evaluated for general office spaces in California. A medium size office building meeting the prescriptive requirements of the 2008 California building energy efficiency standards (CEC 2008) was assumed in the building energy simulations performed with the EnergyPlus program to calculate the DCV energy savings potential in five typical California climates. Three design occupancy densities and two minimum ventilation rates were used as model inputs to cover a broader range of design variations. The assumed values of minimum ventilation rates in offices without DCV, based on two different measurement methods, were 81 and 28 cfm per occupant. These rates are based on the co-author's unpublished analyses of data from EPA's survey of 100 U.S. office buildings. These minimum ventilation rates exceed the 15 to 20 cfm per person required in most ventilation standards for offices. The cost effectiveness of applying DCV in general office spaces was estimated via a life cycle cost analyses that considered system costs and energy cost reductions. The results of the energy modeling indicate that the energy savings potential of DCV is largest in the desert area of California (climate zone 14), followed by Mountains (climate zone 16), Central Valley (climate zone 12), North Coast (climate zone 3), and South Coast (climate zone 6). The results of the life cycle cost analysis show DCV is cost effective for office spaces if the typical minimum ventilation rates without DCV is 81 cfm per person, except at the low design occupancy of 10 people per 1000 ft{sup 2} in climate zones 3 and 6. At the low design occupancy of 10 people per 1000 ft{sup 2}, the greatest DCV life cycle cost savings is a net present value (NPV) ofmore » $$0.52/ft{sup 2} in climate zone 14, followed by $$0.32/ft{sup 2} in climate zone 16 and $$0.19/ft{sup 2} in climate zone 12. At the medium design occupancy of 15 people per 1000 ft{sup 2}, the DCV savings are higher with a NPV $$0.93/ft{sup 2} in climate zone 14, followed by $$0.55/ft{sup 2} in climate zone 16, $$0.46/ft{sup 2} in climate zone 12, $$0.30/ft{sup 2} in climate zone 3, $$0.16/ft{sup 2} in climate zone 3. At the high design occupancy of 20 people per 1000 ft{sup 2}, the DCV savings are even higher with a NPV $$1.37/ft{sup 2} in climate zone 14, followed by $$0.86/ft{sup 2} in climate zone 16, $$0.84/ft{sup 2} in climate zone 3, $$0.82/ft{sup 2} in climate zone 12, and $0.65/ft{sup 2} in climate zone 6. DCV was not found to be cost effective if the typical minimum ventilation rate without DCV is 28 cfm per occupant, except at high design occupancy of 20 people per 1000 ft{sup 2} in climate zones 14 and 16. Until the large uncertainties about the base case ventilation rates in offices without DCV are reduced, the case for requiring DCV in general office spaces will be a weak case.« less

  20. User-Oriented Modeling Tools for Advanced Hybrid and Climate-Appropriate Rooftop Air Conditioners

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woolley, Jonathan; Univ. of California, Davis, CA; Modera, Mark

    Hybrid unitary air conditioning systems offer a pathway to substantially reduce energy use and peak electrical demand for cooling, heating, and ventilation in commercial buildings. Hybrid air conditioners incorporate multiple subsystems that are carefully orchestrated to provide climate- and application-specific efficiency advantages. There are a multitude of hybrid system architectures, but common subsystems include: heat recovery ventilation, indirect evaporative cooling, desiccant dehumidification, variable speed fans, modulating dampers, and multi-stage or variable-speed vapor compression cooling. Categorically, hybrid systems can operate in numerous discrete modes. For example: indirect evaporative cooling may operate for periods when the subsystem provides adequate sensible cooling, thenmore » vapor compression cooling will be included when more cooling or dehumidification is necessary. Laboratory assessments, field studies, and simulations have demonstrated that hybrid unitary air conditioners could reduce energy use for cooling and ventilation by 30-90% depending on climate and application. Heretofore, it has been challenging - if not impossible - for practitioners to model hybrid air conditioners as part of building energy simulations; and the limitation has severely obstructed broader adoption of technologies in this class. In this project, we developed a new feature for EnergyPlus that enables modeling hybrid unitary air conditioning equipment for building energy simulations. This is a significant advancement for both theory and practice, and confers public benefit by enabling practitioners to evaluate this compelling efficiency technology as a part of building energy simulations. The feature is a black-box model that requires extensive performance data for each hybrid unitary product. In parallel, we also developed new features for the Technology Performance Exchange to enable manufacturers to submit performance data in a standard format that can be used with the hybrid unitary model in EnergyPlus. Additionally, through this project we expanded university educational resources, and university- manufacturing industry collaborations in the field of energy efficiency technology. Over two years, we involved 20 undergraduate students in ambitious research projects focused on modeling complex multi-mode mechanical systems, supported three mechanical engineering bachelor theses, established undergraduate apprenticeships with multiple industry partners, and involved those partners in the process of design, validation, and debugging for the new EnergyPlus feature. The EnergyPlus feature is described and discussed in an academic article, as well as in an engineering reference, and input/output reference documentation for EnergyPlus. The Technology Performance Exchange features are live and publicly accessible, our manufacturer partners are primed to submit initial product information and performance data to the exchange, and the EnergyPlus feature is scheduled for public release in Spring 2018 as a part of EnergyPlus v8.9.« less

  1. Design and Development of a Regenerative Blower for EVA Suit Ventilation

    NASA Technical Reports Server (NTRS)

    Izenson, Michael G.; Chen, Weibo; Hill, Roger W.; Phillips, Scott D.; Paul, Heather L.

    2011-01-01

    Ventilation subsystems in future space suits require a dedicated ventilation fan. The unique requirements for the ventilation fan - including stringent safety requirements and the ability to increase output to operate in buddy mode - combine to make a regenerative blower an attractive choice. This paper describes progress in the design, development, and testing of a regenerative blower designed to meet requirements for ventilation subsystems in future space suits. We have developed analysis methods for the blower s complex, internal flows and identified impeller geometries that enable significant improvements in blower efficiency. We verified these predictions by test, measuring aerodynamic efficiencies of 45% at operating conditions that correspond to the ventilation fan s design point. We have developed a compact motor/controller to drive the blower efficiently at low rotating speed (4500 rpm). Finally, we have assembled a low-pressure oxygen test loop to demonstrate the blower s reliability under prototypical conditions.

  2. Bias flow rate and ventilation efficiency during adult high-frequency oscillatory ventilation: a lung model study.

    PubMed

    Nagano, Osamu; Yumoto, Tetsuya; Nishimatsu, Atsunori; Kanazawa, Shunsuke; Fujita, Takahisa; Asaba, Sunao; Yamanouchi, Hideo

    2018-04-19

    Bias flow (BF) is essential to maintain mean airway pressure (MAP) and to washout carbon dioxide (CO 2 ) from the oscillator circuit during high-frequency oscillatory ventilation (HFOV). If the BF rate is inadequate, substantial CO 2 rebreathing could occur and ventilation efficiency could worsen. With lower ventilation efficiency, the required stroke volume (SV) would increase in order to obtain the same alveolar ventilation with constant frequency. The aim of this study was to assess the effect of BF rate on ventilation efficiency during adult HFOV. The R100 oscillator (Metran, Japan) was connected to an original lung model internally equipped with a simulated bronchial tree. The actual SV was measured with a flow sensor placed at the Y-piece. Carbon dioxide (CO 2 ) was continuously insufflated into the lung model ([Formula: see text]CO 2 ), and the partial pressure of CO 2 (PCO 2 ) in the lung model was monitored. Alveolar ventilation ([Formula: see text]A) was estimated as [Formula: see text]CO 2 divided by the stabilized value of PCO 2 . [Formula: see text]A was evaluated by setting SV from 80 to 180 mL (10 mL increments, n = 5) at a frequency of 8 Hz, a MAP of 25 cmH 2 O, and a BF of 10, 20, 30, and 40 L/min (study 1). Ventilation efficiency was calculated as [Formula: see text]A divided by the actual minute volume. The experiment was also performed with an actual SV of 80, 100, and 120 mL and a BF from 10 to 60 L/min (10 L/min increments: study 2). Study 1: With the same setting SV, the [Formula: see text]A with a BF of 20 L/min or more was significantly higher than that with a BF of 10 L/min. Study 2: With the same actual SV, the [Formula: see text]A and the ventilation efficiency with a BF of 30 L/min or more were significantly higher than those with a BF of 10 or 20 L/min. Increasing BF up to 30 L/min or more improved ventilation efficiency in the R100 oscillator.

  3. Statistical thermodynamic foundation for photovoltaic and photothermal conversion. IV. Solar cells with larger-than-unity quantum efficiency revisited

    NASA Astrophysics Data System (ADS)

    Badescu, Viorel; Landsberg, Peter T.; De Vos, Alexis; Desoete, Bart

    2001-02-01

    A detailed balance solar energy conversion model offering a single treatment of both photovoltaic and photothermal conversion is expounded. It includes a heat rejection mechanism. The effect of multiple impact ionizations on the solar cell efficiency is reconsidered by including the constraints dictated by the first law of thermodynamics (which already exist in the model) and it improves of course the solar cell efficiency. However the upper bound efficiencies previously derived are too optimistic as they do not take into consideration the necessary increase in solar cell temperature. The cell efficiency operating under unconcentrated radiation is a few percent lower than in the ideal case (i.e., with perfect cooling). Wider band gap materials are recommended for those applications where the cell cooling is not effective. The best operation of naturally ventilated cells is under unconcentrated or slightly concentrated solar radiation. Increasing the (forced) ventilation rate allows an increase of the optimum concentration ratio. Additional effects such as the radiation reflectance and radiative pair recombination efficiency are also considered. A sort of threshold minimum band gap depending on the last effect is emphasized: materials with band gaps narrower than this threshold are characterized by very low cell efficiency.

  4. National Grid Deep Energy Retrofit Pilot Program—Clark Residence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2010-03-30

    In this case study, Building Science Corporation partnered with local utility company, National Grid, Massachusetts homes. This project involved the renovation of a 18th century Cape-style building and achieved a super-insulated enclosure (R-35 walls, R-50+ roof, R-20+ foundation), extensive water management improvements, high-efficiency water heater, and state-of-the-art ventilation.

  5. Energy and cost associated with ventilating office buildings in a tropical climate.

    PubMed

    Rim, Donghyun; Schiavon, Stefano; Nazaroff, William W

    2015-01-01

    Providing sufficient amounts of outdoor air to occupants is a critical building function for supporting occupant health, well-being and productivity. In tropical climates, high ventilation rates require substantial amounts of energy to cool and dehumidify supply air. This study evaluates the energy consumption and associated cost for thermally conditioning outdoor air provided for building ventilation in tropical climates, considering Singapore as an example locale. We investigated the influence on energy consumption and cost of the following factors: outdoor air temperature and humidity, ventilation rate (L/s per person), indoor air temperature and humidity, air conditioning system coefficient of performance (COP), and cost of electricity. Results show that dehumidification of outdoor air accounts for more than 80% of the energy needed for building ventilation in Singapore's tropical climate. Improved system performance and/or a small increase in the indoor temperature set point would permit relatively large ventilation rates (such as 25 L/s per person) at modest or no cost increment. Overall, even in a thermally demanding tropical climate, the energy cost associated with increasing ventilation rate up to 25 L/s per person is less than 1% of the wages of an office worker in an advanced economy like Singapore's. This result implies that the benefits of increasing outdoor air ventilation rate up to 25 L/s per person--which is suggested to provide for productivity increases, lower sick building syndrome symptom prevalence, and reduced sick leave--can be much larger than the incremental cost of ventilation.

  6. A passive solar residence using native and recycled materials, Bee Cave, Texas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holder, L.M. III; King, L.H.

    The Booth Residence at Bee Cave, Texas is a Passive Solar residence in a hot humid climate and a good example of both passive solar and renewable features. The design, operation, materials, and furnishings give the structure a regional and rustic character. Passive solar strategies employed include solar orientation, solar shading, natural ventilation, induced ventilation, night flushing, direct gain clearstory, high mass floors, daylighting, radiant barrier, and a double ventilated roof system. The project is in contrast to the existing compound which includes three identical buildings each rotated 120 degrees and intended to be energy efficient, but actual operation hasmore » pointed out some deficiencies in the design. Additional features include extensive use of natural, recycled, and materials reused from other buildings. The Boothe Residence is an example of building in harmony with the local climate, the use of locally available materials, craftsman, artists, manpower, and reuse of trim and furnishings.« less

  7. Improvement of energy efficiency: the use of thermography and air-tightness test in verification of thermal performance of school buildings

    NASA Astrophysics Data System (ADS)

    Kauppinen, Timo; Siikanen, Sami

    2011-05-01

    The improvement of energy efficiency is the key issue after the energy performance of buildings directive came into the force in European Union countries. The city of Kuopio participate a project, in which different tools will be used, generated and tested to improve the energy efficiency of public buildings. In this project there are 2 schools, the other consuming much more heating energy than the other same type of school. In this paper the results of the thermography in normal conditions and under 50 Pa pressure drop will be presented; as well as the results of remote controlled air tightness test of the buildings. Thermography combined with air tightness test showed clearly the reasons of specific consumption differences of heating energy - also in the other hand, the measurements showed the problems in the performance of ventilation system. Thermography, air tightness test and other supporting measurements can be used together to solve energy loss problems - if these measurements will be carried out by proper way.

  8. Potential of HVAC and solar technologies for hospital retrofit to reduce heating energy consumption

    NASA Astrophysics Data System (ADS)

    Pop, Octavian G.; Abrudan, Ancuta C.; Adace, Dan S.; Pocola, Adrian G.; Balan, Mugur C.

    2018-02-01

    The study presents a combination of several energy efficient technologies together with their potential to reduce the energy consumption and to increase the comfort through the retrofit of a hospital building. The existing situation is characterized by an old and inefficient heating system, by the complete missing of any ventilation and by no cooling. The retrofit proposal includes thermal insulation and a distributed HVAC system consisting of several units that includes air to air heat exchangers and air to air heat pumps. A condensing boiler was also considered for heating. A solar thermal system for preparing domestic hot water and a solar photovoltaic system to assist the HVAC units are also proposed. Heat transfer principles are used for modelling the thermal response of the building to the environmental parameters and thermodynamic principles are used for modelling the behaviour of HVAC, solar thermal system and photovoltaic system. All the components of the heating loads were determined for one year period. The study reveals the capacity of the proposed systems to provide ventilation and thermal comfort with a global reduction of energy consumption of 71.6 %.

  9. Energy conservation in ice skating rinks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dietrich, B.K.; McAvoy, T.J.

    1980-01-01

    An economic and energy analysis of ice rinks was made to examine the areas in which energy could be profitably conserved. The areas where new equipment could make a major reduction in energy use are: the use of waste heat for space heating, the installation of a low emissivity false ceiling to reduce radiant heat, the use of a load cycling controller to reduce refrigeration costs, and the installation of more efficient lighting systems. Changes in rink operating procedure that could cut energy use are: higher refrigerant temperatures, thinner ice, the use of colder resurfacing water, turning the compressors andmore » pumps off at night, and reducing ventilation.« less

  10. Air flow optimization for energy efficient blower of biosafety cabinet class II A2

    NASA Astrophysics Data System (ADS)

    Ibrahim, M. D.; Mohtar, M. Z.; Alias, A. A.; Wong, L. K.; Yunos, Y. S.; Rahman, M. R. A.; Zulkharnain, A.; Tan, C. S.; Thayan, R.

    2017-04-01

    An energy efficient Biosafety Cabinet (BSC) has become a big challenge for manufacturers to develop BSC with the highest level of protection. The objective of research is to increase air flow velocity discharge from centrifugal blower. An aerodynamic duct shape inspired by the shape of Peregrine Falcon’s wing during diving flight is added to the end of the centrifugal blower. Investigation of air movement is determined by computational fluid dynamics (CFD) simulation. The results showed that air velocity can be increased by double compared to typical manufactured BSC and no air recirculation. As conclusion, a novel design of aerodynamic duct shape successfully developed and proved that air velocity can be increase naturally with same impeller speed. It can contribute in increasing energy efficiency of the centrifugal blower. It is vital to BSC manufacturer and can be apply to Heating, Air Ventilation and Air Conditioning (HVAC) industries.

  11. Energy and Cost Associated with Ventilating Office Buildings in a Tropical Climate

    PubMed Central

    Rim, Donghyun; Schiavon, Stefano; Nazaroff, William W.

    2015-01-01

    Providing sufficient amounts of outdoor air to occupants is a critical building function for supporting occupant health, well-being and productivity. In tropical climates, high ventilation rates require substantial amounts of energy to cool and dehumidify supply air. This study evaluates the energy consumption and associated cost for thermally conditioning outdoor air provided for building ventilation in tropical climates, considering Singapore as an example locale. We investigated the influence on energy consumption and cost of the following factors: outdoor air temperature and humidity, ventilation rate (L/s per person), indoor air temperature and humidity, air conditioning system coefficient of performance (COP), and cost of electricity. Results show that dehumidification of outdoor air accounts for more than 80% of the energy needed for building ventilation in Singapore’s tropical climate. Improved system performance and/or a small increase in the indoor temperature set point would permit relatively large ventilation rates (such as 25 L/s per person) at modest or no cost increment. Overall, even in a thermally demanding tropical climate, the energy cost associated with increasing ventilation rate up to 25 L/s per person is less than 1% of the wages of an office worker in an advanced economy like Singapore’s. This result implies that the benefits of increasing outdoor air ventilation rate up to 25 L/s per person — which is suggested to provide for productivity increases, lower sick building syndrome symptom prevalence, and reduced sick leave — can be much larger than the incremental cost of ventilation. PMID:25822504

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chan, Wanyu R.; Sidheswaran, Meera; sullivan, Douglas

    The HZEB research program aims to generate information needed to develop new science-based commercial building ventilation rate (VR) standards that balance the dual objectives of increasing energy efficiency and maintaining acceptable indoor air quality. This interim report describes the preliminary results from one HZEB field study on retail stores. The primary purpose of this study is to estimate the whole-building source strengths of contaminant of concerns (COCs). This information is needed to determine the VRs necessary to maintain indoor concentrations of COCs below applicable health guidelines.The goal of this study is to identify contaminants in retail stores that should bemore » controlled via ventilation, and to determine the minimum VRs that would satisfy the occupant health and odor criteria.« less

  13. Outcome-based ventilation: A framework for assessing performance, health, and energy impacts to inform office building ventilation decisions.

    PubMed

    Rackes, A; Ben-David, T; Waring, M S

    2018-07-01

    This article presents an outcome-based ventilation (OBV) framework, which combines competing ventilation impacts into a monetized loss function ($/occ/h) used to inform ventilation rate decisions. The OBV framework, developed for U.S. offices, considers six outcomes of increasing ventilation: profitable outcomes realized from improvements in occupant work performance and sick leave absenteeism; health outcomes from occupant exposure to outdoor fine particles and ozone; and energy outcomes from electricity and natural gas usage. We used the literature to set low, medium, and high reference values for OBV loss function parameters, and evaluated the framework and outcome-based ventilation rates using a simulated U.S. office stock dataset and a case study in New York City. With parameters for all outcomes set at medium values derived from literature-based central estimates, higher ventilation rates' profitable benefits dominated negative health and energy impacts, and the OBV framework suggested ventilation should be ≥45 L/s/occ, much higher than the baseline ~8.5 L/s/occ rate prescribed by ASHRAE 62.1. Only when combining very low parameter estimates for profitable impacts with very high ones for health and energy impacts were all outcomes on the same order. Even then, however, outcome-based ventilation rates were often twice the baseline rate or more. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Apte, Michael G.; Mendell, Mark J.; Sohn, Michael D.

    Through mass-balance modeling of various ventilation scenarios that might satisfy the ASHRAE 62.1 Indoor Air Quality (IAQ) Procedure, we estimate indoor concentrations of contaminants of concern (COCs) in California “big box” stores, compare estimates to available thresholds, and for selected scenarios estimate differences in energy consumption. Findings are intended to inform decisions on adding performance-based approaches to ventilation rate (VR) standards for commercial buildings. Using multi-zone mass-balance models and available contaminant source rates, we estimated concentrations of 34 COCs for multiple ventilation scenarios: VRmin (0.04 cfm/ft2 ), VRmax (0.24 cfm/ft2 ), and VRmid (0.14 cfm/ft2 ). We compared COC concentrationsmore » with available health, olfactory, and irritant thresholds. We estimated building energy consumption at different VRs using a previously developed EnergyPlus model. VRmax did control all contaminants adequately, but VRmin did not, and VRmid did so only marginally. Air cleaning and local ventilation near strong sources both showed promise. Higher VRs increased indoor concentrations of outdoor air pollutants. Lowering VRs in big box stores in California from VRmax to VRmid would reduce total energy use by an estimated 6.6% and energy costs by 2.5%. Reducing the required VRs in California’s big box stores could reduce energy use and costs, but poses challenges for health and comfort of occupants. Source removal, air cleaning, and local ventilation may be needed at reduced VRs, and even at current recommended VRs. Also, alternative ventilation strategies taking climate and season into account in ventilation schedules may provide greater energy cost savings than constant ventilation rates, while improving IAQ.« less

  15. Development of an Outdoor Temperature-Based Control Algorithm for Residential Mechanical Ventilation Control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Less, Brennan; Walker, Iain; Tang, Yihuan

    2014-06-01

    Smart ventilation systems use controls to ventilate more during those periods that provide either an energy or IAQ advantage (or both) and less during periods that provide a dis advantage. Using detailed building simulations, this study addresses one of the simplest and lowest cost types of smart controllers —outdoor temperature- based control. If the outdoor temperature falls below a certain cut- off, the fan is simply turned off. T he main principle of smart ventilation used in this study is to shift ventilation from time periods with large indoor -outdoor temperature differences, to periods where these differences are smaller, andmore » their energy impacts are expected to be less. Energy and IAQ performance are assessed relative to a base case of a continuously operated ventilation fan sized to comply with ASHRAE 62.2-2013 whole house ventilation requirements. In order to satisfy 62.2-2013, annual pollutant exposure must be equivalent between the temperature controlled and continuous fan cases. This requires ventilation to be greater than 62.2 requirements when the ventilation system operates. This is achieved by increasing the mechanical ventilation system air flow rates.« less

  16. Energy-efficient building design in cold climates: Schools as a case study

    NASA Astrophysics Data System (ADS)

    Rangel Ruiz, Rocio

    Buildings account for great amounts of greenhouse gas emissions. In terms of energy, buildings account for one third of the total amount of energy used in the country every year! Schools account for 14 percent of the energy used annually in commercial and institutional buildings. Further, schools are one of the most commonly constructed building types in Canada and spaces such as classrooms are often duplicated. This makes them preferred candidates for the research that was undertaken where energy-efficient solutions that can be transferred to different school designs were derived. Throughout the study, the Commercial Building Incentive Program (CBIP) was used as a benchmark. The objectives of the study were to demonstrate energy-efficient concepts, provide a case study to evaluate solutions, develop typological models and provide an understanding of the innovation process. The technological and societal aspects of the energy-efficient design were addressed. With respect to the technological aspects, the first step was the analysis of conventional design using a school in Calgary as a case study. The optimization of conventional design was undertaken using computer modeling to identify best practice solutions. Aspects that were included in the studies were lighting design, envelope characteristics, HVAC systems and building plant systems. The inclusion of passive design included the analysis of daylighting and natural ventilation. Computer modeling was used to assess daylighting in classrooms with unilateral and bilateral daylighting. Illuminance levels, glare and light distribution were evaluated. The study of natural ventilation was undertaken using literature review. Airflow and outdoor temperatures were the focus to identify solutions that could be incorporated into the design of classrooms. It was concluded that achieving excellence in energy efficiency in schools could be achieved using readily available technologies. Energy savings of up to 63 percent better than Canada's Model National Energy Code for Buildings (MNECB) reference case and utility cost savings of 30,000 (on a 50,000 annual cost) were achieved through conventional design optimization. Additional energy savings of three percent and utility cost savings of $7,000 were seen when passive strategies were included in the design. With respect to the societal aspects, an exploratory research study was undertaken to examine innovation. Architects and energy consultants were interviewed. All design professionals included in the study had participated in projects approved for a grant under CBIP. The purpose of the study was to identify drivers and barriers to energy efficiency. The study demonstrated that external and internal innovation pressures have a significant effect on whether or not the technology is adopted. Suggestions for reducing barriers and further promoting energy efficiency are discussed in this thesis. It is expected that the research will not only aid designers in assessing projects with regard to local priorities, but will also provide building guidelines that serve as tools for the development of the Canadian energy compliance for CO2 emissions.

  17. MULTI-FREQUENCY OSCILLATORY VENTILATION IN THE PREMATURE LUNG: EFFECTS ON GAS EXCHANGE, MECHANICS, AND VENTILATION DISTRIBUTION

    PubMed Central

    Kaczka, David W.; Herrmann, Jacob; Zonneveld, C. Elroy; Tingay, David G.; Lavizzari, Anna; Noble, Peter B.; Pillow, J. Jane

    2015-01-01

    Background Despite the theoretical benefits of high-frequency oscillatory ventilation (HFOV) in preterm infants, systematic reviews of randomized clinical trials do not confirm improved outcomes. We hypothesized that oscillating a premature lung with multiple frequencies simultaneously would improve gas exchange compared to traditional single-frequency oscillatory ventilation (SFOV). The goal of this study was to develop a novel method for HFOV, termed ‘multi-frequency oscillatory ventilation’ (MFOV), which relies on a broadband flow waveform more suitable for the heterogeneous mechanics of the immature lung. Methods Thirteen intubated preterm lambs were randomized to either SFOV or MFOV for 1 hour, followed by crossover to the alternative regimen for 1 hour. The SFOV waveform consisted of a pure sinusoidal flow at 5 Hz, while the customized MFOV waveform consisted of a 5 Hz fundamental with additional energy at 10 and 15 Hz. Per standardized protocol, mean pressure at airway opening (P̅ao) and inspired O2 fraction were adjusted as needed, and root mean square of the delivered oscillatory volume waveform (Vrms) was adjusted 15-minute intervals. A ventilatory cost function for SFOV and MFOV was defined as VC=(Vrms2PaCO2)Wt−1, where Wt denotes body weight. Results Averaged over all time points, MFOV resulted in significantly lower VC (246.9±6.0 vs. 363.5±15.9 mL2 mmHg kg−1) and P̅ao (12.8±0.3 vs. 14.1±0.5 cmH2O) compared to SFOV, suggesting more efficient gas exchange and enhanced lung recruitment at lower mean airway pressures. Conclusions Oscillation with simultaneous multiple frequencies may be a more efficient ventilator modality in premature lungs compared to traditional single-frequency HFOV. PMID:26495977

  18. Initial Business Case Analysis of Two Integrated Heat Pump HVAC Systems for Near-Zero-Energy Homes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baxter, Van D

    2006-11-01

    The long range strategic goal of the Department of Energy's Building Technologies (DOE/BT) Program is to create, by 2020, technologies and design approaches that enable the construction of net-zero energy homes at low incremental cost (DOE/BT 2005). A net zero energy home (NZEH) is a residential building with greatly reduced needs for energy through efficiency gains, with the balance of energy needs supplied by renewable technologies. While initially focused on new construction, these technologies and design approaches are intended to have application to buildings constructed before 2020 as well resulting in substantial reduction in energy use for all building typesmore » and ages. DOE/BT's Emerging Technologies (ET) team is working to support this strategic goal by identifying and developing advanced heating, ventilating, air-conditioning, and water heating (HVAC/WH) technology options applicable to NZEHs. Although the energy efficiency of heating, ventilating, and air-conditioning (HVAC) equipment has increased substantially in recent years, new approaches are needed to continue this trend. Dramatic efficiency improvements are necessary to enable progress toward the NZEH goals, and will require a radical rethinking of opportunities to improve system performance. The large reductions in HVAC energy consumption necessary to support the NZEH goals require a systems-oriented analysis approach that characterizes each element of energy consumption, identifies alternatives, and determines the most cost-effective combination of options. In particular, HVAC equipment must be developed that addresses the range of special needs of NZEH applications in the areas of reduced HVAC and water heating energy use, humidity control, ventilation, uniform comfort, and ease of zoning. In FY05 ORNL conducted an initial Stage 1 (Applied Research) scoping assessment of HVAC/WH systems options for future NZEHs to help DOE/BT identify and prioritize alternative approaches for further development. Eleven system concepts with central air distribution ducting and nine multi-zone systems were selected and their annual and peak demand performance estimated for five locations: Atlanta (mixed-humid), Houston (hot-humid), Phoenix (hot-dry), San Francisco (marine), and Chicago (cold). Performance was estimated by simulating the systems using the TRNSYS simulation engine (Solar Energy Laboratory et al. 2006) in two 1800-ft{sup 2} houses--a Building America (BA) benchmark house and a prototype NZEH taken from BEopt results at the take-off (or crossover) point (i.e., a house incorporating those design features such that further progress towards ZEH is through the addition of photovoltaic power sources, as determined by current BEopt analyses conducted by NREL). Results were summarized in a project report, 'HVAC Equipment Design options for Near-Zero-Energy Homes--A Stage 2 Scoping Assessment,' ORNL/TM-2005/194 (Baxter 2005). The 2005 study report describes the HVAC options considered, the ranking criteria used, and the system rankings by priority. Table 1 summarizes the energy savings potential of the highest scoring options from the 2005 study for all five locations.« less

  19. Healthcare Energy Efficiency Research and Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Black, Douglas R.; Lai, Judy; Lanzisera, Steven M

    2011-01-31

    Hospitals are known to be among the most energy intensive commercial buildings in California. Estimates of energy end-uses (e.g. for heating, cooling, lighting, etc.) in hospitals are uncertain for lack of information about hospital-specific mechanical system operations and process loads. Lawrence Berkeley National Laboratory developed and demonstrated a benchmarking system designed specifically for hospitals. Version 1.0 featured metrics to assess energy performance for the broad variety of ventilation and thermal systems that are present in California hospitals. It required moderate to extensive sub-metering or supplemental monitoring. In this new project, we developed a companion handbook with detailed equations that canmore » be used toconvert data from energy and other sensors that may be added to or already part of hospital heating, ventilation and cooling systems into metrics described in the benchmarking document.This report additionally includes a case study and guidance on including metering into designs for new hospitals, renovations and retrofits. Despite widespread concern that this end-use is large and growing, there is limited reliable information about energy use by distributed medical equipment and other miscellaneouselectrical loads in hospitals. This report proposes a framework for quantifying aggregate energy use of medical equipment and miscellaneous loads. Novel approaches are suggested and tried in an attempt to obtain data to support this framework.« less

  20. FRACTIONAL AEROSOL FILTRATION EFFICIENCY OF IN-DUCT VENTILATION AIR CLEANERS

    EPA Science Inventory

    The filtration efficiency of ventilation air cleaners is highly particle-size dependent over the 0.01 to 3 μm diameter size range. Current standardized test methods, which determine only overall efficiencies for ambient aerosol or other test aerosols, provide data of limited util...

  1. Moisture transfer through the membrane of a cross-flow energy recovery ventilator: Measurement and simple data-driven modeling

    Treesearch

    CR Boardman; Samuel V. Glass

    2015-01-01

    The moisture transfer effectiveness (or latent effectiveness) of a cross-flow, membrane based energy recovery ventilator is measured and modeled. Analysis of in situ measurements for a full year shows that energy recovery ventilator latent effectiveness increases with increasing average relative humidity and surprisingly increases with decreasing average temperature. A...

  2. Chapter 16: Retrocommissioning Evaluation Protocol. The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurnik, Charles W.; Tiessen, Alex

    Retrocommissioning (RCx) is a systematic process for optimizing energy performance in existing buildings. It specifically focuses on improving the control of energy-using equipment (e.g., heating, ventilation, and air conditioning [HVAC] equipment and lighting) and typically does not involve equipment replacement. Field results have shown proper RCx can achieve energy savings ranging from 5 percent to 20 percent, with a typical payback of two years or less (Thorne 2003). The method presented in this protocol provides direction regarding: (1) how to account for each measure's specific characteristics and (2) how to choose the most appropriate savings verification approach.

  3. Breathing efficiency during inspiratory threshold loading in patients with chronic obstructive pulmonary disease.

    PubMed

    Baarends, E M; Schols, A M; Nusmeier, C M; van der Grinten, C P; Wouters, E F

    1998-05-01

    Patients with chronic obstructive pulmonary disease (COPD) demonstrate an increased oxygen cost of breathing. It is as yet unclear whether this is related to a decreased breathing efficiency. The aim of the present study was to compare breathing efficiency in 16 patients with COPD (11 men, five women) and 16 healthy elderly subjects (seven men, nine women), and to investigate a possible relationship between breathing efficiency and resting energy expenditure (REE). REE was measured using a ventilated hood system. Breathing efficiency was assessed by measuring oxygen consumption (V'O2), mean inspiratory mouth pressure (MIP) and flow during breathing at rest and subsequently during breathing against an inspiratory threshold (40% of maximal inspiratory pressure). During loaded breathing there was a significant increase in V'O2, MIP, and external work of breathing compared with unloaded breathing in both groups. As intended, ventilation did not increase significantly during the breathing efficiency test in the patients with COPD. The breathing efficiency (median, range) of the patients with COPD was similar (3.7%, 1.4-8.7%) to that of the healthy elderly subjects (3.2%, 1.7-8.3%). Breathing efficiency was not correlated with REE in either group. In the present study, in which dynamic hyperinflation was probably prevented, no difference in breathing efficiency was found between healthy elderly subjects and COPD patients when breathing against an external inspiratory threshold. Furthermore, breathing efficiency was not related to REE in both groups.

  4. Improving Gas Furnace Performance: A Field and Laboratory Study at End of Life

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brand, L.; Yee, S.; Baker, J.

    2015-02-01

    In 2010, natural gas provided 54% of total residential space heating energy the U.S. on a source basis, or 3.5 Quadrillion Btu. Natural gas burned in furnaces accounted for 92% of that total, and boilers and other equipment made up the remainder. A better understanding of installed furnace performance is a key to energy savings for this significant energy usage. In this project, the U.S. Department of Energy Building America team Partnership for Advanced Residential Retrofit examined the impact that common installation practices and age-induced equipment degradation may have on the installed performance of natural gas furnaces over the lifemore » of the product, as measured by steady-state efficiency and annual efficiency. The team identified 12 furnaces of various ages and efficiencies that were operating in residential homes in the Des Moines, Iowa, metropolitan area and worked with a local heating, ventilation, and air conditioning contractor to retrieve furnaces and test them at the Gas Technology Institute laboratory for steady-state efficiency and annual efficiency. Prior to removal, system airflow, static pressure, equipment temperature rise, and flue loss measurements were recorded for each furnace as installed in the house.« less

  5. Energy Efficiency Upgrades

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roby Williams

    2012-03-29

    The energy efficiency upgrades project at Hardin County General Hospital did not include research nor was it a demonstration project. The project enabled the hospital to replace outdated systems with modern efficient models. Hardin County General Hospital is a 501c3, nonprofit hospital and the sole community provider for Hardin and Pope Counties of Illinois. This project provided much needed equipment and facility upgrades that would not have been possible through locally generated funding. Task 1 was a reroofing of the hospital. The hospital architect designed the replacement to increase the energy efficiency of the hospital roof/ceiling structure. Task 2 wasmore » replacement and installation of a new more efficient CT scanner for the hospital. Included in the project was replacement of HVAC equipment for the entire radiological suite. Task 5 was a replacement and installation of a new higher capacity diesel-fueled emergency generator for the hospital replacing a 50+ year old gas-fired generator. Task 7 was the replacement of 50+ year-old walk-in cooler/freezer with a newer, energy efficient model. Task 8 was the replacement of 10+ year-old washing machines in the hospital laundry with higher capacity, energy efficient models. Task 9 was replacement of 50-year old single pane curtain window system with double-pane insulated windows. Additionally, insulation was added around ventilation systems and the curtain wall system.« less

  6. [Determination of resting energy expenditure in critically ill children experiencing mechanical ventilation].

    PubMed

    Dong, Hong-ba; Yang, Yan-wen; Wang, Ying; Hong, Li

    2012-11-01

    Energy metabolism of critically ill children has its own characteristics, especially for those undergoing mechanical ventilation. We tried to assess the energy expenditure status and evaluate the use of predictive equations in such children. Moreover, the characteristics of the energy metabolism among various situation were explored. Fifty critically ill children undergoing mechanical ventilation were selected in this study. Data produced during the 24 hours of mechanical ventilation were collected for computation of severity of illness. Resting energy expenditure (REE) was determined at 24 hours after mechanical ventilation (MREE). Predictive resting energy expenditure (PREE) was calculated for each subject using age-appropriate equations (Schofield-HTWT, White). The study was approved by the hospital medical ethics committee and obtained parental written informed consent. The pediatric risk of mortality score 3 (PRISM3) and pediatric critical illness score (PCIS) were (7 ± 3) and (82 ± 4), respectively. MREE, Schofield-HTWT equation PREE and White equation PREE were (404.80 ± 178.28), (462.82 ± 160.38) and (427.97 ± 152.30) kcal/d, respectively; 70% were hypometabolic and 10% were hypermetabolic. MREE and PREE which were calculated using Schofield-HTWT equation and White equation, both were higher than MREE (P = 0.029). Correlation analysis was performed between PRISM3 and PCIS with MREE. There were no statistically significant correlation (P > 0.05). The hypometabolic response is apparent in critically ill children with mechanical ventilation; Schofield-HTWT equation and White equation could not predict energy requirements within acceptable clinical accuracy. In critically ill children undergoing mechanical ventilation, the energy expenditure is not correlated with the severity of illness.

  7. Cost-benefit analysis of different air change rates in an operating room environment.

    PubMed

    Gormley, Thomas; Markel, Troy A; Jones, Howard; Greeley, Damon; Ostojic, John; Clarke, James H; Abkowitz, Mark; Wagner, Jennifer

    2017-12-01

    Hospitals face growing pressure to meet the dual but often competing goals of providing a safe environment while controlling operating costs. Evidence-based data are needed to provide insight for facility management practices to support these goals. The quality of the air in 3 operating rooms was measured at different ventilation rates. The energy cost to provide the heating, ventilation, and air conditioning to the rooms was estimated to provide a cost-benefit comparison of the effectiveness of different ventilation rates currently used in the health care industry. Simply increasing air change rates in the operating rooms tested did not necessarily provide an overall cleaner environment, but did substantially increase energy consumption and costs. Additionally, and unexpectedly, significant differences in microbial load and air velocity were detected between the sterile fields and back instrument tables. Increasing the ventilation rates in operating rooms in an effort to improve clinical outcomes and potentially reduce surgical site infections does not necessarily provide cleaner air, but does typically increase operating costs. Efficient distribution or management of the air can improve quality indicators and potentially reduce the number of air changes required. Measurable environmental quality indicators could be used in lieu of or in addition to air change rate requirements to optimize cost and quality for an operating room and other critical environments. Copyright © 2017 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  8. Reducing Our Carbon Footprint: A Low-Energy House in Berkeley, Kabul, and Washington DC (LBNL Science at the Theater)

    ScienceCinema

    Diamond, Rick [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2018-05-14

    How well can we assess and improve building energy performance in California homes? How much energy-and carbon-do homes use in other parts of the world? Rick Diamond, deputy group leader of the Berkeley Lab Energy Performance of Buildings Group, discusses change, global solutions, and the stories of three houses in Berkeley, Kabul (Afghanistan), and Washington, D.C. Diamond, who is also a senior advisor at the California Institute for Energy and Environment, investigates user interactions with the built environment for improved building energy performance. The group has studied a wide range of issues related to energy use in housing, including duct system efficiency, user behavior, and infiltration and ventilation measurements.

  9. Window treatments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nielson, K.J.

    1990-01-01

    This book includes basic material as well as information the professional needs for designing appropriate window treatments for residential and nonresidential buildings: site, orientation, climate, energy efficiency, sound-proofing, privacy, protection, view, ventilation and interior and exterior aesthetics. Also includes a guide to the window treatment industry, a list of manufacturers, distributors, and retailers, information on window treatment fibers and fabrics, three glossaries, an extensive bibliography, and over 800 illustrations.

  10. A study of energy use for ventilation and air-conditioning systems in Hong Kong

    NASA Astrophysics Data System (ADS)

    Yu, Chung Hoi Philip

    Most of the local modern buildings are high-rise with enclosed structure. Mechanical ventilation and air conditioning (MVAC) systems are installed for thermal comfort. Various types of MVAC systems found in Hong Kong were critically reviewed with comments on their characteristics in energy efficiency as well as application. The major design considerations were also discussed. Besides MVAC, other energy-consuming components in commercial buildings were also identified, such as lighting, lifts and escalators, office equipment, information technology facilities, etc. A practical approach has been adopted throughout this study in order that the end results will have pragmatic value to the heating, ventilating and air-conditioning (HVAC) industry in Hong Kong. Indoor Air Quality (IAQ) has become a major issue in commercial buildings worldwide including Hong Kong. Ventilation rate is no doubt a critical element in the design of HVAC systems, which can be realized more obviously in railway train compartments where the carbon dioxide level will be built up quickly when the compartments are crowded during rush hours. A study was carried out based on a simplified model using a train compartment that is equipped with an MVAC system. Overall Thermal Transfer Value (OTTV) is a single-value parameter for controlling building energy use and is relatively simple to implement legislatively. The local government has taken a first step in reacting to the worldwide concern of energy conservation and environmental protection since 1995. Different methods of OTTV calculation were studied and the computation results were compared. It gives a clear picture of the advantages and limitations for each method to the building designers. However, due to the limitations of using OTTV as the only parameter for building energy control, some new approaches to a total control of building energy use were discussed and they might be considered for future revision of the building energy codes in Hong Kong. A sample database of 20 existing commercial buildings was established for further analysis of building energy use. Heat gains through building envelopes were reviewed with reference to fundamental theory behind as well as the heat transfer equations presented in the literature. The prevailing methodologies of cooling load estimation and energy calculation were studied. Building energy auditing methods were discussed with reference to the local practice as well as international standards and guides. The common procedures of building energy auditing with three stages were outlined: historical data collection/analysis, preliminary site survey, and detailed energy consumption investigation. A typical commercial building was selected for detailed study of energy use by MVAC systems. (Abstract shortened by UMI.)

  11. Measure Guideline: Guide to Attic Air Sealing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lstiburek, J.

    2014-09-01

    The Guide to Attic Air Sealing was completed in 2010 and although not in the standard Measure Guideline format, is intended to be a Measure Guideline on Attic Air Sealing. The guide was reviewed during two industry stakeholders meetings held on December 18th, 2009 and January 15th, 2010, and modified based on the comments received. Please do not make comments on the Building America format of this document. The purpose of the Guide to Attic Air Sealing is to provide information and recommendations for the preparation work necessary prior to adding attic insulation. Even though the purpose of this guidemore » is to save energy - health, safety and durability should not be compromised by energy efficiency. Accordingly, combustion safety and ventilation for indoor air quality are addressed first. Durability and attic ventilation then follow. Finally, to maximize energy savings, air sealing is completed prior to insulating. The guide is intended for home remodelers, builders, insulation contractors, mechanical contractors, general contractors who have previously done remodeling and homeowners as a guide to the work that needs to be done.« less

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fisk, William J.; Mendell, Mark J.; Davies, Molly

    This document summarizes a research effort on demand controlled ventilation and classroom ventilation. The research on demand controlled ventilation included field studies and building energy modeling.

  13. Carbon Dioxide Detection and Indoor Air Quality Control.

    PubMed

    Bonino, Steve

    2016-04-01

    When building ventilation is reduced, energy is saved because it is not necessary to heat or cool as much outside air. Reduced ventilation can result in higher levels of carbon dioxide, which may cause building occupants to experience symptoms. Heating or cooling for ventilation air can be enhanced by a DCV system, which can save energy while providing a comfortable environment. Carbon dioxide concentrations within a building are often used to indicate whether adequate fresh air is being supplied to the building. These DCV systems use carbon dioxide sensors in each space or in the return air and adjust the ventilation based on carbon dioxide concentration; the higher the concentration, the more people occupy the space relative to the ventilation rate. With a carbon dioxide sensor DCV system, the fresh air ventilation rate varies based on the number ofpeople in the space, saving energy while maintaining a safe and comfortable environment.

  14. Chapter 19: HVAC Controls (DDC/EMS/BAS) Evaluation Protocol. The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurnik, Charles W.; Romberger, Jeff

    The HVAC Controls Evaluation Protocol is designed to address evaluation issues for direct digital controls/energy management systems/building automation systems (DDC/EMS/BAS) that are installed to control heating, ventilation, and air-conditioning (HVAC) equipment in commercial and institutional buildings. (This chapter refers to the DDC/EMS/BAS measure as HVAC controls.) This protocol may also be applicable to industrial facilities such as clean rooms and labs, which have either significant HVAC equipment or spaces requiring special environmental conditions.

  15. Chemical Emissions of Residential Materials and Products: Review of Available Information

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Willem, Henry; Singer, Brett

    2010-09-15

    This report is prepared in the context of a larger program whose mission is to advance understanding of ventilation and indoor air quality in U.S. homes. A specific objective of this program is to develop the scientific basis ? through controlled experiments, monitoring and analysis ? for health risk-based ventilation standards. Appropriate and adequate ventilation is a basic element of a healthy home. Ventilation provides outdoor air and in the process removes indoor odors and contaminants including potentially unhealthful chemicals emitted by indoor materials, products and activities. Ventilation traditionally was assured to occur via infiltration of outdoor air through cracksmore » and other leakage pathways in the residential building envelope. As building air tightness is improved for energy efficiency, infiltration can be reduced to inadequate levels. This has lead to the development of standards requiring mechanical ventilation. Though nominally intended to ensure acceptable indoor air quality, the standards are not explicitly tied to health risk or pollutant exposure targets. LBNL is currently designing analyses to assess the impact of varying ventilation standards on pollutant concentrations, health risks and energy use. These analyses require information on sources of chemical pollutant emissions, ideally including emission rates and the impact of ventilation on emissions. Some information can be obtained from recent studies that report measurements of various air contaminants and their concentrations in U.S. residences. Another way to obtain this information is the bottom-up approach of collecting and evaluating emissions data from construction and interior materials and common household products. This review contributes to the latter approach by summarizing available information on chemical emissions from new residential products and materials. We review information from the scientific literature and public sources to identify and discuss the databases that provide information on new or low-emission materials and products. The review focuses on the primary chemical or volatile organic compound (VOC) emissions from interior surface materials, furnishings, and some regularly used household products; all of these emissions are amenable to ventilation. Though it is an important and related topic, this review does not consider secondary pollutants that result from reactions of ozone and unsaturated organics bound to or emitted from material surfaces. Semi-volatile organic compounds (SVOCs) have been largely excluded from this review because ventilation generally is not an effective way to control SVOC exposures. Nevertheless, health concerns about exposures to SVOCs emitted from selected materials warrant some discussion.« less

  16. Selecting HVAC Systems to Achieve Comfortable and Cost-effective Residential Net-Zero Energy Buildings.

    PubMed

    Wu, Wei; Skye, Harrison M; Domanski, Piotr A

    2018-02-15

    HVAC is responsible for the largest share of energy use in residential buildings and plays an important role in broader implementation of net-zero energy building (NZEB). This study investigated the energy, comfort and economic performance of commercially-available HVAC technologies for a residential NZEB. An experimentally-validated model was used to evaluate ventilation, dehumidification, and heat pump options for the NZEB in the mixed-humid climate zone. Ventilation options were compared to mechanical ventilation without recovery; a heat recovery ventilator (HRV) and energy recovery ventilator (ERV) respectively reduced the HVAC energy by 13.5 % and 17.4 % and reduced the building energy by 7.5 % and 9.7 %. There was no significant difference in thermal comfort between the ventilation options. Dehumidification options were compared to an air-source heat pump (ASHP) with a separate dehumidifier; the ASHP with dedicated dehumidification reduced the HVAC energy by 7.3 % and the building energy by 3.9 %. The ASHP-only option (without dedicated dehumidification) reduced the initial investment but provided the worst comfort due to high humidity levels. Finally, ground-source heat pump (GSHP) alternatives were compared to the ASHP; the GSHP with two and three boreholes reduced the HVAC energy by 26.0 % and 29.2 % and the building energy by 13.1 % and 14.7 %. The economics of each HVAC configuration was analyzed using installation cost data and two electricity price structures. The GSHPs with the ERV and dedicated dehumidification provided the highest energy savings and good comfort, but were the most expensive. The ASHP with dedicated dehumidification and the ERV (or HRV) provided reasonable payback periods.

  17. On the suitability of steady RANS CFD for forced mixing ventilation at transitional slot Reynolds numbers.

    PubMed

    van Hooff, T; Blocken, B; van Heijst, G J F

    2013-06-01

    Accurate prediction of ventilation flow is of primary importance for designing a healthy, comfortable, and energy-efficient indoor environment. Since the 1970s, the use of computational fluid dynamics (CFD) has increased tremendously, and nowadays, it is one of the primary methods to assess ventilation flow in buildings. The most commonly used numerical approach consists of solving the steady Reynolds-averaged Navier-Stokes (RANS) equations with a turbulence model to provide closure. This article presents a detailed validation study of steady RANS for isothermal forced mixing ventilation of a cubical enclosure driven by a transitional wall jet. The validation is performed using particle image velocimetry (PIV) measurements for slot Reynolds numbers of 1000 and 2500. Results obtained with the renormalization group (RNG) k-ε model, a low-Reynolds k-ε model, the shear stress transport (SST) k-ω model, and a Reynolds stress model (RSM) are compared with detailed experimental data. In general, the RNG k-ε model shows the weakest performance, whereas the low-Re k-ε model shows the best agreement with the measurements. In addition, the influence of the turbulence model on the predicted air exchange efficiency in the cubical enclosure is analyzed, indicating differences up to 44% for this particular case. This article presents a detailed numerical study of isothermal forced mixing ventilation driven by a low-velocity (transitional) wall jet using steady computational fluid dynamics (CFD) simulations. It is shown that the numerically obtained room airflow patterns are highly dependent on the chosen turbulence model and large differences with experimentally obtained velocity fields can be present. The renormalization group (RNG) k-ε model, which is commonly used for room airflow modeling, shows the largest deviations from the measured velocities, indicating the care that must be taken when selecting a turbulence model for room airflow prediction. As a result of the different predictions of the flow pattern in the room, large differences are present between the predicted air exchange efficiency obtained with the four tested turbulence models, which can be as high as 44%. © 2012 John Wiley & Sons A/S. Published by Blackwell Publishing Ltd.

  18. Gas exchange and intrapulmonary distribution of ventilation during continuous-flow ventilation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vettermann, J.; Brusasco, V.; Rehder, K.

    1988-05-01

    In 12 anesthetized paralyzed dogs, pulmonary gas exchange and intrapulmonary inspired gas distribution were compared between continuous-flow ventilation (CFV) and conventional mechanical ventilation (CMV). Nine dogs were studied while they were lying supine, and three dogs were studied while they were lying prone. A single-lumen catheter for tracheal insufflation and a double-lumen catheter for bilateral endobronchial insufflation (inspired O2 fraction = 0.4; inspired minute ventilation = 1.7 +/- 0.3 (SD) 1.kg-1.min-1) were evaluated. Intrapulmonary gas distribution was assessed from regional 133Xe clearances. In dogs lying supine, CO2 elimination was more efficient with endobronchial insufflation than with tracheal insufflation, but themore » alveolar-arterial O2 partial pressure difference was larger during CFV than during CMV, regardless of the type of insufflation. By contrast, endobronchial insufflation maintained both arterial PCO2 and alveolar-arterial O2 partial pressure difference at significantly lower levels in dogs lying prone than in dogs lying supine. In dogs lying supine, the dependent lung was preferentially ventilated during CMV but not during CFV. In dogs lying prone, gas distribution was uniform with both modes of ventilation. The alveolar-arterial O2 partial pressure difference during CFV in dogs lying supine was negatively correlated with the reduced ventilation of the dependent lung, which suggests that increased ventilation-perfusion mismatching was responsible for the increase in alveolar-arterial O2 partial pressure difference. The more efficient oxygenation during CFV in dogs lying prone suggests a more efficient matching of ventilation to perfusion, presumably because the distribution of blood flow is also nearly uniform.« less

  19. ENVIRONMENTAL TECHNOLOGY VERIFICATION--GENERIC VERIFICATION PROTOCOL FOR BIOLOGICAL AND AEROSOL TESTING OF GENERAL VENTILATION AIR CLEANERS

    EPA Science Inventory

    Under EPA's Environmental Technology Verification Program, Research Triangle Institute (RTI) will operate the Air Pollution Control Technology Center to verify the filtration efficiency and bioaerosol inactivation efficiency of heating, ventilation and air conditioning air cleane...

  20. Change-over natural and mechanical ventilation system energy consumption in single-family buildings

    NASA Astrophysics Data System (ADS)

    Kostka, Maria; Szulgowska-Zgrzywa, Małgorzata

    2017-11-01

    The parameters of the outside air in Poland cause that in winter it is reasonable to use a mechanical ventilation equipped with a heat recovery exchanger. The time of spring, autumn, summer evenings and nights are often characterized by the parameters of the air, which allow for a natural ventilation and reduce the electricity consumption. The article presents the possibilities of energy consumption reduction for three energy standards of buildings located in Poland, ventilated by a change-over hybrid system. The analysis was prepared on the assumption that the air-to-water heat pump is the heat source for the buildings.

  1. Wind Extraction for Natural Ventilation

    NASA Astrophysics Data System (ADS)

    Fagundes, Tadeu; Yaghoobian, Neda; Kumar, Rajan; Ordonez, Juan

    2017-11-01

    Due to the depletion of energy resources and the environmental impact of pollution and unsustainable energy resources, energy consumption has become one of the main concerns in our rapidly growing world. Natural ventilation, a traditional method to remove anthropogenic and solar heat gains, proved to be a cost-effective, alternative method to mechanical ventilation. However, while natural ventilation is simple in theory, its detailed design can be a challenge, particularly for wind-driven ventilation, which its performance highly involves the buildings' form, surrounding topography, turbulent flow characteristics, and climate. One of the main challenges with wind-driven natural ventilation schemes is due to the turbulent and unpredictable nature of the wind around the building that impose complex pressure loads on the structure. In practice, these challenges have resulted in founding the natural ventilation mainly on buoyancy (rather than the wind), as the primary force. This study is the initial step for investigating the physical principals of wind extraction over building walls and investigating strategies to reduce the dependence of the wind extraction on the incoming flow characteristics and the target building form.

  2. Control strategy optimization of HVAC plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Facci, Andrea Luigi; Zanfardino, Antonella; Martini, Fabrizio

    In this paper we present a methodology to optimize the operating conditions of heating, ventilation and air conditioning (HVAC) plants to achieve a higher energy efficiency in use. Semi-empiric numerical models of the plant components are used to predict their performances as a function of their set-point and the environmental and occupied space conditions. The optimization is performed through a graph-based algorithm that finds the set-points of the system components that minimize energy consumption and/or energy costs, while matching the user energy demands. The resulting model can be used with systems of almost any complexity, featuring both HVAC components andmore » energy systems, and is sufficiently fast to make it applicable to real-time setting.« less

  3. Initial Business Case Analysis of Two Integrated Heat Pump HVAC Systems for Near-Zero-Energy Homes -- Update to Include Analyses of an Economizer Option and Alternative Winter Water Heating Control Option

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baxter, Van D

    2006-12-01

    The long range strategic goal of the Department of Energy's Building Technologies (DOE/BT) Program is to create, by 2020, technologies and design approaches that enable the construction of net-zero energy homes at low incremental cost (DOE/BT 2005). A net zero energy home (NZEH) is a residential building with greatly reduced needs for energy through efficiency gains, with the balance of energy needs supplied by renewable technologies. While initially focused on new construction, these technologies and design approaches are intended to have application to buildings constructed before 2020 as well resulting in substantial reduction in energy use for all building typesmore » and ages. DOE/BT's Emerging Technologies (ET) team is working to support this strategic goal by identifying and developing advanced heating, ventilating, air-conditioning, and water heating (HVAC/WH) technology options applicable to NZEHs. Although the energy efficiency of heating, ventilating, and air-conditioning (HVAC) equipment has increased substantially in recent years, new approaches are needed to continue this trend. Dramatic efficiency improvements are necessary to enable progress toward the NZEH goals, and will require a radical rethinking of opportunities to improve system performance. The large reductions in HVAC energy consumption necessary to support the NZEH goals require a systems-oriented analysis approach that characterizes each element of energy consumption, identifies alternatives, and determines the most cost-effective combination of options. In particular, HVAC equipment must be developed that addresses the range of special needs of NZEH applications in the areas of reduced HVAC and water heating energy use, humidity control, ventilation, uniform comfort, and ease of zoning. In FY05 ORNL conducted an initial Stage 1 (Applied Research) scoping assessment of HVAC/WH systems options for future NZEHs to help DOE/BT identify and prioritize alternative approaches for further development. Eleven system concepts with central air distribution ducting and nine multi-zone systems were selected and their annual and peak demand performance estimated for five locations: Atlanta (mixed-humid), Houston (hot-humid), Phoenix (hot-dry), San Francisco (marine), and Chicago (cold). Performance was estimated by simulating the systems using the TRNSYS simulation engine (Solar Energy Laboratory et al. 2006) in two 1800-ft{sup 2} houses--a Building America (BA) benchmark house and a prototype NZEH taken from BEopt results at the take-off (or crossover) point (i.e., a house incorporating those design features such that further progress towards ZEH is through the addition of photovoltaic power sources, as determined by current BEopt analyses conducted by NREL). Results were summarized in a project report, HVAC Equipment Design options for Near-Zero-Energy Homes--A Stage 2 Scoping Assessment, ORNL/TM-2005/194 (Baxter 2005). The 2005 study report describes the HVAC options considered, the ranking criteria used, and the system rankings by priority. In 2006, the two top-ranked options from the 2005 study, air-source and ground-source versions of an integrated heat pump (IHP) system, were subjected to an initial business case study. The IHPs were subjected to a more rigorous hourly-based assessment of their performance potential compared to a baseline suite of equipment of legally minimum efficiency that provided the same heating, cooling, water heating, demand dehumidification, and ventilation services as the IHPs. Results were summarized in a project report, Initial Business Case Analysis of Two Integrated Heat Pump HVAC Systems for Near-Zero-Energy Homes, ORNL/TM-2006/130 (Baxter 2006). The present report is an update to that document. Its primary purpose is to summarize results of an analysis of the potential of adding an outdoor air economizer operating mode to the IHPs to take advantage of free cooling (using outdoor air to cool the house) whenever possible. In addition it provides some additional detail for an alternative winter water heating/space heating (WH/SH) control strategy briefly described in the original report and corrects some minor errors.« less

  4. ENVIRONMENTAL TECHNOLOGY VERIFICATION TEST PROTOCOL, GENERAL VENTILATION FILTERS

    EPA Science Inventory

    The Environmental Technology Verification Test Protocol, General Ventilation Filters provides guidance for verification tests.

    Reference is made in the protocol to the ASHRAE 52.2P "Method of Testing General Ventilation Air-cleaning Devices for Removal Efficiency by P...

  5. Ventilation, temperature, and HVAC characteristics in small and medium commercial buildings in California.

    PubMed

    Bennett, D H; Fisk, W; Apte, M G; Wu, X; Trout, A; Faulkner, D; Sullivan, D

    2012-08-01

    This field study of 37 small and medium commercial buildings throughout California obtained information on ventilation rate, temperature, and heating, ventilating, and air-conditioning (HVAC) system characteristics. The study included seven retail establishments; five restaurants; eight offices; two each of gas stations, hair salons, healthcare facilities, grocery stores, dental offices, and fitness centers; and five other buildings. Fourteen (38%) of the buildings either could not or did not provide outdoor air through the HVAC system. The air exchange rate averaged 1.6 (s.d. = 1.7) exchanges per hour and was similar between buildings with and without outdoor air supplied through the HVAC system, indicating that some buildings have significant leakage or ventilation through open windows and doors. Not all buildings had sufficient air exchange to meet ASHRAE 62.1 Standards, including buildings used for fitness centers, hair salons, offices, and retail establishments. The majority of the time, buildings were within the ASHRAE temperature comfort range. Offices were frequently overcooled in the summer. All of the buildings had filters, but over half the buildings had a filter with a minimum efficiency reporting value rating of 4 or lower, which are not very effective for removing fine particles. Most U.S. commercial buildings (96%) are small- to medium-sized, using nearly 18% of the country's energy, and sheltering a large population daily. Little is known about the ventilation systems in these buildings. This study found a wide variety of ventilation conditions, with many buildings failing to meet relevant ventilation standards. Regulators may want to consider implementing more complete building inspections at commissioning and point of sale. © 2012 John Wiley & Sons A/S.

  6. Energy efficient model based algorithm for control of building HVAC systems.

    PubMed

    Kirubakaran, V; Sahu, Chinmay; Radhakrishnan, T K; Sivakumaran, N

    2015-11-01

    Energy efficient designs are receiving increasing attention in various fields of engineering. Heating ventilation and air conditioning (HVAC) control system designs involve improved energy usage with an acceptable relaxation in thermal comfort. In this paper, real time data from a building HVAC system provided by BuildingLAB is considered. A resistor-capacitor (RC) framework for representing thermal dynamics of the building is estimated using particle swarm optimization (PSO) algorithm. With objective costs as thermal comfort (deviation of room temperature from required temperature) and energy measure (Ecm) explicit MPC design for this building model is executed based on its state space representation of the supply water temperature (input)/room temperature (output) dynamics. The controllers are subjected to servo tracking and external disturbance (ambient temperature) is provided from the real time data during closed loop control. The control strategies are ported on a PIC32mx series microcontroller platform. The building model is implemented in MATLAB and hardware in loop (HIL) testing of the strategies is executed over a USB port. Results indicate that compared to traditional proportional integral (PI) controllers, the explicit MPC's improve both energy efficiency and thermal comfort significantly. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Fuzzy Linguistic Knowledge Based Behavior Extraction for Building Energy Management Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dumidu Wijayasekara; Milos Manic

    2013-08-01

    Significant portion of world energy production is consumed by building Heating, Ventilation and Air Conditioning (HVAC) units. Thus along with occupant comfort, energy efficiency is also an important factor in HVAC control. Modern buildings use advanced Multiple Input Multiple Output (MIMO) control schemes to realize these goals. However, since the performance of HVAC units is dependent on many criteria including uncertainties in weather, number of occupants, and thermal state, the performance of current state of the art systems are sub-optimal. Furthermore, because of the large number of sensors in buildings, and the high frequency of data collection, large amount ofmore » information is available. Therefore, important behavior of buildings that compromise energy efficiency or occupant comfort is difficult to identify. This paper presents an easy to use and understandable framework for identifying such behavior. The presented framework uses human understandable knowledge-base to extract important behavior of buildings and present it to users via a graphical user interface. The presented framework was tested on a building in the Pacific Northwest and was shown to be able to identify important behavior that relates to energy efficiency and occupant comfort.« less

  8. Particle characterization in retail environments: concentrations, sources, and removal mechanisms.

    PubMed

    Zaatari, M; Siegel, J

    2014-08-01

    Particles in retail environments can have consequences for the occupational exposures of retail workers and customers, as well as the energy costs associated with ventilation and filtration. Little is known about particle characteristics in retail environments. We measured indoor and outdoor mass concentrations of PM10 and PM2.5 , number concentrations of submicron particles (0.02-1 μm), size-resolved 0.3-10 μm particles, as well as ventilation rates in 14 retail stores during 24 site visits in Pennsylvania and Texas. Overall, the results were generally suggestive of relatively clean environments when compared to investigations of other building types and ambient/occupational regulatory limits. PM10 and PM2.5 concentrations (mean ± s.d.) were 20 ± 14 and 11 ± 10 μg/m(3), respectively, with indoor-to-outdoor ratios of 1.0 ± 0.7 and 0.88 ± 1.0. Mean submicron particle concentrations were 7220 ± 7500 particles/cm(3) with an indoor-to-outdoor ratio of 1.18 ± 1.30. The median contribution to PM10 and PM2.5 concentrations from indoor sources (vs. outdoors) was 83% and 53%, respectively. There were no significant correlations between measured ventilation rates and particle concentrations of any size. When examining options to lower PM2.5 concentrations below regulatory limits, the required changes to ventilation and filtration efficiency were site specific and depended on the indoor and outdoor concentration, emission rate, and infiltration level. Little is known about particle concentrations, contribution of indoor sources, and emission rates in retail environments. Knowledge of these particle characteristics informs health scientists with input parameters to include in exposure modeling. The predicted concentration change in response to different ventilation rates and filtration efficiencies may be used for guidance to develop control strategies to lower particulate matter concentrations in retail environments. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Sensor-based demand controlled ventilation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Almeida, A.T.; Fisk, W.J.

    In most buildings, occupancy and indoor pollutant emission rates vary with time. With sensor-based demand-controlled ventilation (SBDCV), the rate of ventilation (i.e., rate of outside air supply) also varies with time to compensate for the changes in pollutant generation. In other words, SBDCV involves the application of sensing, feedback and control to modulate ventilation. Compared to ventilation without feedback, SBDCV offers two potential advantages: (1) better control of indoor pollutant concentrations; and (2) lower energy use and peak energy demand. SBDCV has the potential to improve indoor air quality by increasing the rate of ventilation when indoor pollutant generation ratesmore » are high and occupants are present. SBDCV can also save energy by decreasing the rate of ventilation when indoor pollutant generation rates are low or occupants are absent. After providing background information on indoor air quality and ventilation, this report provides a relatively comprehensive discussion of SBDCV. Topics covered in the report include basic principles of SBDCV, sensor technologies, technologies for controlling air flow rates, case studies of SBDCV, application of SBDCV to laboratory buildings, and research needs. SBDCV appears to be an increasingly attractive technology option. Based on the review of literature and theoretical considerations, the application of SBDCV has the potential to be cost-effective in applications with the following characteristics: (a) a single or small number of dominant pollutants, so that ventilation sufficient to control the concentration of the dominant pollutants provides effective control of all other pollutants; (b) large buildings or rooms with unpredictable temporally variable occupancy or pollutant emission; and (c) climates with high heating or cooling loads or locations with expensive energy.« less

  10. Practical Study on HVAC Control Technology Based on the Learning Function and Optimum Multiple Objective Processes

    NASA Astrophysics Data System (ADS)

    Ueda, Haruka; Dazai, Ryota; Kaseda, Chosei; Ikaga, Toshiharu; Kato, Akihiro

    Demand among large office buildings for the energy-saving benefits of the HVAC (Heating, Ventilating and Air-Conditioning) System are increasing as more and more people become concerned with global environmental issues. However, immoderate measures taken in the interest of energy conservation may encroach on the thermal comfort and productivity level of office workers. Building management should satisfy both indoor thermal comfort and energy conservation while adapting to the many regulatory, social, climate, and other changes that occur during the lifespan of the building. This paper demonstrates how optimal control of the HVAC system, based on data modeling and the multi-objective optimal method, achieves an efficient equilibrium between thermal comfort and energy conservation.

  11. The School Advanced Ventilation Engineering Software (SAVES)

    EPA Pesticide Factsheets

    The School Advanced Ventilation Engineering Software (SAVES) package is a tool to help school designers assess the potential financial payback and indoor humidity control benefits of Energy Recovery Ventilation (ERV) systems for school applications.

  12. Variable Pitch Darrieus Water Turbines

    NASA Astrophysics Data System (ADS)

    Kirke, Brian; Lazauskas, Leo

    In recent years the Darrieus wind turbine concept has been adapted for use in water, either as a hydrokinetic turbine converting the kinetic energy of a moving fluid in open flow like an underwater wind turbine, or in a low head or ducted arrangement where flow is confined, streamtube expansion is controlled and efficiency is not subject to the Betz limit. Conventional fixed pitch Darrieus turbines suffer from two drawbacks, (i) low starting torque and (ii) shaking due to cyclical variations in blade angle of attack. Ventilation and cavitation can also cause problems in water turbines when blade velocities are high. Shaking can be largely overcome by the use of helical blades, but these do not produce large starting torque. Variable pitch can produce high starting torque and high efficiency, and by suitable choice of pitch regime, shaking can be minimized but not entirely eliminated. Ventilation can be prevented by avoiding operation close to a free surface, and cavitation can be prevented by limiting blade velocities. This paper summarizes recent developments in Darrieus water turbines, some problems and some possible solutions.

  13. HOW THE LEED VENTILATION CREDIT IMPACTS ENERGY CONSUMPTION OF GSHP SYSTEMS A CASE STUDY FOR PRIMARY SCHOOLS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Xiaobing

    2011-01-01

    This paper presents a study on the impacts of increased outdoor air (OA) ventilation on the performance of ground-source heat pump (GSHP) systems that heat and cool typical primary schools. Four locations Phoenix, Miami, Seattle, and Chicago are selected in this study to represent different climate zones in the United States. eQUEST, an integrated building and HVAC system energy analysis program, is used to simulate a typical primary school and the GSHP system at the four locations with minimum and 30% more than minimum OA ventilation. The simulation results show that, without an energy recovery ventilator, the 30% more OAmore » ventilation results in an 8.0 13.3% increase in total GSHP system energy consumption at the four locations. The peak heating and cooling loads increase by 20.2 30% and 14.9 18.4%, respectively, at the four locations. The load imbalance of the ground heat exchanger is increased in hot climates but reduced in mild and cold climates.« less

  14. Evaluation of a High-Performance Solar Home in Loveland, Colorado

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hendron, R.; Eastment, M.; Hancock, E.

    2006-01-01

    Building America (BA) partner McStain Neighborhoods built the Discovery House in Loveland, Colorado, with an extensive package of energy-efficient features, including a high-performance envelope, efficient mechanical systems, a solar water heater integrated with the space-heating system, a heat-recovery ventilator (HRV), and ENERGY STAR? appliances. The National Renewable Energy Laboratory (NREL) and Building Science Consortium (BSC) conducted short-term field-testing and building energy simulations to evaluate the performance of the house. These evaluations are utilized by BA to improve future prototype designs and to identify critical research needs. The Discovery House building envelope and ducts were very tight under normal operating conditions.more » The HRV provided fresh air at a rate of about 75 cfm (35 l/s), consistent with the recommendations of ASHRAE Standard 62.2. The solar hot water system is expected to meet the bulk of the domestic hot water (DHW) load (>83%), but only about 12% of the space-heating load. DOE-2.2 simulations predict whole-house source energy savings of 54% compared to the BA Benchmark [1]. The largest contributors to energy savings beyond McStain's standard practice are the solar water heater, HRV, improved air distribution, high-efficiency boiler, and compact fluorescent lighting package.« less

  15. Evaluation of a High-Performance Solar Home in Loveland, Colorado: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hendron, R.; Eastment, M.; Hancock, E.

    Building America (BA) partner McStain Neighborhoods built the Discovery House in Loveland, Colorado, with an extensive package of energy-efficient features, including a high-performance envelope, efficient mechanical systems, a solar water heater integrated with the space-heating system, a heat-recovery ventilator (HRV), and ENERGY STAR appliances. The National Renewable Energy Laboratory (NREL) and Building Science Consortium (BSC) conducted short-term field-testing and building energy simulations to evaluate the performance of the house. These evaluations are utilized by BA to improve future prototype designs and to identify critical research needs. The Discovery House building envelope and ducts were very tight under normal operating conditions.more » The HRV provided fresh air at a rate of about 35 l/s (75 cfm), consistent with the recommendations of ASHRAE Standard 62.2. The solar hot water system is expected to meet the bulk of the domestic hot water (DHW) load (>83%), but only about 12% of the space-heating load. DOE-2.2 simulations predict whole-house source energy savings of 54% compared to the BA Benchmark. The largest contributors to energy savings beyond McStain's standard practice are the solar water heater, HRV, improved air distribution, high-efficiency boiler, and compact fluorescent lighting package.« less

  16. Indoor thermal environment, air exchange rates, and carbon dioxide concentrations before and after energy retro fits in Finnish and Lithuanian multi-family buildings.

    PubMed

    Leivo, Virpi; Prasauskas, Tadas; Du, Liuliu; Turunen, Mari; Kiviste, Mihkel; Aaltonen, Anu; Martuzevicius, Dainius; Haverinen-Shaughnessy, Ulla

    2018-04-15

    Impacts of energy retrofits on indoor thermal environment, i.e. temperature (T) and relative humidity (RH), as well as ventilation rates and carbon dioxide (CO 2 ) concentrations, were assessed in 46 Finnish and 20 Lithuanian multi-family buildings, including 39 retrofitted case buildings in Finland and 15 in Lithuania (the remaining buildings were control buildings with no retrofits). In the Finnish buildings, high indoor T along with low RH levels was commonly observed both before and after the retrofits. Ventilation rates (l/s per person) were higher after the retrofits in buildings with mechanical exhaust ventilation than the corresponding values before the retrofits. Measured CO 2 levels were low in vast majority of buildings. In Lithuania, average indoor T levels were low before the retrofits and there was a significant increase in the average T after the retrofits. In addition, average ventilation rate was lower and CO 2 levels were higher after the retrofits in the case buildings (N=15), both in apartments with natural and mixed ventilation. Based on the results, assessment of thermal conditions and ventilation rates after energy retrofits is crucial for optimal indoor environmental quality and energy use. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Design and optimization of zero-energy-consumption based solar energy residential building systems

    NASA Astrophysics Data System (ADS)

    Zheng, D. L.; Yu, L. J.; Tan, H. W.

    2017-11-01

    Energy consumption of residential buildings has grown fast in recent years, thus raising a challenge on zero energy residential building (ZERB) systems, which aim at substantially reducing energy consumption of residential buildings. Thus, how to facilitate ZERB has become a hot but difficult topic. In the paper, we put forward the overall design principle of ZERB based on analysis of the systems’ energy demand. In particular, the architecture for both schematic design and passive technology is optimized and both energy simulation analysis and energy balancing analysis are implemented, followed by committing the selection of high-efficiency appliance and renewable energy sources for ZERB residential building. In addition, Chinese classical residential building has been investigated in the proposed case, in which several critical aspects such as building optimization, passive design, PV panel and HVAC system integrated with solar water heater, Phase change materials, natural ventilation, etc., have been taken into consideration.

  18. Field and Laboratory Testing of Approaches to Smart Whole-House Mechanical Ventilation Control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, Eric; Fenaughty, Karen; Parker, Danny

    Whole-house mechanical ventilation is a critical component to a comprehensive strategy for good indoor air quality (IAQ). However, due to lack of integration with standard heating and cooling systems, and perceptions from a portion of the homebuilding industry about risks related to increased energy use, increased cost, and decreased comfort, voluntary and code-required adoption varies among regions. Smart ventilation controls (SVC) balance energy consumption, comfort, and IAQ by optimizing mechanical ventilation operation to reduce the heating and/or cooling loads, improve management of indoor moisture, and maintain IAQ equivalence according to ASHRAE 62.2.

  19. Field and Laboratory Testing of Approaches to Smart Whole-House Mechanical Ventilation Control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, Eric; Fenaughty, Karen; Parker, Danny

    Whole-house mechanical ventilation is a critical component to a comprehensive strategy for good indoor air quality (IAQ). However, due to lack of integration with standard heating and cooling systems, and perceptions from a portion of the homebuilding industry about risks related to increased energy use, increased cost, and decreased comfort, voluntary and code-required adoption varies amongst regions. Smart ventilation controls (SVC) balance energy consumption, comfort, and IAQ by optimizing mechanical ventilation operation to reduce the heating and/or cooling loads, improve management of indoor moisture, and maintain IAQ equivalence according to ASHRAE 62.2.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Traynor, G.W.; Talbott, J.M.; Moses, D.O.

    Building ventilation consumes about 5.8 exajoules of energy each year in the US The annual cost of this energy, used for commercial building fans (1.6 exajoules) and the heating and cooling of outside air (4.2 exajoules), is about $US 33 billion per year. Energy conservation measures that reduce heating and cooling season ventilation rates 15 to 35% in commercial and residential buildings can result in a national savings of about 0.6 to 1.5 exajoules ($US 3-8 billion) per year assuming no reduction of commercial building fan energy use. The most significant adverse environmental impact of reduced ventilation and infiltration ismore » the potential degradation of the buildings indoor air quality. Potential benefits to the US from the implementation of sound indoor air quality and building ventilation reduction policies include reduced building-sector energy consumption; reduced indoor, outdoor, and global air pollution; reduced product costs; reduced worker absenteeism; reduced health care costs; reduced litigation; increased worker well-being and productivity; and increased product quality and competitiveness.« less

  1. Field testing of two prototype air-source integrated heat pumps for net zero energy home (nZEH) application

    DOE PAGES

    Baxter, Van D.; Munk, Jeffrey D.

    2017-11-08

    By integrating multiple functions into a single system it offers potential efficiency and cost reduction benefits. Oak Ridge National Laboratory (ORNL) and its partners have designed, developed, and tested two air-source heat pump designs that not only provide space heating and cooling, but also water heating, dehumidification, and ventilation functions. Some details on the design, simulated performance, prototype field test, measured performance, and lessons learned are provided.

  2. Field testing of two prototype air-source integrated heat pumps for net zero energy home (nZEH) application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baxter, Van D.; Munk, Jeffrey D.

    By integrating multiple functions into a single system it offers potential efficiency and cost reduction benefits. Oak Ridge National Laboratory (ORNL) and its partners have designed, developed, and tested two air-source heat pump designs that not only provide space heating and cooling, but also water heating, dehumidification, and ventilation functions. Some details on the design, simulated performance, prototype field test, measured performance, and lessons learned are provided.

  3. Natural Ventilation of Buildings through Light Shafts. Design-Based Solution Proposals

    NASA Astrophysics Data System (ADS)

    Ángel Padilla-Marcos, Miguel; Meiss, Alberto; Feijó-Muñoz, Jesús

    2017-10-01

    This work analyses how the built environment affects the quality of the air to be introduced into buildings from light shafts. Several factors such as urban environment and building design intervene in the ability of the light shaft to produce its air change process. Urban areas continuously pollute the air in cities which affects the human health and the environment sustainability. Poor air quality outside buildings supposes a big energy waste to promote an acceptable air quality inside buildings. That requires a large flow rate to maintain the indoor air quality which is translated to an energy efficiency term. The main objective focuses on the impact of standardized architecture design in the quality of the indoor air dependent on the air change in the light shaft. The air change capacity of the outdoor space is numbered analysed using the concept of air change efficiency (ACE). ACE is determined by the built environment, the wind conditions and the design of the building containing light shafts. This concept is comparatively evaluated inside a control domain virtually defined to obtain the mean age of the air for a known air volume. The longer the light shaft in the wind direction is, the better the ACE is compared with other options. Light shafts up to 12 metres high are the most suitable in order to obtain acceptable efficiency results. Other studied cases verify that assumption. Different simplified tools for the technicians to evaluate the design of buildings containing light shafts are proposed. Some strategies of architectural design of buildings with light shafts to be used for ventilation are presented.

  4. Contextualizing ethics: ventilators, H1N1 and marginalized populations.

    PubMed

    Silva, Diego S; Nie, Jason X; Rossiter, Kate; Sahni, Sachin; Upshur, Ross E G

    2010-01-01

    If the H1N1 pandemic worsens, there may not be enough ventilated beds to care for all persons with respiratory failure. To date, researchers who explicitly discuss the ethics of intensive care unit admission and the allocation of ventilators during an influenza pandemic have based criteria predominantly on the principles of utility and efficiency, that is, promoting actions that maximize the greatest good for the greatest number of people. However, haphazardly applying utility and efficiency potentially disadvantages marginalized populations who might be at increased risk of severe reactions to H1N1. In Canada, Aboriginals represent 3% of Canadians, yet 11% of H1N1 cases requiring hospitalization involve Aboriginal persons. Aboriginal persons suffer from high rates of obesity due to socio-economic inequalities. Obesity is also a risk factor for severe H1N1 reactions. Yet, since obesity is found to increase the duration of stay in ventilated beds and a long stay is not considered an optimal use of ventilators, applying the principles of utility and efficiency may magnify existing social inequalities. Although promoting utility and efficiency is important, other ethical principles, such as equity and need, require thoughtful consideration and implementation. Furthermore, since public resources are being used to address a public health hazard, the viewpoints of the public, and specifically stakeholders who will be disproportionately affected, should inform decision-makers. Finally, giving attention to the needs and rights of marginalized populations means that ventilators should not be allocated based on criteria that exacerbate the social injustices faced by these groups of people.

  5. Predictors of outcome of prematurely born infants with pulmonary interstitial emphysema.

    PubMed

    Williams, Emma; Dassios, Theodore; Clarke, Paul; Chowdhury, Olie; Greenough, Anne

    2018-05-13

    To determine how oxygenation, ventilation efficiency and tidal volume requirements changed with the development of pulmonary interstitial emphysema (PIE) and whether in affected patients a composite gas exchange index predicted death or bronchopulmonary dysplasia (BPD). Infants who developed PIE from 2010 to 2016 were identified. The oxygenation index, ventilation efficiency index, ventilation to perfusion ratio and inspiratory tidal volume were calculated before radiological evidence of PIE (pre-PIE) and at the worst PIE radiographic appearance (PIE-worst). Thirty infants, median (IQR) gestational age of 24.6 (24.3-26.7) weeks were assessed. Their age at pre-PIE was 11(6-19) days and 23 (13-42) days at PIE-worst. Compared to pre-PIE, at PIE-worst, the oxygenation index was higher [14.5 (10.7-19.2) versus 4.8 (3.1-6.1) respectively, p<0.001], ventilation efficiency index was lower [0.01 (0.01-0.11) versus 0.16 (0.13-0.19) respectively, p<0.001], ventilation to perfusion ratio was lower [0.15 (0.11-0.40) versus 0.26 (0.20-0.37), p=0.033] and tidal volume was higher [9.9 (7.2-13.1) versus 6.4 (5.5-6.8) ml/kg, p=0.007]. An oxygenation index >11.4 at PIE-worst predicted death or BPD with 80% sensitivity and 100% specificity. Development of PIE was associated with poorer oxygenation and ventilation efficiency despite increased tidal volumes. The oxygenation index at PIE-worst predicted death or BPD. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  6. Strategies to Save 50% Site Energy in Grocery and General Merchandise Stores

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirsch, A.; Hale, E.; Leach, M.

    2011-03-01

    This paper summarizes the methodology and main results of two recently published Technical Support Documents. These reports explore the feasibility of designing general merchandise and grocery stores that use half the energy of a minimally code-compliant building, as measured on a whole-building basis. We used an optimization algorithm to trace out a minimum cost curve and identify designs that satisfy the 50% energy savings goal. We started from baseline building energy use and progressed to more energy-efficient designs by sequentially adding energy design measures (EDMs). Certain EDMs figured prominently in reaching the 50% energy savings goal for both building types:more » (1) reduced lighting power density; (2) optimized area fraction and construction of view glass or skylights, or both, as part of a daylighting system tuned to 46.5 fc (500 lux); (3) reduced infiltration with a main entrance vestibule or an envelope air barrier, or both; and (4) energy recovery ventilators, especially in humid and cold climates. In grocery stores, the most effective EDM, which was chosen for all climates, was replacing baseline medium-temperature refrigerated cases with high-efficiency models that have doors.« less

  7. Heating, Ventilating, and Air Conditioning. Energy Technology Series.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This course in heating, ventilating, and air conditioning is one of 16 courses in the Energy Technology Series developed for an Energy Conservation-and-Use Technology curriculum. Intended for use in two-year postsecondary technical institutions to prepare technicians for employment, the courses are also useful in industry for updating employees in…

  8. Reducing Building HVAC Costs with Site-Recovery Energy

    ERIC Educational Resources Information Center

    Pargeter, Stephen J.

    2012-01-01

    Building owners are caught between two powerful forces--the need to lower energy costs and the need to meet or exceed outdoor air ventilation regulations for occupant health and comfort. Large amounts of energy are wasted each day from commercial, institutional, and government building sites as heating, ventilation, and air conditioning (HVAC)…

  9. Risk Assessment of Heating, Ventilating, and Air-Conditioning Strategies in Low-Load Homes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poerschke, Andrew

    2016-02-17

    "Modern, energy efficient homes conforming to the Zero Energy Ready Home standard face the challenge of meeting high customer expectations for comfort. Traditional heating, ventilation, and air conditioning (HVAC) sizing and control strategies may be insufficient to adequately condition each zone due to unique load patterns in each room caused by a number of factors. These factors include solar heat gains, occupant-related gains, and gains associated with appliances and electronics. Because of shrinking shell loads, these intermittent factors are having an increasingly significant impact on the thermal load in each zone. Consequently, occupant comfort can be compromised. To evaluate themore » impact of climate and house geometry, as well as HVAC system and control strategies on comfort conditions, IBACOS analyzed the results of 99 TRNSYS multiple-zone simulations. The results of this analysis indicate that for simple-geometry and single-story plans, a single zone and thermostat can adequately condition the entire house. Demanding house geometry and houses with multiple stories require the consideration of multiple thermostats and multiple zones.« less

  10. Multifaceted bench comparative evaluation of latest intensive care unit ventilators.

    PubMed

    Garnier, M; Quesnel, C; Fulgencio, J-P; Degrain, M; Carteaux, G; Bonnet, F; Similowski, T; Demoule, A

    2015-07-01

    Independent bench studies using specific ventilation scenarios allow testing of the performance of ventilators in conditions similar to clinical settings. The aims of this study were to determine the accuracy of the latest generation ventilators to deliver chosen parameters in various typical conditions and to provide clinicians with a comprehensive report on their performance. Thirteen modern intensive care unit ventilators were evaluated on the ASL5000 test lung with and without leakage for: (i) accuracy to deliver exact tidal volume (VT) and PEEP in assist-control ventilation (ACV); (ii) performance of trigger and pressurization in pressure support ventilation (PSV); and (iii) quality of non-invasive ventilation algorithms. In ACV, only six ventilators delivered an accurate VT and nine an accurate PEEP. Eleven devices failed to compensate VT and four the PEEP in leakage conditions. Inspiratory delays differed significantly among ventilators in invasive PSV (range 75-149 ms, P=0.03) and non-invasive PSV (range 78-165 ms, P<0.001). The percentage of the ideal curve (concomitantly evaluating the pressurization speed and the levels of pressure reached) also differed significantly (range 57-86% for invasive PSV, P=0.04; and 60-90% for non-invasive PSV, P<0.001). Non-invasive ventilation algorithms efficiently prevented the decrease in pressurization capacities and PEEP levels induced by leaks in, respectively, 10 and 12 out of the 13 ventilators. We observed real heterogeneity of performance amongst the latest generation of intensive care unit ventilators. Although non-invasive ventilation algorithms appear to maintain adequate pressurization efficiently in the case of leakage, basic functions, such as delivered VT in ACV and pressurization in PSV, are often less reliable than the values displayed by the device suggest. © The Author 2015. Published by Oxford University Press on behalf of the British Journal of Anaesthesia. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Calibrated energy simulations of potential energy savings in actual retail buildings

    NASA Astrophysics Data System (ADS)

    Alhafi, Zuhaira

    Retail stores are commercial buildings with high energy consumption due to their typically large volumes and long hours of operation. This dissertation assesses heating, ventilating and air conditioning saving strategies based on energy simulations with input parameters from actual retail buildings. The dissertation hypothesis is that "Retail store buildings will save a significant amount of energy by (1) modifying ventilation rates, and/or (2) resetting set point temperatures. These strategies have shown to be beneficial in previous studies. As presented in the literature review, potential energy savings ranged from 0.5% to 30% without compromising indoor thermal comfort and indoor air quality. The retail store buildings can be ventilated at rates significantly lower than rates called for in the ASHRAE Standard 62.1-2010 while maintaining acceptable indoor air quality. Therefore, two dissertation objectives are addressed: (1) Investigate opportunities to reduce ventilation rates that do not compromise indoor air quality in retail stores located in Central Pennsylvania, (2) Investigate opportunities to increase (in summer) and decrease (in winter) set point temperatures that do not compromise thermal comfort. This study conducted experimental measurements of ventilation rates required to maintain acceptable air quality and indoor environmental conditions requirements for two retail stores using ASHRAE Standard 62.1_2012. More specifically, among other parameters, occupancy density, indoor and outdoor pollutant concentrations, and indoor temperatures were measured continuously for one week interval. One of these retail stores were tested four times for a yearlong time period. Pollutants monitored were formaldehyde, carbon dioxide, particle size distributions and concentrations, as well as total volatile organic compounds. As a part of the base protocol, the number of occupants in each store was hourly counted during the test, and the results reveal that the occupant densities were approximately 20% to 30% of that called by ASHRAE 62.1. Formaldehyde was the most important contaminant of concern in retail stores investigated. Both stores exceeded the most conservative health guideline for formaldehyde (OEHHA TWA REL = 7.3 ppb). This study found that source removal and reducing the emission rate, as demonstrated in retail stores sampled in this study, is a viable strategy to meet the health guideline. Total volatile compound were present in retail stores at low concentrations well below health guidelines suggested by Molhave (1700microg /m 2) and Bridges (1000 microg /m2). Based on these results and through mass--balance modeling, different ventilation rate reduction scenarios were proposed, and for these scenarios the differences in energy consumption were estimated. Findings of all phases of this desertion have contributed to understanding (a) the trade-off between energy savings and ventilation rates that do not compromise indoor air quality, and (b) the trade-off between energy savings and resets of indoor air temperature that do not compromise thermal comfort. Two models for retail stores were built and calibrated and validated against actual utility bills. Energy simulation results indicated that by lowering the ventilation rates from measured and minimum references would reduce natural gas energy use by estimated values of 6% to 19%. Also, this study found that the electrical cooling energy consumption was not significantly sensitive to different ventilation rates. However, increasing indoor air temperature by 3°C in summer had a significant effect on the energy savings. In winter, both energy savings strategies, ventilation reduction and decrease in set points, had a significant effect on natural gas consumption. Specially, when the indoor air temperature 21°C was decreased to 19.4°C with the same amount of ventilation rate of Molhaves guideline for both cases. Interestingly, the temperature of 23.8°C (75°F), which is the lowest value of ASHRAE 55 thermal comfort for sedentary people (cashiers) and the highest value for thermal comfort adjustments due to activity level (customers and workers) that are calculated by using empirical equation, was the optimum temperature for sedentary and active people in Retail store buildings.

  12. Research & Development Roadmap for Next-Generation Appliances

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goetzler, William; Sutherland, Timothy; Foley, Kevin

    2012-03-01

    Appliances present an attractive opportunity for near-term energy savings in existing building, because they are less expensive and replaced more regularly than heating, ventilation, and air-conditioning (HVAC) systems or building envelope components. This roadmap targets high-priority research and development (R&D), demonstration and commercialization activities that could significantly reduce residential appliance energy consumption. The main objective of the roadmap is to seek activities that accelerate the commercialization of high-efficiency appliance technologies while maintaining the competitiveness of American industry. The roadmap identified and evaluated potential technical innovations, defined research needs, created preliminary research and development roadmaps, and obtained stakeholder feedback on themore » proposed initiatives.« less

  13. Decommissioning of Active Ventilation Systems in a Nuclear R and D Facility to Prepare for Building Demolition (Whiteshell Laboratories Decommissioning Project, Canada) - 13073

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilcox, Brian; May, Doug; Howlett, Don

    2013-07-01

    Whiteshell Laboratories (WL) is a nuclear research establishment owned by the Canadian government and operated by Atomic Energy of Canada Limited (AECL) since the early 1960's. WL is currently under a decommissioning license and the mandate is to remediate the nuclear legacy liabilities in a safe and cost effective manner. The WL Project is the first major nuclear decommissioning project in Canada. A major initiative underway is to decommission and demolish the main R and D Laboratory complex. The Building 300 R and D complex was constructed to accommodate laboratories and offices which were mainly used for research and developmentmore » associated with organic-cooled reactors, nuclear fuel waste management, reactor safety, advanced fuel cycles and other applications of nuclear energy. Building 300 is a three storey structure of approximately 16,000 m{sup 2}. In order to proceed with building demolition, the contaminated systems inside the building have to be characterized, removed, and the waste managed. There is a significant focus on volume reduction of radioactive waste for the WL project. The active ventilation system is one of the significant contaminated systems in Building 300 that requires decommissioning and removal. The active ventilation system was designed to manage hazardous fumes and radioactivity from ventilation devices (e.g., fume hoods, snorkels and glove boxes) and to prevent the escape of airborne hazardous material outside of the laboratory boundary in the event of an upset condition. The system includes over 200 ventilation devices and 32 active exhaust fan units and high efficiency particulate air (HEPA) filters. The strategy to remove the ventilation system was to work from the laboratory end back to the fan/filter system. Each ventilation duct was radiologically characterized. Fogging was used to minimize loose contamination. Sections of the duct were removed by various cutting methods and bagged for temporary storage prior to disposition. Maintenance of building heating, ventilation and air conditioning (HVAC) balancing was critical to ensure proper airflow and worker safety. Approximately 103 m{sup 3} of equipment and materials were recovered or generated by the project. Low level waste accounted for approximately 37.4 m{sup 3}. Where possible, ducting was free released for metal recycling. Contaminated ducts were compacted into B-1000 containers and stored in a Shielded Modular Above-Ground Storage Facility (SMAGS) on the WL site awaiting final disposition. The project is divided into three significant phases, with Phases 1 and 2 completed. Lessons learned during the execution of Phases 1 and 2 have been incorporated into the current ventilation removal. (authors)« less

  14. Van tells residential conservation story. [Potomac Edison Co. of Allegheny Power System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1976-01-15

    Potomac Edison Co. is taking its residential energy-conservation story to the public via a mobile van that will be on display at schools, service clubs, shopping centers, fairs, and exhibits. The van is equiped with exhibits featuring the latest in energy-saving equipment and techniques in insulation, ventilation, hot water, solar energy, load control, fireplace heat control, utility billing, appliances, appliance efficiency, lighting, heat pump, and furnace heat recovery. The exhibits are not limited to electrical applications. One shows the effect that an orifice installed in a shower head has on the amount of hot water used. The device cuts themore » amounts of both water and energy use to about one-half. Each display item is readily available from local sources. (MCW)« less

  15. Evaluation of a flexible bronchoscope prototype designed for bronchoscopy during mechanical ventilation: a proof-of-concept study.

    PubMed

    Nay, M-A; Auvet, A; Mankikian, J; Herve, V; Dequin, P-F; Guillon, A

    2017-06-01

    Bronchoscopy during mechanical ventilation of patients' lungs significantly affects ventilation because of partial obstruction of the tracheal tube, and may thus be omitted in the most severely ill patients. It has not previously been possible to reduce the external diameter of the bronchoscope without reducing the diameter of the suction channel, thus reducing the suctioning capacity of the device. We believed that a better-designed bronchoscope could improve the safety of bronchoscopy in patients whose lungs were ventilated. We designed a flexible bronchoscope prototype with a drumstick-shaped head consisting of a long, thin proximal portion; a short and large distal portion for camera docking; and a large suction channel throughout the length of the device. The aims of our study were to test the impact of our prototype on mechanical ventilation when inserted into the tracheal tube, and to assess suctioning capacity. We first tested the efficiency of the suction channel, and demonstrated that the suction flow of the prototype was similar to that of conventional adult bronchoscopes. We next evaluated the consequences of bronchoscopy when using the prototype on minute ventilation and intrathoracic pressures during mechanical ventilation: firstly, in vitro using a breathing simulator; and secondly, in vivo using a porcine model of pulmonary ventilation. The insertion of adult bronchoscopes into the tracheal tube immediately impaired the protective ventilation strategy employed, whereas the prototype preserved it. For the first time, we have developed an innovative flexible bronchoscope designed for bronchoscopy during invasive mechanical ventilation, that both preserved the protective ventilation strategy, and enabled efficient suction flow. © 2017 The Association of Anaesthetists of Great Britain and Ireland.

  16. Bio-Defense Now: 56 Suggestions for Immediate Improvements

    DTIC Science & Technology

    2005-05-01

    Air Education and Training Command HVAC Heating, Ventilation and Air Conditioning ICAM Improved Chemical Agent Monitor ICD-9-CM Internal...conditioning ( HVAC ) system capabilities, making a big difference in removal of many BW agents. High Efficiency Particulate Air (HEPA) filters are also...agents. This program has developed biological sensor-activated heating, ventilation, and air conditioning ( HVAC ) control sys- tems, high efficiency

  17. New Control Design Principles Based on Measured Performance and Energy Analysis of HVAC (Heating, Ventilating, and Air-Conditioning) Systems.

    DTIC Science & Technology

    1985-01-01

    components must also perform accurately if control is to be accurate, tests were made to determine if these components were likely to introduce more...efficient. However, it also greatly increases the com- plexity of the control systems, since room temperature measurements must be made for each zone, with...involving a psychrometer (a dry-bulb and a wet-bulb mercury thermometer) provides only a rough indication. Calibration is time- consuming and only partly

  18. Validation Data for Mechanical System Algorithms Used in Building Energy Analysis Programs.

    DTIC Science & Technology

    1982-02-01

    15 Zone Design 15 Built-Up Air Handler 15 Ventilation Requirements 16 The DES 16 Duct Design 17 Air -Delivery System 17 VAV Operation 17 Constant Volume...observed to operate well at reduced air flows, even at low flow in the so- called surge region. Recommendations 1. The HVAC system and component...With Inlet Guide Vanes Operating Within a Built-Up Air Handler 31 Test 2 -- Boiler Operation, Capacity, Efficiency, and Stand-By Losses 32 Test 3

  19. NanoClusters Enhance Drug Delivery in Mechanical Ventilation

    NASA Astrophysics Data System (ADS)

    Pornputtapitak, Warangkana

    The overall goal of this thesis was to develop a dry powder delivery system for patients on mechanical ventilation. The studies were divided into two parts: the formulation development and the device design. The pulmonary system is an attractive route for drug delivery since the lungs have a large accessible surface area for treatment or drug absorption. For ventilated patients, inhaled drugs have to successfully navigate ventilator tubing and an endotracheal tube. Agglomerates of drug nanoparticles (also known as 'NanoClusters') are fine dry powder aerosols that were hypothesized to enable drug delivery through ventilator circuits. This Thesis systematically investigated formulations of NanoClusters and their aerosol performance in a conventional inhaler and a device designed for use during mechanical ventilation. These engineered powders of budesonide (NC-Bud) were delivered via a MonodoseRTM inhaler or a novel device through commercial endotracheal tubes, and analyzed by cascade impaction. NC-Bud had a higher efficiency of aerosol delivery compared to micronized stock budesonide. The delivery efficiency was independent of ventilator parameters such as inspiration patterns, inspiration volumes, and inspiration flow rates. A novel device designed to fit directly to the ventilator and endotracheal tubing connections and the MonodoseRTM inhaler showed the same efficiency of drug delivery. The new device combined with NanoCluster formulation technology, therefore, allowed convenient and efficient drug delivery through endotracheal tubes. Furthermore, itraconazole (ITZ), a triazole antifungal agent, was formulated as a NanoCluster powder via milling (top-down process) or precipitation (bottom-up process) without using any excipients. ITZ NanoClusters prepared by wet milling showed better aerosol performance compared to micronized stock ITZ and ITZ NanoClusters prepared by precipitation. ITZ NanoClusters prepared by precipitation methods also showed an amorphous state while milled ITZ NanoClusters maintained the crystalline character. Overall, NanoClusters prepared by various processes represent a potential engineered drug particle approach for inhalation therapy since they provide effective aerosol properties and stability due to the crystalline state of the drug powders. Future work will continue to explore formulation and delivery performance in vitro and in vivo..

  20. Environmental Technology Verification: Supplement to Test/QA Plan for Biological and Aerosol Testing of General Ventilation Air Cleaners; Bioaerosol Inactivation Efficiency by HVAC In-Duct Ultraviolet Light Air Cleaners

    EPA Science Inventory

    The Air Pollution Control Technology Verification Center has selected general ventilation air cleaners as a technology area. The Generic Verification Protocol for Biological and Aerosol Testing of General Ventilation Air Cleaners is on the Environmental Technology Verification we...

  1. CPAP of 4 cm H(2)O Has no short-term benefit at term in infants with BPD.

    PubMed

    Sandberg, Kenneth L; Hjalmarson, Ola

    2012-01-01

    Lung development and function is compromised at term in infants with bronchopulmonary dysplasia (BPD), characterized by reduced functional residual capacity (FRC) and impaired gas-mixing efficiency in distal airways. To determine whether continuous positive airway pressure (CPAP) improves FRC, ventilation, distal airway function, and gas exchange in spontaneously breathing infants with BPD. Twenty-one infants with BPD (median birth weight 0.72 kg (range 0.50-1.27) and median gestational age 26 weeks (range 23-28)) were studied before and after CPAP of 4 cm H(2)O was applied by a facemask system. A multiple-breath nitrogen washout method was used to assess FRC, ventilation, and gas-mixing efficiency. Moment analysis and lung clearance index was calculated from the nitrogen-decay curve for assessment of gas-mixing efficiency. Transcutaneous (Tc) PO(2)/PCO(2) was monitored during stable infant conditions before each washout test. When CPAP was raised from 0 to 4 cm H(2)O, FRC increased significantly together with a significant increase in moment ratios (M(1)/M(0) and M(2)/M(0)). Tc PO(2) decreased significantly and the breathing pattern changed, with significantly reduced respiratory rate, minute ventilation, and alveolar ventilation. There was also an increase in tidal volume and dead space. CPAP of 4 cm H(2)O applied with a facemask at term to infants with BPD did not improve ventilation, gas-mixing efficiency in distal airways, or oxygenation despite an increase in FRC. We speculate that instead of promoting recruitment of unventilated lung volumes, increasing the end-expiratory pressure in infants with BPD may lead to an overexpansion of already ventilated parts of the lung, causing further compromise of lung function. Copyright © 2012 S. Karger AG, Basel.

  2. Efficiency index: a new parameter to define breathing patterns during dynamic Xe-127 ventilation studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Slosman, D.; Susskind, H.; Bossuyt, A.

    1986-03-01

    Ventilation imaging can be improved by gating scintigraphic data with the respiratory cycle using temporal Fourier analysis (TFA) to quantify the temporal behavior of the ventilation. Sixteen consecutive images, representing equal-time increments of an average respiratory cycle, were produced by TFA in the posterior view on a pixel-by-pixel basis. An Efficiency Index (EFF), defined as the ratio of the summation of all the differences between maximum and minimum counts for each pixel to that for the entire lung during the respiratory cycle, was derived to describe the pattern of ventilation. The gated ventilation studies were carried out with Xe-127 inmore » 12 subjects: normal lung function (4), small airway disease (2), COPD (5), and restrictive disease (1). EFF for the first three harmonics correlated linearly with FEV1 (r = 0.701, p< 0.01). This approach is suggested as a very sensitive method to quantify the extent and regional distribution of airway obstruction.« less

  3. Design and Development of a Residential Gas-Fired Heat Pump

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vineyard, Edward Allan; Abu-Heiba, Ahmad; Mahderekal, Dr. Isaac

    2017-01-01

    Heating, ventilating, and air-conditioning equipment consumes 43% of the total primary energy consumption in U.S. households. Presently, conventional gas furnaces have maximum heating efficiencies of 98%. Electric air conditioners used in association with the furnace for cooling have a minimum seasonal energy efficiency ratio (SEER) of 14.0. A residential gas-fired heat pump (RGHP) was developed and tested under standard rating conditions, resulting in a significant increase in heating efficiency of over 40% versus conventional natural gas furnaces. The associated efficiency of the RGHP in cooling mode is comparable in efficiency to an electric air conditioner (14.0 SEER) when compared onmore » a primary energy basis. The RGHP is similar in nature to a conventional heat pump but with two main differences. First, the primary energy savings are higher, based on a site versus source comparison, as the result of using natural gas to supply shaft power to the compressor rather than an electric motor. Second, waste heat is recovered from the engine to supplement space heating and reduce the energy input. It can also be used to provide supplemental water heating. The system utilizes a programmable logic controller that allows variable-speed operation to achieve improved control to meet building loads. RGHPs significantly reduce peak electric use during periods of high demand, especially peak summer loads, as well as peak winter loads in regions with widespread use of electric heating. This contributes to leveling year-round gas loads, with the potential to increase annual gas demand in some regions. The widespread adoption of RGHPs will contribute to significant reductions in primary energy consumption and carbon emissions through improved efficiencies.« less

  4. Mask Ventilation during Induction of General Anesthesia: Influences of Obstructive Sleep Apnea.

    PubMed

    Sato, Shin; Hasegawa, Makoto; Okuyama, Megumi; Okazaki, Junko; Kitamura, Yuji; Sato, Yumi; Ishikawa, Teruhiko; Sato, Yasunori; Isono, Shiroh

    2017-01-01

    Depending on upper airway patency during anesthesia induction, tidal volume achieved by mask ventilation may vary. In 80 adult patients undergoing general anesthesia, the authors tested a hypothesis that tidal volume during mask ventilation is smaller in patients with sleep-disordered breathing priorly defined as apnea hypopnea index greater than 5 per hour. One-hand mask ventilation with a constant ventilator setting (pressure-controlled ventilation) was started 20 s after injection of rocuronium and maintained for 1 min during anesthesia induction. Mask ventilation efficiency was assessed by the breath number needed to initially exceed 5 ml/kg ideal body weight of expiratory tidal volume (primary outcome) and tidal volumes (secondary outcomes) during initial 15 breaths (UMIN000012494). Tidal volume progressively increased by more than 70% in 1 min and did not differ between sleep-disordered breathing (n = 42) and non-sleep-disordered breathing (n = 38) patients. In post hoc subgroup analyses, the primary outcome breath number (mean [95% CI], 5.7 [4.1 to 7.3] vs. 1.7 [0.2 to 3.2] breath; P = 0.001) and mean tidal volume (6.5 [4.6 to 8.3] vs. 9.6 [7.7 to 11.4] ml/kg ideal body weight; P = 0.032) were significantly smaller in 20 sleep-disordered breathing patients with higher apnea hypopnea index (median [25th to 75th percentile]: 21.7 [17.6 to 31] per hour) than in 20 non-sleep disordered breathing subjects with lower apnea hypopnea index (1.0 [0.3 to 1.5] per hour). Obesity and occurrence of expiratory flow limitation during one-hand mask ventilation independently explained the reduction of efficiency of mask ventilation, while the use of two hands effectively normalized inefficient mask ventilation during one-hand mask ventilation. One-hand mask ventilation is difficult in patients with obesity and severe sleep-disordered breathing particularly when expiratory flow limitation occurs during mask ventilation.

  5. Ventilation planning at Energy West's Deer Creek mine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tonc, L.; Prosser, B.; Gamble, G.

    2009-08-15

    In 2004 ventilation planning was initiated to exploit a remote area of Deer Creek mine's reserve (near Huntington, Utah), the Mill Fork Area, located under a mountain. A push-pull ventilation system was selected. This article details the design process of the ventilation system upgrade, the procurement process for the new fans, and the new fan startup testing. 5 figs., 1 photo.

  6. Building America Case Study: Ventilation System Effectiveness and Tested Indoor Air Quality Impacts, Tyler, Texas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    ?Ventilation system effectiveness testing was conducted at two unoccupied, single-family, detached lab homes at the University of Texas - Tyler. Five ventilation system tests were conducted with various whole-building ventilation systems. Multizone fan pressurization testing characterized building and zone enclosure leakage. PFT testing showed multizone air change rates and interzonal airflow filtration. Indoor air recirculation by a central air distribution system can help improve the exhaust ventilation system by way of air mixing and filtration. In contrast, the supply and balanced ventilation systems showed that there is a significant benefit to drawing outside air from a known outside location, andmore » filtering and distributing that air. Compared to the Exhaust systems, the CFIS and ERV systems showed better ventilation air distribution and lower concentrations of particulates, formaldehyde and other VOCs. System improvement percentages were estimated based on four System Factor Categories: Balance, Distribution, Outside Air Source, and Recirculation Filtration. Recommended System Factors could be applied to reduce ventilation fan airflow rates relative to ASHRAE Standard 62.2 to save energy and reduce moisture control risk in humid climates. HVAC energy savings were predicted to be 8-10%, or $50-$75/year. Cumulative particle counts for six particle sizes, and formaldehyde and other Top 20 VOC concentrations were measured in multiple zones. The testing showed that single-point exhaust ventilation was inferior as a whole-house ventilation strategy.« less

  7. Using Coupled Energy, Airflow and IAQ Software (TRNSYS/CONTAM) to Evaluate Building Ventilation Strategies.

    PubMed

    Dols, W Stuart; Emmerich, Steven J; Polidoro, Brian J

    2016-03-01

    Building energy analysis tools are available in many forms that provide the ability to address a broad spectrum of energy-related issues in various combinations. Often these tools operate in isolation from one another, making it difficult to evaluate the interactions between related phenomena and interacting systems, forcing oversimplified assumptions to be made about various phenomena that could otherwise be addressed directly with another tool. One example of such interdependence is the interaction between heat transfer, inter-zone airflow and indoor contaminant transport. In order to better address these interdependencies, the National Institute of Standards and Technology (NIST) has developed an updated version of the multi-zone airflow and contaminant transport modelling tool, CONTAM, along with a set of utilities to enable coupling of the full CONTAM model with the TRNSYS simulation tool in a more seamless manner and with additional capabilities that were previously not available. This paper provides an overview of these new capabilities and applies them to simulating a medium-size office building. These simulations address the interaction between whole-building energy, airflow and contaminant transport in evaluating various ventilation strategies including natural and demand-controlled ventilation. CONTAM has been in practical use for many years allowing building designers, as well as IAQ and ventilation system analysts, to simulate the complex interactions between building physical layout and HVAC system configuration in determining building airflow and contaminant transport. It has been widely used to design and analyse smoke management systems and evaluate building performance in response to chemical, biological and radiological events. While CONTAM has been used to address design and performance of buildings implementing energy conserving ventilation systems, e.g., natural and hybrid, this new coupled simulation capability will enable users to apply the tool to couple CONTAM with existing energy analysis software to address the interaction between indoor air quality considerations and energy conservation measures in building design and analysis. This paper presents two practical case studies using the coupled modelling tool to evaluate IAQ performance of a CO 2 -based demand-controlled ventilation system under different levels of building envelope airtightness and the design and analysis of a natural ventilation system.

  8. Using Coupled Energy, Airflow and IAQ Software (TRNSYS/CONTAM) to Evaluate Building Ventilation Strategies

    PubMed Central

    Dols, W. Stuart.; Emmerich, Steven J.; Polidoro, Brian J.

    2016-01-01

    Building energy analysis tools are available in many forms that provide the ability to address a broad spectrum of energy-related issues in various combinations. Often these tools operate in isolation from one another, making it difficult to evaluate the interactions between related phenomena and interacting systems, forcing oversimplified assumptions to be made about various phenomena that could otherwise be addressed directly with another tool. One example of such interdependence is the interaction between heat transfer, inter-zone airflow and indoor contaminant transport. In order to better address these interdependencies, the National Institute of Standards and Technology (NIST) has developed an updated version of the multi-zone airflow and contaminant transport modelling tool, CONTAM, along with a set of utilities to enable coupling of the full CONTAM model with the TRNSYS simulation tool in a more seamless manner and with additional capabilities that were previously not available. This paper provides an overview of these new capabilities and applies them to simulating a medium-size office building. These simulations address the interaction between whole-building energy, airflow and contaminant transport in evaluating various ventilation strategies including natural and demand-controlled ventilation. Practical Application CONTAM has been in practical use for many years allowing building designers, as well as IAQ and ventilation system analysts, to simulate the complex interactions between building physical layout and HVAC system configuration in determining building airflow and contaminant transport. It has been widely used to design and analyse smoke management systems and evaluate building performance in response to chemical, biological and radiological events. While CONTAM has been used to address design and performance of buildings implementing energy conserving ventilation systems, e.g., natural and hybrid, this new coupled simulation capability will enable users to apply the tool to couple CONTAM with existing energy analysis software to address the interaction between indoor air quality considerations and energy conservation measures in building design and analysis. This paper presents two practical case studies using the coupled modelling tool to evaluate IAQ performance of a CO2-based demand-controlled ventilation system under different levels of building envelope airtightness and the design and analysis of a natural ventilation system. PMID:27099405

  9. Indoor PM2.5 exposure in London's domestic stock: Modelling current and future exposures following energy efficient refurbishment

    NASA Astrophysics Data System (ADS)

    Shrubsole, C.; Ridley, I.; Biddulph, P.; Milner, J.; Vardoulakis, S.; Ucci, M.; Wilkinson, P.; Chalabi, Z.; Davies, M.

    2012-12-01

    Simulations using CONTAM (a validated multi-zone indoor air quality (IAQ) model) are employed to predict indoor exposure to PM2.5 in London dwellings in both the present day housing stock and the same stock following energy efficient refurbishments to meet greenhouse gas emissions reduction targets for 2050. We modelled interventions that would contribute to the achievement of these targets by reducing the permeability of the dwellings to 3 m3 m-2 h-1 at 50 Pa, combined with the introduction of mechanical ventilation and heat recovery (MVHR) systems. It is assumed that the current mean outdoor PM2.5 concentration of 13 μg m-3 decreased to 9 μg m-3 by 2050 due to emission control policies. Our primary finding was that installation of (assumed perfectly functioning) MVHR systems with permeability reduction are associated with appreciable reductions in PM2.5 exposure in both smoking and non-smoking dwellings. Modelling of the future scenario for non-smoking dwellings show a reduction in annual average indoor exposure to PM2.5 of 18.8 μg m-3 (from 28.4 to 9.6 μg m-3) for a typical household member. Also of interest is that a larger reduction of 42.6 μg m-3 (from 60.5 to 17.9 μg m-3) was shown for members exposed primarily to cooking-related particle emissions in the kitchen (cooks). Reductions in envelope permeability without mechanical ventilation produced increases in indoor PM2.5 concentrations; 5.4 μg m-3 for typical household members and 9.8 μg m-3 for cooks. These estimates of changes in PM2.5 exposure are sensitive to assumptions about occupant behaviour, ventilation system usage and the distributions of input variables (±72% for non-smoking and ±107% in smoking residences). However, if realised, they would result in significant health benefits.

  10. Hierarchical fuzzy control of low-energy building systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Zhen; Dexter, Arthur

    2010-04-15

    A hierarchical fuzzy supervisory controller is described that is capable of optimizing the operation of a low-energy building, which uses solar energy to heat and cool its interior spaces. The highest level fuzzy rules choose the most appropriate set of lower level rules according to the weather and occupancy information; the second level fuzzy rules determine an optimal energy profile and the overall modes of operation of the heating, ventilating and air-conditioning system (HVAC); the third level fuzzy rules select the mode of operation of specific equipment, and assign schedules to the local controllers so that the optimal energy profilemore » can be achieved in the most efficient way. Computer simulation is used to compare the hierarchical fuzzy control scheme with a supervisory control scheme based on expert rules. The performance is evaluated by comparing the energy consumption and thermal comfort. (author)« less

  11. An analysis of natural ventilation techniques to achieve indoor comfort in Wal-Mart express

    NASA Astrophysics Data System (ADS)

    O'Dea, Shona

    Despite global efforts to reduce world fossil fuel dependency the world still obtains 81% of its energy from fossil fuels (IEA,2009). Modern renewable alternatives have been around since the mid twentieth century these alternatives have not been integrated into electrical grid systems at the exponential rate required to eradicate fossil fuels dependency. The problem, world energy demand, is too large to be satisfied by anything other than the energy-dense fossil fuels used today. We must change our energy intensive processes in order to conserve energy and hence reduce the demands that alternatives must satisfy. This research aims to identify sustainable design opportunities through the application of innovative technologies for the largest retailer in the US with the view that a viable conservative design measure could be applied to the store model, which is replicated across the country, causing a cumulative and hence larger impact on the company energy consumption as a whole. This paper will present the literature available on the 'big box' industry and Wal-Mart, comfort, natural ventilation and building simulation software and then perform an analysis into the viability of naturally ventilating the Wal-Mart Express sales zone using Monodraught natural ventilation windcatcher products

  12. nZEB Renovation of Multi-Storey Building with Prefabricated Modular Panels

    NASA Astrophysics Data System (ADS)

    Pihelo, P.; Kalamees, T.; Kuusk, K.

    2017-10-01

    Reduction of energy use in buildings in EU is expected to be reached with help of fulfilling of requirements of low and nearly-zero energy buildings (nZEB) policy. The efficient way to accomplish the purpose of the nZEB is to apply the integrated design process, considering the long-term sustainability and building costs as a one setup. The multi-storey large concrete element building is renovated to nZEB as a Horizon2020 MORE-CONNECT project pilot in Tallinn. The study of that project includes complex of measures: hygrothermal measurements and analysis, highly insulated facade and roof elements, the full modernisation of heating and ventilation systems. Ventilation ducts are installed into the modular panels to minimize supply ductworks in apartments. Roof panels include solar panels and collectors for renewable energy production. All technical systems will be equipped with monitoring systems and data will be logged periodically. The designed thermal transmittance is U≤0.11W/m2K for walls, U≤0.10W/m2K for roof and U≤0.80W/m2K for windows and external doors. The analyse, design and renovation process of the integrated nZEB design method gave us a unique experience, showing weak links in the chain and helping to prevent faults in the whole process in the future.

  13. Heating, Ventilation and Air-Conditioning Systems, Part of Indoor Air Quality Design Tools for Schools

    EPA Pesticide Factsheets

    The main purposes of a Heating, Ventilation, and Air-Conditioning system are to help maintain good indoor air quality through adequate ventilation with filtration and provide thermal comfort. HVAC systems are among the largest energy consumers in schools.

  14. Demand controlled ventilating systems: Sensor market survey. Energy conservation in buildings and community systems programme, annex 18, December 1991

    NASA Astrophysics Data System (ADS)

    Raatschen, W.; Sjoegren, M.

    The subject of indoor and outdoor air quality has generated a great deal of attention in many countries. Areas of concern include outgassing of building materials as well as occupant-generated pollutants such as carbon dioxide, moisture, and odors. Progress has also been made towards addressing issues relating to the air tightness of the building envelope. Indoor air quality studies indicate that better control of supply flow rates as well as the air distribution pattern within buildings are necessary. One method of maintaining good indoor air quality without extensive energy consumption is to control the ventilation rate according to the needs and demands of the occupants, or to preserve the building envelope. This is accomplished through the use of demand controlled ventilating (DCV) systems. The specific objective of Annex 18 is to develop guidelines for demand controlled ventilating systems based on state of the art analyses, case studies on ventilation effectiveness, and proposed ventilation rates for different users in domestic, office, and school buildings.

  15. Significant Improvements in Pyranometer Nighttime Offsets Using High-Flow DC Ventilation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kutchenreiter, Mark; Michalski, J.J.; Long, C.N.

    2017-05-22

    Accurate solar radiation measurements using pyranometers are required to understand radiative impacts on the Earth's energy budget, solar energy production, and to validate radiative transfer models. Ventilators of pyranometers, which are used to keep the domes clean and dry, also affect instrument thermal offset accuracy. This poster presents a high-level overview of the ventilators for single-black-detector pyranometers and black-and-white pyranometers. For single-black-detector pyranometers with ventilators, high-flow-rate (50-CFM and higher), 12-V DC fans lower the offsets, lower the scatter, and improve the predictability of nighttime offsets compared to lower-flow-rate (35-CFM), 120-V AC fans operated in the same type of environmental setup.more » Black-and-white pyranometers, which are used to measure diffuse horizontal irradiance, sometimes show minor improvement with DC fan ventilation, but their offsets are always small, usually no more than 1 W/m2, whether AC- or DC-ventilated.« less

  16. Laboratory and Physical Modelling of Building Ventilation Flows

    NASA Astrophysics Data System (ADS)

    Hunt, Gary

    2001-11-01

    Heating and ventilating buildings accounts for a significant fraction of the total energy budget of cities and an immediate challenge in building physics is for the design of sustainable, low-energy buildings. Natural ventilation provides a low-energy solution as it harness the buoyancy force associated with temperature differences between the internal and external environment, and the wind to drive a ventilating flow. Modern naturally-ventilated buildings use innovative design solutions, e.g. glazed atria and solar chimneys, to enhance the ventilation and demand for these and other designs has far outstripped our understanding of the fluid mechanics within these buildings. Developing an understanding of the thermal stratification and movement of air provides a considerable challenge as the flows involve interactions between stratification and turbulence and often in complex geometries. An approach that has provided significant new insight into these flows and which has led to the development of design guidelines for architects and ventilation engineers is laboratory modelling at small-scale in water tanks combined with physical modelling. Density differences to drive the flow in simplified plexiglass models of rooms or buildings are provided by fresh and salt water solutions, and wind flow is represented by a mean flow in a flume tank. In tandom with the experiments, theoretical models that capture the essential physics of these flows have been developed in order to generalise the experimental results to a wide range of typical building geometries and operating conditions. This paper describes the application and outcomes of these modelling techniques to the study of a variety of natural ventilation flows in buildings.

  17. Flow analysis of airborne particles in a hospital operating room

    NASA Astrophysics Data System (ADS)

    Faeghi, Shiva; Lennerts, Kunibert

    2016-06-01

    Preventing airborne infections during a surgery has been always an important issue to deliver effective and high quality medical care to the patient. One of the important sources of infection is particles that are distributed through airborne routes. Factors influencing infection rates caused by airborne particles, among others, are efficient ventilation and the arrangement of surgical facilities inside the operating room. The paper studies the ventilation airflow pattern in an operating room in a hospital located in Tehran, Iran, and seeks to find the efficient configurations with respect to the ventilation system and layout of facilities. This study uses computational fluid dynamics (CFD) and investigates the effects of different inflow velocities for inlets, two pressurization scenarios (equal and excess pressure) and two arrangements of surgical facilities in room while the door is completely open. The results show that system does not perform adequately when the door is open in the operating room under the current conditions, and excess pressure adjustments should be employed to achieve efficient results. The findings of this research can be discussed in the context of design and controlling of the ventilation facilities of operating rooms.

  18. Procedures and Standards for Residential Ventilation System Commissioning: An Annotated Bibliography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stratton, J. Chris; Wray, Craig P.

    2013-04-01

    Beginning with the 2008 version of Title 24, new homes in California must comply with ANSI/ASHRAE Standard 62.2-2007 requirements for residential ventilation. Where installed, the limited data available indicate that mechanical ventilation systems do not always perform optimally or even as many codes and forecasts predict. Commissioning such systems when they are installed or during subsequent building retrofits is a step towards eliminating deficiencies and optimizing the tradeoff between energy use and acceptable IAQ. Work funded by the California Energy Commission about a decade ago at Berkeley Lab documented procedures for residential commissioning, but did not focus on ventilation systems.more » Since then, standards and approaches for commissioning ventilation systems have been an active area of work in Europe. This report describes our efforts to collect new literature on commissioning procedures and to identify information that can be used to support the future development of residential-ventilation-specific procedures and standards. We recommend that a standardized commissioning process and a commissioning guide for practitioners be developed, along with a combined energy and IAQ benefit assessment standard and tool, and a diagnostic guide for estimating continuous pollutant emission rates of concern in residences (including a database that lists emission test data for commercially-available labeled products).« less

  19. Numerical simulation of volume-controlled mechanical ventilated respiratory system with 2 different lungs.

    PubMed

    Shi, Yan; Zhang, Bolun; Cai, Maolin; Zhang, Xiaohua Douglas

    2017-09-01

    Mechanical ventilation is a key therapy for patients who cannot breathe adequately by themselves, and dynamics of mechanical ventilation system is of great significance for life support of patients. Recently, models of mechanical ventilated respiratory system with 1 lung are used to simulate the respiratory system of patients. However, humans have 2 lungs. When the respiratory characteristics of 2 lungs are different, a single-lung model cannot reflect real respiratory system. In this paper, to illustrate dynamic characteristics of mechanical ventilated respiratory system with 2 different lungs, we propose a mathematical model of mechanical ventilated respiratory system with 2 different lungs and conduct experiments to verify the model. Furthermore, we study the dynamics of mechanical ventilated respiratory system with 2 different lungs. This research study can be used for improving the efficiency and safety of volume-controlled mechanical ventilation system. Copyright © 2016 John Wiley & Sons, Ltd.

  20. Occupational exposure to nitrous oxide - the role of scavenging and ventilation systems in reducing the exposure level in operating rooms.

    PubMed

    Krajewski, Wojciech; Kucharska, Malgorzata; Wesolowski, Wiktor; Stetkiewicz, Jan; Wronska-Nofer, Teresa

    2007-03-01

    The aim of this study was to assess the level of occupational exposure to nitrous oxide (N(2)O) in operating rooms (ORs), as related to different ventilation and scavenging systems used to remove waste anaesthetic gases from the work environment. The monitoring of N(2)O in the air covered 35 ORs in 10 hospitals equipped with different systems for ventilation and anaesthetic scavenging. The examined systems included: natural ventilation with supplementary fresh air provided by a pressure ventilation system (up to 6 air changes/h); pressure and exhaust ventilation systems equipped with ventilation units supplying fresh air to and discharging contaminated air outside the working area (more than 10 air changes/h); complete air-conditioning system with laminar air flow (more than 15 air changes/h). The measurements were carried out during surgical procedures (general anaesthesia induced intravenously and maintained with inhaled N(2)O and sevofluran delivered through cuffed endotracheal tubes) with connected or disconnected air scavenging. Air was collected from the breathing zone of operating personnel continuously through the whole time of anaesthesia to Tedlar((R)) bags, and N(2)O concentrations in air samples were analyzed by adsorption gas chromatography/mass spectrometry. N(2)O levels in excess of the occupational exposure limit (OEL) value of 180mg/m(3) were registered in all ORs equipped with ventilation systems alone. The OEL value was exceeded several times in rooms with natural ventilation plus supplementary pressure ventilations and twice or less in those with pressure/exhaust ventilation systems or air conditioning. N(2)O levels below or within the OEL value were observed in rooms where the system of air conditioning or pressure/exhaust ventilation was combined with scavenging systems. Systems combining natural/pressure ventilation with scavenging were inadequate to maintain N(2)O concentration below the OEL value. Air conditioning and an efficient pressure/exhaust ventilation (above 12 air exchanges/h) together with efficient active scavenging systems are sufficient to sustain N(2)O exposure in ORs at levels below or within the OEL value of 180mg/m(3).

  1. ENERGY COSTS OF IAQ CONTROL THROUGH INCREASED VENTILATION IN A SMALL OFFICE IN A WARM, HUMID CLIMATE: PARAMETRIC ANALYSIS USING THE DOE-2 COMPUTER MODEL

    EPA Science Inventory

    The report gives results of a series of computer runs using the DOE-2.1E building energy model, simulating a small office in a hot, humid climate (Miami). These simulations assessed the energy and relative humidity (RH) penalties when the outdoor air (OA) ventilation rate is inc...

  2. Ventilation System Effectiveness and Tested Indoor Air Quality Impacts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rudd, Armin; Bergey, Daniel

    In this project, Building America research team Building Science Corporation tested the effectiveness of ventilation systems at two unoccupied, single-family, detached lab homes at the University of Texas - Tyler. Five ventilation system tests were conducted with various whole-building ventilation systems. Multizone fan pressurization testing characterized building and zone enclosure leakage. PFT testing showed multizone air change rates and interzonal airflow. Cumulative particle counts for six particle sizes, and formaldehyde and other Top 20 VOC concentrations were measured in multiple zones. The testing showed that single-point exhaust ventilation was inferior as a whole-house ventilation strategy. This was because the sourcemore » of outside air was not direct from outside, the ventilation air was not distributed, and no provision existed for air filtration. Indoor air recirculation by a central air distribution system can help improve the exhaust ventilation system by way of air mixing and filtration. In contrast, the supply and balanced ventilation systems showed that there is a significant benefit to drawing outside air from a known outside location, and filtering and distributing that air. Compared to the exhaust systems, the CFIS and ERV systems showed better ventilation air distribution and lower concentrations of particulates, formaldehyde and other VOCs. System improvement percentages were estimated based on four system factor categories: balance, distribution, outside air source, and recirculation filtration. Recommended system factors could be applied to reduce ventilation fan airflow rates relative to ASHRAE Standard 62.2 to save energy and reduce moisture control risk in humid climates. HVAC energy savings were predicted to be 8-10%, or $50-$75/year.« less

  3. Ventilation System Effectiveness and Tested Indoor Air Quality Impacts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rudd, Armin; Bergey, Daniel

    Ventilation system effectiveness testing was conducted at two unoccupied, single-family, detached lab homes at the University of Texas - Tyler. Five ventilation system tests were conducted with various whole-building ventilation systems. Multizone fan pressurization testing characterized building and zone enclosure leakage. PFT testing showed multizone air change rates and interzonal airflow. Cumulative particle counts for six particle sizes, and formaldehyde and other Top 20 VOC concentrations were measured in multiple zones. The testing showed that single-point exhaust ventilation was inferior as a whole-house ventilation strategy. It was inferior because the source of outside air was not direct from outside, themore » ventilation air was not distributed, and no provision existed for air filtration. Indoor air recirculation by a central air distribution system can help improve the exhaust ventilation system by way of air mixing and filtration. In contrast, the supply and balanced ventilation systems showed that there is a significant benefit to drawing outside air from a known outside location, and filtering and distributing that air. Compared to the Exhaust systems, the CFIS and ERV systems showed better ventilation air distribution and lower concentrations of particulates, formaldehyde and other VOCs. System improvement percentages were estimated based on four System Factor Categories: Balance, Distribution, Outside Air Source, and Recirculation Filtration. Recommended System Factors could be applied to reduce ventilation fan airflow rates relative to ASHRAE Standard 62.2 to save energy and reduce moisture control risk in humid climates. HVAC energy savings were predicted to be 8-10%, or $50-$75/year.« less

  4. 41 CFR 102-74.195 - What ventilation policy must Federal agencies follow?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false What ventilation policy...-FACILITY MANAGEMENT Facility Management Energy Conservation § 102-74.195 What ventilation policy must Federal agencies follow? During working hours in periods of heating and cooling, Federal agencies must...

  5. Local ventilation solution for large, warm emission sources.

    PubMed

    Kulmala, Ilpo; Hynynen, Pasi; Welling, Irma; Säämänen, Arto

    2007-01-01

    In a foundry casting line, contaminants are released from a large area. Casting fumes include both volatile and particulate compounds. The volatile fraction contains hydrocarbons, whereas the particulate fraction mostly comprises a mixture of vaporized metal fumes. Casting fumes lower the air quality in foundries. The design of local ventilation for the casting area is a challenging task, because of the large casting area and convection plumes from warm moulds. A local ventilation solution for the mould casting area was designed and dimensioned with the aid of computational fluid dynamic (CFD) calculations. According to the calculations, the most efficient solution was a push-pull ventilation system. The prototype of the push-pull system was built and tested in actual operation at the foundry. The push flow was generated by a free plane jet that blew across the 10 m wide casting area towards an exhaust hood on the opposite side of the casting lines. The capture efficiency of the prototype was determined by the tracer gas method. The measured capture efficiencies with push jet varied between 40 and 80%, depending on the distance between the source and the exhaust. With the aid of the push flow, the average capture efficiency was increased from 40 (without jet) to 60%.

  6. Improved Cattle Hauler

    NASA Technical Reports Server (NTRS)

    Saltzman, E. J.

    1983-01-01

    Better aerodynamics and ventilation increases fuel efficiency and decreases shipping losses. Trailer is ventilated and cooled by inlet ports in front of rig and outlet ports in middle and rear. Rounded cab and fairing reduce drag by creating an attached airflow.

  7. Randomized clinical trial of extended use of a hydrophobic condenser humidifier: 1 vs. 7 days.

    PubMed

    Thomachot, Laurent; Leone, Marc; Razzouk, Karim; Antonini, François; Vialet, Renaud; Martin, Claude

    2002-01-01

    To determine whether extended use (7 days) would affect the efficiency on heat and water preservation of a hydrophobic condenser humidifier as well as the rate of ventilation-acquired pneumonia, compared with 1 day of use. Prospective, controlled, randomized, not blinded, clinical study. Twelve-bed intensive care unit of a university hospital. One hundred and fifty-five consecutive patients undergoing mechanical ventilation for > or = 48 hrs. After randomization, patients were allocated to one of the two following groups: a) heat and moisture exchangers (HMEs) changed every 24 hrs; b) HMEs changed only once a week. Devices in both groups could be changed at the discretion of the staff when signs of occlusion or increased resistance were identified. Efficient airway humidification and heating were assessed by clinical variables (numbers of tracheal suctionings and instillations required, peak and mean airway pressures). The frequency rates of bronchial colonization and ventilation-acquired pneumonia were evaluated by using clinical and microbiological criteria. Endotracheal tube occlusion, ventilatory support variables, duration of mechanical ventilation, length of intensive care, acquired multiorgan dysfunction, and mortality rates also were recorded. The two groups were similar at the time of randomization. Endotracheal tube occlusion never occurred. In the targeted population (patients ventilated for > or = 7 days), the frequency rate of ventilation-acquired pneumonia was 24% in the HME 1-day group and 17% in the HME 7-day group (p > .05, not significant). Ventilation-acquired pneumonia rates per 1000 ventilatory support days were 16.4/1000 in the HME 1-day group and 12.4/1000 in the HME 7-day group (p > .05, not significant). No statistically significant differences were found between the two groups for duration of mechanical ventilation, intensive care unit length of stay, acquired organ system derangements, and mortality rate. There was indirect evidence of very little, if any, change in HME resistance. Changing the studied hydrophobic HME after 7 days did not affect efficiency, increase resistance, or altered bacterial colonization. The frequency rate of ventilation-acquired pneumonia was also unchanged. Use of HMEs for > 24 hrs and up to 7 days is safe.

  8. Investigation of Condensing Ice Heat Exchangers for MTSA Technology Development

    NASA Technical Reports Server (NTRS)

    Padilla, Sebastian; Powers, Aaron; Ball, Tyler; Iacomini, Christie; Paul, Heather, L.

    2008-01-01

    Metabolic heat regenerated Temperature Swing Adsorption (MTSA) technology is being developed for thermal, carbon dioxide (CO2) and humidity control for a Portable Life Support Subsystem (PLSS). Metabolically-produced CO2 present in the ventilation gas of a PLSS is collected using a CO2selective adsorbent via temperature swing adsorption. The temperature swing is initiated through cooling to well below metabolic temperatures. Cooling is achieved with a sublimation heat exchanger using water or liquid carbon dioxide (LCO2) expanded below sublimation temperature when exposed to low pressure or vacuum. Subsequent super heated vapor, as well as additional coolant, is used to further cool the astronaut. The temperature swing on the adsorbent is then completed by warming the adsorbent with a separate condensing ice heat exchanger (CIHX) using metabolic heat from moist ventilation gas. The condensed humidity in the ventilation gas is recycled at the habitat. The water condensation from the ventilation gas is a significant heat transfer mechanism for the warming of the adsorbent bed because it represents as much as half of the energy potential in the moist ventilation gas. Designing a heat exchanger to efficiently transfer this energy to the adsorbent bed and allow the collection of the water is a challenge since the CIHX will operate in a temperature range from 210K to 280K. The ventilation gas moisture will first freeze and then thaw, sometimes existing in three phases simultaneously. A NASA Small Business Innovative Research (SBIR) Phase 1 contract was performed to investigate condensing and icing as applied to MTSA to enable higher fidelity modeling and assess the impact of geometry variables on CIHX performance for future CIHX design optimization. Specifically, a design tool was created using analytical relations to explore the complex, interdependent design space of a condensing ice heat exchanger. Numerous variables were identified as having nontrivial contributions to performance such as hydraulic diameter, heat exchanger effectiveness, ventilation gas mass flow rate and surface roughness. Using this tool, four test articles were designed and manufactured to map to a full MTSA subassembly (the adsorbent bed, the sublimation heat exchanger for cooling and the condensing ice heat exchanger for warming). The design mapping considered impacts due to CIHX geometry as well as subassembly impacts such as thermal mass and thermal resistance through the adsorbent bed. The test articles were tested at simulated PLSS ventilation loop temperature, moisture content and subambient pressure. Ice accumulation and melting were observed. Data and test observations were analyzed to identify drivers of the condensing ice heat exchanger performance. This paper will discuss the analytical models, the test article designs, and testing procedures. Testing issues will be discussed to better describe data and share lessons learned. Data analysis and subsequent conclusions will be presented.

  9. Research and Development Opportunities for Joining Technologies in HVAC&R

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goetzler, William; Guernsey, Matt; Young, Jim

    The Building Technologies Office (BTO) works with researchers and industry partners to develop and deploy technologies that can substantially reduce energy consumption and greenhouse gas (GHG) emissions in residential and commercial buildings. This opportunity assessment aims to advance BTO’s energy savings, GHG reduction, and other program goals by identifying research and development (R&D) initiatives for joining technologies in heating, ventilation, air-conditioning, and refrigeration (HVAC&R) systems. Improving joining technologies for HVAC&R equipment has the potential to increase lifetime equipment operating efficiency, decrease equipment and project cost, and most importantly reduce hydroflourocarbon (HFC) refrigerant leakage to support HFC phasedown and GHG reductionmore » goals.« less

  10. A regulator for pressure-controlled total-liquid ventilation.

    PubMed

    Robert, Raymond; Micheau, Philippe; Avoine, Olivier; Beaudry, Benoit; Beaulieu, Alexandre; Walti, Hervé

    2010-09-01

    Total-liquid ventilation (TLV) is an innovative experimental method of mechanical-assisted ventilation in which lungs are totally filled and then ventilated with a tidal volume of perfluorochemical liquid by using a dedicated liquid ventilator. Such a novel medical device must resemble other conventional ventilators: it must be able to conduct controlled-pressure ventilation. The objective was to design a robust controller to perform pressure-regulated expiratory flow and to implement it on our latest liquid-ventilator prototype (Inolivent-4). Numerical simulations, in vitro experiments, and in vivo experiments in five healthy term newborn lambs have demonstrated that it was efficient to generate expiratory flows while avoiding collapses. Moreover, the in vivo results have demonstrated that our liquid ventilator can maintain adequate gas exchange, normal acid-base equilibrium, and achieve greater minute ventilation, better oxygenation and CO2 extraction, while nearing flow limits. Hence, it is our suggestion to perform pressure-controlled ventilation during expiration with minute ventilation equal or superior to 140 mL x min(-1) x kg(-1) in order to ensure PaCO2 below 55 mmHg. From a clinician's point of view, pressure-controlled ventilation greatly simplifies the use of the liquid ventilator, which will certainly facilitate its introduction in intensive care units for clinical applications.

  11. WE-AB-202-08: Feasibility of Single-Inhalation/Single-Energy Xenon CT for High-Resolution Imaging of Regional Lung Ventilation in Humans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pinkham, D; Schueler, E; Diehn, M

    Purpose: To demonstrate the efficacy of a novel functional lung imaging method that utilizes single-inhalation, single-energy xenon CT (Xe-CT) lung ventilation scans, and to compare it against the current clinical standard, ventilation single-photon emission CT (V-SPECT). Methods: In an IRB-approved clinical study, 14 patients undergoing thoracic radiotherapy received two successive single inhalation, single energy (80keV) CT images of the entire lung using 100% oxygen and a 70%/30% xenon-oxygen mixture. A subset of ten patients also received concurrent SPECT ventilation scans. Anatomic reproducibility between the two scans was achieved using a custom video biofeedback apparatus. The CT images were registered tomore » each other by deformable registration, and a calculated difference image served as surrogate xenon ventilation map. Both lungs were partitioned into twelve sectors, and a sector-wise correlation was performed between the xenon and V-SPECT scans. A linear regression model was developed with forced expiratory volume (FEV) as a predictor and the coefficient of variation (CoV) as the outcome. Results: The ventilation comparison for five of the patients had either moderate to strong Pearson correlation coefficients (0.47 to 0.69, p<0.05). Of these, four also had moderate to strong Spearman correlation coefficients (0.46 to 0.80, p<0.03). The patients with the strongest correlation had clear regional ventilation deficits. The patient comparisons with the weakest correlations had more homogeneous ventilation distributions, and those patients also had diminished lung function as assessed by spirometry. Analysis of the relationship between CoV and FEV yielded a non-significant trend toward negative correlation (Pearson coefficient −0.60, p<0.15). Conclusion: Significant correlations were found between the Xe-CT and V-SPECT ventilation imagery. The results from this small cohort of patients indicate that single inhalation, single energy Xe-CT has the potential to quantify regional lung ventilation volumetrically with high resolution using widely accessible radiologic equipment. Bill Loo and Peter Maxim are founders of TibaRay, Inc. Bill Loo is also a board member. Bill Loo and Peter Maxim have received research grants from Varian Medical Systems, Inc. and RaySearch Laboratory.« less

  12. Recovery of the local gravity field by spherical regularization wavelets approximation and its numerical implementation

    NASA Astrophysics Data System (ADS)

    Shuler, Harrey Jeong

    Information technology (IT) is becoming increasingly pervasive throughout society as more data is digitally processed, stored, and transferred. The infrastructure that supports IT activity is growing accordingly, and data center energy demands have increased by nearly a factor of four over the past decade. This dissertation investigates how building design and operation influence energy use and indoor air quality in data centers and provides strategies to improve both design goals simultaneously. As an initial step toward understanding data center air quality, measurements of particle concentrations were made at multiple operating northern California data centers. Ratios of measured particle concentrations in conventional data centers to the corresponding outside concentrations were significantly lower than those reported in the literature for office or residential buildings. Estimates using a material-balance model match well with empirical results, indicating that the dominant particle sources and losses---ventilation and filtration---have been characterized. Measurements taken at a data center using economizers show nearly an order of magnitude increase in particle concentration during economizer activity. However, even with the increase, the measured particle concentrations are still below concentration limits recommended in most industry standards. The research proceeds by exploring the feasibility of using economizers in data centers while simultaneously controlling particle concentrations with high-quality air filtration. Physical and chemical properties of indoor and outdoor particles were analyzed at a data center using economizers and varying levels of air filtration efficiency. Results show that when improved filtration is used in combination with an economizer, the indoor/outdoor concentration ratios for most measured particle types were similar to the measurements when using conventional filtration without economizers. An energy analysis of the data center reveals that, even during the summer months, chiller savings from economizer use greatly outweigh the increase in fan power associated with improved filtration. These findings indicate that economizer use combined with improved filtration could significantly reduce data center energy demand while providing a level of protection from particles of outdoor origin similar to that observed with conventional design. The emphasis of the dissertation then shifts to evaluate the energy benefits of economizer use in data centers under different design strategies. Economizer use with high ventilation rates is compared against an alternative, water-side economizer design that does not affect indoor particle concentrations. Building energy models are employed to estimate energy savings of both economizer designs for data centers in several climate zones in California. Results show that water-side economizers consistently provide less energy savings than air-side economizers, though the difference in savings varies by location. Model results also show that conventional limits on humidity levels in data centers can restrict the energy benefits of economizers. The modeling efforts are then extended to estimate national data center energy use. Different size data centers are modeled to represent the national variation in efficiency and operation of associated mechanical equipment. Results indicate increased energy efficiency opportunities with larger data centers and highlight the importance of temperature setpoints in maximizing economizer efficiency. A bottom-up modeling approach is used to estimate current (2008) United States data center energy use at nearly 62--70 billion kWh annually. The model indicates that more about 65--70% of this energy demand can be avoided through energy efficient IT and cooling infrastructure design, equivalent to an annual energy efficiency resource of approximately 40--50 billion kWh available at a national level. Within the context of greenhouse gas emissions, benefits can be significantly increased by incorporating site location into energy-efficient design strategies. (Abstract shortened by UMI.).

  13. Sun/Earth: how to use solar and climatic energies today

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crowther, R.L.

    1976-01-01

    This book graphically presents many concepts that are cost-effective today for the utilization of free natural energy sources in homes and other buildings. All of the natural energy concepts presented are in a process of continuing development. Many of them are immediately economic and practical, while some are not. It takes the application of money to construct devices to harness natural energy or to construct energy efficient forms of architecture. In numerous cases operational energy is not required to employ the Sun, wind, water, and Earth as free anti-inflationary energy sources. In other cases a very small input of operationalmore » energy in comparison to the total energy output is required. All land and buildings are solar collectors. The problem is how to cost effectively make them efficient collectors of solar radiation in winter and how to use natural forms of energy to cool and ventilate them during summer and other seasons of the year. Regional and microclimatic conditions vary throughout the world. Topography and landscaping can play an important role in climatic control and climatic effect upon architecture. The examples presented for optimized energy conservation and solar active and passive systems are generic to most northern latitudes, but need modification or adaption to specific locations and climates. An annotated bibliography, containing additional reference, is included.« less

  14. The impact of recirculation, ventilation and filters on secondary organic aerosols generated by indoor chemistry

    NASA Astrophysics Data System (ADS)

    Fadeyi, M. O.; Weschler, C. J.; Tham, K. W.

    This study examined the impact of recirculation rates (7 and 14 h -1), ventilation rates (1 and 2 h -1), and filtration on secondary organic aerosols (SOAs) generated by ozone of outdoor origin reacting with limonene of indoor origin. Experiments were conducted within a recirculating air handling system that serviced an unoccupied, 236 m 3 environmental chamber configured to simulate an office; either no filter, a new filter or a used filter was located downstream of where outdoor air mixed with return air. For otherwise comparable conditions, the SOA number and mass concentrations at a recirculation rate of 14 h -1 were significantly smaller than at a recirculation rate of 7 h -1. This was due primarily to lower ozone concentrations, resulting from increased surface removal, at the higher recirculation rate. Increased ventilation increased outdoor-to-indoor transport of ozone, but this was more than offset by the increased dilution of SOA derived from ozone-initiated chemistry. The presence of a particle filter (new or used) strikingly lowered SOA number and mass concentrations compared with conditions when no filter was present. Even though the particle filter in this study had only 35% single-pass removal efficiency for 100 nm particles, filtration efficiency was greatly amplified by recirculation. SOA particle levels were reduced to an even greater extent when an activated carbon filter was in the system, due to ozone removal by the carbon filter. These findings improve our understanding of the influence of commonly employed energy saving procedures on occupant exposures to ozone and ozone-derived SOA.

  15. The MERMAID study: indoor and outdoor average pollutant concentrations in 10 low-energy school buildings in France.

    PubMed

    Verriele, M; Schoemaecker, C; Hanoune, B; Leclerc, N; Germain, S; Gaudion, V; Locoge, N

    2016-10-01

    Indoor air quality was characterized in 10 recently built energy-efficient French schools during two periods of 4.5 days. Carbon dioxide time-resolved measurements during occupancy clearly highlight the key role of the ventilation rate (scheduled or occupancy indexed), especially in this type of building, which was tightly sealed and equipped with a dual-flow ventilation system to provide air refreshment. Volatile organic compounds (VOCs) and inorganic gases (ozone and NO2 ) were measured indoors and outdoors by passive techniques during the occupied and the unoccupied periods. Over 150 VOC species were identified. Among them, 27 species were selected for quantification, based on their occurrence. High concentrations were found for acetone, 2-butanone, formaldehyde, toluene, and hexaldehyde. However, these concentrations are lower than those previously observed in conventional school buildings. The indoor/outdoor and unoccupied/occupied ratios are informative regarding emission sources. Except for benzene, ozone, and NO2 , all the pollutants in these buildings have an indoor source. Occupancy is associated with increased levels of acetone, 2-butanone, pentanal, butyl acetate, and alkanes. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Investigation of turbine ventilator performance after added wind cup for room exhaust air applications

    NASA Astrophysics Data System (ADS)

    Harun, D.; Zulfadhli; Akhyar, H.

    2018-05-01

    The turbine ventilator is a wind turbine with a vertical axis that has a combined function of the wind turbine and a suction fan. In this study, the turbine ventilator modified by adding a wind cup on the top (cap) turbine ventilator. The purpose of this experiment is to investigated the effect of the addition of wind cup on the turbine ventilator. Turbine ventilator used is type v30 and wind cup with diameter 77 mm. The experiment was conducted using a triangular pentagon model space chamber which was cut off to place the ventilator turbine ventilation cup with a volume of 0.983 m3 (equivalent to 1 mm3). The results of this study indicate that at an average wind speed of 1.8 m/s, the rotation of the turbine produced without a wind cup is 60.6 rpm while with the addition of a wind cup in the turbine ventilator is 69 rpm. The average increase of rotation turbine after added win cup is 8.4 rpm and the efficiency improvement of turbine ventilator is 1.7 %.

  17. Regenerative Blower for EVA Suit Ventilation Fan

    NASA Technical Reports Server (NTRS)

    Izenson, Michael G.; Chen, Weibo; Paul, Heather L.

    2010-01-01

    Portable life support systems in future space suits will include a ventilation subsystem driven by a dedicated fan. This ventilation fan must meet challenging requirements for pressure rise, flow rate, efficiency, size, safety, and reliability. This paper describes research and development that showed the feasibility of a regenerative blower that is uniquely suited to meet these requirements. We proved feasibility through component tests, blower tests, and design analysis. Based on the requirements for the Constellation Space Suit Element (CSSE) Portable Life Support System (PLSS) ventilation fan, we designed the critical elements of the blower. We measured the effects of key design parameters on blower performance using separate effects tests, and used the results of these tests to design a regenerative blower that will meet the ventilation fan requirements. We assembled a proof-of-concept blower and measured its performance at sub-atmospheric pressures that simulate a PLSS ventilation loop environment. Head/flow performance and maximum efficiency point data were used to specify the design and operating conditions for the ventilation fan. We identified materials for the blower that will enhance safety for operation in a lunar environment, and produced a solid model that illustrates the final design. The proof-of-concept blower produced the flow rate and pressure rise needed for the CSSE ventilation subsystem while running at 5400 rpm, consuming only 9 W of electric power using a non-optimized, commercial motor and controller and inefficient bearings. Scaling the test results to a complete design shows that a lightweight, compact, reliable, and low power regenerative blower can meet the performance requirements for future space suit life support systems.

  18. In vitro and in vivo evaluation of a new active heat moisture exchanger

    PubMed Central

    Chiumello, Davide; Pelosi, Paolo; Park, Gilbert; Candiani, Andrea; Bottino, Nicola; Storelli, Ezio; Severgnini, Paolo; D'Onofrio, Dunia; Gattinoni, Luciano; Chiaranda, Massimo

    2004-01-01

    Introduction In order to improve the efficiency of heat moisture exchangers (HMEs), new hybrid humidifiers (active HMEs) that add water and heat to HMEs have been developed. In this study we evaluated the efficiency, both in vitro and in vivo, of a new active HME (the Performer; StarMed, Mirandola, Italy) as compared with that of existing HMEs (Hygroster and Hygrobac; Mallinckrodt, Mirandola, Italy). Methods We tested the efficiency by measuring the temperature and absolute humidity (AH) in vitro using a test lung ventilated at three levels of minute ventilation (5, 10 and 15 l/min) and at two tidal volumes (0.5 and 1 l), and in vivo in 42 patients with acute lung injury (arterial oxygen tension/fractional inspired oxygen ratio 283 ± 72 mmHg). We also evaluated the efficiency in vivo after 12 hours. Results In vitro, passive Performer and Hygrobac had higher airway temperature and AH (29.2 ± 0.7°C and 29.2 ± 0.5°C, [P < 0.05]; AH: 28.9 ± 1.6 mgH2O/l and 28.1 ± 0.8 mgH2O/l, [P < 0.05]) than did Hygroster (airway temperature: 28.1 ± 0.3°C [P < 0.05]; AH: 27 ± 1.2 mgH2O/l [P < 0.05]). Both devices suffered a loss of efficiency at the highest minute ventilation and tidal volume, and at the lowest minute ventilation. Active Performer had higher airway temperature and AH (31.9 ± 0.3°C and 34.3 ± 0.6 mgH2O/l; [P < 0.05]) than did Hygrobac and Hygroster, and was not influenced by minute ventilation or tidal volume. In vivo, the efficiency of passive Performer was similar to that of Hygrobac but better than Hygroster, whereas Active Performer was better than both. The active Performer exhibited good efficiency when used for up to 12 hours in vivo. Conclusion This study showed that active Performer may provide adequate conditioning of inspired gases, both as a passive and as an active device. PMID:15469569

  19. In vitro and in vivo evaluation of a new active heat moisture exchanger.

    PubMed

    Chiumello, Davide; Pelosi, Paolo; Park, Gilbert; Candiani, Andrea; Bottino, Nicola; Storelli, Ezio; Severgnini, Paolo; D'Onofrio, Dunia; Gattinoni, Luciano; Chiaranda, Massimo

    2004-10-01

    In order to improve the efficiency of heat moisture exchangers (HMEs), new hybrid humidifiers (active HMEs) that add water and heat to HMEs have been developed. In this study we evaluated the efficiency, both in vitro and in vivo, of a new active HME (the Performer; StarMed, Mirandola, Italy) as compared with that of existing HMEs (Hygroster and Hygrobac; Mallinckrodt, Mirandola, Italy). We tested the efficiency by measuring the temperature and absolute humidity (AH) in vitro using a test lung ventilated at three levels of minute ventilation (5, 10 and 15 l/min) and at two tidal volumes (0.5 and 1 l), and in vivo in 42 patients with acute lung injury (arterial oxygen tension/fractional inspired oxygen ratio 283 +/- 72 mmHg). We also evaluated the efficiency in vivo after 12 hours. In vitro, passive Performer and Hygrobac had higher airway temperature and AH (29.2 +/- 0.7 degrees C and 29.2 +/- 0.5 degrees C, [P < 0.05]; AH: 28.9 +/- 1.6 mgH2O/l and 28.1 +/- 0.8 mgH2O/l, [P < 0.05]) than did Hygroster (airway temperature: 28.1 +/- 0.3 degrees C [P < 0.05]; AH: 27 +/- 1.2 mgH2O/l [P < 0.05]). Both devices suffered a loss of efficiency at the highest minute ventilation and tidal volume, and at the lowest minute ventilation. Active Performer had higher airway temperature and AH (31.9 +/- 0.3 degrees C and 34.3 +/- 0.6 mgH2O/l; [P < 0.05]) than did Hygrobac and Hygroster, and was not influenced by minute ventilation or tidal volume. In vivo, the efficiency of passive Performer was similar to that of Hygrobac but better than Hygroster, whereas Active Performer was better than both. The active Performer exhibited good efficiency when used for up to 12 hours in vivo. This study showed that active Performer may provide adequate conditioning of inspired gases, both as a passive and as an active device.

  20. Gas-phase optical fiber photocatalytic reactors for indoor air application: a preliminary study on performance indicators

    NASA Astrophysics Data System (ADS)

    Palmiste, Ü.; Voll, H.

    2017-10-01

    The development of advanced air cleaning technologies aims to reduce building energy consumption by reduction of outdoor air flow rates while keeping the indoor air quality at an acceptable level by air cleaning. Photocatalytic oxidation is an emerging technology for gas-phase air cleaning that can be applied in a standalone unit or a subsystem of a building mechanical ventilation system. Quantitative information on photocatalytic reactor performance is required to evaluate the technical and economic viability of the advanced air cleaning by PCO technology as an energy conservation measure in a building air conditioning system. Photocatalytic reactors applying optical fibers as light guide or photocatalyst coating support have been reported as an approach to address the current light utilization problems and thus, improve the overall efficiency. The aim of the paper is to present a preliminary evaluation on continuous flow optical fiber photocatalytic reactors based on performance indicators commonly applied for air cleaners. Based on experimental data, monolith-type optical fiber reactor performance surpasses annular-type optical fiber reactors in single-pass removal efficiency, clean air delivery rate and operating cost efficiency.

  1. Thermoregulation and ventilation of termite mounds.

    PubMed

    Korb, Judith

    2003-05-01

    Some of the most sophisticated of all animal-built structures are the mounds of African termites of the subfamily Macrotermitinae, the fungus-growing termites. They have long been studied as fascinating textbook examples of thermoregulation or ventilation of animal buildings. However, little research has been designed to provide critical tests of these paradigms, derived from a very small number of original papers. Here I review results from recent studies on Macrotermes bellicosus that considered the interdependence of ambient temperature, thermoregulation, ventilation and mound architecture, and that question some of the fundamental paradigms of termite mounds. M. bellicosus achieves thermal homeostasis within the mound, but ambient temperature has an influence too. In colonies in comparably cool habitats, mound architecture is adapted to reduce the loss of metabolically produced heat to the environment. While this has no negative consequences in small colonies, it produces a trade-off with gas exchange in large colonies, resulting in suboptimally low nest temperatures and increased CO(2) concentrations. Along with the alteration in mound architecture, the gas exchange/ventilation mechanism also changes. While mounds in the thermally appropriate savannah have a very efficient circular ventilation during the day, the ventilation in the cooler forest is a less efficient upward movement of air, with gas exchange restricted by reduced surface exchange area. These results, together with other recent findings, question entrenched ideas such as the thermosiphon-ventilation mechanism or the assumption that mounds function to dissipate internally produced heat. Models trying to explain the proximate mechanisms of mound building, or building elements, are discussed.

  2. Thermoregulation and ventilation of termite mounds

    NASA Astrophysics Data System (ADS)

    Korb, Judith

    2003-05-01

    Some of the most sophisticated of all animal-built structures are the mounds of African termites of the subfamily Macrotermitinae, the fungus-growing termites. They have long been studied as fascinating textbook examples of thermoregulation or ventilation of animal buildings. However, little research has been designed to provide critical tests of these paradigms, derived from a very small number of original papers. Here I review results from recent studies on Macrotermes bellicosus that considered the interdependence of ambient temperature, thermoregulation, ventilation and mound architecture, and that question some of the fundamental paradigms of termite mounds. M. bellicosus achieves thermal homeostasis within the mound, but ambient temperature has an influence too. In colonies in comparably cool habitats, mound architecture is adapted to reduce the loss of metabolically produced heat to the environment. While this has no negative consequences in small colonies, it produces a trade-off with gas exchange in large colonies, resulting in suboptimally low nest temperatures and increased CO2 concentrations. Along with the alteration in mound architecture, the gas exchange/ventilation mechanism also changes. While mounds in the thermally appropriate savannah have a very efficient circular ventilation during the day, the ventilation in the cooler forest is a less efficient upward movement of air, with gas exchange restricted by reduced surface exchange area. These results, together with other recent findings, question entrenched ideas such as the thermosiphon-ventilation mechanism or the assumption that mounds function to dissipate internally produced heat. Models trying to explain the proximate mechanisms of mound building, or building elements, are discussed.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keysa, T.P.

    Characteristics of design, construction, performance, and educational opportunity are described for a small, simple passive solar community center in Christian Bend, Tennessee. This 2500-square-foot structure was designed in cooperation with this community of 75 families by TVA architects and was built entirely by volunteer labor. An educational process paralleled all phases of this building, begining with programming sessions, continuing through design, construction, occupation, and operation of the space. The direct gain building utilizes energy planning in both the interior and exterior. Earth berming and utilization of natural topography aid in the building's compatibility with both summer and winter climatic events.more » In addition to microclimatic design, interior space planning aids in naturally tempering spaces from extremes in climate. Extensive use of buffer spaces, an airlock entry, and placement of glazing areas (for direct gain and natural and induced ventilation) aid in the natural energy utilization and distribution in the interior spaces. Unique aspects include a double roof, which aids both in prevention of heat loss and in induced ventilation, and other operable garage door type roll down insulated shutters over the south facing aperture areas utilized both as night insulation and as a radiation barrier. This is the other major unique factor in this building. It has been designed both as an energy efficient community center for business as usual, and as an evacuation point and temporary shelter in th event of natural (flood) or man-induced (nuclear) disaster.« less

  4. Solar chimney for natural ventilation: A review

    NASA Astrophysics Data System (ADS)

    Dhrubo, Abir Ahsan; Alam, Chowdhury Sadid; Rahman, Md. Mustafizur; Islam, A. K. M. Sadrul

    2017-06-01

    In the 21st century the talk of the time has been proper use of renewable energy sources due to the continuous depletion of non-renewable energy sources and global warming as a result of combustion of fossil fuels. The energy situation in the 3rd world countries is even worse. The continuous industrial development in the 1st world countries is hugely responsible for global temperature increase and greenhouse gas (GHG) emissions which badly affect the countries like Bangladesh. As of April 2016, the electricity generation capacity of Bangladesh was 12,399 MW to which only 60% of the total population have access to. The shortage of electricity during the summer season makes life very difficult. Cooling of buildings requires a large quantity of energy in the summer. An alternative cooling system can reduce the dependency on electricity. This paper specially deals with a passive cooling system that reduces pressure on the electricity supply and focuses on renewable energy sources. Here a different process engineering has been discussed which incorporates Earth-to-Air Heat Exchangers with solar collector enhanced solar chimney system. In this study natural ventilation of buildings, using solar chimney system is reviewed extensively. Experimentally it has already been observed that sufficient temperature drop takes place 2-3 m within the undisturbed ground, which can work as a heat sink for ambient air if passed through and can lead to attaining comfort zone at a confined location. During peak hours of summer this kind of system may work as a very efficient cooling system and reduces extra load on electricity supply.

  5. Technology Utilization House Study Report. [For Energy Conservation

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The objectives of Project TECH are: (1) to construct a single family detached dwelling for demonstrating the application of advanced technology and minimizing the requirement for energy and utility services, and (2) to help influence future development in home construction by defining the interaction of integrated energy and water management systems with building configuration and construction materials. Components and methods expected to be cost effective over a 20 year span were studied. Emphasis was placed on the utilization of natural heating and cooling characteristics. Orientation and location of windows, landscaping, natural ventilation, and characteristics of the local climate and microclimate were intended to be used to best advantage. Energy conserving homes are most efficient when design for specific sites, therefore project TECH should not be considered a prototype design suitable for all locations. However, it does provide ideas and analytical methods which can be applied to some degree in all housing.

  6. Estimation of energy requirements for mechanically ventilated, critically ill patients using nutritional status

    PubMed Central

    Kan, Mee-Nin; Chang, Han-Hsin; Sheu, Woei-Fen; Cheng, Chien-Hsiang; Lee, Bor-Jen; Huang, Yi-Chia

    2003-01-01

    Background There is very little information on what is considered an adequate energy intake for mechanically ventilated, critically ill patients. The purpose of the present study was to determine this energy requirement by making use of patients' nutritional status. Methods The study was conducted in a multidisciplinary intensive care unit of Taichung Veterans General Hospital, Taiwan. Patients were hemodynamically stable and not comatose, and were requiring at least 7 days of mechanical ventilation. Fifty-four patients successfully completed this study. The resting energy expenditure was measured using indirect calorimetry. The total energy requirement was considered 120% of the measured energy expenditure. The daily nutrient intake was recorded. Nutritional status was assessed using single and multiple parameters, nitrogen balance, and medical records, and was performed within 24 hours of admission and after 7 days in the intensive care unit. Results Fifteen patients were being underfed (<90% of total energy requirement), 20 patients were in the appropriate feeding (AF) group (within ± 10% of total energy requirement), and 19 patients received overfeeding (>110% of total energy requirement). Patients in the underfeeding group received only 68.3% of their energy requirement, while the overfeeding group patients received up to 136.5% of their required calories. Only patients in the AF group had a positive nitrogen balance (0.04 ± 5.1) on day 7. AF group patients had a significantly higher Nutritional Risk Index value at day 7 than at day 1. Conclusion AF patients had more improvement in nutritional status than patients in the other feeding groups. To provide at least 120% of the resting energy expenditure seemed adequate to meet the caloric energy needs of hemodynamically stable, mechanically ventilated, critically ill patients. PMID:12974978

  7. A Study on The Development of Local Exhaust Ventilation System (LEV’s) for Installation of Laser Cutting Machine

    NASA Astrophysics Data System (ADS)

    Harun, S. I.; Idris, S. R. A.; Tamar Jaya, N.

    2017-09-01

    Local exhaust ventilation (LEV) is an engineering system frequently used in the workplace to protect operators from hazardous substances. The objective of this project is design and fabricate the ventilation system as installation for chamber room of laser cutting machine and to stimulate the air flow inside chamber room of laser cutting machine with the ventilation system that designed. LEV’s fabricated with rated voltage D.C 10.8V and 1.5 ampere. Its capacity 600 ml, continuously use limit approximately 12-15 minute, overall length LEV’s fabricated is 966 mm with net weight 0.88 kg and maximum airflow is 1.3 meter cubic per minute. Stimulate the air flow inside chamber room of laser cutting machine with the ventilation system that designed and fabricated overall result get 2 main gas vapor which air and carbon dioxide. For air gas which experimented by using anemometer, general duct velocity that produce is same with other gas produce, carbon dioxide which 5 m/s until 10 m/s. Overall result for 5 m/s and 10 m/s as minimum and maximum duct velocity produce for both air and carbon dioxide. The air gas flow velocity that captured by LEV’s fabricated, 3.998 m/s average velocity captured from 5 m/s duct velocity which it efficiency of 79.960% and 7.667 m/s average velocity captured from 10 m/s duct velocity with efficiency of 76.665%. For carbon dioxide gas flow velocity that captured by LEV’s fabricated, 3.674 m/s average velocity captured from 5 m/s duct velocity which it efficiency of 73.480% and 8.255 m/s average velocity captured from 10 m/s duct velocity with efficiency of 82.545%.

  8. Natural ventilation systems to enhance sustainability in buildings: a review towards zero energy buildings in schools

    NASA Astrophysics Data System (ADS)

    Gil-Baez, Maite; Barrios-Padura, Ángela; Molina-Huelva, Marta; Chacartegui, Ricardo

    2017-11-01

    European regulations set the condition of Zero Energy Buildings for new buildings since 2020, with an intermediate milestone in 2018 for public buildings, in order to control greenhouse gases emissions control and climate change mitigation. Given that main fraction of energy consumption in buildings operation is due to HVAC systems, advances in its design and operation conditions are required. One key element for energy demand control is passive design of buildings. On this purpose, different recent studies and publications analyse natural ventilation systems potential to provide indoor air quality and comfort conditions minimizing electric power consumption. In these passive systems are of special relevance their capacities as passive cooling systems as well as air renovation systems, especially in high-density occupied spaces. With adequate designs, in warm/mild climates natural ventilation systems can be used along the whole year, maintaining indoor air quality and comfort conditions with small support of other heating/cooling systems. In this paper is analysed the state of the art of natural ventilation systems applied to high density occupied spaces with special focus on school buildings. The paper shows the potential and applicability of these systems for energy savings and discusses main criteria for their adequate integration in school building designs.

  9. TU-A-12A-02: Novel Lung Ventilation Imaging with Single Energy CT After Single Inhalation of Xenon: Comparison with SPECT Ventilation Images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Negahdar, M; Yamamoto, T; Shultz, D

    Purpose: We propose a novel lung functional imaging method to determine the spatial distribution of xenon (Xe) gas in a single inhalation as a measure of regional ventilation. We compare Xe-CT ventilation to single-photon emission CT (SPECT) ventilation, which is the current clinical reference. Regional lung ventilation information may be useful for the diagnosis and monitoring of pulmonary diseases such as COPD, radiotherapy planning, and assessing the progression of toxicity after radiation therapy. Methods: In an IRB-approved clinical study, Xe-CT and SPECT ventilation scans were acquired for three patients including one patient with severe emphysema and two lung cancer patientsmore » treated with radiotherapy. For Xe- CT, we acquired two breath-hold single energy CT images of the entire lung with inspiration of 100% O2 and a mixture of 70% Xe and 30% O2, respectively. A video biofeedback system was used to achieve reproducible breath-holds. We used deformable image registration to align the breathhold images with each other to accurately subtract them, producing a map of the distribution of Xe as a surrogate of lung ventilation. We divided each lung into twelve parts and correlated the Hounsfield unit (HU) enhancement at each part with the SPECT ventilation count of the corresponding part of the lung. Results: The mean of the Pearson linear correlation coefficient values between the Xe-CT and ventilation SPECT count for all three patients were 0.62 (p<0.01). The Xe-CT image had a higher resolution than SPECT, and did not show central airway deposition artifacts that were present in the SPECT image. Conclusion: We developed a rapid, safe, clinically practical, and potentially widely accessible method for regional lung functional imaging. We demonstrated strong correlations between the Xe-CT ventilation image and SPECT ventilation image as the clinical reference. This ongoing study will investigate more patients to confirm this finding.« less

  10. Selecting a Control Strategy for Plug and Process Loads

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lobato, C.; Sheppy, M.; Brackney, L.

    2012-09-01

    Plug and Process Loads (PPLs) are building loads that are not related to general lighting, heating, ventilation, cooling, and water heating, and typically do not provide comfort to the building occupants. PPLs in commercial buildings account for almost 5% of U.S. primary energy consumption. On an individual building level, they account for approximately 25% of the total electrical load in a minimally code-compliant commercial building, and can exceed 50% in an ultra-high efficiency building such as the National Renewable Energy Laboratory's (NREL) Research Support Facility (RSF) (Lobato et al. 2010). Minimizing these loads is a primary challenge in the designmore » and operation of an energy-efficient building. A complex array of technologies that measure and manage PPLs has emerged in the marketplace. Some fall short of manufacturer performance claims, however. NREL has been actively engaged in developing an evaluation and selection process for PPLs control, and is using this process to evaluate a range of technologies for active PPLs management that will cap RSF plug loads. Using a control strategy to match plug load use to users' required job functions is a huge untapped potential for energy savings.« less

  11. Air purification in industrial plants producing automotive rubber components in terms of energy efficiency

    NASA Astrophysics Data System (ADS)

    Grzebielec, Andrzej; Rusowicz, Artur; Szelągowski, Adam

    2017-04-01

    In automotive industry plants, which use injection molding machines for rubber processing, tar contaminates air to such an extent that air fails to enter standard heat recovery systems. Accumulated tar clogs ventilation heat recovery exchangers in just a few days. In the plant in which the research was conducted, tar contamination causes blockage of ventilation ducts. The effect of this phenomenon was that every half year channels had to be replaced with new ones, since the economic analysis has shown that cleaning them is not cost-efficient. Air temperature inside such plants is often, even in winter, higher than 30°C. The air, without any means of heat recovery, is discharged outside the buildings. The analyzed plant uses three types of media for production: hot water, cold water at 14°C (produced in a water chiller), and compressed air, generated in a unit with a rated power consumption of 180 kW. The aim of the study is to determine the energy efficiency improvement of this type of manufacturing plant. The main problem to solve is to provide an air purification process so that air can be used in heat recovery devices. The next problem to solve is to recover heat at such a temperature level that it would be possible to produce cold for technological purposes without air purification. Experimental studies have shown that air purification is feasible. By using one microjet head, a total of 75% of tar particles was removed from the air; by using 4 heads, a purification efficiency of 93% was obtained. This method of air purification causes air temperature to decrease from 35°C to 20°C, which significantly reduces the potential for heat recovery. The next step of the research was designing a cassette-plate heat exchanger to exchange heat without air purification. The economic analysis of such a solution revealed that replacing the heat exchanger with a new one even once a year was not cost-efficient. Another issue examined in the context of energy efficiency was the use of waste heat from the air compressor. Before any changes, the heat was picked up by a chilled water system. The idea was to use the heat for cold generation. Temperature of oil and air in the compressor exceeds 65°C, which makes it a perfect heat source for an adsorption refrigeration device. This solution reduced the cooling demand by 147 kW, thus reducing power consumption by 36.75 kW. This study shows that even in factories where air is heavily polluted with tar, there are huge potentials for energy recovery using existing technical solutions. It is important to note that problems of this kind should always be approached individually.

  12. Evaluation of Savings in Energy-Efficient Public Housing in the Pacific Northwest

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2013-10-01

    This report presents the results of an energy performance and cost-effectiveness analysis. The Salishan phase 7 and demonstration homes were compared to Salishan phase 6 homes built to 2006 Washington State Energy Code specifications 2. Predicted annual energy savings (over Salishan phase 6) was 19% for Salishan phase 7, and between 19-24% for the demonstration homes (depending on ventilation strategy). Approximately two-thirds of the savings are attributable to the DHP. Working with the electric utility provider, Tacoma Public Utilities, researchers conducted a billing analysis for Salishan phase 7. Median energy use for the development is 11,000 kWh; annual energy costsmore » are $780, with a fair amount of variation dependent on size of home. Preliminary analysis of savings between Salishan 7 and previous phases (4 through 6) suggest savings of between 20 and 30 percent. A more comprehensive comparison between Salishan 7 and previous phases will take place in year two of this project.« less

  13. Vertical axis wind rotors: Status and potential. [energy conversion efficiency and aerodynamic characteristics

    NASA Technical Reports Server (NTRS)

    Vance, W.

    1973-01-01

    The design and application of a vertical axis wind rotor is reported that operates as a two stage turbine wherein the wind impinging on the concave side is circulated through the center of the rotor to the back of the convex side, thus decreasing what might otherwise be a high negative pressure region. Successful applications of this wind rotor to water pumps, ship propulsion, and building ventilators are reported. Also shown is the feasibility of using the energy in ocean waves to drive the rotor. An analysis of the impact of rotor aspect ratio on rotor acceleration shows that the amount of venting between rotor vanes has a very significant effect on rotor speed for a given wind speed.

  14. Feed intake, digestibility and energy partitioning in beef cattle fed diets with cassava pulp instead of rice straw.

    PubMed

    Kongphitee, Kanokwan; Sommart, Kritapon; Phonbumrung, Thamrongsak; Gunha, Thidarat; Suzuki, Tomoyuki

    2018-03-13

    This study was conducted to assess the effects of replacing rice straw with different proportions of cassava pulp on growth performance, feed intake, digestibility, rumen microbial population, energy partitioning and efficiency of metabolizable energy utilization in beef cattle. Eighteen yearling Thai native beef cattle (Bos indicus) with an average initial body weight of 98.3 ± 12.8 kg were allocated to one of three dietary treatments and fed ad libitum for 149 days in a randomized complete block design. Three dietary treatments using different proportions of cassava pulp (100, 300 and 500 g/kg dry matter basis) instead of rice straw as a base in a fermented total mixed ration were applied. Animals were placed in a metabolic pen equipped with a ventilated head box respiration system to determine total digestibility and energy balance. The average daily weight gain, digestible intake and apparent digestibility of dry matter, organic matter and non-fiber carbohydrate, total protozoa, energy intake, energy retention and energy efficiency increased linearly (p < 0.05) with an increasing proportion of cassava pulp in the diet, whereas the three main types of fibrolytic bacteria and energy excretion in the urine (p < 0.05) decreased. The metabolizable energy requirement for the maintenance of yearling Thai native cattle, determined by a linear regression analysis, was 399 kJ/kg BW0.75, with an efficiency of metabolizable energy utilization for growth of 0.86. Our results demonstrated that increasing the proportion of cassava pulp up to 500 g/kg of dry matter as a base in a fermented total mixed ration is an effective strategy for improving productivity in zebu cattle.

  15. Comparison of freezing control strategies for residential air-to-air heat recovery ventilators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phillips, E.G.; Bradley, L.C.; Chant, R.E.

    1989-01-01

    A comparison of the energy performance of defrost and frost control strategies for residential air-to-air heat recovery ventilators (HRV) has been carried out by using computer simulations for various climatic conditions. This paper discusses the results and conclusions from the comparisons and their implications for the heat recovery ventilator manufacturers and system designers.

  16. Should Title 24 Ventilation Requirements Be Amended to include an Indoor Air Quality Procedure?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dutton, Spencer M.; Mendell, Mark J.; Chan, Wanyu R.

    Minimum outdoor air ventilation rates (VRs) for buildings are specified in standards, including California?s Title 24 standards. The ASHRAE ventilation standard includes two options for mechanically-ventilated buildings ? a prescriptive ventilation rate procedure (VRP) that specifies minimum VRs that vary among occupancy classes, and a performance-based indoor air quality procedure (IAQP) that may result in lower VRs than the VRP, with associated energy savings, if IAQ meeting specified criteria can be demonstrated. The California Energy Commission has been considering the addition of an IAQP to the Title 24 standards. This paper, based on a review of prior data and newmore » analyses of the IAQP, evaluates four future options for Title 24: no IAQP; adding an alternate VRP, adding an equivalent indoor air quality procedure (EIAQP), and adding an improved ASHRAE-like IAQP. Criteria were established for selecting among options, and feedback was obtained in a workshop of stakeholders. Based on this review, the addition of an alternate VRP is recommended. This procedure would allow lower minimum VRs if a specified set of actions were taken to maintain acceptable IAQ. An alternate VRP could also be a valuable supplement to ASHRAE?s ventilation standard.« less

  17. Smart HVAC Control in IoT: Energy Consumption Minimization with User Comfort Constraints

    PubMed Central

    Verikoukis, Christos

    2014-01-01

    Smart grid is one of the main applications of the Internet of Things (IoT) paradigm. Within this context, this paper addresses the efficient energy consumption management of heating, ventilation, and air conditioning (HVAC) systems in smart grids with variable energy price. To that end, first, we propose an energy scheduling method that minimizes the energy consumption cost for a particular time interval, taking into account the energy price and a set of comfort constraints, that is, a range of temperatures according to user's preferences for a given room. Then, we propose an energy scheduler where the user may select to relax the temperature constraints to save more energy. Moreover, thanks to the IoT paradigm, the user may interact remotely with the HVAC control system. In particular, the user may decide remotely the temperature of comfort, while the temperature and energy consumption information is sent through Internet and displayed at the end user's device. The proposed algorithms have been implemented in a real testbed, highlighting the potential gains that can be achieved in terms of both energy and cost. PMID:25054163

  18. Smart HVAC control in IoT: energy consumption minimization with user comfort constraints.

    PubMed

    Serra, Jordi; Pubill, David; Antonopoulos, Angelos; Verikoukis, Christos

    2014-01-01

    Smart grid is one of the main applications of the Internet of Things (IoT) paradigm. Within this context, this paper addresses the efficient energy consumption management of heating, ventilation, and air conditioning (HVAC) systems in smart grids with variable energy price. To that end, first, we propose an energy scheduling method that minimizes the energy consumption cost for a particular time interval, taking into account the energy price and a set of comfort constraints, that is, a range of temperatures according to user's preferences for a given room. Then, we propose an energy scheduler where the user may select to relax the temperature constraints to save more energy. Moreover, thanks to the IoT paradigm, the user may interact remotely with the HVAC control system. In particular, the user may decide remotely the temperature of comfort, while the temperature and energy consumption information is sent through Internet and displayed at the end user's device. The proposed algorithms have been implemented in a real testbed, highlighting the potential gains that can be achieved in terms of both energy and cost.

  19. Energy Efficiency Building Systems Regional Innovation Cluster Initiative

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krebs, Martha

    The Consortium for Building Energy Innovation (CBEI) was established through a Funding Opportunity Announcement led by the U.S. Department of Energy, under a cooperative agreement managed by the National Energy Technology Laboratory. CBEI is led by The Pennsylvania State University and is composed of partners from academia, the private sector, and economic development agencies. The Consortium has included as many as 24 different partners over the five years, but 14 have been core to the work over the five year cooperative agreement. CBEI primarily focused on developing energy efficiency solutions for the small and medium commercial building market, with amore » focus on buildings less than 50,000 square feet. This market has been underserved by the energy efficiency industry, which has focused on larger commercial buildings where the scale of an individual retrofit lends itself to the use of sophisticated modeling tools and more advanced solutions. Owners/operators and retrofit providers for larger buildings have a greater level of understanding of, and experience with different solutions. In contrast, smaller commercial building retrofits, like residential retrofits, often have owners with less knowledge about energy management and less time to learn about it. This market segment is also served by retrofit providers that are smaller and often focused on particular building systems, e.g. heating, ventilation and air conditioning (HVAC), lighting, roofing, or insulation. The size of a smaller commercial building retrofit does not lend itself, from a cost perspective, to the application of multiple, sophisticated design and modeling tools, which means that they are less likely to have integrated solutions.« less

  20. Solar Thermal Demonstration Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biesinger, K; Cuppett, D; Dyer, D

    2012-01-30

    HVAC Retrofit and Energy Efficiency Upgrades at Clark High School, Las Vegas, Nevada The overall objectives of this project are to increase usage of alternative/renewable fuels, create a better and more reliable learning environment for the students, and reduce energy costs. Utilizing the grant resources and local bond revenues, the District proposes to reduce electricity consumption by installing within the existing limited space, one principal energy efficient 100 ton adsorption chiller working in concert with two 500 ton electric chillers. The main heating source will be primarily from low nitrogen oxide (NOX), high efficiency natural gas fired boilers. With themore » use of this type of chiller, the electric power and cost requirements will be greatly reduced. To provide cooling to the information technology centers and equipment rooms of the school during off-peak hours, the District will install water source heat pumps. In another measure to reduce the cooling requirements at Clark High School, the District will replace single pane glass and metal panels with Kalwall building panels. An added feature of the Kalwall system is that it will allow for natural day lighting in the student center. This system will significantly reduce thermal heat/cooling loss and control solar heat gain, thus delivering significant savings in heating ventilation and air conditioning (HVAC) costs.« less

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ottney, T.C.

    Filtration systems that are incorrectly selected, installed and maintained can cause excessive particulates in occupied spaces. This article describes how to identify and correct problems. Particulate matter can be removed from ventilation air at several sites within a building. These sites include: on heat exchanger surfaces; inside ductwork, ceiling tiles and diffusers; and in the air filter. The cost associated with removing these unwanted contaminants is unavoidable. However, this removal cost varies depending on where the particulates have been deposited. Not all particulates that are generated by work-related activities are transported to the filter bank by return air currents beforemore » being deposited on other surfaces. Accordingly, walls still have to be repainted at varying intervals and carpeting vacuumed. Ceiling tiles will discolor at a rate that is influenced by their texture, the air outlet velocity, the amount of dirt in the ventilation air and how much contaminant is being generated in the room. It is estimated that 15% of ventilation air escapes the air filtration process. This leakage results in higher utility, janitorial and redecorating costs as well as contributing to employee absenteeism. When building management does not prevent it, air-conditioning coils and ductwork become an unintended part of the building's air filtration system. In time, this is much more expensive both in energy and cleaning costs than the steps available to keep them clean. Good particulate control can lower the total cost of building operation. However, a building operator may not have to upgrade to a higher efficiency filter to achieve higher system efficiency. Simply eliminating the source of leaks and better management of the existing filters may be all that is necessary.« less

  2. Harnessing natural ventilation benefits.

    PubMed

    O'Leary, John

    2013-04-01

    Making sure that a healthcare establishment has a good supply of clean fresh air is an important factor in keeping patients, staff, and visitors, free from the negative effects of CO2 and other contaminants. John O'Leary of Trend Controls, a major international supplier of building energy management solutions (BEMS), examines the growing use of natural ventilation, and the health, energy-saving, and financial benefits, that it offers.

  3. High Performance Mars Liquid Cooling and Ventilation Garment Project

    NASA Technical Reports Server (NTRS)

    Terrier, Douglas; Clayton, Ronald; Whitlock, David; Conger, Bruce

    2015-01-01

    EVA space suit mobility in micro-gravity is enough of a challenge and in the gravity of Mars, improvements in mobility will enable the suited crew member to efficiently complete EVA objectives. The idea proposed is to improve thermal efficiencies of the liquid cooling and ventilation garment (LCVG) in the torso area in order to free up the arms and legs by removing the liquid tubes currently used in the ISS EVA suit in the limbs. By using shaped water tubes that greatly increase the contact area with the skin in the torso region of the body, the heat transfer efficiency can be increased to provide the entire liquid cooling requirement and increase mobility by freeing up the arms and legs. Additional potential benefits of this approach include reduced LCVG mass, enhanced evaporation cooling, increased comfort during Mars EVA tasks, and easing of the overly dry condition in the helmet associated with the Advanced Extravehicular Mobility Unit (EMU) ventilation loop currently under development.

  4. Design local exhaust ventilation on sieve machine at PT.Perkebunan Nusantara VIII Ciater using design for assembly (DFA) approach with Boothroyd and Dewhurst method

    NASA Astrophysics Data System (ADS)

    Khalqihi, K. I.; Rahayu, M.; Rendra, M.

    2017-12-01

    PT Perkebunan Nusantara VIII Ciater is a company produced black tea orthodox more or less 4 tons every day. At the production section, PT Perkebunan Nusantara VIII will use local exhaust ventilation specially at sortation area on sieve machine. To maintain the quality of the black tea orthodox, all machine must be scheduled for maintenance every once a month and takes time 2 hours in workhours, with additional local exhaust ventilation, it will increase time for maintenance process, if maintenance takes time more than 2 hours it will caused production process delayed. To support maintenance process in PT Perkebunan Nusantara VIII Ciater, designing local exhaust ventilation using design for assembly approach with Boothroyd and Dewhurst method, design for assembly approach is choosen to simplify maintenance process which required assembly process. There are 2 LEV designs for this research. Design 1 with 94 components, assembly time 647.88 seconds and assembly efficiency level 23.62%. Design 2 with 82 components, assembly time 567.84 seconds and assembly efficiency level 24.83%. Design 2 is choosen for this research based on DFA goals, minimum total part that use, optimization assembly time, and assembly efficiency level.

  5. Numerical analysis of natural ventilation system in a studio apartment in Bangladesh

    NASA Astrophysics Data System (ADS)

    Kabir, K. M. Ariful; Hasan, Md. Rakibul; Khan, Md. Abdul Hakim

    2017-07-01

    The study of temperature and air flow for natural ventilation system has been investigated numerically. A finite element model for studio apartment was developed with the aim of achieving detail energy allocation in the real buildings during the transient process in the walls and internal air. A tool of computational fluid dynamics (CFD) is employed to assist the process. In the tropical regions most of the energy is consumed by the heating, cooling and ventilation appliances. Therefore, the optimize ventilation system will be a suitable and valid option for the saving of energy from the household sector to increase cooling performance and ensuring thermal comfort as well. A mathematical exploration is carried out on full scale dwelling and small scale model and indication is given on the relevance of such a comparison. Calculations are carried out with household heat sources for calm and windy period, but without any human. As expected, for windy periods, the wind is the main driving force behind the internal air flow. However, in calm periods for unsteady flow the internal airflow looks like more complexes through observation.

  6. 24 CFR 3280.309 - Health Notice on formaldehyde emissions.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... efficiency standards may allow formaldehyde and other contaminants to accumulate in the indoor air. Additional ventilation to dilute the indoor air may be obtained from a passive or mechanical ventilation... offered with this home. High indoor temperatures and humidity raise formaldehyde levels. When a home is to...

  7. DIRECT MEASUREMENT TECHNIQUE FOR THE DETERMINING VENTILATION RATE IN THE DEPOSIT FEEDING CLAM, MACOMA NASUTA (BIVALVIA, TELLINACEAE)

    EPA Science Inventory

    An exposure chamber, the "clambox", was developed to measure ventilation rate, sediment processing rate, and efficiency of pollutant uptake byMacoma nasuta Conrad, a surface surface deposit-feeding clams. Clams, collected from Yaquina, Bay, Oregon, USA, were cemented into a hole ...

  8. [Optimal energy supply in different age groups of critically ill children on mechanical ventilation].

    PubMed

    Li, X H; Ji, J; Qian, S Y

    2018-01-02

    Objective: To analyze the resting energy expenditure and optimal energy supply in different age groups of critically ill children on mechanical ventilation in pediatric intensive care unit (PICU). Methods: Patients on mechanical ventilation hospitalized in PICU of Beijing Children's Hospital from March 2015 to March 2016 were enrolled prospectively. Resting energy expenditure of patients was calculated by US Med Graphic company critical care management (CCM) energy metabolism test system after mechanical ventilation. Patients were divided into three groups:<3 years, 3-10 years, and >10 years. The relationship between the measured and predictive resting energy expenditure was analyzed with correlation analysis; while the metabolism status and the optimal energy supply in different age groups were analyzed with chi square test and variance analysis. Results: A total of 102 patients were enrolled, the measured resting energy expenditure all correlated with predictive resting energy expenditure in different age groups (<3 years ( r= 0.3, P= 0.0) ; 3~10 years ( r= 0.6, P= 0.0) ;>10 years ( r= 0.5, P= 0.0) ) . A total of 40 cases in < 3 years group, including: 14 cases of low metabolism (35%), 14 cases of normal metabolism (35%), and 12 cases of high metabolism (30%); 45 cases in 3-10 years group, including: 22 cases of low metabolism (49%), 19 cases of normal metabolism (42%), 4 cases of high metabolism (9%); 17 cases in > 10 years group, including: 12 cases of low metabolism (71%), 4 cases of normal metabolism (23%), 1 case of high metabolism (6%). Metabolism status showed significant differences between different age groups ( χ (2)=11.30, P <0.01, r= -0.01). Infants had higher metabolic status, which lessened with aging. The total average actual energy requirement was (210±84) kJ/ (kg⋅d) . There were significant differences in actual energy requirement between age groups ( F= 46.57, P< 0.001), with (277±77) kJ/ (kg⋅d) in < 3 years group, (184±53) kJ/ (kg⋅d) in 3-10 years group, and (120±30) kJ/ (kg⋅d) in > 10 years group. Conclusion: The resting energy metabolism of the critically ill children on mechanical ventilation is negatively related to the age. The actual energy requirement should be calculated according to different ages.

  9. Evaluation of manual and automatic manually triggered ventilation performance and ergonomics using a simulation model.

    PubMed

    Marjanovic, Nicolas; Le Floch, Soizig; Jaffrelot, Morgan; L'Her, Erwan

    2014-05-01

    In the absence of endotracheal intubation, the manual bag-valve-mask (BVM) is the most frequently used ventilation technique during resuscitation. The efficiency of other devices has been poorly studied. The bench-test study described here was designed to evaluate the effectiveness of an automatic, manually triggered system, and to compare it with manual BVM ventilation. A respiratory system bench model was assembled using a lung simulator connected to a manikin to simulate a patient with unprotected airways. Fifty health-care providers from different professional groups (emergency physicians, residents, advanced paramedics, nurses, and paramedics; n = 10 per group) evaluated manual BVM ventilation, and compared it with an automatic manually triggered device (EasyCPR). Three pathological situations were simulated (restrictive, obstructive, normal). Standard ventilation parameters were recorded; the ergonomics of the system were assessed by the health-care professionals using a standard numerical scale once the recordings were completed. The tidal volume fell within the standard range (400-600 mL) for 25.6% of breaths (0.6-45 breaths) using manual BVM ventilation, and for 28.6% of breaths (0.3-80 breaths) using the automatic manually triggered device (EasyCPR) (P < .0002). Peak inspiratory airway pressure was lower using the automatic manually triggered device (EasyCPR) (10.6 ± 5 vs 15.9 ± 10 cm H2O, P < .001). The ventilation rate fell consistently within the guidelines, in the case of the automatic manually triggered device (EasyCPR) only (10.3 ± 2 vs 17.6 ± 6, P < .001). Significant pulmonary overdistention was observed when using the manual BVM device during the normal and obstructive sequences. The nurses and paramedics considered the ergonomics of the automatic manually triggered device (EasyCPR) to be better than those of the manual device. The use of an automatic manually triggered device may improve ventilation efficiency and decrease the risk of pulmonary overdistention, while decreasing the ventilation rate.

  10. Using spacecraft trace contaminant control systems to cure sick building syndrome

    NASA Technical Reports Server (NTRS)

    Graf, John C.

    1994-01-01

    Many residential and commercial buildings with centralized, recirculating, heating ventilation and air conditioning systems suffer from 'Sick Building Syndrome.' Ventilation rates are reduced to save energy costs, synthetic building materials off-gas contaminants, and unsafe levels of volatile organic compounds (VOC's) accumulate. These unsafe levels of contaminants can cause irritation of eyes and throat, fatigue and dizziness to building occupants. Increased ventilation, the primary method of treating Sick Building Syndrome is expensive (due to increased energy costs) and recently, the effectiveness of increased ventilation has been questioned. On spacecraft venting is not allowed, so the primary methods of air quality control are; source control, active filtering, and destruction of VOC's. Four non-venting contaminant removal technologies; strict material selection to provide source control, ambient temperature catalytic oxidation, photocatalytic oxidation, and uptake by higher plants, may have potential application for indoor air quality control.

  11. Simulation Speed Analysis and Improvements of Modelica Models for Building Energy Simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jorissen, Filip; Wetter, Michael; Helsen, Lieve

    This paper presents an approach for speeding up Modelica models. Insight is provided into how Modelica models are solved and what determines the tool’s computational speed. Aspects such as algebraic loops, code efficiency and integrator choice are discussed. This is illustrated using simple building simulation examples and Dymola. The generality of the work is in some cases verified using OpenModelica. Using this approach, a medium sized office building including building envelope, heating ventilation and air conditioning (HVAC) systems and control strategy can be simulated at a speed five hundred times faster than real time.

  12. New control design principles based on measured performance and energy analysis of HVAC (Heating, Ventilating, and Air-Conditioning) systems

    NASA Astrophysics Data System (ADS)

    Hittle, D. C.; Johnson, D. L.

    1985-01-01

    This report is one of a series on the development of heating, ventilating, and air-conditioning (HVAC) control systems that are simple, efficient, reliable, maintainable, and well-documented. This report identifies major problems associated with three currently used HVAC control systems. It also describes the development of a retrofit control system applicable to military buildings that will allow easy identification of component failures, facilitate repair, and minimize system failures. Evaluation of currently used controls showed that pneumatic temperature control equipment requires a very clean source of supply air and is also not very accurate. Pneumatic, rather than electronic, actuators should be used because they are cheaper and require less maintenance. Thermistor temperature detectors should not be used for HVAC applications because they require frequent calibration. It was found that enthalpy economy cycles cannot be used for control because the humidity sensors required for their use are prone to rapid drift, inaccurate, and hard to calibrate in the field. Performance of control systems greatly affects HVAC operating costs. Significant savings can be achieved if proportional-plus-integral control schemes are used. Use of the retrofit prototype control panel developed in this study on variable-air-volume systems should provide significant energy cost savings, improve comfort and reliability, and reduce maintenance costs.

  13. Comparative Performance of Two Ventilation Strategies in a Hot-Humid Climate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Widder, Sarah; Martin, Eric; Chasar, Dave

    2017-02-01

    In fiscal year 2013, Pacific Northwest National Laboratory (PNNL), Florida Solar Energy Center (FSEC), and Florida Home Energy and Resources Organization (Florida HERO) began a collaborative effort to evaluate the impact of ventilation rate on interior comfort conditions, space-conditioning energy use, and indoor air contaminant concentrations. Relevant parameters were measured in 10 homes in Gainesville, Florida, along with corresponding outdoor conditions, to characterize the impact of differing ventilation rates. This report provides information about the data collection method and results from more than 1 year of data collection during a period from summer 2013 through summer 2014. Indoor air qualitymore » was sampled in three discrete periods with the first occurring in August/September 2013, the second occurring in March/April 2014, and the third occurring in August 2014.« less

  14. Comparative Performance of Two Ventilation Strategies in a Hot-Humid Climate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Widder, Sarah; Martin, Eric; Chasar, Dave

    In fiscal year 2013, Pacific Northwest National Laboratory (PNNL), Florida Solar Energy Center (FSEC), and Florida Home Energy and Resources Organization (Florida HERO) began a collaborative effort to evaluate the impact of ventilation rate on interior comfort conditions, space-conditioning energy use, and indoor air contaminant concentrations. Relevant parameters were measured in 10 homes in Gainesville, Florida, along with corresponding outdoor conditions, to characterize the impact of differing ventilation rates. This report provides information about the data collection method and results from more than 1 year of data collection during a period from summer 2013 through summer 2014. Indoor air qualitymore » was sampled in three discrete periods with the first occurring in August/September 2013, the second occurring in March/April 2014, and the third occurring in August 2014.« less

  15. Energy sustainable cities. From eco villages, eco districts towards zero carbon cities

    NASA Astrophysics Data System (ADS)

    Zaręba, Anna; Krzemińska, Alicja; Łach, Janusz

    2017-11-01

    Minimizing energy consumption is the effect of sustainable design technics as among many others: designing buildings with solar access and natural ventilation, using climate responsive design materials and effective insulation. Contemporary examples of zero-carbon cities: Masdar City, United Arab Emirates and Dongtan, China, confirm technical feasibility of renewable energy by implementation of solar PV and wind technologies. The ecological city - medium or high density urban settlement separated by greenspace causes the smallest possible ecological footprint on the surrounding countryside through efficient use of land and its resources, recycling used materials and converting waste to energy. This paper investigates the concept of energy sustainable cities, examines, how urban settlements might affect building energy design in eco-villages, eco-districts (e.g. Vauban, Freiburg in Germany, Bo01 Malmo in Sweden), and discuss the strategies for achieving Zero Emission Cities principles in densely populated areas. It is focused on low energy architectural design solutions which could be incorporated into urban settlements to create ecological villages, districts and cities, designed with consideration of environmental impact, required minimal inputs of energy, water, food, waste and pollution.

  16. Worsening respiratory function in mechanically ventilated intensive care patients: feasibility and value of xenon-enhanced dual energy CT.

    PubMed

    Hoegl, Sandra; Meinel, Felix G; Thieme, Sven F; Johnson, Thorsten R C; Eickelberg, Oliver; Zwissler, Bernhard; Nikolaou, Konstantin

    2013-03-01

    To evaluate the feasibility and incremental diagnostic value of xenon-enhanced dual-energy CT in mechanically ventilated intensive care patients with worsening respiratory function. The study was performed in 13 mechanically ventilated patients with severe pulmonary conditions (acute respiratory distress syndrome (ARDS), n=5; status post lung transplantation, n=5; other, n=3) and declining respiratory function. CT scans were performed using a dual-source CT scanner at an expiratory xenon concentration of 30%. Both ventilation images (Xe-DECT) and standard CT images were reconstructed from a single CT scan. Findings were recorded for Xe-DECT and standard CT images separately. Ventilation defects on xenon images were matched to morphological findings on standard CT images and incremental diagnostic information of xenon ventilation images was recorded if present. Mean xenon consumption was 2.95 l per patient. No adverse events occurred under xenon inhalation. In the visual CT analysis, the Xe-DECT ventilation defects matched with pathologic changes in lung parenchyma seen in the standard CT images in all patients. Xe-DECT provided additional diagnostic findings in 4/13 patients. These included preserved ventilation despite early pneumonia (n=1), more confident discrimination between a large bulla and pneumothorax (n=1), detection of an airway-to-pneumothorax fistula (n=1) and exclusion of a suspected airway-to-mediastinum fistula (n=1). In all 4 patients, the additional findings had a substantial impact on patients' management. Xenon-enhanced DECT is safely feasible and can add relevant diagnostic information in mechanically ventilated intensive care patients with worsening respiratory function. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  17. The ventilation problem in schools: literature review

    DOE PAGES

    Fisk, W. J.

    2017-07-06

    Based on a review of literature published in refereed archival journals, ventilation rates in classrooms often fall far short of the minimum ventilation rates specified in standards. We report that there is compelling evidence, from both cross-sectional and intervention studies, of an association of increased student performance with increased ventilation rates. There is evidence that reduced respiratory health effects and reduced student absence are associated with increased ventilation rates. Increasing ventilation rates in schools imposes energy costs and can increase heating, ventilating, and air-conditioning system capital costs. The net annual costs, ranging from a few dollars to about 10 dollarsmore » per person, are less than 0.1% of typical public spending on elementary and secondary education in the United States. Finally, such expenditures seem like a small price to pay given the evidence of health and performance benefits.« less

  18. The ventilation problem in schools: literature review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fisk, W. J.

    Based on a review of literature published in refereed archival journals, ventilation rates in classrooms often fall far short of the minimum ventilation rates specified in standards. We report that there is compelling evidence, from both cross-sectional and intervention studies, of an association of increased student performance with increased ventilation rates. There is evidence that reduced respiratory health effects and reduced student absence are associated with increased ventilation rates. Increasing ventilation rates in schools imposes energy costs and can increase heating, ventilating, and air-conditioning system capital costs. The net annual costs, ranging from a few dollars to about 10 dollarsmore » per person, are less than 0.1% of typical public spending on elementary and secondary education in the United States. Finally, such expenditures seem like a small price to pay given the evidence of health and performance benefits.« less

  19. Temperature of gas delivered from ventilators.

    PubMed

    Chikata, Yusuke; Onodera, Mutsuo; Imanaka, Hideaki; Nishimura, Masaji

    2013-01-01

    Although heated humidifiers (HHs) are the most efficient humidifying device for mechanical ventilation, some HHs do not provide sufficient humidification when the inlet temperature to the water chamber is high. Because portable and home-care ventilators use turbines, blowers, pistons, or compressors to inhale in ambient air, they may have higher gas temperature than ventilators with piping systems. We carried out a bench study to investigate the temperature of gas delivered from portable and home-care ventilators, including the effects of distance from ventilator outlet, fraction of inspiratory oxygen (FIO2), and minute volume (MV). We evaluated five ventilators equipped with turbine, blower, piston, or compressor system. Ambient air temperature was adjusted to 24°C ± 0.5°C, and ventilation was set at FIO2 0.21, 0.6, and 1.0, at MV 5 and 10 L/min. We analyzed gas temperature at 0, 40, 80, and 120 cm from ventilator outlet and altered ventilator settings. While temperature varied according to ventilators, the outlet gas temperature of ventilators became stable after, at the most, 5 h. Gas temperature was 34.3°C ± 3.9°C at the ventilator outlet, 29.5°C ± 2.2°C after 40 cm, 25.4°C ± 1.2°C after 80 cm and 25.1°C ± 1.2°C after 120 cm (P < 0.01). FIO2 and MV did not affect gas temperature. Gas delivered from portable and home-care ventilator was not too hot to induce heated humidifier malfunctioning. Gas soon declined when passing through the limb.

  20. Simplified tools for evaluating domestic ventilation systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maansson, L.G.; Orme, M.

    1999-07-01

    Within an International Energy Agency (IEA) project, Annex 27, experts from 8 countries (Canada, France, Italy, Japan, The Netherlands, Sweden, UK and USA) have developed simplified tools for evaluating domestic ventilation systems during the heating season. Tools for building and user aspects, thermal comfort, noise, energy, life cycle cost, reliability and indoor air quality (IAQ) have been devised. The results can be used both for dwellings at the design stage and after construction. The tools lead to immediate answers and indications about the consequences of different choices that may arise during discussion with clients. This paper presents an introduction tomore » these tools. Examples applications of the indoor air quality and energy simplified tools are also provided. The IAQ tool accounts for constant emission sources, CO{sub 2}, cooking products, tobacco smoke, condensation risks, humidity levels (i.e., for judging the risk for mould and house dust mites), and pressure difference (for identifying the risk for radon or land fill spillage entering the dwelling or problems with indoor combustion appliances). An elaborated set of design parameters were worked out that resulted in about 17,000 combinations. By using multi-variate analysis it was possible to reduce this to 174 combinations for IAQ. In addition, a sensitivity analysis was made using 990 combinations. The results from all the runs were used to develop a simplified tool, as well as quantifying equations relying on the design parameters. A computerized energy tool has also been developed within this project, which takes into account air tightness, climate, window airing pattern, outdoor air flow rate and heat exchange efficiency.« less

  1. Transient-state mechanisms of wind-induced burrow ventilation.

    PubMed

    Turner, J Scott; Pinshow, Berry

    2015-01-15

    Burrows are common animal habitations, yet living in a burrow presents physiological challenges for its inhabitants because the burrow isolates them from sources and sinks for oxygen, carbon dioxide, water vapor and ammonia. Conventionally, the isolation is thought to be overcome by either diffusion gas exchange within the burrow or some means of capturing wind energy to power steady or quasi-steady bulk flows of air through it. Both are examples of what may be called 'DC' models, namely steady to quasi-steady flows powered by steady to quasi-steady winds. Natural winds, however, are neither steady nor quasi-steady, but are turbulent, with a considerable portion of the energy contained in so-called 'AC' (i.e. unsteady) components, where wind velocity varies chaotically and energy to power gas exchange is stored in some form. Existing DC models of burrow gas exchange do not account for this potentially significant source of energy for ventilation. We present evidence that at least two AC mechanisms operate to ventilate both single-opening burrows (of the Cape skink, Trachylepis capensis) and double-opening model burrows (of Sundevall's jird, Meriones crassus). We propose that consideration of the physiological ecology and evolution of the burrowing habit has been blinkered by the long neglect of AC ventilation. © 2015. Published by The Company of Biologists Ltd.

  2. Evaluation of design ventilation requirements for enclosed parking facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ayari, A.; Krarti, M.

    2000-07-01

    This paper proposes a new design approach to determine the ventilation requirements for enclosed parking garages. The design approach accounts for various factors that affect the indoor air quality within a parking facility, including the average CO emission rate, the average travel time, the number of cars, and the acceptable CO level within the parking garage. This paper first describes the results of a parametric analysis based on the design method that was developed. Then the design method is presented to explain how the ventilation flow rate can be determined for any enclosed parking facility. Finally, some suggestions are proposedmore » to save fan energy for ventilating parking garages using demand ventilation control strategies.« less

  3. Microclimate measuring and fluid‑dynamic simulation in an industrial broiler house: testing of an experimental ventilation system.

    PubMed

    Bianchi, Biagio; Giametta, Ferruccio; La Fianza, Giovanna; Gentile, Andrea; Catalano, Pasquale

    2015-01-01

    The environment in the broiler house is a combination of physical and biological factors generating a complex dynamic system of interactions between birds, husbandry system, light, temperature, and the aerial environment. Ventilation plays a key role in this scenario. It is pivotal to remove carbon dioxide and water vapor from the air of the hen house. Adequate ventilation rates provide the most effective method of controlling temperature within the hen house. They allow for controlling the relative humidity and can play a key role in alleviating the negative effects of high stocking density and of wet litter. In the present study the results of experimental tests performed in a breeding broiler farm are shown. In particular the efficiency of a semi transversal ventilation system was studied against the use of a pure transversal one. In order to verify the efficiency of the systems, fluid dynamic simulations were carried out using the software Comsol multiphysics. The results of this study show that a correct architectural and structural design of the building must be supported by a design of the ventilation system able to maintain the environmental parameters within the limits of the thermo‑neutral and welfare conditions and to achieve the highest levels of productivity.

  4. Assessment of regional emphysema, air-trapping and Xenon-ventilation using dual-energy computed tomography in chronic obstructive pulmonary disease patients.

    PubMed

    Lee, Sang Min; Seo, Joon Beom; Hwang, Hye Jeon; Kim, Namkug; Oh, Sang Young; Lee, Jae Seung; Lee, Sei Won; Oh, Yeon-Mok; Kim, Tae Hoon

    2017-07-01

    To compare the parenchymal attenuation change between inspiration/expiration CTs with dynamic ventilation change between xenon wash-in (WI) inspiration and wash-out (WO) expiration CTs. 52 prospectively enrolled COPD patients underwent xenon ventilation dual-energy CT during WI and WO periods and pulmonary function tests (PFTs). The parenchymal attenuation parameters (emphysema index (EI), gas-trapping index (GTI) and air-trapping index (ATI)) and xenon ventilation parameters (xenon in WI (Xe-WI), xenon in WO (Xe-WO) and xenon dynamic (Xe-Dyna)) of whole lung and three divided areas (emphysema, hyperinflation and normal) were calculated on virtual non-contrast images and ventilation images. Pearson correlation, linear regression analysis and one-way ANOVA were performed. EI, GTI and ATI showed a significant correlation with Xe-WI, Xe-WO and Xe-Dyna (EI R = -.744, -.562, -.737; GTI R = -.621, -.442, -.629; ATI R = -.600, -.421, -.610, respectively, p < 0.01). All CT parameters showed significant correlation with PFTs except forced vital capacity (FVC). There was a significant difference in GTI, ATI and Xe-Dyna in each lung area (p < 0.01). The parenchymal attenuation change between inspiration/expiration CTs and xenon dynamic change between xenon WI- and WO-CTs correlate significantly. There are alterations in the dynamics of xenon ventilation between areas of emphysema. • The xenon ventilation change correlates with the parenchymal attenuation change. • The xenon ventilation change shows the difference between three lung areas. • The combination of attenuation and xenon can predict more accurate PFTs.

  5. Ventilation rates in recently constructed U.S. school classrooms.

    PubMed

    Batterman, S; Su, F-C; Wald, A; Watkins, F; Godwin, C; Thun, G

    2017-09-01

    Low ventilation rates (VRs) in schools have been associated with absenteeism, poorer academic performance, and teacher dissatisfaction. We measured VRs in 37 recently constructed or renovated and mechanically ventilated U.S. schools, including LEED and EnergyStar-certified buildings, using CO 2 and the steady-state, build-up, decay, and transient mass balance methods. The transient mass balance method better matched conditions (specifically, changes in occupancy) and minimized biases seen in the other methods. During the school day, air change rates (ACRs) averaged 2.0±1.3 hour -1 , and only 22% of classrooms met recommended minimum ventilation rates. HVAC systems were shut off at the school day close, and ACRs dropped to 0.21±0.19 hour -1 . VRs did not differ by building type, although cost-cutting and comfort measures resulted in low VRs and potentially impaired IAQ. VRs were lower in schools that used unit ventilators or radiant heating, in smaller schools and in larger classrooms. The steady-state, build-up, and decay methods had significant limitations and biases, showing the need to confirm that these methods are appropriate. Findings highlight the need to increase VRs and to ensure that energy saving and comfort measures do not compromise ventilation and IAQ. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Effectiveness of in-room air filtration and dilution ventilation for tuberculosis infection control.

    PubMed

    Miller-Leiden, S; Lobascio, C; Nazaroff, W W; Macher, J M

    1996-09-01

    Tuberculosis (TB) is a public health problem that may pose substantial risks to health care workers and others. TB infection occurs by inhalation of airborne bacteria emitted by persons with active disease. We experimentally evaluated the effectiveness of in-room air filtration systems, specifically portable air filters (PAFs) and ceiling-mounted air filters (CMAFs), in conjunction with dilution ventilation, for controlling TB exposure in high-risk settings. For each experiment, a test aerosol was continuously generated and released into a full-sized room. With the in-room air filter and room ventilation system operating, time-averaged airborne particle concentrations were measured at several points. The effectiveness of in-room air filtration plus ventilation was determined by comparing particle concentrations with and without device operation. The four PAFs and three CMAFs we evaluated reduced room-average particle concentrations, typically by 30% to 90%, relative to a baseline scenario with two air-changes per hour of ventilation (outside air) only. Increasing the rate of air flow recirculating through the filter and/or air flow from the ventilation did not always increase effectiveness. Concentrations were generally higher near the emission source than elsewhere in the room. Both the air flow configuration of the filter and its placement within the room were important, influencing room air flow patterns and the spatial distribution of concentrations. Air filters containing efficient, but non-high efficiency particulate air (HEPA) filter media were as effective as air filters containing HEPA filter media.

  7. Effectiveness of In-Room Air Filtration and Dilution Ventilation for Tuberculosis Infection Control.

    PubMed

    Miller-Leiden, S; Lohascio, C; Nazaroff, W W; Macher, J M

    1996-09-01

    Tuberculosis (TB) is a public health problem that may pose substantial risks to health care workers and others. TB infection occurs by inhalation of airborne bacteria emitted by persons with active disease. We experimentally evaluated the effectiveness of in-room air filtration systems, specifically portable air filters (PAFs) and ceiling-mounted air filters (CMAFs), in conjunction with dilution ventilation, for controlling TB exposure in high-risk settings. For each experiment, a test aerosol was continuously generated and released into a full-sized room. With the in-room air filter and room ventilation system operating, time-averaged airborne particle concentrations were measured at several points. The effectiveness of in-room air filtration plus ventilation was determined by comparing particle concentrations with and without device operation. The four PAFs and three CMAFs we evaluated reduced room-average particle concentrations, typically by 30% to 90%, relative to a baseline scenario with two air-changes per hour of ventilation (outside air) only. Increasing the rate of air flow recirculating through the filter and/or air flow from the ventilation did not always increase effectiveness. Concentrations were generally higher near the emission source than elsewhere in the room. Both the air flow configuration of the filter and its placement within the room were important, influencing room air flow patterns and the spatial distribution of concentrations. Air filters containing efficient, but non-high efficiency particulate air (HEPA) filter media were as effective as air filters containing HEPA filter media.

  8. Evaluation of the Ventilated Flight Suit for OV-1 (Mohawk) Crews.

    DTIC Science & Technology

    the ’ greenhouse effect ’ increases the temperature in the cockpit to approximately 100F. These temperatures create undesirable operating conditions and decrease the overall crew efficiency. The ventilated flight suit system was evaluated by means of questionnaires and interviews of the commanders, aviators, and maintenance personnel to determine its operational

  9. Heating, Ventilation, Air Conditioning. Resource Manual for Custodial Training Course #3.

    ERIC Educational Resources Information Center

    Florida State Dept. of Education, Tallahassee. School Plant Management Section.

    Intended as a manual to provide school custodians with some understanding of basic functions of heating, ventilating, and air conditioning equipment for safe, efficient operation. Contains general rules and specifications for providing custodians with a more complete awareness of their equipment and the field of "Climate Control" within the…

  10. Health and Safety Audit Design Manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ternes, Mark P.; Langley, Brandon R.; Accawi, Gina K.

    The Health and Safety Audit is an electronic audit tool developed by the Oak Ridge National Laboratory to assist in the identification and selection of health and safety measures when a home is being weatherized (i.e., receiving home energy upgrades), especially as part of the US Department of Energy (DOE) Weatherization Assistance Program, or during home energy-efficiency retrofit or remodeling jobs. The audit is specifically applicable to existing single-family homes (including mobile homes), and is generally applicable to individual dwelling units in low-rise multifamily buildings. The health and safety issues covered in the audit are grouped in nine categories: moldmore » and moisture, lead, radon, asbestos, formaldehyde and volatile organic compounds (VOCs), combustion, pest infestation, safety, and ventilation. Development of the audit was supported by the US Department of Housing and Urban Development Office of Healthy Homes and Lead Hazard Control and the DOE Weatherization Assistance Program.« less

  11. Performance Evaluation of Advanced Retrofit Roof Technologies Using Field-Test Data Phase Three Final Report, Volume 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biswas, Kaushik; Childs, Phillip W.; Atchley, Jerald Allen

    2015-01-01

    This article presents some miscellaneous data from two low-slope and two steep-slope experimental roofs. The low-slope roofs were designed to compare the performance of various roof coatings exposed to natural weatherization. The steep-slope roofs contained different combinations of phase change material, rigid insulation, low emittance surface and above-sheathing ventilation, with standing-seam metal panels on top. The steep-slope roofs were constructed on a series of adjacent attics separated at the gables using thick foam insulation. This article describes phase three (3) of a study that began in 2009 to evaluate the energy benefits of a sustainable re-roofing technology utilizing standing-seam metalmore » roofing panels combined with energy efficient features like above-sheathing-ventilation (ASV), phase change material (PCM) and rigid insulation board. The data from phases 1 and 2 have been previously published and reported [Kosny et al., 2011; Biswas et al., 2011; Biswas and Childs, 2012; Kosny et al., 2012]. Based on previous data analyses and discussions within the research group, additional test roofs were installed in May 2012, to test new configurations and further investigate different components of the dynamic insulation systems. Some experimental data from phase 3 testing from May 2012 to December 2013 and some EnergyPlus modeling results have been reported in volumes 1 and 3, respectively, of the final report [Biswas et al., 2014; Biswas and Bhandari, 2014].« less

  12. A novel method to determine air leakage in heat pump clothes dryers

    DOE PAGES

    Bansal, Pradeep; Mohabir, Amar; Miller, William

    2016-01-06

    A heat pump clothes dryer offers the potential to save a significant amount of energy as compared with conventional vented electric dryers. Although heat pump clothes dryers (HPCD) offer higher energy efficiency; it has been observed that they are prone to air leakages, which inhibits the HPCD's gain in efficiency. This study serves to develop a novel method of quantifying leakage, and to determine specific leakage locations in the dryer drum and air circulation system. The basis of this method is the American Society of Testing and Materials (ASTM) standard E779 10, which is used to determine air leakage areamore » in a household ventilation system through fan pressurization. This ASTM method is adapted to the dryer system, and the leakage area is determined by an analysis of the leakage volumetric flow - pressure relationship. Easily accessible leakage points were quantified: the front and back crease (in the dryer drum), the leakage in the dryer duct, the air filter, and the remaining leakage in the drum. The procedure allows investigators to determine major components contributing to leakage in HPCDs, thus improving component design features that result in more efficient HPCD systems.« less

  13. A novel method to determine air leakage in heat pump clothes dryers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bansal, Pradeep; Mohabir, Amar; Miller, William

    A heat pump clothes dryer offers the potential to save a significant amount of energy as compared with conventional vented electric dryers. Although heat pump clothes dryers (HPCD) offer higher energy efficiency; it has been observed that they are prone to air leakages, which inhibits the HPCD's gain in efficiency. This study serves to develop a novel method of quantifying leakage, and to determine specific leakage locations in the dryer drum and air circulation system. The basis of this method is the American Society of Testing and Materials (ASTM) standard E779 10, which is used to determine air leakage areamore » in a household ventilation system through fan pressurization. This ASTM method is adapted to the dryer system, and the leakage area is determined by an analysis of the leakage volumetric flow - pressure relationship. Easily accessible leakage points were quantified: the front and back crease (in the dryer drum), the leakage in the dryer duct, the air filter, and the remaining leakage in the drum. The procedure allows investigators to determine major components contributing to leakage in HPCDs, thus improving component design features that result in more efficient HPCD systems.« less

  14. Sleep Disturbances in Patients Admitted to a Step-Down Unit After ICU Discharge: the Role of Mechanical Ventilation

    PubMed Central

    Fanfulla, Francesco; Ceriana, Piero; D'Artavilla Lupo, Nadia; Trentin, Rossella; Frigerio, Francesco; Nava, Stefano

    2011-01-01

    Background: Severe sleep disruption is a well-documented problem in mechanically ventilated, critically ill patients during their time in the intensive care unit (ICU), but little attention has been paid to the period when these patients become clinically stable and are transferred to a step-down unit (SDU). We monitored the 24-h sleep pattern in 2 groups of patients, one on mechanical ventilation and the other breathing spontaneously, admitted to our SDU to assess the presence of sleep abnormalities and their association with mechanical ventilation. Methods: Twenty-two patients admitted to an SDU underwent 24-h polysomnography with monitoring of noise and light. Results: One patient did not complete the study. At night, 10 patients showed reduced sleep efficiency, 6 had reduced percentage of REM sleep, and 3 had reduced percentage of slow wave sleep (SWS). Sleep amount and quality did not differ between patients breathing spontaneously and those on mechanical ventilation. Clinical severity (SAPSII score) was significantly correlated with daytime total sleep time and efficiency (r = 0.51 and 0.5, P < 0.05, respectively); higher pH was correlated with reduced sleep quantity and quality; and higher PaO2 was correlated with increased SWS (r = 0.49; P = 0.02). Conclusions: Patients admitted to an SDU after discharge from an ICU still have a wide range of sleep abnormalities. These abnormalities are mainly associated with a high severity score and alkalosis. Mechanical ventilation does not appear to be a primary cause of sleep impairment. Citation: Fanfulla F; Ceriana P; Lupo ND; Trentin R; Frigerio F; Nava S. Sleep disturbances in patients admitted to a step-down unit after ICU discharge: the role of mechanical ventilation. SLEEP 2011;34(3):355-362. PMID:21358853

  15. Nasal mask ventilation is better than face mask ventilation in edentulous patients.

    PubMed

    Kapoor, Mukul Chandra; Rana, Sandeep; Singh, Arvind Kumar; Vishal, Vindhya; Sikdar, Indranil

    2016-01-01

    Face mask ventilation of the edentulous patient is often difficult as ineffective seating of the standard mask to the face prevents attainment of an adequate air seal. The efficacy of nasal ventilation in edentulous patients has been cited in case reports but has never been investigated. Consecutive edentulous adult patients scheduled for surgery under general anesthesia with endotracheal intubation, during a 17-month period, were prospectively evaluated. After induction of anesthesia and administration of neuromuscular blocker, lungs were ventilated with a standard anatomical face mask of appropriate size, using a volume controlled anesthesia ventilator with tidal volume set at 10 ml/kg. In case of inadequate ventilation, the mask position was adjusted to achieve best-fit. Inspired and expired tidal volumes were measured. Thereafter, the face mask was replaced by a nasal mask and after achieving best-fit, the inspired and expired tidal volumes were recorded. The difference in expired tidal volumes and airway pressures at best-fit with the use of the two masks and number of patients with inadequate ventilation with use of the masks were statistically analyzed. A total of 79 edentulous patients were recruited for the study. The difference in expiratory tidal volumes with the use of the two masks at best-fit was statistically significant (P = 0.0017). Despite the best-fit mask placement, adequacy of ventilation could not be achieved in 24.1% patients during face mask ventilation, and 12.7% patients during nasal mask ventilation and the difference was statistically significant. Nasal mask ventilation is more efficient than standard face mask ventilation in edentulous patients.

  16. Energy and IAQ Implications of Alternative Minimum Ventilation Rates in California Retail and School Buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dutton, Spencer M.; Fisk, William J.

    For a stand-alone retail building, a primary school, and a secondary school in each of the 16 California climate zones, the EnergyPlus building energy simulation model was used to estimate how minimum mechanical ventilation rates (VRs) affect energy use and indoor air concentrations of an indoor-generated contaminant. The modeling indicates large changes in heating energy use, but only moderate changes in total building energy use, as minimum VRs in the retail building are changed. For example, predicted state-wide heating energy consumption in the retail building decreases by more than 50% and total building energy consumption decreases by approximately 10% asmore » the minimum VR decreases from the Title 24 requirement to no mechanical ventilation. The primary and secondary schools have notably higher internal heat gains than in the retail building models, resulting in significantly reduced demand for heating. The school heating energy use was correspondingly less sensitive to changes in the minimum VR. The modeling indicates that minimum VRs influence HVAC energy and total energy use in schools by only a few percent. For both the retail building and the school buildings, minimum VRs substantially affected the predicted annual-average indoor concentrations of an indoor generated contaminant, with larger effects in schools. The shape of the curves relating contaminant concentrations with VRs illustrate the importance of avoiding particularly low VRs.« less

  17. IR thermocycler for centrifugal microfluidic platform with direct on-disk wireless temperature measurement system

    NASA Astrophysics Data System (ADS)

    Burger, J.; Gross, A.; Mark, D.; Roth, G.; von Stetten, F.; Zengerle, R.

    2011-06-01

    The direct on-disk wireless temperature measurement system [1,2] presented at μTAS 2010 was further improved in its robustness. We apply it to an IR thermocycler as part of a centrifugal microfluidic analyzer for polymerase chain reactions (PCR). This IR thermocycler allows the very efficient direct heating of aqueous liquids in microfluidic cavities by an IR radiation source. The efficiency factor of this IR heating system depends on several parameters. First there is the efficiency of the IR radiator considering the transformation of electrical energy into radiation energy. This radiation energy needs to be focused by a reflector to the center of the cavity. Both, the reflectors shape and the quality of the reflecting layer affect the efficiency. On the way to the center of the cavity the radiation energy will be diminished by absorption in the surrounding air/humidity and especially in the cavity lid of the microfluidic disk. The transmission spectrum of the lid material and its thickness is of significant impact. We chose a COC polymer film with a thickness of 150 μm. At a peak frequency of the IR radiator of ~2 μm approximately 85 % of the incoming radiation energy passes the lid and is absorbed within the first 1.5 mm depth of liquid in the cavity. As we perform the thermocycling for a PCR, after heating to the denaturation temperature of ~ 92 °C we need to cool down rapidly to the primer annealing temperature of ~ 55 °C. Cooling is realized by 3 ventilators venting air of room temperature into the disk chamber. Due to the air flow itself and an additional rotation of the centrifugal microfluidic disk the PCR reagents in the cavities are cooled by forced air convection. Simulation studies based upon analogous electrical models enable to optimize the disk geometry and the optical path. Both the IR heater and the ventilators are controlled by the digital PID controller HAPRO 0135 [3]. The sampling frequency is set to 2 Hz. It could be further increased up to a maximum value being permitted by the wireless temperature data transmission system. As we are controlling a significantly non-linear process the controller parameters need to be optimized for all temperatures relevant for the PCR thermocycling process. Such we get a dynamic system for both, the heating and the cooling process. Heating rates up to 5 K/s with our IR heater (100 W electrical power) could be achieved. Cooling rates of instantly 1.3 K/s at 20 Hz rotation frequency could be even further increased by higher rotation frequencies, faster air circulation, optimization of the controller parameters or an active air cooling unit.

  18. A prototype of volume-controlled tidal liquid ventilator using independent piston pumps.

    PubMed

    Robert, Raymond; Micheau, Philippe; Cyr, Stéphane; Lesur, Olivier; Praud, Jean-Paul; Walti, Hervé

    2006-01-01

    Liquid ventilation using perfluorochemicals (PFC) offers clear theoretical advantages over gas ventilation, such as decreased lung damage, recruitment of collapsed lung regions, and lavage of inflammatory debris. We present a total liquid ventilator designed to ventilate patients with completely filled lungs with a tidal volume of PFC liquid. The two independent piston pumps are volume controlled and pressure limited. Measurable pumping errors are corrected by a programmed supervisor module, which modifies the inserted or withdrawn volume. Pump independence also allows easy functional residual capacity modifications during ventilation. The bubble gas exchanger is divided into two sections such that the PFC exiting the lungs is not in contact with the PFC entering the lungs. The heating system is incorporated into the metallic base of the gas exchanger, and a heat-sink-type condenser is placed on top of the exchanger to retrieve PFC vapors. The prototype was tested on 5 healthy term newborn lambs (<5 days old). The results demonstrate the efficiency and safety of the prototype in maintaining adequate gas exchange, normal acido-basis equilibrium, and cardiovascular stability during a short, 2-hour total liquid ventilator. Airway pressure, lung volume, and ventilation scheme were maintained in the targeted range.

  19. High-Efficiency Housing at the Fort Peck Indian Reservation: Opportunities and Lessons Learned

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lisell, Lars J; Desai, Jal D; Dean, Jesse D

    This project was initiated to provide design assistance in an effort to maximize energy performance for affordable housing at the Fort Peck Indian Reservation near Poplar, Montana. The Make It Right Foundation (MIRF) built 20 high performing homes (LEED Platinum) in 2015 and 2016 with three (3) different design options. NREL and EPA set out to provide energy analysis along with measurement and verification (M and V) of the homes to characterize energy use and provide clarity for future decision making with regard to tribal housing options. The results included herein summarize the energy end uses and documents projected energymore » impacts from various aspects of the MIRF home designs and construction. This report includes an analysis of energy use in 5 MIRF homes, comparing energy use across the different styles and configurations. Energy models were created for the 2 styles of MIRF homes, including renewable energy assessment for photovoltaic (PV) systems. Existing tribal housing has also been analyzed, with 5 housing units being analyzed for energy use and an energy model being created for 1 housing unit. The findings of this study highlight many of the challenges that arise when attempting to construct high performance housing in a region where such construction practices are still relatively rare. Homes in Poplar are well designed and, for the most part, and include climate specific design considerations appropriate for northeastern Montana. The most significant issues identified in MIRF homes were related to the work done to put the homes on the foundation, insulate the crawlspaces, and do final connection with the utilities. The Taxed II Credit homes are well designed and well suited to northeastern Montana, and with slight modifications to the design and construction could be very efficient. All occupant comfort and energy usage issues that were identified during the site visits can be remedied through retrofit measures that are relatively inexpensive. Energy efficiency opportunities were found that can be implemented in each of the homes. These retrofits are generally inexpensive and have a quick return on investment. While the MIRF houses as well as the Taxed II Credit homes can achieve high levels of energy performance with modest retrofits. Similar houses built in the future could achieve even better performance with minor design changes, and generally low incremental cost. Renewable energy systems are economically feasible in this area, but the payback is on the high side of what would likely be acceptable to homeowners. If the price of solar comes down to $2/watt installed, the systems will achieve a simple payback of 13 years, which is likely a return on investment that is attractive to homeowners. If the homes are made sufficiently tight to be high performance, energy recovery ventilators will be necessary to maintain acceptable indoor air quality. The Taxed II Credit homes are already equipped with heat recovery ventilators (HRVs), and they seem to function well. As PV prices continue to decline, start implementing projects as they become cost effective.« less

  20. Head elevation and lateral head rotation effect on facemask ventilation efficiency: Randomized crossover trials.

    PubMed

    Matsunami, Sayuri; Komasawa, Nobuyasu; Konishi, Yuki; Minami, Toshiaki

    2017-11-01

    We performed two prospective randomized crossover trials to evaluate the effect of head elevation or lateral head rotation to facemask ventilation volume. In the first trial, facemask ventilation was performed with a 12-cm high pillow (HP) and 4-cm low pillow (LP) in 20 female patients who were scheduled to undergo general anesthesia. In the second trial, facemask ventilation was performed with and without lateral head rotation in another 20 female patients. Ventilation volume was measured in a pressure-controlled ventilation (PCV) manner at 10, 15, and 20 cmH 2 O inspiratory pressures. In the first trial evaluating head elevation effect, facemask ventilation volume was significantly higher with a HP than with a LP at 15 and 20 cmH 2 O inspiratory pressure (15 cmH 2 O: HP median 540 [ IQR 480-605] mL, LP 460 [400-520] mL, P=0.006, 20 cmH 2 O: HP 705 [650-800] mL, LP 560 [520-677] mL, P<0.001). In the second trial, lateral head rotation did not significantly increase facemask ventilation volume at all inspiratory pressure. Head elevation increased facemask ventilation volume in normal airway patients, while lateral head rotation did not. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Quantification of the fungal fraction released from various preloaded fibrous filters during a simulated ventilation restart.

    PubMed

    Morisseau, K; Joubert, A; Le Coq, L; Andres, Y

    2017-05-01

    This study aimed to demonstrate that particles, especially those associated with fungi, could be released from fibrous filters used in the air-handling unit (AHU) of heating, ventilation and air-conditioning (HVAC) systems during ventilation restarts. Quantification of the water retention capacity and SEM pictures of the filters was used to show the potential for fungal proliferation in unused or preloaded filters. Five fibrous filters with various particle collection efficiencies were studied: classes G4, M5, M6, F7, and combined F7 according to European standard EN779:2012. Filters were clogged with micronized rice particles containing the fungus Penicillium chrysogenum and then incubated for three weeks at 25°C and 90% relative humidity. The results indicated that the five clogged tested filters had various fungal growth capacities depending on their water retention capacity. Preloaded filters were subjected to a simulated ventilation restart in a controlled filtration device to quantify that the fraction of particles released was around 1% for the G4, 0.1% for the M5 and the M6, and 0.001% for the F7 and the combined F7 filter. The results indicate that the likelihood of fungal particle release by low efficiency filters is significantly higher than by high efficiency filters. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Passive solar/Earth sheltered office/dormitory cooling season thermal performance

    NASA Astrophysics Data System (ADS)

    Christian, J.

    1984-06-01

    Continuous detailed hourly thermal performance measurements were taken since February 1982 in and around an occupied, underground, 4000 ft(2) office/dormitory building at the Oak Ridge National Laboratory in Oak Ridge, Tennessee. This building has a number of energy saving features which were analyzed relative to their performance in a southeastern US climate and with respect to overall commercial building performance. Cooling season performance is documented, as well as effects of earth constact, interior thermal mass, an economizer cycle and interface of an efficient building envelope with a central three-ton heat pump. The Joint Institute Dormitory obtains a cooling energy savings of about 30% compared with an energy-efficient, above-grade structure and has the potential to save as much as 50%. The proper instllation of the overhand, interior thermal mass, massive supply duct system, and earth contact team up to prevent summertime overheating. From May through September, this building cost a total of $300 (at 5.7) cents/kWh) to cool and ventilate 24 hours per day. Besides thermal performance of the building envelope, extensive comfort data was taken illustrating that at least 90% of the occupants are comfortable all of the time according to the PMV measurements.

  3. Practical results of heat conservation in a housing estate scale-actions implemented by the Pradnik-Bialy-Zachod housing cooperative in Cracow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piotrowski, L.

    1995-12-31

    There are 11,600,000 apartments occupied in Poland. More than 7,700,000 of these apartments are located in towns. Energy consumption for heating, ventilation and district hot water in residential housing reaches 40% of the national power balance. A portion of district heat distribution and relatively low energy efficiency is characteristic for Polish residential housing. Seventy five percent of apartments in towns are provided with central heating installations and 55% of the entire heat demand in Polish buildings is covered by district heating systems. The total installed heat power of these systems reaches 46,000 MW. The situation with regard to conservation inmore » Polish residential housing is directly related to the legacy of central planning of the national economy and to the current phase of its re-organization to the market-oriented system. The standard value of the overall heat-transfer coefficient for external walls in Poland until 1980 was 1.16 W/m{sup 2}K; at present it is reduced to 0.55 W/m{sup 2}K. There are numerous reasons for the low energy efficiency in residential housing. These reasons are discussed.« less

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scofield, C.M.; Des Champs, N.H.

    This article examines a design concept for classroom air conditioning systems that guarantees minimum ventilation rates are met. The topics of the article include new ventilation requirements, design concept, outside air induction diffuser, low-velocity ducts and plenums, the relationship of humidity to school absenteeism rates, retrofit applications, and saving energy.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Im, Piljae; Liu, Xiaobing

    High initial costs and lack of public awareness of ground-source heat pump (GSHP) technology are the two major barriers preventing rapid deployment of this energy-saving technology in the United States. Under the American Recovery and Reinvestment Act (ARRA), 26 GSHP projects have been competitively selected and carried out to demonstrate the benefits of GSHP systems and innovative technologies for cost reduction and/or performance improvement. This paper highlights the findings of a case study of one of the ARRA-funded GSHP demonstration projects, a ground-source variable refrigerant flow (GS-VRF) system installed at the Human Health Building at Oakland University in Rochester, Michigan.more » This case study is based on the analysis of measured performance data, maintenance records, construction costs, and simulations of the energy consumption of conventional central heating, ventilation, and air-conditioning (HVAC) systems providing the same level of space conditioning as the demonstrated GS-VRF system. The evaluated performance metrics include the energy efficiency of the heat pump equipment and the overall GS-VRF system, pumping performance, energy savings, carbon emission reductions, and cost-effectiveness of the GS-VRF system compared with conventional HVAC systems. This case study also identified opportunities for reducing uncertainties in the performance evaluation, improving the operational efficiency, and reducing the installed cost of similar GSHP systems in the future.« less

  6. Overheating risk assessment of naturally ventilated classroom under the influence of climate change in hot and humid region

    NASA Astrophysics Data System (ADS)

    Huang, Kuo-Tsang

    2013-04-01

    Natural ventilation (NV) is considered one of the passive building strategies used for reducing cooling energy demand. The utilization of nature wind for cooling down indoor thermal environment to reach thermal comfort requires knowledge of adequately positioning the building fenestrations, designing inlet-outlet related opening ratios, planning unobstructed cross ventilation paths, and, the most important, assessing the utilization feasibility base on local climatic variables. Furthermore, factors that influence the indoor thermal condition include building envelope heat gain, indoor air velocity, indoor heat gain (e.g. heat discharges from occupant's body, lighting fixture, electrical appliances), and outdoor climate. Among the above, the indoor thermal performance of NV building is significantly dependent to outdoor climate conditions. In hot and humid Taiwan, under college school classrooms are usually operated in natural ventilation mode and are more vulnerable to climate change in regard to maintain indoor thermal comfort. As climate changes in progress, NV classrooms would expect to encounter more events of overheating in the near future, which result in more severe heat stress, and would risk the utilization of natural ventilation. To evaluate the overheating risk under the influence of recent climate change, an actual top floor elementary school classroom with 30 students located at north Taiwan was modeled. Long-term local hourly meteorological data were gathered and further constructed into EnergyPlus Weather Files (EPWs) format for building thermal dynamic simulation to discuss the indoor thermal environmental variation during the period of 1998 to 2012 by retrospective simulation. As indoor thermal environment is an overall condition resulting from a series combination of various factors, sub-hourly building simulation tool, EnergyPlus, coupled with the above fifteen years' EPWs was adopted to predict hourly indoor parameters of mean radiant temperature, air velocity, dry-bulb temperature and relative humidity. These physical quantities are crucial for calculating the thermal indices such as Physiological Equivalent Temperature (PET), New Standard Effective Temperature (SET*), and operative temperature (OT), which were subsequently being used for assessing thermal discomfort. Occurrences and the severity of overheating were assessed by observing the number of hours that surmount the upper limit of the adaptive thermal model proposed by ASHRAE Standard 55 (American Society of Heating, Refrigerating and Air-conditioning Engineers Standard) base on ISO 7730 method to characterize long term indoor thermal discomfort. Preliminary result show that although the degree of increase in overheating risk of NV classrooms was mild, there is a trend revealing that both the occurrences and the severity of thermal discomfort were gradually rising. The study also proposed several building renovation strategies for adapting the climate change to alleviate overheating situation. Efficiencies of these recommended strategies were also analyzed by simulating with the hottest year in comparison with the coldest year.

  7. DEEP: Database of Energy Efficiency Performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, Tianzhen; Piette, Mary; Lee, Sang Hoon

    A database of energy efficiency performance (DEEP) is a presimulated database to enable quick and accurate assessment of energy retrofit of commercial buildings. DEEP was compiled from results of about 10 million EnergyPlus simulations. DEEP provides energy savings for screening and evaluation of retrofit measures targeting the small and medium-sized office and retail buildings in California. The prototype building models are developed for a comprehensive assessment of building energy performance based on DOE commercial reference buildings and the California DEER [sic] prototype buildings. The prototype buildings represent seven building types across six vintages of constructions and 16 California climate zones.more » DEEP uses these prototypes to evaluate energy performance of about 100 energy conservation measures covering envelope, lighting, heating, ventilation, air conditioning, plug loads, and domestic hot war. DEEP consists the energy simulation results for individual retrofit measures as well as packages of measures to consider interactive effects between multiple measures. The large scale EnergyPlus simulations are being conducted on the super computers at the National Energy Research Scientific Computing Center (NERSC) of Lawrence Berkeley National Laboratory. The pre-simulation database is a part of the CEC PIER project to develop a web-based retrofit toolkit for small and medium-sized commercial buildings in California, which provides real-time energy retrofit feedback by querying DEEP with recommended measures, estimated energy savings and financial payback period based on users' decision criteria of maximizing energy savings, energy cost savings, carbon reduction, or payback of investment. The pre-simulated database and associated comprehensive measure analysis enhances the ability to performance assessments of retrofits to reduce energy use for small and medium buildings and business owners who typically do not have resources to conduct costly building energy audit.« less

  8. Low-Flow Liquid Desiccant Air-Conditioning: Demonstrated Performance and Cost Implications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kozubal, E.; Herrmann, L.; Deru, M.

    2014-09-01

    Cooling loads must be dramatically reduced when designing net-zero energy buildings or other highly efficient facilities. Advances in this area have focused primarily on reducing a building's sensible cooling loads by improving the envelope, integrating properly sized daylighting systems, adding exterior solar shading devices, and reducing internal heat gains. As sensible loads decrease, however, latent loads remain relatively constant, and thus become a greater fraction of the overall cooling requirement in highly efficient building designs, particularly in humid climates. This shift toward latent cooling is a challenge for heating, ventilation, and air-conditioning (HVAC) systems. Traditional systems typically dehumidify by firstmore » overcooling air below the dew-point temperature and then reheating it to an appropriate supply temperature, which requires an excessive amount of energy. Another dehumidification strategy incorporates solid desiccant rotors that remove water from air more efficiently; however, these systems are large and increase fan energy consumption due to the increased airside pressure drop of solid desiccant rotors. A third dehumidification strategy involves high flow liquid desiccant systems. These systems require a high maintenance separator to protect the air distribution system from corrosive desiccant droplet carryover and so are more commonly used in industrial applications and rarely in commercial buildings. Both solid desiccant systems and most high-flow liquid desiccant systems (if not internally cooled) add sensible energy which must later be removed to the air stream during dehumidification, through the release of sensible heat during the sorption process.« less

  9. Ventilation of carbon monoxide from a biomass pellet storage tank--a study of the effects of variation of temperature and cross-ventilation on the efficiency of natural ventilation.

    PubMed

    Emhofer, Waltraud; Lichtenegger, Klaus; Haslinger, Walter; Hofbauer, Hermann; Schmutzer-Roseneder, Irene; Aigenbauer, Stefan; Lienhard, Martin

    2015-01-01

    Wood pellets have been reported to emit toxic gaseous emissions during transport and storage. Carbon monoxide (CO) emission, due to the high toxicity of the gas and the possibility of it being present at high levels, is the most imminent threat to be considered before entering a pellet storage facility. For small-scale (<30 tons storage capacity) residential pellet storage facilities, ventilation, preferably natural ventilation utilizing already existing openings, has become the most favored solution to overcome the problem of high CO concentrations. However, there is little knowledge on the ventilation rates that can be reached and thus on the effectiveness of such measures. The aim of the study was to investigate ventilation rates for a specific small-scale pellet storage system depending on characteristic temperature differences. Furthermore, the influence of the implementation of a chimney and the influence of cross-ventilation on the ventilation rates were investigated. The air exchange rates observed in the experiments ranged between close to zero and up to 8 m(3) h(-1), depending largely on the existing temperature differences and the existence of cross-ventilation. The results demonstrate that implementing natural ventilation is a possible measure to enhance safety from CO emissions, but not one without limitations. © The Author 2014. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  10. Impact of Individualized Diet Intervention on Body Composition and Respiratory Variables in Children With Respiratory Insufficiency: A Pilot Intervention Study.

    PubMed

    Martinez, Enid E; Bechard, Lori J; Smallwood, Craig D; Duggan, Christopher P; Graham, Robert J; Mehta, Nilesh M

    2015-07-01

    Diet modification may improve body composition and respiratory variables in children with respiratory insufficiency. Our objective was to examine the effect of an individualized diet intervention on changes in weight, lean body mass, minute ventilation, and volumetric CO2 production in children dependent on long-term mechanical ventilatory support. Prospective, open-labeled interventional study. Study subjects' homes. Children, 1 month to 17 years old, dependent on at least 12 hr/d of transtracheal mechanical ventilatory support. Twelve weeks of an individualized diet modified to deliver energy at 90-110% of measured energy expenditure and protein intake per age-based guidelines. During a multidisciplinary home visit, we obtained baseline values of height and weight, lean body mass percent by bioelectrical impedance analysis, actual energy and protein intake by food record, and measured energy expenditure by indirect calorimetry. An individualized diet was then prescribed to optimize energy and protein intake. After 12 weeks on this interventional diet, we evaluated changes in weight, height, lean body mass percent, minute ventilation, and volumetric CO2 production. Sixteen subjects, mean age 9.3 years (SD, 4.9), eight male, completed the study. For the diet intervention, a majority of subjects required a change in energy and protein prescription. The mean percentage of energy delivered as carbohydrate was significantly decreased, 51.7% at baseline versus 48.2% at follow-up, p = 0.009. Mean height and weight increased on the modified diet. Mean lean body mass percent increased from 58.3% to 61.8%. Minute ventilation was significantly lower (0.18 L/min/kg vs 0.15 L/min/kg; p = 0.04), and we observed a trend toward lower volumetric CO2 production (5.4 mL/min/kg vs 5.3 mL/min/kg; p = 0.06) after 12 weeks on the interventional diet. Individualized diet modification is feasible and associated with a significant decrease in minute ventilation, a trend toward significant reduction in CO2 production, and improved body composition in children on long-term mechanical ventilation. Optimization of respiratory variables and lean body mass by diet modification may benefit children with respiratory insufficiency in the ICU.

  11. Small scale power generation from biomass-technical potential

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lepori, W.A.; Cardenas, M.M.; Carney, O.B.

    1983-12-01

    System and nursery pig performance data for the Winter of 1983 were collected for a 96-pig capacity modified-open-front (MOF) naturally ventilated and a 96-pig capacity mechanically ventilated swine nurseries. Both nurseries utilized active solar collectors to provide in-floor heating at the rear of each pen along with hovers. The mechanically ventilated nursery utilized solar preheated ventilation air. The naturally ventilated nursery had double glazed solar windows to passively heat the interior space. The relative humidity in the naturally ventilated (NV) nursery averaged 20 percentage points higher than the mechanically ventilated (MV) nursery with no significant differences in air temperature. Themore » MV nursery used 50% more energy than the NV nursery and the NV nursery required 1.9 kWh/pig marketed less than that needed for the MV nursery. Pig performance figure were not significantly different between the two buildings. The feed to gain ration were 2.0 + or - 0.35 and 1.96 + or 0.38 for the MV and NV nurseries respectively.« less

  12. Small Business Voucher CRADA Report: Natural Gas Powered HVAC System for Commercial and Residential Buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Betts, Daniel; Ally, Moonis Raza; Mudiraj, Shyam

    Be Power Tech is commercializing BeCool, the first integrated electricity-producing heating, ventilation, and air conditioning (HVAC) system using a non-vapor compression cycle (VCC), packaged rooftop HVAC unit that also produces base-load electricity, heating, ventilation, and air conditioning. BeCool is a distributed energy resource with energy storage that eliminates the tremendous peak electricity demand associated with commonly used electricity-powered vapor compression air conditioning systems.

  13. Impact of ventilation systems and energy savings in a building on the mechanisms governing the indoor radon activity concentration.

    PubMed

    Collignan, Bernard; Powaga, Emilie

    2017-11-23

    For a given radon potential in the ground and a given building, the parameters affecting the indoor radon activity concentration (IRnAC) are indoor depressurization of a building and its air change rate. These parameters depend mainly on the building characteristics, such as airtightness, and on the nature and performances of the ventilation system. This study involves a numerical sensitivity assessment of the indoor environmental conditions on the IRnAC in buildings. A numerical ventilation model has been adapted to take into account the effects of variations in the indoor environmental conditions (depressurization and air change rate) on the radon entry rate and on the IRnAC. In the context of the development of a policy to reduce energy consumption in a building, the results obtained showed that IRnAC could be strongly affected by variations in the air permeability of the building associated with the ventilation regime. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Controlled invasive mechanical ventilation strategies in obese patients undergoing surgery.

    PubMed

    Maia, Lígia de Albuquerque; Silva, Pedro Leme; Pelosi, Paolo; Rocco, Patricia Rieken Macedo

    2017-06-01

    The obesity prevalence is increasing in surgical population. As the number of obese surgical patients increases, so does the demand for mechanical ventilation. Nevertheless, ventilatory strategies in this population are challenging, since obesity results in pathophysiological changes in respiratory function. Areas covered: We reviewed the impact of obesity on respiratory system and the effects of controlled invasive mechanical ventilation strategies in obese patients undergoing surgery. To date, there is no consensus regarding the optimal invasive mechanical ventilation strategy for obese surgical patients, and no evidence that possible intraoperative beneficial effects on oxygenation and mechanics translate into better postoperative pulmonary function or improved outcomes. Expert commentary: Before determining the ideal intraoperative ventilation strategy, it is important to analyze the pathophysiology and comorbidities of each obese patient. Protective ventilation with low tidal volume, driving pressure, energy, and mechanical power should be employed during surgery; however, further studies are required to clarify the most effective ventilation strategies, such as the optimal positive end-expiratory pressure and whether recruitment maneuvers minimize lung injury. In this context, an ongoing trial of intraoperative ventilation in obese patients (PROBESE) should help determine the mechanical ventilation strategy that best improves clinical outcome in patients with body mass index≥35kg/m 2 .

  15. Randomised controlled cross-over comparison of continuous positive airway pressure through the Hamilton Galileo ventilator with a Dräger CF 800 device.

    PubMed

    Sutton, P J; Perkins, C L; Giles, S P; McAuley, D F; Gao, F

    2005-01-01

    In this controlled, randomised cross-over trial on 26 intensive care patients, we compared the effects on haemodynamic and respiratory profiles of continuous positive airway pressure delivered through the Hamilton Galileo ventilator or a Drager CF 800 device. We also compared the nursing time saved using the two approaches when weaning patients from mechanical ventilation. We did not find significant differences in haemodynamics, respiratory rate, physiological dead space, oxygen saturation and carbon dioxide production between the continuous positive airway pressure generated by the Galileo and Drager machines. However, there was a 10-fold reduction in nursing time using the Galileo ventilator compared with the Drager generator. We conclude that continuous positive airway pressure delivered through the Galileo ventilator is as efficient as a Drager device but consumes less nursing time.

  16. Tuberculosis Infection Control in Health-Care Facilities: Environmental Control and Personal Protection.

    PubMed

    Lee, Ji Yeon

    2016-10-01

    Transmission of tuberculosis (TB) is a recognized risk to patients and healthcare workers in healthcare settings. The literature review suggests that implementation of combination control measures reduces the risk of TB transmission. Guidelines suggest a three-level hierarchy of controls including administrative, environmental, and respiratory protection. Among environmental controls, installation of ventilation systems is a priority because ventilation reduces the number of infectious particles in the air. Natural ventilation is cost-effective but depends on climatic conditions. Supplemented intervention such as air-cleaning methods including high efficiency particulate air filtration and ultraviolet germicidal irradiation should be considered in areas where adequate ventilation is difficult to achieve. Personal protective equipment including particulate respirators provides additional benefit when administrative and environmental controls cannot assure protection.

  17. Nasal mask ventilation is better than face mask ventilation in edentulous patients

    PubMed Central

    Kapoor, Mukul Chandra; Rana, Sandeep; Singh, Arvind Kumar; Vishal, Vindhya; Sikdar, Indranil

    2016-01-01

    Background and Aims: Face mask ventilation of the edentulous patient is often difficult as ineffective seating of the standard mask to the face prevents attainment of an adequate air seal. The efficacy of nasal ventilation in edentulous patients has been cited in case reports but has never been investigated. Material and Methods: Consecutive edentulous adult patients scheduled for surgery under general anesthesia with endotracheal intubation, during a 17-month period, were prospectively evaluated. After induction of anesthesia and administration of neuromuscular blocker, lungs were ventilated with a standard anatomical face mask of appropriate size, using a volume controlled anesthesia ventilator with tidal volume set at 10 ml/kg. In case of inadequate ventilation, the mask position was adjusted to achieve best-fit. Inspired and expired tidal volumes were measured. Thereafter, the face mask was replaced by a nasal mask and after achieving best-fit, the inspired and expired tidal volumes were recorded. The difference in expired tidal volumes and airway pressures at best-fit with the use of the two masks and number of patients with inadequate ventilation with use of the masks were statistically analyzed. Results: A total of 79 edentulous patients were recruited for the study. The difference in expiratory tidal volumes with the use of the two masks at best-fit was statistically significant (P = 0.0017). Despite the best-fit mask placement, adequacy of ventilation could not be achieved in 24.1% patients during face mask ventilation, and 12.7% patients during nasal mask ventilation and the difference was statistically significant. Conclusion: Nasal mask ventilation is more efficient than standard face mask ventilation in edentulous patients. PMID:27625477

  18. Simulation of ventilation efficiency, and pre-closure temperatures in emplacement drifts at Yucca Mountain, Nevada, using Monte Carlo and composite thermal-pulse methods

    USGS Publications Warehouse

    Case, J.B.; Buesch, D.C.

    2004-01-01

    Predictions of waste canister and repository driftwall temperatures as functions of space and time are important to evaluate pre-closure performance of the proposed repository for spent nuclear fuel and high-level radioactive waste at Yucca Mountain, Nevada. Variations in the lithostratigraphic features in densely welded and crystallized rocks of the 12.8-million-year-old Topopah Spring Tuff, especially the porosity resulting from lithophysal cavities, affect thermal properties. A simulated emplacement drift is based on projecting lithophysal cavity porosity values 50 to 800 m from the Enhanced Characterization of the Repository Block cross drift. Lithophysal cavity porosity varies from 0.00 to 0.05 cm3/cm3 in the middle nonlithophysal zone and from 0.03 to 0.28 cm3/cm3 in the lower lithophysal zone. A ventilation model and computer program titled "Monte Carlo Simulation of Ventilation" (MCSIMVENT), which is based on a composite thermal-pulse calculation, simulates statistical variability and uncertainty of rock-mass thermal properties and ventilation performance along a simulated emplacement drift for a pre-closure period of 50 years. Although ventilation efficiency is relatively insensitive to thermal properties, variations in lithophysal porosity along the drift can result in a range of peak driftwall temperatures can range from 40 to 85??C for the preclosure period. Copyright ?? 2004 by ASME.

  19. Cycling efficiency and energy cost of walking in young and older adults.

    PubMed

    Gaesser, Glenn A; Tucker, Wesley J; Sawyer, Brandon J; Bhammar, Dharini M; Angadi, Siddhartha S

    2018-02-01

    To determine whether age affects cycling efficiency and the energy cost of walking (Cw), 190 healthy adults, ages 18-81 yr, cycled on an ergometer at 50 W and walked on a treadmill at 1.34 m/s. Ventilation and gas exchange at rest and during exercise were used to calculate net Cw and net efficiency of cycling. Compared with the 18-40 yr age group (2.17 ± 0.33 J·kg -1 ·m -1 ), net Cw was not different in the 60-64 yr (2.20 ± 0.40 J·kg -1 ·m -1 ) and 65-69 yr (2.20 ± 0.28 J·kg -1 ·m -1 ) age groups, but was significantly ( P < 0.03) higher in the ≥70 yr (2.37 ± 0.33 J·kg -1 ·m -1 ) age group. For subjects >60 yr, net Cw was significantly correlated with age ( R 2  = 0.123; P = 0.002). Cycling net efficiency was not different between 18-40 yr (23.5 ± 2.9%), 60-64 yr (24.5 ± 3.6%), 65-69 yr (23.3 ± 3.6%) and ≥70 yr (24.7 ± 2.7%) age groups. Repeat tests on a subset of subjects (walking, n = 43; cycling, n = 37) demonstrated high test-retest reliability [intraclass correlation coefficients (ICC), 0.74-0.86] for all energy outcome measures except cycling net energy expenditure (ICC = 0.54) and net efficiency (ICC = 0.50). Coefficients of variation for all variables ranged from 3.1 to 7.7%. Considerable individual variation in Cw and efficiency was evident, with a ~2-fold difference between the least and most economical/efficient subjects. We conclude that, between 18 and 81 yr, net Cw was only higher for ages ≥70 yr, and that cycling net efficiency was not different across age groups. NEW & NOTEWORTHY This study illustrates that the higher energy cost of walking in older adults is only evident for ages ≥70 yr. For older adults ages 60-69 yr, the energy cost of walking is similar to that of young adults. Cycling efficiency, by contrast, is not different across age groups. Considerable individual variation (∼2-fold) in cycling efficiency and energy cost of walking is observed in young and older adults.

  20. Airflow reduction during cold weather operation of residential heat recovery ventilators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGugan, C.A.; Edwards, P.F.; Riley, M.A.

    1987-06-01

    Laboratory measurements of the performance of residential heat recovery ventilators have been carried out for the R-2000 Energy Efficient Home Program. This work was based on a preliminary test procedure developed by the Canadian Standards Association, part of which calls for testing the HRV under cold weather conditions. An environmental chamber was used to simulate outdoor conditions. Initial tests were carried out with an outdoor temperature of -20/sup 0/C; subsequent tests were carried out at a temperature of -25/sup 0/C. During the tests, airflows, temperatures, and relative humidities of airstreams entering and leaving the HRV, along with electric power inputs,more » were monitored. Frost buildup in the heat exchangers and defrost mechanisms, such as fan shutoff or recirculation, led to reductions in airflows. The magnitude of the reductions is dependent on the design of the heat exchanger and the defrost mechanism used. This paper presents the results of tests performed on a number of HRVs commercially available in Canada at the time of the testing. The flow reductions for the various defrost mechanisms are discussed.« less

  1. Radon in earth-sheltered structures

    USGS Publications Warehouse

    Landa, E.R.

    1984-01-01

    Radon concentration in the indoor air of six residential and three non-residential earth-sheltered buildings in eastern Colorado was monitored quarterly over a nine-month period using passive, integrating detectors. Average radon concentrations during the three-month sampling periods ranged from about 1 to 9 pCi/L, although one building, a poorly ventilated storage bunker, had concentrations as high as 39 pCi/L. These radon concentrations are somewhat greater than those typically reported for conventional buildings (around 1 pCi/L); but they are of the same order of magnitude as radon concentrations reported for energy-efficient buildings which are not earth-sheltered. ?? 1984.

  2. Predictive model for CO2 generation and decay in building envelopes

    NASA Astrophysics Data System (ADS)

    Aglan, Heshmat A.

    2003-01-01

    Understanding carbon dioxide generation and decay patterns in buildings with high occupancy levels is useful to identify their indoor air quality, air change rates, percent fresh air makeup, occupancy pattern, and how a variable air volume system to off-set undesirable CO2 level can be modulated. A mathematical model governing the generation and decay of CO2 in building envelopes with forced ventilation due to high occupancy is developed. The model has been verified experimentally in a newly constructed energy efficient healthy house. It was shown that the model accurately predicts the CO2 concentration at any time during the generation and decay processes.

  3. No Sweat.

    ERIC Educational Resources Information Center

    Strickland, Gary

    2001-01-01

    Explains how changes in school design in the last 10 years have caused heating, ventilation, and cooling system (HVAC) designers to reexamine their choice of classroom unit ventilators (UV). The influence of indoor lighting systems, insulation, indoor air quality, energy code compliance, and HVAC system design on UV decision making are also…

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mendell, Mark J.; Apte, Mike G.

    This report considers the question of whether the California Energy Commission should incorporate the ASHRAE 62.1 ventilation standard into the Title 24 ventilation rate (VR) standards, thus allowing buildings to follow the Indoor Air Quality Procedure. This, in contrast to the current prescriptive standard, allows the option of using ventilation rate as one of several strategies, which might include source reduction and air cleaning, to meet specified targets of indoor air concentrations and occupant acceptability. The research findings reviewed in this report suggest that a revised approach to a ventilation standard for commercial buildings is necessary, because the current prescriptivemore » ASHRAE 62.1 Ventilation Rate Procedure (VRP) apparently does not provide occupants with either sufficiently acceptable or sufficiently healthprotective air quality. One possible solution would be a dramatic increase in the minimum ventilation rates (VRs) prescribed by a VRP. This solution, however, is not feasible for at least three reasons: the current need to reduce energy use rather than increase it further, the problem of polluted outdoor air in many cities, and the apparent limited ability of increasing VRs to reduce all indoor airborne contaminants of concern (per Hodgson (2003)). Any feasible solution is thus likely to include methods of pollutant reduction other than increased outdoor air ventilation; e.g., source reduction or air cleaning. The alternative 62.1 Indoor Air Quality Procedure (IAQP) offers multiple possible benefits in this direction over the VRP, but seems too limited by insufficient specifications and inadequate available data to provide adequate protection for occupants. Ventilation system designers rarely choose to use it, finding it too arbitrary and requiring use of much non-engineering judgment and information that is not readily available. This report suggests strategies to revise the current ASHRAE IAQP to reduce its current limitations. These strategies, however, would make it more complex and more prescriptive, and would require substantial research. One practical intermediate strategy to save energy would be an alternate VRP, allowing VRs lower than currently prescribed, as long as indoor VOC concentrations were no higher than with VRs prescribed under the current VRP. This kind of hybrid, with source reduction and use of air cleaning optional but permitted, could eventually evolve, as data, materials, and air-cleaning technology allowed gradual lowering of allowable concentrations, into a fully developed IAQP. Ultimately, it seems that VR standards must evolve to resemble the IAQP, especially in California, where buildings must achieve zero net energy use within 20 years.« less

  5. [Ventilation during cardiopulmonary resuscitation in the infant. Mouth to mouth and nose, or bag-valve-mask? A quasi-experimental study].

    PubMed

    Santos-Folgar, Myriam; Otero-Agra, Martín; Fernández-Méndez, Felipe; Hermo-Gonzalo, María Teresa; Barcala-Furelos, Roberto; Rodríguez-Núñez, Antonio

    2018-02-08

    It has been observed that health professionals have difficulty performing quality cardiopulmonary resuscitation (CPR). The aim of this study was to compare the quality of ventilations performed by Nursing students on an infant model using different methods (mouth-to-mouth-and-nose or bag-valve-mask). A quasi-experimental cross-sectional study was performed that included 46 second-year Nursing students. Two quantitative 4-minute tests of paediatric CPR were performed: a) mouth-to-mouth-and-nose ventilations, and b) ventilations with bag-valve-mask. A Resusci Baby QCPR Wireless SkillReporter® mannequin from Laerdal was used. The proportion of ventilations with adequate, excessive, and insufficient volume was recorded and analysed, as well as the overall quality of the CPR (ventilations and chest compressions). The students were able to give a higher number of ventilations with adequate volume using the mouth-to-mouth-and-nose method (55±22%) than with the bag-valve-mask (28±16%, P<.001). The overall quality of the CPR was also significantly higher when using the mouth-to-mouth-and-nose method (60±19 vs. 48±16%, P<.001). Mouth-to-mouth-and-nose ventilation method is more efficient than bag-valve-mask ventilations in CPR performed by nursing students with a simulated infant model. Copyright © 2018. Publicado por Elsevier España, S.L.U.

  6. Integrated Heat Pump HVAC Systems for Near-Zero-Energy Homes - Business Case Assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baxter, Van D

    2007-05-01

    The long range strategic goal of the Department of Energy's Building Technologies (DOE/BT) Program is to create, by 2020, technologies and design approaches that enable the construction of net-zero energy homes at low incremental cost (DOE/BT 2005). A net zero energy home (NZEH) is a residential building with greatly reduced needs for energy through efficiency gains, with the balance of energy needs supplied by renewable technologies. While initially focused on new construction, these technologies and design approaches are intended to have application to buildings constructed before 2020 as well resulting in substantial reduction in energy use for all building typesmore » and ages. DOE/BT's Emerging Technologies (ET) team is working to support this strategic goal by identifying and developing advanced heating, ventilating, air-conditioning, and water heating (HVAC/WH) technology options applicable to NZEHs. Although the energy efficiency of heating, ventilating, and air-conditioning (HVAC) equipment has increased substantially in recent years, new approaches are needed to continue this trend. Dramatic efficiency improvements are necessary to enable progress toward the NZEH goals, and will require a radical rethinking of opportunities to improve system performance. The large reductions in HVAC energy consumption necessary to support the NZEH goals require a systems-oriented analysis approach that characterizes each element of energy consumption, identifies alternatives, and determines the most cost-effective combination of options. In particular, HVAC equipment must be developed that addresses the range of special needs of NZEH applications in the areas of reduced HVAC and water heating energy use, humidity control, ventilation, uniform comfort, and ease of zoning. In FY05 ORNL conducted an initial Stage 1 (Applied Research) scoping assessment of HVAC/WH systems options for future NZEHs to help DOE/BT identify and prioritize alternative approaches for further development. Eleven system concepts with central air distribution ducting and nine multi-zone systems were selected and their annual and peak demand performance estimated for five locations: Atlanta (mixed-humid), Houston (hot-humid), Phoenix (hot-dry), San Francisco (marine), and Chicago (cold). Performance was estimated by simulating the systems using the TRNSYS simulation engine (Solar Energy Laboratory et al. 2006) in two 1800-ft{sup 2} houses--a Building America (BA) benchmark house and a prototype NZEH taken from BEopt results at the take-off (or crossover) point (i.e., a house incorporating those design features such that further progress towards ZEH is through the addition of photovoltaic power sources, as determined by current BEopt analyses conducted by NREL). Results were summarized in a project report, 'HVAC Equipment Design options for Near-Zero-Energy Homes--A Stage 2 Scoping Assessment', ORNL/TM-2005/194 (Baxter 2005). The 2005 study report describes the HVAC options considered, the ranking criteria used, and the system rankings by priority. Table 1 summarizes the energy savings potential of the highest scoring options from the 2005 study for all five locations. All system options were scored by the ORNL building equipment research team and by William Goetzler of Navigant Consulting. These scores were reviewed by DOE/BT's Residential Integration program leaders and Building America team members. Based on these results, the two centrally ducted integrated heat pump (IHP) systems (air source and ground source versions) were selected for advancement to Stage 2 (Exploratory Development) business case assessments in FY06. This report describes results of these business case assessments. It is a compilation of three separate reports describing the initial business case study (Baxter 2006a), an update to evaluate the impact of an economizer cooling option (Baxter 2006b), and a second update to evaluate the impact of a winter humidification option (Baxter 2007). In addition it reports some corrections made subsequent to release of the first two reports to correct some errors in the TRNSYS building model for Atlanta and in the refrigerant pressure drop calculation in the water-to-refrigerant evaporator module of the ORNL Heat Pump Design Model (HPDM) used for the IHP analyses. These changes resulted in some minor differences between IHP performance as reported in Baxter (2006a, b) and in this report.« less

  7. A coupled airflow and source/sink model for simulating indoor VOC exposures.

    PubMed

    Yang, X; Chen, Q

    2001-12-01

    In this paper, a numerical model is presented to study the indoor air quality (IAQ) in a room with different emission sources, sinks, and ventilation methods. A computer program, ACCESS-IAQ, is developed to simulate the airflow pattern, the time history of the contaminant concentrations in the occupied zone, and the inhalation exposures. The program developed may be useful for IAQ professional to design healthy and comfortable indoor environments. A numerical study has been carried out to predict the effectiveness of a displacement ventilation and a mixing ventilation on volatile organic compound (VOC) removal in a model office. Results from the numerical predictions show that when a "wet" emission source (a freshly painted wood stain) is distributed uniformly across the floor area with sinks (gypsum board) from the four vertical walls, displacement ventilation has consistently lower exposure at the breathing level of the occupant in the room. Such an effect is mainly due to the higher ventilation efficiency of displacement ventilation compared to the mixing ventilation. The simulation results also show that the walls adsorb significant amounts of VOCs during the first hour and act as secondary sources thereafter.

  8. Practical Insight to Monitor Home NIV in COPD Patients.

    PubMed

    Arnal, Jean-Michel; Texereau, Joëlle; Garnero, Aude

    2017-08-01

    Home noninvasive ventilation (NIV) is used in COPD patients with concomitant chronic hypercapnic respiratory failure in order to correct nocturnal hypoventilation and improve sleep quality, quality of life, and survival. Monitoring of home NIV is needed to assess the effectiveness of ventilation and adherence to therapy, resolve potential adverse effects, reinforce patient knowledge, provide maintenance of the equipment, and readjust the ventilator settings according to the changing condition of the patient. Clinical monitoring is very informative. Anamnesis focuses on the improvement of nocturnal hypoventilation symptoms, sleep quality, and side effects of NIV. Side effects are major cause of intolerance. Screening side effects leads to modification of interface, gas humidification, or ventilator settings. Home care providers maintain ventilator and interface and educate patients for correct use. However, patient's education should be supervised by specialized clinicians. Blood gas measurement shows a significant decrease in PaCO 2 when NIV is efficient. Analysis of ventilator data is very useful to assess daily use, unintentional leaks, upper airway obstruction, and patient ventilator synchrony. Nocturnal oximetry and capnography are additional monitoring tools to assess the impact of NIV on gas exchanges. In the near future, telemonitoring will reinforce and change the organization of home NIV for COPD patients.

  9. Clinical review: Long-term noninvasive ventilation

    PubMed Central

    Robert, Dominique; Argaud, Laurent

    2007-01-01

    Noninvasive positive ventilation has undergone a remarkable evolution over the past decades and is assuming an important role in the management of both acute and chronic respiratory failure. Long-term ventilatory support should be considered a standard of care to treat selected patients following an intensive care unit (ICU) stay. In this setting, appropriate use of noninvasive ventilation can be expected to improve patient outcomes, reduce ICU admission, enhance patient comfort, and increase the efficiency of health care resource utilization. Current literature indicates that noninvasive ventilation improves and stabilizes the clinical course of many patients with chronic ventilatory failure. Noninvasive ventilation also permits long-term mechanical ventilation to be an acceptable option for patients who otherwise would not have been treated if tracheostomy were the only alternative. Nevertheless, these results appear to be better in patients with neuromuscular/-parietal disorders than in chronic obstructive pulmonary disease. This clinical review will address the use of noninvasive ventilation (not including continuous positive airway pressure) mainly in diseases responsible for chronic hypoventilation (that is, restrictive disorders, including neuromuscular disease and lung disease) and incidentally in others such as obstructive sleep apnea or problems of central drive. PMID:17419882

  10. Fast Charge Battery Electric Transit Bus In-Use Fleet Evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prohaska, Robert; Kelly, Kenneth; Eudy, Leslie

    2016-07-25

    The focus of this interim fleet evaluation is to characterize and evaluate the operating behavior of Foothill Transit's fast charge battery electric buses (BEBs). Future research will compare the BEBs' performance to conventional vehicles. In an effort to better understand the impacts of drive cycle characteristics on advanced vehicle technologies, researchers at the National Renewable Energy Laboratory analyzed over 148,000 km of in-use operational data, including driving and charging events. This analysis provides an unbiased evaluation of advanced vehicle technologies in real-world operation demonstrating the importance of understanding the effects of road grade and heating, ventilating and air conditioning requirementsmore » when deploying electric vehicles. The results of this analysis show that the Proterra BE35 demonstrated an operating energy efficiency of 1.34 kWh/km over the data reporting period.« less

  11. Fast Charge Battery Electric Transit Bus In-Use Fleet Evaluation: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prohaska, Robert; Eudy, Leslie; Kelly, Kenneth

    2016-05-06

    The focus of this interim fleet evaluation is to characterize and evaluate the operating behavior of Foothill Transit's fast charge battery electric buses (BEBs). Future research will compare the BEBs' performance to conventional vehicles. In an effort to better understand the impacts of drive cycle characteristics on advanced vehicle technologies, researchers at the National Renewable Energy Laboratory analyzed over 148,000 km of in-use operational data, including driving and charging events. This analysis provides an unbiased evaluation of advanced vehicle technologies in real-world operation demonstrating the importance of understanding the effects of road grade and heating, ventilating and air conditioning requirementsmore » when deploying electric vehicles. The results of this analysis show that the Proterra BE35 demonstrated an operating energy efficiency of 1.34 kWh/km over the data reporting period.« less

  12. Healthy Building Design for the Commercial, Industrial, and Institutional Marketplace.

    ERIC Educational Resources Information Center

    Turner, William A.

    Building design and construction that helps deliver both superior air quality and occupant thermal comfort, while minimizing energy consumption, are examined. The paper explores an integrated building systems approach that combines the principles of "directed air flow control" and "demand controlled ventilation" where ventilation is effectively…

  13. Measure Guideline: Ventilation Cooling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Springer, D.; Dakin, B.; German, A.

    2012-04-01

    The purpose of this measure guideline on ventilation cooling is to provide information on a cost-effective solution for reducing cooling system energy and demand in homes located in hot-dry and cold-dry climates. This guideline provides a prescriptive approach that outlines qualification criteria, selection considerations, and design and installation procedures.

  14. Corticosteroids and fetal intervention interact to alter lung maturation in preterm lambs.

    PubMed

    Tabor, B L; Lewis, J F; Ikegami, M; Polk, D; Jobe, A H

    1994-04-01

    The relationship between cortisol infusion and time of fetal catheterization on postnatal lung function of prematurely delivered lambs was investigated with the hypothesis that the intervention of catheterization would alter fetal responsiveness to the maturational effects of corticosteroids. Fetal catheterization was performed on d 117 or on d 122 of gestation. Cortisol or saline control infusions were begun on d 126, with delivery 60 h later on d 128. The animals were ventilated for 1.25 h after delivery, and compliance, the ventilation efficiency index, labeled albumin leak into and out of the lungs, alveolar and lung saturated phosphatidylcholine and surfactant protein A were measured to evaluate lung performance and biochemical indicators of maturation. Cortisol improved compliance and ventilation efficiency and decreased labeled albumin recovery without changing alveolar saturated phosphatidylcholine or surfactant protein A in the animals catheterized at 122 d relative to 122-d saline-infused animals. However, the animals catheterized at 117 d and infused with saline were as mature as assessed by compliance and ventilation efficiency as the 122-d cortisol-treated animals. The 117-d cortisol-infused animals had significantly augmented lung function relative to either 117-d saline-infused or 122-d cortisol-treated lambs and were the only group that had increased alveolar surfactant protein A and lung saturated phosphatidylcholine pool sizes. This study demonstrates that the response of the fetal lung to a maturational agent such as cortisol is dependent on the history of previous fetal interventions.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Torcellini, P.; Pless, S.; Lobato, C.

    Until recently, large-scale, cost-effective net-zero energy buildings (NZEBs) were thought to lie decades in the future. However, ongoing work at the National Renewable Energy Laboratory (NREL) indicates that NZEB status is both achievable and repeatable today. This paper presents a definition framework for classifying NZEBs and a real-life example that demonstrates how a large-scale office building can cost-effectively achieve net-zero energy. The vision of NZEBs is compelling. In theory, these highly energy-efficient buildings will produce, during a typical year, enough renewable energy to offset the energy they consume from the grid. The NREL NZEB definition framework classifies NZEBs according tomore » the criteria being used to judge net-zero status and the way renewable energy is supplied to achieve that status. We use the new U.S. Department of Energy/NREL 220,000-ft{sub 2} Research Support Facilities (RSF) building to illustrate why a clear picture of NZEB definitions is important and how the framework provides a methodology for creating a cost-effective NZEB. The RSF, scheduled to open in June 2010, includes contractual commitments to deliver a Leadership in Energy Efficiency and Design (LEED) Platinum Rating, an energy use intensity of 25 kBtu/ft{sub 2} (half that of a typical LEED Platinum office building), and net-zero energy status. We will discuss the analysis method and cost tradeoffs that were performed throughout the design and build phases to meet these commitments and maintain construction costs at $259/ft{sub 2}. We will discuss ways to achieve large-scale, replicable NZEB performance. Many passive and renewable energy strategies are utilized, including full daylighting, high-performance lighting, natural ventilation through operable windows, thermal mass, transpired solar collectors, radiant heating and cooling, and workstation configurations allow for maximum daylighting.« less

  16. Energy demand in patients with stroke who are sedated and receiving mechanical ventilation.

    PubMed

    Bardutzky, Juergen; Georgiadis, Dimitrios; Kollmar, Rainer; Schwarz, Stefan; Schwab, Stefan

    2004-02-01

    The purpose of this study was 1) to determine the total energy expenditure (TEE) in patients with acute stroke who are sedated and receiving mechanical ventilation; and 2) to compare the TEE between patients with ischemic and hemorrhagic stroke. Thirty-four consecutive nonseptic patients with stroke requiring sedation and mechanical ventilation were prospectively examined; 13 of the patients had experienced spontaneous intracerebral hemorrhage and 21 cerebral ischemia of the middle cerebral artery territory. The TEE was evaluated using continuous indirect calorimetry during the first 5 days after admission to the intensive care unit. The serum albumin concentration was determined on admission and on Day 5. The TEE varied from 1560 +/- 240 to 1623 +/- 251 kcal/day. A highly significant correlation between the TEE and the basal energy expenditure (BEE), as predicted using the Harris-Benedict equation, was observed in both groups. No significant differences in the TEE were detected between the two groups or among the different study days. A highly significant correlation was found between the TEE and the predicted BEE in patients with acute stroke who have been sedated and have received mechanical ventilation. No significant differences were observed between patients with hemorrhagic and ischemic stroke. Further studies are needed to evaluate the effect of tailored feeding on clinical outcome in these patients.

  17. Verification of Energy Reduction Effect through Control Optimization of Supply Air Temperature in VRF-OAP System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Je; Yoon, Hyun; Im, Piljae

    This paper developed an algorithm that controls the supply air temperature in the variable refrigerant flow (VRF), outdoor air processing unit (OAP) system, according to indoor and outdoor temperature and humidity, and verified the effects after applying the algorithm to real buildings. The VRF-OAP system refers to a heating, ventilation, and air conditioning (HVAC) system to complement a ventilation function, which is not provided in the VRF system. It is a system that supplies air indoors by heat treatment of outdoor air through the OAP, as a number of indoor units and OAPs are connected to the outdoor unit inmore » the VRF system simultaneously. This paper conducted experiments with regard to changes in efficiency and the cooling capabilities of each unit and system according to supply air temperature in the OAP using a multicalorimeter. Based on these results, an algorithm that controlled the temperature of the supply air in the OAP was developed considering indoor and outdoor temperatures and humidity. The algorithm was applied in the test building to verify the effects of energy reduction and the effects on indoor temperature and humidity. Loads were then changed by adjusting the number of conditioned rooms to verify the effect of the algorithm according to various load conditions. In the field test results, the energy reduction effect was approximately 15–17% at a 100% load, and 4–20% at a 75% load. However, no significant effects were shown at a 50% load. The indoor temperature and humidity reached a comfortable level.« less

  18. Verification of Energy Reduction Effect through Control Optimization of Supply Air Temperature in VRF-OAP System

    DOE PAGES

    Lee, Je; Yoon, Hyun; Im, Piljae; ...

    2017-12-27

    This paper developed an algorithm that controls the supply air temperature in the variable refrigerant flow (VRF), outdoor air processing unit (OAP) system, according to indoor and outdoor temperature and humidity, and verified the effects after applying the algorithm to real buildings. The VRF-OAP system refers to a heating, ventilation, and air conditioning (HVAC) system to complement a ventilation function, which is not provided in the VRF system. It is a system that supplies air indoors by heat treatment of outdoor air through the OAP, as a number of indoor units and OAPs are connected to the outdoor unit inmore » the VRF system simultaneously. This paper conducted experiments with regard to changes in efficiency and the cooling capabilities of each unit and system according to supply air temperature in the OAP using a multicalorimeter. Based on these results, an algorithm that controlled the temperature of the supply air in the OAP was developed considering indoor and outdoor temperatures and humidity. The algorithm was applied in the test building to verify the effects of energy reduction and the effects on indoor temperature and humidity. Loads were then changed by adjusting the number of conditioned rooms to verify the effect of the algorithm according to various load conditions. In the field test results, the energy reduction effect was approximately 15–17% at a 100% load, and 4–20% at a 75% load. However, no significant effects were shown at a 50% load. The indoor temperature and humidity reached a comfortable level.« less

  19. The Consortium of Advanced Residential Buildings (CARB) - A Building America Energy Efficient Housing Partnership

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robb Aldrich; Lois Arena; Dianne Griffiths

    2010-12-31

    This final report summarizes the work conducted by the Consortium of Advanced Residential Buildings (CARB) (http://www.carb-swa.com/), one of the 'Building America Energy Efficient Housing Partnership' Industry Teams, for the period January 1, 2008 to December 31, 2010. The Building America Program (BAP) is part of the Department of Energy (DOE), Energy Efficiency and Renewable Energy, Building Technologies Program (BTP). The long term goal of the BAP is to develop cost effective, production ready systems in five major climate zones that will result in zero energy homes (ZEH) that produce as much energy as they use on an annual basis bymore » 2020. CARB is led by Steven Winter Associates, Inc. with Davis Energy Group, Inc. (DEG), MaGrann Associates, and Johnson Research, LLC as team members. In partnership with our numerous builders and industry partners, work was performed in three primary areas - advanced systems research, prototype home development, and technical support for communities of high performance homes. Our advanced systems research work focuses on developing a better understanding of the installed performance of advanced technology systems when integrated in a whole-house scenario. Technology systems researched included: - High-R Wall Assemblies - Non-Ducted Air-Source Heat Pumps - Low-Load HVAC Systems - Solar Thermal Water Heating - Ventilation Systems - Cold-Climate Ground and Air Source Heat Pumps - Hot/Dry Climate Air-to-Water Heat Pump - Condensing Boilers - Evaporative condensers - Water Heating CARB continued to support several prototype home projects in the design and specification phase. These projects are located in all five program climate regions and most are targeting greater than 50% source energy savings over the Building America Benchmark home. CARB provided technical support and developed builder project case studies to be included in near-term Joule Milestone reports for the following community scale projects: - SBER Overlook at Clipper Mill (mixed, humid climate) - William Ryan Homes - Tampa (hot, humid climate).« less

  20. Ventilation and infiltration in high-rise apartment buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diamond, R.C.; Feustel, H.E.; Dickerhoff, D.J.

    1996-03-01

    Air flow, air leakage measurements and numerical simulations were made on a 13-story apartment building to characterize the ventilation rates for the individual apartments. Parametric simulations were performed for specific conditions, e.g., height, orientation, outside temperature and wind speed. Our analysis of the air flow simulations suggest that the ventilation to the individual units varies considerably. With the mechanical ventilation system disabled and no wind, units at the lower level of the building have adequate ventilation only on days with high temperature differences, while units on higher floors have no ventilation at all. Units facing the windward side will bemore » over-ventilated when the building experiences wind directions between west and north. At the same time, leeward apartments did not experience any fresh air-because, in these cases, air flows enter the apartments from the corridor and exit through the exhaust shafts and the cracks in the facade. Even with the mechanical ventilation system operating, we found wide variation in the air flows to the individual apartments. In addition to the specific case presented here, these findings have more general implications for energy retrofits and health and comfort of occupants in high-rise apartment buildings.« less

  1. Infiltration as Ventilation: Weather-Induced Dilution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sherman, Max H.; Turner, William J.N.; Walker, Iain S.

    The purpose of outdoor air ventilation is to dilute or remove indoor contaminants to which occupants are exposed. It can be provided by mechanical or natural means. In most homes, especially older homes, weather-driven infiltration provides the dominant fraction of the total ventilation. As we seek to provide good indoor air quality at minimum energy cost, it is important to neither over-ventilate nor under-ventilate. Thus, it becomes critically important to evaluate correctly the contribution infiltration makes to the total outdoor air ventilation rate. Because weather-driven infiltration is dependent on building air leakage and weather-induced pressure differences, a given amount ofmore » air leakage will provide different amounts of infiltration. Varying rates of infiltration will provide different levels of contaminant dilution and hence effective ventilation. This paper derives these interactions and then calculates the impact of weather-driven infiltration for different climates. A new “N-factor” is introduced to provide a convenient method for calculating the ventilation contribution of infiltration for over 1,000 locations across North America. The results of this work could be used in indoor air quality standards (specifically ASHRAE 62.2) to account for the contribution of weather-driven infiltration towards the dilution of indoor pollutants.« less

  2. Building energy modeling for green architecture and intelligent dashboard applications

    NASA Astrophysics Data System (ADS)

    DeBlois, Justin

    Buildings are responsible for 40% of the carbon emissions in the United States. Energy efficiency in this sector is key to reducing overall greenhouse gas emissions. This work studied the passive technique called the roof solar chimney for reducing the cooling load in homes architecturally. Three models of the chimney were created: a zonal building energy model, computational fluid dynamics model, and numerical analytic model. The study estimated the error introduced to the building energy model (BEM) through key assumptions, and then used a sensitivity analysis to examine the impact on the model outputs. The conclusion was that the error in the building energy model is small enough to use it for building simulation reliably. Further studies simulated the roof solar chimney in a whole building, integrated into one side of the roof. Comparisons were made between high and low efficiency constructions, and three ventilation strategies. The results showed that in four US climates, the roof solar chimney results in significant cooling load energy savings of up to 90%. After developing this new method for the small scale representation of a passive architecture technique in BEM, the study expanded the scope to address a fundamental issue in modeling - the implementation of the uncertainty from and improvement of occupant behavior. This is believed to be one of the weakest links in both accurate modeling and proper, energy efficient building operation. A calibrated model of the Mascaro Center for Sustainable Innovation's LEED Gold, 3,400 m2 building was created. Then algorithms were developed for integration to the building's dashboard application that show the occupant the energy savings for a variety of behaviors in real time. An approach using neural networks to act on real-time building automation system data was found to be the most accurate and efficient way to predict the current energy savings for each scenario. A stochastic study examined the impact of the representation of unpredictable occupancy patterns on model results. Combined, these studies inform modelers and researchers on frameworks for simulating holistically designed architecture and improving the interaction between models and building occupants, in residential and commercial settings. v

  3. Selective permeation of moisture and VOCs through polymer membranes used in total heat exchangers for indoor air ventilation.

    PubMed

    Zhang, L-Z; Zhang, X-R; Miao, Q-Z; Pei, L-X

    2012-08-01

    Fresh air ventilation is central to indoor environmental control. Total heat exchangers can be key equipment for energy conservation in ventilation. Membranes have been used for total heat exchangers for more than a decade. Much effort has been spent to achieve water vapor permeability of various membranes; however, relatively little attention has been paid to the selectivity of moisture compared with volatile organic compounds (VOCs) through such membranes. In this investigation, the most commonly used membranes, both hydrophilic and hydrophobic ones, are tested for their permeability for moisture and five VOCs (acetic acid, formaldehyde, acetaldehyde, toluene, and ethane). The selectivity of moisture vs. VOCs in these membranes is then evaluated. With a solution-diffusion model, the solubility and diffusivity of moisture and VOCs in these membranes are calculated. The resulting data could provide some reference for future material selection. Total heat exchangers are important equipment for fresh air ventilation with energy conservation. However, their implications for indoor air quality in terms of volatile organic compound permeation have not been known. The data in this article help us to clarify the impacts on indoor VOC levels of membrane-based heat exchangers. Guidelines for material selection can be obtained for future use total heat exchangers for building ventilation. © 2011 John Wiley & Sons A/S.

  4. Energy Savings Potential and Research, Development, & Demonstration Opportunities for Commercial Building Heating, Ventilation, and Air Conditioning Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    none,

    2011-09-01

    This report covers an assessment of 182 different heating, ventilation, and air-conditioning (HVAC) technologies for U.S. commercial buildings to identify and provide analysis on 17 priority technology options in various stages of development. The analyses include an estimation of technical energy-savings potential, description of technical maturity, description of non-energy benefits, description of current barriers for market adoption, and description of the technology’s applicability to different building or HVAC equipment types. From these technology descriptions, are suggestions for potential research, development and demonstration (RD&D) initiatives that would support further development of the priority technology options.

  5. Addressing Kitchen Contaminants for Healthy, Low-Energy Homes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stratton, J. Chris; Singer, Brett C.

    2014-01-01

    Cooking and cooking burners emit pollutants that can adversely affect indoor air quality in residences and significantly impact occupant health. Effective kitchen exhaust ventilation can reduce exposure to cooking-related air pollutants as an enabling step to healthier, low-energy homes. This report by Lawrence Berkeley National Laboratory identifies barriers to the widespread adoption of kitchen exhaust ventilation technologies and practice and proposes a suite of strategies to overcome these barriers. The recommendations have been vetted by a group of industry, regulatory, health, and research experts and stakeholders who convened for two meetings and provided input and feedback to early drafts ofmore » this document. The most fundamental barriers are (1) the common misconception, based on a sensory perception of risk, that kitchen exhaust when cooking is unnecessary and (2) the lack of a code requirement for kitchen ventilation in most U.S. locations. Highest priority objectives include the following: (1) Raise awareness among the public and the building industry of the need to install and routinely use kitchen ventilation; (2) Incorporate kitchen exhaust ventilation as a requirement of building codes and improve the mechanisms for code enforcement; (3) Provide best practice product and use-behavior guidance to ventilation equipment purchasers and installers, and; (4) Develop test methods and performance targets to advance development of high performance products. A specific, urgent need is the development of an over-the-range microwave that meets the airflow and sound requirements of ASHRAE Standard 62.2.« less

  6. Addressing Kitchen Contaminants for Healthy, Low-Energy Homes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stratton, J. Chris; Singer, Brett C.

    2014-01-01

    Cooking and cooking burners emit pollutants that can adversely affect indoor air quality in residences and significantly impact occupant health. Effective kitchen exhaust ventilation can reduce exposure to cooking-related air pollutants as an enabling step to healthier, low-energy homes. This report identifies barriers to the widespread adoption of kitchen exhaust ventilation technologies and practice and proposes a suite of strategies to overcome these barriers. The recommendations have been vetted by a group of industry, regulatory, health, and research experts and stakeholders who convened for two web-based meetings and provided input and feedback to early drafts of this document. The mostmore » fundamental barriers are (1) the common misconception, based on a sensory perception of risk, that kitchen exhaust when cooking is unnecessary and (2) the lack of a code requirement for kitchen ventilation in most US locations. Highest priority objectives include the following: (1) Raise awareness among the public and the building industry of the need to install and routinely use kitchen ventilation; (2) Incorporate kitchen exhaust ventilation as a requirement of building codes and improve the mechanisms for code enforcement; (3) Provide best practice product and use-behavior guidance to ventilation equipment purchasers and installers, and; (4) Develop test methods and performance targets to advance development of high performance products. A specific, urgent need is the development of an over-the-range microwave that meets the airflow and sound requirements of ASHRAE Standard 62.2.« less

  7. [Formaldehyde-reducing efficiency of a newly developed dissection-table-connected local ventilation system in the gross anatomy laboratory room].

    PubMed

    Shinoda, Koh; Oba, Jun

    2010-03-01

    In compliance with health and safety management guidelines against harmful formaldehyde (FA) levels in the gross anatomy laboratory, we newly developed a dissection-table-connected local ventilation system in 2006. The system was composed of (1) a simple plenum-chambered dissection table with low-cost filters, (2) a transparent vinyl flexible duct for easy mounting and removal, which connects the table and the exhaust pipe laid above the ceiling, and (3) an intake creating a downward-flow of air, which was installed on the ceiling just above each table. The dissection table was also designed as a separate-component system, of which the upper plate and marginal suction inlets can be taken apart for cleaning after dissection, and equipped with opening/closing side-windows for picking up materials dropped during dissection and a container underneath the table to receive exudate from the cadaver through a waste-fluid pipe. The local ventilation system dramatically reduced FA levels to 0.01-0.03 ppm in the gross anatomy laboratory room, resulting in no discomforting FA smell and irritating sensation while preserving the student's view of room and line of flow as well as solving the problems of high maintenance cost, sanitation issues inside the table, and working-inconvenience during dissection practice. Switching ventilation methods or power-modes, the current local ventilation system was demonstrated to be more than ten times efficient in FA reduction compared to the whole-room ventilation system and suggested that 11 m3/min/table in exhaust volume should decrease FA levels in both A- and B-measurements to less than 0.1 ppm in 1000 m3 space containing thirty-one 3.5%-FA-fixed cadavers.

  8. Collateral Ventilation Quantification Using Xenon-Enhanced Dynamic Dual-Energy CT: Differences between Canine and Swine Models of Bronchial Occlusion.

    PubMed

    Park, Eun-Ah; Goo, Jin Mo; Park, Sang Joon; Lee, Chang Hyun; Park, Chang Min

    2015-01-01

    The aim of this study was to evaluate whether the difference in the degree of collateral ventilation between canine and swine models of bronchial obstruction could be detected by using xenon-enhanced dynamic dual-energy CT. Eight mongrel dogs and six pigs underwent dynamic dual-energy scanning of 64-slice dual-source CT at 12-second interval for 2-minute wash-in period (60% xenon) and at 24-second interval for 3-minute wash-out period with segmental bronchus occluded. Ventilation parameters of magnitude (A value), maximal slope, velocity (K value), and time-to-peak (TTP) enhancement were calculated from dynamic xenon maps using exponential function of Kety model. A larger difference in A value between parenchyma was observed in pigs than in dogs (absolute difference, -33.0 ± 5.0 Hounsfield units [HU] vs. -2.8 ± 7.1 HU, p = 0.001; normalized percentage difference, -79.8 ± 1.8% vs. -5.4 ± 16.4%, p = 0.0007). Mean maximal slopes in both periods in the occluded parenchyma only decreased in pigs (all p < 0.05). K values of both periods were not different (p = 0.892) in dogs. However, a significant (p = 0.027) difference was found in pigs in the wash-in period. TTP was delayed in the occluded parenchyma in pigs (p = 0.013) but not in dogs (p = 0.892). Xenon-ventilation CT allows the quantification of collateral ventilation and detection of differences between canine and swine models of bronchial obstruction.

  9. Collateral Ventilation Quantification Using Xenon-Enhanced Dynamic Dual-Energy CT: Differences between Canine and Swine Models of Bronchial Occlusion

    PubMed Central

    Park, Eun-Ah; Park, Sang Joon; Lee, Chang Hyun; Park, Chang Min

    2015-01-01

    Objective The aim of this study was to evaluate whether the difference in the degree of collateral ventilation between canine and swine models of bronchial obstruction could be detected by using xenon-enhanced dynamic dual-energy CT. Materials and Methods Eight mongrel dogs and six pigs underwent dynamic dual-energy scanning of 64-slice dual-source CT at 12-second interval for 2-minute wash-in period (60% xenon) and at 24-second interval for 3-minute wash-out period with segmental bronchus occluded. Ventilation parameters of magnitude (A value), maximal slope, velocity (K value), and time-to-peak (TTP) enhancement were calculated from dynamic xenon maps using exponential function of Kety model. Results A larger difference in A value between parenchyma was observed in pigs than in dogs (absolute difference, -33.0 ± 5.0 Hounsfield units [HU] vs. -2.8 ± 7.1 HU, p = 0.001; normalized percentage difference, -79.8 ± 1.8% vs. -5.4 ± 16.4%, p = 0.0007). Mean maximal slopes in both periods in the occluded parenchyma only decreased in pigs (all p < 0.05). K values of both periods were not different (p = 0.892) in dogs. However, a significant (p = 0.027) difference was found in pigs in the wash-in period. TTP was delayed in the occluded parenchyma in pigs (p = 0.013) but not in dogs (p = 0.892). Conclusion Xenon-ventilation CT allows the quantification of collateral ventilation and detection of differences between canine and swine models of bronchial obstruction. PMID:25995696

  10. Estimates of associated outdoor particulate matter health risk and costs reductions from alternative building, ventilation and filtration scenarios.

    PubMed

    Sultan, Zuraimi M

    2007-05-01

    Although many studies have reported calculations of outdoor particulate matter (PM) associated externalities using ambient data, there is little information on the role buildings, their ventilation and filtration play. This study provides the framework to evaluate the health risk and cost reduction of building, ventilation and filtration strategies from outdoor PM pollution on a nationwide level and applied it to a case study in Singapore. Combining Indoor Air Quality (IAQ) and time weighted exposure models, with established concentration-response functions and monetary valuation methods, mortality and morbidity effects of outdoor PM on the population of Singapore under different building, ventilation and filtration strategies were estimated. Different interventions were made to compare the effects from the current building conditions. The findings demonstrate that building protection effect reduced approximately half the attributable health cases amounting to US$17.7 billion due to PM pollution when compared to levels computed using outdoor data alone. For residential buildings, nationwide adoption of natural ventilation from current state is associated with 28% higher cases of mortality and 13 to 38% higher cases for different morbidities, amounting to US$6.7 billion. The incurred cost is negligible compared to energy costs of air-conditioning. However, nationwide adoption of closed residence and air-conditioning are associated with outcomes including fewer mortality (10 and 6% respectively), fewer morbidities (8 and 4% respectively) and economic savings of US$1.5 and 0.9 billion respectively. The related savings were about a factor of 9 the energy cost for air-conditioning. Nationwide adoption of mechanical ventilation and filtration from current natural ventilation in schools is associated with fewer asthma hospital admissions and exacerbations; although the economic impact is not substantial. Enhanced workplace filtration reduces the mortality and morbidity cases by 14 and 13% respectively amounting to savings of up to US$2.4 billion. The huge costs savings are comparable to the average worker salary and insignificant to energy, installation and rental cost. Despite uncertainty about accurate benefits, this study shows that health and economic gain via different building, ventilation and filtration designs in minimizing ingress of outdoor PM applied to a nationwide scale can be very large. Importantly, the results suggest that PM associated externalities and legislative efforts should not only focus on ambient PM reduction policies but also include building-informed decisions.

  11. [Appropriate dust control measures for jade carving operations].

    PubMed

    Liu, Jiang; Wang, Qiushui; Liu, Guangquan

    2002-12-01

    To provide the appropriate dust control measures for jade carving operations. Dust concentrations in the workplace were measured according to GB/T 5748-85. Ventilation system of dust control were measured according to GB/T 16157-1996. Dust particle size distributions for different sources and particle size fraction collecting efficiencies of the dust collectors were measured with WY-1 in-stack 7 stage cascade impactors. On the basis of adopting wet process in the carving operations, local exhaust ventilation system for dust control was installed, which included: the special designed slot exhaust hoods with hood face velocity of 2.5 m/s and exhaust volume of 600 m3/h. The pipe sizes were determined according to the air volume passing through the pipe and the reasonable air velocities. Impinging scrubber or bag filter dust collector were selected to treat the dust laden air from the local exhaust ventilation system, which gave a total collecting efficiency of 97% for impinging scrubber and 98% for bag filter; The type of fan and its size were selected according to the total air volume of the ventilation system and maximum total pressure needed for the longest pipe line plus the pressure drop of the dust collector. Practical application showed that, after installation and use of the appropriate dust control measures, the dust concentrations in the workplaces could meet or nearly meet the national hygienic standard and the dust laden air at the local exhaust ventilation system could meet the national emission standard.

  12. Performance of heated humidifiers with a heated wire according to ventilatory settings.

    PubMed

    Nishida, T; Nishimura, M; Fujino, Y; Mashimo, T

    2001-01-01

    Delivering warm, humidified gas to patients is important during mechanical ventilation. Heated humidifiers are effective and popular. The humidifying efficiency is influenced not only by performance and settings of the devices but the settings of ventilator. We compared the efficiency of humidifying devices with a heated wire and servo-controlled function under a variety of ventilator settings. A bench study was done with a TTL model lung. The study took place in the laboratory of the University Hospital, Osaka, Japan. Four devices (MR290 with MR730, MR310 with MR730; both Fisher & Paykel, ConchaTherm IV; Hudson RCI, and HummaxII; METRAN) were tested. Hummax II has been developed recently, and it consists of a heated wire and polyethylene microporous hollow fiber. Both wire and fiber were put inside of an inspiratory circuit, and water vapor is delivered throughout the circuit. The Servo 300 was connected to the TTL with a standard ventilator circuit. The ventilator settings were as follows; minute ventilation (V(E)) 5, 10, and 15 L/min, a respiratory rate of 10 breaths/min, I:E ratio 1:1, 1:2, and 1:4, and no applied PEEP. Humidifying devices were set to maintain the temperature of airway opening at 32 degrees C and 37 degrees C. The greater V(E) the lower the humidity with all devices except Hummax II. Hummax II delivered 100% relative humidity at all ventilator and humidifier settings. When airway temperature control of the devices was set at 32 degrees C, the ConchaTherm IV did not deliver 30 mg/L of vapor, which is the value recommended by American National Standards at all V(E) settings. At 10 and 15 L/min of V(E) settings MR310 with MR730 did not deliver recommended vapor, either. In conclusion, airway temperature setting of the humidifying devices influenced the humidity of inspiratory gas greatly. Ventilatory settings also influenced the humidity of inspiratory gas. The Hummax II delivered sufficient water vapor under a variety of minute ventilation.

  13. Evaluation of thermal formation and air ventilation inside footwear during gait: The role of gait and fitting.

    PubMed

    Shimazaki, Yasuhiro; Matsutani, Toshiki; Satsumoto, Yayoi

    2016-07-01

    Comfort is an important concept in footwear design. The microclimate inside footwear contributes to the perception of thermal comfort. To investigate the effect of ventilation on microclimate formation inside footwear, experiments with subjects were conducted at four gait speeds with three different footwear sizes. Skin temperature, metabolism, and body mass were measured at approximately 25 °C and 50% relative humidity, with no solar radiation and a calm wind. The footwear occupancy and ventilation rate were also estimated, with the latter determined using the tracer gas method. The experimental results revealed that foot movement, metabolism, evaporation, radiation, convection, and ventilation were the main factors influencing the energy balance for temperature formation on the surface of the foot. The cooling effect of ventilation on the arch temperature was observed during gait. The significance of the amount of air space and ventilation on the improvement in the thermal comfort of footwear was clarified. Copyright © 2015 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  14. Influence of Courtyard Ventilation on Thermal Performance of Office Building in Hot-Humid Climate: A Case Study

    NASA Astrophysics Data System (ADS)

    Abbaas, Esra'a. Sh.; Saif, Ala'eddin A.; Munaaim, MAC; Azree Othuman Mydin, Md.

    2018-03-01

    The influence of courtyard on the thermal performance of Development Department office building in University Malaysia Perlis (UniMAP, Pauh Putra campus) is investigated through simulation study for the effect of ventilation on indoor air temperature and relative humidity of the building. The study is carried out using EnergyPlus simulator interface within OpenStudio and SketchUp plug in software to measure both of air temperature and relative humidity hourly on 21 April 2017 as a design day. The results show that the ventilation through the windows facing the courtyard has sufficient effect on reducing the air temperature compared to the ventilation through external windows since natural ventilation is highly effective on driving the indoor warm air out to courtyard. In addition, the relative humidity is reduced due to ventilation since the courtyard has high ability to remove or dilute indoor airborne pollutants coming from indoor sources. This indicates that the presence of courtyard is highly influential on thermal performance of the building.

  15. A Contemporary Assessment of Acute Mechanical Ventilation in Beijing: Description, Costs, and Outcomes.

    PubMed

    Ye, Yanping; Zhu, Bo; Jiang, Li; Jiang, Qi; Wang, Meiping; Hua, Lin; Xi, Xiuming

    2017-07-01

    To evaluate the contemporary practice, outcomes, and costs related to mechanical ventilation among ICUs in China. A prospective observational cohort study. Fourteen ICUs among 13 hospitals in Beijing, China. Seven hundred ninety-three patients who received at least 24 hours of mechanical ventilation within the first 48 hours of ICU stay. None. The mean age was 64 years. Sixty-three percent were male. New acute respiratory failure accounted for 85.5% of mechanical ventilation cases. Only 4.7% of the patients received mechanical ventilation for acute exacerbation of chronic obstructive pulmonary disease. The most widely used ventilation mode was the combination of synchronized intermittent mandatory ventilation and pressure support (43.6%). Use of lung-protective ventilation is widespread with tidal volumes of 7.1 mL/kg (2.1 mL/kg). The ICU/hospital mortality was 27.6%/29.3%, respectively (8.5%/9.7% for surgical patients and 41.3%/43.2% for medical patients, respectively). The mean level of ICU/hospital cost per patient was $15,271 (18,940)/$22,946 (25,575), respectively. The mean daily ICU cost per patient was $1,212. For the first time, we obtained a preliminary epidemiology data of mechanical ventilation in Beijing, China, through the study. Compared with the other nations, our patients are older, predominantly male, and treated according to prevailing international guidelines yet at a relatively high cost and high mortality. The expanding elderly population predicts increase demand for mechanical ventilation that must be met by continuous improvement in quality and efficiency of critical care services.

  16. Multi-Objectives Optimization of Ventilation Controllers for Passive Cooling in Residential Buildings

    PubMed Central

    Grygierek, Krzysztof; Ferdyn-Grygierek, Joanna

    2018-01-01

    An inappropriate indoor climate, mostly indoor temperature, may cause occupants’ discomfort. There are a great number of air conditioning systems that make it possible to maintain the required thermal comfort. Their installation, however, involves high investment costs and high energy demand. The study analyses the possibilities of limiting too high a temperature in residential buildings using passive cooling by means of ventilation with ambient cool air. A fuzzy logic controller whose aim is to control mechanical ventilation has been proposed and optimized. In order to optimize the controller, the modified Multiobjective Evolutionary Algorithm, based on the Strength Pareto Evolutionary Algorithm, has been adopted. The optimization algorithm has been implemented in MATLAB®, which is coupled by MLE+ with EnergyPlus for performing dynamic co-simulation between the programs. The example of a single detached building shows that the occupants’ thermal comfort in a transitional climate may improve significantly owing to mechanical ventilation controlled by the suggested fuzzy logic controller. When the system is connected to the traditional cooling system, it may further bring about a decrease in cooling demand. PMID:29642525

  17. Reduction of duration and cost of mechanical ventilation in an intensive care unit by use of a ventilatory management team.

    PubMed

    Cohen, I L; Bari, N; Strosberg, M A; Weinberg, P F; Wacksman, R M; Millstein, B H; Fein, I A

    1991-10-01

    To test the hypothesis that a formal interdisciplinary team approach to managing ICU patients requiring mechanical ventilation enhances ICU efficiency. Retrospective review with cost-effectiveness analysis. A 20-bed medical-surgical ICU in a 450-bed community referral teaching hospital with a critical care fellowship training program. All patients requiring mechanical ventilation in the ICU were included, comparing patients admitted 1 yr before the inception of the ventilatory management team (group 1) with those patients admitted for 1 yr after the inception of the team (group 2). Group 1 included 198 patients with 206 episodes of mechanical ventilation and group 2 included 165 patients with 183 episodes of mechanical ventilation. A team consisting of an ICU attending physician, nurse, and respiratory therapist was formed to conduct rounds regularly and supervise the ventilatory management of ICU patients who were referred to the critical care service. The two study groups were demographically comparable. However, there were significant reductions in resource use in group 2. The number of days on mechanical ventilation decreased (3.9 days per episode of mechanical ventilation [95% confidence interval 0.3 to 7.5 days]), as did days in the ICU (3.3 days per episode of mechanical ventilation [90% confidence interval 0.3 to 6.3 days]), numbers of arterial blood gases (23.2 per episode of mechanical ventilation; p less than .001), and number of indwelling arterial catheters (1 per episode of mechanical ventilation; p less than .001). The estimated cost savings from these reductions was $1,303 per episode of mechanical ventilation. We conclude that a ventilatory management team, or some component thereof, can significantly and safely expedite the process of "weaning" patients from mechanical ventilatory support in the ICU.

  18. Transparent air filter for high-efficiency PM2.5 capture.

    PubMed

    Liu, Chong; Hsu, Po-Chun; Lee, Hyun-Wook; Ye, Meng; Zheng, Guangyuan; Liu, Nian; Li, Weiyang; Cui, Yi

    2015-02-16

    Particulate matter (PM) pollution has raised serious concerns for public health. Although outdoor individual protection could be achieved by facial masks, indoor air usually relies on expensive and energy-intensive air-filtering devices. Here, we introduce a transparent air filter for indoor air protection through windows that uses natural passive ventilation to effectively protect the indoor air quality. By controlling the surface chemistry to enable strong PM adhesion and also the microstructure of the air filters to increase the capture possibilities, we achieve transparent, high air flow and highly effective air filters of ~90% transparency with >95.00% removal of PM2.5 under extreme hazardous air-quality conditions (PM2.5 mass concentration >250 μg m(-3)). A field test in Beijing shows that the polyacrylonitrile transparent air filter has the best PM2.5 removal efficiency of 98.69% at high transmittance of ~77% during haze occurrence.

  19. Transparent air filter for high-efficiency PM2.5 capture

    NASA Astrophysics Data System (ADS)

    Liu, Chong; Hsu, Po-Chun; Lee, Hyun-Wook; Ye, Meng; Zheng, Guangyuan; Liu, Nian; Li, Weiyang; Cui, Yi

    2015-02-01

    Particulate matter (PM) pollution has raised serious concerns for public health. Although outdoor individual protection could be achieved by facial masks, indoor air usually relies on expensive and energy-intensive air-filtering devices. Here, we introduce a transparent air filter for indoor air protection through windows that uses natural passive ventilation to effectively protect the indoor air quality. By controlling the surface chemistry to enable strong PM adhesion and also the microstructure of the air filters to increase the capture possibilities, we achieve transparent, high air flow and highly effective air filters of ~90% transparency with >95.00% removal of PM2.5 under extreme hazardous air-quality conditions (PM2.5 mass concentration >250 μg m-3). A field test in Beijing shows that the polyacrylonitrile transparent air filter has the best PM2.5 removal efficiency of 98.69% at high transmittance of ~77% during haze occurrence.

  20. Transitioning to High Performance Homes: Successes and Lessons Learned From Seven Builders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Widder, Sarah H.; Kora, Angela R.; Baechler, Michael C.

    2013-03-01

    As homebuyers are becoming increasingly concerned about rising energy costs and the impact of fossil fuels as a major source of greenhouse gases, the returning new home market is beginning to demand energy-efficient and comfortable high-performance homes. In response to this, some innovative builders are gaining market share because they are able to market their homes’ comfort, better indoor air quality, and aesthetics, in addition to energy efficiency. The success and marketability of these high-performance homes is creating a builder demand for house plans and information about how to design, build, and sell their own low-energy homes. To help makemore » these and other builders more successful in the transition to high-performance construction techniques, Pacific Northwest National Laboratory (PNNL) partnered with seven interested builders in the hot humid and mixed humid climates to provide technical and design assistance through two building science firms, Florida Home Energy and Resources Organization (FL HERO) and Calcs-Plus, and a designer that offers a line of stock plans designed specifically for energy efficiency, called Energy Smart Home Plans (ESHP). This report summarizes the findings of research on cost-effective high-performance whole-house solutions, focusing on real-world implementation and challenges and identifying effective solutions. The ensuing sections provide project background, profile each of the builders who participated in the program, and describe their houses’ construction characteristics, key challenges the builders encountered during the construction and transaction process); and present primary lessons learned to be applied to future projects. As a result of this technical assistance, 17 homes have been built featuring climate-appropriate efficient envelopes, ducts in conditioned space, and correctly sized and controlled heating, ventilation, and air-conditioning systems. In addition, most builders intend to integrate high-performance features into most or all their homes in the future. As these seven builders have demonstrated, affordable, high-performance homes are possible, but require attention to detail and flexibility in design to accommodate specific regional geographic or market-driven constraints that can increase cost. With better information regarding how energy-efficiency trade-offs or design choices affect overall home performance, builders can make informed decisions regarding home design and construction to minimize cost without sacrificing performance and energy savings.« less

  1. The use of intermittent positive pressure ventilation to differentiate pneumonia from atelectasis during anesthesia in a red panda (Ailurus fulgens).

    PubMed

    Phair, Kristen; West, Gary; Biller, David

    2010-12-01

    Radiography is a valuable tool for assessment of pulmonary disease. Specifically, radiographs utilizing positive pressure ventilation can distinguish between anesthesia-induced atelectasis and pulmonary disease when survey radiographs are ambiguous. Positive pressure ventilation can be used to radiographically prove or disprove pulmonary disease. This is of particular clinical importance when working with exotic, zoo, or wildlife species because the majority of these patients require general anesthesia to perform physical examinations and diagnostics such as radiography safely and efficiently. This report is a case example of pulmonary disease in a red panda (Ailurus fulgens) and demonstrates how positive pressure ventilation verified both the presence of pulmonary disease and the eventual resolution of the disease. Anesthetized patients on gas anesthesia will rapidly become atelectic. Through the use of positive pressure ventilation, anesthesia-induced atelectasis and true pulmonary disease can readily be distinguished. This is a technique that should not be overlooked when performing thoracic radiography in zoo species.

  2. Space station ventilation study

    NASA Technical Reports Server (NTRS)

    Colombo, G. V.; Allen, G. E.

    1972-01-01

    A ventilation system design and selection method which is applicable to any manned vehicle were developed. The method was used to generate design options for the NASA 33-foot diameter space station, all of which meet the ventilation system design requirements. System characteristics such as weight, volume, and power were normalized to dollar costs for each option. Total system costs for the various options ranged from a worst case $8 million to a group of four which were all approximately $2 million. A system design was then chosen from the $2 million group and is presented in detail. A ventilation system layout was designed for the MSFC space station mockup which provided comfortable, efficient ventilation of the mockup. A conditioned air distribution system design for the 14-foot diameter modular space station, using the same techniques, is also presented. The tradeoff study resulted in the selection of a system which costs $1.9 million, as compared to the alternate configuration which would have cost $2.6 million.

  3. Case Study for the ARRA-funded GSHP Demonstration at University at Albany

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Xiaobing; Malhotra, Mini; Xiong, Zeyu

    High initial costs and lack of public awareness of ground-source heat pump (GSHP) technology are the two major barriers preventing rapid deployment of this energy-saving technology in the United States. Under the American Recovery and Reinvestment Act (ARRA), 26 GSHP projects have been competitively selected and carried out to demonstrate the benefits of GSHP systems and innovative technologies for cost reduction and/or performance improvement. This report highlights the findings of a case study of one of the ARRA-funded GSHP demonstration projects—a distributed GSHP system at a new 500-bed apartment-style student residence hall at the University at Albany. This case studymore » is based on the analysis of detailed design documents, measured performance data, published catalog data of heat pump equipment, and actual construction costs. Simulations with a calibrated computer model are performed for both the demonstrated GSHP system and a baseline heating, ventilation, and airconditioning (HVAC) system to determine the energy savings and other related benefits achieved by the GSHP system. The evaluated performance metrics include the energy efficiency of the heat pump equipment and the overall GSHP system, as well as the pumping performance, energy savings, carbon emission reductions, and cost-effectiveness of the demonstrated GSHP system compared with the baseline HVAC system. This case study also identifies opportunities for improving the operational efficiency of the demonstrated GSHP system.« less

  4. Xenon-enhanced CT using subtraction CT: Basic and preliminary clinical studies for comparison of its efficacy with that of dual-energy CT and ventilation SPECT/CT to assess regional ventilation and pulmonary functional loss in smokers.

    PubMed

    Ohno, Yoshiharu; Yoshikawa, Takeshi; Takenaka, Daisuke; Fujisawa, Yasuko; Sugihara, Naoki; Kishida, Yuji; Seki, Shinichiro; Koyama, Hisanobu; Sugimura, Kazuro

    2017-01-01

    To prospectively and directly compare the capability for assessments of regional ventilation and pulmonary functional loss in smokers of xenon-ventilation CT obtained with the dual-energy CT (DE-CT) and subtraction CT (Sub-CT) MATERIALS AND METHODS: Twenty-three consecutive smokers (15 men and 8 women, mean age: 69.7±8.7years) underwent prospective unenhanced and xenon-enhanced CTs, the latter by Sub-CT and DE-CT methods, ventilation SPECT and pulmonary function tests. Sub-CT was generated from unenhanced and xenon-enhanced CT, and all co-registered SPECT/CT data were produced from SPECT and unenhanced CT data. For each method, regional ventilation was assessed by using a 11-point scoring system on a per-lobe basis. To determine the functional lung volume by each method, it was also calculated for individual sublets with a previously reported method. To determine inter-observer agreement for each method, ventilation defect assessment was evaluated by using the χ2 test with weighted kappa statistics. For evaluation of the efficacy of each method for pulmonary functional loss assessment, functional lung volume was correlated with%FEV 1 . Each inter-observer agreement was rated as substantial (Sub-CT: κ=0.69, p<0.0001; DE-CT: κ=0.64, p<0.0001; SPECT/CT: κ=0.64, p<0.0001). Functional lung volume for each method showed significant to good correlation with%FEV 1 (Sub-CT: r=0.72, p=0.0001; DE-CT: r=0.74, p<0.0001; SPECT/CT: r=0.66, p=0.0006). Xenon-enhanced CT obtained by Sub-CT can be considered at least as efficacious as that obtained by DE-CT and SPECT/CT for assessment of ventilation abnormality and pulmonary functional loss in smokers. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  5. Comfortable, high-efficiency heat pump with desiccant-coated, water-sorbing heat exchangers

    NASA Astrophysics Data System (ADS)

    Tu, Y. D.; Wang, R. Z.; Ge, T. S.; Zheng, X.

    2017-01-01

    Comfortable, efficient, and affordable heating, ventilation, and air conditioning systems in buildings are highly desirable due to the demands of energy efficiency and environmental friendliness. Traditional vapor-compression air conditioners exhibit a lower coefficient of performance (COP) (typically 2.8-3.8) owing to the cooling-based dehumidification methods that handle both sensible and latent loads together. Temperature- and humidity-independent control or desiccant systems have been proposed to overcome these challenges; however, the COP of current desiccant systems is quite small and additional heat sources are usually needed. Here, we report on a desiccant-enhanced, direct expansion heat pump based on a water-sorbing heat exchanger with a desiccant coating that exhibits an ultrahigh COP value of more than 7 without sacrificing any comfort or compactness. The pump’s efficiency is doubled compared to that of pumps currently used in conventional room air conditioners, which is a revolutionary HVAC breakthrough. Our proposed water-sorbing heat exchanger can independently handle sensible and latent loads at the same time. The desiccants adsorb moisture almost isothermally and can be regenerated by condensation heat. This new approach opens up the possibility of achieving ultrahigh efficiency for a broad range of temperature- and humidity-control applications.

  6. Comfortable, high-efficiency heat pump with desiccant-coated, water-sorbing heat exchangers.

    PubMed

    Tu, Y D; Wang, R Z; Ge, T S; Zheng, X

    2017-01-12

    Comfortable, efficient, and affordable heating, ventilation, and air conditioning systems in buildings are highly desirable due to the demands of energy efficiency and environmental friendliness. Traditional vapor-compression air conditioners exhibit a lower coefficient of performance (COP) (typically 2.8-3.8) owing to the cooling-based dehumidification methods that handle both sensible and latent loads together. Temperature- and humidity-independent control or desiccant systems have been proposed to overcome these challenges; however, the COP of current desiccant systems is quite small and additional heat sources are usually needed. Here, we report on a desiccant-enhanced, direct expansion heat pump based on a water-sorbing heat exchanger with a desiccant coating that exhibits an ultrahigh COP value of more than 7 without sacrificing any comfort or compactness. The pump's efficiency is doubled compared to that of pumps currently used in conventional room air conditioners, which is a revolutionary HVAC breakthrough. Our proposed water-sorbing heat exchanger can independently handle sensible and latent loads at the same time. The desiccants adsorb moisture almost isothermally and can be regenerated by condensation heat. This new approach opens up the possibility of achieving ultrahigh efficiency for a broad range of temperature- and humidity-control applications.

  7. Field study of exhaust fans for mitigating indoor air quality problems: Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grimsrud, D.T.; Szydlowski, R.F.; Turk, B.H.

    1986-09-01

    Residential ventilation in the United States housing stock is provided primarily by infiltration, the natural leakage of outdoor air into a building through cracks and holes in the building shell. Since ventilation is the dominant mechanism for control of indoor pollutant concentrations, low infiltration rates caused fluctuation in weather conditions may lead to high indoor pollutant concentrations. Supplemental mechanical ventilation can be used to eliminate these periods of low infiltration. This study examined effects of small continuously-operating exhaust fan on pollutant concentrations and energy use in residences.

  8. Passive solar/earth sheltered office/dormitory cooling season thermal performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christian, J.

    1984-01-01

    Continuous detailed hourly thermal performance measurements have been taken since February 1982 in and around an occupied, underground, 4000 ft/sup 2/ office/dormitory building at the Oak Ridge National Laboratory in Oak Ridge, Tennessee. This building has a number of energy saving features which have been analyzed relative to their performance in a southeastern US climate and with respect to overall commercial building performance. This analysis documents cooling season performance, as well as effects of earth contact, interior thermal mass, an economizer cycle and interface of an efficient building envelope with a central three-ton heat pump. The Joint Institute Dormitory obtainsmore » a cooling energy savings of about 30% compared with an energy-efficient, above-grade structure and has the potential to save as much as 50%. The proper installation of the overhand, interior thermal mass, massive supply duct system, and earth contact team up to prevent summertime overheating. From May through September, this building cost a total of $300 (at 5.7 cents/kWh) to cool and ventilate 24 hours per day. Besides thermal performance of the building envelope, extensive comfort data was taken illustrating that at least 90% of the occupants are comfortable all of the time according to the PMV measurements.« less

  9. Evaluation of Humidity Control Options in Hot-Humid Climate Homes (Fact Sheet)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2011-12-01

    This technical highlight describes NREL research to analyze the indoor relative humidity in three home types in the hot-humid climate zone, and examine the impacts of various dehumidification equipment and controls. As the Building America program researches construction of homes that achieve greater source energy savings over typical mid-1990s construction, proper modeling of whole-house latent loads and operation of humidity control equipment has become a high priority. Long-term high relative humidity can cause health and durability problems in homes, particularly in a hot-humid climate. In this study, researchers at the National Renewable Energy Laboratory (NREL) used the latest EnergyPlus toolmore » equipped with the moisture capacitance model to analyze the indoor relative humidity in three home types: a Building America high-performance home; a mid-1990s reference home; and a 2006 International Energy Conservation Code (IECC)-compliant home in hot-humid climate zones. They examined the impacts of various dehumidification equipment and controls on the high-performance home where the dehumidification equipment energy use can become a much larger portion of whole-house energy consumption. The research included a number of simulated cases: thermostat reset, A/C with energy recovery ventilator, heat exchanger assisted A/C, A/C with condenser reheat, A/C with desiccant wheel dehumidifier, A/C with DX dehumidifier, A/C with energy recovery ventilator, and DX dehumidifier. Space relative humidity, thermal comfort, and whole-house source energy consumption were compared for indoor relative humidity set points of 50%, 55%, and 60%. The study revealed why similar trends of high humidity were observed in all three homes regardless of energy efficiency, and why humidity problems are not necessarily unique in the high-performance home. Thermal comfort analysis indicated that occupants are unlikely to notice indoor humidity problems. The study confirmed that supplemental dehumidification is needed to maintain space relative humidity (RH) below 60% in a hot-humid climate home. Researchers also concluded that while all the active dehumidification options included in the study successfully controlled space relative humidity excursions, the increase in whole-house energy consumption was much more sensitive to the humidity set point than the chosen technology option. In the high-performance home, supplemental dehumidification equipment results in a significant source energy consumption penalty at 50% RH set point (12.6%-22.4%) compared to the consumption at 60% RH set point (1.5%-2.7%). At 50% and 55% RH set points, A/C with desiccant wheel dehumidifier and A/C with ERV and high-efficiency DX dehumidifier stand out as the two cases resulting in the smallest increase of source energy consumption. At an RH set point of 60%, all explicit dehumidification technologies result in similar insignificant increases in source energy consumption and thus are equally competitive.« less

  10. Impact of Fire Ventilation on General Ventilation in the Building

    NASA Astrophysics Data System (ADS)

    Zender-Świercz, Ewa; Telejko, Marek

    2017-10-01

    The fire of building is a threat to its users. The biggest threat is generation, during lifetime of fire, hot gases and smoke. The purpose of quick and efficient evacuation from the area covered by the fire, at first step the escape routes have to be secured from smokiness. The smoke ventilation systems are used for this purpose. The proper design and execution of smoke ventilation is important not only because of the safety, but also of the maintenance of comfort in the building at a time when there is no fire. The manuscript presents the effect of incorrectly realized smoke ventilation in the stairwell of the medium building. The analysis shows that the flaps of smoke ventilation located in the stairwell may have a significant impact on the proper functioning of mechanical ventilation in the period when there is no fire. The improperly installed or incorrect insulated components cause perturbation of air flow and they change pressure distribution in the building. The conclusion of the analysis is the need to include the entire technical equipment of the building during the design and realization of its individual elements. The impact of various installations at each other is very important, and the omission of any of them can cause disturbances in the proper work of another.

  11. ASHRAE and residential ventilation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sherman, Max H.

    In the last quarter of a century, the western world has become increasingly aware of environmental threats to health and safety. During this period, people psychologically retreated away from outdoors hazards such as pesticides, smog, lead, oil spills, and dioxin to the seeming security of their homes. However, the indoor environment may not be healthier than the outdoor environment, as has become more apparent over the past few years with issues such as mold, formaldehyde, and sick-building syndrome. While the built human environment has changed substantially over the past 10,000 years, human biology has not; poor indoor air quality createsmore » health risks and can be uncomfortable. The human race has found, over time, that it is essential to manage the indoor environments of their homes. ASHRAE has long been in the business of ventilation, but most of the focus of that effort has been in the area of commercial and institutional buildings. Residential ventilation was traditionally not a major concern because it was felt that, between operable windows and envelope leakage, people were getting enough outside air in their homes. In the quarter of a century since the first oil shock, houses have gotten much more energy efficient. At the same time, the kinds of materials and functions in houses changed in character in response to people's needs. People became more environmentally conscious and aware not only about the resources they were consuming but about the environment in which they lived. All of these factors contributed to an increasing level of public concern about residential indoor air quality and ventilation. Where once there was an easy feeling about the residential indoor environment, there is now a desire to define levels of acceptability and performance. Many institutions--both public and private--have interests in Indoor Air Quality (IAQ), but ASHRAE, as the professional society that has had ventilation as part of its mission for over 100 years, is the logical place to provide leadership. This leadership has been demonstrated most recently by the publication of the first nationally recognized standard on ventilation in homes, ASHRAE Standard 62.2-2003, which builds on work that has been part of ASHRAE for many years and will presumably continue. Homeowners and occupants, which includes virtually all of us, will benefit from the application of Standard 62.2 and use of the top ten list. This activity is exactly the kind of benefit to society that the founders of ASHRAE envisioned and is consistent with ASHRAE's mission and vision. ASHRAE members should be proud of their Society for taking leadership in residential ventilation.« less

  12. Dynamic dual-energy chest radiography: a potential tool for lung tissue motion monitoring and kinetic study

    PubMed Central

    Xu, Tong; Ducote, Justin L.; Wong, Jerry T.; Molloi, Sabee

    2011-01-01

    Dual-energy chest radiography has the potential to provide better diagnosis of lung disease by removing the bone signal from the image. Dynamic dual-energy radiography is now possible with the introduction of digital flat panel detectors. The purpose of this study is to evaluate the feasibility of using dynamic dual-energy chest radiography for functional lung imaging and tumor motion assessment. The dual energy system used in this study can acquire up to 15 frame of dual-energy images per second. A swine animal model was mechanically ventilated and imaged using the dual-energy system. Sequences of soft-tissue images were obtained using dual-energy subtraction. Time subtracted soft-tissue images were shown to be able to provide information on regional ventilation. Motion tracking of a lung anatomic feature (a branch of pulmonary artery) was performed based on an image cross-correlation algorithm. The tracking precision was found to be better than 1 mm. An adaptive correlation model was established between the above tracked motion and an external surrogate signal (temperature within the tracheal tube). This model is used to predict lung feature motion using the continuous surrogate signal and low frame rate dual-energy images (0.1 to 3.0 frames /sec). The average RMS error of the prediction was (1.1 ± 0.3) mm. The dynamic dual-energy was shown to be potentially useful for lung functional imaging such as regional ventilation and kinetic studies. It can also be used for lung tumor motion assessment and prediction during radiation therapy. PMID:21285477

  13. Dynamic dual-energy chest radiography: a potential tool for lung tissue motion monitoring and kinetic study.

    PubMed

    Xu, Tong; Ducote, Justin L; Wong, Jerry T; Molloi, Sabee

    2011-02-21

    Dual-energy chest radiography has the potential to provide better diagnosis of lung disease by removing the bone signal from the image. Dynamic dual-energy radiography is now possible with the introduction of digital flat-panel detectors. The purpose of this study is to evaluate the feasibility of using dynamic dual-energy chest radiography for functional lung imaging and tumor motion assessment. The dual-energy system used in this study can acquire up to 15 frames of dual-energy images per second. A swine animal model was mechanically ventilated and imaged using the dual-energy system. Sequences of soft-tissue images were obtained using dual-energy subtraction. Time subtracted soft-tissue images were shown to be able to provide information on regional ventilation. Motion tracking of a lung anatomic feature (a branch of pulmonary artery) was performed based on an image cross-correlation algorithm. The tracking precision was found to be better than 1 mm. An adaptive correlation model was established between the above tracked motion and an external surrogate signal (temperature within the tracheal tube). This model is used to predict lung feature motion using the continuous surrogate signal and low frame rate dual-energy images (0.1-3.0 frames per second). The average RMS error of the prediction was (1.1 ± 0.3) mm. The dynamic dual energy was shown to be potentially useful for lung functional imaging such as regional ventilation and kinetic studies. It can also be used for lung tumor motion assessment and prediction during radiation therapy.

  14. Liquid Cooling/Warming Garment

    NASA Technical Reports Server (NTRS)

    Koscheyev, Victor S.; Leon, Gloria R.; Dancisak, Michael J.

    2010-01-01

    The NASA liquid cooling/ventilating garment (LCVG) currently in use was developed over 40 years ago. With the commencement of a greater number of extra-vehicular activity (EVA) procedures with the construction of the International Space Station, problems of astronaut comfort, as well as the reduction of the consumption of energy, became more salient. A shortened liquid cooling/warming garment (SLCWG) has been developed based on physiological principles comparing the efficacy of heat transfer of different body zones; the capability of blood to deliver heat; individual muscle and fat body composition as a basis for individual thermal profiles to customize the zonal sections of the garment; and the development of shunts to minimize or redirect the cooling/warming loop for different environmental conditions, physical activity levels, and emergency situations. The SLCWG has been designed and completed, based on extensive testing in rest, exercise, and antiorthostatic conditions. It is more energy efficient than the LCVG currently used by NASA. The total length of tubing in the SLCWG is approximately 35 percent less and the weight decreased by 20 percent compared to the LCVG. The novel features of the innovation are: 1. The efficiency of the SLCWG to maintain thermal status under extreme changes in body surface temperatures while using significantly less tubing than the LCVG. 2. The construction of the garment based on physiological principles of heat transfer. 3. The identification of the body areas that are most efficient in heat transfer. 4. The inclusion of a hood as part of the garment. 5. The lesser consumption of energy.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hodgson, Alfred T.; Shendell, Derek G.; Fisk, William J.

    Indoor exposures to toxic and odorous volatile organic compounds (VOCs) are of general concern. Recently, VOCs in portable or relocatable classrooms (RCs) have received particular attention. However, very little was known about indoor environmental quality (IEQ) and the sources, composition, and indoor concentrations of VOCs in RCs. This project task focused on developing and demonstrating a process for selecting interior finish materials for RCs that have relatively low impacts with respect to their emissions of toxic and odorous VOCs. This task was part of a larger project to demonstrate the potential for simultaneous improvements in IEQ and energy efficiency inmore » four new RCs equipped both with a continuously ventilating advanced heating, ventilating, and air conditioning system (HVAC) and a standard HVAC system. These HVACs were operated on alternate weeks. One RC per pair was constructed with standard interior finish materials, and the other included alternate interior materials identified in our prior laboratory study to have low VOC emissions. The RCs were sited in side-by-side pairs at two elementary schools in distinct northern California climate zones. Classroom VOC emission rates (mg hr{sup -1}) and concentrations were predicted based on VOC emission factors ({micro}g m{sup -2} hr{sup -1}) measured for individual materials in the laboratory, the quantities of installed materials and design ventilation rates. Predicted emission rates were compared to values derived from classroom measurements of VOC concentrations and ventilation rates made at pre-occupancy, eight weeks, and 27 weeks. Predicted concentrations were compared to measured integrated VOC indoor minus outdoor concentrations during school hours in the fall cooling season with the advanced HVAC operated. These measured concentrations also were compared between standard and material-modified RCs. Our combined laboratory and field process proved effective by correctly predicting that IEQ impacts of material VOC emissions would be minor when RCs were ventilated at or above code-minimum requirements. Assuming code-minimum ventilation rates are maintained, the benefits attributable to the use of alternate interior finish materials in RC's constructed by the manufacturer associated with this study are small, implying that it is not imperative to use such alternative finishing materials. However, it is essential to avoid materials that can degrade IEQ, and the results of this study demonstrate that laboratory-based material testing combined with modeling and field validation can help to achieve that aim.« less

  16. Saving Energy. Managing School Facilities, Guide 3.

    ERIC Educational Resources Information Center

    Department for Education and Employment, London (England). Architects and Building Branch.

    This guide offers information on how schools can implement an energy saving action plan to reduce their energy costs. Various low-cost energy-saving measures are recommended covering heating levels and heating systems, electricity demand reduction and lighting, ventilation, hot water usage, and swimming pool energy management. Additional…

  17. The effects of opening areas on solar chimney performance

    NASA Astrophysics Data System (ADS)

    Ling, L. S.; Rahman, M. M.; Chu, C. M.; Misaran, M. S. bin; Tamiri, F. M.

    2017-07-01

    To enhance natural ventilation at day time, solar chimney is one of the suitable options for topical country like Malaysia. Solar chimney creates air flow due to stack effect caused by temperature difference between ambient and inside wall. In the solar chimney, solar energy is harvested by the inner wall that cause temperature rise compare to ambient. Therefore, the efficiency of the solar chimney depends on the availability of solar energy as well as the solar intensity. In addition, it is very hard to get good ventilation at night time by using a solar chimney. To overcome this problem one of the suitable valid option is to integrate solar chimney with turbine ventilator. A new type of solar chimney is designed and fluid flow analyzed with the computational fluid dynamics (CFD) software. The aim of CFD and theoretical study are to investigate the effect of opening areas on modified solar chimney performance. The inlet and outlet area of solar chimney are varied from 0.0224m2 to 0.6m2 and 0.1m2 to 0.14m2 respectively based on the changes of inclination angle and gap between inner and outer wall. In the CFD study the constant heat flux is considered as 500W/m2. CFD result shows that there is no significant relation between opening areas and the air flow rate through solar chimney but the ratio between inlet and outlet is significant on flow performance. If the area ratio between inlet and outlet are equal to two or larger, the performance of the solar chimney is better than the solar chimney with ratio lesser than two. The solar chimney performance does not effect if the area ratio between inlet and outlet varies from 1 to 2. This result will be useful for design and verification of actual solar chimney performance.

  18. Gradient boosting machine for modeling the energy consumption of commercial buildings

    DOE PAGES

    Touzani, Samir; Granderson, Jessica; Fernandes, Samuel

    2017-11-26

    Accurate savings estimations are important to promote energy efficiency projects and demonstrate their cost-effectiveness. The increasing presence of advanced metering infrastructure (AMI) in commercial buildings has resulted in a rising availability of high frequency interval data. These data can be used for a variety of energy efficiency applications such as demand response, fault detection and diagnosis, and heating, ventilation, and air conditioning (HVAC) optimization. This large amount of data has also opened the door to the use of advanced statistical learning models, which hold promise for providing accurate building baseline energy consumption predictions, and thus accurate saving estimations. The gradientmore » boosting machine is a powerful machine learning algorithm that is gaining considerable traction in a wide range of data driven applications, such as ecology, computer vision, and biology. In the present work an energy consumption baseline modeling method based on a gradient boosting machine was proposed. To assess the performance of this method, a recently published testing procedure was used on a large dataset of 410 commercial buildings. The model training periods were varied and several prediction accuracy metrics were used to evaluate the model's performance. The results show that using the gradient boosting machine model improved the R-squared prediction accuracy and the CV(RMSE) in more than 80 percent of the cases, when compared to an industry best practice model that is based on piecewise linear regression, and to a random forest algorithm.« less

  19. Gradient boosting machine for modeling the energy consumption of commercial buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Touzani, Samir; Granderson, Jessica; Fernandes, Samuel

    Accurate savings estimations are important to promote energy efficiency projects and demonstrate their cost-effectiveness. The increasing presence of advanced metering infrastructure (AMI) in commercial buildings has resulted in a rising availability of high frequency interval data. These data can be used for a variety of energy efficiency applications such as demand response, fault detection and diagnosis, and heating, ventilation, and air conditioning (HVAC) optimization. This large amount of data has also opened the door to the use of advanced statistical learning models, which hold promise for providing accurate building baseline energy consumption predictions, and thus accurate saving estimations. The gradientmore » boosting machine is a powerful machine learning algorithm that is gaining considerable traction in a wide range of data driven applications, such as ecology, computer vision, and biology. In the present work an energy consumption baseline modeling method based on a gradient boosting machine was proposed. To assess the performance of this method, a recently published testing procedure was used on a large dataset of 410 commercial buildings. The model training periods were varied and several prediction accuracy metrics were used to evaluate the model's performance. The results show that using the gradient boosting machine model improved the R-squared prediction accuracy and the CV(RMSE) in more than 80 percent of the cases, when compared to an industry best practice model that is based on piecewise linear regression, and to a random forest algorithm.« less

  20. Collateral Ventilation to Congenital Hyperlucent Lung Lesions Assessed on Xenon-Enhanced Dynamic Dual-Energy CT: an Initial Experience

    PubMed Central

    Yang, Dong Hyun; Kim, Namkug; Park, Seung Il; Kim, Dong Kwan; Kim, Ellen Ai-Rhan

    2011-01-01

    Objective We wanted to evaluate the resistance to collateral ventilation in congenital hyperlucent lung lesions and to correlate that with the anatomic findings on xenon-enhanced dynamic dual-energy CT. Materials and Methods Xenon-enhanced dynamic dual-energy CT was successfully and safely performed in eight children (median age: 5.5 years, 4 boys and 4 girls) with congenital hyperlucent lung lesions. Functional assessment of the lung lesions on the xenon map was done, including performing a time-xenon value curve analysis and assessing the amplitude of xenon enhancement (A) value, the rate of xenon enhancement (K) value and the time of arrival value. Based on the A value, the lung lesions were categorized into high or low (A value > 10 Hounsfield unit [HU]) resistance to collateral ventilation. In addition, the morphologic CT findings of the lung lesions, including cyst, mucocele and an accessory or incomplete fissure, were assessed on the weighted-average CT images. The xenon-enhanced CT radiation dose was estimated. Results Five of the eight lung lesions were categorized into the high resistance group and three lesions were categorized into the low resistance group. The A and K values in the normal lung were higher than those in the low resistance group. The time of arrival values were delayed in the low resistance group. Cysts were identified in five lesions, mucocele in four, accessory fissure in three and incomplete fissure in two. Either cyst or an accessory fissure was seen in four of the five lesions showing high resistance to collateral ventilation. The xenon-enhanced CT radiation dose was 2.3 ± 0.6 mSv. Conclusion Xenon-enhanced dynamic dual-energy CT can help visualize and quantitate various degrees of collateral ventilation to congenital hyperlucent lung lesions in addition to assessing the anatomic details of the lung. PMID:21228937

  1. Collateral ventilation to congenital hyperlucent lung lesions assessed on xenon-enhanced dynamic dual-energy CT: an initial experience.

    PubMed

    Goo, Hyun Woo; Yang, Dong Hyun; Kim, Namkug; Park, Seung Il; Kim, Dong Kwan; Kim, Ellen Ai-Rhan

    2011-01-01

    We wanted to evaluate the resistance to collateral ventilation in congenital hyperlucent lung lesions and to correlate that with the anatomic findings on xenon-enhanced dynamic dual-energy CT. Xenon-enhanced dynamic dual-energy CT was successfully and safely performed in eight children (median age: 5.5 years, 4 boys and 4 girls) with congenital hyperlucent lung lesions. Functional assessment of the lung lesions on the xenon map was done, including performing a time-xenon value curve analysis and assessing the amplitude of xenon enhancement (A) value, the rate of xenon enhancement (K) value and the time of arrival value. Based on the A value, the lung lesions were categorized into high or low (A value > 10 Hounsfield unit [HU]) resistance to collateral ventilation. In addition, the morphologic CT findings of the lung lesions, including cyst, mucocele and an accessory or incomplete fissure, were assessed on the weighted-average CT images. The xenon-enhanced CT radiation dose was estimated. Five of the eight lung lesions were categorized into the high resistance group and three lesions were categorized into the low resistance group. The A and K values in the normal lung were higher than those in the low resistance group. The time of arrival values were delayed in the low resistance group. Cysts were identified in five lesions, mucocele in four, accessory fissure in three and incomplete fissure in two. Either cyst or an accessory fissure was seen in four of the five lesions showing high resistance to collateral ventilation. The xenon-enhanced CT radiation dose was 2.3 ± 0.6 mSv. Xenon-enhanced dynamic dual-energy CT can help visualize and quantitate various degrees of collateral ventilation to congenital hyperlucent lung lesions in addition to assessing the anatomic details of the lung.

  2. DEEP: A Database of Energy Efficiency Performance to Accelerate Energy Retrofitting of Commercial Buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoon Lee, Sang; Hong, Tianzhen; Sawaya, Geof

    The paper presents a method and process to establish a database of energy efficiency performance (DEEP) to enable quick and accurate assessment of energy retrofit of commercial buildings. DEEP was compiled from results of about 35 million EnergyPlus simulations. DEEP provides energy savings for screening and evaluation of retrofit measures targeting the small and medium-sized office and retail buildings in California. The prototype building models are developed for a comprehensive assessment of building energy performance based on DOE commercial reference buildings and the California DEER prototype buildings. The prototype buildings represent seven building types across six vintages of constructions andmore » 16 California climate zones. DEEP uses these prototypes to evaluate energy performance of about 100 energy conservation measures covering envelope, lighting, heating, ventilation, air-conditioning, plug-loads, and domestic hot water. DEEP consists the energy simulation results for individual retrofit measures as well as packages of measures to consider interactive effects between multiple measures. The large scale EnergyPlus simulations are being conducted on the super computers at the National Energy Research Scientific Computing Center of Lawrence Berkeley National Laboratory. The pre-simulation database is a part of an on-going project to develop a web-based retrofit toolkit for small and medium-sized commercial buildings in California, which provides real-time energy retrofit feedback by querying DEEP with recommended measures, estimated energy savings and financial payback period based on users’ decision criteria of maximizing energy savings, energy cost savings, carbon reduction, or payback of investment. The pre-simulated database and associated comprehensive measure analysis enhances the ability to performance assessments of retrofits to reduce energy use for small and medium buildings and business owners who typically do not have resources to conduct costly building energy audit. DEEP will be migrated into the DEnCity - DOE’s Energy City, which integrates large-scale energy data for multi-purpose, open, and dynamic database leveraging diverse source of existing simulation data.« less

  3. Airway pressure release ventilation: what do we know?

    PubMed

    Daoud, Ehab G; Farag, Hany L; Chatburn, Robert L

    2012-02-01

    Airway pressure release ventilation (APRV) is inverse ratio, pressure controlled, intermittent mandatory ventilation with unrestricted spontaneous breathing. It is based on the principle of open lung approach. It has many purported advantages over conventional ventilation, including alveolar recruitment, improved oxygenation, preservation of spontaneous breathing, improved hemodynamics, and potential lung-protective effects. It has many claimed disadvantages related to risks of volutrauma, increased work of breathing, and increased energy expenditure related to spontaneous breathing. APRV is used mainly as a rescue therapy for the difficult to oxygenate patients with acute respiratory distress syndrome (ARDS). There is confusion regarding this mode of ventilation, due to the different terminology used in the literature. APRV settings include the "P high," "T high," "P low," and "T low". Physicians and respiratory therapists should be aware of the different ways and the rationales for setting these variables on the ventilators. Also, they should be familiar with the differences between APRV, biphasic positive airway pressure (BIPAP), and other conventional and nonconventional modes of ventilation. There is no solid proof that APRV improves mortality; however, there are ongoing studies that may reveal further information about this mode of ventilation. This paper reviews the different methods proposed for APRV settings, and summarizes the different studies comparing APRV and BIPAP, and the potential benefits and pitfalls for APRV.

  4. The potential for microtechnology applications in energy systems: Results of an experts workshop

    NASA Astrophysics Data System (ADS)

    1995-02-01

    Microscale technologies, or microelectromechanical systems (MEMS), are currently under development in the United States and abroad. Examples include microsensors, microactuators (including micromotors), and microscale heat exchangers. Typically, microscale devices have features ranging in size from a few microns to several millimeters, with fabrication methods adapted from those developed for the semiconductor industry. Microtechnologies are already being commercialized; initial markets include the biomedical and transportation industries. Applications are being developed in other industries as well. Researchers at the Pacific Northwest Laboratory (PNL) hypothesize that a significant number of energy applications are possible. These applications range from environmental sensors that support enhanced control of building (or room) temperature and ventilation to microscale heat pumps and microscale heat engines that could collectively provide for kilowatt quantities of energy conversion. If efficient versions of these devices are developed, they could significantly advance the commercialization of distributed energy conversion systems, thereby reducing the energy losses associated with energy distribution. Based upon the potential for energy savings, the U.S. Department of Energy (DOE) Office of Building Technologies (OBT) has proposed a new initiative in energy systems miniaturization. The program would focus on the development of microtechnologies for the manufactured housing sector and would begin in either FY 1997 or FY 1998, ramping up to $5 million per year investment by FY 2001.

  5. Creating high performance buildings: Lower energy, better comfort

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brager, Gail; Arens, Edward

    2015-03-30

    Buildings play a critical role in the challenge of mitigating and adapting to climate change. It is estimated that buildings contribute 39% of the total U.S. greenhouse gas (GHG) emissions [1] primarily due to their operational energy use, and about 80% of this building energy use is for heating, cooling, ventilating, and lighting. An important premise of this paper is about the connection between energy and comfort. They are inseparable when one talks about high performance buildings. Worldwide data suggests that we are significantly overcooling buildings in the summer, resulting in increased energy use and problems with thermal comfort. Inmore » contrast, in naturally ventilated buildings without mechanical cooling, people are comfortable in much warmer temperatures due to shifting expectations and preferences as a result of occupants having a greater degree of personal control over their thermal environment; they have also become more accustomed to variable conditions that closely reflect the natural rhythms of outdoor climate patterns. This has resulted in an adaptive comfort zone that offers significant potential for encouraging naturally ventilated buildings to improve both energy use and comfort. Research on other forms for providing individualized control through low-energy personal comfort systems (desktop fans, foot warmed, and heated and cooled chairs) have also demonstrated enormous potential for improving both energy and comfort performance. Studies have demonstrated high levels of comfort with these systems while ambient temperatures ranged from 64–84°F. Energy and indoor environmental quality are inextricably linked, and must both be important goals of a high performance building.« less

  6. Influence of face mask design on bag-valve-mask ventilation performance: a randomized simulation study.

    PubMed

    Na, J U; Han, S K; Choi, P C; Cho, J H; Shin, D H

    2013-10-01

    Different face mask designs can influence bag-valve-mask (BVM) ventilation performance during resuscitation. We compared a single-use, air-cushioned face mask (AM) with a reusable silicone face mask (SM) for quality of BVM ventilation on a manikin simulating cardiac arrest. Thirty-two physicians were recruited, and a prospective, randomized, crossover observational study was conducted after an American Heart Association-accredited basic life support provider course and standardized practice time were completed. Participants performed 12 cycles of BVM ventilation with both the AM and SM on a SmartMan lung simulator. Mean tidal volume was significantly higher in ventilations performed using the AM vs. the SM (548 ± 159 ml vs. 439 ± 163 ml, P < 0.01). In addition, the proportion of low-volume ventilation was significantly lower with the AM than the SM [6/12 (2-11) vs. 9/12 (5-12), P = 0.03]. Bag-valve-AM ventilation volume was not affected by the physical characteristics of the rescuers, except for sex. In contrast, bag-valve-SM ventilation volume was affected by most of the characteristics tested, including sex, height, weight, hand width, hand length, and grip power. The AM seems to be a more efficient face mask than the SM at delivering sufficient ventilation volumes. The performance of the AM did not seem to be associated with the physical characteristics of the rescuers, whereas that of the SM was affected by these factors. The SM may not be an appropriate face mask for performing one-person BVM ventilation during resuscitation for rescuers who are smaller in stature, have a smaller hand size, or have weaker grip power. © 2013 The Acta Anaesthesiologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  7. Ventilation requirements in buildings—I. Control of occupancy odor and tobacco smoke odor

    NASA Astrophysics Data System (ADS)

    Cain, William S.; Leaderer, Brian P.; Isseroff, Ruth; Berglund, Larry G.; Huey, Raymond J.; Lipsitt, Eric D.; Perlman, Dan

    Psychophysical measurements of odor, supplemented with certain physical measurements, were taken to examine ventilation requirements during smoking and nonsmoking occupancy in an environmental chamber. The facility provided the means to compare impressions of visitors (persons who inhaled air from the chamber only briefly) with impressions of occupants. For nonsmoking occupancy, 47 combinations of temperature, humidity, ventilation rate and occupancy density were examined. Odor level depended entirely on ventilation rate per person irrespective of the number of persons in the chamber. The ventilation necessary to satisfy 75 % of visitors equalled only about 4 ℓ s -1 per person. Occupants, however, were satisfied with far less. In an array of 38 conditions of smoking occupancy, the ventilation deemed necessary to satisfy 75 % of visitors under customary conditions of occupancy equalled 17.5 ℓ s -1 per person. For both smoking and nonsmoking conditions, a combination of high temperature (25.5°C) and humidity (r.h. > 70 %) exacerbated the odor problem. During smoking, carbon monoxide rarely reached dangerous levels, but suspended particulate matter often reached levels considered unacceptable outdoors. The results highlight the energy penalty incurred in ventilation for smoking occupancy.

  8. [Assessment of energy metabolism and nutritional supply in children with mechanical ventilation].

    PubMed

    Ji, Jian; Qian, Suyun; Yan, Jie

    2016-01-01

    To determine the resting energy expenditure on mechanical ventilation in pediatric intensive care unit (PICU) by indirect calorimetry, and analyze the distribution of metabolic states. The nutrition supply was assessed according to the resting energy expenditure. An observational study which was held in PICU of Beijing Children's Hospital from November 2013 to April 2014. Critically ill children with mechanical ventilation were enrolled in this study. The inclusion criteria included the following: (1) pediatric critical illness score < 90, or meet the United States PICU admission criteria; (2) age > 29 days, < 18 years old; (3) time of mechanical ventilation > 24 hours; (4) volume of mechanical ventilation > 60 ml. Resting energy expenditure was determined by US Med Graphic Company CCM/D energy metabolism test system. Predictive resting energy expenditure was calculated for each subject with age-appropriate equation (Schofield-HTWT). According to the actual energy intake records and required energy intake (10% higher than the measured value) to define the nutritional status. The selected subjects were grouped according to gender, age, types of disease and nutritional status, and compared the metabolic status and nutritional supply of different groups. Sixty-eight children were enrolled in this study, 46 were boys and 22 were girls, including 25 cases of pneumonia with respiratory failure, 23 cases of central nervous system diseases complicated with respiratory failure and 20 cases of postoperative tracheal intubation. The ratio of boys and girls was 2:1. The results showed 36 patients in a low metabolic state, accounting for 53%, 23 patients in a high metabolic state, accounting for 34% and 9 patients (13%) in the metabolism of the normal state. In the male children, 12 cases (26%) were in the high metabolism and 26 cases (57%) were in the low metabolism, and 8 cases (17%) were in the normal metabolism. In the female children, 11 cases (50%) were classified into high metabolism; 10 cases (45%) into low metabolism and 1 case (5%) was classified into normal metabolism. There was no significant difference in the distribution of metabolic status among different gender(χ(2) = 4.176, P = 0.095). In terms of ages, 15 cases (63%) were mainly in high metabolism in the patients at age < 3 years, 19 and 11 patients in 3-9 and 10-18 years age group respectively are mostly in low metabolism. As to the diseases, pneumonia complicated with respiratory failure and central nervous system diseases complicated with respiratory failure with mechanical ventilation (respectively 15 cases (60%) and 12 cases (52%)) were in low metabolism mainly; 11 cases of postoperative tracheal intubation were in high metabolism states, accounting for 55%. The distribution of metabolic status in different age and clinical diagnosis had significant difference. Thirty-one patients had normal nutrients supply, accounting for 46%, 37 patients had inappropriate nutrition supply, accounting for 54%, including insufficient supplies of nutrients in 22 cases, accounting for 32%, excessive supplies of nutrients were seen in 15 cases(22%). There were no statistically significant differences among the different types of diseases. There are differences in the metabolic state of the mechanical ventilation in critically ill patients, mainly in low metabolic state. The age and types of diseases can affect the metabolic status of patients. Empirical nutritional support is not applicable to patients.

  9. A Guide to Energy Savings - For the Poultry Producer.

    ERIC Educational Resources Information Center

    Benson, Verel W.

    This booklet gives a brief overview of energy use in poultry operations and gives examples of cutting costs of brooding, lighting, ventilation, feeding, watering, waste removal, housing design, construction and maintenance. Finally, energy use recordkeeping is discussed. (BB)

  10. Dealing with the increased radon concentration in thermally retrofitted buildings.

    PubMed

    Jiránek, M; Kačmaříková, V

    2014-07-01

    The influence of energy-saving measures on indoor radon concentration has been studied on the basis of a family house made of clinker concrete wall panels containing from 1000 up to 4000 Bq kg(-1) of 226Ra. Thermal retrofitting based on installing external thermal insulation composite system on the building envelope and replacing existing windows by new ones decreased the annual energy need for heating 2.8 times, but also reduced the ventilation rate to values<0.1 h(-1). As a consequence, the 1-y average indoor radon concentration values increased 3.4 times from 337 to 1117 Bq m(-3). The additional risk of lung cancer in the thermally retrofitted house increased to a value that is 125 % higher than before conversion. Methods for dealing with this enhanced risk by increasing the ventilation rate are discussed. Recovery of investments and the energy consequences of increased ventilation are studied in a long-term perspective. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Prediction and innovative control strategies for oxygen and hazardous gases from diesel emission in underground mines.

    PubMed

    Kurnia, Jundika C; Sasmito, Agus P; Wong, Wai Yap; Mujumdar, Arun S

    2014-05-15

    Diesel engine is widely used in underground mining machines due to its efficiency, ease of maintenance, reliability and durability. However, it possesses significant danger to the miners and mining operations as it releases hazardous gases (CO, NO, CO2) and fine particles which can be easily inhaled by the miners. Moreover, the diesel engine consumes significant amount of oxygen which can lead to insufficient oxygen supply for miners. It is therefore critical to maintain sufficient oxygen supply while keeping hazardous gas concentrations from diesel emission below the maximum allowable level. The objective of this study is to propose and to examine various innovative ventilation strategies to control oxygen and hazardous gas concentrations in underground mine to ensure safety, productivity and cost related to energy consumption. Airflow distribution, oxygen and hazardous gas dispersion as well as ambient temperature within the mining area are evaluated by utilizing the well-established computational fluid dynamics (CFD) approach. The results suggest that our newly proposed ventilation design performs better as compared to the conventional design to handle hazardous gases from diesel emission. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Impact of the air filtration on indoor particle concentration by using combination filters in offices building

    NASA Astrophysics Data System (ADS)

    Kabrein, H.; Hariri, A.; Leman, A. M.; Noraini, N. M. R.; Yusof, M. Z. M.; Afandi, A.

    2017-09-01

    Heating ventilation and air conditioning system (HVAC) is very important for offices building and human health. The combining filter method was used to reduce the air pollution indoor such as that particulate matter and gases pollution that affected in health and productivity. Using particle filters in industrial HVAC systems (factories and manufacturing process) does not enough to remove all the indoor pollution. The main objective of this study is to investigate the impact of combination filters for particle and gases removal efficiency. The combining method is by using two filters (particulate filter pre-filter and carbon filter) to reduce particle matter and gases respectively. The purpose of this study is to use minimum efficiency reporting value (MERV filter) rating 13 and activated carbon filter (ACF) to remove indoor air pollution and controlling the air change rate to enhance the air quality and energy saving. It was concluded that the combination filter showed good removal efficiency of particle up to 90.76% and 89.25% for PM10 and PM2.5 respectively. The pressure drop across the filters was small compared with the high-efficiency filters. The filtration efficiency of combination filters after three months’ was better than efficiency by the new MERV filter alone.

  13. Ion beam induced 18F-radiofluorination: straightforward synthesis of gaseous radiotracers for the assessment of regional lung ventilation using positron emission tomography.

    PubMed

    Gómez-Vallejo, V; Lekuona, A; Baz, Z; Szczupak, B; Cossío, U; Llop, J

    2016-09-29

    A simple, straightforward and efficient method for the synthesis of [ 18 F]CF 4 and [ 18 F]SF 6 based on an ion beam-induced isotopic exchange reaction is presented. Positron emission tomography ventilation studies in rodents using [ 18 F]CF 4 showed a uniform distribution of the radiofluorinated gas within the lungs and rapid elimination after discontinuation of the administration.

  14. Continuous noninvasive ventilation delivered by a novel total face mask: a case series report.

    PubMed

    Belchior, Inês; Gonçalves, Miguel R; Winck, João Carlos

    2012-03-01

    Noninvasive ventilation (NIV) has been widely used to decrease the complications associated with tracheal intubation in mechanically ventilated patients. However, nasal ulcerations may occur when conventional masks are used for continuous ventilation. A total face mask, which has no contact with the more sensitive areas of the face, is a possible option. We describe 3 patients with acute respiratory failure due to amyotrophic lateral sclerosis, who developed nasal bridge skin necrosis during continuous NIV, and one patient with post-extubation respiratory failure due to a high spinal cord injury, who had facial trauma with contraindication for conventional mask use. The total face mask was very well tolerated by all the patients, and permitted safe and efficient continuous NIV for several days until the acute respiratory failure episode resolved. None of the patients required endotracheal intubation during the acute episode.

  15. A ventilation cooling shirt worn during office work in a hot climate: cool or not?

    PubMed

    Zhao, Mengmeng; Kuklane, Kalev; Lundgren, Karin; Gao, Chuansi; Wang, Faming

    2015-01-01

    The aim of the study was to identify whether a ventilation cooling shirt was effective in reducing heat strain in a hot climate. Eight female volunteers were exposed to heat (38 °C, 45% relative humidity) for 2 h with simulated office work. In the first hour they were in normal summer clothes (total thermal insulation 0.8 clo); in the second hour a ventilation cooling shirt was worn on top. After the shirt was introduced for 1 h, the skin temperatures at the scapula and the chest were significantly reduced (p < 0.05). The mean skin and core temperatures were not reduced. The subjects felt cooler and more comfortable by wearing the shirt, but the cooling effect was most conspicuous only during the initial 10 min. The cooling efficiency of the ventilation shirt was not very effective under the low physical activity in this hot climate.

  16. Assessment of Natural Ventilation System for a Typical Residential House in Poland

    NASA Astrophysics Data System (ADS)

    Antczak-Jarząbska, Romana; Krzaczek, Marek

    2016-09-01

    The paper presents the research results of field measurements campaign of natural ventilation performance and effectiveness in a residential building. The building is located in the microclimate whose parameters differ significantly in relation to a representative weather station. The measurement system recorded climate parameters and the physical variables characterizing the air flow in the rooms within 14 days of the winter season. The measurement results showed that in spite of proper design and construction of the ventilation system, unfavorable microclimatic conditions that differed from the predicted ones caused significant reduction in the efficiency of the ventilation system. Also, during some time periods, external climate conditions caused an opposite air flow direction in the vent inlets and outlets, leading to a significant deterioration of air quality and thermal comfort measured by CO2 concentration and PMV index in a residential area.

  17. Energy Control Systems: Energy Savings.

    ERIC Educational Resources Information Center

    School Business Affairs, 1980

    1980-01-01

    The installation of proper control systems is estimated as saving up to 25 percent of the energy used in schools. Other potential energy-saving areas are transmission (heat loss or gain through walls, especially ceilings); internal load (heat from students, lights, and machinery); ventilation; and equipment maintenance. (Author/MLF)

  18. Flexible Residential Test Facility: Impact of Infiltration and Ventilation on Measured Cooling Season Energy and Moisture Levels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parker, Danny S.; Cummings, Jamie E.; Vieira, Robin K.

    Air infiltration and ventilation in residential buildings is a very large part of the heating loads, but empirical data regarding the impact on space cooling has been lacking. Moreover, there has been little data on how building tightness might relate to building interior moisture levels in homes in a hot and humid climate. To address this need, BA-PIRC has conducted research to assess the moisture and cooling load impacts of airtightness and mechanical ventilation in two identical laboratory homes in the hot-humid climate over the cooling season.

  19. Impact of Infiltration and Ventilation on Measured Space Conditioning Energy and Moisture Levels in the Hot-Humid Climate, Cocoa, Florida (Fact Sheet)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    Air infiltration and ventilation in residential buildings is a very large part of the heating loads, but empirical data regarding the impact on space cooling has been lacking. Moreover, there has been little data on how building tightness might relate to building interior moisture levels in homes in a hot and humid climate. To address this need, BA-PIRC has conducted research to assess the moisture and cooling load impacts of airtightness and mechanical ventilation in two identical laboratory homes in the hot-humid climate over the cooling season.

  20. Technology Solutions Case Study: Impact of Infiltration and Ventilation on Measured Space Conditioning Energy and Moisture Levels in the Hot-Humid Climate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    Air infiltration and ventilation in residential buildings is a very large part of the heating loads, but empirical data regarding the impact on space cooling has been lacking. Moreover, there has been little data on how building tightness might relate to building interior moisture levels in homes in a hot and humid climate. To address this need, BA-PIRC conducted research to assess the moisture and cooling load impacts of airtightness and mechanical ventilation in two identical laboratory homes in the hot-humid climate over the cooling season.

  1. Nonstationary heat and mass transfer in the multilayer building construction with ventilation channels

    NASA Astrophysics Data System (ADS)

    Kharkov, N. S.

    2017-11-01

    Results of numerical modeling of the coupled nonstationary heat and mass transfer problem under conditions of a convective flow in facade system of a three-layer concrete panel for two different constructions (with ventilation channels and without) are presented. The positive effect of ventilation channels on the energy and humidity regime over a period of 12 months is shown. Used new method of replacement a solid zone (requiring specification of porosity and material structure, what complicates process of convergence of the solution) on quasi-solid in form of a multicomponent mixture (with restrictions on convection and mass fractions).

  2. On the mound of Macrotermes michaelseni as an organ of respiratory gas exchange.

    PubMed

    Turner, J S

    2001-01-01

    Patterns and rates of air movements in the mounds and nests of Macrotermes michaelseni were studied using tracer methods. Wind is a significant source of energy for powering nest ventilation, despite the mound being a completely enclosed structure. Nests are ventilated by a tidal movement of air driven by temporal variation in wind speed and wind direction. Density gradients sufficiently steep to drive bulk flow by natural convection will be rare. However, metabolism-induced buoyant forces may interact with wind energy in a way that promotes homeostasis of the mound atmosphere.

  3. Turnkey Heating, Ventilating, and Air Conditioning and Lighting Retrofit Solution Combining Energy Efficiency and Demand Response Benefits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doebber, Ian; Deru, Michael; Trenbath, Kim

    NREL worked with the Bonneville Power Administration's Technology Innovation Office to demonstrate a turnkey, retrofit technology that combines demand response (DR) and energy efficiency (EE) benefits for HVAC and lighting in retail buildings. As a secondary benefit, we also controlled various plug loads and electric hot water heaters (EHWH). The technology demonstrated was Transformative Wave's eIQ Building Management System (BMS) automatically responding to DR signals. The BMS controlled the HVAC rooftop units (RTU) using the CATALYST retrofit solution also developed by Transformative Wave. The non-HVAC loads were controlled using both hardwired and ZigBee wireless communication. The wireless controllers, manufactured bymore » Autani, were used when the building's electrical layout was too disorganized to leverage less expensive hardwired control. The six demonstration locations are within the Seattle metro area. Based on the assets curtailed by the BMS at each location, we projected the DR resource. We were targeting a 1.7 W/ft2 shed for the summer Day-Ahead events and a 0.7 W/ft2 shed for the winter events. While summarized in Table ES-1, only one summer DR event was conducted at Casino #2.« less

  4. Characteristics of rain penetration through a gravity ventilator used for natural ventilation.

    PubMed

    Kim, Taehyeung; Lee, Dong Ho; Ahn, Kwangseog; Ha, Hyunchul; Park, Heechang; Piao, Cheng Xu; Li, Xiaoyu; Seo, Jeoungyoon

    2008-01-01

    Gravity ventilators rely simply on air buoyancy to extract air and are widely used to exhaust air contaminants and heat from workplaces using minimal energy. They are designed to maximize the exhaust flow rate, but the rain penetration sometimes causes malfunctioning. In this study, the characteristics of rain penetration through a ventilator were examined as a preliminary study to develop a ventilator with the maximum exhaust capacity while minimizing rain penetration. A model ventilator was built and exposed to artificial rain and wind. The paths, intensities and amounts of penetration through the ventilator were observed and measured in qualitative and quantitative fashions. In the first phase, the pathways and intensities of rain penetration were visually observed. In the second phase, the amounts of rain penetration were quantitatively measured under the different configurations of ventilator components that were installed based on the information obtained in the first-phase experiment. The effects of wind speed, grill direction, rain drainage width, outer wall height, neck height and leaning angle of the outer wall from the vertical position were analyzed. Wind speed significantly affected rain penetration. Under the low crosswind conditions, the rain penetration intensities were under the limit of detection. Under the high crosswind conditions, grill direction and neck height were the most significant factors in reducing rain penetration. The installation of rain drainage was also important in reducing rain penetration. The experimental results suggest that, with proper configurations of its components, a gravity ventilator can be used for natural ventilation without significant rain penetration problems.

  5. Reductions in dead space ventilation with nasal high flow depend on physiological dead space volume: metabolic hood measurements during sleep in patients with COPD and controls.

    PubMed

    Biselli, Paolo; Fricke, Kathrin; Grote, Ludger; Braun, Andrew T; Kirkness, Jason; Smith, Philip; Schwartz, Alan; Schneider, Hartmut

    2018-05-01

    Nasal high flow (NHF) reduces minute ventilation and ventilatory loads during sleep but the mechanisms are not clear. We hypothesised NHF reduces ventilation in proportion to physiological but not anatomical dead space.11 subjects (five controls and six chronic obstructive pulmonary disease (COPD) patients) underwent polysomnography with transcutaneous carbon dioxide (CO 2 ) monitoring under a metabolic hood. During stable non-rapid eye movement stage 2 sleep, subjects received NHF (20 L·min -1 ) intermittently for periods of 5-10 min. We measured CO 2 production and calculated dead space ventilation.Controls and COPD patients responded similarly to NHF. NHF reduced minute ventilation (from 5.6±0.4 to 4.8±0.4 L·min -1 ; p<0.05) and tidal volume (from 0.34±0.03 to 0.3±0.03 L; p<0.05) without a change in energy expenditure, transcutaneous CO 2 or alveolar ventilation. There was a significant decrease in dead space ventilation (from 2.5±0.4 to 1.6±0.4 L·min -1 ; p<0.05), but not in respiratory rate. The reduction in dead space ventilation correlated with baseline physiological dead space fraction (r 2 =0.36; p<0.05), but not with respiratory rate or anatomical dead space volume.During sleep, NHF decreases minute ventilation due to an overall reduction in dead space ventilation in proportion to the extent of baseline physiological dead space fraction. Copyright ©ERS 2018.

  6. Characteristics of coal mine ventilation air flows.

    PubMed

    Su, Shi; Chen, Hongwei; Teakle, Philip; Xue, Sheng

    2008-01-01

    Coal mine methane (CMM) is not only a greenhouse gas but also a wasted energy resource if not utilised. Underground coal mining is by far the most important source of fugitive methane emissions, and approximately 70% of all coal mining related methane is emitted to the atmosphere through mine ventilation air. Therefore, research and development on mine methane mitigation and utilisation now focuses on methane emitted from underground coal mines, in particular ventilation air methane (VAM) capture and utilisation. To date, most work has focused on the oxidation of very low concentration methane. These processes may be classified based on their combustion kinetic mechanisms into thermal oxidation and catalytic oxidation. VAM mitigation/utilisation technologies are generally divided into two basic categories: ancillary uses and principal uses. However, it is possible that the characteristics of ventilation air flows, for example the variations in methane concentration and the presence of certain compounds, which have not been reported so far, could make some potential VAM mitigation and utilisation technologies unfeasible if they cannot cope with the characteristics of mine site ventilation air flows. Therefore, it is important to understand the characteristics of mine ventilation air flows. Moreover, dust, hydrogen sulphide, sulphur dioxide, and other possible compounds emitted through mine ventilation air into the atmosphere are also pollutants. Therefore, this paper presents mine-site experimental results on the characteristics of mine ventilation air flows, including methane concentration and its variations, dust loadings, particle size, mineral matter of the dust, and other compounds in the ventilation air flows. The paper also discusses possible correlations between ventilation air characteristics and underground mining activities.

  7. International Space Station USOS Crew Quarters Ventilation and Acoustic Design Implementation

    NASA Technical Reports Server (NTRS)

    Broyan, James Lee, Jr.

    2009-01-01

    The International Space Station (ISS) United States Operational Segment (USOS) has four permanent rack sized ISS Crew Quarters (CQ) providing a private crewmember space. The CQ uses Node 2 cabin air for ventilation/thermal cooling, as opposed to conditioned ducted air from the ISS Temperature Humidity Control System or the ISS fluid cooling loop connections. Consequently, CQ can only increase the air flow rate to reduce the temperature delta between the cabin and the CQ interior. However, increasing airflow causes increased acoustic noise so efficient airflow distribution is an important design parameter. The CQ utilized a two fan push-pull configuration to ensure fresh air at the crewmember s head position and reduce acoustic exposure. The CQ interior needs to be below Noise Curve 40 (NC-40). The CQ ventilation ducts are open to the significantly louder Node 2 cabin aisle way which required significantly acoustic mitigation controls. The design implementation of the CQ ventilation system and acoustic mitigation are very inter-related and require consideration of crew comfort balanced with use of interior habitable volume, accommodation of fan failures, and possible crew uses that impact ventilation and acoustic performance. This paper illustrates the types of model analysis, assumptions, vehicle interactions, and trade-offs required for CQ ventilation and acoustics. Additionally, on-orbit ventilation system performance and initial crew feedback is presented. This approach is applicable to any private enclosed space that the crew will occupy.

  8. Benefits of Manometer in Non-Invasive Ventilatory Support.

    PubMed

    Lacerda, Rodrigo Silva; de Lima, Fernando Cesar Anastácio; Bastos, Leonardo Pereira; Fardin Vinco, Anderson; Schneider, Felipe Britto Azevedo; Luduvico Coelho, Yves; Fernandes, Heitor Gomes Costa; Bacalhau, João Marcus Ramos; Bermudes, Igor Matheus Simonelli; da Silva, Claudinei Ferreira; da Silva, Luiza Paterlini; Pezato, Rogério

    2017-12-01

    Introduction Effective ventilation during cardiopulmonary resuscitation (CPR) is essential to reduce morbidity and mortality rates in cardiac arrest. Hyperventilation during CPR reduces the efficiency of compressions and coronary perfusion. Problem How could ventilation in CPR be optimized? The objective of this study was to evaluate non-invasive ventilator support using different devices. The study compares the regularity and intensity of non-invasive ventilation during simulated, conventional CPR and ventilatory support using three distinct ventilation devices: a standard manual resuscitator, with and without airway pressure manometer, and an automatic transport ventilator. Student's t-test was used to evaluate statistical differences between groups. P values <.05 were regarded as significant. Peak inspiratory pressure during ventilatory support and CPR was significantly increased in the group with manual resuscitator without manometer when compared with the manual resuscitator with manometer support (MS) group or automatic ventilator (AV) group. The study recommends for ventilatory support the use of a manual resuscitator equipped with MS or AVs, due to the risk of reduction in coronary perfusion pressure and iatrogenic thoracic injury during hyperventilation found using manual resuscitator without manometer. Lacerda RS , de Lima FCA , Bastos LP , Vinco AF , Schneider FBA , Coelho YL , Fernandes HGC , Bacalhau JMR , Bermudes IMS , da Silva CF , da Silva LP , Pezato R . Benefits of manometer in non-invasive ventilatory support. Prehosp Disaster Med. 2017;32(6):615-620.

  9. Energy Retrofits Can Ease the Budget Squeeze.

    ERIC Educational Resources Information Center

    Nordeen, Howard

    1983-01-01

    Computer-based building management systems can cut the energy costs of heating, ventilating, and air conditioning (HVAC) systems in school buildings. Administrators are advised on how to choose the best system. (MLF)

  10. Effect of exercise training on ventilatory efficiency in patients with heart disease: a review.

    PubMed

    Prado, D M L; Rocco, E A; Silva, A G; Rocco, D F; Pacheco, M T; Furlan, V

    2016-06-20

    The analysis of ventilatory efficiency in cardiopulmonary exercise testing has proven useful for assessing the presence and severity of cardiorespiratory diseases. During exercise, efficient pulmonary gas exchange is characterized by uniform matching of lung ventilation with perfusion. By contrast, mismatching is marked by inefficient pulmonary gas exchange, requiring increased ventilation for a given CO2 production. The etiology of increased and inefficient ventilatory response to exercise in heart disease is multifactorial, involving both peripheral and central mechanisms. Exercise training has been recommended as non-pharmacological treatment for patients with different chronic cardiopulmonary diseases. In this respect, previous studies have reported improvements in ventilatory efficiency after aerobic exercise training in patients with heart disease. Against this background, the primary objective of the present review was to discuss the pathophysiological mechanisms involved in abnormal ventilatory response to exercise, with an emphasis on both patients with heart failure syndrome and coronary artery disease. Secondly, special focus was dedicated to the role of aerobic exercise training in improving indices of ventilatory efficiency among these patients, as well as to the underlying mechanisms involved.

  11. Data-driven forecasting algorithms for building energy consumption

    NASA Astrophysics Data System (ADS)

    Noh, Hae Young; Rajagopal, Ram

    2013-04-01

    This paper introduces two forecasting methods for building energy consumption data that are recorded from smart meters in high resolution. For utility companies, it is important to reliably forecast the aggregate consumption profile to determine energy supply for the next day and prevent any crisis. The proposed methods involve forecasting individual load on the basis of their measurement history and weather data without using complicated models of building system. The first method is most efficient for a very short-term prediction, such as the prediction period of one hour, and uses a simple adaptive time-series model. For a longer-term prediction, a nonparametric Gaussian process has been applied to forecast the load profiles and their uncertainty bounds to predict a day-ahead. These methods are computationally simple and adaptive and thus suitable for analyzing a large set of data whose pattern changes over the time. These forecasting methods are applied to several sets of building energy consumption data for lighting and heating-ventilation-air-conditioning (HVAC) systems collected from a campus building at Stanford University. The measurements are collected every minute, and corresponding weather data are provided hourly. The results show that the proposed algorithms can predict those energy consumption data with high accuracy.

  12. A GIS-based approach: Influence of the ventilation layout to the environmental conditions in an underground mine.

    PubMed

    Bascompta, Marc; Castañón, Ana María; Sanmiquel, Lluís; Oliva, Josep

    2016-11-01

    Gases such as CO, CO2 or NOx are constantly generated by the equipment in any underground mine and the ventilation layout can play an important role in keeping low concentrations in the working faces. Hence, a method able to control the workplace environment is crucial. This paper proposes a geographical information system (GIS) for such goal. The system created provides the necessary tools to manage and analyse an underground environment, connecting pollutants and temperatures with the ventilation characteristics over time. Data concerning the ventilation system, in a case study, has been taken every month since 2009 and integrated into the management system, which has quantified the gasses concentration throughout the mine due to the characteristics and evolution of the ventilation layout. Three different zones concerning CO, CO2, NOx and effective temperature have been found as well as some variations among workplaces within the same zone that suggest local airflow recirculations. The system proposed could be a useful tool to improve the workplace conditions and efficiency levels. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Decision analysis of emergency ventilation and evacuation strategies against suddenly released contaminant indoors by considering the uncertainty of source locations.

    PubMed

    Cai, Hao; Long, Weiding; Li, Xianting; Kong, Lingjuan; Xiong, Shuang

    2010-06-15

    In case hazardous contaminants are suddenly released indoors, the prompt and proper emergency responses are critical to protect occupants. This paper aims to provide a framework for determining the optimal combination of ventilation and evacuation strategies by considering the uncertainty of source locations. The certainty of source locations is classified as complete certainty, incomplete certainty, and complete uncertainty to cover all the possible situations. According to this classification, three types of decision analysis models are presented. A new concept, efficiency factor of contaminant source (EFCS), is incorporated in these models to evaluate the payoffs of the ventilation and evacuation strategies. A procedure of decision-making based on these models is proposed and demonstrated by numerical studies of one hundred scenarios with ten ventilation modes, two evacuation modes, and five source locations. The results show that the models can be useful to direct the decision analysis of both the ventilation and evacuation strategies. In addition, the certainty of the source locations has an important effect on the outcomes of the decision-making. Copyright 2010 Elsevier B.V. All rights reserved.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poppiti, James; Nelson, Roger; MacMillan, Walter J.

    The Waste Isolation Pilot Plant (WIPP) is a 655-meter deep mine near Carlsbad, New Mexico, used to dispose the nation’s defense transuranic waste. Limited airborne radioactivity was released from a container of radioactive waste in WIPP on 14 February, 2014. As designed, a mine ventilation filtration system prevented the large scale release of contamination from the underground. However, isolation dampers leaked, which allowed the release of low levels of contaminants after the event until they were sealed. None of the exposed individuals received any recordable dose. While surface contamination was limited, contamination in the ventilation system and portions of themore » underground was substantial. High efficiency particulate air (HEPA) filters in the operating ventilation system ensure continued containment during recovery and resumption of disposal operations. However, ventilation flow is restricted since the incident, with all exhaust air directed through the filters. Decontamination and natural fixation by the hygroscopic nature of the salt host rock has reduced the likelihood of further contamination spread. Contamination control and ventilation system operability are crucial for resumption of operations. This article provides an operational assessment and evaluation of these two key areas.« less

  15. Quality of life and psychosocial issues in ventilated patients with amyotrophic lateral sclerosis and their caregivers.

    PubMed

    Kaub-Wittemer, Dagmar; Steinbüchel, Nicole von; Wasner, Maria; Laier-Groeneveld, Gerhard; Borasio, Gian Domenico

    2003-10-01

    Non-invasive ventilation (NIV) is an efficient palliative measure for symptoms of chronic hypoventilation in patients with amyotrophic lateral sclerosis (ALS), and can also lengthen survival. A subset of ALS patients undergoes tracheostomy ventilation (TV) for life prolongation. We investigated the quality of life (QOL) and psychosocial situation of 52 home ventilated ALS patients and their caregivers. The battery included sociodemographic, generic, and disease-specific variables, as well as the Profile of Mood States and the Munich Quality of Life Dimensions List. Data were compared between the NIV (n=32) and the TV (n=21) groups. Mean ventilation time was 14 months for NIV and 35 months for TV. Eighty-one percent of TV patients had been tracheotomized without informed consent. The data show a good overall QOL for both NIV and TV patients, but a very high burden of care for TV caregivers, 30% of whom rated their own QOL lower than their patient's QOL. Sexuality was an important issue. Thus, any assessment of QOL in a home palliative care situation should include the primary caregivers.

  16. Evaluation of a Shaker Dust Collector for Use in a Recirculating Ventilation System

    PubMed Central

    Sawvel, Russell A.; Park, Jae Hong; Anthony, T. Renée

    2016-01-01

    General ventilation with recirculated air may be cost-effective to control the concentration of low-toxicity, contaminants in workplaces with diffuse, dusty operations, such as in agriculture. Such systems are, however, rarely adopted with little evidence showing improved air quality and ability to operate under harsh conditions. The goal of this work was to examine the initial and long-term performance of a fabric-filter shaker dust collector (SDC) in laboratory tests and as deployed within a recirculating ventilation system in an agricultural building. In laboratory tests, collection efficiency and pressure drop were tracked over several filter loading cycles, and the recovery of filter capacity (pressure drop) from filter shaking was examined. Collection efficiencies of particles larger than 5 μm was high (>95%) even when the filter was pristine, showing effective collection of large particles that dominate inhalable concentrations typical of agricultural dusts. For respirable-sized particles, collection efficiencies were low when the filter was pristine (e.g., 27% for 1 μm) but much higher when a dust cake developed on the filter (>99% for all size particles), even after shaking (e.g., 90% for 1 μm). The first shake of a filter was observed to recovery a substantial fraction of filter capacity, with subsequent shakes providing little benefit. In field tests, the SDC performed effectively over a period of three months in winter when incorporated in a recirculating ventilation system of a swine farrowing room. Trends in collection efficiency and pressure drop with loading were similar to those observed in the laboratory with overall collection efficiencies high (>80%) when pressure drop exceeded 230 Pa, or 23% of the maximum loading recommended by the manufacturer. This work shows that the SDC can function effectively over the harsh winter in swine rearing operations. Together with findings of improved air quality in the farrowing room reported in a companion manuscript, this article provides evidence that an SDC represents a cost-effective solution to improve air quality in agricultural settings. PMID:25955507

  17. Non-invasive ventilation with intelligent volume-assured pressure support versus pressure-controlled ventilation: effects on the respiratory event rate and sleep quality in COPD with chronic hypercapnia.

    PubMed

    Nilius, Georg; Katamadze, Nato; Domanski, Ulrike; Schroeder, Maik; Franke, Karl-Josef

    2017-01-01

    COPD patients who develop chronic hypercapnic respiratory failure have a poor prognosis. Treatment of choice, especially the best form of ventilation, is not well known. This study compared the effects of pressure-controlled (spontaneous timed [ST]) non-invasive ventilation (NIV) and NIV with intelligent volume-assured pressure support (IVAPS) in chronic hypercapnic COPD patients regarding the effects on alveolar ventilation, adverse patient/ventilator interactions and sleep quality. This prospective, single-center, crossover study randomized patients to one night of NIV using ST then one night with the IVAPS function activated, or vice versa. Patients were monitored using polysomnography (PSG) and transcutaneous carbon dioxide pressure (PtcCO 2 ) measurement. Patients rated their subjective experience (total score, 0-45; lower scores indicate better acceptability). Fourteen patients were included (4 females, age 59.4±8.9 years). The total number of respiratory events was low, and similar under pressure-controlled (5.4±6.7) and IVAPS (8.3±10.2) conditions ( P =0.064). There were also no clinically relevant differences in PtcCO 2 between pressure-controlled and IVAPS NIV (52.9±6.2 versus 49.1±6.4 mmHg). Respiratory rate was lower under IVAPS overall; between-group differences reached statistical significance during wakefulness and non-rapid eye movement sleep. Ventilation pressures were 2.6 cmH 2 O higher under IVAPS versus pressure-controlled ventilation, resulting in a 20.1 mL increase in breathing volume. Sleep efficiency was slightly higher under pressure-controlled ventilation versus IVAPS. Respiratory arousals were uncommon (24.4/h [pressure-controlled] versus 25.4/h [IVAPS]). Overall patient assessment scores were similar, although there was a trend toward less discomfort during IVAPS. Our results show that IVAPS NIV allows application of higher nocturnal ventilation pressures versus ST without affecting sleep quality or inducing ventilation- associated events.

  18. Noninvasive ventilation reduces energy expenditure in amyotrophic lateral sclerosis.

    PubMed

    Georges, Marjolaine; Morélot-Panzini, Capucine; Similowski, Thomas; Gonzalez-Bermejo, Jesus

    2014-02-07

    Amyotrophic lateral sclerosis (ALS) leads to chronic respiratory failure. Diaphragmatic dysfunction, a major driver of dyspnea and mortality, is associated with a shift of the burden of ventilation to extradiaphragmatic inspiratory muscles, including neck muscles. Besides, energy expenditure is often abnormally high in ALS, and this is associated with a negative prognostic value. We hypothesized that noninvasive ventilation (NIV) would relieve inspiratory neck muscles and reduce resting energy expenditure (REE). Using indirect calorimetry, we measured REE during spontaneous breathing (REESB) and NIV (REENIV) in 16 ALS patients with diaphragmatic dysfunction, during the first 3 months of NIV. Measured values were compared with predicted REE (REEpred)(Harris-Benedict equation). NIV abolished inspiratory neck muscle activity. Even though our patients were not hypermetabolic, on the contrary, with a REESB that was lower than REEpred (average 11%), NIV did reduce energy expenditure. Indeed, median REENIV, in this population with a mean body mass index of 21.4 kg.m-2, was 1149 kcal/24 h [interquartile 970-1309], lower than REESB (1197 kcal/24 h, 1054-1402; mean difference 7%; p = 0.03, Wilcoxon). REESB and REENIV were correlated with forced vital capacity and maximal inspiratory pressure. NIV can reduce energy expenditure in ALS patients probably by alleviating the ventilatory burden imposed on inspiratory neck muscles to compensate diaphragm weakness. It remains to be elucidated whether or not, in which population, and to what extent, NIV can be beneficial in ALS through the corresponding reduction in energy expenditure.

  19. Estimated effect of ventilation and filtration on chronic health risks in U.S. offices, schools, and retail stores.

    PubMed

    Chan, W R; Parthasarathy, S; Fisk, W J; McKone, T E

    2016-04-01

    We assessed the chronic health risks from inhalation exposure to volatile organic compounds (VOCs) and particulate matter (PM2.5) in U.S. offices, schools, grocery, and other retail stores and evaluated how chronic health risks were affected by changes in ventilation rates and air filtration efficiency. Representative concentrations of VOCs and PM2.5 were obtained from available data. Using a mass balance model, changes in exposure to VOCs and PM2.5 were predicted if ventilation rate were to increase or decrease by a factor of two, and if higher efficiency air filters were used. Indoor concentrations were compared to health guidelines to estimate percentage exceedances. The estimated chronic health risks associated with VOC and PM2.5 exposures in these buildings were low relative to the risks from exposures in homes. Chronic health risks were driven primarily by exposures to PM2.5 that were evaluated using disease incidence of mortality, chronic bronchitis, and non-fatal stroke. The leading cancer risk factor was exposure to formaldehyde. Using disability-adjusted life years (DALYs) to account for both cancer and non-cancer effects, results suggest that increasing ventilation alone is ineffective at reducing chronic health burdens. Other strategies, such as pollutant source control and the use of particle filtration, should also be considered. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Improving the environment for weaned piglets using polypropylene fabrics above the animals in cold periods.

    PubMed

    Dolz, Noé; Babot, Daniel; Álvarez-Rodríguez, Javier; Forcada, Fernando

    2015-12-01

    This study aimed at evaluating the use of polypropylene fabrics in weaned pig facilities (5-10 weeks of age) during the winter period to improve thermal environment and energy saving for heating. Two experiments were conducted to validate the effects of fabrics (F) compared to control (C) in three 2-week periods using natural ventilation (assay 1, 2013) and forced ventilation (assay 2, 2014). Air temperature was greater in F than in C compartments in both years, particularly during the first 2-week periods (2 °C of mean difference). Natural ventilation was not enough to maintain relative humidity levels below 70 % at the end of the postweaning period (9-10 weeks of age) in both groups (F and C), whereas forced ventilation allowed controlling daily mean relative humidity levels <60 %. About 12-26 % of the radiant heat was transmitted through the fabrics cover, depending on the wavelength. There were no differences on growth performance of piglets in the two compartments in both years. The use of polypropylene fabrics was associated with a significant electric energy saving for heating during the first (data available only in 2014) and second 2-week period in both years. In conclusion, polypropylene fabrics may be an interesting tool to provide optimal environmental conditions for weaned piglets in winter, especially during the two first weeks after weaning. Their transmittance properties allow trapping infrared emission produced by the piglets and heating, avoiding heat losses through the roof, and therefore saving heating energy.

  1. Evaluating Different Green School Building Designs for Albania: Indoor Thermal Comfort, Energy Use Analysis with Solar Systems

    NASA Astrophysics Data System (ADS)

    Dalvi, Ambalika Rajendra

    Improving the conditions of schools in many parts of the world is gradually acquiring importance. The Green School movement is an integral part of this effort since it aims at improving indoor environmental conditions. This would in turn, enhance student- learning while minimizing adverse environmental impact through energy efficiency of comfort-related HVAC and lighting systems. This research, which is a part of a larger research project, aims at evaluating different school building designs in Albania in terms of energy use and indoor thermal comfort, and identify energy efficient options of existing schools. We start by identifying three different climate zones in Albania; Coastal (Durres), Hill/Pre-mountainous (Tirana), mountainous (Korca). Next, two prototypical school building designs are identified from the existing stock. Numerous scenarios are then identified for analysis which consists of combinations of climate zone, building type, building orientation, building upgrade levels, presence of renewable energy systems (solar photovoltaic and solar water heater). The existing building layouts, initially outlined in CAD software and then imported into a detailed building energy software program (eQuest) to perform annual simulations for all scenarios. The research also predicted indoor thermal comfort conditions of the various scenarios on the premise that windows could be opened to provide natural ventilation cooling when appropriate. This study also estimated the energy generated from solar photovoltaic systems and solar water heater systems when placed on the available roof area to determine the extent to which they are able to meet the required electric loads (plug and lights) and building heating loads respectively. The results showed that there is adequate indoor comfort without the need for mechanical cooling for the three climate zones, and that only heating is needed during the winter months.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baxter, Van D.; Rice, C. Keith; Munk, Jeffrey D.

    Between October 2007 and September 2017, Oak Ridge National Laboratory (ORNL) and Lennox Industries, Inc. (Lennox) engaged in a Cooperative Research and Development Agreement (CRADA) to develop an air-source integrated heat pump (AS-IHP) system for the US residential market. The Lennox AS-IHP concept consisted of a high-efficiency air-source heat pump (ASHP) for space heating and cooling services and a separate heat pump water heater/dehumidifier (WH/DH) module for domestic water heating and dehumidification (DH) services. A key feature of this system approach with the separate WH/DH is capability to pretreat (i.e., dehumidify) ventilation air and dedicated whole-house DH independent of themore » ASHP. Two generations of laboratory prototype WH/DH units were designed, fabricated, and lab tested. Performance maps for the system were developed using the latest research version of the US Department of Energy/ORNL heat pump design model (Rice 1992; Rice and Jackson 2005; Shen et al. 2012) as calibrated against the lab test data. These maps served as the input to TRNSYS (Solar Energy Laboratory et al. 2010) to predict annual performance relative to a baseline suite of equipment meeting minimum efficiency standards in effect in 2006 (i.e., a combination of an ASHP with a seasonal energy efficiency ratio (SEER) of 13 and resistance water heater with an energy factor (EF) of 0.9). Predicted total annual energy savings (based on use of a two-speed ASHP and the second-generation WH/DH prototype for the AS-IHP), while providing space conditioning, water heating, and dehumidification for a tight, well-insulated 2600 ft2 (242 m2) house at three US locations, ranged from 33 to 36%, averaging 35%, relative to the baseline system. The lowest savings were seen at the cold-climate Chicago location. Predicted energy use for water heating was reduced by about 50 to 60% relative to a resistance WH.« less

  3. A study on feasibility of super adobe technology –an energy efficient building system using natural resources in Bangladesh

    NASA Astrophysics Data System (ADS)

    Kamal, Razia; Saifur Rahman, Md.

    2018-04-01

    The inspiration and concept for the Superadobe system originates not from the modern architecture design experience, but from the influence of traditional rural buildings and landscape, together with a 13th century Persian poet named Jala Ad-Din Muhammad Balkhi, Rumi. The poetry sprit of Rumi, connects and enlightens the architectural theme of Nader Khalili with natural resources that anybody in the world should be able to build a home for his or her family with the simplest of elements: Earth, Water, Air and Fire. Therefore, to build a human shelter that will give maximum safety with low financial budget and minimum environmental impact with natural disaster resilient a Superadobe Technology has been adopted. The Superadobe, a form of earth bag construction using sandbag and barbed wire technology, is an economical, time efficient, energy efficient and ecologically friendly system developed by Iranian-born architect “Nader Khalili”. The system connects the natural materials and rural traditions to create a new way to use natural materials such as mud, water, air and fire which can be finished in a short time without any large construction equipment. The goal of this study is to introduce the building system, analyse the ventilation, lighting and insulation of the prototype of Superadobe system replacing the contextual earth house in Bangladesh.

  4. The combined effect of hypoxia and nutritional status on metabolic and ionoregulatory responses of common carp (Cyprinus carpio).

    PubMed

    Moyson, Sofie; Liew, Hon Jung; Diricx, Marjan; Sinha, Amit Kumar; Blust, Ronny; De Boeck, Gudrun

    2015-01-01

    In the present study, the combined effects of hypoxia and nutritional status were examined in common carp (Cyprinus carpio), a relatively hypoxia tolerant cyprinid. Fish were either fed or fasted and were exposed to hypoxia (1.5-1.8mg O2L(-1)) at or slightly above their critical oxygen concentration during 1, 3 or 7days followed by a 7day recovery period. Ventilation initially increased during hypoxia, but fasted fish had lower ventilation frequencies than fed fish. In fed fish, ventilation returned to control levels during hypoxia, while in fasted fish recovery only occurred after reoxygenation. Due to this, C. carpio managed, at least in part, to maintain aerobic metabolism during hypoxia: muscle and plasma lactate levels remained relatively stable although they tended to be higher in fed fish (despite higher ventilation rates). However, during recovery, compensatory responses differed greatly between both feeding regimes: plasma lactate in fed fish increased with a simultaneous breakdown of liver glycogen indicating increased energy use, while fasted fish seemed to economize energy and recycle decreasing plasma lactate levels into increasing liver glycogen levels. Protein was used under both feeding regimes during hypoxia and subsequent recovery: protein levels reduced mainly in liver for fed fish and in muscle for fasted fish. Overall, nutritional status had a greater impact on energy reserves than the lack of oxygen with a lower hepatosomatic index and lower glycogen stores in fasted fish. Fasted fish transiently increased Na(+)/K(+)-ATPase activity under hypoxia, but in general ionoregulatory balance proved to be only slightly disturbed, showing that sufficient energy was left for ion regulation. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Randomized prospective crossover study of biphasic intermittent positive airway pressure ventilation (BIPAP) versus pressure support ventilation (PSV) in surgical intensive care patients.

    PubMed

    Elrazek, E Abd

    2004-10-01

    The aim of this prospective, randomized and crossover study was to assess the role of a relatively new mode of mechanical ventilation, biphasic intermittent positive airway pressure (BIPAP) in comparison to another well established one, pressure-support ventilation (PSV) in surgical intensive care patients. 24 generally stable patients, breathing on their own after short-term (< 24 hours) postoperative controlled mechanical ventilation (CMV) were randomized to start on either PSV or BIPAP, and indirect calorimetry measurements were performed after 1 hour adaptation period at two time intervals; immediately after the investigated ventilatory mode was started and 1 hour later. Statistics included a two-tailed paired t-test to compare the two sets of different data, p < 0.5 was considered significant. Oxygen consumption (VO2), energy expenditure (EE), Carbon dioxide production (VCO2), and respiratory quotient (RQ) did not differ significantly between the two groups. There were also no significant differences regarding respiratory rate (RR), minute volume (MV) and arterial blood gas analysis (ABGs). Both modes of ventilation were well tolerated by all patients. PSV and BIPAP can be used for weaning patients comfortably in surgical intensive care after short-term postoperative ventilation. BIPAP may have the credit of being smoother than PSV where no patient effort is required.

  6. Multicenter comparative study of conventional mechanical gas ventilation to tidal liquid ventilation in oleic acid injured sheep.

    PubMed

    Wolfson, Marla R; Hirschl, Ronald B; Jackson, J Craig; Gauvin, France; Foley, David S; Lamm, Wayne J E; Gaughan, John; Shaffer, Thomas H

    2008-01-01

    We performed a multicenter study to test the hypothesis that tidal liquid ventilation (TLV) would improve cardiopulmonary, lung histomorphological, and inflammatory profiles compared with conventional mechanical gas ventilation (CMV). Sheep were studied using the same volume-controlled, pressure-limited ventilator systems, protocols, and treatment strategies in three independent laboratories. Following baseline measurements, oleic acid lung injury was induced and animals were randomized to 4 hours of CMV or TLV targeted to "best PaO2" and PaCO2 35 to 60 mm Hg. The following were significantly higher (p < 0.01) during TLV than CMV: PaO2, venous oxygen saturation, respiratory compliance, cardiac output, stroke volume, oxygen delivery, ventilatory efficiency index; alveolar area, lung % gas exchange space, and expansion index. The following were lower (p < 0.01) during TLV compared with CMV: inspiratory and expiratory pause pressures, mean airway pressure, minute ventilation, physiologic shunt, plasma lactate, lung interleukin-6, interleukin-8, myeloperoxidase, and composite total injury score. No significant laboratories by treatment group interactions were found. In summary, TLV resulted in improved cardiopulmonary physiology at lower ventilatory requirements with more favorable histological and inflammatory profiles than CMV. As such, TLV offers a feasible ventilatory alternative as a lung protective strategy in this model of acute lung injury.

  7. SUNREL Publications | Buildings | NREL

    Science.gov Websites

    Energy Simulation with a Three-Dimensional Ground-Coupled Heat Transfer Model Infiltration and Natural Ventilation Model for Whole-Building Energy Simulation of Residential Buildings Improvements to the SERIRES /SUNREL Building Energy Simulation Program, Deru, M. 1996. Masters Thesis, Colorado State University, Fort

  8. Ventilation through a small-bore catheter: optimizing expiratory ventilation assistance.

    PubMed

    Hamaekers, A E W; Borg, P A J; Götz, T; Enk, D

    2011-03-01

    Emergency ventilation through a small-bore transtracheal catheter can be lifesaving in a 'cannot intubate, cannot ventilate' situation. Ejectors, capable of creating suction by the Bernoulli principle, have been proposed to facilitate expiration through small-bore catheters. In this bench study, we compared a novel, purpose-built ventilation ejector (DE 5) with a previously proposed, modified industrial ejector (SBP 07). The generated insufflation pressures, suction pressures in static and dynamic situations, and also suction capacities and entrainment ratios of the SBP 07 and the DE 5 were determined. The DE 5 was also tested in a lung simulator with a simulated complete upper airway obstruction. Inspiratory and expiratory times through a transtracheal catheter were measured at various flow rates and achievable minute volumes were calculated. In a static situation, the SBP 07 showed a more negative pressure build-up compared with the DE 5. However, in a dynamic situation, the DE 5 generated a more negative pressure, resulting in a higher suction capacity. Employment of the DE 5 at a flow rate of 18 litre min(-1) allowed a minute volume through the transtracheal catheter of up to 8.27 litre min(-1) at a compliance of 100 ml cm H(2)O(-1). The efficiency of the DE 5 depended on the flow rate of the driving gas and the compliance of the lung simulator. In laboratory tests, the DE 5 is an optimized ventilation ejector suitable for applying expiratory ventilation assistance. Further research may confirm the clinical applicability as a portable emergency ventilator for use with small-bore catheters.

  9. Exercise training improves characteristics of exercise oscillatory ventilation in chronic heart failure.

    PubMed

    Panagopoulou, Niki; Karatzanos, Eleftherios; Dimopoulos, Stavros; Tasoulis, Athanasios; Tachliabouris, Ioannis; Vakrou, Styliani; Sideris, Antonios; Gratziou, Christina; Nanas, Serafim

    2017-05-01

    Background Exercise oscillatory ventilation in chronic heart failure has been suggested as a factor related to adverse cardiac events, aggravated prognosis and higher mortality. Exercise training is well known to affect exercise capacity and mechanisms of pathophysiology beneficially in chronic heart failure. Little is known, however, about the exercise training effects on characteristics of exercise oscillatory ventilation in chronic heart failure patients. Design and methods Twenty (out of 38) stable chronic heart failure patients exhibited exercise oscillatory ventilation (age 54 ± 11 years, peak oxygen uptake 15.0 ± 5.0 ml/kg per minute). Patients attended 36 sessions of high intensity interval exercise. All patients underwent cardiopulmonary exercise testing before and after the programme. Assessment of exercise oscillatory ventilation was based on the amplitude of cyclic fluctuations in breathing during rest and exercise. All values are mean ± SD. Results Exercise training reduced ( P < 0.05) the percentage of exercise oscillatory ventilation duration (79.0 ± 13.0 to 50.0 ± 25.0%), while average amplitude (5.2 ± 2.0 to 4.9 ± 1.6 L/minute) and length (44.0 ± 10.9 to 41.0 ± 6.7 seconds) did not change ( P > 0.05). Exercise oscillatory ventilation patients also increased exercise capacity ( P < 0.05). Conclusions A rehabilitation programme based on high intensity interval training improved exercise oscillatory ventilation observed in chronic heart failure patients, as well as cardiopulmonary efficiency and functional capacity.

  10. Smart Houses

    NASA Technical Reports Server (NTRS)

    1987-01-01

    GWS takes plans for a new home and subjects them to intensive computerized analysis that does 10,000 calculations relative to expected heat loss and heat gain, then provides specifications designed specifically for each structure as to heating, cooling, ventilation and insulation. As construction progresses, GWS inspects the work of the electrical, plumbing and insulation contractors and installs its own Smart House Radiant Barrier. On completion of the home, GWS technicians use a machine that creates a vacuum in the house and enables computer calculation of the air exchanged, a measure of energy efficiency. Key factor is the radiant barrier, borrowed from the Apollo program. This is an adaptation of a highly effective aluminized heat shield as a radiation barrier holding in or keeping out heat, cold air and water vapor.

  11. Improving a Good Thing.

    ERIC Educational Resources Information Center

    School Planning & Management, 2002

    2002-01-01

    Summarizes research from the Florida Solar Energy Center at the University of Central Florida which demonstrated that improvements in portable classrooms involving illumination and ventilation saved Florida 40 percent in electric use and $6 million in energy costs. (EV)

  12. Automatic generation and simulation of urban building energy models based on city datasets for city-scale building retrofit analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Yixing; Hong, Tianzhen; Piette, Mary Ann

    Buildings in cities consume 30–70% of total primary energy, and improving building energy efficiency is one of the key strategies towards sustainable urbanization. Urban building energy models (UBEM) can support city managers to evaluate and prioritize energy conservation measures (ECMs) for investment and the design of incentive and rebate programs. This paper presents the retrofit analysis feature of City Building Energy Saver (CityBES) to automatically generate and simulate UBEM using EnergyPlus based on cities’ building datasets and user-selected ECMs. CityBES is a new open web-based tool to support city-scale building energy efficiency strategic plans and programs. The technical details ofmore » using CityBES for UBEM generation and simulation are introduced, including the workflow, key assumptions, and major databases. Also presented is a case study that analyzes the potential retrofit energy use and energy cost savings of five individual ECMs and two measure packages for 940 office and retail buildings in six city districts in northeast San Francisco, United States. The results show that: (1) all five measures together can save 23–38% of site energy per building; (2) replacing lighting with light-emitting diode lamps and adding air economizers to existing heating, ventilation and air-conditioning (HVAC) systems are most cost-effective with an average payback of 2.0 and 4.3 years, respectively; and (3) it is not economical to upgrade HVAC systems or replace windows in San Francisco due to the city's mild climate and minimal cooling and heating loads. Furthermore, the CityBES retrofit analysis feature does not require users to have deep knowledge of building systems or technologies for the generation and simulation of building energy models, which helps overcome major technical barriers for city managers and their consultants to adopt UBEM.« less

  13. Automatic generation and simulation of urban building energy models based on city datasets for city-scale building retrofit analysis

    DOE PAGES

    Chen, Yixing; Hong, Tianzhen; Piette, Mary Ann

    2017-08-07

    Buildings in cities consume 30–70% of total primary energy, and improving building energy efficiency is one of the key strategies towards sustainable urbanization. Urban building energy models (UBEM) can support city managers to evaluate and prioritize energy conservation measures (ECMs) for investment and the design of incentive and rebate programs. This paper presents the retrofit analysis feature of City Building Energy Saver (CityBES) to automatically generate and simulate UBEM using EnergyPlus based on cities’ building datasets and user-selected ECMs. CityBES is a new open web-based tool to support city-scale building energy efficiency strategic plans and programs. The technical details ofmore » using CityBES for UBEM generation and simulation are introduced, including the workflow, key assumptions, and major databases. Also presented is a case study that analyzes the potential retrofit energy use and energy cost savings of five individual ECMs and two measure packages for 940 office and retail buildings in six city districts in northeast San Francisco, United States. The results show that: (1) all five measures together can save 23–38% of site energy per building; (2) replacing lighting with light-emitting diode lamps and adding air economizers to existing heating, ventilation and air-conditioning (HVAC) systems are most cost-effective with an average payback of 2.0 and 4.3 years, respectively; and (3) it is not economical to upgrade HVAC systems or replace windows in San Francisco due to the city's mild climate and minimal cooling and heating loads. Furthermore, the CityBES retrofit analysis feature does not require users to have deep knowledge of building systems or technologies for the generation and simulation of building energy models, which helps overcome major technical barriers for city managers and their consultants to adopt UBEM.« less

  14. Comfortable, high-efficiency heat pump with desiccant-coated, water-sorbing heat exchangers

    PubMed Central

    Tu, Y. D.; Wang, R. Z.; Ge, T. S.; Zheng, X.

    2017-01-01

    Comfortable, efficient, and affordable heating, ventilation, and air conditioning systems in buildings are highly desirable due to the demands of energy efficiency and environmental friendliness. Traditional vapor-compression air conditioners exhibit a lower coefficient of performance (COP) (typically 2.8–3.8) owing to the cooling-based dehumidification methods that handle both sensible and latent loads together. Temperature- and humidity-independent control or desiccant systems have been proposed to overcome these challenges; however, the COP of current desiccant systems is quite small and additional heat sources are usually needed. Here, we report on a desiccant-enhanced, direct expansion heat pump based on a water-sorbing heat exchanger with a desiccant coating that exhibits an ultrahigh COP value of more than 7 without sacrificing any comfort or compactness. The pump’s efficiency is doubled compared to that of pumps currently used in conventional room air conditioners, which is a revolutionary HVAC breakthrough. Our proposed water-sorbing heat exchanger can independently handle sensible and latent loads at the same time. The desiccants adsorb moisture almost isothermally and can be regenerated by condensation heat. This new approach opens up the possibility of achieving ultrahigh efficiency for a broad range of temperature- and humidity-control applications. PMID:28079171

  15. New insight into the assessment of asthma using xenon ventilation computed tomography.

    PubMed

    Jung, Jae-Woo; Kwon, Jae-Woo; Kim, Tae-Wan; Lee, So-Hee; Kim, Kyung-Mook; Kang, Hye-Ryun; Park, Heung-Woo; Lee, Chang-Hyun; Goo, Jin-Mo; Min, Kyung-Up; Cho, Sang-Heon

    2013-08-01

    Image analyses include computed tomography (CT), magnetic resonance imaging, and xenon ventilation CT, which is new modality to evaluate pulmonary functional imaging. To examine the usefulness of dual-energy xenon ventilation CT in asthmatic patients. A total of 43 patients 18 years or older who were nonsmokers were included in the study. Xenon CT images in wash-in and wash-out phases were obtained at baseline and after inhalation of methacholine and salbutamol. The degrees of ventilation defects and xenon trappings were evaluated through visual analysis. Ventilation defects and xenon trapping were significantly increased and decreased after methacholine challenge and salbutamol inhalation, respectively (P < .005). The ventilation abnormalities were not significantly related to the percentage of forced expiratory volume in 1 second (FEV1) or the ratio of FEV1 to forced vital capacity. Xenon trappings after salbutamol inhalation were negatively related to the scores of the asthma control test, wheezing, or night symptoms, with statistical significance (P < .05), whereas, FEV1 showed no significant correlation with symptom scores. Baseline FEV1 was significantly lower and dyspnea and wheezing were more severe in the non-full reversal group than in the full reversal group after salbutamol inhalation in xenon CT (P < .05). The degree of ventilation defects were positively correlated with FEV1 improvement after 3 months of treatment (P = .02). The results of this study suggest that xenon ventilation CT can be used as a new method to assess ventilation abnormalities in asthma, and these ventilation abnormalities can be used as novel parameters that reflect the status of asthma control and symptom severity. Copyright © 2013 American College of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  16. Control of asthma triggers in indoor air with air cleaners: a modeling analysis.

    PubMed

    Myatt, Theodore A; Minegishi, Taeko; Allen, Joseph G; Macintosh, David L

    2008-08-06

    Reducing exposure to environmental agents indoors shown to increase asthma symptoms or lead to asthma exacerbations is an important component of a strategy to manage asthma for individuals. Numerous investigations have demonstrated that portable air cleaning devices can reduce concentrations of asthma triggers in indoor air; however, their benefits for breathing problems have not always been reproducible. The potential exposure benefits of whole house high efficiency in-duct air cleaners for sensitive subpopulations have yet to be evaluated. We used an indoor air quality modeling system (CONTAM) developed by NIST to examine peak and time-integrated concentrations of common asthma triggers present in indoor air over a year as a function of natural ventilation, portable air cleaners, and forced air ventilation equipped with conventional and high efficiency filtration systems. Emission rates for asthma triggers were based on experimental studies published in the scientific literature. Forced air systems with high efficiency filtration were found to provide the best control of asthma triggers: 30-55% lower cat allergen levels, 90-99% lower risk of respiratory infection through the inhalation route of exposure, 90-98% lower environmental tobacco smoke (ETS) levels, and 50-75% lower fungal spore levels than the other ventilation/filtration systems considered. These results indicate that the use of high efficiency in-duct air cleaners provide an effective means of controlling allergen levels not only in a single room, like a portable air cleaner, but the whole house. These findings are useful for evaluating potential benefits of high efficiency in-duct filtration systems for controlling exposure to asthma triggers indoors and for the design of trials of environmental interventions intended to evaluate their utility in practice.

  17. Control of asthma triggers in indoor air with air cleaners: a modeling analysis

    PubMed Central

    Myatt, Theodore A; Minegishi, Taeko; Allen, Joseph G; MacIntosh, David L

    2008-01-01

    Background Reducing exposure to environmental agents indoors shown to increase asthma symptoms or lead to asthma exacerbations is an important component of a strategy to manage asthma for individuals. Numerous investigations have demonstrated that portable air cleaning devices can reduce concentrations of asthma triggers in indoor air; however, their benefits for breathing problems have not always been reproducible. The potential exposure benefits of whole house high efficiency in-duct air cleaners for sensitive subpopulations have yet to be evaluated. Methods We used an indoor air quality modeling system (CONTAM) developed by NIST to examine peak and time-integrated concentrations of common asthma triggers present in indoor air over a year as a function of natural ventilation, portable air cleaners, and forced air ventilation equipped with conventional and high efficiency filtration systems. Emission rates for asthma triggers were based on experimental studies published in the scientific literature. Results Forced air systems with high efficiency filtration were found to provide the best control of asthma triggers: 30–55% lower cat allergen levels, 90–99% lower risk of respiratory infection through the inhalation route of exposure, 90–98% lower environmental tobacco smoke (ETS) levels, and 50–75% lower fungal spore levels than the other ventilation/filtration systems considered. These results indicate that the use of high efficiency in-duct air cleaners provide an effective means of controlling allergen levels not only in a single room, like a portable air cleaner, but the whole house. Conclusion These findings are useful for evaluating potential benefits of high efficiency in-duct filtration systems for controlling exposure to asthma triggers indoors and for the design of trials of environmental interventions intended to evaluate their utility in practice. PMID:18684328

  18. Study on energy consumption evaluation of mountainous highway based on LCA

    NASA Astrophysics Data System (ADS)

    Fei, Lunlin; Zhang, Qi; Xie, Yongqing

    2017-06-01

    For the system to understand the road construction energy consumption process, this paper selects a typical mountainous highway in the south, using the theory and method of Life Cycle Assessment (LCA) to quantitatively study the energy consumption of the whole process of highway raw materials production, construction and operation. The results show that the energy consumption in the raw material production stage is the highest, followed by the highway operation and construction stage. The energy consumption per unit of tunnel engineering, bridge engineering, roadbed engineering and pavement engineering in the construction phase are 2279.00 tce, 1718.07 tce, 542.19 tce and 34.02 tce, and in operational phase, 85.44% of electricity consumption comes from tunnel ventilation and lighting. Therefore, in the bridge and tunnel construction process, we should promote energy-saving innovation of the construction technology and mechanical equipment, and further strengthen the research and development of tunnel ventilation, lighting energy-saving equipment and intelligent control technology, which will help significantly reduce the energy consumption and greenhouse gas emissions of the life cycle of highway.

  19. Control systems for heating, ventilating, and air conditioning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haines, R.W.

    1977-01-01

    Hundreds of ideas for designing and controlling sophisticated heating, ventilating and air conditioning (HVAC) systems are presented. Information is included on enthalpy control, energy conservation in HVAC systems, on solar heating, cooling and refrigeration systems, and on a self-draining water collector and heater. Computerized control systems and the economics of supervisory systems are discussed. Information is presented on computer system components, software, relevant terminology, and computerized security and fire reporting systems. Benefits of computer systems are explained, along with optimization techniques, data management, maintenance schedules, and energy consumption. A bibliography, glossaries of HVAC terminology, abbreviations, symbols, and a subject indexmore » are provided. (LCL)« less

  20. Tunnel Ventilation Control Using Reinforcement Learning Methodology

    NASA Astrophysics Data System (ADS)

    Chu, Baeksuk; Kim, Dongnam; Hong, Daehie; Park, Jooyoung; Chung, Jin Taek; Kim, Tae-Hyung

    The main purpose of tunnel ventilation system is to maintain CO pollutant concentration and VI (visibility index) under an adequate level to provide drivers with comfortable and safe driving environment. Moreover, it is necessary to minimize power consumption used to operate ventilation system. To achieve the objectives, the control algorithm used in this research is reinforcement learning (RL) method. RL is a goal-directed learning of a mapping from situations to actions without relying on exemplary supervision or complete models of the environment. The goal of RL is to maximize a reward which is an evaluative feedback from the environment. In the process of constructing the reward of the tunnel ventilation system, two objectives listed above are included, that is, maintaining an adequate level of pollutants and minimizing power consumption. RL algorithm based on actor-critic architecture and gradient-following algorithm is adopted to the tunnel ventilation system. The simulations results performed with real data collected from existing tunnel ventilation system and real experimental verification are provided in this paper. It is confirmed that with the suggested controller, the pollutant level inside the tunnel was well maintained under allowable limit and the performance of energy consumption was improved compared to conventional control scheme.

  1. A CLIMATE-RESPONSIVE ADAPTIVE CONTROL FOR A COMBINATION PASSIVE SOLAR SHADING AND NATURAL VENTILATION

    EPA Science Inventory

    Currently, nations around the globe are facing striking concerns regarding energy consumption. In the United States, we face increasing demands that will cause increasing fuel prices thus ultimately higher-energy cost. The future could be eased by reduce energy consumption ...

  2. A Guide to Energy Savings - For the Dairy Farmers.

    ERIC Educational Resources Information Center

    Frank, Gary G.

    This booklet gives a brief overview of energy use patterns in a dairy farm and gives tips on cutting costs of water heating, ventilation and supplemental heat, milk cooling, vacuum pumps, electric motors, tractors, trucks, engines, and lighting. Finally, energy use recordkeeping is discussed. (BB)

  3. Coupling the Multizone Airflow and Contaminant Transport Software CONTAM with EnergyPlus Using Co-Simulation.

    PubMed

    Dols, W Stuart; Emmerich, Steven J; Polidoro, Brian J

    2016-08-01

    Building modelers need simulation tools capable of simultaneously considering building energy use, airflow and indoor air quality (IAQ) to design and evaluate the ability of buildings and their systems to meet today's demanding energy efficiency and IAQ performance requirements. CONTAM is a widely-used multizone building airflow and contaminant transport simulation tool that requires indoor temperatures as input values. EnergyPlus is a prominent whole-building energy simulation program capable of performing heat transfer calculations that require interzone and infiltration airflows as input values. On their own, each tool is limited in its ability to account for thermal processes upon which building airflow may be significantly dependent and vice versa. This paper describes the initial phase of coupling of CONTAM with EnergyPlus to capture the interdependencies between airflow and heat transfer using co-simulation that allows for sharing of data between independently executing simulation tools. The coupling is accomplished based on the Functional Mock-up Interface (FMI) for Co-simulation specification that provides for integration between independently developed tools. A three-zone combined heat transfer/airflow analytical BESTEST case was simulated to verify the co-simulation is functioning as expected, and an investigation of a two-zone, natural ventilation case designed to challenge the coupled thermal/airflow solution methods was performed.

  4. End-use energy consumption estimates for US commercial buildings, 1989

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belzer, D.B.; Wrench, L.E.; Marsh, T.L.

    An accurate picture of how energy is used in the nation`s stock of commercial buildings can serve a variety of program planning and policy needs within the Department of Energy, by utilities, and other groups seeking to improve the efficiency of energy use in the building sector. This report describes an estimation of energy consumption by end use based upon data from the 1989 Commercial Building Energy Consumption Survey (CBECS). The methodology used in the study combines elements of engineering simulations and statistical analysis to estimate end-use intensities for heating, cooling, ventilation, lighting, refrigeration, hot water, cooking, and miscellaneous equipment.more » Billing data for electricity and natural gas were first decomposed into weather and nonweather dependent loads. Subsequently, Statistical Adjusted Engineering (SAE) models were estimated by building type with annual data. The SAE models used variables such as building size, vintage, climate region, weekly operating hours, and employee density to adjust the engineering model predicted loads to the observed consumption. End-use consumption by fuel was estimated for each of the 5,876 buildings in the 1989 CBECS. The report displays the summary results for eleven separate building types as well as for the total US commercial building stock.« less

  5. Evaluating humidity recovery efficiency of currently available heat and moisture exchangers: a respiratory system model study.

    PubMed

    Lucato, Jeanette Janaina Jaber; Adams, Alexander Bernard; Souza, Rogério; Torquato, Jamili Anbar; Carvalho, Carlos Roberto Ribeiro; Marini, John J

    2009-01-01

    To evaluate and compare the efficiency of humidification in available heat and moisture exchanger models under conditions of varying tidal volume, respiratory rate, and flow rate. Inspired gases are routinely preconditioned by heat and moisture exchangers to provide a heat and water content similar to that provided normally by the nose and upper airways. The absolute humidity of air retrieved from and returned to the ventilated patient is an important measurable outcome of the heat and moisture exchangers' humidifying performance. Eight different heat and moisture exchangers were studied using a respiratory system analog. The system included a heated chamber (acrylic glass, maintained at 37 degrees C), a preserved swine lung, a hygrometer, circuitry and a ventilator. Humidity and temperature levels were measured using eight distinct interposed heat and moisture exchangers given different tidal volumes, respiratory frequencies and flow-rate conditions. Recovery of absolute humidity (%RAH) was calculated for each setting. Increasing tidal volumes led to a reduction in %RAH for all heat and moisture exchangers while no significant effect was demonstrated in the context of varying respiratory rate or inspiratory flow. Our data indicate that heat and moisture exchangers are more efficient when used with low tidal volume ventilation. The roles of flow and respiratory rate were of lesser importance, suggesting that their adjustment has a less significant effect on the performance of heat and moisture exchangers.

  6. Evaluating the Long-Term Health and Economic Impacts of Central Residential Air Filtration for Reducing Premature Mortality Associated with Indoor Fine Particulate Matter (PM2.5) of Outdoor Origin

    PubMed Central

    Zhao, Dan; Azimi, Parham; Stephens, Brent

    2015-01-01

    Much of human exposure to fine particulate matter (PM2.5) of outdoor origin occurs in residences. High-efficiency particle air filtration in central heating, ventilating, and air-conditioning (HVAC) systems is increasingly being used to reduce concentrations of particulate matter inside homes. However, questions remain about the effectiveness of filtration for reducing exposures to PM2.5 of outdoor origin and adverse health outcomes. Here we integrate epidemiology functions and mass balance modeling to estimate the long-term health and economic impacts of HVAC filtration for reducing premature mortality associated with indoor PM2.5 of outdoor origin in residences. We evaluate 11 classifications of filters (MERV 5 through HEPA) using six case studies of single-family home vintages and ventilation system combinations located in 22 U.S. cities. We estimate that widespread use of higher efficiency filters would reduce premature mortality by 0.002–2.5% and increase life expectancy by 0.02–1.6 months, yielding annual monetary benefits ranging from $1 to $1348 per person in the homes and locations modeled herein. Large differences in the magnitude of health and economic impacts are driven largely by differences in rated filter efficiency and building and ventilation system characteristics that govern particle infiltration and persistence, with smaller influences attributable to geographic location. PMID:26197328

  7. Evaluating the Long-Term Health and Economic Impacts of Central Residential Air Filtration for Reducing Premature Mortality Associated with Indoor Fine Particulate Matter (PM2.5) of Outdoor Origin.

    PubMed

    Zhao, Dan; Azimi, Parham; Stephens, Brent

    2015-07-21

    Much of human exposure to fine particulate matter (PM2.5) of outdoor origin occurs in residences. High-efficiency particle air filtration in central heating, ventilating, and air-conditioning (HVAC) systems is increasingly being used to reduce concentrations of particulate matter inside homes. However, questions remain about the effectiveness of filtration for reducing exposures to PM2.5 of outdoor origin and adverse health outcomes. Here we integrate epidemiology functions and mass balance modeling to estimate the long-term health and economic impacts of HVAC filtration for reducing premature mortality associated with indoor PM2.5 of outdoor origin in residences. We evaluate 11 classifications of filters (MERV 5 through HEPA) using six case studies of single-family home vintages and ventilation system combinations located in 22 U.S. cities. We estimate that widespread use of higher efficiency filters would reduce premature mortality by 0.002-2.5% and increase life expectancy by 0.02-1.6 months, yielding annual monetary benefits ranging from $1 to $1348 per person in the homes and locations modeled herein. Large differences in the magnitude of health and economic impacts are driven largely by differences in rated filter efficiency and building and ventilation system characteristics that govern particle infiltration and persistence, with smaller influences attributable to geographic location.

  8. An Experimental Study of Energy Consumption in Buildings Providing Ancillary Services

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Yashen; Afshari, Sina; Wolfe, John

    Heating, ventilation, and air conditioning (HVAC) systems in commercial buildings can provide ancillary services (AS) to the power grid, but by providing AS their energy consumption may increase. This inefficiency is evaluated using round-trip efficiency (RTE), which is defined as the ratio between the decrease and the increase in the HVAC system's energy consumption compared to the baseline consumption as a result of providing AS. This paper evaluates the RTE of a 30,000 m2 commercial building providing AS. We propose two methods to estimate the HVAC system's settling time after an AS event based on temperature and the air flowmore » measurements from the building. Experimental data gathered over a 4-month period are used to calculate the RTE for AS signals of various waveforms, magnitudes, durations, and polarities. The results indicate that the settling time estimation algorithm based on the air flow measurements obtains more accurate results compared to the temperature-based algorithm. Further, we study the impact of the AS signal shape parameters on the RTE and discuss the practical implications of our findings.« less

  9. VWPS: A Ventilator Weaning Prediction System with Artificial Intelligence

    NASA Astrophysics Data System (ADS)

    Chen, Austin H.; Chen, Guan-Ting

    How to wean patients efficiently off mechanical ventilation continues to be a challenge for medical professionals. In this paper we have described a novel approach to the study of a ventilator weaning prediction system (VWPS). Firstly, we have developed and written three Artificial Neural Network (ANN) algorithms to predict a weaning successful rate based on the clinical data. Secondly, we have implemented two user-friendly weaning success rate prediction systems; the VWPS system and the BWAP system. Both systems could be used to help doctors objectively and effectively predict whether weaning is appropriate for patients based on the patients' clinical data. Our system utilizes the powerful processing abilities of MatLab. Thirdly, we have calculated the performance through measures such as sensitivity and accuracy for these three algorithms. The results show a very high sensitivity (around 80%) and accuracy (around 70%). To our knowledge, this is the first design approach of its kind to be used in the study of ventilator weaning success rate prediction.

  10. Modeling and Simulation of HVAC Faulty Operations and Performance Degradation due to Maintenance Issues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Liping; Hong, Tianzhen

    Almost half of the total energy used in the U.S. buildings is consumed by heating, ventilation and air conditionings (HVAC) according to EIA statistics. Among various driving factors to energy performance of building, operations and maintenance play a significant role. Many researches have been done to look at design efficiencies and operational controls for improving energy performance of buildings, but very few study the impacts of HVAC systems maintenance. Different practices of HVAC system maintenance can result in substantial differences in building energy use. If a piece of HVAC equipment is not well maintained, its performance will degrade. If sensorsmore » used for control purpose are not calibrated, not only building energy usage could be dramatically increased, but also mechanical systems may not be able to satisfy indoor thermal comfort. Properly maintained HVAC systems can operate efficiently, improve occupant comfort, and prolong equipment service life. In the paper, maintenance practices for HVAC systems are presented based on literature reviews and discussions with HVAC engineers, building operators, facility managers, and commissioning agents. We categorize the maintenance practices into three levels depending on the maintenance effort and coverage: 1) proactive, performance-monitored maintenance; 2) preventive, scheduled maintenance; and 3) reactive, unplanned or no maintenance. A sampled list of maintenance issues, including cooling tower fouling, boiler/chiller fouling, refrigerant over or under charge, temperature sensor offset, outdoor air damper leakage, outdoor air screen blockage, outdoor air damper stuck at fully open position, and dirty filters are investigated in this study using field survey data and detailed simulation models. The energy impacts of both individual maintenance issue and combined scenarios for an office building with central VAV systems and central plant were evaluated by EnergyPlus simulations using three approaches: 1) direct modeling with EnergyPlus, 2) using the energy management system feature of EnergyPlus, and 3) modifying EnergyPlus source code. The results demonstrated the importance of maintenance for HVAC systems on energy performance of buildings. The research is intended to provide a guideline to help practitioners and building operators to gain the knowledge of maintaining HVAC systems in efficient operations, and prioritize HVAC maintenance work plan. The paper also discusses challenges of modeling building maintenance issues using energy simulation programs.« less

  11. Energy Conservation for Residential Dwellings. Course Syllabus.

    ERIC Educational Resources Information Center

    Bergen County Vocational-Technical High School, Hackensack, NJ.

    This course is one of four in a solar systems and energy management program developed by the Bergen County Vocational-Technical Schools to help tradespeople (heating, ventilation, and air conditioning mechanics; plumbers; and electricians) to develop an awareness of alternate energy sources and to gain skills in the areas of solar installations…

  12. Energy Management Controls. Course Syllabus.

    ERIC Educational Resources Information Center

    Bergen County Vocational-Technical High School, Hackensack, NJ.

    This course is one of four in a solar systems and energy management program developed by the Bergen County Vocational-Technical Schools to help tradespeople (heating, ventilation, and air conditioning; mechanics; plumbers; and electricians) to develop an awareness of alternate energy sources and to gain skills in the areas of solar installations…

  13. A Guide to Energy Savings - For the Livestock Producer.

    ERIC Educational Resources Information Center

    Van Arsdall, Roy N.

    This booklet gives a brief overview of energy use in livestock production and gives examples of cutting costs of field equipment use, grinding and preparing feed, managing range and herd, ventilating and heating, lighting, drying grain, and irrigating with sprinklers. Recordkeeping and estimating energy use is also discussed. (BB)

  14. Non-Intrusive Load Monitoring of HVAC Components using Signal Unmixing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rahimpour, Alireza; Qi, Hairong; Fugate, David L

    Heating, Ventilating and Air Conditioning units (HVAC) are a major electrical energy consumer in buildings. Monitoring of the operation and energy consumption of HVAC would increase the awareness of building owners and maintenance service providers of the condition and quality of performance of these units, enabling conditioned-based maintenance which would help achieving higher energy efficiency. In this paper, a novel non-intrusive load monitoring method based on group constrained non-negative matrix factorization is proposed for monitoring the different components of HVAC unit by only measuring the whole building aggregated power signal. At the first level of this hierarchical approach, power consumptionmore » of the building is decomposed to energy consumption of the HVAC unit and all the other electrical devices operating in the building such as lighting and plug loads. Then, the estimated power signal of the HVAC is used for estimating the power consumption profile of the HVAC major electrical loads such as compressors, condenser fans and indoor blower. Experiments conducted on real data collected from a building testbed maintained at the Oak Ridge National Laboratory (ORNL) demonstrate high accuracy on the disaggregation task.« less

  15. Preserving Envelope Efficiency in Performance Based Code Compliance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thornton, Brian A.; Sullivan, Greg P.; Rosenberg, Michael I.

    2015-06-20

    The City of Seattle 2012 Energy Code (Seattle 2014), one of the most progressive in the country, is under revision for its 2015 edition. Additionally, city personnel participate in the development of the next generation of the Washington State Energy Code and the International Energy Code. Seattle has pledged carbon neutrality by 2050 including buildings, transportation and other sectors. The United States Department of Energy (DOE), through Pacific Northwest National Laboratory (PNNL) provided technical assistance to Seattle in order to understand the implications of one potential direction for its code development, limiting trade-offs of long-lived building envelope components less stringentmore » than the prescriptive code envelope requirements by using better-than-code but shorter-lived lighting and heating, ventilation, and air-conditioning (HVAC) components through the total building performance modeled energy compliance path. Weaker building envelopes can permanently limit building energy performance even as lighting and HVAC components are upgraded over time, because retrofitting the envelope is less likely and more expensive. Weaker building envelopes may also increase the required size, cost and complexity of HVAC systems and may adversely affect occupant comfort. This report presents the results of this technical assistance. The use of modeled energy code compliance to trade-off envelope components with shorter-lived building components is not unique to Seattle and the lessons and possible solutions described in this report have implications for other jurisdictions and energy codes.« less

  16. Performance of Predictive Equations Specifically Developed to Estimate Resting Energy Expenditure in Ventilated Critically Ill Children.

    PubMed

    Jotterand Chaparro, Corinne; Taffé, Patrick; Moullet, Clémence; Laure Depeyre, Jocelyne; Longchamp, David; Perez, Marie-Hélène; Cotting, Jacques

    2017-05-01

    To determine, based on indirect calorimetry measurements, the biases of predictive equations specifically developed recently for estimating resting energy expenditure (REE) in ventilated critically ill children, or developed for healthy populations but used in critically ill children. A secondary analysis study was performed using our data on REE measured in a previous prospective study on protein and energy needs in pediatric intensive care unit. We included 75 ventilated critically ill children (median age, 21 months) in whom 407 indirect calorimetry measurements were performed. Fifteen predictive equations were used to estimate REE: the equations of White, Meyer, Mehta, Schofield, Henry, the World Health Organization, Fleisch, and Harris-Benedict and the tables of Talbot. Their differential and proportional biases (with 95% CIs) were computed and the bias plotted in graphs. The Bland-Altman method was also used. Most equations underestimated and overestimated REE between 200 and 1000 kcal/day. The equations of Mehta, Schofield, and Henry and the tables of Talbot had a bias ≤10%, but the 95% CI was large and contained values by far beyond ±10% for low REE values. Other specific equations for critically ill children had even wider biases. In ventilated critically ill children, none of the predictive equations tested met the performance criteria for the entire range of REE between 200 and 1000 kcal/day. Even the equations with the smallest bias may entail a risk of underfeeding or overfeeding, especially in the youngest children. Indirect calorimetry measurement must be preferred. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Comparison of the influence of age on cycling efficiency and the energy cost of running in well-trained triathletes.

    PubMed

    Peiffer, Jeremiah; Abbiss, Chris R; Sultana, Frederic; Bernard, Thierry; Brisswalter, Jeanick

    2016-01-01

    Locomotive efficiency is cited as an important component to endurance performance; however, inconsistent observations of age-related changes in efficiency question its influence in the performance of masters athletes. This study examined locomotive efficiency in young and masters triathletes during both a run and cycle test. Twenty young (28.5 ± 2.6 years) and 20 masters (59.8 ± 1.3 years) triathletes completed an incremental cycling and running test to determine maximal aerobic consumption (VO2max) and the first ventilatory threshold (VT1). Participants then completed 10-min submaximal running and cycling tests at VT1 during which locomotive efficiency was calculated from expired ventilation. Additionally, body fat percentage was determined using skin-fold assessment. During the cycle and run, VO2max was lower in the masters (48.3 ± 5.4 and 49.6 ± 4.8 ml kg(-1) min(-1), respectively) compared with young (61.6 ± 5.7 and 62.4 ± 5.2 ml kg(-1) min(-1), respectively) cohort. Maximal running speed and the cycling power output corresponding to VO2max were also lower in the masters (15.1 ± 0.8 km h(-1) and 318.6 ± 26.0 W) compared with the young (19.5 ± 1.3 km h(-1) and 383.6 ± 35.0 W) cohort. Cycling efficiency was lower (-11.2%) in the masters compared with young cohort. Similar results were observed for the energy cost of running (+10.8%); however, when scaled to lean body mass, changes were more pronounced during the run (+22.1%). Within trained triathletes, ageing can influence efficiency in both the run and cycle discipline. While disregarded in the past, efficiency should be considered in research examining performance in ageing athletes.

  18. Indoor Air Pollution: An Energy Management Problem?

    ERIC Educational Resources Information Center

    Cousins, David M.; Kulba, John W.

    1987-01-01

    Energy conservation measures have led to airtight buildings and reduced levels of ventilation resulting in indoor air pollution. Five kinds of contaminants--tobacco smoke, combustion products, microorganisms, organic compounds, and radon--are described, their hazards considered, and countermeasures outlined. (MLF)

  19. The use of an extended ventilation tube as a countermeasure for EVA-associated upper extremity medical issues

    NASA Astrophysics Data System (ADS)

    Jones, J. A.; Hoffman, R. B.; Buckland, D. A.; Harvey, C. M.; Bowen, C. K.; Hudy, C. E.; Strauss, S.; Novak, J.; Gernhardt, M. L.

    Introduction: Onycholysis due to repetitive activity in the space suit glove during Neutral Buoyancy Laboratory (NBL) training and during spaceflight extravehicular activity (EVA) is a common observation. Moisture accumulates in gloves during EVA task performance and may contribute to the development of pain and damage to the fingernails experienced by many astronauts. The study evaluated the use of a long ventilation tube to determine if improved gas circulation into the hand area could reduce hand moisture and thereby decrease the associated symptoms. Methods: The current Extravehicular Mobility Unit (EMU) was configured with a ventilation tube that extended down a single arm of the crew member (E) and compared with the unventilated arm (C). Skin surface moisture was measured on both hands immediately after glove removal and a questionnaire administered to determine subjective measures. Astronauts ( n=6) were examined pre- and post-run. Results: There were consistent trends in the reduction of relative hydration ratios at dorsum ( C=3.34, E=2.11) and first ring finger joint ( C=2.46, E=1.96) when the ventilation tube was employed. Ventilation appeared more effective on the left versus the right hand, implying an interaction with hand anthropometry and glove fit. Symptom score was lower on the hand that had the long ventilation tube relative to the control hand in 2/6 EVA crew members. Conclusions: Increased ventilation to the hand was effective in reducing the risks of hand and nail discomfort symptoms from moderate to low in one-third of the subjects. Improved design in the ventilation capability of EVA spacesuits is expected to improve efficiency of air flow distribution.

  20. Bench-test comparison of 26 emergency and transport ventilators.

    PubMed

    L'Her, Erwan; Roy, Annie; Marjanovic, Nicolas

    2014-10-15

    Numerous emergency and transport ventilators are commercialized and new generations arise constantly. The aim of this study was to evaluate a large panel of ventilators to allow clinicians to choose a device, taking into account their specificities of use. This experimental bench-test took into account general characteristics and technical performances. Performances were assessed under different levels of FIO2 (100%, 50% or Air-Mix), respiratory mechanics (compliance 30,70,120 mL/cmH2O; resistance 5,10,20 cmH2O/mL/s), and levels of leaks (3.5 to 12.5 L/min), using a test lung. In total 26 emergency and transport ventilators were analyzed and classified into four categories (ICU-like, n = 5; Sophisticated, n = 10; Simple, n = 9; Mass-casualty and military, n = 2). Oxygen consumption (7.1 to 15.8 L/min at FIO2 100%) and the Air-Mix mode (FIO2 45 to 86%) differed from one device to the other. Triggering performance was heterogeneous, but several sophisticated ventilators depicted triggering capabilities as efficient as ICU-like ventilators. Pressurization was not adequate for all devices. At baseline, all the ventilators were able to synchronize, but with variations among respiratory conditions. Leak compensation in most ICU-like and 4/10 sophisticated devices was able to correct at least partially for system leaks, but with variations among ventilators. Major differences were observed between devices and categories, either in terms of general characteristics or technical reliability, across the spectrum of operation. Huge variability of tidal volume delivery with some devices in response to modifications in respiratory mechanics and FIO2 should make clinicians question their use in the clinical setting.

  1. Design and Evaluation of a Ventilated Garment for Use in Temperatures up to 200°C

    PubMed Central

    Crockford, G. W.; Hellon, R. F.

    1964-01-01

    The protection of personnel against high air and radiant temperatures is a problem that has been confronting industry for many years now, and for many industrial situations it still has not been solved. The experiments reported here were intended to determine the most suitable form of insulation for a hot entry suit for use primarily in furnace wrecking where mean radiant temperatures of 200°C. are met and where heat-reflecting garments are unsuitable due to the rapid deterioration of the reflecting surface. From a preliminary consideration of the problem it was concluded that a ventilated garment was required and that conventional ventilated garments in which air is induced to flow parallel to the body surfaces (axial ventilation) are basically unsound in design as the air is not utilized for the transfer of heat in the most efficient manner. A new form of ventilation was therefore developed in which air flows out through a permeable suit (radial ventilation). This form of ventilation produces what is called dynamic insulation, and this method of insulation, when compared with two alternative methods on a physical model, was found to be very effective. The model experiments were confirmed by comparative trials of three ventilated suits each using one of three different forms of insulation thought to be suitable for use in heat-protective clothing. Physiological measurements made on the subjects and physical measurement made on the suits confirmed that dynamic insulation is the most suitable insulation for a hot entry suit for furnace wrecking. With the air flows used in these experiments, dynamic insulation had a thermal conductance one-fifth that of conventional static insulation, and sweat losses and oral temperature rises were reduced by one-third and one-half respectively. PMID:14180476

  2. Relationship of energy and protein adequacy with 60-day mortality in mechanically ventilated critically ill patients: A prospective observational study.

    PubMed

    Lee, Zheng-Yii; Noor Airini, Ibrahim; Barakatun-Nisak, Mohd-Yusof

    2017-05-19

    The effect of provision of full feeding or permissive underfeeding on mortality in mechanically ventilated critically ill patients in the intensive care unit (ICU) is still controversial. This study investigated the relationship of energy and protein intakes with 60-day mortality, and the extent to which ICU length of stay and nutritional risk status influenced this relationship. This is a prospective observational study conducted among critically ill patients aged ≥18 years, intubated and mechanically ventilated within 48 h of ICU admission and stayed in the ICU for at least 72 h. Information on baseline characteristics and nutritional risk status (the modified Nutrition Risk in Critically ill [NUTRIC] score) was collected on day 1. Nutritional intake was recorded daily until death, discharge, or until the twelfth evaluable days. Mortality status was assessed on day 60 based on the patient's hospital record. Patients were divided into 3 groups a) received <2/3 of prescribed energy and protein (both <2/3), b) received ≥2/3 of prescribed energy and protein (both ≥2/3) and c) either energy or protein received were ≥2/3 of prescribed (either ≥2/3). The relationship between the three groups with 60-day mortality was examined by using logistic regression with adjustment for potential confounders. Sensitivity analysis was performed to examine the influence of ICU length of stay (≥7 days) and nutritional risk status. Data were collected from 154 mechanically ventilated patients (age, 51.3 ± 15.7 years; body mass index, 26.5 ± 6.7 kg/m 2 ; 54% male). The mean modified NUTRIC score was 5.7 ± 1.9, with 56% of the patients at high nutritional risk. The patients received 64.5 ± 21.6% of the amount of energy and 56.4 ± 20.6% of the amount of protein prescribed. Provision of energy and protein at ≥2/3 compared with <2/3 of the prescribed amounts was associated with a trend towards increased 60-day mortality (Adjusted odds ratio [Adj OR] 2.23; 95% confidence interval [CI], 0.92-5.38; p = 0.074). No difference in mortality status was found between energy and protein provision at either ≥2/3 compared with <2/3 of the prescribed amounts (Adj OR 1.61, 95% CI, 0.58-4.45; p = 0.357). Nutritional risk status, not ICU length of stay, influenced the relationship between nutritional adequacy and 60-day mortality. Energy and protein adequacy of ≥2/3 of the prescribed amounts were associated with a trend towards increased 60-day mortality among mechanically ventilated critically ill patients. However, neither energy nor protein adequacy alone at ≥ or <2/3 adequacy affect 60-day mortality. Increased mortality was associated with provision of energy and protein at ≥2/3 of the prescribed amounts, which only affected patients with low nutritional risk. Copyright © 2017 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  3. Audit Report on "The Department's Management of the ENERGY STAR Program"

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2009-10-01

    The American Recovery and Reinvestment Act (Recovery Act) authorized about $300 million in consumer rebate incentives for purchases of products rated under the 'ENERGY STAR' Program. ENERGY STAR, a voluntary labeling program established in 1992, provides consumers with energy efficiency data for a range of products so that they can make informed purchase judgments. The overall goal of the program is to encourage consumers to choose energy efficient products, advancing the nationwide goal of reducing energy consumption. The U.S. Environmental Protection Agency (EPA) managed the ENERGY STAR Program on a stand-alone basis until 1996 when it joined forces with themore » Department of Energy (Department). A Memorandum of Cooperation expanded the ENERGY STAR product categories, giving the Department responsibility for overseeing eight product categories such as windows, dishwashers, clothes washers, and refrigerators, while EPA retained responsibility for electronic product categories and heating, ventilating, and cooling equipment. Each agency is responsible for setting product efficiency specifications for those items under its control and for ensuring the proper use of the ENERGY STAR label in the marketplace. In August 2007, the EPA Office of Inspector General issued an audit report identifying significant control weaknesses in EPA's management of ENERGY STAR. The Department, concerned by the findings at EPA and eager to improve its own program, developed an approach to verify adherence to product specifications, ensure proper use of the ENERGY STAR label in the marketplace, and improve the establishment of product specifications. As evidenced by the commitment of $300 million in Recovery Act funds, the ENERGY STAR Program plays an important role in the U.S. efforts to reduce energy consumption. We initiated this audit to determine whether the Department had implemented the actions it announced in 2007 to strengthen the Program. The Department had not implemented planned improvements in the ENERGY STAR Program. Our audit revealed that officials had not: (1) Developed a formal quality assurance program to help ensure that product specifications were adhered to; (2) Effectively monitored the use of the ENERGY STAR label to ensure that only qualifying products were labeled as compliant; and (3) Formalized procedures for establishing and revising product specifications and for documenting decisions regarding those specifications. In our judgment, the delay in the Department's planned improvements in its management of the ENERGY STAR Program could reduce consumer confidence in the integrity of the ENERGY STAR label. Such loss of credibility could reduce energy savings, increase consumer risk, and diminish the value of the recent infusion of $300 million for ENERGY STAR rebates under the Recovery Act.« less

  4. Waste heat recovery options in a large gas-turbine combined power plant

    NASA Astrophysics Data System (ADS)

    Upathumchard, Ularee

    This study focuses on power plant heat loss and how to utilize the waste heat in energy recovery systems in order to increase the overall power plant efficiency. The case study of this research is a 700-MW natural gas combined cycle power plant, located in a suburban area of Thailand. An analysis of the heat loss of the combustion process, power generation process, lubrication system, and cooling system has been conducted to evaluate waste heat recovery options. The design of the waste heat recovery options depends to the amount of heat loss from each system and its temperature. Feasible waste heat sources are combustion turbine (CT) room ventilation air and lubrication oil return from the power plant. The following options are being considered in this research: absorption chillers for cooling with working fluids Ammonia-Water and Water-Lithium Bromide (in comparison) and Organic Rankine Cycle (ORC) with working fluids R134a and R245fa. The absorption cycles are modeled in three different stages; single-effect, double-effect and half-effect. ORC models used are simple ORC as a baseline, ORC with internal regenerator, ORC two-phase flash expansion ORC and ORC with multiple heat sources. Thermodynamic models are generated and each system is simulated using Engineering Equation Solver (EES) to define the most suitable waste heat recovery options for the power plant. The result will be synthesized and evaluated with respect to exergy utilization efficiency referred as the Second Law effectiveness and net output capacity. Results of the models give recommendation to install a baseline ORC of R134a and a double-effect water-lithium bromide absorption chiller, driven by ventilation air from combustion turbine compartment. The two technologies yield reasonable economic payback periods of 4.6 years and 0.7 years, respectively. The fact that this selected power plant is in its early stage of operation allows both models to economically and effectively perform waste heat recovery during the power plant's life span. Furthermore, the recommendation from this research will be submitted to the Electricity Generating Authority of Thailand (EGAT) for implementation. This study will also be used as an example for other power plants in Thailand to consider waste energy utilization to improve plant efficiency and sustain fuel resources in the future.

  5. 77 FR 76825 - Energy Conservation Program: Certification of Commercial and Industrial HVAC, Refrigeration and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-31

    ... Energy Conservation Program: Certification of Commercial and Industrial HVAC, Refrigeration and Water... provisions for commercial refrigeration equipment; commercial heating, ventilating, air-conditioning (HVAC..., the Department extended the compliance date for certification of commercial refrigeration equipment...

  6. Assessment of indoor environmental quality in existing multi-family buildings in North-East Europe.

    PubMed

    Du, Liuliu; Prasauskas, Tadas; Leivo, Virpi; Turunen, Mari; Pekkonen, Maria; Kiviste, Mihkel; Aaltonen, Anu; Martuzevicius, Dainius; Haverinen-Shaughnessy, Ulla

    2015-06-01

    Sixteen existing multi-family buildings (94 apartments) in Finland and 20 (96 apartments) in Lithuania were investigated prior to their renovation in order to develop and test out a common protocol for the indoor environmental quality (IEQ) assessment, and to assess the potential for improving IEQ along with energy efficiency. Baseline data on buildings, as well as data on temperature (T), relative humidity (RH), carbon dioxide (CO2), carbon monoxide (CO), particulate matter (PM), nitrogen dioxide (NO2), formaldehyde, volatile organic compounds (VOCs), radon, and microbial content in settled dust were collected from each apartment. In addition, questionnaire data regarding housing quality and health were collected from the occupants. The results indicated that most measured IEQ parameters were within recommended limits. However, different baselines in each country were observed especially for parameters related to thermal conditions and ventilation. Different baselines were also observed for the respondents' satisfaction with their residence and indoor air quality, as well as their behavior related to indoor environment. In this paper, we present some evidence for the potential in improving IEQ along with energy efficiency in the current building stock, followed by discussion of possible IEQ indicators and development of the assessment protocol. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. International Space Station Crew Quarters Ventilation and Acoustic Design Implementation

    NASA Technical Reports Server (NTRS)

    Broyan, James L., Jr.; Cady, Scott M; Welsh, David A.

    2010-01-01

    The International Space Station (ISS) United States Operational Segment has four permanent rack sized ISS Crew Quarters (CQs) providing a private crew member space. The CQs use Node 2 cabin air for ventilation/thermal cooling, as opposed to conditioned ducted air-from the ISS Common Cabin Air Assembly (CCAA) or the ISS fluid cooling loop. Consequently, CQ can only increase the air flow rate to reduce the temperature delta between the cabin and the CQ interior. However, increasing airflow causes increased acoustic noise so efficient airflow distribution is an important design parameter. The CQ utilized a two fan push-pull configuration to ensure fresh air at the crew member's head position and reduce acoustic exposure. The CQ ventilation ducts are conduits to the louder Node 2 cabin aisle way which required significant acoustic mitigation controls. The CQ interior needs to be below noise criteria curve 40 (NC-40). The design implementation of the CQ ventilation system and acoustic mitigation are very inter-related and require consideration of crew comfort balanced with use of interior habitable volume, accommodation of fan failures, and possible crew uses that impact ventilation and acoustic performance. Each CQ required 13% of its total volume and approximately 6% of its total mass to reduce acoustic noise. This paper illustrates the types of model analysis, assumptions, vehicle interactions, and trade-offs required for CQ ventilation and acoustics. Additionally, on-orbit ventilation system performance and initial crew feedback is presented. This approach is applicable to any private enclosed space that the crew will occupy.

  8. A perfluorochemical loss/restoration (L/R) system for tidal liquid ventilation.

    PubMed

    Libros, R; Philips, C M; Wolfson, M R; Shaffer, T H

    2000-01-01

    Tidal liquid ventilation is the transport of dissolved respiratory gases via volume exchange of perfluorochemical (PFC) liquid to and from the PFC-filled lung. All gas-liquid surface tension is eliminated, increasing compliance and providing lung protection due to lower inflation pressures. Tidal liquid ventilation is achieved by cycling fluid from a reservoir to and from the lung by a ventilator. Current approaches are microprocessor-based with feedback control. During inspiration, warmed oxygenated PFC liquid is pumped from a fluid reservoir/gas exchanger into the lung. PFC fluid is conserved by condensing (60-80% efficiency) vapor in the expired gas. A feedback-control system was developed to automatically replace PFC lost due to condenser inefficiency. This loss/restoration (L/R) system consists of a PFC-vapor thermal detector (+/- 2.5%), pneumatics, amplifiers, a gas flow detector (+/- 1%), a PFC pump (+/- 5%), and a controller. Gravimetric studies of perflubron loss from a flask due to evaporation were compared with experimental L/R results and found to be within +/- 1.4%. In addition, when L/R studies were conducted with a previously reported liquid ventilation system over a four-hour period, the L/R system maintained system perflubron volume to within +/- 1% of prime volume and 11.5% of replacement volume, and the difference between experimental PFC loss and that of the L/R system was 1.8 mL/hr. These studies suggest that the PFC L/R system may have significant economic (appropriate dosing for PFC loss) as well as physiologic (maintenance of PFC inventory in the lungs and liquid ventilator) impact on liquid ventilation procedures.

  9. Basic life support trained nurses ventilate more efficiently with laryngeal mask supreme than with facemask or laryngeal tube suction-disposable--a prospective, randomized clinical trial.

    PubMed

    Gruber, Elisabeth; Oberhammer, Rosmarie; Balkenhol, Karla; Strapazzon, Giacomo; Procter, Emily; Brugger, Hermann; Falk, Markus; Paal, Peter

    2014-04-01

    In some emergency situations resuscitation and ventilation may have to be performed by basic life support trained personnel, especially in rural areas where arrival of advanced life support teams can be delayed. The use of advanced airway devices such as endotracheal intubation has been deemphasized for basically-trained personnel, but it is unclear whether supraglottic airway devices are advisable over traditional mask-ventilation. In this prospective, randomized clinical single-centre trial we compared airway management and ventilation performed by nurses using facemask, laryngeal mask Supreme (LMA-S) and laryngeal tube suction-disposable (LTS-D). Basic life support trained nurses (n=20) received one-hour practical training with each device. ASA 1-2 patients scheduled for elective surgery were included (n=150). After induction of anaesthesia and neuromuscular block nurses had two 90-second attempts to manage the airway and ventilate the patient with volume-controlled ventilation. Ventilation failed in 34% of patients with facemask, 2% with LMA-S and 22% with LTS-D (P<0.001). In patients who could be ventilated successfully mean tidal volume was 240±210 ml with facemask, 470±120 ml with LMA-S and 470±140 ml with LTS-D (P<0.001). Leak pressure was lower with LMA-S (23.3±10.8 cm H2O, 95% CI 20.2-26.4) than with LTS-D (28.9±13.9 cm·H2O, 95% CI 24.4-33.4; P=0.047). After one hour of introductory training, nurses were able to use LMA-S more effectively than facemask and LTS-D. High ventilation failure rates with facemask and LTS-D may indicate that additional training is required to perform airway management adequately with these devices. High-level trials are needed to confirm these results in cardiac arrest patients. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  10. Integrated analysis of numerical weather prediction and computational fluid dynamics for estimating cross-ventilation effects on inhaled air quality inside a factory

    NASA Astrophysics Data System (ADS)

    Murga, Alicia; Sano, Yusuke; Kawamoto, Yoichi; Ito, Kazuhide

    2017-10-01

    Mechanical and passive ventilation strategies directly impact indoor air quality. Passive ventilation has recently become widespread owing to its ability to reduce energy demand in buildings, such as the case of natural or cross ventilation. To understand the effect of natural ventilation on indoor environmental quality, outdoor-indoor flow paths need to be analyzed as functions of urban atmospheric conditions, topology of the built environment, and indoor conditions. Wind-driven natural ventilation (e.g., cross ventilation) can be calculated through the wind pressure coefficient distributions of outdoor wall surfaces and openings of a building, allowing the study of indoor air parameters and airborne contaminant concentrations. Variations in outside parameters will directly impact indoor air quality and residents' health. Numerical modeling can contribute to comprehend these various parameters because it allows full control of boundary conditions and sampling points. In this study, numerical weather prediction modeling was used to calculate wind profiles/distributions at the atmospheric scale, and computational fluid dynamics was used to model detailed urban and indoor flows, which were then integrated into a dynamic downscaling analysis to predict specific urban wind parameters from the atmospheric to built-environment scale. Wind velocity and contaminant concentration distributions inside a factory building were analyzed to assess the quality of the human working environment by using a computer simulated person. The impact of cross ventilation flows and its variations on local average contaminant concentration around a factory worker, and inhaled contaminant dose, were then discussed.

  11. Cleaner cooking solutions to achieve health, climate, and economic cobenefits.

    PubMed

    Anenberg, Susan C; Balakrishnan, Kalpana; Jetter, James; Masera, Omar; Mehta, Sumi; Moss, Jacob; Ramanathan, Veerabhadran

    2013-05-07

    Nearly half the world's population must rely on solid fuels such as biomass (wood, charcoal, agricultural residues, and animal dung) and coal for household energy, burning them in inefficient open fires and stoves with inadequate ventilation. Household solid fuel combustion is associated with four million premature deaths annually; contributes to forest degradation, loss of habitat and biodiversity, and climate change; and hinders social and economic progress as women and children spend hours every day collecting fuel. Several recent studies, as well as key emerging national and international efforts, are making progress toward enabling wide-scale household adoption of cleaner and more efficient stoves and fuels. While significant challenges remain, these efforts offer considerable promise to save lives, improve forest sustainability, slow climate change, and empower women around the world.

  12. Optimal Delivery of Aerosols to Infants During Mechanical Ventilation

    PubMed Central

    Azimi, Mandana; Hindle, Michael

    2014-01-01

    Abstract Purpose: The objective of this study was to determine optimal aerosol delivery conditions for a full-term (3.6 kg) infant receiving invasive mechanical ventilation by evaluating the effects of aerosol particle size, a new wye connector, and timing of aerosol delivery. Methods: In vitro experiments used a vibrating mesh nebulizer and evaluated drug deposition fraction and emitted dose through ventilation circuits containing either a commercial (CM) or new streamlined (SL) wye connector and 3-mm endotracheal tube (ETT) for aerosols with mass median aerodynamic diameters of 880 nm, 1.78 μm, and 4.9 μm. The aerosol was released into the circuit either over the full inhalation cycle (T1 delivery) or over the first half of inhalation (T2 delivery). Validated computational fluid dynamics (CFD) simulations and whole-lung model predictions were used to assess lung deposition and exhaled dose during cyclic ventilation. Results: In vitro experiments at a steady-state tracheal flow rate of 5 L/min resulted in 80–90% transmission of the 880-nm and 1.78-μm aerosols from the ETT. Based on CFD simulations with cyclic ventilation, the SL wye design reduced depositional losses in the wye by a factor of approximately 2–4 and improved lung delivery efficiencies by a factor of approximately 2 compared with the CM device. Delivery of the aerosol over the first half of the inspiratory cycle (T2) reduced exhaled dose from the ventilation circuit by a factor of 4 compared with T1 delivery. Optimal lung deposition was achieved with the SL wye connector and T2 delivery, resulting in 45% and 60% lung deposition for optimal polydisperse (∼1.78 μm) and monodisperse (∼2.5 μm) particle sizes, respectively. Conclusions: Optimization of selected factors and use of a new SL wye connector can substantially increase the lung delivery efficiency of medical aerosols to infants from current values of <1–10% to a range of 45–60%. PMID:24299500

  13. Humidification in the intensive care unit. Prospective study of a new protocol utilizing heated humidification and a hygroscopic condenser humidifier.

    PubMed

    Branson, R D; Davis, K; Campbell, R S; Johnson, D J; Porembka, D T

    1993-12-01

    Determine the utility of a proposed algorithm in allowing safe, efficient humidification in mechanically ventilated patients using both a hygroscopic condenser humidifier (HCH) and heated humidifier (HH). A prospective study using an algorithm to chose humidification devices based on physical examination and sputum characteristics. All patients admitted to the surgical ICU. One hundred twenty consecutive patients requiring mechanical ventilation (MV) were studied. Patients were examined by the attending respiratory care practitioner and given either an HCH or HH. If patients demonstrated any of the following--thick or tenacious secretions, core temperature < 32 degrees C, or bloody secretions--they were given an HH. All others used an HCH. If any of the above conditions occurred during HCH use, the patient was given an HH. Duration of ventilation, incidence of nosocomial pneumonia, ventilator circuit colonization, and mortality were determined for patients in each group. Cost of humidification devices, number of suctioning procedures per day, and volume of saline solution instilled were also recorded. Initially, 27 percent (32/120) of patients used an HH and 73 percent (88/120) used an HCH. During the study, ten patients required changing to an HH during HCH use. Patients in the HH group were more likely to have preexisting lung disease and had a longer duration of ventilation (83 +/- 21 h) and higher mortality (21 percent). Patients in the HCH group were more likely to be postoperative, had shorter durations of ventilation (38 +/- 14 h), and lower mortality (9 percent). There was no difference in the incidence of nosocomial pneumonia between the two groups (9 percent vs 6 percent) and endotracheal tube occlusion did not occur in either group. Circuit colonization was common in the HH group (64 percent) but rate in the HCH group (5 percent). Cost per day was significantly less for the HCH group ($4 vs $19.80). Patients who required a change from HCH to HH did so at a mean of 5 days. The proposed algorithm resulted in cost-efficient and safe application of humidification devices in patients in the surgical ICU.

  14. Energy saving by using natural energy from the shallow ground depths - many years operating results

    NASA Astrophysics Data System (ADS)

    Besler, Maciej; Skrzycki, Maciej; Cepiński, Wojciech

    2017-11-01

    We pay back more and more larger attention on solutions which saving energy produced from conventional fuels. This is possible to obtainment in significant quantities in fields in which use up the large quantities of energy. The formation the microclimate of interiors is an example of such situation. Especially in the case air conditioning, heating and mechanical ventilation. There is, however, a possibility of energy saving as well as considerable reducing the pollution coming from combustion of raw materials by utilising the natural renewable energy from the shallow ground. In the paper the results gained during several year of continuous measurement on the exchanger were presented. In summer periods an air cooling occurs 10-12 K, e. g. from +30 °C to +20 °C. In winter on the other hand, a preparatory preheating of the air is possible, e.g. from-18°C to about ± 0°C. It is then possible to obtain for the air conditioning system the total energy needed for cooling purposes at the summer periods, or up to 50% of the ventilation heat energy in winter picks.

  15. Development of Smart Ventilation Control Algorithms for Humidity Control in High-Performance Homes in Humid U.S. Climates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Less, Brennan; Walker, Iain; Ticci, Sara

    Past field research and simulation studies have shown that high performance homes experience elevated indoor humidity levels for substantial portions of the year in humid climates. This is largely the result of lower sensible cooling loads, which reduces the moisture removed by the cooling system. These elevated humidity levels lead to concerns about occupant comfort, health and building durability. Use of mechanical ventilation at rates specified in ASHRAE Standard 62.2-2013 are often cited as an additional contributor to humidity problems in these homes. Past research has explored solutions, including supplemental dehumidification, cooling system operational enhancements and ventilation system design (e.g.,more » ERV, supply, exhaust, etc.). This project’s goal is to develop and demonstrate (through simulations) smart ventilation strategies that can contribute to humidity control in high performance homes. These strategies must maintain IAQ via equivalence with ASHRAE Standard 62.2-2013. To be acceptable they must not result in excessive energy use. Smart controls will be compared with dehumidifier energy and moisture performance. This work explores the development and performance of smart algorithms for control of mechanical ventilation systems, with the objective of reducing high humidity in modern high performance residences. Simulations of DOE Zero-Energy Ready homes were performed using the REGCAP simulation tool. Control strategies were developed and tested using the Residential Integrated Ventilation (RIVEC) controller, which tracks pollutant exposure in real-time and controls ventilation to provide an equivalent exposure on an annual basis to homes meeting ASHRAE 62.2-2013. RIVEC is used to increase or decrease the real-time ventilation rate to reduce moisture transport into the home or increase moisture removal. This approach was implemented for no-, one- and two-sensor strategies, paired with a variety of control approaches in six humid climates (Miami, Orlando, Houston, Charleston, Memphis and Baltimore). The control options were compared to a baseline system that supplies outdoor air to a central forced air cooling (and heating) system (CFIS) that is often used in hot humid climates. Simulations were performed with CFIS ventilation systems operating on a 33% duty-cycle, consistent with 62.2-2013. The CFIS outside airflow rates were set to 0%, 50% and 100% of 62.2-2013 requirements to explore effects of ventilation rate on indoor high humidity. These simulations were performed with and without a dehumidifier in the model. Ten control algorithms were developed and tested. Analysis of outdoor humidity patterns facilitated smart control development. It was found that outdoor humidity varies most strongly seasonally—by month of the year—and that all locations follow the similar pattern of much higher humidity during summer. Daily and hourly variations in outdoor humidity were found to be progressively smaller than the monthly seasonal variation. Patterns in hourly humidity are driven by diurnal daily patterns, so they were predictable but small, and were unlikely to provide much control benefit. Variation in outdoor humidity between days was larger, but unpredictable, except by much more complex climate models. We determined that no-sensor strategies might be able to take advantage of seasonal patterns in humidity, but that real-time smart controls were required to capture variation between days. Sensor-based approaches are also required to respond dynamically to indoor conditions and variations not considered in our analysis. All smart controls face trade-offs between sensor accuracy, cost, complexity and robustness.« less

  16. Effect of temperature-humidity index on live performance in broiler chickens grown from 49 to 63 days of age

    USDA-ARS?s Scientific Manuscript database

    The thermal environment in poultry housing is a primary influence on production efficiency and live performance. Heavy broilers (body weight > 3.2 kg) typically require high ventilation rates to maintain thermal comfort and production efficiency. However, large birds are observed to pant in mild to ...

  17. Phase-change wallboard and mechanical night ventilation in commercial buildings: Potential for HVAC system downsizing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stetiu, C.; Feustel, H.E.

    1998-07-01

    As thermal storage media, phase-change materials (PCMs) such as paraffin, eutectic salts, etc. offer an order-of-magnitude increase in thermal storage capacity, and their discharge is almost isothermal. By embedding PCMs in dypsum board, plaster, or other wall-covering materials, the building structure acquires latent storage properties. Structural elements containing PCMs can store large amounts of energy while maintaining the indoor temperature within a relatively narrow range. As heat storage takes place inside the building where the loads occur, rather than at a central exterior location, the internal loads are removed without the need for additional transport energy. Distributed latent storage canmore » thus be used to reduce the peak power demand of a building, downsize the cooling system, and/or switch to low-energy cooling sources. The authors used RADCOOL, a thermal building simulation program based on the finite difference approach, to numerically evaluate the thermal performance of PCM wallboard coupled with mechanical night ventilation in office buildings offers the opportunity for system downsizing in climates where the outside air temperature drops below 18 C at night. In climates where the outside air temperature remains above 19 C at night, the use of PCM wallboard should be coupled with discharge mechanisms other than mechanical night ventilation with outside air.« less

  18. Forecasting jobs in the supply chain for investments in residential energy efficiency retrofits in Florida

    NASA Astrophysics Data System (ADS)

    Fobair, Richard C., II

    This research presents a model for forecasting the numbers of jobs created in the energy efficiency retrofit (EER) supply chain resulting from an investment in upgrading residential buildings in Florida. This investigation examined material supply chains stretching from mining to project installation for three product types: insulation, windows/doors, and heating, ventilating, and air conditioning (HVAC) systems. Outputs from the model are provided for the project, sales, manufacturing, and mining level. The model utilizes reverse-estimation to forecast the numbers of jobs that result from an investment. Reverse-estimation is a process that deconstructs a total investment into its constituent parts. In this research, an investment is deconstructed into profit, overhead, and hard costs for each level of the supply chain and over multiple iterations of inter-industry exchanges. The model processes an investment amount, the type of work and method of contracting into a prediction of the number of jobs created. The deconstruction process utilizes data from the U.S. Economic Census. At each supply chain level, the cost of labor is reconfigured into full-time equivalent (FTE) jobs (i.e. equivalent to 40 hours per week for 52 weeks) utilizing loaded labor rates and a typical employee mix. The model is sensitive to adjustable variables, such as percentage of work performed per type of product, allocation of worker time per skill level, annual hours for FTE calculations, wage rate, and benefits. This research provides several new insights into job creation. First, it provides definitions that can be used for future research on jobs in supply chains related to energy efficiency. Second, it provides a methodology for future investigators to calculate jobs in a supply chain resulting from an investment in energy efficiency upgrades to a building. The methodology used in this research is unique because it examines gross employment at the sub-industry level for specific commodities. Most research on employment examines the net employment change (job creation less job destruction) at levels for regions, industries, and the aggregate economy. Third, it provides a forecast of the numbers of jobs for an investment in energy efficiency over the entire supply chain for the selected industries and the job factors for major levels of the supply chain.

  19. Solar Energy Installers Curriculum Guides. Final Report.

    ERIC Educational Resources Information Center

    Walker, Gene C.

    A project was conducted to develop solar energy installers curriculum guides for use in high school vocational centers and community colleges. Project activities included researching job competencies for the heating, ventilation, and air conditioning industry and determining through interviews and manufacturers' literature what additional…

  20. Reducing airflow energy use in multiple zone vav systems

    NASA Astrophysics Data System (ADS)

    Tukur, Ahmed Gidado

    Variable Air Volume (VAV) systems are the most popular HVAC systems in commercial buildings. VAV systems are designed to deliver airflows at design conditions which only occur for a few hours in a year. Minimizing energy use in VAV systems requires reducing the amount of airflow delivered through the system at part load conditions. Air Handling Unit (AHU) fans are the major drivers of airflow in VAV systems and installing a Variable Frequency Drive (VFD) is the most common method of regulating airflow in VAV systems. A VFD drive does not necessarily save energy without use of an appropriate control strategy. Static pressure reset (SPR) is considered to be the most energy efficient control strategy for AHU fans with VFDs installed. The implementation of SPR however has many challenges; for example, rogue zones--zones which have faulty sensors or failed controls and actuators, system dynamics like hunting and system diversity. By investigating the parameters associated with the implementation of SPR in VAV systems, a new, improved, more stable SPR algorithm was developed and validated. This approach was further improved using Fault Detection and Diagnostics (FDD) to eliminate rogue zones. Additionally, a CO2-Demand Control Ventilation (DCV) based minimum airflow control was used to further reduce ventilation airflow and save more energy from SPR. Energy savings ranging from 25% to 51% were recorded in actual buildings with the new SPR algorithm. Finally, a methodology that utilizes historical VAV data was developed to estimate the potential savings that could be realized using SPR. The approach employed first determines an effective system loss coefficient as a function of mean damper position using the historical duct static pressure, VAV damper positions and airflows. Additionally, the historical data is used to identify the maximum mean duct damper position realizable as a result of insuring a sufficient number of VAVs are fully open at any time. Savings are estimated by shifting the damper distribution mean at each time to this maximum value and reducing the static pressure to achieve the same overall system airflow rate. The methodology was tested on three different buildings with varying system characteristics. Savings estimates correlated well to the savings actually realized from SPR. This result has significant implications for energy service providers, who could use the predictions to guarantee savings from SPR.

  1. Evaluating Humidity Recovery Efficiency of Currently Available Heat and Moisture Exchangers: A Respiratory System Model Study

    PubMed Central

    Lucato, Jeanette Janaina Jaber; Adams, Alexander Bernard; Souza, Rogério; Torquato, Jamili Anbar; Carvalho, Carlos Roberto Ribeiro; Marini, John J

    2009-01-01

    OBJECTIVES: To evaluate and compare the efficiency of humidification in available heat and moisture exchanger models under conditions of varying tidal volume, respiratory rate, and flow rate. INTRODUCTION: Inspired gases are routinely preconditioned by heat and moisture exchangers to provide a heat and water content similar to that provided normally by the nose and upper airways. The absolute humidity of air retrieved from and returned to the ventilated patient is an important measurable outcome of the heat and moisture exchangers’ humidifying performance. METHODS: Eight different heat and moisture exchangers were studied using a respiratory system analog. The system included a heated chamber (acrylic glass, maintained at 37°C), a preserved swine lung, a hygrometer, circuitry and a ventilator. Humidity and temperature levels were measured using eight distinct interposed heat and moisture exchangers given different tidal volumes, respiratory frequencies and flow-rate conditions. Recovery of absolute humidity (%RAH) was calculated for each setting. RESULTS: Increasing tidal volumes led to a reduction in %RAH for all heat and moisture exchangers while no significant effect was demonstrated in the context of varying respiratory rate or inspiratory flow. CONCLUSIONS: Our data indicate that heat and moisture exchangers are more efficient when used with low tidal volume ventilation. The roles of flow and respiratory rate were of lesser importance, suggesting that their adjustment has a less significant effect on the performance of heat and moisture exchangers. PMID:19578664

  2. A holistic approach for the assessment of the indoor environmental quality, student productivity, and energy consumption in primary schools.

    PubMed

    Dorizas, Paraskevi Vivian; Assimakopoulos, Margarita-Niki; Santamouris, Mattheos

    2015-05-01

    The perception of the indoor environmental quality (IEQ) through questionnaires in conjunction with in-field measurements related to the indoor air quality (IAQ), the thermal comfort and the lighting environment were studied in nine naturally ventilated schools of Athens, Greece. Cluster analysis was carried out in order to determine the ranges of indoor air pollutants, temperature (T), relative humidity (RH), and ventilation rates at which the students were satisfied with the indoor environment. It was found that increased levels of particulate matter did not have a negative effect on students' perception while students seemed to link the degradation of IAQ with temperature variations. Statistically significant correlations were further found between measurement results and students' perception of the IEQ. Students' sick building syndrome (SBS) symptoms and performance of schoolwork were also investigated as a function of the levels of indoor air pollutants and ventilation, and there were found significant positive correlations between particulate matter (PM) and certain health symptoms. Students' learning performance seemed to be affected by the ventilation rates and carbon dioxide (CO₂) concentrations while certain health effects positively correlated to the levels of PM and CO₂. The energy consumption of schools was rather low compared to other national findings, and both the electricity and oil consumption for heating positively correlated to the levels of indoor air pollutants.

  3. A thesis investigating the impact of energy related environmental factors on domestic window design

    NASA Astrophysics Data System (ADS)

    McEvoy, Michael Edward

    In recent years the extent of glazing in houses has been tightly controlled by the Building Regulations in order to save energy. In addition guidelines derived from passive solar principles prescribe the distribution of domestic windows between elevations according to their orientation. This thesis studies the impact of these energy-related environmental factors on domestic window design. The first of these investigations determined the degree to which limitations on the area and arrangement of windows are significant in terms of daylighting. The experiments measured the effect that passive solar requirements and detailed aspects of window design have on the quality of daylighting in houses. The volume of background ventilation required for domestic accommodation has recently been increased. As a result, in a well-sealed construction, heat loss due to background ventilation becomes a larger part of the total heat loss and larger air movements become a potential cause of draughts. The ventilation experiment sought to establish the impact of these more onerous requirements on comfort within rooms. The third experiment combines these factors and asks the question: Could windows be actively involved in overcoming some of these difficulties by being used to preheat ventilation air in order to diminish the extent of heat loss and to alleviate the problem of cold draughts? Also by designing the window to reclaim heat from the room might it be possible to offset the window's thermal inadequacy? Through analysis of responses to a questionnaire and the use of optimisation techniques, scenarios were suggested for the future modification of windows in relation to energy and health expectations. The conclusions form a commentary on recent and future revisions to the Building Regulations and determine whether or not the Regulations facilitate the environmental engineering of windows as an active component of a building's whole environmental system.

  4. Reducing patients' exposures to asthma and allergy triggers in their homes: an evaluation of effectiveness of grades of forced air ventilation filters.

    PubMed

    Brown, Kathleen Ward; Minegishi, Taeko; Allen, Joseph G; McCarthy, John F; Spengler, John D; MacIntosh, David L

    2014-08-01

    Many interventions to reduce allergen levels in the home are recommended to asthma and allergy patients. One that is readily available and can be highly effective is the use of high performing filters in forced air ventilation systems. We conducted a modeling analysis of the effectiveness of filter-based interventions in the home to reduce airborne asthma and allergy triggers. This work used "each pass removal efficiency" applied to health-relevant size fractions of particles to assess filter performance. We assessed effectiveness for key allergy and asthma triggers based on applicable particle sizes for cat allergen, indoor and outdoor sources of particles <2.5 µm in diameter (PM2.5), and airborne influenza and rhinovirus. Our analysis finds that higher performing filters can have significant impacts on indoor particle pollutant levels. Filters with removal efficiencies of >70% for cat dander particles, fine particulate matter (PM2.5) and respiratory virus can lower concentrations of those asthma triggers and allergens in indoor air of the home by >50%. Very high removal efficiency filters, such as those rated a 16 on the nationally recognized Minimum Efficiency Removal Value (MERV) rating system, tend to be only marginally more effective than MERV12 or 13 rated filters. The results of this analysis indicate that use of a MERV12 or higher performing air filter in home ventilation systems can effectively reduce indoor levels of these common asthma and allergy triggers. These reductions in airborne allergens in turn may help reduce allergy and asthma symptoms, especially if employed in conjunction with other environmental management measures recommended for allergy and asthma patients.

  5. Summer Thermal Performance of Ventilated Roofs with Tiled Coverings

    NASA Astrophysics Data System (ADS)

    Bortoloni, M.; Bottarelli, M.; Piva, S.

    2017-01-01

    The thermal performance of a ventilated pitched roof with tiled coverings is analysed and compared with unventilated roofs. The analysis is carried out by means of a finite element numerical code, by solving both the fluid and thermal problems in steady-state. A whole one-floor building with a pitched roof is schematized as a 2D computational domain including the air-permeability of tiled covering. Realistic data sets for wind, temperature and solar radiation are used to simulate summer conditions at different times of the day. The results demonstrate that the batten space in pitched roofs is an effective solution for reducing the solar heat gain in summer and thus for achieving better indoor comfort conditions. The efficiency of the ventilation is strictly linked to the external wind conditions and to buoyancy forces occurring due to the heating of the tiles.

  6. How To Attack Rising Energy Costs.

    ERIC Educational Resources Information Center

    Fickes, Michael

    2001-01-01

    Presents manufacturer and engineer suggestions on how schools can solve their rising energy costs in the face of more demanding classroom needs placing greater demands of Heating and air conditioning ventilation systems. The use of CO2 sensors, boiler technology and two-pipe systems are explored. (GR)

  7. 30 CFR 75.333 - Ventilation controls.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Radiant Heat Energy Source.” This publication is incorporated by reference and may be inspected at any... partitions, permanent stoppings, and regulators include concrete, concrete block, brick, cinder block, tile..., “Standard Test Method for Surface Flammability of Materials Using A Radiant Heat Energy Source.” This...

  8. 30 CFR 75.333 - Ventilation controls.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Radiant Heat Energy Source.” This publication is incorporated by reference and may be inspected at any... partitions, permanent stoppings, and regulators include concrete, concrete block, brick, cinder block, tile..., “Standard Test Method for Surface Flammability of Materials Using A Radiant Heat Energy Source.” This...

  9. Aerodynamics of Ventilation in Termite Mounds

    NASA Astrophysics Data System (ADS)

    Bailoor, Shantanu; Yaghoobian, Neda; Turner, Scott; Mittal, Rajat

    2017-11-01

    Fungus-cultivating termites collectively build massive, complex mounds which are much larger than the size of an individual termite and effectively use natural wind and solar energy, as well as the energy generated by the colony's own metabolic activity to maintain the necessary environmental condition for the colony's survival. We seek to understand the aerodynamics of ventilation and thermoregulation of termite mounds through computational modeling. A simplified model accounting for key mound features, such as soil porosity and internal conduit network, is subjected to external draft conditions. The role of surface flow conditions in the generation of internal flow patterns and the ability of the mound to transport gases and heat from the nursery are examined. The understanding gained from our study could be used to guide sustainable bio-inspired passive HVAC system design, which could help optimize energy utilization in commercial and residential buildings. This research is supported by a seed Grant from the Environment, Energy Sustainability and Health Institute of the Johns Hopkins University.

  10. Prognostic value of efficiently correcting nocturnal desaturations after one month of non-invasive ventilation in amyotrophic lateral sclerosis: a retrospective monocentre observational cohort study.

    PubMed

    Gonzalez-Bermejo, Jésus; Morelot-Panzini, Capucine; Arnol, Nathalie; Meininger, Vincent; Kraoua, Salah; Salachas, François; Similowski, Thomas

    2013-09-01

    Abstract NIV adherence ('quantity' of ventilation) has a prognostic impact in amyotrophic lateral sclerosis (ALS). We hypothesized that NIV effectiveness ('quality') could also have a similar impact. NIV effectiveness was evaluated in 82 patients within the first month (M1) and every three months (symptoms, arterial blood bases, and nocturnal pulsed oxygen saturation - SpO2). Kaplan-Meier survival and risk factors for mortality one year after NIV initiation were evaluated. Forty patients were considered 'correctly ventilated' at M1 (Group 1, less than 5% of nocturnal oximetry time with an SpO2<90% - TS90) while 42 were not (Group 2). Both groups were comparable in terms of respiratory and neurological baseline characteristics. Survival was better in Group 1 (75% survival at 12 months) than in Group 2 (43% survival at 12 months, p = 0.002). In 12 Group 2 patients corrective measures were efficient in correcting TS90 at six months. In this subgroup, one-year mortality was not different from that in Group 1. Multivariate analysis identified independent mortality risk factors expectedly including bulbar involvement (HR = 4.31 (1.73 - 10.76), p = 0.002), 'rapid respiratory decline' (HR = 3.55 (1.29 - 9.75), p = 0.014) and vital capacity (HR = 0.97 (0.95 - 0.99), p = 0.010), but also inadequate ventilation in the first month (HR = 2.32 (1.09 - 4.94), p = 0.029). In conclusion, in ALS patients NIV effectiveness to correct nocturnal desaturations is an independent prognostic factor.

  11. Diaphragm pacing after bilateral implantation of intradiaphragmatic phrenic stimulation electrodes through a transmediastinal endoscopic minimally invasive approach: pilot animal data.

    PubMed

    Assouad, Jalal; Masmoudi, Hicham; Gonzalez-Bermejo, Jesus; Morélot-Panzini, Capucine; Diop, Moustapha; Grunenwald, Dominique; Similowski, Thomas

    2012-08-01

    Phrenic nerve stimulation for diaphragm pacing allows patients with central respiratory paralysis to be weaned from mechanical ventilation. Two procedures are available, either intrathoracic (bilateral thoracotomy) or intradiaphragmatic (four ports laparoscopy). The present experimental work assesses the feasibility, safety and efficacy of a trans-mediastinal implantation of intradiaphragmatic phenic nerve stimulation electrodes using a flexible gastroscope through a cervical incision. We operated on nine ewes. After selective bronchial intubation, we dissected the latero-tracheal space and opened both mediastinal pleura. We then introduced a flexible gastroscope into the pleural cavities, in a sequential manner. The phrenic nerves were located and followed up to the diaphragm dome. Electrodes loaded within a long, pliable needle were introduced through the adjacent intercostal space and implanted in each hemidiaphragm, at a 'tendinous' location (as close as possible to the entry of the nerve in the central tendon), and at a more lateral 'muscular' location. Postoperatively, the animals were ventilated using bilateral phrenic nerve stimulation. After euthanasia, abdominal verification of the electrodes position was performed through a laparotomy. The mediastinal and pleural parts of the procedure were uneventful. The insertion of electrodes was associated with transdiaphragmatic puncture and small abdominal haematomas in the first two animals studied. After a slight modification of the insertion technique, this was not observed anymore. Phrenic nerve stimulation produced efficient ventilation, with tidal volumes significantly higher when delivered at the tendinous site than at the muscular site. The trans-mediastinal implantation of intradiaphragmatic phrenic nerve stimulation electrodes is feasible, appears reasonably safe, and allows efficient ventilation.

  12. Russia’s R&D for Low Energy Buildings: Insights for Cooperation with Russia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schaaf, Rebecca E.; Evans, Meredydd

    Russian buildings, Russian buildings sector energy consumption. Russian government has made R&D investment a priority again. The government and private sector both invest in a range of building energy technologies. In particular, heating, ventilation and air conditioning, district heating, building envelope, and lighting have active technology research projects and programs in Russia.

  13. Design Concepts for Optimum Energy Use in HVAC Systems.

    ERIC Educational Resources Information Center

    Electric Energy Association, New York, NY.

    Much of the innovative work in the design and application of heating, ventilating, and air conditioning (HVAC) systems is concentrated on improving the cost effectiveness of such systems through optimizing energy use. One approach to the problem is to reduce a building's HVAC energy demands by designing it for lower heat gains and losses in the…

  14. Aquifer thermal energy storage. International symposium: Proceedings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-05-01

    Aquifers have been used to store large quantities of thermal energy to supply process cooling, space cooling, space heating, and ventilation air preheating, and can be used with or without heat pumps. Aquifers are used as energy sinks and sources when supply and demand for energy do not coincide. Aquifer thermal energy storage may be used on a short-term or long-term basis; as the sole source of energy or as a partial storage; at a temperature useful for direct application or needing upgrade. The sources of energy used for aquifer storage are ambient air, usually cold winter air; waste ormore » by-product energy; and renewable energy such as solar. The present technical, financial and environmental status of ATES is promising. Numerous projects are operating and under development in several countries. These projects are listed and results from Canada and elsewhere are used to illustrate the present status of ATES. Technical obstacles have been addressed and have largely been overcome. Cold storage in aquifers can be seen as a standard design option in the near future as it presently is in some countries. The cost-effectiveness of aquifer thermal energy storage is based on the capital cost avoidance of conventional chilling equipment and energy savings. ATES is one of many developments in energy efficient building technology and its success depends on relating it to important building market and environmental trends. This paper attempts to provide guidance for the future implementation of ATES. Individual projects have been processed separately for entry onto the Department of Energy databases.« less

  15. Systems and methods for controlling energy use in a building management system using energy budgets

    DOEpatents

    Wenzel, Michael J; Drees, Kirk H

    2014-09-23

    Systems and methods for limiting power consumption by a heating, ventilation, and air conditioning (HVAC) subsystem of a building are shown and described. A feedback controller is used to generate a manipulated variable based on an energy use setpoint and a measured energy use. The manipulated variable may be used for adjusting the operation of an HVAC device.

  16. The long-term performance of electrically charged filters in a ventilation system.

    PubMed

    Raynor, Peter C; Chae, Soo Jae

    2004-07-01

    The efficiency and pressure drop of filters made from polyolefin fibers carrying electrical charges were compared with efficiency and pressure drop for filters made from uncharged glass fibers to determine if the efficiency of the charged filters changed with use. Thirty glass fiber filters and 30 polyolefin fiber filters were placed in different, but nearly identical, air-handling units that supplied outside air to a large building. Using two kinds of real-time aerosol counting and sizing instruments, the efficiency of both sets of filters was measured repeatedly for more than 19 weeks while the air-handling units operated almost continuously. Pressure drop was recorded by the ventilation system's computer control. Measurements showed that the efficiency of the glass fiber filters remained almost constant with time. However, the charged polyolefin fiber filters exhibited large efficiency reductions with time before the efficiency began to increase again toward the end of the test. For particles 0.6 microm in diameter, the efficiency of the polyolefin fiber filters declined from 85% to 45% after 11 weeks before recovering to 65% at the end of the test. The pressure drops of the glass fiber filters increased by about 0.40 in. H2O, whereas the pressure drop of the polyolefin fiber filters increased by only 0.28 in. H2O. The results indicate that dust loading reduces the effectiveness of electrical charges on filter fibers. Copyright 2004 JOEH, LLC

  17. Modeled Effectiveness of Ventilation with Contaminant Control Devices on Indoor Air Quality in a Swine Farrowing Facility

    PubMed Central

    Anthony, T. Renée; Altmaier, Ralph; Park, Jae Hong; Peters, Thomas M.

    2016-01-01

    Because adverse health effects experienced by swine farm workers in concentrated animal feeding operations (CAFOs) have been associated with exposure to dust and gases, efforts to reduce exposures are warranted, particularly in winter seasons when exposures increase due to decreased ventilation. Simulation of air quality and operating costs for ventilating swine CAFO, including treating and recirculating air through a farrowing room, was performed using mass and energy balance equations over a 90-day winter season. System operation required controlling heater operation to achieve room temperatures optimal to ensure animal health (20 to 22.5°C). Five air pollution control devices, four room ventilation rates, and five recirculation patterns were examined. Inhalable dust concentrations were easily reduced using standard industrial air pollution control devices, including a cyclone, filtration, and electrostatic precipitator. Operating ventilation systems at 0.94 m3 s−1 (2000 cfm) with 75 to 100% recirculation of treated air from cyclone, electrostatic precipitator, and shaker dust filtration system achieves adequate particle control with operating costs under $1.00 per pig produced ($0.22 to 0.54), although carbon dioxide (CO2) concentrations approach 2000 ppm using in-room ventilated gas fired heaters. In no simulation were CO2 concentrations below industry recommended concentrations (1540 ppm), but alternative heating devices could reduce CO2 to acceptable concentrations. While this investigation does not represent all production swine farrowing barns, which differ in characteristics including room dimensions and swine occupancy, the simulation model and ventilation optimization methods can be applied to other production sites. This work shows that ventilation may be a cost-effective control option in the swine industry to reduce exposures. PMID:24433305

  18. Modeled effectiveness of ventilation with contaminant control devices on indoor air quality in a swine farrowing facility.

    PubMed

    Anthony, T Renée; Altmaier, Ralph; Park, Jae Hong; Peters, Thomas M

    2014-01-01

    Because adverse health effects experienced by swine farm workers in concentrated animal feeding operations (CAFOs) have been associated with exposure to dust and gases, efforts to reduce exposures are warranted, particularly in winter seasons when exposures increase due to decreased ventilation. Simulation of air quality and operating costs for ventilating swine CAFO, including treating and recirculating air through a farrowing room, was performed using mass and energy balance equations over a 90-day winter season. System operation required controlling heater operation to achieve room temperatures optimal to ensure animal health (20 to 22.5 °C). Five air pollution control devices, four room ventilation rates, and five recirculation patterns were examined. Inhalable dust concentrations were easily reduced using standard industrial air pollution control devices, including a cyclone, filtration, and electrostatic precipitator. Operating ventilation systems at 0.94 m3 s(-1) (2000 cfm) with 75 to 100% recirculation of treated air from cyclone, electrostatic precipitator, and shaker dust filtration system achieves adequate particle control with operating costs under $1.00 per pig produced ($0.22 to 0.54), although carbon dioxide (CO2) concentrations approach 2000 ppm using in-room ventilated gas fired heaters. In no simulation were CO2 concentrations below industry recommended concentrations (1540 ppm), but alternative heating devices could reduce CO2 to acceptable concentrations. While this investigation does not represent all production swine farrowing barns, which differ in characteristics including room dimensions and swine occupancy, the simulation model and ventilation optimization methods can be applied to other production sites. This work shows that ventilation may be a cost-effective control option in the swine industry to reduce exposures.

  19. Campbell Creek Research Homes: FY2013 Annual Performance Report OCT.1, 2012 SEP. 30, 2013

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackson, Roderick K; Boudreaux, Philip R; Munk, Jeffrey D

    1.INTRODUCTION AND PROJECT OVERVIEW The Campbell Creek project is funded and managed by the Tennessee Valley Authority (TVA) Technology Innovation, Energy Efficiency, Power Delivery and Utilization Office. Technical support is provided under contract by the Oak Ridge National Laboratory (ORNL) and the Electric Power Research Institute (EPRI). The project was designed to determine the relative energy efficiency of typical new home construction, of retrofitting of existing homes, and of high-performance new homes built from the ground up for energy efficiency. This project was designed to compare three houses that represent current construction practices: a base case (Builder House CC1); amore » modified house that could represent a major energy-efficient retrofit (Retrofit House CC2); and a house constructed from the ground up to be a high-performance home (High Performance House CC3). To enable a valid comparison, it was necessary to simulate occupancy in all three houses and extensively monitor the structural components and the energy usage by component. In October 2013, the base case was also modified by replacing the builder-grade heating, ventilation, and air-conditioning (HVAC) system with a high-efficiency variable-speed unit. All three houses are two-story, slab-on-grade, framed construction. CC1 and CC2 are approximately 2,400 ft2. CC3 has a pantry option, used primarily as a mechanical equipment room, that adds approximately 100 ft2. All three houses are all-electric (with the exception of a gas log fireplace that is not used during the testing) and use air-source heat pumps for heating and cooling. The three homes are located in Knoxville in the Campbell Creek Subdivision. CC1 and CC2 are next door to each other with a south-facing orientation; CC3 has a north-facing orientation and is located across the street and a couple of houses down. The energy data collected will be used to determine the benefits of retrofit packages and high-performance new home packages. There are more than 300 channels of continuous energy performance and thermal comfort data collection in the houses (100 for each house). The data will be used to evaluate the impact of energy-efficiency upgrades on the envelope, mechanical equipment, and demand-response options. Each retrofit will be evaluated incrementally, by both short-term measurements and computer modeling, using a calibrated model. This report is intended to document the comprehensive testing, data analysis, research, and findings within the October 2012 through September 2013 (FY 2013) timeframe at the Campbell Creek research houses. The following sections will provide an in-depth assessment of the technology progression in each of the three research houses. A detailed assessment and evaluation of the energy performance of technologies tested will also be provided. Finally, lessons learned and concluding remarks will be highlighted.« less

  20. Determining the ventilation and aerosol deposition rates from routine indoor-air measurements.

    PubMed

    Halios, Christos H; Helmis, Costas G; Deligianni, Katerina; Vratolis, Sterios; Eleftheriadis, Konstantinos

    2014-01-01

    Measurement of air exchange rate provides critical information in energy and indoor-air quality studies. Continuous measurement of ventilation rates is a rather costly exercise and requires specific instrumentation. In this work, an alternative methodology is proposed and tested, where the air exchange rate is calculated by utilizing indoor and outdoor routine measurements of a common pollutant such as SO2, whereas the uncertainties induced in the calculations are analytically determined. The application of this methodology is demonstrated, for three residential microenvironments in Athens, Greece, and the results are also compared against ventilation rates calculated from differential pressure measurements. The calculated time resolved ventilation rates were applied to the mass balance equation to estimate the particle loss rate which was found to agree with literature values at an average of 0.50 h(-1). The proposed method was further evaluated by applying a mass balance numerical model for the calculation of the indoor aerosol number concentrations, using the previously calculated ventilation rate, the outdoor measured number concentrations and the particle loss rates as input values. The model results for the indoors' concentrations were found to be compared well with the experimentally measured values.

Top