Yoshida, Hiroyuki
2014-04-01
Electron affinity is a fundamental energy parameter of materials. In organic semiconductors, the electron affinity is closely related to electron conduction. It is not only important to understand fundamental electronic processes in organic solids, but it is also indispensable for research and development of organic semiconductor devices such as organic light-emitting diodes and organic photovoltaic cells. However, there has been no experimental technique for examining the electron affinity of organic materials that meets the requirements of such research. Recently, a new method, called low-energy inverse-photoemission spectroscopy, has been developed. A beam of low-energy electrons is focused onto the sample surface, and photons emitted owing to the radiative transition to unoccupied states are then detected. From the onset of the spectral intensity, the electron affinity is determined within an uncertainty of 0.1 eV. Unlike in conventional inverse-photoemission spectroscopy, sample damage is negligible and the resolution is improved by a factor of 2. The principle of the method and several applications are reported.
Electron affinities (EAs) and free energies for electron attachment have been calculated for 42 polynuclear aromatic hydrocarbons and related molecules by a variety of theoretical models, including Koopmans' theorem methods and the L1E method from differences in energy between th...
NASA Astrophysics Data System (ADS)
Miao, Mao-Sheng; Yarbro, Sam; Barton, Phillip T.; Seshadri, Ram
2014-01-01
Using density functional theory with a hybrid functional, we calculate the ionization energies and electron affinities of a series of delafossite compounds (AMO2: A =Cu, Ag; M =B, Al, Ga, In, Sc). The alignments of the valence band maximum and the conduction band minimum, which directly relate to the ionization energies and electron affinities, were obtained by calculations of supercell slab models constructed in a nonpolar orientation. Our calculations reveal that the ionization energy decreases with an increasing atomic number of group-III elements, and thus suggest an improved p-type doping propensity for heavier compounds. For keeping both a low ionization energy and a band gap of sufficient size, CuScO2 is superior to the Cu-based group-III delafossites. By analyzing the electronic structures, we demonstrate that the compositional trend of the ionization energies and electron affinities is the result of a combined effect of d-band broadening due to Cu(Ag)-Cu(Ag) coupling and a repositioning of the d-band center.
Density Functional Study of Structures and Electron Affinities of BrO4F/BrO4F−
Gong, Liangfa; Xiong, Jieming; Wu, Xinmin; Qi, Chuansong; Li, Wei; Guo, Wenli
2009-01-01
The structures, electron affinities and bond dissociation energies of BrO4F/BrO4F− species have been investigated with five density functional theory (DFT) methods with DZP++ basis sets. The planar F-Br…O2…O2 complexes possess 3A′ electronic state for neutral molecule and 4A′ state for the corresponding anion. Three types of the neutral-anion energy separations are the adiabatic electron affinity (EAad), the vertical electron affinity (EAvert), and the vertical detachment energy (VDE). The EAad value predicted by B3LYP method is 4.52 eV. The bond dissociation energies De (BrO4F → BrO4-mF + Om) (m = 1–4) and De− (BrO4F− → BrO4-mF− + Om and BrO4F− → BrO4-mF + Om−) are predicted. The adiabatic electron affinities (EAad) were predicted to be 4.52 eV for F-Br…O2…O2 (3A′←4A′) (B3LYP method). PMID:19742128
NASA Astrophysics Data System (ADS)
Miller, Amy E. S.; Feigerle, C. S.; Lineberger, W. C.
1986-04-01
The laser photoelectron spectra of MnH-2, FeH-2, CoH-2, and NiH-2 and the analogous deuterides are reported. Lack of vibrational structure in the spectra suggests that all of the dihydrides and their negative ions have linear geometries, and that the transitions observed in the spectra are due to the loss of nonbonding d electrons. The electron affinities for the metal dihydrides are determined to be 0.444±0.016 eV for MnH2, 1.049±0.014 eV for FeH2, 1.450±0.014 eV for CoH2, and 1.934±0.008 eV for NiH2. Electronic excitation energies are provided for excited states of FeH2, CoH2, and NiH2. Electron affinities and electronic excitation energies for the dideuterides are also reported. A limit on the electron affinity of CrH2 of ≥2.5 eV is determined. The electron affinities of the dihydrides directly correlate with the electron affinities of the high-spin states of the monohydrides, and with the electron affinities of the metal atoms. These results are in agreement with a qualitative model developed for bonding in the monohydrides.
NASA Technical Reports Server (NTRS)
Asnin, V. M.; Krainsky, I. L.
1998-01-01
A fine structure was discovered in the low-energy peak of the secondary electron emission spectra of the diamond surface with negative electron affinity. We studied this structure for the (100) surface of the natural type-IIb diamond crystal. We have found that the low-energy peak consists of a total of four maxima. The relative energy positions of three of them could be related to the electron energy minima near the bottom of the conduction band. The fourth peak, having the lowest energy, was attributed to the breakup of the bulk exciton at the surface during the process of secondary electron emission.
Borgoo, Alex; Teale, Andrew M; Tozer, David J
2012-01-21
Correlated electron densities, experimental ionisation potentials, and experimental electron affinities are used to investigate the homogeneity of the exchange-correlation and non-interacting kinetic energy functionals of Kohn-Sham density functional theory under density scaling. Results are presented for atoms and small molecules, paying attention to the influence of the integer discontinuity and the choice of the electron affinity. For the exchange-correlation functional, effective homogeneities are highly system-dependent on either side of the integer discontinuity. By contrast, the average homogeneity-associated with the potential that averages over the discontinuity-is generally close to 4/3 when the discontinuity is computed using positive affinities for systems that do bind an excess electron and negative affinities for those that do not. The proximity to 4/3 becomes increasingly pronounced with increasing atomic number. Evaluating the discontinuity using a zero affinity in systems that do not bind an excess electron instead leads to effective homogeneities on the electron abundant side that are close to 4/3. For the non-interacting kinetic energy functional, the effective homogeneities are less system-dependent and the effect of the integer discontinuity is less pronounced. Average values are uniformly below 5/3. The study provides information that may aid the development of improved exchange-correlation and non-interacting kinetic energy functionals. © 2012 American Institute of Physics
NASA Astrophysics Data System (ADS)
Hollett, Joshua W.; Pegoretti, Nicholas
2018-04-01
Separate, one-parameter, on-top density functionals are derived for the short-range dynamic correlation between opposite and parallel-spin electrons, in which the electron-electron cusp is represented by an exponential function. The combination of both functionals is referred to as the Opposite-spin exponential-cusp and Fermi-hole correction (OF) functional. The two parameters of the OF functional are set by fitting the ionization energies and electron affinities, of the atoms He to Ar, predicted by ROHF in combination with the OF functional to the experimental values. For ionization energies, the overall performance of ROHF-OF is better than completely renormalized coupled-cluster [CR-CC(2,3)] and better than, or as good as, conventional density functional methods. For electron affinities, the overall performance of ROHF-OF is less impressive. However, for both ionization energies and electron affinities of third row atoms, the mean absolute error of ROHF-OF is only 3 kJ mol-1.
On the electron affinity of cytosine in bulk water and at hydrophobic aqueous interfaces.
Vöhringer-Martinez, Esteban; Dörner, Ciro; Abel, Bernd
2014-10-01
In the past one possible mechanism of DNA damage in bulk water has been attributed to the presence of hydrated electrons in water. Recently, one important property of hydrated electrons, namely their binding energy, was reported to be smaller at hydrophobic interfaces than in bulk aqueous solution. This possibly opens up new reaction possibilities with different solutes such as the DNA at hydrophobic, aqueous interfaces. Here, we use QM/MM molecular dynamics simulation to study how the molecular environment at the vacuum-water interface and in the bulk alters the electron affinity of cytosine being a characteristic part of the DNA. The electron affinity at the interface is closer to the corresponding binding energy of the partially hydrated electron. The increased energy resonance makes the electron capture process more probable and suggests that hydrated electrons at hydrophobic interfaces may be more reactive than the fully hydrated ones. Additionally, we found that the relaxation of the anionic form after electron attachment also induces a proton transfer from the surrounding solvent that was confirmed by comparison with the experimental reduction potential.
Independent-particle models for light negative atomic ions
NASA Technical Reports Server (NTRS)
Ganas, P. S.; Talman, J. D.; Green, A. E. S.
1980-01-01
For the purposes of astrophysical, aeronomical, and laboratory application, a precise independent-particle model for electrons in negative atomic ions of the second and third period is discussed. The optimum-potential model (OPM) of Talman et al. (1979) is first used to generate numerical potentials for eight of these ions. Results for total energies and electron affinities are found to be very close to Hartree-Fock solutions. However, the OPM and HF electron affinities both depart significantly from experimental affinities. For this reason, two analytic potentials are developed whose inner energy levels are very close to the OPM and HF levels but whose last electron eigenvalues are adjusted precisely with the magnitudes of experimental affinities. These models are: (1) a four-parameter analytic characterization of the OPM potential and (2) a two-parameter potential model of the Green, Sellin, Zachor type. The system O(-) or e-O, which is important in upper atmospheric physics is examined in some detail.
NASA Astrophysics Data System (ADS)
Yanagisawa, Susumu
2017-11-01
Ionization potential and electron affinity of organic semicondutors are important quantities, which are relevant to charge injection barriers. The electrostatic and dynamical contributions to the polarization energies for the injected charges in pentacene polymorphs were investigated. While the dynamical polarization induced narrowing of the energy gap, the electrostatic effect shifted up or down the frontier energy levels, which is sensitive to the molecular orientation at the surface.
Electron affinities of the alkali dimers - Na2, K2, and Rb2
NASA Technical Reports Server (NTRS)
Partridge, H.; Dixon, D. A.; Walch, S. P.; Bauschlicher, C. W., Jr.; Gole, J. L.
1983-01-01
Ab initio calculations on the ground states of the alkali dimers, Na2, K2, and Rb2, and their anions are reported. The calculations employ large Gaussian basis sets and account for nearly all of the valence correlation energy. The calculated atomic electron affinities are within 0.02 eV of experiment and the calculated adiabatic electron affinities for Na2, K2, and Rb2 are, respectively, 0.470, 0.512, and 0.513 eV.
Revision of the experimental electron affinity of BO
NASA Astrophysics Data System (ADS)
Rienstra, Jonathan C.; Schaefer, Henry F., III
1997-05-01
The experimental electron affinity of BO has proven questionable. We obtained the electron affinity of BO using the large aug-cc-pVQZ basis with SCF, CISD, CISD+Q, CCSD, and CCSD(T) methods and predict a value of 2.57 eV, or 0.55 eV smaller than the latest experimental value. The 2∑+ to 2Π excitation energy of BO has also been obtained with the CCSD(T) method and found to be 2.82 eV.
Excited state electron affinity calculations for aluminum
NASA Astrophysics Data System (ADS)
Hussein, Adnan Yousif
2017-08-01
Excited states of negative aluminum ion are reviewed, and calculations of electron affinities of the states (3s^23p^2)^1D and (3s3p^3){^5}{S}° relative to the (3s^23p)^2P° and (3s3p^2)^4P respectively of the neutral aluminum atom are reported in the framework of nonrelativistic configuration interaction (CI) method. A priori selected CI (SCI) with truncation energy error (Bunge in J Chem Phys 125:014107, 2006) and CI by parts (Bunge and Carbó-Dorca in J Chem Phys 125:014108, 2006) are used to approximate the valence nonrelativistic energy. Systematic studies of convergence of electron affinity with respect to the CI excitation level are reported. The calculated value of the electron affinity for ^1D state is 78.675(3) meV. Detailed Calculations on the ^5S°c state reveals that is 1216.8166(3) meV below the ^4P state.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lacmann, K.; Maneira, M.J.P.; Moutinho, A.M.C.
The reaction K+ACl/sub 4/..-->..K/sup +/+(A-Cl/sub 4/)/sup -/* with A = Sn and C was examined as a function of the collision energy from threshold up to about 40 eV in the c.m. system. Total cross sections of the mass-selected negative ions and doubly differential cross sections (energy and angle) of the K/sup +/ ions have been determined. Electron affinities, bond energies, and electronic excitation were calculated from the appearance potentials. In addition, the total cross sections for SnCl/sub 4/ were measured and are contrasted with the earlier results of CCl/sub 4/ from Dispert and Lacmann. Although both parent molecules havemore » the same electron affinity within their error limits (2.2 eV for SnCl/sub 4/ and 2.0 eV for CCl/sub 4/) and the same dissociation energy for the negative ions of 1.4 +- 0.2 eV, the product ion yields differ drastically. The main negative ion yield in K+SnCl/sub 4/ results from SnCl/sup -//sub 4/ formation (over 80%). Its lowest dissociation channel leads to SnCl/sup -//sub 3/ formation, while Cl/sup -/ ions are the main ions produced (90%) from CCl/sub 4/, with only 7% leading to CCl/sup -//sub 3/+Cl formation at higher energies. These results support orbital energy considerations of electron addition to SnCl/sub 4/ and CCl/sub 4/ as applied to the results of reactive collisions of these molecules. The electron affinity and an electronically excited state of SnCl/sub 3/ have been also determined. Morse potentials of CCl/sup -//sub 4/ and SnCl/sup -//sub 4/ were fitted to the experimental results of energy loss measurements from this work. The vertical electron affinities thus derived are 1.15 eV for SnCl/sub 4/ and -1.0 eV for CCl/sub 4/.« less
Cao, Ying; Zhang, Song-Chen; Zhang, Min; Shen, Guang-Bin; Zhu, Xiao-Qing
2013-07-19
A series of 69 polar olefins with various typical structures (X) were synthesized and the thermodynamic affinities (defined in terms of the molar enthalpy changes or the standard redox potentials in this work) of the polar olefins obtaining hydride anions, hydrogen atoms, and electrons, the thermodynamic affinities of the radical anions of the polar olefins (X(•-)) obtaining protons and hydrogen atoms, and the thermodynamic affinities of the hydrogen adducts of the polar olefins (XH(•)) obtaining electrons in acetonitrile were determined using titration calorimetry and electrochemical methods. The pure C═C π-bond heterolytic and homolytic dissociation energies of the polar olefins (X) in acetonitrile and the pure C═C π-bond homolytic dissociation energies of the radical anions of the polar olefins (X(•-)) in acetonitrile were estimated. The remote substituent effects on the six thermodynamic affinities of the polar olefins and their related reaction intermediates were examined using the Hammett linear free-energy relationships; the results show that the Hammett linear free-energy relationships all hold in the six chemical and electrochemical processes. The information disclosed in this work could not only supply a gap of the chemical thermodynamics of olefins as one class of very important organic unsaturated compounds but also strongly promote the fast development of the chemistry and applications of olefins.
NASA Astrophysics Data System (ADS)
Li, Qian-Shu; Zhao, Jun-Fang; Xie, Yaoming; Schaefer, Henry F., III
Four independent density functional theory (DFT) methods have been employed to study the structures and electron affinities of the methyl and F-, Cl- and Br-substituted methyl radicals and their anions. The methods used have been carefully calibrated against a comprehensive tabulation of experimental electron affinities (Chemical Reviews, 2002, 102, 231). The first dissociation energies together with the vibrational frequencies of these species are also reported. The basis sets used in this work are of double- ζ plus polarization quality with additional s- and p-type diffuse functions, labelled as DZP++. Previously observed trends in the prediction of bond lengths by the DFT methods are also demonstrated for the F-, Cl- and Br-substituted methyl radicals and their anions. Generally, the Hartree-Fock/DFT hybrid methods predict shorter and more reliable bond lengths than the pure DFT methods. Neutral-anion energy differences reported in this work are the adiabatic electron affinity (EAad), the vertical electron affinity (EAvert), and the vertical detachment energy (VDE). Compared with the available experimental electron affinities, the BHLYP method predicts much lower values, while the other methods predict values (EAad, EAvert, VDE) close to each other and almost within the experimental range. For those systems without reliable experimental measurements, our best adiabatic EAs predicted by BLYP are 0.78 (CHF2), 1.23 (CHFCl), 1.44 (CHFBr), 1.61 (CHClBr), 2.24 (CF2Cl), 2.42 (CF2Br), 2.56 (CFBr2), 2.36 (CCl2Br), 2.46 (CClBr2), and 2.44 eV (CFClBr). The most striking feature of these predictions is that they display an inverse relationship between halogen electronegativity and EA. The DZP++ B3LYP method determines the vibrational frequencies in best agreement with available experimental results for this series, with an average relative error of ~2%. The value of using a variety of DFT methods is observed in that BHLYP does best for geometries, BLYP for electron affinities, and B3LYP for vibrational frequencies. These theoretical results serve to resolve several disagreements between competing experiments. Several other experiments appear to have drawn incorrect conclusions. For example, CHCl2 is significantly pyramidal, unlike the experimental inferences, and clearly the experimental CCl2 - Cl dissociation energy is too large.
NASA Astrophysics Data System (ADS)
Cheng, Li; Shen, Zuochun; Lu, Jianye; Gao, Huide; Lü, Zhiwei
2005-11-01
Dissociation energies, ionization potentials and electron affinities of three perfluoroalkyl iodides, CF 3I, C 2F 5I, and i-C 3F 7I are calculated accurately with B3LYP, MP n ( n = 2-4), QCISD, QCISD(T), CCSD, and CCSD(T) methods. Calculations are performed by using large-core correlation-consistent pseudopotential basis set (SDB-aug-cc-pVTZ) for iodine atom. In all energy calculations, the zero point vibration energy is corrected. And the basis set superposition error is corrected by counterpoise method in the calculation of dissociation energy. Theoretical results are compared with the experimental values.
Exploring Low Internal Reorganization Energies for Silicene Nanoclusters
NASA Astrophysics Data System (ADS)
Pablo-Pedro, Ricardo; Lopez-Rios, Hector; Mendoza-Cortes, Jose-L.; Kong, Jing; Fomine, Serguei; Van Voorhis, Troy; Dresselhaus, Mildred S.
2018-05-01
This paper is a contribution to the Physical Review Applied collection in memory of Mildred S. Dresselhaus. High-performance materials rely on small reorganization energies to facilitate both charge separation and charge transport. Here, we perform density-functional-theory calculations to predict small reorganization energies of rectangular silicene nanoclusters with hydrogen-passivated edges denoted by H-SiNC. We observe that across all geometries, H-SiNCs feature large electron affinities and highly stabilized anionic states, indicating their potential as n -type materials. Our findings suggest that fine-tuning the size of H-SiNCs along the "zigzag" and "armchair" directions may permit the design of novel n -type electronic materials and spintronics devices that incorporate both high electron affinities and very low internal reorganization energies.
NASA Astrophysics Data System (ADS)
Heßelmann, Andreas
2017-06-01
A many-body Green's-function method employing an infinite order summation of ring and exchange-ring contributions to the self-energy is presented. The individual correlation and relaxation contributions to the quasiparticle energies are calculated using an iterative scheme which utilizes density fitting of the particle-hole, particle-particle and hole-hole densities. It is shown that the ionization energies and electron affinities of this approach agree better with highly accurate coupled-cluster singles and doubles with perturbative triples energy difference results than those obtained with second-order Green's-function approaches. An analysis of the correlation and relaxation terms of the self-energy for the direct- and exchange-random-phase-approximation (RPA) Green's-function methods shows that the inclusion of exchange interactions leads to a reduction of the two contributions in magnitude. These differences, however, strongly cancel each other when summing the individual terms to the quasiparticle energies. Due to this, the direct- and exchange-RPA methods perform similarly for the description of ionization energies (IPs) and electron affinities (EAs). The coupled-cluster reference IPs and EAs, if corrected to the adiabatic energy differences between the neutral and charged molecules, were shown to be in very good agreement with experimental measurements.
Method for resurrecting negative electron affinity photocathodes after exposure to an oxidizing gas
Mulhollan, Gregory A; Bierman, John C
2012-10-30
A method by which negative electron affinity photocathodes (201), single crystal, amorphous, or otherwise ordered, can be made to recover their quantum yield following exposure to an oxidizing gas has been discovered. Conventional recovery methods employ the use of cesium as a positive acting agent (104). In the improved recovery method, an electron beam (205), sufficiently energetic to generate a secondary electron cloud (207), is applied to the photocathode in need of recovery. The energetic beam, through the high secondary electron yield of the negative electron affinity surface (203), creates sufficient numbers of low energy electrons which act on the reduced-yield surface so as to negate the effects of absorbed oxidizing atoms thereby recovering the quantum yield to a pre-decay value.
Studies of Copper, Silver, and Gold Cluster Anions: Evidence of Electronic Shell Structure.
NASA Astrophysics Data System (ADS)
Pettiette, Claire Lynn
A new Ultraviolet Magnetic Time-of-Flight Photoelectron Spectrometer (MTOFPES) has been developed for the study of the electronic structure of clusters produced in a pulsed supersonic molecular beam. This is the first technique which has been successful in probing the valence electronic states of metal clusters. The ultraviolet photoelectron spectra of negative cluster ions of the noble metals have been taken at several different photon energies. These are presented along with the electron affinity and HOMO-LUMO gap measurements for Cu_6^- to Cu_ {41}^-, using 4.66 eV and 6.42 eV detachment energies; Ag_3^- to Ag_{21}^-, using 6.42 eV detachment energy; and Au_3^ - to Au_{21}^-, using 6.42 eV and 7.89 eV detachment energies. The spectra provide the first detailed probes of the s valence electrons of the noble metal clusters. In addition, the 6.42 eV and 7.89 eV spectra probe the first one to two electron volts of the molecular orbitals of the d valence electrons of copper and gold clusters. The electron affinity and HOMO-LUMO gap measurements of the noble metal clusters agree with the predictions of the ellipsoidal shell model for mono-valent metal clusters. In particular, cluster numbers 8, 20, and 40--which correspond to the spherical shell closings of this model--have low electron affinities and large HOMO-LUMO gaps. The spectra of the gold cluster ions indicate that the molecular orbital energies of the cluster valence electrons are more widely spaced for gold than for copper or silver. This is to be expected for the heavy atom clusters when relativistic effects are taken into account.
NASA Astrophysics Data System (ADS)
Portz, V.; Schnedler, M.; Eisele, H.; Dunin-Borkowski, R. E.; Ebert, Ph.
2018-03-01
The electron affinity and surface states are of utmost importance for designing the potential landscape within (heterojunction) nanowires and hence for tuning conductivity and carrier lifetimes. Therefore, we determined for stoichiometric nonpolar GaN (10 1 ¯0 ) m -plane facets, i.e., the dominating sidewalls of GaN nanowires, the electron affinity to 4.06 ±0.07 eV and the energy of the empty Ga-derived surface state in the band gap to 0.99 ±0.08 eV below the conduction band minimum using scanning tunneling spectroscopy. These values imply that the potential landscape within GaN nanowires is defined by a surface state-induced Fermi-level pinning, creating an upward band bending at the sidewall facets, which provides an electronic passivation.
da Costa, Leonardo Moreira; Carneiro, José Walkimar de Mesquita; Romeiro, Gilberto Alves; Paes, Lilian Weitzel Coelho
2011-02-01
The affinity of the Ca(2+) ion for a set of substituted carbonyl ligands was analyzed with both the DFT (B3LYP/6-31+G(d)) and semi-empirical (PM6) methods. Two types of ligands were studied: a set of monosubstituted [O=CH(R)] and a set of disubstituted ligands [O=C(R)(2)] (R=H, F, Cl, Br, OH, OCH(3), CH(3), CN, NH(2) and NO(2)), with R either directly bound to the carbonyl carbon atom or to the para position of a phenyl ring. The interaction energy was calculated to quantify the affinity of the Ca(2+) cation for the ligands. Geometric and electronic parameters were correlated with the intensity of the metal-ligand interaction. The electronic nature of the substituent is the main parameter that determines the interaction energy. Donor groups make the interaction energy more negative (stabilizing the complex formed), while acceptor groups make the interaction energy less negative (destabilizing the complex formed).
Using Wannier functions to improve solid band gap predictions in density functional theory
Ma, Jie; Wang, Lin-Wang
2016-04-26
Enforcing a straight-line condition of the total energy upon removal/addition of fractional electrons on eigen states has been successfully applied to atoms and molecules for calculating ionization potentials and electron affinities, but fails for solids due to the extended nature of the eigen orbitals. Here we have extended the straight-line condition to the removal/addition of fractional electrons on Wannier functions constructed within the occupied/unoccupied subspaces. It removes the self-interaction energies of those Wannier functions, and yields accurate band gaps for solids compared to experiments. It does not have any adjustable parameters and the computational cost is at the DFT level.more » This method can also work for molecules, providing eigen energies in good agreement with experimental ionization potentials and electron affinities. Our approach can be viewed as an alternative approach of the standard LDA+U procedure.« less
Dral, Pavlo O
2014-03-01
The local electron affinity (EA(L)) and the local ionization energy (IE(L)) are successfully used for predicting properties of closed-shell species for drug design and for nanoelectronics. Here the respective unrestricted Hartree-Fock variants of EA(L) and IE(L), i.e., the unrestricted local electron affinity (UHF-EA(L)) and ionization energy (UHF-IE(L)), have been shown to be useful for predicting properties of open-shell species. UHF-EA(L) and UHF-IE(L) have been applied for explaining unique electronic properties of an exemplary nanomaterial carbon peapod. It is also demonstrated that UHF-EA(L) is useful for predicting and better understanding reactivity of radicals related to alkanes activation.
Developing conjugated polymers with high electron affinity by replacing a C-C unit with a B←N unit.
Dou, Chuandong; Ding, Zicheng; Zhang, Zijian; Xie, Zhiyuan; Liu, Jun; Wang, Lixiang
2015-03-16
The key parameters of conjugated polymers are lowest unoccupied molecular orbital (LUMO) and highest occupied molecular orbital (HOMO) energy levels. Few approaches can simultaneously lower LUMO and HOMO energy levels of conjugated polymers to a large extent (>0.5 eV). Disclosed herein is a novel strategy to decrease both LUMO and HOMO energy levels of conjugated polymers by about 0.6 eV through replacement of a C-C unit by a B←N unit. The replacement makes the resulting polymer transform from an electron donor into an electron acceptor, and is proven by fluorescence quenching experiments and the photovoltaic response. This work not only provides an effective approach to tune the LUMO/HOMO energy levels of conjugated polymers, but also uses organic boron chemistry as a new toolbox to develop conjugated polymers with high electron affinity for polymer optoelectronic devices. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Bundhun, Ashwini; Abdallah, Hassan H; Ramasami, Ponnadurai; Schaefer, Henry F
2010-12-23
A systematic investigation of the X-Ge-CY(3) (X = H, F, Cl, Br, and I; Y = F, Cl, Br, and I) species is carried out using density functional theory. The basis sets used for all atoms (except iodine) in this work are of double-ζ plus polarization quality with additional s- and p-type diffuse functions, and denoted DZP++. Vibrational frequency analyses are performed to evaluate zero-point energy corrections and to determine the nature of the stationary points located. Predicted are four different forms of neutral-anion separations: adiabatic electron affinity (EA(ad)), zero-point vibrational energy corrected EA(ad(ZPVE)), vertical electron affinity (EA(vert)), and vertical detachment energy (VDE). The electronegativity (χ) reactivity descriptor for the halogens (X = F, Cl, Br, and I) is used as a tool to assess the interrelated properties of these germylenes. The topological position of the halogen atom bound to the divalent germanium center is well correlated with the trend in the electron affinities and singlet-triplet gaps. For the expected XGeCY(3) structures (X = H, F, Cl, Br, and I; Y = F and Cl), the predicted trend in the electron affinities is well correlated with simpler germylene derivatives (J. Phys. Chem. A 2009, 113, 8080). The predicted EA(ad(ZPVE)) values with the BHLYP functional range from 1.66 eV (FGeCCl(3)) to 2.20 eV (IGeCF(3)), while the singlet-triplet splittings range from 1.28 eV (HGeCF(3)) to 2.22 eV (FGeCCl(3)). The XGeCY(3) (Y = Br and I) species are most often characterized by three-membered cyclic systems involving the divalent germanium atom, the carbon atom, and a halogen atom.
Binding matter with antimatter: the covalent positron bond.
Charry, Jorge Alfonso; Varella, Marcio T Do N; Reyes, Andrés
2018-05-16
We report sufficient theoretical evidence of the energy stability of the e⁺H₂²⁻ molecule, formed by two H⁻ anions and one positron. Analysis of the electronic and positronic densities of the latter compound undoubtedly points out the formation of a positronic covalent bond between the otherwise repelling hydride anions. The lower limit for the bonding energy of the e⁺H₂²⁻ molecule is 74 kJ/mol (0.77 eV), accounting for the zero-point vibrational correction. The formation of a non electronic covalent bond is fundamentally distinct from positron attachment to stable molecules, as the latter process is characterized by a positron affinity, analogous to the electron affinity. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Electron affinity of liquid water
Gaiduk, Alex P.; Pham, Tuan Anh; Govoni, Marco; ...
2018-01-16
Understanding redox and photochemical reactions in aqueous environments requires a precise knowledge of the ionization potential and electron affinity of liquid water. The former has been measured, but not the latter. We predict the electron affinity of liquid water and of its surface from first principles, coupling path-integral molecular dynamics with ab initio potentials, and many-body perturbation theory. Our results for the surface (0.8 eV) agree well with recent pump-probe spectroscopy measurements on amorphous ice. Those for the bulk (0.1-0.3 eV) differ from several estimates adopted in the literature, which we critically revisit. We show that the ionization potential ofmore » the bulk and surface are almost identical; instead their electron affinities differ substantially, with the conduction band edge of the surface much deeper in energy than that of the bulk. We also discuss the significant impact of nuclear quantum effects on the fundamental gap and band edges of the liquid.« less
Electron affinity of liquid water
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gaiduk, Alex P.; Pham, Tuan Anh; Govoni, Marco
Understanding redox and photochemical reactions in aqueous environments requires a precise knowledge of the ionization potential and electron affinity of liquid water. The former has been measured, but not the latter. We predict the electron affinity of liquid water and of its surface from first principles, coupling path-integral molecular dynamics with ab initio potentials, and many-body perturbation theory. Our results for the surface (0.8 eV) agree well with recent pump-probe spectroscopy measurements on amorphous ice. Those for the bulk (0.1-0.3 eV) differ from several estimates adopted in the literature, which we critically revisit. We show that the ionization potential ofmore » the bulk and surface are almost identical; instead their electron affinities differ substantially, with the conduction band edge of the surface much deeper in energy than that of the bulk. We also discuss the significant impact of nuclear quantum effects on the fundamental gap and band edges of the liquid.« less
Chen, Zhenlian; Zhang, Caixia; Zhang, Zhiyong; Li, Jun
2014-07-14
The d-electron localization is widely recognized as important to transport properties of transition metal compounds, but its role in the energy conversion of intercalation reactions of cathode compounds is still not fully explored. In this work, the correlation of intercalation potential with electron affinity, a key energy term controlling electron intercalation, then with d-electron configuration, is investigated. Firstly, we find that the change of the intercalation potential with respect to the transition metal cations within the same structure class is correlated in an approximately mirror relationship with the electron affinity, based on first-principles calculations on three typical categories of cathode compounds including layered oxides and polyoxyanions Then, by using a new model Hamiltonian based on the crystal-field theory, we reveal that the evolution is governed by the combination of the crystal-field splitting and the on-site d-d exchange interactions. Further, we show that the charge order in solid-solution composites and the compatibility of multi-electron redox steps could be inferred from the energy terms with the d-electron configuration alternations. These findings may be applied to rationally designing new chemistry for the lithium-ion batteries and other metal-ion batteries.
NASA Astrophysics Data System (ADS)
Zhang, DaDi; Yang, Xiaolong; Zheng, Xiao; Yang, Weitao
2018-04-01
Electron affinity (EA) is the energy released when an additional electron is attached to an atom or a molecule. EA is a fundamental thermochemical property, and it is closely pertinent to other important properties such as electronegativity and hardness. However, accurate prediction of EA is difficult with density functional theory methods. The somewhat large error of the calculated EAs originates mainly from the intrinsic delocalisation error associated with the approximate exchange-correlation functional. In this work, we employ a previously developed non-empirical global scaling correction approach, which explicitly imposes the Perdew-Parr-Levy-Balduz condition to the approximate functional, and achieve a substantially improved accuracy for the calculated EAs. In our approach, the EA is given by the scaling corrected Kohn-Sham lowest unoccupied molecular orbital energy of the neutral molecule, without the need to carry out the self-consistent-field calculation for the anion.
Li, Qian-Shu; Lü, Rui-Hua; Xie, Yaoming; Schaefer, Henry F
2002-12-01
The GeH(n) (n = 0-4) and Ge(2)H(n) (n = 0-6) systems have been studied systematically by five different density functional methods. The basis sets employed are of double-zeta plus polarization quality with additional s- and p-type diffuse functions, labeled DZP++. For each compound plausible energetically low-lying structures were optimized. The methods used have been calibrated against a comprehensive tabulation of experimental electron affinities (Chemical Reviews 102, 231, 2002). The geometries predicted in this work include yet unknown anionic species, such as Ge(2)H(-), Ge(2)H(2)(-), Ge(2)H(3)(-), Ge(2)H(4)(-), and Ge(2)H(5)(-). In general, the BHLYP method predicts the geometries closest to the few available experimental structures. A number of structures rather different from the analogous well-characterized hydrocarbon radicals and anions are predicted. For example, a vinylidene-like GeGeH(2) (-) structure is the global minimum of Ge(2)H(2) (-). For neutral Ge(2)H(4), a methylcarbene-like HGë-GeH(3) is neally degenerate with the trans-bent H(2)Ge=GeH(2) structure. For the Ge(2)H(4) (-) anion, the methylcarbene-like system is the global minimum. The three different neutral-anion energy differences reported in this research are: the adiabatic electron affinity (EA(ad)), the vertical electron affinity (EA(vert)), and the vertical detachment energy (VDE). For this family of molecules the B3LYP method appears to predict the most reliable electron affinities. The adiabatic electron affinities after the ZPVE correction are predicted to be 2.02 (Ge(2)), 2.05 (Ge(2)H), 1.25 (Ge(2)H(2)), 2.09 (Ge(2)H(3)), 1.71 (Ge(2)H(4)), 2.17 (Ge(2)H(5)), and -0.02 (Ge(2)H(6)) eV. We also reported the dissociation energies for the GeH(n) (n = 1-4) and Ge(2)H(n) (n = 1-6) systems, as well as those for their anionic counterparts. Our theoretical predictions provide strong motivation for the further experimental study of these important germanium hydrides. Copyright 2002 Wiley Periodicals, Inc.
Simple method for determining fullerene negative ion formation★
NASA Astrophysics Data System (ADS)
Felfli, Zineb; Msezane, Alfred Z.
2018-04-01
A robust potential wherein is embedded the crucial core-polarization interaction is used in the Regge-pole methodology to calculate low-energy electron elastic scattering total cross section for the C60 fullerene in the electron impact energy range 0.02 ≤ E ≤ 10.0 eV. The energy position of the characteristic dramatically sharp resonance appearing at the second Ramsauer-Townsend minimum of the total cross section representing stable C60 - fullerene negative ion formation agrees excellently with the measured electron affinity of C60 [Huang et al., J. Chem. Phys. 140, 224315 (2014)]. The benchmarked potential and the Regge-pole methodology are then used to calculate electron elastic scattering total cross sections for selected fullerenes, from C54 through C240. The total cross sections are found to be characterized generally by Ramsauer-Townsend minima, shape resonances and dramatically sharp resonances representing long-lived states of fullerene negative ion formation. For the total cross sections of C70, C76, C78, and C84 the agreement between the energy positions of the very sharp resonances and the measured electron affinities is outstanding. Additionally, we compare our extracted energy positions of the resultant fullerene anions from our calculated total cross sections of the C86, C90 and C92 fullerenes with the estimated electron affinities ≥3.0 eV by the experiment [Boltalina et al., Rapid Commun. Mass Spectrom. 7, 1009 (1993)]. Resonance energy positions of other fullerenes, including C180 and C240 are also obtained. Most of the total cross sections presented in this paper are the first and only; our novel approach is general and should be applicable to other fullerenes as well and complex heavy atoms, such as the lanthanide atoms. We conclude with a remark on the catalytic properties of the fullerenes through their negative ions.
Single-particle energies and density of states in density functional theory
NASA Astrophysics Data System (ADS)
van Aggelen, H.; Chan, G. K.-L.
2015-07-01
Time-dependent density functional theory (TD-DFT) is commonly used as the foundation to obtain neutral excited states and transition weights in DFT, but does not allow direct access to density of states and single-particle energies, i.e. ionisation energies and electron affinities. Here we show that by extending TD-DFT to a superfluid formulation, which involves operators that break particle-number symmetry, we can obtain the density of states and single-particle energies from the poles of an appropriate superfluid response function. The standard Kohn- Sham eigenvalues emerge as the adiabatic limit of the superfluid response under the assumption that the exchange- correlation functional has no dependence on the superfluid density. The Kohn- Sham eigenvalues can thus be interpreted as approximations to the ionisation energies and electron affinities. Beyond this approximation, the formalism provides an incentive for creating a new class of density functionals specifically targeted at accurate single-particle eigenvalues and bandgaps.
NASA Astrophysics Data System (ADS)
Moral, Mónica; Granadino-Roldán, José Manuel; Garzón, Andrés; García, Gregorio; Fernández-Gómez, Manuel
2011-01-01
The present study reports on the variation of some structural and electronic properties related to the electron conductivity for the series of diphenylazines represented by the formula Ph sbnd (C 2+nN 4-nH n) sbnd Ph, n = 0 - 4. Properties such as planarity, aromaticity, HOMO → LUMO excitation energy, electron affinity, LUMO level energy, reorganization energy and electron coupling between neighboring molecules in the crystal were analyzed from a theoretical perspective as a function of the number of nitrogen atoms in the molecular structure. As a result, the planarity, aromaticity and electron affinity increase with the number of N atoms in the central ring while the HOMO → LUMO excitation energy and LUMO levels diminish. It is worth noting that up to n = 3, the frontier orbitals appear delocalized throughout the whole system while for n = 4 the localized character of the LUMO might explain the increase in the reorganization energy and thus the higher difficulty to delocalize the excess of negative charge. Electron coupling between neighboring molecules was also estimated on the basis of the energy splitting in dimer method and the reported crystal structures for some of the studied molecules. Accordingly, the highest | t12| value was obtained for Ph 2T N3 (0.06 eV) while Ph 2Tz should be the most advantageous candidate of the series in terms of electron injection.
Zhu, Xiao-Qing; Liu, Qiao-Yun; Chen, Qiang; Mei, Lian-Rui
2010-02-05
A series of 61 imines with various typical structures were synthesized, and the thermodynamic affinities (defined as enthalpy changes or redox potentials in this work) of the imines to abstract hydride anions, hydrogen atoms, and electrons, the thermodynamic affinities of the radical anions of the imines to abstract hydrogen atoms and protons, and the thermodynamic affinities of the hydrogen adducts of the imines to abstract electrons in acetonitrile were determined by using titration calorimetry and electrochemical methods. The pure heterolytic and homolytic dissociation energies of the C=N pi-bond in the imines were estimated. The polarity of the C=N double bond in the imines was examined using a linear free-energy relationship. The idea of a thermodynamic characteristic graph (TCG) of imines as an efficient "Molecule ID Card" was introduced. The TCG can be used to quantitatively diagnose and predict the characteristic chemical properties of imines and their various reaction intermediates as well as the reduction mechanism of the imines. The information disclosed in this work could not only supply a gap of thermodynamics for the chemistry of imines but also strongly promote the fast development of the applications of imines.
Calculation of protein-ligand binding affinities.
Gilson, Michael K; Zhou, Huan-Xiang
2007-01-01
Accurate methods of computing the affinity of a small molecule with a protein are needed to speed the discovery of new medications and biological probes. This paper reviews physics-based models of binding, beginning with a summary of the changes in potential energy, solvation energy, and configurational entropy that influence affinity, and a theoretical overview to frame the discussion of specific computational approaches. Important advances are reported in modeling protein-ligand energetics, such as the incorporation of electronic polarization and the use of quantum mechanical methods. Recent calculations suggest that changes in configurational entropy strongly oppose binding and must be included if accurate affinities are to be obtained. The linear interaction energy (LIE) and molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) methods are analyzed, as are free energy pathway methods, which show promise and may be ready for more extensive testing. Ultimately, major improvements in modeling accuracy will likely require advances on multiple fronts, as well as continued validation against experiment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chandran, Maneesh, E-mail: maneesh@tx.technion.ac.il, E-mail: choffman@tx.technion.ac.il; Shasha, Michal; Michaelson, Shaul
2015-09-14
In this letter, we report the electronic and chemical properties of nitrogen terminated (N-terminated) single crystal (100) diamond surface, which is a promising candidate for shallow NV{sup −} centers. N-termination is realized by an indirect RF nitrogen plasma process without inducing a large density of surface defects. Thermal stability and electronic property of N-terminated diamond surface are systematically investigated under well-controlled conditions by in-situ x-ray photoelectron spectroscopy and secondary electron emission. An increase in the low energy cut-off of the secondary electron energy distribution curve (EDC), with respect to a bare diamond surface, indicates a positive electron affinity of themore » N-terminated diamond. Exposure to atomic hydrogen results in reorganization of N-terminated diamond to H-terminated diamond, which exhibited a negative electron affinity surface. The change in intensity and spectral features of the secondary electron EDC of the N-terminated diamond is discussed.« less
Zheng, Zhong; Dutton, P. Leslie; Gunner, M. R.
2010-01-01
Quinones play important roles in mitochondrial and photosynthetic energy conversion acting as intramembrane, mobile electron and proton carriers between catalytic sites in various electron transfer proteins. They display different affinity, selectivity, functionality and exchange dynamics in different binding sites. The computational analysis of quinone binding sheds light on the requirements for quinone affinity and specificity. The affinities of ten oxidized, neutral benzoquinones (BQs) were measured for the high affinity QA site in the detergent solubilized Rhodobacter sphaeroides bacterial photosynthetic reaction center. Multi-Conformation Continuum Electrostatics (MCCE) was then used to calculate their relative binding free energies by Grand Canonical Monte Carlo sampling with a rigid protein backbone, flexible ligand and side chain positions and protonation states. Van der Waals and torsion energies, Poisson-Boltzmann continuum electrostatics and accessible surface area dependent ligand-solvent interactions are considered. An initial, single cycle of GROMACS backbone optimization improves the match with experiment as do coupled ligand and side chain motions. The calculations match experiment with an RMSD of 2.29 and a slope of 1.28. The affinities are dominated by favorable protein-ligand van der Waals rather than electrostatic interactions. Each quinone appears in a closely clustered set of positions. Methyl and methoxy groups move into the same positions as found for the native quinone. Difficulties putting methyls into methoxy sites are observed. Calculations using an SAS dependent implicit van der Waals interaction smoothed out small clashes, providing a better match to experiment with a RMSD of 0.77 and a slope of 0.97. PMID:20607696
Surface sensitization mechanism on negative electron affinity p-GaN nanowires
NASA Astrophysics Data System (ADS)
Diao, Yu; Liu, Lei; Xia, Sihao; Feng, Shu; Lu, Feifei
2018-03-01
The surface sensitization is the key to prepare negative electron affinity photocathode. The thesis emphasizes on the study of surface sensitization mechanism of p-type doping GaN nanowires utilizing first principles based on density function theory. The adsorption energy, work function, dipole moment, geometry structure, electronic structure and optical properties of Mg-doped GaN nanowires surfaces with various coverages of Cs atoms are investigated. The GaN nanowire with Mg doped in core position is taken as the sensitization base. At the initial stage of sensitization, the best adsorption site for Cs atom on GaN nanowire surface is BN, the bridge site of two adjacent N atoms. Surface sensitization generates a p-type internal surface with an n-type surface state, introducing a band bending region which can help reduce surface barrier and work function. With increasing Cs coverage, work functions decrease monotonously and the "Cs-kill" phenomenon disappears. For Cs coverage of 0.75 ML and 1 ML, the corresponding sensitization systems reach negative electron affinity state. Through surface sensitization, the absorption curves are red shifted and the absorption coefficient is cut down. All theoretical calculations can guide the design of negative electron affinity Mg doped GaN nanowires photocathode.
Vikramaditya, Talapunur; Lin, Shiang-Tai
2017-06-05
Accurate determination of ionization potentials (IPs), electron affinities (EAs), fundamental gaps (FGs), and HOMO, LUMO energy levels of organic molecules play an important role in modeling and predicting the efficiencies of organic photovoltaics, OLEDs etc. In this work, we investigate the effects of Hartree Fock (HF) Exchange, correlation energy, and long range corrections in predicting IP and EA in Hybrid Functionals. We observe increase in percentage of HF exchange results in increase of IPs and decrease in EAs. Contrary to the general expectations inclusion of both HF exchange and correlation energy (from the second order perturbation theory MP2) leads to poor prediction. Range separated Hybrid Functionals are found to be more reliable among various DFT Functionals investigated. DFT Functionals predict accurate IPs whereas post HF methods predict accurate EAs. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Ground and excited states of NH4: Electron propagator and quantum defect analysis
NASA Astrophysics Data System (ADS)
Ortiz, J. V.; Martín, I.; Velasco, A. M.; Lavín, C.
2004-05-01
Vertical excitation energies of the Rydberg radical NH4 are inferred from ab initio electron propagator calculations on the electron affinities of NH4+. The adiabatic ionization energy of NH4 is evaluated with coupled-cluster calculations. These predictions provide optimal parameters for the molecular-adapted quantum defect orbital method, which is used to determine Einstein emission coefficients and radiative lifetimes. Comparisons with spectroscopic data and previous calculations are discussed.
Ionization Potentials for Isoelectronic Series.
ERIC Educational Resources Information Center
Agmon, Noam
1988-01-01
Presents a quantitative treatment of ionization potentials of isoelectronic atoms. By looking at the single-electron view of calculating the total energy of an atom, trends in the screening and effective quantum number parameters are examined. Approaches the question of determining electron affinities. (CW)
Ban, Xinxin; Sun, Kaiyong; Sun, Yueming; Huang, Bin; Jiang, Wei
2016-01-27
A benzimidazole/phosphine oxide hybrid 1,3,5-tris(1-(4-(diphenylphosphoryl)phenyl)-1H-benzo[d]imidazol-2-yl)benzene (TPOB) was newly designed and synthesized as the electron-transporting component to form an exciplex-type host with the conventional hole-transporting material tris(4-carbazoyl-9-ylphenyl)amine (TCTA). Because of the enhanced triplet energy and electron affinity of TPOB, the energy leakage from exciplex-state to the constituting molecule was eliminated. Using energy transfer from exciplex-state, solution-processed blue phosphorescent organic light-emitting diodes (PHOLEDs) achieved an extremely low turn-on voltage of 2.8 V and impressively high power efficiency of 22 lm W(-1). In addition, the efficiency roll-off was very small even at luminance up to 10 000 cd m(-2), which suggested the balanced charge transfer in the emission layer. This study demonstrated that molecular modulation was an effective way to develop efficient exciplex-type host for high performanced PHOLEDs.
Negative electron affinity from aluminium on the diamond (1 0 0) surface: a theoretical study
NASA Astrophysics Data System (ADS)
James, Michael C.; Croot, Alex; May, Paul W.; Allan, Neil L.
2018-06-01
Density functional theory calculations were performed to model the adsorption of up to 1 monolayer (ML) of aluminium on the bare and O-terminated (1 0 0) diamond surface. Large adsorption energies of up to ‑6.36 eV per atom are observed for the Al-adsorbed O-terminated diamond surface. Most adsorption sites give a negative electron affinity (NEA), with the largest NEAs ‑1.47 eV on the bare surface (1 ML coverage) and ‑1.36 eV on the O-terminated surface (0.25 ML coverage). The associated adsorption energies per Al atom for these sites are ‑4.11 eV and ‑5.24 eV, respectively. Thus, with suitably controlled coverage, Al on diamond shows promise as a thermally-stable surface for electron emission applications.
Redox potential trend with transition metal elements in lithium-ion battery cathode materials
NASA Astrophysics Data System (ADS)
Chen, Zhenlian; Li, Jun
2013-03-01
First-principles calculations are performed to investigate the relationship between the intrinsic voltage and element-lattice for the popular transition metal oxides and polyoxyanionic compounds as cathode materials for lithium-ion batteries. A V-shape redox potential in olivine phosphates LiMPO4 and orthogonal silicates Li2MSiO4 (M =Mn, Fe, Co, Ni), and an N-shape one in layered oxides LiMO2 (M =Mn, Fe, Co, Ni, Cu) relative to transition metal M elements are found to be inversely characteristic of electronic energy contribution, which costs energy in the lithiation process and is defined as electron affinity. The maxima of electron affinity, locating at different elements for different types of crystal lattices are determined by delectronic configurations that cross the turning point of a full occupancy of electronic bands, which is determined by the cooperative effect of crystal field splitting and intraionic exchange interactions. The Ningbo Key Innovation Team, National Natural Science Foundation of China, Postdoctoral Foundation of China
Brorsen, Kurt R; Yang, Yang; Hammes-Schiffer, Sharon
2017-08-03
Nuclear quantum effects such as zero point energy play a critical role in computational chemistry and often are included as energetic corrections following geometry optimizations. The nuclear-electronic orbital (NEO) multicomponent density functional theory (DFT) method treats select nuclei, typically protons, quantum mechanically on the same level as the electrons. Electron-proton correlation is highly significant, and inadequate treatments lead to highly overlocalized nuclear densities. A recently developed electron-proton correlation functional, epc17, has been shown to provide accurate nuclear densities for molecular systems. Herein, the NEO-DFT/epc17 method is used to compute the proton affinities for a set of molecules and to examine the role of nuclear quantum effects on the equilibrium geometry of FHF - . The agreement of the computed results with experimental and benchmark values demonstrates the promise of this approach for including nuclear quantum effects in calculations of proton affinities, pK a 's, optimized geometries, and reaction paths.
Computational Studies on Optoelectronic and Nonlinear Properties of Octaphyrin Derivatives
Islam, Nasarul; Lone, Irfan H.
2017-01-01
The electronic and nonlinear optical (NLO) properties of octaphyrin derivatives were studied by employing the DFT/TDFT at CAM-B3LYP/6-311++G (2d, 2p) level of the theory. Thiophene, phenyl, methyl and cyano moieties were substituted on the molecular framework of octaphyrin core, in order to observe the change in optoelectronic and nonlinear response of these systems. The frontier molecular orbital studies and values of electron affinity reveals that the studied compounds are stable against the oxygen and moisture present in air. The calculated ionization energies, adiabatic electron affinity and reorganization energy values indicate that octaphyrin derivatives can be employed as effective n-type material for Organic Light Emitting Diodes (OLEDs). This character shows an enhancement with the introduction of an electron withdrawing group in the octaphyrin framework. The polarizability and hyperpolarizability values of octaphyrin derivatives demonstrate that they are good candidates for NLO devices. The nonlinear response of these systems shows enhancement on the introduction of electron donating groups on octaphyrin moiety. However, these claims needs further experimental verification. PMID:28321394
Electronic structure of graphene nanoribbons doped with nitrogen atoms: a theoretical insight.
Torres, A E; Fomine, S
2015-04-28
The electronic structure of graphene nanoribbons doped with a graphitic type of nitrogen atoms has been studied using B3LYP, B2PLYP and CAS methods. In all but one case the restricted B3LYP solutions were unstable and the CAS calculations provided evidence for the multiconfigurational nature of the ground state with contributions from two dominant configurations. The relative stability of the doped nanoribbons depends mostly on the mutual position of the dopant atoms and notably less on the position of nitrogen atoms within the nanoribbon. N-graphitic doping affects cationic states much more than anionic ones due the participation of the nitrogen atoms in the stabilization of the positive charge, resulting in a drop in ionization energies (IPs) for N-graphitic doped systems. Nitrogen atoms do not participate in the negative charge stabilization of anionic species and, therefore, the doping does not affect the electron affinities (EAs). The unrestricted B3LYP method is the method of choice for the calculation of IPs and EAs. Restricted B3LYP and B2PLYP produces unreliable results for both IPs and EAs while CAS strongly underestimates the electron affinities. This is also true for the reorganization energies where restricted B3LYP produces qualitatively incorrect results. Doping changes the reorganization energy of the nanoribbons; the hole reorganization energy is generally higher than the corresponding electron reorganization energy due to the participation of nitrogen atoms in the stabilization of the positive charge.
Structural evolution study of 1-2 nm gold clusters
NASA Astrophysics Data System (ADS)
Beltrán, M. R.; Suárez Raspopov, R.; González, G.
2011-12-01
We have explored lowest energy minima structures of gold atom clusters both, charged and neutral (Aun^{ν}νn with n = 20, 28, 34, 38, 55, 75, 101, 146, 147, 192, 212 atoms and ν = 0, ±1). The structures have been obtained from first principles generalized gradient approximation, density functional theory (DFT) calculations based on norm-conserving pseudopotentials and numerical atomic basis sets. We have found two new disordered or defective isomers lower in energy than their ordered counterparts for n = 101, 147. The purpose of this work is to systematically study the difference between the electronic properties of the two lowest ordered and disordered isomers for each size. Our results agree with previous first principle calculations and with some recent experimental results (Au20 and Au101). For each case we report total energies, binding energies, ionization potentials, electron affinities, density of states, highest occupied molecular orbital-lowest unoccupied molecular orbital (HOMO-LUMO) gaps, Housdorff chirality measure index and their simulated image in a high resolution transmission electron microscopy (HRTEM). The calculated properties of the two low lying (ordered and disordered) isomers show clear differences as to be singled out in a suitable experimental setting. An extensive discussion on the evolution with size of the cohesive energy, the ionization potentials, the electron affinities, the HOMO-LUMO gaps and their index of chirality to determine the crossover between them is given.
Structures and electronic states of halogen-terminated graphene nano-flakes
NASA Astrophysics Data System (ADS)
Tachikawa, Hiroto; Iyama, Tetsuji
2015-12-01
Halogen-functionalized graphenes are utilized as electronic devices and energy materials. In the present paper, the effects of halogen-termination of graphene edge on the structures and electronic states of graphene flakes have been investigated by means of density functional theory (DFT) method. It was found that the ionization potential (Ip) and electron affinity of graphene (EA) are blue-shifted by the halogen termination, while the excitation energy is red-shifted. The drastic change showed a possibility as electronic devices such as field-effect transistors. The change of electronic states caused by the halogen termination of graphene edge was discussed on the basis of the theoretical results.
Proton affinity and enthalpy of formation of formaldehyde
NASA Astrophysics Data System (ADS)
Czakó, Gábor; Nagy, Balázs; Tasi, Gyula; Somogyi, Árpád; Šimunek, Ján; Noga, Jozef; Braams, Bastiaan J.; Bowman, Joel M.; Császár; , Attila G.
The proton affinity and the enthalpy of formation of the prototypical carbonyl, formaldehyde, have been determined by the first-principles composite focal-point analysis (FPA) approach. The electronic structure computations employed the all-electron coupled-cluster method with up to single, double, triple, quadruple, and even pentuple excitations. In these computations the aug-cc-p(C)VXZ [X = 2(D), 3(T), 4(Q), 5, and 6] correlation-consistent Gaussian basis sets for C and O were used in conjunction with the corresponding aug-cc-pVXZ (X = 2-6) sets for H. The basis set limit values have been confirmed via explicitly correlated computations. Our FPA study supersedes previous computational work for the proton affinity and to some extent the enthalpy of formation of formaldehyde by accounting for (a) electron correlation beyond the "gold standard" CCSD(T) level; (b) the non-additivity of core electron correlation effects; (c) scalar relativity; (d) diagonal Born-Oppenheimer corrections computed at a correlated level; (e) anharmonicity of zero-point vibrational energies, based on global potential energy surfaces and variational vibrational computations; and (f) thermal corrections to enthalpies by direct summation over rovibrational energy levels. Our final proton affinities at 298.15 (0.0) K are ΔpaHo (H2CO) = 711.02 (704.98) ± 0.39 kJ mol-1. Our final enthalpies of formation at 298.15 (0.0) K are ΔfHo (H2CO) = -109.23 (-105.42) ± 0.33 kJ mol-1. The latter values are based on the enthalpy of the H2 + CO → H2CO reaction but supported by two further reaction schemes, H2O + C → H2CO and 2H + C + O → H2CO. These values, especially ΔpaHo (H2CO), have better accuracy and considerably lower uncertainty than the best previous recommendations and thus should be employed in future studies.
Photodetachment Studies Of Atomic Negative Ions Through Velocity-Map Imaging Spectroscopy
NASA Astrophysics Data System (ADS)
Chartkunchand, Kiattichart
The technique of velocity-map imaging (VMI) spectroscopy as been adapted to a keV-level negative ion beamline for studies of photon-negative ion collisions. The design and operation of the VMI spectrometer takes into consideration the use of continuous, fast-moving (5 keV to 10 keV) ion beams, as well as a continuous wave (CW) laser as the source of photons. The VMI spectrometer has been used in photodetachment studies of the Group 14 negative ions Ge--, Sn--, and Pb-- at a photon wavelength of 532 nm. Measurements of the photoelectron angular distributions and asymmetry parameters for Ge-- and Sn-- were benchmarked against those measured previously [W. W. Williams, D. L. Carpenter, A. M. Covington, and J. S. Thompson, Phys. Rev. A 59, 4368 (1999), V. T. Davis, J. Ashokkumar, and J. S. Thompson, Phys. Rev. A 65, 024702 (2002)], while fine-structure-resolved asymmetry parameters for Pb-- were measured for the first time. Definitive evidence of a "forbidden" 4S 3/2→1D2 transition was observed in both the Ge-- and Sn-- photoelectron kinetic energy spectra. This transition is explained in terms of the inadequacy of the single-configuration description for the 1D2 excited state in the corresponding neutral. Near-threshold photodetachment studies of S-- were carried out in order to measure the spectral dependence of the photoelectron angular distribution. The resulting asymmetry parameters were measured at several photon wavelengths in the range of 575 nm (2.156 eV photon energy) to 615 nm (2.016 eV photon energy). Comparison of the measurements to a qualitative model of p-electron photodetachment [D. Hanstorp, C. Bengtsson, and D. J. Larson, Phys. Rev. A 40, 670 (1989)] were made. Deviations of the measured asymmetry parameters from the Hanstorp model near photodetachment thresholds suggests a reduced degree of suppression of d partial-waves than predicted by models. Measurement of the electron affinity of terbium was performed along with a determination of the structure of Tb--. The energy scale for the Tb-- photoelectron kinetic energy spectrum was calibrated to the photoelectron kinetic energy spectrum of Cs-- , whose electron affinity is well-known [T. A. Patterson, H. Hotop, A. Kasdan, D. W. Norcross, and W. C. Lineberger, Phys. Rev. Lett. 32 , 189 (1974)]. Comparison to a previous experimental measurement of the electron affinity of terbium [S. S. Duvvuri, Ph. D. dissertation, University of Nevada, Reno (2006)] and to theoretical calculations of the electron affinity [S. M. O'Malley and D. R. Beck, Phys. Rev. A 79, 012511 (2009)] were made. In contrast to the [Xe]4f106 s2 5I8 ground state configuration proposed in the experimental study and the [Xe]4f 85d6s26p 9G7 ground state configuration proposed in the theoretical study, the present study suggests a Tb-- ground state of [Xe]4f96s 26p 7I3 and an electron affinity of 0.13 +/- 0.07 eV for terbium.
Pereira, Douglas Henrique; Rocha, Carlos Murilo Romero; Morgon, Nelson Henrique; Custodio, Rogério
2015-08-01
The compact effective potential (CEP) pseudopotential was adapted to the G3(MP2) theory, herein referred to as G3(MP2)-CEP, and applied to the calculation of enthalpies of formation, ionization energies, atomization energies, and electron and proton affinities for 446 species containing elements of the 1st, 2nd, and 3rd rows of the periodic table. A total mean absolute deviation of 1.67 kcal mol(-1) was achieved with G3(MP2)-CEP, compared with 1.47 kcal mol(-1) for G3(MP2). Electron affinities and enthalpies of formation are the properties exhibiting the lowest deviations with respect to the original G3(MP2) theory. The use of pseudopotentials and composite theories in the framework of the G3 theory is feasible and compatible with the all electron approach. Graphical Abstract Application of composite methods in high-level ab initio calculations.
NASA Astrophysics Data System (ADS)
Sein, Lawrence T.
2011-08-01
Hammett parameters σ' were determined from vertical ionization potentials, vertical electron affinities, adiabatic ionization potentials, adiabatic electron affinities, HOMO, and LUMO energies of a series of N, N' -bis (3',4'-substituted-phenyl)-1,4-quinonediimines computed at the B3LYP/6-311+G(2d,p) level on B3LYP/6-31G ∗ molecular geometries. These parameters were then least squares fit as a function of literature Hammett parameters. For N, N' -bis (4'-substituted-phenyl)-1,4-quinonediimines, the least squares fits demonstrated excellent linearity, with the square of Pearson's correlation coefficient ( r2) greater than 0.98 for all isomers. For N, N' -bis (3'-substituted-3'-aminophenyl)-1,4-quinonediimines, the least squares fits were less nearly linear, with r2 approximately 0.70 for all isomers when derived from calculated vertical ionization potentials, but those from calculated vertical electron affinities usually greater than 0.90.
NASA Astrophysics Data System (ADS)
Melin, Junia; Ortiz, J. V.; Martín, I.; Velasco, A. M.; Lavín, C.
2005-06-01
Vertical excitation energies of the Rydberg radical H3O are inferred from ab initio electron propagator calculations on the electron affinities of H3O+. The adiabatic ionization energy of H3O is evaluated with coupled-cluster calculations. These predictions provide optimal parameters for the molecular-adapted quantum defect orbital method, which is used to determine oscillator strengths. Given that the experimental spectrum of H3O does not seem to be available, comparisons with previous calculations are discussed. A simple model Hamiltonian, suitable for the study of bound states with arbitrarily high energies is generated by these means.
Ambipolar nature of dimethyl benzo difuran (DMBDF) molecule: A charge transport study
NASA Astrophysics Data System (ADS)
Sahoo, Smruti Ranjan; Sahu, Sridhar
2017-05-01
We describe a theoretical study of the charge transport properties of the organic dimethyl benzo difuran (DMBDF) molecule based on density functional theory (DFT). Reorganization energy, ionization potential (IP), electron affinity (EA), energy gaps, transfer integral (t) and charge mobility (μ) has been studied to depict the transport properties in the conjugated organic molecules. We computed, large homo transfer integral and IP value leading to high hole mobility (4.46 cm2/V sec). However, the electron reorganization energy (0.34 eV) and the electron mobility of 1.62 cm2/V sec, infers that the DMBDF organic molecule bears an ambipolar character.
NASA Astrophysics Data System (ADS)
Corzo, H. H.; Velasco, A. M.; Lavín, C.; Ortiz, J. V.
2018-02-01
Vertical excitation energies belonging to several Rydberg series of MgH have been inferred from 3+ electron-propagator calculations of the electron affinities of MgH+ and are in close agreement with experiment. Many electronically excited states with n > 3 are reported for the first time and new insight is given on the assignment of several Rydberg series. Valence and Rydberg excited states of MgH are distinguished respectively by high and low pole strengths corresponding to Dyson orbitals of electron attachment to the cation. By applying the Molecular Quantum Defect Orbital method, oscillator strengths for electronic transitions involving Rydberg states also have been determined.
Electron affinity of perhalogenated benzenes: A theoretical DFT study
NASA Astrophysics Data System (ADS)
Volatron, François; Roche, Cécile
2007-10-01
The potential energy surfaces (PES) of unsubstituted and perhalogenated benzene anions ( CX6-, X = F, Cl, Br, and I) were explored by means of DFT-B3LYP calculations. In the F and Cl cases seven extrema were located and characterized. In the Br and I cases only one minimum and two extrema were found. In each case the minimum was recomputed at the CCSD(T) level. The electron affinities of C 6X 6 were calculated (ZPE included). The results obtained agree well with the experimental determinations when available. The values obtained in the X = Br and the X = I cases are expected to be valuable predictions.
Energetics of charged metal clusters containing vacancies
NASA Astrophysics Data System (ADS)
Pogosov, Valentin V.; Reva, Vitalii I.
2018-01-01
We study theoretically large metal clusters containing vacancies. We propose an approach, which combines the Kohn-Sham results for monovacancy in a bulk of metal and analytical expansions in small parameters cv (relative concentration of vacancies) and RN,v -1, RN ,v being cluster radii. We obtain expressions of the ionization potential and electron affinity in the form of corrections to electron work function, which require only the characteristics of 3D defect-free metal. The Kohn-Sham method is used to calculate the electron profiles, ionization potential, electron affinity, electrical capacitance; dissociation, cohesion, and monovacancy-formation energies of the small perfect clusters NaN, MgN, AlN (N ≤ 270) and the clusters containing a monovacancy (N ≥ 12) in the stabilized-jellium model. The quantum-sized dependences for monovacancy-formation energies are calculated for the Schottky scenario and the "bubble blowing" scenario, and their asymptotic behavior is also determined. It is shown that the asymptotical behaviors of size dependences for these two mechanisms differ from each other and weakly depend on the number of atoms in the cluster. The contribution of monovacancy to energetics of charged clusters and the size dependences of their characteristics and asymptotics are discussed. It is shown that the difference between the characteristics for the neutral and charged clusters is entirely determined by size dependences of ionization potential and electron affinity. Obtained analytical dependences may be useful for the analysis of the results of photoionization experiments and for the estimation of the size dependences of the vacancy concentration including the vicinity of the melting point.
F+ and F⁻ affinities of simple N(x)F(y) and O(x)F(y) compounds.
Grant, Daniel J; Wang, Tsang-Hsiu; Vasiliu, Monica; Dixon, David A; Christe, Karl O
2011-03-07
Atomization energies at 0 K and heats of formation at 0 and 298 K are predicted for the neutral and ionic N(x)F(y) and O(x)F(y) systems using coupled cluster theory with single and double excitations and including a perturbative triples correction (CCSD(T)) method with correlation consistent basis sets extrapolated to the complete basis set (CBS) limit. To achieve near chemical accuracy (±1 kcal/mol), three corrections to the electronic energy were added to the frozen core CCSD(T)/CBS binding energies: corrections for core-valence, scalar relativistic, and first order atomic spin-orbit effects. Vibrational zero point energies were computed at the CCSD(T) level of theory where possible. The calculated heats of formation are in good agreement with the available experimental values, except for FOOF because of the neglect of higher order correlation corrections. The F(+) affinity in the N(x)F(y) series increases from N(2) to N(2)F(4) by 63 kcal/mol, while that in the O(2)F(y) series decreases by 18 kcal/mol from O(2) to O(2)F(2). Neither N(2) nor N(2)F(4) is predicted to bind F(-), and N(2)F(2) is a very weak Lewis acid with an F(-) affinity of about 10 kcal/mol for either the cis or trans isomer. The low F(-) affinities of the nitrogen fluorides explain why, in spite of the fact that many stable nitrogen fluoride cations are known, no nitrogen fluoride anions have been isolated so far. For example, the F(-) affinity of NF is predicted to be only 12.5 kcal/mol which explains the numerous experimental failures to prepare NF(2)(-) salts from the well-known strong acid HNF(2). The F(-) affinity of O(2) is predicted to have a small positive value and increases for O(2)F(2) by 23 kcal/mol, indicating that the O(2)F(3)(-) anion might be marginally stable at subambient temperatures. The calculated adiabatic ionization potentials and electron affinities are in good agreement with experiment considering that many of the experimental values are for vertical processes. © 2011 American Chemical Society
Sohn, Chang Ho; Yin, Sheng; Peng, Ivory; Loo, Joseph A; Beauchamp, J L
2015-11-15
The mechanisms of electron capture and electron transfer dissociation (ECD and ETD) are investigated by covalently attaching a free-radical hydrogen atom scavenger to a peptide. The 2,2,6,6-tetramethylpiperidin-l-oxyl (TEMPO) radical was chosen as the scavenger due to its high hydrogen atom affinity (ca. 280 kJ/mol) and low electron affinity (ca. 0.45 ev), and was derivatized to the model peptide, FQX TEMPO EEQQQTEDELQDK. The X TEMPO residue represents a cysteinyl residue derivatized with an acetamido-TEMPO group. The acetamide group without TEMPO was also examined as a control. The gas phase proton affinity (882 kJ/mol) of TEMPO is similar to backbone amide carbonyls (889 kJ/mol), minimizing perturbation to internal solvation and sites of protonation of the derivatized peptides. Collision induced dissociation (CID) of the TEMPO tagged peptide dication generated stable odd-electron b and y type ions without indication of any TEMPO radical induced fragmentation initiated by hydrogen abstraction. The type and abundance of fragment ions observed in the CID spectra of the TEMPO and acetamide tagged peptides are very similar. However, ECD of the TEMPO labeled peptide dication yielded no backbone cleavage. We propose that a labile hydrogen atom in the charge reduced radical ions is scavenged by the TEMPO radical moiety, resulting in inhibition of N-C α backbone cleavage processes. Supplemental activation after electron attachment (ETcaD) and CID of the charge-reduced precursor ion generated by electron transfer of the TEMPO tagged peptide dication produced a series of b + H (b H ) and y + H (y H ) ions along with some c ions having suppressed intensities, consistent with stable O-H bond formation at the TEMPO group. In summary, the results indicate that ECD and ETD backbone cleavage processes are inhibited by scavenging of a labile hydrogen atom by the localized TEMPO radical moiety. This observation supports the conjecture that ECD and ETD processes involve long-lived intermediates formed by electron capture/transfer in which a labile hydrogen atom is present and plays a key role with low energy processes leading to c and z ion formation. Ab initio and density functional calculations are performed to support our conclusion, which depends most importantly on the proton affinity, electron affinity and hydrogen atom affinity of the TEMPO moiety.
Heavy atom vibrational modes and low-energy vibrational autodetachment in nitromethane anions
NASA Astrophysics Data System (ADS)
Thompson, Michael C.; Baraban, Joshua H.; Matthews, Devin A.; Stanton, John F.; Weber, J. Mathias
2015-06-01
We report infrared spectra of nitromethane anion, CH3NO2-, in the region 700-2150 cm-1, obtained by Ar predissociation spectroscopy and electron detachment spectroscopy. The data are interpreted in the framework of second-order vibrational perturbation theory based on coupled-cluster electronic structure calculations. The modes in the spectroscopic region studied here are mainly based on vibrations involving the heavier atoms; this work complements earlier studies on nitromethane anion that focused on the CH stretching region of the spectrum. Electron detachment begins at photon energies far below the adiabatic electron affinity due to thermal population of excited vibrational states.
Heavy atom vibrational modes and low-energy vibrational autodetachment in nitromethane anions.
Thompson, Michael C; Baraban, Joshua H; Matthews, Devin A; Stanton, John F; Weber, J Mathias
2015-06-21
We report infrared spectra of nitromethane anion, CH3NO2 (-), in the region 700-2150 cm(-1), obtained by Ar predissociation spectroscopy and electron detachment spectroscopy. The data are interpreted in the framework of second-order vibrational perturbation theory based on coupled-cluster electronic structure calculations. The modes in the spectroscopic region studied here are mainly based on vibrations involving the heavier atoms; this work complements earlier studies on nitromethane anion that focused on the CH stretching region of the spectrum. Electron detachment begins at photon energies far below the adiabatic electron affinity due to thermal population of excited vibrational states.
Electronic and optical properties of hexathiapentacene in the gas and crystal phases
NASA Astrophysics Data System (ADS)
Cardia, R.; Malloci, G.; Rignanese, G.-M.; Blase, X.; Molteni, E.; Cappellini, G.
2016-06-01
Using density functional theory (DFT) and its time-dependent (TD) extension, the electronic and optical properties of the hexathiapentacene (HTP) molecule, a derivative of pentacene (PNT) obtained by symmetric substitution of the six central H atoms with S atoms, are investigated for its gas and solid phases. For the molecular structure, all-electron calculations are performed using a Gaussian localized orbital basis set in conjunction with the Becke three-parameter Lee-Yang-Parr (B3LYP) hybrid exchange-correlation functional. Electron affinities, ionization energies, quasiparticle energy gaps, optical absorption spectra, and exciton binding energies are calculated and compared with the corresponding results for PNT, as well as with the available experimental data. The DFT and TDDFT results are also validated by performing many-body perturbation theory calculations within the G W and Bethe-Salpeter equation formalisms. The functionalization with S atoms induces an increase of both ionization energies and electron affinities, a sizable reduction of the fundamental electronic gap, and a redshift of the optical absorption onset. Notably, the intensity of the first absorption peak of HTP falling in the visible region is found to be nearly tripled with respect to the pure PNT molecule. For the crystal structures, pseudopotential calculations are adopted using a plane-wave basis set together with the Perdew-Burke-Ernzerhof exchange-correlation functional empirically corrected in order to take dispersive interactions into account. The electronic excitations are also obtained within a perturbative B3LYP scheme. A comparative analysis is carried out between the ground-state and excited-state properties of crystalline HTP and PNT linking to the findings obtained for the isolated molecules.
Introducing various ligands into superhalogen anions reduces their electronic stabilities
NASA Astrophysics Data System (ADS)
Smuczyńska, Sylwia; Skurski, Piotr
2008-02-01
The vertical electron detachment energies (VDE) of six NaX2- anions (where X = F, Cl, Br) were calculated at the OVGF level with the 6-311++G(3df) basis sets. In all the cases studied the VDE exceeds the electron affinity of chlorine atom and thus those species were classified as superhalogen anions. The largest vertical binding energy was found for the NaF2- system (6.644 eV). The strong VDE dependence on the ligand type, ligand-central atom distance, and the character of the highest occupied molecular orbital (HOMO) was observed and discussed.
NASA Astrophysics Data System (ADS)
Moral, Mónica; García, Gregorio; Peñas, Antonio; Garzón, Andrés; Granadino-Roldán, José M.; Melguizo, Manuel; Fernández-Gómez, Manuel
2012-10-01
This work presents a theoretical and spectroscopic study on the electronic and structural properties of the diphenyl-s-tetrazine molecule (Ph2Tz) and some oligomeric derivatives. Ph2Tz was synthesized through a variation of Pinner-type reaction which uses N-acetylcysteine as catalyst. Insight into the structure and electronic properties of the title compound was obtained through IR, Raman, UV-Vis spectra in different solvents, and theoretical calculations. Theoretical studies have been extended to different n-mers derivatives up to an ideal molecular wire through the oligomeric approximation, predicting this way electronic properties such as LUMO energy levels, electron affinity and reorganization energy in order to assess their possible applications in molecular electronics.
NASA Astrophysics Data System (ADS)
Freel, Keith A.
This dissertation is composed of three sections. The first deals with the electronic spectroscopy of combustion intermediates that are related to the formation of polycyclic aromatic hydrocarbons. Absorption spectra for phenyl, phenoxy, benzyl, and phenyl peroxy radicals were recorded using the technique of cavity ring-down spectroscopy. When possible, molecular constants, vibrational frequencies, and excited state lifetimes for these radicals were derived from these data. The results were supported by theoretical predictions. The second section presents a study of electron attachment to chlorine azide (ClN3) using a flowing-afterglow Langmuir-probe apparatus. Electron attachment rates were measured to be 3.5x10-8 and 4.5x10-8 cm3s-1 at 298 and 400 K respectively. The reactions of ClN3 with eighteen cations and seventeen anions were characterized. Rate constants were measured using a selected ion flow tube. The ionization energy (>9.6eV), proton affinity (713+/-41 kJ mol-1), and electron affinity (2.48+/-0.2 eV) for ClN 3 were determined from these data. The third section demonstrates the use of double resonance spectroscopy to observe state-selected rovibrational energy transfer from the first overtone asymmetric stretch of acetylene. The total population removal rate constants from various rotational levels of the (1,0,1,00,00) vibrational state were determined to be in the range of (9-17) x 10 -10 cm3s-1. Rotational energy transfer accounted for approximately 90% of the total removal rate from each state. Therefore, the upper limit of vibrational energy transfer from the (1,0,1,0 0,00) state was 10%.
On the electron affinities of the Ca, Sc, Ti and Y atoms
NASA Technical Reports Server (NTRS)
Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Taylor, Peter R.
1988-01-01
For the Ca, Sc, Ti and Y atoms calculations are performed for the ground states of the neutrals and the ground and several low-lying excited states of the negative ions. Overall the computed electron affinities are in good accord with experiment. The calculations show the rapid stabilization of the 3d orbital relative to the 4p as the nuclear charge increases. The 3F(0) and 3D(0) terms are found to be close in energy in Sc(-) and in Y(-). This confirms earlier speculation that some of the peaks in the photodetachment spectra of Y(-) originate from the bound excited 3F(0) term of Y(-).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beste, Ariana; Vazquez-Mayagoitia, Alvaro; Ortiz, J. Vincent
2013-01-01
A direct method (D-Delta-MBPT(2)) to calculate second-order ionization potentials (IPs), electron affinities (EAs), and excitation energies is developed. The Delta-MBPT(2) method is defined as the correlated extension of the Delta-HF method. Energy differences are obtained by integrating the energy derivative with respect to occupation numbers over the appropriate parameter range. This is made possible by writing the second-order energy as a function of the occupation numbers. Relaxation effects are fully included at the SCF level. This is in contrast to linear response theory, which makes the D-Delta-MBPT(2) applicable not only to single excited but also higher excited states. We showmore » the relationship of the D-Delta-MBPT(2) method for IPs and EAs to a second-order approximation of the effective Fock-space coupled-cluster Hamiltonian and a second-order electron propagator method. We also discuss the connection between the D-Delta-MBPT(2) method for excitation energies and the CIS-MP2 method. Finally, as a proof of principle, we apply our method to calculate ionization potentials and excitation energies of some small molecules. For IPs, the Delta-MBPT(2) results compare well to the second-order solution of the Dyson equation. For excitation energies, the deviation from EOM-CCSD increases when correlation becomes more important. When using the numerical integration technique, we encounter difficulties that prevented us from reaching the Delta-MBPT(2) values. Most importantly, relaxation beyond the Hartree Fock level is significant and needs to be included in future research.« less
NASA Astrophysics Data System (ADS)
Volonakis, George; Giustino, Feliciano
2018-06-01
Halide double perovskites based on combinations of monovalent and trivalent cations have been proposed as promising lead-free alternatives to lead halide perovskites. Among the newly synthesized compounds Cs2BiAgCl6, Cs2BiAgBr6, Cs2SbAgCl6, and Cs2InAgCl6, some exhibit bandgaps in the visible range and all have low carrier effective masses; therefore, these materials constitute potential candidates for various opto-electronic applications. Here, we use first-principles calculations to investigate the electronic properties of the surfaces of these four compounds and determine, for the first time, their ionization potential and electron affinity. We find that the double perovskites Cs2BiAgCl6 and Cs2BiAgBr6 are potentially promising materials for photo-catalytic water splitting, while Cs2InAgCl6 and Cs2SbAgCl6 would require controlling their surface termination to obtain energy levels appropriate for water splitting. The energy of the halogen p orbitals is found to control the conduction band level; therefore, we propose that mixed halides could be used to fine-tune the electronic affinity.
2007-02-28
these pulses was uniform. Dependence of the energy contribution on pressure is showed in the Figure 3.5. It is clearly seen that for the pressure of...note that water–ions kinetics is more important than kinetics of initial substances– ions because water has higher proton affinity energy than... pulsed discharge. 4.3.2 Kinetic model To calculate the densities of active particles, one has to determine electron energy dis- tribution function (EEDF
The electron affinity of Al13H cluster: high level ab initio study
NASA Astrophysics Data System (ADS)
Moc, Jerzy
2014-11-01
Al13H clusters have been considered candidates for cluster assembled materials. Here we have carried out benchmark calculations for the Al13H cluster, both neutral and anionic, with the aim of verifying the nature of stationary points on the potential energy surface, studying dynamics of H atom and determining an adiabatic electron affinity. A range of correlated methods applied include second-order perturbation theory (MP2), spin-component-scaled MP2, coupled electron pair (CEPA) and coupled cluster singles and doubles with perturbative triple corrections (CCSD(T)). These methods are used in combination with the correlation consistent basis sets through aug-cc-pVTZ including extrapolation to the complete basis set (CBS) limit. Performance of several different flavours of density functional theory (DFT) such as generalised gradient approximation (GGA), hybrid GGA, meta-GGA and hybrid-meta-GGA is assessed with respect to the ab initio correlated reference data. The harmonic force constant analysis is systematically performed with the MP2 and DFT methods. The MP2 results show that for neutral Al13H only the hollow structure is a potential energy minimum, with the bridged structure being a transition state for the H shift from the hollow site to the adjacent hollow site. The CCSD(T)/aug-cc-pVTZ (CCSD(T)/CBS) estimate of the energy barrier to this H shift is 2.6 (2.9) kcal/mol, implying that the H atom movement over the Al13H cluster surface is facile. By contrast, the DFT force constant analysis results suggest additional terminal and bridged minima structures. For the anion Al13H-, exhibiting 'stiffer' potential energy surface compared to the neutral, the existence of the hollow and terminal isomers is consistent with the earlier photoelectron spectroscopy assignment. The adiabatic electron affinity of Al13H is determined to be 2.00 and 1.95 eV (the latter including the ΔZPE correction) based on the CCSD(T) energies extrapolated to the CBS limit, whereas the respective CCSD(T)/CBS thermodynamic EA values are 2.79 and 2.80 eV.
A study of planar anchor groups for graphene-based single-molecule electronics.
Bailey, Steven; Visontai, David; Lambert, Colin J; Bryce, Martin R; Frampton, Harry; Chappell, David
2014-02-07
To identify families of stable planar anchor groups for use in single molecule electronics, we report detailed results for the binding energies of two families of anthracene and pyrene derivatives adsorbed onto graphene. We find that all the selected derivatives functionalized with either electron donating or electron accepting substituents bind more strongly to graphene than the parent non-functionalized anthracene or pyrene. The binding energy is sensitive to the detailed atomic alignment of substituent groups over the graphene substrate leading to larger than expected binding energies for -OH and -CN derivatives. Furthermore, the ordering of the binding energies within the anthracene and pyrene series does not simply follow the electron affinities of the substituents. Energy barriers to rotation or displacement on the graphene surface are much lower than binding energies for adsorption and therefore at room temperature, although the molecules are bound to the graphene, they are almost free to move along the graphene surface. Binding energies can be increased by incorporating electrically inert side chains and are sensitive to the conformation of such chains.
A study of planar anchor groups for graphene-based single-molecule electronics
NASA Astrophysics Data System (ADS)
Bailey, Steven; Visontai, David; Lambert, Colin J.; Bryce, Martin R.; Frampton, Harry; Chappell, David
2014-02-01
To identify families of stable planar anchor groups for use in single molecule electronics, we report detailed results for the binding energies of two families of anthracene and pyrene derivatives adsorbed onto graphene. We find that all the selected derivatives functionalized with either electron donating or electron accepting substituents bind more strongly to graphene than the parent non-functionalized anthracene or pyrene. The binding energy is sensitive to the detailed atomic alignment of substituent groups over the graphene substrate leading to larger than expected binding energies for -OH and -CN derivatives. Furthermore, the ordering of the binding energies within the anthracene and pyrene series does not simply follow the electron affinities of the substituents. Energy barriers to rotation or displacement on the graphene surface are much lower than binding energies for adsorption and therefore at room temperature, although the molecules are bound to the graphene, they are almost free to move along the graphene surface. Binding energies can be increased by incorporating electrically inert side chains and are sensitive to the conformation of such chains.
Heavy atom vibrational modes and low-energy vibrational autodetachment in nitromethane anions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thompson, Michael C.; Weber, J. Mathias, E-mail: weberjm@jila.colorado.edu; Department of Chemistry and Biochemistry, University of Colorado at Boulder, 215UCB, Boulder, Colorado 80309-0215
2015-06-21
We report infrared spectra of nitromethane anion, CH{sub 3}NO{sub 2}{sup −}, in the region 700–2150 cm{sup −1}, obtained by Ar predissociation spectroscopy and electron detachment spectroscopy. The data are interpreted in the framework of second-order vibrational perturbation theory based on coupled-cluster electronic structure calculations. The modes in the spectroscopic region studied here are mainly based on vibrations involving the heavier atoms; this work complements earlier studies on nitromethane anion that focused on the CH stretching region of the spectrum. Electron detachment begins at photon energies far below the adiabatic electron affinity due to thermal population of excited vibrational states.
NASA Astrophysics Data System (ADS)
Djaadi, Soumaia; Eddine Aiadi, Kamal; Mahtout, Sofiane
2018-04-01
The structures, relative stability and magnetic properties of pure Ge n +1, neutral cationic and anionic SnGe n (n = 1–17) clusters have been investigated by using the first principles density functional theory implemented in SIESTA packages. We find that with the increasing of cluster size, the Ge n +1 and SnGe n (0, ±1) clusters tend to adopt compact structures. It has been also found that the Sn atom occupied a peripheral position for SnGe n clusters when n < 12 and occupied a core position for n > 12. The structural and electronic properties such as optimized geometries, fragmentation energy, binding energy per atom, HOMO–LUMO gaps and second-order differences in energy of the pure Ge n +1 and SnGe n clusters in their ground state are calculated and analyzed. All isomers of neutral SnGe n clusters are generally nonmagnetic except for n = 1 and 4, where the total spin magnetic moments is 2μ b. The total (DOS) and partial density of states of these clusters have been calculated to understand the origin of peculiar magnetic properties. The cluster size dependence of vertical ionization potentials, vertical electronic affinities, chemical hardness, adiabatic electron affinities and adiabatic ionization potentials have been calculated and discussed.
Core-core and core-valence correlation energy atomic and molecular benchmarks for Li through Ar
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ranasinghe, Duminda S.; Frisch, Michael J.; Petersson, George A., E-mail: gpetersson@wesleyan.edu
2015-12-07
We have established benchmark core-core, core-valence, and valence-valence absolute coupled-cluster single double (triple) correlation energies (±0.1%) for 210 species covering the first- and second-rows of the periodic table. These species provide 194 energy differences (±0.03 mE{sub h}) including ionization potentials, electron affinities, and total atomization energies. These results can be used for calibration of less expensive methodologies for practical routine determination of core-core and core-valence correlation energies.
Neutral and charged excitations in carbon fullerenes from first-principles many-body theories
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tiago, Murilo L; Kent, Paul R; Hood, Randolph Q.
2008-01-01
We use first-principles many-body theories to investigate the low energy excitations of the carbon fullerenes C_20, C_24, C_50, C_60, C_70, and C_80. Properties are calculated via the GW-Bethe-Salpeter Equation (GW-BSE) and diffusion Quantum Monte Carlo (QMC) methods. At a lower level of theoretical complexity, we also calculate these properties using static and time-dependent density-functional theory. We critically compare these theories and assess their accuracy against available experimental data. The first ionization potentials are consistently well reproduced and are similar for all the fullerenes and methods studied. The electron affinities and first triplet excitation energies show substantial method and geometry dependence.more » Compared to available experiment, GW-BSE underestimates excitation energies by approximately 0.3 eV while QMC overestimates them by approximately 0.5 eV. We show the GW-BSE errors result primarily from a systematic overestimation of the electron affinities, while the QMC errors likely result from nodal error in both ground and excited state calculations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mazurkiewicz, Kamil; Haranczyk, Maciej; Gutowski, Maciej S.
The electron affinity and the propensity to electron-induced proton transfer (PT) of hydrogen-bonded complexes between the Watson–Crick adenine–thymine pair (AT) and simple organic acid (HX), attached to adenine in the Hoogsteen-type configuration, were studied at the B3LYP/6-31+G** level. Although the carboxyl group is deprotonated at physiological pH, its neutral form, COOH, resembles the peptide bond or the amide fragment in the side chain of asparagine (Asn) or glutamine (Gln). Thus, these complexes mimic the interaction between the DNA environment (e.g., proteins) and nucleobase pairs incorporated in the biopolymer. Electron attachment is thermodynamically feasible and adiabatic electron affinities range from 0.41more » to 1.28 eV, while the vertical detachment energies of the resulting anions span the range of 0.39 –2.88 eV. Low-energy activation barriers separate the anionic minima: aHX(AT) from the more stable single-PT anionic geometry, aHX(AT)-SPT, and aHX(AT)-SPT from the double-PT anionic geometry, aHX(AT)-DPT. Interaction between the adenine of the Watson–Crick AT base pair with an acidic proton donor probably counterbalances the larger EA of isolated thymine, as SOMO is almost evenly delocalized over both types of nucleic bases in the aHX(AT) anions. Moreover, as a result of PT the excess electron localizes entirely on adenine. Thus, in DNA interacting with its physiological environment, damage induced by low-energy electrons could begin, contrary to the current view, with the formation of purine anions, which are not formed in isolated DNA because of the greater stability of anionic pyrimidines.« less
NASA Astrophysics Data System (ADS)
Ohta, Akio; Truyen, Nguyen Xuan; Fujimura, Nobuyuki; Ikeda, Mitsuhisa; Makihara, Katsunori; Miyazaki, Seiichi
2018-06-01
The energy distribution of the electronic state density of wet-cleaned epitaxial GaN surfaces and SiO2/GaN structures has been studied by total photoelectron yield spectroscopy (PYS). By X-ray photoelectron spectroscopy (XPS) analysis, the energy band diagram for a wet-cleaned epitaxial GaN surface such as the energy level of the valence band top and electron affinity has been determined to obtain a better understanding of the measured PYS signals. The electronic state density of GaN surface with different carrier concentrations in the energy region corresponding to the GaN bandgap has been evaluated. Also, the interface defect state density of SiO2/GaN structures was also estimated by not only PYS analysis but also capacitance–voltage (C–V) characteristics. We have demonstrated that PYS analysis enables the evaluation of defect state density filled with electrons at the SiO2/GaN interface in the energy region corresponding to the GaN midgap, which is difficult to estimate by C–V measurement of MOS capacitors.
Opoku, Francis; Kuben Govender, Krishna; van Sittert, Cornelia Gertina Catharina Elizabeth; Poomani Govender, Penny
2017-10-25
In the 21st century, the growing demand of global energy is one of the key challenges. The photocatalytic generation of hydrogen has attracted extensive attention to discuss the increasing global demand for sustainable and clean energy. However, hydrogen evolution reactions normally use the economically expensive rare noble metals and the processes remain a challenge. Herein, low-cost BiNbO 4 /MWO 4 (010) heterostructures are studied for the first time to check their suitability towards photocatalytic hydrogen production. A theoretical study with the aid of density functional theory (DFT) is used to investigate the synergistic effect, ionisation energy, electron affinities, charge transfer, electronic properties and the underlying mechanism for hydrogen generation of BiNbO 4 /MWO 4 (010) heterostructures. The experimental band gaps of bulk ZnWO 4 , CdWO 4 and BiNbO 4 are well reproduced using the DFT+U method. The calculated band edge position shows a type-II staggered band alignment and the charge transfer between BiNbO 4 and MWO 4 monolayers results in a large interfacial built-in potential, which will favour the separation of charge carriers in the heterostructures. The effective mass of the photoinduced holes is higher compared to the electrons, making the heterostructures useful in hydrogen production. The relatively low ionisation energy and electron affinity for the heterostructures compared to the monolayers make them ideal for photocatalysis applications due to their small energy barrier for the injection of electrons and creation of holes. The BiNbO 4 /MWO 4 (010) heterostructures are more suitable for photocatalytic hydrogen production due to their strong reducing power relative to the H + /H 2 O potential. This study sheds light on the less known BiNbO 4 /ZnWO 4 (010) heterostructures and the fully explored electronic and optical properties will pave way for future photocatalytic water splitting applications.
Chen, Edward S; Chen, Edward C M
2018-02-15
The anion mass spectral lifetimes for several aromatic hydrocarbons reported in the subject article were related to significantly different electron affinities. The different values are rationalized using negative ion mass spectral data. Electron affinities for polycyclic aromatic hydrocarbons are reported from the temperature dependence of unpublished electron capture detector data. These are compared with published values and the largest values are assigned to the ground state. The ground state adiabatic electron affinities: (eV) pentacene, 1.41 (3); tetracene, 1.058 (5); benz(a)pyrene, 0.82 (4); benz(a) anthracene, 0.69 (2) anthracene, 0.68 (2); and pyrene, 0.59 (1) are used to assign excited state adiabatic electron affinities: (eV) tetracene: 0.88 (4); anthracene 0.53 (1); pyrene, 0.41 (1); benz(a)anthracene, 0.39 (10); chrysene, 0.32 (1); and phenanthrene, 0.12 (2) and ground state adiabatic electron affinities: (eV) dibenz(a,j)anthracene, 0.69 (3); dibenz(a,h)anthracene, 0.68 (3); benz(e)pyrene, 0.60 (3); and picene, 0.59 (3) from experimental data. The lifetime of benz(a)pyrene is predicted to be larger than 150 μs and for benzo(c)phenanthrene and picene about 40 μs, from ground state adiabatic electron affinities. The assignments of adiabatic electron affinities of aromatic hydrocarbons determined from electron capture detector and mass spectrometric data to ground and excited states are supported by constant electronegativities. A set of consistent ground state adiabatic electron affinities for 15 polycyclic aromatic hydrocarbons is related to lifetimes from the subject article. Copyright © 2017 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Huang, Bing; von Lilienfeld, O. Anatole
2016-10-01
The predictive accuracy of Machine Learning (ML) models of molecular properties depends on the choice of the molecular representation. Inspired by the postulates of quantum mechanics, we introduce a hierarchy of representations which meet uniqueness and target similarity criteria. To systematically control target similarity, we simply rely on interatomic many body expansions, as implemented in universal force-fields, including Bonding, Angular (BA), and higher order terms. Addition of higher order contributions systematically increases similarity to the true potential energy and predictive accuracy of the resulting ML models. We report numerical evidence for the performance of BAML models trained on molecular properties pre-calculated at electron-correlated and density functional theory level of theory for thousands of small organic molecules. Properties studied include enthalpies and free energies of atomization, heat capacity, zero-point vibrational energies, dipole-moment, polarizability, HOMO/LUMO energies and gap, ionization potential, electron affinity, and electronic excitations. After training, BAML predicts energies or electronic properties of out-of-sample molecules with unprecedented accuracy and speed.
Calculations with the quasirelativistic local-spin-density-functional theory for high-Z atoms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Y.; Whitehead, M.A.
1988-10-01
The generalized-exchange local-spin-density-functional theory (LSD-GX) with relativistic corrections of the mass velocity and Darwin terms has been used to calculate statistical total energies for the neutral atoms, the positive ions, and the negative ions for high-Z elements. The effect of the correlation and relaxation correction on the statistical total energy is discussed. Comparing the calculated results for the ionization potentials and electron affinities for the atoms (atomic number Z from 37 to 56 and 72 to 80) with experiment, shows that for the atoms rubidium to barium both the LSD-GX and the quasirelativistic LSD-GX, with self-interaction correction, Gopinathan, Whitehead, andmore » Bogdanovic's Fermi-hole parameters (Phys. Rev. A 14, 1 (1976)), and Vosko, Wilk, and Nusair's correlation correction (Can. J. Phys. 58, 1200 (1980)), are very good methods for calculating ionization potentials and electron affinities. For the atoms hafnium to mercury the relativistic effect has to be considered.« less
NASA Astrophysics Data System (ADS)
Kinjo, Hiroumi; Lim, Hyunsoo; Sato, Tomoya; Noguchi, Yutaka; Nakayama, Yasuo; Ishii, Hisao
2016-02-01
Tris(8-hydroxyquinoline)aluminum (Alq3) has been widely applied as a good electron-injecting layer (EIL) in organic light-emitting diodes. High-sensitivity photoemission measurement revealed a clear photoemission by visible light, although its ionization energy is 5.7 eV. This unusual photoemission is ascribed to Alq3 anions captured by positive polarization charges. The observed electron detachment energy of the anion was about 1 eV larger than the electron affinity reported by inverse photoemission. This difference suggests that the injected electron in the Alq3 layer is energetically relaxed, leading to the reduction in injection barrier. This nature is one of the reasons why Alq3 worked well as the EIL.
Differential Mobility Spectrometry: Preliminary Findings on Determination of Fundamental Constants
NASA Technical Reports Server (NTRS)
Limero, Thomas; Cheng, Patti; Boyd, John
2007-01-01
The electron capture detector (ECD) has been used for 40+ years (1) to derive fundamental constants such as a compound's electron affinity. Given this historical perspective, it is not surprising that differential mobility spectrometry (DMS) might be used in a like manner. This paper will present data from a gas chromatography (GC)-DMS instrument that illustrates the potential capability of this device to derive fundamental constants for electron-capturing compounds. Potential energy curves will be used to provide possible explanation of the data.
Observation of Thermal Electron Detachment from Cyclo-C4F8 in FALP experiments
1994-01-01
Maxwell- Boltzmann distri- electron affinity of C6 F6 was thought to be in bution of internal energy among the cyclo- the neighborhood of 1 eV, but...is not known but may be unimolecular rate for thermal electron detach- estimated as 0.63 eV from the results of the ment from C 6 F6 in the...delivery via SAL (Surface Air Lift) mail is ensured: Argentina, Australia, Brazil, Canada, Horg Kong, India, Israel, Japan, Malaysia , Mexico, New
Tuppurainen, Kari; Viisas, Marja; Laatikainen, Reino; Peräkylä, Mikael
2002-01-01
A novel electronic eigenvalue (EEVA) descriptor of molecular structure for use in the derivation of predictive QSAR/QSPR models is described. Like other spectroscopic QSAR/QSPR descriptors, EEVA is also invariant as to the alignment of the structures concerned. Its performance was tested with respect to the CBG (corticosteroid binding globulin) affinity of 31 benchmark steroids. It appeared that the electronic structure of the steroids, i.e., the "spectra" derived from molecular orbital energies, is directly related to the CBG binding affinities. The predictive ability of EEVA is compared to other QSAR approaches, and its performance is discussed in the context of the Hammett equation. The good performance of EEVA is an indication of the essential quantum mechanical nature of QSAR. The EEVA method is a supplement to conventional 3D QSAR methods, which employ fields or surface properties derived from Coulombic and van der Waals interactions.
Structure, electronic and magnetic properties of Mn{sub n} (n=2-8) clusters: A DFT investigation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Vipin; Roy, Debesh R., E-mail: drr@ashd.svnit.ac.in
2016-05-06
A detail studyon the stability, electronic and magnetic properties of Mn{sub n} (n=2-8) cluster series is performed under the utilization ofdensity functional theory (DFT). The binding energy (B.E.), HOMO-LUMO energy gap (HLG), chemical hardness (η), ionization potential (I.P.), electron affinity (E.A)and electronegativity (χ) of these clusters are predicted. We have also studied the magnetic moments associated with the stable cluster isomers. The lowest energy structures for each cluster sizes aredetermined with a systematic search imposing all possible initial magnetic configuration on the cluster. All the calculations are carried out using a popular GGA functional PBE as proposed by Pardew, Burkemore » and Ernzerhof and implemented in the VASP program.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Waters, Tom; Huang, Xin; Wang, Xue B.
2006-09-21
Two polyoxometalate Keggin-type anions, a-PM12O403- (M = Mo, W), were transferred to the gas phase by electrospray; their electronic structure and stability were probed by photoelectron spectroscopy. These triply charged anions were found to be highly stable in the gas phase with large adiabatic electron detachment energies of 1.7 and 2.1 eV for M = Mo and W, respectively. The magnitude of the repulsive Coulomb barrier was measured as ~3.4 eV for both anions, providing an experimental estimate for the intramolecular Coulomb repulsion present in these highly charged anions. Density functional theory calculations were carried out and compared with themore » experimental data, providing insight into the electronic structure and valence molecular orbitals of the two Keggin anions. The calculations indicated that the highest occupied molecular orbital and other frontier orbitals for PM12O403- are localized primarily on the u2-oxo bridging ligands of the polyoxometalate framework, consistent with the reactivity on the u2-oxo sites observed in solution. It was shown that the HOMO of PW12O403- is stabilized relative to that of PMo12O403- by ~0.35 eV. The experimental adiabatic electron detachment energies of PM12O403- (i.e., the electron affinities of PM12O402-) are combined with recent calculations on the proton affinity of PM12O403- to yield O-H bond dissociation energies in PM12O39(OH)2- as ~5.1 eV« less
Electron affinity and excited states of methylglyoxal
NASA Astrophysics Data System (ADS)
Dauletyarov, Yerbolat; Dixon, Andrew R.; Wallace, Adam A.; Sanov, Andrei
2017-07-01
Using photoelectron imaging spectroscopy, we characterized the anion of methylglyoxal (X2A″ electronic state) and three lowest electronic states of the neutral methylglyoxal molecule: the closed-shell singlet ground state (X1A'), the lowest triplet state (a3A″), and the open-shell singlet state (A1A″). The adiabatic electron affinity (EA) of the ground state, EA(X1A') = 0.87(1) eV, spectroscopically determined for the first time, compares to 1.10(2) eV for unsubstituted glyoxal. The EAs (adiabatic attachment energies) of two excited states of methylglyoxal were also determined: EA(a3A″) = 3.27(2) eV and EA(A1A″) = 3.614(9) eV. The photodetachment of the anion to each of these two states produces the neutral species near the respective structural equilibria; hence, the a3A″ ← X2A″ and A1A″ ← X2A″ photodetachment transitions are dominated by intense peaks at their respective origins. The lowest-energy photodetachment transition, on the other hand, involves significant geometry relaxation in the X1A' state, which corresponds to a 60° internal rotation of the methyl group, compared to the anion structure. Accordingly, the X1A' ← X2A″ transition is characterized as a broad, congested band, whose vertical detachment energy, VDE = 1.20(4) eV, significantly exceeds the adiabatic EA. The experimental results are in excellent agreement with the ab initio predictions using several equation-of-motion methodologies, combined with coupled-cluster theory.
NASA Astrophysics Data System (ADS)
Ortiz, J. V.
1987-05-01
Electron propagator theory (EPT) is applied to calculating vertical ionization energies of the anions F -, Cl -, OH -,SH -, NH 2-, PH 2- and CN -. Third-order and outer valence approximation (OVA) quasiparticle calculations are compared with ΔMBPT(4) (MBPT, many-body perturbation theory) results using the same basis sets. Agreement with experiment is satisfactory for EPT calculations except for F - and OH -, while the ΔMBPT treatments fail for CN -. EPT(OVA) estimates are reliable when the discrepancy between second- and third-order results is small. Computational aspects are discussed, showing relative merits of direct and indirect methods for evaluating electron binding energies.
Shell effect on the electron and hole reorganization energy of core-shell II-VI nanoclusters
NASA Astrophysics Data System (ADS)
Cui, Xianhui; Wang, Xinqin; Yang, Fang; Cui, Yingqi; Yang, Mingli
2017-09-01
Density functional theory calculations were performed to study the effect of shell encapsulation on the geometrical and electronic properties of pure and hybrid core-shell CdSe nanoclusters. The CdSe cores are distorted by the shells, and the shells exhibit distinct surface activity from the cores, which leads to remarkable changes in their electron transition behaviors. Although the electron and hole reorganization energies, which are related to the formation and recombination of electron-hole pairs, vary in a complicated way, their itemized contributions, potentials of electron extraction, ionization and affinity, and hole extraction (HEP), are dependent on the cluster size, shell composition and/or solvent. Our calculations suggest that the behaviors of charge carriers, free electrons and holes, in the semiconductor core-shell nanoclusters can be modulated by selecting appropriate cluster size and controlling the chemical composition of the shells.
Morrison, Robert C
2015-01-07
Accurate densities were determined from configuration interaction wave functions for atoms and ions of Li, Be, and B with up to four electrons. Exchange-correlation potentials, Vxc(r), and functional derivatives of the noninteracting kinetic energy, δK[ρ]/δρ(r), obtained from these densities were used to examine their discontinuities as the number of electrons N increases across integer boundaries for N = 1, N = 2, and N = 3. These numerical results are consistent with conclusions that the discontinuities are characterized by a jump in the chemical potential while the shape of Vxc(r) varies continuously as an integer boundary is crossed. The discontinuity of the Vxc(r) is positive, depends on the ionization potential, electron affinity, and orbital energy differences, and the discontinuity in δK[ρ]/δρ(r) depends on the difference between the energies of the highest occupied and lowest unoccupied orbitals. The noninteracting kinetic energy and the exchange correlation energy have been computed for integer and noninteger values of N between 1 and 4.
Driving force and nucleophilicity in SN2 displacements
Streitwieser, Andrew
1985-01-01
The free energies of activation for reaction of six anionic nucleophiles with methyl iodide in dimethylformamide correlate linearly with the overall heats of reaction in the gas phase. The result indicates that nucleophilicity in this SN2 displacement reaction is dominated by electron affinity and bond-strength effects. PMID:16593634
Pandith, Altaf Hussain; Islam, Nasarul
2014-01-01
A comprehensive theoretical study was carried out on a series of aryldimesityl borane (DMB) derivatives using Density Functional theory. Optimized geometries and electronic parameters like electron affinity, reorganization energy, frontiers molecular contours, polarizability and hyperpolarizability have been calculated by employing B3PW91/6-311++G (d, p) level of theory. Our results show that the Hammett function and geometrical parameters correlates well with the reorganization energies and hyperpolarizability for the series of DMB derivatives studied in this work. The orbital energy study reveals that the electron releasing substituents increase the LUMO energies and electron withdrawing substituents decrease the LUMO energies, reflecting the electron transport character of aryldimesityl borane derivatives. From frontier molecular orbitals diagram it is evident that mesityl rings act as the donor, while the phenylene and Boron atom appear as acceptors in these systems. The calculated hyperpolarizability of secondary amine derivative of DMB is 40 times higher than DMB (1). The electronic excitation contributions to the hyperpolarizability studied by using TDDFT calculation shows that hyperpolarizability correlates well with dipole moment in ground and excited state and excitation energy in terms of the two-level model. Thus the results of these calculations can be helpful in designing the DMB derivatives for efficient electron transport and nonlinear optical material by appropriate substitution with electron releasing or withdrawing substituents on phenyl ring of DMB system. PMID:25479382
The 6-31B(d) basis set and the BMC-QCISD and BMC-CCSD multicoefficient correlation methods.
Lynch, Benjamin J; Zhao, Yan; Truhlar, Donald G
2005-03-03
Three new multicoefficient correlation methods (MCCMs) called BMC-QCISD, BMC-CCSD, and BMC-CCSD-C are optimized against 274 data that include atomization energies, electron affinities, ionization potentials, and reaction barrier heights. A new basis set called 6-31B(d) is developed and used as part of the new methods. BMC-QCISD has mean unsigned errors in calculating atomization energies per bond and barrier heights of 0.49 and 0.80 kcal/mol, respectively. BMC-CCSD has mean unsigned errors of 0.42 and 0.71 kcal/mol for the same two quantities. BMC-CCSD-C is an equally effective variant of BMC-CCSD that employs Cartesian rather than spherical harmonic basis sets. The mean unsigned error of BMC-CCSD or BMC-CCSD-C for atomization energies, barrier heights, ionization potentials, and electron affinities is 22% lower than G3SX(MP2) at an order of magnitude less cost for gradients for molecules with 9-13 atoms, and it scales better (N6 vs N,7 where N is the number of atoms) when the size of the molecule is increased.
Bolt-on source of spin-polarized electrons for inverse photoemission
NASA Astrophysics Data System (ADS)
Schedin, Fredrik; Warburton, Ranald; Thornton, Geoff
1998-06-01
We have developed a portable spin-polarized electron gun which can be bolted on to an ultrahigh vacuum chamber. The gun has been successfully operated with an electron gun to target distance of about 150 mm. This allows accommodation of other surface science equipment in the same vacuum system. The spin-polarized electrons are obtained via photoemission from a negative electron affinity GaAs(001) surface with circularly polarized light. A transversely polarized beam is achieved with a 90° electrostatic deflector. A set of two three-element electrostatic tube lenses are employed to transport and to focus the electrons onto a target. The measured transmission through the electron optics is >70% for electron energies in the range 7-20 eV. This is achieved by using large diameter electron transport lenses. The energy resolution of the electron beam is measured to be better than 0.27 eV and the polarization is determined to be 25±5%.
Photoelectron spectroscopy of nitromethane anion clusters
NASA Astrophysics Data System (ADS)
Pruitt, Carrie Jo M.; Albury, Rachael M.; Goebbert, Daniel J.
2016-08-01
Nitromethane anion and nitromethane dimer, trimer, and hydrated cluster anions were studied by photoelectron spectroscopy. Vertical detachment energies, estimated electron affinities, and solvation energies were obtained from the photoelectron spectra. Cluster structures were investigated using theoretical calculations. Predicted detachment energies agreed with experiment. Calculations show water binds to nitromethane anion through two hydrogen bonds. The dimer has a non-linear structure with a single ionic Csbnd H⋯O hydrogen bond. The trimer has two different solvent interactions, but both involve the weak Csbnd H⋯O hydrogen bond.
Towards an exact correlated orbital theory for electrons
NASA Astrophysics Data System (ADS)
Bartlett, Rodney J.
2009-12-01
The formal and computational attraction of effective one-particle theories like Hartree-Fock and density functional theory raise the question of how far such approaches can be taken to offer exact results for selected properties of electrons in atoms, molecules, and solids. Some properties can be exactly described within an effective one-particle theory, like principal ionization potentials and electron affinities. This fact can be used to develop equations for a correlated orbital theory (COT) that guarantees a correct one-particle energy spectrum. They are built upon a coupled-cluster based frequency independent self-energy operator presented here, which distinguishes the approach from Dyson theory. The COT also offers an alternative to Kohn-Sham density functional theory (DFT), whose objective is to represent the electronic density exactly as a single determinant, while paying less attention to the energy spectrum. For any estimate of two-electron terms COT offers a litmus test of its accuracy for principal Ip's and Ea's. This feature for approximating the COT equations is illustrated numerically.
Resonance electron attachment to plant hormones and its likely connection with biochemical processes
NASA Astrophysics Data System (ADS)
Pshenichnyuk, Stanislav A.; Modelli, Alberto
2014-01-01
Gas-phase formation of temporary negative ion states via resonance attachment of low-energy (0-6 eV) electrons into vacant molecular orbitals of salicylic acid (I) and its derivatives 3-hydroxy- (II) and 4-hydroxybenzoic acid (III), 5-cloro salicylic acid (IV) and methyl salicylate (V) was investigated for the first time by electron transmission spectroscopy. The description of their empty-level structures was supported by density functional theory and Hartree-Fock calculations, using empirically calibrated linear equations to scale the calculated virtual orbital energies. Dissociative electron attachment spectroscopy (DEAS) was used to measure the fragment anion yields generated through dissociative decay channels of the parent molecular anions of compounds I-V, detected with a mass filter as a function of the incident electron energy in the 0-14 eV energy range. The most intense negative fragment produced by DEA to isomers I-III is the dehydrogenated molecular anion [M-H]-, mainly formed at incident electron energies around 1 eV. The vertical and adiabatic electron affinities were evaluated at the B3LYP/6-31+G(d) level as the anion/neutral total energy difference. The same theoretical method was also used for evaluation of the thermodynamic energy thresholds for production of the negative fragments observed in the DEA spectra. The gas-phase DEAS data can provide support for biochemical reaction mechanisms in vivo.
Sai, Linwei; Tang, Lingli; Zhao, Jijun; Wang, Jun; Kumar, Vijay
2011-11-14
The ground state structures of neutral and anionic clusters of Na(n)Si(m) (1 ≤ n ≤ 3, 1 ≤ m ≤ 11) have been determined using genetic algorithm incorporated in first principles total energy code. The size dependence of the structural and electronic properties is discussed in detail. It is found that the lowest-energy structures of Na(n)Si(m) clusters resemble those of the pure Si clusters. Interestingly, Na atoms in neutral Na(n)Si(m) clusters are usually well separated by the Si(m) skeleton, whereas Na atoms can form Na-Na bonds in some anionic clusters. The ionization potentials, adiabatic electron affinities, and photoelectron spectra are also calculated and the results compare well with the experimental data. © 2011 American Institute of Physics
NASA Astrophysics Data System (ADS)
Bewicz, Anna; Musiał, Monika; Kucharski, Stanisław A.
2017-11-01
The equation-of-motion coupled-cluster method for electron affinity calculations has been used to study potential energy curves (PECs) for the Na+2 molecular ion. Although the studied molecule represents the open shell system the applied approach employs the closed shell Na+ 22 ion as the reference. In addition the Na+ 22 system dissociates into the closed shell fragments; hence, the restricted Hartree-Fock scheme can be used within the whole range of interatomic distances, from 2 to 45 Å. We used large basis set engaging 268 basis functions with all 21 electrons correlated. The relativistic effects are included via second-order Douglas-Kroll method. The computed PECs, spectroscopic molecular constants and vibrational energy levels agree well with experimental values if the latter are available or with other theoretical data.
NASA Astrophysics Data System (ADS)
Divya, A.; Mathavan, T.; Asath, R. Mohamed; Archana, J.; Hayakawa, Y.; Benial, A. Milton Franklin
2016-05-01
A series of strontium oxide functionalized graphene nanoflakes were designed and their optoelectronic properties were studied for enhanced photocatalytic activity. The efficiency of designed molecules was studied using various parameters such as HOMO-LUMO energy gap, light harvesting efficiency and exciton binding energy. The computed results show that by increasing the degree of functionalization of strontium oxide leads to lowering the band gap of hydrogen terminated graphene nanoflakes. Furthermore, the study explores the role of strontium oxide functionalization in Frontier Molecular Orbitals, ionization potential, electron affinity, exciton binding energy and light harvesting efficiency of designed molecules. The infrared and Raman spectra were simulated for pure and SrO functionalized graphene nanoflakes. The electron rich and electron deficient regions which are favorable for electrophilic and nucleophilic attacks respectively were analyzed using molecular electrostatic potential surface analysis.
Thermionic Properties of Carbon Based Nanomaterials Produced by Microhollow Cathode PECVD
NASA Technical Reports Server (NTRS)
Haase, John R.; Wolinksy, Jason J.; Bailey, Paul S.; George, Jeffrey A.; Go, David B.
2015-01-01
Thermionic emission is the process in which materials at sufficiently high temperature spontaneously emit electrons. This process occurs when electrons in a material gain sufficient thermal energy from heating to overcome the material's potential barrier, referred to as the work function. For most bulk materials very high temperatures (greater than 1500 K) are needed to produce appreciable emission. Carbon-based nanomaterials have shown significant promise as emission materials because of their low work functions, nanoscale geometry, and negative electron affinity. One method of producing these materials is through the process known as microhollow cathode PECVD. In a microhollow cathode plasma, high energy electrons oscillate at very high energies through the Pendel effect. These high energy electrons create numerous radical species and the technique has been shown to be an effective method of growing carbon based nanomaterials. In this work, we explore the thermionic emission properties of carbon based nanomaterials produced by microhollow cathode PECVD under a variety of synthesis conditions. Initial studies demonstrate measureable current at low temperatures (approximately 800 K) and work functions (approximately 3.3 eV) for these materials.
Designed Proteins as Optimized Oxygen Carriers for Artificial Blood
2013-02-01
to the lower energy for electron transfer when coupled to a proton transfer from water (3). Thus we set out to compare the rate of solvent...binding affinities and reduction potentials are the sole result of differences in internal electric fields in these proteins wrought by the surface...serving as the source of potential energy for the hexa- to penta-coordinate conformational change, and one in which the b-position glutamates from
Carlson, Rebecca K; Li Manni, Giovanni; Sonnenberger, Andrew L; Truhlar, Donald G; Gagliardi, Laura
2015-01-13
Kohn-Sham density functional theory, resting on the representation of the electronic density and kinetic energy by a single Slater determinant, has revolutionized chemistry, but for open-shell systems, the Kohn-Sham Slater determinant has the wrong symmetry properties as compared to an accurate wave function. We have recently proposed a theory, called multiconfiguration pair-density functional theory (MC-PDFT), in which the electronic kinetic energy and classical Coulomb energy are calculated from a multiconfiguration wave function with the correct symmetry properties, and the rest of the energy is calculated from a density functional, called the on-top density functional, that depends on the density and the on-top pair density calculated from this wave function. We also proposed a simple way to approximate the on-top density functional by translation of Kohn-Sham exchange-correlation functionals. The method is much less expensive than other post-SCF methods for calculating the dynamical correlation energy starting with a multiconfiguration self-consistent-field wave function as the reference wave function, and initial tests of the theory were quite encouraging. Here, we provide a broader test of the theory by applying it to bond energies of main-group molecules and transition metal complexes, barrier heights and reaction energies for diverse chemical reactions, proton affinities, and the water dimerization energy. Averaged over 56 data points, the mean unsigned error is 3.2 kcal/mol for MC-PDFT, as compared to 6.9 kcal/mol for Kohn-Sham theory with a comparable density functional. MC-PDFT is more accurate on average than complete active space second-order perturbation theory (CASPT2) for main-group small-molecule bond energies, alkyl bond dissociation energies, transition-metal-ligand bond energies, proton affinities, and the water dimerization energy.
Benzonitrile: Electron affinity, excited states, and anion solvation
NASA Astrophysics Data System (ADS)
Dixon, Andrew R.; Khuseynov, Dmitry; Sanov, Andrei
2015-10-01
We report a negative-ion photoelectron imaging study of benzonitrile and several of its hydrated, oxygenated, and homo-molecularly solvated cluster anions. The photodetachment from the unsolvated benzonitrile anion to the X ˜ 1 A 1 state of the neutral peaks at 58 ± 5 meV. This value is assigned as the vertical detachment energy (VDE) of the valence anion and the upper bound of adiabatic electron affinity (EA) of benzonitrile. The EA of the lowest excited electronic state of benzonitrile, a ˜ 3 A 1 , is determined as 3.41 ± 0.01 eV, corresponding to a 3.35 eV lower bound for the singlet-triplet splitting. The next excited state, the open-shell singlet A ˜ 1 A 1 , is found about an electron-volt above the triplet, with a VDE of 4.45 ± 0.01 eV. These results are in good agreement with ab initio calculations for neutral benzonitrile and its valence anion but do not preclude the existence of a dipole-bound state of similar energy and geometry. The step-wise and cumulative solvation energies of benzonitrile anions by several types of species were determined, including homo-molecular solvation by benzonitrile, hydration by 1-3 waters, oxygenation by 1-3 oxygen molecules, and mixed solvation by various combinations of O2, H2O, and benzonitrile. The plausible structures of the dimer anion of benzonitrile were examined using density functional theory and compared to the experimental observations. It is predicted that the dimer anion favors a stacked geometry capitalizing on the π-π interactions between the two partially charged benzonitrile moieties.
Electrophilic properties of common MALDI matrix molecules
NASA Astrophysics Data System (ADS)
Lippa, T. P.; Eustis, S. N.; Wang, D.; Bowen, K. H.
2007-11-01
The negative ion photoelectron spectra of the following MALDI matrix molecules have been measured: 3-carboxypyridine (nicotinic acid), 2,5-dihydroxybenzoic acid (DHB), 3,5-dimethoxy-4-hydroxycinnamic acid (sinapinic acid), 2,6-dihydroxyacetophenone (DHAP), 3-(4-hydroxy-3-methoxyphenyl)-2-propenoic acid (ferulic acid), 3-hydroxy-2-pyridinecarboxylic acid (3HPA), and 2,6-pyridinedicarboxylic acid (dipicolinic acid). Adiabatic electron affinities and vertical detachment energies were extracted from these spectra and reported. In addition, electron affinities were calculated for DHAP, ferulic acid, dipicolinic acid and sinapinic acid. Photoelectron spectra were also measured for the dimer anions of DHB and nicotinic acid and for the fragment anion in which alpha-cyano-cinnamic acid had lost a CO2 unit. Together, these results augment the database of presently available electrophilic data on common matrix molecules along with some of their dimers and fragments.
Toward the detection of the triatomic negative ion SPN-: Spectroscopy and potential energy surfaces
NASA Astrophysics Data System (ADS)
Trabelsi, Tarek; Hochlaf, Majdi; Francisco, Joseph S.
2018-04-01
High level theoretical calculations using coupled-cluster theory were performed to provide an accurate description of the electronic structure, spectroscopic properties, and stability of the triatomic negative ion comprising S, N, and P. The adiabatic electron affinities (AEAs) and vertical detachment energies (VDEs) of PNS, SPN, PSN, and cyc-PSN were calculated. The predicted AEA and VDE of the linear SPN isomer are large: 2.24 and 3.04 eV, respectively. The potential energy surfaces (PESs) of the lowest-lying electronic states of the SPN- isomer along the PN and SP bond lengths and bond angle were mapped. A set of spectroscopic parameters for SPN-, PNS-, and PSN- in their electronic ground states is obtained from the 3D PESs to help detect these species in the gas phase. The electronic excited state SPN-(12A″) is predicted to be stable with a long lifetime calculated to be 189.7 μs. The formation of SPN- in its electronic ground state through the bimolecular collision between S- + PN and N + PS- is also discussed.
Electron Affinity of trans-2-C4F8 from Electron Attachment-Detachment Kinetics
2009-09-04
0.989, for DFT results. b Hartree units; G3(MP2) formalism and B3LYP/6-31+G(3df)// B3LYP/6-31+G(3df) + ZPE for DFT results. c Difference between the...units; G3(MP2) formalism and B3LYP/6-31+G(3df)// B3LYP/6-31+G(3df) + ZPE for DFT results. c Difference between the anion total energy at 0 K and that
Resonance electron attachment to plant hormones and its likely connection with biochemical processes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pshenichnyuk, Stanislav A., E-mail: sapsh@anrb.ru; Modelli, Alberto
Gas-phase formation of temporary negative ion states via resonance attachment of low-energy (0–6 eV) electrons into vacant molecular orbitals of salicylic acid (I) and its derivatives 3-hydroxy- (II) and 4-hydroxybenzoic acid (III), 5-cloro salicylic acid (IV) and methyl salicylate (V) was investigated for the first time by electron transmission spectroscopy. The description of their empty-level structures was supported by density functional theory and Hartree-Fock calculations, using empirically calibrated linear equations to scale the calculated virtual orbital energies. Dissociative electron attachment spectroscopy (DEAS) was used to measure the fragment anion yields generated through dissociative decay channels of the parent molecular anionsmore » of compounds I–V, detected with a mass filter as a function of the incident electron energy in the 0–14 eV energy range. The most intense negative fragment produced by DEA to isomers I–III is the dehydrogenated molecular anion [M–H]{sup −}, mainly formed at incident electron energies around 1 eV. The vertical and adiabatic electron affinities were evaluated at the B3LYP/6-31+G(d) level as the anion/neutral total energy difference. The same theoretical method was also used for evaluation of the thermodynamic energy thresholds for production of the negative fragments observed in the DEA spectra. The gas-phase DEAS data can provide support for biochemical reaction mechanisms in vivo.« less
Hydride affinity scale of various substituted arylcarbeniums in acetonitrile.
Zhu, Xiao-Qing; Wang, Chun-Hua
2010-12-23
Combined with the integral equation formalism polarized continuum model (IEFPCM), the hydride affinities of 96 various acylcarbenium ions in the gas phase and CH(3)CN were estimated by using the B3LYP/6-31+G(d)//B3LYP/6-31+G(d), B3LYP/6-311++G(2df,2p)//B3LYP/6-31+G(d), and BLYP/6-311++G(2df,2p)//B3LYP/6-31+G(d) methods for the first time. The results show that the combination of the BLYP/6-311++G(2df,2p)//B3LYP/6-31+G(d) method and IEFPCM could successfully predict the hydride affinities of arylcarbeniums in MeCN with a precision of about 3 kcal/mol. On the basis of the calculated results from the BLYP method, it can be found that the hydride affinity scale of the 96 arylcarbeniums in MeCN ranges from -130.76 kcal/mol for NO(2)-PhCH(+)-CN to -63.02 kcal/mol for p-(Me)(2)N-PhCH(+)-N(Me)(2), suggesting most of the arylcarbeniums are good hydride acceptors. Examination of the effect of the number of phenyl rings attached to the carbeniums on the hydride affinities shows that the increase of the hydride affinities takes place linearly with increasing number of benzene rings in the arylcarbeniums. Analyzing the effect of the substituents on the hydride affinities of arylcarbeniums indicates that electron-donating groups decrease the hydride affinities and electron-withdrawing groups show the opposite effect. The hydride affinities of arylcarbeniums are linearly dependent on the sum of the Hammett substituent parameters σ(p)(+). Inspection of the correlation of the solution-phase hydride affinities with gas-phase hydride affinities and aqueous-phase pK(R)(+) values reveals a remarkably good correspondence of ΔG(H(-)A)(R(+)) with both the gas-phase relative hydride affinities only if the α substituents X have no large electron-donating or -withdrawing properties and the pK(R)(+) values even though the media are dramatically different. The solution-phase hydride affinities also have a linear relationship with the electrophilicity parameter E, and this dependence can certainly serve as one of the most effective ways to estimate the new E values from ΔG(H(-)A)(R(+)) or vice versa. Combining the hydride affinities and the reduction potentials of the arylcarbeniums, we obtained the bond homolytic dissociation Gibbs free energy changes of the C-H bonds in the corresponding hydride adducts in acetonitrile, ΔG(HD)(RH), and found that the effects of the substituent on ΔG(HD)(RH) are very small. Simple thermodynamic analytic platforms for the three C-H cleavage modes were constructed. It is evident that the present work would be helpful in understanding the nature of the stabilities of the carbeniums and mechanisms of the hydride transfers between carbeniums and other hydride donors.
Effect on magnetic properties of germanium encapsulated C60 fullerene
NASA Astrophysics Data System (ADS)
Umran, Nibras Mossa; Kumar, Ranjan
2013-02-01
Structural and electronic properties of Gen(n = 1-4) doped C60 fullerene are investigated with ab initio density functional theory calculations by using an efficient computer code, known as SIESTA. The pseudopotentials are constructed using a Trouiller-Martins scheme, to describe the interaction of valence electrons with the atomic cores. In endohedral doped embedding of more germanium atoms complexes we have seen that complexes are stable and thereafter cage break down. We have also investigated that binding energy, electronic affinity increases and magnetic moment oscillating behavior as the number of semiconductor atoms in C60 fullerene goes on increasing.
The noble gases: how their electronegativity and hardness determines their chemistry.
Furtado, Jonathan; De Proft, Frank; Geerlings, Paul
2015-02-26
The establishment of an internally consistent scale of noble gas electronegativities is a long-standing problem. In the present study, the problem is attacked via the Mulliken definition, which in recent years gained widespread use to its natural appearance in the context of conceptual density functional theory. Basic ingredients of this scale are the electron affinity and the ionization potential. Whereas the latter can be computed routinely, the instability of the anion makes the judicious choice of computational technique for evaluating electron affinities much more tricky. We opted for Puiatti's approach, extrapolating the energy of high ε solvent stabilized anions to the ε = 1 (gas phase) case. The results give negative electron affinity values, monotonically increasing (except for helium which is an outlier in most of the story) to almost zero at eka-radon in agreement with high level calculations. The stability of the B3LYP results is successfully tested both via improving the level of theory (CCSD(T)) and expanding the basis set. Combined with the ionization energies (in good agreement with experiment), an electronegativity scale is obtained displaying (1) a monotonic decrease of χ when going down the periodic table, (2) top values not for the noble gases but for the halogens, as opposed to most (extrapolation) procedures of existing scales, invariably placing the noble gases on top, and (3) noble gases having electronegativities close to the chalcogens. In the accompanying hardness scale (hardly, if ever, discussed in the literature) the noble gases turn out to be by far the farthest the hardest elements, again with a continuous decrease with increasing Z. Combining χ value of the halogens and the noble gases the Ng(δ+)F(δ-) bond polarity emerging from ab initio calculations naturally emerges. In conclusion, the chemistry of the noble gases is for a large part determined by their extreme hardness, equivalent to a high resistance to change in its electronic population coupled to their high electronegativity.
Ground and excited states of CaSH through electron propagator calculations
NASA Astrophysics Data System (ADS)
Ortiz, J. V.
1990-05-01
Electron propagator calculations of electron affinities of CaSH + produce ground and excited state energies at the optimized, C s minimum of the neutral ground state and at a C ∞v geometry. Feynman-Dyson amplitudes (FDAs) describe the distribution of the least bound electron in various states. The neutral ground state differs from the cation by the occupation of a one-electron state dominated by Ca s functions. Described by FDAs with Ca-S π pseudosymmetry, corresponding excited states have unpaired electrons in orbitals displaying interference between Ca p and d functions. Above these lies a σ pseudosymmetry FDA with principal contributions from Ca d functions. Two FDAs with σ pseudosymmetry follow. Higher excited states exhibit considerable delocalization onto S.
Ziaei, Vafa; Bredow, Thomas
2018-05-31
An accurate theoretical prediction of ionization potential (IP) and electron affinity (EA) is key in understanding complex photochemical processes in aqueous environments. There have been numerous efforts in literature to accurately predict IP and EA of liquid water, however with often conflicting results depending on the level of theory and the underlying water structures. In a recent study based on hybrid-non-self-consistent many-body perturbation theory (MBPT) Gaiduk et al (2018 Nat. Commun. 9 247) predicted an IP of 10.2 eV and EA of 0.2 eV, resulting in an electronic band gap (i.e. electronic gap (IP-EA) as measured by photoelectron spectroscopy) of about 10 eV, redefining the widely cited experimental gap of 8.7 eV in literature. In the present work, we show that GW self-consistency and an implicit vertex correction in MBPT considerably affect recently reported EA values by Gaiduk et al (2018 Nat. Commun. 9 247) by about 1 eV. Furthermore, the choice of pseudo-potential is critical for an accurate determination of the absolute band positions. Consequently, the self-consistent GW approach with an implicit vertex correction based on projector augmented wave (PAW) method on top of quantum water structures predicts an IP of 10.2, an EA of 1.1, a fundamental gap of 9.1 eV and an exciton binding (Eb) energy of 0.9 eV for the first absorption band of liquid water via the Bethe-Salpeter equation (BSE). Only within such a self-consistent approach a simultanously accurate prediction of IP, EA, Eg, Eb is possible.
NASA Astrophysics Data System (ADS)
Ziaei, Vafa; Bredow, Thomas
2018-05-01
An accurate theoretical prediction of ionization potential (IP) and electron affinity (EA) is key in understanding complex photochemical processes in aqueous environments. There have been numerous efforts in literature to accurately predict IP and EA of liquid water, however with often conflicting results depending on the level of theory and the underlying water structures. In a recent study based on hybrid-non-self-consistent many-body perturbation theory (MBPT) Gaiduk et al (2018 Nat. Commun. 9 247) predicted an IP of 10.2 eV and EA of 0.2 eV, resulting in an electronic band gap (i.e. electronic gap (IP-EA) as measured by photoelectron spectroscopy) of about 10 eV, redefining the widely cited experimental gap of 8.7 eV in literature. In the present work, we show that GW self-consistency and an implicit vertex correction in MBPT considerably affect recently reported EA values by Gaiduk et al (2018 Nat. Commun. 9 247) by about 1 eV. Furthermore, the choice of pseudo-potential is critical for an accurate determination of the absolute band positions. Consequently, the self-consistent GW approach with an implicit vertex correction based on projector augmented wave (PAW) method on top of quantum water structures predicts an IP of 10.2, an EA of 1.1, a fundamental gap of 9.1 eV and an exciton binding (Eb) energy of 0.9 eV for the first absorption band of liquid water via the Bethe–Salpeter equation (BSE). Only within such a self-consistent approach a simultanously accurate prediction of IP, EA, Eg, Eb is possible.
Synthesis, characterisation and DFT studies of three Schiff bases derived from histamine
NASA Astrophysics Data System (ADS)
Touafri, Lasnouni; Hellal, Abdelkader; Chafaa, Salah; Khelifa, Abdellah; Kadri, Abdelaziz.
2017-12-01
In this paper, we report first, the synthesis and characterisation of three Schiff bases derived from histamine by condensation of histamine with various aldehydes. Then, we present a detailed DFT study based on B3LYP/6-31G(d,p) of geometrical structures and electronic properties of these compounds. The study was extended to the HOMO-LUMO analysis to calculate the energy gap (Δ), Ionisation potential (I), Electron Affinity (A), Global Hardness (η), Chemical Potential (μ), Electrophilicity (ω), Electronegativity (χ) and Polarisability (α). The calculated HOMO and LUMO energy reveals that the charge transfers occurring within the molecule. On the basis of vibration analyses, the thermodynamic properties of the titles compound were also calculated.
NASA Astrophysics Data System (ADS)
Stevens, Amy E.; Beauchamp, J. L.
1981-03-01
ICR trapped ion techniques are used to examine the kinetics of proton transfer from MnH + (formed as a fragment ion from HMn (CO) 5 by electron impact) to bases of varying strength. Deprotonation is rapid with bases whose proton affinity exceeds 196±3 kcal mol -1. This value for PA (Mn) yields the homolytic bond dissociation energy D0(Mn +-H) = 53±5 kcal mol -1.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reddy, J. Sreedhar; Kale, Tejaswini; Balaji, Ganapathy
2011-03-17
Thiophene-based semiconductors are often hole conductors that have been converted to electron-transporting materials by incorporation of electron-withdrawing groups at terminal positions, such as fluorinated substituents. This conversion of an otherwise p-type material to n-type material is often attributed to the lowering of the lowest unoccupied molecular orbital (LUMO) energy level due to the increased electron affinity in the molecule. Yet, it is not clear if lowering of LUMO energy level is a sufficient condition for yielding n-type material. Herein, we report small-molecule semiconductors based on cyclopentadithiophene (CPD), which can be orthogonally functionalized at two different positions, which allows us tomore » tune the frontier orbital energy levels. We find that simply lowering the LUMO energy level, without inclusion of fluoro groups, does not result in conversion of the otherwise p-type material to n-type material, whereas incorporation of fluorinated substituents does. This indicates that charge transport behavior is not an exclusive function of the frontier orbital energy levels.« less
Instrumentation and Measurements for Electron Emission from Charged Insulators
NASA Technical Reports Server (NTRS)
Sim, Alec M.
2005-01-01
The electron was first discovered in 1898 by Sir John Joseph Thomson and has since been the subject of detailed study by nearly every scientific discipline. At nearly the same time Heinrich Rudolf Hertz conducted a series of experiments using cathode tubes, high potentials and ultraviolet light. When applying a large potential to a cathode he found that an arching event across the metal plates would occur. In addition, when shining an ultraviolet light on the metal he found that less potential was required to induce the spark. This result, taken together with other electrical phenomena brought about by the shining of light upon metal and was eventually termed the photoelectric effect. The work of Thomson and Hertz represent the beginning of electron emission studies and a body of ideas that pervade nearly all aspects of physics. In particular these ideas tell us a great deal about the nature of physical interactions within solids. In this thesis we will focus on the emission of electrons induced by an incident electron source over a range of energies, in which one can observe changes in emitted electron flux and energy distribution. In particular, when energetic particles impinge on a solid they can impart their energy, exciting electrons within the material. If this energy is sufficient to overcome surface energy barriers such as the work function, electron affinity or surface charge potential, electrons can escape from the material. The extent of electron emission from the material can be quantified as the ratio of incident particle flux to emitted particle flux, and is termed the electron yield.
NASA Astrophysics Data System (ADS)
Stevens, Amy E.; Feigerle, C. S.; Lineberger, W. C.
1983-05-01
The laser photoelectron spectra of MnH- and MnD-, and FeH- and FeD- are reported. A qualitative description of the electronic structure of the low-spin and high-spin states of the metal hydrides is developed, and used to interpret the spectra. A diagonal transition in the photodetachment to the known high-spin, 7Σ+, ground state of MnH is observed. An intense off-diagonal transition to a state of MnH, at 1725±50 cm-1 excitation energy, is attributed to loss of an antibonding electron from MnH-, to yield a low-spin quintet state of MnH. For FeH- the photodetachment to the ground state is an off-diagonal transition, attributed to loss of the antibonding electron from FeH-, to yield a low-spin quartet ground state of FeH. A diagonal transition results in an FeH state at 1945±55 cm-1; this state of FeH is assigned as the lowest-lying high-spin sextet state of FeH. An additional excited state of MnH and two other excited states of FeH are observed. Excitation energies for all the states are reported; vibrational frequencies and bond lengths for the ions and several states of the neutrals are also determined from the spectra. The electron affinity of MnH is found to be 0.869±0.010 eV; and the electron affinity of FeH is determined to be 0.934±0.011 eV. Spectroscopic constants for the various deuterides are also reported.
Fullerene Cyanation Does Not Always Increase Electron Affinity: Experimental and Theoretical Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clikeman, Tyler T.; Deng, Shihu; Popov, Alexey A.
2015-01-01
The electron affinities of C70 derivatives with trifluoromethyl, methyl and cyano groups were studied experimentally and theoretically using low-temperature photoelectron spectroscopy (LT PES) and density functional theory (DFT). The electronic effects of these functional groups were determined and found to be highly dependent on the addition patterns. Substitution of CF3 for CN for the same addition pattern increases the experimental electron affinity by 70 meV per substitution. The synthesis of a new fullerene derivative, C70(CF3)10(CN)2, is reported for the first time
Atkinson, Joshua T; Campbell, Ian; Bennett, George N; Silberg, Jonathan J
2016-12-27
The ferredoxin (Fd) protein family is a structurally diverse group of iron-sulfur proteins that function as electron carriers, linking biochemical pathways important for energy transduction, nutrient assimilation, and primary metabolism. While considerable biochemical information about individual Fd protein electron carriers and their reactions has been acquired, we cannot yet anticipate the proportion of electrons shuttled between different Fd-partner proteins within cells using biochemical parameters that govern electron flow, such as holo-Fd concentration, midpoint potential (driving force), molecular interactions (affinity and kinetics), conformational changes (allostery), and off-pathway electron leakage (chemical oxidation). Herein, we describe functional and structural gaps in our Fd knowledge within the context of a sequence similarity network and phylogenetic tree, and we propose a strategy for improving our understanding of Fd sequence-function relationships. We suggest comparing the functions of divergent Fds within cells whose growth, or other measurable output, requires electron transfer between defined electron donor and acceptor proteins. By comparing Fd-mediated electron transfer with biochemical parameters that govern electron flow, we posit that models that anticipate energy flow across Fd interactomes can be built. This approach is expected to transform our ability to anticipate Fd control over electron flow in cellular settings, an obstacle to the construction of synthetic electron transfer pathways and rational optimization of existing energy-conserving pathways.
NASA Astrophysics Data System (ADS)
Ling, Wang; Dong, Die; Shi-Jian, Wang; Zheng-Quan, Zhao
2015-01-01
The geometrical, electronic, and magnetic properties of small CunFe (n=1-12) clusters have been investigated by using density functional method B3LYP and LanL2DZ basis set. The structural search reveals that Fe atoms in low-energy CunFe isomers tend to occupy the position with the maximum coordination number. The ground state CunFe clusters possess planar structure for n=2-5 and three-dimensional (3D) structure for n=6-12. The electronic properties of CunFe clusters are analyzed through the averaged binding energy, the second-order energy difference and HOMO-LUMO energy gap. It is found that the magic numbers of stability are 1, 3, 7 and 9 for the ground state CunFe clusters. The energy gap of Fe-encapsulated cage clusters is smaller than that of other configurations. The Cu5Fe and Cu7Fe clusters have a very large energy gap (>2.4 eV). The vertical ionization potential (VIP), electron affinity (EA) and photoelectron spectra are also calculated and simulated theoretically for all the ground-state clusters. The magnetic moment analyses for the ground-state CunFe clusters show that Fe atom can enhance the magnetic moment of the host cluster and carries most of the total magnetic moment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berardo, Enrico; Kaplan, Ferdinand; Bhaskaran-Nair, Kiran
We study the vertical ionisation potential, electron affinity, fundamental gap and exciton binding energy values of small bare and hydroxylated TiO 2 nanoclusters to understand how the excited state properties change as a function of size and hydroxylation. In addition, we have employed a range of many-body methods; including G 0 W 0, qs GW, EA/IP-EOM-CCSD and DFT (B3LYP, PBE), to compare the performance and predictions of the different classes of methods. We demonstrate that for bare (i.e. non-hydroxylated) clusters all many-body methods predict the same trend with cluster size. The highest occupied and lowest unoccupied DFT orbitals follow themore » same trends as the electron affinity and ionisation potentials predicted by the many-body methods but are generally far too shallow and deep respectively in absolute terms. In contrast, the ΔDFT method is found to yield values in the correct energy window. However, its predictions depend on the functional used and do not necessarily follow trends based on the many-body methods. The effect of hydroxylation of the clusters is to open up both the optical and fundamental gap. In conclusion, a simple microscopic explanation for the observed trends with cluster size and upon hydroxylation is proposed in terms of the Madelung onsite potential.« less
Laser photodetachment of radioactive 128 I -
Rothe, Sebastian; Sundberg, Julia; Welander, Jakob; ...
2017-08-31
The first experimental investigation of the electron affinity (EA) of a radioactive isotope has been conducted at the CERN-ISOLDE radioactive ion beam facility. The EA of the radioactive iodine isotope 128I ($t$ 1/2 = 25 min) was determined to be 3.059 052(38) eV. The experiment was conducted using the newly developed Gothenburg ANion Detector for Affinity measurements by Laser PHotodetachment (GANDALPH) apparatus, connected to a CERN-ISOLDE experimental beamline. 128I was produced in fission induced by 1.4 GeV protons striking a thorium/tantalum foil target and then extracted as singly charged negative ions at a beam energy of 20 keV. Laser photodetachmentmore » of the fast ion beam was performed in a collinear geometry inside the GANDALPH chamber. Neutral atoms produced in the photodetachment process were detected by allowing them to impinge on a glass surface, creating secondary electrons which were then detected using a channel electron multiplier. The photon energy of the laser was tuned across the threshold of the photodetachment process and the detachment threshold data were fitted to a Wigner law function in order to extract the EA. In conclusion, this first successful demonstration of photodetachment at an isotope separator on line facility opens up the opportunity for future studies of the fundamental properties of negatively charged radioactive isotopes such as the EA of astatine and polonium.« less
Berardo, Enrico; Kaplan, Ferdinand; Bhaskaran-Nair, Kiran; ...
2017-06-19
We study the vertical ionisation potential, electron affinity, fundamental gap and exciton binding energy values of small bare and hydroxylated TiO 2 nanoclusters to understand how the excited state properties change as a function of size and hydroxylation. In addition, we have employed a range of many-body methods; including G 0 W 0, qs GW, EA/IP-EOM-CCSD and DFT (B3LYP, PBE), to compare the performance and predictions of the different classes of methods. We demonstrate that for bare (i.e. non-hydroxylated) clusters all many-body methods predict the same trend with cluster size. The highest occupied and lowest unoccupied DFT orbitals follow themore » same trends as the electron affinity and ionisation potentials predicted by the many-body methods but are generally far too shallow and deep respectively in absolute terms. In contrast, the ΔDFT method is found to yield values in the correct energy window. However, its predictions depend on the functional used and do not necessarily follow trends based on the many-body methods. The effect of hydroxylation of the clusters is to open up both the optical and fundamental gap. In conclusion, a simple microscopic explanation for the observed trends with cluster size and upon hydroxylation is proposed in terms of the Madelung onsite potential.« less
Simple method for determining binding energies of fullerene and complex atomic negative ions
NASA Astrophysics Data System (ADS)
Felfli, Zineb; Msezane, Alfred
2017-04-01
A robust potential which embeds fully the vital core polarization interaction has been used in the Regge pole method to explore low-energy electron scattering from C60, Eu and Nb through the total cross sections (TCSs) calculations. From the characteristic dramatically sharp resonances in the TCSs manifesting negative ion formation in these systems, we extracted the binding energies for the C60, Euand Nbanions they are found to be in outstanding agreement with the measured electron affinities of C60, Eu and Nb. Common among these considered systems, including the standard atomic Au is the formation of their ground state negative ions at the second Ramsauer-Townsend (R-T) minima of their TCSs. Indeed, this is a signature of all the fullerenes and complex atoms considered thus far. Shape resonances, R-T minima and binding energies of the resultant anions are presented. This work was supported by U.S. DOE, Basic Energy Sciences, Office of Energy Research.
Workman, P.; Twentyman, P. R.
1982-01-01
Using a regrowth-delay assay, we investigated structure/activity relationships for the enhancement by electron-affinic agents of the anti-tumour effect of the nitrosourea CCNU against the KHT sarcoma in C3H mice. A series of neutral 2-nitroimidazoles similar in electron affinity but varying in octanol/water partition coefficient (PC) over 4 orders of magnitude (0.016- greater than 200, Misonidazole = 0.43) were examined at a fixed dose of 2.5 mmol/kg. A parabolic (quadratic) dependence of activity on log PC was observed. Analogues more hydrophilic than misonidazole (MISO) were inactive as were those with very high PCs (greater than 20). Those with PC 0.43--20 were usually more active than MISO, some considerably so. The fairly lipophilic 5-nitroimidazoles nimorazole and metronidazole (METRO) had similar activity to MISO, despite their reduced electron affinity. Two basic 2-nitroimidazoles more efficient as radiosensitizers in vitro likewise showed activity comparable to MISO. We also investigated several agents more electron-affinic than MISO, including some non-nitro compounds. Most were inactive at maximum tolerated doses, but nitrofurazone showed reasonable activity. Sensitizer dose-response curves were obtained for MISO, METRO and two of the most effective agents, benznidazole (Ro 07-1051) and Ro 07-1902. The two latter agents were both considerably more active than MISO at low doses (0.1--0.9 mmol/kg). These studies indicate that the structural features of electron-affinic agents responsible for the enhancement of KHT tumour response to CCNU, are quite different from those affecting radiosensitization, lipophilicity being particularly important. The microsomal enzyme-inhibitor SKF 525A increased the anti-tumour effect of CCNU, suggesting inhibition of CCNU metabolism as one possible mechanism contributing to chemosensitization by lipophilic electron-affinic agents in mice. PMID:7150475
Electron attachment to indole and related molecules
DOE Office of Scientific and Technical Information (OSTI.GOV)
Modelli, Alberto, E-mail: alberto.modelli@unibo.it; Centro Interdipartimentale di Ricerca in Scienze Ambientali; Jones, Derek, E-mail: d.jones@isof.cnr.it
Gas-phase formation of temporary negative ion states via resonance attachment of low-energy (0–6 eV) electrons into vacant molecular orbitals of indoline (I), indene (II), indole (III), 2-methylen-1,3,3-trimethylindoline (IV), and 2,3,3-trimethyl-indolenine (V) was investigated for the first time by electron transmission spectroscopy (ETS). The description of their empty-level structures was supported by density functional theory and Hartree-Fock calculations, using empirically calibrated linear equations to scale the calculated virtual orbital energies. Dissociative electron attachment spectroscopy (DEAS) was used to measure the fragment anion yields generated through dissociative decay channels of the parent molecular anions of compounds I-V, detected with a mass filtermore » as a function of the incident electron energy in the 0–14 eV energy range. The vertical and adiabatic electron affinities were evaluated at the B3LYP/6-31+G(d) level as the anion/neutral total energy difference. The same theoretical method is also used for evaluation of the thermodynamic energy thresholds for production of the negative fragments observed in the DEA spectra. The loss of a hydrogen atom from the parent molecular anion ([M-H]{sup −}) provides the most intense signal in compounds I-IV. The gas-phase DEAS data can provide support for biochemical reaction mechanisms in vivo involving initial hydrogen abstraction from the nitrogen atom of the indole moiety, present in a variety of biologically important molecules.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, Dipendra, E-mail: d-11sharma@rediffmail.com; Tiwari, S. N., E-mail: sntiwari123@rediffmail.com; Dwivedi, M. K., E-mail: dwivedi-ji@gmail.com
2016-05-06
Electronic structure properties of 4-n-methoxy-4′-cyanobiphenyl, a pure nematic liquid crystal have been examined using an ab‒initio, HF/6‒31G(d,p) technique with GAMESS program. Conformational and charge distribution analysis have been carried out. MEP, HOMO and LUMO surfaces have been scanned. Ionization potential, electron affinity, electronegativity, global hardness and softness of the liquid crystal molecule have been calculated. Further, stacking, side by side and end to end interactions between a molecular pair have been evaluated. Results have been used to elucidate the physico-chemical and liquid crystalline properties of the system.
Ervin, Kent M; Nickel, Alex A; Lanorio, Jerry G; Ghale, Surja B
2015-07-16
A meta-analysis of experimental information from a variety of sources is combined with statistical thermodynamics calculations to refine the gas-phase acidity scale from hydrogen sulfide to pyrrole. The absolute acidities of hydrogen sulfide, methanethiol, and pyrrole are evaluated from literature R-H bond energies and radical electron affinities to anchor the scale. Relative acidities from proton-transfer equilibrium experiments are used in a local thermochemical network optimized by least-squares analysis to obtain absolute acidities of 14 additional acids in the region. Thermal enthalpy and entropy corrections are applied using molecular parameters from density functional theory, with explicit calculation of hindered rotor energy levels for torsional modes. The analysis reduces the uncertainties of the absolute acidities of the 14 acids to within ±1.2 to ±3.3 kJ/mol, expressed as estimates of the 95% confidence level. The experimental gas-phase acidities are compared with calculations, with generally good agreement. For nitromethane, ethanethiol, and cyclopentadiene, the refined acidities can be combined with electron affinities of the corresponding radicals from photoelectron spectroscopy to obtain improved values of the C-H or S-H bond dissociation energies, yielding D298(H-CH2NO2) = 423.5 ± 2.2 kJ mol(-1), D298(C2H5S-H) = 364.7 ± 2.2 kJ mol(-1), and D298(C5H5-H) = 347.4 ± 2.2 kJ mol(-1). These values represent the best-available experimental bond dissociation energies for these species.
The photodetachment cross-section and threshold energy of negative ions in carbon dioxide
NASA Technical Reports Server (NTRS)
Helmy, E. M.; Woo, S. B.
1974-01-01
Threshold energy and sunlight photodetachment measurements on negative carbon dioxide ions, using a 2.5 kw light pressure xenon lamp, show that: (1) Electron affinity of CO3(+) is larger than 2.7 e.V. and that an isomeric form of CO3(+) is likely an error; (2) The photodetachment cross section of CO3(-) will roughly be like a step function across the range of 4250 to 2500A, having its threshold energy at 4250A; (3) Sunlight photodetachment rate for CO3(-) is probably much smaller than elsewhere reported; and (4) The probability of having photodetached electrons re-attach to form negative ions is less than 1%. Mass identifying drift tube tests confirm that the slower ion is CO3(-), formed through the O(-) + 2CO2 yields CO3(-) + CO2 reaction.
Wang, Xuefeng; Andrews, Lester
2011-03-23
Electron-deficient group 13 metals react with F(2) to give the compounds MF(2) (M = B, Al, Ga, In, Tl), which combine with F(2) to form a new class of very high electron affinity neutral molecules, (F(2))MF(2), in solid argon and neon. These (F(2))MF(2) fluorine metal difluoride molecules were identified through matrix IR spectra containing new antisymmetric and symmetric M-F stretching modes. The assignments were confirmed through close comparisons with frequency calculations using DFT methods, which were calibrated against the MF(3) molecules observed in all of the spectra. Electron affinities calculated at the CCSD(T) level fall between 7.0 and 7.8 eV, which are in the range of the highest known electron affinities.
NASA Astrophysics Data System (ADS)
Zhou, Bin; Hu, Zhubin; Jiang, Yanrong; He, Xiao; Sun, Zhenrong; Sun, Haitao
2018-05-01
The intrinsic parameters of carbon nanotubes (CNTs) such as ionization potential (IP) and electron affinity (EA) are closely related to their unique properties and associated applications. In this work, we demonstrated the success of optimal tuning method based on range-separated (RS) density functionals for both accurate and efficient prediction of vertical IPs and electron affinities (EAs) of a series of armchair single-walled carbon nanotubes C20n H20 (n = 2–6) compared to the high-level IP/EA equation-of-motion coupled-cluster method with single and double substitutions (IP/EA-EOM-CCSD). Notably, the resulting frontier orbital energies (–ε HOMO and –ε LUMO) from the tuning method exhibit an excellent approximation to the corresponding IPs and EAs, that significantly outperform other conventional density functionals. In addition, it is suggested that the RS density functionals that possess both a fixed amount of exact exchange in the short-range and a correct long-range asymptotic behavior are suitable for calculating electronic structures of finite-sized CNTs. Next the performance of density functionals for description of various molecular properties such as chemical potential, hardness and electrophilicity are assessed as a function of tube length. Thanks to the efficiency and accuracy of this tuning method, the related behaviors of much longer armchair single-walled CNTs until C200H20 were studied. Lastly, the present work is proved to provide an efficient theoretical tool for future materials design and reliable characterization of other interesting properties of CNT-based systems.
NASA Astrophysics Data System (ADS)
Li, Jing; D'Avino, Gabriele; Duchemin, Ivan; Beljonne, David; Blase, Xavier
2018-01-01
We present a novel hybrid quantum/classical approach to the calculation of charged excitations in molecular solids based on the many-body Green's function G W formalism. Molecules described at the G W level are embedded into the crystalline environment modeled with an accurate classical polarizable scheme. This allows the calculation of electron addition and removal energies in the bulk and at crystal surfaces where charged excitations are probed in photoelectron experiments. By considering the paradigmatic case of pentacene and perfluoropentacene crystals, we discuss the different contributions from intermolecular interactions to electronic energy levels, distinguishing between polarization, which is accounted for combining quantum and classical polarizabilities, and crystal field effects, that can impact energy levels by up to ±0.6 eV. After introducing band dispersion, we achieve quantitative agreement (within 0.2 eV) on the ionization potential and electron affinity measured at pentacene and perfluoropentacene crystal surfaces characterized by standing molecules.
Relative binding affinities of monolignols to horseradish peroxidase
Sangha, Amandeep K.; Petridis, Loukas; Cheng, Xiaolin; ...
2016-07-22
Monolignol binding to the peroxidase active site is the first step in lignin polymerization in plant cell walls. Using molecular dynamics, docking, and free energy perturbation calculations, we investigate the binding of monolignols to horseradish peroxidase C. Our results suggest that p-coumaryl alcohol has the strongest binding affinity followed by sinapyl and coniferyl alcohol. Stacking interactions between the monolignol aromatic rings and nearby phenylalanine residues play an important role in determining the calculated relative binding affinities. p-Coumaryl and coniferyl alcohols bind in a pose productive for reaction in which a direct H-bond is formed between the phenolic –OH group andmore » a water molecule (W2) that may facilitate proton transfer during oxidation. In contrast, in the case of sinapyl alcohol there is no such direct interaction, the phenolic –OH group instead interacting with Pro139. Furthermore, since proton and electron transfer is the rate-limiting step in monolignol oxidation by peroxidase, the binding pose (and thus the formation of near attack conformation) appears to play a more important role than the overall binding affinity in determining the oxidation rate.« less
Ryno, Sean M; Risko, Chad; Brédas, Jean-Luc
2014-04-30
Polarization energy corresponds to the stabilization of the cation or anion state of an atom or molecule when going from the gas phase to the solid state. The decrease in ionization energy and increase in electron affinity in the solid state are related to the (electronic and nuclear) polarization of the surrounding atoms and molecules in the presence of a charged entity. Here, through a combination of molecular mechanics and quantum mechanics calculations, we evaluate the polarization energies in two prototypical organic semiconductors, pentacene and 6,13-bis(2-(tri-isopropylsilyl)ethynyl)pentacene (TIPS-pentacene). Comparison of the results for the two systems reveals the critical role played by the molecular packing configurations in the determination of the polarization energies and provides physical insight into the experimental data reported by Lichtenberger and co-workers (J. Amer. Chem. Soc. 2010, 132, 580; J. Phys. Chem. C 2010, 114, 13838). Our results underline that the impact of packing configurations, well established in the case of the charge-transport properties, also extends to the polarization properties of π-conjugated materials.
NASA Astrophysics Data System (ADS)
Han, Deming; Gong, Ping; Lv, Shuhui; Zhao, Lihui; Zhao, Henan
2018-05-01
The photophysical properties of four Ir(III) complexes have been investigated by means of the density functional theory/time-dependent density functional theory (DFT/TDDFT). The effect of the electron-withdrawing and electron-donating substituents on charge injection, transport, absorption and phosphorescent properties has been studied. The theoretical calculation shows that the lowest-lying singlet absorptions for complexes 1-4 are located at 387, 385, 418 and 386 nm, respectively. For 1-4, the phosphorescence at 465, 485, 494 and 478 nm is mainly attributed to the LUMO → HOMO and LUMO → HOMO-1 transition configurations characteristics. In addition, ionisation potential (IP), electron affinities (EAs) and reorganisation energy have been investigated to evaluate the charge transfer and balance properties between hole and electron. The balance of the reorganisation energies for complex 3 is better than others. The difference between hole transport and electron transport for complex 3 is the smallest among these complexes, which is beneficial to achieve the hole and electron transfer balance in emitting layer.
NASA Astrophysics Data System (ADS)
Mayer, J.; Hugenschmidt, C.; Schreckenbach, K.
2010-09-01
We present a high resolution positron annihilation induced Auger Electron Spectroscopy (PAES) of the CuM 2,3VV-transition with the unprecedented energy resolution of Δ/EE <1%. This energy resolution and the highly intense positron source NEPOMUC enabled us to resolve the double peak structure with PAES for the first time within a measurement time of only 5.5 h. In addition, sub-monolayers of Cu were deposited on Fe- and Pd-samples in order to investigate the surface selectivity of PAES in comparison with EAES. The extremely high surface selectivity of PAES due to the different positron affinity of Cu and Fe lead to the result that with only 0.96 monolayer of Cu on Fe more than 55% of the emitted Auger electrons stem from Cu, whereas with EAES the Cu Auger fraction amounted to less than 6%.
Lu, Qi Liang; Luo, Qi Quan; Huang, Shou Guo; Li, Yi De; Wan, Jian Guo
2016-07-07
An optimization strategy combining global semiempirical quantum mechanical search with all-electron density functional theory was adopted to determine the lowest energy structure of (GaSb)n clusters up to n = 9. The growth pattern of the clusters differed from those of previously reported group III-V binary clusters. A cagelike configuration was found for cluster sizes n ≤ 7. The structure of (GaSb)6 deviated from that of other III-V clusters. Competition existed between core-shell and hollow cage structures of (GaSb)7. Novel noncagelike structures were energetically preferred over the cages for the (GaSb)8 and (GaSb)9 clusters. Electronic properties, such as vertical ionization potential, adiabatic electron affinities, HOMO-LUMO gaps, and average on-site charges on Ga or Sb atoms, as well as binding energies, were computed.
New insights in low-energy electron-fullerene interactions
NASA Astrophysics Data System (ADS)
Msezane, Alfred Z.; Felfli, Zineb
2018-03-01
The robust Regge-pole methodology has been used to probe for long-lived metastable anionic formation in Cn (n = 20, 24, 26, 28, 44, 70, 92 and 112) through the calculated electron elastic scattering total cross sections (TCSs). All the TCSs are found to be characterized by Ramsauer-Townsend minima, shape resonances and dramatically sharp resonances manifesting metastable anionic formation during the collisions. The energy positions of the anionic ground states resonances are found to match the measured electron affinities (EAs). We also investigated the size-effect through the correlation and polarization induced metastable resonances as the fullerene size varied from C20 through C112. The C20 TCSs exhibit atomic behavior while the C112 TCSs demonstrate strong departure from atomic behavior attributed to the size effect. Surprisingly C24 is found to have the largest EA among the investigated fullerenes making it suitable for use in organic solar cells and nanocatalysis.
Machine learning of molecular electronic properties in chemical compound space
NASA Astrophysics Data System (ADS)
Montavon, Grégoire; Rupp, Matthias; Gobre, Vivekanand; Vazquez-Mayagoitia, Alvaro; Hansen, Katja; Tkatchenko, Alexandre; Müller, Klaus-Robert; Anatole von Lilienfeld, O.
2013-09-01
The combination of modern scientific computing with electronic structure theory can lead to an unprecedented amount of data amenable to intelligent data analysis for the identification of meaningful, novel and predictive structure-property relationships. Such relationships enable high-throughput screening for relevant properties in an exponentially growing pool of virtual compounds that are synthetically accessible. Here, we present a machine learning model, trained on a database of ab initio calculation results for thousands of organic molecules, that simultaneously predicts multiple electronic ground- and excited-state properties. The properties include atomization energy, polarizability, frontier orbital eigenvalues, ionization potential, electron affinity and excitation energies. The machine learning model is based on a deep multi-task artificial neural network, exploiting the underlying correlations between various molecular properties. The input is identical to ab initio methods, i.e. nuclear charges and Cartesian coordinates of all atoms. For small organic molecules, the accuracy of such a ‘quantum machine’ is similar, and sometimes superior, to modern quantum-chemical methods—at negligible computational cost.
Charge-transfer photodissociation of adsorbed molecules via electron image states
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jensen, E. T.
The 248 and 193 nm photodissociations of submonolayer quantities of CH{sub 3}Br and CH{sub 3}I adsorbed on thin layers of n-hexane indicate that the dissociation is caused by dissociative electron attachment from subvacuum level photoelectrons created in the copper substrate. The characteristics of this photodissociation-translation energy distributions and coverage dependences show that the dissociation is mediated by an image potential state which temporarily traps the photoelectrons near the n-hexane-vacuum interface, and then the charge transfers from this image state to the affinity level of a coadsorbed halomethane which then dissociates.
Secondary Electron Emission Spectroscopy of Diamond Surfaces
NASA Technical Reports Server (NTRS)
Krainsky, Isay L.; Asnin, Vladimir M.; Petukhov, Andre G.
1999-01-01
This report presents the results of the secondary electron emission spectroscopy study of hydrogenated diamond surfaces for single crystals and chemical vapor-deposited polycrystalline films. One-electron calculations of Auger spectra of diamond surfaces having various hydrogen coverages are presented, the major features of the experimental spectra are explained, and a theoretical model for Auger spectra of hydrogenated diamond surfaces is proposed. An energy shift and a change in the line shape of the carbon core-valence-valence (KVV) Auger spectra were observed for diamond surfaces after exposure to an electron beam or by annealing at temperatures higher than 950 C. This change is related to the redistribution of the valence-band local density of states caused by hydrogen desorption from the surface. A strong negative electron affinity (NEA) effect, which appeared as a large, narrow peak in the low-energy portion of the spectrum of the secondary electron energy distribution, was also observed on the diamond surfaces. A fine structure in this peak, which was found for the first time, reflected the energy structure of the bottom of the conduction band. Further, the breakup of the bulk excitons at the surface during secondary electron emission was attributed to one of the features of this structure. The study demonstrated that the NEA type depends on the extent of hydrogen coverage of the diamond surface, changing from the true type for the completely hydrogenated surface to the effective type for the partially hydrogenated surface.
NASA Astrophysics Data System (ADS)
Sun, Haitao; Tang, Ke; Li, Yanmin; Su, Chunfang; Zhou, Zhengyu; Wang, Zhizhong
The effect of hydrogen bond interactions on ionization potentials (IPs) and electron affinities (EAs) of thymine-formamide complexes (T-F) have been investigated employing the density functional theory B3LYP at 6-311++G(d, p) basis set level. All complexes experience a geometrical change on either electron detachment or attachment, and the change might be facilitated or hindered according to the strength of the hydrogen-bonding interaction involved. The strength of hydrogen bonds presents an opposite changing trend on the two processes. A more important role that H-bonding interaction plays in the process of electron attachment than in the process of electron detachment can be seen by a comparison of the IPs and EAs of complexes with that of isolated thymine. Futhermore, the EAs of isolated thymine are in good agreement with the experimental values (AEA is 0.79 eV, VEA is -0.29 eV [Wetmore et al., Chem Phys Lett 2000, 322, 129]). The calculated total NPA charge distributions reveal that nearly all the negative charges locate on thymine monomer in the anions and even in the cationic states, there are a few negative charges on thymine monomer. An analysis of dissociation energies predicts the processes T-F+→ T++ F and T-F- → T- + F to be the most energetically favorable for T-F+ and T-F-, respectively. Content:text/plain; charset="UTF-8"
Singh, Raman K; Iwasa, Takeshi; Taketsugu, Tetsuya
2018-05-25
A long-range corrected density functional theory (LC-DFT) was applied to study the geometric structures, relative stabilities, electronic structures, reactivity descriptors and magnetic properties of the bimetallic NiCu n -1 and Ni 2 Cu n -2 (n = 3-13) clusters, obtained by doping one or two Ni atoms to the lowest energy structures of Cu n , followed by geometry optimizations. The optimized geometries revealed that the lowest energy structures of the NiCu n -1 and Ni 2 Cu n -2 clusters favor the Ni atom(s) situated at the most highly coordinated position of the host copper clusters. The averaged binding energy, the fragmentation energies and the second-order energy differences signified that the Ni doped clusters can continue to gain an energy during the growth process. The electronic structures revealed that the highest occupied molecular orbital and the lowest unoccupied molecular orbital energies of the LC-DFT are reliable and can be used to predict the vertical ionization potential and the vertical electron affinity of the systems. The reactivity descriptors such as the chemical potential, chemical hardness and electrophilic power, and the reactivity principle such as the minimum polarizability principle are operative for characterizing and rationalizing the electronic structures of these clusters. Moreover, doping of Ni atoms into the copper clusters carry most of the total spin magnetic moment. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.
Calculation of Host-Guest Binding Affinities Using a Quantum-Mechanical Energy Model.
Muddana, Hari S; Gilson, Michael K
2012-06-12
The prediction of protein-ligand binding affinities is of central interest in computer-aided drug discovery, but it is still difficult to achieve a high degree of accuracy. Recent studies suggesting that available force fields may be a key source of error motivate the present study, which reports the first mining minima (M2) binding affinity calculations based on a quantum mechanical energy model, rather than an empirical force field. We apply a semi-empirical quantum-mechanical energy function, PM6-DH+, coupled with the COSMO solvation model, to 29 host-guest systems with a wide range of measured binding affinities. After correction for a systematic error, which appears to derive from the treatment of polar solvation, the computed absolute binding affinities agree well with experimental measurements, with a mean error 1.6 kcal/mol and a correlation coefficient of 0.91. These calculations also delineate the contributions of various energy components, including solute energy, configurational entropy, and solvation free energy, to the binding free energies of these host-guest complexes. Comparison with our previous calculations, which used empirical force fields, point to significant differences in both the energetic and entropic components of the binding free energy. The present study demonstrates successful combination of a quantum mechanical Hamiltonian with the M2 affinity method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hou, Gao -Lei; Chen, Bo; Transue, Wesley J.
2016-04-19
The recent successful synthesis of P 2N 3 –, a planar all-inorganic aromatic molecule, represents a breakthrough in inorganic chemistry, because, like its isolobal counterparts C 5H 5– and cyclo-P 5 –, P 2N 3 – has potential to serve as a new ligand for transition metals and a building block in solid-state molecular architectures. In light of its importance, we report here a negative ion photoelectron spectroscopy (NIPES) and ab initio study of P 2N 3 –, to investigate the electronic structures of P 2N 3 – and its neutral P 2N 3• radical. The adiabatic detachment energy ofmore » P 2N 3 – (electron affinity of P 2N 3•) was determined to be 3.765 ± 0.010 eV, indicating high stability for the P 2N 3 – anion. Ab initio electronic structure calculations reveal five low-lying electronic states in the neutral P 2N 3• radical. Calculation of the Franck-Condon factors (FCFs) for each anion-to-neutral electronic transition and comparison of the resulting simulated NIPE spectrum with the vibrational structure in the observed spectrum allows the first four excited states of P 2N 3• to be determined to lie 6.2, 6.7, 11.5, and 22.8 kcal/mol -1 above the ground state of the radical, which is found to be a 6π-electron, 2A 1, σ state.« less
NASA Astrophysics Data System (ADS)
Feng, Liang; Ping, Chen; De-Gang, Zhao; De-Sheng, Jiang; Zhi-Juan, Zhao; Zong-Shun, Liu; Jian-Jun, Zhu; Jing, Yang; Wei, Liu; Xiao-Guang, He; Xiao-Jing, Li; Xiang, Li; Shuang-Tao, Liu; Hui, Yang; Li-Qun, Zhang; Jian-Ping, Liu; Yuan-Tao, Zhang; Guo-Tong, Du
2016-05-01
We have investigated the electron affinity of Si-doped AlN films (N Si = 1.0 × 1018-1.0 × 1019 cm-3) with thicknesses of 50, 200, and 400 nm, synthesized by metalorganic chemical vapor deposition (MOCVD) under low pressure on the n-type (001)6H-SiC substrates. The positive and small electron affinity of AlN films was observed through the ultraviolet photoelectron spectroscopy (UPS) analysis, where an increase in electron affinity appears with the thickness of AlN films increasing, i.e., 0.36 eV for the 50-nm-thick one, 0.58 eV for the 200-nm-thick one, and 0.97 eV for the 400-nm-thick one. Accompanying the x-ray photoelectron spectroscopy (XPS) analysis on the surface contaminations, it suggests that the difference of electron affinity between our three samples may result from the discrepancy of surface impurity contaminations. Project supported by the National Natural Science Foundation of China (Grant Nos. 61574135, 61574134, 61474142, 61474110, 61377020, 61376089, 61223005, and 61321063), the One Hundred Person Project of the Chinese Academy of Sciences, and the Basic Research Project of Jiangsu Province, China (Grant No. BK20130362).
Shawon, Jakaria; Khan, Akib Mahmud; Rahman, Adhip; Hoque, Mohammad Mazharol; Khan, Mohammad Abdul Kader; Sarwar, Mohammed G; Halim, Mohammad A
2016-10-01
Molecular recognition has central role on the development of rational drug design. Binding affinity and interactions are two key components which aid to understand the molecular recognition in drug-receptor complex and crucial for structure-based drug design in medicinal chemistry. Herein, we report the binding affinity and the nonbonding interactions of azelaic acid and related compounds with the receptor DNA polymerase I (2KFN). Quantum mechanical calculation was employed to optimize the modified drugs using B3LYP/6-31G(d,p) level of theory. Charge distribution, dipole moment and thermodynamic properties such as electronic energy, enthalpy and free energy of these optimized drugs are also explored to evaluate how modifications impact the drug properties. Molecular docking calculation was performed to evaluate the binding affinity and nonbonding interactions between designed molecules and the receptor protein. We notice that all modified drugs are thermodynamically more stable and some of them are more chemically reactive than the unmodified drug. Promise in enhancing hydrogen bonds is found in case of fluorine-directed modifications as well as in the addition of trifluoroacetyl group. Fluorine participates in forming fluorine bonds and also stimulates alkyl, pi-alkyl interactions in some drugs. Designed drugs revealed increased binding affinity toward 2KFN. A1, A2 and A3 showed binding affinities of -8.7, -8.6 and -7.9 kcal/mol, respectively against 2KFN compared to the binding affinity -6.7 kcal/mol of the parent drug. Significant interactions observed between the drugs and Thr358 and Asp355 residues of 2KFN. Moreover, designed drugs demonstrated improved pharmacokinetic properties. This study disclosed that 9-octadecenoic acid and drugs containing trifluoroacetyl and trifluoromethyl groups are the best 2KFN inhibitors. Overall, these results can be useful for the design of new potential candidates against DNA polymerase I.
Chu, Xiakun; Wang, Jin
2014-01-01
Flexibility in biomolecular recognition is essential and critical for many cellular activities. Flexible recognition often leads to moderate affinity but high specificity, in contradiction with the conventional wisdom that high affinity and high specificity are coupled. Furthermore, quantitative understanding of the role of flexibility in biomolecular recognition is still challenging. Here, we meet the challenge by quantifying the intrinsic biomolecular recognition energy landscapes with and without flexibility through the underlying density of states. We quantified the thermodynamic intrinsic specificity by the topography of the intrinsic binding energy landscape and the kinetic specificity by association rate. We found that the thermodynamic and kinetic specificity are strongly correlated. Furthermore, we found that flexibility decreases binding affinity on one hand, but increases binding specificity on the other hand, and the decreasing or increasing proportion of affinity and specificity are strongly correlated with the degree of flexibility. This shows more (less) flexibility leads to weaker (stronger) coupling between affinity and specificity. Our work provides a theoretical foundation and quantitative explanation of the previous qualitative studies on the relationship among flexibility, affinity and specificity. In addition, we found that the folding energy landscapes are more funneled with binding, indicating that binding helps folding during the recognition. Finally, we demonstrated that the whole binding-folding energy landscapes can be integrated by the rigid binding and isolated folding energy landscapes under weak flexibility. Our results provide a novel way to quantify the affinity and specificity in flexible biomolecular recognition. PMID:25144525
Chu, Xiakun; Wang, Jin
2014-08-01
Flexibility in biomolecular recognition is essential and critical for many cellular activities. Flexible recognition often leads to moderate affinity but high specificity, in contradiction with the conventional wisdom that high affinity and high specificity are coupled. Furthermore, quantitative understanding of the role of flexibility in biomolecular recognition is still challenging. Here, we meet the challenge by quantifying the intrinsic biomolecular recognition energy landscapes with and without flexibility through the underlying density of states. We quantified the thermodynamic intrinsic specificity by the topography of the intrinsic binding energy landscape and the kinetic specificity by association rate. We found that the thermodynamic and kinetic specificity are strongly correlated. Furthermore, we found that flexibility decreases binding affinity on one hand, but increases binding specificity on the other hand, and the decreasing or increasing proportion of affinity and specificity are strongly correlated with the degree of flexibility. This shows more (less) flexibility leads to weaker (stronger) coupling between affinity and specificity. Our work provides a theoretical foundation and quantitative explanation of the previous qualitative studies on the relationship among flexibility, affinity and specificity. In addition, we found that the folding energy landscapes are more funneled with binding, indicating that binding helps folding during the recognition. Finally, we demonstrated that the whole binding-folding energy landscapes can be integrated by the rigid binding and isolated folding energy landscapes under weak flexibility. Our results provide a novel way to quantify the affinity and specificity in flexible biomolecular recognition.
Theoretical dissociation energies for the alkali and alkaline-earth monofluorides and monochlorides
NASA Technical Reports Server (NTRS)
Langhoff, S. R.; Bauschlicher, C. W., Jr.; Partridge, H.
1986-01-01
Spectroscopic parameters are accurately determined for the alkali and alkaline-earth monofluorides and monochlorides by means of ab initio self-consistent field and correlated wave function calculations. Numerical Hartree-Fock calculations are performed on selected systems to ensure that the extended Slater basis sets employed are near the Hartree-Fock limit. Since the bonding is predominantly electrostatic in origin, a strong correlation exists between the dissociation energy (to ions) and the spectroscopic parameter r(e). By dissociating to the ionic limits, most of the differential correlation effects can be embedded in the accurate experimental electron affinities and ionization potentials.
Wolf, Alexander; Reiher, Markus; Hess, Bernd Artur
2004-05-08
The first molecular calculations with the generalized Douglas-Kroll method up to fifth order in the external potential (DKH5) are presented. We study the spectroscopic parameters and electron affinity of the tin oxide molecule SnO and its anion SnO(-) applying nonrelativistic as well as relativistic calculations with higher orders of the DK approximation. In order to guarantee highly accurate results close to the basis set limit, an all-electron basis for Sn of at least quintuple-zeta quality has been constructed and optimized. All-electron CCSD(T) calculations of the potential energy curves of both SnO and SnO(-) reproduce the experimental values very well. Relative energies and valence properties are already well described with the established standard second-order approximation DKH2 and the higher-order corrections DKH3-DKH5 hardly affect these quantities. However, an accurate description of total energies and inner-shell properties requires superior relativistic schemes up to DKH5. (c) 2004 American Institute of Physics.
A DFT study for the structural and electronic properties of Zn m Se n nanoclusters
NASA Astrophysics Data System (ADS)
Yadav, Phool Singh; Pandey, Dheeraj Kumar
2012-09-01
An ab initio study has been performed for the stability, structural and electronic properties of 19 small zinc selenide Zn m Se n ( m + n = 2-4) nanoclusters. Out of these nanoclusters, one nanocluster is found to be unstable due to its imaginary vibrational frequency. A B3LYP-DFT/6-311G(3df) method is used in the optimization of the geometries of the nanoclusters. We have calculated the zero point energy (ZPE), which is ignored by the other workers. The binding energies (BE), HOMO-LUMO gaps and bond lengths have been obtained for all the optimized nanoclusters. For the same value of ` m' and ` n', we designate the most stable structure the one, which has maximum final binding energy (FBE) per atom. The adiabatic and vertical ionization potentials (IP) and electron affinities (EA), dipole moments and charge on atoms have been investigated for the most stable nanoclusters. For the same value of ` m' and ` n', the nanocluster containing maximum number of Se atoms is found to be most stable.
Effects of the Substituents of Boron Atoms on Conjugated Polymers Containing B←N Units.
Liu, Jun; Wang, Tao; Dou, Chuandong; Wang, Lixiang
2018-06-15
Organoboron chemistry is a new tool to tune the electronic structures and properties of conjugated polymers, which are important for applications in organic opto-electronic devices. To investigate the effects of substituents of boron atoms on conjugated polymers, we synthesized three conjugated polymers based on double B←N bridged bipyridine (BNBP) with various substituents on the boron atoms. By changing the substituents from four phenyl groups and two phenyl groups/two fluorine atoms to four fluorine atoms, the BNBP-based polymers show the blue-shifted absorption spectra, decreased LUMO/HOMO energy levels and enhanced electron affinities, as well as the increased electron mobilities. Moreover, these BNBP-based polymers can be used as electron acceptors for all-polymer solar cells. These results demonstrate that the substituents of boron atoms can effectively modulate the electronic properties and applications of conjugated polymers. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Petrič, Andrej; Johnson, Scott A.; Pham, Hung V.; Li, Ying; Čeh, Simon; Golobič, Amalija; Agdeppa, Eric D.; Timbol, Gerald; Liu, Jie; Keum, Gyochang; Satyamurthy, Nagichettiar; Kepe, Vladimir; Houk, Kendall N.; Barrio, Jorge R.
2012-01-01
The positron-emission tomography (PET) probe 2-(1-[6-[(2-fluoroethyl)(methyl)amino]-2-naphthyl]ethylidene) (FDDNP) is used for the noninvasive brain imaging of amyloid-β (Aβ) and other amyloid aggregates present in Alzheimer’s disease and other neurodegenerative diseases. A series of FDDNP analogs has been synthesized and characterized using spectroscopic and computational methods. The binding affinities of these molecules have been measured experimentally and explained through the use of a computational model. The analogs were created by systematically modifying the donor and the acceptor sides of FDDNP to learn the structural requirements for optimal binding to Aβ aggregates. FDDNP and its analogs are neutral, environmentally sensitive, fluorescent molecules with high dipole moments, as evidenced by their spectroscopic properties and dipole moment calculations. The preferred solution-state conformation of these compounds is directly related to the binding affinities. The extreme cases were a nonplanar analog t-butyl-FDDNP, which shows low binding affinity for Aβ aggregates (520 nM Ki) in vitro and a nearly planar tricyclic analog cDDNP, which displayed the highest binding affinity (10 pM Ki). Using a previously published X-ray crystallographic model of 1,1-dicyano-2-[6-(dimethylamino)naphthalen-2-yl]propene (DDNP) bound to an amyloidogenic Aβ peptide model, we show that the binding affinity is inversely related to the distortion energy necessary to avoid steric clashes along the internal surface of the binding channel. PMID:23012452
Simulated electron affinity tuning in metal-insulator-metal (MIM) diodes
NASA Astrophysics Data System (ADS)
Mistry, Kissan; Yavuz, Mustafa; Musselman, Kevin P.
2017-05-01
Metal-insulator-metal diodes for rectification applications must exhibit high asymmetry, nonlinearity, and responsivity. Traditional methods of improving these figures of merit have consisted of increasing insulator thickness, adding multiple insulator layers, and utilizing a variety of metal contact combinations. However, these methods have come with the price of increasing the diode resistance and ultimately limiting the operating frequency to well below the terahertz regime. In this work, an Airy Function Transfer Matrix simulation method was used to observe the effect of tuning the electron affinity of the insulator as a technique to decrease the diode resistance. It was shown that a small increase in electron affinity can result in a resistance decrease in upwards of five orders of magnitude, corresponding to an increase in operating frequency on the same order. Electron affinity tuning has a minimal effect on the diode figures of merit, where asymmetry improves or remains unaffected and slight decreases in nonlinearity and responsivity are likely to be greatly outweighed by the improved operating frequency of the diode.
Barbosa, Nuno Almeida; Grzeszczuk, Maria; Wieczorek, Robert
2015-01-15
First results of the application of the DFT computational approach to the reversible electrochemistry of polyaniline are presented. A tetrameric chain was used as the simplest model of the polyaniline polymer species. The system under theoretical investigation involved six tetramer species, two electrons, and two protons, taking part in 14 elementary reactions. Moreover, the tetramer species were interacting with two trihalogenoacetic acid molecules. Trifluoroacetic, trichloroacetic, and tribromoacetic acids were found to impact the redox transformation of polyaniline as shown by cyclic voltammetry. The theoretical approach was considered as a powerful tool for investigating the main factors of importance for the experimental behavior. The DFT method provided molecular structures, interaction energies, and equilibrium energies of all of the tetramer-acid complexes. Differences between the energies of the isolated tetramer species and their complexes with acids are discussed in terms of the elementary reactions, that is, ionization potentials and electron affinities, equilibrium constants, electrode potentials, and reorganization energies. The DFT results indicate a high impact of the acid on the reorganization energy of a particular elementary electron-transfer reaction. The ECEC oxidation path was predicted by the calculations. The model of the reacting system must be extended to octamer species and/or dimeric oligomer species to better approximate the real polymer situation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baruah, Tunna; Garnica, Amanda; Paggen, Marina
2016-04-14
We study the electronic structure of C{sub 60} fullerenes functionalized with a thiophene-diketo-pyrrolopyrrole-thiophene based chromophore using density functional theory combined with large polarized basis sets. As the attached chromophore has electron donor character, the functionalization of the fullerene leads to a donor-acceptor (DA) system. We examine in detail the effect of the linker and the addition site on the electronic structure of the functionalized fullerenes. We further study the electronic structure of these DA complexes with a focus on the charge transfer excitations. Finally, we examine the interface of the functionalized fullerenes with the widely used poly(3-hexylthiophene-2,5-diyl) (P3HT) donor. Ourmore » results show that all functionalized fullerenes with an exception of the C{sub 60}-pyrrolidine [6,6], where the pyrrolidine is attached at a [6,6] site, have larger electron affinities relative to the pristine C{sub 60} fullerene. We also estimate the quasi-particle gap, lowest charge transfer excitation energy, and the exciton binding energies of the functionalized fullerene-P3MT model systems. Results show that the exciton binding energies in these model complexes are slightly smaller compared to a similarly prepared phenyl-C{sub 61}-butyric acid methyl ester (PCBM)-P3MT complex.« less
Rosenholm, Jarl B
2017-09-01
Specific dipolar, acid-base and charge interactions involve electron displacements. For atoms, single bonds and molecules electron displacement is characterized by electronic potential, absolute hardness, electronegativity and electron gap. In addition, dissociation, bonding, atomization, formation, ionization, affinity and lattice enthalpies are required to quantify the electron displacement in solids. Semiconductors are characterized by valence and conduction band energies, electron gaps and average Fermi energies which in turn determine Galvani potentials of the bulk, space charge layer and surface states. Electron displacement due to interaction between (probe) molecules, liquids and solids are characterized by parameters such as Hamaker constant, solubility parameter, exchange energy density, surface tension, work of adhesion and immersion. They are determined from permittivity, refractive index, enthalpy of vaporization, molar volume, surface pressure and contact angle. Moreover, acidic and basic probes may form adducts which are adsorbed on target substrates in order to establish an indirect measure of polarity, acidity, basicity or hydrogen bonding. Acidic acceptor numbers (AN), basic donor numbers (DN), acidic and basic "electrostatic" (E) and "covalent" (C) parameters determined by enthalpy of adduct formation are considered as general acid-base scales. However, the formal grounds for assignments as dispersive, Lifshitz-van der Waals, polar, acid, base and hydrogen bond interactions are inconsistent. Although correlations are found no of the parameters are mutually fully compatible and moreover the enthalpies of acid-base interaction do not correspond to free energies. In this review the foundations of different acid-base parameters relating to electron displacement within and between (probe) molecules, liquids and (semiconducting) solids are thoroughly investigated and their mutual relationships are evaluated. Copyright © 2017 Elsevier B.V. All rights reserved.
Cesium vapor thermionic converter anomalies arising from negative ion emission
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rasor, Ned S., E-mail: ned.rasor@gmail.com
2016-08-14
Compelling experimental evidence is given that a longstanding limit encountered on cesium vapor thermionic energy converter performance improvement and other anomalies arise from thermionic emission of cesium negative ions. It is shown that the energy that characterizes thermionic emission of cesium negative ions is 1.38 eV and, understandably, is not the electron affinity 0.47 eV determined for the photodetachment threshold of the cesium negative ion. The experimental evidence includes measurements of collector work functions and volt-ampere characteristics in quasi-vacuum cesium vapor thermionic diodes, along with reinterpretation of the classic Taylor-Langmuir S-curve data on electron emission in cesium vapor. The quantitative effects ofmore » negative ion emission on performance in the ignited, unignited, and quasi-vacuum modes of cesium vapor thermionic converter operation are estimated.« less
Calculation of Energy Diagram of Asymmetric Graded-Band-Gap Semiconductor Superlattices.
Monastyrskii, Liubomyr S; Sokolovskii, Bogdan S; Alekseichyk, Mariya P
2017-12-01
The paper theoretically investigates the peculiarities of energy diagram of asymmetric graded-band-gap superlattices with linear coordinate dependences of band gap and electron affinity. For calculating the energy diagram of asymmetric graded-band-gap superlattices, linearized Poisson's equation has been solved for the two layers forming a period of the superlattice. The obtained coordinate dependences of edges of the conduction and valence bands demonstrate substantial transformation of the shape of the energy diagram at changing the period of the lattice and the ratio of width of the adjacent layers. The most marked changes in the energy diagram take place when the period of lattice is comparable with the Debye screening length. In the case when the lattice period is much smaller that the Debye screening length, the energy diagram has the shape of a sawtooth-like pattern.
GW100: Benchmarking G0W0 for Molecular Systems.
van Setten, Michiel J; Caruso, Fabio; Sharifzadeh, Sahar; Ren, Xinguo; Scheffler, Matthias; Liu, Fang; Lischner, Johannes; Lin, Lin; Deslippe, Jack R; Louie, Steven G; Yang, Chao; Weigend, Florian; Neaton, Jeffrey B; Evers, Ferdinand; Rinke, Patrick
2015-12-08
We present the GW100 set. GW100 is a benchmark set of the ionization potentials and electron affinities of 100 molecules computed with the GW method using three independent GW codes and different GW methodologies. The quasi-particle energies of the highest-occupied molecular orbitals (HOMO) and lowest-unoccupied molecular orbitals (LUMO) are calculated for the GW100 set at the G0W0@PBE level using the software packages TURBOMOLE, FHI-aims, and BerkeleyGW. The use of these three codes allows for a quantitative comparison of the type of basis set (plane wave or local orbital) and handling of unoccupied states, the treatment of core and valence electrons (all electron or pseudopotentials), the treatment of the frequency dependence of the self-energy (full frequency or more approximate plasmon-pole models), and the algorithm for solving the quasi-particle equation. Primary results include reference values for future benchmarks, best practices for convergence within a particular approach, and average error bars for the most common approximations.
NASA Astrophysics Data System (ADS)
Nguyen, Ngoc Linh; Borghi, Giovanni; Ferretti, Andrea; Marzari, Nicola
The determination of spectral properties of the DNA and RNA nucleobases from first principles can provide theoretical interpretation for experimental data, but requires complex electronic-structure formulations that fall outside the domain of applicability of common approaches such as density-functional theory. In this work, we show that Koopmans-compliant functionals, constructed to enforce piecewise linearity in energy functionals with respect to fractional occupation-i.e., with respect to charged excitations-can predict not only frontier ionization potentials and electron affinities of the nucleobases with accuracy comparable or superior with that of many-body perturbation theory and high-accuracy quantum chemistry methods, but also the molecular photoemission spectra are shown to be in excellent agreement with experimental ultraviolet photoemsision spectroscopy data. The results highlight the role of Koopmans-compliant functionals as accurate and inexpensive quasiparticle approximations to the spectral potential, which transform DFT into a novel dynamical formalism where electronic properties, and not only total energies, can be correctly accounted for.
Direct electron injection into an oxide insulator using a cathode buffer layer
Lee, Eungkyu; Lee, Jinwon; Kim, Ji-Hoon; Lim, Keon-Hee; Seok Byun, Jun; Ko, Jieun; Dong Kim, Young; Park, Yongsup; Kim, Youn Sang
2015-01-01
Injecting charge carriers into the mobile bands of an inorganic oxide insulator (for example, SiO2, HfO2) is a highly complicated task, or even impossible without external energy sources such as photons. This is because oxide insulators exhibit very low electron affinity and high ionization energy levels. Here we show that a ZnO layer acting as a cathode buffer layer permits direct electron injection into the conduction bands of various oxide insulators (for example, SiO2, Ta2O5, HfO2, Al2O3) from a metal cathode. Studies of current–voltage characteristics reveal that the current ohmically passes through the ZnO/oxide-insulator interface. Our findings suggests that the oxide insulators could be used for simply fabricated, transparent and highly stable electronic valves. With this strategy, we demonstrate an electrostatic discharging diode that uses 100-nm SiO2 as an active layer exhibiting an on/off ratio of ∼107, and protects the ZnO thin-film transistors from high electrical stresses. PMID:25864642
Food Antioxidants: Chemical Insights at the Molecular Level.
Galano, Annia; Mazzone, Gloria; Alvarez-Diduk, Ruslán; Marino, Tiziana; Alvarez-Idaboy, J Raúl; Russo, Nino
2016-01-01
In this review, we briefly summarize the reliability of the density functional theory (DFT)-based methods to accurately predict the main antioxidant properties and the reaction mechanisms involved in the free radical-scavenging reactions of chemical compounds present in food. The analyzed properties are the bond dissociation energies, in particular those involving OH bonds, electron transfer enthalpies, adiabatic ionization potentials, and proton affinities. The reaction mechanisms are hydrogen-atom transfer, proton-coupled electron transfer, radical adduct formation, single electron transfer, sequential electron proton transfer, proton-loss electron transfer, and proton-loss hydrogen-atom transfer. Furthermore, the chelating ability of these compounds and its role in decreasing or inhibiting the oxidative stress induced by Fe(III) and Cu(II) are considered. Comparisons between theoretical and experimental data confirm that modern theoretical tools are not only able to explain controversial experimental facts but also to predict chemical behavior.
Adsorption of guanidinium collectors on aluminosilicate minerals - a density functional study.
Nulakani, Naga Venkateswara Rao; Baskar, Prathab; Patra, Abhay Shankar; Subramanian, Venkatesan
2015-10-07
In this density functional theory based investigation, we have modelled and studied the adsorption behaviour of guanidinium cations and substituted (phenyl, methoxy phenyl, nitro phenyl and di-nitro phenyl) guanidinium cationic collectors on the basal surfaces of kaolinite and goethite. The adsorption behaviour is assessed in three different media, such as gas, explicit water and pH medium, to understand the affinity of GC collectors to the SiO4 tetrahedral and AlO6 octahedral surfaces of kaolinite. The tetrahedral siloxane surface possesses a larger binding affinity to GC collectors than the octahedral sites due to the presence of surface exposed oxygen atoms that are active in the intermolecular interactions. Furthermore, the inductive electronic effects of substituted guanidinium cations also play a key role in the adsorption mechanism. Highly positive cations result in a stronger electrostatic interaction and preferential adsorption with the kaolinite surfaces than low positive cations. Computed interaction energies and electron densities at the bond critical points suggest that the adsorption of guanidinium cations on the surfaces of kaolinite and goethite is due to the formation of intra/inter hydrogen bonding networks. Also, the electrostatic interaction favours the high adsorption ability of GC collectors in the pH medium than gas phase and water medium. The structures and energies of GC collectors pave an intuitive view for future experimental studies on mineral flotation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rocha, Carlos Murilo Romero; Morgon, Nelson Henrique; Custodio, Rogério, E-mail: roger@iqm.unicamp.br
2013-11-14
G3(MP2)//B3 theory was modified to incorporate compact effective potential (CEP) pseudopotentials, providing a theoretical alternative referred to as G3(MP2)//B3-CEP for calculations involving first-, second-, and third-row representative elements. The G3/05 test set was used as a standard to evaluate the accuracy of the calculated properties. G3(MP2)//B3-CEP theory was applied to the study of 247 standard enthalpies of formation, 104 ionization energies, 63 electron affinities, 10 proton affinities, and 22 atomization energies, comprising 446 experimental energies. The mean absolute deviations compared with the experimental data for all thermochemical results presented an accuracy of 1.4 kcal mol{sup −1} for G3(MP2)//B3 and 1.6more » kcal mol{sup −1} for G3(MP2)//B3-CEP. Approximately 75% and 70% of the calculated properties are found with accuracy between ±2 kcal mol{sup −1} for G3(MP2)//B3 and G3(MP2)//B3-CEP, respectively. Considering a confidence interval of 95%, the results may oscillate between ±4.2 kcal mol{sup −1} and ±4.6 kcal mol{sup −1}, respectively. The overall statistical behavior indicates that the calculations using pseudopotential present similar behavior with the all-electron theory. Of equal importance to the accuracy is the CPU time, which was reduced by between 10% and 40%.« less
A Mixed QM/MM Scoring Function to Predict Protein-Ligand Binding Affinity
Hayik, Seth A.; Dunbrack, Roland; Merz, Kenneth M.
2010-01-01
Computational methods for predicting protein-ligand binding free energy continue to be popular as a potential cost-cutting method in the drug discovery process. However, accurate predictions are often difficult to make as estimates must be made for certain electronic and entropic terms in conventional force field based scoring functions. Mixed quantum mechanics/molecular mechanics (QM/MM) methods allow electronic effects for a small region of the protein to be calculated, treating the remaining atoms as a fixed charge background for the active site. Such a semi-empirical QM/MM scoring function has been implemented in AMBER using DivCon and tested on a set of 23 metalloprotein-ligand complexes, where QM/MM methods provide a particular advantage in the modeling of the metal ion. The binding affinity of this set of proteins can be calculated with an R2 of 0.64 and a standard deviation of 1.88 kcal/mol without fitting and 0.71 and a standard deviation of 1.69 kcal/mol with fitted weighting of the individual scoring terms. In this study we explore using various methods to calculate terms in the binding free energy equation, including entropy estimates and minimization standards. From these studies we found that using the rotational bond estimate to ligand entropy results in a reasonable R2 of 0.63 without fitting. We also found that using the ESCF energy of the proteins without minimization resulted in an R2 of 0.57, when using the rotatable bond entropy estimate. PMID:21221417
NASA Astrophysics Data System (ADS)
Iordanov, I.; Gunaratne, K. D. D.; Harmon, C. L.; Sofo, J. O.; Castleman, A. W.
2012-06-01
We report a combined experimental and theoretical photoelectron spectroscopy study of ZnOH-. We find that the electron binding energy spectrum of ZnOH- reveals a broad and featureless peak between 1.4 and 2.4 eV in energy. The vertical detachment energy (VDE) of ZnOH- is determined to be 1.78 eV, which is lower than the 2.08 eV VDE of ZnO-. Our theoretical calculations match the VDE of ZnOH- accurately, but we find that the broadness of the peak cannot be explained by rotational or vibrational state excitation. The broadness of this peak is in strong contrast to the narrow and easily understood first peak of the ZnO spectrum, which features a well-resolved vibrational progression that can be readily explained by calculating the Franck-Condon transition factors. This study provides spectroscopic evidence of the effect of hydrogen on diatomic ZnO.
Iordanov, I; Gunaratne, K D D; Harmon, C L; Sofo, J O; Castleman, A W
2012-06-07
We report a combined experimental and theoretical photoelectron spectroscopy study of ZnOH(-). We find that the electron binding energy spectrum of ZnOH(-) reveals a broad and featureless peak between 1.4 and 2.4 eV in energy. The vertical detachment energy (VDE) of ZnOH(-) is determined to be 1.78 eV, which is lower than the 2.08 eV VDE of ZnO(-). Our theoretical calculations match the VDE of ZnOH(-) accurately, but we find that the broadness of the peak cannot be explained by rotational or vibrational state excitation. The broadness of this peak is in strong contrast to the narrow and easily understood first peak of the ZnO spectrum, which features a well-resolved vibrational progression that can be readily explained by calculating the Franck-Condon transition factors. This study provides spectroscopic evidence of the effect of hydrogen on diatomic ZnO.
Improved Ion Resistance for III-V Photocathodes in High Current Guns
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mulhollan, Gregory, A.
2012-11-16
The two photocathode test systems were modified, baked and recommissioned. The first system was dedicated to ion studies and the second to electron stimulated recovery (ESR) work. The demonstration system for the electron beam rejuvenation was set up, tested and demonstrated to one of the SSRL team (Dr. Kirby) during a site visit. The requisite subsystems were transferred to SSRL, installed and photoemission studies conducted on activated surfaces following electron beam exposure. Little surface chemistry change was detected in the photoemission spectra following the ESR process. The yield mapping system for the ion (and later, the electron beam rejuvenation) studiesmore » was implemented and use made routine. Ion species and flux measurements were performed for H, He, Ne, Ar, Kr and Xe ions at energies of 0.5, 1.0 and 2.0 kV. Gas induced photoyield measurements followed each ion exposure measurement. These data permit the extraction of photoyield induced change per ion (by species) at the measured energies. Electron beam induced rejuvenation was first demonstrated in the second chamber with primary electron beam energy and dependency investigations following. A Hiden quadrupole mass spectrometer for the electron stimulated desorption (ESD) measurements was procured. The UHV test systems needed for subsequent measurements were configured, baked, commissioned and utilized for their intended purposes. Measurements characterizing the desorption products from the ESD process and secondary electron (SE) yield at the surfaces of negative electron affinity GaAs photocathodes have been performed. One US Utility Patent was granted covering the ESR process.« less
Photon-enhanced thermionic emission from p-GaAs with nonequilibrium Cs overlayers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhuravlev, A. G.; Romanov, A. S.; Alperovich, V. L., E-mail: alper@isp.nsc.ru
2014-12-22
Photon-enhanced thermionic emission (PETE), which is promising for increasing the efficiency of solar energy conversion, is studied during cesium deposition on the As- and Ga-rich p-GaAs(001) surfaces and subsequent relaxation in the nonequilibrium Cs overlayer by means of photoemission quantum yield spectroscopy adapted for systems with time-variable parameters. Along with direct photoemission of “hot” electrons excited by light above the vacuum level, the spectra contain PETE contribution of “thermalized” electrons, which are excited below the vacuum level and emit in vacuum due to thermalization up in energy by phonon absorption. Comparing the measured and calculated spectra, the effective electron affinitymore » and escape probabilities of hot and thermalized electrons are obtained as functions of submonolayer Cs coverage. The minima in the affinity and pronounced peaks in the escape probabilities are observed for Cs deposition on both the As- and Ga-rich surfaces. Possible reasons for the low mean values of the electron escape probabilities and for the observed enhancement of the probabilities at certain Cs coverages are discussed, along with the implications for the PETE device realization.« less
He, Lin; Liu, Fei-Fei; Zhao, Mengyao; Qi, Zhen; Sun, Xuefei; Afzal, Muhammad Zaheer; Sun, Xiaomin; Li, Yanhui; Hao, Jingcheng; Wang, Shuguang
2018-04-01
Understanding the interactions between graphene nanomaterials (GNMs) and antibiotics in aqueous solution is critical to both the engineering applications of GNMs and the assessment of their potential impact on the fate and transport of antibiotics in the aquatic environment. In this study, adsorption of one common antibiotic, tetracycline, by graphene oxide (GO) and reduced graphene oxide (RGO) was examined with multi-walled carbon nanotubes (MWCNTs) and graphite as comparison. The results showed that the tetracycline adsorption capacity by the four selected carbonaceous materials on the unit mass basis followed an order of GO>RGO>MWCNTs>graphite. Upon normalization by surface area, graphite, RGO and MWCNTs had almost the same high tetracycline adsorption affinity while GO exhibited the lowest. We proposed π-electron-property dependent interaction mechanisms to explain the observed different adsorption behaviors. Density functional theory (DFT) calculations suggested that the oxygen-containing functional groups on GO surface reduced its π-electron-donating ability, and thus decreased the π-based interactions between tetracycline and GO surface. Comparison of adsorption efficiency at different pH indicated that electrostatic interaction also played an important role in tetracycline-GO interactions. Site energy analysis confirmed a highly heterogeneous distribution of the binding sites and strong tetracycline binding affinity of GO surface. Copyright © 2017. Published by Elsevier B.V.
Analytical Energy Gradients for Excited-State Coupled-Cluster Methods
NASA Astrophysics Data System (ADS)
Wladyslawski, Mark; Nooijen, Marcel
The equation-of-motion coupled-cluster (EOM-CC) and similarity transformed equation-of-motion coupled-cluster (STEOM-CC) methods have been firmly established as accurate and routinely applicable extensions of single-reference coupled-cluster theory to describe electronically excited states. An overview of these methods is provided, with emphasis on the many-body similarity transform concept that is the key to a rationalization of their accuracy. The main topic of the paper is the derivation of analytical energy gradients for such non-variational electronic structure approaches, with an ultimate focus on obtaining their detailed algebraic working equations. A general theoretical framework using Lagrange's method of undetermined multipliers is presented, and the method is applied to formulate the EOM-CC and STEOM-CC gradients in abstract operator terms, following the previous work in [P.G. Szalay, Int. J. Quantum Chem. 55 (1995) 151] and [S.R. Gwaltney, R.J. Bartlett, M. Nooijen, J. Chem. Phys. 111 (1999) 58]. Moreover, the systematics of the Lagrange multiplier approach is suitable for automation by computer, enabling the derivation of the detailed derivative equations through a standardized and direct procedure. To this end, we have developed the SMART (Symbolic Manipulation and Regrouping of Tensors) package of automated symbolic algebra routines, written in the Mathematica programming language. The SMART toolkit provides the means to expand, differentiate, and simplify equations by manipulation of the detailed algebraic tensor expressions directly. The Lagrangian multiplier formulation establishes a uniform strategy to perform the automated derivation in a standardized manner: A Lagrange multiplier functional is constructed from the explicit algebraic equations that define the energy in the electronic method; the energy functional is then made fully variational with respect to all of its parameters, and the symbolic differentiations directly yield the explicit equations for the wavefunction amplitudes, the Lagrange multipliers, and the analytical gradient via the perturbation-independent generalized Hellmann-Feynman effective density matrix. This systematic automated derivation procedure is applied to obtain the detailed gradient equations for the excitation energy (EE-), double ionization potential (DIP-), and double electron affinity (DEA-) similarity transformed equation-of-motion coupled-cluster singles-and-doubles (STEOM-CCSD) methods. In addition, the derivatives of the closed-shell-reference excitation energy (EE-), ionization potential (IP-), and electron affinity (EA-) equation-of-motion coupled-cluster singles-and-doubles (EOM-CCSD) methods are derived. Furthermore, the perturbative EOM-PT and STEOM-PT gradients are obtained. The algebraic derivative expressions for these dozen methods are all derived here uniformly through the automated Lagrange multiplier process and are expressed compactly in a chain-rule/intermediate-density formulation, which facilitates a unified modular implementation of analytic energy gradients for CCSD/PT-based electronic methods. The working equations for these analytical gradients are presented in full detail, and their factorization and implementation into an efficient computer code are discussed.
Structures and electron affinities of the di-arsenic fluorides As2Fn/As2Fn- (n=1-8).
Kasalová, Veronika; Schaefer, Henry F
2005-04-15
Developments in the preparation of new materials for microelectronics are focusing new attention on molecular systems incorporating several arsenic atoms. A systematic investigation of the As2Fn/As2Fn- systems was carried out using Density Functional Theory methods and a DZP++ quality basis set. Global and low-lying local geometric minima and relative energies are discussed and compared. The three types of neutral-anion separations reported in this work are: the adiabatic electron affinity (EAad), the vertical electron affinity (EAvert), and the vertical detachment energy (VDE). Harmonic vibrational frequencies pertaining to the global minimum for each compound are reported. From the first four studied species (As2Fn, n=1-4), all neutral molecules and their anions are shown to be stable with respect to As-As bond breaking. The neutral As2F molecule and its anion are predicted to have Cs symmetry. We find the trans F-As-As-F isomer of C2h symmetry and a pyramidalized vinylidene-like As-As-F2- isomer of Cs symmetry to be the global minima for the As2F2 and As2F2- species, respectively. The lowest lying minima of As2F3 and As2F3- are vinyl radical-like structures F-As-As-F2 of Cs symmetry. The neutral As2F4 global minimum is a trans-bent (like Si2H4) F2-As-As-F2 isomer of C2 symmetry, while its anion is predicted to have an unusual fluorine-bridged (C(1)) structure. The global minima of the neutral As2Fn species, n=5-8, are weakly bound complexes, held together by dipole-dipole interactions. All such structures have the AsFm-AsFn form, where (m,n) is (2,3) for As2F5, (3,3) for As2F6, (4,3) for As2F7), and (5,3) for As2F8. For As2F8 the beautiful pentavalent F4As-AsF4 structure (analogous to the stable AsF5 molecule) lies about 30 kcal/mol above the AsF3 . . . AsF5 complex. The stability of AsF(5) depends crucially on the strong As-F bonds, and replacing one of these with an As-As bond (in F4As-AsF4) has a very negative impact on the molecule's stability. The anions As2Fn-, n=5-8, are shown to be stable with respect to the As-As bond breaking, and we predict that all of them have fluorine-bridged or fluorine-linked structures. The zero-point vibrational energy corrected adiabatic electron affinities are predicted to be 2.28 eV (As2F), 1.95 eV (As2F2), 2.39 eV (As2F3), 1.71 eV (As2F4), 2.72 eV (As2F5), 1.79 eV (As2F6), 5.26 eV (As2F7), and 3.40 eV (As2F8) from the BHLYP method. Vertical detachment energies are rather large, especially for species with fluorine-bridged global minima, having values up to 6.45 eV (As2F7, BHLYP).
Joshi, Ankita; Ramachandran, C N
2018-05-23
Using the dispersion-corrected density functional B97D and 6-31g(d,p) basis set, the structural, stability, electronic, optical and charge transport properties of the complexes formed by encapsulating indigo inside carbon nanotubes (CNTs) of varying diameters are investigated. Based on the stabilization energy of the complexes indigo@(n,n)CNT (where n = 6, 7 and 8), indigo@(7,7)CNT is shown to be the most stable owing to the ideal diameter of (7,7)CNT for encapsulating indigo. The nature of the interaction between the guest and the host is investigated by means of energy decomposition analysis employing the symmetry adapted perturbation theory. Electronic properties such as the ionization energy, the electron affinity and the energy gap between the highest occupied and lowest unoccupied molecular orbitals (ΔEH-L) of the complexes are determined. The low values of ΔEH-L (<1 eV) for the complexes suggest that they can act as narrow energy gap semiconductors. All the complexes exhibit high hole and electron mobilities which vary inversely with respect to the diameter of the CNT. Using the time-dependent density functional theoretical method, the absorption properties are predicted for the most stable complex indigo@(7,7)CNT. The presence of charge transfer peaks in the visible and near-infrared regions of the electromagnetic spectrum suggests that the complexes are suitable for optoelectronic devices such as solar cells.
Structural, electronic, vibrational and optical properties of Bin clusters
NASA Astrophysics Data System (ADS)
Liang, Dan; Shen, Wanting; Zhang, Chunfang; Lu, Pengfei; Wang, Shumin
2017-10-01
The neutral, anionic and cationic bismuth clusters with the size n up to 14 are investigated by using B3LYP functional within the regime of density functional theory and the LAN2DZ basis set. By analysis of the geometries of the Bin (n = 2-14) clusters, where cationic and anionic bismuth clusters are largely similar to those of neutral ones, a periodic effect by adding units with one to four atoms into smaller cluster to form larger cluster is drawn for the stable structures of bismuth clusters. An even-odd alteration is shown for the properties of the clusters, such as the calculated binding energies and dissociation energies, as well as frontier orbital energies, electron affinities, ionization energies. All the properties indicate that the Bi4 cluster is the most possible existence in bismuth-containing materials, which supports the most recent experiment. The orbital compositions, infrared and Raman activities and the ultraviolet absorption of the most possible tetramer bismuth cluster are given in detail to reveal the periodic tendency of adding bismuth atoms and the stability of tetramer bismuth cluster.
2018-01-01
Approximately 90% of the structures in the Protein Data Bank (PDB) were obtained by X-ray crystallography or electron microscopy. Whereas the overall quality of structure is considered high, thanks to a wide range of tools for structure validation, uncertainties may arise from density maps of small molecules, such as organic ligands, ions or water, which are non-covalently bound to the biomolecules. Even with some experience and chemical intuition, the assignment of such disconnected electron densities is often far from obvious. In this study, we suggest the use of molecular dynamics (MD) simulations and free energy calculations, which are well-established computational methods, to aid in the assignment of ambiguous disconnected electron densities. Specifically, estimates of (i) relative binding affinities, for instance between an ion and water, (ii) absolute binding free energies, i.e., free energies for transferring a solute from bulk solvent to a binding site, and (iii) stability assessments during equilibrium simulations may reveal the most plausible assignments. We illustrate this strategy using the crystal structure of the fluoride specific channel (Fluc), which contains five disconnected electron densities previously interpreted as four fluoride and one sodium ion. The simulations support the assignment of the sodium ion. In contrast, calculations of relative and absolute binding free energies as well as stability assessments during free MD simulations suggest that four of the densities represent water molecules instead of fluoride. The assignment of water is compatible with the loss of these densities in the non-conductive F82I/F85I mutant of Fluc. We critically discuss the role of the ion force fields for the calculations presented here. Overall, these findings indicate that MD simulations and free energy calculations are helpful tools for modeling water and ions into crystallographic density maps. PMID:29771936
Chang, Ye; Tang, Ning; Qu, Hemi; Liu, Jing; Zhang, Daihua; Zhang, Hao; Pang, Wei; Duan, Xuexin
2016-01-01
In this paper, we have modeled and analyzed affinities and kinetics of volatile organic compounds (VOCs) adsorption (and desorption) on various surface chemical groups using multiple self-assembled monolayers (SAMs) functionalized film bulk acoustic resonator (FBAR) array. The high-frequency and micro-scale resonator provides improved sensitivity in the detections of VOCs at trace levels. With the study of affinities and kinetics, three concentration-independent intrinsic parameters (monolayer adsorption capacity, adsorption energy constant and desorption rate) of gas-surface interactions are obtained to contribute to a multi-parameter fingerprint library of VOC analytes. Effects of functional group’s properties on gas-surface interactions are also discussed. The proposed sensor array with concentration-independent fingerprint library shows potential as a portable electronic nose (e-nose) system for VOCs discrimination and gas-sensitive materials selections. PMID:27045012
Semiconductor light source with electrically tunable emission wavelength
Belenky, Gregory [Port Jefferson, NY; Bruno, John D [Bowie, MD; Kisin, Mikhail V [Centereach, NY; Luryi, Serge [Setauket, NY; Shterengas, Leon [Centereach, NY; Suchalkin, Sergey [Centereach, NY; Tober, Richard L [Elkridge, MD
2011-01-25
A semiconductor light source comprises a substrate, lower and upper claddings, a waveguide region with imbedded active area, and electrical contacts to provide voltage necessary for the wavelength tuning. The active region includes single or several heterojunction periods sandwiched between charge accumulation layers. Each of the active region periods comprises higher and lower affinity semiconductor layers with type-II band alignment. The charge carrier accumulation in the charge accumulation layers results in electric field build-up and leads to the formation of generally triangular electron and hole potential wells in the higher and lower affinity layers. Nonequillibrium carriers can be created in the active region by means of electrical injection or optical pumping. The ground state energy in the triangular wells and the radiation wavelength can be tuned by changing the voltage drop across the active region.
A Polarized Electron RF Photoinjector Using the Plane-Wave-Transformer (PWT) Design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clendenin, James E
Polarized electron beams are now in routine use in particle accelerators for nuclear and high energy physics experiments. These beams are presently produced by dc-biased photoelectron sources combined with rf chopping and bunching systems with inherently high transverse emittances. Low emittances can be produced with an rf gun, but the vacuum environment has until now been considered too harsh to support a negative electron affinity GaAs photocathode. We propose to significantly improve the vacuum conditions by adapting a PWT rf photoinjector to achieve reasonable cathode emission rates and lifetimes. This adaptation can also be combined with special optics that willmore » result in a flat beam with a normalized rms emittance in the narrow dimension that may be as low as 10{sup -8} m.« less
Semiempirical Theories of the Affinities of Negative Atomic Ions
NASA Technical Reports Server (NTRS)
Edie, John W.
1961-01-01
The determination of the electron affinities of negative atomic ions by means of direct experimental investigation is limited. To supplement the meager experimental results, several semiempirical theories have been advanced. One commonly used technique involves extrapolating the electron affinities along the isoelectronic sequences, The most recent of these extrapolations Is studied by extending the method to Include one more member of the isoelectronic sequence, When the results show that this extension does not increase the accuracy of the calculations, several possible explanations for this situation are explored. A different approach to the problem is suggested by the regularities appearing in the electron affinities. Noting that the regular linear pattern that exists for the ionization potentials of the p electrons as a function of Z, repeats itself for different degrees of ionization q, the slopes and intercepts of these curves are extrapolated to the case of the negative Ion. The method is placed on a theoretical basis by calculating the Slater parameters as functions of q and n, the number of equivalent p-electrons. These functions are no more than quadratic in q and n. The electron affinities are calculated by extending the linear relations that exist for the neutral atoms and positive ions to the negative ions. The extrapolated. slopes are apparently correct, but the intercepts must be slightly altered to agree with experiment. For this purpose one or two experimental affinities (depending on the extrapolation method) are used in each of the two short periods. The two extrapolation methods used are: (A) an isoelectronic sequence extrapolation of the linear pattern as such; (B) the same extrapolation of a linearization of this pattern (configuration centers) combined with an extrapolation of the other terms of the ground configurations. The latter method Is preferable, since it requires only experimental point for each period. The results agree within experimental error with all data, except with the most recent value of C, which lies 10% lower.
All-boron fullerene exhibits a strong affinity to inorganic anions
NASA Astrophysics Data System (ADS)
Colherinhas, Guilherme; Fileti, Eudes Eterno; Chaban, Vitaly V.
2017-03-01
Experimentally observed all-boron fullerene, B-80, inspires systematic investigation of its physical chemical properties and search for possible applications. We hereby report density functional theory calculations to characterize interactions of B-80 with the selected imidazolium room-temperature ionic liquids (RTILs), dimethylimidazolium nitrate and dimethylimidazolium hexafluorophosphate. Whereas the imidazolium cation exhibits a rather poor affinity to B-80, the inorganic anions form polar covalent bonds with the boron atom occupying a central position within a B-6 hexagon. Attachment of the RTIL ion pairs leads to a significant alteration of the electronic spectra, charge density distribution, valence and conduction molecular orbitals. The total binding energies keeping the RTIL@B80 complexes together range 200-250 kcal mol-1, being higher than the energies of many interactions in chemistry. The observed phenomenon predicts an excellent solubility of B-80 in the considered RTILs, but may also reveal a poor stability of B-80 in the polar media. Our results motivate further efforts in studying the behavior of the all-boron fullerene in polar environments.
NASA Astrophysics Data System (ADS)
Xu, Xin; Zhang, Qingsong; Muller, Richard P.; Goddard, William A.
2005-01-01
We derive here the form for the exact exchange energy density for a density that decays with Gaussian-type behavior at long range. This functional is intermediate between the B88 and the PW91 exchange functionals. Using this modified functional to match the form expected for Gaussian densities, we propose the X3LYP extended functional. We find that X3LYP significantly outperforms Becke three parameter Lee-Yang-Parr (B3LYP) for describing van der Waals and hydrogen bond interactions, while performing slightly better than B3LYP for predicting heats of formation, ionization potentials, electron affinities, proton affinities, and total atomic energies as validated with the extended G2 set of atoms and molecules. Thus X3LYP greatly enlarges the field of applications for density functional theory. In particular the success of X3LYP in describing the water dimer (with Re and De within the error bars of the most accurate determinations) makes it an excellent candidate for predicting accurate ligand-protein and ligand-DNA interactions.
NASA Astrophysics Data System (ADS)
Koda, Daniel S.; Bechstedt, Friedhelm; Marques, Marcelo; Teles, Lara K.
2018-04-01
Van der Waals (vdW) heterostructures are promising candidates for building blocks in novel electronic and optoelectronic devices with tailored properties, since their electronic action is dominated by the band alignments upon their contact. In this work, we analyze 10 vdW heterobilayers based on tin dichalcogenides by first-principles calculations. Structural studies show that all systems are stable, and that commensurability leads to smaller interlayer distances. Using hybrid functional calculations, we derive electronic properties and band alignments for all the heterosystems and isolated two-dimensional (2D) crystals. Natural band offsets are derived from calculated electron affinities and ionization energies of 11 freestanding 2D crystals. They are compared with band alignments in true heterojunctions, using a quantum mechanical criterion, and available experimental data. For the hBN/SnSe 2 system, we show that hBN suffers an increase in band gap, while leaving almost unchanged the electronic properties of SnSe2. Similarly, MX2 (M = Mo, W; X = S, Se) over SnX2 preserve the natural discontinuities from each side of the heterobilayer. Significant charge transfer occurs in junctions with graphene, which becomes p-doped and forms an Ohmic contact with SnX2. Zirconium and hafnium dichalcogenides display stronger interlayer interactions, leading to larger shifts in band alignments with tin dichalcogenides. Significant orbital overlap is found, which creates zero conduction band offset systems. The validity of the Anderson electron affinity rule is discussed. Failures of this model are traced back to interlayer interaction, band hybridization, and quantum dipoles. The systematic work sheds light on interfacial engineering for future vdW electronic and optoelectronic devices.
Thermochemistry and electronic structure of small boron clusters (B(n), n = 5-13) and their anions.
Truong, Ba Tai; Grant, Daniel J; Nguyen, Minh Tho; Dixon, David A
2010-01-21
Thermochemical parameters of a set of small-sized neutral (B(n)) and anionic (B(n)(-)) boron clusters, with n = 5-13, were determined using coupled-cluster theory CCSD(T) calculations with the aug-cc-pVnZ (n = D, T, and Q) basis sets extrapolated to the complete basis set limit (CBS) plus addition corrections and/or G3B3 calculations. Enthalpies of formation, adiabatic electron affinities (EA), vertical (VDE), and adiabatic (ADE) detachment energies were evaluated. Our calculated EAs are in good agreement with recent experiments (values in eV): B(5) (CBS, 2.29; G3B3, 2.48; exptl., 2.33 +/- 0.02), B(6) (CBS, 2.59; G3B3, 3.23; exptl., 3.01 +/- 0.04), B(7) (CBS, 2.62; G3B3, 2.67; exptl., 2.55 +/- 0.05), B(8) (CBS, 3.02; G3B3, 3.11; exptl., 3.02 +/- 0.02), B(9) (G3B3, 3.03; exptl., 3.39 +/- 0.06), B(10) (G3B3, 2.85; exptl., 2.88 +/- 0.09), B(11) (G3B4, 3.48;, exptl., 3.43 +/- 0.01), B(12) (G3B3, 2.33; exptl., 2.21 +/- 0.04), and B(13) (G3B3, 3.62; exptl., 3.78 +/- 0.02). The difference between the calculated adiabatic electron affinity and the adiabatic detachment energy for B(6) is due to the fact that the geometry of the anion is not that of the ground-state neutral. The calculated adiabatic detachment energies to the (3)A(u), C(2h) and (1)A(g), D(2h) excited states of B(6), which have geometries similar to the (1)A(g), D(2h) state of B(6)(-), are 2.93 and 3.06 eV, in excellent agreement with experiment. The VDEs were also well reproduced by the calculations. Partitioning of the electron localization functions into pi and sigma components allows probing of the partial and local delocalization in global nonaromatic systems. The larger clusters appear to exhibit multiple aromaticity. The binding energies per atom vary in a parallel manner for both neutral and anionic series and approach the experimental value for the heat of atomization of B. The resonance energies and the normalized resonance energies are convenient indices to quantify the stabilization of a cluster of elements.
Universal behavior of surface-dangling bonds in hydrogen-terminated Si, Ge, and Si/Ge nanowires.
NASA Astrophysics Data System (ADS)
Nunes, Ricardo; Kagimura, Ricardo; Chacham, Hélio
2007-03-01
We report an ab initio study of the electronic properties of surface dangling bond (SDB) states in hydrogen-terminated Si, Ge, and Si/Ge nanowires with diameters between 1 and 2 nm. We find that the charge transition levels ɛ(+/-) of SDB states are deep in the bandgap for Si wires, and shallow (near the valence band edge) for Ge wires. In both Si and Ge wires, the SDB states are localized. We also find that the SDB ɛ(+/-) levels behave as a ``universal" energy reference level among Si, Ge, and Si/Ge wires within a precision of 0.1 eV. By computing the average bewteen the electron affinity and ionization energy in the atomi limit of several atoms from the III, IV and V columns, we conjecture that the universality is a periodic-table atomic property.
Velasco, A M; Lavín, C; Dolgounitcheva, O; Ortiz, J V
2014-08-21
Vertical excitation energies of the methyl and silyl radicals were inferred from ab initio electron propagator calculations on the electron affinities of CH3(+) and SiH3(+). Photoionization cross sections and angular distribution of photoelectrons for the outermost orbitals of both CH3 and SiH3 radicals have been obtained with the Molecular Quantum Defect Orbital method. The individual ionization cross sections corresponding to the Rydberg channels to which the excitation of the ground state's outermost electron gives rise are reported. Despite the relevance of methyl radical in atmospheric chemistry and combustion processes, only data for the photon energy range of 10-11 eV seem to be available. Good agreement has been found with experiment for photoionization cross section of this radical. To our knowledge, predictions of the above mentioned photoionization parameters on silyl radical are made here for the first time, and we are not aware of any reported experimental measurements. An analysis of our results reveals the presence of a Cooper minimum in the photoionization of the silyl radical. The adequacy of the two theoretical procedures employed in the present work is discussed.
Nuclear Quantum Effects on Aqueous Electron Attachment and Redox Properties.
Rybkin, Vladimir V; VandeVondele, Joost
2017-04-06
Nuclear quantum effects (NQEs) on the reduction and oxidation properties of small aqueous species (CO 2 , HO 2 , and O 2 ) are quantified and rationalized by first-principles molecular dynamics and thermodynamic integration. Vertical electron attachment, or electron affinity, and detachment energies (VEA and VDE) are strongly affected by NQEs, decreasing in absolute value by 0.3 eV going from a classical to a quantum description of the nuclei. The effect is attributed to NQEs that lessen the solvent response upon oxidation/reduction. The reduction of solvent reorganization energy is expected to be general for small solutes in water. In the thermodynamic integral that yields the free energy of oxidation/reduction, these large changes enter with opposite sign, and only a small net effect (0.1 eV) remains. This is not obvious for CO 2 , where the integrand is strongly influenced by NQEs due to the onset of interaction of the reduced orbital with the conduction band of the liquid during thermodynamic integration. We conclude that NQEs might not have to be included in the computation of redox potentials, unless high accuracy is needed, but are important for VEA and VDE calculations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Velasco, A. M.; Lavín, C., E-mail: clavin@qf.uva.es; Dolgounitcheva, O.
2014-08-21
Vertical excitation energies of the methyl and silyl radicals were inferred from ab initio electron propagator calculations on the electron affinities of CH{sub 3}{sup +} and SiH{sub 3}{sup +}. Photoionization cross sections and angular distribution of photoelectrons for the outermost orbitals of both CH{sub 3} and SiH{sub 3} radicals have been obtained with the Molecular Quantum Defect Orbital method. The individual ionization cross sections corresponding to the Rydberg channels to which the excitation of the ground state's outermost electron gives rise are reported. Despite the relevance of methyl radical in atmospheric chemistry and combustion processes, only data for the photonmore » energy range of 10–11 eV seem to be available. Good agreement has been found with experiment for photoionization cross section of this radical. To our knowledge, predictions of the above mentioned photoionization parameters on silyl radical are made here for the first time, and we are not aware of any reported experimental measurements. An analysis of our results reveals the presence of a Cooper minimum in the photoionization of the silyl radical. The adequacy of the two theoretical procedures employed in the present work is discussed.« less
NASA Astrophysics Data System (ADS)
Ghosh, Debashree; Krylov, Anna I.
2011-06-01
Green fluorescent proteins (GFP) can be considered as a model for flurogenic dyes and are of importance in photovoltaic materials. It exhibits bright green fluorescence when exposed to blue light and has been an extremely powerful tool as non-invasive marker in living cells and extensibly used in molecular and cell biology. The understanding of the underlying electronic structure of these proteins and its chromophore is therefore crucial to the understanding of the mechanism for its optical properties. The chromophore of the GFP is p-hydroxybenzylidene-imidazolinone (HBDI) and is embedded in the center of the β barrel of the GFP. Calculating redox potential of this chromophore is a challenging problem, especially in diverse solvents and protein environment. It is possible to carry out high-level accurate ab-initio calculation of ionization potential or electron affinity of the microsolvated chromophore or the bare chromophore. But, it is not possible to extend these calculations to bulk solvents due to the high computational cost. Effective fragment potential (EFP)[1,2] method gives us a convenient tool to understand such systems. In our work, we have benchmarked the ionization energy and electron affinity of the microsolvated GFP chromophore calculated by combined EOM-IP-CCSD/EFP and EOM-EA-CCSD/EFP with the EOM-IP-CCSD and EOM-EA-CCSD calculations of the oxidized and reduced forms. We have carried out similar EFP-EOM-IP-CCSD and EFP-EOM-EA-CCSD calculations of ionization potential and electron affinity of GFP choromophore in bulk solvent generated by ab-initio molecular dynamics simulations. [1] M. S. Gordon, L. Slipchenko, H. Li, J. H. Jensen, Annual Reports in Computational Chemistry, Volume 3, 177 (2007). [2] D. Ghosh, D. Kosenkov, V. Vanovschi, C.F. Williams, J.M. Herbert, M.S. Gordon, M.W. Schmidt, L.V. Slipchenko, and A.I. Krylov, J. Phys. Chem. A 114, 12739 (2010).
Roy, Kunal; Leonard, J Thomas
2005-01-01
CCR5 receptor binding affinity of a series of 3-(4-benzylpiperidin-1-yl)propylamine congeners was subjected to QSAR study using the linear free energy related (LFER) model of Hansch. Appropriate indicator variables encoding different group contributions and different physicochemical variables such as hydrophobicity (pi), electronic (Hammett sigma), and steric (molar refractivity, STERIMOL values) parameters of phenyl ring substituents of the compounds were used as predictor variables. The Hansch analysis explores the importance of the lipophilicity and electron-donating substituents for the binding affinity. However, this method could not give more insight into the structure-activity relationships because of the diverse molecular features in the data set. 3D-QSAR analyses of the same data set using Molecular Shape Analysis (MSA), Receptor Surface Analysis (RSA), and Molecular Field Analysis (MFA) techniques were also performed. The best model with acceptable statistical quality was derived from the MSA, which showed the importance of the relative negative charge (RNCG): substituents with a high RNCG value have more binding affinity than the unsubstituted piperidine and phenyl (R1 position) congeners. The relative negative charge surface area (RNCS) is detrimental (e.g. R2 = 3,4-Cl2) for the activity. An increase in the length of the molecule in the Z dimension (Lz) is conducive (e.g. R3 = sulfonylmorpholino), while an increase in the area of the molecular shadow in the XZ plane (Sxz) is detrimental (e.g. R1 = N-c-hexylmethyl-5-oxopyrrolidin-3-yl) for the binding affinity. The presence of a chiral center makes the molecule less active (e.g. R1 = N-methyl-5-oxopyrrolidin-3-yl). An increase in the van der Waals area, the molecular volume, and the difference between the volume of the individual molecule and the shape reference compound are conducive (e.g. R3 = (CH3)2NSO2-) for the binding affinity. Substituents with higher JursFPSA_2 values (fractional charged partial surface area) like the N-methylsulfonylpiperidin-4-yl (R1 position) group have better binding affinity than the substituents such as 4-chlorophenylamino (R1 position). Unsubstituted piperidines (R1 position) with less JursFNSA_1 values have lower binding affinity than the 4-chlorophenyl substituted compounds. The MFA derived equation shows interaction energies at different grid points, while the RSA model shows the importance of hydrophobicity and charge at different regions of the molecules. The models were validated through the leave-one-out, leave-15%-out, and leave-25%-out cross-validation techniques. The developed models were also subjected to a randomization test (99% confidence level). Although the MSA derived models had excellent statistical qualities both for the training as well as test sets, RSA and MFA results for the test sets are not comparable statistically with the MSA derived models.
Jing, Linhong; Nash, John J.
2009-01-01
The factors that control the reactivities of aryl radicals toward hydrogen-atom donors were studied by using a dual-cell Fourier-transform ion cyclotron resonance mass spectrometer (FT – ICR). Hydrogen-atom abstraction reaction efficiencies for two substrates, cyclohexane and isopropanol, were measured for twenty-three structurally different, positively-charged aryl radicals, which included dehydrobenzenes, dehydronaphthalenes, dehydropyridines, and dehydro(iso)quinolines. A logarithmic correlation was found between the hydrogen-atom abstraction reaction efficiencies and the (calculated) vertical electron affinities (EA) of the aryl radicals. Transition state energies calculated for three of the aryl radicals with isopropanol were found to correlate linearly with their (calculated) EAs. No correlation was found between the hydrogen-atom abstraction reaction efficiencies and the (calculated) enthalpy changes for the reactions. Measurement of the reaction efficiencies for the reactions of several different hydrogen-atom donors with a few selected aryl radicals revealed a logarithmic correlation between the hydrogen-atom abstraction reaction efficiencies and the vertical ionization energies (IE) of the hydrogen-atom donors, but not the lowest homolytic X – H (X = heavy atom) bond dissociation energies of the hydrogen-atom donors. Examination of the hydrogen-atom abstraction reactions of twenty-nine different aryl radicals and eighteen different hydrogen-atom donors showed that the reaction efficiency increases (logarithmically) as the difference between the IE of the hydrogen-atom donor and the EA of the aryl radical decreases. This dependence is likely to result from the increasing polarization, and concomitant stabilization, of the transition state as the energy difference between the neutral and ionic reactants decreases. Thus, the hydrogen-atom abstraction reaction efficiency for an aryl radical can be “tuned” by structural changes that influence either the vertical EA of the aryl radical or the vertical IE of the hydrogen atom donor. PMID:19061320
Growth Behavior and Electronic Structure of Noble Metal-Doped Germanium Clusters.
Mahtout, Sofiane; Siouani, Chaouki; Rabilloud, Franck
2018-01-18
Structures, energetics, and electronic properties of noble metal-doped germanium (MGe n with M = Cu, Ag, Au; n = 1-19) clusters are systematically investigated by using the density functional theory (DFT) approach. The endohedral structures in which the metal atom is encapsulated inside of a germanium cage appear at n = 10 when the dopant is Cu and n = 12 for M = Ag and Au. While Cu doping enhances the stability of the corresponding germanium frame, the binding energies of AgGe n and AuGe n are always lower than those of pure germanium clusters. Our results highlight the great stability of the CuGe 10 cluster in a D 4d structure and, to a lesser extent, that of AgGe 15 and AuGe 15 , which exhibits a hollow cage-like geometry. The sphere-type geometries obtained for n = 10-15 present a peculiar electronic structure in which the valence electrons of the noble metal and Ge atoms are delocalized and exhibit a shell structure associated with the quasi-spherical geometry. It is found that the coinage metal is able to give both s- and d-type electrons to be reorganized together with the valence electrons of Ge atoms through a pooling of electrons. The cluster size dependence of the stability, the frontier orbital energy gap, the vertical ionization potentials, and electron affinities are given.
Kaku, Hiroki; Inoue, Kanako; Muranaka, Yoshinori; Park, Pyoyun; Ikeda, Kenichi
2015-10-01
Uranyl salts are toxic and radioactive; therefore, several studies have been conducted to screen for substitutes of electron stains. In this regard, the contrast evaluation process is time consuming and the results obtained are inconsistent. In this study, we developed a novel contrast evaluation method using affinity beads and a backscattered electron image (BSEI), obtained using scanning electron microscopy. The contrast ratios of BSEI in each electron stain treatment were correlated with those of transmission electron microscopic images. The affinity beads bound to cell components independently. Protein and DNA samples were enhanced by image contrast treated with electron stains; however, this was not observed for sugars. Protein-conjugated beads showed an additive effect of image contrast when double-stained with lead. However, additive effect of double staining was not observed in DNA-conjugated beads. The varying chemical properties of oligopeptides showed differences in image contrast when treated with each electron stain. This BSEI-based evaluation method not only enables screening for alternate electron stains, but also helps analyze the underlying mechanisms of electron staining of cellular structures. © The Author 2015. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Häberlen, Oliver D.; Chung, Sai-Cheong; Stener, Mauro; Rösch, Notker
1997-03-01
A series of gold clusters spanning the size range from Au6 through Au147 (with diameters from 0.7 to 1.7 nm) in icosahedral, octahedral, and cuboctahedral structure has been theoretically investigated by means of a scalar relativistic all-electron density functional method. One of the main objectives of this work was to analyze the convergence of cluster properties toward the corresponding bulk metal values and to compare the results obtained for the local density approximation (LDA) to those for a generalized gradient approximation (GGA) to the exchange-correlation functional. The average gold-gold distance in the clusters increases with their nuclearity and correlates essentially linearly with the average coordination number in the clusters. An extrapolation to the bulk coordination of 12 yields a gold-gold distance of 289 pm in LDA, very close to the experimental bulk value of 288 pm, while the extrapolated GGA gold-gold distance is 297 pm. The cluster cohesive energy varies linearly with the inverse of the calculated cluster radius, indicating that the surface-to-volume ratio is the primary determinant of the convergence of this quantity toward bulk. The extrapolated LDA binding energy per atom, 4.7 eV, overestimates the experimental bulk value of 3.8 eV, while the GGA value, 3.2 eV, underestimates the experiment by almost the same amount. The calculated ionization potentials and electron affinities of the clusters may be related to the metallic droplet model, although deviations due to the electronic shell structure are noticeable. The GGA extrapolation to bulk values yields 4.8 and 4.9 eV for the ionization potential and the electron affinity, respectively, remarkably close to the experimental polycrystalline work function of bulk gold, 5.1 eV. Gold 4f core level binding energies were calculated for sites with bulk coordination and for different surface sites. The core level shifts for the surface sites are all positive and distinguish among the corner, edge, and face-centered sites; sites in the first subsurface layer show still small positive shifts.
DFT study of Al doped armchair SWCNTs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dhiman, Shobhna, E-mail: s-dhiman@hotmail.com; Rani, Anita; Kumar, Ranjan
2016-05-23
Electronic properties of endohedrally doped armchair single-walled carbon nanotubes (SWCNTs) with a chain of six Al atoms have been studied using ab-initio density functional theory. We investigate the binding energy/atom, ionization potential, electron Affinity and Homo-Lumo gap of doped armchair SWNTs from (4,4) to (6,6) with two ends open. BE/dopant atom and ionization potential is maximum for (6, 6) doped armchair carbon nanotube; suggest that it is more stable than (4, 4) and (5, 5) doped tubes. HOMO - LUMO gap of Al doped arm chair carbon nanotubes decreases linearly with the increase in diameter of the tube. This showsmore » that confinement induce a strong effect on electronic properties of doped tubes. These combined systems can be used for future nano electronics. The ab–initio calculations were performed with SIESTA code using generalized gradient approximation (GGA).« less
Trevethan, Thomas; Shluger, Alexander
2009-07-01
We present the results of theoretical modelling that predicts how a process of transfer of single electrons between two defects on an insulating surface can be induced using a scanning force microscope tip. A model but realistic system is employed which consists of a neutral oxygen vacancy and a noble metal (Pt or Pd) adatom on the MgO(001) surface. We show that the ionization potential of the vacancy and the electron affinity of the metal adatom can be significantly modified by the electric field produced by an ionic tip apex at close approach to the surface. The relative energies of the two states are also a function of the separation of the two defects. Therefore the transfer of an electron from the vacancy to the metal adatom can be induced either by the field effect of the tip or by manipulating the position of the metal adatom on the surface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tokár, K.; Derian, R.; Mitas, L.
Using explicitly correlated fixed-node quantum Monte Carlo and density functional theory (DFT) methods, we study electronic properties, ground-state multiplets, ionization potentials, electron affinities, and low-energy fragmentation channels of charged half-sandwich and multidecker vanadium-benzene systems with up to 3 vanadium atoms, including both anions and cations. It is shown that, particularly in anions, electronic correlations play a crucial role; these effects are not systematically captured with any commonly used DFT functionals such as gradient corrected, hybrids, and range-separated hybrids. On the other hand, tightly bound cations can be described qualitatively by DFT. A comparison of DFT and quantum Monte Carlo providesmore » an in-depth understanding of the electronic structure and properties of these correlated systems. The calculations also serve as a benchmark study of 3d molecular anions that require a balanced many-body description of correlations at both short- and long-range distances.« less
Juárez, Oscar; Neehaul, Yashvin; Turk, Erin; Chahboun, Najat; DeMicco, Jessica M.; Hellwig, Petra; Barquera, Blanca
2012-01-01
The Na+-pumping NADH:quinone oxidoreductase (Na+-NQR) is the main entrance for electrons into the respiratory chain of many marine and pathogenic bacteria. The enzyme accepts electrons from NADH and donates them to ubiquinone, and the free energy released by this redox reaction is used to create an electrochemical gradient of sodium across the cell membrane. Here we report the role of glycine 140 and glycine 141 of the NqrB subunit in the functional binding of ubiquinone. Mutations at these residues altered the affinity of the enzyme for ubiquinol. Moreover, mutations in residue NqrB-G140 almost completely abolished the electron transfer to ubiquinone. Thus, NqrB-G140 and -G141 are critical for the binding and reaction of Na+-NQR with its electron acceptor, ubiquinone. PMID:22645140
Band offset and electron affinity of MBE-grown SnSe2
NASA Astrophysics Data System (ADS)
Zhang, Qin; Li, Mingda Oscar; Lochocki, Edward B.; Vishwanath, Suresh; Liu, Xinyu; Yan, Rusen; Lien, Huai-Hsun; Dobrowolska, Malgorzata; Furdyna, Jacek; Shen, Kyle M.; Cheng, Guangjun; Hight Walker, Angela R.; Gundlach, David J.; Xing, Huili G.; Nguyen, N. V.
2018-01-01
SnSe2 is currently considered a potential two-dimensional material that can form a near-broken gap heterojunction in a tunnel field-effect transistor due to its large electron affinity which is experimentally confirmed in this letter. With the results from internal photoemission and angle-resolved photoemission spectroscopy performed on Al/Al2O3/SnSe2/GaAs and SnSe2/GaAs test structures where SnSe2 is grown on GaAs by molecular beam epitaxy, we ascertain a (5.2 ± 0.1) eV electron affinity of SnSe2. The band offset from the SnSe2 Fermi level to the Al2O3 conduction band minimum is found to be (3.3 ± 0.05) eV and SnSe2 is seen to have a high level of intrinsic electron (n-type) doping with the Fermi level positioned at about 0.2 eV above its conduction band minimum. It is concluded that the electron affinity of SnSe2 is larger than that of most semiconductors and can be combined with other appropriate semiconductors to form near broken-gap heterojunctions for the tunnel field-effect transistor that can potentially achieve high on-currents.
NASA Astrophysics Data System (ADS)
Yockel, Scott; Mintz, Benjamin; Wilson, Angela K.
2004-07-01
Advanced ab initio [coupled cluster theory through quasiperturbative triple excitations (CCSD(T))] and density functional (B3LYP) computational chemistry approaches were used in combination with the standard and augmented correlation consistent polarized valence basis sets [cc-pVnZ and aug-cc-pVnZ, where n=D(2), T(3), Q(4), and 5] to investigate the energetic and structural properties of small molecules containing third-row (Ga-Kr) atoms. These molecules were taken from the Gaussian-2 (G2) extended test set for third-row atoms. Several different schemes were used to extrapolate the calculated energies to the complete basis set (CBS) limit for CCSD(T) and the Kohn-Sham (KS) limit for B3LYP. Zero point energy and spin orbital corrections were included in the results. Overall, CCSD(T) atomization energies, ionization energies, proton affinities, and electron affinities are in good agreement with experiment, within 1.1 kcal/mol when the CBS limit has been determined using a series of two basis sets of at least triple zeta quality. For B3LYP, the overall mean absolute deviation from experiment for the three properties and the series of molecules is more significant at the KS limit, within 2.3 and 2.6 kcal/mol for the cc-pVnZ and aug-cc-pVnZ basis set series, respectively.
NASA Astrophysics Data System (ADS)
Borah, Mukunda Madhab; Gomti Devi, Th.
2018-07-01
In the present work Tamoxifen, Estradiol and their interaction are studied using the experimental and theoretical methodologies. The spectral characterization was made by using Raman, FTIR, DFT and VEDA calculation. The optimization of the molecules have been studied using basis set B3LYP/6-31 G(d,p). Complete vibrational assignment of Tamoxifen, Estradiol and Estradiol + Tamoxifen have been attempted and the potential energy distribution and normal mode analysis had also been carried out to determine the contributions of bond oscillators in each normal mode. We have optimized several binding modes of Estradiol and Tamoxifen and taken the lowest energy conformer in our interest. The molecular geometry, HOMO-LUMO energy gap, molecular hardness (η), ionization energy (IE), electron affinity (EA), total energy and dipole moment were analyzed. The observed experimental and the scaled theoretical results were found in good agreement.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, H.; Wang, L.S.
A photoelectron spectroscopic study of ScO{sub n}{sup {minus}} (n = 1--4) and YO{sub n}{sup {minus}} (n = 1--5) was carried out at three photon energies: 532, 355, and 266 nm. Vibrationally resolved photoelectron spectra were obtained for ScO{sup {minus}} and YO{sup {minus}}. The electron affinities of both ScO and YO were measured to be identical (1.35 eV) within the experimental accuracy ({+-}0.02 eV). Three low-lying excited states were observed for the monoxides, {Alpha}{prime}{sup 2}{Delta}, {Alpha}{sup 2}{Pi}, and {Beta}{sup 2}{Sigma}{sup +}. The latter two excited states resulted from two-electron detachment, suggesting unusually strong electron correlation (configuration interaction) effects in the groundmore » state of the anions. The excitation energies of the low-lying states were also found to be similar for the two monoxides except that YO has a smaller vibrational frequency and larger spin-orbit splitting. The {Alpha}{prime}{sup 2}{Delta} states of both ScO and YO show very strong photon energy-dependent detachment cross sections. Four similar photoelectron features were observed for the dioxides with those of YO{sub 2}{sup {minus}} having lower binding energies. A second isomer due to an O{sub 2} complex was also observed for Sc and Y. Broad and featureless spectra were observed for the higher oxides. At least two isomers were present for the higher oxides, one with low and one with high binding energies.« less
Martínez-Cifuentes, Maximiliano; Weiss-López, Boris; Araya-Maturana, Ramiro
2016-12-02
In this work, a computational study of a series of N -substitued-4-piperidones curcumin analogues is presented. The molecular structure of the neutral molecules and their radical anions, as well as their reactivity, are investigated. N -substituents include methyl and benzyl groups, while substituents on the aromatic rings cover electron-donor and electron-acceptor groups. Substitutions at the nitrogen atom do not significantly affect the geometry and frontier molecular orbitals (FMO) energies of these molecules. On the other hand, substituents on the aromatic rings modify the distribution of FMO. In addition, they influence the capability of these molecules to attach an additional electron, which was studied through adiabatic (AEA) and vertical electron affinities (VEA), as well as vertical detachment energy (VDE). To study electrophilic properties of these structures, local reactivity indices, such as Fukui ( f ⁺) and Parr ( P ⁺) functions, were calculated, and show the influence of the aromatic rings substituents on the reactivity of α,β-unsaturated ketones towards nucleophilic attack. This study has potential implications for the design of curcumin analogues based on a 4-piperidone core with desired reactivity.
The Electronic Structure of Transition Metal Coated Fullerenes
NASA Astrophysics Data System (ADS)
Patton, David C.; Pederson, Mark R.; Kaxiras, Efthimios
1998-03-01
Clusters composed of fullerene molecules with an outer shell of transition metal atoms in the composition C_60M_62 (M being a transition metal) have been produced with laser vaporisation techniques(F. Tast, N. Malinowski, S. Frank, M. Heinebrodt, I.M.L. Billas, and T. P. Martin, Z. Phys D 40), 351 (1997).. We have studied several of these very large systems with a parallel version of the all-electron NRLMOL cluster code. Optimized geometries of the metal encased fullerenes C_60Ti_62 and C_60V_62 are presented along with their HOMO-LUMO gaps, electron affinities, ionization energies, and cohesive energies. We compare the stability of these clusters to relaxed met-car structures (e.g. Ti_8C_12) and to relaxed rocksalt metal-carbide fragments (TiC)n with n=8 and 32. In addition to metal-coated fullerenes we consider the possibility of a trilayered structure consisting of a small shell of metal atoms enclosed by a metal coated fullerene. The nature of bonding in these systems is analyzed by studying the electronic charge distributions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Verkhoturov, Stanislav V.; Geng, Sheng; Schweikert, Emile A., E-mail: schweikert@chem.tamu.edu
We present the first data from individual C{sub 60} impacting one to four layer graphene at 25 and 50 keV. Negative secondary ions and electrons emitted in transmission were recorded separately from each impact. The yields for C{sub n}{sup −} clusters are above 10% for n ≤ 4, they oscillate with electron affinities and decrease exponentially with n. The result can be explained with the aid of MD simulation as a post-collision process where sufficient vibrational energy is accumulated around the rim of the impact hole for sputtering of carbon clusters. The ionization probability can be estimated by comparing experimentalmore » yields of C{sub n}{sup −} with those of C{sub n}{sup 0} from MD simulation, where it increases exponentially with n. The ionization probability can be approximated with ejecta from a thermally excited (3700 K) rim damped by cluster fragmentation and electron detachment. The experimental electron probability distributions are Poisson-like. On average, three electrons of thermal energies are emitted per impact. The thermal excitation model invoked for C{sub n}{sup −} emission can also explain the emission of electrons. The interaction of C{sub 60} with graphene is fundamentally different from impacts on 3D targets. A key characteristic is the high degree of ionization of the ejecta.« less
Electrostatic Interactions in Aminoglycoside-RNA Complexes
Kulik, Marta; Goral, Anna M.; Jasiński, Maciej; Dominiak, Paulina M.; Trylska, Joanna
2015-01-01
Electrostatic interactions often play key roles in the recognition of small molecules by nucleic acids. An example is aminoglycoside antibiotics, which by binding to ribosomal RNA (rRNA) affect bacterial protein synthesis. These antibiotics remain one of the few valid treatments against hospital-acquired infections by Gram-negative bacteria. It is necessary to understand the amplitude of electrostatic interactions between aminoglycosides and their rRNA targets to introduce aminoglycoside modifications that would enhance their binding or to design new scaffolds. Here, we calculated the electrostatic energy of interactions and its per-ring contributions between aminoglycosides and their primary rRNA binding site. We applied either the methodology based on the exact potential multipole moment (EPMM) or classical molecular mechanics force field single-point partial charges with Coulomb formula. For EPMM, we first reconstructed the aspherical electron density of 12 aminoglycoside-RNA complexes from the atomic parameters deposited in the University at Buffalo Databank. The University at Buffalo Databank concept assumes transferability of electron density between atoms in chemically equivalent vicinities and allows reconstruction of the electron densities from experimental structural data. From the electron density, we then calculated the electrostatic energy of interaction using EPMM. Finally, we compared the two approaches. The calculated electrostatic interaction energies between various aminoglycosides and their binding sites correlate with experimentally obtained binding free energies. Based on the calculated energetic contributions of water molecules mediating the interactions between the antibiotic and rRNA, we suggest possible modifications that could enhance aminoglycoside binding affinity. PMID:25650932
Secondary electron emission from lunar soil by solar wind type ion impact: Laboratory measurements
NASA Astrophysics Data System (ADS)
Dukes, Catherine; Bu, Caixia; Baragiola, Raul A.
2015-11-01
Introduction: The lunar surface potential is determined by time-varying fluxes of electrons and ions from the solar wind, photoelectrons ejected by UV photons, cosmic rays, and micrometeorite impacts. Solar wind ions have a dual role in the charging process, adding positive charge to the lunar regolith upon impact and ejecting negative secondary electrons (SE). Electron emission occurs when the energy from the impacting ion is transferred to the solid, ionizing and damaging the material; electrons with kinetic energy greater than the ionization potential (band gap + electron affinity) are ejected from the solid[1].Experiment: We investigate the energy distribution of secondary electrons ejected from Apollo soils of varying maturity and lunar analogs by 4 keV He+. Soils are placed into a shallow Al cup and compressed. In-situ low-energy oxygen plasma is used to clean atmospheric contaminants from the soil before analysis[2]. X-ray photoelectron spectroscopy ascertains that the sample surface is clean. Experiments are conducted in a PHI 560 system (<10-9 Torr), equipped with a double-pass, cylindrical-mirror electron energy analyzer (CMA) and μ-metal shield. The spectrometer is used to measure SE distributions, as well as for in situ surface characterization. A small negative bias (~5V) with respect to the grounded entrance grid of the CMA may be placed on the sample holder in order to expose the low energy cutoff.To measure SE energy distributions, primary ions rastered over a ~6 x 6 mm2 area are incident on the sample at ~40° relative to the surface normal, while SE emitted with an angle of 42.3°± 3.5° in a cone are analyzed.Results: The energy distribution of SE ejected from 4 keV He ion irradiation of albite with no bias applied shows positive charging of the surface. The general shape and distribution peak (~4 eV) are consistent with spectra for low energy ions on insulating material[1].Acknowledgements: We thank the NASA LASER program for support.References: [1]P. Riccardi, R. Baragiola et al. (2004); Surf. Science 57, L305-L310. [2]C.A. Dukes & R.A. Baragiola (2010) Surface Interface Anal. 42, 40-44.
Hydrogen production by photoelectrolytic decomposition of H2O using solar energy
NASA Technical Reports Server (NTRS)
Rauh, R. D.; Alkaitis, S. A.; Buzby, J. M.; Schiff, R.
1980-01-01
Photoelectrochemical systems for the efficient decomposition of water are discussed. Semiconducting d band oxides which would yield the combination of stability, low electron affinity, and moderate band gap essential for an efficient photoanode are sought. The materials PdO and Fe-xRhxO3 appear most likely. Oxygen evolution yields may also be improved by mediation of high energy oxidizing agents, such as CO3(-). Examination of several p type semiconductors as photocathodes revealed remarkable stability for p-GaAs, and also indicated p-CdTe as a stable H2 photoelectrode. Several potentially economical schemes for photoelectrochemical decomposition of water were examined, including photoelectrochemical diodes and two stage, four photon processes.
NASA Astrophysics Data System (ADS)
Song, Li; Shan-Jun, Chen; Yan, Chen; Peng, Chen
2016-03-01
The SF radical and its singly charged cation and anion, SF+ and SF-, have been investigated on the MRCI/aug-cc-pVXZ (X = Q, 5, 6) levels of theory with Davidson correction. Both the core-valence correlation and the relativistic effect are considered. The extrapolating to the complete basis set (CBS) limit is adopted to remove the basis set truncation error. Geometrical parameters, potential energy curves (PECs), vibrational energy levels, spectroscopic constants, ionization potentials, and electron affinities of the ground electronic state for all these species are obtained. The information with respect to molecular characteristics of the SFn (n = -1, 0, +1) systems derived in this work will help to extend our knowledge and to guide further experimental or theoretical researches. Project supported by the National Natural Science Foundation of China (Grant Nos. 11304023 and 11447172), the Young and Middle-Aged Talent of Education Burea of Hubei Province, China (Grant No. Q20151307), and the Yangtze Youth Talents Fund of Yangtze University, China (Grant No. 2015cqr21).
Koopmans' analysis of chemical hardness with spectral-like resolution.
Putz, Mihai V
2013-01-01
Three approximation levels of Koopmans' theorem are explored and applied: the first referring to the inner quantum behavior of the orbitalic energies that depart from the genuine ones in Fock space when the wave-functions' Hilbert-Banach basis set is specified to solve the many-electronic spectra of spin-orbitals' eigenstates; it is the most subtle issue regarding Koopmans' theorem as it brings many critics and refutation in the last decades, yet it is shown here as an irrefutable "observational" effect through computation, specific to any in silico spectra of an eigenproblem; the second level assumes the "frozen spin-orbitals" approximation during the extracting or adding of electrons to the frontier of the chemical system through the ionization and affinity processes, respectively; this approximation is nevertheless workable for great deal of chemical compounds, especially organic systems, and is justified for chemical reactivity and aromaticity hierarchies in an homologue series; the third and the most severe approximation regards the extension of the second one to superior orders of ionization and affinities, here studied at the level of chemical hardness compact-finite expressions up to spectral-like resolution for a paradigmatic set of aromatic carbohydrates.
Koopmans' Analysis of Chemical Hardness with Spectral-Like Resolution
2013-01-01
Three approximation levels of Koopmans' theorem are explored and applied: the first referring to the inner quantum behavior of the orbitalic energies that depart from the genuine ones in Fock space when the wave-functions' Hilbert-Banach basis set is specified to solve the many-electronic spectra of spin-orbitals' eigenstates; it is the most subtle issue regarding Koopmans' theorem as it brings many critics and refutation in the last decades, yet it is shown here as an irrefutable “observational” effect through computation, specific to any in silico spectra of an eigenproblem; the second level assumes the “frozen spin-orbitals” approximation during the extracting or adding of electrons to the frontier of the chemical system through the ionization and affinity processes, respectively; this approximation is nevertheless workable for great deal of chemical compounds, especially organic systems, and is justified for chemical reactivity and aromaticity hierarchies in an homologue series; the third and the most severe approximation regards the extension of the second one to superior orders of ionization and affinities, here studied at the level of chemical hardness compact-finite expressions up to spectral-like resolution for a paradigmatic set of aromatic carbohydrates. PMID:23970834
Pham, T. Anh; Nguyen, Huy -Viet; Rocca, Dario; ...
2013-04-26
Inmore » a recent paper we presented an approach to evaluate quasiparticle energies based on the spectral decomposition of the static dielectric matrix. This method does not require the calculation of unoccupied electronic states or the direct diagonalization of large dielectric matrices, and it avoids the use of plasmon-pole models. The numerical accuracy of the approach is controlled by a single parameter, i.e., the number of eigenvectors used in the spectral decomposition of the dielectric matrix. Here we present a comprehensive validation of the method, encompassing calculations of ionization potentials and electron affinities of various molecules and of band gaps for several crystalline and disordered semiconductors. Lastly, we demonstrate the efficiency of our approach by carrying out G W calculations for systems with several hundred valence electrons.« less
Study of organic radicals through anion photoelectron velocity-map imaging spectroscopy
NASA Astrophysics Data System (ADS)
Dixon, Andrew Robert
We report preliminary results on the photoelectron imaging of phenylcarbene, cyanophenylcarbene, and chlorophenylcarbene anions. Triplet phenylcarbene is observed to have an EA of ≤ 0.83 eV, considerably lower than the previously indirectly-determined value. Transitions to the singlet and triplet ground state of both cyanophenylcarbene and chlorophenylcarbene are observable, though unidentified bands make full assignment difficult. Cyanophenylcarbene is found to have a triplet ground-state, with a tentative EA of 2.04 eV. Chlorophenylcarbene is found to have a singlet ground-state. The phenyl-group is found to favor the singlet state slightly. The cyanofluoromethyl radical, FC(H)CN, was estimated to have an EA of 1.53 +/- 0.08 eV, by a combination of experimental and theoretical results.. With similar methodology, we report the adiabatic electron affinity of the cyanobenzyl radical, EA(PhCHCN) = 1.90 +/- 0.01 eV, and assign an upper limit of the EA for the chlorobenzyl radical, EA(PhCHCl) ≤ 1.12 eV. These values were used to estimate the C-H bond dissociation energy (BDE)s for these substituted methanes. Fluoroacetonitrile was found to have a BDE of D H198 = 90.7 +/- 2.8 kcal mol□1. The C-H bond dissociation energies at the benzyl-alpha sites of the phenylmethanes are determined as 80.9 +/- 2.3 kcal mol-1 for benzyl nitrile and an upper limit of 84.2 kcal mol-1 for benzyl chloride. These results are discussed in terms of substituent interactions in a simple MO framework and in relation to other similar molecules, including recently reported results for chloroacetonitrile. The 532 nm photoelectron spectrum of glyoxal provides the first direct spectroscopic determination of the adiabatic electron affinity, EA = 1.10(2) eV. This assignment is supported by a Franck-Condon simulation of the experimental spectrum that successfully reproduces the observed spectral features. The vertical detachment energy (VDE) of the glyoxal radical anion is determined as VDE = 1.30(4) eV. The EA of methylglyoxal is determined as ≤ 0.8 eV based on the signal-to-noise ratio of the X 1A ' ← X 2A'' transition, with a VDE = 1.28(4) eV. The EA of the a 3A'' ← X 2A '' and A 1A'' ← X 2A'' transitions are determined as 3.28(3) eV and 3.614(5) eV respectively. The intrinsically short-lived ethylenedione molecule (OCCO) was observed and investigated using anion photoelectron spectroscopy. The adiabatic electron affinity of its 3Sigmag □ ground state is 1.936(8) eV. The vibrational progression with a 417(15) cm-1 frequency observed within the triplet band corresponds to a trans-bending mode. Several dissociative singlet states are also observed, corresponding to two components of the 1Delta g state and the 1Sigmag + state. The experimental results are in agreement with the theory predictions and constitute the first spectroscopic observation and characterization of the elusive ethylenedione molecule. Two glyoxal derivatives related to the ethylenedione anion (OCCO -), ethynediolide (HOCCO-) and glyoxalide (OHCCO-), were studied. These anions provide access to the corresponding neutral reactive intermediates: the HOCCO and OHCCO radicals. In the HOCCO/OHCCO anion photoelectron spectrum, we identify several electronic states of this radical system and determine the adiabatic electron affinity of HOCCO as 1.763(6) eV. This result is compared to the corresponding 1.936(8) eV value for ethylenedione (OCCO). Initial attempts were made to detect and observe the dicyanoacetylene anion, NCCCCN- , by photoelectron imaging. While it is believed the experimental design path of H2+ abstraction from fumaronitrile is sound, no spectral signature can be assigned to NCCCCN -. Calculations targeting the low-lying transitions from the anion indicate that the molecule should have a significantly positive electron affinity and at least the ground state should be accessible with the currently available laser sources. The cluster ion O2(N2O) of the same nominal mass as NCCCCN- is identified as an interfering ion and ideas have been proposed for resolving this difficulty. (Abstract shortened by ProQuest.).
Resonant- and avalanche-ionization amplification of laser-induced plasma in air
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Yue; Zhang, Zhili, E-mail: zzhang24@utk.edu; Jiang, Naibo
2014-10-14
Amplification of laser-induced plasma in air is demonstrated utilizing resonant laser ionization and avalanche ionization. Molecular oxygen in air is ionized by a low-energy laser pulse employing (2 + 1) resonance-enhanced multi-photon ionization (REMPI) to generate seed electrons. Subsequent avalanche ionization of molecular oxygen and nitrogen significantly amplifies the laser-induced plasma. In this plasma-amplification effect, three-body attachments to molecular oxygen dominate the electron-generation and -loss processes, while either nitrogen or argon acts as the third body with low electron affinity. Contour maps of the electron density within the plasma obtained in O₂/N₂ and O₂/Ar gas mixtures are provided to showmore » relative degrees of plasma amplification with respect to gas pressure and to verify that the seed electrons generated by O₂ 2 + 1 REMPI are selectively amplified by avalanche ionization of molecular nitrogen in a relatively low-pressure condition (≤100 Torr). Such plasma amplification occurring in air could be useful in aerospace applications at high altitude.« less
Photoelectron spectroscopy of the 6-azauracil anion.
Chen, Jing; Buonaugurio, Angela; Dolgounitcheva, Olga; Zakrzewski, V G; Bowen, Kit H; Ortiz, J V
2013-02-14
We report the photoelectron spectrum of the 6-azauracil anion. The spectrum is dominated by a broad band exhibiting a maximum at an electron binding energy (EBE) of 1.2 eV. This spectral pattern is indicative of a valence anion. Our calculations were carried out using ab initio electron propagator and other many-body methods. Comparison of the anion and corresponding neutral of 6-azauracil with those of uracil shows that substituting a nitrogen atom for C-H at the C6 position of uracil gives rise to significant changes in the electronic structure of 6-azauracil versus that of uracil. The adiabatic electron affinity (AEA) of the canonical 6-azauracil tautomer is substantially larger than that of canonical uracil. Among the five tautomeric, 6-azauracil anions studied computationally, the canonical structure was found to be the most stable. The vertical detachment energies (VDE) of the canonical, valence-bound anion of 6-azauracil and its closest "very-rare" tautomer have been calculated. Electron propagator calculations on the canonical anion yield a VDE value that is in close agreement with the experimentally determined VDE value of 1.2 eV. The AEA value of 6-azauracil, assessed at the CCSD(T) level of theory to be 0.5 eV, corresponds with the EBE value of the onset of the experimental spectrum.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Verona, C.; Marinelli, Marco; Verona-Rinati, G.
We report on a comparative study of transfer doping of hydrogenated single crystal diamond surface by insulators featured by high electron affinity, such as Nb{sub 2}O{sub 5}, WO{sub 3}, V{sub 2}O{sub 5}, and MoO{sub 3}. The low electron affinity Al{sub 2}O{sub 3} was also investigated for comparison. Hole transport properties were evaluated in the passivated hydrogenated diamond films by Hall effect measurements, and were compared to un-passivated diamond films (air-induced doping). A drastic improvement was observed in passivated samples in terms of conductivity, stability with time, and resistance to high temperatures. The efficiency of the investigated insulators, as electron acceptingmore » materials in hydrogenated diamond surface, is consistent with their electronic structure. These surface acceptor materials generate a higher hole sheet concentration, up to 6.5 × 10{sup 13} cm{sup −2}, and a lower sheet resistance, down to 2.6 kΩ/sq, in comparison to the atmosphere-induced values of about 1 × 10{sup 13} cm{sup −2} and 10 kΩ/sq, respectively. On the other hand, hole mobilities were reduced by using high electron affinity insulator dopants. Hole mobility as a function of hole concentration in a hydrogenated diamond layer was also investigated, showing a well-defined monotonically decreasing trend.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yaghlane, Saida Ben; Cotton, C. Eric; Francisco, Joseph S., E-mail: francisc@purdue.edu, E-mail: hochlaf@univ-mlv.fr
2013-11-07
Accurate ab initio computations of structural and spectroscopic parameters for the HPS/HSP molecules and corresponding cations and anions have been performed. For the electronic structure computations, standard and explicitly correlated coupled cluster techniques in conjunction with large basis sets have been adopted. In particular, we present equilibrium geometries, rotational constants, harmonic vibrational frequencies, adiabatic ionization energies, electron affinities, and, for the neutral species, singlet-triplet relative energies. Besides, the full-dimensional potential energy surfaces (PESs) for HPS{sup x} and HSP{sup x} (x = −1,0,1) systems have been generated at the standard coupled cluster level with a basis set of augmented quintuple-zeta quality.more » By applying perturbation theory to the calculated PESs, an extended set of spectroscopic constants, including τ, first-order centrifugal distortion and anharmonic vibrational constants has been obtained. In addition, the potentials have been used in a variational approach to deduce the whole pattern of vibrational levels up to 4000 cm{sup −1} above the minima of the corresponding PESs.« less
Super-pnicogen bonding in the radical anion of the fluorophosphine dimer
NASA Astrophysics Data System (ADS)
Setiawan, Dani; Cremer, Dieter
2016-10-01
The LUMO of the pnicogen-bonded fluoro-phosphine dimer has PP bonding character. Radical anion and dianion form relatively strong pnicogen bonds with some covalent character where however the dianion turns out to be a second order transition state. The binding energy of (FPH 2)2- is 30.4 kcal/mol (CCSD(T)/aug-cc-pVTZ; CASPT2(5,8): 30.7 kcal/mol) and the bond strength order measured with the local PP bond stretching force constant increases from 0.055 for the neutral dimer to 0.187 thus revealing that the stabilization of the radical anion is to a large extend a result of one-electron six-center delocalization. Pnicogen-bonded complexes have a stabilizing electron affinity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
San, Long K.; Spisak, Sarah N.; Dubceac, Cristina
Two series of aromatic compounds with perfluoroalkyl (RF) groups of increasing length, 1,3,5,7-naphthalene(RF)4 and 1,3,5,7,9-corannulene(RF)5, have been prepared and their electronic properties studied by low-temperature PES (i.e., gas-phase electron affinity (EA) measurements). These and many related compounds were also studied by DFT calculations. The data demonstrate unambiguously that the electron-withdrawing ability of RF substituents increases significantly and uniformly from CF3 to C2F5 to n-C3F7 to n-C4F9.
DOE Office of Scientific and Technical Information (OSTI.GOV)
San, Long K.; Spisak, Sarah N.; Dubceac, Cristina
2018-01-26
Two series of aromatic compounds with perfluoroalkyl (RF) groups of increasing length, 1,3,5,7-naphthalene(RF)4 and 1,3,5,7,9-corannulene(RF)5, have been prepared and their electronic properties studied by low-temperature PES (i.e., gas-phase electron affinity (EA) measurements). These and many related compounds were also studied by DFT calculations. The data demonstrate unambiguously that the electron-withdrawing ability of RF substituents increases significantly and uniformly from CF3 to C2F5 to n-C3F7 to n-C4F9.
The electronic and optical properties of Cs adsorbed GaAs nanowires via first-principles study
NASA Astrophysics Data System (ADS)
Diao, Yu; Liu, Lei; Xia, Sihao; Feng, Shu; Lu, Feifei
2018-07-01
In this study, we investigate the Cs adsorption mechanism on (110) surface of zinc-blende GaAs nanowire. The adsorption energy, work function, dipole moment, geometric structure, Mulliken charge distribution, charge transfer index, band structures, density of state and optical properties of Cs adsorption structures are calculated utilizing first-principles method based on density function theory. Total-energy calculations show that all the adsorption energies are negative, indicating that Cs adsorption process is exothermic and Cs covered GaAs nanowires are stable. The work function of nanowire surface has an obvious decrease after Cs adsorption. Besides, the ionization of nanowire surface is enhanced as well. More importantly, Cs adsorption contributes to a lower side shift of bands near Fermi level, and the corresponding band gap disappears. Additionally, the absorption peak and energy loss function after Cs adsorption are far higher than those before adsorption, implying better light absorption characteristic of nanowire surface after Cs adsorption. These theoretical calculations can directly guide the Cs activation experiment for negative electron affinity GaAs nanowire, and also lay a foundation for the further study of Cs/O co-adsorption on the nanowire surface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
University of Illinois at Chicago; Blaze, Melvin M. T.; Takahashi, Lynelle
2011-03-14
The small molecular analyte 3,5-dibromotyrosine (Br2Y) and chitosan-alginate polyelectrolyte multilayers (PEM) with and without adsorbed Br2Y were analyzed by laser desorption postionization mass spectrometry (LDPI-MS). LDPI-MS using 7.87 eV laser and tunable 8 ? 12.5 eV synchrotron vacuum ultraviolet (VUV) radiation found that desorption of clusters from Br2Y films allowed detection by≤8 eV single photon ionization. Thermal desorption and electronic structure calculations determined the ionization energy of Br2Y to be ~;;8.3?0.1 eV and further indicated that the lower ionization energies of clusters permitted their detection at≤8 eV photon energies. However, single photon ionization could only detect Br2Y adsorbed within PEMsmore » when using either higher photon energies or matrix addition to the sample. All samples were also analyzed by 25 keV Bi3 + secondary ion mass spectrometry (SIMS), with the negative ion spectra showing strong parent ion signal which complemented that observed by LDPI-MS. The negative ion SIMS depended strongly on the high electron affinity of this specific analyte and the analyte?s condensed phase environment.« less
Donald, William A; Leib, Ryan D; O'Brien, Jeremy T; Williams, Evan R
2009-06-08
Solution-phase, half-cell potentials are measured relative to other half-cell potentials, resulting in a thermochemical ladder that is anchored to the standard hydrogen electrode (SHE), which is assigned an arbitrary value of 0 V. A new method for measuring the absolute SHE potential is demonstrated in which gaseous nanodrops containing divalent alkaline-earth or transition-metal ions are reduced by thermally generated electrons. Energies for the reactions 1) M(H(2)O)(24)(2+)(g) + e(-)(g)-->M(H(2)O)(24)(+)(g) and 2) M(H(2)O)(24)(2+)(g) + e(-)(g)-->MOH(H(2)O)(23)(+)(g) + H(g) and the hydrogen atom affinities of MOH(H(2)O)(23)(+)(g) are obtained from the number of water molecules lost through each pathway. From these measurements on clusters containing nine different metal ions and known thermochemical values that include solution hydrolysis energies, an average absolute SHE potential of +4.29 V vs. e(-)(g) (standard deviation of 0.02 V) and a real proton solvation free energy of -265 kcal mol(-1) are obtained. With this method, the absolute SHE potential can be obtained from a one-electron reduction of nanodrops containing divalent ions that are not observed to undergo one-electron reduction in aqueous solution.
Donald, William A.; Leib, Ryan D.; O’Brien, Jeremy T.; Williams, Evan R.
2009-01-01
Solution-phase, half-cell potentials are measured relative to other half-cell potentials, resulting in a thermochemical ladder that is anchored to the standard hydrogen electrode (SHE), which is assigned an arbitrary value of 0 V. A new method for measuring the absolute SHE potential is demonstrated in which gaseous nanodrops containing divalent alkaline-earth or transition-metal ions are reduced by thermally generated electrons. Energies for the reactions 1) M-(H2O)242+(g)+e−(g)→M(H2O)24+(g) and 2) M(H2O)242+(g)+e−(g)→MOH(H2O)23+(g)+H(g) and the hydrogen atom affinities of MOH(H2O)23+(g) are obtained from the number of water molecules lost through each pathway. From these measurements on clusters containing nine different metal ions and known thermochemical values that include solution hydrolysis energies, an average absolute SHE potential of +4.29 V vs. e−(g) (standard deviation of 0.02 V) and a real proton solvation free energy of −265 kcal mol−1 are obtained. With this method, the absolute SHE potential can be obtained from a one-electron reduction of nanodrops containing divalent ions that are not observed to undergo one-electron reduction in aqueous solution. PMID:19440999
Nano-jewellery: C5Au12--a gold-plated diamond at molecular level.
Naumkin, F
2006-06-07
A mixed carbon-metal cluster is designed by combining the tetrahedral C(5) radical (with a central atom-the skeleton of the C(5)H(12) molecule) and the spherical Au(12) layer (the external atomic shell of the Au(13) cluster). The C(5)Au(12) cluster and its negative and positive ionic derivatives, C(5)Au(12)(+/-), are investigated ab initio (DFT) in terms of optimized structures and relative energies of a few spin-states, for the icosahedral-like and octahedral-like isomers. The cluster is predicted to be generally more stable in its octahedral shape (similar to C(5)H(12)) which prevails for the negative ion and may compete with the icosahedral shape for the neutral system and positive ion. Adiabatic ionization energies (AIE) and electron affinities (AEA) of C(5)Au(12), vertical electron-detachment (VDE) energies of C(5)Au(12)(-), and vertical ionization and electron-attachment energies (VIE, VEA) of C(5)Au(12) are calculated as well, and compared with those for the corresponding isomers of the Au(13) cluster. The AIE and VIE values are found to be close for the two systems, while the AEA and VDE values are significantly reduced for the radical-based species. A simple fragment-based model is proposed for the decomposition of the total interaction into carbon-gold and gold-gold components.
Methods for neutralizing anthrax or anthrax spores
Sloan, Mark A; Vivekandanda, Jeevalatha; Holwitt, Eric A; Kiel, Johnathan L
2013-02-26
The present invention concerns methods, compositions and apparatus for neutralizing bioagents, wherein bioagents comprise biowarfare agents, biohazardous agents, biological agents and/or infectious agents. The methods comprise exposing the bioagent to an organic semiconductor and exposing the bioagent and organic semiconductor to a source of energy. Although any source of energy is contemplated, in some embodiments the energy comprises visible light, ultraviolet, infrared, radiofrequency, microwave, laser radiation, pulsed corona discharge or electron beam radiation. Exemplary organic semiconductors include DAT and DALM. In certain embodiments, the organic semiconductor may be attached to one or more binding moieties, such as an antibody, antibody fragment, or nucleic acid ligand. Preferably, the binding moiety has a binding affinity for one or more bioagents to be neutralized. Other embodiments concern an apparatus comprising an organic semiconductor and an energy source. In preferred embodiments, the methods, compositions and apparatus are used for neutralizing anthrax spores.
Hrovat, David; Hou, Gao-Lei; Chen, Bo; ...
2015-11-13
The CO 3 radical anion (CO 3 •–) has been formed by electrospraying carbonate dianion (CO 3 2–) into the gas phase. The negative ion photoelectron (NIPE) spectrum of CO 3 •– shows that, unlike trimethylenemethane [C(CH 2) 3], carbontrioxide (CO 3) has a singlet ground state. From the NIPE spectrum, the electron affinity of CO 3 was determined to be EA = 4.06 ± 0.03 eV, and the singlet-triplet energy difference was found to be ΔEST = - 17.8 ± 0.9 kcal/mol. B3LYP, CCSD(T), and CASPT2 calculations all find that the two lowest triplet states of CO 3 aremore » very close in energy, a prediction that is confirmed by the relative intensities of the bands in the NIPE spectrum of CO 3 •–. The 560 cm -1 vibrational progression, seen in the low energy region of the triplet band, enables the identification of the lowest, Jahn-Teller-distorted, triplet state as 3A 1, in which both unpaired electrons reside in σ MOs, rather than 3A 2, in which one unpaired electron occupies the b 2 σ MO, and the other occupies the b 1 π MO.« less
Wickstrom, Lauren; He, Peng; Gallicchio, Emilio; Levy, Ronald M.
2013-01-01
Host-guest inclusion complexes are useful models for understanding the structural and energetic aspects of molecular recognition. Due to their small size relative to much larger protein-ligand complexes, converged results can be obtained rapidly for these systems thus offering the opportunity to more reliably study fundamental aspects of the thermodynamics of binding. In this work, we have performed a large scale binding affinity survey of 57 β-cyclodextrin (CD) host guest systems using the binding energy distribution analysis method (BEDAM) with implicit solvation (OPLS-AA/AGBNP2). Converged estimates of the standard binding free energies are obtained for these systems by employing techniques such as parallel Hamitionian replica exchange molecular dynamics, conformational reservoirs and multistate free energy estimators. Good agreement with experimental measurements is obtained in terms of both numerical accuracy and affinity rankings. Overall, average effective binding energies reproduce affinity rank ordering better than the calculated binding affinities, even though calculated binding free energies, which account for effects such as conformational strain and entropy loss upon binding, provide lower root mean square errors when compared to measurements. Interestingly, we find that binding free energies are superior rank order predictors for a large subset containing the most flexible guests. The results indicate that, while challenging, accurate modeling of reorganization effects can lead to ligand design models of superior predictive power for rank ordering relative to models based only on ligand-receptor interaction energies. PMID:25147485
2011-01-01
Background The reliable and robust estimation of ligand binding affinity continues to be a challenge in drug design. Many current methods rely on molecular mechanics (MM) calculations which do not fully explain complex molecular interactions. Full quantum mechanical (QM) computation of the electronic state of protein-ligand complexes has recently become possible by the latest advances in the development of linear-scaling QM methods such as the ab initio fragment molecular orbital (FMO) method. This approximate molecular orbital method is sufficiently fast that it can be incorporated into the development cycle during structure-based drug design for the reliable estimation of ligand binding affinity. Additionally, the FMO method can be combined with approximations for entropy and solvation to make it applicable for binding affinity prediction for a broad range of target and chemotypes. Results We applied this method to examine the binding affinity for a series of published cyclin-dependent kinase 2 (CDK2) inhibitors. We calculated the binding affinity for 28 CDK2 inhibitors using the ab initio FMO method based on a number of X-ray crystal structures. The sum of the pair interaction energies (PIE) was calculated and used to explain the gas-phase enthalpic contribution to binding. The correlation of the ligand potencies to the protein-ligand interaction energies gained from FMO was examined and was seen to give a good correlation which outperformed three MM force field based scoring functions used to appoximate the free energy of binding. Although the FMO calculation allows for the enthalpic component of binding interactions to be understood at the quantum level, as it is an in vacuo single point calculation, the entropic component and solvation terms are neglected. For this reason a more accurate and predictive estimate for binding free energy was desired. Therefore, additional terms used to describe the protein-ligand interactions were then calculated to improve the correlation of the FMO derived values to experimental free energies of binding. These terms were used to account for the polar and non-polar solvation of the molecule estimated by the Poisson-Boltzmann equation and the solvent accessible surface area (SASA), respectively, as well as a correction term for ligand entropy. A quantitative structure-activity relationship (QSAR) model obtained by Partial Least Squares projection to latent structures (PLS) analysis of the ligand potencies and the calculated terms showed a strong correlation (r2 = 0.939, q2 = 0.896) for the 14 molecule test set which had a Pearson rank order correlation of 0.97. A training set of a further 14 molecules was well predicted (r2 = 0.842), and could be used to obtain meaningful estimations of the binding free energy. Conclusions Our results show that binding energies calculated with the FMO method correlate well with published data. Analysis of the terms used to derive the FMO energies adds greater understanding to the binding interactions than can be gained by MM methods. Combining this information with additional terms and creating a scaled model to describe the data results in more accurate predictions of ligand potencies than the absolute values obtained by FMO alone. PMID:21219630
Influence of metallic surface states on electron affinity of epitaxial AlN films
NASA Astrophysics Data System (ADS)
Mishra, Monu; Krishna, Shibin; Aggarwal, Neha; Gupta, Govind
2017-06-01
The present article investigates surface metallic states induced alteration in the electron affinity of epitaxial AlN films. AlN films grown by plasma-assisted molecular beam epitaxy system with (30% and 16%) and without metallic aluminium on the surface were probed via photoemission spectroscopic measurements. An in-depth analysis exploring the influence of metallic aluminium and native oxide on the electronic structure of the films is performed. It was observed that the metallic states pinned the Fermi Level (FL) near valence band edge and lead to the reduction of electron affinity (EA). These metallic states initiated charge transfer and induced changes in surface and interface dipoles strength. Therefore, the EA of the films varied between 0.6-1.0 eV due to the variation in contribution of metallic states and native oxide. However, the surface barrier height (SBH) increased (4.2-3.5 eV) adversely due to the availability of donor-like surface states in metallic aluminium rich films.
Xu, Xin; Zhang, Qingsong; Muller, Richard P; Goddard, William A
2005-01-01
We derive here the form for the exact exchange energy density for a density that decays with Gaussian-type behavior at long range. This functional is intermediate between the B88 and the PW91 exchange functionals. Using this modified functional to match the form expected for Gaussian densities, we propose the X3LYP extended functional. We find that X3LYP significantly outperforms Becke three parameter Lee-Yang-Parr (B3LYP) for describing van der Waals and hydrogen bond interactions, while performing slightly better than B3LYP for predicting heats of formation, ionization potentials, electron affinities, proton affinities, and total atomic energies as validated with the extended G2 set of atoms and molecules. Thus X3LYP greatly enlarges the field of applications for density functional theory. In particular the success of X3LYP in describing the water dimer (with R(e) and D(e) within the error bars of the most accurate determinations) makes it an excellent candidate for predicting accurate ligand-protein and ligand-DNA interactions. (c) 2005 American Institute of Physics.
NASA Astrophysics Data System (ADS)
Ball, James M.; Bouwer, Ricardo K. M.; Kooistra, Floris B.; Frost, Jarvist M.; Qi, Yabing; Domingo, Ester Buchaca; Smith, Jeremy; de Leeuw, Dago M.; Hummelen, Jan C.; Nelson, Jenny; Kahn, Antoine; Stingelin, Natalie; Bradley, Donal D. C.; Anthopoulos, Thomas D.
2011-07-01
The family of soluble fullerene derivatives comprises a widely studied group of electron transporting molecules for use in organic electronic and optoelectronic devices. For electronic applications, electron transporting (n-channel) materials are required for implementation into organic complementary logic circuit architectures. To date, few soluble candidate materials have been studied that fulfill the stringent requirements of high carrier mobility and air stability. Here we present a study of three soluble fullerenes with varying electron affinity to assess the impact of electronic structure on device performance and air stability. Through theoretical and experimental analysis of the electronic structure, characterization of thin-film structure, and characterization of transistor device properties we find that the air stability of the present series of fullerenes not only depends on the absolute electron affinity of the semiconductor but also on the disorder within the thin-film.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Bo; Hrovat, David A.; Deng, S. H. M.
Negative ion photoelectron (NIPE) spectra of the radical anion of meta-benzoquinone (MBQ, m-OC6H4O) have been obtained at 20 K, using both 355 and 266 nm lasers for electron photodetachment. The spectra show well-resolved peaks and complex spectral patterns. The electron affinity of MBQ is determined from the first resolved peak to be 2.875 ±17 0.010 eV. Single-point, CASPT2/aug-cc-pVTZ//CASPT2/ aug-cc-pVDZ calculations predict accurately the positions of the 0-0 bands in the NIPE spectrum for formation of the four lowest electronic states of neutral MBQ from the 2A2 state of MBQ•-. In addition, the Franck-Condon factors that are computed from the CASPT2/aug-cc-pVDZmore » optimized geometries,vibrational frequencies, and normal mode vectors, successfully simulate the intensities and frequencies of the vibrational peaks in the NIPE spectrum that are associated with each of these electronic states. The successful simulation of the NIPE spectrum of MBQ•- allows the assignment of 3B2 as the ground state of MBQ, followed by the 1B2 and 1A1 electronic states, respectively 9.0 ± 0.2 and 16.6 ± 0.2 kcal/mol higher in energy than the triplet. These experimental energy differences are in good agreement with the calculated values of 9.7 and 15.7 kcal/mol. The relative energies of these two singlet states in MBQ confirm the previous prediction that their relative energies would be reversed from those in meta-benzoquinodimethane (MBQDM, m-CH2C6H4CH2).« less
NASA Astrophysics Data System (ADS)
Misini Ignjatović, Majda; Caldararu, Octav; Dong, Geng; Muñoz-Gutierrez, Camila; Adasme-Carreño, Francisco; Ryde, Ulf
2016-09-01
We have estimated the binding affinity of three sets of ligands of the heat-shock protein 90 in the D3R grand challenge blind test competition. We have employed four different methods, based on five different crystal structures: first, we docked the ligands to the proteins with induced-fit docking with the Glide software and calculated binding affinities with three energy functions. Second, the docked structures were minimised in a continuum solvent and binding affinities were calculated with the MM/GBSA method (molecular mechanics combined with generalised Born and solvent-accessible surface area solvation). Third, the docked structures were re-optimised by combined quantum mechanics and molecular mechanics (QM/MM) calculations. Then, interaction energies were calculated with quantum mechanical calculations employing 970-1160 atoms in a continuum solvent, combined with energy corrections for dispersion, zero-point energy and entropy, ligand distortion, ligand solvation, and an increase of the basis set to quadruple-zeta quality. Fourth, relative binding affinities were estimated by free-energy simulations, using the multi-state Bennett acceptance-ratio approach. Unfortunately, the results were varying and rather poor, with only one calculation giving a correlation to the experimental affinities larger than 0.7, and with no consistent difference in the quality of the predictions from the various methods. For one set of ligands, the results could be strongly improved (after experimental data were revealed) if it was recognised that one of the ligands displaced one or two water molecules. For the other two sets, the problem is probably that the ligands bind in different modes than in the crystal structures employed or that the conformation of the ligand-binding site or the whole protein changes.
Misini Ignjatović, Majda; Caldararu, Octav; Dong, Geng; Muñoz-Gutierrez, Camila; Adasme-Carreño, Francisco; Ryde, Ulf
2016-09-01
We have estimated the binding affinity of three sets of ligands of the heat-shock protein 90 in the D3R grand challenge blind test competition. We have employed four different methods, based on five different crystal structures: first, we docked the ligands to the proteins with induced-fit docking with the Glide software and calculated binding affinities with three energy functions. Second, the docked structures were minimised in a continuum solvent and binding affinities were calculated with the MM/GBSA method (molecular mechanics combined with generalised Born and solvent-accessible surface area solvation). Third, the docked structures were re-optimised by combined quantum mechanics and molecular mechanics (QM/MM) calculations. Then, interaction energies were calculated with quantum mechanical calculations employing 970-1160 atoms in a continuum solvent, combined with energy corrections for dispersion, zero-point energy and entropy, ligand distortion, ligand solvation, and an increase of the basis set to quadruple-zeta quality. Fourth, relative binding affinities were estimated by free-energy simulations, using the multi-state Bennett acceptance-ratio approach. Unfortunately, the results were varying and rather poor, with only one calculation giving a correlation to the experimental affinities larger than 0.7, and with no consistent difference in the quality of the predictions from the various methods. For one set of ligands, the results could be strongly improved (after experimental data were revealed) if it was recognised that one of the ligands displaced one or two water molecules. For the other two sets, the problem is probably that the ligands bind in different modes than in the crystal structures employed or that the conformation of the ligand-binding site or the whole protein changes.
NASA Astrophysics Data System (ADS)
Seydou, M.; Gillet, J. C.; Li, X.; Wang, H.; Posner, G. H.; Grégoire, G.; Schermann, J. P.; Bowen, K. H.; Desfrançois, C.
2007-12-01
Protonated and anionic artemisinin in the gas phase have respectively been studied by infrared multi-photon dissociation (IRMPD) spectroscopy and by anion photoelectron spectroscopy. Comparison of the measured IRMPD spectrum with calculated spectra of various conformations showed that the two lowest-energy protonated structures, both corresponding to protonation at the C dbnd O 14 carbonyl site, were observed experimentally. The calculations also indicated that the peroxide bridge in artemisinin is only slightly modified by protonation. Additionally, stable, intact (parent) artemisinin radical anions have been obtained for the first time in the gas phase and the photoelectron spectrum supports the computational finding that the excess electron is mainly localized on the σ ∗ orbital of the peroxide bond. The vertical detachment energy and adiabatic electron affinity, calculated at the MP2/6-31+G ∗ level, are in good agreement with the experimental data and the O-O distance is calculated to be stretched by more than 50% in the anion.
Approximate treatment of semicore states in GW calculations with application to Au clusters.
Xian, Jiawei; Baroni, Stefano; Umari, P
2014-03-28
We address the treatment of transition metal atoms in GW electronic-structure calculations within the plane-wave pseudo-potential formalism. The contributions of s and p semi-core electrons to the self-energy, which are essential to grant an acceptable accuracy, are dealt with using a recently proposed scheme whereby the exchange components are treated exactly at the G0W0 level, whereas a suitable approximation to the correlation components is devised. This scheme is benchmarked for small gold nano-clusters, resulting in ionization potentials, electron affinities, and density of states in very good agreement with those obtained from calculations where s and p semicore states are treated as valence orbitals, and allowing us to apply this same scheme to clusters of intermediate size, Au20 and Au32, that would be otherwise very difficult to deal with.
Lei, Shuangying; Wang, Han; Huang, Lan; Sun, Yi-Yang; Zhang, Shengbai
2016-02-10
Interface engineering is critical for enriching the electronic and transport properties of two-dimensional materials. Here, we identify a new stacking, named Aδ, in few-layer phosphorenes (FLPs) and black phosphorus (BP) based on first-principles calculation. With its low formation energy, the Aδ stacking could exist in FLPs and BP as a stacking fault. The presence of the Aδ stacking fault induces a direct to indirect transition of the band gap in FLPs. It also affects the carrier mobilities by significantly increasing the carrier effective masses. More importantly, the Aδ stacking enables the fabrication of a whole spectrum of lateral junctions with all the type-I, II, and III alignments simply through the manipulation of the van der Waals stacking without resorting to any chemical modification. This is achieved by the widely tunable electron affinity and ionization potential of FLPs and BP with the Aδ stacking.
Approximate treatment of semicore states in GW calculations with application to Au clusters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xian, Jiawei; Baroni, Stefano; CNR-IOM Democritos, Theory-Elettra group, Trieste
We address the treatment of transition metal atoms in GW electronic-structure calculations within the plane-wave pseudo-potential formalism. The contributions of s and p semi-core electrons to the self-energy, which are essential to grant an acceptable accuracy, are dealt with using a recently proposed scheme whereby the exchange components are treated exactly at the G{sub 0}W{sub 0} level, whereas a suitable approximation to the correlation components is devised. This scheme is benchmarked for small gold nano-clusters, resulting in ionization potentials, electron affinities, and density of states in very good agreement with those obtained from calculations where s and p semicore statesmore » are treated as valence orbitals, and allowing us to apply this same scheme to clusters of intermediate size, Au{sub 20} and Au{sub 32}, that would be otherwise very difficult to deal with.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Da; Peng, Yuan; Wang, Qi
2016-04-18
Control cocatalyst location on a metal-free semiconductor to promote surface charge transfer for decreasing the electron-hole recombination is crucial for enhancing solar energy conversion. Based on the findings that some metals have an affinity for bonding with the specific atoms of polar semiconductors at a heterostructure interface, we herein control Pt deposition selectively on the Si sites of a micro-SiC photocatalyst surface via in-situ photo-depositing. The Pt-Si bond forming on the interface constructs an excellent channel, which is responsible for accelerating photo-electron transfer from SiC to Pt and then reducing water under visible-light. The hydrogen production is enhanced by twomore » orders of magnitude higher than that of bare SiC, and 2.5 times higher than that of random-depositing nano-Pt with the same loading amount.« less
Interaction of fluorescent sensor with superparamagnetic iron oxide nanoparticles.
Karunakaran, Chockalingam; Jayabharathi, Jayaraman; Sathishkumar, Ramalingam; Jayamoorthy, Karunamoorthy
2013-06-01
To sense superparamagnetic iron oxides (Fe2O3 and Fe3O4) nanocrystals a sensitive bioactive phenanthroimidazole based fluorescent molecule, 2-(4-fluorophenyl)-1-phenyl-1H-phenanthro [9,10-d] imidazole has been designed and synthesized. Electronic spectral studies show that phenanthroimidazole is bound to the surface of iron oxide semiconductors. Fluorescent enhancement has been explained on the basis of photo-induced electron transfer (PET) mechanism and apparent binding constants have been deduced. Binding of phenanthroimidazole with iron oxide nanoparticles lowers the HOMO and LUMO energy levels of phenanthroimidazole molecule. Chemical affinity between the nitrogen atom of the phenanthroimidazole and Fe(2+) and Fe(3+) ions on the surface of the nano-oxide may result in strong binding of the phenanthroimidazole derivative with the nanoparticles. The electron injection from the photoexcited phenanthroimidazole to the iron oxides conduction band explains the enhanced fluorescence. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Bae, Jai Kwan; Cultrera, Luca; DiGiacomo, Philip; Bazarov, Ivan
2018-04-01
Photocathodes capable of providing high intensity and highly spin-polarized electron beams with long operational lifetimes are of great interest for the next generation nuclear physics facilities like Electron Ion Colliders. We report on GaAs photocathodes activated by Cs2Te, a material well known for its robustness. GaAs activated by Cs2Te forms Negative Electron Affinity, and the lifetime for extracted charge is improved by a factor of 5 compared to that of GaAs activated by Cs and O2. The spin polarization of photoelectrons was measured using a Mott polarimeter and found to be independent from the activation method, thereby shifting the paradigm on spin-polarized electron sources employing photocathodes with robust coatings.
Alternating carrier models of asymmetric glucose transport violate the energy conservation laws.
Naftalin, Richard J
2008-11-01
Alternating access transporters with high-affinity externally facing sites and low-affinity internal sites relate substrate transit directly to the unliganded asymmetric "carrier" (Ci) distribution. When both bathing solutions contain equimolar concentrations of ligand, zero net flow of the substrate-carrier complex requires a higher proportion of unliganded low-affinity inside sites (proportional, variant 1/KD(in)) and slower unliganded "free" carrier transit from inside to outside than in the reverse direction. However, asymmetric rates of unliganded carrier movement, kij, imply that an energy source, DeltaGcarrier = RT ln (koi/kio) = RT ln (Cin/Cout) = RT ln (KD(in)/KD(out)), where R is the universal gas constant (8.314 Joules/M/K degrees), and T is the temperature, assumed here to be 300 K degrees , sustains the asymmetry. Without this invalid assumption, the constraints of carrier path cyclicity, combined with asymmetric ligand affinities and equimolarity at equilibrium, are irreconcilable, and any passive asymmetric uniporter or cotransporter model system, e.g., Na-glucose cotransporters, espousing this fundamental error is untenable. With glucose transport via GLUT1, the higher maximal rate and Km of net ligand exit compared to net ligand entry is only properly simulated if ligand transit occurs by serial dissociation-association reactions between external high-affinity and internal low-affinity immobile sites. Faster intersite transit rates occur from lower-affinity sites than from higher-affinity sites and require no other energy source to maintain equilibrium. Similar constraints must apply to cotransport.
Nasiri, Hamid Reza; Panisch, Robin; Madej, M Gregor; Bats, Jan W; Lancaster, C Roy D; Schwalbe, Harald
2009-06-01
2-methyl-1,4-naphtoquinone 1 (vitamin K(3), menadione) derivatives with different substituents at the 3-position were synthesized to tune their electrochemical properties. The thermodynamic midpoint potential (E(1/2)) of the naphthoquinone derivatives yielding a semi radical naphthoquinone anion were measured by cyclic voltammetry in the aprotic solvent dimethoxyethane (DME). Using quantum chemical methods, a clear correlation was found between the thermodynamic midpoint potentials and the calculated electron affinities (E(A)). Comparison of calculated and experimental values allowed delineation of additional factors such as the conformational dependence of quinone substituents and hydrogen bonding which can influence the electron affinities (E(A)) of the quinone. This information can be used as a model to gain insight into enzyme-cofactor interactions, particularly for enzyme quinone binding modes and the electrochemical adjustment of the quinone motif.
da Costa, Leonardo Moreira; de Mesquita Carneiro, José Walkimar; Paes, Lilian Weitzel Coelho
2011-08-01
DFT (B3LYP/6-31+G(d)) calculations of Mg(2+) affinities for a set of phosphoryl ligands were performed. Two types of ligands were studied: a set of trivalent [O = P(R)] and a set of pentavalent phosphoryl ligands [O = P(R)(3)] (R = H, F, Cl, Br, OH, OCH(3), CH(3), CN, NH(2) and NO(2)), with R either bound directly to the phosphorus atom or to the para position of a phenyl ring. The affinity of the Mg(2+) cation for the ligands was quantified by means of the enthalpy for the substitution of one water molecule in the [Mg(H(2)O)(6)](2+) complex for a ligand. The enthalpy of substitution was correlated with electronic and geometric parameters. Electron-donor groups increase the interaction between the cation and the ligand, while electron-acceptor groups decrease the interaction enthalpy.
NASA Astrophysics Data System (ADS)
Sutradhar, Dipankar; Zeegers-Huyskens, Thérèse; Chandra, Asit. K.
2017-05-01
The interaction between sulfides (H2S, CH3SH, CH3CH2SH, CH3SCH3 and CH3SCH2F) and atomic chlorine is investigated using DFT based LC-BLYP and CCSD(T) methods in conjugation with the aug-cc-pVTZ basis set. The intermolecular S…Cl distances in the complexes range between 2.5922 Å (H2S…Cl) and 2.5273 Å (CH3SCH3…Cl). The interaction energies ranging between -29.1 and -77.5 kJ mol-1 reveal the formation of relatively strong 2c-3e S…Cl bonds. The binding energies are linearly related to the proton affinity of the sulfides, to the charge transfer taking place from the sulfides to the Cl atom and inversely proportional to the difference between the ionization potential of the sulfides and the electron affinity of the Cl atom. The spin density analysis suggests that almost 48% of the spin is transferred from the Cl to the S atom in the strongest CH3SCH3…Cl complex. The AIM analysis shows that the S…Cl interaction possess a significant covalent character which decreases with decreasing binding strength of the complexes. All the data indicate that the S…Cl 2c-3e bonds are stronger than the O…Cl or N…Cl bonds and more covalent in nature. The variation of the CH distances and the blue shifts of the ν(CH) vibration resulting from the interaction with Cl are discussed.
NASA Astrophysics Data System (ADS)
Stevens Miller, Amy E.; Feigerle, C. S.; Lineberger, W. C.
1987-08-01
The laser photoelectron spectra of CrH-, CoH-, and NiH- and the analogous deuterides are reported. The spectra are interpreted using a qualitative description of the electronic structure for the hydrides. This model is used to assign off-diagonal transitions in the photodetachment to low-spin states of the neutrals, and diagonal transitions to high-spin states of the neutrals. These data are used to identify the high-spin states of CoH and NiH; several other states of CrH, CoH, and NiH are also identified. Periodic trends in the bond lengths, vibrational frequencies, and electronic excitation energies for the MnH through NiH molecules are examined. Electron affinities are reported for CrH (0.563±0.010 eV), CoH (0.671±0.010 eV), and NiH (0.481±0.007 eV), and the corresponding deuterides.
Concepts in receptor optimization: targeting the RGD peptide.
Chen, Wei; Chang, Chia-en; Gilson, Michael K
2006-04-12
Synthetic receptors have a wide range of potential applications, but it has been difficult to design low molecular weight receptors that bind ligands with high, "proteinlike" affinities. This study uses novel computational methods to understand why it is hard to design a high-affinity receptor and to explore the limits of affinity, with the bioactive peptide RGD as a model ligand. The M2 modeling method is found to yield excellent agreement with experiment for a known RGD receptor and then is used to analyze a series of receptors generated in silico with a de novo design algorithm. Forces driving binding are found to be systematically opposed by proportionate repulsions due to desolvation and entropy. In particular, strong correlations are found between Coulombic attractions and the electrostatic desolvation penalty and between the mean energy change on binding and the cost in configurational entropy. These correlations help explain why it is hard to achieve high affinity. The change in surface area upon binding is found to correlate poorly with affinity within this series. Measures of receptor efficiency are formulated that summarize how effectively a receptor uses surface area, total energy, and Coulombic energy to achieve affinity. Analysis of the computed efficiencies suggests that a low molecular weight receptor can achieve proteinlike affinity. It is also found that macrocyclization of a receptor can, unexpectedly, increase the entropy cost of binding because the macrocyclic structure further restricts ligand motion.
Yang, Zhi; Xiong, Shi-Jie
2008-09-28
The geometries stability, electronic properties, and magnetism of Y(n)O clusters up to n=14 are systematically studied with density functional theory. In the lowest-energy structures of Y(n)O clusters, the equilibrium site of the oxygen atom gradually moves from an outer site of the cluster, via a surface site, and finally, to an interior site as the number of the Y atoms increases from 2 to 14. Starting from n=12, the O atom falls into the center of the cluster with the Y atoms forming the outer frame. The results show that clusters with n=2, 4, 8, and 12 are more stable than their respective neighbors, and that the total magnetic moments of Y(n)O clusters are all quite small except Y(12)O cluster. The lowest-energy structure of Y(12)O cluster is a perfect icosahedron with a large magnetic moment 6mu(B). In addition, we find that the total magnetic moments are quenched for n=2, 6, and 8 due to the closed-shell electronic configuration. The calculated ionization potentials and electron affinities are in good agreement with the experimental results, which imply that the present theoretical treatments are satisfactory.
Importance of ligand reorganization free energy in protein-ligand binding-affinity prediction.
Yang, Chao-Yie; Sun, Haiying; Chen, Jianyong; Nikolovska-Coleska, Zaneta; Wang, Shaomeng
2009-09-30
Accurate prediction of the binding affinities of small-molecule ligands to their biological targets is fundamental for structure-based drug design but remains a very challenging task. In this paper, we have performed computational studies to predict the binding models of 31 small-molecule Smac (the second mitochondria-derived activator of caspase) mimetics to their target, the XIAP (X-linked inhibitor of apoptosis) protein, and their binding affinities. Our results showed that computational docking was able to reliably predict the binding models, as confirmed by experimentally determined crystal structures of some Smac mimetics complexed with XIAP. However, all the computational methods we have tested, including an empirical scoring function, two knowledge-based scoring functions, and MM-GBSA (molecular mechanics and generalized Born surface area), yield poor to modest prediction for binding affinities. The linear correlation coefficient (r(2)) value between the predicted affinities and the experimentally determined affinities was found to be between 0.21 and 0.36. Inclusion of ensemble protein-ligand conformations obtained from molecular dynamic simulations did not significantly improve the prediction. However, major improvement was achieved when the free-energy change for ligands between their free- and bound-states, or "ligand-reorganization free energy", was included in the MM-GBSA calculation, and the r(2) value increased from 0.36 to 0.66. The prediction was validated using 10 additional Smac mimetics designed and evaluated by an independent group. This study demonstrates that ligand reorganization free energy plays an important role in the overall binding free energy between Smac mimetics and XIAP. This term should be evaluated for other ligand-protein systems and included in the development of new scoring functions. To our best knowledge, this is the first computational study to demonstrate the importance of ligand reorganization free energy for the prediction of protein-ligand binding free energy.
The role of inserted polymers in polymeric insulation materials: insights from QM/MD simulations.
Li, Chunyang; Zhao, Hong; Zhang, Hui; Wang, Ying; Wu, Zhijian; Han, Baozhong
2018-02-28
In this study, we performed a quantum chemical molecular dynamics (QM/MD) simulation to investigate the space charge accumulation process in copolymers of polyethylene (PE) with ethylene acrylic acid (EAA), ethylene vinyl acetate (EVA), styrene-ethylene-butadiene-styrene (SEBS), and black carbon (BC). We predicted that BC, especially branched BC, would possess the highest electron affinity and is identified as the most promising filler in power cable insulation. Following incorporations of 0-4 high-energy electrons into the composites, branched BC exhibited the highest stability and almost all electrons were trapped by it. Therefore, PE was protected efficiently and BC can be considered as an efficient filler for high voltage cables and an inhibitor of tree formation. On the contrary, although EAA, EVA, and SEBS can trap high-energy electrons, the latter can be supersaturated in composites of EAA, EVA, and SEBS with PE. The inserted polymers was unavoidably destroyed following C-H and C-O bond cleavage, which results from the interactions and charge transfer between PE and inserted polymers. The content effects of -COOH, benzene, and -OCOCH 3 groups on the electron trapping, mobility and stability of PE were also investigated systematically. We hope this knowledge gained from this work will be helpful in understanding the role of inserted polymers and the growth mechanisms of electrical treeing in high voltage cable insulation.
Negative ion kinetics in RF glow discharges
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gottscho, R.A.; Gacbe, C.E.
1986-04-01
Using temporally and spatially resolved laser spectroscopy, the authors have determined the identities, approximate concentrations, effects on the local field, and kinetics of formation and loss of negative ions in RF discharges. CI/sup -/ and BCI/sub 3//sup -/ are the dominant negative ions found in low-frequency discharges through CI/sub 2/ and BCI/sub 3/, respectively. The electron affinity for CI is measured to be 3.6118 +- 0.0005 eV. Negative ion kinetics are strongly affected by application of the RF field. Formation of negative ions by attachment of slow electrons in RF discharges is governed by the extent and duration of electronmore » energy relaxation. Similarly, destruction of negative ions by collisional detachment and field extraction is dependent upon ion energy modulation. Thus, at low frequency, the anion density peaks at the beginning of the anodic and cathodic half-cycles after electrons have attached but before detachment and extraction have had time to occur. At higher frequencies, electrons have insufficient time to attach before they are reheated and the instantaneous anion density in the sheath is greatly reduced. When the negative ion density is comparable to the positive ion density, the plasma potential is observed to lie below the anode potential, double layers form between sheath and plasma, and anions and electrons are accelerated by large sheath fields to electrode surfaces.« less
Changes of electronic properties of p-GaN(0 0 0 1) surface after low-energy N+-ion bombardment
NASA Astrophysics Data System (ADS)
Grodzicki, M.; Mazur, P.; Ciszewski, A.
2018-05-01
The p-GaN(0 0 0 1) crystal with a relatively low acceptor concentration of 5 × 1016 cm-3 is used in these studies, which are carried out in situ under ultrahigh vacuum (UHV) by ultraviolet photoelectron spectroscopy (UPS), X-ray photoelectron spectroscopy (XPS) and low-energy electron diffraction (LEED). The p-GaN(0 0 0 1)-(1 × 1) surface is achieved by thermal cleaning. N+-ion bombardment by a 200 eV ion beam changes the surface stoichiometry, enriches it with nitrogen, and disorders it. Such modified surface layer inverts its semiconducting character from p- into n-type. The electron affinity for the already cleaned p-GaN surface and that just after bombardment shows a shift from 2.2 eV to 3.2 eV, as well as an increase of band bending at the vacuum/surface interface from 1.4 eV to 2.5 eV. Proper post-bombardment heating of the sample restores the initial atomic order of the modified layer, leaving its n-type semiconducting character unchanged. The results of the measurements are discussed based on two types of surface states concepts.
Using the Concept of Transient Complex for Affinity Predictions in CAPRI Rounds 20–27 and Beyond
Qin, Sanbo; Zhou, Huan-Xiang
2013-01-01
Predictions of protein-protein binders and binding affinities have traditionally focused on features pertaining to the native complexes. In developing a computational method for predicting protein-protein association rate constants, we introduced the concept of transient complex after mapping the interaction energy surface. The transient complex is located at the outer boundary of the bound-state energy well, having near-native separation and relative orientation between the subunits but not yet formed most of the short-range native interactions. We found that the width of the binding funnel and the electrostatic interaction energy of the transient complex are among the features predictive of binders and binding affinities. These ideas were very promising for the five affinity-related targets (T43–45, 55, and 56) of CAPRI rounds 20–27. For T43, we ranked the single crystallographic complex as number 1 and were one of only two groups that clearly identified that complex as a true binder; for T44, we ranked the only design with measurable binding affinity as number 4. For the nine docking targets, continuing on our success in previous CAPRI rounds, we produced 10 medium-quality models for T47 and acceptable models for T48 and T49. We conclude that the interaction energy landscape and the transient complex in particular will complement existing features in leading to better prediction of binding affinities. PMID:23873496
Electron-trapping polycrystalline materials with negative electron affinity.
McKenna, Keith P; Shluger, Alexander L
2008-11-01
The trapping of electrons by grain boundaries in semiconducting and insulating materials is important for a wide range of physical problems, for example, relating to: electroceramic materials with applications as sensors, varistors and fuel cells, reliability issues for solar cell and semiconductor technologies and electromagnetic seismic phenomena in the Earth's crust. Surprisingly, considering their relevance for applications and abundance in the environment, there have been few experimental or theoretical studies of the electron trapping properties of grain boundaries in highly ionic materials such as the alkaline earth metal oxides and alkali halides. Here we demonstrate, by first-principles calculations on MgO, LiF and NaCl, a qualitatively new type of electron trapping at grain boundaries. This trapping is associated with the negative electron affinity of these materials and is unusual as the electron is confined in the empty space inside the dislocation cores.
The electron affinities of C{sub 3}O and C{sub 4}O
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rienstra-Kiracofe, J.C.; Ellison, G.B.; Hoffman, B.C.
The authors predict the adiabatic electron affinities of C{sub 3}O and C{sub 4}O based on electronic structure calculations, using a large triple-{zeta} basis set with polarization and diffuse functions (TZ2Pf+diff) with the SCF, CCSD, and CCSD(T) methods as well as with the aug-cc-pVDZ and aug-cc-pVTZ basis sets. The results imply electron affinities for C{sub 3}O and C{sub 4}O; EA(C{sub 3}O) = 0.93 eV {+-} 0.10 and EA(C{sub 4}O) = 2.99 {+-} 0.10. The EA(C{sub 3}O) is 0.41 eV lower than the experimental value of 1.34 {+-} 0.15 eV, while the EA(C{sub 4}O) is 0.94 eV higher than the experimental valuemore » of 2.05 {+-} 0.15 eV. Optimized geometries for all species at each level of theory are given, and harmonic vibrational frequencies are reported at the SCF/TZ2Pf+diff and CCSD/aug-cc-pVDZ levels.« less
Effect of the phenoxy groups on PDIB and its derivatives
NASA Astrophysics Data System (ADS)
Song, Peng; Guan, Baijie; Zhou, Qiao; Zhao, Meiyu; Huang, Jindou; Ma, Fengcai
2016-10-01
The anisotropic hole and electron mobilities in N,N‧-3,4,9,10-perylenediimide-1,7-phenoxy (PDIB-2OPh) and N,Nʹ-3,4,9,10-perylenediimide (PDIB) were theoretically predicted using the Marcus-Hush theory. The substituent effect of phenoxy on their mobility rates, absorption spectra, electron affinities, and ionization potentials was explored. By comparing the simulated hole mobility in PDIB and PDIB-2OPh, it is found that the phenoxy rings act as spacers between adjacent stacking columns in the phenoxy-substituted derivatives. The increasement of the number of benzene oxygen groups leads to the absorption spectra red-shift of these molecular systems. This coincides with their change tendency of the adiabatic ionization potentials, vertical ionization potentials. However, the calculated adiabatic electron affinities and vertical electron affinities of N,N‧-butyl-3,4,9,10-perylenediimide-1,6,7,12-phenoxy (PDIB-4OPh) are larger than those of PDIB;OPh. The steric effect in PDIB-4OPh is expected to cause space reversal and thus to changes in the properties of the molecule.
Effect of the phenoxy groups on PDIB and its derivatives
Song, Peng; Guan, Baijie; Zhou, Qiao; Zhao, Meiyu; Huang, Jindou; Ma, Fengcai
2016-01-01
The anisotropic hole and electron mobilities in N,N′-3,4,9,10-perylenediimide-1,7-phenoxy (PDIB-2OPh) and N,Nʹ-3,4,9,10-perylenediimide (PDIB) were theoretically predicted using the Marcus–Hush theory. The substituent effect of phenoxy on their mobility rates, absorption spectra, electron affinities, and ionization potentials was explored. By comparing the simulated hole mobility in PDIB and PDIB-2OPh, it is found that the phenoxy rings act as spacers between adjacent stacking columns in the phenoxy-substituted derivatives. The increasement of the number of benzene oxygen groups leads to the absorption spectra red-shift of these molecular systems. This coincides with their change tendency of the adiabatic ionization potentials, vertical ionization potentials. However, the calculated adiabatic electron affinities and vertical electron affinities of N,N′-butyl-3,4,9,10-perylenediimide-1,6,7,12-phenoxy (PDIB-4OPh) are larger than those of PDIB;OPh. The steric effect in PDIB-4OPh is expected to cause space reversal and thus to changes in the properties of the molecule. PMID:27759050
Electron affinities of polycyclic aromatic hydrocarbons by means of B3LYP/6-31+G* calculations.
Modelli, Alberto; Mussoni, Laura; Fabbri, Daniele
2006-05-25
The gas-phase experimental adiabatic electron affinities (AEAs) of the polycyclic aromatic hydrocarbons (PAHs) anthracene, tetracene, pentacene, chrysene, pyrene, benzo[a]pyrene, benzo[e]pyrene, and fluoranthene are well reproduced using the hybrid density functional method B3LYP with the 6-31+G* basis set, indicating that the smallest addition of diffuse functions to the basis set is suitable for a correct description of the stable PAH anion states. The calculated AEAs also give a very good linear correlation with available reduction potentials measured in solution. The AEAs (not experimentally available) of the isomeric benzo[ghi]fluoranthene and cyclopenta[cd]pyrene, commonly found in the environment, are predicted to be 0.817 and 1.108 eV, respectively, confirming the enhancement of the electron-acceptor properties associated with fusion of a peripheral cyclopenta ring. The calculated localization properties of the lowest unoccupied MO of cyclopenta[cd]pyrene, together with its relatively high electron affinity, account for a high reactivity at the ethene double bond of this PAH in reductive processes.
Baugh, Loren; Le Trong, Isolde; Cerutti, David S; Gülich, Susanne; Stayton, Patrick S; Stenkamp, Ronald E; Lybrand, Terry P
2010-06-08
We have identified a distal point mutation in streptavidin that causes a 1000-fold reduction in biotin binding affinity without disrupting the equilibrium complex structure. The F130L mutation creates a small cavity occupied by a water molecule; however, all neighboring side chain positions are preserved, and protein-biotin hydrogen bonds are unperturbed. Molecular dynamics simulations reveal a reduced mobility of biotin binding residues but no observable destabilization of protein-ligand interactions. Our combined structural and computational studies suggest that the additional water molecule may affect binding affinity through an electronic polarization effect that impacts the highly cooperative hydrogen bonding network in the biotin binding pocket.
Anion photoelectron imaging spectroscopy of glyoxal
NASA Astrophysics Data System (ADS)
Xue, Tian; Dixon, Andrew R.; Sanov, Andrei
2016-09-01
We report a photoelectron imaging study of the radical-anion of glyoxal. The 532 nm photoelectron spectrum provides the first direct spectroscopic determination of the adiabatic electron affinity of glyoxal, EA = 1.10 ± 0.02 eV. This assignment is supported by a Franck-Condon simulation of the experimental spectrum that successfully reproduces the observed spectral features. The vertical detachment energy of the radical-anion is determined as VDE = 1.30 ± 0.04 eV. The reported EA and VDE values are attributed to the most stable (C2h symmetry) isomers of the neutral and the anion.
Hussain, Dilshad; Musharraf, Syed Ghulam; Najam-ul-Haq, Muhammad
2016-02-01
Development of affinity materials for the selective enrichment of phosphopeptides has attracted attention during the last decade. In this work, diamond-lanthanum oxide and diamond-samarium oxide composites have been fabricated via the hydrothermal method. The composites are characterized by scanning electron microscopy (SEM), energy dispersive X-Ray spectroscopy (EDAX), and atomic force microscopy (AFM). The analyses confirm the size and composition of the nanocomposites. They have been applied to selectively capture phosphorylated peptides from standard proteins (β-casein and BSA). Selectivity is calculated as 1:3000 and 1:1500 while sensitivity down to 1 and 20 fmol for diamond-lanthanum oxide and diamond-samarium oxide nanocomposites, respectively. Enrichment efficiency has also been evaluated for non-fat milk digest where 18 phosphopeptides are enriched. Total of 213 and 187 phosphopeptides are captured from tryptic digest of HeLa cells extracted proteins by diamond-lanthanum oxide and diamond-samarium oxide, respectively. Finally, human serum, without any pre-treatment, is applied and nanocomposites capture the endogenous serum phosphopeptides.
Wang, Yan-Ling; Li, Quan-Song; Li, Ze-Sheng
2018-05-15
Acceptor-π-donor-π-acceptor (A-π-D-π-A)-types of small molecules are very promising nonfullerene acceptors to overcome the drawbacks of fullerene derivatives such as the weak absorption ability and electronic adjustability. However, only few attempts have been made to develop π-bridge units to construct highly efficient acceptors in OSCs. Herein, taking the reported acceptor P1 as a reference, five small-structured acceptors (P2, P3, P4, P5, and P6) have been designed via the replacement of the π-bridge unit. A combination of quantum chemistry and Marcus theory approaches is employed to investigate the effect of different π-bridge units on the optical, electronic, and charge transport properties of P1-P6. The calculation results show that the designed molecules P2 and P5 can become potential acceptor replacements of P1 due to their red-shifted absorption bands, appropriate energy levels, low exciton binding energy, and high electron affinity and electron mobility. Additionally, compared with P3HT/P1, P3HT/P2 and P3HT/P5 exhibit stronger and wider absorption peaks, larger electron transfer distances (DCT), greater transferred charge amounts (Δq), and smaller overlaps (Λ), which shows that P2 and P5 have more significant electron transfer characteristics and favorable exciton dissociation capabilities for enhancing the short-circuit current density (JSC) and thus, they are potential acceptors in OSCs.
Kar, Parimal; Lipowsky, Reinhard; Knecht, Volker
2013-05-16
Both KNI-10033 and KNI-10075 are high affinity preclinical HIV-1 protease (PR) inhibitors with affinities in the picomolar range. In this work, the molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) method has been used to investigate the potency of these two HIV-1 PR inhibitors against the wild-type and mutated proteases assuming that potency correlates with the affinity of the drugs for the target protein. The decomposition of the binding free energy reveals the origin of binding affinities or mutation-induced affinity changes. Our calculations indicate that the mutation I50V causes drug resistance against both inhibitors. On the other hand, we predict that the mutant I84V causes drug resistance against KNI-10075 while KNI-10033 is more potent against the I84V mutant compared to wild-type protease. Drug resistance arises mainly from unfavorable shifts in van der Waals interactions and configurational entropy. The latter indicates that neglecting changes in configurational entropy in the computation of relative binding affinities as often done is not appropriate in general. For the bound complex PR(I50V)-KNI-10075, an increased polar solvation free energy also contributes to the drug resistance. The importance of polar solvation free energies is revealed when interactions governing the binding of KNI-10033 or KNI-10075 to the wild-type protease are compared to the inhibitors darunavir or GRL-06579A. Although the contributions from intermolecular electrostatic and van der Waals interactions as well as the nonpolar component of the solvation free energy are more favorable for PR-KNI-10033 or PR-KNI-10075 compared to PR-DRV or PR-GRL-06579A, both KNI-10033 and KNI-10075 show a similar affinity as darunavir and a lower binding affinity relative to GRL-06579A. This is because of the polar solvation free energy which is less unfavorable for darunavir or GRL-06579A relative to KNI-10033 or KNI-10075. The importance of the polar solvation as revealed here highlights that structural inspection alone is not sufficient for identifying the key contributions to binding affinities and affinity changes for the design of drugs but that solvation effects must be taken into account. A detailed understanding of the molecular forces governing binding and drug resistance might assist in the design of new inhibitors against HIV-1 PR variants that are resistant against current drugs.
Xu, Xin; Goddard, William A
2004-03-02
We derive the form for an exact exchange energy density for a density decaying with Gaussian-like behavior at long range. Based on this, we develop the X3LYP (extended hybrid functional combined with Lee-Yang-Parr correlation functional) extended functional for density functional theory to significantly improve the accuracy for hydrogen-bonded and van der Waals complexes while also improving the accuracy in heats of formation, ionization potentials, electron affinities, and total atomic energies [over the most popular and accurate method, B3LYP (Becke three-parameter hybrid functional combined with Lee-Yang-Parr correlation functional)]. X3LYP also leads to a good description of dipole moments, polarizabilities, and accurate excitation energies from s to d orbitals for transition metal atoms and ions. We suggest that X3LYP will be useful for predicting ligand binding in proteins and DNA.
NASA Astrophysics Data System (ADS)
Xu, Xin; Goddard, William A., III
2004-03-01
We derive the form for an exact exchange energy density for a density decaying with Gaussian-like behavior at long range. Based on this, we develop the X3LYP (extended hybrid functional combined with Lee-Yang-Parr correlation functional) extended functional for density functional theory to significantly improve the accuracy for hydrogen-bonded and van der Waals complexes while also improving the accuracy in heats of formation, ionization potentials, electron affinities, and total atomic energies [over the most popular and accurate method, B3LYP (Becke three-parameter hybrid functional combined with Lee-Yang-Parr correlation functional)]. X3LYP also leads to a good description of dipole moments, polarizabilities, and accurate excitation energies from s to d orbitals for transition metal atoms and ions. We suggest that X3LYP will be useful for predicting ligand binding in proteins and DNA.
Xu, Xin; Goddard, William A.
2004-01-01
We derive the form for an exact exchange energy density for a density decaying with Gaussian-like behavior at long range. Based on this, we develop the X3LYP (extended hybrid functional combined with Lee–Yang–Parr correlation functional) extended functional for density functional theory to significantly improve the accuracy for hydrogen-bonded and van der Waals complexes while also improving the accuracy in heats of formation, ionization potentials, electron affinities, and total atomic energies [over the most popular and accurate method, B3LYP (Becke three-parameter hybrid functional combined with Lee–Yang–Parr correlation functional)]. X3LYP also leads to a good description of dipole moments, polarizabilities, and accurate excitation energies from s to d orbitals for transition metal atoms and ions. We suggest that X3LYP will be useful for predicting ligand binding in proteins and DNA. PMID:14981235
Möhler, Christian; Wohlfahrt, Patrick; Richter, Christian; Greilich, Steffen
2017-06-01
Electron density is the most important tissue property influencing photon and ion dose distributions in radiotherapy patients. Dual-energy computed tomography (DECT) enables the determination of electron density by combining the information on photon attenuation obtained at two different effective x-ray energy spectra. Most algorithms suggested so far use the CT numbers provided after image reconstruction as input parameters, i.e., are imaged-based. To explore the accuracy that can be achieved with these approaches, we quantify the intrinsic methodological and calibration uncertainty of the seemingly simplest approach. In the studied approach, electron density is calculated with a one-parametric linear superposition ('alpha blending') of the two DECT images, which is shown to be equivalent to an affine relation between the photon attenuation cross sections of the two x-ray energy spectra. We propose to use the latter relation for empirical calibration of the spectrum-dependent blending parameter. For a conclusive assessment of the electron density uncertainty, we chose to isolate the purely methodological uncertainty component from CT-related effects such as noise and beam hardening. Analyzing calculated spectrally weighted attenuation coefficients, we find universal applicability of the investigated approach to arbitrary mixtures of human tissue with an upper limit of the methodological uncertainty component of 0.2%, excluding high-Z elements such as iodine. The proposed calibration procedure is bias-free and straightforward to perform using standard equipment. Testing the calibration on five published data sets, we obtain very small differences in the calibration result in spite of different experimental setups and CT protocols used. Employing a general calibration per scanner type and voltage combination is thus conceivable. Given the high suitability for clinical application of the alpha-blending approach in combination with a very small methodological uncertainty, we conclude that further refinement of image-based DECT-algorithms for electron density assessment is not advisable. © 2017 American Association of Physicists in Medicine.
Bruna-Larenas, Tamara; Gómez-Jeria, Juan S
2012-01-01
We report the results of a search for model-based relationships between mu, delta, and kappa opioid receptor binding affinity and molecular structure for a group of molecules having in common a morphine structural core. The wave functions and local reactivity indices were obtained at the ZINDO/1 and B3LYP/6-31G(∗∗) levels of theory for comparison. New developments in the expression for the drug-receptor interaction energy expression allowed several local atomic reactivity indices to be included, such as local electronic chemical potential, local hardness, and local electrophilicity. These indices, together with a new proposal for the ordering of the independent variables, were incorporated in the statistical study. We found and discussed several statistically significant relationships for mu, delta, and kappa opioid receptor binding affinity at both levels of theory. Some of the new local reactivity indices incorporated in the theory appear in several equations for the first time in the history of model-based equations. Interaction pharmacophores were generated for mu, delta, and kappa receptors. We discuss possible differences regulating binding and selectivity in opioid receptor subtypes. This study, contrarily to the statistically backed ones, is able to provide a microscopic insight of the mechanisms involved in the binding process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Sunghwan; Hong, Kwangwoo; Kim, Jaewook
2015-03-07
We developed a self-consistent field program based on Kohn-Sham density functional theory using Lagrange-sinc functions as a basis set and examined its numerical accuracy for atoms and molecules through comparison with the results of Gaussian basis sets. The result of the Kohn-Sham inversion formula from the Lagrange-sinc basis set manifests that the pseudopotential method is essential for cost-effective calculations. The Lagrange-sinc basis set shows faster convergence of the kinetic and correlation energies of benzene as its size increases than the finite difference method does, though both share the same uniform grid. Using a scaling factor smaller than or equal tomore » 0.226 bohr and pseudopotentials with nonlinear core correction, its accuracy for the atomization energies of the G2-1 set is comparable to all-electron complete basis set limits (mean absolute deviation ≤1 kcal/mol). The same basis set also shows small mean absolute deviations in the ionization energies, electron affinities, and static polarizabilities of atoms in the G2-1 set. In particular, the Lagrange-sinc basis set shows high accuracy with rapid convergence in describing density or orbital changes by an external electric field. Moreover, the Lagrange-sinc basis set can readily improve its accuracy toward a complete basis set limit by simply decreasing the scaling factor regardless of systems.« less
Variable pressure ionization detector for gas chromatography
Buchanan, Michelle V.; Wise, Marcus B.
1988-01-01
Method and apparatus for differentiating organic compounds based on their electron affinity. An electron capture detector cell (ECD) is operated at pressures ranging from atmospheric to less than 1 torr. Through variation of the pressure within the ECD cell, the organic compounds are induced to either capture or emit electrons. Differentiation of isomeric compounds can be obtianed when, at a given pressure, one isomer is in the emission mode and the other is in the capture mode. Output of the ECD is recorded by chromatogram. The invention also includes a method for obtaining the zero-crossing pressure of a compound, defined as the pressure at which the competing emission and capture reactions are balanced and which may be correlated to the electron affinity of a compound.
NASA Astrophysics Data System (ADS)
Sakai, Yoshiko; Miyoshi, Eisaku
1987-09-01
Electronic structures of MF6, MF-6, and MF2-6 (M=Cr, Mo, and W) were calculated using a model potential method in the Hartree-Fock-Roothaan scheme. Major relativistic effects were taken into account for the calculations on MoFq6 and WFq6 (q=0, -1, and -2). It is shown that the calculated electron affinities (EAs) are extremely high for all the MF6 molecules, and that the CrF-6 and MoF-6 anions also have positive EAs, whereas the WF-6 anion has a slightly negative EA. The behaviors of the EAs are interpreted with reference to the electronic structures of the MFq6 systems.
Yoder, Bruce L; Maze, Joshua T; Raghavachari, Krishnan; Jarrold, Caroline Chick
2005-03-01
The competitive structural isomers of the Mo(2)O(y) (-)Mo(2)O(y) (y=2, 3, and 4) clusters are investigated using a combination of anion photoelectron (PE) spectroscopy and density functional theory calculations. The PE spectrum and calculations for MoO(3) (-)MoO(3) are also presented to show the level of agreement to be expected between the spectra and calculations. For MoO(3) (-) and MoO(3), the calculations predict symmetric C(3v) structures, an adiabatic electron affinity of 3.34 eV, which is above the observed value 3.17(2) eV. However, there is good agreement between observed and calculated vibrational frequencies and band profiles. The PE spectra of Mo(2)O(2) (-) and Mo(2)O(3) (-) are broad and congested, with partially resolved vibrational structure on the lowest energy bands observed in the spectra. The electron affinities (EA(a)s) of the corresponding clusters are 2.24(2) and 2.33(7) eV, respectively. Based on the calculations, the most stable structure of Mo(2)O(2) (-) is Y shaped, with the two Mo atoms directly bonded. Assignment of the Mo(2)O(3) (-) spectrum is less definitive, but a O-Mo-O-Mo-O structure is more consistent with overall electronic structure observed in the spectrum. The PE spectrum of Mo(2)O(4) (-) shows cleanly resolved vibrational structure and electronic bands, and the EA of the corresponding Mo(2)O(4) is determined to be 2.13(4) eV. The structure most consistent with the observed spectrum has two oxygen bridge bonds between the Mo atoms.
Sylvester-Hvid, Kristian O; Ratner, Mark A
2005-01-13
An extension of our two-dimensional working model for photovoltaic behavior in binary polymer and/or molecular photoactive blends is presented. The objective is to provide a more-realistic description of the charge generation and charge separation processes in the blend system. This is achieved by assigning an energy to each of the possible occupation states, describing the system according to a simple energy model for exciton and geminate electron-hole pair configurations. The energy model takes as primary input the ionization potential, electron affinity and optical gap of the components of the blend. The underlying photovoltaic model considers a nanoscopic subvolume of a photoactive blend and represents its p- and n-type domain morphology, in terms of a two-dimensional network of donor and acceptor sites. The nearest-neighbor hopping of charge carriers in the illuminated system is described in terms of transitions between different occupation states. The equations governing the dynamics of these states are cast into a linear master equation, which can be solved for arbitrary two-dimensional donor-acceptor networks, assuming stationary conditions. The implications of incorporating the energy model into the photovoltaic model are illustrated by simulations of the short circuit current versus thickness of the photoactive blend layer for different choices of energy parameters and donor-acceptor topology. The results suggest the existence of an optimal thickness of the photoactive film in bulk heterojunctions, based on kinetic considerations alone, and that this optimal thickness is very sensitive to the choice of energy parameters. The results also indicate space-charge limiting effects for interpenetrating donor-acceptor networks with characteristic domain sizes in the nanometer range and high driving force for the photoinduced electron transfer across the donor-acceptor internal interface.
NASA Astrophysics Data System (ADS)
Madkour, Loutfy H.; Kaya, Savaş; Guo, Lei; Kaya, Cemal
2018-07-01
The adsorption behavior and inhibition mechanism of five synthesized bis-azo dye (BAD) derivatives on the corrosion of iron in aerated HNO3 and NaOH were investigated by performing potentiostatic polarization, weight loss (WL), thermometric and UV-visible spectra measurements. DFT calculations is applied to study the correlation between corrosion inhibition and global reactivity descriptors such as: EHOMO, ELUMO, molecular gap (ΔE), the dipole moment (μ), the global hardness (η), softness(S), electronegativity (χ), proton affinity (PA), electrophilicity (ω), nucleophilicity (ɛ), electrons transferred from inhibitors to metal surface (ΔN), initial molecule-metal interaction energy (Δψ), total electronic energy (E) and the energy change during electronic back-donation process (ΔEb-d). To mimic the real environment of corrosion inhibition, molecular dynamic (MD) simulations in aqueous phase have also been modelled consisting of all concerned species (inhibitor molecule, H2O, H3O+ ion, NO3- ion, OH- and Fe surface). The results confirmed that BAD molecules inhibit iron by adsorption behavior through donating and accepting electrons together with the formation of [Fe (II) and Fe (III)-BAD] chelate complex compounds. BAD's behavior is mainly chemisorption with some physisorption obeyed Frumkin and that of El-Awady adsorption isotherm. Kinetic parameters such as: (Kb, 1/y, Kads, f, ΔG°ads) have been determined and discussed. Binding energies of BAD molecules on Fe (110) surface followed the order: BAD_ 2 > BAD_ 1 > BAD_ 3 > BAD_ 4 > BAD_ 5. Theoretical results were found to be consistent with the experimental data reported. Our results provide important atomic/molecular insights into the anticorrosive mechanism of inhibitor molecules, which could help in understanding the organic-metal interface and designing more appropriate organic corrosion inhibitors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Navarro, Amparo, E-mail: anavarro@ujaen.es; Fernández-Liencres, M. Paz; Peña-Ruiz, Tomás
2016-08-07
Density functional theory calculations were carried out to investigate the evolvement of charge transport properties of a set of new discotic systems as a function of ring and heteroatom (B, Si, S, and Se) substitution on the basic structure of perylene. The replacement of six-membered rings by five-membered rings in the reference compound has shown a prominent effect on the electron reorganization energy that decreases ∼0.2 eV from perylene to the new carbon five-membered ring derivative. Heteroatom substitution with boron also revealed to lower the LUMO energy level and increase the electron affinity, therefore lowering the electron injection barrier comparedmore » to perylene. Since the rate of the charge transfer between two molecules in columnar discotic systems is strongly dependent on the orientation of the stacked cores, the total energy and transfer integral of a dimer as a disc is rotated with respect to the other along the stacking axis have been predicted. Aimed at obtaining a more realistic approach to the bulk structure, the molecular geometry of clusters made up of five discs was fully optimized, and charge transfer rate and mobilities were estimated for charge transport along a one dimensional pathway. Heteroatom substitution with selenium yields electron transfer integral values ∼0.3 eV with a relative disc orientation of 25°, which is the preferred angle according to the dimer energy profile. All the results indicate that the tetraselenium-substituted derivative, not synthetized so far, could be a promising candidate among those studied in this work for the fabrication of n-type semiconductors based on columnar discotic liquid crystals materials.« less
Navarro, Amparo; Fernández-Liencres, M Paz; Peña-Ruiz, Tomás; García, Gregorio; Granadino-Roldán, José M; Fernández-Gómez, Manuel
2016-08-07
Density functional theory calculations were carried out to investigate the evolvement of charge transport properties of a set of new discotic systems as a function of ring and heteroatom (B, Si, S, and Se) substitution on the basic structure of perylene. The replacement of six-membered rings by five-membered rings in the reference compound has shown a prominent effect on the electron reorganization energy that decreases ∼0.2 eV from perylene to the new carbon five-membered ring derivative. Heteroatom substitution with boron also revealed to lower the LUMO energy level and increase the electron affinity, therefore lowering the electron injection barrier compared to perylene. Since the rate of the charge transfer between two molecules in columnar discotic systems is strongly dependent on the orientation of the stacked cores, the total energy and transfer integral of a dimer as a disc is rotated with respect to the other along the stacking axis have been predicted. Aimed at obtaining a more realistic approach to the bulk structure, the molecular geometry of clusters made up of five discs was fully optimized, and charge transfer rate and mobilities were estimated for charge transport along a one dimensional pathway. Heteroatom substitution with selenium yields electron transfer integral values ∼0.3 eV with a relative disc orientation of 25°, which is the preferred angle according to the dimer energy profile. All the results indicate that the tetraselenium-substituted derivative, not synthetized so far, could be a promising candidate among those studied in this work for the fabrication of n-type semiconductors based on columnar discotic liquid crystals materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peng, Bo; Govind, Niranjan; Aprà, Edoardo
In this paper we apply equation-of-motion coupled cluster (EOMCC) methods in studies of vertical ionization potentials (IP) and electron affinities (EA) for sin- gled walled carbon nanotubes. EOMCC formulations for ionization potentials and electron affinities employing excitation manifolds spanned by single and double ex- citations (IP/EA-EOMCCSD) are used to study IPs and EAs of nanotubes as a function of nanotube length. Several armchair nanotubes corresponding to C20nH20 models with n = 2 - 6 have been used in benchmark calculations. In agreement with previous studies, we demonstrate that the electronegativity of C20nH20 systems remains, to a large extent, independent ofmore » nanotube length. We also compare IP/EA- EOMCCSD results with those obtained with the coupled cluster models with single and double excitations corrected by perturbative triples, CCSD(T), and density func- tional theory (DFT) using global and range-separated hybrid exchange-correlation functionals.« less
Mao, Bao-Hua; Crumlin, Ethan; Tyo, Eric C.; ...
2016-07-21
In this work, ambient pressure X-ray photoelectron spectroscopy (APXPS) was used to investigate the effect of oxygen adsorption on the band bending and electron affinity of Al 2O 3, ZnO and TiO 2 ultrathin films (~1 nm in thickness) deposited on a Si substrate by atomic layer deposition (ALD). Upon exposure to oxygen at room temperature (RT), upward band bending was observed on all three samples, and a decrease in electron affinity was observed on Al 2O 3 and ZnO ultrathin films at RT. At 80°C, the magnitude of the upward band bending decreased, and the change in the electronmore » affinity vanished. These results indicate the existence of two surface oxygen species: a negatively charged species that is strongly adsorbed and responsible for the observed upward band bending, and a weakly adsorbed species that is polarized, lowering the electron affinity. Based on the extent of upward band bending on the three samples, the surface coverage of the strongly adsorbed species exhibits the following order: Al 2O 3 > ZnO > TiO 2. This finding is in stark contrast to the trend expected on the surface of these bulk oxides, and highlights the unique surface activity of ultrathin oxide films with important implications, for example, in oxidation reactions taking place on these films or in catalyst systems where such oxides are used as a support material.« less
Quantitative molecular orbital energies within a G0W0 approximation
NASA Astrophysics Data System (ADS)
Sharifzadeh, S.; Tamblyn, I.; Doak, P.; Darancet, P. T.; Neaton, J. B.
2012-09-01
Using many-body perturbation theory within a G 0 W 0 approximation, with a plane wave basis set and using a starting point based on density functional theory within the generalized gradient approximation, we explore routes for computing the ionization potential (IP), electron affinity (EA), and fundamental gap of three gas-phase molecules — benzene, thiophene, and (1,4) diamino-benzene — and compare with experiments. We examine the dependence of the IP and fundamental gap on the number of unoccupied states used to represent the dielectric function and the self energy, as well as the dielectric function plane-wave cutoff. We find that with an effective completion strategy for approximating the unoccupied subspace, and a well converged dielectric function kinetic energy cutoff, the computed IPs and EAs are in excellent quantitative agreement with available experiment (within 0.2 eV), indicating that a one-shot G 0 W 0 approach can be very accurate for calculating addition/removal energies of small organic molecules.
Wiley, Jenny L.; Smith, Valerie J.; Chen, Jianhong; Martin, Billy R.; Huffman, John W.
2012-01-01
To develop SAR at both the cannabinoid CB1 and CB2 receptors for 3-(1-naphthoyl)indoles bearing moderately electron withdrawing substituents at C-4 of the naphthoyl moiety, 1-propyl and 1-pentyl-3-(4-fluoro, chloro, bromo and iodo-1-naphthoyl) derivatives were prepared. To study the steric and electronic effects of substituents at the 8-position of the naphthoyl group, the 3-(4-chloro, bromo and iodo-1-naphthoyl)indoles were also synthesized. The affinities of both groups of compounds for the CB1 and CB2 receptors were determined and several of them were evaluated in vivo in the mouse. The effects of these substituents on receptor affinities and in vivo activity are discussed and structure-activity relationships are presented. Although many of these compounds are selective for the CB2 receptor, only three JWH-423, 1-propyl-3-(4-iodo-1-naphthoyl)indole, JWH-422, 2-methyl-1-propyl-3-(4-iodo-1-naphthoyl)indole, the 2-methyl analog of JWH-423 and JWH-417, 1-pentyl-3-(8-iodo-1-naphthoyl)indole, possess the desirable combination of low CB1 affinity and good CB2 affinity. PMID:22341572
Redox properties of biscyclopentadienyl uranium(V) imido-halide complexes: a relativistic DFT study.
Elkechai, Aziz; Kias, Farida; Talbi, Fazia; Boucekkine, Abdou
2014-06-01
Calculations of ionization energies (IE) and electron affinities (EA) of a series of biscyclopentadienyl imido-halide uranium(V) complexes Cp*2U(=N-2,6-(i)Pr2-C6H3)(X) with X = F, Cl, Br, and I, related to the U(IV)/U(V) and U(V)/U(VI) redox systems, were carried out, for the first time, using density functional theory (DFT) in the framework of the relativistic zeroth order regular approximation (ZORA) coupled with the conductor-like screening model (COSMO) solvation approach. A very good linear correlation (R(2) = 0.993) was obtained, between calculated ionization energies at the ZORA/BP86/TZP level, and the experimental half-wave oxidation potentials E1/2. A similar linear correlation between the computed electron affinities and the electrochemical reduction U(IV)/U(III) potentials (R(2) = 0.996) is obtained. The importance of solvent effects and of spin-orbit coupling is definitively confirmed. The molecular orbital analysis underlines the crucial role played by the 5f orbitals of the central metal whereas the Nalewajski-Mrozek (N-M) bond indices explain well the bond distances variations following the redox processes. The IE variation of the complexes, i.e., IE(F) < IE(Cl) < IE(Br) < IE(I) is also well rationalized considering the frontier MO diagrams of these species. Finally, this work confirms the relevance of the Hirshfeld charges analysis which bring to light an excellent linear correlation (R(2) = 0.999) between the variations of the uranium charges and E1/2 in the reduction process of the U(V) species.
Transport of EDTA into cells of the EDTA-degrading bacterial strain DSM 9103.
Witschel, M; Egli, T; Zehnder, A J; Wehrli, E; Spycher, M
1999-04-01
In the bacterial strain DSM 9103, which is able to grow with the complexing agent EDTA as the sole source of carbon, nitrogen and energy, the transport of EDTA into whole cells was investigated. EDTA uptake was found to be dependent on speciation: free EDTA and metal-EDTA complexes with low stability constants were readily taken up, whereas those with stability constants higher than 1016 were not transported. In EDTA-grown cells, initial transport rates of CaEDTA showed substrate-saturation kinetics with a high apparent affinity for CaEDTA (affinity constant Kt= 0.39 microM). Several uncouplers had an inhibitory effect on CaEDTA transport. CaEDTA uptake was also significantly reduced in the presence of an inhibitor of ATPase and the ionophore nigericin, which dissipates the proton gradient. Valinomycin, however, which affects the electrical potential, had little effect on uptake, indicating that EDTA transport is probably driven by the proton gradient. Of various structurally related compounds tested only Ca2+-complexed diethylenetriaminepentaacetate (CaDTPA) competitively inhibited CaEDTA transport. Uptake in fumarate-grown cells was low compared to that measured in EDTA-grown bacteria. These results strongly suggest that the first step in EDTA degradation by strain DSM 9103 consists of transport by an inducible energy-dependent carrier. Uptake experiments with 45Ca2+ in the presence and absence of EDTA indicated that Ca2+ is transported together with EDTA into the cells. In addition, these transport studies and electron-dispersive X-ray analysis of electron-dense intracellular bodies present in EDTA-grown cells suggest that two mechanisms acting simultaneously allow the cells to cope with the large amounts of metal ions taken up together with EDTA. In one mechanism the metal ions are excreted, in the other they are inactivated intracellularly in polyphosphate granules.
López-Carballeira, Diego; Ruipérez, Fernando
2016-04-01
The evaluation of four high-level composite methods based on the modification of Gaussian-3 (G3) theory for radicals and 18 exchange-correlation density functionals, including modern long-range and dispersion-corrected functionals, in the modelization of singlet diradicals has been performed in this work. Structural parameters and properties such as singlet-triplet gaps, electron affinities, ionization potentials, dipole moments, enthalpies of formation, and bond dissociation energies have been calculated in a set of six well-characterized singlet diradicals, and benchmarked against experimental data and wavefunction-based CASSCF/CASPT2 calculations. The complexity of the open-shell singlet ground state is revealed in the difficulties to properly represent the diradical character reported by some DFT functionals, specially those that do not comprise a certain amount of Hartree-Fock exchange in their formulation. We find that STGs, EAs, dipole moments, and thermochemical properties are, in general, satisfactorily calculated, while for IPs larger deviations with respect to the experiments are found in all cases. The best overall performance is accounted for by hybrid functionals, including some of the long-range corrected functionals, but also pure functionals, comprising the kinetic energy density in their formulation, are found to be competent. Composite methods perform satisfactorily, especially G3(MP2)-RAD and G3X(MP2)-RAD, which calculate singlet-triplet gaps and electron affinities more accurately. On the other hand, G3-RAD and G3X-RAD provide better ionization potentials. This study emphasizes that the use of recently developed functionals, within the broken symmetry approximation, is an appropriate tool for the simulation of organic singlet diradicals, with similar accuracy compared to more expensive composite methods. Nevertheless, suitable selection of the methodology is still crucial for the accomplishment of accurate results.
Metric-affine f (R ,T ) theories of gravity and their applications
NASA Astrophysics Data System (ADS)
Barrientos, E.; Lobo, Francisco S. N.; Mendoza, S.; Olmo, Gonzalo J.; Rubiera-Garcia, D.
2018-05-01
We study f (R ,T ) theories of gravity, where T is the trace of the energy-momentum tensor Tμ ν, with independent metric and affine connection (metric-affine theories). We find that the resulting field equations share a close resemblance with their metric-affine f (R ) relatives once an effective energy-momentum tensor is introduced. As a result, the metric field equations are second-order and no new propagating degrees of freedom arise as compared to GR, which contrasts with the metric formulation of these theories, where a dynamical scalar degree of freedom is present. Analogously to its metric counterpart, the field equations impose the nonconservation of the energy-momentum tensor, which implies nongeodesic motion and consequently leads to the appearance of an extra force. The weak field limit leads to a modified Poisson equation formally identical to that found in Eddington-inspired Born-Infeld gravity. Furthermore, the coupling of these gravity theories to perfect fluids, electromagnetic, and scalar fields, and their potential applications are discussed.
Universal method to calculate the stability, electronegativity, and hardness of dianions.
von Szentpály, László
2010-10-14
The electronic stability of gas-phase dianions of arbitrary size, X(2-), is determined by the first universal method to calculate second electron affinities, A(2). The model expresses A(2,calc) = A(1) - (7/6)η(0) by the first electron affinity, A(1), and chemical hardness, η(0), of the neutral "grandparent" species. A comparison with 37 reference data of atoms, molecules, superatoms, and clusters yields A(2,ref) = 1.004A(2,calc) - 0.023 eV, with a mean unsigned deviation of MUD = 0.095 eV and a correlation coefficient of R = 0.9987. Predictions of second electron affinities are given for a further 24 species. The universality of the model is apparent from the broad variety of compounds formed by 30 diverse elements. The electronegativity and hardness of dianions are determined for the first time as χ(X(2-)) = A(2) and η(X(2-)) = (7/12)η(0), respectively. Pearson and Parr's operational assumption regarding the hardness of anionic bases for the hard-soft acid-base (HSAB) principle is rationalized, and predictions for hard and soft dianionic bases are presented. For trianions, first criteria and predictions for electronic stability are given and require A(1) > (7/4)η(0).
Interplay between binding affinity and kinetics in protein-protein interactions.
Cao, Huaiqing; Huang, Yongqi; Liu, Zhirong
2016-07-01
To clarify the interplay between the binding affinity and kinetics of protein-protein interactions, and the possible role of intrinsically disordered proteins in such interactions, molecular simulations were carried out on 20 protein complexes. With bias potential and reweighting techniques, the free energy profiles were obtained under physiological affinities, which showed that the bound-state valley is deep with a barrier height of 12 - 33 RT. From the dependence of the affinity on interface interactions, the entropic contribution to the binding affinity is approximated to be proportional to the interface area. The extracted dissociation rates based on the Arrhenius law correlate reasonably well with the experimental values (Pearson correlation coefficient R = 0.79). For each protein complex, a linear free energy relationship between binding affinity and the dissociation rate was confirmed, but the distribution of the slopes for intrinsically disordered proteins showed no essential difference with that observed for ordered proteins. A comparison with protein folding was also performed. Proteins 2016; 84:920-933. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Hydroxyapatite coatings produced on commercially pure titanium by micro-arc oxidation.
Huang, Yong; Wang, Yingjun; Ning, Chengyun; Nan, Kaihui; Han, Yong
2007-09-01
A porous hydroxyapatite (HA) coating on commercially pure titanium was prepared by micro-arc oxidation (MAO) in electrolytic solution containing calcium acetate and beta-glycerol phosphate disodium salt pentahydrate (beta-GP). The thickness, phase, composition morphology and biocompatibility of the oxide coating were characterized by x-ray diffraction (XRD), electron probe microanalysis (EPMA), scanning electron microscopy (SEM) with an energy dispersive x-ray spectrometer (EDS) and cell culture. The thickness of the MAO film was about 20 microm, and the coating was porous and uneven without any apparent interface to the titanium substrates. The result of XRD showed that the porous coating was made up of HA film. The favorable osteoblast cell affinity gives HA film good biocompatibility. HA coatings are expected to have significant uses for medical applications such as dental implants and artificial bone joints.
Photoelectron Spectroscopy of Substituted Phenylnitrenes
NASA Astrophysics Data System (ADS)
Wijeratne, Neloni R.; Da Fonte, Maria; Wenthold, Paul G.
2009-06-01
Nitrenes are unusual molecular structures with unfilled electronic valences that are isoelectronic with carbenes. Although, both can be generated by either thermal or photochemical decomposition of appropriate precursors they usually exhibit different reactivities. In this work, we carry out spectroscopic studies of substituted phenylnitrene to determine how the introduction of substituents will affect the reactivity and its thermochemical properties. All studies were carried out by using the newly constructed time-of-flight negative ion photoelectron spectrometer (NIPES) at Purdue University. The 355 nm photoelectron spectra of the o-, m-, and p-chlorophenyl nitrene anions are fairly similar to that measured for phenylnitrene anion. All spectra show low energy triplet state and a high energy singlet state. The singlet state for the meta isomer is well-resolved, with a well defined origin and observable vibrational structure. Whereas the singlet states for the ortho and para isomers have lower energy onsets and no resolved structure. The isomeric dependence suggests that the geometry differences result from the resonance interaction between the nitrogen and the substituent. Quinoidal resonance structures are possible for the open-shell singlet states of the o- and p-chlorinated phenyl nitrenes. The advantages of this type of electronic structures for the open-shell singlet states is that the unpaired electrons can be more localized on separate atoms in the molecules, minimizing the repulsion between. Because the meta position is not in resonance with the nitrenes, substitution at that position should not affect the structure of the open-shell singlet state. The measured electron affinities (EA) of the triplet phenylnitrenes are in excellent agreement with the values predicted by electronic structure calculations. The largest EA, 1.82 eV is found for the meta isomer, with para being the smallest, 1.70 eV.
From the Kohn-Sham band gap to the fundamental gap in solids. An integer electron approach.
Baerends, E J
2017-06-21
It is often stated that the Kohn-Sham occupied-unoccupied gap in both molecules and solids is "wrong". We argue that this is not a correct statement. The KS theory does not allow to interpret the exact KS HOMO-LUMO gap as the fundamental gap (difference (I - A) of electron affinity (A) and ionization energy (I), twice the chemical hardness), from which it indeed differs, strongly in molecules and moderately in solids. The exact Kohn-Sham HOMO-LUMO gap in molecules is much below the fundamental gap and very close to the much smaller optical gap (first excitation energy), and LDA/GGA yield very similar gaps. In solids the situation is different: the excitation energy to delocalized excited states and the fundamental gap (I - A) are very similar, not so disparate as in molecules. Again the Kohn-Sham and LDA/GGA band gaps do not represent (I - A) but are significantly smaller. However, the special properties of an extended system like a solid make it very easy to calculate the fundamental gap from the ground state (neutral system) band structure calculations entirely within a density functional framework. The correction Δ from the KS gap to the fundamental gap originates from the response part v resp of the exchange-correlation potential and can be calculated very simply using an approximation to v resp . This affords a calculation of the fundamental gap at the same level of accuracy as other properties of crystals at little extra cost beyond the ground state bandstructure calculation. The method is based on integer electron systems, fractional electron systems (an ensemble of N- and (N + 1)-electron systems) and the derivative discontinuity are not invoked.
NASA Astrophysics Data System (ADS)
Eid, Sameh; Saleh, Noureldin; Zalewski, Adam; Vedani, Angelo
2014-12-01
Carbohydrates play a key role in a variety of physiological and pathological processes and, hence, represent a rich source for the development of novel therapeutic agents. Being able to predict binding mode and binding affinity is an essential, yet lacking, aspect of the structure-based design of carbohydrate-based ligands. We assembled a diverse data set comprising 273 carbohydrate-protein crystal structures with known binding affinity and evaluated the prediction accuracy of a large collection of well-established scoring and free-energy functions, as well as combinations thereof. Unfortunately, the tested functions were not capable of reproducing binding affinities in the studied complexes. To simplify the complex free-energy surface of carbohydrate-protein systems, we classified the studied proteins according to the topology and solvent exposure of the carbohydrate-binding site into five distinct categories. A free-energy model based on the proposed classification scheme reproduced binding affinities in the carbohydrate data set with an r 2 of 0.71 and root-mean-squared-error of 1.25 kcal/mol ( N = 236). The improvement in model performance underlines the significance of the differences in the local micro-environments of carbohydrate-binding sites and demonstrates the usefulness of calibrating free-energy functions individually according to binding-site topology and solvent exposure.
An introduction to best practices in free energy calculations.
Shirts, Michael R; Mobley, David L
2013-01-01
Free energy calculations are extremely useful for investigating small-molecule biophysical properties such as protein-ligand binding affinities and partition coefficients. However, these calculations are also notoriously difficult to implement correctly. In this chapter, we review standard methods for computing free energy via simulation, discussing current best practices and examining potential pitfalls for computational researchers performing them for the first time. We include a variety of examples and tips for how to set up and conduct these calculations, including applications to relative binding affinities and small-molecule solvation free energies.
Bucci, Enrico
2013-01-01
Hill’s plots of oxygen binding isotherms reveal the presence of a transition between two different oxygen affinities at the beginning and end of the isotherm. They correspond to the two conformations anticipated by the MWC model, namely the T and R conformations at the beginning and end of oxygen binding, when the lower affinity of the T form develops into the higher affinity of the R form. The difference between the binding Gibbs free energies changes of the two affinities (ΔGL) is the free energy of binding cooperativity. Notably ΔGL is positive in favor of the T form, that moves to a higher energy level upon oxygen release. Osmotic stress reveals a higher volume/surface ratio of deoxyHb, with a positive ΔGW also in favor of the T form . Increasing protein concentration shifts the isotherms to the right indicating the formation of intermediate polymeric forms. Enthalpy of the intermediates show a strong absorption of heat at the third oxygenation step due to polymers formation with quinary, and above, structures. The disassembly of intermediate polymers releases energy with a negative ΔG that compensates and allow the positivity of ΔGL. High energy polymers are the barrier preventing the relaxation of the T and R conformations into one another. The MWC allosteric model is the best justification of oxygen binding cooperativity . PMID:23710673
NASA Technical Reports Server (NTRS)
Smyth, K. C.; Brauman, J. I.
1972-01-01
The relative cross section for the gas-phase photodetachment of electrons has been determined for NH2(-) in the wavelength region of 1195 to 1695 nm and for AsH2(-) in the region from 620 to 1010 nm. An ion cyclotron resonance spectrometer was used to generate, trap, and detect negative ions. A 1000-W xenon arc lamp with a grating monochromator was used as the light source, except for one series of experiments in which a tunable laser was employed. Single sharp thresholds were observed in both cross sections, and the following electron affinity values were determined: 0.744 (plus or minus 0.022) eV for NH2. and 1.27 (plus or minus 0.03) eV for AsH2.
NASA Astrophysics Data System (ADS)
Koitz, Ralph; Soini, Thomas M.; Genest, Alexander; Trickey, S. B.; Rösch, Notker
2012-07-01
The performance of eight generalized gradient approximation exchange-correlation (xc) functionals is assessed by a series of scalar relativistic all-electron calculations on octahedral palladium model clusters Pdn with n = 13, 19, 38, 55, 79, 147 and the analogous clusters Aun (for n up through 79). For these model systems, we determined the cohesive energies and average bond lengths of the optimized octahedral structures. We extrapolate these values to the bulk limits and compare with the corresponding experimental values. While the well-established functionals BP, PBE, and PW91 are the most accurate at predicting energies, the more recent forms PBEsol, VMTsol, and VT{84}sol significantly improve the accuracy of geometries. The observed trends are largely similar for both Pd and Au. In the same spirit, we also studied the scalability of the ionization potentials and electron affinities of the Pd clusters, and extrapolated those quantities to estimates of the work function. Overall, the xc functionals can be classified into four distinct groups according to the accuracy of the computed parameters. These results allow a judicious selection of xc approximations for treating transition metal clusters.
Effect of molecular properties on the performance of polymer light-emitting diodes
NASA Astrophysics Data System (ADS)
Ramos, Marta M. D.; Almeida, A. M.; Correia, Helena M. G.; Ribeiro, R. Mendes; Stoneham, A. M.
2004-11-01
The performance of a single layer polymer light-emitting diode depends on several interdependent factors, although recombination between electrons and holes within the polymer layer is believed to play an important role. Our aim is to carry out computer experiments in which bipolar charge carriers are injected in polymer networks made of poly(p-phenylene vinylene) chains randomly oriented. In these simulations, we follow the charge evolution in time from some initial state to the steady state. The intra-molecular properties of the polymer molecules obtained from self-consistent quantum molecular dynamics calculations are used in the mesoscopic model. The purpose of the present work is to clarify the effects of intra-molecular charge mobility and energy disorder on recombination efficiency. In particular, we find that charge mobility along the polymer chains has a serious influence on recombination within the polymer layer. Our results also show that energy disorder due to differences in ionization potential and electron affinity of neighbouring molecules affects mainly recombinations that occur near the electrodes at polymer chains parallel to them.
Bond Graph Modeling of Chemiosmotic Biomolecular Energy Transduction.
Gawthrop, Peter J
2017-04-01
Engineering systems modeling and analysis based on the bond graph approach has been applied to biomolecular systems. In this context, the notion of a Faraday-equivalent chemical potential is introduced which allows chemical potential to be expressed in an analogous manner to electrical volts thus allowing engineering intuition to be applied to biomolecular systems. Redox reactions, and their representation by half-reactions, are key components of biological systems which involve both electrical and chemical domains. A bond graph interpretation of redox reactions is given which combines bond graphs with the Faraday-equivalent chemical potential. This approach is particularly relevant when the biomolecular system implements chemoelectrical transduction - for example chemiosmosis within the key metabolic pathway of mitochondria: oxidative phosphorylation. An alternative way of implementing computational modularity using bond graphs is introduced and used to give a physically based model of the mitochondrial electron transport chain To illustrate the overall approach, this model is analyzed using the Faraday-equivalent chemical potential approach and engineering intuition is used to guide affinity equalisation: a energy based analysis of the mitochondrial electron transport chain.
Conjugated polymer energy level shifts in lithium-ion battery electrolytes.
Song, Charles Kiseok; Eckstein, Brian J; Tam, Teck Lip Dexter; Trahey, Lynn; Marks, Tobin J
2014-11-12
The ionization potentials (IPs) and electron affinities (EAs) of widely used conjugated polymers are evaluated by cyclic voltammetry (CV) in conventional electrochemical and lithium-ion battery media, and also by ultraviolet photoelectron spectroscopy (UPS) in vacuo. By comparing the data obtained in the different systems, it is found that the IPs of the conjugated polymer films determined by conventional CV (IPC) can be correlated with UPS-measured HOMO energy levels (EH,UPS) by the relationship EH,UPS = (1.14 ± 0.23) × qIPC + (4.62 ± 0.10) eV, where q is the electron charge. It is also found that the EAs of the conjugated polymer films measured via CV in conventional (EAC) and Li(+) battery (EAB) media can be linearly correlated by the relationship EAB = (1.07 ± 0.13) × EAC + (2.84 ± 0.22) V. The slopes and intercepts of these equations can be correlated with the dielectric constants of the polymer film environments and the redox potentials of the reference electrodes, as modified by the surrounding electrolyte, respectively.
Ab initio study of aspirin adsorption on single-walled carbon and carbon nitride nanotubes
NASA Astrophysics Data System (ADS)
Lee, Yongju; Kwon, Dae-Gyeon; Kim, Gunn; Kwon, Young-Kyun
We use ab intio density functional theory to investigate the adsorption properties of acetylsalicylic acid or aspirin on a (10, 0) carbon nanotube (CNT) and a (8, 0) triazine-based graphitic carbon nitride nanotube (CNNT). It is found that an aspirin molecule binds stronger to the CNNT with its adsorption energy of 0.67 eV than to the CNT with 0.51 eV. The stronger adsorption energy on the CNNT is ascribed to the high reactivity of its N atoms with high electron affinity. The CNNT exhibits local electric dipole moments, which cause strong charge redistribution in the aspirin molecule adsorbed on the CNNT than on the CNT. We also explore the influence of an external electric field on the adsorption properties of aspirin on these nanotubes by examining the modifications in their electronic band structures, partial densities of states, and charge distributions. It is found that an electric field applied along a particular direction induces aspirin molecular states in the in-gap region of the CNNT implying a potential application of aspirin detection.
Ab initio theoretical study of dipole-bound anions of molecular complexes: (HF)3- and (HF)4- anions
NASA Astrophysics Data System (ADS)
Ramaekers, Riet; Smith, Dayle M. A.; Smets, Johan; Adamowicz, Ludwik
1997-12-01
Ab initio calculations have been performed to determine structures and vertical electron detachment energy (VDE) of the hydrogen fluoride trimer and tetramer anions, (HF)3- and (HF)4-. In these systems the excess electron is bound by the dipole field of the complex. It was determined that, unlike the neutral complexes which prefer the cyclic structures, the equilibrium geometries of the anions have "zig-zag" shapes. For both complexes the predicted VDEs are positive [210 meV and 363 meV for (HF)3- and (HF)4-, respectively], indicating that the anions are stable systems with respect to the vertical electron detachment. These results were obtained at the coupled-cluster level of theory with single, double and triple excitations [CCSD(T) method; the triple-excitation contribution in this method is calculated approximately using the perturbation approach] with the anion geometries obtained using the second-order Møller-Plesset perturbation theory (MP2) method. The same approach was also used to determine the adiabatic electron affinities (AEA) of (HF)3 and (HF)4. In addition to the electronic contribution, we also calculated the contributions (using the harmonic approximation) resulting from different zero-point vibration energies of the neutral and anionic clusters. The calculations predicted that while the AEA of (HF)3 is positive (44 meV), the AEA for (HF)4 is marginally negative (-16 meV). This suggests that the (HF)3- anion should be a stable system, while the (HF)4- is probably metastable.
Kobyłecka, Monika; Gu, Jiande; Rak, Janusz; Leszczynski, Jerzy
2008-01-28
The propensity of four representative conformations of 2(')-deoxyadenosine-5(')-monophosphate (5(')-dAMPH) to bind an excess electron has been studied at the B3LYP6-31++G(d,p) level. While isolated canonical adenine does not support stable valence anions in the gas phase, all considered neutral conformations of 5(')-dAMPH form adiabatically stable anions. The type of an anionic 5(')-dAMPH state, i.e., the valence, dipole bound, or mixed (valence/dipole bound), depends on the internal hydrogen bond(s) pattern exhibited by a particular tautomer. The most stable anion results from an electron attachment to the neutral syn-south conformer. The formation of this anion is associated with a barrier-free proton transfer triggered by electron attachment and the internal rotation around the C4(')-C5(') bond. The adiabatic electron affinity of the a_south-syn anion is 1.19 eV, while its vertical detachment energy is 1.89 eV. Our results are compared with the photoelectron spectrum (PES) of 5(')-dAMPH(-) measured recently by Stokes et al., [J. Chem. Phys. 128, 044314 (2008)]. The computational VDE obtained for the most stable anionic structure matches well with the experimental electron binding energy region of maximum intensity. A further understanding of DNA damage might require experimental and computational studies on the systems in which purine nucleotides are engaged in hydrogen bonding.
NASA Astrophysics Data System (ADS)
Kobyłecka, Monika; Gu, Jiande; Rak, Janusz; Leszczynski, Jerzy
2008-01-01
The propensity of four representative conformations of 2'-deoxyadenosine-5'-monophosphate (5'-dAMPH) to bind an excess electron has been studied at the B3LYP /6-31++G(d,p) level. While isolated canonical adenine does not support stable valence anions in the gas phase, all considered neutral conformations of 5'-dAMPH form adiabatically stable anions. The type of an anionic 5'-dAMPH state, i.e., the valence, dipole bound, or mixed (valence/dipole bound), depends on the internal hydrogen bond(s) pattern exhibited by a particular tautomer. The most stable anion results from an electron attachment to the neutral syn-south conformer. The formation of this anion is associated with a barrier-free proton transfer triggered by electron attachment and the internal rotation around the C4'-C5' bond. The adiabatic electron affinity of the a&barbelow;south-syn anion is 1.19eV, while its vertical detachment energy is 1.89eV. Our results are compared with the photoelectron spectrum (PES) of 5'-dAMPH- measured recently by Stokes et al., [J. Chem. Phys. 128, 044314 (2008)]. The computational VDE obtained for the most stable anionic structure matches well with the experimental electron binding energy region of maximum intensity. A further understanding of DNA damage might require experimental and computational studies on the systems in which purine nucleotides are engaged in hydrogen bonding.
Weiss, Shimon; Bruchez, Marcel; Alivisatos, Paul
2014-01-28
A semiconductor nanocrystal compound and probe are described. The compound is capable of linking to one or more affinity molecules. The compound comprises (1) one or more semiconductor nanocrystals capable of, in response to exposure to a first energy, providing a second energy, and (2) one or more linking agents, having a first portion linked to the one or more semiconductor nanocrystals and a second portion capable of linking to one or more affinity molecules. One or more semiconductor nanocrystal compounds are linked to one or more affinity molecules to form a semiconductor nanocrystal probe capable of bonding with one or more detectable substances in a material being analyzed, and capable of, in response to exposure to a first energy, providing a second energy. Also described are processes for respectively: making the semiconductor nanocrystal compound; making the semiconductor nanocrystal probe; and treating materials with the probe.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weiss, Shimon; Bruchez, Marcel; Alivisatos, Paul A.
2016-12-27
A semiconductor nanocrystal compound and probe are described. The compound is capable of linking to one or more affinity molecules. The compound comprises (1) one or more semiconductor nanocrystals capable of, in response to exposure to a first energy, providing a second energy, and (2) one or more linking agents, having a first portion linked to the one or more semiconductor nanocrystals and a second portion capable of linking to one or more affinity molecules. One or more semiconductor nanocrystal compounds are linked to one or more affinity molecules to form a semiconductor nanocrystal probe capable of bonding with onemore » or more detectable substances in a material being analyzed, and capable of, in response to exposure to a first energy, providing a second energy. Also described are processes for respectively: making the semiconductor nanocrystal compound; making the semiconductor nanocrystal probe; and treating materials with the probe.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hou, Gao-Lei; Li, Lei-Jiao; Li, Shu-Hui
Negative ion photoelectron spectroscopy shows interesting regioisomer-specific electron affinities (EAs) of 2,5– and 7,23– para-adducts of C70 [(ArCH2)2C70] (Ar = Ph, o-, m-, and p-BrC6H4). Their EA values are larger than that of C70 by 5-150 meV with the 2,5– polar adducts’ EAs being higher than their corresponding 7,23– equatorial counterparts, exhibiting appreciable EA tunable ranges and regioisomer specificity. Density functional theory (DFT) calculations reproduce both the experimental EA values and EA trends very well.
Theoretical determination of one-electron redox potentials for DNA bases, base pairs, and stacks.
Paukku, Y; Hill, G
2011-05-12
Electron affinities, ionization potentials, and redox potentials for DNA bases, base pairs, and N-methylated derivatives are computed at the DFT/M06-2X/6-31++G(d,p) level of theory. Redox properties of a guanine-guanine stack model are explored as well. Reduction and oxidation potentials are in good agreement with the experimental ones. Electron affinities of base pairs were found to be negative. Methylation of canonical bases affects the ionization potentials the most. Base pair formation and base stacking lower ionization potentials by 0.3 eV. Pairing of guanine with the 5-methylcytosine does not seem to influence the redox properties of this base pair much.
Electronic structure probed with positronium: Theoretical viewpoint
NASA Astrophysics Data System (ADS)
Kuriplach, Jan; Barbiellini, Bernardo
2018-05-01
We inspect carefully how the positronium can be used to study the electronic structure of materials. Recent combined experimental and computational study [A.C.L. Jones et al., Phys. Rev. Lett. 117, 216402 (2016)] has shown that the positronium affinity can be used to benchmark the exchange-correlation approximations in copper. Here we investigate whether an improvement can be achieved by increasing the numerical precision of calculations and by employing the strongly constrained and appropriately normed (SCAN) scheme, and extend the study to other selected systems like aluminum and high entropy alloys. From the methodological viewpoint, the computations of the positronium affinity are further refined and an alternative way of determining the electron chemical potential using charged supercells is examined.
Uzunova, Ellie L; Mikosch, Hans
2012-03-29
The dimers of cobalt oxide (CoO)(2) with cyclic and open bent structure are studied with the B1LYP density functional; the ordering of states is validated by the CCSD(T) method. The D(2h)-symmetry rhombic dioxide Co(2)O(2) with antiferromagnetically ordered electrons on cobalt centers is the global minimum. The cyclic peroxide Co(2)(O(2)) with side-on-bonded dioxygen in (7)B(2) ground state is separated from the global minimum by an energy gap of 3.15 eV. The dioxide is highly reactive as indicated by the high value of proton affinity and chemical reactivity indices. The four-member ring structures are more stable than those with three-member ring or chain configuration. The thermodynamic stability toward dissociation to CoO increases upon carbonylation, whereas proton affinity and reactivity with release of molecular oxygen also increase. The global minimum of Co(2)O(2)(CO)(6) corresponds to a triplet state (3)A" with oxygen atoms shifted above the molecular plane of the rhombic dioxide Co(2)O(2). The SOMO-LUMO gap in the ground-state carbonylated dioxide is wider, compared to the same gap in the bare dicobalt dioxide. The peroxo-isomer Co(2)(O(2))(CO)(6) retains the planar Co(2)(O(2)) ring and is only stable in a high-spin state (7)A". The carbonylated clusters have increased reactivity in both redox and nucleophilic reactions, as a result of the increased electron density in the Co(2)O(2)-ring area.
The energy and work of a ligand-gated ion channel
Auerbach, Anthony
2015-01-01
Ligand-gated ion channels are allosteric membrane proteins that isomerize between C(losed) and O(pen) conformations. A difference in affinity for ligands in the two shapes influences the C↔O ‘gating’ equilibrium constant. The energies associated with adult-type mouse neuromuscular nicotinic acetylcholine receptor-channel (AChR) gating have been measured by using single-channel electrophysiology. Without ligands the free energy, enthalpy and entropy of gating are ΔG0=+8.4, ΔH0=+10.9 and ΔS0=+2.4 kcal/mol (−100 mV, 23 °C). Many mutations throughout the protein change ΔG0, including natural ones that cause disease. Agonists and most mutations change approximately independently the ground state energy difference, so it is possible to forecast and engineer AChR responses simply by combining perturbations. The free energy of the low↔high affinity change for the neurotransmitter at each of two functionally-equivalent binding sites is ΔGBACh=−5.1 kcal/mol. ΔGBACh is set mainly by interactions of ACh with just three binding site aromatic groups. For a series of structurally-related agonists there is a correlation between the energies of low- and high-affinity binding, which implies that gating commences with the formation of the low affinity complex. Brief, intermediate states in binding and gating have been detected. Several proposals for the nature of the gating transition state energy landscape and the isomerization mechanism are discussed. PMID:23357172
Simulation of the photodetachment spectrum of HHfO- using coupled-cluster calculations
NASA Astrophysics Data System (ADS)
Mok, Daniel K. W.; Dyke, John M.; Lee, Edmond P. F.
2016-12-01
The photodetachment spectrum of HHfO- was simulated using restricted-spin coupled-cluster single-double plus perturbative triple {RCCSD(T)} calculations performed on the ground electronic states of HHfO and HHfO-, employing basis sets of up to quintuple-zeta quality. The computed RCCSD(T) electron affinity of 1.67 ± 0.02 eV at the complete basis set limit, including Hf 5s25p6 core correlation and zero-point energy corrections, agrees well with the experimental value of 1.70 ± 0.05 eV from a recent photodetachment study [X. Li et al., J. Chem. Phys. 136, 154306 (2012)]. For the simulation, Franck-Condon factors were computed which included allowances for anharmonicity and Duschinsky rotation. Comparisons between simulated and experimental spectra confirm the assignments of the molecular carrier and electronic states involved but suggest that the experimental vibrational structure has suffered from poor signal-to-noise ratio. An alternative assignment of the vibrational structure to that suggested in the experimental work is presented.
Magnetic switching in Crx (x = 2-8) and its oxide cluster series
NASA Astrophysics Data System (ADS)
Shah, Esha V.; Roy, Debesh R.
2018-04-01
First principle studies on the magnetic ground state structure, noncollinearity, binding energy and various electronic properties of a series of Crx (x = 2-8) clusters are performed. In order to investigate the effect of ionization and oxidation on the clusters, the anionic (Crx-) and oxidized (CrxO2) analogues of those clusters are also studied in detail. To calculate adiabatic electron affinity of CrxO2 clusters, additionally CrxO2- analogues are also included in the present work. An interesting even (non-magnetic) - odd (magnetic) feature in the considered cluster series has been noticed. The similar behavior is also reflected from their electronic properties as even (less reactive) - odd (more reactive). The most of the neutral and ionized chromium clusters, viz., Crx and Crx- are found to be noncollinear in their ground states, whereas oxidation stabilized those clusters into the collinear spin alignments. The bond distances of Cr clusters are found to be close with available experimental studies.
Lovley, D.R.; Phillips, E.J.P.; Lonergan, D.J.
1989-01-01
The ability of Alteromonas putrefaciens to obtain energy for growth by coupling the oxidation of various electron donors to dissimilatory Fe(III) or Mn(IV) reduction was investigated. A. putrefaciens grew with hydrogen, formate, lactate, or pyruvate as the sole electron donor and Fe(III) as the sole electron acceptor. Lactate and pyruvate were oxidized to acetate, which was not metabolized further. With Fe(III) as the electron acceptor, A. putrefaciens had a high affinity for hydrogen and formate and metabolized hydrogen at partial pressures that were 25-fold lower than those of hydrogen that can be metabolized by pure cultures of sulfate reducers or methanogens. The electron donors for Fe(III) reduction also supported Mn(IV) reduction. The electron donors for Fe(III) and Mn(IV) reduction and the inability of A. putrefaciens to completely oxidize multicarbon substrates to carbon dioxide distinguish A. putrefaciens from GS-15, the only other organism that is known to obtain energy for growth by coupling the oxidation of organic compounds to the reduction of Fe(III) or Mn(IV). The ability of A. putrefaciens to reduce large quantities of Fe(III) and to grow in a defined medium distinguishes it from a Pseudomonas sp., which is the only other known hydrogen-oxidizing, Fe(III)-reducing microorganism. Furthermore, A. putrefaciens is the first organism that is known to grow with hydrogen as the electron donor and Mn(IV) as the electron acceptor and is the first organism that is known to couple the oxidation of formate to the reduction of Fe(III) or Mn(IV). Thus, A. putrefaciens provides a much needed microbial model for key reactions in the oxidation of sediment organic matter coupled to Fe(III) and Mn(IV) reduction.
Balaj, O Petru; Siu, Chi-Kit; Balteanu, Iulia; Beyer, Martin K; Bondybey, Vladimir E
2004-10-04
The gas-phase reactions of hydrated electrons with carbon dioxide and molecular oxygen were studied by Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry. Both CO2 and O2 react efficiently with (H2O)n- because they possess low-lying empty pi* orbitals. The molecular CO2- and O2- anions are concurrently solvated and stabilized by the water ligands to form CO2(-)(H2O)n and O2(-)(H2O)n. Core exchange reactions are also observed, in which CO2(-)(H2O)n is transformed into O2(-)(H2O)n upon collision with O2. This is in agreement with the prediction based on density functional theory calculations that O2(-)(H2O)n clusters are thermodynamically favored with respect to CO2(-)(H2O)n. Electron detachment from the product species is only observed for CO2(-)(H2O)2, in agreement with the calculated electron affinities and solvation energies.
Bauer, Christophe; Abid, Jean-Pierre; Fermin, David; Girault, Hubert H
2004-05-15
The use of 4.2 nm gold nanoparticles wrapped in an adsorbates shell and embedded in a TiO2 metal oxide matrix gives the opportunity to investigate ultrafast electron-electron scattering dynamics in combination with electronic surface phenomena via the surface plasmon lifetimes. These gold nanoparticles (NPs) exhibit a large nonclassical broadening of the surface plasmon band, which is attributed to a chemical interface damping. The acceleration of the loss of surface plasmon phase coherence indicates that the energy and the momentum of the collective electrons can be dissipated into electronic affinity levels of adsorbates. As a result of the preparation process, gold NPs are wrapped in a shell of sulfate compounds that gives rise to a large density of interfacial molecules confined between Au and TiO2, as revealed by Fourier-transform-infrared spectroscopy. A detailed analysis of the transient absorption spectra obtained by broadband femtosecond transient absorption spectroscopy allows separating electron-electron and electron-phonon interaction. Internal thermalization times (electron-electron scattering) are determined by probing the decay of nascent nonthermal electrons (NNEs) and the build-up of the Fermi-Dirac electron distribution, giving time constants of 540 to 760 fs at 0.42 and 0.34 eV from the Fermi level, respectively. Comparison with literature data reveals that lifetimes of NNEs measured for these small gold NPs are more than four times longer than for silver NPs with similar sizes. The surprisingly long internal thermalization time is attributed to an additional decay mechanism (besides the classical e-e scattering) for the energy loss of NNEs, identified as the ultrafast chemical interface scattering process. NNEs experience an inelastic resonant scattering process into unoccupied electronic states of adsorbates, that directly act as an efficient heat bath, via the excitation of molecular vibrational modes. The two-temperature model is no longer valid for this system because of (i) the temporal overlap between the internal and external thermalization process is very important; (ii) a part of the photonic energy is directly transferred toward the adsorbates (not among "cold" conduction band electrons). These findings have important consequence for femtochemistry on metal surfaces since they show that reactions can be initiated by nascent nonthermal electrons (as photoexcited, out of a Fermi-Dirac distribution) besides of the hot electron gas.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Xing; Hou, Gao-Lei; Wang, Xuefeng
2016-04-21
[Ni(dddt) 2] – (dddt = 5,6-dihydro-1,4-dithiine-2,3-dithiolate) and [Ni(edo) 2] – (edo = 5,6-dihydro-1,4-dioxine-2,3-dithiolate) are two donor-type nickel bis(dithiolene) complexes, with the tendency of donating low binding energy electrons. These two structurally similar complexes differ only with respect to the outer atoms in the ligand framework where the former has four S atoms while the latter has four O atoms. Herein, we report a negative ion photoelectron spectroscopy (NIPES) study on these two complexes to probe electronic structures of the anions and their corresponding neutrals. The NIPE spectra exhibit the adiabatic electron detachment energy (ADE) or, equivalently, the electron affinity (EA)more » of the neutral [Ni(L) 2] 0 to be relatively low for this type complexes, 2.780 and 2.375 eV for L = dddt and edo, respectively. The 0.4 eV difference in ADEs shows significant substitution effect for sulfur in dddt by oxygen in edo, i.e., noninnocence of the ligands, which has decreased the electronic stability of [Ni(edo) 2] – by lowering its electron binding energy by ~0.4 eV. The observed substitution effect on gas-phase EA values correlates well with the measured redox potentials for [Ni(dddt) 2] –/0 and [Ni(edo) 2] –/0 in solutions. The singlet-triplet splitting (ΔE ST) of [Ni(dddt) 2] 0 and [Ni(edo) 2] 0 is also determined from the spectra to be 0.57 and 0.53 eV, respectively. Accompanying DFT calculations and molecular orbital (MO) composition analyses show significant ligand contributions to the redox MOs and allow the components of the orbitals involved in each electronic transition and spectral assignments to be identified.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kline, T.B.; Benington, F.; Morin, R.D.
1982-11-01
Serotonin receptor affinity and photelectron spectral data were obtained on a number of substituted N,N-dimethyltryptamines. Evidence is presented that electron-donating substituents in the 5-position lead to enhanced behavioral disruption activity and serotonin receptor affinity as compared to unsubstituted N,N-dimethyltryptamine and analogues substituted in the 4- or 6-position. Some correlation was found between ionization potentials and behavioral activity, which may have implications concerning the mechanism of receptor binding.
Gardette, Maryline; Papon, Janine; Bonnet, Mathilde; Desbois, Nicolas; Labarre, Pierre; Wu, Ting-Dee; Miot-Noirault, Elisabeth; Madelmont, Jean-Claude; Guerquin-Kern, Jean-Luc; Chezal, Jean-Michel; Moins, Nicole
2011-12-01
The increasing incidence of melanoma and the lack of effective therapy on the disseminated form have led to an urgent need for new specific therapies. Several iodobenzamides or analogs are known to possess specific affinity for melanoma tissue. New heteroaromatic derivatives have been designed with a cytotoxic moiety and termed DNA intercalating agents. These compounds could be applied in targeted radionuclide therapy using (125)I, which emits Auger electrons and gives high-energy, localized irradiation. Two iodinated acridine derivatives have been reported to present an in vivo kinetic profile conducive to application in targeted radionuclide therapy. The aim of the present study was to perform a preclinical evaluation of these compounds. The DNA intercalating property was confirmed for both compounds. After radiolabeling with (125)I, the two compounds induced in vitro a significant radiotoxicity to B16F0 melanoma cells. Nevertheless, the acridine compound appeared more radiotoxic than the acridone compound. While cellular uptake was similar for both compounds, SIMS analysis and in vitro protocol showed a stronger affinity for melanin with acridone derivative, which was able to induce a predominant scavenging process in the melanosome and restrict access to the nucleus. In conclusion, the acridine derivative with a higher nuclear localization appeared a better candidate for application in targeted radionuclide therapy using (125)I.
Low energy electron-impact study of AlO using the R-matrix method
NASA Astrophysics Data System (ADS)
Kaur, Savinder; Baluja, Kasturi L.; Bassi, Monika
2017-11-01
This comprehensive study reports the electron-impact on the open shell AlO molecule at low energy (less than 10 eV) using the R-matrix method. We present the elastic (integrated and differential), momentum-transfer, electronic excitation and ionisation cross sections; along with effective collision frequency over a wide electron temperature range (1000-100 000 K). Correlations via a configuration interaction technique are used to represent the target states. Calculations are performed in the static-exchange and 24-target states close-coupling approximation at the experimental bond length of 1.6178 Å. We have used different basis sets 6-311G*, double zeta, polarization (DZP), cc-pCVTZ to represent our target states. We have chosen the Gaussian Type Orbitals (GTOs) basis set DZP to represent the atomic orbitals which gave the best one-electron properties of the molecule. The calculated dipole moment (1.713 au), rotational constant (0.641399 cm-1) and the vertical excitation energies are in concurrence with the best available data. The continuum electron is also represented by GTOs and is placed at the center of mass of the molecule. Resonance analysis is carried out to assign the resonance parameters and the parentage of detected resonances by fitting the eigenphase sums to the Breit-Wigner profile. Our study has detected three core-excited shape resonances in the 24-state model. We detect a stable bound state of AlO- of 1 A 1 symmetry having configuration 1 σ 2 … 7 σ 21 π 42 π 4 with a vertical electronic affinity value of 2.59 eV which is in good accord with the experimental value of 2.6 ± (0.01) eV. The ionisation cross sections are calculated using the Binary-Encounter-Bethe Model in which Hartree-Fock molecular orbitals at self-consistent level are used to calculate kinetic and binding energies of the occupied molecular orbitals. We include partial waves up to g-wave beyond which Born closure method is employed to obtain converged cross sections.
Theoretical study of 'Mixed' ligands superhalogens: Cl-M-NO3 (M = Li, Na, K)
NASA Astrophysics Data System (ADS)
Zhao, Xinghua; Liu, Weihui; Wang, Jiesheng; Li, Chun; Yuan, Guang
2016-08-01
MCl2-, M(NO3)2-, and (Cl-M-NO3)- (M = Li, Na, K) species are systematically investigated using the density functional theory. In all the cases studied, the vertical detachment energies (VDEs) exceed the electron affinity of chlorine atom, leading to the conclusion that MCl2-, M(NO3)2- and (Cl-M-NO3)- are superhalogens. The VDEs of (Cl-M-NO3)- are between that of MCl2- and M(NO3)2-, showing that replacing one ligand with a larger electronegative ligand leads to the higher VDE. Superhalogens with suitable VDEs can be built by using different ligands.
Khan, Salman A; Asiri, Abdullah M; Basisi, Hadi Mussa; Arshad, Muhammad Nadeem; Sharma, Kamlesh
2015-11-01
Two push-pull chromophores were synthesized by knoevenagel condensation under microwave irradiation. The structure of synthesized chromophores were established by spectroscopic (FT-IR, (1)H NMR, (13)C NMR, EI-MS) and elemental analysis. Structure of the chromophores was further conformed by X-ray crystallographic. UV-Vis and fluorescence spectroscopy measurements provided that chromophores were good absorbent and fluorescent properties. Fluorescence polarity studies demonstrated that chromophores were sensitive to the polarity of the microenvironment provided by different solvents. Physicochemical parameters, including singlet absorption, extinction coefficient, stokes shift, oscillator strength, dipole moment and flurescence quantum yield were investigated in order to explore the analytical potential of the synthesized chromophores. In addition, the total energy, frontier molecular orbitals, hardness, electron affinity, ionization energy, electrostatic potential map were also studied computationally by using density functional theoretical method.
Zhu, Lei; Younes, Ali H.; Yuan, Zhao; Clark, Ronald J.
2015-01-01
This article reviews the zinc(II)-dependent photophysical properties of arylvinylbipyridines (AVBs), a class of fluoroionophores in which 2,2′-bipyridyl and an aryl moiety are electronically conjugated. Zinc(II) binding of an AVB may lead to an emission bathochromic shift of the fluoroionophore without diminishing its fluorescence quantum yield. This observation can be explained using the excited state model of electron donor–π bridge–electron acceptor “push–pull” fluorophores, in which the bipy moiety acts as an electron acceptor, and zinc(II)-coordination strengthens its electron affinity. The spectral sensitivity of bipy-containing fluoroionophores, such as AVBs, to zinc(II) can be exploited to prepare fluorescent indicators for this ion. In several cases, AVB moieties are incorporated in fluorescent heteroditopic ligands, so that the variation of zinc(II) concentration over a relatively large range can be correlated to fluorescence changes in either intensity or color. AVB fluoroionophores are also used to introduce an intramolecular Förster resonance energy transfer (FRET) strategy for creating zinc(II) indicators with high photostability and a narrow emission band, two desired characteristics of dyes used in fluorescence microscopy. PMID:26190906
NASA Astrophysics Data System (ADS)
Nakamura, Ryuhei; Kamiya, Kazuhide; Hashimoto, Kazuhito
2010-10-01
Herein, the electron-transfer reactions occurring at the interface between bilirubin oxidase (BOD) and nanocrystalline hematite (α-Fe 2O 3) were characterized. Cyclic voltammograms indicated that BOD has an affinity for hematite surfaces and establishes a direct electron-transfer (DET) conduit between the primary electron acceptor T1 site and the conduction band of α-Fe 2O 3. DET was also confirmed photo-electrochemically, as cathodic photocurrents were generated when a nanocomposite of BOD and α-Fe 2O 3 was illuminated under oxygenated conditions. A proline residue displayed a high-binding affinity for hematite surfaces and is therefore likely part of an orientation-controlled motif which serves to locate BOD at the T1 site at a suitable distance for DET to α-Fe 2O 3.
Electron affinity of cubic boron nitride terminated with vanadium oxide
NASA Astrophysics Data System (ADS)
Yang, Yu; Sun, Tianyin; Shammas, Joseph; Kaur, Manpuneet; Hao, Mei; Nemanich, Robert J.
2015-10-01
A thermally stable negative electron affinity (NEA) for a cubic boron nitride (c-BN) surface with vanadium-oxide-termination is achieved, and its electronic structure was analyzed with in-situ photoelectron spectroscopy. The c-BN films were prepared by electron cyclotron resonance plasma-enhanced chemical vapor deposition employing BF3 and N2 as precursors. Vanadium layers of ˜0.1 and 0.5 nm thickness were deposited on the c-BN surface in an electron beam deposition system. Oxidation of the metal layer was achieved by an oxygen plasma treatment. After 650 °C thermal annealing, the vanadium oxide on the c-BN surface was determined to be VO2, and the surfaces were found to be thermally stable, exhibiting an NEA. In comparison, the oxygen-terminated c-BN surface, where B2O3 was detected, showed a positive electron affinity of ˜1.2 eV. The B2O3 evidently acts as a negatively charged layer introducing a surface dipole directed into the c-BN. Through the interaction of VO2 with the B2O3 layer, a B-O-V layer structure would contribute a dipole between the O and V layers with the positive side facing vacuum. The lower enthalpy of formation for B2O3 is favorable for the formation of the B-O-V layer structure, which provides a thermally stable surface dipole and an NEA surface.
NASA Astrophysics Data System (ADS)
Sinha, D.; De, D.; Ayaz, A.
2018-03-01
Environmental friendly natural dye curcumin extracted from low-cost Curcumina longa stem is used as a photo-sensitizer for the fabrication of ZnO-based dye-sensitized solar cells (DSSC). Nanostructured ZnO is fabricated on a transparent conducting glass (TCO), using a cost-effective chemical bath deposition technique. Scanning electron microscopic images show hexagonal patterned ZnO nano-towers decorated with several nanosteps. The average length of ZnO nano-tower is 5 μm and diameter is 1.2 μm. The UV-Vis spectroscopic study of the curcumin dye is used to understand the light absorption behavior as well as band gap energy of the extracted natural dye. The dye shows wider absorption band-groups over 350-470 nm and 500-600 nm with two peaks positioned at 425 nm and 525 nm. The optical band gap energy and energy band position of the dye is derived which supports its stability and high electron affinity that makes it suitable for light harvesting and effortless electron transfer from dye to the semiconductor or interface between them. FTIR spectrum of curcumin dye-sensitized ZnO-based DSSC shows the presence of anchoring groups and colouring constitutes. The I-V and P-V curves of the fabricated DSSC are measured under simulated light (100 mW/cm2). The highest visible light to electric conversion efficiency of 0.266% (using ITO) and 0.33% (using FTO) is achieved from the curcumin dye-sensitized cell.
Robust activation method for negative electron affinity photocathodes
Mulhollan, Gregory A [Dripping Springs, TX; Bierman, John C [Austin, TX
2011-09-13
A method by which photocathodes(201), single crystal, amorphous, or otherwise ordered, can be surface modified to a robust state of lowered and in best cases negative, electron affinity has been discovered. Conventional methods employ the use of Cs(203) and an oxidizing agent(207), typically carried by diatomic oxygen or by more complex molecules, for example nitrogen trifluoride, to achieve a lowered electron affinity(404). In the improved activation method, a second alkali, other than Cs(205), is introduced onto the surface during the activation process, either by co-deposition, yo-yo, or sporadic or intermittent application. Best effect for GaAs photocathodes has been found through the use of Li(402) as the second alkali, though nearly the same effect can be found by employing Na(406). Suitable photocathodes are those which are grown, cut from boules, implanted, rolled, deposited or otherwise fabricated in a fashion and shape desired for test or manufacture independently supported or atop a support structure or within a framework or otherwise affixed or suspended in the place and position required for use.
Self-Limiting Oxides on WSe2 as Controlled Surface Acceptors and Low-Resistance Hole Contacts.
Yamamoto, Mahito; Nakaharai, Shu; Ueno, Keiji; Tsukagoshi, Kazuhito
2016-04-13
Transition metal oxides show much promise as effective p-type contacts and dopants in electronics based on transition metal dichalcogenides. Here we report that atomically thin films of under-stoichiometric tungsten oxides (WOx with x < 3) grown on tungsten diselenide (WSe2) can be used as both controlled charge transfer dopants and low-barrier contacts for p-type WSe2 transistors. Exposure of atomically thin WSe2 transistors to ozone (O3) at 100 °C results in self-limiting oxidation of the WSe2 surfaces to conducting WOx films. WOx-covered WSe2 is highly hole-doped due to surface electron transfer from the underlying WSe2 to the high electron affinity WOx. The dopant concentration can be reduced by suppressing the electron affinity of WOx by air exposure, but exposure to O3 at room temperature leads to the recovery of the electron affinity. Hence, surface transfer doping with WOx is virtually controllable. Transistors based on WSe2 covered with WOx show only p-type conductions with orders of magnitude better on-current, on/off current ratio, and carrier mobility than without WOx, suggesting that the surface WOx serves as a p-type contact with a low hole Schottky barrier. Our findings point to a simple and effective strategy for creating p-type devices based on two-dimensional transition metal dichalcogenides with controlled dopant concentrations.
Rocklin, Gabriel J.; Mobley, David L.; Dill, Ken A.
2013-01-01
Binding free energy calculations offer a thermodynamically rigorous method to compute protein-ligand binding, and they depend on empirical force fields with hundreds of parameters. We examined the sensitivity of computed binding free energies to the ligand’s electrostatic and van der Waals parameters. Dielectric screening and cancellation of effects between ligand-protein and ligand-solvent interactions reduce the parameter sensitivity of binding affinity by 65%, compared with interaction strengths computed in the gas-phase. However, multiple changes to parameters combine additively on average, which can lead to large changes in overall affinity from many small changes to parameters. Using these results, we estimate that random, uncorrelated errors in force field nonbonded parameters must be smaller than 0.02 e per charge, 0.06 Å per radius, and 0.01 kcal/mol per well depth in order to obtain 68% (one standard deviation) confidence that a computed affinity for a moderately-sized lead compound will fall within 1 kcal/mol of the true affinity, if these are the only sources of error considered. PMID:24015114
Accurate thermochemistry and spectroscopy of the oxygen-protonated sulfur dioxide isomers.
Puzzarini, Cristina
2011-12-28
Despite the promising relevance of protonated sulfur dioxide in astrophysical and atmospheric fields, its thermochemical and spectroscopic characterization is very limited. High-level quantum-chemical calculations have shown that the most stable isomer is the cis oxygen-protonated sulfur dioxide, HOSO(+), while the trans form is about 2 kcal mol(-1) less stable; even less stable (by about 42 kcal mol(-1)) is the S-protonated isomer [V. Lattanzi et al., J. Chem. Phys., 2010, 133, 194305]. The enthalpy of formation for the cis- and trans-HOSO(+) is presented, based on the well tested HEAT protocol [A. Tajti et al., J. Chem. Phys., 2004, 121, 11599]. Systematically extrapolated ab initio energies, accounting for electron correlation through coupled cluster theory, including up to single, double, triple and quadruple excitations, have been corrected for core-electron correlation, anharmonic zero-point vibrational energy, diagonal Born-Oppenheimer and scalar relativistic effects. As a byproduct, proton affinity of sulfur dioxide and atomization energies have also been obtained at the same levels of theory. Vibrational and rotational spectroscopic properties have been investigated by means of composite schemes that allow us to account for truncation of basis set as well as core correlation. Where available, for both thermochemistry and spectroscopy, very good agreement with experimental data has been observed.
2017-01-01
We have performed a systematic ab initio study on alkali and alkaline earth hydroxide neutral (MOH) and anionic (MOH−) species where M = Li, Na, K, Rb, Cs or Be, Mg, Ca, Sr, Ba. The CCSD(T) method with extended basis sets and Dirac-Fock relativistic effective core potentials for the heavier atoms has been used to study their equilibrium geometries, interaction energies, electron affinities, electric dipole moment, and potential energy surfaces. All neutral and anionic species exhibit a linear shape with the exception of BeOH, BeOH−, and MgOH−, for which the equilibrium structure is found to be bent. Our analysis shows that the alkaline earth hydroxide anions are valence-bound whereas the alkali hydroxide anions are dipole bound. In the context of sympathetic cooling of OH− by collision with ultracold alkali and alkaline earth atoms, we investigate the 2D MOH− potential energy surfaces and the associative detachment reaction M + OH→− MOH + e−, which is the only energetically allowed reactive channel in the cold regime. We discuss the implication for the sympathetic cooling of OH− and conclude that Li and K are the best candidates for an ultracold buffer gas. PMID:28527437
Coderch, Claire; Tang, Yong; Klett, Javier; Zhang, Shu-En; Ma, Yun-Tao; Shaorong, Wang; Matesanz, Ruth; Pera, Benet; Canales, Angeles; Jiménez-Barbero, Jesús; Morreale, Antonio; Díaz, J Fernando; Fang, Wei-Shuo; Gago, Federico
2013-05-14
Ten novel taxanes bearing modifications at the C2 and C13 positions of the baccatin core have been synthesized and their binding affinities for mammalian tubulin have been experimentally measured. The design strategy was guided by (i) calculation of interaction energy maps with carbon, nitrogen and oxygen probes within the taxane-binding site of β-tubulin, and (ii) the prospective use of a structure-based QSAR (COMBINE) model derived from an earlier series comprising 47 congeneric taxanes. The tubulin-binding affinity displayed by one of the new compounds (CTX63) proved to be higher than that of docetaxel, and an updated COMBINE model provided a good correlation between the experimental binding free energies and a set of weighted residue-based ligand-receptor interaction energies for 54 out of the 57 compounds studied. The remaining three outliers from the original training series have in common a large unfavourable entropic contribution to the binding free energy that we attribute to taxane preorganization in aqueous solution in a conformation different from that compatible with tubulin binding. Support for this proposal was obtained from solution NMR experiments and molecular dynamics simulations in explicit water. Our results shed additional light on the determinants of tubulin-binding affinity for this important class of antitumour agents and pave the way for further rational structural modifications.
NASA Astrophysics Data System (ADS)
Manaa, M. Riad
2017-06-01
Adiabatic ionization potentials (IPad) and electron affinities (EAad) are determined with the Gaussian-4 (G4) method for the energetic molecules PETN, RDX, β-δ-HMX, CL-17, TNB, TNT, CL-14, DADNE, TNA, and TATB. The IPad and EAad values are in the range of 8.43-11.73 and 0.74-2.86 eV, respectively. Variations are due to substitutional effects of electron withdrawing and donating functional groups. Enthalpies of formation are also determined for several of these molecules to augment the list of recently reported G4 values. The calculated IPad and EAad provide quantitative assessment of such molecular properties as chemical hardness, molecular electronegativity, and "intrinsic" molecular physical hardness.
Opitz, Andreas
2017-04-05
Planar organic heterojunctions are widely used in photovoltaic cells, light-emitting diodes, and bilayer field-effect transistors. The energy level alignment in the devices plays an important role in obtaining the aspired gap arrangement. Additionally, the π-orbital overlap between the involved molecules defines e.g. the charge-separation efficiency in solar cells due to charge-transfer effects. To account for both aspects, direct/inverse photoemission spectroscopy and near edge x-ray absorption fine structure spectroscopy were used to determine the energy level landscape and the molecular orientation at prototypical planar organic heterojunctions. The combined experimental approach results in a comprehensive model for the electronic and morphological characteristics of the interface between the two investigated molecular semiconductors. Following an introduction on heterojunctions used in devices and on energy levels of organic materials, the energy level alignment of planar organic heterojunctions will be discussed. The observed energy landscape is always determined by the individual arrangement between the energy levels of the molecules and the work function of the electrode. This might result in contact doping due to Fermi level pinning at the electrode for donor/acceptor heterojunctions, which also improves the solar cell efficiency. This pinning behaviour can be observed across an unpinned interlayer and results in charge accumulation at the donor/acceptor interface, depending on the transport levels of the respective organic semiconductors. Moreover, molecular orientation will affect the energy levels because of the anisotropy in ionisation energy and electron affinity and is influenced by the structural compatibility of the involved molecules at the heterojunction. High structural compatibility leads to π-orbital stacking between different molecules at a heterojunction, which is of additional interest for photovoltaic active interfaces and for ground-state charge-transfer.
NASA Astrophysics Data System (ADS)
Al-Baghdadi, Shaimaa B.; Hashim, Fanar G.; Salam, Ahmed Q.; Abed, Talib K.; Gaaz, Tayser Sumer; Al-Amiery, Ahmed A.; Kadhum, Abdul Amir H.; Reda, Khalid S.; Ahmed, Wahab K.
2018-03-01
The corrosion inhibition effectiveness of thiosemicarbazide compound, namely 3-nitro-5-(2-amino-1,3,4-thiadiazolyl)nitrobenzene (NATN), on mild steel in 1 M hydrochloric acid media has been investigated by weight loss technique. The results exhibit that the corrosion ratio of mild steel was reduced regarding to adding NATN. The corrosion inhibition rate for the NATN was 92.3% at the highest investigated NATN concentration. From the weight loss results it could be concluded that NATN with sulfur, nitrogen and oxygen atoms has clarified best corrosion inhibition achievement comparing to 3,5-dinitrobenzoic acid. Regarding to theoretical studies, DFT was employee to figured geometrical structure and electronic characteristics on NATN. The investigation have been extensive to the HOMO and LUMO analysis to evaluate the energy gap, Ionization potential, Electron Affinity, Global Hardness, Chemical Potential, Electrophilicity, Electronegativity and Polarizability.
NASA Astrophysics Data System (ADS)
Lang, O.; Klein, A.; Pettenkofer, C.; Jaegermann, W.; Chevy, A.
1996-10-01
Epitaxial growth of the strongly lattice mismatched (6.5%) layered chalcogenides InSe and GaSe on each other is obtained with the concept of van der Waals epitaxy as proven by low-energy electron diffraction and scanning tunnel microscope. InSe/GaSe/InSe and GaSe/InSe/GaSe quantum well structures were prepared by molecular beam epitaxy and their interface properties were characterized by soft x-ray photoelectron spectroscopy. Valence and conduction band offsets are determined to be 0.1 and 0.9 eV, respectively, and do not depend on deposition sequence (commutativity). As determined from the measured work functions the interface dipole is 0.05 eV; the band lineup between the two materials is correctly predicted by the Anderson model (electron affinity rule).
NASA Astrophysics Data System (ADS)
DeBlase, Andrew F.; Weddle, Gary H.; Archer, Kaye A.; Jordan, Kenneth D.; Johnson, Mark
2015-06-01
As an isolated species, the radical anion of pyridine (Py-) exists as an unstable transient negative ion, while in aqueous environments it is known to undergo rapid protonation to form the neutral pyridinium radical [PyH(0)] along with hydroxide. Furthermore, the negative adiabatic electron affinity (AEA) of Py- can become diminished by the solvation energy associated with cluster formation. In this work, we focus on the hydrates [Py\\cdot(H2O)n]- with n = 3-5 and elucidate the structures of these water clusters using a combination of vibrational predissociation and photoelectron spectroscopies. We show that H-trasfer to form PyH(0) occurs in these clusters by the infrared signature of the nascent hydroxide ion and by the sharp bending vibrations of aromatic ring CH bending.
Zhang, Jie; Li, Tiezhu; Wang, Tuoyi; Guan, Tianzhu; Yu, Hansong; Li, Zhuolin; Wang, Yongzhi; Wang, Yongjun; Zhang, Tiehua
2018-02-01
The binding of bisphenol A (BPA) and its halogenated derivatives (halogenated BPAs) to mouse peroxisome proliferator-activated receptor α ligand binding domain (mPPARα-LBD) was examined by a combination of in vitro investigation and in silico simulation. Fluorescence polarization (FP) assay showed that halogenated BPAs could bind to mPPARα-LBD* as the affinity ligands. The calculated electrostatic potential (ESP) illustrated the different charge distributions of halogenated BPAs with altered halogenation patterns. As electron-attracting substituents, halogens decrease the positive electrostatic potential and thereby have a significant influence on the electrostatic interactions of halogenated BPAs with mPPARα-LBD*. The docking results elucidated that hydrophobic and hydrogen-bonding interactions may also contribute to stabilize the binding of the halogenated BPAs to their receptor molecule. Comparison of the calculated binding energies with the experimentally determined affinities yielded a good correlation (R 2 =0.6659) that could provide a rational basis for designing environmentally benign chemicals with reduced toxicities. This work can potentially be used for preliminary screening of halogenated BPAs. Copyright © 2017 Elsevier B.V. All rights reserved.
Al7CX (X=Li-Cs) clusters: Stability and the prospect for cluster materials
NASA Astrophysics Data System (ADS)
Ashman, C.; Khanna, S. N.; Pederson, M. R.; Kortus, J.
2000-12-01
Al7C clusters, recently found to have a high-electron affinity and exceptional stability, are shown to form ionic molecules when combined with alkali-metal atoms. Our studies, based on an ab initio gradient-corrected density-functional scheme, show that Al7CX (X=Li-Cs) clusters have a very low-electron affinity and a high-ionization potential. When combined, the two- and four-atom composite clusters of Al7CLi units leave the Al7C clusters almost intact. Preliminary studies indicate that Al7CLi may be suitable to form cluster-based materials.
A high-resolution photoelectron imaging and theoretical study of CP- and C2P-
NASA Astrophysics Data System (ADS)
Czekner, Joseph; Cheung, Ling Fung; Johnson, Eric L.; Fortenberry, Ryan C.; Wang, Lai-Sheng
2018-01-01
The discovery of interstellar anions has been a milestone in astrochemistry. In the search for new interstellar anions, CP- and C2P- are viable candidates since their corresponding neutrals have already been detected astronomically. However, scarce data exist for these negatively charged species. Here we report the electron affinities of CP and C2P along with the vibrational frequencies of their anions using high-resolution photoelectron imaging. These results along with previous spectroscopic data of the neutral species are used further to benchmark very accurate quartic force field quantum chemical methods that are applied to CP, CP-, C2P, and two electronic states of C2P-. The predicted electron affinities, vibrational frequencies, and rotational constants are in excellent agreement with the experimental data. The electron affinities of CP (2.8508 ± 0.0007 eV) and C2P (2.6328 ± 0.0006 eV) are measured accurately and found to be quite high, suggesting that the CP- and C2P- anions are thermodynamically stable and possibly observable. The current study suggests that the combination of high-resolution photoelectron imaging and quantum chemistry can be used to determine accurate molecular constants for exotic radical species of astronomical interest.
A high-resolution photoelectron imaging and theoretical study of CP- and C2P.
Czekner, Joseph; Cheung, Ling Fung; Johnson, Eric L; Fortenberry, Ryan C; Wang, Lai-Sheng
2018-01-28
The discovery of interstellar anions has been a milestone in astrochemistry. In the search for new interstellar anions, CP - and C 2 P - are viable candidates since their corresponding neutrals have already been detected astronomically. However, scarce data exist for these negatively charged species. Here we report the electron affinities of CP and C 2 P along with the vibrational frequencies of their anions using high-resolution photoelectron imaging. These results along with previous spectroscopic data of the neutral species are used further to benchmark very accurate quartic force field quantum chemical methods that are applied to CP, CP - , C 2 P, and two electronic states of C 2 P - . The predicted electron affinities, vibrational frequencies, and rotational constants are in excellent agreement with the experimental data. The electron affinities of CP (2.8508 ± 0.0007 eV) and C 2 P (2.6328 ± 0.0006 eV) are measured accurately and found to be quite high, suggesting that the CP - and C 2 P - anions are thermodynamically stable and possibly observable. The current study suggests that the combination of high-resolution photoelectron imaging and quantum chemistry can be used to determine accurate molecular constants for exotic radical species of astronomical interest.
Optimized Structures and Proton Affinities of Fluorinated Dimethyl Ethers: An Ab Initio Study
NASA Technical Reports Server (NTRS)
Orgel, Victoria B.; Ball, David W.; Zehe, Michael J.
1996-01-01
Ab initio methods have been used to investigate the proton affinity and the geometry changes upon protonation for the molecules (CH3)2O, (CH2F)2O, (CHF2)2O, and (CF3)2O. Geometry optimizations were performed at the MP2/3-2 I G level, and the resulting geometries were used for single-point energy MP2/6-31G calculations. The proton affinity calculated for (CH3)2O was 7 Kjoule/mole from the experimental value, within the desired variance of +/- 8Kjoule/mole for G2 theory, suggesting that the methodology used in this study is adequate for energy difference considerations. For (CF3)20, the calculated proton affinity of 602 Kjoule/mole suggests that perfluorinated ether molecules do not act as Lewis bases under normal circumstances; e.g. degradation of commercial lubricants in tribological applications.
Roy, Soumendra K; Jian, Tian; Lopez, Gary V; Li, Wei-Li; Su, Jing; Bross, David H; Peterson, Kirk A; Wang, Lai-Sheng; Li, Jun
2016-02-28
The observation of the gaseous UFO(-) anion is reported, which is investigated using photoelectron spectroscopy and relativisitic ab initio calculations. Two strong photoelectron bands are observed at low binding energies due to electron detachment from the U-7sσ orbital. Numerous weak detachment bands are also observed due to the strongly correlated U-5f electrons. The electron affinity of UFO is measured to be 1.27(3) eV. High-level relativistic quantum chemical calculations have been carried out on the ground state and many low-lying excited states of UFO to help interpret the photoelectron spectra and understand the electronic structure of UFO. The ground state of UFO(-) is linear with an O-U-F structure and a (3)H4 spectral term derived from a U 7sσ(2)5fφ(1)5fδ(1) electron configuration, whereas the ground state of neutral UFO has a (4)H(7/2) spectral term with a U 7sσ(1)5fφ(1)5fδ(1) electron configuration. Strong electron correlation effects are found in both the anionic and neutral electronic configurations. In the UFO neutral, a high density of electronic states with strong configuration mixing is observed in most of the scalar relativistic and spin-orbit coupled states. The strong electron correlation, state mixing, and spin-orbit coupling of the electronic states make the excited states of UFO very challenging for accurate quantum chemical calculations.
NASA Astrophysics Data System (ADS)
Roy, Soumendra K.; Jian, Tian; Lopez, Gary V.; Li, Wei-Li; Su, Jing; Bross, David H.; Peterson, Kirk A.; Wang, Lai-Sheng; Li, Jun
2016-02-01
The observation of the gaseous UFO- anion is reported, which is investigated using photoelectron spectroscopy and relativisitic ab initio calculations. Two strong photoelectron bands are observed at low binding energies due to electron detachment from the U-7sσ orbital. Numerous weak detachment bands are also observed due to the strongly correlated U-5f electrons. The electron affinity of UFO is measured to be 1.27(3) eV. High-level relativistic quantum chemical calculations have been carried out on the ground state and many low-lying excited states of UFO to help interpret the photoelectron spectra and understand the electronic structure of UFO. The ground state of UFO- is linear with an O-U-F structure and a 3H4 spectral term derived from a U 7sσ25fφ15fδ1 electron configuration, whereas the ground state of neutral UFO has a 4H7/2 spectral term with a U 7sσ15fφ15fδ1 electron configuration. Strong electron correlation effects are found in both the anionic and neutral electronic configurations. In the UFO neutral, a high density of electronic states with strong configuration mixing is observed in most of the scalar relativistic and spin-orbit coupled states. The strong electron correlation, state mixing, and spin-orbit coupling of the electronic states make the excited states of UFO very challenging for accurate quantum chemical calculations.
Harland, Aubrie A; Bender, Aaron M; Griggs, Nicholas W; Gao, Chao; Anand, Jessica P; Pogozheva, Irina D; Traynor, John R; Jutkiewicz, Emily M; Mosberg, Henry I
2016-05-26
N-Acetylation of the tetrahydroquinoline (THQ) core of a series of μ-opioid receptor (MOR) agonist/δ-opioid receptor (DOR) antagonist ligands increases DOR affinity, resulting in ligands with balanced MOR and DOR affinities. We report a series of N-substituted THQ analogues that incorporate various carbonyl-containing moieties to maintain DOR affinity and define the steric and electronic requirements of the binding pocket across the opioid receptors. 4h produced in vivo antinociception (ip) for 1 h at 10 mg/kg.
Electronic Properties of Cyclacenes from TAO-DFT
Wu, Chun-Shian; Lee, Pei-Yin; Chai, Jeng-Da
2016-01-01
Owing to the presence of strong static correlation effects, accurate prediction of the electronic properties (e.g., the singlet-triplet energy gaps, vertical ionization potentials, vertical electron affinities, fundamental gaps, symmetrized von Neumann entropy, active orbital occupation numbers, and real-space representation of active orbitals) of cyclacenes with n fused benzene rings (n = 4–100) has posed a great challenge to traditional electronic structure methods. To meet the challenge, we study these properties using our newly developed thermally-assisted-occupation density functional theory (TAO-DFT), a very efficient method for the study of large systems with strong static correlation effects. Besides, to examine the role of cyclic topology, the electronic properties of cyclacenes are also compared with those of acenes. Similar to acenes, the ground states of cyclacenes are singlets for all the cases studied. In contrast to acenes, the electronic properties of cyclacenes, however, exhibit oscillatory behavior (for n ≤ 30) in the approach to the corresponding properties of acenes with increasing number of benzene rings. On the basis of the calculated orbitals and their occupation numbers, the larger cyclacenes are shown to exhibit increasing polyradical character in their ground states, with the active orbitals being mainly localized at the peripheral carbon atoms. PMID:27853249
NASA Astrophysics Data System (ADS)
Asath, R. Mohamed; Premkumar, S.; Jawahar, A.; Mathavan, T.; Dhas, M. Kumara; Benial, A. Milton Franklin
2015-06-01
The conformational analysis was carried out for 2-Hydroxy- 3, 5-dinitropyridine molecule using potential energy surface scan and the most stable optimized conformer was predicted. The vibrational frequencies and Mulliken atomic charge distribution were calculated for the optimized geometry of the molecule using DFT/B3LYP cc-pVQZ basis set by Gaussian 09 Program. The vibrational frequencies were assigned on the basis of potential energy distribution calculation using VEDA 4.0 program. In the Frontier molecular orbitals analysis, the molecular reactivity, kinetic stability, intramolecular charge transfer studies and the calculation of ionization energy, electron affinity, global hardness, chemical potential, electrophilicity index and softness values of the title molecule were carried out. The nonlinear optical activity of the molecule was studied by means of first order hyperpolarizability, which was computed as 7.64 times greater than urea. The natural bond orbital analysis was performed to confirm the nonlinear optical activity of the molecule.
NASA Astrophysics Data System (ADS)
Horiuti, Kiyosi; Suzuki, Aoi
2016-11-01
It is generally assumed that the polymers in viscoelastic turbulence are advected affinely with the macroscopically-imposed deformation, while de Gennes (1986) hypothesized that stretched polymers may exhibit rigidity. We conduct assessment on this hypothesis in homogeneous isotropic turbulence by connecting mesoscopic Brownian description of elastic dumbbells to macroscopic DNS. The dumbbells are advected either affinely (contravariant) or non-affinely (covariant). We consider the elasto-inertial regime (Valente et al. 2014). Using the approximate solution of the constitutive equation for the polymer stress, we show that when the dumbbells are highly stretched, -SikSklSli term (Sij is strain-rate tensor) governs the transfer of solvent energy either to dissipation or to the elastic energy stored in the polymers. In the contravariant polymer, the elastic energy production term Pe < 0 and the dissipation production term Pɛ > 0 . The elastic energy is transferred backwardly into the solvent and dissipation is enhanced. In the covariant polymer, Pe > 0 and Pɛ > 0 . When the dumbbells are aligned with one of eigenvectors of Sij, Pe predominates Pɛ, and marked reduction of drag is achieved.
Anion photoelectron spectroscopy of deprotonated ortho-, meta-, and para-methylphenol
NASA Astrophysics Data System (ADS)
Nelson, Daniel J.; Gichuhi, Wilson K.; Miller, Elisa M.; Lehman, Julia H.; Lineberger, W. Carl
2017-02-01
The anion photoelectron spectra of ortho-, meta-, and para-methylphenoxide, as well as methyl deprotonated meta-methylphenol, were measured. Using the Slow Electron Velocity Map Imaging technique, the Electron Affinities (EAs) of the o-, m-, and p-methylphenoxyl radicals were measured as follows: 2.1991±0.0014, 2.2177±0.0014, and 2.1199±0.0014 eV, respectively. The EA of m-methylenephenol was also obtained, 1.024±0.008 eV. In all four cases, the dominant vibrational progressions observed are due to several ring distortion vibrational normal modes that were activated upon photodetachment, leading to vibrational progressions spaced by ˜500 cm-1. Using the methylphenol O-H bond dissociation energies reported by King et al. and revised by Karsili et al., a thermodynamic cycle was constructed and the acidities of the methylphenol isomers were determined as follows: Δa c i dH298K 0=348.39 ±0.25 , 348.82±0.25, 350.08±0.25, and 349.60±0.25 kcal/mol for cis-ortho-, trans-ortho-, m-, and p-methylphenol, respectively. The excitation energies for the ground doublet state to the lowest excited doublet state electronic transition in o-, m-, and p-methylphenoxyl were also measured as follows: 1.029±0.009, 0.962±0.002, and 1.029±0.009 eV, respectively. In the photoelectron spectra of the neutral excited states, C-O stretching modes were excited in addition to ring distortion modes. Electron autodetachment was observed in the cases of both m- and p-methylphenoxide, with the para isomer showing a lower photon energy onset for this phenomenon.
Beating the thermodynamic limit with photo-activation of n-doping in organic semiconductors
NASA Astrophysics Data System (ADS)
Lin, Xin; Wegner, Berthold; Lee, Kyung Min; Fusella, Michael A.; Zhang, Fengyu; Moudgil, Karttikay; Rand, Barry P.; Barlow, Stephen; Marder, Seth R.; Koch, Norbert; Kahn, Antoine
2017-12-01
Chemical doping of organic semiconductors using molecular dopants plays a key role in the fabrication of efficient organic electronic devices. Although a variety of stable molecular p-dopants have been developed and successfully deployed in devices in the past decade, air-stable molecular n-dopants suitable for materials with low electron affinity are still elusive. Here we demonstrate that photo-activation of a cleavable air-stable dimeric dopant can result in kinetically stable and efficient n-doping of host semiconductors, whose reduction potentials are beyond the thermodynamic reach of the dimer’s effective reducing strength. Electron-transport layers doped in this manner are used to fabricate high-efficiency organic light-emitting diodes. Our strategy thus enables a new paradigm for using air-stable molecular dopants to improve conductivity in, and provide ohmic contacts to, organic semiconductors with very low electron affinity.
DeVine, Jessalyn A; Weichman, Marissa L; Zhou, Xueyao; Ma, Jianyi; Jiang, Bin; Guo, Hua; Neumark, Daniel M
2016-12-21
High-resolution slow photoelectron velocity-map imaging spectra of cryogenically cooled X̃ 2 B 2 H 2 CC - and D 2 CC - in the region of the vinylidene triplet excited states are reported. Three electronic bands are observed and, with the assistance of electronic structure calculations and quantum dynamics on ab initio-based near-equilibrium potential energy surfaces, are assigned as detachment to the [Formula: see text] 3 B 2 (T 1 ), b̃ 3 A 2 (T 2 ), and à 1 A 2 (S 1 ) excited states of neutral vinylidene. This work provides the first experimental observation of the à singlet excited state of H 2 CC. While regular vibrational structure is observed for the ã and à electronic bands, a number of irregular features are resolved in the vicinity of the b̃ band vibrational origin. High-level ab initio calculations suggest that this anomalous structure arises from a conical intersection between the ã and b̃ triplet states near the b̃ state minimum, which strongly perturbs the vibrational levels in the two electronic states through nonadiabatic coupling. Using the adiabatic electron affinity of H 2 CC previously measured to be 0.490(6) eV by Ervin and co-workers [J. Chem. Phys. 1989, 91, 5974], term energies for the excited neutral states of H 2 CC are found to be T 0 (ã 3 B 2 ) = 2.064(6), T 0 (b̃ 3 A 2 ) = 2.738(6), and T 0 (à 1 A 2 ) = 2.991(6) eV.
NASA Astrophysics Data System (ADS)
Li, Zhipeng; Yu, Guangtao; Zhang, Xueying; Huang, Xuri; Chen, Wei
2017-10-01
Inspired by the fascinating finding of all-boron fullerene B40 (Nat Chem, 2014, 6, 727), we propose a new and effective strategy to construct a series of typical Donor-Acceptor (D-A) frameworks via linking the superalkali M3O (M = Li and K) unit with the low ionization potential to the B40 nanocage with large electron affinity. By means of the density functional theory computations, we have systematically investigated the structures, electronic properties, the first and second hyperpolarizabilities of these modified B40 nanocage systems. Owing to the formation of a B-O chemical bond, these composite systems (M3O)n-B40 (M = Li and K, n = 1 and 2) can possess the considerably large binding energy ranging from 57.0 to 99.8 kcal/mol, indicating their high structure stabilities. Compared with the pristine B40 nanocage, linking the superalkali M3O can effectively narrow the wide energy gap from the original 2.86 eV to 0.61-1.11 eV, and significantly increase the first and second hyperpolarizabilities to as large as 5.00 × 104-2.46 × 105 au and 1.48 × 107-4.85 × 108 au, respectively, owing to the occurrence of evident electron transfer process in this kind of typical D-A framework. These fascinating findings will be advantageous for promoting the potential applications of the inorganic boron-based nanosystems in the new type of electronic nanodevices and high-performance nonlinear optical materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
C. K. Sinclair; P. A. Adderley; B. M. Dunham
Substantially more than half of the electromagnetic nuclear physics experiments conducted at the Continuous Electron Beam Accelerator Facility of the Thomas Jefferson National Accelerator Facility (Jefferson Laboratory) require highly polarized electron beams, often at high average current. Spin-polarized electrons are produced by photoemission from various GaAs-based semiconductor photocathodes, using circularly polarized laser light with photon energy slightly larger than the semiconductor band gap. The photocathodes are prepared by activation of the clean semiconductor surface to negative electron affinity using cesium and oxidation. Historically, in many laboratories worldwide, these photocathodes have had short operational lifetimes at high average current, and havemore » often deteriorated fairly quickly in ultrahigh vacuum even without electron beam delivery. At Jefferson Lab, we have developed a polarized electron source in which the photocathodes degrade exceptionally slowly without electron emission, and in which ion back bombardment is the predominant mechanism limiting the operational lifetime of the cathodes during electron emission. We have reproducibly obtained cathode 1/e dark lifetimes over two years, and 1/e charge density and charge lifetimes during electron beam delivery of over 2?105???C/cm2 and 200 C, respectively. This source is able to support uninterrupted high average current polarized beam delivery to three experimental halls simultaneously for many months at a time. Many of the techniques we report here are directly applicable to the development of GaAs photoemission electron guns to deliver high average current, high brightness unpolarized beams.« less
Viricel, Clément; de Givry, Simon; Schiex, Thomas; Barbe, Sophie
2018-02-20
Accurate and economic methods to predict change in protein binding free energy upon mutation are imperative to accelerate the design of proteins for a wide range of applications. Free energy is defined by enthalpic and entropic contributions. Following the recent progresses of Artificial Intelligence-based algorithms for guaranteed NP-hard energy optimization and partition function computation, it becomes possible to quickly compute minimum energy conformations and to reliably estimate the entropic contribution of side-chains in the change of free energy of large protein interfaces. Using guaranteed Cost Function Network algorithms, Rosetta energy functions and Dunbrack's rotamer library, we developed and assessed EasyE and JayZ, two methods for binding affinity estimation that ignore or include conformational entropic contributions on a large benchmark of binding affinity experimental measures. If both approaches outperform most established tools, we observe that side-chain conformational entropy brings little or no improvement on most systems but becomes crucial in some rare cases. as open-source Python/C ++ code at sourcesup.renater.fr/projects/easy-jayz. thomas.schiex@inra.fr and sophie.barbe@insa-toulouse.fr. Supplementary data are available at Bioinformatics online.
Ni doping effect on the electronic and sensing properties of 2D SnO2
NASA Astrophysics Data System (ADS)
Patel, Anjali; Roondhe, Basant; Jha, Prafulla K.
2018-05-01
In the present work using state of art first principles calculations under the frame work of density functional theory the effect of Nickel (Ni) doping on electronic as well as sensing properties of most stable two dimensional (2D) T-SnO2 phase towards ethanol (C2H5OH) has been observed. It has been found that Ni atom when dope on T-SnO2 causes prominent decrement in the band gap from 2.26 eV to 1.48 eV and improves the sensing phenomena of pristine T-SnO2 towards C2H5OH by increasing the binding energy from -0.18eV to -0.93eV. The comparative analysis of binding energy shows that Ni improves the binding of C2H5OH by 5.16 times the values for pristine T-SnO2. The doping of Ni into 2D T-SnO2 reduces the band gap through lowering of the conduction band minimum, thereby increasing the electron affinity which increases the sensing performance of T-SnO2. The variation in the electronic properties after and before the exposure of ethanol reinforced to use Ni:SnO2 nano structure for sensing applications. The results indicate that the Ni doped T-SnO2 can be utilized in improved optoelectronic as well as sensor devices in the future.
Luitz, Manuel P; Zacharias, Martin
2013-03-01
The endonuclease activity of the bacterial colicin 9 enzyme is controlled by the specific and high-affinity binding of immunity protein 9 (Im9). Molecular dynamics simulation studies in explicit solvent were used to investigate the free energy change associated with the mutation of two hot-spot interface residues [tyrosine (Tyr): Tyr54 and Tyr55] of Im9 to Ala. In addition, the effect of several other mutations (Leu33Ala, Leu52Ala, Val34Ala, Val37Ala, Ser48Ala, and Ile53Ala) with smaller influence on binding affinity was also studied. Good qualitative agreement of calculated free energy changes and experimental data on binding affinity of the mutations was observed. The simulation studies can help to elucidate the molecular details on how the mutations influence protein-protein binding affinity. The role of solvent and conformational flexibility of the partner proteins was studied by comparing the results in the presence or absence of solvent and with or without positional restraints. Restriction of the conformational mobility of protein partners resulted in significant changes of the calculated free energies but of similar magnitude for isolated Im9 and for the complex and therefore in only modest changes of binding free energy differences. Although the overall binding free energy change was similar for the two Tyr-Ala mutations, the physical origin appeared to be different with solvation changes contributing significantly to the Tyr55Ala mutation and to a loss of direct protein-protein interactions dominating the free energy change due to the Tyr54Ala mutation. Copyright © 2012 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Guo, Lei; Safi, Zaki S.; Kaya, Savas; Shi, Wei; Tüzün, Burak; Altunay, Nail; Kaya, Cemal
2018-05-01
It is known that iron is one of the most widely used metals in industrial production. In this work, the inhibition performances of three thiophene derivatives on the corrosion of iron were investigated in the light of several theoretical approaches. In the section including DFT calculations, several global reactivity descriptors such as EHOMO, ELUMO, ionization energy (I), electron affinity (A), HOMO-LUMO energy gap (ΔE), chemical hardness (η), softness (σ), as well as local reactivity descriptors like Fukui indices, local softness, and local electrophilicity were considered and discussed. The adsorption behaviors of considered thiophene derivatives on Fe(110) surface were investigated using molecular dynamics simulation approach. To determine the most active corrosion inhibitor among studied thiophene derivatives, we used the principle component analysis (PCA) and agglomerative hierarchical cluster analysis (AHCA). Accordingly, all data obtained using various theoretical calculation techniques are consistent with experiments.
Panda, Dulal; Kunwar, Ambarish
2016-01-01
Tubulin isotypes are found to play an important role in regulating microtubule dynamics. The isotype composition is also thought to contribute in the development of drug resistance as tubulin isotypes show differential binding affinities for various anti-cancer agents. Tubulin isotypes αβII, αβIII and αβIV show differential binding affinity for colchicine. However, the origin of differential binding affinity is not well understood at the molecular level. Here, we investigate the origin of differential binding affinity of a colchicine analogue N-deacetyl-N-(2-mercaptoacetyl)-colchicine (DAMA-colchicine) for human αβII, αβIII and αβIV isotypes, employing sequence analysis, homology modeling, molecular docking, molecular dynamics simulation and MM-GBSA binding free energy calculations. The sequence analysis study shows that the residue compositions are different in the colchicine binding pocket of αβII and αβIII, whereas no such difference is present in αβIV tubulin isotypes. Further, the molecular docking and molecular dynamics simulations results show that residue differences present at the colchicine binding pocket weaken the bonding interactions and the correct binding of DAMA-colchicine at the interface of αβII and αβIII tubulin isotypes. Post molecular dynamics simulation analysis suggests that these residue variations affect the structure and dynamics of αβII and αβIII tubulin isotypes, which in turn affect the binding of DAMA-colchicine. Further, the binding free-energy calculation shows that αβIV tubulin isotype has the highest binding free-energy and αβIII has the lowest binding free-energy for DAMA-colchicine. The order of binding free-energy for DAMA-colchicine is αβIV ≃ αβII >> αβIII. Thus, our computational approaches provide an insight into the effect of residue variations on differential binding of αβII, αβIII and αβIV tubulin isotypes with DAMA-colchicine and may help to design new analogues with higher binding affinities for tubulin isotypes. PMID:27227832
Generalized reciprocity theorem for semiconductor devices
NASA Technical Reports Server (NTRS)
Misiakos, K.; Lindholm, F. A.
1985-01-01
A reciprocity theorem is presented that relates the short-circuit current of a device, induced by a carrier generation source, to the minority-carrier Fermi level in the dark. The basic relation is general under low injection. It holds for three-dimensional devices with position dependent parameters (energy gap, electron affinity, mobility, etc.), and for transient or steady-state conditions. This theorem allows calculation of the internal quantum efficiency of a solar cell by using the analysis of the device in the dark. Other applications could involve measurements of various device parameters, interfacial surface recombination velocity at a polcrystalline silicon emitter contact, for rexample, by using steady-state or transient photon or mass-particle radiation.
The quantum chemical study of the electronic states of S2Cl and its monovalent ions.
Czernek, Jiří; Zivný, Oldřich
2012-09-01
High-level quantum chemical techniques have been utilized to accurately describe the geometrical parameters, vibrational frequencies and dissociation pathways of the X (2)A″, 1 (2)A', 2 (2)A', 2 (2)A″ states of S(2)Cl; X (1)A', 1 (3)A″, 1 (1)A″, 1 (3)A' states of S(2)Cl(+); X (1)A', 1 (3)A', (1)A″ states of S(2)Cl(-), and the corresponding excitation energies have been obtained from the energies extrapolated to their complete basis set limits. It has been established that the 2 (2)A' and 2 (2)A″ terms of S(2)Cl exhibit a strong multi-reference character, while all the remaining excited states are dominated by the single replacements from the reference determinants. The enthalpies of the decomposition reactions have been obtained to aid in the investigations into the photolysis of S(2)Cl(2) and related systems. The value of the ionization potential of S(2)Cl has been found within the error bars of the experiment, and a reliable estimate of its electron affinity, EA (0) = -2.352 eV, has been proposed.
Influence of surface vacancy defects on the carburisation of Fe 110 surface by carbon monoxide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chakrabarty, Aurab, E-mail: aurab.chakrabarty@qatar.tamu.edu; Bouhali, Othmane; Mousseau, Normand
Adsorption and dissociation of gaseous carbon monoxide (CO) on metal surfaces is one of the most frequently occurring processes of carburisation, known as primary initiator of metal dusting corrosion. Among the various factors that can significantly influence the carburisation process are the intrinsic surface defects such as single surface vacancies occurring at high concentrations due to their low formation energy. Intuitively, adsorption and dissociation barriers of CO are expected to be lowered in the vicinity of a surface vacancy, due to the strong attractive interaction between the vacancy and the C atom. Here the adsorption energies and dissociation pathways ofmore » CO on clean and defective Fe 110 surface are explored by means of density functional theory. Interestingly, we find that the O adatom, resulting from the CO dissociation, is unstable in the electron-deficit neighbourhood of the vacancy due to its large electron affinity, and raises the barrier of the carburisation pathway. Still, a full comparative study between the clean surface and the vacancy-defected surface reveals that the complete process of carburisation, starting from adsorption to subsurface diffusion of C, is more favourable in the vicinity of a vacancy defect.« less
NASA Astrophysics Data System (ADS)
Pal, Purnendu; Bhattacharya, Sumanta; Mukherjee, Asok K.; Mukherjee, Dulal C.
2005-03-01
The electron donor-acceptor (EDA) interactions between menadione (i.e., 2-methyl-1,4-naphthoquinone, which is also called 'Vitamin K 3') and a series of phenols (viz., phenol, resorcinol and p-quinol) have been studied in CCl 4 medium. In all the cases, charge transfer (CT) bands have been located. The CT transition energies ( hνCT) of the complexes are found to change systematically with change in the number and position of the -OH groups in the aromatic ring of the phenol moiety. From the trends in the hνCT values, the Hückel parameters ( hÖ and kC-Ö) for the -OH group have been obtained. The CT transition energies are well correlated with the ionisation potentials of the phenols. From an analysis of this variation the electron affinity of Vitamin K 3 has been found to be 2.28 eV. The stoichiometry of the complexes in each case has been found to be 1(menadione):2 (phenol). Formation constants of the complexes have been determined at four different temperatures from which the enthalpies and entropies of formation of the complexes have been estimated.
Pal, Purnendu; Bhattacharya, Sumanta; Mukherjee, Asok K; Mukherjee, Dulal C
2005-03-01
The electron donor-acceptor (EDA) interactions between menadione (i.e., 2-methyl-1,4-naphthoquinone, which is also called 'Vitamin K3') and a series of phenols (viz., phenol, resorcinol and p-quinol) have been studied in CCl4 medium. In all the cases, charge transfer (CT) bands have been located. The CT transition energies (h nu(CT)) of the complexes are found to change systematically with change in the number and position of the -OH groups in the aromatic ring of the phenol moiety. From the trends in the h nu(CT) values, the Hückel parameters (h(O) and k(C-O)) for the -OH group have been obtained. The CT transition energies are well correlated with the ionisation potentials of the phenols. From an analysis of this variation the electron affinity of Vitamin K3 has been found to be 2.28 eV. The stoichiometry of the complexes in each case has been found to be 1(menadione):2 (phenol). Formation constants of the complexes have been determined at four different temperatures from which the enthalpies and entropies of formation of the complexes have been estimated.
Tang, Yat T; Marshall, Garland R
2011-02-28
Binding affinity prediction is one of the most critical components to computer-aided structure-based drug design. Despite advances in first-principle methods for predicting binding affinity, empirical scoring functions that are fast and only relatively accurate are still widely used in structure-based drug design. With the increasing availability of X-ray crystallographic structures in the Protein Data Bank and continuing application of biophysical methods such as isothermal titration calorimetry to measure thermodynamic parameters contributing to binding free energy, sufficient experimental data exists that scoring functions can now be derived by separating enthalpic (ΔH) and entropic (TΔS) contributions to binding free energy (ΔG). PHOENIX, a scoring function to predict binding affinities of protein-ligand complexes, utilizes the increasing availability of experimental data to improve binding affinity predictions by the following: model training and testing using high-resolution crystallographic data to minimize structural noise, independent models of enthalpic and entropic contributions fitted to thermodynamic parameters assumed to be thermodynamically biased to calculate binding free energy, use of shape and volume descriptors to better capture entropic contributions. A set of 42 descriptors and 112 protein-ligand complexes were used to derive functions using partial least-squares for change of enthalpy (ΔH) and change of entropy (TΔS) to calculate change of binding free energy (ΔG), resulting in a predictive r2 (r(pred)2) of 0.55 and a standard error (SE) of 1.34 kcal/mol. External validation using the 2009 version of the PDBbind "refined set" (n = 1612) resulted in a Pearson correlation coefficient (R(p)) of 0.575 and a mean error (ME) of 1.41 pK(d). Enthalpy and entropy predictions were of limited accuracy individually. However, their difference resulted in a relatively accurate binding free energy. While the development of an accurate and applicable scoring function was an objective of this study, the main focus was evaluation of the use of high-resolution X-ray crystal structures with high-quality thermodynamic parameters from isothermal titration calorimetry for scoring function development. With the increasing application of structure-based methods in molecular design, this study suggests that using high-resolution crystal structures, separating enthalpy and entropy contributions to binding free energy, and including descriptors to better capture entropic contributions may prove to be effective strategies toward rapid and accurate calculation of binding affinity.
NASA Astrophysics Data System (ADS)
Yadav, P. S.; Pandey, D. K.; Agrawal, S.; Agrawal, B. K.
2010-03-01
An ab initio study of the stability, structural, electronic. and optical properties has been performed for 46 zinc sulfide nanoclusters Zn x S y ( x + y = n = 2 to 5). Five out of them are seen to be unstable as their vibrational frequencies are found to be imaginary. A B3LYP-DFT/6-311G(3df) method is employed to optimize the geometries and a TDDFT method is used for the study of the optical properties. The binding energies (BE), HOMO-LUMO gaps and the bond lengths have been obtained for all the clusters. For the ZnS2, ZnS3, and ZnS4 nanoclusters, our stable structures are seen to be different from those obtained earlier by using the effective core potentials. We have also considered the zero point energy (ZPE) corrections ignored by the earlier workers. For a fixed value of n, we designate the most stable structure the one, which has maximum final binding energy per atom. The adiabatic and vertical ionization potentials (IP) and electron affinities (EA), charges on the atoms, dipole moments, optical properties, vibrational frequencies, infrared intensities, relative infrared intensities, and Raman scattering activities have been investigated for the most stable structures. The nanoclusters containing large number of S atoms for each n is found to be most stable. The HOMO-LUMO gap decreases from n = 2-3 and then increases above n = 3. The IP and EA both fluctuate with the cluster size n. The optical absorption is quite weak in visible region but strong in the ultraviolet region in most of the nanoclusters except a few. The optical absorption spectrum or electron energy loss spectrum (EELS) is unique for every nanocluster and may be used to characterize a specific nanocluster. The growth of most stable nanoclusters may be possible in the experiments.
NASA Astrophysics Data System (ADS)
Hutchison, Geoffrey Rogers
Theoretical studies on a variety of oligo- and polyheterocycles elucidate their optical and charge transport properties, suggesting new, improved transparent conductive polymers. First-principles calculations provide accurate methodologies for predicting both optical band gaps of neutral and cationic oligomers and intrinsic charge transfer rates. Multidimensional analysis reveals important motifs in chemical tailorability of oligoheterocycle optical and charge transport properties. The results suggest new directions for design of novel materials. Using both finite oligomer and infinite polymer calculations, the optical band gaps in polyheterocycles follow a modified particle-in-a-box formalism, scaling approximately as 1/N (where N is the number of monomer units) in short chains, saturating for long chains. Calculations demonstrate that band structure changes upon heteroatom substitution, (e.g., from polythiophene to polypyrrole) derive from heteroatom electron affinity. Further investigation of chemical variability in substituted oligoheterocycles using multidimensional statistics reveals the interplay between heteroatom and substituent in correlations between structure and redox/optical properties of neutral and cationic species. A linear correlation between band gaps of neutral and cationic species upon oxidation of conjugated oligomers, shows redshifts of optical absorption for most species and blueshifts for small band gap species. Interstrand charge-transport studies focus on two contributors to hopping-style charge transfer rates: internal reorganization energy and the electronic coupling matrix element. Statistical analysis of chemical variability of reorganization energies in oligoheterocycles proves the importance of reorganization energy in determining intrinsic charge transfer rates (e.g., charge mobility in unsubstituted oligothiophenes). Computed bandwidths across several oligothiophene crystal packing motifs show similar electron and hole bandwidths, and show that well-known tilted and herringbone motifs in oligothiophenes are driven by electrostatic repulsion. Tilted stacks exhibit intrinsic charge-transfer rates smaller than cofacial stacks, but with lower packing energy. Given similar electron and hole bandwidths, a charge injection model explains substitution-modulated majority carrier changes in n- and p-type oligothiophene field-effect transistors.
Ambade, Swapnil B; Ambade, Rohan B; Bagde, Sushil S; Lee, Soo-Hyoung
2016-12-28
The issue of work-function and surface energy is fundamental to "decode" the critical inorganic/organic interface in hybrid organic photovoltaics, which influences important photovoltaic events like exciton dissociation, charge transfer, photocurrent (J sc ), open-circuit voltage (V oc ), etc. We demonstrate that by incorporating an interlayer of cyanoacrylic acid small molecular layer (SML) on solution-processed, spin-coated, planar ZnO nanorods (P-ZnO NRs), higher photovoltaic (PV) performances were achieved in both inverted organic photovoltaic (iOPV) and hybrid organic photovoltaic (HOPV) devices, where ZnO acts as an "electron-transporting layer" and as an "electron acceptor", respectively. For the tuned range of surface energy from 52.5 to 33 mN/m, the power conversion efficiency (PCE) in bulk heterojunction (BHJ) iOPVs based on poly(3-hexylthiophene) (P3HT) and phenyl-C 60 -butyric acid methyl ester (PC 60 BM) increases from 3.16% to 3.68%, and that based on poly[4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b;4,5b']dithiophene-2,6-diyl-alt-(4-(2-ethylhexyl)-3-fluorothieno[3,4-b]thiophene)-2-carboxylate-2-6-diyl)] (PTB7:Th):[6,6]-phenyl C 71 butyric acid methyl ester (PC 71 BM) photoactive BHJ increases from 6.55% to 8.0%, respectively. The improved PV performance in iOPV devices is majorly attributed to enhanced photocurrents achieved as a result of reduced surface energy and greater electron affinity from the covalent attachment of the strong electron-withdrawing cyano moiety, while that in HOPV devices, where PCE increases from 0.21% to 0.79% for SML-modified devices, is ascribed to a large increase in V oc benefitted due to reduced work function effected from the presence of strong dipole moment in SML that points away from P-ZnO NRs.
Huang, Xintao; Yang, Jucai
2017-12-26
The most stable structures and electronic properties of TmSi n (n = 3-10) clusters and their anions have been probed by using the ABCluster global search technique combined with the PBE, TPSSh, and B3LYP density functional methods. The results revealed that the most stable structures of neutral TmSi n and their anions can be regarded as substituting a Si atom of the ground state structure of Si n + 1 with a Tm atom. The reliable AEAs, VDEs and simulated PES of TmSi n (n = 3-10) are presented. Calculations of HOMO-LUMO gap revealed that introducing Tm atom to Si cluster can improve photochemical reactivity of the cluster. The NPA analyses indicated that the 4f electron of Tm atom in TmSi n (n = 3-10) and their anions do not participate in bonding. The total magnetic moments of TmSi n are mainly provided by the 4f electrons of Tm atom. The dissociation energy of Tm atom from the most stable structure of TmSi n and their anions has been calculated to examine relative stability.
Yu, Haoyu S; He, Xiao; Truhlar, Donald G
2016-03-08
Kohn-Sham density functional theory is widely used for applications of electronic structure theory in chemistry, materials science, and condensed-matter physics, but the accuracy depends on the quality of the exchange-correlation functional. Here, we present a new local exchange-correlation functional called MN15-L that predicts accurate results for a broad range of molecular and solid-state properties including main-group bond energies, transition metal bond energies, reaction barrier heights, noncovalent interactions, atomic excitation energies, ionization potentials, electron affinities, total atomic energies, hydrocarbon thermochemistry, and lattice constants of solids. The MN15-L functional has the same mathematical form as a previous meta-nonseparable gradient approximation exchange-correlation functional, MN12-L, but it is improved because we optimized it against a larger database, designated 2015A, and included smoothness restraints; the optimization has a much better representation of transition metals. The mean unsigned error on 422 chemical energies is 2.32 kcal/mol, which is the best among all tested functionals, with or without nonlocal exchange. The MN15-L functional also provides good results for test sets that are outside the training set. A key issue is that the functional is local (no nonlocal exchange or nonlocal correlation), which makes it relatively economical for treating large and complex systems and solids. Another key advantage is that medium-range correlation energy is built in so that one does not need to add damped dispersion by molecular mechanics in order to predict accurate noncovalent binding energies. We believe that the MN15-L functional should be useful for a wide variety of applications in chemistry, physics, materials science, and molecular biology.
Prediction of the Iron-Based Polynuclear Magnetic Superhalogens with Pseudohalogen CN as Ligands.
Ding, Li-Ping; Shao, Peng; Lu, Cheng; Zhang, Fang-Hui; Liu, Yun; Mu, Qiang
2017-07-17
To explore stable polynuclear magnetic superhalogens, we perform an unbiased structure search for polynuclear iron-based systems based on pseudohalogen ligand CN using the CALYPSO method in conjunction with density functional theory. The superhalogen properties, magnetic properties, and thermodynamic stabilities of neutral and anionic Fe 2 (CN) 5 and Fe 3 (CN) 7 clusters are investigated. The results show that both of the clusters have superhalogen properties due to their electron affinities (EAs) and that vertical detachment energies (VDEs) are significantly larger than those of the chlorine element and their ligand CN. The distribution of the extra electron analysis indicates that the extra electron is aggregated mainly into pseudohalogen ligand CN units in Fe 2 (CN) 5 ¯ and Fe 3 (CN) 7 ¯ cluster. These features contribute significantly to their high EA and VDE. Besides superhalogen properties, these two anionic clusters carry a large magnetic moment just like the Fe 2 F 5 ¯ cluster. Additionally, the thermodynamic stabilities are also discussed by calculating the energy required to fragment the cluster into various smaller stable clusters. It is found that Fe(CN) 2 is the most favorable fragmentation product for anionic Fe 2 (CN) 5 ¯ and Fe 3 (CN) 7 ¯ clusters, and both of the anions are less stable against ejection of Fe atoms than Fe(CN) n-x .
Jadoun, Sapana; Verma, Anurakshee; Riaz, Ufana
2018-06-07
With the aim to explore the effect of luminol as a multifunctional dopant for conjugated polymers, the present study reports the ultrasound-assisted doping of polycarbazole (PCz) and poly(o-anisidine) (PAnis) with luminol in basic, acidic and neutral media. The synthesized homopolymers and luminol doped polymers were characterized using FT-IR, UV-visible and XRD studies while the photo-physical properties were investigated via fluorescence spectroscopy. Density functional theory (DFT) calculations were performed to get insights into the structural, optical, and electronic properties of homopolymers of polycarbazole (PCz) and poly(o-anisidine) (PAnis). Vibrational bands B3LYP/6-311G (d,p) level, UV-vis spectral bands and electronic properties such as ionization potentials (IP), electron affinities (EA) and HOMO-LUMO band gap energies of the homopolymers and doped polymers were calculated and compared. Results revealed that luminol doped polymers showed different photo-physical characteristics in acidic, basic and neutral media which could be tuned to obtain near infrared (NIR) emitting polymers. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Borah, Mukunda Madhab; Devi, Th. Gomti
2017-05-01
In the present work, L-phenylalanine is studied using the experimental and theoretical methods. The spectral characterization of the molecule has been done using Raman, FTIR, Hartee-Fock(HF), density functional theory (DFT) and vibrational energy distribution analysis (VEDA) calculation. The optimization of the molecule has been studied using basis set HF/6-31G(d,p) and B3LYP/6-31G(d,p) for Hartree Fock and density functional theory calculation. The complete vibrational assignment of the molecule in monomer and dimer states have been attempted. The potential energy distribution and normal mode analysis are also carried out to determine the contributions of bond oscillators in each normal mode. The molecular geometry, HOMO-LUMO energy gap, molecular hardness (η), ionization energy (IE), electron affinity (EA), total energy and dipole moment were determined from the calculated data. The observed experimental and the scaled theoretical results are compared and found to be in good agreement. The vibrational assignment of molecule in different dimer states has also been done using SERS data and better correlated Raman peaks are observed as compare to normal Raman technique.
Characterizing the proton loading site in cytochrome c oxidase.
Lu, Jianxun; Gunner, M R
2014-08-26
Cytochrome c oxidase (CcO) uses the energy released by reduction of O2 to H2O to drive eight charges from the high pH to low pH side of the membrane, increasing the electrochemical gradient. Four electrons and protons are used for chemistry, while four more protons are pumped. Proton pumping requires that residues on a pathway change proton affinity through the reaction cycle to load and then release protons. The protonation states of all residues in CcO are determined in MultiConformational Continuum Electrostatics simulations with the protonation and redox states of heme a, a3, Cu(B), Y288, and E286 used to define the catalytic cycle. One proton is found to be loaded and released from residues identified as the proton loading site (PLS) on the P-side of the protein in each of the four CcO redox states. Thus, the same proton pumping mechanism can be used each time CcO is reduced. Calculations with structures of Rhodobacter sphaeroides, Paracoccus denitrificans, and bovine CcO derived by crystallography and molecular dynamics show the PLS functions similarly in different CcO species. The PLS is a cluster rather than a single residue, as different structures show 1-4 residues load and release protons. However, the proton affinity of the heme a3 propionic acids primarily determines the number of protons loaded into the PLS; if their proton affinity is too low, less than one proton is loaded.
Characterizing the proton loading site in cytochrome c oxidase
Lu, Jianxun; Gunner, M. R.
2014-01-01
Cytochrome c oxidase (CcO) uses the energy released by reduction of O2 to H2O to drive eight charges from the high pH to low pH side of the membrane, increasing the electrochemical gradient. Four electrons and protons are used for chemistry, while four more protons are pumped. Proton pumping requires that residues on a pathway change proton affinity through the reaction cycle to load and then release protons. The protonation states of all residues in CcO are determined in MultiConformational Continuum Electrostatics simulations with the protonation and redox states of heme a, a3, CuB, Y288, and E286 used to define the catalytic cycle. One proton is found to be loaded and released from residues identified as the proton loading site (PLS) on the P-side of the protein in each of the four CcO redox states. Thus, the same proton pumping mechanism can be used each time CcO is reduced. Calculations with structures of Rhodobacter sphaeroides, Paracoccus denitrificans, and bovine CcO derived by crystallography and molecular dynamics show the PLS functions similarly in different CcO species. The PLS is a cluster rather than a single residue, as different structures show 1–4 residues load and release protons. However, the proton affinity of the heme a3 propionic acids primarily determines the number of protons loaded into the PLS; if their proton affinity is too low, less than one proton is loaded. PMID:25114210
Solitons and the energy-momentum tensor for affine Toda theory
NASA Astrophysics Data System (ADS)
Olive, D. I.; Turok, N.; Underwood, J. W. R.
1993-07-01
Following Leznov and Saveliev, we present the general solution to Toda field theories of conformal, affine or conformal affine type, associated with a simple Lie algebra g. These depend on a free massless field and on a group element. By putting the former to zero, soliton solutions to the affine Toda theories with imaginary coupling constant result with the soliton data encoded in the group element. As this requires a reformulation of the affine Kac-Moody algebra closely related to that already used to formulate the physical properties of the particle excitations, including their scattering matrices, a unified treatment of particles and solitons emerges. The physical energy—momentum tensor for a general solution is broken into a total derivative plus a part dependent only on the derivatives of the free field. Despite the non-linearity of the field equations and their complex nature the energy and momentum of the N-soliton solution is shown to be real, equalling the sum of contributions from the individual solitons. There are rank-g species of soliton, with masses given by a generalisation of a formula due to Hollowood, being proportional to the components of the left Perron-Frobenius eigenvector of the Cartan matrix of g.
Electron attachment to DNA single strands: gas phase and aqueous solution.
Gu, Jiande; Xie, Yaoming; Schaefer, Henry F
2007-01-01
The 2'-deoxyguanosine-3',5'-diphosphate, 2'-deoxyadenosine-3',5'-diphosphate, 2'-deoxycytidine-3',5'-diphosphate and 2'-deoxythymidine-3',5'-diphosphate systems are the smallest units of a DNA single strand. Exploring these comprehensive subunits with reliable density functional methods enables one to approach reasonable predictions of the properties of DNA single strands. With these models, DNA single strands are found to have a strong tendency to capture low-energy electrons. The vertical attachment energies (VEAs) predicted for 3',5'-dTDP (0.17 eV) and 3',5'-dGDP (0.14 eV) indicate that both the thymine-rich and the guanine-rich DNA single strands have the ability to capture electrons. The adiabatic electron affinities (AEAs) of the nucleotides considered here range from 0.22 to 0.52 eV and follow the order 3',5'-dTDP > 3',5'-dCDP > 3',5'-dGDP > 3',5'-dADP. A substantial increase in the AEA is observed compared to that of the corresponding nucleic acid bases and the corresponding nucleosides. Furthermore, aqueous solution simulations dramatically increase the electron attracting properties of the DNA single strands. The present investigation illustrates that in the gas phase, the excess electron is situated both on the nucleobase and on the phosphate moiety for DNA single strands. However, the distribution of the extra negative charge is uneven. The attached electron favors the base moiety for the pyrimidine, while it prefers the 3'-phosphate subunit for the purine DNA single strands. In contrast, the attached electron is tightly bound to the base fragment for the cytidine, thymidine and adenosine nucleotides, while it almost exclusively resides in the vicinity of the 3'-phosphate group for the guanosine nucleotides due to the solvent effects. The comparatively low vertical detachment energies (VDEs) predicted for 3',5'-dADP(-) (0.26 eV) and 3',5'-dGDP(-) (0.32 eV) indicate that electron detachment might compete with reactions having high activation barriers such as glycosidic bond breakage. However, the radical anions of the pyrimidine nucleotides with high VDE are expected to be electronically stable. Thus the base-centered radical anions of the pyrimidine nucleotides might be the possible intermediates for DNA single-strand breakage.
NASA Astrophysics Data System (ADS)
Feller, David
2017-07-01
Benchmark adiabatic ionization potentials were obtained with the Feller-Peterson-Dixon (FPD) theoretical method for a collection of 48 atoms and small molecules. In previous studies, the FPD method demonstrated an ability to predict atomization energies (heats of formation) and electron affinities well within a 95% confidence level of ±1 kcal/mol. Large 1-particle expansions involving correlation consistent basis sets (up to aug-cc-pV8Z in many cases and aug-cc-pV9Z for some atoms) were chosen for the valence CCSD(T) starting point calculations. Despite their cost, these large basis sets were chosen in order to help minimize the residual basis set truncation error and reduce dependence on approximate basis set limit extrapolation formulas. The complementary n-particle expansion included higher order CCSDT, CCSDTQ, or CCSDTQ5 (coupled cluster theory with iterative triple, quadruple, and quintuple excitations) corrections. For all of the chemical systems examined here, it was also possible to either perform explicit full configuration interaction (CI) calculations or to otherwise estimate the full CI limit. Additionally, corrections associated with core/valence correlation, scalar relativity, anharmonic zero point vibrational energies, non-adiabatic effects, and other minor factors were considered. The root mean square deviation with respect to experiment for the ionization potentials was 0.21 kcal/mol (0.009 eV). The corresponding level of agreement for molecular enthalpies of formation was 0.37 kcal/mol and for electron affinities 0.20 kcal/mol. Similar good agreement with experiment was found in the case of molecular structures and harmonic frequencies. Overall, the combination of energetic, structural, and vibrational data (655 comparisons) reflects the consistent ability of the FPD method to achieve close agreement with experiment for small molecules using the level of theory applied in this study.
NASA Astrophysics Data System (ADS)
Yang, Yi-Fan; Cui, Zhong-Hua; Ding, Yi-Hong
2015-03-01
Most superhalogen species are in the form of oxides or halides. To enrich the family of superhalogen species, herein, we investigated the structures and electron affinity (EA) values of higher group 15 elements (X = P, As, Sb, Bi) oxyfluoride species XO30,-, XOF40,- and XO2F20,-, at the CCSD(T)/aug-cc-pVTZ-pp & aug-cc-pVTZ //B3LYP/aug-cc-pVTZ-pp & aug-cc-pVTZ levels (aug-cc-pVTZ-pp for X = Sb and Bi). Some oxyfluoride species, i.e., PO2F20,-, AsO2F20,-, SbO2F20,-, POF40,-, AsOF40,-, SbOF40,- and BiOF40,-, were found to possess higher EA (VDE: 5.0-6.2 eV; ADE: 4.5-5.5 eV) than halogens (F: 3.4 eV; Cl: 3.6 eV). Thus, we recommended that the oxyfluorides in the form of XO2F20,- and XOF40,- should be considered as potential superhalogens, which have not been considered previously. Surprisingly, we showed that BiO3 and BiO2F2, in superhalogen formulae, possess a high vertical detachment energy (VDE) yet a low adiabatic detachment energy (ADE). This is in marked contrast to the previously reported superhalogens, which generally contain both the high VDE and high ADE values. It is the first report about exceptions of superhalogen formulae. These findings revealed that for the analogous main-group compounds with the same structural formula, the difference in the metallic property of the core element could lead to the significant difference in the ground structures of either the anionic or neutral structures, which would result in the much differed superhalogen features.
Scott, Nichollas E.; Parker, Benjamin L.; Connolly, Angela M.; Paulech, Jana; Edwards, Alistair V. G.; Crossett, Ben; Falconer, Linda; Kolarich, Daniel; Djordjevic, Steven P.; Højrup, Peter; Packer, Nicolle H.; Larsen, Martin R.; Cordwell, Stuart J.
2011-01-01
Campylobacter jejuni is a gastrointestinal pathogen that is able to modify membrane and periplasmic proteins by the N-linked addition of a 7-residue glycan at the strict attachment motif (D/E)XNX(S/T). Strategies for a comprehensive analysis of the targets of glycosylation, however, are hampered by the resistance of the glycan-peptide bond to enzymatic digestion or β-elimination and have previously concentrated on soluble glycoproteins compatible with lectin affinity and gel-based approaches. We developed strategies for enriching C. jejuni HB93-13 glycopeptides using zwitterionic hydrophilic interaction chromatography and examined novel fragmentation, including collision-induced dissociation (CID) and higher energy collisional (C-trap) dissociation (HCD) as well as CID/electron transfer dissociation (ETD) mass spectrometry. CID/HCD enabled the identification of glycan structure and peptide backbone, allowing glycopeptide identification, whereas CID/ETD enabled the elucidation of glycosylation sites by maintaining the glycan-peptide linkage. A total of 130 glycopeptides, representing 75 glycosylation sites, were identified from LC-MS/MS using zwitterionic hydrophilic interaction chromatography coupled to CID/HCD and CID/ETD. CID/HCD provided the majority of the identifications (73 sites) compared with ETD (26 sites). We also examined soluble glycoproteins by soybean agglutinin affinity and two-dimensional electrophoresis and identified a further six glycosylation sites. This study more than doubles the number of confirmed N-linked glycosylation sites in C. jejuni and is the first to utilize HCD fragmentation for glycopeptide identification with intact glycan. We also show that hydrophobic integral membrane proteins are significant targets of glycosylation in this organism. Our data demonstrate that peptide-centric approaches coupled to novel mass spectrometric fragmentation techniques may be suitable for application to eukaryotic glycoproteins for simultaneous elucidation of glycan structures and peptide sequence. PMID:20360033
Scott, Nichollas E; Parker, Benjamin L; Connolly, Angela M; Paulech, Jana; Edwards, Alistair V G; Crossett, Ben; Falconer, Linda; Kolarich, Daniel; Djordjevic, Steven P; Højrup, Peter; Packer, Nicolle H; Larsen, Martin R; Cordwell, Stuart J
2011-02-01
Campylobacter jejuni is a gastrointestinal pathogen that is able to modify membrane and periplasmic proteins by the N-linked addition of a 7-residue glycan at the strict attachment motif (D/E)XNX(S/T). Strategies for a comprehensive analysis of the targets of glycosylation, however, are hampered by the resistance of the glycan-peptide bond to enzymatic digestion or β-elimination and have previously concentrated on soluble glycoproteins compatible with lectin affinity and gel-based approaches. We developed strategies for enriching C. jejuni HB93-13 glycopeptides using zwitterionic hydrophilic interaction chromatography and examined novel fragmentation, including collision-induced dissociation (CID) and higher energy collisional (C-trap) dissociation (HCD) as well as CID/electron transfer dissociation (ETD) mass spectrometry. CID/HCD enabled the identification of glycan structure and peptide backbone, allowing glycopeptide identification, whereas CID/ETD enabled the elucidation of glycosylation sites by maintaining the glycan-peptide linkage. A total of 130 glycopeptides, representing 75 glycosylation sites, were identified from LC-MS/MS using zwitterionic hydrophilic interaction chromatography coupled to CID/HCD and CID/ETD. CID/HCD provided the majority of the identifications (73 sites) compared with ETD (26 sites). We also examined soluble glycoproteins by soybean agglutinin affinity and two-dimensional electrophoresis and identified a further six glycosylation sites. This study more than doubles the number of confirmed N-linked glycosylation sites in C. jejuni and is the first to utilize HCD fragmentation for glycopeptide identification with intact glycan. We also show that hydrophobic integral membrane proteins are significant targets of glycosylation in this organism. Our data demonstrate that peptide-centric approaches coupled to novel mass spectrometric fragmentation techniques may be suitable for application to eukaryotic glycoproteins for simultaneous elucidation of glycan structures and peptide sequence.
Physical mechanism of resistance switching in the co-doped RRAM
NASA Astrophysics Data System (ADS)
Yang, Jin; Dai, Yuehua; Lu, Shibin; Jiang, Xianwei; Wang, Feifei; Chen, Junning
2017-01-01
The physical mechanism of the resistance switching for RRAM with co-doped defects (Ag and oxygen vacancy) is studied based on the first principle calculations and the simulation tool VASP. The interaction energy, formation energy and density of states of Ag and oxygen vacancy defect (VO) are calculated. The calculated results reveal that the co-doped system is more stable than the system only doped either Ag or VO defect and the impurity energy levels in the band gap are contributed by Ag and VO defects. The obtained partial charge density confirmed further that the clusters are obvious in the direction of Ag to Hf ions, which means that it is Ag but VO plays a role of conductive paths. For the formation mechanism, the modified electron affinity and the partial charge density difference are calculated. The results show that the ability of electron donors of Ag is stronger than VO In conclusion, the conductivity of the physical mechanism of resistance switching in the co-doped system mainly depends on the doped Ag. Project supported by the National Natural Science Foundation of China (No. 61376106), the Research Foundation of Education Bureau of Anhui Province, China (Nos. KJ2015A276, KJ2016A574, KJ2014A208), and the Special Foundation for Young Scientists of Hefei Normal University (No. 2015rcjj02).
Shahak, Y; Arieli, B; Binder, B; Padan, E
1987-12-01
Light-induced proton translocation coupled to sulfide-dependent electron transport has been studied in isolated thylakoids of the cyanobacterium Oscillatoria limnetica. The thylakoids are obtained by osmotic shock of washed spheroplasts, prepared with glycine-betaine as the osmotic stabilizer. 13C NMR studies suggests that betaine is the major osmoregulator in O. limnetica. Thylakoid preparations obtained from both sulfide-induced anoxygenic cells and noninduced oxygenic cells are capable of proton pumping coupled to phenazinemethosulfate-mediated cyclic electron flow. However, only in the induced thylakoids can sulfide-dependent proton gradient (delta pH) formation be measured, using either NADP or methyl viologen as the terminal acceptor. Sulfide-dependent delta pH formation correlates with a high-affinity electron donation site (apparent Km 44 microM at pH 7.9). This site is not lost upon washing of the thylakoids. In addition, both sulfide-dependent electron transport and delta pH formation are sensitive to inhibitors of the cytochrome b6f complex such as 2-n-nonyl-4-hydroxyquinoline-N-oxide, 2,4-dinitrophenyl ether of 2-iodo-4-nitrothymol, or stigmatellin. Sulfide-dependent NADP photoreduction of low affinity (which does not saturate by as much as 7 mM sulfide) is detected in both induced and noninduced thylakoids, but this activity is insensitive to the inhibitors and is not coupled to proton transport. It is suggested that the adaptation of O. limnetica to anoxygenic photosynthesis involves the induction of a thylakoid factor(s) which creates a high-affinity site for sulfide, and the transfer of its electrons via the cytochrome b6f complex, coupled to proton translocation.
Metal-loaded SBA-16-like silica - Correlation between basicity and affinity towards hydrogen
NASA Astrophysics Data System (ADS)
Ouargli-Saker, R.; Bouazizi, N.; Boukoussa, B.; Barrimo, Diana; Paola-Nunes-Beltrao, Ana-.; Azzouz, A.
2017-07-01
Nanoparticles of Cuo (CuNPs) and Feo (FeNPs) were dispersed in SBA-16-like silica, resulting metal-loaded materials (Cu-SBA-16 and Fe-SBA-16) with improved affinity towards hydrogen. Electron microscopy and X-ray diffraction showed that MNP dispersion occurs mainly inside SBA-16 channels. MNP incorporation was found to confer affinity to the silica surface, since higher CO2 retention capacity (CRC) was registered Cu/SBA-16 and Fe/SBA-16. This was accompanied by a significant improvement of the affinity towards hydrogen, as supported by hydrogen adsorption tests. This was explained in terms of strong hydrogen interaction with MNP and lattice oxygen atoms. The results reported herein open new prospects for SBA-16 as potential adsorbents for hydrogen storage.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuvychko, Igor V.; Whitaker, James B.; Larson, Bryon W.
2013-04-08
A series of seven structurally-similar compounds with different pairs of R{sub F} groups were prepared, characterized spectroscopically, and studied by electrochemical methods (cyclic and square-wave voltammetry), low-temperature anion photoelectron spectroscopy, and DFT calculations (five of the compounds are reported here for the first time). This is the first time that a set of seven R{sub F} groups have been compared with respect to their relative effects on E{sub 1/2}(0/-), electron affinity (EA), and the DFT-calculated LUMO energy. The compounds, 1,7-C{sub 60}(R{sub F}){sub 2} (R{sub F} = CF{sub 3}, C{sub 2}F{sub 5}, i-C{sub 3}F{sub 7}, n-C{sub 3}F{sub 7}, s-C{sub 4}F{sub 9},more » n-C{sub 4}F{sub 9} and n-C{sub 8}F{sub 21}), were found to have statistically different electron affinities (EA), at the {+-}10 meV level of uncertainty, but virtually identical first reduction potentials, at the {+-}10 mV level of uncertainty. The lack of a correlation between EA and E{sub 1/2}(0/-), and between E(LUMO) and E{sub 1/2}(0/-), for such similar compounds is unprecedented and suggests that explanations for differences in figures of merit for materials and/or devices that are based on equating easily measurable E{sub 1/2}(0/-) values with EAs or E(LUMO) values should be viewed with caution. The solubilities of the seven compounds in toluene varied by nearly a factor of six, but in an unpredictable way, with the C{sub 2}F{sub 5} and s-C{sub 4}F{sub 9} compounds being the most soluble and the i-C{sub 3}F{sub 7} compound being the least soluble. The effects of the different R{sub F} groups on EAs, E(LUMO) values, and solubilities should help fluorine chemists choose the right R{sub F} group to design new materials with improved morphological, electronic, optical, and/or magnetic properties.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fang, Zongtang; Both, Johan; Li, Shenggang
The heats of formation and the normalized clustering energies (NCEs) for the group 4 and group 6 transition metal oxide (TMO) trimers and tetramers have been calculated by the Feller-Peterson-Dixon (FPD) method. The heats of formation predicted by the FPD method do not differ much from those previously derived from the NCEs at the CCSD(T)/aT level except for the CrO3 nanoclusters. New and improved heats of formation for Cr3O9 and Cr4O12 were obtained using PW91 orbitals instead of Hartree-Fock (HF) orbitals. Diffuse functions are necessary to predict accurate heats of formation. The fluoride affinities (FAs) are calculated with the CCSD(T)more » method. The relative energies (REs) of different isomers, NCEs, electron affinities (EAs), and FAs of (MO2)n ( M = Ti, Zr, Hf, n = 1 – 4 ) and (MO3)n ( M = Cr, Mo, W, n = 1 – 3) clusters have been benchmarked with 55 exchange-correlation DFT functionals including both pure and hybrid types. The absolute errors of the DFT results are mostly less than ±10 kcal/mol for the NCEs and the EAs, and less than ±15 kcal/mol for the FAs. Hybrid functionals usually perform better than the pure functionals for the REs and NCEs. The performance of the two types of functionals in predicting EAs and FAs is comparable. The B1B95 and PBE1PBE functionals provide reliable energetic properties for most isomers. Long range corrected pure functionals usually give poor FAs. The standard deviation of the absolute error is always close to the mean errors and the probability distributions of the DFT errors are often not Gaussian (normal). The breadth of the distribution of errors and the maximum probability are dependent on the energy property and the isomer.« less
NASA Astrophysics Data System (ADS)
Rosenfeld, Robin J.; Goodsell, David S.; Musah, Rabi A.; Morris, Garrett M.; Goodin, David B.; Olson, Arthur J.
2003-08-01
The W191G cavity of cytochrome c peroxidase is useful as a model system for introducing small molecule oxidation in an artificially created cavity. A set of small, cyclic, organic cations was previously shown to bind in the buried, solvent-filled pocket created by the W191G mutation. We docked these ligands and a set of non-binders in the W191G cavity using AutoDock 3.0. For the ligands, we compared docking predictions with experimentally determined binding energies and X-ray crystal structure complexes. For the ligands, predicted binding energies differed from measured values by ± 0.8 kcal/mol. For most ligands, the docking simulation clearly predicted a single binding mode that matched the crystallographic binding mode within 1.0 Å RMSD. For 2 ligands, where the docking procedure yielded an ambiguous result, solutions matching the crystallographic result could be obtained by including an additional crystallographically observed water molecule in the protein model. For the remaining 2 ligands, docking indicated multiple binding modes, consistent with the original electron density, suggesting disordered binding of these ligands. Visual inspection of the atomic affinity grid maps used in docking calculations revealed two patches of high affinity for hydrogen bond donating groups. Multiple solutions are predicted as these two sites compete for polar hydrogens in the ligand during the docking simulation. Ligands could be distinguished, to some extent, from non-binders using a combination of two trends: predicted binding energy and level of clustering. In summary, AutoDock 3.0 appears to be useful in predicting key structural and energetic features of ligand binding in the W191G cavity.
NASA Astrophysics Data System (ADS)
Yadav, P. S.; Yadav, R. K.; Agrawal, B. K.
2007-02-01
An ab initio study of the stability, structural and electronic properties has been made for 49 gallium nitride nanoclusters, GaxNy (x+y = 2-5). Among the various configurations corresponding to a fixed x+y = n value, the configuration possessing the maximum value of binding energy (BE) is named as the most stable structure. The vibrational and optical properties have been investigated only for the most stable structures. A B3LYP-DFT/6-311G(3df) method has been employed to optimize the geometries of the nanoclusters fully. The binding energies (BEs), highest-occupied and lowest-unoccupied molecular orbital (HOMO-LUMO) gaps and the bond lengths have been obtained for all the clusters. We have considered the zero-point energy (ZPE) corrections ignored by the earlier workers. The adiabatic and vertical ionization potentials (IPs) and electron affinities (EAs), charge on atoms, dipole moments, vibrational frequencies, infrared intensities (IR Int.), relative infrared intensities (Rel. IR Int.) and Raman scattering activities have been investigated for the most stable structures. The configurations containing the N atoms in majority are seen to be the most stable structures. The strong N-N bond has an important role in stabilizing the clusters. For clusters containing one Ga atom and all the others as N atoms, the BE increases monotonically with the number of the N atoms. The HOMO-LUMO gap and IP fluctuate with the cluster size n, having larger values for the clusters containing odd number of N atoms. On the other hand, the EA decreases with the cluster size up to n = 3, and shows slow fluctuations thereafter for the larger clusters. In general, the adiabatic IP (EA) is smaller (greater) than the vertical IP (EA) because of the lower energies of the most stable ground state of the cationic (anionic) clusters. The optical absorption spectrum or electron energy loss spectrum (EELS) is unique for every cluster, and may be used to characterize a specific cluster. All the predicted physical quantities are in good agreement with the experimental data wherever available. The growth of these most stable structures should be possible in experiments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Dayle MA; Raugei, Simone; Squier, Thomas C.
2014-09-30
Control of the reactivity of the nickel center of the [NiFe] hydrogenase and other metalloproteins commonly involves outer coordination sphere ligands that act to modify the geometry and physical properties of the active site metal centers. We carried out a combined set of classical molecular dynamics and quantum/classical mechanics calculations to provide quantitative estimates of how dynamic fluctuations of the active site within the protein matrix modulate the electronic structure at the catalytic center. Specifically we focused on the dynamics of the inner and outer coordination spheres of the cysteinate-bound Ni–Fe cluster in the catalytically active Ni-C state. There aremore » correlated movements of the cysteinate ligands and the surrounding hydrogen-bonding network, which modulate the electron affinity at the active site and the proton affinity of a terminal cysteinate. On the basis of these findings, we hypothesize a coupling between protein dynamics and electron and proton transfer reactions critical to dihydrogen production.« less
Smith, Dayle M A; Raugei, Simone; Squier, Thomas C
2014-11-21
Control of the reactivity of the nickel center of the [NiFe] hydrogenase and other metalloproteins commonly involves outer coordination sphere ligands that act to modify the geometry and physical properties of the active site metal centers. We carried out a combined set of classical molecular dynamics and quantum/classical mechanics calculations to provide quantitative estimates of how dynamic fluctuations of the active site within the protein matrix modulate the electronic structure at the catalytic center. Specifically we focused on the dynamics of the inner and outer coordination spheres of the cysteinate-bound Ni-Fe cluster in the catalytically active Ni-C state. There are correlated movements of the cysteinate ligands and the surrounding hydrogen-bonding network, which modulate the electron affinity at the active site and the proton affinity of a terminal cysteinate. On the basis of these findings, we hypothesize a coupling between protein dynamics and electron and proton transfer reactions critical to dihydrogen production.
NASA Astrophysics Data System (ADS)
Huang, Yanhui; Wu, Ke; Bell, Michael; Oakes, Andrew; Ratcliff, Tyree; Lanzillo, Nicholas A.; Breneman, Curt; Benicewicz, Brian C.; Schadler, Linda S.
2016-08-01
This work presents a comprehensive investigation into the effects of nanoparticles and organic additives on the dielectric properties of insulating polymers using reinforced silicone rubber as a model system. TiO2 and ZrO2 nanoparticles (d = 5 nm) were well dispersed into the polymer via a bimodal surface modification approach. Organic molecules with the potential of voltage stabilization were further grafted to the nanoparticle to ensure their dispersion. These extrinsic species were found to provide deep traps for charge carriers and exhibited effective charge trapping properties at a rather small concentration (˜1017 cm-3). The charge trapping is found to have the most significant effect on breakdown strength when the electrical stressing time is long enough that most charges are trapped in the deep states. To establish a quantitative correlation between the trap depth and the molecular properties, the electron affinity and ionization energy of each species were calculated by an ab initio method and were compared with the experimentally measured values. The correlation however remains elusive and is possibly complicated by the field effect and the electronic interactions between different species that are not considered in this computation. At high field, a super-linear increase of current density was observed for TiO2 filled composites and is likely caused by impact excitation due to the low excitation energy of TiO2 compared to ZrO2. It is reasoned that the hot charge carriers with energies greater than the excitation energy of TiO2 may excite an electron-hole pair upon collision with the NP, which later will be dissociated and contribute to free charge carriers. This mechanism can enhance the energy dissipation and may account for the retarded electrical degradation and breakdown of TiO2 composites.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Yanhui, E-mail: huangy12@rpi.edu; Schadler, Linda S.; Wu, Ke
This work presents a comprehensive investigation into the effects of nanoparticles and organic additives on the dielectric properties of insulating polymers using reinforced silicone rubber as a model system. TiO{sub 2} and ZrO{sub 2} nanoparticles (d = 5 nm) were well dispersed into the polymer via a bimodal surface modification approach. Organic molecules with the potential of voltage stabilization were further grafted to the nanoparticle to ensure their dispersion. These extrinsic species were found to provide deep traps for charge carriers and exhibited effective charge trapping properties at a rather small concentration (∼10{sup 17} cm{sup −3}). The charge trapping is found to havemore » the most significant effect on breakdown strength when the electrical stressing time is long enough that most charges are trapped in the deep states. To establish a quantitative correlation between the trap depth and the molecular properties, the electron affinity and ionization energy of each species were calculated by an ab initio method and were compared with the experimentally measured values. The correlation however remains elusive and is possibly complicated by the field effect and the electronic interactions between different species that are not considered in this computation. At high field, a super-linear increase of current density was observed for TiO{sub 2} filled composites and is likely caused by impact excitation due to the low excitation energy of TiO{sub 2} compared to ZrO{sub 2}. It is reasoned that the hot charge carriers with energies greater than the excitation energy of TiO{sub 2} may excite an electron-hole pair upon collision with the NP, which later will be dissociated and contribute to free charge carriers. This mechanism can enhance the energy dissipation and may account for the retarded electrical degradation and breakdown of TiO{sub 2} composites.« less
Diribe, C O; Warhurst, D C
1985-09-01
A study of concentration- and substrate-dependence of chloroquine uptake has been carried out on mouse erythrocytes infected with the chloroquine-sensitive NK65 and the chloroquine-resistant RC strains of Plasmodium berghei. The presence of drug binding sites of high and low affinity in such strains of P. berghei was confirmed. High affinity uptake sites in cells parasitized with chloroquine-sensitive and chloroquine-resistant parasites have similar characteristics, but in the sensitive strain the major component of chloroquine-uptake is at high affinity and dependent on the availability of ATP whilst in the resistant strain the major component of uptake is at low affinity and independent of energy. An absolute increase in the quantity of the low affinity site in erythrocytes parasitized with chloroquine-resistant P. berghei was noted, which may be related to an increase in quantity of parasite membrane.
Functionalized diamond nanopowder for phosphopeptides enrichment from complex biological fluids.
Hussain, Dilshad; Najam-ul-Haq, Muhammad; Jabeen, Fahmida; Ashiq, Muhammad N; Athar, Muhammad; Rainer, Matthias; Huck, Christian W; Bonn, Guenther K
2013-05-02
Diamond is known for its high affinity and biocompatibility towards biomolecules and is used exclusively in separation sciences and life science research. In present study, diamond nanopowder is derivatized as Immobilized Metal Ion Affinity Chromatographic (IMAC) material for the phosphopeptides enrichment and as Reversed Phase (C-18) media for the desalting of complex mixtures and human serum profiling through MALDI-TOF-MS. Functionalized diamond nanopowder is characterized by Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) spectroscopy. Diamond-IMAC is applied to the standard protein (β-casein), spiked human serum, egg yolk and non-fat milk for the phosphopeptides enrichment. Results show the selectivity of synthesized IMAC-diamond immobilized with Fe(3+) and La(3+) ions. To comprehend the elaborated use, diamond-IMAC is also applied to the serum samples from gall bladder carcinoma for the potential biomarkers. Database search is carried out by the Mascot program (www.matrixscience.com) for the assignment of phosphorylation sites. Diamond nanopowder is thus a separation media with multifunctional use and can be applied to cancer protein profiling for the diagnosis and biomarker identification. Copyright © 2013 Elsevier B.V. All rights reserved.
2007-06-01
Quantum Electronics Conference, Snowbird, UT, January 2007. 20. “Nanophotonics: the next Big Thing”, Invited talk, CINT Annual Workshop, Los ...affinity, bac- terial, diarrheagenic, heat-stable enterotoxins (STs) and the lower affinity endogenous ligands guanylin and uro - guanylin, which induce...metabolic, and lo - comotor) were compared to explore whether the deficiency of APN altered physiology (Fig. 4). First, activity tests were per- formed in
Geoengineering with Charged Droplets
NASA Astrophysics Data System (ADS)
Gokturk, H.
2011-12-01
Water molecules in a droplet are held together by intermolecular forces generated by hydrogen bonding which has a bonding energy of only about 0.2 eV. One can create a more rugged droplet by using an ion as a condensation nucleus. In that case, water molecules are held together by the interaction between the ion and the dipole moments of the water molecules surrounding the ion, in addition to any hydrogen bonding. In this research, properties of such charged droplets were investigated using first principle quantum mechanical calculations. A molecule which exhibits positive electron affinity is a good candidate to serve as the ionic condensation nucleus, because addition of an electron to such a molecule creates an energetically more stable state than the neutral molecule. A good example is the oxygen molecule (O2) where energy of O2 negative (O2-) ion is lower than that of the neutral O2 by about 0.5 eV. Examples of other molecules which have positive electron affinity include ozone (O3), nitrogen dioxide (NO2) and sulfur oxides (SOx, x=1-3). Atomic models used in the calculations consisted of a negative ion of one of the molecules mentioned above surrounded by water molecules. Calculations were performed using the DFT method with B3LYP hybrid functional and Pople type basis sets with polarization and diffuse functions. Energy of interaction between O2- ion and the water molecule was found to be ~0.7 eV. This energy is an order of magnitude greater than the thermal energy of even the highest temperatures encountered in the atmosphere. Once created, charged rugged droplets can survive in hot and dry climates where they can be utilized to create humidity and precipitation. The ion which serves as the nucleus of the droplet can attract not only water molecules but also other dipolar gases in the atmosphere. Such dipolar gases include industrial pollutants, for example nitrogen dioxide (NO2) or sulfur dioxide (SO2). Energy of interaction between O2- ion and pollutant molecules was calculated to be ~0.5 eV for NO2 and ~0.9 eV for SO2. These values are comparable to that of water, hence charged droplets have the potential to serve as scavengers of pollutants in the atmosphere. The charged droplet can also interact with quadrupolar gases depending on the charge distribution of the gas. A quadrupole of interest is carbon dioxide (CO2) where oxygens are slightly negative and carbon is slightly positive in a neutral molecule. When CO2 is in the vicinity of a negative ion, the carbon atom gets attracted to the ion, whereas oxygens are repelled from it. This interaction distorts the linear geometry of CO2, turning it into a small dipole. Energy of interaction between O2- ion and CO2 was calculated to be ~0.3 eV which is smaller than those of the above mentioned dipoles, but still significantly greater than the typical thermal energy at 25 C (~0.03 eV). One can expect the diffusion of atmospheric CO2 into the droplets to be enhanced due to the charge. Hence such droplets can help capture the CO2 in the atmosphere and sequester it simply as rain. Charged droplets can be created using electrical,optical, thermal or other means. A method which utilizes solar energy will be described in the presentation.
NASA Astrophysics Data System (ADS)
Urbina-Navarrete, J.; Rothschild, L.
2016-12-01
End-of-life electronics waste (e-waste) containing toxic and valuable materials is a rapidly progressing human health and environmental issue. Using synthetic biology tools, we have developed a recycling method for e-waste. Our innovation is to use a recombinant version of a naturally-occurring silica-degrading enzyme to depolymerize the silica in metal- and glass- containing e-waste components, and subsequently, to use engineered bacterial surfaces to bind and separate metals from a solution. The bacteria with bound metals can then be used as "bio-ink" to print new circuits using a novel plasma jet electronics printing technology. Here, we present the results from our initial studies that focus on the specificity of metal-binding motifs for a cognate metal. The candidate motifs that show high affinity and specificity will be engineered into bacterial surfaces for downstream applications in biologically-mediated metal recycling. Since the chemistry and role of Cu in metalloproteins is relatively well-characterized, we are using Cu as a proxy to elucidate metal and biological ligand interactions with various metals in e-waste. We assess the binding parameters of 3 representative classes of Cu-binding motifs using isothermal titration calorimetry; 1) natural motifs found in metalloproteins, 2) consensus motifs, and 3) rationally designed peptides that are predicted, in silico, to bind Cu. Our results indicate that naturally-occurring motifs have relative high affinity and specificity for Cu (association constant for Cu Ka 104 M-1, Zn Ka 103 M-1) when competing ions are present in the aqueous milieu. However, motifs developed through rational design by applying quantum mechanical methods that take into account complexation energies of the elemental binding partners and molecular geometry of the cognate metal, not only show high affinity for the cognate metal (Cu Ka 106 M-1), but they show specificity and discrimination against other metal ions that would be competitors for the same binding sites. This is an initial proof-of-concept study that focuses on Cu-binding; however the overall objective of this research is to have peptides that selectively bind many metals from e-waste and this would allow for the separation of the metals from a solution, at ambient temperatures and under non-toxic conditions.
Fluid transition layer between rigid solute and liquid solvent: is there depletion or enrichment?
Djikaev, Yuri S; Ruckenstein, Eli
2016-03-21
The fluid layer between solute and liquid solvent is studied by combining the density functional theory with the probabilistic hydrogen bond model. This combination allows one to obtain the equilibrium distribution of fluid molecules, taking into account the hydrogen bond contribution to the external potential whereto they are subjected near the solute. One can find the effective width of the fluid solvent-solute transition layer and fluid average density in that layer, and determine their dependence on temperature, solvent-solute affinity, vicinal hydrogen bond (hb) energy alteration ratio, and solute radius. Numerical calculations are performed for the solvation of a plate and spherical solutes of four different radii in two model solvents (associated liquid and non-associated one) in the temperature range from 293 K to 333 K for various solvent-solute affinities and hydrogen bond energy alteration ratios. The predictions of our model for the effective width and average density of the transition layer are consistent with experiments and simulations. The small-to-large crossover lengthscale for hydrophobic hydration is expected to be about 3-5 nm. Remarkably, characterizing the transition layer with the average density, one can observe that for small hydrophobes, the transition layer becomes enriched with rather than depleted of fluid when the solvent-solute affinity and hb-energy alteration ratio become large enough. The boundary values of solvent-solute affinity and hb-energy alteration ratio, needed for the "depletion-to-enrichment" crossover (in the smoothed density sense), are predicted to decrease with increasing temperature.
The possibly important role played by Ga{sub 2}O{sub 3} during the activation of GaN photocathode
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fu, Xiaoqian, E-mail: ise-fuxq@ujn.edu.cn, E-mail: 214808748@qq.com; Institute of Electronic Engineering and Optoelectronic Technology, Nanjing University of Science and Technology, Nanjing 210094; Wang, Honggang
2015-08-14
Three different chemical solutions are used to remove the possible contamination on GaN surface, while Ga{sub 2}O{sub 3} is still found at the surface. After thermal annealing at 710 °C in the ultrahigh vacuum (UHV) chamber and activated with Cs/O, all the GaN samples are successfully activated to the effective negative electron affinity (NEA) photocathodes. Among all samples, the GaN sample with the highest content of Ga{sub 2}O{sub 3} after chemical cleaning obtains the highest quantum efficiency. By analyzing the property of Ga{sub 2}O{sub 3}, the surface processing results, and electron affinity variations during Cs and Cs/O{sub 2} deposition on GaNmore » of other groups, it is suggested that before the adsorption of Cs, Ga{sub 2}O{sub 3} is not completely removed from GaN surface in our samples, which will combine with Cs and lead to a large decrease in electron affinity. Furthermore, the effective NEA is formed for GaN photocathode, along with the surface downward band bending. Based on this assumption, a new dipole model Ga{sub 2}O{sub 3}-Cs is suggested, and the experimental effects are explained and discussed.« less
Controlling band alignments by artificial interface dipoles at perovskite heterointerfaces
Yajima, Takeaki; Hikita, Yasuyuki; Minohara, Makoto; ...
2015-04-07
The concept ‘the interface is the device' is embodied in a wide variety of interfacial electronic phenomena and associated applications in oxide materials, ranging from catalysts and clean energy systems to emerging multifunctional devices. Many device properties are defined by the band alignment, which is often influenced by interface dipoles. On the other hand, the ability to purposefully create and control interface dipoles is a relatively unexplored degree of freedom for perovskite oxides, which should be particularly effective for such ionic materials. Here we demonstrate tuning the band alignment in perovskite metal-semiconductor heterojunctions over a broad range of 1.7 eV.more » This is achieved by the insertion of positive or negative charges at the interface, and the resultant dipole formed by the induced screening charge. This approach can be broadly used in applications where decoupling the band alignment from the constituent work functions and electron affinities can enhance device functionality.« less
Molecular orbital evaluation of charge flow dynamics in natural pigments based photosensitizers.
Heera, Thekinneydath Rajan; Cindrella, Louis
2010-03-01
The relationship between structure and photo electrochemical property of ten natural pigments from plants, insects and microbes has been analyzed using density functional theory (DFT) at the B3LYP/6-31G(d) level. The essential parameters for their photoelectrochemical behaviour such as ground state geometries, electronic transition energies and oxidation potentials are computed. The attachment tendency of the anchoring groups, expressed as the deprotonation order, is determined by calculating the proton affinities at different sites of the molecules. A thorough analysis of the charge flow dynamics in the molecular orbitals (HOMO and LUMO) of these molecules has been carried out and presented to emphasize the role of these orbitals in effective charge separation, the important feature of photosensitizers for DSSC. This study highlights that the flexible spatial orientation provided by the bridging aliphatic unsaturation favours the oscillator strength and the hydroxyl anchor group attached to the ring of delocalized pi electron cloud acts as the effective anchor.
Shape resonances of Be- and Mg- investigated with the method of analytic continuation
NASA Astrophysics Data System (ADS)
Čurík, Roman; Paidarová, I.; Horáček, J.
2018-05-01
The regularized method of analytic continuation is used to study the low-energy negative-ion states of beryllium (configuration 2 s2ɛ p 2P ) and magnesium (configuration 3 s2ɛ p 2P ) atoms. The method applies an additional perturbation potential and requires only routine bound-state multi-electron quantum calculations. Such computations are accessible by most of the free or commercial quantum chemistry software available for atoms and molecules. The perturbation potential is implemented as a spherical Gaussian function with a fixed width. Stability of the analytic continuation technique with respect to the width and with respect to the input range of electron affinities is studied in detail. The computed resonance parameters Er=0.282 eV, Γ =0.316 eV for the 2 p state of Be- and Er=0.188 eV, Γ =0.167 for the 3 p state of Mg- agree well with the best results obtained by much more elaborate and computationally demanding present-day methods.
A comparative DFT study on the antioxidant activity of apigenin and scutellarein flavonoid compounds
NASA Astrophysics Data System (ADS)
Sadasivam, K.; Kumaresan, R.
2011-03-01
The potent antioxidant activity of flavonoids relevant to their ability to scavenge reactive oxygen species is the most important function of flavonoids. Density functional theory calculations were explored to investigate the antioxidant activity of flavonoid compounds such as apigenin and scutellarein. The biological characteristics are dependent on electronic parameters, describing the charge distribution on the rings of the flavonoid molecules. The computation of structural and various molecular descriptors such as polarizability, dipole moment, energy gap, homolytic O-H bond dissociation enthalpies (BDEs), ionization potential (IP), electron affinity, hardness, softness, electronegativity, electrophilic index and density plot of molecular orbital for neutral as well as radical species were carried out and studied. The B3LYP/6-311G(d,p) basis set was adopted for all the computations. This computation reveals that scutellarein exhibits higher degree of antioxidant activity than apigenin. Their dipole moment and polarizability analysis show that both the compounds are polar in nature and have the capacity to polarize other atoms.
NASA Astrophysics Data System (ADS)
Gaul, Christopher; Hutsch, Sebastian; Schwarze, Martin; Schellhammer, Karl Sebastian; Bussolotti, Fabio; Kera, Satoshi; Cuniberti, Gianaurelio; Leo, Karl; Ortmann, Frank
2018-05-01
Doping plays a crucial role in semiconductor physics, with n-doping being controlled by the ionization energy of the impurity relative to the conduction band edge. In organic semiconductors, efficient doping is dominated by various effects that are currently not well understood. Here, we simulate and experimentally measure, with direct and inverse photoemission spectroscopy, the density of states and the Fermi level position of the prototypical materials C60 and zinc phthalocyanine n-doped with highly efficient benzimidazoline radicals (2-Cyc-DMBI). We study the role of doping-induced gap states, and, in particular, of the difference Δ1 between the electron affinity of the undoped material and the ionization potential of its doped counterpart. We show that this parameter is critical for the generation of free carriers and influences the conductivity of the doped films. Tuning of Δ1 may provide alternative strategies to optimize the electronic properties of organic semiconductors.
NASA Astrophysics Data System (ADS)
Castells, Victoria; Van Tassel, Paul R.
2005-02-01
Proteins often undergo changes in internal conformation upon interacting with a surface. We investigate the thermodynamics of surface induced conformational change in a lattice model protein using a multicanonical Monte Carlo method. The protein is a linear heteropolymer of 27 segments (of types A and B) confined to a cubic lattice. The segmental order and nearest neighbor contact energies are chosen to yield, in the absence of an adsorbing surface, a unique 3×3×3 folded structure. The surface is a plane of sites interacting either equally with A and B segments (equal affinity surface) or more strongly with the A segments (A affinity surface). We use a multicanonical Monte Carlo algorithm, with configuration bias and jump walking moves, featuring an iteratively updated sampling function that converges to the reciprocal of the density of states 1/Ω(E), E being the potential energy. We find inflection points in the configurational entropy, S(E)=klnΩ(E), for all but a strongly adsorbing equal affinity surface, indicating the presence of free energy barriers to transition. When protein-surface interactions are weak, the free energy profiles F(E)=E-TS(E) qualitatively resemble those of a protein in the absence of a surface: a free energy barrier separates a folded, lowest energy state from globular, higher energy states. The surface acts in this case to stabilize the globular states relative to the folded state. When the protein surface interactions are stronger, the situation differs markedly: the folded state no longer occurs at the lowest energy and free energy barriers may be absent altogether.
Energetic basis for drug resistance of HIV-1 protease mutants against amprenavir
NASA Astrophysics Data System (ADS)
Kar, Parimal; Knecht, Volker
2012-02-01
Amprenavir (APV) is a high affinity (0.15 nM) HIV-1 protease (PR) inhibitor. However, the affinities of the drug resistant protease variants V32I, I50V, I54V, I54M, I84V and L90M to amprenavir are decreased 3 to 30-fold compared to the wild-type. In this work, the popular molecular mechanics Poisson-Boltzmann surface area method has been used to investigate the effectiveness of amprenavir against the wild-type and these mutated protease variants. Our results reveal that the protonation state of Asp25/Asp25' strongly affects the dynamics, the overall affinity and the interactions of the inhibitor with individual residues. We emphasize that, in contrast to what is often assumed, the protonation state may not be inferred from the affinities but requires pKa calculations. At neutral pH, Asp25 and Asp25' are ionized or protonated, respectively, as suggested from pKa calculations. This protonation state was thus mainly considered in our study. Mutation induced changes in binding affinities are in agreement with the experimental findings. The decomposition of the binding free energy reveals the mechanisms underlying binding and drug resistance. Drug resistance arises from an increase in the energetic contribution from the van der Waals interactions between APV and PR (V32I, I50V, and I84V mutant) or a rise in the energetic contribution from the electrostatic interactions between the inhibitor and its target (I54M and I54V mutant). For the V32I mutant, also an increased free energy for the polar solvation contributes to the drug resistance. For the L90M mutant, a rise in the van der Waals energy for APV-PR interactions is compensated by a decrease in the polar solvation free energy such that the net binding affinity remains unchanged. Detailed understanding of the molecular forces governing binding and drug resistance might assist in the design of new inhibitors against HIV-1 PR variants that are resistant against current drugs.
Ab-initio modeling of electromechanical coupling at Si surfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoppe, Sandra; Müller, Stefan, E-mail: stefan.mueller@tuhh.de; Michl, Anja
The electromechanical coupling at the silicon (100) and (111) surfaces was studied via density functional theory by calculating the response of the ionization potential and the electron affinity to different types of strain. We find a branched strain response of those two quantities with different coupling coefficients for negative and positive strain values. This can be attributed to the reduced crystal symmetry due to anisotropic strain, which partially lifts the degeneracy of the valence and conduction bands. Only the Si(111) electron affinity exhibits a monotonously linear strain response, as the conduction band valleys remain degenerate under strain. The strain responsemore » of the surface dipole is linear and seems to be dominated by volume changes. Our results may help to understand the mechanisms behind electromechanical coupling at an atomic level in greater detail and for different electronic and atomic structures.« less
Anion photoelectron spectroscopy of radicals and clusters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Travis, Taylor R.
1999-12-01
Anion photoelectron spectroscopy is used to study free radicals and clusters. The low-lying 2Σ and 2π states of C 2nH (n = 1--4) have been studied. The anion photoelectron spectra yielded electron affinities, term values, and vibrational frequencies for these combustion and astrophysically relevant species. Photoelectron angular distributions allowed the author to correctly assign the electronic symmetry of the ground and first excited states and to assess the degree of vibronic coupling in C 2H and C 4H. Other radicals studied include NCN and I 3. The author was able to observe the low-lying singlet and triplet states of NCNmore » for the first time. Measurement of the electron affinity of I 3 revealed that it has a bound ground state and attachment of an argon atom to this moiety enabled him to resolve the symmetric stretching progression.« less
Electron Affinity of Phenyl-C61-Butyric Acid Methyl Ester (PCBM)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Larson, Bryon W.; Whitaker, James B.; Wang, Xue B.
2013-07-25
The gas-phase electron affinity (EA) of phenyl-C61-butyric acid methyl ester (PCBM), one of the best-performing electron acceptors in organic photovoltaic devices, is measured by lowtemperature photoelectron spectroscopy for the first time. The obtained value of 2.63(1) eV is only ca. 0.05 eV lower than that of C60 (2.68(1) eV), compared to a 0.09 V difference in their E1/2 values measured in this work by cyclic voltammetry. Literature E(LUMO) values for PCBM that are typically estimated from cyclic voltammetry, and commonly used as a quantitative measure of acceptor properties, are dispersed over a wide range between -4.3 and -3.62 eV; themore » reasons for such a huge discrepancy are analyzed here, and the protocol for reliable and consistent estimations of relative fullerene-based acceptor strength in solution is proposed.« less
Hartzell, P L; Escalante-Semerena, J C; Bobik, T A; Wolfe, R S
1988-01-01
Different preparations of the methylreductase were tested in a simplified methylcoenzyme M methylreductase assay with artificial electron donors under a nitrogen atmosphere. ATP and Mg2+ stimulated the reaction. Tris(2,2'-bipyridine)ruthenium (II), chromous chloride, chromous acetate, titanium III citrate, 2,8-diaminoacridine, formamidinesulfinic acid, cob(I)alamin (B12s), and dithiothreitol were tested as electron donors; the most effective donor was titanium III citrate. Methylreductase (component C) was prepared by 80% ammonium sulfate precipitation, 70% ammonium sulfate precipitation, phenyl-Sepharose chromatography, Mono Q column chromatography, DEAE-cellulose column chromatography, or tetrahydromethanopterin affinity column chromatography. Methylreductase preparations which were able to catalyze methanogenesis in the simplified reaction mixture contained contaminating proteins. Homogeneous component C obtained from a tetrahydromethanopterin affinity column was not active in the simplified assay but was active in a methylreductase assay that contained additional protein components. Images PMID:3372480
Gao, Ying-Duo; Hu, Yuan; Crespo, Alejandro; Wang, Deping; Armacost, Kira A; Fells, James I; Fradera, Xavier; Wang, Hongwu; Wang, Huijun; Sherborne, Brad; Verras, Andreas; Peng, Zhengwei
2018-01-01
The 2016 D3R Grand Challenge 2 includes both pose and affinity or ranking predictions. This article is focused exclusively on affinity predictions submitted to the D3R challenge from a collaborative effort of the modeling and informatics group. Our submissions include ranking of 102 ligands covering 4 different chemotypes against the FXR ligand binding domain structure, and the relative binding affinity predictions of the two designated free energy subsets of 15 and 18 compounds. Using all the complex structures prepared in the same way allowed us to cover many types of workflows and compare their performances effectively. We evaluated typical workflows used in our daily structure-based design modeling support, which include docking scores, force field-based scores, QM/MM, MMGBSA, MD-MMGBSA, and MacroModel interaction energy estimations. The best performing methods for the two free energy subsets are discussed. Our results suggest that affinity ranking still remains very challenging; that the knowledge of more structural information does not necessarily yield more accurate predictions; and that visual inspection and human intervention are considerably important for ranking. Knowledge of the mode of action and protein flexibility along with visualization tools that depict polar and hydrophobic maps are very useful for visual inspection. QM/MM-based workflows were found to be powerful in affinity ranking and are encouraged to be applied more often. The standardized input and output enable systematic analysis and support methodology development and improvement for high level blinded predictions.
NASA Astrophysics Data System (ADS)
Gao, Ying-Duo; Hu, Yuan; Crespo, Alejandro; Wang, Deping; Armacost, Kira A.; Fells, James I.; Fradera, Xavier; Wang, Hongwu; Wang, Huijun; Sherborne, Brad; Verras, Andreas; Peng, Zhengwei
2018-01-01
The 2016 D3R Grand Challenge 2 includes both pose and affinity or ranking predictions. This article is focused exclusively on affinity predictions submitted to the D3R challenge from a collaborative effort of the modeling and informatics group. Our submissions include ranking of 102 ligands covering 4 different chemotypes against the FXR ligand binding domain structure, and the relative binding affinity predictions of the two designated free energy subsets of 15 and 18 compounds. Using all the complex structures prepared in the same way allowed us to cover many types of workflows and compare their performances effectively. We evaluated typical workflows used in our daily structure-based design modeling support, which include docking scores, force field-based scores, QM/MM, MMGBSA, MD-MMGBSA, and MacroModel interaction energy estimations. The best performing methods for the two free energy subsets are discussed. Our results suggest that affinity ranking still remains very challenging; that the knowledge of more structural information does not necessarily yield more accurate predictions; and that visual inspection and human intervention are considerably important for ranking. Knowledge of the mode of action and protein flexibility along with visualization tools that depict polar and hydrophobic maps are very useful for visual inspection. QM/MM-based workflows were found to be powerful in affinity ranking and are encouraged to be applied more often. The standardized input and output enable systematic analysis and support methodology development and improvement for high level blinded predictions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Asath, R. Mohamed; Premkumar, S.; Mathavan, T.
2016-05-23
The conformational analysis was carried out for 2-amino-3-chloro-5-trifluoromethylpyridine using potential energy surface (PES) scan and the most stable optimized conformer was predicted. The theoretical vibrational frequencies were calculated for the optimized geometry using DFT/B3LYP cc-pVQZ basis set by Gaussian 09 Program. The vibrational frequencies were assigned on the basis of potential energy distribution calculation using VEDA 4.0 program package. The Mulliken atomic charge values were calculated. In the Frontier molecular orbitals analysis, the molecular reactivity, kinetic stability, intermolecular charge transfer studies and the calculation of ionization energy, electron affinity, global hardness, chemical potential, electrophilicity index and softness of the moleculemore » were carried out. The nonlinear optical (NLO) activity was studied and the first order hyperpolarizability value was computed, which was 3.48 times greater than the urea. The natural bond orbital analysis was also performed to confirm the NLO activity of the molecule. Hence, the ACTP molecule is a promising candidate for NLO materials.« less
NASA Astrophysics Data System (ADS)
Asath, R. Mohamed; Premkumar, S.; Rekha, T. N.; Jawahar, A.; Mathavan, T.; Benial, A. Milton Franklin
2016-05-01
The conformational analysis was carried out for 2-amino-3-chloro-5-trifluoromethylpyridine using potential energy surface (PES) scan and the most stable optimized conformer was predicted. The theoretical vibrational frequencies were calculated for the optimized geometry using DFT/B3LYP cc-pVQZ basis set by Gaussian 09 Program. The vibrational frequencies were assigned on the basis of potential energy distribution calculation using VEDA 4.0 program package. The Mulliken atomic charge values were calculated. In the Frontier molecular orbitals analysis, the molecular reactivity, kinetic stability, intermolecular charge transfer studies and the calculation of ionization energy, electron affinity, global hardness, chemical potential, electrophilicity index and softness of the molecule were carried out. The nonlinear optical (NLO) activity was studied and the first order hyperpolarizability value was computed, which was 3.48 times greater than the urea. The natural bond orbital analysis was also performed to confirm the NLO activity of the molecule. Hence, the ACTP molecule is a promising candidate for NLO materials.
NASA Astrophysics Data System (ADS)
Asath, R. Mohamed; Premkumar, R.; Mathavan, T.; Benial, A. Milton Franklin
2017-05-01
The conformational analysis was carried out for N,N-Di-Boc-2-amino pyridine using potential energy surface (PES) scan and the most stable optimized conformer was predicted. The theoretical vibrational frequencies were calculated for the optimized geometry using DFT/B3LYP cc-pVTZ basis set by Gaussian 09 Program. The vibrational frequencies were assigned on the basis of potential energy distribution calculation using VEDA 4.0 program package. The Mulliken atomic charge values were calculated. In the Frontier molecular orbitals analysis, the molecular reactivity, kinetic stability, intermolecular charge transfer studies and the calculation of ionization energy, electron affinity, global hardness, chemical potential, electrophilicity index and softness of the molecule were carried out. The nonlinear optical (NLO) activity was examined and the first order hyperpolarizability value was computed, which was 2.27 times greater than the urea. The natural bond orbital analysis was also performed to confirm the NLO activity of the molecule. Hence, the DBAP molecule is a promising candidate for NLO materials.
A theoretical study of the photoinduced desorption of I — from a CF3I dimer
NASA Astrophysics Data System (ADS)
Tossell, J. A.
1997-04-01
Ab initio SCF-MO calculations using effective core-potential basis sets are employed to evaluate ionization potentials and electron affinities for CF3I and the geometries and energies of the singlet and triplet states of the CF3I dimer. The calculated geometry of the single state of the dimer is in qualitative agreement with the experimental geometry for condensed phase CF3I. The calculated energy for vertical excitation from the singlet to the triplet state is 4.1 eV at the Hartree-Fock level and 4.5 eV after incorporation of correlation at the Moller-Plesset 2nd-order level, consistent with excitation by 193 nm (6.4 eV) light. The equilibrium geometry of the triplet consists essentially of a CF3I+, CF3I- ion pair, in which the Csbnd I bond distance in the anionic component has increased to 5.5Å, compared with 2.1Åin the neutral molecule. The calculated binding energy of the triplet ion pair is about 4 eV.
Copper and the oxidation of hemoglobin: a comparison of horse and human hemoglobins.
Rifkind, J M; Lauer, L D; Chiang, S C; Li, N C
1976-11-30
Oxidation studies of hemoglobin by Cu(II) indicate that for horse hemoglobin, up to a Cu(II)/heme molar ratio of 0.5, all of the Cu(II) added is used to rapidly oxidize the heme. On the other hand, most of the Cu(II) added to human hemoglobin at low Cu(II)/heme molar ratios is unable to oxidize the heme. Only at Cu(II)/heme molar ratios greater than 0.5 does the amount of oxidation per added Cu(II) approach that of horse hemoglobin. At the same time, binding studies indicate that human hemoglobin has an additional binding site involving one copper for every two hemes, which has a higher copper affinity than the single horse hemoglobin binding site. The Cu(II) oxidation of human hemoglobin is explained utilizing this additional binding site by a mechanism where a transfer of electrons cannot occur between the heme and the Cu(II) bound to the high affinity human binding site. The electron transfer must involve the Cu(II) bound to the lower affinity human hemoglobin binding site, which is similar to the only horse hemoglobin site. The involvement of beta-2 histidine in the binding of this additional copper is indicated by a comparison of the amino acid sequences of various hemoglobins which possess the additional site, with the amino acid sequences of hemoglobins which do not possess the additional site. Zn(II), Hg(II), and N-ethylmaleimide (NEM) are found to decrease the Cu(II) oxidation of hemoglobin. The sulfhydryl reagents, Hg(II) and NEM, produce a very dramatic decrease in the rate of oxidation, which can only be explained by an effect on the rate for the actual transfer of electrons between the Cu(II) and the Fe(II). The effect of Zn(II) is much smaller and can, for the most part, be explained by the increased oxygen affinity, which affects the ligand dissociation process that must precede the electron transfer process.
Furer, V L; Vandyukov, A E; Majoral, J P; Caminade, A M; Gottis, S; Laurent, R; Kovalenko, V I
2018-05-29
The interaction of the phosphoric dendrimer with gold was performed by means of vibrational spectroscopy and quantum chemistry. Stable complexes are formed with a PN-PS linkage, whereas with an isolated PS bond this does not occur. The change in geometric parameters and delocalization of electric charge under the influence of gold was discovered. The classification of bands in the experimental vibrational spectra of the dendrimer and its complex was carried out. HOMO of molecule of the dendrimer is localized on the SPNP linkage, whereas the LUMO is located on the terminal group. In the SPNP linkage there is a noticeable delocalization of the charge which leads to a change in the reactivity of this group. Interaction energy was estimated as the difference between the energies of the complex and the energies of the molecules of the dendrimer G' 0 and two molecules AuCl and is equal to 25.2 eV. The ionization energy IE and electron affinity EA for AuCl are higher than for dendrimer, therefore, when the complex is formed, these quantities increases. Chemical potential and the electrophilicity index in the complex also increases. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Sulea, Traian; Hogues, Hervé; Purisima, Enrico O.
2012-05-01
We carried out a prospective evaluation of the utility of the SIE (solvation interaction energy) scoring function for virtual screening and binding affinity prediction. Since experimental structures of the complexes were not provided, this was an exercise in virtual docking as well. We used our exhaustive docking program, Wilma, to provide high-quality poses that were rescored using SIE to provide binding affinity predictions. We also tested the combination of SIE with our latest solvation model, first shell of hydration (FiSH), which captures some of the discrete properties of water within a continuum model. We achieved good enrichment in virtual screening of fragments against trypsin, with an area under the curve of about 0.7 for the receiver operating characteristic curve. Moreover, the early enrichment performance was quite good with 50% of true actives recovered with a 15% false positive rate in a prospective calculation and with a 3% false positive rate in a retrospective application of SIE with FiSH. Binding affinity predictions for both trypsin and host-guest complexes were generally within 2 kcal/mol of the experimental values. However, the rank ordering of affinities differing by 2 kcal/mol or less was not well predicted. On the other hand, it was encouraging that the incorporation of a more sophisticated solvation model into SIE resulted in better discrimination of true binders from binders. This suggests that the inclusion of proper Physics in our models is a fruitful strategy for improving the reliability of our binding affinity predictions.
Accurate Binding Free Energy Predictions in Fragment Optimization.
Steinbrecher, Thomas B; Dahlgren, Markus; Cappel, Daniel; Lin, Teng; Wang, Lingle; Krilov, Goran; Abel, Robert; Friesner, Richard; Sherman, Woody
2015-11-23
Predicting protein-ligand binding free energies is a central aim of computational structure-based drug design (SBDD)--improved accuracy in binding free energy predictions could significantly reduce costs and accelerate project timelines in lead discovery and optimization. The recent development and validation of advanced free energy calculation methods represents a major step toward this goal. Accurately predicting the relative binding free energy changes of modifications to ligands is especially valuable in the field of fragment-based drug design, since fragment screens tend to deliver initial hits of low binding affinity that require multiple rounds of synthesis to gain the requisite potency for a project. In this study, we show that a free energy perturbation protocol, FEP+, which was previously validated on drug-like lead compounds, is suitable for the calculation of relative binding strengths of fragment-sized compounds as well. We study several pharmaceutically relevant targets with a total of more than 90 fragments and find that the FEP+ methodology, which uses explicit solvent molecular dynamics and physics-based scoring with no parameters adjusted, can accurately predict relative fragment binding affinities. The calculations afford R(2)-values on average greater than 0.5 compared to experimental data and RMS errors of ca. 1.1 kcal/mol overall, demonstrating significant improvements over the docking and MM-GBSA methods tested in this work and indicating that FEP+ has the requisite predictive power to impact fragment-based affinity optimization projects.
Azam, Faizul; Alabdullah, Nada Hussin; Ehmedat, Hadeel Mohammed; Abulifa, Abdullah Ramadan; Taban, Ismail; Upadhyayula, Sreedevi
2018-06-01
Aggregation of amyloid beta (Aβ) protein considered as one of contributors in development of Alzheimer's disease (AD). Several investigations have identified the importance of non-steroidal anti-inflammatory drugs (NSAIDs) as Aβ aggregation inhibitors. Here, we have examined the binding interactions of 24 NSAIDs belonging to eight different classes, with Aβ fibrils by exploiting docking and molecular dynamics studies. Minimum energy conformation of the docked NSAIDs were further optimized by density functional theory (DFT) employing Becke's three-parameter hybrid model, Lee-Yang-Parr (B3LYP) correlation functional method. DFT-based global reactivity descriptors, such as electron affinity, hardness, softness, chemical potential, electronegativity, and electrophilicity index were calculated to inspect the expediency of these descriptors for understanding the reactive nature and sites of the molecules. Few selected NSAID-Aβ fibrils complexes were subjected to molecular dynamics simulation to illustrate the stability of these complexes and the most prominent interactions during the simulated trajectory. All of the NSAIDs exhibited potential activity against Aβ fibrils in terms of predicted binding affinity. Sulindac was found to be the most active compound underscoring the contribution of indene methylene substitution, whereas acetaminophen was observed as least active NSAID. General structural requirements for interaction of NSAIDs with Aβ fibril include: aryl/heteroaryl aromatic moiety connected through a linker of 1-2 atoms to a distal aromatic group. Considering these structural requirements and electronic features, new potent agents can be designed and developed as potential Aβ fibril inhibitors for the treatment of AD.
Agapito, Filipe; Santos, Rui C; Borges dos Santos, Rui M; Martinho Simões, José A
2015-03-26
The gas-phase enthalpy of formation of cubane (603.4 ± 4 kJ mol(-1)) was calculated using an explicitly correlated composite method (W1-F12). The result obtained for cubane, together with the experimental value for the enthalpy of sublimation, 54.8 ± 2.0 kJ mol(-1), led to 548.6 ± 4.5 kJ mol(-1) for the solid-phase enthalpy of formation. This value is only 6.8 kJ mol(-1) higher than the 50-year-old original calorimetric result. The carbon-hydrogen bond dissociation enthalpy (C-H BDE) of cubane (438.4 ± 4 kJ mol(-1)), together with properties relevant for its experimental determination using gas-phase ion thermochemistry, namely the cubane gas-phase acidity (1704.6 ± 4 kJ mol(-1)), cubyl radical electron affinity (45.8 ± 4 kJ mol(-1)), cubane ionization energy (1435.1 ± 4 kJ mol(-1)), cubyl radical cation proton affinity (918.8 ± 4 kJ mol(-1)), cubane cation appearance energy (1099.6 ± 4 kJ mol(-1)), and cubyl ionization energy (661.2 ± 4 kJ mol(-1)), were also determined. These values were compared with those calculated for unstrained hydrocarbons (viz., methane, ethane, and isobutane). The strain energy of cubane (667.2 kJ mol(-1)) and cubyl radical (689.4 kJ mol(-1)) were independently estimated via quasihomodesmotic reactions. These values were related via a simple model to the C-H BDE in cubane. Taking into account the accuracy of the computational method, the comparison with high-precision experimental results, and the data consistency afforded by the relevant thermodynamic cycles, we claim an uncertainty better than ±4 kJ mol(-1) for the new enthalpy of formation values presented.
Weiss, Shimon [Pinole, CA; Bruchez, Jr., Marcel; Alivisatos, Paul [Oakland, CA
2008-01-01
A semiconductor nanocrystal compound is described capable of linking to an affinity molecule. The compound comprises (1) a semiconductor nanocrystal capable of emitting electromagnetic radiation and/or absorbing energy, and/or scattering or diffracting electromagnetic radiation--when excited by an electromagnetic radiation source or a particle beam; and (2) an affinity molecule linked to the semiconductor nanocrystal. The semiconductor nanocrystal is linked to an affinity molecule to form a semiconductor nanocrystal probe capable of bonding with a detectable substance. Exposure of the semiconductor nanocrystal to excitation energy will excite the semiconductor nanocrystal causing the emission of electromagnetic radiation. Further described are processes for respectively: making the luminescent semiconductor nanocrystal compound; making the semiconductor nanocrystal probe; and using the probe to determine the presence of a detectable substance in a material.
SAMPL4 & DOCK3.7: lessons for automated docking procedures
NASA Astrophysics Data System (ADS)
Coleman, Ryan G.; Sterling, Teague; Weiss, Dahlia R.
2014-03-01
The SAMPL4 challenges were used to test current automated methods for solvation energy, virtual screening, pose and affinity prediction of the molecular docking pipeline DOCK 3.7. Additionally, first-order models of binding affinity were proposed as milestones for any method predicting binding affinity. Several important discoveries about the molecular docking software were made during the challenge: (1) Solvation energies of ligands were five-fold worse than any other method used in SAMPL4, including methods that were similarly fast, (2) HIV Integrase is a challenging target, but automated docking on the correct allosteric site performed well in terms of virtual screening and pose prediction (compared to other methods) but affinity prediction, as expected, was very poor, (3) Molecular docking grid sizes can be very important, serious errors were discovered with default settings that have been adjusted for all future work. Overall, lessons from SAMPL4 suggest many changes to molecular docking tools, not just DOCK 3.7, that could improve the state of the art. Future difficulties and projects will be discussed.
Oosterhout, S. D.; Kopidakis, N.; Owczarczyk, Z. R.; ...
2015-04-07
There have been remarkable improvements in the power conversion efficiency of solution-processable Organic Photovoltaics (OPV) have largely been driven by the development of novel narrow bandgap copolymer donors comprising an electron-donating (D) and an electron-withdrawing (A) group within the repeat unit. The large pool of potential D and A units and the laborious processes of chemical synthesis and device optimization, has made progress on new high efficiency materials slow with a few new efficient copolymers reported every year despite the large number of groups pursuing these materials. In our paper we present an integrated approach toward new narrow bandgap copolymersmore » that uses theory to guide the selection of materials to be synthesized based on their predicted energy levels, and time-resolved microwave conductivity (TRMC) to select the best-performing copolymer–fullerene bulk heterojunction to be incorporated into complete OPV devices. We validate our methodology by using a diverse group of 12 copolymers, including new and literature materials, to demonstrate good correlation between (a) theoretically determined energy levels of polymers and experimentally determined ionization energies and electron affinities and (b) photoconductance, measured by TRMC, and OPV device performance. The materials used here also allow us to explore whether further copolymer design rules need to be incorporated into our methodology for materials selection. For example, we explore the effect of the enthalpy change (ΔH) during exciton dissociation on the efficiency of free charge carrier generation and device efficiency and find that ΔH of -0.4 eV is sufficient for efficient charge generation.« less
Mulder, R Joshua; Guerra, Célia Fonseca; Bickelhaupt, F Matthias
2010-07-22
We have computed the methyl cation affinities in the gas phase of archetypal anionic and neutral bases across the periodic table using ZORA-relativistic density functional theory (DFT) at BP86/QZ4P//BP86/TZ2P. The main purpose of this work is to provide the methyl cation affinities (and corresponding entropies) at 298 K of all anionic (XH(n-1)(-)) and neutral bases (XH(n)) constituted by maingroup-element hydrides of groups 14-17 and the noble gases (i.e., group 18) along the periods 2-6. The cation affinity of the bases decreases from H(+) to CH(3)(+). To understand this trend, we have carried out quantitative bond energy decomposition analyses (EDA). Quantitative correlations are established between the MCA and PA values.
Noo Peroxy Isomer Exposed with Velocity-Map Imaging
NASA Astrophysics Data System (ADS)
Laws, Benjamin A.; Cavanagh, Steven J.; Lewis, Brenton R.; Gibson, Stephen T.
2016-06-01
O2, a toxic gas formed in most combustion processes, plays an important role in the Earth's atmosphere due to its role in the production of both photochemical smog and tropospheric ozone. The existence of the peroxy radial, NOO, has been proposed, both as a collision reaction intermediate, and as a negative-ion in some discharge sources, in order to account for extended tails seen in some photoelectron spectra. In this work a velocity-mapped image of NO2- photodetachment measured at 519 nm, shown, reveals high-energy electron structure, that persists at detachment energies lower than the electron affinity of ONO, 2.273 eV. {b} The central ring has the spectral signature of O^-, while the outer-ripples, that appear in character to be similar to NO- detachment, are, we propose due to the NOO- peroxy radical, which is also responsible for the presence of O-. The photoelectron spectrum resolves the vibrational structure to characterize the neutral peroxy radical. The identification is further supported by ab initio calculations. The photoelectron angular distributions associated with the peroxy radical have a negative anisotropy parameter, opposite in sign to detachment from ONO^-. K. M. Ervin and J. Ho and W. C. Lineberger, J. Phys. Chem. 92, 5405 (1988). doi:10.1021/j100330a017 Research supported by the ARC DP160102585.
Molecular Determinants of Epidermal Growth Factor Binding: A Molecular Dynamics Study
Sanders, Jeffrey M.; Wampole, Matthew E.; Thakur, Mathew L.; Wickstrom, Eric
2013-01-01
The epidermal growth factor receptor (EGFR) is a member of the receptor tyrosine kinase family that plays a role in multiple cellular processes. Activation of EGFR requires binding of a ligand on the extracellular domain to promote conformational changes leading to dimerization and transphosphorylation of intracellular kinase domains. Seven ligands are known to bind EGFR with affinities ranging from sub-nanomolar to near micromolar dissociation constants. In the case of EGFR, distinct conformational states assumed upon binding a ligand is thought to be a determining factor in activation of a downstream signaling network. Previous biochemical studies suggest the existence of both low affinity and high affinity EGFR ligands. While these studies have identified functional effects of ligand binding, high-resolution structural data are lacking. To gain a better understanding of the molecular basis of EGFR binding affinities, we docked each EGFR ligand to the putative active state extracellular domain dimer and 25.0 ns molecular dynamics simulations were performed. MM-PBSA/GBSA are efficient computational approaches to approximate free energies of protein-protein interactions and decompose the free energy at the amino acid level. We applied these methods to the last 6.0 ns of each ligand-receptor simulation. MM-PBSA calculations were able to successfully rank all seven of the EGFR ligands based on the two affinity classes: EGF>HB-EGF>TGF-α>BTC>EPR>EPG>AR. Results from energy decomposition identified several interactions that are common among binding ligands. These findings reveal that while several residues are conserved among the EGFR ligand family, no single set of residues determines the affinity class. Instead we found heterogeneous sets of interactions that were driven primarily by electrostatic and Van der Waals forces. These results not only illustrate the complexity of EGFR dynamics but also pave the way for structure-based design of therapeutics targeting EGF ligands or the receptor itself. PMID:23382875
Tharakaraman, Kannan; Robinson, Luke N.; Hatas, Andrew; Chen, Yi-Ling; Siyue, Liu; Raguram, S.; Sasisekharan, V.; Wogan, Gerald N.; Sasisekharan, Ram
2013-01-01
Affinity improvement of proteins, including antibodies, by computational chemistry broadly relies on physics-based energy functions coupled with refinement. However, achieving significant enhancement of binding affinity (>10-fold) remains a challenging exercise, particularly for cross-reactive antibodies. We describe here an empirical approach that captures key physicochemical features common to antigen–antibody interfaces to predict protein–protein interaction and mutations that confer increased affinity. We apply this approach to the design of affinity-enhancing mutations in 4E11, a potent cross-reactive neutralizing antibody to dengue virus (DV), without a crystal structure. Combination of predicted mutations led to a 450-fold improvement in affinity to serotype 4 of DV while preserving, or modestly increasing, affinity to serotypes 1–3 of DV. We show that increased affinity resulted in strong in vitro neutralizing activity to all four serotypes, and that the redesigned antibody has potent antiviral activity in a mouse model of DV challenge. Our findings demonstrate an empirical computational chemistry approach for improving protein–protein docking and engineering antibody affinity, which will help accelerate the development of clinically relevant antibodies. PMID:23569282
Prediction of Mass Spectral Response Factors from Predicted Chemometric Data for Druglike Molecules
NASA Astrophysics Data System (ADS)
Cramer, Christopher J.; Johnson, Joshua L.; Kamel, Amin M.
2017-02-01
A method is developed for the prediction of mass spectral ion counts of drug-like molecules using in silico calculated chemometric data. Various chemometric data, including polar and molecular surface areas, aqueous solvation free energies, and gas-phase and aqueous proton affinities were computed, and a statistically significant relationship between measured mass spectral ion counts and the combination of aqueous proton affinity and total molecular surface area was identified. In particular, through multilinear regression of ion counts on predicted chemometric data, we find that log10(MS ion counts) = -4.824 + c 1•PA + c 2•SA, where PA is the aqueous proton affinity of the molecule computed at the SMD(aq)/M06-L/MIDI!//M06-L/MIDI! level of electronic structure theory, SA is the total surface area of the molecule in its conjugate base form, and c 1 and c 2 have values of -3.912 × 10-2 mol kcal-1 and 3.682 × 10-3 Å-2. On a 66-molecule training set, this regression exhibits a multiple R value of 0.791 with p values for the intercept, c 1, and c 2 of 1.4 × 10-3, 4.3 × 10-10, and 2.5 × 10-6, respectively. Application of this regression to an 11-molecule test set provides a good correlation of prediction with experiment ( R = 0.905) albeit with a systematic underestimation of about 0.2 log units. This method may prove useful for semiquantitative analysis of drug metabolites for which MS response factors or authentic standards are not readily available.
Affine group formulation of the Standard Model coupled to gravity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chou, Ching-Yi, E-mail: l2897107@mail.ncku.edu.tw; Ita, Eyo, E-mail: ita@usna.edu; Soo, Chopin, E-mail: cpsoo@mail.ncku.edu.tw
In this work we apply the affine group formalism for four dimensional gravity of Lorentzian signature, which is based on Klauder’s affine algebraic program, to the formulation of the Hamiltonian constraint of the interaction of matter and all forces, including gravity with non-vanishing cosmological constant Λ, as an affine Lie algebra. We use the hermitian action of fermions coupled to gravitation and Yang–Mills theory to find the density weight one fermionic super-Hamiltonian constraint. This term, combined with the Yang–Mills and Higgs energy densities, are composed with York’s integrated time functional. The result, when combined with the imaginary part of themore » Chern–Simons functional Q, forms the affine commutation relation with the volume element V(x). Affine algebraic quantization of gravitation and matter on equal footing implies a fundamental uncertainty relation which is predicated upon a non-vanishing cosmological constant. -- Highlights: •Wheeler–DeWitt equation (WDW) quantized as affine algebra, realizing Klauder’s program. •WDW formulated for interaction of matter and all forces, including gravity, as affine algebra. •WDW features Hermitian generators in spite of fermionic content: Standard Model addressed. •Constructed a family of physical states for the full, coupled theory via affine coherent states. •Fundamental uncertainty relation, predicated on non-vanishing cosmological constant.« less
Zhang, Qibin; Tang, Ning; Brock, Jonathan W. C.; Mottaz, Heather M.; Ames, Jennifer M.; Baynes, John W.; Smith, Richard D.; Metz, Thomas O.
2008-01-01
Non-enzymatic glycation of peptides and proteins by D-glucose has important implications in the pathogenesis of diabetes mellitus, particularly in the development of diabetic complications. However, no effective high-throughput methods exist for identifying proteins containing this low abundance post-translational modification in bottom-up proteomic studies. In this report, phenylboronate affinity chromatography was used in a two-step enrichment scheme to selectively isolate first glycated proteins and then glycated, tryptic peptides from human serum glycated in vitro. Enriched peptides were subsequently analyzed by alternating electron transfer dissociation (ETD) and collision induced dissociation (CID) tandem mass spectrometry. ETD fragmentation mode permitted identification of a significantly higher number of glycated peptides (87.6% of all identified peptides) versus CID mode (17.0% of all identified peptides), when utilizing enrichment on first the protein and then the peptide level. This study illustrates that phenylboronate affinity chromatography coupled with LC-MS/MS and using ETD as the fragmentation mode is an efficient approach for analysis of glycated proteins and may have broad application in studies of diabetes mellitus. PMID:17488106
Alkali Metal Cation versus Proton and Methyl Cation Affinities: Structure and Bonding Mechanism
Boughlala, Zakaria; Fonseca Guerra, Célia
2016-01-01
Abstract We have analyzed the structure and bonding of gas‐phase Cl−X and [HCl−X]+ complexes for X+= H+, CH3 +, Li+, and Na+, using relativistic density functional theory (DFT). We wish to establish a quantitative trend in affinities of the anionic and neutral Lewis bases Cl− and HCl for the various cations. The Cl−X bond becomes longer and weaker along X+ = H+, CH3 +, Li+, and Na+. Our main purpose is to understand the heterolytic bonding mechanism behind the intrinsic (i.e., in the absence of solvent) alkali metal cation affinities (AMCA) and how this compares with and differs from those of the proton affinity (PA) and methyl cation affinity (MCA). Our analyses are based on Kohn–Sham molecular orbital (KS‐MO) theory in combination with a quantitative energy decomposition analysis (EDA) that pinpoints the importance of the different features in the bonding mechanism. Orbital overlap appears to play an important role in determining the trend in cation affinities. PMID:27551660
NASA Astrophysics Data System (ADS)
Arjunan, V.; Santhanam, R.; Marchewka, M. K.; Mohan, S.; Yang, Haifeng
2015-11-01
Tapentadol is a novel opioid pain reliever drug with a dual mechanism of action, having potency between morphine and tramadol. Quantum chemical calculations have been carried out for tapentadol hydrochloride (TAP.Cl) to determine the properties. The geometry is optimised and the structural properties of the compound were determined from the optimised geometry by B3LYP method using 6-311++G(d,p), 6-31G(d,p) and cc-pVDZ basis sets. FT-IR and FT-Raman spectra are recorded in the solid phase in the region of 4000-400 and 4000-100 cm-1, respectively. Frontier molecular orbital energies, LUMO-HOMO energy gap, ionisation potential, electron affinity, electronegativity, hardness and chemical potential are also calculated. The stability of the molecule arising from hyperconjugative interactions and charge delocalisation has been analysed using NBO analysis. The 1H and 13C nuclear magnetic resonance chemical shifts of the molecule are analysed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stoerzinger, Kelsey A.; Hong, Wesley T.; Wang, Xiao Renshaw
Understanding the interaction between oxides and water is critical to design many of their functionalities, including the electrocatalysis of molecular oxygen reduction. In this study, we probed the hydroxylation of model (001)-oriented La(1-x)SrxMnO3 (LSMO) perovskite surfaces, where the electronic structure and manganese valence was controlled by five substitution levels of lanthanum with strontium, using ambient pressure X-ray photoelectron spectroscopy in a humid environment. The degree of hydroxyl formation on the oxide surface correlated with the proximity of the valence band center relative to the Fermi level. LSMO perovskites with a valence band center closer to the Fermi level were moremore » reactive toward water, forming more hydroxyl species at a given relative humidity. More hydroxyl species correlate with greater electron-donating character to the surface free energy in wetting, and reduce the activity to catalyze oxygen reduction reaction (ORR) kinetics in basic solution. New strategies to design more active catalysts should include design of electronically conducting oxides with lower valence band centers relative to the Fermi level at ORR-relevant potentials.« less
NASA Astrophysics Data System (ADS)
Cook, Shannon L.; Jackson, Glen P.
2011-02-01
The fragmentation behavior of nitrated and S-nitrosylated peptides were studied using collision induced dissociation (CID) and metastable atom-activated dissociation mass spectrometry (MAD-MS). Various charge states, such as 1+, 2+, 3+, 2-, of modified and unmodified peptides were exposed to a beam of high kinetic energy helium (He) metastable atoms resulting in extensive backbone fragmentation with significant retention of the post-translation modifications (PTMs). Whereas the high electron affinity of the nitrotyrosine moiety quenches radical chemistry and fragmentation in electron capture dissociation (ECD) and electron transfer dissociation (ETD), MAD does produce numerous backbone cleavages in the vicinity of the modification. Fragment ions of nitrosylated cysteine modifications typically exhibit more abundant neutral losses than nitrated tyrosine modifications because of the extremely labile nature of the nitrosylated cysteine residues. However, compared with CID, MAD produced between 66% and 86% more fragment ions, which preserved the labile -NO modification. MAD was also able to differentiate I/L residues in the modified peptides. MAD is able to induce radical ion chemistry even in the presence of strong radical traps and therefore offers unique advantages to ECD, ETD, and CID for determination of PTMs such as nitrated and S-nitrosylated peptides.
NASA Astrophysics Data System (ADS)
Haruyama, Tetsuya; Wakabayashi, Ryo; Cho, Takeshi; Matsuyama, Sho-taro
2011-10-01
Photo-excited current can be generated at a molecular interface between a photo-excited molecules and a semi-conductive material in appropriate condition. The system has been recognized for promoting photo-energy devices such as an organic dye sensitized solar-cell. The photo-current generated reactions are totally dependent on the interfacial energy reactions, which are in a highly fluctuated interfacial environment. The authors investigated the photo-excited current reaction to develop a smart affinity detection method. However, in order to perform both an affinity reaction and a photo-excited current reaction at a molecular interface, ordered fabrications of the functional (affinity, photo-excitation, etc.) molecules layer on a semi-conductive surface is required. In the present research, we would like to present the fabrication and functional performance of photo-excited current-based affinity assay device and its application for detection of endocrine disrupting chemicals. On the FTO surface, fluorescent pigment labelled affinity peptide was immobilized through the EC tag (electrochemical-tag) method. The modified FTO produced a current when it was irradiated with diode laser light. However, the photo current decreased drastically when estrogen (ES) coexisted in the reaction solution. In this case, immobilized affinity probe molecules formed a complex with ES and estrogen receptor (ER). The result strongly suggests that the photo-excited current transduction between probe molecule-labelled cyanine pigment and the FTO surface was partly inhibited by a complex that formed at the affinity oligo-peptide region in a probe molecule on the FTO electrode. The bound bulky complex may act as an impediment to perform smooth transduction of photo-excited current in the molecular interface. The present system is new type of photo-reaction-based analysis. This system can be used to perform simple high-sensitive homogeneous assays.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Wei-Li; Jian, Tian; Lopez, Gary V.
2014-03-07
The electronic structures of actinide systems are extremely complicated and pose considerable challenges both experimentally and theoretically because of significant electron correlation and relativistic effects. Here we report an investigation of the electronic structure and chemical bonding of uranium dioxides, UO{sub 2}{sup −} and UO{sub 2}, using photoelectron spectroscopy and relativistic quantum chemistry. The electron affinity of UO{sub 2} is measured to be 1.159(20) eV. Intense detachment bands are observed from the UO{sub 2}{sup −} low-lying (7sσ{sub g}){sup 2}(5fϕ{sub u}){sup 1} orbitals and the more deeply bound O2p-based molecular orbitals which are separated by a large energy gap from themore » U-based orbitals. Surprisingly, numerous weak photodetachment transitions are observed in the gap region due to extensive two-electron transitions, suggesting strong electron correlations among the (7sσ{sub g}){sup 2}(5fϕ{sub u}){sup 1} electrons in UO{sub 2}{sup −} and the (7sσ{sub g}){sup 1}(5fϕ{sub u}){sup 1} electrons in UO{sub 2}. These observations are interpreted using multi-reference ab initio calculations with inclusion of spin-orbit coupling. The strong electron correlations and spin-orbit couplings generate orders-of-magnitude more detachment transitions from UO{sub 2}{sup −} than expected on the basis of the Koopmans’ theorem. The current experimental data on UO{sub 2}{sup −} provide a long-sought opportunity to arbitrating various relativistic quantum chemistry methods aimed at handling systems with strong electron correlations.« less
Lamar, William L.; Goerlitz, Donald F.; Law, LeRoy M.
1965-01-01
Pesticides, in minute quantities, may affect the regimen of streams, and because they may concentrate in sediments, aquatic organisms, and edible aquatic foods, their detection and their measurement in the parts-per-trillion range are considered essential. In 1964 the U.S. Geological Survey at Menlo Park, Calif., began research on methods for monitoring pesticides in water. Two systems were selected--electron-capture gas chromatography and microcoulometric-titration gas chromatography. Studies on these systems are now in progress. This report provides current information on the development and application of an electron-capture gas chromatographic procedure. This method is a convenient and extremely sensitive procedure for the detection and measurement of organic pesticides having high electron affinities, notably the chlorinated organic pesticides. The electron-affinity detector is extremely sensitive to these substances but it is not as sensitive to many other compounds. By this method, the chlorinated organic pesticide may be determined on a sample of convenient size in concentrations as low as the parts-per-trillion range. To insure greater accuracy in the identifications, the pesticides reported were separated and identified by their retention times on two different types of gas chromatographic columns.
Multiconfiguration Pair-Density Functional Theory: A New Way To Treat Strongly Correlated Systems.
Gagliardi, Laura; Truhlar, Donald G; Li Manni, Giovanni; Carlson, Rebecca K; Hoyer, Chad E; Bao, Junwei Lucas
2017-01-17
The electronic energy of a system provides the Born-Oppenheimer potential energy for internuclear motion and thus determines molecular structure and spectra, bond energies, conformational energies, reaction barrier heights, and vibrational frequencies. The development of more efficient and more accurate ways to calculate the electronic energy of systems with inherently multiconfigurational electronic structure is essential for many applications, including transition metal and actinide chemistry, systems with partially broken bonds, many transition states, and most electronically excited states. Inherently multiconfigurational systems are called strongly correlated systems or multireference systems, where the latter name refers to the need for using more than one ("multiple") configuration state function to provide a good zero-order reference wave function. This Account describes multiconfiguration pair-density functional theory (MC-PDFT), which was developed as a way to combine the advantages of wave function theory (WFT) and density functional theory (DFT) to provide a better treatment of strongly correlated systems. First we review background material: the widely used Kohn-Sham DFT (which uses only a single Slater determinant as reference wave function), multiconfiguration WFT methods that treat inherently multiconfigurational systems based on an active space, and previous attempts to combine multiconfiguration WFT with DFT. Then we review the formulation of MC-PDFT. It is a generalization of Kohn-Sham DFT in that the electron kinetic energy and classical electrostatic energy are calculated from a reference wave function, while the rest of the energy is obtained from a density functional. However, there are two main differences with respent to Kohn-Sham DFT: (i) The reference wave function is multiconfigurational rather than being a single Slater determinant. (ii) The density functional is a function of the total density and the on-top pair density rather than being a function of the spin-up and spin-down densities. In work carried out so far, the multiconfigurational wave function is a multiconfiguration self-consistent-field wave function. The new formulation has the advantage that the reference wave function has the correct spatial and spin symmetry and can describe bond dissociation (of both single and multiple bonds) and electronic excitations in a formally and physically correct way. We then review the formulation of density functionals in terms of the on-top pair density. Finally we review successful applications of the theory to bond energies and bond dissociation potential energy curves of main-group and transition metal bonds, to barrier heights (including pericyclic reactions), to proton affinities, to the hydrogen bond energy of water dimer, to ground- and excited-state charge transfer, to valence and Rydberg excitations of molecules, and to singlet-triplet splittings of radicals. We find that that MC-PDFT can give accurate results not only with complete-active-space multiconfiguration wave functions but also with generalized-active-space multiconfiguration wave functions, which are practical for larger numbers of active electrons and active orbitals than are complete-active-space wave functions. The separated-pair approximation, which is a special case of generalized active space self-consistent-field theory, is especially promising. MC-PDFT, because it requires much less computer time and storage than pure WFT methods, has the potential to open larger and more complex strongly correlated systems to accurate simulation.
Optogalvanic photodetachment spectroscopy
NASA Technical Reports Server (NTRS)
Mcdermid, I. S.; Webster, C. R.
1983-01-01
A new extension to optogalvanic spectroscopy, in which electrons detached from negative ions formed in the discharge are observed as a function of incident laser wavelength, has been developed. The determination of the electron affinities of I(-) and Cl(-) atomic ions is described. The potential of the technique for studying the spectroscopy of molecular negative ions is also discussed.
Weiss, Shimon; Bruchez, Jr., Marcel; Alivisatos, Paul
2006-09-05
A semiconductor nanocrystal compound is described capable of linking to an affinity molecule. The compound comprises (1) a semiconductor nanocrystal capable of emitting electromagnetic radiation and/or absorbing energy, and/or scattering or diffracting electromagnetic radiation--when excited by an electromagnetic radiation source or a particle beam; and (2) at least one linking agent, having a first portion linked to the semiconductor nanocrystal and a second portion capable of linking to an affinity molecule. The compound is linked to an affinity molecule to form a semiconductor nanocrystal probe capable of bonding with a detectable substance. subsequent exposure to excitation energy will excite the semiconductor nanocrystal in the probe causing the emission of electromagnetic radiation. Further described are processes for respectively: making the luminescent semiconductor nanocrystal compound; making the semiconductor nanocrystal probe; and using the probe to determine the presence of a detectable substance in a material.
Weiss, Shimon [Pinole, CA; Bruchez, Jr., Marcel; Alivisatos, Paul [Oakland, CA
2004-03-02
A semiconductor nanocrystal compound is described capable of linking to an affinity molecule. The compound comprises (1) a semiconductor nanocrystal capable of emitting electromagnetic radiation and/or absorbing energy, and/or scattering or diffracting electromagnetic radiation--when excited by an electromagnetic radiation source or a particle beam; and (2) at least one linking agent, having a first portion linked to the semiconductor nanocrystal and a second portion capable of linking to an affinity molecule. The compound is linked to an affinity molecule to form a semiconductor nanocrystal probe capable of bonding with a detectable substance. Subsequent exposure to excitation energy will excite the semiconductor nanocrystal in the probe, causing the emission of electromagnetic radiation. Further described are processes for respectively: making the semiconductor nanocrystal compound; making the semiconductor nanocrystal probe; and using the probe to determine the presence of a detectable substance in a material.
Weiss, Shimon; Bruchez, Jr., Marcel; Alivisatos, Paul
2005-08-09
A semiconductor nanocrystal compound is described capable of linking to an affinity molecule. The compound comprises (1) a semiconductor nanocrystal capable of emitting electromagnetic radiation and/or absorbing energy, and/or scattering or diffracting electromagnetic radiation--when excited by an electromagnetic radiation source or a particle beam; and (2) at least one linking agent, having a first portion linked to the semiconductor nanocrystal and a second portion capable of linking to an affinity molecule. The compound is linked to an affinity molecule to form a semiconductor nanocrystal probe capable of bonding with a detectable substance. Subsequent exposure to excitation energy will excite the semiconductor nanocrystal in the probe causing the emission of electromagnetic radiation. Further described are processes for respectively: making the luminescent semiconductor nanocrystal compound; making the semiconductor nanocrystal probe; and using the probe to determine the presence of a detectable substance in a material.
Approximate scaling properties of RNA free energy landscapes
NASA Technical Reports Server (NTRS)
Baskaran, S.; Stadler, P. F.; Schuster, P.
1996-01-01
RNA free energy landscapes are analysed by means of "time-series" that are obtained from random walks restricted to excursion sets. The power spectra, the scaling of the jump size distribution, and the scaling of the curve length measured with different yard stick lengths are used to describe the structure of these "time series". Although they are stationary by construction, we find that their local behavior is consistent with both AR(1) and self-affine processes. Random walks confined to excursion sets (i.e., with the restriction that the fitness value exceeds a certain threshold at each step) exhibit essentially the same statistics as free random walks. We find that an AR(1) time series is in general approximately self-affine on timescales up to approximately the correlation length. We present an empirical relation between the correlation parameter rho of the AR(1) model and the exponents characterizing self-affinity.
Rapid and Reliable Binding Affinity Prediction of Bromodomain Inhibitors: A Computational Study
2016-01-01
Binding free energies of bromodomain inhibitors are calculated with recently formulated approaches, namely ESMACS (enhanced sampling of molecular dynamics with approximation of continuum solvent) and TIES (thermodynamic integration with enhanced sampling). A set of compounds is provided by GlaxoSmithKline, which represents a range of chemical functionality and binding affinities. The predicted binding free energies exhibit a good Spearman correlation of 0.78 with the experimental data from the 3-trajectory ESMACS, and an excellent correlation of 0.92 from the TIES approach where applicable. Given access to suitable high end computing resources and a high degree of automation, we can compute individual binding affinities in a few hours with precisions no greater than 0.2 kcal/mol for TIES, and no larger than 0.34 and 1.71 kcal/mol for the 1- and 3-trajectory ESMACS approaches. PMID:28005370
Prediction of kinase-inhibitor binding affinity using energetic parameters
Usha, Singaravelu; Selvaraj, Samuel
2016-01-01
The combination of physicochemical properties and energetic parameters derived from protein-ligand complexes play a vital role in determining the biological activity of a molecule. In the present work, protein-ligand interaction energy along with logP values was used to predict the experimental log (IC50) values of 25 different kinase-inhibitors using multiple regressions which gave a correlation coefficient of 0.93. The regression equation obtained was tested on 93 kinase-inhibitor complexes and an average deviation of 0.92 from the experimental log IC50 values was shown. The same set of descriptors was used to predict binding affinities for a test set of five individual kinase families, with correlation values > 0.9. We show that the protein-ligand interaction energies and partition coefficient values form the major deterministic factors for binding affinity of the ligand for its receptor. PMID:28149052
Quantum-chemical studies on the favored and rare tautomers of neutral and redox adenine.
Raczyńska, Ewa D; Makowski, Mariusz; Zientara-Rytter, Katarzyna; Kolczyńska, Katarzyna; Stępniewski, Tomasz M; Hallmann, Małgorzata
2013-02-21
All possible twenty-three prototropic tautomers of neutral and redox adenine (nine amine and fourteen imine forms, including geometric isomerism of the exo ═NH group) were examined in vacuo {DFT(B3LYP)/6-311+G(d,p)}. The NH → NH conversions as well as those usually omitted, NH → CH and CH → CH, were considered. An interesting change of the tautomeric preference occurs when proceeding from neutral to reduced adenine. One-electron reduction favors the nonaromatic amine C8H-N10H tautomer. This tautomeric preference is similar to that (C2H) for reduced imidazole. Water molecules (PCM model) seem to not change this trend. They influence solely the relative energies. The DFT vertical detachment energy in the gas phase is positive for each tautomer, e.g., 0.03 eV for N9H-N10H and 1.84 eV for C8H-N10H. The DFT adiabatic electron affinity for the favored process, neutral N9H-N10H → reduced C8H-N10H (ground states), is equal to 0.18 eV at 0 K (ZPE included). One-electron oxidation does not change the tautomeric preference in the gas phase. The aromatic amine N9H-N10H tautomer is favored for the oxidized molecule similarly as for the neutral one. The DFT adiabatic ionization potential for the favored process, neutral N9H-N10H → oxidized N9H-N10H (ground states), is equal to 8.12 eV at 0 K (ZPE included). Water molecules (PCM model) seem to influence solely the composition of the tautomeric mixture and the relative energies. They change the energies of the oxidation and reduction processes by ca. 2 eV.
Negative ions of polyatomic molecules.
Christophorou, L G
1980-01-01
In this paper general concepts relating to, and recent advances in, the study of negative ions of polyatomic molecules area discussed with emphasis on halocarbons. The topics dealt with in the paper are as follows: basic electron attachment processes, modes of electron capture by molecules, short-lived transient negative ions, dissociative electron attachment to ground-state molecules and to "hot" molecules (effects of temperature on electron attachment), parent negative ions, effect of density, nature, and state of the medium on electron attachment, electron attachment to electronically excited molecules, the binding of attached electrons to molecules ("electron affinity"), and the basic and the applied significance of negative-ion studies. PMID:7428744
Electron attachment to DNA single strands: gas phase and aqueous solution
Gu, Jiande; Xie, Yaoming; Schaefer, Henry F.
2007-01-01
The 2′-deoxyguanosine-3′,5′-diphosphate, 2′-deoxyadenosine-3′,5′-diphosphate, 2′-deoxycytidine-3′,5′-diphosphate and 2′-deoxythymidine-3′,5′-diphosphate systems are the smallest units of a DNA single strand. Exploring these comprehensive subunits with reliable density functional methods enables one to approach reasonable predictions of the properties of DNA single strands. With these models, DNA single strands are found to have a strong tendency to capture low-energy electrons. The vertical attachment energies (VEAs) predicted for 3′,5′-dTDP (0.17 eV) and 3′,5′-dGDP (0.14 eV) indicate that both the thymine-rich and the guanine-rich DNA single strands have the ability to capture electrons. The adiabatic electron affinities (AEAs) of the nucleotides considered here range from 0.22 to 0.52 eV and follow the order 3′,5′-dTDP > 3′,5′-dCDP > 3′,5′-dGDP > 3′,5′-dADP. A substantial increase in the AEA is observed compared to that of the corresponding nucleic acid bases and the corresponding nucleosides. Furthermore, aqueous solution simulations dramatically increase the electron attracting properties of the DNA single strands. The present investigation illustrates that in the gas phase, the excess electron is situated both on the nucleobase and on the phosphate moiety for DNA single strands. However, the distribution of the extra negative charge is uneven. The attached electron favors the base moiety for the pyrimidine, while it prefers the 3′-phosphate subunit for the purine DNA single strands. In contrast, the attached electron is tightly bound to the base fragment for the cytidine, thymidine and adenosine nucleotides, while it almost exclusively resides in the vicinity of the 3′-phosphate group for the guanosine nucleotides due to the solvent effects. The comparatively low vertical detachment energies (VDEs) predicted for 3′,5′-dADP− (0.26 eV) and 3′,5′-dGDP− (0.32 eV) indicate that electron detachment might compete with reactions having high activation barriers such as glycosidic bond breakage. However, the radical anions of the pyrimidine nucleotides with high VDE are expected to be electronically stable. Thus the base-centered radical anions of the pyrimidine nucleotides might be the possible intermediates for DNA single-strand breakage. PMID:17660189
Structural, electronic and vibrational properties of GexCy (x+y=2-5) nanoclusters: A B3LYP-DFT study
NASA Astrophysics Data System (ADS)
Goswami, Sohini; Saha, Sushmita; Yadav, R. K.
2015-11-01
An ab-initio study of the stability, structural and electronic properties has been made for 84 germanium carbide nanoclusters, GexCy (x+y=2-5). The configuration possessing the maximum value of final binding energy (FBE), among the various configurations corresponding to a fixed x+y=n value, is named as the most stable structure. The vibrational and optical properties have been investigated only for the most stable structures. A B3LYP-DFT/6-311G(3df) method has been employed to optimize fully the geometries of the nanoclusters. The binding energies (BE), highest-occupied and lowest-unoccupied molecular orbital (HOMO-LUMO) gaps have been obtained for all the clusters and the bond lengths have been reported for the most stable clusters. We have considered the zero point energy (ZPE) corrections. The adiabatic and vertical ionization potentials (IPs) and electron affinities (EAs), charge on atoms, dipole moments, vibrational frequencies, infrared intensities (IR Int.), relative infrared intensities (Rel. IR Int.) and Raman scattering activities have also been investigated for the most stable structures. The configurations containing the carbon atoms in majority are seen to be the most stable structures. The strong C-C bond has important role in stabilizing the clusters. For the clusters containing one germanium atom and all the other as carbon atoms, the BE increases monotonically with the number of the carbon atoms. The HOMO-LUMO gap, IPs and EAs fluctuates with increase in the number of atoms. The nanoclusters containing even number of carbon atoms have large HOMO-LUMO gaps and IPs, whereas the nanoclusters containing even number of carbon atoms have small EAs. In general, the adiabatic IP (EA) is smaller (greater) than the vertical IP (EA). The optical absorption spectrum or electron energy loss spectrum (EELS) is unique for every cluster, and may be used to characterize a specific cluster. All the predicted physical quantities are in good agreement with the experimental data wherever available. The growth of these most stable structures should be possible in the experiments.
Mobile Technology Affinity in Renal Transplant Recipients.
Reber, S; Scheel, J; Stoessel, L; Schieber, K; Jank, S; Lüker, C; Vitinius, F; Grundmann, F; Eckardt, K-U; Prokosch, H-U; Erim, Y
Medication nonadherence is a common problem in renal transplant recipients (RTRs). Mobile health approaches to improve medication adherence are a current trend, and several medication adherence apps are available. However, it is unknown whether RTRs use these technologies and to what extent. In the present study, the mobile technology affinity of RTRs was analyzed. We hypothesized significant age differences in mobile technology affinity and that mobile technology affinity is associated with better cognitive functioning as well as higher educational level. A total of 109 RTRs (63% male) participated in the cross-sectional study, with an overall mean age of 51.8 ± 14.2 years. The study included the Technology Experience Questionnaire (TEQ) for the assessment of mobile technology affinity, a cognitive test battery, and sociodemographic data. Overall, 57.4% of the patients used a smartphone or tablet and almost 45% used apps. The TEQ sum score was 20.9 in a possible range from 6 (no affinity to technology) to 30 (very high affinity). Younger patients had significantly higher scores in mobile technology affinity. The only significant gender difference was found in having fun with using electronic devices: Men enjoyed technology more than women did. Mobile technology affinity was positively associated with cognitive functioning and educational level. Young adult patients might profit most from mobile health approaches. Furthermore, high educational level and normal cognitive functioning promote mobile technology affinity. This should be kept in mind when designing mobile technology health (mHealth) interventions for RTRs. For beneficial mHealth interventions, further research on potential barriers and desired technologic features is necessary to adapt apps to patients' needs. Copyright © 2017 Elsevier Inc. All rights reserved.
Niu, Zhuyu; Jia, Yating; Chen, Yuancai; Hu, Yongyou; Chen, Junfeng; Lv, Yuancai
2018-06-08
This study constructed a biological-inorganic hybrid system including Pseudomonas putida (P. putida) and bioreduced Pd (0) nanoparticles (NPs), and inspected the influence of bio-nano Pd (0) on the direct electron transfer and phenol biodegradation. Scanning electron microscopy and energy-dispersive X-ray spectroscopy (SEM-EDX) showed that bio-nano Pd (0) (~10 nm) were evenly dispersed on the surface and in the periplasm of P. putida. With the incorporation of bio-nano Pd (0), the redox currents of bacteria in the cyclic voltammetry (CV) became higher and the oxidation current increased as the addition of lactate, while the highest increase rates of two electron transfer system (ETS) rates were 63.97% and 33.79%, respectively. These results indicated that bio-nano Pd (0) could directly promote the electron transfer of P. putida. In phenol biodegradation process, P. putida-Pd (0)- 2 showed the highest k (0.2992 h -1 ), μ m (0.035 h -1 ) and K i (714.29 mg/L) and the lowest apparent K s (76.39 mg/L). The results of kinetic analysis indicated that bio-nano Pd (0) markedly enhanced the biocatalytic efficiency, substrate affinity and the growth of cells compared to native P. putida. The positive effects of bio-nano Pd (0) to the electron transfer of P. putida would promote the biodegradation of phenol. Copyright © 2018 Elsevier Inc. All rights reserved.
Kulp, John L.; Cloudsdale, Ian S.; Kulp, John L.
2017-01-01
Chemically diverse fragments tend to collectively bind at localized sites on proteins, which is a cornerstone of fragment-based techniques. A central question is how general are these strategies for predicting a wide variety of molecular interactions such as small molecule-protein, protein-protein and protein-nucleic acid for both experimental and computational methods. To address this issue, we recently proposed three governing principles, (1) accurate prediction of fragment-macromolecule binding free energy, (2) accurate prediction of water-macromolecule binding free energy, and (3) locating sites on a macromolecule that have high affinity for a diversity of fragments and low affinity for water. To test the generality of these concepts we used the computational technique of Simulated Annealing of Chemical Potential to design one small fragment to break the RecA-RecA protein-protein interaction and three fragments that inhibit peptide-deformylase via water-mediated multi-body interactions. Experiments confirm the predictions that 6-hydroxydopamine potently inhibits RecA and that PDF inhibition quantitatively tracks the water-mediated binding predictions. Additionally, the principles correctly predict the essential bound waters in HIV Protease, the surprisingly extensive binding site of elastase, the pinpoint location of electron transfer in dihydrofolate reductase, the HIV TAT-TAR protein-RNA interactions, and the MDM2-MDM4 differential binding to p53. The experimental confirmations of highly non-obvious predictions combined with the precise characterization of a broad range of known phenomena lend strong support to the generality of fragment-based methods for characterizing molecular recognition. PMID:28837642
Molecular mechanisms for generating transmembrane proton gradients
Gunner, M.R.; Amin, Muhamed; Zhu, Xuyu; Lu, Jianxun
2013-01-01
Membrane proteins use the energy of light or high energy substrates to build a transmembrane proton gradient through a series of reactions leading to proton release into the lower pH compartment (P-side) and proton uptake from the higher pH compartment (N-side). This review considers how the proton affinity of the substrates, cofactors and amino acids are modified in four proteins to drive proton transfers. Bacterial reaction centers (RCs) and photosystem II (PSII) carry out redox chemistry with the species to be oxidized on the P-side while reduction occurs on the N-side of the membrane. Terminal redox cofactors are used which have pKas that are strongly dependent on their redox state, so that protons are lost on oxidation and gained on reduction. Bacteriorhodopsin is a true proton pump. Light activation triggers trans to cis isomerization of a bound retinal. Strong electrostatic interactions within clusters of amino acids are modified by the conformational changes initiated by retinal motion leading to changes in proton affinity, driving transmembrane proton transfer. Cytochrome c oxidase (CcO) catalyzes the reduction of O2 to water. The protons needed for chemistry are bound from the N-side. The reduction chemistry also drives proton pumping from N- to P-side. Overall, in CcO the uptake of 4 electrons to reduce O2 transports 8 charges across the membrane, with each reduction fully coupled to removal of two protons from the N-side, the delivery of one for chemistry and transport of the other to the P-side. PMID:23507617
Kulp, John L; Cloudsdale, Ian S; Kulp, John L; Guarnieri, Frank
2017-01-01
Chemically diverse fragments tend to collectively bind at localized sites on proteins, which is a cornerstone of fragment-based techniques. A central question is how general are these strategies for predicting a wide variety of molecular interactions such as small molecule-protein, protein-protein and protein-nucleic acid for both experimental and computational methods. To address this issue, we recently proposed three governing principles, (1) accurate prediction of fragment-macromolecule binding free energy, (2) accurate prediction of water-macromolecule binding free energy, and (3) locating sites on a macromolecule that have high affinity for a diversity of fragments and low affinity for water. To test the generality of these concepts we used the computational technique of Simulated Annealing of Chemical Potential to design one small fragment to break the RecA-RecA protein-protein interaction and three fragments that inhibit peptide-deformylase via water-mediated multi-body interactions. Experiments confirm the predictions that 6-hydroxydopamine potently inhibits RecA and that PDF inhibition quantitatively tracks the water-mediated binding predictions. Additionally, the principles correctly predict the essential bound waters in HIV Protease, the surprisingly extensive binding site of elastase, the pinpoint location of electron transfer in dihydrofolate reductase, the HIV TAT-TAR protein-RNA interactions, and the MDM2-MDM4 differential binding to p53. The experimental confirmations of highly non-obvious predictions combined with the precise characterization of a broad range of known phenomena lend strong support to the generality of fragment-based methods for characterizing molecular recognition.
Athwal, Navjot Singh; Alagurajan, Jagannathan; Andreotti, Amy H; Hargrove, Mark S
2016-10-18
Reduction of hydroxylamine to ammonium by phytoglobin, a plant hexacoordinate hemoglobin, is much faster than that of other hexacoordinate hemoglobins or pentacoordinate hemoglobins such as myoglobin, leghemoglobin, and red blood cell hemoglobin. The reason for differences in reactivity is not known but could be intermolecular electron transfer between protein molecules in support of the required two-electron reduction, hydroxylamine binding, or active site architecture favoring the reaction. Experiments were conducted with phytoglobins from rice, tomato, and soybean along with human neuroglobin and soybean leghemoglobin that reveal hydroxylamine binding as the rate-limiting step. For hexacoordinate hemoglobins, binding is limited by the dissociation rate constant for the distal histidine, while leghemoglobin is limited by an intrinsically low affinity for hydroxylamine. When the distal histidine is removed from rice phytoglobin, a hydroxylamine-bound intermediate is formed and the reaction rate is diminished, indicating that the distal histidine imidazole side chain is critical for the reaction, albeit not for electron transfer but rather for direct interaction with the substrate. Together, these results demonstrate that phytoglobins are superior at hydroxylamine reduction because they have distal histidine coordination affinity constants near 1, and facile rate constants for binding and dissociation of the histidine side chain. Hexacoordinate hemoglobins such as neuroglobin are limited by tighter histidine coordination that blocks hydroxylamine binding, and pentacoordinate hemoglobins have intrinsically lower hydroxylamine affinities.
Determining ERβ Binding Affinity to Singly Mutant ERE Using Dual Polarization Interferometry
NASA Astrophysics Data System (ADS)
Song, Hong Yan; Su, Xiaodi
In a classic mode of estrogen action, estrogen receptors (ERs) bind to estrogen responsive element (ERE) to activate gene transcription. A perfect ERE contains a 13-base pair sequence of a palindromic repeat separated by a three-base spacer, 5‧-GGTCAnnnTGACC-3‧. In addition to the consensus or wild-type ERE (wtERE), naturally occurring EREs often have one or two base pairs’ alternation. Based on the newly constructed Thermodynamic Modeling of ChIP-seq (TherMos) model, binding energy between ERβ and a series of 34-bp mutant EREs (mutERE) was simulated to predict the binding affinity between ERs and EREs with single base pair deviation at different sites of the 13-bp inverted sequence. Experimentally, dual polarization interferometry (DPI) method was developed to measure ERβ-mutEREs binding affinity. On a biotin-NeutrAvidin (NA)-biotin treated DPI chip, wtERE is immobilized. In a direct binding assay, ERβ-wtERE binding affinity is determined. In a competition assay, ERβ was preincubated with mutant EREs before being added for competitive binding to the immobilized wtERE. This competition strategy provided a successful platform to evaluate the binding affinity variation among large number of ERE with different base mutations. The experimental result correlates well with the mathematically predicted binding energy with a Spearman correlation coefficient of 0.97.
NASA Astrophysics Data System (ADS)
Shu, Chang; Ding, Li; Zhong, Wenying
2014-10-01
In the current work, using ZnSe ZnS quantum dots (QDs) as representative nanoparticles, the affinities of seven anticancer drugs for bovine serum albumin (BSA) were studied using fluorescence resonance energy transfer (FRET). The FRET efficiency of BSA-QD conjugates can reach as high as 24.87% by electrostatic interaction. The higher binding constant (3.63 × 107 L mol-1) and number of binding sites (1.75) between ZnSe ZnS QDs and BSA demonstrated that the QDs could easily associate to plasma proteins and enhance the transport efficacy of drugs. The magnitude of binding constants (103-106 L mol-1), in the presence of QDs, was between drugs-BSA and drugs-QDs in agreement with common affinities of drugs for serum albumins (104-106 L mol-1) in vivo. ZnSe ZnS QDs significantly increased the affinities for BSA of Vorinostat (SAHA), Docetaxel (DOC), Carmustine (BCNU), Doxorubicin (Dox) and 10-Hydroxycamptothecin (HCPT). However, they slightly reduced the affinities of Vincristine (VCR) and Methotrexate (MTX) for BSA. The recent work will not only provide useful information for appropriately understanding the binding affinity and binding mechanism at the molecular level, but also illustrate the ZnSe ZnS QDs are perfect candidates for nanoscal drug delivery system (DDS).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Attah, Isaac K.; Platt, Sean P.; Meot-Ner, Michael
2014-03-21
The bonding energies of proton-bound homodimers BH{sup +}B were measured by ion mobility equilibrium studies and calculated at the DFT B3LYP/6-311++G{sup **} level, for a series of nitrogen heterocyclic molecules (B) with electron-withdrawing in-ring N and on-ring F substituents. The binding energies (ΔH°{sub dissoc}) of the proton-bound dimers (BH{sup +}B) vary significantly, from 29.7 to 18.1 kcal/mol, decreasing linearly with decreasing the proton affinity of the monomer (B). This trend differs significantly from the constant binding energies of most homodimers of other organic nitrogen and oxygen bases. The experimentally measured ΔH°{sub dissoc} for (1,3-diazine){sub 2}H{sup +}, i.e., (pyrimidine){sub 2}H{sup +}more » and (3-F-pyridine){sub 2}H{sup +} are 22.7 and 23.0 kcal/mol, respectively. The measured ΔH°{sub dissoc} for the pyrimidine{sup ·+}(3-F-pyridine) radical cation dimer (19.2 kcal/mol) is signifcantly lower than that of the proton-bound homodimers of pyrimidine and 3-F-pyridine, reflecting the stronger interaction in the ionic H-bond of the protonated dimers. The calculated binding energies for (1,2-diazine){sub 2}H{sup +}, (pyridine){sub 2}H{sup +}, (2-F-pyridine){sub 2}H{sup +}, (3-F-pyridine){sub 2}H{sup +}, (2,6-di-F-pyridine){sub 2}H{sup +}, (4-F-pyridine){sub 2}H{sup +}, (1,3-diazine){sub 2}H{sup +}, (1,4-diazine){sub 2}H{sup +}, (1,3,5-triazine){sub 2}H{sup +}, and (pentafluoropyridine){sub 2}H{sup +} are 29.7, 24.9, 24.8, 23.3, 23.2, 23.0, 22.4, 21.9, 19.3, and 18.1 kcal/mol, respectively. The electron-withdrawing substituents form internal dipoles whose electrostatic interactions contribute to both the decreased proton affinities of (B) and the decreased binding energies of the protonated dimers BH{sup +}B. The bonding energies also vary with rotation about the hydrogen bond, and they decrease in rotamers where the internal dipoles of the components are aligned efficiently for inter-ring repulsion. For compounds substituted at the 3 or 4 (meta or para) positions, the lowest energy rotamers are T-shaped with the planes of the two rings rotated by 90° about the hydrogen bond, while the planar rotamers are weakened by repulsion between the ortho hydrogen atoms of the two rings. Conversely, in ortho-substituted (1,2-diazine){sub 2}H{sup +} and (2-F-pyridine){sub 2}H{sup +}, attractive interactions between the ortho (C–H) hydrogen atoms of one ring and the electronegative ortho atoms (N or F) of the other ring are stabilizing, and increase the protonated dimer binding energies by up to 4 kcal/mol. In all of the dimers, rotation about the hydrogen bond can involve a 2–4 kcal/mol barrier due to the relative energies of the rotamers.« less
NASA Astrophysics Data System (ADS)
Slenzka, K.; Appel, R.; Kappel, Th.; Rahmann, H.
Biochemical analyses of the brain of cichlid fish larvae, exposed for 7 days to increased acceleration of 3g (hyper-g), revealed an increase in energy availability (succinate dehydrogenase activity, SDH), and in mitochondrial energy transformation (creatine kinase, Mi_a-CK), but no changes in an energy consumptive process (high-affinity Ca^2+-ATPase). Brain glucose-6-phosphate dehydrogenase (G6PDH) of developing fish was previously found to be increased after hyper-g exposure. Three respectively 5 hours thereafter dramatic fluctuations in enzyme activity were registered. Analysing the cytosolic or plasma membrane-located brain creatine kinase (BB-CK) of clawed toad larvae after long-term hyper-g exposure a significant increase in enzyme activity was demonstrated, whereas the activity of a high affinity Ca^2+-ATPase remained unaffected.
The importance of the external potential on group electronegativity.
Leyssens, Tom; Geerlings, Paul; Peeters, Daniel
2005-11-03
The electronegativity of groups placed in a molecular environment is obtained using CCSD calculations of the electron affinity and ionization energy. A point charge model is used as an approximation of the molecular environment. The electronegativity values obtained in the presence of a point charge model are compared to the isolated group property to estimate the importance of the external potential on the group's electronegativity. The validity of the "group in molecule" electronegativities is verified by comparing EEM (electronegativity equalization method) charge transfer values to the explicitly calculated natural population analysis (NPA) ones, as well as by comparing the variation in electronegativity between the isolated functional group and the functional group in the presence of a modeled environment with the variation based on a perturbation expansion of the chemical potential.
Excess electron localization in solvated DNA bases.
Smyth, Maeve; Kohanoff, Jorge
2011-06-10
We present a first-principles molecular dynamics study of an excess electron in condensed phase models of solvated DNA bases. Calculations on increasingly large microsolvated clusters taken from liquid phase simulations show that adiabatic electron affinities increase systematically upon solvation, as for optimized gas-phase geometries. Dynamical simulations after vertical attachment indicate that the excess electron, which is initially found delocalized, localizes around the nucleobases within a 15 fs time scale. This transition requires small rearrangements in the geometry of the bases.
Excess Electron Localization in Solvated DNA Bases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smyth, Maeve; Kohanoff, Jorge
2011-06-10
We present a first-principles molecular dynamics study of an excess electron in condensed phase models of solvated DNA bases. Calculations on increasingly large microsolvated clusters taken from liquid phase simulations show that adiabatic electron affinities increase systematically upon solvation, as for optimized gas-phase geometries. Dynamical simulations after vertical attachment indicate that the excess electron, which is initially found delocalized, localizes around the nucleobases within a 15 fs time scale. This transition requires small rearrangements in the geometry of the bases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paulsworth, Ashley; Kurtz, Jim; Brun de Pontet, Stephanie
Sunvestment Energy Group (previously called Sunvestment Group) was established to create a web application that brings together site hosts, those who will obtain the energy from the solar array, with project developers and funders, including affinity investors. Sunvestment Energy Group (SEG) uses a community-based model that engages with investors who have some affinity with the site host organization. In addition to a financial return, these investors receive non-financial value from their investments and are therefore willing to offer lower cost capital. This enables the site host to enjoy more savings from solar through these less expensive Community Power Purchase Agreementsmore » (CPPAs). The purpose of this award was to develop an online platform to bring site hosts and investors together virtually.« less
Bonaventura, Celia; Godette, Gerald; Ferruzzi, Giulia; Tesh, Shirley; Stevens, Robert D; Henkens, Robert
2002-07-10
Factors which govern transnitrosation reactions between hemoglobin (Hb) and low molecular weight thiols may define the extent to which S-nitrosated Hb (SNO-Hb) plays a role in NO in the control of blood pressure and other NO-dependent reactions. We show that exposure to S-nitrosylated cysteine (CysNO) produces equivalent levels of SNO-Hb for Hb A(0) and sickle cell Hb (Hb S), although these proteins differ significantly in the electron affinity of their heme groups as measured by their anaerobic redox potentials. Dolphin Hb, a cooperative Hb with a redox potential like that of Hb S, produces less SNO-Hb, indicating that steric considerations outweigh effects of altered electron affinity at the active-site heme groups in control of SNO-Hb formation. Examination of oxygen binding at 5-20 mM heme concentrations revealed increases due to S-nitrosation in the apparent oxygen affinity of both Hb A(0) and Hb S, similar to increases seen at lower heme concentrations. As observed at lower heme levels, deoxygenation is not sufficient to trigger release of NO from SNO-Hb. A sharp increase in apparent oxygen affinity occurs for unmodified Hb S at concentrations above 12.5 mM, its minimum gelling concentration. This affinity increase still occurs in 30 and 60% S-nitrosated samples, but at higher heme concentration. This oxygen binding behavior is accompanied by decreased gel formation of the deoxygenated protein. S-nitrosation is thus shown to have an effect similar to that reported for other SH-group modifications of Hb S, in which R-state stabilization opposes Hb S aggregation.
Free energy calculations of glycosaminoglycan-protein interactions.
Gandhi, Neha S; Mancera, Ricardo L
2009-10-01
Glycosaminoglycans (GAGs) are complex highly charged linear polysaccharides that have a variety of roles in biological processes. We report the first use of molecular dynamics (MD) free energy calculations using the MM/PBSA method to investigate the binding of GAGs to protein molecules, namely the platelet endothelial cell adhesion molecule 1 (PECAM-1) and annexin A2. Calculations of the free energy of the binding of heparin fragments of different sizes reveal the existence of a region of low GAG-binding affinity in domains 5-6 of PECAM-1 and a region of high affinity in domains 2-3, consistent with experimental data and ligand-protein docking studies. A conformational hinge movement between domains 2 and 3 was observed, which allows the binding of heparin fragments of increasing size (pentasaccharides to octasaccharides) with an increasingly higher binding affinity. Similar simulations of the binding of a heparin fragment to annexin A2 reveal the optimization of electrostatic and hydrogen bonding interactions with the protein and protein-bound calcium ions. In general, these free energy calculations reveal that the binding of heparin to protein surfaces is dominated by strong electrostatic interactions for longer fragments, with equally important contributions from van der Waals interactions and vibrational entropy changes, against a large unfavorable desolvation penalty due to the high charge density of these molecules.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhaskaran-Nair, Kiran; Kowalski, Karol; Jarrell, Mark
2015-11-05
Polyacenes have attracted considerable attention due to their use in organic based optoelectronic materials. Polyacenes are polycyclic aromatic hydrocarbons composed of fused benzene rings. Key to understanding and design of new functional materials is an understanding of their excited state properties starting with their electron affinity (EA) and ionization potential (IP). We have developed a highly accurate and com- putationally e*fficient EA/IP equation of motion coupled cluster singles and doubles (EA/IP-EOMCCSD) method that is capable of treating large systems and large basis set. In this study we employ the EA/IP-EOMCCSD method to calculate the electron affinity and ionization potential ofmore » naphthalene, anthracene, tetracene, pentacene, hex- acene and heptacene. We have compared our results with other previous theoretical studies and experimental data. Our EA/IP results are in very good agreement with experiment and when compared with the other theoretical investigations our results represent the most accurate calculations as compared to experiment.« less
Deng, Nanjie; Flynn, William F; Xia, Junchao; Vijayan, R S K; Zhang, Baofeng; He, Peng; Mentes, Ahmet; Gallicchio, Emilio; Levy, Ronald M
2016-09-01
We describe binding free energy calculations in the D3R Grand Challenge 2015 for blind prediction of the binding affinities of 180 ligands to Hsp90. The present D3R challenge was built around experimental datasets involving Heat shock protein (Hsp) 90, an ATP-dependent molecular chaperone which is an important anticancer drug target. The Hsp90 ATP binding site is known to be a challenging target for accurate calculations of ligand binding affinities because of the ligand-dependent conformational changes in the binding site, the presence of ordered waters and the broad chemical diversity of ligands that can bind at this site. Our primary focus here is to distinguish binders from nonbinders. Large scale absolute binding free energy calculations that cover over 3000 protein-ligand complexes were performed using the BEDAM method starting from docked structures generated by Glide docking. Although the ligand dataset in this study resembles an intermediate to late stage lead optimization project while the BEDAM method is mainly developed for early stage virtual screening of hit molecules, the BEDAM binding free energy scoring has resulted in a moderate enrichment of ligand screening against this challenging drug target. Results show that, using a statistical mechanics based free energy method like BEDAM starting from docked poses offers better enrichment than classical docking scoring functions and rescoring methods like Prime MM-GBSA for the Hsp90 data set in this blind challenge. Importantly, among the three methods tested here, only the mean value of the BEDAM binding free energy scores is able to separate the large group of binders from the small group of nonbinders with a gap of 2.4 kcal/mol. None of the three methods that we have tested provided accurate ranking of the affinities of the 147 active compounds. We discuss the possible sources of errors in the binding free energy calculations. The study suggests that BEDAM can be used strategically to discriminate binders from nonbinders in virtual screening and to more accurately predict the ligand binding modes prior to the more computationally expensive FEP calculations of binding affinity.
NASA Astrophysics Data System (ADS)
Deng, Nanjie; Flynn, William F.; Xia, Junchao; Vijayan, R. S. K.; Zhang, Baofeng; He, Peng; Mentes, Ahmet; Gallicchio, Emilio; Levy, Ronald M.
2016-09-01
We describe binding free energy calculations in the D3R Grand Challenge 2015 for blind prediction of the binding affinities of 180 ligands to Hsp90. The present D3R challenge was built around experimental datasets involving Heat shock protein (Hsp) 90, an ATP-dependent molecular chaperone which is an important anticancer drug target. The Hsp90 ATP binding site is known to be a challenging target for accurate calculations of ligand binding affinities because of the ligand-dependent conformational changes in the binding site, the presence of ordered waters and the broad chemical diversity of ligands that can bind at this site. Our primary focus here is to distinguish binders from nonbinders. Large scale absolute binding free energy calculations that cover over 3000 protein-ligand complexes were performed using the BEDAM method starting from docked structures generated by Glide docking. Although the ligand dataset in this study resembles an intermediate to late stage lead optimization project while the BEDAM method is mainly developed for early stage virtual screening of hit molecules, the BEDAM binding free energy scoring has resulted in a moderate enrichment of ligand screening against this challenging drug target. Results show that, using a statistical mechanics based free energy method like BEDAM starting from docked poses offers better enrichment than classical docking scoring functions and rescoring methods like Prime MM-GBSA for the Hsp90 data set in this blind challenge. Importantly, among the three methods tested here, only the mean value of the BEDAM binding free energy scores is able to separate the large group of binders from the small group of nonbinders with a gap of 2.4 kcal/mol. None of the three methods that we have tested provided accurate ranking of the affinities of the 147 active compounds. We discuss the possible sources of errors in the binding free energy calculations. The study suggests that BEDAM can be used strategically to discriminate binders from nonbinders in virtual screening and to more accurately predict the ligand binding modes prior to the more computationally expensive FEP calculations of binding affinity.
Nitrogen doping, optical characterization, and electron emission study of diamond
NASA Astrophysics Data System (ADS)
Park, Minseo
Nitrogen-doped chemical vapor deposited (CVD) diamond films were synthesized with N2 (nitrogen) and C3H6N6 (melamine) as doping sources. More effective substitutional nitrogen doping was achieved with C3H6N6 than with N 2. Since a melamine molecule has an existing cyclic C-N bonded ring, it is expected that the incorporation of nitrogen on substitution diamond lattice should be facilitated. The diamond film doped with N2 contained a significant amount of non-diamond carbon phases. The samples were analyzed by scanning electron microscopy, Raman scattering, photoluminescence spectroscopy, and field emission measurements. The sample produced using N 2 exhibited a lower field emission turn-on field than the sample produced using C3H6N6. It is believed that the presence of the graphitic phases (or amorphous sp2 carbon) at the grain boundaries of the diamond and/or the nanocrystallinity (or microcrystallinity) of the diamond play a significant role in lowering the turn-on field of the film produced using N2. The nature of the nitrogen-related 1190 cm-1 Raman peak was investigated. Nitrogen is incorporated predominantly to the crystalline or amorphous sp2 phases when nitrogen is added to the growing diamond. Field emission characteristics from metallic field emitter coated with type Ia and Ib diamond powders were also investigated. No significant difference in electron emission characteristics were found in these samples. Voltage-dependent field emission energy distribution (V-FEED) measurement was performed to analyze the energy distribution of the emitted electrons. It is believed that substitutional nitrogen doping plays only a minor role in changing field emission characteristics in diamond. Discontinuous diamond films were deposited on silicon using a microwave plasma chemical vapor deposition (MPCVD) system. The diamond deposits were sharpened by argon ion beam etching. Raman spectroscopy was carried out to study the structural change of the diamond after ion beam bombardment. Field emission measurements were performed in-situ with an electron beam induced current (EBIC) probe inside the chamber of the scanning electron microscope. It was found that amorphous sp2 carbon is produced as the diamond is sputtered by the Ar ion beam. The field emission turn-on field was also significantly lowered after sharpening, which, it is speculated, is caused by field enhancement due to a change in geometry and/or structural changes (such as amorphization of crystalline diamond into graphitic or amorphous sp2 carbon) by Ar ion irradiation. Secondary electron emission patterning of single crystal diamond surfaces with hydrogen and oxygen plasma treatments was demonstrated. Hydrogen plasma treated regions were much brighter than the oxygen terminated regions. Results of atomic force microscopy confirmed that the observed contrast is not topographical. Several other possible negative electron affinity (or low positive electron affinity) materials such as chemical vapor deposited (CVD) diamond, aluminum nitride and tetrahedrally bonded amorphous carbon [tx a-C 1-x] were also investigated. Faint image contrast (patterning) was also observed from polycrystalline CVD diamond, single crystal aluminum nitride films, and polycrystalline aluminum nitride films; however, no contrast at all was obtained from tetrahedrally bonded amorphous carbon [tx a-C1-x] films.
Wang, Xiaofeng; Zhang, Aiqun; Ren, Weizheng; Chen, Caiyu; Dong, Jiahong
2012-11-01
The cell growth, development, and regeneration of tissue and organ are associated with a large number of gene regulation events, which are mediated in part by transcription factors (TFs) binding to cis-regulatory elements involved in the genome. Predicting the binding affinity and inferring the binding specificity of TF-DNA interactions at the genomic level would be fundamentally helpful for our understanding of the molecular mechanism and biological implication underlying sequence-specific TF-DNA recognition. In this study, we report the development of a combination method to characterize the interaction behavior of a 11-mer oligonucleotide segment and its mutations with the Gcn4p protein, a homodimeric, basic leucine zipper TF, and to predict the binding affinity and specificity of potential Gcn4p binders in the genome-wide scale. In this procedure, a position-mutated energy matrix is created based on molecular modeling analysis of native and mutated Gcn4p-DNA complex structures to describe the position-independent interaction energy profile of Gcn4p with different nucleotide types at each position of the oligonucleotide, and the energy terms extracted from the matrix and their interactives are then correlated with experimentally measured affinities of 19268 distinct oligonucleotides using statistical modeling methodology. Subsequently, the best one of built regression models is successfully applied to screen those of potential high-affinity Gcn4p binders from the complete genome. The findings arising from this study are briefly listed below: (i) The 11 positions of oligonucleotides are highly interactive and non-additive in contribution to Gcn4p-DNA binding affinity; (ii) Indirect conformational effects upon nucleotide mutations as well as associated subtle changes in interfacial atomic contacts, but not the direct nonbonded interactions, are primarily responsible for the sequence-specific recognition; (iii) The intrinsic synergistic effects among the sequence positions of oligonucleotides determine Gcn4p-DNA binding affinity and specificity; (iv) Linear regression models in conjunction with variable selection seem to perform fairly well in capturing the internal dependences hidden in the Gcn4p-DNA system, albeit ignoring nonlinear factors may lead the models to systematically underestimate and overestimate high- and low-affinity samples, respectively. © 2012 John Wiley & Sons A/S.
Sun, Jin P; Dai, Jianhong; Song, Yan; Wang, You; Yang, Rui
2014-12-10
A basic understanding of the affinity between the hydroxyapatite (HA) and α-Ti surfaces is obtained through electronic structure calculations by first-principles method. The surface energies of HA(0001), HA (011̅0), HA (101̅1), and Ti(0001) surfaces have been calculated. The HA(0001) presents the most thermodynamically stable of HA. The HA/Ti interfaces were constructed by two kinds of interface models, the single interface (denoted as SI) and the double-interface (denoted as DI). Two methods, the full relaxation and the UBER, were applied to determine the interfacial separation and the atomic arrangement in the interfacial zone. The works of adhesion of interfaces with various stoichiometric HA surfaces were evaluated. For the HA(0001)/Ti(0001) interfaces, the work of adhesion is strongly dependent on the chemical environment of the HA surface. The values are -2.33, -1.52, and -0.80 J/m(2) for the none-, single-, and double-Ca terminated HA/Ti interfaces, respectively. The influence of atomic relaxation on the work of adhesion and interface separation is discussed. Full relaxation results include -1.99 J/m(2) work of adhesion and 0.220 nm separation between HA and Ti for the DI of 1-Ca-HA/Ti interface, while they are -1.14 J/m(2) and 0.235 nm by partial relaxation. Analysis of electronic structure reveals that charge transfer between HA and Ti slabs occurs during the formation of the HA/Ti interface. The transfer generates the Ti-O or Ti-Ca bonds across the interface and drives the HA/Ti interface system to metallic characteristic. The energetically favorable interfaces are formed when the outmost layer of HA comprises more O atoms at the interface.
Allosteric control of internal electron transfer in cytochrome cd1 nitrite reductase
Farver, Ole; Kroneck, Peter M. H.; Zumft, Walter G.; Pecht, Israel
2003-01-01
Cytochrome cd1 nitrite reductase is a bifunctional multiheme enzyme catalyzing the one-electron reduction of nitrite to nitric oxide and the four-electron reduction of dioxygen to water. Kinetics and thermodynamics of the internal electron transfer process in the Pseudomonas stutzeri enzyme have been studied and found to be dominated by pronounced interactions between the c and the d1 hemes. The interactions are expressed both in dramatic changes in the internal electron-transfer rates between these sites and in marked cooperativity in their electron affinity. The results constitute a prime example of intraprotein control of the electron-transfer rates by allosteric interactions. PMID:12802018
Rylene and related diimides for organic electronics.
Zhan, Xiaowei; Facchetti, Antonio; Barlow, Stephen; Marks, Tobin J; Ratner, Mark A; Wasielewski, Michael R; Marder, Seth R
2011-01-11
Organic electron-transporting materials are essential for the fabrication of organic p-n junctions, photovoltaic cells, n-channel field-effect transistors, and complementary logic circuits. Rylene diimides are a robust, versatile class of polycyclic aromatic electron-transport materials with excellent thermal and oxidative stability, high electron affinities, and, in many cases, high electron mobilities; they are, therefore, promising candidates for a variety of organic electronics applications. In this review, recent developments in the area of high-electron-mobility diimides based on rylenes and related aromatic cores, particularly perylene- and naphthalene-diimide-based small molecules and polymers, for application in high-performance organic field-effect transistors and photovoltaic cells are summarized and analyzed.
Lo, Po-Kam; Lau, Kai-Chung
2014-04-03
The ionization energy (IE), electron affinity (EA), and heats of formation (ΔH°f0/ΔH°f298) for cyclopentadienyl radical, cation, and anion, C5H5/C5H5(+)/C5H5(-), have been calculated by wave function-based ab initio CCSDT/CBS approach, which involves approximation to complete basis set (CBS) limit at coupled-cluster level with up to full triple excitations (CCSDT). The zero-point vibrational energy correction, core-valence electronic correction, scalar relativistic effect, and higher-order corrections beyond the CCSD(T) wave function are included in these calculations. The allylic [C5H5((2)A2)] and dienylic [C5H5((2)B1)] forms of cyclopentadienyl radical are considered: the ground state structure exists in the dienyl form and it is about 30 meV more stable than the allylic structure. Both structures are lying closely and are interconvertible along the normal mode of b2 in-plane vibration. The CCSDT/CBS predictions (in eV) for IE[C5H5(+)((3)A1')←C5H5((2)B1)] = 8.443, IE[C5H5(+)((1)A1)←C5H5((2)B1)] = 8.634 and EA[C5H5(-)((1)A1')←C5H5((2)B1)] = 1.785 are consistent with the respective experimental values of 8.4268 ± 0.0005, 8.6170 ± 0.0005, and 1.808 ± 0.006, obtained from photoelectron spectroscopic measurements. The ΔH°f0/ΔH°f298's (in kJ/mol) for C5H5/C5H5(+)/C5H5(-) have also been predicted by the CCSDT/CBS method: ΔH°f0/ΔH°f298[C5H5((2)B1)] = 283.6/272.0, ΔH°f0/ΔH°f298[C5H5(+)((3)A1')] = 1098.2/1086.9, ΔH°f0/ΔH°f298[C5H5(+)((1)A1)] = 1116.6/1106.0, and ΔH°f0/ΔH°f298[C5H5(-)((1)A1')] = 111.4/100.0. The comparisons between the CCSDT/CBS predictions and the experimental values suggest that the CCSDT/CBS procedure is capable of predicting reliable IE(C5H5)'s and EA(C5H5) with uncertainties of ± 17 and ± 23 meV, respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kafader, Jared O.; Ray, Manisha; Jarrold, Caroline Chick, E-mail: cjarrold@indiana.edu
2015-07-21
The anion photoelectron (PE) spectra of EuH{sup −} and the PE spectrum of overlapping EuOH{sup −} and EuO{sup −} anions are presented and analyzed with supporting results from density functional theory calculations on the various anions and neutrals. Results point to ionically bound, high-spin species. EuH and EuOH anions and neutrals exhibit analogous electronic structures: Transitions from {sup 8}Σ{sup −} anion ground states arising from the 4f{sup 7}σ{sub 6s}{sup 2} superconfiguration to the close-lying neutral {sup 9}Σ{sup −} and {sup 7}Σ{sup −} states arising from the 4f{sup 7}σ{sub 6s} superconfiguration are observed spaced by an energy interval similar to themore » free Eu{sup +} [4f{sup 7}6s] {sup 9}S - {sup 7}S splitting. The electron affinities (EAs) of EuH and EuOH are determined to be 0.771 ± 0.009 eV and 0.700 ± 0.011 eV, respectively. Analysis of spectroscopic features attributed to EuO{sup −} photodetachment is complicated by the likely presence of two energetically competitive electronic states of EuO{sup −} populating the ion beam. However, based on the calculated relative energies of the close-lying anion states arising from the 4f{sup 7}σ{sub 6s} and 4f{sup 6}σ{sub 6s}{sup 2} configurations and the relative energies of the one-electron accessible 4f{sup 7} and 4f{sup 6}σ{sub 6s} neutral states based on ligand-field theory [M. Dulick, E. Murad, and R. F. Barrow, J. Chem. Phys. 85, 385 (1986)], the remaining features are consistent with the 4f{sup 6}σ{sub 6s}{sup 2} {sup 7}Σ{sup −} and 4f{sup 7}σ{sub 6s}{sup 7}Σ{sup −} anion states lying very close in energy (the former was calculated to be 0.15 eV lower in energy than the latter), though the true anion ground state and neutral EA could not be established unambiguously. Calculations on the various EuO anion and neutral states suggest 4f-orbital overlap with 2p orbitals in species with 4f{sup 6} occupancy.« less
Structure and properties of the anions MF4-, MCl4- and MBr4- (M = C, Si, Ge)
NASA Astrophysics Data System (ADS)
Grein, Friedrich
2015-04-01
Density functional theory (DFT), Møller-Plesset (MP2) and coupled cluster with single and double substitutions including non-iterative triple excitations (CCSD(T)) calculations on the anions MX4-, with M = C, Si, Ge and X = F, Cl, Br, show that GeF4-, SiCl4-, GeCl4- and SiBr4- prefer a C2v conformation, but CCl4- is an elongated C3v structure. CBr4- has Td symmetry in MP2, but is slightly more stable in elongated C3v form with DFT and CCSD(T). GeBr4- has Td symmetry. CF4- and SiF4- are unstable with respect to loss of an electron. Vertical electron affinities (EAs) are negative also for CCl4 and SiCl4, and close to zero for GeF4 and SiBr4. Adiabatic EAs range from 0.47 eV for SiCl4 to 1.78 eV for GeBr4. The lowest excited states at Td symmetry are 2T2 resonances with energies of 2.1-3.5 eV, resulting from excitation of the a1 singly occupied molecular orbital to vacant t2 orbitals. Vertical excitation energies (VEEs) and vibrational frequencies are given for the most stable anionic geometries. Comparison with experimental VEEs for CCl4- is made. From dissociation energies of MX4, MX4-, MX3 and MX3-, appearance energies of X-, MX3-, X2- and MX2- were calculated. Most were found to be in reasonable agreement with experimental values. Theoretical spin densities and g-factors have been compared with experimental results available for CCl4-, SiCl4- and GeCl4-.
Spectroscopy of Photovoltaic Materials: Charge-Transfer Complexes and Titanium Dioxide
NASA Astrophysics Data System (ADS)
Dillon, Robert John
The successful function of photovoltaic (PV) and photocatalytic (PC) systems centers primarily on the creation and photophysics of charge separated electron-hole pairs. The pathway leading to separate carriers varies by material; organic materials typically require multiple events to charge separate, whereas inorganic semiconductors can directly produce free carriers. In this study, time-resolved spectroscopy is used to provide insight into two such systems: 1) organic charge-transfer (CT) complexes, where electrons and holes are tightly bound to each other, and 2) Au-TiO2 core-shell nanostructures, where free carriers are directly generated. 1) CT complexes are structurally well defined systems consisting of donor molecules, characterized by having low ionization potentials, and acceptor molecules, characterized by having high electron affinities. Charge-transfer is the excitation of an electron from the HOMO of a donor material directly into the LUMO of the acceptor material, leading to an electron and hole separated across the donor:acceptor interface. The energy of the CT transition is often less than that of the bandgaps of donor and acceptor materials individually, sparking much interest if PV systems can utilize the CT band to generate free carriers from low energy photons. In this work we examine the complexes formed between acceptors tetracyanobenzene (TCNB) and tetracyanoquinodimethane (TCNQ) with several aromatic donors. We find excitation of the charge-transfer band of these systems leads to strongly bound electron-hole pairs that exclusively undergo recombination to the ground state. In the case of the TCNB complexes, our initial studies were flummoxed by the samples' generally low threshold for photo and mechanical damage. As our results conflicted with previous literature, a significant portion of this study was spent quantifying the photodegradation process. 2) Unlike the previous system, free carriers are directly photogenerated in TiO2, and the prime consideration is avoiding loss due to recombination of the electron and hole. In this study, four samples of core-shell Au-TiO 2 nanostructures are analyzed for their photocatalytic activity and spectroscopic properties. The samples were made with increasingly crystalline TiO2 shells. The more crystalline samples had higher photocatalytic activities, attributed to longer carrier lifetimes. The observed photophysics of these samples vary with excitation wavelength and detection method used. We find the time-resolved photoluminescence correlates with the samples' photocatalytic activities only when high energy, excitation wavelength less than or equal to 300 nm is used, while transient absorption experiments show no correlation regardless of excitation source. The results imply that photoexcitation with high energy photons can generate both reactive surface sites and photoluminescent surface sites in parallel. Both types of sites then undergo similar electron-hole recombination processes that depend on the crystallinity of the TiO2 shell. Surface sites created by low energy photons, as well as bulk TiO2 carrier dynamics that are probed by transient absorption, do not appear to be sensitive to the same dynamics that determine chemical reactivity.
NASA Astrophysics Data System (ADS)
Ross, Ryan D.; Cole, Lisa E.; Roeder, Ryan K.
2012-10-01
Functionalized Au NPs have received considerable recent interest for targeting and labeling cells and tissues. Damaged bone tissue can be targeted by functionalizing Au NPs with molecules exhibiting affinity for calcium. Therefore, the relative binding affinity of Au NPs surface functionalized with either carboxylate ( l-glutamic acid), phosphonate (2-aminoethylphosphonic acid), or bisphosphonate (alendronate) was investigated for targeted labeling of damaged bone tissue in vitro. Targeted labeling of damaged bone tissue was qualitatively verified by visual observation and backscattered electron microscopy, and quantitatively measured by the surface density of Au NPs using field-emission scanning electron microscopy. The surface density of functionalized Au NPs was significantly greater within damaged tissue compared to undamaged tissue for each functional group. Bisphosphonate-functionalized Au NPs exhibited a greater surface density labeling damaged tissue compared to glutamic acid- and phosphonic acid-functionalized Au NPs, which was consistent with the results of previous work comparing the binding affinity of the same functionalized Au NPs to synthetic hydroxyapatite crystals. Targeted labeling was enabled not only by the functional groups but also by the colloidal stability in solution. Functionalized Au NPs were stabilized by the presence of the functional groups, and were shown to remain well dispersed in ionic (phosphate buffered saline) and serum (fetal bovine serum) solutions for up to 1 week. Therefore, the results of this study suggest that bisphosphonate-functionalized Au NPs have potential for targeted delivery to damaged bone tissue in vitro and provide motivation for in vivo investigation.
Thierbach, Adrian; Neiss, Christian; Gallandi, Lukas; Marom, Noa; Körzdörfer, Thomas; Görling, Andreas
2017-10-10
An accurate yet computationally very efficient and formally well justified approach to calculate molecular ionization potentials is presented and tested. The first as well as higher ionization potentials are obtained as the negatives of the Kohn-Sham eigenvalues of the neutral molecule after adjusting the eigenvalues by a recently [ Görling Phys. Rev. B 2015 , 91 , 245120 ] introduced potential adjustor for exchange-correlation potentials. Technically the method is very simple. Besides a Kohn-Sham calculation of the neutral molecule, only a second Kohn-Sham calculation of the cation is required. The eigenvalue spectrum of the neutral molecule is shifted such that the negative of the eigenvalue of the highest occupied molecular orbital equals the energy difference of the total electronic energies of the cation minus the neutral molecule. For the first ionization potential this simply amounts to a ΔSCF calculation. Then, the higher ionization potentials are obtained as the negatives of the correspondingly shifted Kohn-Sham eigenvalues. Importantly, this shift of the Kohn-Sham eigenvalue spectrum is not just ad hoc. In fact, it is formally necessary for the physically correct energetic adjustment of the eigenvalue spectrum as it results from ensemble density-functional theory. An analogous approach for electron affinities is equally well obtained and justified. To illustrate the practical benefits of the approach, we calculate the valence ionization energies of test sets of small- and medium-sized molecules and photoelectron spectra of medium-sized electron acceptor molecules using a typical semilocal (PBE) and two typical global hybrid functionals (B3LYP and PBE0). The potential adjusted B3LYP and PBE0 eigenvalues yield valence ionization potentials that are in very good agreement with experimental values, reaching an accuracy that is as good as the best G 0 W 0 methods, however, at much lower computational costs. The potential adjusted PBE eigenvalues result in somewhat less accurate ionization energies, which, however, are almost as accurate as those obtained from the most commonly used G 0 W 0 variants.
Woods, Christopher J; Shaw, Katherine E; Mulholland, Adrian J
2015-01-22
The applicability of combined quantum mechanics/molecular mechanics (QM/MM) methods for the calculation of absolute binding free energies of conserved water molecules in protein/ligand complexes is demonstrated. Here, we apply QM/MM Monte Carlo simulations to investigate binding of water molecules to influenza neuraminidase. We investigate five different complexes, including those with the drugs oseltamivir and peramivir. We investigate water molecules in two different environments, one more hydrophobic and one hydrophilic. We calculate the free-energy change for perturbation of a QM to MM representation of the bound water molecule. The calculations are performed at the BLYP/aVDZ (QM) and TIP4P (MM) levels of theory, which we have previously demonstrated to be consistent with one another for QM/MM modeling. The results show that the QM to MM perturbation is significant in both environments (greater than 1 kcal mol(-1)) and larger in the more hydrophilic site. Comparison with the same perturbation in bulk water shows that this makes a contribution to binding. The results quantify how electronic polarization differences in different environments affect binding affinity and also demonstrate that extensive, converged QM/MM free-energy simulations, with good levels of QM theory, are now practical for protein/ligand complexes.
Li, Feng; Li, Xue-Mei; Zhang, Shu-Sheng
2006-10-06
A simple and reliable one-pot approach using surface imprinting coating technique combined with polysaccharide incorporated sol-gel process was established to synthesize a new organic-inorganic hybrid matrix possessing macroporous surface and functional ligand. Using mesoporous silica gel being a support, immobilized metal affinity adsorbent with a macroporous shell/mesoporous core structure was obtained after metal ion loading. In the prepared matrix, covalently bonded coating and morphology manipulation on silica gel was achieved by using one-pot sol-gel process starting from an inorganic precursor,
Januszewicz, Elzbieta; Pajak, Beata; Gajkowska, Barbara; Samluk, Lukasz; Djavadian, Rouzanna L; Hinton, Barry T; Nałecz, Katarzyna A
2009-12-01
In the brain beta-oxidation, which takes place in astrocytes, is not a major process of energy supply. Astrocytes synthesize important lipid metabolites, mainly due to the processes taking place in peroxisomes. One of the compounds necessary in the process of mitochondrial beta-oxidation and export of acyl moieties from peroxisomes is l-carnitine. Two Na-dependent plasma membrane carnitine transporters were shown previously to be present in astrocytes: a low affinity amino acid transporter B(0,+) and a high affinity cation/carnitine transporter OCTN2. The expression of OCTN2 is known to increase in peripheral tissues upon the stimulation of peroxisome proliferators-activator receptor alpha (PPARalpha), a nuclear receptor known to up-regulate several enzymes involved in fatty acid metabolism. The present study was focused on another high affinity carnitine transporter-OCTN3, its presence, regulation and activity in astrocytes. Experiments using the techniques of real-time PCR, Western blot and immunocytochemistry analysis demonstrated the expression of octn3 in rat astrocytes and, out of two rat sequences ascribed as similar to mouse OCTN3, XM_001073573 was found in these cells. PPARalpha activator-2-[4-chloro-6-[(2,3-dimethylphenyl)amino]-2-pyrimidinyl]thio]acetic acid (WY-14,643) stimulated by 50% expression of octn3, while, on the contrary to peripheral tissues, it did not change the expression of octn2. This observation was correlated with an increased Na-independent activity of carnitine transport. Analysis by transmission electron microscopy showed an augmented intracellular localization of OCTN3 upon PPARalpha stimulation, mainly in peroxisomes, indicating a physiological role of OCTN3 as peroxisomal membrane transporter. These observations point to an important role of OCTN3 in peroxisomal fatty acid metabolism in astrocytes.
NASA Astrophysics Data System (ADS)
Gupta, Ujval; Kumar, Vinay; Singh, Vivek K.; Kant, Rajni; Khajuria, Yugal
2015-04-01
The Fourier Transform Infrared (FTIR), Ultra-Violet Visible (UV-Vis) spectroscopy and Thermogravimetric (TG) analysis of (3,4-dimethoxybenzylidene) propanedinitrile have been carried out and investigated using quantum chemical calculations. The molecular geometry, harmonic vibrational frequencies, Mulliken charges, natural atomic charges and thermodynamic properties in the ground state have been investigated by using Hartree Fock Theory (HF) and Density Functional Theory (DFT) using B3LYP functional with 6-311G(d,p) basis set. Both HF and DFT methods yield good agreement with the experimental data. Vibrational modes are assigned with the help of Vibrational Energy Distribution Analysis (VEDA) program. UV-Visible spectrum was recorded in the spectral range of 190-800 nm and the results are compared with the calculated values using TD-DFT approach. Stability of the molecule arising from hyperconjugative interactions, charge delocalization have been analyzed using natural bond orbital (NBO) analysis. The results obtained from the studies of Highest Occupied Molecular Orbital (HOMO) and Lowest Unoccupied Molecular Orbital (LUMO) are used to calculate molecular parameters like ionization potential, electron affinity, global hardness, electron chemical potential and global electrophilicity.
Photoelectron spectroscopic studies of 5-halouracil anions
Radisic, Dunja; Ko, Yeon Jae; Nilles, John M.; Stokes, Sarah T.; Sevilla, Michael D.; Rak, Janusz; Bowen, Kit H.
2011-01-01
The parent negative ions of 5-chlorouracil, UCl− and 5-fluorouracil, UF− have been studied using anion photoelectron spectroscopy in order to investigate the electrophilic properties of their corresponding neutral halouracils. The vertical detachment energies (VDE) of these anions and the adiabatic electron affinities (EA) of their neutral molecular counterparts are reported. These results are in good agreement with the results of previously published theoretical calculations. The VDE values for both UCl− and UF− and the EA values for their neutral molecular counterparts are much greater than the corresponding values for both anionic and neutral forms of canonical uracil and thymine. These results are consistent with the observation that DNA is more sensitive to radiation damage when thymine is replaced by halouracil. While we also attempted to prepare the parent anion of 5-bromouracil, UBr−, we did not observe it, the mass spectrum exhibiting only Br− fragments, i.e., 5-bromouracil apparently underwent dissociative electron attachment. This observation is consistent with a previous assessment, suggesting that 5-bromouracil is the best radio-sensitizer among these three halo-nucleobases. PMID:21219027
Intrinsic electrophilic properties of nucleosides: Photoelectron spectroscopy of their parent anions
NASA Astrophysics Data System (ADS)
Stokes, Sarah T.; Li, Xiang; Grubisic, Andrej; Ko, Yeon Jae; Bowen, Kit H.
2007-08-01
The nucleoside parent anions 2'-deoxythymidine-, 2'-deoxycytidine-, 2'-deoxyadenosine-, uridine-, cytidine-, adenosine-, and guanosine- were generated in a novel source, employing a combination of infrared desorption, electron photoemission, and a gas jet expansion. Once mass selected, the anion photoelectron spectrum of each of these was recorded. In the three cases in which comparisons were possible, the vertical detachment energies and likely adiabatic electron affinities extracted from these spectra agreed well with the values calculated both by Richardson et al. [J. Am. Chem. Soc. 126, 4404 (2004)] and by Li et al. [Radiat. Res. 165, 721 (2006)]. Through the combination of our experimental results and their theoretical calculations, several implications emerge. (1) With the possible exception of dG-, the parent anions of nucleosides exist, and they are stable. (2) These nucleoside anions are valence anions, and in most cases the negative charge is closely associated with the nucleobase moiety. (3) The nucleoside parent anions we have generated and studied are the negative ions of canonical, neutral nucleosides, similar to those found in DNA.
Stokes, Sarah T; Li, Xiang; Grubisic, Andrej; Ko, Yeon Jae; Bowen, Kit H
2007-08-28
The nucleoside parent anions 2(')-deoxythymidine(-), 2(')-deoxycytidine(-), 2(')-deoxyadenosine(-), uridine(-), cytidine(-), adenosine(-), and guanosine(-) were generated in a novel source, employing a combination of infrared desorption, electron photoemission, and a gas jet expansion. Once mass selected, the anion photoelectron spectrum of each of these was recorded. In the three cases in which comparisons were possible, the vertical detachment energies and likely adiabatic electron affinities extracted from these spectra agreed well with the values calculated both by Richardson et al. [J. Am. Chem. Soc. 126, 4404 (2004)] and by Li et al. [Radiat. Res. 165, 721 (2006)]. Through the combination of our experimental results and their theoretical calculations, several implications emerge. (1) With the possible exception of dG(-), the parent anions of nucleosides exist, and they are stable. (2) These nucleoside anions are valence anions, and in most cases the negative charge is closely associated with the nucleobase moiety. (3) The nucleoside parent anions we have generated and studied are the negative ions of canonical, neutral nucleosides, similar to those found in DNA.
NASA Astrophysics Data System (ADS)
Bauer, Thilo; Jäger, Christof M.; Jordan, Meredith J. T.; Clark, Timothy
2015-07-01
We have developed a multi-agent quantum Monte Carlo model to describe the spatial dynamics of multiple majority charge carriers during conduction of electric current in the channel of organic field-effect transistors. The charge carriers are treated by a neglect of diatomic differential overlap Hamiltonian using a lattice of hydrogen-like basis functions. The local ionization energy and local electron affinity defined previously map the bulk structure of the transistor channel to external potentials for the simulations of electron- and hole-conduction, respectively. The model is designed without a specific charge-transport mechanism like hopping- or band-transport in mind and does not arbitrarily localize charge. An electrode model allows dynamic injection and depletion of charge carriers according to source-drain voltage. The field-effect is modeled by using the source-gate voltage in a Metropolis-like acceptance criterion. Although the current cannot be calculated because the simulations have no time axis, using the number of Monte Carlo moves as pseudo-time gives results that resemble experimental I/V curves.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bauer, Thilo; Jäger, Christof M.; Jordan, Meredith J. T.
2015-07-28
We have developed a multi-agent quantum Monte Carlo model to describe the spatial dynamics of multiple majority charge carriers during conduction of electric current in the channel of organic field-effect transistors. The charge carriers are treated by a neglect of diatomic differential overlap Hamiltonian using a lattice of hydrogen-like basis functions. The local ionization energy and local electron affinity defined previously map the bulk structure of the transistor channel to external potentials for the simulations of electron- and hole-conduction, respectively. The model is designed without a specific charge-transport mechanism like hopping- or band-transport in mind and does not arbitrarily localizemore » charge. An electrode model allows dynamic injection and depletion of charge carriers according to source-drain voltage. The field-effect is modeled by using the source-gate voltage in a Metropolis-like acceptance criterion. Although the current cannot be calculated because the simulations have no time axis, using the number of Monte Carlo moves as pseudo-time gives results that resemble experimental I/V curves.« less
Evaluation of water displacement energetics in protein binding sites with grid cell theory.
Gerogiokas, G; Southey, M W Y; Mazanetz, M P; Heifetz, A; Hefeitz, A; Bodkin, M; Law, R J; Michel, J
2015-04-07
Excess free energies, enthalpies and entropies of water in protein binding sites were computed via classical simulations and Grid Cell Theory (GCT) analyses for three pairs of congeneric ligands in complex with the proteins scytalone dehydratase, p38α MAP kinase and EGFR kinase respectively. Comparative analysis is of interest since the binding modes for each ligand pair differ in the displacement of one binding site water molecule, but significant variations in relative binding affinities are observed. Protocols that vary in their use of restraints on protein and ligand atoms were compared to determine the influence of protein-ligand flexibility on computed water structure and energetics, and to assess protocols for routine analyses of protein-ligand complexes. The GCT-derived binding affinities correctly reproduce experimental trends, but the magnitude of the predicted changes in binding affinities is exaggerated with respect to results from a previous Monte Carlo Free Energy Perturbation study. Breakdown of the GCT water free energies into enthalpic and entropic components indicates that enthalpy changes dominate the observed variations in energetics. In EGFR kinase GCT analyses revealed that replacement of a pyrimidine by a cyanopyridine perturbs water energetics up three hydration shells away from the ligand.
Relative binding affinity prediction of farnesoid X receptor in the D3R Grand Challenge 2 using FEP.
Schindler, Christina; Rippmann, Friedrich; Kuhn, Daniel
2018-01-01
Physics-based free energy simulations have increasingly become an important tool for predicting binding affinity and the recent introduction of automated protocols has also paved the way towards a more widespread use in the pharmaceutical industry. The D3R 2016 Grand Challenge 2 provided an opportunity to blindly test the commercial free energy calculation protocol FEP+ and assess its performance relative to other affinity prediction methods. The present D3R free energy prediction challenge was built around two experimental data sets involving inhibitors of farnesoid X receptor (FXR) which is a promising anticancer drug target. The FXR binding site is predominantly hydrophobic with few conserved interaction motifs and strong induced fit effects making it a challenging target for molecular modeling and drug design. For both data sets, we achieved reasonable prediction accuracy (RMSD ≈ 1.4 kcal/mol, rank 3-4 according to RMSD out of 20 submissions) comparable to that of state-of-the-art methods in the field. Our D3R results boosted our confidence in the method and strengthen our desire to expand its applications in future in-house drug design projects.
Relative binding affinity prediction of farnesoid X receptor in the D3R Grand Challenge 2 using FEP+
NASA Astrophysics Data System (ADS)
Schindler, Christina; Rippmann, Friedrich; Kuhn, Daniel
2018-01-01
Physics-based free energy simulations have increasingly become an important tool for predicting binding affinity and the recent introduction of automated protocols has also paved the way towards a more widespread use in the pharmaceutical industry. The D3R 2016 Grand Challenge 2 provided an opportunity to blindly test the commercial free energy calculation protocol FEP+ and assess its performance relative to other affinity prediction methods. The present D3R free energy prediction challenge was built around two experimental data sets involving inhibitors of farnesoid X receptor (FXR) which is a promising anticancer drug target. The FXR binding site is predominantly hydrophobic with few conserved interaction motifs and strong induced fit effects making it a challenging target for molecular modeling and drug design. For both data sets, we achieved reasonable prediction accuracy (RMSD ≈ 1.4 kcal/mol, rank 3-4 according to RMSD out of 20 submissions) comparable to that of state-of-the-art methods in the field. Our D3R results boosted our confidence in the method and strengthen our desire to expand its applications in future in-house drug design projects.