Science.gov

Sample records for energy electron dosimetry

  1. Comparison of high-energy photon and electron dosimetry for various dosimetry protocols.

    PubMed

    Araki, Fujio; Kubo, H Dale

    2002-05-01

    The American Association of Physicists in Medicine Task Group 51 (TG-51) and the International Atomic Energy Agency (IAEA) published a new high-energy photon and electron dosimetry protocol, in 1999 and 2000, respectively. These protocols are based on the use of an ion chamber having an absorbed-dose to water calibration factor with a 60Co beam. These are different from the predecessors, the TG-21 and IAEA TRS-277 protocols, which require a 60Co exposure or air-kerma calibration factor. The purpose of this work is to present the dose comparison between various dosimetry protocols and the AAPM TG-51 protocol for clinical reference dosimetry of high-energy photon and electron beams. The absorbed-dose to water calculated according to the Japanese Association of Radiological Physics (JARP), International Atomic Energy Agency Technical Report Series No. 277 (IAEA TRS-277) and No. 398 (IAEA TRS-398) protocols is compared to that calculated using the TG-51 protocol. For various Farmer-type chambers in photon beams, TG-51 is found to predict 0.6-2.1% higher dose than JARP. Similarly, TG-51 is found to be higher by 0.7-1.7% than TRS-277. For electron beams TG-51 is higher than JARP by 1.5-3.8% and TRS-277 by 0.2-1.9%. The reasons for these differences are presented in terms of the cavity-gas calibration factor, Ngas, and a dose conversion factor, Fw, which converts the absorbed-dose to air in the chamber to the absorbed-dose to water. The ratio of cavity-gas calibration factors based on absorbed-dose to water calibration factors, N60Co(D,w), in TG-51 and cavity-gas calibration factors which are equivalent to absorbed-dose to air chamber factors, N(D,air), based on the IAEA TRS-381 protocol is 1.008 on average. However, the estimated uncertainty of the ratio between the two cavity-gas calibration factors is 0.9% (1 s.d.) and consequently, the observed difference of 0.8% is not significant. The absorbed-dose to water and exposure or air-kerma calibration factors are based on

  2. Challenges of dosimetry of ultra-short pulsed very high energy electron beams.

    PubMed

    Subiel, Anna; Moskvin, Vadim; Welsh, Gregor H; Cipiccia, Silvia; Reboredo, David; DesRosiers, Colleen; Jaroszynski, Dino A

    2017-05-11

    Very high energy electrons (VHEE) in the range from 100 to 250MeV have the potential of becoming an alternative modality in radiotherapy because of their improved dosimetric properties compared with 6-20MV photons generated by clinical linear accelerators (LINACs). VHEE beams have characteristics unlike any other beams currently used for radiotherapy: femtosecond to picosecond duration electron bunches, which leads to very high dose per pulse, and energies that exceed that currently used in clinical applications. Dosimetry with conventional online detectors, such as ionization chambers or diodes, is a challenge due to non-negligible ion recombination effects taking place in the sensitive volumes of these detectors. FLUKA and Geant4 Monte Carlo (MC) codes have been employed to study the temporal and spectral evolution of ultrashort VHEE beams in a water phantom. These results are complemented by ion recombination measurements employing an IBA CC04 ionization chamber for a 165MeV VHEE beam. For comparison, ion recombination has also been measured using the same chamber with a conventional 20MeV electron beam. This work demonstrates that the IBA CC04 ionization chamber exhibits significant ion recombination and is therefore not suitable for dosimetry of ultrashort pulsed VHEE beams applying conventional correction factors. Further study is required to investigate the applicability of ion chambers in VHEE dosimetry. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. [Total cutaneous irradiation with low energy electrons and mycosis fungoides. Technic and dosimetry].

    PubMed

    Monetti, U; Ragona, R; Anglesio, S; Urgesi, A; Fillini, C

    1987-10-01

    Mycosis fungoides initially involves the epidermis and the superficial layers of derma at a depth of about 1 cm. Wide field irradiation with low energy electrons is therefore the treatment of choice in the initial stages of the disease. In our Institute, total skin electron beam irradiation is delivered with Therac 20 linear accelerator: the lowest available energy is 6 MeV. A lucite sheet of 0.6 cm thickness is used to decrease the energy of the beam. We used film dosimetry to evaluate the homogeneity of dose distribution in an Alderson-Rando phantom with different arrangements of the fields and the lucite sheet: 4 and 6 fields techniques have been compared with different positions of the lucite filter, near the phantom and near the collimator. Six fields yield a better dose distribution: homogeneity is within +/- 3.7%, while with four fields it is within +/- 6%. X-rays contamination is less than 2%. "In vivo" dosimetry has been performed using thermoluminescent dosimeters: homogeneity is within +/- 15%.

  4. AAPM's TG-51 protocol for clinical reference dosimetry of high-energy photon and electron beams.

    PubMed

    Almond, P R; Biggs, P J; Coursey, B M; Hanson, W F; Huq, M S; Nath, R; Rogers, D W

    1999-09-01

    A protocol is prescribed for clinical reference dosimetry of external beam radiation therapy using photon beams with nominal energies between 60Co and 50 MV and electron beams with nominal energies between 4 and 50 MeV. The protocol was written by Task Group 51 (TG-51) of the Radiation Therapy Committee of the American Association of Physicists in Medicine (AAPM) and has been formally approved by the AAPM for clinical use. The protocol uses ion chambers with absorbed-dose-to-water calibration factors, N(60Co)D,w which are traceable to national primary standards, and the equation D(Q)w = MkQN(60Co)D,w where Q is the beam quality of the clinical beam, D(Q)w is the absorbed dose to water at the point of measurement of the ion chamber placed under reference conditions, M is the fully corrected ion chamber reading, and kQ is the quality conversion factor which converts the calibration factor for a 60Co beam to that for a beam of quality Q. Values of kQ are presented as a function of Q for many ion chambers. The value of M is given by M = PionP(TP)PelecPpolMraw, where Mraw is the raw, uncorrected ion chamber reading and Pion corrects for ion recombination, P(TP) for temperature and pressure variations, Pelec for inaccuracy of the electrometer if calibrated separately, and Ppol for chamber polarity effects. Beam quality, Q, is specified (i) for photon beams, by %dd(10)x, the photon component of the percentage depth dose at 10 cm depth for a field size of 10x10 cm2 on the surface of a phantom at an SSD of 100 cm and (ii) for electron beams, by R50, the depth at which the absorbed-dose falls to 50% of the maximum dose in a beam with field size > or =10x10 cm2 on the surface of the phantom (> or =20x20 cm2 for R50>8.5 cm) at an SSD of 100 cm. R50 is determined directly from the measured value of I50, the depth at which the ionization falls to 50% of its maximum value. All clinical reference dosimetry is performed in a water phantom. The reference depth for calibration

  5. Absolute dose determination in high-energy electron beams: Comparison of IAEA dosimetry protocols

    PubMed Central

    Sathiyan, S.; Ravikumar, M.

    2008-01-01

    In this study, absorbed doses were measured and compared for high-energy electrons (6, 9, 12, 16, and 20 MeV) using International Atomic Energy Agency (IAEA), Technical Reports Series No. 277 (TRS), TRS 381, and TRS 398 dosimetry protocols. Absolute dose measurements were carried out using FC65-G Farmer chamber and Nordic Association of Clinical Physicists (NACP) parallel plate chamber with DOSE1 electrometer in WP1-D water phantom for reference field size of 15 × 15 cm2 at 100 cm source-to-surface distance. The results show that the difference between TRS 398 and TRS 381 was about 0.24% to 1.3% depending upon the energy, and the maximum difference between TRS 398 and TRS 277 was 1.5%. The use of cylindrical chamber in electron beam gives the maximum dose difference between the TRS 398 and TRS 277 in the order of 1.4% for energies above 10 MeV (R50 > 4 g/cm2). It was observed that the accuracy of dose estimation was better with the protocols based on the water calibration procedures, as no conversion quantities are involved for conversion of dose from air to water. The cross-calibration procedure of parallel plate chamber with high-energy electron beams is recommended as it avoids pwall correction factor entering into the determination of kQ,Qo. PMID:19893700

  6. A diamond detector in the dosimetry of high-energy electron and photon beams.

    PubMed

    Laub, W U; Kaulich, T W; Nüsslin, F

    1999-09-01

    A diamond detector type 60003 (PTW Freiburg) was examined for the purpose of dosimetry with 4-20 MeV electron beams and 4-25 MV photon beams. Results were compared with those obtained by using a Markus chamber for electron beams and an ionization chamber for photon beams. Dose distributions were measured in a water phantom with the detector connected to a Unidos electrometer (PTW Freiburg). After a pre-irradiation of about 5 Gy the diamond detector shows a stability in response which is better than that of an ionization chamber. The current of the diamond detector was measured under variation of photon beam dose rate between 0.1 and 7 Gy min(-1). Different FSDs were chosen. Furthermore the pulse repetition frequency and the depth of the detector were changed. The electron beam dose rate was varied between 0.23 and 4.6 Gy min(-1) by changing the pulse-repetition frequency. The response shows no energy dependence within the covered photon-beam energy range. Between 4 MeV and 18 MeV electron beam energy it shows only a small energy dependence of about 2%, as expected from theory. For smaller electron energies the response increases significantly and an influence of the contact material used for the diamond detector can be surmised. A slight sublinearity of the current and dose rate was found. Detector current and dose rate are related by the expression i alpha Ddelta, where i is the detector current, D is the dose rate and delta is a correction factor of approximately 0.963. Depth-dose curves of photon beams, measured with the diamond detector, show a slight overestimation compared with measurements with the ionization chamber. This overestimation is compensated for by the above correction term. The superior spatial resolution of the diamond detector leads to minor deviations between depth-dose curves of electron beams measured with a Markus chamber and a diamond detector.

  7. [Determination of absorbed dose to water for high energy photon and electron beams--comparison of different dosimetry protocols].

    PubMed

    Zakaria, Golam Abu; Schütte, Wilhelm

    2003-01-01

    The determination of absorbed dose to water for high-energy photon and electron beams is performed in Germany according to the dosimetry protocol DIN 6800-2 (1997). At an international level, the main protocols used are the AAPM dosimetry protocol TG-51 (1999) and the IAEA Code of Practice TRS-398 (2000). The present paper systematically compares these three dosimetry protocols, and identifies similarities and differences. The investigations were performed using 4 and 10 MV photon beams, as well as 6, 8, 9, 10, 12 and 14 MeV electron beams. Two cylindrical and two plane-parallel type chambers were used for measurements. In general, the discrepancies among the three protocols were 1.0% for photon beams and 1.6% for electron beams. Comparative measurements in the context of measurement technical control (MTK) with TLD showed a deviation of less than 1.3% between the measurements obtained according to protocols DIN 6800-2 and MTK (exceptions: 4 MV photons with 2.9% and 6 MeV electrons with 2.4%). While only cylindrical chambers were used for photon beams, measurements of electron beams were performed using both cylindrical and plane-parallel chambers (the latter used after a cross-calibration to a cylindrical chamber, as required by the respective dosimetry protocols). Notably, unlike recommended in the corresponding protocols, we found out that cylindrical chambers can be used also for energies from 6 to 10 MeV.

  8. Electron Paramagnetic Resonance Retrospective Dosimetry

    SciTech Connect

    Romanyukha, Alex; Trompier, Francois

    2011-05-05

    Necessity for, principles of, and general concepts of the electron paramagnetic resonance (EPR) retrospective dosimetry are presented. Also presented and given in details are examples of EPR retrospective dosimetry applications in tooth enamel, bone, and fingernails with focus on general approaches for solving technical and methodological problems. Advantages, drawbacks, and possible future developments are discussed and an extensive bibliography on EPR retrospective dosimetry is provided.

  9. Gafchromic EBT3 film dosimetry in electron beams - energy dependence and improved film read-out.

    PubMed

    Sipilä, Petri; Ojala, Jarkko; Kaijaluoto, Sampsa; Jokelainen, Ilkka; Kosunen, Antti

    2016-01-01

    For megavoltage photon radiation, the fundamental dosimetry characteristics of Gafchromic EBT3 film were determined in  60Co gamma ray beam with addition of experimental and Monte Carlo (MC)-simulated energy dependence of the film for 6 MV photon beam and 6 MeV, 9 MeV, 12 MeV, and 16 MeV electron beams in water phantom. For the film read-out, two phase correction of scanner sensitivity was applied: a matrix correction for scanning area and dose-dependent correction by iterative procedure. With these corrections, the uniformity of response can be improved to be within ±50 pixel values (PVs). To improve the read-out accuracy, a procedure with flipped film orientations was established. With the method, scanner uniformity can be improved further and dust particles, scratches and/or dirt on scanner glass can be detected and eliminated. Responses from red and green channels were averaged for read-out, which decreased the effect of noise present in values from separate channels. Since the signal level with the blue channel is considerably lower than with other channels, the signal variation due to different perturbation effects increases the noise level so that the blue channel is not recommended to be used for dose determination. However, the blue channel can be used for the detection of emulsion thickness variations for film quality evaluations with unexposed films. With electron beams ranging from 6 MeV to 16 MeV and at reference measurement conditions in water, the energy dependence of the EBT3 film is uniform within 0.5%, with uncertainties close to 1.6% (k=2). Including 6 MV photon beam and the electron beams mentioned, the energy dependence is within 1.1%. No notable differences were found between the experimental and MC-simulated responses, indicating negligible change in intrinsic energy dependence of the EBT3 film for 6 MV photon beam and 6 MeV-16 MeV electron beams. Based on the dosimetric characteristics of the EBT3 film, the read-out procedure established

  10. A diamond detector in the dosimetry of high-energy electron and photon beams

    NASA Astrophysics Data System (ADS)

    Laub, Wolfram U.; Kaulich, Theodor W.; Nüsslin, Fridtjof

    1999-09-01

    A diamond detector type 60003 (PTW Freiburg) was examined for the purpose of dosimetry with 4-20 MeV electron beams and 4-25 MV photon beams. Results were compared with those obtained by using a Markus chamber for electron beams and an ionization chamber for photon beams. Dose distributions were measured in a water phantom with the detector connected to a Unidos electrometer (PTW Freiburg). After a pre-irradiation of about 5 Gy the diamond detector shows a stability in response which is better than that of an ionization chamber. The current of the diamond detector was measured under variation of photon beam dose rate between 0.1 and 7 Gy min-1. Different FSDs were chosen. Furthermore the pulse repetition frequency and the depth of the detector were changed. The electron beam dose rate was varied between 0.23 and 4.6 Gy min-1 by changing the pulse-repetition frequency. The response shows no energy dependence within the covered photon-beam energy range. Between 4 MeV and 18 MeV electron beam energy it shows only a small energy dependence of about 2%, as expected from theory. For smaller electron energies the response increases significantly and an influence of the contact material used for the diamond detector can be surmised. A slight sublinearity of the current and dose rate was found. Detector current and dose rate are related by the expression ipropto(dotD)Delta, where i is the detector current, (dotD) is the dose rate and Delta is a correction factor of approximately 0.963. Depth-dose curves of photon beams, measured with the diamond detector, show a slight overestimation compared

  11. Gafchromic EBT3 film dosimetry in electron beams - energy dependence and improved film read-out.

    PubMed

    Sipilä, Petri; Ojala, Jarkko; Kaijaluoto, Sampsa; Jokelainen, Ilkka; Kosunen, Antti

    2016-01-08

    For megavoltage photon radiation, the fundamental dosimetry characteristics of Gafchromic EBT3 film were determined in 60Co gamma ray beam with addition of experimental and Monte Carlo (MC)-simulated energy dependence of the film for 6 MV photon beam and 6 MeV, 9 MeV, 12 MeV, and 16 MeV electron beams in water phantom. For the film read-out, two phase correction of scanner sensitivity was applied: a matrix correction for scanning area and dose-dependent correction by iterative procedure. With these corrections, the uniformity of response can be improved to be within ± 50 pixel values (PVs). To improve the read-out accuracy, a procedure with flipped film orientations was established. With the method, scanner uniformity can be improved further and dust particles, scratches and/or dirt on scan-ner glass can be detected and eliminated. Responses from red and green channels were averaged for read-out, which decreased the effect of noise present in values from separate channels. Since the signal level with the blue channel is considerably lower than with other channels, the signal variation due to different perturbation effects increases the noise level so that the blue channel is not recommended to be used for dose determination. However, the blue channel can be used for the detection of emulsion thickness variations for film quality evaluations with unexposed films. With electron beams ranging from 6 MeV to 16 MeV and at reference measurement conditions in water, the energy dependence of the EBT3 film is uniform within 0.5%, with uncertainties close to 1.6% (k = 2). Including 6 MV photon beam and the electron beams mentioned, the energy dependence is within 1.1%. No notable differences were found between the experimental and MC-simulated responses, indicating negligible change in intrinsic energy dependence of the EBT3 film for 6 MV photon beam and 6 MeV-16 MeV electron beams. Based on the dosimetric characteristics of the EBT3 film, the read-out procedure established

  12. Dosimetry of very high energy electrons (VHEE) for radiotherapy applications: using radiochromic film measurements and Monte Carlo simulations.

    PubMed

    Subiel, A; Moskvin, V; Welsh, G H; Cipiccia, S; Reboredo, D; Evans, P; Partridge, M; DesRosiers, C; Anania, M P; Cianchi, A; Mostacci, A; Chiadroni, E; Di Giovenale, D; Villa, F; Pompili, R; Ferrario, M; Belleveglia, M; Di Pirro, G; Gatti, G; Vaccarezza, C; Seitz, B; Isaac, R C; Brunetti, E; Wiggins, S M; Ersfeld, B; Islam, M R; Mendonca, M S; Sorensen, A; Boyd, M; Jaroszynski, D A

    2014-10-07

    Very high energy electrons (VHEE) in the range from 100-250 MeV have the potential of becoming an alternative modality in radiotherapy because of their improved dosimetry properties compared with MV photons from contemporary medical linear accelerators. Due to the need for accurate dosimetry of small field size VHEE beams we have performed dose measurements using EBT2 Gafchromic® film. Calibration of the film has been carried out for beams of two different energy ranges: 20 MeV and 165 MeV from conventional radio frequency linear accelerators. In addition, EBT2 film has been used for dose measurements with 135 MeV electron beams produced by a laser-plasma wakefield accelerator. The dose response measurements and percentage depth dose profiles have been compared with calculations carried out using the general-purpose FLUKA Monte Carlo (MC) radiation transport code. The impact of induced radioactivity on film response for VHEEs has been evaluated using the MC simulations. A neutron yield of the order of 10(-5) neutrons cm(-2) per incident electron has been estimated and induced activity due to radionuclide production is found to have a negligible effect on total dose deposition and film response. Neutron and proton contribution to the equivalent doses are negligible for VHEE. The study demonstrates that EBT2 Gafchromic film is a reliable dosimeter that can be used for dosimetry of VHEE. The results indicate an energy-independent response of the dosimeter for 20 MeV and 165 MeV electron beams and has been found to be suitable for dosimetry of VHEE.

  13. Dosimetry of very high energy electrons (VHEE) for radiotherapy applications: using radiochromic film measurements and Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Subiel, A.; Moskvin, V.; Welsh, G. H.; Cipiccia, S.; Reboredo, D.; Evans, P.; Partridge, M.; DesRosiers, C.; Anania, M. P.; Cianchi, A.; Mostacci, A.; Chiadroni, E.; Di Giovenale, D.; Villa, F.; Pompili, R.; Ferrario, M.; Belleveglia, M.; Di Pirro, G.; Gatti, G.; Vaccarezza, C.; Seitz, B.; Isaac, R. C.; Brunetti, E.; Wiggins, S. M.; Ersfeld, B.; Islam, M. R.; Mendonca, M. S.; Sorensen, A.; Boyd, M.; Jaroszynski, D. A.

    2014-10-01

    Very high energy electrons (VHEE) in the range from 100-250 MeV have the potential of becoming an alternative modality in radiotherapy because of their improved dosimetry properties compared with MV photons from contemporary medical linear accelerators. Due to the need for accurate dosimetry of small field size VHEE beams we have performed dose measurements using EBT2 Gafchromic® film. Calibration of the film has been carried out for beams of two different energy ranges: 20 MeV and 165 MeV from conventional radio frequency linear accelerators. In addition, EBT2 film has been used for dose measurements with 135 MeV electron beams produced by a laser-plasma wakefield accelerator. The dose response measurements and percentage depth dose profiles have been compared with calculations carried out using the general-purpose FLUKA Monte Carlo (MC) radiation transport code. The impact of induced radioactivity on film response for VHEEs has been evaluated using the MC simulations. A neutron yield of the order of 10-5 neutrons cm-2 per incident electron has been estimated and induced activity due to radionuclide production is found to have a negligible effect on total dose deposition and film response. Neutron and proton contribution to the equivalent doses are negligible for VHEE. The study demonstrates that EBT2 Gafchromic film is a reliable dosimeter that can be used for dosimetry of VHEE. The results indicate an energy-independent response of the dosimeter for 20 MeV and 165 MeV electron beams and has been found to be suitable for dosimetry of VHEE.

  14. The dose rate dependence of synthetic diamond detectors in the relative dosimetry of high-energy electron therapy beams

    NASA Astrophysics Data System (ADS)

    Ade, N.; Nam, T. L.; Derry, T. E.; Mhlanga, S. H.

    2014-05-01

    Evaluation of the linear response of a radiation detector with absorbed dose rate should be of paramount importance in clinical dosimetry. As modelled by Fowler, electrical conductivity, σ, of a solid-state detector and absorbed dose rate, Dr, are related by σ~DrΔ where Δ is the linearity index. The detector is thus independent of dose rate if Δ is unity. This contribution investigates and evaluates the dependence of Δ of synthetic diamond detectors of various types on therapy electron energy and its influence in relative electron dosimetry with the aim of selecting a suitable crystal. The study was conducted initially on one HPHT and eight CVD synthesised diamonds of optical grade (OG) and detector grade (DG) qualities using 6-14 MeV electron therapy beams. For quality control, the diamond specimens were characterised by Raman spectroscopy and electron spin resonance (ESR). Values of Δ ranging between 0.79 and 1.03 were obtained for all the nine diamond detectors at 1000 V/cm for 7 and 12 MeV electron beams. Whereas the Δ values of the HPHT diamond were found not to vary with the electron energies, those of three CVD samples of a given class varied with the electron energies within 2%. In addition, a very strong variation of about 9% was observed for two OG crystals of another class. The Δ values were found to decrease with increasing dose rate and there was a tendency for the Δ values to change with defect levels present within the crystals. Due to the independence of the HPHT diamond's Δ values on electron energy and its better stability of response to radiation, a small-size HPHT crystal was then evaluated of its potential applications in small radiation fields. Relative dose distributions measured with the diamond probe on exposure to 6, 12 and 14 MeV electron beams between 1×1 cm2 and 10×10 cm2 fields were compared with those obtained with reference ion chambers and a Dosimetry Diode E. The results showed that with careful selection of a suitable

  15. Applicability of Topaz Composites to Electron Dosimetry

    NASA Astrophysics Data System (ADS)

    Bomfim, K. S.; Souza, D. N.

    2010-11-01

    Thermoluminescent dosimetric topaz properties have been investigated and the results have shown that this mineral presents characteristics of a good dosimeter mainly in doses evaluation in radiotherapy with photons beams in radiotherapy. Typical applications of thermoluminescent dosimeters in radiotherapy are: in vivo dosimetry on patients (either as a routine quality assurance procedure or for dose monitoring in special cases); verification of treatment techniques; dosimetry audits; and comparisons among hospitals. The mean aim of this work was to evaluate the efficiency of topaz-Teflon pellets as thermoluminescent dosimeters in high-energy electron beams used to radiotherapy. Topaz-Teflon pellets were used as TLD.

  16. Graded-gap AlxGa1-xAs detector for high-energy electron beam dosimetry

    NASA Astrophysics Data System (ADS)

    Silenas, Aldis; Miller, Albert; Pozela, Juras; Pozela, Karolis; Dapkus, Leonas; Juciene, Vida

    2011-05-01

    A new graded-gap p-Al0.2Ga0.8As-p-AlxGa1-xAs-n-GaAs detector structure with internal optical response was developed and investigated as a detector for high-energy electron beam dosimetry. An additional p-Al0.2Ga0.8As top layer was grown on the narrow-gap side of the structure. This thin (2 μm) top layer significantly reduces nonradiative surface recombination and increases detector sensitivity for high-energy electron beams by about 10-13%. The increase in doping level of the graded-gap AlxGa1-xAs layer from p=3×1017 to 1.9×1018 cm-3 increases detector sensitivity by about 2.3 times. The detector was encapsulated into a plastic body and fitted for dosimetric measurements in a water phantom. Linear response on absorbed dose and dose rate was obtained for beams with electron energies of 6, 12 and 20 MeV. A good agreement of relative depth dose distribution measured by the AlxGa1-xAs detector and ionization chamber is obtained for the 6 MeV energy electron beam, but a discernible discrepancy is observed for the higher electron energies.

  17. Electron dosimetry for 10-MEV linac

    NASA Astrophysics Data System (ADS)

    Mehta, K. K.; Chu, R.; VanDyk, G.

    Recent developments in electron accelerator technology may allow the role of high-energy machines to expand. Implementation of appropriate dosimetry and quality comtrol methods for non-homogeneous materials is an important part of the expansion of this technology. To implement such methods and provide electron dosimetry for an applications development program, we recently conducted several dosimetry experiments. Our 10-MeV prototype electron accelerator as well as the accelerator at the National Research Council of Canada were used for these experiments. Polystyrene and graphite phantoms were constructed to measure the dose profile with depth. This yielded the extrapolated range and hence the most probable energy of the electrons in the beam. A polymethyl methacrylate (PMMA) sandwich-type range finder was also designed and used to directly measure the range and therefore the electron energy. Some of the range-finder results indicated that the charge buildup in the non- conducting PMMA affected the dose distribution. The measured energy values agreed very well with the beam energy values calculated from the analyzing magnet current of the accelerator. Also, responses of a graphite calorimeter as well as of various dosimeters compared fairly well in an electron field. The interface effects near the surface of homogeneous products were studied by analyzing the transmitted dose measured by the red acrylic continuous dosimeter placed under the products. The same technique was also used to examine the nature of inhomogeneity of various food products. We found this dosimeter extremely convenient and useful for measuring dose distribution in a plane. A Monte Carlo computer code was used to compute the depth-dose distributions in various materials and to compute the dose distribution near the interface of acrylic and air. These results were then compared against the measured distributions.

  18. Experimental verification of dosimetry predictions of bremsstrahlung attenuation as a function of material and electron energy

    SciTech Connect

    Sanford, T.W.L.; Halbleib, J.A.; Beutler, D.E. ); Knott, D.P. )

    1993-12-01

    Dose attenuation with depth in an absorber of on-axis bremsstrahlung generated from an electron target is measured and shown to agree within [+-]9% with Monte Carlo predictions as a function of absorber material (Al,Fe,Pb) and incident electron beam energy (5.5-25.1 MeV). For this on-axis bremsstrahlung, 1 to 5 g/cm[sup 2] of upstream and 0.2 to 1 g/cm[sup 2] of downstream Al buffer is sufficient to provide electron equilibration for CaF[sub 2]:Mn thermoluminescent dosimeters (TI-Ds) over the measured energy range of 5.5 to 25.1 MeV, respectively. Once effective'' equilibration has been established, an expression of the form DA/Q = C[sub 1]V[sup C[sub 2

  19. Experimental verification of dosimetry predictions of bremsstrahlung attenuation as a function of material and electron energy

    SciTech Connect

    Sanford, T.W.L.; Halbleib, J.A.; Beutler, D.E. ); Knott, D.P. )

    1993-01-01

    Dose attenuation with depth in an absorber of on-axis bremsstrahlung generated from an electron target is measured and shown to agree within [plus minus]9% with Monte Carlo predictions as a function of absorber material (Al, Fe, Pb) and incident electron-beam energy (5.5--25.1 MeV). For this on-axis bremsstrahlung, 1 to 5 g/cm[sup 2] of upstream and 0.2 to 1 g/cm[sup 2] of downs Al buffer is sufficient to provide electron equilibration for CaF[sub 2]:Mn thermoluminescent dosimeter (TLDs) over the measured energy range of 5.5 to 25.1 MeV, respectively. Once effective'' equilibration has been established, an expression of the form DA/Q = C[sub 1]V[sup c[sub 2

  20. Experimental verification of dosimetry predictions of bremsstrahlung attenuation as a function of material and electron energy

    SciTech Connect

    Sanford, T.W.L.; Halbleib, J.A.; Beutler, D.E.; Knott, D.P.

    1993-05-01

    Dose attenuation with depth in an absorber of on-axis bremsstrahlung generated from an electron target is measured and shown to agree within {plus_minus}9% with Monte Carlo predictions as a function of absorber material (Al, Fe, Pb) and incident electron-beam energy (5.5--25.1 MeV). For this on-axis bremsstrahlung, 1 to 5 g/cm{sup 2} of upstream and 0.2 to 1 g/cm{sup 2} of downs Al buffer is sufficient to provide electron equilibration for CaF{sub 2}:Mn thermoluminescent dosimeter (TLDs) over the measured energy range of 5.5 to 25.1 MeV, respectively. Once ``effective`` equilibration has been established, an expression of the form DA/Q = C{sub 1}V{sup c{sub 2}}e{sup {minus}C}{sub 3}V{sup c}{sub 4}{ell}, can be used to predict the dose-area (DA) product per absorbed beam charge (Q) at a given incident beam energy (V) in TLDs as a function of depth ({ell}) in absorbers, within a fixed solid angle centered about the beam axis. This expression is quantified for the measurements presented here.

  1. SU‐C‐105‐05: Reference Dosimetry of High‐Energy Electron Beams with a Farmer‐Type Ionization Chamber

    SciTech Connect

    Muir, B; Rogers, D

    2013-06-15

    Purpose: To investigate gradient effects and provide Monte Carlo calculated beam quality conversion factors to characterize the Farmer‐type NE2571 ion chamber for high‐energy reference dosimetry of clinical electron beams. Methods: The EGSnrc code system is used to calculate the absorbed dose to water and to the gas in a fully modeled NE2571 chamber as a function of depth in a water phantom. Electron beams incident on the surface of the phantom are modeled using realistic BEAMnrc accelerator simulations and electron beam spectra. Beam quality conversion factors are determined using calculated doses to water and to air in the chamber in high‐energy electron beams and in a cobalt‐60 reference field. Calculated water‐to‐air stopping power ratios are employed for investigation of the overall ion chamber perturbation factor. Results: An upstream shift of 0.3–0.4 multiplied by the chamber radius, r-cav, both minimizes the variation of the overall ion chamber perturbation factor with depth and reduces the difference between the beam quality specifier (R{sub 5} {sub 0}) calculated using ion chamber simulations and that obtained with simulations of dose‐to‐water in the phantom. Beam quality conversion factors are obtained at the reference depth and gradient effects are optimized using a shift of 0.2r-cav. The photon‐electron conversion factor, k-ecal, amounts to 0.906 when gradient effects are minimized using the shift established here and 0.903 if no shift of the data is used. Systematic uncertainties in beam quality conversion factors are investigated and amount to between 0.4 to 1.1% depending on assumptions used. Conclusion: The calculations obtained in this work characterize the use of an NE2571 ion chamber for reference dosimetry of high‐energy electron beams. These results will be useful as the AAPM continues to review their reference dosimetry protocols.

  2. Small Field: dosimetry in electron disequilibrium region

    NASA Astrophysics Data System (ADS)

    Zhu, Timothy C.

    2010-11-01

    Small fields are more commonly used for radiation therapy because of the development of IMRT, stereotactic radiosurgery, and other special equipments such as Cyberknife and Tomotherapy. The dosimetry in the sub-centimeter field can result in substantial uncertainties because of the presence of electron disequilibrium due to the large dose gradients in the field. It is further complicated by the introduction of various radiation detectors, which usually perturb the conditions of disequilibrium. Hence additional corrections are required to maintain the dosimetric accuracy previously achieved for standard radiation dosimetry. A review of small field dosimetry provides some insights into the methods to characterize the detector convolution kernel and other methods to characterize detector perturbation effect.

  3. Thermoacoustic dosimetry of electron beam in extra field

    SciTech Connect

    Kalinichenko, A.I.; Kresnin, Yu.A.; Popov, G.F.

    1996-12-31

    The theoretical basis is elaborated for thermoacoustic dosimetry of electron beam by one-dimensional (1-D) thin target TT in extra thermal and electromagnetic fields. The basic equation joining the deposited energy distribution to the stress wave amplitude in the case when the generation coefficient is function of temperature and coordinate in material permits realizing nonlinear thermoacoustic dosimetry with regulated sensitivity. Some variants of joint employment of the thermoacoustic dosimeter and electromagnetic scanner/splitter are considered. The first variant consists in beam scanning along 1-D dosimeter body to create the moving thermoacoustic source. This regime may be used for dosimetry of long beams. The second variant consists in spectral decomposition of the beam in electromagnetic field before its directing to the dosimeter. Principle of operation for some termoelastic dosimeters on the base of 1-D TTs is considered.

  4. Dosimetry considerations for the high-energy photon/electron environment of HERMES III; Implications for experiments and modeling

    SciTech Connect

    Beutler, D.E.; Halbleib, J.A.; Sanford, T.W.L.; Fehl, D.L. ); Knott, D.P. )

    1991-12-01

    In this paper measurements of energy deposition as a function of equilibrator thickness and position in the HERMES III radiation field are compared to ITS code predictions. These measurements demonstrate the combined photon/electron nature of the radiation field and the importance of the electron field in both measurements and calculations.

  5. Practical neutron dosimetry at high energies

    SciTech Connect

    McCaslin, J.B.; Thomas, R.H.

    1980-10-01

    Dosimetry at high energy particle accelerators is discussed with emphasis on physical measurements which define the radiation environment and provide an immutable basis for the derivation of any quantities subsequently required for risk evaluation. Results of inter-laboratory dosimetric comparisons are reviewed and it is concluded that a well-supported systematic program is needed which would make possible detailed evaluations and inter-comparisons of instruments and techniques in well characterized high energy radiation fields. High-energy dosimetry is so coupled with radiation transport that it is clear their study should proceed concurrently.

  6. The IPEM code of practice for electron dosimetry for radiotherapy beams of initial energy from 4 to 25 MeV based on an absorbed dose to water calibration

    NASA Astrophysics Data System (ADS)

    Thwaites (Chair), IPEM Working Party: D. I.; Du Sautoy, A. R.; Jordan, T.; McEwen, M. R.; Nisbet, A.; Nahum, A. E.; Pitchford, W. G.

    2003-09-01

    This report contains the recommendations of the Electron Dosimetry Working Party of the UK Institute of Physics and Engineering in Medicine (IPEM). The recommendations consist of a code of practice for electron dosimetry for radiotherapy beams of initial energy from 4 to 25 MeV. The code is based on the absorbed dose to water calibration service for electron beams provided by the UK standards laboratory, the National Physical Laboratory (NPL). This supplies direct ND,w calibration factors, traceable to a calorimetric primary standard, at specified reference depths over a range of electron energies up to approximately 20 MeV. Electron beam quality is specified in terms of R50,D, the depth in water along the beam central axis at which the dose is 50% of the maximum. The reference depth for any given beam at the NPL for chamber calibration and also for measurements for calibration of clinical beams is 0.6R50,D - 0.1 cm in water. Designated chambers are graphite-walled Farmer-type cylindrical chambers and the NACP- and Roos-type parallel-plate chambers. The practical code provides methods to determine the absorbed dose to water under reference conditions and also guidance on methods to transfer this dose to non-reference points and to other irradiation conditions. It also gives procedures and data for extending up to higher energies above the range where direct calibration factors are currently available. The practical procedures are supplemented by comprehensive appendices giving discussion of the background to the formalism and the sources and values of any data required. The electron dosimetry code improves consistency with the similar UK approach to megavoltage photon dosimetry, in use since 1990. It provides reduced uncertainties, approaching 1% standard uncertainty in optimal conditions, and a simpler formalism than previous air kerma calibration based recommendations for electron dosimetry.

  7. SU-D-19A-01: Can Farmer-Type Ionization Chambers Be Used to Improve the Accuracy of Low-Energy Electron Beam Reference Dosimetry?

    SciTech Connect

    Muir, B R; McEwen, M R

    2014-06-01

    Purpose: To investigate the use of cylindrical Farmer-type ionization chambers to improve the accuracy of low-energy electron beam calibration. Historically, these chamber types have not been used in beams with incident energies less than 10 MeV (R{sub 5} {sub 0} < 4.3 cm) because early investigations suggested large (up to 5 %) fluence perturbation factors in these beams, implying that a significant component of uncertainty would be introduced if used for calibration. More recently, the assumptions used to determine perturbation corrections for cylindrical chambers have been questioned. Methods: Measurements are made with cylindrical chambers in Elekta Precise 4, 8 and 18 MeV electron beams. Several chamber types are investigated that employ graphite walls and aluminum electrodes with very similar specifications (NE2571, NE2505/3, FC65-G). Depth-ionization scans are measured in water in the 8 and 18 MeV beams. To reduce uncertainty from chamber positioning, measurements in the 4 MeV beam are made at the reference depth in Virtual Water™. The variability of perturbation factors is quantified by comparing normalized response of various chambers. Results: Normalized ion chamber response varies by less than 0.7 % for similar chambers at average electron energies corresponding to that at the reference depth from 4 or 6 MeV beams. Similarly, normalized measurements made with similar chambers at the reference depth in the 4 MeV beam vary by less than 0.4 %. Absorbed dose calibration coefficients derived from these results are stable within 0.1 % on average over a period of 6 years. Conclusion: These results indicate that the uncertainty associated with differences in fluence perturbations for cylindrical chambers with similar specifications is only 0.2 %. The excellent long-term stability of these chambers in both photon and electron beams suggests that these chambers might offer the best performance for all reference dosimetry applications.

  8. Clinical applications of alanine/electron spin resonance dosimetry.

    PubMed

    Baffa, Oswaldo; Kinoshita, Angela

    2014-05-01

    This paper discusses the clinical applications of electron spin resonance (ESR) dosimetry focusing on the ESR/alanine system. A review of few past studies in this area is presented offering a critical overview of the challenges and opportunities for extending this system into clinical applications. Alanine/ESR dosimetry fulfills many of the required properties for several clinical applications such as water-equivalent composition, independence of the sensitivity for the energy range used in therapy and high precision. Improvements in sensitivity and the development of minidosimeters coupled with the use of a spectrometer of higher microwave frequency expanded the possibilities for clinical applications to the new modalities of radiotherapy (intensity-modulated radiation therapy and radiosurgery) and to the detection of low doses such as those present in some radiological image procedures.

  9. Effects of water on fingernail electron paramagnetic resonance dosimetry

    PubMed Central

    Zhang, Tengda; Zhao, Zhixin; Zhang, Haiying; Zhai, Hezheng; Ruan, Shuzhou; Jiao, Ling; Zhang, Wenyi

    2016-01-01

    Electron paramagnetic resonance (EPR) is a promising biodosimetric method, and fingernails are sensitive biomaterials to ionizing radiation. Therefore, kinetic energy released per unit mass (kerma) can be estimated by measuring the level of free radicals within fingernails, using EPR. However, to date this dosimetry has been deficient and insufficiently accurate. In the sampling processes and measurements, water plays a significant role. This paper discusses many effects of water on fingernail EPR dosimetry, including disturbance to EPR measurements and two different effects on the production of free radicals. Water that is unable to contact free radicals can promote the production of free radicals due to indirect ionizing effects. Therefore, varying water content within fingernails can lead to varying growth rates in the free radical concentration after irradiation—these two variables have a linear relationship, with a slope of 1.8143. Thus, EPR dosimetry needs to be adjusted according to the water content of the fingernails of an individual. When the free radicals are exposed to water, the eliminating effect will appear. Therefore, soaking fingernail pieces in water before irradiation, as many researchers have previously done, can cause estimation errors. In addition, nails need to be dehydrated before making accurately quantitative EPR measurements. PMID:27342838

  10. Comparison of the IAEA TRS-398 and AAPM TG-51 absorbed dose to water protocols in the dosimetry of high-energy photon and electron beams.

    PubMed

    Huq, M S; Andreo, P; Song, H

    2001-11-01

    The International Atomic Energy Agency (IAEA TRS-398) and the American Association of Physicists in Medicine (AAPM TG-51) have published new protocols for the calibration of radiotherapy beams. These protocols are based on the use of an ionization chamber calibrated in terms of absorbed dose to water in a standards laboratory's reference quality beam. This paper compares the recommendations of the two protocols in two ways: (i) by analysing in detail the differences in the basic data included in the two protocols for photon and electron beam dosimetry and (ii) by performing measurements in clinical photon and electron beams and determining the absorbed dose to water following the recommendations of the two protocols. Measurements were made with two Farmer-type ionization chambers and three plane-parallel ionization chamber types in 6, 18 and 25 MV photon beams and 6, 8, 10, 12, 15 and 18 MeV electron beams. The Farmer-type chambers used were NE 2571 and PTW 30001, and the plane-parallel chambers were a Scanditronix-Wellhöfer NACP and Roos, and a PTW Markus chamber. For photon beams, the measured ratios TG-51/TRS-398 of absorbed dose to water Dw ranged between 0.997 and 1.001, with a mean value of 0.999. The ratios for the beam quality correction factors kQ were found to agree to within about +/-0.2% despite significant differences in the method of beam quality specification for photon beams and in the basic data entering into kQ. For electron beams, dose measurements were made using direct N(D,w) calibrations of cylindrical and plane-parallel chambers in a 60Co gamma-ray beam, as well as cross-calibrations of plane-parallel chambers in a high-energy electron beam. For the direct N(D,w) calibrations the ratios TG-51/TRS-398 of absorbed dose to water Dw were found to lie between 0.994 and 1.018 depending upon the chamber and electron beam energy used, with mean values of 0.996, 1.006, and 1.017, respectively, for the cylindrical, well-guarded and not well

  11. Energy response improvement for photon dosimetry using pulse analysis

    NASA Astrophysics Data System (ADS)

    Zaki, Dizaji H.

    2016-02-01

    During the last few years, active personal dosimeters have been developed and have replaced passive personal dosimeters in some external monitoring systems, frequently using silicon diode detectors. Incident photons interact with the constituents of the diode detector and produce electrons. These photon-induced electrons deposit energy in the detector's sensitive region and contribute to the response of diode detectors. To achieve an appropriate photon dosimetry response, the detectors are usually covered by a metallic layer with an optimum thickness. The metallic cover acts as an energy compensating shield. In this paper, a software process is performed for energy compensation. Selective data sampling based on pulse height is used to determine the photon dose equivalent. This method is applied to improve the energy response in photon dosimetry. The detector design is optimized for the response function and determination of the photon dose equivalent. Photon personal dose equivalent is determined in the energy range of 0.3-6 MeV. The error values of the calculated data for this wide energy range and measured data for 133Ba, 137Cs, 60Co and 241Am-Be sources respectively are up to 20% and 15%. Fairly good agreement is seen between simulation and dose values obtained from our process and specifications from several photon sources.

  12. Dosimetry considerations for the high-energy photon/electron environment of HERMES III: Implications for experiments and modeling

    SciTech Connect

    Beutler, D.E.; Halbleib, J.A.; Sanford, T.W.L. ); Knott, D.P. )

    1990-01-01

    Measurements of energy deposition as function of equilibrator thickness and position in the HERMES III radiation field are compared to ITS code predictions. The onset of dose-rate effects in CaF{sub 2} TLDs have also been observed at 10{sup 10} Gy/s levels. 10 refs., 3 figs.

  13. Cellular dosimetry and microdosimetry for internal electron emitters.

    PubMed

    Chao, T C; Huang, Y S; Hsu, F Y; Hsiao, Y; Lee, C C; Tung, C J

    2011-02-01

    Radiobiological descriptions of cellular dosimetry and microdosimetry require both radiation dose and radiation quality. The lineal energy, defined as a ratio of the energy deposition by a particle in the biological target and the mean chord length of this target, is generally adopted to characterise the radiation quality. Most microdosimetry applications assume that the cell nucleus is the target region. Therefore, the lineal energy is obtained for the source (S) to target (T) geometry, T ← S, where S = cell surface, cytoplasm, cell nucleus and T = cell nucleus. The definition of lineal energy is based on the approximation that the particle mean pathlength is equal to target mean chord length. This approximation is valid for crossers of external irradiations. In the case of starters, insiders and stoppers of internal sources, particle pathlengths are always shorter than target chord lengths. Thus, the lineal energy does not reflect the specific energy deposition along particle path. In the present work, the specific energy deposition in a target is calculated using three distance parameters, i.e. target mean chord length, particle mean pathlength in the target and particle individual pathlength in the target. Monte Carlo calculations are performed for electrons of various energies and cells of different sizes. Results are analysed and discussed.

  14. The use of a portable electronic device in accident dosimetry.

    PubMed

    Beerten, Koen; Vanhavere, Filip

    2008-01-01

    The use of a portable electronic device in accident dosimetry has been investigated. The thermoluminescence properties of a surface-mount alumina-rich ceramic resonator from a USB flash drive were investigated. The following characteristics were verified: the absence of a zero-dose signal, gamma dose response, dose recycling behaviour, fading and optical bleaching. Finally, this component has been successfully used to determine a simulated accident dose (1 d following the irradiation event). It is concluded that it should be possible to perform rapid and reliable accident dose assessments with such components using conventional thermoluminescence dosimetry equipment.

  15. Protocols for the dosimetry of high-energy photon and electron beams: a comparison of the IAEA TRS-398 and previous international codes of practice. International Atomic Energy Agency.

    PubMed

    Andreo, Pedro; Huq, M Saiful; Westermark, Mathias; Song, Haijun; Tilikidis, Aris; DeWerd, Larry; Shortt, Ken

    2002-09-07

    A new international Code of Practice for radiotherapy dosimetry co-sponsored by several international organizations has been published by the IAEA, TRS-398. It is based on standards of absorbed dose to water, whereas previous protocols (TRS-381 and TRS-277) were based on air kerma standards. To estimate the changes in beam calibration caused by the introduction of TRS-398, a detailed experimental comparison of the dose determination in reference conditions in high-energy photon and electron beams has been made using the different IAEA protocols. A summary of the formulation and reference conditions in the various Codes of Practice, as well as of their basic data, is presented first. Accurate measurements have been made in 25 photon and electron beams from 10 clinical accelerators using 12 different cylindrical and plane-parallel chambers, and dose ratios under different conditions of TRS-398 to the other protocols determined. A strict step-by-step checklist was followed by the two participating clinical institutions to ascertain that the resulting calculations agreed within tenths of a per cent. The maximum differences found between TRS-398 and the previous Codes of Practice TRS-277 (2nd edn) and TRS-381 are of the order of 1.5-2.0%. TRS-398 yields absorbed doses larger than the previous protocols, around 1.0% for photons (TRS-277) and for electrons (TRS-381 and TRS-277) when plane-parallel chambers are cross-calibrated. For the Markus chamber, results show a very large variation, although a fortuitous cancellation of the old stopping powers with the ND,w/NK ratios makes the overall discrepancy between TRS-398 and TRS-277 in this case smaller than for well-guarded plane-parallel chambers. Chambers of the Roos-type with a 60Co ND,w calibration yield the maximum discrepancy in absorbed dose, which varies between 1.0% and 1.5% for TRS-381 and between 1.5% and 2.0% for TRS-277. Photon beam calibrations using directly measured or calculated TPR20,10 from a percentage

  16. Monte Carlo calculations of correction factors for plane-parallel ionization chambers in clinical electron dosimetry

    SciTech Connect

    Araki, Fujio

    2008-09-15

    Recent standard dosimetry protocols recommend that plane-parallel ionization chambers be used in the measurements of depth-dose distributions or the calibration of low-energy electron beams with beam quality R{sub 50}<4 g/cm{sup 2}. In electron dosimetry protocols with the plane-parallel chambers, the wall correction factor, P{sub wall}, in water is assumed to be unity and the replacement correction factor, P{sub repl}, is taken to be unity for well-guarded plane-parallel chambers, at all measurement depths. This study calculated P{sub wall} and P{sub repl} for NACP-02, Markus, and Roos plane-parallel chambers in clinical electron dosimetry using the EGSnrc Monte Carlo code system. The P{sub wall} values for the plane-parallel chambers increased rapidly as a function of depth in water, especially at lower energy. The value around R{sub 50} for NACP-02 was about 10% greater than unity at 4 MeV. The effect was smaller for higher electron energies. Similarly, P{sub repl} values with depth increased drastically at the region with the steep dose gradient for lower energy. For Markus P{sub repl} departed more than 10% from unity close to R{sub 50} due to the narrow guard ring width. P{sub repl} for NACP-02 and Roos was close to unity in the plateau region of depth-dose curves that includes a reference depth, d{sub ref}. It was also found that the ratio of the dose to water and the dose to the sensitive volume in the air cavity for the plane-parallel chambers, D{sub w}/[D{sub air}]{sub pp}, at d{sub ref} differs significantly from that assumed by electron dosimetry protocols.

  17. SU-D-213-06: Dosimetry of Modulated Electron Radiation Therapy Using Fricke Gel Dosimeter

    SciTech Connect

    Gawad, M Abdel; Elgohary, M; Hassaan, M; Emam, M; Desouky, O; Eldib, A; Ma, C

    2015-06-15

    Purpose: Modulated electron radiation therapy (MERT) has been proposed as an effective modality for treatment of superficial targets. MERT utilizes multiple beams of different energies which are intensity modulated to deliver optimized dose distribution. Energy independent dosimeters are thus needed for quantitative evaluations of MERT dose distributions and measurements of absolute doses delivered to patients. Thus in the current work we study the feasibility of Fricke gel dosimeters in MERT dosimetry. Methods: Batches of radiation sensitive Fricke gel is fabricated and poured into polymethyl methacrylate cuvettes. The samples were irradiated in solid water phantom and a thick layer of bolus was used as a buildup. A spectrophotometer system was used for measuring the color changes (the absorbance) before and after irradiation and then we calculate net absorbance. We constructed calibration curves to relate the measured absorbance in terms of absorbed dose for all available electron energies. Dosimetric measurements were performed for mixed electron beam delivery and we also performed measurement for segmented field delivery with the dosimeter placed at the junction of two adjacent electron beams of different energies. Dose measured by our gel dosimetry is compared to that calculation from our precise treatment planning system. We also initiated a Monte Carlo study to evaluate the water equivalence of our dosimeters. MCBEAM and MCSIM codes were used for treatment head simulation and phantom dose calculation. PDDs and profiles were calculated for electron beams incident on a phantom designed with 1cm slab of Fricke gel. Results: The calibration curves showed no observed energy dependence with all studied electron beam energies. Good agreement was obtained between dose calculated and that obtained by gel dosimetry. Monte Carlo results illustrated the tissue equivalency of our Gel dosimeters. Conclusion: Fricke Gel dosimeters represent a good option for the dosimetric

  18. Application of the ICRP/ICRU reference computational phantoms to internal dosimetry: calculation of specific absorbed fractions of energy for photons and electrons.

    PubMed

    Hadid, L; Desbrée, A; Schlattl, H; Franck, D; Blanchardon, E; Zankl, M

    2010-07-07

    The emission of radiation from a contaminated body region is connected with the dose received by radiosensitive tissue through the specific absorbed fractions (SAFs) of emitted energy, which is therefore an essential quantity for internal dose assessment. A set of SAFs were calculated using the new adult reference computational phantoms, released by the International Commission on Radiological Protection (ICRP) together with the International Commission on Radiation Units and Measurements (ICRU). Part of these results has been recently published in ICRP Publication 110 (2009 Adult reference computational phantoms (Oxford: Elsevier)). In this paper, we mainly discuss the results and also present them in numeric form. The emission of monoenergetic photons and electrons with energies ranging from 10 keV to 10 MeV was simulated for three source organs: lungs, thyroid and liver. SAFs were calculated for four target regions in the body: lungs, colon wall, breasts and stomach wall. For quality assurance purposes, the simulations were performed simultaneously at the Helmholtz Zentrum München (HMGU, Germany) and at the Institute for Radiological Protection and Nuclear Safety (IRSN, France), using the Monte Carlo transport codes EGSnrc and MCNPX, respectively. The comparison of results shows overall agreement for photons and high-energy electrons with differences lower than 8%. Nevertheless, significant differences were found for electrons at lower energy for distant source/target organ pairs. Finally, the results for photons were compared to the SAF values derived using mathematical phantoms. Significant variations that can amount to 200% were found. The main reason for these differences is the change of geometry in the more realistic voxel body models. For electrons, no SAFs have been computed with the mathematical phantoms; instead, approximate formulae have been used by both the Medical Internal Radiation Dose committee (MIRD) and the ICRP due to the limitations imposed

  19. Application of the ICRP/ICRU reference computational phantoms to internal dosimetry: calculation of specific absorbed fractions of energy for photons and electrons

    NASA Astrophysics Data System (ADS)

    Hadid, L.; Desbrée, A.; Schlattl, H.; Franck, D.; Blanchardon, E.; Zankl, M.

    2010-07-01

    The emission of radiation from a contaminated body region is connected with the dose received by radiosensitive tissue through the specific absorbed fractions (SAFs) of emitted energy, which is therefore an essential quantity for internal dose assessment. A set of SAFs were calculated using the new adult reference computational phantoms, released by the International Commission on Radiological Protection (ICRP) together with the International Commission on Radiation Units and Measurements (ICRU). Part of these results has been recently published in ICRP Publication 110 (2009 Adult reference computational phantoms (Oxford: Elsevier)). In this paper, we mainly discuss the results and also present them in numeric form. The emission of monoenergetic photons and electrons with energies ranging from 10 keV to 10 MeV was simulated for three source organs: lungs, thyroid and liver. SAFs were calculated for four target regions in the body: lungs, colon wall, breasts and stomach wall. For quality assurance purposes, the simulations were performed simultaneously at the Helmholtz Zentrum München (HMGU, Germany) and at the Institute for Radiological Protection and Nuclear Safety (IRSN, France), using the Monte Carlo transport codes EGSnrc and MCNPX, respectively. The comparison of results shows overall agreement for photons and high-energy electrons with differences lower than 8%. Nevertheless, significant differences were found for electrons at lower energy for distant source/target organ pairs. Finally, the results for photons were compared to the SAF values derived using mathematical phantoms. Significant variations that can amount to 200% were found. The main reason for these differences is the change of geometry in the more realistic voxel body models. For electrons, no SAFs have been computed with the mathematical phantoms; instead, approximate formulae have been used by both the Medical Internal Radiation Dose committee (MIRD) and the ICRP due to the limitations imposed

  20. Thin film tritium dosimetry

    DOEpatents

    Moran, Paul R.

    1976-01-01

    The present invention provides a method for tritium dosimetry. A dosimeter comprising a thin film of a material having relatively sensitive RITAC-RITAP dosimetry properties is exposed to radiation from tritium, and after the dosimeter has been removed from the source of the radiation, the low energy electron dose deposited in the thin film is determined by radiation-induced, thermally-activated polarization dosimetry techniques.

  1. Implementation of an intraoperative electron radiotherapy in vivo dosimetry program.

    PubMed

    López-Tarjuelo, Juan; Morillo-Macías, Virginia; Bouché-Babiloni, Ana; Boldó-Roda, Enrique; Lozoya-Albacar, Rafael; Ferrer-Albiach, Carlos

    2016-03-15

    Intraoperative electron radiotherapy (IOERT) is a highly selective radiotherapy technique which aims to treat restricted anatomic volumes during oncological surgery and is now the subject of intense re-evaluation. In vivo dosimetry has been recommended for IOERT and has been identified as a risk-reduction intervention in the context of an IOERT risk analysis. Despite reports of fruitful experiences, information about in vivo dosimetry in intraoperative radiotherapy is somewhat scarce. Therefore, the aim of this paper is to report our experience in developing a program of in vivo dosimetry for IOERT, from both multidisciplinary and practical approaches, in a consistent patient series. We also report several current weaknesses. Reinforced TN-502RDM-H mobile metal oxide semiconductor field effect transistors (MOSFETs) and Gafchromic MD-55-2 films were used as a redundant in vivo treatment verification system with an Elekta Precise fixed linear accelerator for calibrations and treatments. In vivo dosimetry was performed in 45 patients in cases involving primary tumors or relapses. The most frequent primary tumors were breast (37 %) and colorectal (29 %), and local recurrences among relapses was 83 %. We made 50 attempts to measure with MOSFETs and 48 attempts to measure with films in the treatment zones. The surgical team placed both detectors with supervision from the radiation oncologist and following their instructions. The program was considered an overall success by the different professionals involved. The absorbed doses measured with MOSFETs and films were 93.8 ± 6.7 % and 97.9 ± 9.0 % (mean ± SD) respectively using a scale in which 90 % is the prescribed dose and 100 % is the maximum absorbed dose delivered by the beam. However, in 10 % of cases we experienced dosimetric problems due to detector misalignment, a situation which might be avoided with additional checks. The useful MOSFET lifetime length and the film sterilization procedure should also be

  2. Two-parametric model of electron beam in computational dosimetry for radiation processing

    NASA Astrophysics Data System (ADS)

    Lazurik, V. M.; Lazurik, V. T.; Popov, G.; Zimek, Z.

    2016-07-01

    Computer simulation of irradiation process of various materials with electron beam (EB) can be applied to correct and control the performances of radiation processing installations. Electron beam energy measurements methods are described in the international standards. The obtained results of measurements can be extended by implementation computational dosimetry. Authors have developed the computational method for determination of EB energy on the base of two-parametric fitting of semi-empirical model for the depth dose distribution initiated by mono-energetic electron beam. The analysis of number experiments show that described method can effectively consider random displacements arising from the use of aluminum wedge with a continuous strip of dosimetric film and minimize the magnitude uncertainty value of the electron energy evaluation, calculated from the experimental data. Two-parametric fitting method is proposed for determination of the electron beam model parameters. These model parameters are as follow: E0 - energy mono-energetic and mono-directional electron source, X0 - the thickness of the aluminum layer, located in front of irradiated object. That allows obtain baseline data related to the characteristic of the electron beam, which can be later on applied for computer modeling of the irradiation process. Model parameters which are defined in the international standards (like Ep- the most probably energy and Rp - practical range) can be linked with characteristics of two-parametric model (E0, X0), which allows to simulate the electron irradiation process. The obtained data from semi-empirical model were checked together with the set of experimental results. The proposed two-parametric model for electron beam energy evaluation and estimation of accuracy for computational dosimetry methods on the base of developed model are discussed.

  3. Epid Dosimetry

    NASA Astrophysics Data System (ADS)

    Greer, Peter B.; Vial, Philip

    2011-05-01

    Electronic portal imaging devices (EPIDs) were introduced originally for patient position verification. The idea of using EPIDs for dosimetry was realised in the 1980s. Little was published on the topic until the mid 1990's, when the interest in EPIDs for dosimetry increased rapidly and continues to grow. The increasing research on EPID dosimetry coincided with the introduction of intensity modulated radiation therapy (IMRT). EPIDs are well suited to IMRT dosimetry because they are high resolution, two-dimensional (2D) digital detectors. They are also pre-existing on almost all modern linear accelerators. They generally show a linear response to increasing dose. Different types of EPIDs have been clinically implemented, and these have been described in several review papers. The current generation of commercially available EPIDs are indirect detection active matrix flat panel imagers, also known as amorphous silicon (a-Si) EPIDs. Disadvantages of a-Si EPIDs for dosimetry include non-water equivalent construction materials, and the energy sensitivity and optical scatter of the phosphor scintillators used to create optical signal from the megavoltage beam. This report discusses current knowledge regarding a-Si EPIDs for dosimetry.

  4. Polymer gel dosimetry applied to beta particles, electrons and 300 kV X-rays

    NASA Astrophysics Data System (ADS)

    Amin, Md. Nurul

    Polymer gels were used with magnetic resonance imaging (MRI) to measure three-dimensional absorbed dose distributions for beta particles, electron and x-rays beams that are used in radiotherapy. The manufacturing processes and calibration procedures for two dosimeters (hypoxic PAG and normoxic MAGIC gels) were investigated. The response of both gels was energy independent over a range of electron and photon energies commonly used for radiotherapy. However, dose response of both gels was dependent on the temperature at the time of MR scanning, while MAGIC was also dependent on the temperature at the time of irradiation, which had not been previously reported. Results suggest that MAGIC gel is superior to PAG, since it is easier to manufacture and unaffected by oxygen diffusion through wall materials. The potential usefulness of both types of gel in different areas of radiotherapy was studied, including vascular brachytherapy. Results were compared with doses measured using radio- chromic film, confirming that dose distributions for vascular brachytherapy sources with a high dose gradient can be measured using PAG. However, because of the disadvantages of the gel manufacturing process and the need for access to a high-resolution scanner, it was concluded that radio-chromic film would be the method of choice for routine quality assurance in brachytherapy. PAG and MAGIC gels were also used for dosimetry across the junction of 6MV photon and 12MeV electron fields that are often used in radiotherapy. Different photon field configurations were studied, and dose profiles were measured. For each configuration either significant "hot" or "cold spots" were measured, with good agreement between the MAGIC and PAG and radio- chromic film. This work has confirmed the usefulness of gel dosimetry in radiotherapy in general, and in beta and electron dosimetry in particular. In addition, these studies have quantified the advantages of normoxic gels over the hypoxic PAG.

  5. Radiological characterization and water equivalency of genipin gel for x-ray and electron beam dosimetry.

    PubMed

    Gorjiara, Tina; Hill, Robin; Kuncic, Zdenka; Bosi, Stephen; Davies, Justin B; Baldock, Clive

    2011-08-07

    The genipin radiochromic gel offers enormous potential as a three-dimensional dosimeter in advanced radiotherapy techniques. We have used several methods (including Monte Carlo simulation), to investigate the water equivalency of genipin gel by characterizing its radiological properties, including mass and electron densities, photon interaction cross sections, mass energy absorption coefficient, effective atomic number, collisional, radiative and total mass stopping powers and electron mass scattering power. Depth doses were also calculated for clinical kilovoltage and megavoltage x-ray beams as well as megavoltage electron beams. The mass density, electron density and effective atomic number of genipin were found to differ from water by less than 2%. For energies below 150 keV, photoelectric absorption cross sections are more than 3% higher than water due to the strong dependence on atomic number. Compton scattering and pair production interaction cross sections for genipin gel differ from water by less than 1%. The mass energy absorption coefficient is approximately 3% higher than water for energies <60 keV due to the dominance of photoelectric absorption in this energy range. The electron mass stopping power and mass scattering power differ from water by approximately 0.3%. X-ray depth dose curves for genipin gel agree to within 1% with those for water. Our results demonstrate that genipin gel can be considered water equivalent for kilovoltage and megavoltage x-ray beam dosimetry. For megavoltage electron beam dosimetry, however, our results suggest that a correction factor may be needed to convert measured dose in genipin gel to that of water, since differences in some radiological properties of up to 3% compared to water are observed. Our results indicate that genipin gel exhibits greater water equivalency than polymer gels and PRESAGE formulations.

  6. Egyptian limestone for gamma dosimetry: an electron paramagnetic resonance study

    NASA Astrophysics Data System (ADS)

    Salama, E.

    2014-04-01

    The electron paramagnetic resonance (EPR) properties of limestone from a certain Egyptian site were investigated in order to propose an efficient and low-cost gamma dosimeter. Radiation-induced free radicals were of one type which was produced in the limestone samples at g=2.0066 after exposure to gamma radiation (60Co). EPR spectrum was recorded and analyzed. The microwave power saturation curve and the effect of changing modulation amplitude on peak-to- peak signal height were investigated. The response of limestone to different radiation doses (0.5-20 kGy) was studied. Except for the decrease in signal intensities during the first five hours following irradiation, over the period of two months fair stabilities of signal intensities were noticed. From the current results, it is possible to conclude that natural limestone may be a suitable material for radiation dosimetry in the range of irradiation processing.

  7. Dosimetry quality assurance in Martin Marietta Energy Systems' centralized external dosimetry system

    SciTech Connect

    Souleyrette, M.L.

    1992-10-23

    External dosimetry needs at the four Martin Marietta Energy Systems facilities are served by Energy Systems Centralized External Dosimetry System (CEDS). The CEDS is a four plant program with four dosimeter distribution centers and two dosimeter processing centers. Each plant has its own distribution center, while processing centers are located at ORNL and the Y-12 Plant. The program has been granted accreditation by the Department of Energy Laboratory Accreditation Program (DOELAP). The CEDS is a TLD based system which is responsible for whole-body beta-gamma, neutron, and extremity monitoring. Beta-gamma monitoring is performed using the Harshaw/Solon Technologies model 8805 dosimeter. Effective October 1, 1992 the standard silver mylar has been replaced with an Avery mylar foil blackened on the underside with ink. This was done in an effort to reduce the number of light induced suspect readings. At this time we have little operational experience with the new blackened mylars-The CEDS neutron dosimeter is the Harshaw model 8806B. This card/holder configuration contains two TLD-600/TLD-700 chip pairs; one pair is located beneath a cadmium filter and one pair is located beneath a plastic filter. In routine personnel monitoring the CEDS neutron dosimeter is always paired with a CEDS beta-gamma dosimeter.The CEDS extremity dosimeter is composed of a Harshaw thin TLD-700 dosiclip placed inside a Teledyne RB-4 finger sachet. The finger sachet provides approximately 7 mg/cm[sup 2] filtration over the chip. A teflon ring surrounds the dosiclip to help prevent tearing of the vinyl sachet.

  8. Boundary Electron and Beta Dosimetry-Quantification of the Effects of Dissimilar Media on Absorbed Dose

    NASA Astrophysics Data System (ADS)

    Nunes, Josane C.

    1991-02-01

    This work quantifies the changes effected in electron absorbed dose to a soft-tissue equivalent medium when part of this medium is replaced by a material that is not soft -tissue equivalent. That is, heterogeneous dosimetry is addressed. Radionuclides which emit beta particles are the electron sources of primary interest. They are used in brachytherapy and in nuclear medicine: for example, beta -ray applicators made with strontium-90 are employed in certain ophthalmic treatments and iodine-131 is used to test thyroid function. More recent medical procedures under development and which involve beta radionuclides include radioimmunotherapy and radiation synovectomy; the first is a cancer modality and the second deals with the treatment of rheumatoid arthritis. In addition, the possibility of skin surface contamination exists whenever there is handling of radioactive material. Determination of absorbed doses in the examples of the preceding paragraph requires considering boundaries of interfaces. Whilst the Monte Carlo method can be applied to boundary calculations, for routine work such as in clinical situations, or in other circumstances where doses need to be determined quickly, analytical dosimetry would be invaluable. Unfortunately, few analytical methods for boundary beta dosimetry exist. Furthermore, the accuracy of results from both Monte Carlo and analytical methods has to be assessed. Although restricted to one radionuclide, phosphorus -32, the experimental data obtained in this work serve several purposes, one of which is to provide standards against which calculated results can be tested. The experimental data also contribute to the relatively sparse set of published boundary dosimetry data. At the same time, they may be useful in developing analytical boundary dosimetry methodology. The first application of the experimental data is demonstrated. Results from two Monte Carlo codes and two analytical methods, which were developed elsewhere, are compared

  9. Personnel neutron dosimetry at Department of Energy facilities

    SciTech Connect

    Brackenbush, L.W.; Endres, G.W.R.; Selby, J.M.; Vallario, E.J.

    1980-08-01

    This study assesses the state of personnel neutron dosimetry at DOE facilities. A survey of the personnel dosimetry systems in use at major DOE facilities was conducted, a literature search was made to determine recent advances in neutron dosimetry, and several dosimetry experts were interviewed. It was concluded that personnel neutron dosimeters do not meet current needs and that serious problems exist now and will increase in the future if neutron quality factors are increased and/or dose limits are lowered.

  10. Recommendations for clinical electron beam dosimetry: Supplement to the recommendations of Task Group 25

    SciTech Connect

    Gerbi, Bruce J.; Antolak, John A.; Deibel, F. Christopher; and others

    2009-07-15

    The goal of Task Group 25 (TG-25) of the Radiation Therapy Committee of the American Association of Physicists in Medicine (AAPM) was to provide a methodology and set of procedures for a medical physicist performing clinical electron beam dosimetry in the nominal energy range of 5-25 MeV. Specifically, the task group recommended procedures for acquiring basic information required for acceptance testing and treatment planning of new accelerators with therapeutic electron beams. Since the publication of the TG-25 report, significant advances have taken place in the field of electron beam dosimetry, the most significant being that primary standards laboratories around the world have shifted from calibration standards based on exposure or air kerma to standards based on absorbed dose to water. The AAPM has published a new calibration protocol, TG-51, for the calibration of high-energy photon and electron beams. The formalism and dosimetry procedures recommended in this protocol are based on the absorbed dose to water calibration coefficient of an ionization chamber at {sup 60}Co energy, N{sub D,w}{sup 60{sub C}{sub o}}, together with the theoretical beam quality conversion coefficient k{sub Q} for the determination of absorbed dose to water in high-energy photon and electron beams. Task Group 70 was charged to reassess and update the recommendations in TG-25 to bring them into alignment with report TG-51 and to recommend new methodologies and procedures that would allow the practicing medical physicist to initiate and continue a high quality program in clinical electron beam dosimetry. This TG-70 report is a supplement to the TG-25 report and enhances the TG-25 report by including new topics and topics that were not covered in depth in the TG-25 report. These topics include procedures for obtaining data to commission a treatment planning computer, determining dose in irregularly shaped electron fields, and commissioning of sophisticated special procedures using high-energy

  11. Recommendations for clinical electron beam dosimetry: supplement to the recommendations of Task Group 25.

    PubMed

    Gerbi, Bruce J; Antolak, John A; Deibel, F Christopher; Followill, David S; Herman, Michael G; Higgins, Patrick D; Huq, M Saiful; Mihailidis, Dimitris N; Yorke, Ellen D; Hogstrom, Kenneth R; Khan, Faiz M

    2009-07-01

    The goal of Task Group 25 (TG-25) of the Radiation Therapy Committee of the American Association of.Physicists in Medicine (AAPM) was to provide a methodology and set of procedures for a medical physicist performing clinical electron beam dosimetry in the nominal energy range of 5-25 MeV. Specifically, the task group recommended procedures for acquiring basic information required for acceptance testing and treatment planning of new accelerators with therapeutic electron beams. Since the publication of the TG-25 report, significant advances have taken place in the field of electron beam dosimetry, the most significant being that primary standards laboratories around the world have shifted from calibration standards based on exposure or air kerma to standards based on absorbed dose to water. The AAPM has published a new calibration protocol, TG-51, for the calibration of high-energy photon and electron beams. The formalism and dosimetry procedures recommended in this protocol are based on the absorbed dose to water calibration coefficient of an ionization chamber at 60Co energy, N60Co(D,w), together with the theoretical beam quality conversion coefficient k(Q) for the determination of absorbed dose to water in high-energy photon and electron beams. Task Group 70 was charged to reassess and update the recommendations in TG-25 to bring them into alignment with report TG-51 and to recommend new methodologies and procedures that would allow the practicing medical physicist to initiate and continue a high quality program in clinical electron beam dosimetry. This TG-70 report is a supplement to the TG-25 report and enhances the TG-25 report by including new topics and topics that were not covered in depth in the TG-25 report. These topics include procedures for obtaining data to commission a treatment planning computer, determining dose in irregularly shaped electron fields, and commissioning of sophisticated special procedures using high-energy electron beams. The use of

  12. The US Department of Energy Personnel Dosimetry Evaluation and Upgrade Program

    SciTech Connect

    Faust, L.G.; Stroud, C.M.; Swinth, K.L.; Vallario, E.J.

    1987-11-01

    The US Department of Energy (DOE) Personnel Dosimetry Evaluation and Upgrade Program is designed to identify and evaluate dosimetry deficiencies and to conduct innovative research and development programs that will improve overall capabilities, thus ensuring that DOE can comply with applicable standards and regulations for dose measurement. To achieve these goals, two programs were initiated to evaluate and upgrade beta measurement and neutron dosimetry. 3 refs.

  13. Handbook for the Department of Energy Laboratory Accreditation Program for personnel dosimetry systems

    SciTech Connect

    Not Available

    1986-12-01

    The program contained in this Handbook provides a significant advance in the field of radiation protection through a structured means for assuring the quality of personnel dosimetry performance. Since personnel dosimetry performance is directly related to the assurance of worker safety, it has been of key interest to the Department of Energy. Studies conducted over the past three decades have clearly demonstrated a need for personnel dosimetry performance criteria, related testing programs, and improvements in dosimetry technology. In responding to these needs, the DOE Office of Nuclear Safety (EH) has developed and initiated a DOE Laboratory Accreditation Program (DOELAP) which is intended to improve the quality of personnel dosimetry through (1) performance testing, (2) dosimetry and calibration intercomparisons, and (3) applied research. In the interest of improving dosimetry technology, the DOE Laboratory Accreditation Program (DOELAP) is also designed to encourage cooperation and technical interchange between DOE laboratories. Dosimetry intercomparison programs have been scheduled which include the use of transport standard instruments, transport standard radioactive sources and special dosimeters. The dosimeters used in the intercomparison program are designed to obtain optimum data on the comparison of dosimetry calibration methodologies and capabilities. This data is used in part to develop enhanced calibration protocols. In the interest of overall calibration update, assistance and guidance for the calibration of personnel dosimeters is available through the DOELAP support laboratories. 20 refs., 1 tab.

  14. Electron paramagnetic resonance dosimetry: Methodology and material characterization

    NASA Astrophysics Data System (ADS)

    Hayes, Robert Bruce

    Electron Paramagnetic Resonance (EPR) methodologies for radiation dose reconstruction are investigated using various dosimeter materials. Specifically, methodologies were developed and used that were intended to improve the accuracy and precision of EPR dosimetric techniques, including combining specimen rotation during measurement, use of an internal manganese standard, instrument stabilization techniques and strict measurement protocols. Characterization and quantification of these improvements were preformed on three specific EPR dosimeter materials. The dosimeter materials investigated using these optimized EPR techniques were Walrus teeth, human tooth enamel and alanine dosimeters. Walrus teeth showed the least desirable properties for EPR dosimetry yielding large native signals and low sensitivity (EPR signal per unit dose). The methods for tooth enamel and alanine resulted in large improvements in precision and accuracy. The minimum detectable dose (MDD) found for alanine was approximately 30 mGy (three standard deviations from the measured zero dose value). This is a sensitivity improvement of 5 to 10 over other specialized techniques published in the literature that offer MDD's in the range of 150 mGy to 300 mGy. The accuracy of the method on tooth enamel was comparable to that typically reported in the literature although the measurement precision was increased by about 7. This improvement in measurement precision enables various applications including dose vs. depth profile analysis and a more nondestructive testing evaluation (where the whole sample need not be additively irradiated in order to calibrate its radiation response). A nondestructive evaluation of numerous samples showed that the method could reconstruct the same doses to within 10 mGy of those evaluated destructively. Doses used for this assessment were in the range of 100 to 250 mGy. The method had sufficient stability to measure tooth enamel samples exhibiting extreme anisotropy with a

  15. Spreadsheet calculations of absorbed dose to water for photons and electrons according to established dosimetry protocols.

    PubMed

    Cederbaum, M; Kuten, A

    1999-01-01

    The calculation of absorbed dose to water according to a Code of Practice demands a strict adherence to the rules and data of the protocol. To ease the calculations and to avoid computational and methodological errors, we have developed a number of spreadsheets to perform the calculations in accordance with an established dosimetry protocol-in our case those of the International Atomic Energy Agency (IAEA) and the Institution of Physics and Engineering in Medicine and Biology (IPEMB). The spreadsheets are implemented as Microsoft Excel V5.0 worksheets. Only a limited selection of dosimetry equipment is used for calibration, which is performed according to only one of the methods allowed by the protocol. This voluntary limitation of equipment and methods is reflected in a spreadsheet that is beam-specific, compact, focused, and very practical. There are four main spreadsheets: high-energy photons (IAEA), high-energy electrons (IAEA), medium energy X rays (IPEMB), and low-energy X rays (IPEMB). The sheets allow the input of setup and measured data, but tabulated data and formulas are protected. Parameter values are copied from the protocols, and the relevant value is found by linear interpolation. Once the spreadsheets are drawn up correctly and thoroughly checked, protocol calculations are performed easily and accurately. The spreadsheets presented are tailored to suit our specific needs but can easily be modified to conform to the practices of any other institution. They are not intended as "cookbooks" but need to be filled in by a radiation physicist with the input data checked by a second professional. The same method is also used for calculating the Reference Air Kerma Rate of brachytherapy sources.

  16. Superficial dosimetry imaging of Čerenkov emission in electron beam radiotherapy of phantoms

    NASA Astrophysics Data System (ADS)

    Zhang, Rongxiao; Fox, Colleen J.; Glaser, Adam K.; Gladstone, David J.; Pogue, Brian W.

    2013-08-01

    Čerenkov emission is generated from ionizing radiation in tissue above 264 keV energy. This study presents the first examination of this optical emission as a surrogate for the absorbed superficial dose. Čerenkov emission was imaged from the surface of flat tissue phantoms irradiated with electrons, using a range of field sizes from 6 cm × 6 cm to 20 cm × 20 cm, incident angles from 0° to 50°, and energies from 6 to 18 MeV. The Čerenkov images were compared with the estimated superficial dose in phantoms from direct diode measurements, as well as calculations by Monte Carlo and the treatment planning system. Intensity images showed outstanding linear agreement (R2 = 0.97) with reference data of the known dose for energies from 6 to 18 MeV. When orthogonal delivery was carried out, the in-plane and cross-plane dose distribution comparisons indicated very little difference (±2-4% differences) between the different methods of estimation as compared to Čerenkov light imaging. For an incident angle 50°, the Čerenkov images and Monte Carlo simulation show excellent agreement with the diode data, but the treatment planning system had a larger error (OPT = ±1˜2%, diode = ±2˜3%, TPS = ±6-8% differences) as would be expected. The sampling depth of superficial dosimetry based on Čerenkov radiation has been simulated in a layered skin model, showing the potential of sampling depth tuning by spectral filtering. Taken together, these measurements and simulations indicate that Čerenkov emission imaging might provide a valuable method of superficial dosimetry imaging from incident radiotherapy beams of electrons.

  17. Validation of GPUMCD for low-energy brachytherapy seed dosimetry

    SciTech Connect

    Hissoiny, Sami; Ozell, Benoit; Despres, Philippe; Carrier, Jean-Francois

    2011-07-15

    Purpose: To validate GPUMCD, a new package for fast Monte Carlo dose calculations based on the GPU (graphics processing unit), as a tool for low-energy single seed brachytherapy dosimetry for specific seed models. As the currently accepted method of dose calculation in low-energy brachytherapy computations relies on severe approximations, a Monte Carlo based approach would result in more accurate dose calculations, taking in to consideration the patient anatomy as well as interseed attenuation. The first step is to evaluate the capability of GPUMCD to reproduce low-energy, single source, brachytherapy calculations which could ultimately result in fast and accurate, Monte Carlo based, brachytherapy dose calculations for routine planning. Methods: A mixed geometry engine was integrated to GPUMCD capable of handling parametric as well as voxelized geometries. In order to evaluate GPUMCD for brachytherapy calculations, several dosimetry parameters were computed and compared to values found in the literature. These parameters, defined by the AAPM Task-Group No. 43, are the radial dose function, the 2D anisotropy function, and the dose rate constant. These three parameters were computed for two different brachytherapy sources: the Amersham OncoSeed 6711 and the Imagyn IsoStar IS-12501. Results: GPUMCD was shown to yield dosimetric parameters similar to those found in the literature. It reproduces radial dose functions to within 1.25% for both sources in the 0.5< r <10 cm range. The 2D anisotropy function was found to be within 3% at r = 5 cm and within 4% at r = 1 cm. The dose rate constants obtained were within the range of other values reported in the literature.Conclusion: GPUMCD was shown to be able to reproduce various TG-43 parameters for two different low-energy brachytherapy sources found in the literature. The next step is to test GPUMCD as a fast clinical Monte Carlo brachytherapy dose calculations with multiple seeds and patient geometry, potentially providing

  18. The application of thermoluminescence dosimetry in X-ray energy discrimination.

    PubMed

    Nelson, V K; Holloway, L; McLean, I D

    2015-12-01

    Clinical dosimetry requires an understanding of radiation energy to accurately determine the delivered dose. For many situations this is known, however there are also many situations where the radiation energy is not well known, thus limiting dosimetric accuracy. This is the case in personnel dosimetry where thermo luminescent (TL) dosimetry is the method of choice. Traditionally beam energy characteristics in personnel dosimetry are determined through discrimination with the use of various filters fitted within a radiation monitor. The presence of scattered and characteristic radiation produced by these metallic filters, however, can compromise the results. In this study the TL response of five materials TLD100, TLD100H, TLD200, TLD400 and TLD500, was measured at various X-ray energies. The TL sensitivity ratio for various combinations of materials as a function of X-ray energy was calculated. The results indicate that in personal dosimetry a combination of three or more TL detector system has a better accuracy of estimation of effective radiation energy of an X-ray beam than some of the current method of employed for energy estimation and has the potential to improve the accuracy in dose determination in a variety of practical situations. The development of this method also has application in other fields including quality assurance of the orthovoltage therapy machines, dosimetry intercomparisons of kilovoltage X-ray beams, and measurement of the dose to critical organs outside a treatment field of a megavoltage therapy beam.

  19. Experimental verification of bremsstrahlung production and dosimetry predictions as a function of energy and angle

    SciTech Connect

    Beutler, D.E.; Halbleib, J.A.; Sanford, T.W.L. ); Knott, D.P. )

    1994-12-01

    The integrated TIGER series (ITS) of coupled electron/photon Monte Carlo transport codes is widely used to predict the radiation output from flash x-ray sources and for the design of bremsstrahlung converters. The codes are also used to predict the response of radiation diagnostics (e.g., thermoluminescent dosimeters (TLD's)) and the response of electronic components and subsystems. Hence, the demonstration of the validity of the ITS codes for these applications is important. Here, measurements of energy deposition from bremsstrahlung production as a function of angle and beam energy (5-25 MeV) are shown to be in excellent agreement with Monte Carlo predictions. Dosimetry measurements are made and predicted in both equilibrated and under equilibrated radiation environments. In the latter case the quality of the agreement requires an accurate prediction of both the photon and electron spectra produced by the primary electron beam. An improved empirical equation for predicting bremsstrahlung production is also presented. This empirical relation can be used to estimate doses without resorting to expensive calculational efforts. It also gives an analytical relationship for dose as a function of energy and angle for a converter optimized for bremsstrahlung production using 15.5 MeV electrons.

  20. US Department of Energy Laboratory Accredition Program (DOELAP) for personnel dosimetry systems

    SciTech Connect

    Cummings, F.M.; Carlson, R.D.; Loesch, R.M.

    1993-12-31

    Accreditation of personnel dosimetry systems is required for laboratories that conduct personnel dosimetry for the U.S. Department of Energy (DOE). Accreditation is a two-step process which requires the participant to pass a proficiency test and an onsite assessment. The DOE Laboratory Accreditation Program (DOELAP) is a measurement quality assurance program for DOE laboratories. Currently, the DOELAP addresses only dosimetry systems used to assess the whole body dose to personnel. A pilot extremity DOELAP has been completed and routine testing is expected to begin in January 1994. It is expected that participation in the extremity program will be a regulatory requirement by January 1996.

  1. Extremity dosimetry at US Department of Energy facilities

    SciTech Connect

    Harty, R.; Reece, W.D.; MacLellan, J.A.

    1986-05-01

    A questionnaire on extremity dosimetry was distributed to DOE facilities along with a questionnaire on beta dosimetry. An informal telephone survey was conducted as a follow-up survey to answer a few additional questions concerning extremity monitoring practices. The responses to the questionnaire and the telephone survey are summarized in this report. Background information, developed from operational experience and a review of the current literature, is presented as a basis for understanding the information obtained by the survey and questionnaire.

  2. An image-based skeletal dosimetry model for the ICRP reference adult female-internal electron sources.

    PubMed

    O'Reilly, Shannon E; DeWeese, Lindsay S; Maynard, Matthew R; Rajon, Didier A; Wayson, Michael B; Marshall, Emily L; Bolch, Wesley E

    2016-12-21

    An image-based skeletal dosimetry model for internal electron sources was created for the ICRP-defined reference adult female. Many previous skeletal dosimetry models, which are still employed in commonly used internal dosimetry software, do not properly account for electron escape from trabecular spongiosa, electron cross-fire from cortical bone, and the impact of marrow cellularity on active marrow self-irradiation. Furthermore, these existing models do not employ the current ICRP definition of a 50 µm bone endosteum (or shallow marrow). Each of these limitations was addressed in the present study. Electron transport was completed to determine specific absorbed fractions to both active and shallow marrow of the skeletal regions of the University of Florida reference adult female. The skeletal macrostructure and microstructure were modeled separately. The bone macrostructure was based on the whole-body hybrid computational phantom of the UF series of reference models, while the bone microstructure was derived from microCT images of skeletal region samples taken from a 45 years-old female cadaver. The active and shallow marrow are typically adopted as surrogate tissue regions for the hematopoietic stem cells and osteoprogenitor cells, respectively. Source tissues included active marrow, inactive marrow, trabecular bone volume, trabecular bone surfaces, cortical bone volume, and cortical bone surfaces. Marrow cellularity was varied from 10 to 100 percent for active marrow self-irradiation. All other sources were run at the defined ICRP Publication 70 cellularity for each bone site. A total of 33 discrete electron energies, ranging from 1 keV to 10 MeV, were either simulated or analytically modeled. The method of combining skeletal macrostructure and microstructure absorbed fractions assessed using MCNPX electron transport was found to yield results similar to those determined with the PIRT model applied to the UF adult male skeletal dosimetry model. Calculated

  3. An image-based skeletal dosimetry model for the ICRP reference adult female—internal electron sources

    NASA Astrophysics Data System (ADS)

    O'Reilly, Shannon E.; DeWeese, Lindsay S.; Maynard, Matthew R.; Rajon, Didier A.; Wayson, Michael B.; Marshall, Emily L.; Bolch, Wesley E.

    2016-12-01

    An image-based skeletal dosimetry model for internal electron sources was created for the ICRP-defined reference adult female. Many previous skeletal dosimetry models, which are still employed in commonly used internal dosimetry software, do not properly account for electron escape from trabecular spongiosa, electron cross-fire from cortical bone, and the impact of marrow cellularity on active marrow self-irradiation. Furthermore, these existing models do not employ the current ICRP definition of a 50 µm bone endosteum (or shallow marrow). Each of these limitations was addressed in the present study. Electron transport was completed to determine specific absorbed fractions to both active and shallow marrow of the skeletal regions of the University of Florida reference adult female. The skeletal macrostructure and microstructure were modeled separately. The bone macrostructure was based on the whole-body hybrid computational phantom of the UF series of reference models, while the bone microstructure was derived from microCT images of skeletal region samples taken from a 45 years-old female cadaver. The active and shallow marrow are typically adopted as surrogate tissue regions for the hematopoietic stem cells and osteoprogenitor cells, respectively. Source tissues included active marrow, inactive marrow, trabecular bone volume, trabecular bone surfaces, cortical bone volume, and cortical bone surfaces. Marrow cellularity was varied from 10 to 100 percent for active marrow self-irradiation. All other sources were run at the defined ICRP Publication 70 cellularity for each bone site. A total of 33 discrete electron energies, ranging from 1 keV to 10 MeV, were either simulated or analytically modeled. The method of combining skeletal macrostructure and microstructure absorbed fractions assessed using MCNPX electron transport was found to yield results similar to those determined with the PIRT model applied to the UF adult male skeletal dosimetry model. Calculated

  4. Absorbed dose to water based dosimetry versus air kerma based dosimetry for high-energy photon beams: an experimental study.

    PubMed

    Palmans, Hugo; Nafaa, Laila; De, Jans Jo; Gillis, Sofie; Hoornaert, Marie-Thérèse; Martens, Chantal; Piessens, Marleen; Thierens, Hubert; Van der Plaetsen, Ann; Vynckier, Stefaan

    2002-02-07

    In recent years, a change has been proposed from air kerma based reference dosimetry to absorbed dose based reference dosimetry for all radiotherapy beams of ionizing radiation. In this paper, a dosimetry study is presented in which absorbed dose based dosimetry using recently developed formalisms was compared with air kerma based dosimetry using older formalisms. Three ionization chambers of each of three different types were calibrated in terms of absorbed dose to water and air kerma and sent to five hospitals. There, reference dosimetry with all the chambers was performed in a total of eight high-energy clinical photon beams. The selected chamber types were the NE2571, the PTW-30004 and the Wellhöfer-FC65G (previously Wellhöfer-IC70). Having a graphite wall, they exhibit a stable volume and the presence of an aluminium electrode ensures the robustness of these chambers. The data were analysed with the most important recommendations for clinical dosimetry: IAEA TRS-398, AAPM TG-51, IAEA TRS-277, NCS report-2 (presently recommended in Belgium) and AAPM TG-21. The necessary conversion factors were taken from those protocols, or calculated using the data in the different protocols if data for a chamber type are lacking. Polarity corrections were within 0.1% for all chambers in all beams. Recombination corrections were consistent with theoretical predictions, did not vary within a chamber type and only slightly between different chamber types. The maximum chamber-to-chamber variations of the dose obtained with the different formalisms within the same chamber type were between 0.2% and 0.6% for the NE2571, between 0.2% and 0.6% for the PTW-30004 and 0.1% and 0.3% for the Wellhöfer-FC65G for the different beams. The absorbed dose results for the NE2571 and Wellhöfer-FC65G chambers were in good agreement for all beams and all formalisms. The PTW-30004 chambers gave a small but systematically higher result compared to the result for the NE2571 chambers (on the

  5. An alternative method using microwave power saturate in fingernail/electron paramagnetic resonance dosimetry.

    PubMed

    Choi, Hoon; Park, Byeongryong; Choi, Muhyun; Lee, Byungil; Lee, Cheol Eui

    2014-06-01

    An alternative method for fingernail/electron paramagnetic resonance (EPR) dosimetry valid at low doses (0-3 Gy) is suggested in this paper. The method consisted of two steps. The first step involved dehydrating fingernail clippings to remove their water content by heating them at 70 °C for 72 h. As the water content in the fingernails decreased, the variability of the EPR signals improved. The second step involved measuring and fitting the EPR signals at successive microwave power levels. A newly derived value known as 'curvature', which was based on the conventional peak-to-peak amplitudes of the EPR signals, was applied for the dosimetry. This method could be used as an alternative method in cases of low-radiation exposure doses (<3 Gy) or where use of the conventional dosimetry method is not proper for a fingernail sample.

  6. Calculated and measured brachytherapy dosimetry parameters in water for the Xoft Axxent X-Ray Source: an electronic brachytherapy source.

    PubMed

    Rivard, Mark J; Davis, Stephen D; DeWerd, Larry A; Rusch, Thomas W; Axelrod, Steve

    2006-11-01

    A new x-ray source, the model S700 Axxent X-Ray Source (Source), has been developed by Xoft Inc. for electronic brachytherapy. Unlike brachytherapy sources containing radionuclides, this Source may be turned on and off at will and may be operated at variable currents and voltages to change the dose rate and penetration properties. The in-water dosimetry parameters for this electronic brachytherapy source have been determined from measurements and calculations at 40, 45, and 50 kV settings. Monte Carlo simulations of radiation transport utilized the MCNP5 code and the EPDL97-based mcplib04 cross-section library. Inter-tube consistency was assessed for 20 different Sources, measured with a PTW 34013 ionization chamber. As the Source is intended to be used for a maximum of ten treatment fractions, tube stability was also assessed. Photon spectra were measured using a high-purity germanium (HPGe) detector, and calculated using MCNP. Parameters used in the two-dimensional (2D) brachytherapy dosimetry formalism were determined. While the Source was characterized as a point due to the small anode size, < 1 mm, use of the one-dimensional (1D) brachytherapy dosimetry formalism is not recommended due to polar anisotropy. Consequently, 1D brachytherapy dosimetry parameters were not sought. Calculated point-source model radial dose functions at gP(5) were 0.20, 0.24, and 0.29 for the 40, 45, and 50 kV voltage settings, respectively. For 1

  7. Review of plastic and liquid scintillation dosimetry for photon, electron, and proton therapy

    NASA Astrophysics Data System (ADS)

    Beaulieu, Luc; Beddar, Sam

    2016-10-01

    While scintillation dosimetry has been around for decades, the need for a dosimeter tailored to the reality of modern radiation therapy—in particular a real-time, water-equivalent, energy-independent dosimeter with high spatial resolution—has generated renewed interest in scintillators over the last 10 years. With the advent of at least one commercial plastic scintillation dosimeter and the ever-growing scientific literature on this subject, this topical review is intended to provide the medical physics community with a wide overview of scintillation physics, related optical concepts, and applications of plastic scintillation dosimetry.

  8. Response of lithium formate EPR dosimeters at photon energies relevant to the dosimetry of brachytherapy

    SciTech Connect

    Adolfsson, Emelie; Alm Carlsson, Gudrun; Grindborg, Jan-Erik; Gustafsson, Haakan; Lund, Eva; Carlsson Tedgren, Aasa

    2010-09-15

    Purpose: To investigate experimentally the energy dependence of the detector response of lithium formate EPR dosimeters for photon energies below 1 MeV relative to that at {sup 60}Co energies. High energy photon beams are used in calibrating dosimeters for use in brachytherapy since the absorbed dose to water can be determined with high accuracy in such beams using calibrated ion chambers and standard dosimetry protocols. In addition to any differences in mass-energy absorption properties between water and detector, variations in radiation yield (detector response) with radiation quality, caused by differences in the density of ionization in the energy imparted (LET), may exist. Knowledge of an eventual deviation in detector response with photon energy is important for attaining high accuracy in measured brachytherapy dose distributions. Methods: Lithium formate EPR dosimeters were irradiated to known levels of air kerma in 25-250 kV x-ray beams and in {sup 137}Cs and {sup 60}Co beams at the Swedish Secondary Standards Dosimetry Laboratory. Conversions from air kerma free in air into values of mean absorbed dose to the detectors were made using EGSnrc MC simulations and x-ray energy spectra measured or calculated for the actual beams. The signals from the detectors were measured using EPR spectrometry. Detector response (the EPR signal per mean absorbed dose to the detector) relative to that for {sup 60}Co was determined for each beam quality. Results: Significant decreases in the relative response ranging from 5% to 6% were seen for x-ray beams at tube voltages {<=}180 kV. No significant reduction in the relative response was seen for {sup 137}Cs and 250 kV x rays. Conclusions: When calibrated in {sup 60}Co or MV photon beams, corrections for the photon energy dependence of detector response are needed to achieve the highest accuracy when using lithium formate EPR dosimeters for measuring absorbed doses around brachytherapy sources emitting photons in the energy

  9. Effect of electron contamination of a 6 MV x-ray beam on near surface diode dosimetry.

    PubMed

    Edwards, C R; Mountford, P J; Moloney, A J

    2006-12-21

    In critical organ in vivo x-ray dosimetry, the relative contaminating electron contribution to the total dose and total detector response outside the field will be different to the corresponding contributions at the central axis detector calibration position, mainly due to the effects of shielding in the linear accelerator head on the electron and x-ray energy spectrum. To investigate these contributions, the electron energy response of a Scanditronix PFD diode was measured using electrons with mean energies from 0.45 to 14.6 MeV, and the Monte Carlo code MCNP-4C was used to calculate the electron energy spectra on the central axis, and at 1 and 10 cm outside the edge of a 4 x 4, 10 x 10 and a 15 x 15 cm(2) 6 MV x-ray field. The electron contribution to the total dose varied from about 8% on the central axis of the smallest field to about 76% at 10 cm outside the edge of the largest field. The electron contribution to the total diode response varied from about 7-8% on the central axis of all three fields to about 58% at 10 cm outside the edge of the smallest field. The results indicated that a near surface x-ray dose measurement with a diode outside the treatment field has to be interpreted with caution and requires knowledge of the relative electron contribution specific to the measurement position and field size.

  10. Effect of electron contamination of a 6 MV x-ray beam on near surface diode dosimetry

    NASA Astrophysics Data System (ADS)

    Edwards, C. R.; Mountford, P. J.; Moloney, A. J.

    2006-12-01

    In critical organ in vivo x-ray dosimetry, the relative contaminating electron contribution to the total dose and total detector response outside the field will be different to the corresponding contributions at the central axis detector calibration position, mainly due to the effects of shielding in the linear accelerator head on the electron and x-ray energy spectrum. To investigate these contributions, the electron energy response of a Scanditronix PFD diode was measured using electrons with mean energies from 0.45 to 14.6 MeV, and the Monte Carlo code MCNP-4C was used to calculate the electron energy spectra on the central axis, and at 1 and 10 cm outside the edge of a 4 × 4, 10 × 10 and a 15 × 15 cm2 6 MV x-ray field. The electron contribution to the total dose varied from about 8% on the central axis of the smallest field to about 76% at 10 cm outside the edge of the largest field. The electron contribution to the total diode response varied from about 7-8% on the central axis of all three fields to about 58% at 10 cm outside the edge of the smallest field. The results indicated that a near surface x-ray dose measurement with a diode outside the treatment field has to be interpreted with caution and requires knowledge of the relative electron contribution specific to the measurement position and field size.

  11. Luminescence properties of Sm3+ in strontium tetraborate for assessment of electron beam dosimetry

    NASA Astrophysics Data System (ADS)

    Diab, H. M.

    2005-03-01

    In this article, thermoluminescence (TL) studies on a Sm3+ doped SrB4O7 compound irradiated by an electron beam are reported for the first time. The polycrystalline powder samples of SrB4O7: Sm phosphor were prepared by a solid-state reaction in air at high temperature, and the TL glow curves and TL emission spectra after electron beam irradiation were studied from 50 to 250 kGy dose range. The TL studies of the Sr0.93Sm0.07B4O7 sample show the main TL glow peak at 224 degrees C, which has a great stability for a long time. The trap parameters, namely, the activation energy ( E), the order of kinetics (b) and the frequency factor (s) of the main peak were determined using glow curve shape (Chen's) methods. The distributions of traps produced by the irradiation by an electron beam can be altered greatly by the change of the concentration of Sm3+ ions in the SrB4O7 host. Then, all peak temperatures shift to higher temperatures which this will be favorable for better TL output. The TL-dose response of the SrB4O7: Sm polycrystalline powder sample to electron beam radiation in the range from 50 to 250 kGy for radiation processing dose levels is almost linear. The experiment results showed that SrB4O7: Sm has a potential use as a material for electron beam thermoluminescence dosimetry.

  12. SU-E-QI-15: Single Point Dosimetry by Means of Cerenkov Radiation Energy Transfer (CRET)

    SciTech Connect

    Volotskova, O; Jenkins, C; Xing, L

    2014-06-15

    Purpose: Cerenkov light is generated when a charged particles with energy greater then 250 keV, moves faster than the speed of light in a given medium. Both x-ray photons and electrons produce optical Cerenkov photons during the static megavoltage linear accelerator (LINAC) operational mode. Recently, Cerenkov radiation gained considerable interest as possible candidate as a new imaging modality. Optical signals generated by Cerenkov radiation may act as a surrogate for the absorbed superficial radiation dose. We demonstrated a novel single point dosimetry method for megavoltage photon and electron therapy utilizing down conversion of Cerenkov photons. Methods: The custom build signal characterization system was used: a sample holder (probe) with adjacent light tight compartments was connected via fiber-optic cables to a photon counting photomultiplier tube (PMT). One compartment contains a medium only while the other contains medium and red-shifting nano-particles (Q-dots, nanoclusters). By taking the difference between the two signals (Cerenkov photons and CRET photons) we obtain a measure of the down-converted light, which we expect to be proportional to dose as measured with an adjacent ion chamber. Experimental results are compared to Monte Carlo simulations performed using the GEANT4 code. Results: The signal correlation between CR signal, CRET readings and dose produced by LINAC at a single point were investigated. The experimental results were compared with simulations. The dose linearity, signal to noise ratio and dose rate dependence were tested with custom build CRET based probe. Conclusion: Performance characteristics of the proposed single point CRET based probe were evaluated. The direct use of the induced Cerenkov emission and CRET in an irradiated single point volume as an indirect surrogate for the imparted dose was investigated. We conclude that CRET is a promising optical based dosimetry method that offers advantages over those already proposed.

  13. Dosimetry of low energy proton beams for use in spacecraft parts testing

    NASA Technical Reports Server (NTRS)

    Miller, C. G.

    1975-01-01

    Thermoluminescent Dosimeters tes (TLD) were used to measure proton fluences consisting of 5MeV or lower energies. The results were at variance with the corresponding gamma measurements. The results of experiments on low energy proton dosimetry using LiF-in-teflon microrods (TLD-700 or LiF-7), are presented.

  14. The stability of liquid-filled matrix ionization chamber electronic portal imaging devices for dosimetry purposes.

    PubMed

    Louwe, R J W; Tielenburg, R; van Ingen, K M; Mijnheer, B J; van Herk, M B

    2004-04-01

    This study was performed to determine the stability of liquid-filled matrix ionization chamber (LiFi-type) electronic portal imaging devices (EPID) for dosimetric purposes. The short- and long-term stability of the response was investigated, as well as the importance of factors influencing the response (e.g., temperature fluctuations, radiation damage, and the performance of the electronic hardware). It was shown that testing the performance of the electronic hardware as well as the short-term stability of the imagers may reveal the cause of a poor long-term stability of the imager response. In addition, the short-term stability was measured to verify the validity of the fitted dose-response curve immediately after beam startup. The long-term stability of these imagers could be considerably improved by correcting for room temperature fluctuations and gradual changes in response due to radiation damage. As a result, the reproducibility was better than 1% (1 SD) over a period of two years. The results of this study were used to formulate recommendations for a quality control program for portal dosimetry. The effect of such a program was assessed by comparing the results of portal dosimetry and in vivo dosimetry using diodes during the treatment of 31 prostate patients. The improvement of the results for portal dosimetry was consistent with the deviations observed with the reproducibility tests in that particular period. After a correction for the variation in response of the imager, the average difference between the measured and prescribed dose during the treatment of prostate patients was -0.7%+/-1.5% (1 SD), and -0.6%+/-1.1% (1 SD) for EPID and diode in vivo dosimetry, respectively. It can be concluded that a high stability of the response can be achieved for this type of EPID by applying a rigorous quality control program.

  15. An image-based skeletal dosimetry model for the ICRP reference newborn—internal electron sources

    NASA Astrophysics Data System (ADS)

    Pafundi, Deanna; Rajon, Didier; Jokisch, Derek; Lee, Choonsik; Bolch, Wesley

    2010-04-01

    In this study, a comprehensive electron dosimetry model of newborn skeletal tissues is presented. The model is constructed using the University of Florida newborn hybrid phantom of Lee et al (2007 Phys. Med. Biol. 52 3309-33), the newborn skeletal tissue model of Pafundi et al (2009 Phys. Med. Biol. 54 4497-531) and the EGSnrc-based Paired Image Radiation Transport code of Shah et al (2005 J. Nucl. Med. 46 344-53). Target tissues include the active bone marrow (surrogate tissue for hematopoietic stem cells), shallow marrow (surrogate tissue for osteoprogenitor cells) and unossified cartilage (surrogate tissue for chondrocytes). Monoenergetic electron emissions are considered over the energy range 1 keV to 10 MeV for the following source tissues: active marrow, trabecular bone (surfaces and volumes), cortical bone (surfaces and volumes) and cartilage. Transport results are reported as specific absorbed fractions according to the MIRD schema and are given as skeletal-averaged values in the paper with bone-specific values reported in both tabular and graphic format as electronic annexes (supplementary data). The method utilized in this work uniquely includes (1) explicit accounting for the finite size and shape of newborn ossification centers (spongiosa regions), (2) explicit accounting for active and shallow marrow dose from electron emissions in cortical bone as well as sites of unossified cartilage, (3) proper accounting of the distribution of trabecular and cortical volumes and surfaces in the newborn skeleton when considering mineral bone sources and (4) explicit consideration of the marrow cellularity changes for active marrow self-irradiation as applicable to radionuclide therapy of diseased marrow in the newborn child.

  16. An image-based skeletal dosimetry model for the ICRP reference newborn--internal electron sources.

    PubMed

    Pafundi, Deanna; Rajon, Didier; Jokisch, Derek; Lee, Choonsik; Bolch, Wesley

    2010-04-07

    In this study, a comprehensive electron dosimetry model of newborn skeletal tissues is presented. The model is constructed using the University of Florida newborn hybrid phantom of Lee et al (2007 Phys. Med. Biol. 52 3309-33), the newborn skeletal tissue model of Pafundi et al (2009 Phys. Med. Biol. 54 4497-531) and the EGSnrc-based Paired Image Radiation Transport code of Shah et al (2005 J. Nucl. Med. 46 344-53). Target tissues include the active bone marrow (surrogate tissue for hematopoietic stem cells), shallow marrow (surrogate tissue for osteoprogenitor cells) and unossified cartilage (surrogate tissue for chondrocytes). Monoenergetic electron emissions are considered over the energy range 1 keV to 10 MeV for the following source tissues: active marrow, trabecular bone (surfaces and volumes), cortical bone (surfaces and volumes) and cartilage. Transport results are reported as specific absorbed fractions according to the MIRD schema and are given as skeletal-averaged values in the paper with bone-specific values reported in both tabular and graphic format as electronic annexes (supplementary data). The method utilized in this work uniquely includes (1) explicit accounting for the finite size and shape of newborn ossification centers (spongiosa regions), (2) explicit accounting for active and shallow marrow dose from electron emissions in cortical bone as well as sites of unossified cartilage, (3) proper accounting of the distribution of trabecular and cortical volumes and surfaces in the newborn skeleton when considering mineral bone sources and (4) explicit consideration of the marrow cellularity changes for active marrow self-irradiation as applicable to radionuclide therapy of diseased marrow in the newborn child.

  17. Technical basis for setting Hanford Fire Department electronic dosimetry for emergency response (TBD-HSO-RC-009)

    SciTech Connect

    EVANS, C.L.

    2003-04-01

    This document addresses the need to establish a reasonable methodology for establishing alarm points for electronic dosimetry used by the Hanford Fire Department (HFD) for emergency response in radiological facilities.

  18. High energy electron cooling

    SciTech Connect

    Parkhomchuk, V.

    1997-09-01

    High energy electron cooling requires a very cold electron beam. The questions of using electron cooling with and without a magnetic field are presented for discussion at this workshop. The electron cooling method was suggested by G. Budker in the middle sixties. The original idea of the electron cooling was published in 1966. The design activities for the NAP-M project was started in November 1971 and the first run using a proton beam occurred in September 1973. The first experiment with both electron and proton beams was started in May 1974. In this experiment good result was achieved very close to theoretical prediction for a usual two component plasma heat exchange.

  19. Calculation of electron and isotopes dose point kernels with FLUKA Monte Carlo code for dosimetry in nuclear medicine therapy.

    PubMed

    Botta, F; Mairani, A; Battistoni, G; Cremonesi, M; Di Dia, A; Fassò, A; Ferrari, A; Ferrari, M; Paganelli, G; Pedroli, G; Valente, M

    2011-07-01

    The calculation of patient-specific dose distribution can be achieved by Monte Carlo simulations or by analytical methods. In this study, FLUKA Monte Carlo code has been considered for use in nuclear medicine dosimetry. Up to now, FLUKA has mainly been dedicated to other fields, namely high energy physics, radiation protection, and hadrontherapy. When first employing a Monte Carlo code for nuclear medicine dosimetry, its results concerning electron transport at energies typical of nuclear medicine applications need to be verified. This is commonly achieved by means of calculation of a representative parameter and comparison with reference data. Dose point kernel (DPK), quantifying the energy deposition all around a point isotropic source, is often the one. FLUKA DPKS have been calculated in both water and compact bone for monoenergetic electrons (10-3 MeV) and for beta emitting isotopes commonly used for therapy (89Sr, 90Y, 131I 153Sm, 177Lu, 186Re, and 188Re). Point isotropic sources have been simulated at the center of a water (bone) sphere, and deposed energy has been tallied in concentric shells. FLUKA outcomes have been compared to PENELOPE v.2008 results, calculated in this study as well. Moreover, in case of monoenergetic electrons in water, comparison with the data from the literature (ETRAN, GEANT4, MCNPX) has been done. Maximum percentage differences within 0.8.RCSDA and 0.9.RCSDA for monoenergetic electrons (RCSDA being the continuous slowing down approximation range) and within 0.8.X90 and 0.9.X90 for isotopes (X90 being the radius of the sphere in which 90% of the emitted energy is absorbed) have been computed, together with the average percentage difference within 0.9.RCSDA and 0.9.X90 for electrons and isotopes, respectively. Concerning monoenergetic electrons, within 0.8.RCSDA (where 90%-97% of the particle energy is deposed), FLUKA and PENELOPE agree mostly within 7%, except for 10 and 20 keV electrons (12% in water, 8.3% in bone). The

  20. Skeletal dosimetry in a voxel-based rat phantom for internal exposures to photons and electrons

    SciTech Connect

    Xie Tianwu; Han Dao; Liu Yang; Sun Wenjuan; Liu Qian

    2010-05-15

    Purpose: The skeleton makes a significant contribution to the whole body absorbed dose evaluation of rats, since the bone marrow and bone surface in the skeleton express high radiosensitivity and are considered to be important dose-limiting tissues. The bone marrow can be categorized as red bone marrow (RBM) and yellow bone marrow (YBM). It is important to investigate the bone marrow in skeletal dosimetry. Methods: Cryosectional color images of the skeleton of a 156 g rat were segmented into mineral bone (including cortical bone and trabecular bone), RBM, and YBM. These three tissue types were identified at 40 different bone sites and integrated into a previously developed voxel-based rat computational phantom. Photon and electron skeletal absorbed fractions were then calculated using the MCNPX Monte Carlo code. Results: Absorbed fraction (AF) and specific absorbed fraction (SAF) for mineral bone, RBM, and YBM at the 40 different bone sites were established for monoenergetic photon and electron sources placed in 18 organs and seven bone sites. Discrete photon energy was varied from 0.01 to 5.0 MeV in 21 discrete steps, while 21 discrete electron energies were studied, from 0.1 to 10.0 MeV. The trends and values found were consistent with the results of other researchers [M. G. Stabin, T. E. Peterson, G. E. Holburn, and M. A. Emmons, ''Voxel-based mouse and rat models for internal dose calculations,'' J. Nucl. Med. 47, 655-659 (2006)]. S-factors for the radionuclides {sup 169}Er, {sup 143}Pr, {sup 89}Sr, {sup 32}P, and {sup 90}Y, located in 18 organs and seven bone sites for the skeleton, were calculated and are provided in detail. Conclusions: For internal dose calculations, the AF data reveal that the mineral bone in the rat skeletal system is responsible for significant attenuation of gamma rays, especially at low energies. The photon SAF curves of RBM show that, for photon energies greater than 0.6 MeV, there is an increase in secondary photons emitted from the

  1. A portable electronic system for radiation dosimetry using electrets

    NASA Astrophysics Data System (ADS)

    Cruvinel, P. E.; Mascarenhas, S.; Cameron, J.

    1990-02-01

    An electret dosimeter with a cylindrical active volume has been introduced by Mascarenhas and collaborators [Proc. 10th Anniversary Conf. 1969-1979, Associacâo Brasileira de Fisicos em Medicina, p. 488; Topics Appl. Phys. 33 (1987) 321] for possible use in personnel and area monitoring. The full energy response curve as well as the degree of reproducibility and accuracy of the dosimeter are reported in a previous report [O. Guerrini, Master Science Thesis, São Carlos, USP-IFQSC (1982)]. For dimensions similar to those of the common pen dosimeter, the electret has a total surface charge of the order of 10 -9 C and it has a readout sensitivity of the order of 10 -5 Gy with a useful range of 5 × 10 -2 Gy. In this paper we describe a portable electronic system to measure X and γ-rays using a cylindrical electret ionization chamber. It uses commercially available operational amplifiers, and charge measurements can also be made by connecting a suitable capacitor in the feedback loop. With this system it is possible to measure equivalent surface charges up to (19.99±0.01) on the dosimeter. The readout doses are shown on a 3 {1}/{2} digit liquid crystal display (LCD). We have used complementary metal oxide semiconductor (CMOS) and bipolar metal oxide semiconductor (BiMOS) operatonal amplifier devices in the system's design. This choice provides small power consumption and is ideal for battery powered instruments. Furthermore the instrument is ideally suited for in situ measurements of X and γ radiation using a cylindrical electret ionization chamber.

  2. Electronic energy states

    NASA Technical Reports Server (NTRS)

    1976-01-01

    One-electron wave functions are reviewed and approximate solutions of two-electron systems are given in terms of these one-electron functions. The symmetry effects associated with electron spin are reviewed and the effects of electron exchange on energy levels of the two-electron system are given. The coupling of electronic orbital and spin angular momentum is considered next and the Lande interval rule for Russell-Saunders or LS coupling is derived. The configurations possible for various multi-electron LS couplings are enumerated (examples from the first two rows of the periodic table are given), and the meaning of the spectroscopic nomenclature is discussed, particularly with respect to the degeneracies of the electron states involved. Next the nomenclature, symmetries, and degeneracies for electron states of diatomic molecules are discussed, and some examples for N2, O2, and NO are presented. The electronic partition functions and derivative thermodynamic properties are expressed in terms of these energies and degeneracies, and examples are given for some of the simple gas species encountered in the earth's atmosphere.

  3. Reference dosimetry in clinical high-energy photon beams: comparison of the AAPM TG-51 and AAPM TG-21 dosimetry protocols.

    PubMed

    Saiful Huq, M; Andreo, P

    2001-01-01

    Task Group 51 (TG-51) of the Radiation Therapy Committee of the American Association of Physicists in Medicine (AAPM) has recently developed a new protocol for the calibration of high-energy photon and electron beams used in radiation therapy. The formalism and the dosimetry procedures recommended in this protocol are based on the use of an ionization chamber calibrated in terms of absorbed dose-to-water in a standards laboratory's 60Co gamma ray beam. This is different from the recommendations given in the AAPM TG-21 protocol, which are based on an exposure calibration factor of an ionization chamber in a 60Co beam. The purpose of this work is to compare the determination of absorbed dose-to-water in reference conditions in high-energy photon beams following the recommendations given in the two dosimetry protocols. This is realized by performing calibrations of photon beams with nominal accelerating potential of 6, 18 and 25 MV, generated by an Elekta MLCi and SL25 series linear accelerator. Two widely used Farmer-type ionization chambers having different composition, PTW 30001 (PMMA wall) and NE 2571 (graphite wall), were used for this study. Ratios of AAPM TG-51 to AAPM TG-21 doses to water are found to be 1.008, 1.007 and 1.009 at 6, 18 and 25 MV, respectively when the PTW chamber is used. The corresponding results for the NE chamber are 1.009, 1.010 and 1.013. The uncertainties for the ratios of the absorbed dose determined by the two protocols are estimated to be about 1.5%. A detailed analysis of the reasons for the discrepancies is made which includes comparing the formalisms, correction factors and quantities in the two protocols, as well as the influence of the implementation of the different standards for chamber calibration. The latter has been found to have a considerable influence on the differences in clinical dosimetry, even larger than the adoption of the new data and recommended procedures, as most intrinsic differences cancel out due to the

  4. Dosimetry of small fields for Therac 20 electron beams.

    PubMed

    Sharma, S C; Wilson, D L; Jose, B

    1984-01-01

    The Therac 20 medical linear accelerator produces electron beams of 6, 9, 13, 17, and 20 MeV. We measured depth dose, isodose curves, and output factors for small electron fields using an ionization chamber, film, and thermoluminescent dosimeters. Tables and graphs were generated from these measurements for accurate treatment planning of various blocked and open fields.

  5. Experimental verification of bremsstrahlung production and dosimetry predictions for 15. 5 MeV electrons

    SciTech Connect

    Sanford, T.W.L.; Beutler, D.E.; Halbleib, J.A. ); Knott, D.P. )

    1991-11-01

    The radiation produced by a 15.5-Mev mono-energetic electron beam incident on optimized and non-optimized bremsstrahlung targets is characterized using the ITS Monte Carlo code and measurements with equilibrated and non-equilibrated TLD dosimetry. Comparisons between calculations and measurements verify the calculations and demonstrate that the code can be used to predict both bremsstrahlung production and TLD response for radiation fields that are characteristic of those produced by pulsed simulators of gamma rays. At optimum bremsstrahlung production, the predicted total forward radiation fluence detected in equilibrated TLD dosimetry agrees with that measured within the {plus minus}6% uncertainty of the measurement. The absolute comparisons made here provide independent confirmation of the validity of the TLD calibration for photon fields characteristic of gamma-ray simulators. The empirical Martin equation, which is often used to calculate radiation dose from optimized bremsstrahlung targets, is examined, and its range of validity is established from the data presented.

  6. Experimental verification of bremsstrahlung production and dosimetry predictions for 15.5 MeV electrons

    SciTech Connect

    Sanford, T.W.L.; Beutler, D.E.; Halbleib, J.A.; Knott, D.P.

    1991-11-01

    The radiation produced by a 15.5-Mev mono-energetic electron beam incident on optimized and non-optimized bremsstrahlung targets is characterized using the ITS Monte Carlo code and measurements with equilibrated and non-equilibrated TLD dosimetry. Comparisons between calculations and measurements verify the calculations and demonstrate that the code can be used to predict both bremsstrahlung production and TLD response for radiation fields that are characteristic of those produced by pulsed simulators of gamma rays. At optimum bremsstrahlung production, the predicted total forward radiation fluence detected in equilibrated TLD dosimetry agrees with that measured within the {plus_minus}6% uncertainty of the measurement. The absolute comparisons made here provide independent confirmation of the validity of the TLD calibration for photon fields characteristic of gamma-ray simulators. The empirical Martin equation, which is often used to calculate radiation dose from optimized bremsstrahlung targets, is examined, and its range of validity is established from the data presented.

  7. Comparative dosimetry study of three UK centres implementing total skin electron treatment through external audit.

    PubMed

    Misson-Yates, S; Gonzalez, R; McGovern, M; Greener, A

    2015-05-01

    This article describes the external audit measurements conducted in two UK centres implementing total skin electron beam therapy (TSEBT) and the results obtained. Measurements of output, energy, beam flatness and symmetry at a standard distance (95 or 100 cm SSD) were performed using a parallel plate chamber in solid water. Similarly, output and energy measurements were also performed at the treatment plane for single and dual fields. Clinical simulations were carried out using thermoluminescent dosemeters (TLDs) and Gafchromic® film (International Specialty Products, Wayne, NJ) on an anthropomorphic phantom. Extended distance measurements confirmed that local values for the beam dosimetry at Centres A and B were within 2% for outputs and 1-mm agreement of the expected depth at which the dose is 50% of the maximum for the depth-dose curve in water (R50,D) value. Clinical simulation using TLDs) showed an agreement of -1.6% and -6.7% compared with the expected mean trunk dose for each centre, respectively, and a variation within 10% (±1 standard deviation) across the trunk. The film results confirmed that the delivery of the treatment technique at each audited centre complies with the European Organisation for Research and Treatment of Cancer recommendations. This audit methodology has proven to be a successful way to confirm the agreement of dosimetric parameters for TSEBT treatments at both audited centres and could serve as the basis for an audit template to be used by other audit groups. TSEBT audits are not established in the UK owing to a limited number of centres carrying out the treatment technique. This article describes the audits performed at two UK centres prior to their clinical implementation.

  8. Practical considerations for electron beam small field size dosimetry

    SciTech Connect

    Sharma, Subhash C.; Johnson, Martin W.; Gossman, Michael S. . E-mail: GossmanMS@erlanger.org

    2005-06-30

    Special care of superficial lesions surrounding critical structures, such as an eye, may require tight margins. When this is the case, small megavoltage electron treatment fields and nonstandard treatment distances become necessary. When the field size is found to be less than the practical range of the electron beam, dosimetric measurements should be performed. This research includes data proving that very small electron fields can be employed for treatment with appropriate beam flatness and penumbra. This is accomplished by first coning down the incident beam to a small field size, then secondly by adding a single lead sheet to the patient's skin surface. The aperture of the sheet is required to be greater than 2 x 2 cm{sup 2} in size, and must be cut properly to adequately confine the treatment area.

  9. A new electronic neutron dosimeter (END) for reliable personal dosimetry

    NASA Astrophysics Data System (ADS)

    Ing, H.; Cousins, T.; Andrews, H. R.; Machrafi, R.; Voevodskiy, A.; Kovaltchouk, V.; Clifford, E. T. H.; Robins, M.; Larsson, C.; Hugron, R.; Brown, J.

    2008-04-01

    Tests of existing electronic neutron dosimeters by military and civilian groups have revealed significant performance limitations. To meet the operational requirements of emergency response personnel to a radiological/nuclear incident as well as those in the nuclear industry, a new END has been developed. It is patterned after a unique commercial neutron spectral dosemeter known as the N-probe. It uses a pair of small special scintillators on tiny photomultiplier tubes. Special electronics were designed to minimize power consumption to allow for weeks of operation on a single charge. The size, performance, and data analysis for the END have been designed to meet/exceed international standards for electronic neutron dosimeters. Results obtained with the END prototype are presented.

  10. [Dosimetry on a rotating phantom in remote electron irradiation].

    PubMed

    Müller-Sievers, K; Schäffler, D; Kober, B; Wöllgens, P

    1988-08-01

    The Therac-20 Saturne produces a high dose rate electron radiation allowing a whole-skin electron irradiation. The problem of producing large fields enclosing the whole patient has been solved by superposition of two tilted stationary fields. The angle regulations are optimized by a computer program fed with the TLD values of transverse dose distributions. A homogeneous irradiation is obtained by the patient's rotation on a turntable within the radiation field. In case of a distance of 3 m between focus and skin, the irradiation times are only 5 min for a body surface dose of 1 Gy.

  11. Neutron dosimetry, moderated energy spectrum, and neutron capture therapy for californium-252 medical sources

    NASA Astrophysics Data System (ADS)

    Rivard, Mark Joseph

    Examination of neutron dosimetry for 252Cf has been conducted using calculative and experimental means. Monte Carlo N-Particle (MCNP) transport code was used in a distributed computing environment as a parallel virtual machine (PVM) to determine the absorbed neutron dose and neutron energy spectrum from 252Cf in a variety of clinically relevant materials. Herein, a Maxwellian spectrum was used to model the 252Cf neutron emissions within these materials. 252Cf mixed-field dosimetry of Applicator Tube (AT) type sources was measured using 1.0 and 0.05 cm3 tissue-equivalent ion chambers and a miniature GM counter. A dosimetry protocol was formulated similar that of ICRU 45. The 252Cf AT neutron dosimetry was determined in the cylindrical coordinate system formalism recommended by the AAPM Task Group 43. These results demonstrated the overwhelming dependence of dosimetry on the source geometry factor as there was no significant neutron attenuation within the source or encapsulation. Gold foils and TLDs were used to measure the thermal flux in the vicinity of 252Cf AT sources to compare with the results calculated using MCNP. As the fast neutron energy spectrum did not markedly changed at increasing distances from the AT source, neutron dosimetry results obtained with paired ion chambers using fixed sensitivity factors agreed well with MCNP results and those in the literature. Calculations of moderated 252Cf neutron energy spectrum with various loadings of 10B and 157Gd were performed, in addition to analysis of neutron capture therapy dosimetry with these isotopes. Radiological concerns such as personnel exposure and shielding of 252Cf emissions were examined. Feasibility of a high specific-activity 252Cf HDR source was investigated through radiochemical and metallurgical studies using stand-ins such as Tb, Gd and 249Cf. Issues such as capsule burst strength due to helium production for a variety of proposed HDR sources were addressed. A recommended 252Cf source

  12. A generalized calibration procedure for in vivo transit dosimetry using siemens electronic portal imaging devices.

    PubMed

    Fidanzio, Andrea; Greco, Francesca; Gargiulo, Laura; Cilla, Savino; Sabatino, Domenico; Cappiello, Massimo; Di Felice, Cinzia; Di Castro, Elisabetta; Azario, Luigi; Russo, Mariateresa; Pompei, Luciano; D'Onofrio, Guido; Piermattei, Angelo

    2011-03-01

    A practical and accurate generalized in vivo dosimetry procedure has been implemented for Siemens linacs supplying 6, 10, and 15 MV photon beams, equipped with aSi electronic portal imaging devices (EPIDs). The in vivo dosimetry method makes use of correlation ratios between EPID transit signal, s (t) (0) (TPR,w,L), and phantom mid-plane dose, D (0)(TPR,w,L), as functions of phantom thickness, w, square field dimensions, L, and tissue-phantom ratio TPR(20,10). The s (t) (0) (TPR,w,L) and D (0)(TPR,w,L) values were defined to be independent of the EPID sensitivity and monitor unit calibration, while their dependence on TPR(20,10) was investigated to determine a set of generalized correlation ratios to be used for beams with TPR(20,10) falling in the examined range. This way, other radiotherapy centers can use the method with no need to locally perform the whole set of measurements in solid water phantoms, required to implement it. Tolerance levels for 3D conformal treatments, ranging between ±5 and ±6% according to tumor type and location, were estimated for comparison purposes between reconstructed isocenter dose, D (iso), and treatment planning system (TPS) computed dose D (iso,TPS). Finally a dedicated software, interfaceable with record and verify (R&V) systems used in the centers, was developed to obtain in vivo dosimetry results in less than 2 min after beam delivery.

  13. SU-C-201-07: Towards Clinical Cherenkov Emission Dosimetry: Stopping Power-To-Cherenkov Power Ratios and Beam Quality Specification of Clinical Electron Beams

    SciTech Connect

    Zlateva, Y; Seuntjens, J; El Naqa, I

    2016-06-15

    Purpose: We propose a Cherenkov emission (CE)-based reference dosimetry method, which in contrast to ionization chamber-based dosimetry, employs spectrum-averaged electron restricted mass collision stopping power-to-Cherenkov power ratios (SCRs), and we examine Monte Carlo-calculated SCRs and beam quality specification of clinical electron beams. Methods: The EGSnrc user code SPRRZnrc was modified to compute SCRs instead of stopping-power ratios (single medium: water; cut-off: CE threshold (observing Spencer-Attix conditions); CE power: Frank-Tamm). SCRs are calculated with BEAMnrc for realistic electron beams with nominal energies of 6–22 MeV from three Varian accelerators (TrueBeam Clinac 21EX, Clinac 2100C/D) and for mono-energetic beams of energies equal to the mean electron energy at the water surface. Sources of deviation between clinical and mono-energetic SCRs are analyzed quantitatively. A universal fit for the beam-quality index R{sub 50} in terms of the depth of 50% CE C{sub 50} is carried out. Results: SCRs at reference depth are overestimated by mono-energetic values by up to 0.2% for a 6-MeV beam and underestimated by up to 2.3% for a 22-MeV beam. The variation is mainly due to the clinical beam spectrum and photon contamination. Beam angular spread has a small effect across all depths and energies. The influence of the electron spectrum becomes increasingly significant at large depths, while at shallow depths and high beam energies photon contamination is predominant (up to 2.0%). The universal data fit reveals a strong linear correlation between R{sub 50} and C{sub 50} (ρ > 0.99999). Conclusion: CE is inherent to radiotherapy beams and can be detected outside the beam with available optical technologies, which makes it an ideal candidate for out-of-beam high-resolution 3D dosimetry. Successful clinical implementation of CE dosimetry hinges on the development of robust protocols for converting measured CE to radiation dose. Our findings constitute

  14. US Department of Energy Laboratory Accreditation Program for personnel dosimetry systems (DOELAP)

    SciTech Connect

    Carlson, R.D.; Gesell, T.F.; Kalbeitzer, F.L.; Roberson, P.L.; Jones, K.L.; MacDonald, J.C.; Vallario, E.J.; Pacific Northwest Lab., Richland, WA; USDOE Assistant Secretary for Nuclear Energy, Washington, DC . Office of Nuclear Safety)

    1988-01-01

    The US Department of Energy (DOE) Office of Nuclear Safety has developed and initiated the DOE Laboratory Accreditation Program (DOELAP) for personnel dosimetry systems to assure and improve the quality of personnel dosimetry at DOE and DOE contractor facilities. It consists of a performance evaluation program that measures current performance and an applied research program that evaluates and recommends additional or improved test and performance criteria. It also provides guidance to DOE, identifying areas where technological improvements are needed. The two performance evaluation elements in the accreditation process are performance testing and onsite assessment by technical experts. Performance testing evaluates the participant's ability to accurately and reproducibly measure dose equivalent. Tests are conducted in accident level categories for low- and high-energy photons as well as protection level categories for low- and high-energy photons, beta particles, neutrons and mixtures of these.

  15. ELECTRON PARAMAGNETIC RESONANCE DOSIMETRY FOR A LARGE-SCALE RADIATION INCIDENT

    PubMed Central

    Swartz, Harold M.; Flood, Ann Barry; Williams, Benjamin B.; Dong, Ruhong; Swarts, Steven G.; He, Xiaoming; Grinberg, Oleg; Sidabras, Jason; Demidenko, Eugene; Gui, Jiang; Gladstone, David J.; Jarvis, Lesley A.; Kmiec, Maciej M.; Kobayashi, Kyo; Lesniewski, Piotr N.; Marsh, Stephen D.P.; Matthews, Thomas P.; Nicolalde, Roberto J.; Pennington, Patrick M.; Raynolds, Timothy; Salikhov, Ildar; Wilcox, Dean E.; Zaki, Bassem I.

    2013-01-01

    With possibilities for radiation terrorism and intensified concerns about nuclear accidents since the recent Fukushima Daiichi event, the potential exposure of large numbers of individuals to radiation that could lead to acute clinical effects has become a major concern. For the medical community to cope with such an event and avoid overwhelming the medical care system, it is essential to identify not only individuals who have received clinically significant exposures and need medical intervention but also those who do not need treatment. The ability of electron paramagnetic resonance to measure radiation-induced paramagnetic species, which persist in certain tissues (e.g., teeth, fingernails, toenails, bone, and hair), has led this technique to become a prominent method for screening significantly exposed individuals. Although the technical requirements needed to develop this method for effective application in a radiation event are daunting, remarkable progress has been made. In collaboration with General Electric, and through funding committed by the Biomedical Advanced Research and Development Authority, electron paramagnetic resonance tooth dosimetry of the upper incisors is being developed to become a Food and Drug Administration-approved and manufacturable device designed to carry out triage for a threshold dose of 2 Gy. Significant progress has also been made in the development of electron paramagnetic resonance nail dosimetry based on measurements of nails in situ under point-of-care conditions, and in the near future this may become a second field-ready technique. Based on recent progress in measurements of nail clippings, we anticipate that this technique may be implementable at remotely located laboratories to provide additional information when the measurements of dose on site need to be supplemented. We conclude that electron paramagnetic resonance dosimetry is likely to be a useful part of triage for a large-scale radiation incident. PMID:22850230

  16. WE-E-BRE-01: An Image-Based Skeletal Dosimetry Model for the ICRP Reference Adult Female - Internal Electron Sources

    SciTech Connect

    O'Reilly, S; Maynard, M; Marshall, E; Bolch, W; Sinclair, L; Rajon, D; Wayson, M

    2014-06-15

    Purpose: Limitations seen in previous skeletal dosimetry models, which are still employed in commonly used software today, include the lack of consideration of electron escape and cross-fire from cortical bone, the modeling of infinite spongiosa, the disregard of the effect of varying cellularity on active marrow self-irradiation, and the lack of use of the more recent ICRP definition of a 50 micron surrogate tissue region for the osteoprogenitor cells - shallow marrow. These limitations were addressed in the present dosimetry model. Methods: Electron transport was completed to determine specific absorbed fractions to active marrow and shallow marrow of the skeletal regions of the adult female. The bone macrostructure was obtained from the whole-body hybrid computational phantom of the UF series of reference phantoms, while the bone microstructure was derived from microCT images of skeletal region samples taken from a 45 year-old female cadaver. The target tissue regions were active marrow and shallow marrow. The source tissues were active marrow, inactive marrow, trabecular bone volume, trabecular bone surfaces, cortical bone volume and cortical bone surfaces. The marrow cellularity was varied from 10 to 100 percent for active marrow self-irradiation. A total of 33 discrete electron energies, ranging from 1 keV to 10 MeV, were either simulated or modeled analytically. Results: The method of combining macro- and microstructure absorbed fractions calculated using MCNPX electron transport was found to yield results similar to those determined with the PIRT model for the UF adult male in the Hough et al. study. Conclusion: The calculated skeletal averaged absorbed fractions for each source-target combination were found to follow similar trends of more recent dosimetry models (image-based models) and did not follow current models used in nuclear medicine dosimetry at high energies (due to that models use of an infinite expanse of trabecular spongiosa)

  17. A modified Fricke gel dosimeter for fast electron blood dosimetry

    NASA Astrophysics Data System (ADS)

    Del Lama, L. S.; de Góes, E. G.; Sampaio, F. G. A.; Petchevist, P. C. D.; de Almeida, A.

    2014-12-01

    It has been suggested for more than forty years that blood and blood components be irradiated before allogeneic transfusions for immunosuppressed patients in order to avoid the Transfusion-Associated Graft-versus-Host Disease (TA-GVHD). Whole blood, red blood cells, platelets and granulocytes may have viable T cells and should be irradiated before transfusion for different patient clinical conditions. According to international guides, absorbed doses from 25 up to 50 Gy should be delivered to the central middle plane of each blood bag. Although gamma and X-rays from radiotherapy equipments and dedicated cell irradiators are commonly used for this purpose, electron beams from Linear Accelerators (LINACs) could be used as well. In this work, we developed a methodology able to acquire dosimetric data from blood irradiations, especially after fast electrons exposures. This was achieved using a proposed Fricke Xylenol Gel (FXGp) dosimeter, which presents closer radiological characteristics (attenuation coefficients and stopping-powers) to the whole blood, as well as complete absorbed dose range linearity. The developed methodology and the FXGp dosimeter were also able to provide isodose curves and field profiles for the irradiated samples.

  18. Transit Dosimetry for Patient Treatment Verification with an Electronic Portal Imaging Device

    NASA Astrophysics Data System (ADS)

    Berry, Sean L.

    The complex and individualized photon fluence patterns constructed during intensity modulated radiation therapy (IMRT) treatment planning must be verified before they are delivered to the patient. There is a compelling argument for additional verification throughout the course of treatment due to the possibility of data corruption, unintentional modification of the plan parameters, changes in patient anatomy, errors in patient alignment, and even mistakes in identifying the correct patient for treatment. Amorphous silicon (aSi) Electronic Portal Imaging Devices (EPIDs) can be utilized for IMRT verification. The goal of this thesis is to implement EPID transit dosimetry, measurement of the dose at a plane behind the patient during their treatment, within the clinical process. In order to achieve this goal, a number of the EPID's dosimetric shortcomings were studied and subsequently resolved. Portal dose images (PDIs) acquired with an aSi EPID suffer from artifacts related to radiation backscattered asymmetrically from the EPID support structure. This backscatter signal varies as a function of field size (FS) and location on the EPID. Its presence can affect pixel values in the measured PDI by up to 3.6%. Two methods to correct for this artifact are offered: discrete FS specific correction matrices and a single generalized equation. The dosimetric comparison between the measured and predicted through-air dose images for 49 IMRT treatment fields was significantly improved (p << .001) after the application of these FS specific backscatter corrections. The formulation of a transit dosimetry algorithm followed the establishment of the backscatter correction and a confirmation of the EPID's positional stability with linac gantry rotation. A detailed characterization of the attenuation, scatter, and EPID response behind an object in the beam's path is necessary to predict transit PDIs. In order to validate the algorithm's performance, 49 IMRT fields were delivered to a

  19. Experimental assessment of gold nanoparticle-mediated dose enhancement in radiation therapy beams using electron spin resonance dosimetry

    NASA Astrophysics Data System (ADS)

    Wolfe, T.; Guidelli, E. J.; Gómez, J. A.; Baffa, O.; Nicolucci, P.

    2015-06-01

    In this work, we aim to experimentally assess increments of dose due to nanoparticle-radiation interactions via electron spin resonance (ESR) dosimetry performed with a biological-equivalent sensitive material. We employed 2-Methyl-Alanine (2MA) in powder form to compose the radiation sensitive medium embedding gold nanoparticles (AuNPs) 5 nm in diameter. Dosimeters manufactured with 0.1% w/w of AuNPs or no nanoparticles were irradiated with clinically utilized 250 kVp orthovoltage or 6 MV linac x-rays in dosimetric conditions. Amplitude peak-to-peak (App) at the central ESR spectral line was used for dosimetry. Dose-response curves were obtained for samples with or without nanoparticles and each energy beam. Dose increments due to nanoparticles were analyzed in terms of absolute dose enhancements (DEs), calculated as App ratios for each dose/beam condition, or relative dose enhancement factors (DEFs) calculated as the slopes of the dose-response curves. Dose enhancements were observed to present an amplified behavior for small doses (between 0.1-0.5 Gy), with this effect being more prominent with the kV beam. For doses between 0.5-5 Gy, dose-independent trends were observed for both beams, stable around (2.1   ±   0.7) and (1.3   ±   0.4) for kV and MV beams, respectively. We found DEFs of (1.62   ±   0.04) or (1.27   ±   0.03) for the same beams. Additionally, we measured no interference between AuNPs and the ESR apparatus, including the excitation microwaves, the magnetic fields and the paramagnetic radicals. 2MA was demonstrated to be a feasible paramagnetic radiation-sensitive material for dosimetry in the presence of AuNPs, and ESR dosimetry a powerful experimental method for further verifications of increments in nanoparticle-mediated doses of biological interest. Ultimately, gold nanoparticles can cause significant and detectable dose enhancements in biological-like samples irradiated at both

  20. Official dosimetry with personal electronic dosemeters--the framework in Germany.

    PubMed

    Czarwinski, R; Kaulard, J; Pfeffer, W

    2007-01-01

    In Germany, personal electronic dosemeters (AEPDs) are presently applied mainly for operational radiation protection monitoring particularly in nuclear power engineering companies, large hospitals and research centres. This is done in addition to the official dosimetry of record. Therefore, frequently, double monitoring occurs-officially and operationally. A crucial advantage of AEPDs compared with passive dosemeters is the ability to adapt the monitoring period to the working time in controlled areas and to allow an immediate readout of the dose after leaving the controlled area, e.g. a job-related monitoring is possible by correlating the readout dose with the job performed. Germany started a general research project, consisting of two parts, for an optimised implementation of personal electronic dosemeters into official dosimetry. The use of AEPDs as official dosemeters depends on an approval by Federal and Federal State ('Länder') authorities as an official dosimetry system, which has to comply with special requirements ensuring that the legal requirements are fulfilled. The formulation of these special requirements is in the focus of part one of the research project, supervised by the Federal Office for Radiation Protection (BfS) and performed by the Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) mbH. As a result of part one, a framework was developed which is the basis for a future technical implementation project. Part one is described in the paper, while part two is still to be initiated and will deal with the implementation and testing phase of the introduction of personal electronic dosemeters as official dosemeters.

  1. Alanine-EPR as a transfer standard dosimetry system for low energy X radiation

    NASA Astrophysics Data System (ADS)

    Khoury, H. J.; da Silva, E. J.; Mehta, K.; de Barros, V. S.; Asfora, V. K.; Guzzo, P. L.; Parker, A. G.

    2015-11-01

    The purpose of this paper is to evaluate the use of alanine-EPR as a transfer standard dosimetry system for low energy X radiation, such as that in RS-2400, which operates in the range from 25 to 150 kV and 2 to 45 mA. Two types of alanine dosimeters were investigated. One is a commercial alanine pellets from Aérial-Centre de Ressources Technologiques, France and one was prepared in our laboratory (LMRI-DEN/UFPE). The EPR spectra of the irradiated dosimeters were recorded in the Nuclear Energy Department of UFPE, using a Bruker EMX10 EPR spectrometer operating in the X-band. The alanine-EPR dosimetry system was calibrated in the range of 20-220 Gy in this X-ray field, against an ionization chamber calibrated at the relevant X-ray energy with traceability to PTB. The results showed that both alanine dosimeters presented a linear dose response the same sensitivity, when the EPR signal was normalized to alanine mass. The total uncertainty in the measured dose was estimated to be about 3%. The results indicate that it is possible to use the alanine-EPR dosimetry system for validation of a low-energy X ray irradiator, such as RS-2400.

  2. Computed tomography dosimetry with high-resolution detectors commonly used in radiotherapy - an energy dependence study.

    PubMed

    Liebmann, Mario; Poppe, Bjoern; von Boetticher, Heiner

    2015-09-08

    New methods of dosimetry in computed tomography (CT) X-ray fields require the use of high-resolution detectors instead of pencil-type ionization chambers typically used for CT dose index (CTDI) measurements. This paper presents a study on the suitability of a wide range of ionization chambers, diodes, and a two-dimensional detector array, used primarily in radiation therapy, for CT and cone-beam CT dosimetry. Specifically, the energy dependence of these detectors from 50 kVp up to 125 kVp is reported. All measurements were performed in reference to a calibrated diode for use in this energy region. The radiation quality correction factors provided by the manufacturer were used, depending on the measured half-value layer (HVL) for the particular X-ray beam. Our study demonstrated the general usability of thimble ionization chambers. These thimble ionization chambers showed a maximum variation in energy response of 5%. Ionization chambers with even smaller sensitive volume, and which exhibit similar variation in energy dependence, can be used if higher spatial resolution is required. Furthermore, the investigated detectors are better suited for dosimetry at CT and CBCT units than conventional large volume or flat detectors, due to their rotational symmetry. Nevertheless, a flat detector can be used for certain measurement tasks, such as the acquisition of percent depth-dose curves or beam profiles for nonrotating beams, which are important for beam characterization.

  3. Electron energies in metals

    SciTech Connect

    Mahan, G.D. Tennessee Univ., Knoxville, TN . Dept. of Physics and Astronomy)

    1991-07-10

    The modern era of electron-electron interactions began a decade ago. Plummer's group initiated a program of using angular resolved photoemission to examine the band structure of the simple metals. Beginning with aluminum, and carrying on to sodium and potassium, they always found that the occupied energy bands were much narrower than expected. For example, the compressed energy bands for metallic potassium suggest a band effective mass of m* = 1.33m{sub e}. This should be compared to the band mass found from optical conductivity m*/m{sub e} = 1.01 {plus minus} 0.01. The discrepancy between these results is startling. It was this great difference which started my group doing calculations. Our program was two-fold. On one hand, we reanalyzed the experimental data, in order to see if Plummer's result was an experimental artifact. On the other hand, we completely redid the electron-electron self-energy calculations for simple metals, using the most modern choices of local-field corrections and vertex corrections. Our results will be reported in these lectures. They can be summarized as following: Our calculations give the same effective masses as the older calculations, so the theory is relatively unchanged; Our analysis of the experiments suggests that the recent measurements of band narrowing are an experimental artifact. 38 refs., 9 figs.

  4. Emergency Dosimetry Using Ceramic Components in Personal Electronic Devices

    NASA Astrophysics Data System (ADS)

    Kouroukla, E. C.; Bailiff, I. K.; Terry, I.

    2014-02-01

    The rapid assessment of radiation dose to members of the public exposed to significant levels of ionizing radiation during a radiological incident presents a significant difficulty in the absence of planned radiation monitoring. However, within most personal electronic devices components such as resistors with alumina substrates can be found that have potentially suitable properties as solid state dosimeters using luminescence measurement techniques. The suitability of several types of ceramic-based components (e.g., resonators, inductors and resistors) has been previously examined using optically stimulated luminescence (OSL) and thermoluminescence (TL) techniques to establish their basic characteristics for the retrospective determination of absorbed dose. In this paper, we present results obtained with aluminum oxide surface mount resistors extracted from mobile phones that further extend this work. Very encouraging results have been obtained related to the measurement of luminescence sensitivity, dose response, reusability, limit of detection, signal reproducibility and known-dose recovery. However, the alumina exhibits a rapid loss of the latent luminescence signal with time following irradiation attributed to athermal (or anomalous) fading. The issues related to obtaining a reliable correction protocol for this loss and the detailed examinations required of the fading behavior are discussed.

  5. High dose-per-pulse electron beam dosimetry: Usability and dose-rate independence of EBT3 Gafchromic films.

    PubMed

    Jaccard, Maud; Petersson, Kristoffer; Buchillier, Thierry; Germond, Jean-François; Durán, Maria Teresa; Vozenin, Marie-Catherine; Bourhis, Jean; Bochud, François O; Bailat, Claude

    2017-02-01

    The aim of this study was to assess the suitability of Gafchromic EBT3 films for reference dose measurements in the beam of a prototype high dose-per-pulse linear accelerator (linac), capable of delivering electron beams with a mean dose-rate (Ḋm ) ranging from 0.07 to 3000 Gy/s and a dose-rate in pulse (Ḋp ) of up to 8 × 10(6) Gy/s. To do this, we evaluated the overall uncertainties in EBT3 film dosimetry as well as the energy and dose-rate dependence of their response. Our dosimetric system was composed of EBT3 Gafchromic films in combination with a flatbed scanner and was calibrated against an ionization chamber traceable to primary standard. All sources of uncertainties in EBT3 dosimetry were carefully analyzed using irradiations at a clinical radiotherapy linac. Energy dependence was investigated with the same machine by acquiring and comparing calibration curves for three different beam energies (4, 8 and 12 MeV), for doses between 0.25 and 30 Gy. Ḋm dependence was studied at the clinical linac by changing the pulse repetition frequency (f) of the beam in order to vary Ḋm between 0.55 and 4.40 Gy/min, while Ḋp dependence was probed at the prototype machine for Ḋp ranging from 7 × 10(3) to 8 × 10(6) Gy/s. Ḋp dependence was first determined by studying the correlation between the dose measured by films and the charge of electrons measured at the exit of the machine by an induction torus. Furthermore, we compared doses from the films to independently calibrated thermo-luminescent dosimeters (TLD) that have been reported as being dose-rate independent up to such high dose-rates. We report that uncertainty below 4% (k = 2) can be achieved in the dose range between 3 and 17 Gy. Results also demonstrated that EBT3 films did not display any detectable energy dependence for electron beam energies between 4 and 12 MeV. No Ḋm dependence was found either. In addition, we obtained excellent consistency between films and TLDs over the entire Ḋp range

  6. Monte Carlo calculations for reference dosimetry of electron beams with the PTW Roos and NE2571 ion chambers.

    PubMed

    Muir, B R; Rogers, D W O

    2013-12-01

    explicitly correcting for gradient effects. The inadequacy of R50 to uniquely specify beam quality for the accurate selection of kQ factors is discussed. Systematic uncertainties in beam quality conversion factors are analyzed for the NE2571 chamber and amount to between 0.4% and 1.2% depending on assumptions used. The calculated beam quality conversion factors for the PTW Roos chamber obtained here are in good agreement with literature data. These results characterize the use of an NE2571 ion chamber for reference dosimetry of electron beams even in low-energy beams.

  7. Monte Carlo calculations for reference dosimetry of electron beams with the PTW Roos and NE2571 ion chambers

    SciTech Connect

    Muir, B. R. Rogers, D. W. O.

    2013-12-15

    beam quality conversion factors is obtained without explicitly correcting for gradient effects. The inadequacy of R{sub 50} to uniquely specify beam quality for the accurate selection of k{sub Q} factors is discussed. Systematic uncertainties in beam quality conversion factors are analyzed for the NE2571 chamber and amount to between 0.4% and 1.2% depending on assumptions used. Conclusions: The calculated beam quality conversion factors for the PTW Roos chamber obtained here are in good agreement with literature data. These results characterize the use of an NE2571 ion chamber for reference dosimetry of electron beams even in low-energy beams.

  8. Towards Establishing Capacity for Biological Dosimetry at Ghana Atomic Energy Commission

    PubMed Central

    Achel, Daniel Gyingiri; Achoribo, Elom; Agbenyegah, Sandra; Adaboro, Rudolph M.; Donkor, Shadrack; Adu-Bobi, Nana A. K.; Agyekum, Akwasi A.; Akuamoa, Felicia; Tagoe, Samuel N.; Kyei, Kofi A.; Yarney, Joel; Serafin, Antonio; Akudugu, John M.

    2016-01-01

    The aim of this study was not only to obtain basic technical prerequisites for the establishment of capacity of biological dosimetry at the Ghana Atomic Energy Commission (GAEC) but also to stimulate interest in biological dosimetry research in Ghana and Sub-Saharan Africa. Peripheral blood from four healthy donors was exposed to different doses (0–6 Gy) of gamma rays from a radiotherapy machine and lymphocytes were subsequently stimulated, cultured, and processed according to standard protocols for 48–50 h. Processed cells were analyzed for the frequencies of dicentric and centric ring chromosomes. Radiation dose delivered to the experimental model was verified using GafChromic® EBT films in parallel experiments. Basic technical prerequisites for the establishment of capacity of biological dosimetry in the GAEC have been realized and expertise in the dicentric chromosome assay consolidated. We successfully obtained preliminary cytogenetic data for a dose-response relationship of the irradiated blood lymphocytes. The data strongly indicate the existence of significant linear (α) and quadratic (β) components and are consistent with those published for the production of chromosome aberrations in comparable absorbed dose ranges. PMID:28217279

  9. Experimental verification of bremsstrahlung production and dosimetry predictions for 15. 5 MeV electrons

    SciTech Connect

    Sanford, T.W.L.; Beutler, D.E.; Halbleib, J.A.; Knott, D.P.

    1991-01-01

    The radiation produced by a 15.5-MeV monoenergetic electron beam incident on optimized and nonoptimized bremsstrahlung targets is characterized using the ITS Monte Carlo code and measurements with equilibrated and non-equilibrated TLD dosimetry. Comparisons between calculations and measurements verify the calculations and demonstrate that the code can be used to predict both bremsstrahlung production and TLD response for radiation fields that are characteristic of those produced by pulsed simulators of gamma rays. At optimum bremsstrahlung production, the predicted total forward radiation fluence detected in equilibrated TLD dosimetry agrees with that measured within the {plus minus}6% uncertainty of the measurement. The absolute comparisons made here provide independent confirmation of the validity of the TLD calibration for photon fields characteristic of gamma-ray simulators. The empirical Martin equation, which is often used to calculate radiation dose from optimized bremsstrahlung targets, is examined, and its range of validity is established from the data presented. 23 refs., 11 figs., 2 tabs.

  10. Experimental verification of bremsstrahlung production and dosimetry predictions for 15. 5 MeV electrons

    SciTech Connect

    Sanford, T.W.L.; Beutler, D.E.; Halbleib, J.A. ); Knott, D.P. )

    1991-12-01

    In this paper the radiation produced by a 15.5-MeV mono-energetic electron beam incident on optimized and non-optimized bremsstrahlung targets is characterized using the ITS Monte Carlo code and measurements with equilibrated and non-equilibrated TLD dosimetry. Comparisons between calculations and measurements verify the calculations and demonstrate that the code can be used to predict both bremsstrahlung production and TLD response for radiation fields that are characteristic of those produced by pulsed simulators of gamma rays. At optimum bremsstrahlung production, the predicted total forward radiation fluence detected in equilibrated TLD dosimetry agrees with that measured with the {plus minus} 6% uncertainty of the measurement. The absolute comparisons made here provide independent confirmation of the validity of the TLD calibration for photon fields characteristic of gamma-ray simulators. The empirical Martin equation, which is often used to calculate radiation dose from optimized bremsstrahlung targets, is examined, and its range of validity is established from the data presented.

  11. Improving quantitative dosimetry in (177)Lu-DOTATATE SPECT by energy window-based scatter corrections.

    PubMed

    de Nijs, Robin; Lagerburg, Vera; Klausen, Thomas L; Holm, Søren

    2014-05-01

    Patient-specific dosimetry of lutetium-177 ((177)Lu)-DOTATATE treatment in neuroendocrine tumours is important, because uptake differs across patients. Single photon emission computer tomography (SPECT)-based dosimetry requires a conversion factor between the obtained counts and the activity, which depends on the collimator type, the utilized energy windows and the applied scatter correction techniques. In this study, energy window subtraction-based scatter correction methods are compared experimentally and quantitatively. (177)Lu SPECT images of a phantom with known activity concentration ratio between the uniform background and filled hollow spheres were acquired for three different collimators: low-energy high resolution (LEHR), low-energy general purpose (LEGP) and medium-energy general purpose (MEGP). Counts were collected in several energy windows, and scatter correction was performed by applying different methods such as effective scatter source estimation (ESSE), triple-energy and dual-energy window, double-photopeak window and downscatter correction. The intensity ratio between the spheres and the background was measured and corrected for the partial volume effect and used to compare the performance of the methods. Low-energy collimators combined with 208 keV energy windows give rise to artefacts. For the 113 keV energy window, large differences were observed in the ratios for the spheres. For MEGP collimators with the ESSE correction technique, the measured ratio was close to the real ratio, and the differences between spheres were small. For quantitative (177)Lu imaging MEGP collimators are advised. Both energy peaks can be utilized when the ESSE correction technique is applied. The difference between the calculated and the real ratio is less than 10% for both energy windows.

  12. Improving quantitative dosimetry in 177Lu-DOTATATE SPECT by energy window-based scatter corrections

    PubMed Central

    Lagerburg, Vera; Klausen, Thomas L.; Holm, Søren

    2014-01-01

    Purpose Patient-specific dosimetry of lutetium-177 (177Lu)-DOTATATE treatment in neuroendocrine tumours is important, because uptake differs across patients. Single photon emission computer tomography (SPECT)-based dosimetry requires a conversion factor between the obtained counts and the activity, which depends on the collimator type, the utilized energy windows and the applied scatter correction techniques. In this study, energy window subtraction-based scatter correction methods are compared experimentally and quantitatively. Materials and methods 177Lu SPECT images of a phantom with known activity concentration ratio between the uniform background and filled hollow spheres were acquired for three different collimators: low-energy high resolution (LEHR), low-energy general purpose (LEGP) and medium-energy general purpose (MEGP). Counts were collected in several energy windows, and scatter correction was performed by applying different methods such as effective scatter source estimation (ESSE), triple-energy and dual-energy window, double-photopeak window and downscatter correction. The intensity ratio between the spheres and the background was measured and corrected for the partial volume effect and used to compare the performance of the methods. Results Low-energy collimators combined with 208 keV energy windows give rise to artefacts. For the 113 keV energy window, large differences were observed in the ratios for the spheres. For MEGP collimators with the ESSE correction technique, the measured ratio was close to the real ratio, and the differences between spheres were small. Conclusion For quantitative 177Lu imaging MEGP collimators are advised. Both energy peaks can be utilized when the ESSE correction technique is applied. The difference between the calculated and the real ratio is less than 10% for both energy windows. PMID:24525900

  13. MO-FG-303-02: BEST IN PHYSICS (THERAPY): Cherenkov Emission Dosimetry: Feasibility for Electron Radiotherapy

    SciTech Connect

    Zlateva, Y; El Naqa, I

    2015-06-15

    Purpose: To investigate from first principles, corroborated by Monte Carlo simulations and experimental measurements, the feasibility of developing a relative Cherenkov emission (CE) dosimetry protocol for electron beam radiotherapy. Methods: Monte Carlo (MC) simulations of mono-energetic electrons incident on water were carried out in Geant4. Percent depth Cherenkov emission (PDCE) and dose (PDD) distributions were scored for incidence energies of 4, 6, 9, 12, 15, and 18 MeV. PDCE-to-PDD analytical conversion models were developed from least-squares data fits generated for PDD as a function of PDCE at the same depth and at different depths. Experimental techniques for validation of these models are examined. Results: Same-depth PDD versus PDCE data fits indicate that although the relationship is linear to first order (correlation r > 0.9 for all energies), it is much more accurately approximated by separate linear and quadratic models for the build-up and drop-off regions, respectively (r > 0.999), which is theoretically underpinned. To understand the source of this relationship and its basis for developing robust conversion models, an approximate quadratic first-principles model was derived and found in agreement with MC/measured data (20% deviation at worst). Conversely, data fits of PDD versus different-depth PDCE unveiled a depth-invariant effective point of measurement of 1.5–2.1 mm downstream with 4–18 MeV incidence, respectively (r > 0.999 in the drop-off region). We present an analytical first-principles justification for this shift. This method led to errors of <1% in drop-off region PDD (<2% for PDD<20% with 4 MeV incidence) and <0.2 mm in practical range prediction. Conclusion: We present robust quantitative prediction models, derived from first-principles and supported by simulation and measurement, for relative dose from Cherenkov emission by high-energy electrons. This constitutes a major step towards development of protocols for routine clinical

  14. Neutron dosimetry with TL albedo dosemeters at high energy accelerators.

    PubMed

    Haninger, T; Fehrenbacher, G

    2007-01-01

    The GSF-Personal Monitoring Service uses the TLD albedo dosemeter as standard neutron personal dosemeter. Due to its low sensitivity for fast neutrons however, it is generally not recommended for workplaces at high-energy accelerators. Test measurements with the albedo dosemeter were performed at the accelerator laboratories of GSI in Darmstadt and DESY in Hamburg to reconsider this hypothesis. It revealed that the albedo dosemeter can also be used as personal dosemeter at these workplaces, because at all measurement locations a significant part of neutrons with lower energies could be found, which were produced by scattering at walls or the ground.

  15. Performance comparisons of selected personnel-dosimetry systems in use at Department of Energy facilities

    SciTech Connect

    Roberson, P.L; Holbrook, K.L.; Yoder, R.C.; Fox, R.A.; Hadley, R.T.; Hogan, B.T.; Hooker, C.D.

    1983-10-01

    Dosimeter performance data were collected to help develop a uniform approach to the calibration and use of personnel dosimetry systems for Department of Energy (DOE) laboratories. Eleven DOE laboratories participated in six months of testing using the American National Draft Standard, Criteria for Testing Personnel Dosimetry Performance, ANSI N13.11, and additional testing categories. The tests described in ANSI N13.11 used a pass/fail system to determine compliance with the draft standard. Recalculation to PNL irradiations showed that the /sup 137/Cs, /sup 90/Sr//sup 90/Y, and /sup 252/Cf categories can be recalibrated to have acceptable performance for nearly all participant systems. Deficient dosimeter design or handling techniques caused poor performance in the x-ray category for nearly half of the participants. Too little filtration for the deep-dose element caused poor performance in the beta/photon mixture category for one participant. Two participants had excessively high standard deviations in the neutron category due to dosimeter design or handling deficiencies. The participating dosimetry systems were separated into three categories on their dose evaluation procedure for low-energy photons. These were film dosimeters, fixed-calibration thermoluminescent (TL) dosimeters, and variable-calibration TL dosimeters. The performance of the variable-calibration design was best while the film dosimeters performed considerably worse than either TL dosimeter design. Beta energy dependence studies confirmed a strong correlation between sensitive element thickness, shallow element filtration and low-energy beta response. Studies of neutron calibration conditions for each participant suggested a relationship between response and calibration facility design.

  16. Radiochromic film dosimetry of a low energy proton beam.

    PubMed

    Piermattei, A; Miceli, R; Azario, L; Fidanzio, A; delle Canne, S; De Angelis, C; Onori, S; Pacilio, M; Petetti, E; Raffaele, L; Sabini, M G

    2000-07-01

    In this work some dosimetric characteristics of MD-55-2 GafChromic films were studied in a low energy proton beam (21.5 MeV) directly in a water phantom. The nonlinearity of the optical density was quantified by a factor P(lin). A correction factor P(en), that accounts for optical density dependence on the energy, was empirically determined. The effects of detector thickness in depth dose measurements and of the film orientation with respect to beam direction were investigated. The results show that the MD-55-2 films provide dose measurements with the films positioned perpendicularly to the proton beam. A dosimetric formalizm is proposed to determine the dose to water at depth d, with films oriented perpendicularly to the beam axis. This formalism uses a calibration factor of the radiochromic film determined directly on the proton beam at a reference depth in water, and the P(lin) factor, that takes into account the nonlinearity of the calibration curve and the P(en) factor that, in turn takes into account the change of proton beam energy in water. The MD-55-2 films with their high spatial resolution and the quasiwater equivalent material are attractive, positioned perpendicularly along the beam axis, for the absolute dose determination of very small beam sizes and modulated proton beams.

  17. Review of the results of the in vivo dosimetry during total skin electron beam therapy

    PubMed Central

    Guidi, Gabriele; Gottardi, Giovanni; Ceroni, Paola; Costi, Tiziana

    2013-01-01

    This work reviews results of in vivo dosimetry (IVD) for total skin electron beam (TSEB) therapy, focusing on new methods, data emerged within 2012. All quoted data are based on a careful review of the literature reporting IVD results for patients treated by means of TSEB therapy. Many of the reviewed papers refer mainly to now old studies and/or old guidelines and recommendations (by IAEA, AAPM and EORTC), because (due to intrinsic rareness of TSEB-treated pathologies) only a limited number of works and reports with a large set of numerical data and proper statistical analysis is up-to-day available in scientific literature. Nonetheless, a general summary of the results obtained by the now numerous IVD techniques available is reported; innovative devices and methods, together with areas of possible further and possibly multicenter investigations for TSEB therapies are highlighted. PMID:24936333

  18. Test study of boron nitride as a new detector material for dosimetry in high-energy photon beams.

    PubMed

    Poppinga, D; Halbur, J; Lemmer, S; Delfs, B; Harder, D; Looe, H K; Poppe, B

    2017-09-05

    The aim of this test study is to check whether boron nitride (BN) might be applied as a detector material in high-energy photon-beam dosimetry. Boron nitride exists in various crystalline forms. Hexagonal boron nitride (h-BN) possesses high mobility of the electrons and holes as well as a high volume resistivity, so that ionizing radiation in the clinical range of the dose rate can be expected to produce a measurable electrical current at low background current. Due to the low atomic numbers of its constituents, its density (2.0 g cm(-3)) similar to silicon and its commercial availability, h-BN appears as possibly suitable for the dosimetry of ionizing radiation. Five h-BN plates were contacted to triaxial cables, and the detector current was measured in a solid-state ionization chamber circuit at an applied voltage of 50 V. Basic dosimetric properties such as formation by pre-irradiation, sensitivity, reproducibility, linearity and temporal resolution were measured with 6 MV photon irradiation. Depth dose curves at quadratic field sizes of 10 cm and 40 cm were measured and compared to ionization chamber measurements. After a pre-irradiation with 6 Gy, the devices show a stable current signal at a given dose rate. The current-voltage characteristic up to 400 V shows an increase in the collection efficiency with the voltage. The time-resolved detector current behavior during beam interrupts is comparable to diamond material, and the background current is negligible. The measured percentage depth dose curves at 10 cm  ×  10 cm field size agreed with the results of ionization chamber measurements within  ±2%. This is a first study of boron nitride as a detector material for high-energy photon radiation. By current measurements on solid ionization chambers made from boron nitride chips we could demonstrate that boron nitride is in principle suitable as a detector material for high-energy photon-beam dosimetry.

  19. Test study of boron nitride as a new detector material for dosimetry in high-energy photon beams

    NASA Astrophysics Data System (ADS)

    Poppinga, D.; Halbur, J.; Lemmer, S.; Delfs, B.; Harder, D.; Looe, H. K.; Poppe, B.

    2017-09-01

    The aim of this test study is to check whether boron nitride (BN) might be applied as a detector material in high-energy photon-beam dosimetry. Boron nitride exists in various crystalline forms. Hexagonal boron nitride (h-BN) possesses high mobility of the electrons and holes as well as a high volume resistivity, so that ionizing radiation in the clinical range of the dose rate can be expected to produce a measurable electrical current at low background current. Due to the low atomic numbers of its constituents, its density (2.0 g cm‑3) similar to silicon and its commercial availability, h-BN appears as possibly suitable for the dosimetry of ionizing radiation. Five h-BN plates were contacted to triaxial cables, and the detector current was measured in a solid-state ionization chamber circuit at an applied voltage of 50 V. Basic dosimetric properties such as formation by pre-irradiation, sensitivity, reproducibility, linearity and temporal resolution were measured with 6 MV photon irradiation. Depth dose curves at quadratic field sizes of 10 cm and 40 cm were measured and compared to ionization chamber measurements. After a pre-irradiation with 6 Gy, the devices show a stable current signal at a given dose rate. The current–voltage characteristic up to 400 V shows an increase in the collection efficiency with the voltage. The time-resolved detector current behavior during beam interrupts is comparable to diamond material, and the background current is negligible. The measured percentage depth dose curves at 10 cm  ×  10 cm field size agreed with the results of ionization chamber measurements within  ±2%. This is a first study of boron nitride as a detector material for high-energy photon radiation. By current measurements on solid ionization chambers made from boron nitride chips we could demonstrate that boron nitride is in principle suitable as a detector material for high-energy photon-beam dosimetry.

  20. An image-based skeletal dosimetry model for the ICRP reference adult male--internal electron sources.

    PubMed

    Hough, Matthew; Johnson, Perry; Rajon, Didier; Jokisch, Derek; Lee, Choonsik; Bolch, Wesley

    2011-04-21

    In this study, a comprehensive electron dosimetry model of the adult male skeletal tissues is presented. The model is constructed using the University of Florida adult male hybrid phantom of Lee et al (2010 Phys. Med. Biol. 55 339-63) and the EGSnrc-based Paired Image Radiation Transport code of Shah et al (2005 J. Nucl. Med. 46 344-53). Target tissues include the active bone marrow, associated with radiogenic leukemia, and total shallow marrow, associated with radiogenic bone cancer. Monoenergetic electron emissions are considered over the energy range 1 keV to 10 MeV for the following sources: bone marrow (active and inactive), trabecular bone (surfaces and volumes), and cortical bone (surfaces and volumes). Specific absorbed fractions are computed according to the MIRD schema, and are given as skeletal-averaged values in the paper with site-specific values reported in both tabular and graphical format in an electronic annex available from http://stacks.iop.org/0031-9155/56/2309/mmedia. The distribution of cortical bone and spongiosa at the macroscopic dimensions of the phantom, as well as the distribution of trabecular bone and marrow tissues at the microscopic dimensions of the phantom, is imposed through detailed analyses of whole-body ex vivo CT images (1 mm resolution) and spongiosa-specific ex vivo microCT images (30 µm resolution), respectively, taken from a 40 year male cadaver. The method utilized in this work includes: (1) explicit accounting for changes in marrow self-dose with variations in marrow cellularity, (2) explicit accounting for electron escape from spongiosa, (3) explicit consideration of spongiosa cross-fire from cortical bone, and (4) explicit consideration of the ICRP's change in the surrogate tissue region defining the location of the osteoprogenitor cells (from a 10 µm endosteal layer covering the trabecular and cortical surfaces to a 50 µm shallow marrow layer covering trabecular and medullary cavity surfaces). Skeletal

  1. An image-based skeletal dosimetry model for the ICRP reference adult male—internal electron sources

    NASA Astrophysics Data System (ADS)

    Hough, Matthew; Johnson, Perry; Rajon, Didier; Jokisch, Derek; Lee, Choonsik; Bolch, Wesley

    2011-04-01

    In this study, a comprehensive electron dosimetry model of the adult male skeletal tissues is presented. The model is constructed using the University of Florida adult male hybrid phantom of Lee et al (2010 Phys. Med. Biol. 55 339-63) and the EGSnrc-based Paired Image Radiation Transport code of Shah et al (2005 J. Nucl. Med. 46 344-53). Target tissues include the active bone marrow, associated with radiogenic leukemia, and total shallow marrow, associated with radiogenic bone cancer. Monoenergetic electron emissions are considered over the energy range 1 keV to 10 MeV for the following sources: bone marrow (active and inactive), trabecular bone (surfaces and volumes), and cortical bone (surfaces and volumes). Specific absorbed fractions are computed according to the MIRD schema, and are given as skeletal-averaged values in the paper with site-specific values reported in both tabular and graphical format in an electronic annex available from http://stacks.iop.org/0031-9155/56/2309/mmedia. The distribution of cortical bone and spongiosa at the macroscopic dimensions of the phantom, as well as the distribution of trabecular bone and marrow tissues at the microscopic dimensions of the phantom, is imposed through detailed analyses of whole-body ex vivo CT images (1 mm resolution) and spongiosa-specific ex vivo microCT images (30 µm resolution), respectively, taken from a 40 year male cadaver. The method utilized in this work includes: (1) explicit accounting for changes in marrow self-dose with variations in marrow cellularity, (2) explicit accounting for electron escape from spongiosa, (3) explicit consideration of spongiosa cross-fire from cortical bone, and (4) explicit consideration of the ICRP's change in the surrogate tissue region defining the location of the osteoprogenitor cells (from a 10 µm endosteal layer covering the trabecular and cortical surfaces to a 50 µm shallow marrow layer covering trabecular and medullary cavity surfaces). Skeletal

  2. Clinical implementation of electron energy changes of varian linear accelerators.

    PubMed

    Zhang, Sean; Liengsawangwong, Praimakorn; Lindsay, Patricia; Prado, Karl; Sun, Tzouh-Liang; Steadham, Roy; Wang, Xiaochun; Salehpour, Mohammad; Gillin, Michael

    2009-10-27

    Modern dual photon energy linear accelerators often come with a few megavoltage electron beams. The megavoltage electron beam has limited range and relative sharp distal falloff in its depth dose curve compared to that of megavoltage photon beam. Its radiation dose is often delivered appositionally to cover the target volume to its distal 90% depth dose (d90), while avoiding the normal--sometimes critical--structure immediately distal to the target. Varian linear accelerators currently offer selected electron beams of 4, 6, 9, 12, 16 and 20 MeV electron beam energies. However, intermediate electron energy is often needed for optimal dose distribution. In this study we investigated electron beam characteristics and implemented two intermediate 7 and 11 MeV electron beams on Varian linear accelerators. Comprehensive tests and measurements indicated the new electron beams met all dosimetry parameter criteria and operational safety standards. Between the two new electron beams and the existing electron beams we were able to provide a choice of electron beams of 4, 6, 7, 9, 11, 12, 16 and 20 MeV electron energies, which had d90 depth between 1.5 cm and 6.0 cm (from 1.5 cm to 4.0 cm in 0.5 cm increments) to meet our clinical needs.

  3. The energy dependence of the lateral dose response functions of detectors with various densities in photon-beam dosimetry

    NASA Astrophysics Data System (ADS)

    Khee Looe, Hui; Harder, Dietrich; Poppe, Björn

    2017-02-01

    The lateral dose response function is a general characteristic of the volume effect of a detector used for photon dosimetry in a water phantom. It serves as the convolution kernel transforming the true absorbed dose to water profile, which would be produced within the undisturbed water phantom, into the detector-measured signal profile. The shape of the lateral dose response function characterizes (i) the volume averaging attributable to the detector’s size and (ii) the disturbance of the secondary electron field associated with the deviation of the electron density of the detector material from the surrounding water. In previous work, the characteristic dependence of the shape of the lateral dose response function upon the electron density of the detector material was studied for 6 MV photons by Monte Carlo simulation of a wall-less voxel-sized detector (Looe et al 2015 Phys. Med. Biol. 60 6585-07). This study is here continued for 60Co gamma rays and 15 MV photons in comparison with 6 MV photons. It is found (1) that throughout these photon spectra the shapes of the lateral dose response functions are retaining their characteristic dependence on the detector’s electron density, and (2) that their energy-dependent changes are only moderate. This appears as a practical advantage because the lateral dose response function can then be treated as practically invariant across a clinical photon beam in spite of the known changes of the photon spectrum with increasing distance from the beam axis.

  4. Internal photon and electron dosimetry of the newborn patient—a hybrid computational phantom study

    NASA Astrophysics Data System (ADS)

    Wayson, Michael; Lee, Choonsik; Sgouros, George; Treves, S. Ted; Frey, Eric; Bolch, Wesley E.

    2012-03-01

    Estimates of radiation absorbed dose to organs of the nuclear medicine patient are a requirement for administered activity optimization and for stochastic risk assessment. Pediatric patients, and in particular the newborn child, represent that portion of the patient population where such optimization studies are most crucial owing to the enhanced tissue radiosensitivities and longer life expectancies of this patient subpopulation. In cases where whole-body CT imaging is not available, phantom-based calculations of radionuclide S values—absorbed dose to a target tissue per nuclear transformation in a source tissue—are required for dose and risk evaluation. In this study, a comprehensive model of electron and photon dosimetry of the reference newborn child is presented based on a high-resolution hybrid-voxel phantom from the University of Florida (UF) patient model series. Values of photon specific absorbed fraction (SAF) were assembled for both the reference male and female newborn using the radiation transport code MCNPX v2.6. Values of electron SAF were assembled in a unique and time-efficient manner whereby the collisional and radiative components of organ dose--for both self- and cross-dose terms—were computed separately. Dose to the newborn skeletal tissues were assessed via fluence-to-dose response functions reported for the first time in this study. Values of photon and electron SAFs were used to assemble a complete set of S values for some 16 radionuclides commonly associated with molecular imaging of the newborn. These values were then compared to those available in the OLINDA/EXM software. S value ratios for organ self-dose ranged from 0.46 to 1.42, while similar ratios for organ cross-dose varied from a low of 0.04 to a high of 3.49. These large discrepancies are due in large part to the simplistic organ modeling in the stylized newborn model used in the OLINDA/EXM software. A comprehensive model of internal dosimetry is presented in this study for

  5. Internal photon and electron dosimetry of the newborn patient--a hybrid computational phantom study.

    PubMed

    Wayson, Michael; Lee, Choonsik; Sgouros, George; Treves, S Ted; Frey, Eric; Bolch, Wesley E

    2012-03-07

    Estimates of radiation absorbed dose to organs of the nuclear medicine patient are a requirement for administered activity optimization and for stochastic risk assessment. Pediatric patients, and in particular the newborn child, represent that portion of the patient population where such optimization studies are most crucial owing to the enhanced tissue radiosensitivities and longer life expectancies of this patient subpopulation. In cases where whole-body CT imaging is not available, phantom-based calculations of radionuclide S values--absorbed dose to a target tissue per nuclear transformation in a source tissue--are required for dose and risk evaluation. In this study, a comprehensive model of electron and photon dosimetry of the reference newborn child is presented based on a high-resolution hybrid-voxel phantom from the University of Florida (UF) patient model series. Values of photon specific absorbed fraction (SAF) were assembled for both the reference male and female newborn using the radiation transport code MCNPX v2.6. Values of electron SAF were assembled in a unique and time-efficient manner whereby the collisional and radiative components of organ dose--for both self- and cross-dose terms--were computed separately. Dose to the newborn skeletal tissues were assessed via fluence-to-dose response functions reported for the first time in this study. Values of photon and electron SAFs were used to assemble a complete set of S values for some 16 radionuclides commonly associated with molecular imaging of the newborn. These values were then compared to those available in the OLINDA/EXM software. S value ratios for organ self-dose ranged from 0.46 to 1.42, while similar ratios for organ cross-dose varied from a low of 0.04 to a high of 3.49. These large discrepancies are due in large part to the simplistic organ modeling in the stylized newborn model used in the OLINDA/EXM software. A comprehensive model of internal dosimetry is presented in this study for the

  6. Clinical implementation of an electron monitor unit dosimetry system based on task group 71 report and a commercial calculation program

    PubMed Central

    Xu, Huijun; Guerrero, Mariana; Chen, Shifeng; Yang, Xiaocheng; Prado, Karl; Schinkel, Colleen

    2016-01-01

    Many clinics still use monitor unit (MU) calculations for electron treatment planning and/or quality assurance (QA). This work (1) investigates the clinical implementation of a dosimetry system including a modified American Association of Physicists in Medicine-task group-71 (TG-71)-based electron MU calculation protocol (modified TG-71 electron [mTG-71E] and an independent commercial calculation program and (2) provides the practice recommendations for clinical usage. Following the recently published TG-71 guidance, an organized mTG-71E databook was developed to facilitate data access and subsequent MU computation according to our clinical need. A recently released commercial secondary calculation program – Mobius3D (version 1.5.1) Electron Quick Calc (EQC) (Mobius Medical System, LP, Houston, TX, USA), with inherent pencil beam algorithm and independent beam data, was used to corroborate the calculation results. For various setups, the calculation consistency and accuracy of mTG-71E and EQC were validated by their cross-comparison and the ion chamber measurements in a solid water phantom. Our results show good agreement between mTG-71E and EQC calculations, with average 2% difference. Both mTG-71E and EQC calculations match with measurements within 3%. In general, these differences increase with decreased cutout size, increased extended source to surface distance, and lower energy. It is feasible to use TG71 and Mobius3D clinically as primary and secondary electron MU calculations or vice versa. We recommend a practice that only requires patient-specific measurements in rare cases when mTG-71E and EQC calculations differ by 5% or more. PMID:28144112

  7. Clinical implementation of an electron monitor unit dosimetry system based on task group 71 report and a commercial calculation program.

    PubMed

    Xu, Huijun; Guerrero, Mariana; Chen, Shifeng; Yang, Xiaocheng; Prado, Karl; Schinkel, Colleen

    2016-01-01

    Many clinics still use monitor unit (MU) calculations for electron treatment planning and/or quality assurance (QA). This work (1) investigates the clinical implementation of a dosimetry system including a modified American Association of Physicists in Medicine-task group-71 (TG-71)-based electron MU calculation protocol (modified TG-71 electron [mTG-71E] and an independent commercial calculation program and (2) provides the practice recommendations for clinical usage. Following the recently published TG-71 guidance, an organized mTG-71E databook was developed to facilitate data access and subsequent MU computation according to our clinical need. A recently released commercial secondary calculation program - Mobius3D (version 1.5.1) Electron Quick Calc (EQC) (Mobius Medical System, LP, Houston, TX, USA), with inherent pencil beam algorithm and independent beam data, was used to corroborate the calculation results. For various setups, the calculation consistency and accuracy of mTG-71E and EQC were validated by their cross-comparison and the ion chamber measurements in a solid water phantom. Our results show good agreement between mTG-71E and EQC calculations, with average 2% difference. Both mTG-71E and EQC calculations match with measurements within 3%. In general, these differences increase with decreased cutout size, increased extended source to surface distance, and lower energy. It is feasible to use TG71 and Mobius3D clinically as primary and secondary electron MU calculations or vice versa. We recommend a practice that only requires patient-specific measurements in rare cases when mTG-71E and EQC calculations differ by 5% or more.

  8. Radiation Dosimetry Study in Dental Enamel of Human Tooth Using Electron Paramagnetic Resonance

    NASA Astrophysics Data System (ADS)

    De, Tania; Romanyukha, Alex; Pass, Barry; Misra, Prabhakar

    2009-07-01

    Electron paramagnetic resonance (EPR) dosimetry of tooth enamel is used for individual dose reconstruction following radiation accidents. The purpose of this study is to develop a rapid, minimally invasive technique of obtaining a sample of dental enamel small enough to not disturb the structure and functionality of a tooth and to improve the sensitivity of the spectral signals using X-band (9.4 GHz) and Q-band (34 GHz) EPR technique. In this study EPR measurements in X-band were performed on 100 mg isotropic powdered enamel samples and Q-band was performed on 4 mg, 1×1×3 mm enamel biopsy samples. All samples were obtained from discarded teeth collected during normal dental treatment. To study the variation of the Radiation-Induced Signal (RIS) at different orientations in the applied magnetic field, samples were placed in the resonance cavity for Q-band EPR. X-band EPR measurements were performed on 100 mg isotropic powdered enamel samples. In X-band spectra, the RIS is distinct from the "native" radiation-independent signal only for doses >0.5 Gy. Q-band, however, resolves the RIS and "native" signals and improves sensitivity by a factor of 20, enabling measurements in 2-4 mg tooth enamel samples, as compared to 100 mg for X-band. The estimated lower limit of Q-band dose measurement is 0.5 Gy. Q-band EPR enamel dosimetry results in greater sensitivity and smaller sample size through enhanced spectral resolution. Thus, this can be a valuable technique for population triage in the event of detonation of a radiation dispersal device ("dirty" bomb) or other radiation event with massive casualties. Further, the small 4 mg samples can be obtained by a minimally-invasive biopsy technique.

  9. A Monte Carlo calculation model of electronic portal imaging device for transit dosimetry through heterogeneous media

    SciTech Connect

    Yoon, Jihyung; Jung, Jae Won; Kim, Jong Oh; Yeo, Inhwan

    2016-05-15

    Purpose: To develop and evaluate a fast Monte Carlo (MC) dose calculation model of electronic portal imaging device (EPID) based on its effective atomic number modeling in the XVMC code. Methods: A previously developed EPID model, based on the XVMC code by density scaling of EPID structures, was modified by additionally considering effective atomic number (Z{sub eff}) of each structure and adopting a phase space file from the EGSnrc code. The model was tested under various homogeneous and heterogeneous phantoms and field sizes by comparing the calculations in the model with measurements in EPID. In order to better evaluate the model, the performance of the XVMC code was separately tested by comparing calculated dose to water with ion chamber (IC) array measurement in the plane of EPID. Results: In the EPID plane, calculated dose to water by the code showed agreement with IC measurements within 1.8%. The difference was averaged across the in-field regions of the acquired profiles for all field sizes and phantoms. The maximum point difference was 2.8%, affected by proximity of the maximum points to penumbra and MC noise. The EPID model showed agreement with measured EPID images within 1.3%. The maximum point difference was 1.9%. The difference dropped from the higher value of the code by employing the calibration that is dependent on field sizes and thicknesses for the conversion of calculated images to measured images. Thanks to the Z{sub eff} correction, the EPID model showed a linear trend of the calibration factors unlike those of the density-only-scaled model. The phase space file from the EGSnrc code sharpened penumbra profiles significantly, improving agreement of calculated profiles with measured profiles. Conclusions: Demonstrating high accuracy, the EPID model with the associated calibration system may be used for in vivo dosimetry of radiation therapy. Through this study, a MC model of EPID has been developed, and their performance has been rigorously

  10. Study of runaway electrons using dosimetry of hard x-ray radiations in Damavand tokamak

    SciTech Connect

    Rasouli, C.; Pourshahab, B.; Rasouli, H.; Hosseini Pooya, S. M.; Orouji, T.

    2014-05-15

    In this work several studies have been conducted on hard x-ray emissions of Damavand tokamak based on radiation dosimetry using the Thermoluminescence method. The goal was to understand interactions of runaway electrons with plasma particles, vessel wall, and plasma facing components. Total of 354 GR-200 (LiF:Mg,Cu,P) thermoluminescence dosimeter (TLD) crystals have been placed on 118 points – three TLDs per point – to map hard x-ray radiation doses on the exterior of the vacuum vessel. Results show two distinctive levels of x-ray radiations doses on the exterior of the vessel. The low-dose area on which measured dose is about 0.5 mSv/shot. In the low-dose area there is no particular component inside the vessel. On the contrary, on high-dose area of the vessel, x-ray radiations dose exceeds 30 mSv/shot. The high-dose area coincides with the position of limiters, magnetic probe ducts, and vacuum vessel intersections. Among the high-dose areas, the highest level of dose is measured in the position of the limiter, which could be due to its direct contact with the plasma column and with runaway electrons. Direct collisions of runaway electrons with the vessel wall and plasma facing components make a major contribution for production of hard x-ray photons in Damavand tokamak.

  11. Study of runaway electrons using dosimetry of hard x-ray radiations in Damavand tokamak.

    PubMed

    Rasouli, C; Pourshahab, B; Hosseini Pooya, S M; Orouji, T; Rasouli, H

    2014-05-01

    In this work several studies have been conducted on hard x-ray emissions of Damavand tokamak based on radiation dosimetry using the Thermoluminescence method. The goal was to understand interactions of runaway electrons with plasma particles, vessel wall, and plasma facing components. Total of 354 GR-200 (LiF:Mg,Cu,P) thermoluminescence dosimeter (TLD) crystals have been placed on 118 points--three TLDs per point--to map hard x-ray radiation doses on the exterior of the vacuum vessel. Results show two distinctive levels of x-ray radiations doses on the exterior of the vessel. The low-dose area on which measured dose is about 0.5 mSv/shot. In the low-dose area there is no particular component inside the vessel. On the contrary, on high-dose area of the vessel, x-ray radiations dose exceeds 30 mSv/shot. The high-dose area coincides with the position of limiters, magnetic probe ducts, and vacuum vessel intersections. Among the high-dose areas, the highest level of dose is measured in the position of the limiter, which could be due to its direct contact with the plasma column and with runaway electrons. Direct collisions of runaway electrons with the vessel wall and plasma facing components make a major contribution for production of hard x-ray photons in Damavand tokamak.

  12. Measurement of absorbed dose to water around an electronic brachytherapy source. Comparison of two dosimetry systems: lithium formate EPR dosimeters and radiochromic EBT2 film.

    PubMed

    Adolfsson, Emelie; White, Shane; Landry, Guillaume; Lund, Eva; Gustafsson, Håkan; Verhaegen, Frank; Reniers, Brigitte; Carlsson Tedgren, Åsa; Carlsson, Gudrun Alm

    2015-05-07

    Interest in high dose rate (HDR) electronic brachytherapy operating at 50 kV is increasing. For quality assurance it is important to identify dosimetry systems that can measure the absorbed doses in absolute terms which is difficult in this energy region. In this work a comparison is made between two dosimetry systems, EPR lithium formate dosimeters and radiochromic EBT2 film. Both types of dosimeters were irradiated simultaneously in a PMMA phantom using the Axxent EBS. Absorbed dose to water was determined at distances of 10 mm, 30 mm and 50 mm from the EBS. Results were traceable to different primary standards as regards to absorbed dose to water (EPR) and air kerma (EBT2). Monte Carlo simulations were used in absolute terms as a third estimate of absorbed dose to water. Agreement within the estimated expanded (k = 2) uncertainties (5% (EPR), 7% (EBT2)) was found between the results at 30 mm and 50 mm from the x-ray source. The same result was obtained in 4 repetitions of irradiation, indicating high precision in the measurements with both systems. At all distances, agreement between EPR and Monte Carlo simulations was shown as was also the case for the film measurements at 30mm and 50mm. At 10mm the geometry for the film measurements caused too large uncertainty in measured values depending on the exact position (within sub-mm distances) of the EBS and the 10 mm film results were exculded from comparison. This work has demonstrated good performance of the lithium formate EPR dosimetry system in accordance with earlier experiments at higher photon energies ((192)Ir HDR brachytherapy). It was also highlighted that there might be issues regarding the energy dependence and intrinsic efficiency of the EBT2 film that need to be considered for measurements using low energy sources.

  13. Department of Energy standard for the performance testing of personnel dosimetry systems

    SciTech Connect

    Not Available

    1986-12-01

    This standard is intended to be used in the Department of Energy Laboratory Accreditation Program (DOELAP) for personnel dosimetry systems. It is based on the American National Standards Institute's (ANSI) ''Criteria for Testing Personnel Dosimetry Performance,'' ANSI N13.11-1983, recommendations made to DOE in ''Guidelines for the Calibration of Personnel Dosimeters,'' Pacific Northwest Laboratory (PNL)-4515 and comments received during peer review by DOE and DOE contractor personnel. The recommendations contained in PNL-4515 were based on an evaluation of ANSI N13.11 conducted for the Office of Nuclear Safety, DOE, by PNL. Parts of ANSI N13.11 that did not require modification were used essentially intact in this standard to maintain consistency with nationally recognized standards. Modifications to this standard have resulted from several DOE/DOE contractor reviews and a pilot testing session. An initial peer review by selected DOE and DOE contractor representatives on technical content was conducted in 1983. A review by DOE field offices, program offices, and contractors was conducted in mid-1984. A pilot performance testing session sponsored by the Office of Nuclear Safety was conducted in early 1985 by the Radiological and Environmental Sciences Laboratory, Idaho Falls. Results of the pilot test were reviewed in late 1985 by a DOE and DOE contractor committee. 11 refs., 4 tabs.

  14. Pencil beam approach for correcting the energy dependence artifact in film dosimetry for IMRT verification

    SciTech Connect

    Kirov, Assen S.; Caravelli, Gregory; Palm, Aasa; Chui, Chen; LoSasso, Thomas

    2006-10-15

    The higher sensitivity to low-energy scattered photons of radiographic film compared to water can lead to significant dosimetric error when the beam quality varies significantly within a field. Correcting for this artifact will provide greater accuracy for intensity modulated radiation therapy (IMRT) verification dosimetry. A procedure is developed for correction of the film energy-dependent response by creating a pencil beam kernel within our treatment planning system to model the film response specifically. Film kernels are obtained from EGSnrc Monte Carlo simulations of the dose distribution from a 1 mm diameter narrow beam in a model of the film placed at six depths from 1.5 to 40 cm in polystyrene and solid water phantoms. Kernels for different area phantoms (50x50 cm{sup 2} and 25x25 cm{sup 2} polystyrene and 30x30 cm{sup 2} solid water) are produced. The Monte Carlo calculated kernel is experimentally verified with film, ion chamber and thermoluminescent dosimetry (TLD) measurements in polystyrene irradiated by a narrow beam. The kernel is then used in convolution calculations to predict the film response in open and IMRT fields. A 6 MV photon beam and Kodak XV2 film in a polystyrene phantom are selected to test the method as they are often used in practice and can result in large energy-dependent artifacts. The difference in dose distributions calculated with the film kernel and the water kernel is subtracted from film measurements to obtain a practically film artifact free IMRT dose distribution for the Kodak XV2 film. For the points with dose exceeding 5 cGy (11% of the peak dose) in a large modulated field and a film measurement inside a large polystyrene phantom at depth of 10 cm, the correction reduces the fraction of pixels for which the film dose deviates from dose to water by more than 5% of the mean film dose from 44% to 6%.

  15. Characterization of a synthetic single crystal diamond Schottky diode for radiotherapy electron beam dosimetry

    SciTech Connect

    Di Venanzio, C.; Marinelli, Marco; Milani, E.; Prestopino, G.; Verona, C.; Verona-Rinati, G.; Falco, M. D.; Bagala, P.; Santoni, R.; Pimpinella, M.

    2013-02-15

    Purpose: To investigate the dosimetric properties of synthetic single crystal diamond based Schottky diodes under irradiation with therapeutic electron beams from linear accelerators. Methods: A single crystal diamond detector was fabricated and tested under 6, 8, 10, 12, and 15 MeV electron beams. The detector performances were evaluated using three types of commercial detectors as reference dosimeters: an Advanced Markus plane parallel ionization chamber, a Semiflex cylindrical ionization chamber, and a p-type silicon detector. Preirradiation, linearity with dose, dose rate dependence, output factors, lateral field profiles, and percentage depth dose profiles were investigated and discussed. Results: During preirradiation the diamond detector signal shows a weak decrease within 0.7% with respect to the plateau value and a final signal stability of 0.1% (1{sigma}) is observed after about 5 Gy. A good linear behavior of the detector response as a function of the delivered dose is observed with deviations below {+-}0.3% in the dose range from 0.02 to 10 Gy. In addition, the detector response is dose rate independent, with deviations below 0.3% in the investigated dose rate range from 0.17 to 5.45 Gy/min. Percentage depth dose curves obtained from the diamond detector are in good agreement with the ones from the reference dosimeters. Lateral beam profile measurements show an overall good agreement among detectors, taking into account their respective geometrical features. The spatial resolution of solid state detectors is confirmed to be better than that of ionization chambers, being the one from the diamond detector comparable to that of the silicon diode. A good agreement within experimental uncertainties was also found in terms of output factor measurements between the diamond detector and reference dosimeters. Conclusions: The observed dosimetric properties indicate that the tested diamond detector is a suitable candidate for clinical electron beam dosimetry.

  16. Characterization of a synthetic single crystal diamond Schottky diode for radiotherapy electron beam dosimetry.

    PubMed

    Di Venanzio, C; Marinelli, Marco; Milani, E; Prestopino, G; Verona, C; Verona-Rinati, G; Falco, M D; Bagalà, P; Santoni, R; Pimpinella, M

    2013-02-01

    To investigate the dosimetric properties of synthetic single crystal diamond based Schottky diodes under irradiation with therapeutic electron beams from linear accelerators. A single crystal diamond detector was fabricated and tested under 6, 8, 10, 12, and 15 MeV electron beams. The detector performances were evaluated using three types of commercial detectors as reference dosimeters: an Advanced Markus plane parallel ionization chamber, a Semiflex cylindrical ionization chamber, and a p-type silicon detector. Preirradiation, linearity with dose, dose rate dependence, output factors, lateral field profiles, and percentage depth dose profiles were investigated and discussed. During preirradiation the diamond detector signal shows a weak decrease within 0.7% with respect to the plateau value and a final signal stability of 0.1% (1σ) is observed after about 5 Gy. A good linear behavior of the detector response as a function of the delivered dose is observed with deviations below ±0.3% in the dose range from 0.02 to 10 Gy. In addition, the detector response is dose rate independent, with deviations below 0.3% in the investigated dose rate range from 0.17 to 5.45 Gy∕min. Percentage depth dose curves obtained from the diamond detector are in good agreement with the ones from the reference dosimeters. Lateral beam profile measurements show an overall good agreement among detectors, taking into account their respective geometrical features. The spatial resolution of solid state detectors is confirmed to be better than that of ionization chambers, being the one from the diamond detector comparable to that of the silicon diode. A good agreement within experimental uncertainties was also found in terms of output factor measurements between the diamond detector and reference dosimeters. The observed dosimetric properties indicate that the tested diamond detector is a suitable candidate for clinical electron beam dosimetry.

  17. Development and testing of an improved dosimetry system using a backscatter shielded electronic portal imaging device

    SciTech Connect

    King, Brian W.; Morf, Daniel; Greer, Peter B.

    2012-05-15

    Purpose: To investigate the properties of a modified backscatter shielded electronic portal imaging device (BSS-EPID) and to develop a dose model to convert BSS-EPID images to dose in water as part of an improved system for dosimetry using EPIDs. Methods: The effectiveness of the shielding of the BSS-EPID was studied by comparing images measured with the BSS-EPID mounted on the support arm to images measured with the BSS-EPID removed from the support arm. A dose model was developed and optimized to reconstruct dose in water at different depths from measured BSS-EPID images. The accuracy of the dose model was studied using BSS-EPID images of 28 IMRT fields to reconstruct dose in water at depths of 2, 5, 10, and 20 cm and comparing to measured dose in water from a two-dimensional diode array at the same depths. The ability of the BSS-EPID system to operate independently of detector position was demonstrated by comparing the dose reconstruction of a 10 x 10 cm{sup 2} field using different detector offsets to that measured by a two-dimensional diode array. Results: The shielding of the BSS-EPID was found to be effective, with more than 99% of pixels showing less than 0.5% change due to the presence of the support arm and at most a 0.2% effect on the central axis for 2 x 2 cm{sup 2} fields to fully open 30 x 40 cm{sup 2} images. The dose model was shown to accurately reconstruct measurements of dose in water using BSS-EPID images with average {gamma} pass rates (2%, 2 mm criteria) of 92.5%, 98.7%, 97.4%, and 97.2% at depths of 2, 5, 10, and 20 cm, respectively, when compared to two-dimensional diode array measurements. When using 3%, 3 mm {gamma} criteria, the average pass rate was greater than 97% at all depths. Reconstructed dose in water for a 10 x 10 cm{sup 2} field measured with detector offsets as large as 10 cm agreed with each other and two-dimensional diode array measurements within 0.9%. Conclusions: The modified BSS-EPID and associated dose model provide an

  18. Standard Practice for Dosimetry of Proton Beams for use in Radiation Effects Testing of Electronics

    SciTech Connect

    McMahan, Margaret A.; Blackmore, Ewart; Cascio, Ethan W.; Castaneda, Carlos; von Przewoski, Barbara; Eisen, Harvey

    2008-07-25

    Representatives of facilities that routinely deliver protons for radiation effect testing are collaborating to establish a set of standard best practices for proton dosimetry. These best practices will be submitted to the ASTM International for adoption.

  19. Biologic dosimetry for nuclear environments by electron paramagnetic resonance (EPR) methods. Conference paper

    SciTech Connect

    McCreery, M.J.; Swenberg, C.E.; Basso, M.J.; Conklin, J.J.; Hsieh, J.

    1982-06-18

    A number of stable and unstable free radicals are produced by exposure of calcified tissues to ionizing radiation. Identification of the exact molecular nature of these radicals and their kinetic annealing properties awaits further investigation. However, the high stability and the dose-response characteristics of the signal at g = 2.0023 make it very promising for use in biologic dosimetry. A 10-25 mg sample of enamel is enough to determine absorbed dose from 10-10 to the 7th power rads of gamma, X-ray, and accelerated electron exposures. This sample, which is no more than a chip from the ridge of a human tooth, does not expose the living portion of the tooth and so is relatively noninvasive. Investigations to establish a standard method for this procedure and to evaluate neutron dose is in progress. Although the procedures outlined here are relatively noninvasive, this technique affords other approaches that are even less invasive. Unlike optical methods, the sample for EPR analysis does not have to be transparent. It is not even necessary to suspend the sample as a fine powder. As long as the bone or tooth sample is within the dimensional limits of the tuned EPR cavity, it can be analyzed intact. This fact makes in vivo analysis feasible. We are currently making attempts to enlarge the EPR cavity with modification of the corresponding electronic components so that a finger can be analyzed. If this approach is successful, the expedient evaluation of large numbers of casualties might be possible by a method that is noninvasive and nondestructive.

  20. Validating plastic scintillation detectors for photon dosimetry in the radiologic energy range

    PubMed Central

    Lessard, François; Archambault, Louis; Plamondon, Mathieu; Després, Philippe; Therriault-Proulx, François; Beddar, Sam; Beaulieu, Luc

    2012-01-01

    Purpose: Photon dosimetry in the kilovolt (kV) energy range represents a major challenge for diagnostic and interventional radiology and superficial therapy. Plastic scintillation detectors (PSDs) are potentially good candidates for this task. This study proposes a simple way to obtain accurate correction factors to compensate for the response of PSDs to photon energies between 80 and 150 kVp. The performance of PSDs is also investigated to determine their potential usefulness in the diagnostic energy range. Methods: A 1-mm-diameter, 10-mm-long PSD was irradiated by a Therapax SXT 150 unit using five different beam qualities made of tube potentials ranging from 80 to 150 kVp and filtration thickness ranging from 0.8 to 0.2 mmAl + 1.0 mmCu. The light emitted by the detector was collected using an 8-m-long optical fiber and a polychromatic photodiode, which converted the scintillation photons to an electrical current. The PSD response was compared with the reference free air dose rate measured with a calibrated Farmer NE2571 ionization chamber. PSD measurements were corrected using spectra-weighted corrections, accounting for mass energy-absorption coefficient differences between the sensitive volumes of the ionization chamber and the PSD, as suggested by large cavity theory (LCT). Beam spectra were obtained from x-ray simulation software and validated experimentally using a CdTe spectrometer. Correction factors were also obtained using Monte Carlo (MC) simulations. Percent depth dose (PDD) measurements were compensated for beam hardening using the LCT correction method. These PDD measurements were compared with uncorrected PSD data, PDD measurements obtained using Gafchromic films, Monte Carlo simulations, and previous data. Results: For each beam quality used, the authors observed an increase of the energy response with effective energy when no correction was applied to the PSD response. Using the LCT correction, the PSD response was almost energy independent, with

  1. Validating plastic scintillation detectors for photon dosimetry in the radiologic energy range

    SciTech Connect

    Lessard, Francois; Archambault, Louis; Plamondon, Mathieu; and others

    2012-09-15

    Purpose: Photon dosimetry in the kilovolt (kV) energy range represents a major challenge for diagnostic and interventional radiology and superficial therapy. Plastic scintillation detectors (PSDs) are potentially good candidates for this task. This study proposes a simple way to obtain accurate correction factors to compensate for the response of PSDs to photon energies between 80 and 150 kVp. The performance of PSDs is also investigated to determine their potential usefulness in the diagnostic energy range. Methods: A 1-mm-diameter, 10-mm-long PSD was irradiated by a Therapax SXT 150 unit using five different beam qualities made of tube potentials ranging from 80 to 150 kVp and filtration thickness ranging from 0.8 to 0.2 mmAl + 1.0 mmCu. The light emitted by the detector was collected using an 8-m-long optical fiber and a polychromatic photodiode, which converted the scintillation photons to an electrical current. The PSD response was compared with the reference free air dose rate measured with a calibrated Farmer NE2571 ionization chamber. PSD measurements were corrected using spectra-weighted corrections, accounting for mass energy-absorption coefficient differences between the sensitive volumes of the ionization chamber and the PSD, as suggested by large cavity theory (LCT). Beam spectra were obtained from x-ray simulation software and validated experimentally using a CdTe spectrometer. Correction factors were also obtained using Monte Carlo (MC) simulations. Percent depth dose (PDD) measurements were compensated for beam hardening using the LCT correction method. These PDD measurements were compared with uncorrected PSD data, PDD measurements obtained using Gafchromic films, Monte Carlo simulations, and previous data. Results: For each beam quality used, the authors observed an increase of the energy response with effective energy when no correction was applied to the PSD response. Using the LCT correction, the PSD response was almost energy independent, with

  2. Validating plastic scintillation detectors for photon dosimetry in the radiologic energy range.

    PubMed

    Lessard, François; Archambault, Louis; Plamondon, Mathieu; Després, Philippe; Therriault-Proulx, François; Beddar, Sam; Beaulieu, Luc

    2012-09-01

    Photon dosimetry in the kilovolt (kV) energy range represents a major challenge for diagnostic and interventional radiology and superficial therapy. Plastic scintillation detectors (PSDs) are potentially good candidates for this task. This study proposes a simple way to obtain accurate correction factors to compensate for the response of PSDs to photon energies between 80 and 150 kVp. The performance of PSDs is also investigated to determine their potential usefulness in the diagnostic energy range. A 1-mm-diameter, 10-mm-long PSD was irradiated by a Therapax SXT 150 unit using five different beam qualities made of tube potentials ranging from 80 to 150 kVp and filtration thickness ranging from 0.8 to 0.2 mmAl + 1.0 mmCu. The light emitted by the detector was collected using an 8-m-long optical fiber and a polychromatic photodiode, which converted the scintillation photons to an electrical current. The PSD response was compared with the reference free air dose rate measured with a calibrated Farmer NE2571 ionization chamber. PSD measurements were corrected using spectra-weighted corrections, accounting for mass energy-absorption coefficient differences between the sensitive volumes of the ionization chamber and the PSD, as suggested by large cavity theory (LCT). Beam spectra were obtained from x-ray simulation software and validated experimentally using a CdTe spectrometer. Correction factors were also obtained using Monte Carlo (MC) simulations. Percent depth dose (PDD) measurements were compensated for beam hardening using the LCT correction method. These PDD measurements were compared with uncorrected PSD data, PDD measurements obtained using Gafchromic films, Monte Carlo simulations, and previous data. For each beam quality used, the authors observed an increase of the energy response with effective energy when no correction was applied to the PSD response. Using the LCT correction, the PSD response was almost energy independent, with a residual 2

  3. Tooth Retrospective Dosimetry Using Electron Paramagnetic Resonance: Influence of Irradiated Dental Composites.

    PubMed

    Desmet, Céline M; Djurkin, Andrej; Dos Santos-Goncalvez, Ana Maria; Dong, Ruhong; Kmiec, Maciej M; Kobayashi, Kyo; Rychert, Kevin; Beun, Sébastien; Leprince, Julian G; Leloup, Gaëtane; Levêque, Philippe; Gallez, Bernard

    2015-01-01

    In the aftermath of a major radiological accident, the medical management of overexposed individuals will rely on the determination of the dose of ionizing radiations absorbed by the victims. Because people in the general population do not possess conventional dosimeters, after the fact dose reconstruction methods are needed. Free radicals are induced by radiations in the tooth enamel of victims, in direct proportion to dose, and can be quantified using Electron Paramagnetic Resonance (EPR) spectrometry, a technique that was demonstrated to be very appropriate for mass triage. The presence of dimethacrylate based restorations on teeth can interfere with the dosimetric signal from the enamel, as free radicals could also be induced in the various composites used. The aim of the present study was to screen irradiated composites for a possible radiation-induced EPR signal, to characterize it, and evaluate a possible interference with the dosimetric signal of the enamel. We investigated the most common commercial composites, and experimental compositions, for a possible class effect. The effect of the dose was studied between 10 Gy and 100 Gy using high sensitivity X-band spectrometer. The influence of this radiation-induced signal from the composite on the dosimetric signal of the enamel was also investigated using a clinical L-Band EPR spectrometer, specifically developed in the EPR center at Dartmouth College. In X-band, a radiation-induced signal was observed for high doses (25-100 Gy); it was rapidly decaying, and not detected after only 24 h post irradiation. At 10 Gy, the signal was in most cases not measurable in the commercial composites tested, with the exception of 3 composites showing a significant intensity. In L-band study, only one irradiated commercial composite influenced significantly the dosimetric signal of the tooth, with an overestimation about 30%. In conclusion, the presence of the radiation-induced signal from dental composites should not

  4. Tooth Retrospective Dosimetry Using Electron Paramagnetic Resonance: Influence of Irradiated Dental Composites

    PubMed Central

    Desmet, Céline M.; Djurkin, Andrej; Dos Santos-Goncalvez, Ana Maria; Dong, Ruhong; Kmiec, Maciej M.; Kobayashi, Kyo; Rychert, Kevin; Beun, Sébastien; Leprince, Julian G.; Leloup, Gaëtane; Levêque, Philippe; Gallez, Bernard

    2015-01-01

    In the aftermath of a major radiological accident, the medical management of overexposed individuals will rely on the determination of the dose of ionizing radiations absorbed by the victims. Because people in the general population do not possess conventional dosimeters, after the fact dose reconstruction methods are needed. Free radicals are induced by radiations in the tooth enamel of victims, in direct proportion to dose, and can be quantified using Electron Paramagnetic Resonance (EPR) spectrometry, a technique that was demonstrated to be very appropriate for mass triage. The presence of dimethacrylate based restorations on teeth can interfere with the dosimetric signal from the enamel, as free radicals could also be induced in the various composites used. The aim of the present study was to screen irradiated composites for a possible radiation-induced EPR signal, to characterize it, and evaluate a possible interference with the dosimetric signal of the enamel. We investigated the most common commercial composites, and experimental compositions, for a possible class effect. The effect of the dose was studied between 10 Gy and 100 Gy using high sensitivity X-band spectrometer. The influence of this radiation-induced signal from the composite on the dosimetric signal of the enamel was also investigated using a clinical L-Band EPR spectrometer, specifically developed in the EPR center at Dartmouth College. In X-band, a radiation-induced signal was observed for high doses (25-100 Gy); it was rapidly decaying, and not detected after only 24h post irradiation. At 10 Gy, the signal was in most cases not measurable in the commercial composites tested, with the exception of 3 composites showing a significant intensity. In L-band study, only one irradiated commercial composite influenced significantly the dosimetric signal of the tooth, with an overestimation about 30%. In conclusion, the presence of the radiation-induced signal from dental composites should not

  5. The response of Kodak EDR2 film in high-energy electron beams.

    PubMed

    Gerbi, Bruce J; Dimitroyannis, Dimitri A

    2003-10-01

    Kodak XV2 film has been a key dosimeter in radiation therapy for many years. The advantages of the recently introduced Kodak EDR2 film for photon beam dosimetry have been the focus of several IMRT verification dosimetry publications. However, no description of this film's response to electron beams exists in the literature. We initiated a study to characterize the response and utility of this film for electron beam dosimetry. We exposed a series of EDR2 films to 6, 9, 12, 16, and 20 MeV electrons in addition to 6 and 18 MV x rays to develop standard characteristic curves. The linac was first calibrated to ensure that the delivered dose was known accurately. All irradiations were done at dmax in polystyrene for both photons and electrons, all films were from the same batch, and were developed at the same time. We also exposed the EDR2 films in a solid water phantom to produce central axis depth dose curves. These data were compared against percent depth dose curves measured in a water phantom using an IC-10 ion chamber, Kodak XV2 film, and a PTW electron diode. The response of this film was the same for both 6 and 18 MV x rays, but showed an apparent energy-dependent enhancement for electron beams. The response of the film also increased with increasing electron energy. This caused the percent depth dose curves using film to be shifted toward the surface compared to the ion chamber data.

  6. Experimental determination of the effective point of measurement of cylindrical ionization chambers for high-energy photon and electron beams.

    PubMed

    Huang, Yanxiao; Willomitzer, Christian; Zakaria, Golam Abu; Hartmann, Guenther H

    2010-01-01

    Measurements of depth-dose curves in water phantom using a cylindrical ionization chamber require that its effective point of measurement is located at the measuring depth. Recommendations for the position of the effective point of measurement with respect to the central axis valid for high-energy electron and photon beams are given in dosimetry protocols. According to these protocols, the use of a constant shift P(eff) is currently recommended. However, this is still based on a very limited set of experimental results. It is therefore expected that an improved knowledge of the exact position of the effective point of measurement will further improve the accuracy of dosimetry. Recent publications have revealed that the position of the effective point of measurement is indeed varying with beam energy, field size and also with chamber geometry. The aim of this study is to investigate whether the shift of P(eff) can be taken to be constant and independent from the beam energy. An experimental determination of the effective point of measurement is presented based on a comparison between cylindrical chambers and a plane-parallel chamber using conventional dosimetry equipment. For electron beams, the determination is based on the comparison of halfvalue depth R(50) between the cylindrical chamber of interest and a well guarded plane-parallel Roos chamber. For photon beams, the depth of dose maximum, d(max), the depth of 80% dose, d(80), and the dose parameter PDD(10) were used. It was again found that the effective point of measurement for both, electron and photon beams Dosimetry, depends on the beam energy. The deviation from a constant value remains very small for photons, whereas significant deviations were found for electrons. It is therefore concluded that use of a single upstream shift value from the centre of the cylindrical chamber as recommended in current dosimetry protocols is adequate for photons, however inadequate for accurate electron beam dosimetry.

  7. Energy and field size dependence of a silicon diode designed for small-field dosimetry.

    PubMed

    Yarahmadi, Mehran; Wegener, Sonja; Sauer, Otto A

    2017-05-01

    To investigate the energy dependence/spectral sensitivity of silicon diodes designed for small-field dosimetry and obtain response factors (RFs) for arbitrary photon spectra using Monte Carlo (MC) simulations. The EGSnrc user-code DOSRZnrc was used to calculate the dose deposition in water and in the active volume of a stereotactic diode field detector (SFD). Then, the RFs of the SFD were calculated for several circular field sizes and energies at 5 cm depth in water. Several low-energy photon spectra (mean energy 55 to 200 keV), as well as Co-60 radiation (mean energy 1.25 MeV) and a 6 MV Elekta Synergy beam (mean energy 2.9 MeV), in 10 × 10 cm(2) field size were used to validate the MC calculations, using a simple beam model. The RFs of the SFD detector for a 6 MV Elekta Synergy linac photon beam in different field sizes were calculated. These were also measured with EBT3 Gafchromic film and the SFD detector. For the reference field size, differences between measured and calculated RFs were less than 5% at mean energies below 1 MeV and less than 1% at energies above 1 MeV. The calculated RFs for a 6 MV Elekta Synergy linac photon beam as a function of different field sizes showed a good agreement between the measurements and previously reported results. This agreement was within 2% for all considered field sizes. While at high photon energies, the change of response of the SFD is marginal, whereas it is extreme at low energies. Therefore, it is desirable to benchmark response calculations also in the low-energy domain. Our results, with a simple beam model and geometry, indicate that a validation of the simulations by experimental results is achievable. The present work provides a comprehensive table that can be used to calculate SFD detector response factors depending on both, field size and photon energy. © 2017 American Association of Physicists in Medicine.

  8. Dosimetry of Auger emitters: Physical and phenomenological approaches

    SciTech Connect

    Sastry, K.S.R.; Howell, R.W.; Rao, D.V.; Mylavarapu, V.B.; Kassis, A.I.; Adelstein, S.J.; Wright, H.A.; Hamm, R.N.; Turner, J.E.

    1987-01-01

    Recent radiobiological studies have demonstrated that Auger cascades can cause severe biological damage contrary to expectations based on conventional dosimetry. Several determinants govern these effects, including the nature of the Auger electron spectrum; localized energy deposition; cellular geometry; chemical form of the carrier; cellular localization, concentration, and subcellular distribution of the radionuclide. Conventional dosimetry is inadequate in that these considerations are ignored. Our results provide the basis for biophysical approaches toward subcellular dosimetry of Auger emitters in vitro and in vivo. 12 refs., 7 figs., 2 tabs.

  9. A low energy electron magnetometer

    NASA Technical Reports Server (NTRS)

    Singh, J. J.; Wood, G. M., Jr.; Rayborn, G. H.; White, F. A.

    1979-01-01

    The concept of a highly sensitive magnetometer based on the deflection of low energy electron beams in magnetic fields is analyzed. Because of its extremely low mass and consequently high e/m ratio, a low energy electron is easily deflected in a magnetic field, thus providing a basis for very low field measurement. Calculations for a specific instrument design indicate that a low energy electron magnetometer (LEEM) can measure magnetic fields as low as 1000 nT. The anticipated performance of LEEM is compared with that of the existing high resolution magnetometers in selected applications. The fast response time of LEEM makes it especially attractive as a potential instrument for magnetic signature analysis in large engineering systems.

  10. Dosimetry at the sub-cellular scale of Auger-electron emitter 99mTc in a mouse single thyroid follicle.

    PubMed

    Taborda, A; Benabdallah, N; Desbrée, A

    2016-02-01

    The Auger-electrons emitted by (99m)Tc have been recently associated with the induction of thyroid stunning in in vivo experiments in mice, making the dosimetry at the sub-cellular level of (99m)Tc a pertinent and pressing subject. The S-values for (99m)Tc were calculated using MCNP6, which was first validated for studies at the sub-cellular scale and for low energies electrons. The calculation was then performed for (99m)Tc within different cellular compartments in a single mouse thyroid follicle model, considering the radiative and non-radiative transitions of the (99m)Tc radiation spectrum. It was shown that the contribution of the (99m)Tc Auger and low energy electrons to the absorbed dose to the follicular cells' nucleus is important, being at least of the same order of magnitude compared to the emitted photons' contribution and cannot be neglected. The results suggest that Auger-electrons emitted by (99m)Tc play a significant role in the occurrence of the thyroid stunning effect in mice.

  11. Current internal-dosimetry practices at US Department of Energy facilities

    SciTech Connect

    Traub, R.J.; Murphy, B.L.; Selby, J.M.; Vallario, E.J.

    1985-04-01

    The internal dosimetry practice at DOE facilities were characterized. The purpose was to determine the size of the facilities' internal dosimetry programs, the uniformity of the programs among the facilities, and the areas of greatest concern to health physicists in providing and reporting accurate estimates of internal radiation dose and in meeting proposed changes in internal dosimetry. The differences among the internal-dosimetry programs are related to the radioelements in use at each facility and, to some extent, the number of workers at each facility. The differences include different frequencies in the use of quality control samples, different minimum detection levels, different methods of recording radionuclides, different amounts of data recorded in the permanent record, and apparent differences in modeling the metabolism of radionuclides within the body. Recommendations for improving internal-dosimetry practices include studying the relationship between air-monitoring/survey readings and bioassay data, establishing uniform methods for recording bioassay results, developing more sensitive direct-bioassay procedures, establishing a mechanism for sharing information on internal-dosimetry procedures among DOE facilities, and developing mathematical models and interactive computer codes that can help quantify the uptake of radioactive materials and predict their distribution in the body. 19 refs., 8 tabs.

  12. Backscatter factors and mass energy-absorption coefficient ratios for diagnostic radiology dosimetry.

    PubMed

    Benmakhlouf, Hamza; Bouchard, Hugo; Fransson, Annette; Andreo, Pedro

    2011-11-21

    Backscatter factors, B, and mass energy-absorption coefficient ratios, (μ(en)/ρ)(w, air), for the determination of the surface dose in diagnostic radiology were calculated using Monte Carlo simulations. The main purpose was to extend the range of available data to qualities used in modern x-ray techniques, particularly for interventional radiology. A comprehensive database for mono-energetic photons between 4 and 150 keV and different field sizes was created for a 15 cm thick water phantom. Backscattered spectra were calculated with the PENELOPE Monte Carlo system, scoring track-length fluence differential in energy with negligible statistical uncertainty; using the Monte Carlo computed spectra, B factors and (μ(en)/ρ)(w, air) were then calculated numerically for each energy. Weighted averaging procedures were subsequently used to convolve incident clinical spectra with mono-energetic data. The method was benchmarked against full Monte Carlo calculations of incident clinical spectra obtaining differences within 0.3-0.6%. The technique used enables the calculation of B and (μ(en)/ρ)(w, air) for any incident spectrum without further time-consuming Monte Carlo simulations. The adequacy of the extended dosimetry data to a broader range of clinical qualities than those currently available, while keeping consistency with existing data, was confirmed through detailed comparisons. Mono-energetic and spectra-averaged values were compared with published data, including those in ICRU Report 74 and IAEA TRS-457, finding average differences of 0.6%. Results are provided in comprehensive tables appropriated for clinical use. Additional qualities can easily be calculated using a designed GUI interface in conjunction with software to generate incident photon spectra.

  13. Advances in personnel neutron dosimetry: part 2

    SciTech Connect

    Vallario, E.; Faust, L.

    1983-08-01

    A continuation of the advances in personnel neutron dosimetry research programs and technology transfer reviews work on active dosimeters, electronic devices that determine the dose equivalent to a worker during an exposure to neutron radiation. Active dosemeters are routinely used for gamma radiation dosimetry. Experience with neutron-sensitive pocket rem-meters at several DOE laboratories covers three prototypes. Pocket rem-meters work well for detecting neutrons over a wide energy range. They give instantaneous readout of the accumulated neutron dose-equivalent. 1 figure.

  14. The calibration and use of plane-parallel ionization chambers for dosimetry of electron beams.

    PubMed

    Almond, P R; Xu, Z; Li, H; Park, H C

    1995-08-01

    The AAPM TG 39 protocol has proposed three different methods of calibrating plane-parallel ionization chambers, i.e., in-phantom irradiation with a high-energy electron beam and in-phantom and in-air 60Co irradiation. To verify the consistency of the three methods, we have measured Ngaspp values using each of these techniques for the five most commonly used plane-parallel chambers considered by the protocol. Our results demonstrate that the measured Ngaspp values for the three different methods for any of the chambers agree to within +/- 0.6%. Once Ngaspp was measured, the determination of absorbed dose for electron beams with different energies for an AECL Therac 20 and Philips SL25 was carried out according to the AAPM TG 39 protocol. The results show that the determination of the absorbed dose outputs for any of the five chambers agree to within +/- 0.7% for electron-beam energies of 4-20 MeV if all five chambers had Ngaspp values determined by the electron-beam method. The uncertainties are well within the expected error for these approaches.

  15. SU-E-T-340: Dosimetry of a Small Field Electron Beam for Innovative Radiotherapy of Small Surface Or Internal Tumors

    SciTech Connect

    Reft, C; Lu, Z; Noonan, J

    2015-06-15

    Purpose: An innovative small high intensity electron beams with energies from 6 to 12 MeV is being developed at Argonne National Laboratory to deliver an absorbed dose via a catheter to small malignant and nonmalignant lesions. This study reports on the initial dosimetric characteristics of this electron beam. These include output calibration, percent depth dose, beam profiles and leakage through the catheter. Methods: To simulate the narrow electron beam, the Argonne Wakefield Accelerator is used to produce high energy electron beams. The electron beam from the accelerator is monitored by measuring the current through a transmission coil while the beam shape is observed with a fluorescent screen. The dosimetry properties of the electron beam transmitting through bone and tissue-like materials are measured with nanodot optically stimulated luminescent dosimeters and EDR radiographic film. The 6 MV photon beam from a Varian True beam linac is used to calibrate both the OSLDs and the film. Results: The beam characteristics of the 12 MeV beam were measured. The properties of the small diameter, 5 mm, beam differs from that of broad clinical electron beams from radiotherapy linacs. Due to the lack of scatter from the narrow beam, the maximum dose is at the surface and the depth of the 50% depth dose is 35 mm compared to 51 mm for a clinical 12 MeV. The widths of the 90% isodose measured at the surface and depths of 2, 6, 12, and 16 mm varied from 6.6 to 8.8 mm while the widths of the FWHM isodose varied from 7.8 to 25.5 mm. Conclusion: Initial beam measurements show favorable dosimetric properties for its use in treating either small surface or internal lesions, particularly to deliver radiation at the time of surgery to maximize the dose to the lesion and spare normal tissue.

  16. Low-energy electron potentiometry.

    PubMed

    Jobst, Johannes; Kautz, Jaap; Mytiliniou, Maria; Tromp, Rudolf M; van der Molen, Sense Jan

    2017-10-01

    In a lot of systems, charge transport is governed by local features rather than being a global property as suggested by extracting a single resistance value. Consequently, techniques that resolve local structure in the electronic potential are crucial for a detailed understanding of electronic transport in realistic devices. Recently, we have introduced a new potentiometry method based on low-energy electron microscopy (LEEM) that utilizes characteristic features in the reflectivity spectra of layered materials [1]. Performing potentiometry experiments in LEEM has the advantage of being fast, offering a large field of view and the option to zoom in and out easily, and of being non-invasive compared to scanning-probe methods. However, not all materials show clear features in their reflectivity spectra. Here we, therefore, focus on a different version of low-energy electron potentiometry (LEEP) that uses the mirror mode transition, i.e. the drop in electron reflectivity around zero electron landing energy when they start to interact with the sample rather than being reflected in front of it. This transition is universal and sensitive to the local electrostatic surface potential (either workfunction or applied potential). It can consequently be used to perform LEEP experiments on a broader range of material compared to the method described in Ref[1]. We provide a detailed description of the experimental setup and demonstrate LEEP on workfunction-related intrinsic potential variations on the Si(111) surface and for a metal-semiconductor-metal junction with external bias applied. In the latter, we visualize the Schottky effect at the metal-semiconductor interface. Finally, we compare how robust the two LEEP techniques discussed above are against image distortions due to sample inhomogeneities or contamination. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Boron dose determination for BNCT using Fricke and EPR dosimetry

    SciTech Connect

    Wielopolski, L.; Ciesielski, B.

    1995-02-01

    In Boron Neutron Capture Therapy (BNCT) the dominant dose delivered to the tumor is due to {alpha} and {sup 7}Li charged particles resulting from a neutron capture by {sup 10}B and is referred to herein as the boron dose. Boron dose is directly attributable to the following two independent factors, one boron concentration and the neutron capture energy dependent cross section of boron, and two the energy spectrum of the neutrons that interact with boron. The neutron energy distribution at a given point is dictated by the incident neutron energy distribution, the depth in tissue, geometrical factors such as beam size and patient`s dimensions. To account for these factors can be accommodated by using Monte Carlo theoretical simulations. However, in conventional experimental BNCT dosimetry, e.g., using TLDs or ionization chambers, it is only possible to estimate the boron dose. To overcome some of the limitations in the conventional dosimetry, modifications in ferrous sulfate dosimetry (Fricke) and Electron Paramagnetic Resonance (EPR) dosimetry in alanine, enable to measure specifically boron dose in a mixed gamma neutron radiation fields. The boron dose, in either of the dosimeters, is obtained as a difference between measurements with boronated and unboronated dosimeters. Since boron participates directly in the measurements, the boron dosimetry reflects the true contribution, integral of the neutron energy spectrum with boron cross section, of the boron dose to the total dose. Both methods are well established and used extensively in dosimetry, they are presented briefly here.

  18. Dosimetry calculations for internal electron sources using a Korean reference adult stylised phantom.

    PubMed

    Park, S; Lee, J K; Lee, C; Lee, C

    2008-01-01

    Absorbed fractions (AFs) and specific absorbed fractions (SAFs) for internally deposited electron were calculated using a Korean reference adult stylised phantom, where a total of 15 internal organ volumes and external body dimension were designed to match average Korean adult male. The walls of oesophagus, stomach, colon and urinary bladder were additionally divided into the mucosal layer and residual wall to accommodate dose calculation for weakly penetrating electron. The mucosal wall thicknesses were determined by the data reported in the International Commission on Radiological Protection Publication 89 and other literature resources and by direct measurements. The Monte Carlo transport code MCNPX (version 2.5.0) was employed to calculate the electron energy deposited. The SAFs and AFs for monoenergetic electrons with the energies ranging from 10 keV to 2 MeV were calculated. The results were compared with those of the revised Oak Ridge National Laboratory phantoms and showed considerable differences up to 150% in SAFs, whereas no substantial differences were observed in the AFs.

  19. Thermo electronic laser energy conversion

    NASA Technical Reports Server (NTRS)

    Hansen, L. K.; Rasor, N. S.

    1976-01-01

    The thermo electronic laser energy converter (TELEC) is described and compared to the Waymouth converter and the conventional thermionic converter. The electrical output characteristics and efficiency of TELEC operation are calculated for a variety of design variables. Calculations and results are briefly outlined. It is shown that the TELEC concept can potentially convert 25 to 50 percent of incident laser radiation into electric power at high power densities and high waste heat rejection temperatures.

  20. Retrospective assessment of radiation exposure using biological dosimetry: chromosome painting, electron paramagnetic resonance and the glycophorin a mutation assay.

    PubMed

    Kleinerman, R A; Romanyukha, A A; Schauer, D A; Tucker, J D

    2006-07-01

    Biological monitoring of dose can contribute important, independent estimates of cumulative radiation exposure in epidemiological studies, especially in studies in which the physical dosimetry is lacking. Three biodosimeters that have been used in epidemiological studies to estimate past radiation exposure from external sources will be highlighted: chromosome painting or FISH (fluorescence in situ hybridization), the glycophorin A somatic mutation assay (GPA), and electron paramagnetic resonance (EPR) with teeth. All three biodosimeters have been applied to A-bomb survivors, Chernobyl clean-up workers, and radiation workers. Each biodosimeter has unique advantages and limitations depending upon the level and type of radiation exposure. Chromosome painting has been the most widely applied biodosimeter in epidemiological studies of past radiation exposure, and results of these studies provide evidence that dose-related translocations persist for decades. EPR tooth dosimetry has been used to validate dose models of acute and chronic radiation exposure, although the present requirement of extracted teeth has been a disadvantage. GPA has been correlated with physically based radiation dose after high-dose, acute exposures but not after low-dose, chronic exposures. Interindividual variability appears to be a limitation for both chromosome painting and GPA. Both of these techniques can be used to estimate the level of past radiation exposure to a population, whereas EPR can provide individual dose estimates of past exposure. This paper will review each of these three biodosimeters and compare their application in selected epidemiological studies.

  1. Low energy electron magnetometer using a monoenergetic electron beam

    NASA Technical Reports Server (NTRS)

    Singh, J. J.; Wood, G. M.; Rayborn, G. H.; White, F. A. (Inventor)

    1983-01-01

    A low energy electron beam magnetometer utilizes near-monoenergetic electrons thereby reducing errors due to electron energy spread and electron nonuniform angular distribution. In a first embodiment, atoms in an atomic beam of an inert gas are excited to a Rydberg state and then electrons of near zero energy are detached from the Rydberg atoms. The near zero energy electrons are then accelerated by an electric field V(acc) to form the electron beam. In a second embodiment, a filament emits electrons into an electrostatic analyzer which selects electrons at a predetermined energy level within a very narrow range. These selected electrons make up the electron beam that is subjected to the magnetic field being measured.

  2. Comparison between X-rays spectra and their effective energies in small animal CT tomographic imaging and dosimetry.

    PubMed

    Hamdi, Mahdjoub; Mimi, Malika; Bentourkia, M'hamed

    2017-03-01

    Small animal CT imaging and dosimetry usually rely on X-ray radiation produced by X-ray tubes. These X-rays typically cover a large energy range. In this study, we compared poly-energetic X-ray spectra against estimated equivalent (effective) mono-energetic beams with the same number of simulated photons for small animal CT imaging and dosimetry applications. Two poly-energetic X-ray spectra were generated from a tungsten anode at 50 and 120 kVp. The corresponding effective mono-energetic beams were established as 36 keV for the 50 kVp spectrum and 49.5 keV for the 120 kVp spectrum. To assess imaging applications, we investigated the spatial resolution by a tungsten wire, and the contrast-to-noise ratio in a reference phantom and in a realistic mouse phantom. For dosimetry investigation, we calculated the absorbed dose in a segmented digital mouse atlas in the skin, fat, heart and bone tissues. Differences of 2.1 and 2.6% in spatial resolution were respectively obtained between the 50 and 120 kVp poly-energetic spectra and their respective 36 and 49.5 keV mono-energetic beams. The differences in contrast-to-noise ratio between the poly-energetic 50 kVp spectrum and its corresponding mono-energetic 36 keV beam for air, fat, brain and bone were respectively -2.9, -0.2, 11.2 and -4.8%, and similarly between the 120 kVp and its effective energy 49.5 keV: -11.3, -20.2, -4.2 and -13.5%. Concerning the absorbed dose, for the lower X-ray beam energies, 50 kVp against 36 keV, the poly-energetic radiation doses were higher than the mono-energetic doses. Instead, for the higher X-ray beam energies, 120 kVp and 49.5 keV, the absorbed dose to the bones and lungs were higher for the mono-energetic 49.5 keV. The intensity and energy of the X-ray beam spectrum have an impact on both imaging and dosimetry in small animal studies. Simulations with mono-energetic beams should take into account these differences in order to study biological effects or to be compared to

  3. Verification of absorbed dose determined with plane-parallel chambers in clinical electron beams following AAPM Task Group 39 protocol using ferrous sulphate dosimetry.

    PubMed

    Xu, Z; Li, H; Almond, P R; Guan, T Y

    1996-03-01

    The absorbed dose values determined with the Exradin and PTW-Markus plane-parallel chambers were compared to the values obtained with the ferrous sulphate dosimetry for a number of the Philips SL25 and the Therac 20 electron beams. For the plane-parallel chambers, the cavity-gas calibration factor Ngaspp, was derived by a direct comparison with a calibrated cylindrical chamber using the three different calibration methods as proposed by the newly published AAPM TG 39 protocol. For the ferrous sulphate dosimetry, an epsilon mG value of 352 x 10(-6) m-2 kg-1 Gy-1 was adopted from ICRU Report No. 35. The average ratio of the dose values determined with the plane-parallel chambers and the dose values determined with the Fricke dosimetry system was 1.001 +/- 1.4%. These measurements are consistent with the AAPM TG 39 protocol.

  4. ELECTRON ABSORBED FRACTIONS IN AN IMAGE-BASED MICROSCOPIC SKELETAL DOSIMETRY MODEL OF CHINESE ADULT MALE.

    PubMed

    Gao, Shenshen; Ren, Li; Qiu, Rui; Wu, Zhen; Li, Chunyan; Li, Junli

    2017-01-10

    Based on the Chinese reference adult male voxel model, a set of microscopic skeletal models of Chinese adult male is constructed through the processes of computed tomography (CT) imaging, bone coring, micro-CT imaging, image segmentation, merging into macroscopic bone model and implementation in Geant4. At the step of image segmentation, a new bone endosteum (BE) segmentation method is realized by sampling. The set of model contains 32 spongiosa samples with voxel size of 19 μm cubes. The microscopic spongiosa bone data for Chinese adult male are provided. Electron absorbed fractions in red bone marrow (RBM) and BE are calculated. Source tissues include the bone marrow (red and yellow), trabecular bone (surfaces and volumes) and cortical bone (surfaces and volumes). Target tissues include RBM and BE. Electron energies range from 10 keV to 10 MeV. Additionally, comparison of the result with other investigations is provided.

  5. Computational Dosimetry for Electron Microbeams: Monte-Carlo Track Simulation with Confocal Microscopy

    SciTech Connect

    Miller, John H.; Wilson, W E.; Lynch, D J.; Resat, Marianne S.; Trease, Harold E.

    2001-10-15

    Both in vitro and in vivo experiments show that cells that do not receive energy directly from the radiation field (bystanders) respond to radiation exposure. This effect is most easily demonstrated with radiation fields composed of particles with high linear energy transfer (LET) that traverse only a few cells before they are stopped. Even at a moderate fluence of high-LET radiation only a small fraction of cells in the irradiated population are hit; hence, many bystanders are present. Low-LET radiation tends to generate a homogeneous distribution of dose at the cellular level so that identifying bystanders is much more difficult than in experiments with the same fluence of high-LET radiation. Experiments are underway at several laboratories to characterize bystander responses induced by low-LET radiation. At the Pacific Northwest National Laboratory, experiments of this type are being carried out with an electron microbeam. A cell selected to receive energy directly from the irradiation source is placed over a hole in a mask that covers an electron gun. Monte Carlo simulations by Miller et al.(1) suggest that individual mammalian cells in a confluent monolayer could be targeted for irradiation by 25 to 100 keV electrons with minimal dose leakage to their neighbors. These calculations were based on a simple model of the cellular monolayer in which cells were assumed to be cylindrically symmetric with concentric cytoplasm and nucleus. Radial profiles, the lateral extent of cytoplasm and nucleus as a function of depth into a cell, were obtained from confocal microscopy of HeLa-cell monolayers.

  6. The Exploitation of Low-Energy Electrons in Cancer Treatment.

    PubMed

    Rezaee, Mohammad; Hill, Richard P; Jaffray, David A

    2017-08-01

    Given the distinct characteristics of low-energy electrons (LEEs), particularly at energies less than 30 eV, they can be applied to a wide range of therapeutic modalities to improve cancer treatment. LEEs have been shown to efficiently produce complex molecular damage resulting in substantial cellular toxicities. Since LEEs are produced in copious amounts from high-energy radiation beam, including photons, protons and ions; the control of LEE distribution can potentially enhance the therapeutic radio of such beams. LEEs can play a substantial role in the synergistic effect between radiation and chemotherapy, particularly halogenated and platinum-based anticancer drugs. Radiosensitizing entities containing atoms of high atomic number such as gold nanoparticles can be a source of LEE production if high-energy radiation interacts with them. This can provide a high local density of LEEs in a cell and produce cellular toxicity. Auger-electron-emitting radionuclides also create a high number of LEEs in each decay, which can induce lethal damage in a cell. Exploitation of LEEs in cancer treatment, however, faces a few challenges, such as dosimetry of LEEs and selective delivery of radiosensitizing and chemotherapeutic molecules close to cellular targets. This review first discusses the rationale for utilizing LEEs in cancer treatment by explaining their mechanism of action, describes theoretical and experimental studies at the molecular and cellular levels, then discusses strategies for achieving modification of the distribution and effectiveness of LEEs in cancerous tissue and their associated clinical benefit.

  7. Mycosis Fungoides electron beam absorbed dose distribution using Fricke xylenol gel dosimetry

    NASA Astrophysics Data System (ADS)

    da Silveira, Michely C.; Sampaio, Francisco G. A.; Petchevist, Paulo C. D.; de Oliveira, André L.; Almeida, Adelaide de

    2011-12-01

    Radiotherapy uses ionizing radiation to destroy tumor cells. The absorbed dose control in the target volume is realized through radiation sensors, such as Fricke dosimeters and radiochromic film, which permit to realize bi-dimensional evaluations at once and because of that, they will be used in this study as well. Among the several types of cancer suitable for ionizing radiation treatment, the Mycosis Fungoides, a lymphoma that spreads on the skin surface and depth, requires for its treatment total body irradiation by high-energy electrons. In this work the Fricke xylenol gel (FXG) was used in order to obtain information about the absorbed dose distribution induced by the electron interactions with the irradiated tissues and to control this type of treatment. FXG can be considered as an alternative dosimeter, since up to now only films have been used. FXG sample cuvettes, simulating two selected tomos (cranium and abdomen) of the Rando anthropomorphic phantom, were positioned along with radiochromic films for comparison. The phantom was subjected to Stanford total body irradiation using 6 MeV electrons. Tomographic images were acquired for both dosimeters and evaluated through horizontal and vertical profiles along the tomographic centers. These profiles were obtained through a Matlab routine developed for this purpose. From the obtained results, one could infer that, for a superficial and internal patient irradiation, the FXG dosimeter showed an absorbed dose distribution similar to the one of the film. These results can validate the FXG dosimeter as an alternative dosimeter for the Mycosis Fungoides treatment planning.

  8. Energy Efficient Electronics Cooling Project

    SciTech Connect

    Steve O'Shaughnessey; Tim Louvar; Mike Trumbower; Jessica Hunnicutt; Neil Myers

    2012-02-17

    Parker Precision Cooling Business Unit was awarded a Department of Energy grant (DE-EE0000412) to support the DOE-ITP goal of reducing industrial energy intensity and GHG emissions. The project proposed by Precision Cooling was to accelerate the development of a cooling technology for high heat generating electronics components. These components are specifically related to power electronics found in power drives focused on the inverter, converter and transformer modules. The proposed cooling system was expected to simultaneously remove heat from all three of the major modules listed above, while remaining dielectric under all operating conditions. Development of the cooling system to meet specific customer's requirements and constraints not only required a robust system design, but also new components to support long system functionality. Components requiring further development and testing during this project included pumps, fluid couplings, cold plates and condensers. All four of these major categories of components are required in every Precision Cooling system. Not only was design a key area of focus, but the process for manufacturing these components had to be determined and proven through the system development.

  9. Response of LiF:Mg,Ti thermoluminescent dosimeters at photon energies relevant to the dosimetry of brachytherapy (<1 MeV)

    SciTech Connect

    Tedgren, Aasa Carlsson; Hedman, Angelica; Grindborg, Jan-Erik; Carlsson, Gudrun Alm

    2011-10-15

    Purpose: High energy photon beams are used in calibrating dosimeters for use in brachytherapy since absorbed dose to water can be determined accurately and with traceability to primary standards in such beams, using calibrated ion chambers and standard dosimetry protocols. For use in brachytherapy, beam quality correction factors are needed, which include corrections for differences in mass energy absorption properties between water and detector as well as variations in detector response (intrinsic efficiency) with radiation quality, caused by variations in the density of ionization (linear energy transfer (LET) -distributions) along the secondary electron tracks. The aim of this work was to investigate experimentally the detector response of LiF:Mg,Ti thermoluminescent dosimeters (TLD) for photon energies below 1 MeV relative to {sup 60}Co and to address discrepancies between the results found in recent publications of detector response. Methods: LiF:Mg,Ti dosimeters of formulation MTS-N Poland were irradiated to known values of air kerma free-in-air in x-ray beams at tube voltages 25-250 kV, in {sup 137}Cs- and {sup 60}Co-beams at the Swedish Secondary Standards Dosimetry Laboratory. Conversions from air kerma free-in-air into values of mean absorbed dose in the dosimeters in the actual irradiation geometries were made using EGSnrc Monte Carlo simulations. X-ray energy spectra were measured or calculated for the actual beams. Detector response relative to that for {sup 60}Co was determined at each beam quality. Results: An increase in relative response was seen for all beam qualities ranging from 8% at tube voltage 25 kV (effective energy 13 keV) to 3%-4% at 250 kV (122 keV effective energy) and {sup 137}Cs with a minimum at 80 keV effective energy (tube voltage 180 kV). The variation with effective energy was similar to that reported by Davis et al.[Radiat. Prot. Dosim. 106, 33-43 (2003)] with our values being systematically lower by 2%-4%. Compared to the

  10. A survey of physical dosimetry to date and in the near future: Part 1. Review of standards and regulatory issues.

    PubMed

    Cassata, James R

    2002-02-01

    This article summarizes the status of the relevant standards and current regulatory issues for use of physical dosimetry devices for the occupational worker in the United States. Included is a summary of relevant standards from the International Organization for Standardization (ISO), the International Electrotechnical Commission (IEC), the American National Standards Institute (ANSI), the United States Nuclear Regulatory Commission NUREG-Series, the National Voluntary Laboratory Accreditation Program (NVLAP), the Department of Energy Laboratory Accreditation Program (DOELAP), and the U.S. Military Specifications and Standards (MIL-STD). Proposed changes to ANSI N13.11-1993, "American National Standard for Dosimetry-Personnel Dosimetry Performance Criteria for Testing," are listed. The strategic changes that the United States Nuclear Regulatory Commission (NRC) is making in rulemaking activities related to dosimetry and standards are given. The status of Measurement Program Description (MPD) C.18, "Implementation of Electronic Dosimetry for Primary Dosimetry," from the Council on Ionizing Radiation Measurements and Standards (CIRMS) is given.

  11. In Vivo Electron Paramagnetic Resonance Tooth Dosimetry: Dependence of Radiation-Induced Signal Amplitude on the Enamel Thickness and Surface Area of Ex Vivo Human Teeth.

    PubMed

    Umakoshi, Michitaka; Yamaguchi, Ichiro; Hirata, Hiroshi; Kunugita, Naoki; Williams, Benjamin B; Swartz, Harold M; Miyake, Minoru

    2017-10-01

    In vivo L-band electron paramagnetic resonance tooth dosimetry is a newly developed and very promising method for retrospective biodosimetry in individuals who may have been exposed to significant levels of ionizing radiation. The present study aimed to determine the relationships among enamel thickness, enamel area, and measured electron paramagnetic resonance signal amplitude with a view to improve the quantitative accuracy of the dosimetry technique. Ten isolated incisors were irradiated using well-characterized doses, and their radiation-induced electron paramagnetic resonance signals were measured. Following the measurements, the enamel thickness and area of each tooth were measured using micro-focus computed tomography. Linear regression showed that the enamel area at each measurement position significantly affected the radiation-induced electron paramagnetic resonance signal amplitude (p < 0.001). Simulation data agreed well with this result. These results indicate that it is essential to properly consider enamel thickness and area when interpreting electron paramagnetic resonance tooth dosimetry measurements to optimize the accuracy of dose estimation.

  12. Mass, energy, and the electron

    SciTech Connect

    Mulligan, Bernard . E-mail: mulligan.3@osu.edu

    2006-08-15

    The two-component solutions of the Dirac equation currently in use are not separately a particle equation or an antiparticle equation. We present a unitary transformation that uncouples the four-component, force-free Dirac equation to yield a two-component spinor equation for the force-free motion of a relativistic particle and a corresponding two-component, time-reversed equation for an antiparticle. The particle-antiparticle nature of the two equations is established by applying to the solutions of these two-component equations criteria analogous to those applied for establishing the four-component particle and antiparticle solutions of the four-component Dirac equation. Wave function solutions of our two-component particle equation describe both a right and a left circularly polarized particle. Interesting characteristics of our solutions include spatial distributions that are confined in extent along directions perpendicular to the motion, without the artifice of wave packets, and an intrinsic chirality (handedness) that replaces the usual definition of chirality for particles without mass. Our solutions demonstrate that both the rest mass and the relativistic increase in mass with velocity of the force-free electron are due to an increase in the rate of Zitterbewegung with velocity. We extend this result to a bound electron, in which case the loss of energy due to binding is shown to decrease the rate of Zitterbewegung.

  13. Housing Electrons: Relating Quantum Numbers, Energy Levels, and Electron Configurations.

    ERIC Educational Resources Information Center

    Garofalo, Anthony

    1997-01-01

    Presents an activity that combines the concepts of quantum numbers and probability locations, energy levels, and electron configurations in a concrete, hands-on way. Uses model houses constructed out of foam board and colored beads to represent electrons. (JRH)

  14. Energy absorption buildup factors, exposure buildup factors and Kerma for optically stimulated luminescence materials and their tissue equivalence for radiation dosimetry

    NASA Astrophysics Data System (ADS)

    Singh, Vishwanath P.; Badiger, N. M.

    2014-11-01

    Optically stimulated luminescence (OSL) materials are sensitive dosimetric materials used for precise and accurate dose measurement for low-energy ionizing radiation. Low dose measurement capability with improved sensitivity makes these dosimeters very useful for diagnostic imaging, personnel monitoring and environmental radiation dosimetry. Gamma ray energy absorption buildup factors and exposure build factors were computed for OSL materials using the five-parameter Geometric Progression (G-P) fitting method in the energy range 0.015-15 MeV for penetration depths up to 40 mean free path. The computed energy absorption buildup factor and exposure buildup factor values were studied as a function of penetration depth and incident photon energy. Effective atomic numbers and Kerma relative to air of the selected OSL materials and tissue equivalence were computed and compared with that of water, PMMA and ICRU standard tissues. The buildup factors and kerma relative to air were found dependent upon effective atomic numbers. Buildup factors determined in the present work should be useful in radiation dosimetry, medical diagnostics and therapy, space dosimetry, accident dosimetry and personnel monitoring.

  15. Free-air ionization chamber, FAC-IR-300, designed for medium energy X-ray dosimetry

    NASA Astrophysics Data System (ADS)

    Mohammadi, S. M.; Tavakoli-Anbaran, H.; Zeinali, H. Z.

    2017-01-01

    The primary standard for X-ray photons is based on parallel-plate free-air ionization chamber (FAC). Therefore, the Atomic Energy Organization of Iran (AEOI) is tried to design and build the free-air ionization chamber, FAC-IR-300, for low and medium energy X-ray dosimetry. The main aim of the present work is to investigate specification of the FAC-IR-300 ionization chamber and design it. FAC-IR-300 dosimeter is composed of two parallel plates, a high voltage (HV) plate and a collector plate, along with a guard electrode that surrounds the collector plate. The guard plate and the collector were separated by an air gap. For obtaining uniformity in the electric field distribution, a group of guard strips was used around the ionization chamber. These characterizations involve determining the exact dimensions of the ionization chamber by using Monte Carlo simulation and introducing correction factors.

  16. Performance characteristics of a gated fiber-optic-coupled dosimeter in high-energy pulsed photon radiation dosimetry.

    PubMed

    Tanyi, James A; Krafft, Shane P; Ushino, Toshihide; Huston, Alan L; Justus, Brian L

    2010-02-01

    Fiber-optic-coupled dosimeters (FOCDs) are a new class of in vivo dosimetry systems that are finding increased clinical applications. Utility of FOCDs has been limited in dosimetric applications due Cerenkov-ray signal contamination. The current study reports on the characterization of a novel FOCD, with a gated detection system for the discrimination and effective elimination of the direct contribution of Cerenkov radiation, for use in the radiotherapeutic realm. System reproducibility, linearity and output dependence on dose rate, energy, field size, and temperature response were characterized for 6, 10, and 15MV photon energies. The system exhibited a linear response to absorbed dose ranging from 1 to 2400cGy and showed little dependence to dose rate variations. Overall system reproducibility was 0.52% with no field-geometry and temperature dependence.

  17. Electrons and grain boundary energies in metals

    SciTech Connect

    Ferrante, J.; Smith, J.R.; Balluffi, R.W.; Brokman, A.

    1985-03-01

    It was found that differences between electron density profiles in grain boundaries and those in the crystal yield relatively large electronic contributions to grain boundary energies. These electronic effects can be combined self-consistently with pair-wise interactions in a practical method for computing grain boundary structures and energies.

  18. Computational dosimetry

    SciTech Connect

    Siebert, B.R.L.; Thomas, R.H.

    1996-01-01

    The paper presents a definition of the term ``Computational Dosimetry`` that is interpreted as the sub-discipline of computational physics which is devoted to radiation metrology. It is shown that computational dosimetry is more than a mere collection of computational methods. Computational simulations directed at basic understanding and modelling are important tools provided by computational dosimetry, while another very important application is the support that it can give to the design, optimization and analysis of experiments. However, the primary task of computational dosimetry is to reduce the variance in the determination of absorbed dose (and its related quantities), for example in the disciplines of radiological protection and radiation therapy. In this paper emphasis is given to the discussion of potential pitfalls in the applications of computational dosimetry and recommendations are given for their avoidance. The need for comparison of calculated and experimental data whenever possible is strongly stressed.

  19. Interface dosimetry: measurements and Monte Carlo simulations of low-energy photon beams

    NASA Astrophysics Data System (ADS)

    Das, Indra J.; Kassaee, Alireza; Verhaegen, Frank; Moskvin, Vadim P.

    2001-06-01

    A comparison of measured and simulated dose perturbations at high- Z interfaces with Monte Carlo (MC) codes, EGS4, MCNP4B , and PENELOPE, having varied algorithms is presented. The measured dose perturbations strongly depend on the chamber design and are always lower than the MC data. The EGS4 data are closer to the ion chamber values. The other two codes, MCNP4B and PENELOPE, predict relatively higher magnitude. The simulated secondary electron spectra from high- Z interfaces are different but cannot explain the differences in magnitude. It is concluded that MC codes capable of handling low-energy transport and better boundary crossing algorithms are needed for interface effects.

  20. Correlation between energy deposition and molecular damage from Auger electrons: A case study of ultra-low energy (5–18 eV) electron interactions with DNA

    PubMed Central

    Rezaee, Mohammad; Hunting, Darel J.; Sanche, Léon

    2015-01-01

    Purpose The present study introduces a new method to establish a direct correlation between biologically related physical parameters (i.e., stopping and damaging cross sections, respectively) for an Auger-electron emitting radionuclide decaying within a target molecule (e.g., DNA), so as to evaluate the efficacy of the radionuclide at the molecular level. These parameters can be applied to the dosimetry of Auger electrons and the quantification of their biological effects, which are the main criteria to assess the therapeutic efficacy of Auger-electron emitting radionuclides. Methods Absorbed dose and stopping cross section for the Auger electrons of 5–18 eV emitted by 125I within DNA were determined by developing a nanodosimetric model. The molecular damages induced by these Auger electrons were investigated by measuring damaging cross section, including that for the formation of DNA single- and double-strand breaks. Nanoscale films of pure plasmid DNA were prepared via the freeze-drying technique and subsequently irradiated with low-energy electrons at various fluences. The damaging cross sections were determined by employing a molecular survival model to the measured exposure–response curves for induction of DNA strand breaks. Results For a single decay of 125I within DNA, the Auger electrons of 5–18 eV deposit the energies of 12.1 and 9.1 eV within a 4.2-nm3 volume of a hydrated or dry DNA, which results in the absorbed doses of 270 and 210 kGy, respectively. DNA bases have a major contribution to the deposited energies. Ten-electronvolt and high linear energy transfer 100-eV electrons have a similar cross section for the formation of DNA double-strand break, while 100-eV electrons are twice as efficient as 10 eV in the induction of single-strand break. Conclusions Ultra-low-energy electrons (<18 eV) substantially contribute to the absorbed dose and to the molecular damage from Auger-electron emitting radionuclides; hence, they should be considered in the

  1. Correlation between energy deposition and molecular damage from Auger electrons: A case study of ultra-low energy (5–18 eV) electron interactions with DNA

    SciTech Connect

    Rezaee, Mohammad Hunting, Darel J.; Sanche, Léon

    2014-07-15

    Purpose: The present study introduces a new method to establish a direct correlation between biologically related physical parameters (i.e., stopping and damaging cross sections, respectively) for an Auger-electron emitting radionuclide decaying within a target molecule (e.g., DNA), so as to evaluate the efficacy of the radionuclide at the molecular level. These parameters can be applied to the dosimetry of Auger electrons and the quantification of their biological effects, which are the main criteria to assess the therapeutic efficacy of Auger-electron emitting radionuclides. Methods: Absorbed dose and stopping cross section for the Auger electrons of 5–18 eV emitted by{sup 125}I within DNA were determined by developing a nanodosimetric model. The molecular damages induced by these Auger electrons were investigated by measuring damaging cross section, including that for the formation of DNA single- and double-strand breaks. Nanoscale films of pure plasmid DNA were prepared via the freeze-drying technique and subsequently irradiated with low-energy electrons at various fluences. The damaging cross sections were determined by employing a molecular survival model to the measured exposure–response curves for induction of DNA strand breaks. Results: For a single decay of{sup 125}I within DNA, the Auger electrons of 5–18 eV deposit the energies of 12.1 and 9.1 eV within a 4.2-nm{sup 3} volume of a hydrated or dry DNA, which results in the absorbed doses of 270 and 210 kGy, respectively. DNA bases have a major contribution to the deposited energies. Ten-electronvolt and high linear energy transfer 100-eV electrons have a similar cross section for the formation of DNA double-strand break, while 100-eV electrons are twice as efficient as 10 eV in the induction of single-strand break. Conclusions: Ultra-low-energy electrons (<18 eV) substantially contribute to the absorbed dose and to the molecular damage from Auger-electron emitting radionuclides; hence, they should

  2. Correlation between energy deposition and molecular damage from Auger electrons: A case study of ultra-low energy (5-18 eV) electron interactions with DNA.

    PubMed

    Rezaee, Mohammad; Hunting, Darel J; Sanche, Léon

    2014-07-01

    The present study introduces a new method to establish a direct correlation between biologically related physical parameters (i.e., stopping and damaging cross sections, respectively) for an Auger-electron emitting radionuclide decaying within a target molecule (e.g., DNA), so as to evaluate the efficacy of the radionuclide at the molecular level. These parameters can be applied to the dosimetry of Auger electrons and the quantification of their biological effects, which are the main criteria to assess the therapeutic efficacy of Auger-electron emitting radionuclides. Absorbed dose and stopping cross section for the Auger electrons of 5-18 eV emitted by(125)I within DNA were determined by developing a nanodosimetric model. The molecular damages induced by these Auger electrons were investigated by measuring damaging cross section, including that for the formation of DNA single- and double-strand breaks. Nanoscale films of pure plasmid DNA were prepared via the freeze-drying technique and subsequently irradiated with low-energy electrons at various fluences. The damaging cross sections were determined by employing a molecular survival model to the measured exposure-response curves for induction of DNA strand breaks. For a single decay of(125)I within DNA, the Auger electrons of 5-18 eV deposit the energies of 12.1 and 9.1 eV within a 4.2-nm(3) volume of a hydrated or dry DNA, which results in the absorbed doses of 270 and 210 kGy, respectively. DNA bases have a major contribution to the deposited energies. Ten-electronvolt and high linear energy transfer 100-eV electrons have a similar cross section for the formation of DNA double-strand break, while 100-eV electrons are twice as efficient as 10 eV in the induction of single-strand break. Ultra-low-energy electrons (<18 eV) substantially contribute to the absorbed dose and to the molecular damage from Auger-electron emitting radionuclides; hence, they should be considered in the dosimetry calculation of such

  3. ESR dosimetry for atomic bomb survivors and radiologic technologists

    NASA Astrophysics Data System (ADS)

    Tatsumi-Miyajima, Junko

    1987-06-01

    An individual absorbed dose for atomic bomb (A-bomb) survivors and radiologic technologists has been estimated using a new personal dosimetry. This dosimetry is based on the electron spin resonance (ESR) spectroscopy of the CO 33- radicals, which are produced in their teeth by radiation. Measurements were carried out to study the characteristics of the dosimetry; the ESR signals of the CO 33- radicals were stable and increased linearly with the radiation dose. In the evaluation of the absorbed dose, the ESR signals were considered to be a function of photon energy. The absorbed doses in ten cases of A-bomb victims and eight cases of radiologic technologists were determined. For A-bomb survivors, the adsorbed doses, which were estimated using the ESR dosimetry, were consistent with the ones obtained using the calculations of the tissue dose in air of A-bomb, and also with the ones obtained using the chromosome measurements. For radiologic technologists, the absorbed doses, which were estimated using the ESR dosimetry, agreed with the ones calculated using the information on the occupational history and conditions. The advantages of this method are that the absorbed dose can be directly estimated by measuring the ESR signals obtained from the teeth of persons, who are exposed to radiation. Therefore, the ESR dosimetry is useful to estimate the accidental exposure and the long term cumulative dose.

  4. Review of the near-earth space radiation dosimetry

    NASA Astrophysics Data System (ADS)

    Guo, Jianming; Chen, Xiaoqian; Li, Shiyou

    2016-07-01

    The near-earth space radiation environment has a great effect to the spacecraft and maybe do harm to the astronaut's health. Thus, how to measure the radiation has become a serious challenge. In order to provide sufficient protection both for astronauts and for instruments on-board, dose equivalent and linear energy transfer should be measured instead of merely measuring total radiation dose. This paper reviews the methods of radiation measurement and presents a brief introduction of dosimetry instruments. The method can be divided into two different kinds, i.e., positive dosimetry and passive dosimetry. The former usually includes electronic devices which can be used for data storage and can offer simultaneous monitoring on space radiation. The passive dosimetry has a much simple structure, and need extra operation after on-orbit missions for measuring. To get more reliable data of radiation dosimetry, various instruments and methods had been applied in the spacecrafts and the manned spacecrafts in particular. The outlook of the development in the space radiation dosimetry measurement is also presented.

  5. Electron Attachment to Molecules at Low Electron Energies

    NASA Technical Reports Server (NTRS)

    Chutjian, A.; Garscadden, A.; Wadehra, J. M.

    1994-01-01

    One of the most efficient ways of producing negative ions is by the process of dissociative electron attachment to molecules. Here, a diatomic or polyatomic molecule dissociates, by the impact of a low energy electron, into component atoms (or smaller molecular species) while the incident electron attaches itself to one of the dissociating fragments.

  6. Single track nanodosimetry of low energy electrons

    NASA Astrophysics Data System (ADS)

    Bantsar, A.; Grosswendt, B.; Pszona, S.; Kula, J.

    2009-02-01

    Auger-electron-emitting radionuclides (for instance, 125I) with a predominant energy spectrum below 3 keV are an active area of research towards the clinical application of radiopharmaceuticals. Hence, the necessity for an adequate description of the effects of radiation by low-energy electrons on nanometric biological targets seems to be unquestionable. Experimental nanodosimetry for low-energy electrons has been accomplished with a device named JET COUNTER. The present paper describes, for the first time, nanodosimetric experiments in nanometer-sized cavities of nitrogen using low energy electrons ranging from 100 eV to 2 keV.

  7. Accuracy of dose planning for prostate radiotherapy in the presence of metallic implants evaluated by electron spin resonance dosimetry

    PubMed Central

    Alves, G.G.; Kinoshita, A.; de Oliveira, H.F.; Guimarães, F.S.; Amaral, L.L.; Baffa, O.

    2015-01-01

    Radiotherapy is one of the main approaches to cure prostate cancer, and its success depends on the accuracy of dose planning. A complicating factor is the presence of a metallic prosthesis in the femur and pelvis, which is becoming more common in elderly populations. The goal of this work was to perform dose measurements to check the accuracy of radiotherapy treatment planning under these complicated conditions. To accomplish this, a scale phantom of an adult pelvic region was used with alanine dosimeters inserted in the prostate region. This phantom was irradiated according to the planned treatment under the following three conditions: with two metallic prostheses in the region of the femur head, with only one prosthesis, and without any prostheses. The combined relative standard uncertainty of dose measurement by electron spin resonance (ESR)/alanine was 5.05%, whereas the combined relative standard uncertainty of the applied dose was 3.35%, resulting in a combined relative standard uncertainty of the whole process of 6.06%. The ESR dosimetry indicated that there was no difference (P>0.05, ANOVA) in dosage between the planned dose and treatments. The results are in the range of the planned dose, within the combined relative uncertainty, demonstrating that the treatment-planning system compensates for the effects caused by the presence of femur and hip metal prostheses. PMID:26017344

  8. In vivo dosimetry in intraoperative electron radiotherapy: microMOSFETs, radiochromic films and a general-purpose linac.

    PubMed

    López-Tarjuelo, Juan; Bouché-Babiloni, Ana; Morillo-Macías, Virginia; de Marco-Blancas, Noelia; Santos-Serra, Agustín; Quirós-Higueras, Juan David; Ferrer-Albiach, Carlos

    2014-10-01

    In vivo dosimetry is desirable for the verification, recording, and eventual correction of treatment in intraoperative electron radiotherapy (IOERT). Our aim is to share our experience of metal oxide semiconductor field-effect transistors (MOSFETs) and radiochromic films with patients undergoing IOERT using a general-purpose linac. We used MOSFETs inserted into sterile bronchus catheters and radiochromic films that were cut, digitized, and sterilized by means of gas plasma. In all, 59 measurements were taken from 27 patients involving 15 primary tumors (seven breast and eight non-breast tumors) and 12 relapses. Data were subjected to an outliers' analysis and classified according to their compatibility with the relevant doses. Associations were sought regarding the type of detector, breast and non-breast irradiation, and the radiation oncologist's assessment of the difficulty of detector placement. At the same time, 19 measurements were carried out at the tumor bed with both detectors. MOSFET measurements ([Formula: see text]  = 93.5 %, sD  =  6.5 %) were not significantly shifted from film measurements ([Formula: see text]  =  96.0 %, sD  =  5.5 %; p  =  0.109), and no associations were found (p = 0.526, p = 0.295,  and p = 0.501, respectively). As regards measurements performed at the tumor bed with both detectors, MOSFET measurements ([Formula: see text]  =  95.0 %, sD  =  5.4 % were not significantly shifted from film measurements ([Formula: see text]  =  96.4 %, sD  =  5.0 %; p  =  0.363). In vivo dosimetry can produce satisfactory results at every studied location with a general-purpose linac. Detector choice should depend on user factors, not on the detector performance itself. Surgical team collaboration is crucial to success.

  9. A highly sensitive CaF2:Dy nanophosphor as an efficient low energy ion dosimetry

    NASA Astrophysics Data System (ADS)

    Bhadane, Mahesh S.; Hareesh, K.; Dahiwale, S. S.; Sature, K. R.; Patil, B. J.; Asokan, K.; Kanjilal, D.; Bhoraskar, V. N.; Dhole, S. D.

    2016-11-01

    Dysprosium doped calcium fluoride (CaF2:Dy) powers synthesized by co-precipitation method were irradiated with low energy ion beams (LEIB) viz. 100 keV H, 200 keV Ar and 350 keV N beams at different fluences and demonstrated for low energy ion dosimetric application. X-ray Diffraction and Transmission electron microscopy revealed the formation of highly crystalline cubic structured particles with size ∼45-50 nm. FTIR spectra of the CaF2:Dy samples show changes of some bonds such as N-O asymmetric, C-F bonding and C-H aromatic contain stretching mode after LEIB irradiation. The thermoluminescence (TL) glow curve peaks were observed at 207 °C for Ar ion, at 203 °C for H ion and at 216 °C and 270 °C for N ion. It has been found that CaF2:Dy nanophosphor shows a linear response with minimum fading for all the ion species. Computerized Glow Curve Deconvolution was performed for TL curve of high fluence ion irradiated nanophosphor to estimate the trapping parameters and the respective figure of merit (FOM) found to be very appropriate for all the nanophosphor. These results indicated that the CaF2:Dy can be used as a low energy ion detector or dose.

  10. Low energy electron catalyst: the electronic origin of catalytic strategies.

    PubMed

    Davis, Daly; Sajeev, Y

    2016-10-12

    Using a low energy electron (LEE) as a catalyst, the electronic origin of the catalytic strategies corresponding to substrate selectivity, reaction specificity and reaction rate enhancement is investigated for a reversible unimolecular elementary reaction. An electronic energy complementarity between the catalyst and the substrate molecule is the origin of substrate selectivity and reaction specificity. The electronic energy complementarity is induced by tuning the electronic energy of the catalyst. The energy complementarity maximizes the binding forces between the catalyst and the molecule. Consequently, a new electronically metastable high-energy reactant state and a corresponding new low barrier reaction path are resonantly created for a specific reaction of the substrate through the formation of a catalyst-substrate transient adduct. The LEE catalysis also reveals a fundamental structure-energy correspondence in the formation of the catalyst-substrate transient adduct. Since the energy complementarities corresponding to the substrate molecules of the forward and the backward steps of the reversible reactions are not the same due to their structural differences, the LEE catalyst exhibits a unique one-way catalytic strategy, i.e., the LEE catalyst favors the reversible reaction more effectively in one direction. A characteristic stronger binding of the catalyst to the transition state of the reaction than in the initial reactant state and the final product state is the molecular origin of barrier lowering.

  11. Comparative dosimetric characterization for different types of detectors in high-energy electron beams

    NASA Astrophysics Data System (ADS)

    Lee, Chang Yeol; Kim, Woo Chul; Kim, Hun Jeong; Huh, Hyun Do; Park, Seungwoo; Choi, Sang Hyoun; Kim, Kum Bae; Min, Chul Kee; Kim, Seong Hoon; Shin, Dong Oh

    2017-02-01

    The purpose of this study is to perform a comparison and on analysis of measured dose factor values by using various commercially available high-energy electron beam detectors to measure dose profiles and energy property data. By analyzing the high-energy electron beam data from each detector, we determined the optimal detector for measuring electron beams in clinical applications. The dose linearity, dose-rate dependence, percentage depth dose, and dose profile of each detector were measured to evaluate the dosimetry characteristics of high-energy electron beams. The dose profile and the energy characteristics of high-energy electron beams were found to be different when measured by different detectors. Through comparison with other detectors based on the analyzed data, the microdiamond detector was found to have outstanding dose linearity, a low dose-rate dependency, and a small effective volume. Thus, this detector has outstanding spatial resolution and is the optimal detector for measuring electron beams. Radiation therapy results can be improved and related medical accidents can be prevented by using the procedure developed in this research in clinical practice for all beam detectors when measuring the electron beam dose.

  12. Electronic correlation contributions to structural energies

    NASA Astrophysics Data System (ADS)

    Haydock, Roger

    2015-03-01

    The recursion method is used to calculate electronic excitation spectra including electron-electron interactions within the Hubbard model. The effects of correlation on structural energies are then obtained from these spectra and applied to stacking faults. http://arxiv.org/abs/1405.2288 Supported by the Richmond F. Snyder Fund and Gifts.

  13. Measurement of the neutron energy spectrum on the Godiva IV fast burst assembly for application to neutron dosimetry studies

    SciTech Connect

    Casson, W.H.; Hsu, H.H.; Paternoster, R.R.; Butterfield, K.B.

    1996-06-01

    In June, 1995, Los Alamos National Laboratory hosted the 23rd U.S. Department of Energy sponsored Nuclear Accident Dosimetry Study at the Los Alamos Critical Experiments Facility. The participants tested their facilities accident dosimeters under a variety of neutrons fields produced by the Solution High Energy Burst Assembly (SHEBA) and the Godiva IV fast burst assembly. To provide useful information for the evaluation of the results, the neutron energy Spectrum was determined and the delivered absorbed dose to tissue. The measurement of the neutron energy spectrum on Godiva provides a unique problem in that the burst, which is nearly Gaussian in time, has a full width at half maximum of around 50 microseconds. The neutron spectrum was first determined at low-power while running at delayed critical using a standard set of Bonner spheres. At the same time, the response of a set of TLD dosimeters were measured. After that, measurements were conducted during a burst with another set of TLDs and with sulfur pellets.

  14. Energy efficiency of electron plasma emitters

    SciTech Connect

    Zalesski, V. G.

    2011-12-15

    Electron emission influence from gas-discharge plasma on plasma emitter energy parameters is considered. It is shown, that electron emission from plasma is accompanied by energy contribution redistribution in the gas-discharge from plasma emitter supplies sources-the gas-discharge power supply and the accelerating voltage power supply. Some modes of electron emission as a result can be realized: 'a probe measurements mode,' 'a transitive mode,' and 'a full switching mode.'.

  15. Attainment of Electron Beam Suitable for Medium Energy Electron Cooling

    SciTech Connect

    Seletskiy, Sergei M.

    2005-01-01

    Electron cooling of charged particle beams is a well-established technique at electron energies of up to 300 keV. However, up to the present time the advance of electron cooling to the MeV-range energies has remained a purely theoretical possibility. The electron cooling project at Fermilab has recently demonstrated the ¯rst cooling of 8.9 GeV/c antiprotons in the Recycler ring, and therefore, has proved the validity of the idea of relativistic electron cool- ing. The Recycler Electron Cooler (REC) is the key component of the Teva- tron Run II luminosity upgrade project. Its performance depends critically on the quality of electron beam. A stable electron beam of 4.3 MeV car- rying 0.5 A of DC current is required. The beam suitable for the Recycler Electron Cooler must have an angular spread not exceeding 200 ¹rad. The full-scale prototype of the REC was designed, built and tested at Fermilab in the Wideband laboratory to study the feasibility of attaining the high-quality electron beam. In this thesis I describe various aspects of development of the Fermilab electron cooling system, and the techniques used to obtain the electron beam suitable for the cooling process. In particular I emphasize those aspects of the work for which I was principally responsible.

  16. SU-E-T-188: Film Dosimetry Verification of Monte Carlo Generated Electron Treatment Plans

    SciTech Connect

    Enright, S; Asprinio, A; Lu, L

    2014-06-01

    Purpose: The purpose of this study was to compare dose distributions from film measurements to Monte Carlo generated electron treatment plans. Irradiation with electrons offers the advantages of dose uniformity in the target volume and of minimizing the dose to deeper healthy tissue. Using the Monte Carlo algorithm will improve dose accuracy in regions with heterogeneities and irregular surfaces. Methods: Dose distributions from GafChromic{sup ™} EBT3 films were compared to dose distributions from the Electron Monte Carlo algorithm in the Eclipse{sup ™} radiotherapy treatment planning system. These measurements were obtained for 6MeV, 9MeV and 12MeV electrons at two depths. All phantoms studied were imported into Eclipse by CT scan. A 1 cm thick solid water template with holes for bonelike and lung-like plugs was used. Different configurations were used with the different plugs inserted into the holes. Configurations with solid-water plugs stacked on top of one another were also used to create an irregular surface. Results: The dose distributions measured from the film agreed with those from the Electron Monte Carlo treatment plan. Accuracy of Electron Monte Carlo algorithm was also compared to that of Pencil Beam. Dose distributions from Monte Carlo had much higher pass rates than distributions from Pencil Beam when compared to the film. The pass rate for Monte Carlo was in the 80%–99% range, where the pass rate for Pencil Beam was as low as 10.76%. Conclusion: The dose distribution from Monte Carlo agreed with the measured dose from the film. When compared to the Pencil Beam algorithm, pass rates for Monte Carlo were much higher. Monte Carlo should be used over Pencil Beam for regions with heterogeneities and irregular surfaces.

  17. Ultrafast Electron Dynamics in Solar Energy Conversion.

    PubMed

    Ponseca, Carlito S; Chábera, Pavel; Uhlig, Jens; Persson, Petter; Sundström, Villy

    2017-08-23

    Electrons are the workhorses of solar energy conversion. Conversion of the energy of light to electricity in photovoltaics, or to energy-rich molecules (solar fuel) through photocatalytic processes, invariably starts with photoinduced generation of energy-rich electrons. The harvesting of these electrons in practical devices rests on a series of electron transfer processes whose dynamics and efficiencies determine the function of materials and devices. To capture the energy of a photogenerated electron-hole pair in a solar cell material, charges of opposite sign have to be separated against electrostatic attractions, prevented from recombining and being transported through the active material to electrodes where they can be extracted. In photocatalytic solar fuel production, these electron processes are coupled to chemical reactions leading to storage of the energy of light in chemical bonds. With the focus on the ultrafast time scale, we here discuss the light-induced electron processes underlying the function of several molecular and hybrid materials currently under development for solar energy applications in dye or quantum dot-sensitized solar cells, polymer-fullerene polymer solar cells, organometal halide perovskite solar cells, and finally some photocatalytic systems.

  18. Ion storage dosimetry

    NASA Astrophysics Data System (ADS)

    Mathur, V. K.

    2001-09-01

    The availability of a reliable, accurate and cost-effective real-time personnel dosimetry system is fascinating to radiation workers. Electronic dosimeters are contemplated to meet this demand of active dosimetry. The development of direct ion storage (DIS) dosimeters, a member of the electronic dosimeter family, for personnel dosimetry is also an attempt in this direction. DIS dosimeter is a hybrid of the well-established technology of ion chambers and the latest advances in data storage using metal oxide semiconductor field effect transistor (MOSFET) analog memory device. This dosimeter is capable of monitoring legal occupational radiation doses of gamma, X-rays, beta and neutron radiation. Similar to an ion chamber, the performance of the dosimeter for a particular application can be optimized through the selection of appropriate wall materials. The use of the floating gate of a MOSFET as one of the electrodes of the ion chamber allows the miniaturization of the device to the size of a dosimetry badge and avoids the use of power supplies during dose accumulation. The concept of the device, underlying physics and the design of the DIS dosimeter are discussed. The results of preliminary testing of the device are also provided.

  19. Assessment of a 2D electronic portal imaging devices-based dosimetry algorithm for pretreatment and in-vivo midplane dose verification

    PubMed Central

    Jomehzadeh, Ali; Shokrani, Parvaneh; Mohammadi, Mohammad; Amouheidari, Alireza

    2016-01-01

    Background: The use of electronic portal imaging devices (EPIDs) is a method for the dosimetric verification of radiotherapy plans, both pretreatment and in vivo. The aim of this study is to test a 2D EPID-based dosimetry algorithm for dose verification of some plans inside a homogenous and anthropomorphic phantom and in vivo as well. Materials and Methods: Dose distributions were reconstructed from EPID images using a 2D EPID dosimetry algorithm inside a homogenous slab phantom for a simple 10 × 10 cm2 box technique, 3D conformal (prostate, head-and-neck, and lung), and intensity-modulated radiation therapy (IMRT) prostate plans inside an anthropomorphic (Alderson) phantom and in the patients (one fraction in vivo) for 3D conformal plans (prostate, head-and-neck and lung). Results: The planned and EPID dose difference at the isocenter, on an average, was 1.7% for pretreatment verification and less than 3% for all in vivo plans, except for head-and-neck, which was 3.6%. The mean γ values for a seven-field prostate IMRT plan delivered to the Alderson phantom varied from 0.28 to 0.65. For 3D conformal plans applied for the Alderson phantom, all γ1% values were within the tolerance level for all plans and in both anteroposterior and posteroanterior (AP-PA) beams. Conclusion: The 2D EPID-based dosimetry algorithm provides an accurate method to verify the dose of a simple 10 × 10 cm2 field, in two dimensions, inside a homogenous slab phantom and an IMRT prostate plan, as well as in 3D conformal plans (prostate, head-and-neck, and lung plans) applied using an anthropomorphic phantom and in vivo. However, further investigation to improve the 2D EPID dosimetry algorithm for a head-and-neck case, is necessary. PMID:28028511

  20. Energy deposition evaluation for ultra-low energy electron beam irradiation systems using calibrated thin radiochromic film and Monte Carlo simulations

    SciTech Connect

    Matsui, S. Mori, Y.; Nonaka, T.; Hattori, T.; Kasamatsu, Y.; Haraguchi, D.; Watanabe, Y.; Uchiyama, K.; Ishikawa, M.

    2016-05-15

    For evaluation of on-site dosimetry and process design in industrial use of ultra-low energy electron beam (ULEB) processes, we evaluate the energy deposition using a thin radiochromic film and a Monte Carlo simulation. The response of film dosimeter was calibrated using a high energy electron beam with an acceleration voltage of 2 MV and alanine dosimeters with uncertainty of 11% at coverage factor 2. Using this response function, the results of absorbed dose measurements for ULEB were evaluated from 10 kGy to 100 kGy as a relative dose. The deviation between the responses of deposit energy on the films and Monte Carlo simulations was within 15%. As far as this limitation, relative dose estimation using thin film dosimeters with response function obtained by high energy electron irradiation and simulation results is effective for ULEB irradiation processes management.

  1. An approach to an accurate determination of the energy spectrum of high-energy electron beams using magnetic spectrometry

    NASA Astrophysics Data System (ADS)

    Renner, F.; Schwab, A.; Kapsch, R.-P.; Makowski, Ch; Jannek, D.

    2014-03-01

    At the national metrology institute of Germany, the Physikalisch-Technische Bundesanstalt, a research accelerator for dosimetry in radiation therapy has been installed. Magnetic spectrometry is used to determine the spectrum of high-energy electrons generated by this accelerator. Regarding the intended experiments at the accelerator, a high accuracy for the energy determination of the electron beam is required. For this purpose, an experimental setup is used that has a number of additional devices assembled around the spectrometer to determine geometric characteristics of the electron beam, which influence the energy analysis. For the analysis of the acquired data, a software was developed which meets specific needs. One important aspect is that the software is based on an algorithm for energy determination which considers the measured magnetic flux density of the spectrometer and geometric details of the beam and the spectrometer. The software also meets the demand that it can be used to estimate the uncertainty assigned to the energy. This paper covers the experimental and analytical background of magnetic spectrometry at the high-energy beamline of PTB's research accelerator. A comparison of results calculated with the specific algorithm for energy determination which was developed for this experimental setup and with well-known algorithms is given to show the advantage of the specific method. Results of measurements and their analysis with the algorithm are presented as well.

  2. TOPICAL REVIEW: Polymer gel dosimetry

    NASA Astrophysics Data System (ADS)

    Baldock, C.; De Deene, Y.; Doran, S.; Ibbott, G.; Jirasek, A.; Lepage, M.; McAuley, K. B.; Oldham, M.; Schreiner, L. J.

    2010-03-01

    Polymer gel dosimeters are fabricated from radiation sensitive chemicals which, upon irradiation, polymerize as a function of the absorbed radiation dose. These gel dosimeters, with the capacity to uniquely record the radiation dose distribution in three-dimensions (3D), have specific advantages when compared to one-dimensional dosimeters, such as ion chambers, and two-dimensional dosimeters, such as film. These advantages are particularly significant in dosimetry situations where steep dose gradients exist such as in intensity-modulated radiation therapy (IMRT) and stereotactic radiosurgery. Polymer gel dosimeters also have specific advantages for brachytherapy dosimetry. Potential dosimetry applications include those for low-energy x-rays, high-linear energy transfer (LET) and proton therapy, radionuclide and boron capture neutron therapy dosimetries. These 3D dosimeters are radiologically soft-tissue equivalent with properties that may be modified depending on the application. The 3D radiation dose distribution in polymer gel dosimeters may be imaged using magnetic resonance imaging (MRI), optical-computerized tomography (optical-CT), x-ray CT or ultrasound. The fundamental science underpinning polymer gel dosimetry is reviewed along with the various evaluation techniques. Clinical dosimetry applications of polymer gel dosimetry are also presented.

  3. Topical Review: Polymer gel dosimetry

    PubMed Central

    Baldock, C; De Deene, Y; Doran, S; Ibbott, G; Jirasek, A; Lepage, M; McAuley, K B; Oldham, M; Schreiner, L J

    2010-01-01

    Polymer gel dosimeters are fabricated from radiation sensitive chemicals which, upon irradiation, polymerize as a function of the absorbed radiation dose. These gel dosimeters, with the capacity to uniquely record the radiation dose distribution in three-dimensions (3D), have specific advantages when compared to one-dimensional dosimeters, such as ion chambers, and two-dimensional dosimeters, such as film. These advantages are particularly significant in dosimetry situations where steep dose gradients exist such as in intensity-modulated radiation therapy (IMRT) and stereotactic radiosurgery. Polymer gel dosimeters also have specific advantages for brachytherapy dosimetry. Potential dosimetry applications include those for low-energy x-rays, high-linear energy transfer (LET) and proton therapy, radionuclide and boron capture neutron therapy dosimetries. These 3D dosimeters are radiologically soft-tissue equivalent with properties that may be modified depending on the application. The 3D radiation dose distribution in polymer gel dosimeters may be imaged using magnetic resonance imaging (MRI), optical-computerized tomography (optical-CT), x-ray CT or ultrasound. The fundamental science underpinning polymer gel dosimetry is reviewed along with the various evaluation techniques. Clinical dosimetry applications of polymer gel dosimetry are also presented. PMID:20150687

  4. Hot Electron Energy Relaxation in Quantum Wells

    NASA Astrophysics Data System (ADS)

    Yang, Chia-Hung

    We present experimental results on hot electron relaxation in doped bulk GaAs and quantum wells. Using steady state photoluminescence we measured the electron -LO phonon scattering time for thermalized hot electrons in quantum wells. The results are in good agreement with our theoretical calculation of electron-LO phonon interaction in two dimensional systems. Within random phase approximation, the emitted LO phonons may couple to two dimensional plasmons. Both the screening and phonon reabsorption properties can be drastically changed as a function of electron density, temperature and phonon lifetime. Theoretical energy relaxation rates, including dynamical screening and phonon reabsorption effects, will be presented. For hot electrons with energies well above the LO phonon energy, we developed a two-beam, lock-in technique to measure the energy-resolved cooling rate. In the case of quantum wells, hot electrons relax at a constant rate. For heavily doped bulk GaAs, the relaxation rate is inversely proportional to electron kinetic energy. The new method demonstrates itself as a valuable way to study the fast initial relaxation which would otherwise need femtosecond pulse laser techniques.

  5. Magnetic Energy Release from Electron Scale Reconnection

    NASA Astrophysics Data System (ADS)

    Horton, Wendell; Kim, Juhyung; Militello, Fulvio; Ottaviani, Maurizio

    2006-10-01

    Magnetic reconnection may occur as bursts of nonlinear plasma dynamics on the electron collisionless skin length scale de= c/φpe during which a large fraction of the magnetic energy is converted to electron thermal energy and plasma flow energy. The energization mechanism is the crossfield compression of the electron gas between interacting magnetic islands and the parallel electric fields accelerating the small pitch angle electrons. Solutions of the reduced Hall-MHD equations show the heating pulses in nearly collisionless, energy conserving simulations. The electron energization appears to be measured in the 4s, 200km resolution data from Cluster crossing thin, multipeaked current sheets in the geotail at -17 RE (JGR, Nakamura et al (2006)). The electron PAD and energy fluxes change rapidly consistent with the magnetic fluctuations. In short time (10 ion cyclotron periods or 30s) from 0.5-0.8 keV up to 5 keV in ninety degree pitch angle flux and weak parallel electron beams formed at small pitch angles. Work partially supported by US Dept of Energy, NSF 0539099, and CEA Cadarache.

  6. Characteristics of in vivo radiotherapy dosimetry.

    PubMed

    Edwards, C R; Mountford, P J

    2009-11-01

    The recent discussion and debate about the use of in vivo dosimetry as a routine component of the radiotherapy treatment process has not included the limitations introduced by the physical characteristics of the detectors. Although a robust calibration procedure will ensure acceptable uncertainties in the measurements of tumour dose, further work is required to confirm the accuracy of critical organ measurements with a diode or a thermoluminescent dosemeter outside the main field owing to limitations caused by a non-uniform X-ray energy response of the detector, differences between the X-ray energy spectrum inside and outside the main field, and contaminating electrons.

  7. Diffraction of electrons at intermediate energies

    NASA Astrophysics Data System (ADS)

    Ascolani, H.; Barrachina, R. O.; Guraya, M. M.; Zampieri, G.

    1992-08-01

    We present a theory of the elastic scattering of electrons from crystalline surfaces that contains both low-energy-electron-diffraction (LEED) effects at low energies and x-ray-photoelectron- and Auger-electron-diffraction (XPD/AED) effects at intermediate energies. The theory is based on a cluster-type approach to the scattering problem and includes temperature effects. The transition from one regime to the other may be explained as follows: At low energies all the scattered waves add coherently, and the intensity is dominated by LEED effects. At intermediate energies the thermal vibration of the atoms destroys the long-range coherency responsible for the LEED peaks, but affects little the interference of those waves that share parts of their paths inside the solid. Thus, the interference of these waves comes to dominate the intensity, giving rise to structures similar to those observed in XPD/AED experiments. We perform a calculation of the elastic reflection of electrons from Cu(001) that is in good agreement with the experiment in the range 200-1500 eV. At low energies the intensity is dominated by LEED peaks; at 400 eV LEED peaks and XPD/AED structures coexist; and above this energy the intensity is dominated by the latter. We analyze the contributions to the intensity at intermediate energies of the interferences in the incoming and outgoing parts of the electron path.

  8. Applications in Energy, Optics and Electronics.

    ERIC Educational Resources Information Center

    Rosenberg, Robert; And Others

    1980-01-01

    Discusses the applications of thin films in energy, optics and electronics. The use of thin-film technologies for heat mirrors, anti-reflection coatings, interference filters, solar cells, and metal contacts is included. (HM)

  9. Applications in Energy, Optics and Electronics.

    ERIC Educational Resources Information Center

    Rosenberg, Robert; And Others

    1980-01-01

    Discusses the applications of thin films in energy, optics and electronics. The use of thin-film technologies for heat mirrors, anti-reflection coatings, interference filters, solar cells, and metal contacts is included. (HM)

  10. Atomic electron binding energies in fermium

    SciTech Connect

    Das, M.P.

    1981-02-01

    Calculations of the binding energies of electrons in fermium by using a relativistic local-density functional theory are reported. It is found that relaxation effects are nonnegligible for inner core orbitals. Calculated orbital binding energies are compared with those due to nonlocal Dirac-Fock calculations and also with those determined experimentally from conversion electron spectroscopy. Finally the usefulness of the local-density approximation for the study of heavy atomic and condensed systems is discussed.

  11. Microdosimetry of low-energy electrons.

    PubMed

    Liamsuwan, Thiansin; Emfietzoglou, Dimitris; Uehara, Shuzo; Nikjoo, Hooshang

    2012-12-01

    To investigate differences in energy depositions and microdosimetric parameters of low-energy electrons in liquid and gaseous water using Monte Carlo track structure simulations. KURBUC-liq (Kyushu University and Radiobiology Unit Code for liquid water) was used for simulating electron tracks in liquid water. The inelastic scattering cross sections of liquid water were obtained from the dielectric response model of Emfietzoglou et al. (Radiation Research 2005;164:202-211). Frequencies of energy deposited in nanometre-size cylindrical targets per unit absorbed dose and associated lineal energies were calculated for 100-5000 eV monoenergetic electrons and the electron spectrum of carbon K edge X-rays. The results for liquid water were compared with those for water vapour. Regardless of electron energy, there is a limit how much energy electron tracks can deposit in a target. Phase effects on the frequencies of energy depositions are largely visible for the targets with diameters and heights smaller than 30 nm. For the target of 2.3 nm by 2.3 nm (similar to dimension of DNA segments), the calculated frequency- and dose-mean lineal energies for liquid water are up to 40% smaller than those for water vapour. The corresponding difference is less than 12% for the targets with diameters ≥ 30 nm. Condensed-phase effects are non-negligible for microdosimetry of low-energy electrons for targets with sizes smaller than a few tens of nanometres, similar to dimensions of DNA molecular structures and nucleosomes.

  12. Electron energy-distribution functions in gases

    SciTech Connect

    Pitchford, L.C.

    1981-01-01

    Numerical calculation of the electron energy distribution functions in the regime of drift tube experiments is discussed. The discussion is limited to constant applied fields and values of E/N (ratio of electric field strength to neutral density) low enough that electron growth due to ionization can be neglected. (GHT)

  13. (Biological dosimetry)

    SciTech Connect

    Sega, G.A.

    1990-11-06

    The traveler participated in an International Symposium on Trends in Biological Dosimetry and presented an invited paper entitled, Adducts in sperm protamine and DNA vs mutation frequency.'' The purpose of the Symposium was to examine the applicability of new methods to study quantitatively the effects of xenobiotic agents (radiation and chemicals) on molecular, cellular and organ systems, with special emphasis on human biological dosimetry. The general areas covered at the meeting included studies on parent compounds and metabolites; protein adducts; DNA adducts; gene mutations; cytogenetic end-points and reproductive methods.

  14. Results from 2010 Caliban Criticality Dosimetry Intercomparison

    SciTech Connect

    Veinot, K. G.

    2011-10-12

    The external dosimetry program participated in a criticality dosimetry intercomparison conducted at the Caliban facility in Valduc, France in 2010. Representatives from the dosimetry and instrumentation groups were present during testing which included irradiations of whole-body beta/gamma (HBGT) and neutron thermoluminescent dosimeters (TLDs), a fixed nuclear accident dosimeter (FNAD), electronic alarming dosimeters, and a humanoid phantom filled with reference man concentrations of sodium. This report reviews the testing procedures, preparations, irradiations, and presents results of the tests.

  15. Monte Carlo simulation and film dosimetry for electron therapy in vicinity of a titanium mesh.

    PubMed

    Jabbari, Keyvan; Rostampour, Masoumeh; Roayaei, Mahnaz

    2014-07-08

    Titanium (Ti) mesh plates are used as a bone replacement in brain tumor surgeries. In the case of radiotherapy, these plates might interfere with the beam path. The purpose of this study is to evaluate the effect of titanium mesh on the dose distribution of electron fields. Simulations were performed using Monte Carlo BEAMnrc and DOSXYZnrc codes for 6 and 10 MeV electron beams. In Monte Carlo simulation, the shape of the titanium mesh was simulated. The simulated titanium mesh was considered as the one which is used in head and neck surgery with a thickness of 0.055 cm. First, by simulation, the percentage depth dose was obtained while the titanium mesh was present, and these values were then compared with the depth dose of homogeneous phantom with no titanium mesh. In the experimental measurements, the values of depth dose with titanium mesh and without titanium mesh in various depths were measured. The experiments were performed using a RW3 phantom with GAFCHROMIC EBT2 film. The results of experimental measurements were compared with values of depth dose obtained by simulation. In Monte Carlo simulation, as well as experimental measurements, for the voxels immediately beyond the titanium mesh, the change of the dose were evaluated. For this purpose the ratio of the dose for the case with titanium to the case without titanium was calculated as a function of titanium depth. For the voxels before the titanium mesh there was always an increase of the dose up to 13% with respect to the same voxel with no titanium mesh. This is because of the increased back scattering effect of the titanium mesh. The results also showed that for the voxel right beyond the titanium mesh, there is an increased or decreased dose to soft tissues, depending on the depth of the titanium mesh. For the regions before the depth of maximum dose, there is an increase of the dose up to 10% compared to the dose of the same depth in homogeneous phantom. Beyond the depth of maximum dose, there was a

  16. Electronic Devices and Systems. Energy Technology Series.

    ERIC Educational Resources Information Center

    Technical Education Research Centre-Southwest, Waco, TX.

    This course in electronic devices and systems is one of 16 courses in the Energy Technology Series developed for an Energy Conservation-and-Use Technology curriculum. Intended for use in two-year postsecondary technical institutions to prepare technicians for employment, the courses are also useful in industry for updating employees in…

  17. High Energy Electron Detection with ATIC

    NASA Technical Reports Server (NTRS)

    Chang, J.; Schmidt, W. K. H.; Adams, James H., Jr.; Ahn, H.; Ampe, J.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    The ATIC (Advanced Thin Ionization Calorimeter) balloon-borne ionization calorimeter is well suited to record and identify high energy cosmic ray electrons. The instrument was exposed to high-energy beams at CERN H2 bean-dine in September of 1999. We have simulated the performance of the instrument, and compare the simulations with actual high energy electron exposures at the CERN accelerator. Simulations and measurements do not compare exactly, in detail, but overall the simulations have predicted actual measured behavior quite well.

  18. Theory of directed electronic energy transfer.

    PubMed

    Andrews, David L; Crisp, Richard G

    2006-03-01

    The migration of electronic energy between molecules or chromophores in molecular solids is a well-studied phenomenon. The ability to exert control over the directionality of this transfer, by a variety of methods involving applied electrical or optical fields, holds promise for advances in fields including nanoelectronics and energy harvesting materials. In this paper, we review in detail a number of methods for directing energy transfer, also identifying potential applications.

  19. Monte Carlo single-cell dosimetry of Auger-electron emitting radionuclides

    NASA Astrophysics Data System (ADS)

    Bousis, C.; Emfietzoglou, D.; Hadjidoukas, P.; Nikjoo, H.

    2010-05-01

    A hybrid Monte Carlo transport scheme combining event-by-event and condensed-history simulation with a full account of energy-loss straggling was used to study the dosimetric characteristics of the Auger-emitting radionuclides 67Ga, 99mTc, 111In, 123I, 125I and 201Tl at the single-cell level. The influence of the intracellular localization of the Auger radionuclide upon cellular S-values, radial dose rate profiles and dose-volume-histograms (DVHs) was investigated. For the case where the radiopharmaceutical was either internalized into the cytoplasm or remained bound onto the cell surface (non-internalized), the dose to the cell nucleus was found to differ significantly from the MIRD values and other published data. In this case, the assumption of a homogeneous distribution throughout the cell is shown to significantly overestimate the nuclear dose. A dosimetric case study relevant to the radioimmunotherapy of single lymphoma B-cells with 125I and 123I is presented.

  20. 10 CFR 35.630 - Dosimetry equipment.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Dosimetry equipment. 35.630 Section 35.630 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Photon Emitting Remote Afterloader Units, Teletherapy Units, and Gamma Stereotactic Radiosurgery Units § 35.630 Dosimetry equipment. (a) Except for low dose...

  1. 10 CFR 35.630 - Dosimetry equipment.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Dosimetry equipment. 35.630 Section 35.630 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Photon Emitting Remote Afterloader Units, Teletherapy Units, and Gamma Stereotactic Radiosurgery Units § 35.630 Dosimetry equipment. (a) Except for low dose...

  2. 10 CFR 35.630 - Dosimetry equipment.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Dosimetry equipment. 35.630 Section 35.630 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Photon Emitting Remote Afterloader Units, Teletherapy Units, and Gamma Stereotactic Radiosurgery Units § 35.630 Dosimetry equipment. (a) Except for low dose...

  3. 10 CFR 35.630 - Dosimetry equipment.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Dosimetry equipment. 35.630 Section 35.630 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Photon Emitting Remote Afterloader Units, Teletherapy Units, and Gamma Stereotactic Radiosurgery Units § 35.630 Dosimetry equipment. (a) Except for low dose...

  4. 10 CFR 35.630 - Dosimetry equipment.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Dosimetry equipment. 35.630 Section 35.630 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Photon Emitting Remote Afterloader Units, Teletherapy Units, and Gamma Stereotactic Radiosurgery Units § 35.630 Dosimetry equipment. (a) Except for low dose...

  5. (Biological dosimetry)

    SciTech Connect

    Preston, R.J.

    1990-12-17

    The traveler attended the 1st International Conference on Biological Dosimetry in Madrid, Spain. This conference was organized to provide information to a general audience of biologists, physicists, radiotherapists, industrial hygiene personnel and individuals from related fields on the current ability of cytogenetic analysis to provide estimates of radiation dose in cases of occupational or environmental exposure. There is a growing interest in Spain in biological dosimetry because of the increased use of radiation sources for medical and occupational uses, and with this the anticipated and actual increase in numbers of overexposure. The traveler delivered the introductory lecture on Biological Dosimetry: Mechanistic Concepts'' that was intended to provide a framework by which the more applied lectures could be interpreted in a mechanistic way. A second component of the trip was to provide advice with regard to several recent cases of overexposure that had been or were being assessed by the Radiopathology and Radiotherapy Department of the Hospital General Gregorio Maranon'' in Madrid. The traveler had provided information on several of these, and had analyzed cells from some exposed or purportedly exposed individuals. The members of the biological dosimetry group were referred to individuals at REACTS at Oak Ridge Associated Universities for advice on follow-up treatment.

  6. Optimization of energetic electron energy degradation calculations

    NASA Astrophysics Data System (ADS)

    Swartz, W. E.

    1985-07-01

    It is pointed out that, in the past two decades, much progress has been made in the theoretical computation of energetic electron transport and thermalization in the ionosphere. The present investigation is concerned with an optimized scheme which uses the same discrete formalism at all energies, and guarantees numerical energy conservation independently of the energy grid size or configuration. The considered method was employed by Kelley et al. (1977) and by Swartz et al. (1979). Attention is given to energy degradation and reapportionment with energy conservation following inelastic collisions, energy reapportionment with energy conservation of emergent primaries following ionizing collisions, the establishment of consistent sources for numerical comparisons, and an example of an energy grid with the minimum number of cells.

  7. Portal dosimetry in wedged beams.

    PubMed

    Spreeuw, Hanno; Rozendaal, Roel; Camargo, Priscilla; Mans, Anton; Wendling, Markus; Olaciregui-Ruiz, Igor; Sonke, Jan-Jakob; Van Herk, Marcel; Mijnheer, Ben

    2015-05-08

    Portal dosimetry using electronic portal imaging devices (EPIDs) is often applied to verify high-energy photon beam treatments. Due to the change in photon energy spectrum, the resulting dose values are, however, not very accurate in the case of wedged beams if the pixel-to-dose conversion for the situation without wedge is used. A possible solution would be to consider a wedged beam as another photon beam quality requiring separate beam modeling of the dose calculation algorithm. The aim of this study was to investigate a more practical solution: to make aSi EPID-based dosimetry models also applicable for wedged beams without an extra commissioning effort of the parameters of the model. For this purpose two energy-dependent wedge multiplication factors have been introduced to be applied for portal images taken with and without a patient/phantom in the beam. These wedge multiplication factors were derived from EPID and ionization chamber measurements at the EPID level for wedged and nonwedged beams, both with and without a polystyrene slab phantom in the beam. This method was verified for an EPID dosimetry model used for wedged beams at three photon beam energies (6, 10, and 18 MV) by comparing dose values reconstructed in a phantom with data provided by a treatment planning system (TPS), as a function of field size, depth, and off-axis distance. Generally good agreement, within 2%, was observed for depths between dose maximum and 15 cm. Applying the new model to EPID dose measurements performed during ten breast cancer patient treatments with wedged 6 MV photon beams showed that the average isocenter underdosage of 5.3% was reduced to 0.4%. Gamma-evaluation (global 3%/3 mm) of these in vivo data showed an increase in percentage of points with γ ≤ 1 from 60.2% to 87.4%, while γmean reduced from 1.01 to 0.55. It can be concluded that, for wedged beams, the multiplication of EPID pixel values with an energy-dependent correction factor provides good agreement

  8. Stability of electron energy in the Fermilab electron cooler

    SciTech Connect

    Shemyakin, A.; Carlson, K.; Prost, L.R.; Saewert, G.; /Fermilab

    2009-02-01

    A powerful electron beam (4.3 MeV, 0.1 A DC) generated by an electrostatic accelerator has been used at Fermilab for three years to cool antiprotons in the Recycler ring. For electron cooling to be effective, the electron energy should not deviate from its optimum value by more than 500V. The main tool for studying the energy stability is the electron beam position in a high-dispersion area. The energy ripple (frequencies above 0.2 Hz) was found to be less than 150 eV rms; the main cause of the ripple is the fluctuations of the chain current. In addition, the energy can drift to up to several keV that is traced to two main sources. One of them is a drift of the charging current, and another is a temperature dependence of generating voltmeter readings. The paper describes the efforts to reach the required level of stability as well as the setup, diagnostics, results of measurements, and operational experience.

  9. Dosimetry and fast neutron energies characterization of photoneutrons produced in some medical linear accelerators

    NASA Astrophysics Data System (ADS)

    Khaled, N. E.; Attalla, E. M.; Ammar, H.; Khalil, W.

    2011-12-01

    This work focusses on the estimation of induced photoneutrons energy, fluence, and strength using nuclear track detector (NTD) (CR-39). Photoneutron energy was estimated for three different linear accelerators, LINACs as an example for the commonly used accelerators. For high-energy linear accelerators, neutrons are produced as a consequence of photonuclear reactions in the target nuclei, accelerator head, field-flattening filters and beam collimators, and other irradiated objects. NTD (CR-39) is used to evaluate energy and fluence of the fast neutron. Track length is used to estimate fast photoneutrons energy for linear accelerators (Elekta 10 MV, Elekta 15 MV, and Varian 15 MV). Results show that the estimated neutron energies for the three chosen examples of LINACs reveals neutron energies in the range of 1-2 MeV for 10 and 15 MV X-ray beams. The fluence of neutrons at the isocenter (Φtotal) is found to be (4×106 n cm2 Gy-1) for Elekta machine 10 MV. The neutron source strengths Q are calculated. It was found to be 0.2×1012 n Gy-1 X-ray at the isocenter. This work represents simple, low cost, and accurate methods of measuring fast neutrons dose and energies.

  10. A STUDY ON THE UNCERTAINTY FOR THE ROUTINE DOSIMETRY SERVICE AT THE LEBANESE ATOMIC ENERGY COMMISSION USING HARSHAW 8814 DOSEMETERS.

    PubMed

    Rizk, C; Vanhavere, F

    2016-09-01

    The personal dosimetry service at the Lebanese Atomic Energy Commission uses Harshaw 8814 cards with LiF:Mg,Ti detectors. The dosemeters are read in a Harshaw 6600 TLD reader. In the process of accreditation for the ISO 17025 standard((1)), different influence factors are investigated and the uncertainty has been determined. The Individual Monitoring Service Laboratory-LAEC reads the dosemeters once it receives them from the customer, and new cards are immediately given for the next wearing period. The wearing period is 2 months. The dosemeter results are reported to the customers without background subtraction. Both Hp(10) and Hp(0.07) are reported. For this paper, only the uncertainty on Hp(10) will be focussed. The following factors are taken into account for the uncertainty: calibration factor, dosemeter homogeneity and repeatability, energy and angular dependence, non-linearity, temperature dependence, etc. Also the detection limit was determined. One of the important factors is the correction for fading. This fading correction depends on the procedure used such as storage temperatures, the time-temperature profile of the read-out, pre-heat and annealing conditions. Pre- and post-irradiation fading curves were measured for a storage period up to 182 d at room temperature (15-25°C). The resulting final combined standard uncertainty on the reported doses is of the order of 24 % for doses of ∼1 mSv. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Neutron personnel dosimetry

    SciTech Connect

    Griffith, R.V.

    1981-06-16

    The current state-of-the-art in neutron personnel dosimetry is reviewed. Topics covered include dosimetry needs and alternatives, current dosimetry approaches, personnel monitoring devices, calibration strategies, and future developments. (ACR)

  12. SU-E-T-308: Systematic Characterization of the Energy Response of Different LiF TLD Crystals for Dosimetry Applications

    SciTech Connect

    Pena, E; Caprile, P; Sanchez-Nieto, B

    2014-06-01

    Purpose: The thermoluminiscense dosimeters (TLDs) are widely used in personal and clinical dosimetry due to its small size, good sensitivity and tissue equivalence, among other advantages. This study presents the characterization of Lithium Fluoride based TLDs, in terms of their absorbed dose response to successive irradiation cycles in a broad range of beam energies, measured under reference conditions. Methods: Four types of Harshaw TLD chips were used: TLD-100, TLD-600 TLD-700 and 100-H. They were irradiated with 10 photon beams of different energy spectrums, from 28 kVp to 18MV (in 30 consecutive cycles for 6 and 18 MV). Results: It was found that the response of the dosimetric system was stabilized (less than ±3%) after 10 cycles for TLD-600 and TLD-700. In the case of TLD-100 and TLD-100H this dependence was not observed. A decreased response to increasing beam energy in terms of absorbed dose to water was observed, as expected, except for TLD-100H which showed the opposite behavior. The less energy dependent detector was the TLD-100H exhibiting a maximum deviation of 12%. The highest variation observed was 33% for TLD-100. The study allowed the determination of calibration factors in absorbed dose for a wide range of energies and materials for different dosimetric applications, such as in-vivo dosimetry during imaging and radiotherapy. Conclusion: The study allowed the determination of calibration factors in absorbed dose for a wide range of energies and materials for different dosimetric applications, such as in-vivo dosimetry during imaging and radiotherapy.

  13. Image simulation for electron energy loss spectroscopy

    SciTech Connect

    Oxley, Mark P.; Pennycook, Stephen J.

    2007-10-22

    In this paper, aberration correction of the probe forming optics of the scanning transmission electron microscope has allowed the probe-forming aperture to be increased in size, resulting in probes of the order of 1 Å in diameter. The next generation of correctors promise even smaller probes. Improved spectrometer optics also offers the possibility of larger electron energy loss spectrometry detectors. The localization of images based on core-loss electron energy loss spectroscopy is examined as function of both probe-forming aperture and detector size. The effective ionization is nonlocal in nature, and two common local approximations are compared to full nonlocal calculations. Finally, the affect of the channelling of the electron probe within the sample is also discussed.

  14. Image simulation for electron energy loss spectroscopy

    DOE PAGES

    Oxley, Mark P.; Pennycook, Stephen J.

    2007-10-22

    In this paper, aberration correction of the probe forming optics of the scanning transmission electron microscope has allowed the probe-forming aperture to be increased in size, resulting in probes of the order of 1 Å in diameter. The next generation of correctors promise even smaller probes. Improved spectrometer optics also offers the possibility of larger electron energy loss spectrometry detectors. The localization of images based on core-loss electron energy loss spectroscopy is examined as function of both probe-forming aperture and detector size. The effective ionization is nonlocal in nature, and two common local approximations are compared to full nonlocal calculations.more » Finally, the affect of the channelling of the electron probe within the sample is also discussed.« less

  15. Collective Energy Loss of Attosecond Electron Bunches

    NASA Astrophysics Data System (ADS)

    Ogata, Atsushi; Kondoh, Takafumi; Norizawa, Kimihiro; Yang, Jinfeng; Yoshida, Yoichi

    2009-05-01

    The formalism of the stopping power for cluster beams was adapted to the stopping power for short electron bunches using the wake field of a medium characterized by plasma frequency. It was shown that, if the bunch length is in the 100 as range, the energy loss of the bunch is proportional to the square of the number of electrons in the bunch. If the number of electrons is large, the collective loss is able to excite a high-energy density state in the target. The target medium and beam parameters were examined to demonstrate the collective effect, and an accelerator system consisting of an accumulation ring and an inverse free-electron laser (IFEL) was considered to produce attosecond bunches.

  16. Electron energy relaxation of electron swarms in RF fields

    SciTech Connect

    Bzenic, S.A.; Petrovic, Z.Lj.; Maeda, K.; Makabe, T.

    1995-12-31

    Efficient modeling of RF discharges requires approximate treatment of non-local transport of electrons both in time and space. Exact solution of space and time dependent Boltzmann equation is both very difficult and time consuming when taken in conjunction with self consistent calculation of the development of electric field and so are the Monte Carlo simulations. Therefore approximate methods have been developed based on fluid models which make modeling of one dimensional RF plasmas tractable and modeling of two dimensional plasmas becomes possible. The crucial problem in such numerical models is the non local electron transport and it is treated by different approximate schemes, one of the most successful being the Relaxation Continuum Theory (RCT). Critical part of the RCT scheme is application of relaxation times for various processes. The most important is the energy relaxation lifetime but it is of limited value when high energy electrons are important component of the energy distribution function. In addition behavior of different inelastic processes will depend not on the threshold energy and energy distribution time dependence above that threshold. In this paper we follow the relaxation of the mean energy and other properties of electron swarms in the high frequency RF field. We use both the specially developed Monte Carlo simulation technique-(MCS) and the direct numeric procedure for solving the Boltzmann equation. As the basis for calculations we use the cross section set for the Reid`s ramp model which has been used extensively in tests of numerical techniques and thus the accurate values of the transport coefficients are very well known.

  17. Cosmic Ray Dosimetry

    NASA Astrophysics Data System (ADS)

    Si Belkhir, F.; Attallah, R.

    2010-10-01

    Radiation levels at aircraft cruising altitudes are twenty times higher than at sea level. Thus, on average, a typical airline pilot receives a larger annual radiation dose than some one working in nuclear industry. The main source of this radiation is from galactic cosmic radiation, high energy particles generated by exploding stars within our own galaxy. In this work we study cosmic rays dosimetry at various aviation altitudes using the PARMA model.

  18. Electron energy loss spectrometry of interstellar diamonds

    NASA Technical Reports Server (NTRS)

    Bernatowicz, Thomas J.; Gibbons, Patrick C.; Lewis, Roy S.

    1990-01-01

    The results are reported of electron energy loss spectra (EELS) measurements on diamond residues from carbonaceous meteorites designed to elucidate the structure and composition of interstellar diamonds. Dynamic effective medium theory is used to model the dielectric properties of the diamonds and in particular to synthesize the observed spectra as mixtures of diamond and various pi-bonded carbons. The results are shown to be quantitatively consistent with the idea that diamonds and their surfaces are the only contributors to the electron energy loss spectra of the diamond residues and that these peculiar spectra are the result of the exceptionally small grain size and large specific surface area of the interstellar diamonds.

  19. On Puthoff's Semiclassical Electron and Vacuum Energy

    NASA Astrophysics Data System (ADS)

    Pereira, N. R.

    2016-12-01

    A possible connection between a point electron and vacuum energy was recently claimed by Puthoff (Int. J. Theor. Phys. 46, 3005 (2007)). He envisions a point electron as an ideally conducting spherical shell with a distributed charge on the surface, in equilibrium with the radiation pressure from electromagnetic vacuum fluctuations on the outside, and claims that his analysis demonstrates the reality of high-energy-density vacuum fluctuation fields. The present paper finds, instead, that the analysis is meaningless without specific knowledge on the cutoff frequency that is a free parameter in the model.

  20. Electron energy loss spectrometry of interstellar diamonds

    NASA Technical Reports Server (NTRS)

    Bernatowicz, Thomas J.; Gibbons, Patrick C.; Lewis, Roy S.

    1990-01-01

    The results are reported of electron energy loss spectra (EELS) measurements on diamond residues from carbonaceous meteorites designed to elucidate the structure and composition of interstellar diamonds. Dynamic effective medium theory is used to model the dielectric properties of the diamonds and in particular to synthesize the observed spectra as mixtures of diamond and various pi-bonded carbons. The results are shown to be quantitatively consistent with the idea that diamonds and their surfaces are the only contributors to the electron energy loss spectra of the diamond residues and that these peculiar spectra are the result of the exceptionally small grain size and large specific surface area of the interstellar diamonds.

  1. SU-E-T-284: Revisiting Reference Dosimetry for the Model S700 Axxent 50 KV{sub p} Electronic Brachytherapy Source

    SciTech Connect

    Hiatt, JR; Rivard, MJ

    2014-06-01

    Purpose: The model S700 Axxent electronic brachytherapy source by Xoft was characterized in 2006 by Rivard et al. The source design was modified in 2006 to include a plastic centering insert at the source tip to more accurately position the anode. The objectives of the current study were to establish an accurate Monte Carlo source model for simulation purposes, to dosimetrically characterize the new source and obtain its TG-43 brachytherapy dosimetry parameters, and to determine dose differences between the source with and without the centering insert. Methods: Design information from dissected sources and vendor-supplied CAD drawings were used to devise the source model for radiation transport simulations of dose distributions in a water phantom. Collision kerma was estimated as a function of radial distance, r, and polar angle, θ, for determination of reference TG-43 dosimetry parameters. Simulations were run for 10{sup 10} histories, resulting in statistical uncertainties on the transverse plane of 0.03% at r=1 cm and 0.08% at r=10 cm. Results: The dose rate distribution the transverse plane did not change beyond 2% between the 2006 model and the current study. While differences exceeding 15% were observed near the source distal tip, these diminished to within 2% for r>1.5 cm. Differences exceeding a factor of two were observed near θ=150° and in contact with the source, but diminished to within 20% at r=10 cm. Conclusions: Changes in source design influenced the overall dose rate and distribution by more than 2% over a third of the available solid angle external from the source. For clinical applications using balloons or applicators with tissue located within 5 cm from the source, dose differences exceeding 2% were observed only for θ>110°. This study carefully examined the current source geometry and presents a modern reference TG-43 dosimetry dataset for the model S700 source.

  2. Design and dosimetry characteristics of a commercial applicator system for intra-operative electron beam therapy utilizing ELEKTA Precise accelerator.

    PubMed

    Nevelsky, Alexander; Bernstein, Zvi; Bar-Deroma, Raquel; Kuten, Abraham; Orion, Itzhak

    2010-07-19

    The design concept and dosimetric characteristics of a new applicator system for intraoperative radiation therapy (IORT) are presented in this work. A new hard-docking commercial system includes polymethylmethacrylate (PMMA) applicators with different diameters and applicator end angles and a set of secondary lead collimators. A telescopic device allows changing of source-to-surface distance (SSD). All measurements were performed for 6, 9, 12 and 18 MeV electron energies. Output factors and percentage depth doses (PDD) were measured in a water phantom using a plane-parallel ion chamber. Isodose contours and radiation leakage were measured using a solid water phantom and radiographic films. The dependence of PDD on SSD was checked for the applicators with the smallest and the biggest diameters. SSD dependence of the output factors was measured. Hardcopies of PDD and isodose contours were prepared to help the team during the procedure on deciding applicator size and energy to be chosen. Applicator output factors are a function of energy, applicator size and applicator type. Dependence of SSD correction factors on applicator size and applicator type was found to be weak. The same SSD correction will be applied for all applicators in use for each energy. The radiation leakage through the applicators is clinically acceptable. The applicator system enables effective collimation of electron beams for IORT. The data presented are sufficient for applicator, energy and monitor unit selection for IORT treatment of a patient.

  3. High-energy neutron dosimetry at the Clinton P. Anderson Meson Physics Facility

    SciTech Connect

    Mallett, M.W.; Vasilik, D.G.; Littlejohn, G.J.; Cortez, J.R.

    1990-01-01

    Neutron energy spectrum measurements performed at the Clinton P. Anderson Meson Physics Facility indicated potential areas for high energy neutron exposure to personnel. The low sensitivity of the Los Alamos thermoluminescent dosimeter (TLD) to high energy neutrons warranted issuing a NTA dosimeter in addition to the TLD badge to employees entering these areas. The dosimeter consists of a plastic holder surrounding NTA film that has been desiccated and sealed in a dry nitrogen environment. A study of the fading of latent images in NTA film demonstrated the success of this packaging method to control the phenomenon. The Los Alamos NTA dosimeter is characterized and the fading study discussed. 10 refs., 4 figs., 2 tabs.

  4. Hanford External Dosimetry Technical Basis Manual PNL-MA-842

    SciTech Connect

    Rathbone, Bruce A.

    2011-04-04

    The Hanford External Dosimetry Technical Basis Manual PNL-MA-842 documents the design and implementation of the external dosimetry system used at the U.S. Department of Energy (DOE) Hanford site. The manual describes the dosimeter design, processing protocols, dose calculation methodology, radiation fields encountered, dosimeter response characteristics, limitations of dosimeter design under field conditions, and makes recommendations for effective use of the dosimeters in the field. The manual describes the technical basis for the dosimetry system in a manner intended to help ensure defensibility of the dose of record at Hanford and to demonstrate compliance with requirements of 10 CFR 835, the DOE Laboratory Accreditation Program, the DOE Richland Operations Office, DOE Office of River Protection, DOE Pacific Northwest Office of Science, and Hanford’s DOE contractors. The dosimetry system is operated by the Pacific Northwest National Laboratory (PNNL) Hanford External Dosimetry Program which provides dosimetry services to PNNL and all Hanford contractors. The primary users of this manual are DOE and DOE contractors at Hanford using the dosimetry services of PNNL. Development and maintenance of this manual is funded directly by DOE and DOE contractors. Its contents have been reviewed and approved by DOE and DOE contractors at Hanford through the Hanford Personnel Dosimetry Advisory Committee which is chartered and chaired by DOE-RL and serves as means of coordinating dosimetry practices across contractors at Hanford. This manual was established in 1996. Since its inception, it has been revised many times and maintained by PNNL as a controlled document with controlled distribution. The first revision to be released through PNNL’s Electronic Records & Information Capture Architecture database was designated Revision 0. Revision numbers that are whole numbers reflect major revisions typically involving significant changes to all chapters in the document. Revision

  5. Hanford External Dosimetry Technical Basis Manual PNL-MA-842

    SciTech Connect

    Rathbone, Bruce A.

    2010-04-01

    The Hanford External Dosimetry Technical Basis Manual PNL-MA-842 documents the design and implementation of the external dosimetry system used at the U.S. Department of Energy (DOE) Hanford site. The manual describes the dosimeter design, processing protocols, dose calculation methodology, radiation fields encountered, dosimeter response characteristics, limitations of dosimeter design under field conditions, and makes recommendations for effective use of the dosimeters in the field. The manual describes the technical basis for the dosimetry system in a manner intended to help ensure defensibility of the dose of record at Hanford and to demonstrate compliance with requirements of 10 CFR 835, the DOE Laboratory Accreditation Program, the DOE Richland Operations Office, DOE Office of River Protection, DOE Pacific Northwest Office of Science, and Hanford’s DOE contractors. The dosimetry system is operated by the Pacific Northwest National Laboratory (PNNL) Hanford External Dosimetry Program which provides dosimetry services to PNNL and all Hanford contractors. The primary users of this manual are DOE and DOE contractors at Hanford using the dosimetry services of PNNL. Development and maintenance of this manual is funded directly by DOE and DOE contractors. Its contents have been reviewed and approved by DOE and DOE contractors at Hanford through the Hanford Personnel Dosimetry Advisory Committee which is chartered and chaired by DOE-RL and serves as means of coordinating dosimetry practices across contractors at Hanford. This manual was established in 1996. Since its inception, it has been revised many times and maintained by PNNL as a controlled document with controlled distribution. The first revision to be released through PNNL’s Electronic Records & Information Capture Architecture database was designated Revision 0. Revision numbers that are whole numbers reflect major revisions typically involving significant changes to all chapters in the document. Revision

  6. Radiation dosimetry.

    PubMed Central

    Cameron, J

    1991-01-01

    This article summarizes the basic facts about the measurement of ionizing radiation, usually referred to as radiation dosimetry. The article defines the common radiation quantities and units; gives typical levels of natural radiation and medical exposures; and describes the most important biological effects of radiation and the methods used to measure radiation. Finally, a proposal is made for a new radiation risk unit to make radiation risks more understandable to nonspecialists. PMID:2040250

  7. Fluctuations in energy loss and their implications for dosimetry and radiobiology

    NASA Technical Reports Server (NTRS)

    Baily, N. A.; Steigerwalt, J. E.

    1972-01-01

    Serious consideration of the physics of energy deposition indicates that a fundamental change in the interpretation of absorbed dose is required at least for considerations of effects in biological systems. In addition, theoretical approaches to radiobiology and microdosimetry seem to require statistical considerations incorporating frequency distributions of the magnitude of the event sizes within the volume of interest.

  8. 10 CFR 835.1304 - Nuclear accident dosimetry.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false Nuclear accident dosimetry. 835.1304 Section 835.1304... Nuclear accident dosimetry. (a) Installations possessing sufficient quantities of fissile material to... nuclear accident is possible, shall provide nuclear accident dosimetry for those individuals. (b) Nuclear...

  9. 10 CFR 835.1304 - Nuclear accident dosimetry.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Nuclear accident dosimetry. 835.1304 Section 835.1304... Nuclear accident dosimetry. (a) Installations possessing sufficient quantities of fissile material to... nuclear accident is possible, shall provide nuclear accident dosimetry for those individuals. (b) Nuclear...

  10. 10 CFR 835.1304 - Nuclear accident dosimetry.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Nuclear accident dosimetry. 835.1304 Section 835.1304... Nuclear accident dosimetry. (a) Installations possessing sufficient quantities of fissile material to... nuclear accident is possible, shall provide nuclear accident dosimetry for those individuals. (b) Nuclear...

  11. 10 CFR 835.1304 - Nuclear accident dosimetry.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Nuclear accident dosimetry. 835.1304 Section 835.1304... Nuclear accident dosimetry. (a) Installations possessing sufficient quantities of fissile material to... nuclear accident is possible, shall provide nuclear accident dosimetry for those individuals. (b)...

  12. 10 CFR 835.1304 - Nuclear accident dosimetry.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Nuclear accident dosimetry. 835.1304 Section 835.1304... Nuclear accident dosimetry. (a) Installations possessing sufficient quantities of fissile material to... nuclear accident is possible, shall provide nuclear accident dosimetry for those individuals. (b) Nuclear...

  13. Applications for Energy Recovering Free Electron Lasers

    SciTech Connect

    George Neil

    2007-08-01

    The availability of high-power, high-brilliance sources of tunable photons from energy-recovered Free Electron Lasers is opening up whole new fields of application of accelerators in industry. This talk will review some of the ideas that are already being put into production, and some of the newer ideas that are still under development.

  14. Electron energy flux in the solar wind.

    NASA Technical Reports Server (NTRS)

    Ogilvie, K. W.; Scudder, J. D.; Sugiura, M.

    1971-01-01

    Description of studies of electrons between 10 eV and 9.9 keV in the solar wind. The transport of energy in the rest frame of the plasma is evaluated and shown to be parallel to the interplanetary magnetic field. The presence of electrons from solar events causes this energy-flux density to exceed the heat flow due to thermal electrons. In one such event, the observations are shown to be consistent with the solar-electron observations made at higher energies. When observations are made at a point connected to the earth's bow shock by an interplanetary-field line, a comparatively large energy flux along the field toward the sun is observed, but the heat flow remains outwardly directed during this time interval. In either situation the heat flow is found to be consistent with measurements made on Vela satellites by a different method. These values, less than .01 ergs/sq cm/sec, are sufficiently low to require modifications to the Spitzer-Harm conductivity formula for use in solar-wind theories.

  15. Electron impact ionization at relativistic energies

    NASA Astrophysics Data System (ADS)

    Belkacem, Ali; Cole, Kyra; Hertlein, Marcus; Feinberg, Benedict; Schriel, Ralf; Adaniya, Hidehito; Neumann, Nadine

    2004-05-01

    We used an ion time-of-flight set up based on a pulsed high-voltage extraction technique to study the charge state distribution of He, Ne, Ar, Kr and Xe atoms after impact of 0.2 to 1.5 GeV electrons. The relativistic electron beam is produced at the booster beamline at the Advanced Light Source at the Lawrence Berkeley National Laboratory. The yield of ions drops drastically with the charge state number. Our measurements show that the ratio of doubly-charge to singly-charged ions reaches an asymptotic limit of 0.0028 for He already at electron energies below 40 MeV. However we observe a very pronounced energy dependence of the ratio of the doubly-charged to singly-charged ions for the heavier atoms such as Kr and Xe in the 0.2 - 1.5 GeV energy range. This energy dependence takes place way above the energy at which theories based on the equivalent photon method or the born- approximation predict the asymptotic limit to be reached. This may be an indication of new physics coming into play in the photoionization process due to relativistic effects.

  16. Influence of trace elements in human tissue in low-energy photon brachytherapy dosimetry

    NASA Astrophysics Data System (ADS)

    White, Shane A.; Landry, Guillaume; van Gils, Francis; Verhaegen, Frank; Reniers, Brigitte

    2012-06-01

    The aim of this paper is to determine the dosimetric impact of trace elements in human tissues for low-energy photon sources used in brachytherapy. Monte Carlo dose calculations were used to investigate the dosimetric effect of trace elements present in normal or cancerous human tissues. The effect of individual traces (atomic number Z = 11-30) was studied in soft tissue irradiated by low-energy brachytherapy sources. Three other tissue types (prostate, adipose and mammary gland) were also simulated with varying trace concentrations to quantify the contribution of each trace to the dose distribution. The dose differences between cancerous and healthy prostate tissues were calculated in single- and multi-source geometries. The presence of traces in a tissue produces a difference in the dose distribution that is dependent on Z and the concentration of the trace. Low-Z traces (Na) have a negligible effect (<0.3%) in all tissues, while higher Z (K) had a larger effect (>3%). There is a potentially significant difference in the dose distribution between cancerous and healthy prostate tissues (4%) and even larger if compared to the trace-free composition (15%) in both single- and multi-sourced geometries. Trace elements have a non-negligible (up to 8% in prostate D90) effect on the dose in tissues irradiated with low-energy photon sources. This study underlines the need for further investigation into accurate determination of the trace composition of tissues associated with low-energy brachytherapy. Alternatively, trace elements could be incorporated as a source of uncertainty in dose calculations. This work was part of an invited presentation at the ‘International Workshop on Recent Advances in Monte Carlo Techniques for Radiation Therapy’, held in Montreal, June 8-10, 2011.

  17. DOSEXPRT: A bioassay dosimetry code for Martin Marietta Energy Systems, Inc

    SciTech Connect

    Ward, R.C.; Eckerman, K.F.

    1992-04-01

    The bioassay code DOSEXPRT was developed for Martin Marietta Energy Systems, Inc., to provide compliance with Department of Energy (DOE) Order 5480, Chapter 11. DOSEXPRT computes the intake of a radionuclide in any year (considering both acute and chronic intakes) from in vivo measurements of the retained activity and/or measurements of the activity in excreta. The committed effective and organ doses for the intake are computed as well as the effective and organ doses expected to be received in each calendar year out to 50 years beyond the year of intake. The bioassay records used as input for DOSEXPRT are extracted from the Martin Marietta Energy Systems Occupational Health Information System (OHIS). DOSEXPRT implements a set of algorithms with parameters governing the translocation, retention, and excretion of the nuclide contained in data files specific to the nuclide. These files also contain dose-per-unit-intake coefficients used to compute the committed dose equivalent for the intakes in the year. Annual organ and effective doses are computed using additional dose-rate files that contain data on the dose rate at various times following a unit intake. If measurements are presented for more than one assay for a given nuclide, DOSEXPRT estimates the intake by applying weights assigned in the nuclide file for each assay. DOSEXPRT is accessed off the OHIS MENU No. 4 and designed to be run as a batch processor, but can also be run interactively for testing purposes.

  18. DOSEXPRT: A bioassay dosimetry code for Martin Marietta Energy Systems, Inc.

    SciTech Connect

    Ward, R.C.; Eckerman, K.F.

    1992-04-01

    The bioassay code DOSEXPRT was developed for Martin Marietta Energy Systems, Inc., to provide compliance with Department of Energy (DOE) Order 5480, Chapter 11. DOSEXPRT computes the intake of a radionuclide in any year (considering both acute and chronic intakes) from in vivo measurements of the retained activity and/or measurements of the activity in excreta. The committed effective and organ doses for the intake are computed as well as the effective and organ doses expected to be received in each calendar year out to 50 years beyond the year of intake. The bioassay records used as input for DOSEXPRT are extracted from the Martin Marietta Energy Systems Occupational Health Information System (OHIS). DOSEXPRT implements a set of algorithms with parameters governing the translocation, retention, and excretion of the nuclide contained in data files specific to the nuclide. These files also contain dose-per-unit-intake coefficients used to compute the committed dose equivalent for the intakes in the year. Annual organ and effective doses are computed using additional dose-rate files that contain data on the dose rate at various times following a unit intake. If measurements are presented for more than one assay for a given nuclide, DOSEXPRT estimates the intake by applying weights assigned in the nuclide file for each assay. DOSEXPRT is accessed off the OHIS MENU No. 4 and designed to be run as a batch processor, but can also be run interactively for testing purposes.

  19. Low-energy electron scattering by pyrazine

    SciTech Connect

    Winstead, Carl; McKoy, Vincent

    2007-07-15

    We report cross sections for low-energy elastic electron collisions with the diazabenzene molecule pyrazine, obtained from first-principles calculations. The integral elastic cross section exhibits three sharp peaks that are nominally shape resonances associated with trapping in the vacant {pi}* molecular orbitals. Although the two lowest-energy resonances do in fact prove to be nearly pure single-channel shape resonances, the third contains a considerable admixture of core-excited character, and accounting for this channel coupling effect is essential to obtaining an accurate resonance energy. Such resonant channel coupling has implications for electron interactions with the DNA bases, especially the pyrimidine bases for which pyrazine is a close analog. In the absence of data on pyrazine itself, we compare our elastic differential cross section to measurements on benzene and find close agreement.

  20. Electronic excitation of molecular hydrogen by low-energy electrons

    NASA Astrophysics Data System (ADS)

    Hargreaves, Leigh

    2016-09-01

    Molecular hydrogen is the most abundant element in the universe, particularly in interstellar plasmas such as atmospheres of gas giant planets and stars. Electron collision data for hydrogen is critical to interpreting the spectroscopy of interstellar objects, as well as being of applied value for modelling technological plasmas. Hydrogen is also fundamentally interesting, as while highly accurate wave functions for this simple molecule are available, providing an accurate, ab initio, treatment the collision dynamics has proven challenging, on account of the need to have a complete description of channel coupling and polarization effects. To date, no single theoretical approach has been able to replicate experimental results across all transitions and incident energies, while the experimental database that is available is far from complete and not all available measurements are in satisfactory agreement. In this talk, we present differential and integral cross section measurements for electronic excitation cross sections for molecular hydrogen by low-energy electron impact. The data were measured at incident energies below 20eV, using a well-tested crossed beam apparatus and employing a moveable gas source approach to ensure that background contributions to the scattering are accurately accounted for. These measurements are compared with new theoretical results employing the convergent close coupling approach.

  1. Non-reference condition correction factor kNR of typical radiation detectors applied for the dosimetry of high-energy photon fields in radiotherapy.

    PubMed

    Chofor, Ndimofor; Harder, Dietrich; Poppe, Björn

    2012-09-01

    According to accepted dosimetry protocols, the "radiation quality correction factor"k(Q) accounts for the energy-dependent changes of detector responses under the conditions of clinical dosimetry for high-energy photon radiations. More precisely, a factor k(QR) is valid under reference conditions, i.e. at a point on the beam axis at depth 10 cm in a large water phantom, for 10×10 cm(2) field size, SSD 100 cm and the given radiation quality with quality index Q. Therefore, a further correction factor k(NR) has been introduced to correct for the influences of spectral quality changes when detectors are used under non-reference conditions such as other depths, field sizes and off-axis distances, while under reference conditions k(NR) is normalized to unity. In this paper, values of k(NR) are calculated for 6 and 15 MV photon beams, using published data of the energy-dependent responses of various radiation detectors to monoenergetic photon radiations, and weighting these responses with validated photon spectra of clinical high-energy photon beams from own Monte-Carlo-calculations for a wide variation of the non-reference conditions within a large water phantom. Our results confirm the observation by Scarboro et al. [26] that k(NR) can be represented by a unique function of the mean energy Em, weighted by the spectral photon fluence. Accordingly, the numerical variations of Em with depth, field size and off-axis distance have been provided. Throughout all considered conditions, the deviations of the k(NR) values from unity are at most 2% for a Farmer type ion chamber, and they remain below 15% for the thermoluminescent detectors LiF:Mg,Ti and LiF:Mg,Cu,P. For the shielded diode EDP-10, k(NR) varies from unity up to 20%, while the unshielded diode EDD-5 shows deviations up to 60% in the peripheral region. Thereby, the restricted application field of unshielded diodes has been clarified. For small field dosimetry purposes k(NR) can be converted into k(NCSF), the non

  2. Hanford External Dosimetry Program

    SciTech Connect

    Fix, J.J.

    1990-10-01

    This document describes the Hanford External Dosimetry Program as it is administered by Pacific Northwest Laboratory (PNL) in support of the US Department of Energy (DOE) and its Hanford contractors. Program services include administrating the Hanford personnel dosimeter processing program and ensuring that the related dosimeter data accurately reflect occupational dose received by Hanford personnel or visitors. Specific chapters of this report deal with the following subjects: personnel dosimetry organizations at Hanford and the associated DOE and contractor exposure guidelines; types, characteristics, and procurement of personnel dosimeters used at Hanford; personnel dosimeter identification, acceptance testing, accountability, and exchange; dosimeter processing and data recording practices; standard sources, calibration factors, and calibration processes (including algorithms) used for calibrating Hanford personnel dosimeters; system operating parameters required for assurance of dosimeter processing quality control; special dose evaluation methods applied for individuals under abnormal circumstances (i.e., lost results, etc.); and methods for evaluating personnel doses from nuclear accidents. 1 ref., 14 figs., 5 tabs.

  3. Prostate PDT dosimetry

    PubMed Central

    Zhu, Timothy C.; Finlay, Jarod C.

    2015-01-01

    Summary We provide a review of the current state of dosimetry in prostate photodynamic therapy (PDT). PDT of the human prostate has been performed with a number of different photosensitizers and with a variety of dosimetry schemes. The simplest clinical light dose prescription is to quantify the total light energy emitted per length (J/cm) of cylindrical diffusing fibers (CDF) for patients treated with a defined photosensitizer injection per body weight. However, this approach does not take into account the light scattering by tissue and usually underestimates the local light fluence rate, and consequently the fluence. Techniques have been developed to characterize tissue optical properties and light fluence rates in vivo using interstitial measurements during prostate PDT. Optical methods have been developed to characterize tissue absorption and scattering spectra, which in turn provide information about tissue oxygenation and drug concentration. Fluorescence techniques can be used to quantify drug concentrations and photobleaching rates of photosensitizers. PMID:25046988

  4. Low Energy Electron Scattering from Fuels

    NASA Astrophysics Data System (ADS)

    Lopes, M. C. A.; Silva, D. G. M.; Bettega, M. H. F.; da Costa, R. F.; Lima, M. A. P.; Khakoo, M. A.; Winstead, C.; McKoy, V.

    2012-11-01

    In order to understand and optimize processes occurring during the ignition of plasma and its consequences in post-discharge for an internal combustion engine, especially considering the spark plug, we have produced in this work some basic information necessary to modeling spark ignition in alcohol- fuelled engines. Total cross sections of electron scattering by methanol and ethanol molecules in the energy range from 60 to 500 eV are reported, using the linear transmission method based on the Beer-Lambert law to first approximation. Aditionally to that, measurements and calculations of differential cross sections for elastic low-energy (rotationally unresolved) electron scattering were also discussed, for impact energies of 1, 2, 5, 10, 15, 20, 30, 50, and 100 eV and for scattering angles of 5°-130°. The measurements were obtained using the relative flow method with an aperture source, and calculations using two different implementations of the Schwinger multichannel method, one that takes all electrons into account and is adapted for parallel computers, and another that uses pseudopotentials and considers only the valence electrons.

  5. Low Energy Electron Impact Excitation of Water

    NASA Astrophysics Data System (ADS)

    Ralphs, Kevin; Serna, Gabriela; Hargreaves, Leigh R.; Khakoo, Murtadha A.; Winstead, Carl; McKoy, B. Vincent

    2011-10-01

    We present normalized absolute differential and integral cross-section measurements for the low energy electron impact excitation of the lowest dissociative 3B1, 1B1,3A1 and 1A1 states of H2O. The DCS were taken at incident energies of 9 eV, 10 eV, 12 eV, 15 eV and 20 eV and scattering angles of 15° to 130° and normalized to the elastic electron scattering measurements of. The DCS were obtained after a sophisticated unfolding of the electron energy loss spectrum of water using photoabsorption data in the literature as investigated by Thorn et al.. Our measurements extend those of to near-threshold energies. We find both important agreements and differences between our DCS and those of. Comparison to our theory (multi-channel Schwinger) and that of earlier work will also be presented. Funded by an NSF grant # RUI-PHY 0968874.

  6. Dosimetry in dentistry.

    PubMed

    Asha, M L; Chatterjee, Ingita; Patil, Preeti; Naveen, S

    2015-01-01

    The purpose of this paper was to review various dosimeters used in dentistry and the cumulative results of various studies done with various dosimeters. Several relevant PubMed indexed articles from 1999 to 2013 were electronically searched by typing "dosimeters", "dosimeters in dentistry", "properties of dosimeters", "thermoluminescent and optically stimulated dosimeters", "recent advancements in dosimetry in dentistry." The searches were limited to articles in English to prepare a concise review on dental dosimetry. Titles and abstracts were screened, and articles that fulfilled the criteria of use of dosimeters in dental applications were selected for a full-text reading. Article was divided into four groups: (1) Biological effects of radiation, (2) properties of dosimeters, (3) types of dosimeters and (4) results of various studies using different dosimeters. The present review on dosimetry based on various studies done with dosimeters revealed that, with the advent of radiographic technique the effective dose delivered is low. Therefore, selection of radiological technique plays an important role in dental dose delivery.

  7. Low energy electron transport in furfural

    NASA Astrophysics Data System (ADS)

    Lozano, Ana I.; Krupa, Kateryna; Ferreira da Silva, Filipe; Limão-Vieira, Paulo; Blanco, Francisco; Muñoz, Antonio; Jones, Darryl B.; Brunger, Michael J.; García, Gustavo

    2017-09-01

    We report on an initial investigation into the transport of electrons through a gas cell containing 1 mTorr of gaseous furfural. Results from our Monte Carlo simulation are implicitly checked against those from a corresponding electron transmission measurement. To enable this simulation a self-consistent cross section data base was constructed. This data base is benchmarked through new total cross section measurements which are also described here. In addition, again to facilitate the simulation, our preferred energy loss distribution function is presented and discussed.

  8. Low Energy Electron Scattering from Fuels

    NASA Astrophysics Data System (ADS)

    Lopes, M. Cristina A.

    2012-06-01

    We report an investigation of processes that occur during the ignition of the plasma and its consequences in post-discharge time for an internal combustion engine, in order to find the appropriate parameters to be used in cars that operate with lean mixtures air-fuel. The relevance of this theme has attracted much attention, and has been one of the subjects of collaboration between experimental and theoretical groups in the USA and Brazil. We have produced some basic information necessary to modeling spark ignition in alcohol- fuelled engines. Total cross sections of electron scattering by methanol and ethanol molecules were obtained, using the linear transmission method based on the Beer-Lambert law to first approximation. Measurements and calculations of differential cross sections for low-energy (rotationally unresolved) electron scattering were also obtained, for scattering angles of 5 --130 . The measurements were taken using the relative flow method with an aperture source, and calculations using two different implementations of the Schwinger multichannel method, one that takes all electrons into account and is adapted for parallel computers, and another that uses pseudopotentials and considers only the valence electrons. Additionally to these, computer simulation studies of electronic discharge in mixtures of ethanol were performed, using a Zero-Dimensional Plasma Kinetic solver. Previous reported models for combustion of ethanol and cross sections data for momentum transfer of electron collisions with ethanol were used. The time evolutions of the main species densities are reported and the ignition time delay discussed.

  9. Acceleration of polarized electrons UPTO ultrahigh energies

    NASA Astrophysics Data System (ADS)

    Koop, I.; Otboev, A.; Shatunov, P.; Shatunov, Yu.; Mane, S.

    2016-12-01

    A wide world discussion have been opened few years ago about future e + e - collider after the Higgsboson discovery. Besides utterly high luminosity this machine has to operate with polarized beams. We shall overview in this paper problems and practical possibilities to satisfy second requirements of the future collider. The radiative beam polarization at this 100 km machine will be very long procedure. On other side, at the present time there are developed intensive polarized electron sources based on ArGa photo cathodes with polarization about 90 percents. We show, that fast electron synchrotron equipped pair Siberian Snake is able to provide to accelerate polarized electrons up to the top energy of the collider.

  10. Energy Transformation in Molecular Electronic Systems

    SciTech Connect

    Kasha, Michael

    1999-05-17

    This laboratory has developed many new ideas and methods in the electronic spectroscopy of molecules. This report covers the contract period 1993-1995. A number of the projects were completed in 1996, and those papers are included in the report. The DOE contract was terminated at the end of 1995 owing to a reorganizational change eliminating nationally the projects under the Office of Health and Environmental Research, U. S. Department of Energy.

  11. Semiconductor diode characterization for total skin electron irradiation.

    PubMed

    Madrid González, O A; Rivera Montalvo, T

    2014-01-01

    In this paper, a semiconductor diode characterization was performed. The diode characterization was completed using an electron beam with 4 MeV of energy. The semiconductor diode calibration used irradiation with an electron beam in an ion chamber. "In vivo" dosimetry was also conducted. The dosimetry results revealed that the semiconductor diode was a good candidate for use in the total skin electron therapy (TSET) treatment control.

  12. Low-energy electron scattering from cyanamide

    NASA Astrophysics Data System (ADS)

    Wang, Kedong; Guo, Shuangcheng; Meng, Ju; Huang, Xiaotian; Wang, Yongfeng

    2016-09-01

    The low-energy electron collisions with cyanamide molecule are investigated by using the UK molecular R -matrix codes for electron energies ranging from 0.01 eV to 10 eV. Three models including static-exchange, static-exchange plus polarization, and close-coupling (CC) approximations are employed to reveal the dynamic interaction. Elastic (integrated and differential), momentum-transfer, and excitation cross sections from the ground state to the three low-lying electron excited states have been presented. Two shape resonances, two core-excited resonances, and two Feshbach resonances are detected in the CC approximation. The role of active space in the target and scattering problem including the resonances is discussed. The precise resonance parameters are found to be sensitive to the treatment of polarization effects employed. These resonances may be responsible for the fragments observed in a recent experiment of the dissociative electron attachments to cyanamide. Since the cyanamide molecule has a large permanent dipole moment, a Born closure procedure is used to account for the contribution of partial waves higher than l =4 to obtain converged cross sections.

  13. Dosimetry for Small and Nonstandard Fields

    NASA Astrophysics Data System (ADS)

    Junell, Stephanie L.

    The proposed small and non-standard field dosimetry protocol from the joint International Atomic Energy Agency (IAEA) and American Association of Physicist in Medicine working group introduces new reference field conditions for ionization chamber based reference dosimetry. Absorbed dose beam quality conversion factors (kQ factors) corresponding to this formalism were determined for three different models of ionization chambers: a Farmer-type ionization chamber, a thimble ionization chamber, and a small volume ionization chamber. Beam quality correction factor measurements were made in a specially developed cylindrical polymethyl methacrylate (PMMA) phantom and a water phantom using thermoluminescent dosimeters (TLDs) and alanine dosimeters to determine dose to water. The TLD system for absorbed dose to water determination in high energy photon and electron beams was fully characterized as part of this dissertation. The behavior of the beam quality correction factor was observed as it transfers the calibration coefficient from the University of Wisconsin Accredited Dosimetry Calibration Laboratory (UWADCL) 60Co reference beam to the small field calibration conditions of the small field formalism. TLD-determined beam quality correction factors for the calibration conditions investigated ranged from 0.97 to 1.30 and had associated standard deviations from 1% to 3%. The alanine-determined beam quality correction factors ranged from 0.996 to 1.293. Volume averaging effects were observed with the Farmer-type ionization chamber in the small static field conditions. The proposed small and non-standard field dosimetry protocols new composite-field reference condition demonstrated its potential to reduce or remove ionization chamber volume dependancies, but the measured beam quality correction factors were not equal to the standard CoP's kQ, indicating a change in beam quality in the small and non-standard field dosimetry protocols new composite-field reference condition

  14. Improved dose homogeneity in scalp irradiation using a single set-up point and different energy electron beams.

    PubMed

    Yaparpalvi, R; Fontenla, D P; Beitler, J J

    2002-08-01

    Homogeneous irradiation of the entire or a large portion of the superficial scalp poses both technical and dosimetric challenges. Some techniques will irradiate too much of the underlying normal brain while other techniques are either complex and involve field matching problems or may require sophisticated linear accelerator (linac) add-ons such as intensity modulated radiation therapy (IMRT)/electron multileaf collimation. However, many radiotherapy facilities are not equipped with such treatment modalities. We propose a practical treatment technique that can be delivered with a standard linac capable of producing high energy electrons. The proposed technique offers a simple alternative for achieving results equivalent to IMRT. Dose homogeneity throughout the treatment volume is achieved by aiming different energy electron beams at differential areas of the treatment surface to achieve improved dosimetry and rapid treatment delivery, while using a single set-up point. We introduced this treatment technique at our institution to treat superficial cancers of the scalp and other irregular surfaces.

  15. Clinical implementation and rapid commissioning of an EPID based in-vivo dosimetry system

    NASA Astrophysics Data System (ADS)

    Hanson, Ian M.; Hansen, Vibeke N.; Olaciregui-Ruiz, Igor; van Herk, Marcel

    2014-10-01

    Using an Electronic Portal Imaging Device (EPID) to perform in-vivo dosimetry is one of the most effective and efficient methods of verifying the safe delivery of complex radiotherapy treatments. Previous work has detailed the development of an EPID based in-vivo dosimetry system that was subsequently used to replace pre-treatment dose verification of IMRT and VMAT plans. Here we show that this system can be readily implemented on a commercial megavoltage imaging platform without modification to EPID hardware and without impacting standard imaging procedures. The accuracy and practicality of the EPID in-vivo dosimetry system was confirmed through a comparison with traditional TLD in-vivo measurements performed on five prostate patients. The commissioning time required for the EPID in-vivo dosimetry system was initially prohibitive at approximately 10 h per linac. Here we present a method of calculating linac specific EPID dosimetry correction factors that allow a single energy specific commissioning model to be applied to EPID data from multiple linacs. Using this method reduced the required per linac commissioning time to approximately 30 min. The validity of this commissioning method has been tested by analysing in-vivo dosimetry results of 1220 patients acquired on seven linacs over a period of 5 years. The average deviation between EPID based isocentre dose and expected isocentre dose for these patients was (-0.7  ±  3.2)%. EPID based in-vivo dosimetry is now the primary in-vivo dosimetry tool used at our centre and has replaced nearly all pre-treatment dose verification of IMRT treatments.

  16. Electronic energy transfer: Localized operator partitioning of electronic energy in composite quantum systems

    NASA Astrophysics Data System (ADS)

    Khan, Yaser; Brumer, Paul

    2012-11-01

    A Hamiltonian based approach using spatially localized projection operators is introduced to give precise meaning to the chemically intuitive idea of the electronic energy on a quantum subsystem. This definition facilitates the study of electronic energy transfer in arbitrarily coupled quantum systems. In particular, the decomposition scheme can be applied to molecular components that are strongly interacting (with significant orbital overlap) as well as to isolated fragments. The result defines a consistent electronic energy at all internuclear distances, including the case of separated fragments, and reduces to the well-known Förster and Dexter results in their respective limits. Numerical calculations of coherent energy and charge transfer dynamics in simple model systems are presented and the effect of collisionally induced decoherence is examined.

  17. History of dose specification in Brachytherapy: From Threshold Erythema Dose to Computational Dosimetry

    SciTech Connect

    Williamson, Jeffrey F.

    2006-09-08

    This paper briefly reviews the evolution of brachytherapy dosimetry from 1900 to the present. Dosimetric practices in brachytherapy fall into three distinct eras: During the era of biological dosimetry (1900-1938), radium pioneers could only specify Ra-226 and Rn-222 implants in terms of the mass of radium encapsulated within the implanted sources. Due to the high energy of its emitted gamma rays and the long range of its secondary electrons in air, free-air chambers could not be used to quantify the output of Ra-226 sources in terms of exposure. Biological dosimetry, most prominently the threshold erythema dose, gained currency as a means of intercomparing radium treatments with exposure-calibrated orthovoltage x-ray units. The classical dosimetry era (1940-1980) began with successful exposure standardization of Ra-226 sources by Bragg-Gray cavity chambers. Classical dose-computation algorithms, based upon 1-D buildup factor measurements and point-source superposition computational algorithms, were able to accommodate artificial radionuclides such as Co-60, Ir-192, and Cs-137. The quantitative dosimetry era (1980- ) arose in response to the increasing utilization of low energy K-capture radionuclides such as I-125 and Pd-103 for which classical approaches could not be expected to estimate accurate correct doses. This led to intensive development of both experimental (largely TLD-100 dosimetry) and Monte Carlo dosimetry techniques along with more accurate air-kerma strength standards. As a result of extensive benchmarking and intercomparison of these different methods, single-seed low-energy radionuclide dose distributions are now known with a total uncertainty of 3%-5%.

  18. History of dose specification in Brachytherapy: From Threshold Erythema Dose to Computational Dosimetry

    NASA Astrophysics Data System (ADS)

    Williamson, Jeffrey F.

    2006-09-01

    This paper briefly reviews the evolution of brachytherapy dosimetry from 1900 to the present. Dosimetric practices in brachytherapy fall into three distinct eras: During the era of biological dosimetry (1900-1938), radium pioneers could only specify Ra-226 and Rn-222 implants in terms of the mass of radium encapsulated within the implanted sources. Due to the high energy of its emitted gamma rays and the long range of its secondary electrons in air, free-air chambers could not be used to quantify the output of Ra-226 sources in terms of exposure. Biological dosimetry, most prominently the threshold erythema dose, gained currency as a means of intercomparing radium treatments with exposure-calibrated orthovoltage x-ray units. The classical dosimetry era (1940-1980) began with successful exposure standardization of Ra-226 sources by Bragg-Gray cavity chambers. Classical dose-computation algorithms, based upon 1-D buildup factor measurements and point-source superposition computational algorithms, were able to accommodate artificial radionuclides such as Co-60, Ir-192, and Cs-137. The quantitative dosimetry era (1980- ) arose in response to the increasing utilization of low energy K-capture radionuclides such as I-125 and Pd-103 for which classical approaches could not be expected to estimate accurate correct doses. This led to intensive development of both experimental (largely TLD-100 dosimetry) and Monte Carlo dosimetry techniques along with more accurate air-kerma strength standards. As a result of extensive benchmarking and intercomparison of these different methods, single-seed low-energy radionuclide dose distributions are now known with a total uncertainty of 3%-5%.

  19. Propagation of low energy solar electrons

    NASA Technical Reports Server (NTRS)

    Anderson, K. A.; Mcfadden, J. P.; Lin, R. P.

    1981-01-01

    Two events are reported in which 2-10 keV electrons of solar energy have undergone significant adiabatic mirroring and pitch angle scattering in large scale magnetic structures in the interplanetary medium within a distance of about 0.5 AU from the earth. Electrons of 3 keV, typical of the energies measured, have a speed of about one-tenth of the speed of light, so that their travel time from the sun at 0 deg pitch angle would be about 100 minutes. Their cyclotron radius is about 20 km for a pitch angle of 30 deg, and a field of magnitude of 5 nT, and the cyclotron period is about 7.1 milliseconds. The electrons are scattered by spatial variations in the interplanetary magnetic field. When the spatial variations are convected past a stationary spacecraft by a 500 km/sec solar wind, they are seen as temporal fluctuations at a frequency of about 3 Hz.

  20. Collisions between low-energy electrons and small polyatomic targets of biological relevance

    NASA Astrophysics Data System (ADS)

    Hargreaves, Leigh

    2016-05-01

    Over the last decade, cross section measurements and calculations for DNA prototype molecules have received significant attention from the collisions community, due to the potential applications of this data in modelling electron transport through biological matter with a view to improving radiation dosimetry. Such data are additionally interesting from a fundamental aspect, as small carbon-based molecules are ideal targets for considering effects including target conformation, long-range dynamical interactions and coupling effects between the various degrees of freedom on the scattering properties of the target. At the California State University Fullerton, we have made a series of measurements of the elastic, vibrationally inelastic and electronically inelastic cross sections for a variety of small polyatomic targets, including water and the basic alcohols, ethylene, toluene and several fluorinated alkanes. These processes are important in a range of applications, primarily for modelling electron transport and thermalization, and energy deposition to a biological media. The data were obtained using a high resolution electron energy-loss spectrometer, operating in a crossed beam configuration with a moveable aperture gas source. The gas source design facilitates both an expedient and highly accurate method of removing background signal, and removes uncertainties from the data due to uncertainties in the beam profile. We have also performed scattering calculations employing the Schwinger Multichannel method, in collaboration with the California institute of technology, to compare with our measurements. In this talk, I will present an overview of our recent data and future research plans.

  1. Photostimulable Storage Phosphor Dosimetry

    NASA Astrophysics Data System (ADS)

    Frye, Douglas Mahaffey Danks

    The feasibility of employing alkaline earth sulfide based photostimulable storage phosphors for relative dosimetry in radiation oncology has been investigated. The dosimetric characteristics, radiologic characteristics, and spacial sensitivity of calcium sulfide and strontium sulfide based phosphors were determined. Dosimetric characteristics were explored by cavity theory calculation, Monte Carlo simulation, and physical measurement. Dosimetric characteristics obtained with cavity theory and Monte Carlo simulations agree well. The dose perturbation of the phosphor base materials were comparable to those produced by clinical dosimeter materials over the energy region employed in radiation oncology. Dose perturbation in regions downstream of the phosphor were measured with a variety of clinical dosimeters and compared with simulation results. The results of the measurements and simulations agreed within the uncertainty levels of the simulations and the measurements. Radiological characteristics of sensitivity, fading, dose response, dose rate response, and energy dependence of response were studied with an experimental phosphor output reader. Relative sensitivity was found to be dependent upon the mass thickness of phosphor layer. Fading was quantified for the calcium sulfide phosphor, with a half time of 2300 minutes. The strontium sulfide sample exhibited some fading, however, the regression lines yielded low correlation coefficients. A linear dose response over the range of doses employed in radiation oncology was obtained for both phosphors. No significant dose rate dependence of response was measured for the phosphors. The phosphor's energy dependence of response paralleled the dose perturbation relative to water predicted by cavity theory and simulations. Spatial sensitivity was demonstrated with an experimental phosphor scanner. The phosphors exhibited spatial sensitivity, however, infrared scattering/piping in the transparent substrate appeared to cause

  2. Electron-electron correlations in square-well quantum dots: direct energy minimization approach.

    PubMed

    Goto, Hidekazu; Hirose, Kikuji

    2011-04-01

    Electron-electron correlations in two-dimensional square-well quantum dots are investigated using the direct energy minimization scheme. Searches for groundstate charges and spin configurations are performed with varying the sizes of dots and the number of electrons. For a two-electron system, a standout difference between the configurations with and without counting correlation energy is demonstrated. The emergence and melting of Wigner-molecule-like structures arising from the interplay between the kinetic energy and Coulombic interaction energy are described. Electron-electron correlation energies and addition energy spectra are calculated, and special electron numbers related to peculiar effects of the square well are extracted.

  3. Nuclear accident dosimetry intercomparison studies.

    PubMed

    Sims, C S

    1989-09-01

    Twenty-two nuclear accident dosimetry intercomparison studies utilizing the fast-pulse Health Physics Research Reactor at the Oak Ridge National Laboratory have been conducted since 1965. These studies have provided a total of 62 different organizations a forum for discussion of criticality accident dosimetry, an opportunity to test their neutron and gamma-ray dosimetry systems under a variety of simulated criticality accident conditions, and the experience of comparing results with reference dose values as well as with the measured results obtained by others making measurements under identical conditions. Sixty-nine nuclear accidents (27 with unmoderated neutron energy spectra and 42 with eight different shielded spectra) have been simulated in the studies. Neutron doses were in the 0.2-8.5 Gy range and gamma doses in the 0.1-2.0 Gy range. A total of 2,289 dose measurements (1,311 neutron, 978 gamma) were made during the intercomparisons. The primary methods of neutron dosimetry were activation foils, thermoluminescent dosimeters, and blood sodium activation. The main methods of gamma dose measurement were thermoluminescent dosimeters, radiophotoluminescent glass, and film. About 68% of the neutron measurements met the accuracy guidelines (+/- 25%) and about 52% of the gamma measurements met the accuracy criterion (+/- 20%) for accident dosimetry.

  4. Performance of two commercial electron beam algorithms over regions close to the lung-mediastinum interface, against Monte Carlo simulation and point dosimetry in virtual and anthropomorphic phantoms.

    PubMed

    Ojala, J; Hyödynmaa, S; Barańczyk, R; Góra, E; Waligórski, M P R

    2014-03-01

    Electron radiotherapy is applied to treat the chest wall close to the mediastinum. The performance of the GGPB and eMC algorithms implemented in the Varian Eclipse treatment planning system (TPS) was studied in this region for 9 and 16 MeV beams, against Monte Carlo (MC) simulations, point dosimetry in a water phantom and dose distributions calculated in virtual phantoms. For the 16 MeV beam, the accuracy of these algorithms was also compared over the lung-mediastinum interface region of an anthropomorphic phantom, against MC calculations and thermoluminescence dosimetry (TLD). In the phantom with a lung-equivalent slab the results were generally congruent, the eMC results for the 9 MeV beam slightly overestimating the lung dose, and the GGPB results for the 16 MeV beam underestimating the lung dose. Over the lung-mediastinum interface, for 9 and 16 MeV beams, the GGPB code underestimated the lung dose and overestimated the dose in water close to the lung, compared to the congruent eMC and MC results. In the anthropomorphic phantom, results of TLD measurements and MC and eMC calculations agreed, while the GGPB code underestimated the lung dose. Good agreement between TLD measurements and MC calculations attests to the accuracy of "full" MC simulations as a reference for benchmarking TPS codes. Application of the GGPB code in chest wall radiotherapy may result in significant underestimation of the lung dose and overestimation of dose to the mediastinum, affecting plan optimization over volumes close to the lung-mediastinum interface, such as the lung or heart.

  5. Dosimetry tools and techniques for IMRT.

    PubMed

    Low, Daniel A; Moran, Jean M; Dempsey, James F; Dong, Lei; Oldham, Mark

    2011-03-01

    Intensity modulated radiation therapy (IMRT) poses a number of challenges for properly measuring commissioning data and quality assurance (QA) radiation dose distributions. This report provides a comprehensive overview of how dosimeters, phantoms, and dose distribution analysis techniques should be used to support the commissioning and quality assurance requirements of an IMRT program. The proper applications of each dosimeter are described along with the limitations of each system. Point detectors, arrays, film, and electronic portal imagers are discussed with respect to their proper use, along with potential applications of 3D dosimetry. Regardless of the IMRT technique utilized, some situations require the use of multiple detectors for the acquisition of accurate commissioning data. The overall goal of this task group report is to provide a document that aids the physicist in the proper selection and use of the dosimetry tools available for IMRT QA and to provide a resource for physicists that describes dosimetry measurement techniques for purposes of IMRT commissioning and measurement-based characterization or verification of IMRT treatment plans. This report is not intended to provide a comprehensive review of commissioning and QA procedures for IMRT. Instead, this report focuses on the aspects of metrology, particularly the practical aspects of measurements that are unique to IMRT. The metrology of IMRT concerns the application of measurement instruments and their suitability, calibration, and quality control of measurements. Each of the dosimetry measurement tools has limitations that need to be considered when incorporating them into a commissioning process or a comprehensive QA program. For example, routine quality assurance procedures require the use of robust field dosimetry systems. These often exhibit limitations with respect to spatial resolution or energy response and need to themselves be commissioned against more established dosimeters. A chain of

  6. EPR tooth dosimetry as a tool for validation of retrospective doses: an end-user perspective.

    PubMed

    Bhat, Mohandas

    2005-02-01

    The US Department of Energy (DOE) is co-funding several studies on health effects of radiation in Southern Urals in Russia and on Chernobyl liquidators in Ukraine. Obtaining dose-response relationships is central to all these studies. In order to validate retrospective doses estimated by various methods, Electron paramagnetic Resonance (EPR) tooth dosimetry, considered by many as a gold standard, was attempted. The EPR technique, however, has some limitations. This paper discusses the potential pitfalls of using EPR tooth dosimetry, and some potential solutions.

  7. Heavy-ion dosimetry

    SciTech Connect

    Schimmerling, W.

    1980-03-01

    This lecture deals with some of the more important physical characteristics of relativistic heavy ions and their measurement, with beam delivery and beam monitoring, and with conventional radiation dosimetry as used in the operation of the BEVALAC biomedical facility for high energy heavy ions (Lyman and Howard, 1977; BEVALAC, 1977). Even so, many fundamental aspects of the interaction of relativistic heavy ions with matter, including important atomic physics and radiation chemical considerations, are not discussed beyond the reminder that such additional understanding is required before an adequte perspective of the problem can be attained.

  8. Fast neutron dosimetry

    SciTech Connect

    DeLuca, P.M. Jr.; Pearson, D.W.

    1992-01-01

    This progress report concentrates on two major areas of dosimetry research: measurement of fast neutron kerma factors for several elements for monochromatic and white spectrum neutron fields and determination of the response of thermoluminescent phosphors to various ultra-soft X-ray energies and beta-rays. Dr. Zhixin Zhou from the Shanghai Institute of Radiation Medicine, People's Republic of China brought with him special expertise in the fabrication and use of ultra-thin TLD materials. Such materials are not available in the USA. The rather unique properties of these materials were investigated during this grant period.

  9. Determination of neutron spectra within the energy of 1 keV to 1 MeV by means of reactor dosimetry

    SciTech Connect

    Sergeyeva, Victoria; Destouches, Christophe; Lyoussi, Abdallah; Thiollay, Nicolas; Vigneau, Olivier; Korschinek, Gunther; Carcreff, Hubert

    2015-07-01

    The standard procedure for neutron reactor dosimetry is based on neutron irradiation of a target and its post-irradiation analysis by Gamma and/or X-ray spectrometry. Nowadays, the neutron spectra can be easily characterized for thermal and fast energies (respectively 0.025 eV and >1 MeV). In this work we propose a new target and an innovating post-irradiation technique of analysis in order to detect the neutron spectra within the energy of 1 keV to 1 MeV. This article will present the calculations performed for the selection of a suitable nuclear reaction and isotope, the results predicted by simulations, the irradiation campaign that is proposed and the post-irradiation technique of analysis. (authors)

  10. Photon dosimetry using plastic scintillators in pulsed radiation fields

    SciTech Connect

    David L. Chichester; Brandon W. Blackburn; James T. Johnson; Scott W. Watson

    2007-04-01

    Simulations and experiments have been carried out to explore using a plastic scintillator as a dosimetry probe in the vicinity of a pulsed bremsstrahlung source in the range 4 to 20 MeV. Taking advantage of the tissue-equivalent properties of this detector in conjunction with the use of a fast digital signal processor near real-time dosimetry was shown to be possible. The importance of accounting for a broad energy electron beam in bremsstrahlung production, and photon scattering and build-up, in correctly interpreting dosimetry results at long stand-off distances is highlighted by comparing real world experiments with ideal geometry simulations. Close agreement was found between absorbed energy calculations based upon spectroscopic techniques and calculations based upon signal integration, showing a ratio between 10 MeV absorbed dose to 12 MeV absorbed dose of 0.66 at a distance of 91.4 m from the accelerator. This is compared with an idealized model simulation with a monoenergetic electron beam and without scattering, where the ratio was 0.46.

  11. Decomposition of methionine by low energy electrons.

    PubMed

    Kopyra, Janina; Szamrej, Iwona; Abdoul-Carime, Hassan; Farizon, Bernadette; Farizon, Michel

    2012-06-14

    In this work, we present the results from low energy (<12 eV) electron impact on isolated methionine, Met. We show that dissociative electron attachment is the operative mechanism for the sulfur content amino-acid fragmentation. The two most dominant fragments are attributed to the (Met-H)(-) and (C(4)NOH(5))(-) ions that are formed at energy below 2 eV. The formation of the latter anion is accompanied by the loss of neutral counterparts, which are most likely a water molecule and highly toxic methanethiol, CH(3)SH. Further fragments are associated with the damage at the sulfur end of the amino acid, producing the methyl sulfide anion CH(3)S(-) or sulfur containing neutrals. In the context of radiation induced damage to biological material at the nano-scale level, the present interest of methionine arises from the implication of the molecule in biological processes (e.g., S-adenosyl methionine for the stimulation of DNA methyltransferase reactions or protein synthesis).

  12. Low-energy electron collisions with thiophene

    NASA Astrophysics Data System (ADS)

    da Costa, R. F.; Varella, M. T. do N.; Lima, M. A. P.; Bettega, M. H. F.

    2013-05-01

    We report on elastic integral, momentum transfer, and differential cross sections for collisions of low-energy electrons with thiophene molecules. The scattering calculations presented here used the Schwinger multichannel method and were carried out in the static-exchange and static-exchange plus polarization approximations for energies ranging from 0.5 eV to 6 eV. We found shape resonances related to the formation of two long-lived π* anion states. These resonant structures are centered at the energies of 1.00 eV (2.85 eV) and 2.82 eV (5.00 eV) in the static-exchange plus polarization (static-exchange) approximation and belong to the B1 and A2 symmetries of the C2v point group, respectively. Our results also suggest the existence of a σ* shape resonance in the B2 symmetry with a strong d-wave character, located at around 2.78 eV (5.50 eV) as obtained in the static-exchange plus polarization (static-exchange) calculation. It is worth to mention that the results obtained at the static-exchange plus polarization level of approximation for the two π* resonances are in good agreement with the electron transmission spectroscopy results of 1.15 eV and 2.63 eV measured by Modelli and Burrow [J. Phys. Chem. A 108, 5721 (2004), 10.1021/jp048759a]. The existence of the σ* shape resonance is in agreement with the observations of Dezarnaud-Dandiney et al. [J. Phys. B 31, L497 (1998), 10.1088/0953-4075/31/11/004] based on the electron transmission spectra of dimethyl(poly)sulphides. A comparison among the resonances of thiophene with those of pyrrole and furan is also performed and, altogether, the resonance spectra obtained for these molecules point out that electron attachment to π* molecular orbitals is a general feature displayed by these five-membered heterocyclic compounds.

  13. Low-energy electron collisions with thiophene.

    PubMed

    da Costa, R F; Varella, M T do N; Lima, M A P; Bettega, M H F

    2013-05-21

    We report on elastic integral, momentum transfer, and differential cross sections for collisions of low-energy electrons with thiophene molecules. The scattering calculations presented here used the Schwinger multichannel method and were carried out in the static-exchange and static-exchange plus polarization approximations for energies ranging from 0.5 eV to 6 eV. We found shape resonances related to the formation of two long-lived π∗ anion states. These resonant structures are centered at the energies of 1.00 eV (2.85 eV) and 2.82 eV (5.00 eV) in the static-exchange plus polarization (static-exchange) approximation and belong to the B1 and A2 symmetries of the C2v point group, respectively. Our results also suggest the existence of a σ∗ shape resonance in the B2 symmetry with a strong d-wave character, located at around 2.78 eV (5.50 eV) as obtained in the static-exchange plus polarization (static-exchange) calculation. It is worth to mention that the results obtained at the static-exchange plus polarization level of approximation for the two π∗ resonances are in good agreement with the electron transmission spectroscopy results of 1.15 eV and 2.63 eV measured by Modelli and Burrow [J. Phys. Chem. A 108, 5721 (2004)]. The existence of the σ∗ shape resonance is in agreement with the observations of Dezarnaud-Dandiney et al. [J. Phys. B 31, L497 (1998)] based on the electron transmission spectra of dimethyl(poly)sulphides. A comparison among the resonances of thiophene with those of pyrrole and furan is also performed and, altogether, the resonance spectra obtained for these molecules point out that electron attachment to π∗ molecular orbitals is a general feature displayed by these five-membered heterocyclic compounds.

  14. Low-energy electron collisions with biomolecules

    NASA Astrophysics Data System (ADS)

    Winstead, Carl; McKoy, Vincent

    2012-11-01

    We report recent progress in applying the Schwinger multichannel computational method to the interactions of slow electrons with biomolecules. Calculations on constituents of DNA, including nucleobases, phosphate esters, and models of the backbone sugar, have provided insight into the nature of the low-energy shape resonances, and thereby into possible sites and mechanisms for electron attachment that may lead to strand-breaking. At the same time, more approximate calculations on larger assemblies such as nucleosides and deoxyadenosine monophosphate indicate how the resonance properties of the subunits will or will not persist in DNA itself. We are pursuing a similar strategy for another major class of biomolecules, the proteins, by beginning with fixed-nuclei studies of the constituent amino acids; here we present preliminary results for the simplest amino acid, glycine. We also describe efforts directed at an improved understanding electron collisions with alcohols, which, in addition to basic scientific interest, may prove useful in the modeling of ignition and combustion within biofuel-powered engines.

  15. EPR/PTFE dosimetry for test reactor environments

    SciTech Connect

    Vehar, D.W.; Griffin, P.J.; Quirk, T.J.

    2011-07-01

    The use of Electron Paramagnetic Resonance (EPR) spectroscopy with materials such as alanine is well established as a technique for measurement of ionizing radiation absorbed dose in photon and electron fields such as Co-60, high-energy bremsstrahlung and electron-beam fields [1]. In fact, EPR/Alanine dosimetry has become a routine transfer standard for national standards bodies such as NIST and NPL. In 1992 the Radiation Metrology Laboratory (RML) at Sandia National Laboratories implemented EPR/Alanine capabilities for use in routine and calibration activities at its Co-60 and pulsed-power facilities. At that time it also investigated the usefulness of the system for measurement of absorbed dose in the mixed neutron/photon environments of reactors such as the Sandia Pulsed Reactor and the Annular Core Research Reactor used for hardness testing of electronics. The RML concluded that the neutron response of alanine was a sufficiently high fraction of the overall dosimeter response that the resulting uncertainties in the photon dose would be unacceptably large for silicon-device testing. However, it also suggested that non-hydrogenous materials such as polytetrafluoroethylene (PTFE) would exhibit smaller neutron response and might be useful in mixed environments. Preliminary research with PTFE in photon environments indicated considerable promise, but further development was not pursued at that time. Because of renewed interest in absorbed dose measurements that could better define the individual contributions of photon and neutron components to the overall dose delivered to a test object, the RML has re-initiated the development of an EPR/PTFE dosimetry system. This effort consists of three stages: 1) Identification of PTFE materials that may be suitable for dosimetry applications. It was speculated that the inconsistency of EPR signatures in the earlier samples may have been due to variability in PTFE manufacturing processes. 2) Characterization of dosimetry in

  16. Emerging technological bases for retrospective dosimetry.

    PubMed

    Straume, T; Anspaugh, L R; Haskell, E H; Lucas, J N; Marchetti, A A; Likhtarev, I A; Chumak, V V; Romanyukha, A A; Khrouch, V T; Gavrilin YuI; Minenko, V F

    1997-01-01

    In this article we discuss examples of challenging problems in retrospective dosimetry and describe some promising solutions. The ability to make measurements by accelerator mass spectrometry and luminescence techniques promises to provide improved dosimetry for regions of Belarus, Ukraine and Russian Federation contaminated by radionuclides from the Chernobyl accident. In addition, it may soon be possible to resolve the large neutron discrepancy in the dosimetry system for Hiroshima through novel measurement techniques that can be used to reconstruct the fast-neutron fluence emitted by the bomb some 51 years ago. Important advances in molecular cytogenetics and electron paramagnetic resonance measurements have produced biodosimeters that show potential in retrospective dosimetry. The most promising of these are the frequency of reciprocal translocations measured in chromosomes of blood lymphocytes using fluorescence in situ hybridization and the electron paramagnetic resonance signal in tooth enamel.

  17. Implementation of new physics models for low energy electrons in liquid water in Geant4-DNA.

    PubMed

    Bordage, M C; Bordes, J; Edel, S; Terrissol, M; Franceries, X; Bardiès, M; Lampe, N; Incerti, S

    2016-12-01

    A new alternative set of elastic and inelastic cross sections has been added to the very low energy extension of the Geant4 Monte Carlo simulation toolkit, Geant4-DNA, for the simulation of electron interactions in liquid water. These cross sections have been obtained from the CPA100 Monte Carlo track structure code, which has been a reference in the microdosimetry community for many years. They are compared to the default Geant4-DNA cross sections and show better agreement with published data. In order to verify the correct implementation of the CPA100 cross section models in Geant4-DNA, simulations of the number of interactions and ranges were performed using Geant4-DNA with this new set of models, and the results were compared with corresponding results from the original CPA100 code. Good agreement is observed between the implementations, with relative differences lower than 1% regardless of the incident electron energy. Useful quantities related to the deposited energy at the scale of the cell or the organ of interest for internal dosimetry, like dose point kernels, are also calculated using these new physics models. They are compared with results obtained using the well-known Penelope Monte Carlo code. Copyright © 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  18. Methods and computer readable medium for improved radiotherapy dosimetry planning

    DOEpatents

    Wessol, Daniel E.; Frandsen, Michael W.; Wheeler, Floyd J.; Nigg, David W.

    2005-11-15

    Methods and computer readable media are disclosed for ultimately developing a dosimetry plan for a treatment volume irradiated during radiation therapy with a radiation source concentrated internally within a patient or incident from an external beam. The dosimetry plan is available in near "real-time" because of the novel geometric model construction of the treatment volume which in turn allows for rapid calculations to be performed for simulated movements of particles along particle tracks therethrough. The particles are exemplary representations of alpha, beta or gamma emissions emanating from an internal radiation source during various radiotherapies, such as brachytherapy or targeted radionuclide therapy, or they are exemplary representations of high-energy photons, electrons, protons or other ionizing particles incident on the treatment volume from an external source. In a preferred embodiment, a medical image of a treatment volume irradiated during radiotherapy having a plurality of pixels of information is obtained.

  19. Femtosecond spectroscopy of electron-electron and electron-phonon energy relaxation in Ag and Au

    NASA Astrophysics Data System (ADS)

    Groeneveld, Rogier H. M.; Sprik, Rudolf; Lagendijk, Ad

    1995-05-01

    We show experimentally that the electron distribution of a laser-heated metal is a nonthermal distribution on the time scale of the electron-phonon (e-ph) energy relaxation time τE. We measured τE in 45-nm Ag and 30-nm Au thin films as a function of lattice temperature (Ti=10-300 K) and laser-energy density (Ul=0.3-1.3 J cm-3), combining femtosecond optical transient-reflection techniques with the surface-plasmon polariton resonance. The experimental effective e-ph energy relaxation time decreased from 710-530 fs and 830-530 fs for Ag and Au, respectively, when temperature is lowered from 300 to 10 K. At various temperatures we varied Ul between 0.3-1.3 J cm-3 and observed that τE is independent from Ul within the given range. The results were first compared to theoretical predictions of the two-temperature model (TTM). The TTM is the generally accepted model for e-ph energy relaxation and is based on the assumption that electrons and lattice can be described by two different time-dependent temperatures Te and Ti, implying that the two subsystems each have a thermal distribution. The TTM predicts a quasiproportional relation between τE and Ti in the perturbative regime where τE is not affected by Ul. Hence, it is shown that the measured dependencies of τE on lattice temperature and energy density are incompatible with the TTM. It is proven that the TTM assumption of a thermal electron distribution does not hold especially under our experimental conditions of low laser power and lattice temperature. The electron distribution is a nonthermal distribution on the picosecond time scale of e-ph energy relaxation. We developed a new model, the nonthermal electron model (NEM), in which we account for the (finite) electron-electron (e-e) and electron-phonon dynamics simultaneously. It is demonstrated that incomplete electron thermalization yields a slower e-ph energy relaxation in comparison to the thermalized limit. With the NEM we are able to give a consistent

  20. Dosimetry considerations in phototherapy

    SciTech Connect

    Profio, A.E.; Doiron, D.R.

    1981-03-01

    Dosimetry in phototherapy involves a determination of the energy absorbed per unit mass of tissue, corrected for the quantum yield in a photochemical reaction. The dose rate in photochemotherapy of cancer with hematoporphyrin derivative and visible light is related to the extinction coefficient, quantum yield for singlet oxygen production, concentration of sensitizer and energy flux density at depth. Data or methods of determining these quantities are presented. Calculations have been performed for the energy flux density at depth, as a function of the total attenuation coefficient and ratio of scattering coefficient to total attenuation coefficient, for isotropic scattering in slab geometry. For small absorption, these depth dose curves exhibit a maximum within the tissue followed by an exponential decrease.

  1. SU-E-T-678: Response Calibration Using Electron Depth-Dose Data for MRI-Based 3D Polymer Gel Dosimetry

    SciTech Connect

    Watanabe, Y; Warmington, L; Gopishankar, N

    2015-06-15

    Purpose: To evaluate a calibration method using the depth-dose data of an electron beam for MRI-based polymer gel dosimetry. Methods: MAGAT was manufactured in-house to fill two 400mL-cylindrical phantoms and nine 22mL-glass vials. Phantom-A was irradiated along the cylinder axis with a 9MeV electron beam of 6 cm x 6 cm field size (FS). Phantom-B was irradiated with a 6MV photon beam of 3 cm x 3 cm FS by a 360-degree arc technique. Eight vials were irradiated in a water-bath to various doses with a 20 cm x 20 cm FS 6MV photon beam. All irradiated phantoms and one un-irradiated vial were scanned with a 3T MRI scanner to obtain the spin-spin relaxation rate (R2) distributions. By comparing the measured R2-to-depth data with the known depth-dose data for Phantom-A, R2-to-dose calibration data were obtained (e-beam method). Another calibration data were obtained from the 9 vials data (9-vial method). We tested two regression equations, i.e., third-order polynomial and tangent functions, and two dose normalization methods, i.e., one-point and two-point methods. Then, these two calibration methods were used to obtain the 3D dose distribution of Phantom-B and evaluated by comparing the measured data with the dose distribution from a treatment planning system. The comparison was made with gamma passing rate (2%/2mm criteria). Results: We did not observe a clear advantage of the e-beam method over the 9-vial method for the 3D dose comparison with the test case. Nevertheless, we found that the e-beam method required a smaller dose scaling for the dose comparison. Furthermore, the tangent function showed better data fitting than the polynomial function with smaller uncertainty of the estimated coefficients. Conclusions: Considering the overall superior performance, we recommend the e-beam method with the tangent function as the regression equation and one-point dose normalization for the MRI-based polymer gel dosimetry.

  2. Energy transformation in molecular electronic systems

    SciTech Connect

    Kasha, M.

    1985-07-25

    Our new optical pumping spectroscopy (steady state, and double-laser pulse) allows the production and study of the unstable rare tautomer in its ground and excited states, including picosecond dynamic studies. Molecules under study here included 7-azaindole (model for biological purines), 3-hydroxyflavone (model for plant flavones), lumichrome, and other heterocyclics. New detailed molecular mechanisms for proton transfer are derived, especially with catalytic assisting molecules. A new proton-transfer laser of extraordinary efficiency has become a side dividend, possibly worth of industrial development. The excited and highly reactive singlet molecular oxygen species /sup 1/..delta../sub g/) has proven to be ubiquitous in chemical peroxide systems and in physically excited sensitizer-oxygen systems. Hyperbaric oxygen mechanisms in biology probably involve singlet oxygen. We have undertaken a spectroscopic study of tris - dibenzoylmethane chelates of Al, Gd, Eu, and Yb trivalent ions. These chelates offer a variety of electronic behaviors, from Z-effects on ..pi..-electron spin-orbital coupling (Al, Gd) to Weissman intramolecular energy transfer to 4f mestable levels (Eu, Gd). Elegant new spectroscopic resolution at 77K permits separation of tautomeric, parasitic self-absorption, dissociation, and cage effects to be resolved. 18 refs., 4 figs.

  3. Energy transformation in molecular electronic systems

    NASA Astrophysics Data System (ADS)

    Kasha, M.

    1985-07-01

    Our new optical pumping spectroscopy allows the production and study of the unstable rate tautomer in its ground and excited states, including picosecond dynamic studies. Molecules under study here included 7-azaindole 3-hydroxyflavone, lumichrome, and other heterocyclics. New detailed molecular mechanisms for proton transfer are derived, especially with catalytic assisting molecules. A new proton-transfer laser of extraordinary efficiency has become a side dividend, possibly worthy of industrial development. The excited and highly reactive singlet molecular oxygen species (1) DELTA sub g has proven to be ubiquitous in chemical peroxide systems and in physically excited sensitizer-oxygen systems. Hyperbaric oxygen mechanisms in biology probably involve singlet oxygen. We have undertaken a spectroscopic study of trisdibenzoylmethane chelates of Al, Gd, Eu, and Yb trivalent ions. These chelates offer a variety of electronic behaviors, from Z-effects on (PI)--electron spin-orbital coupling (Al, Gd) to Weissman intramolecular energy transfer to 4f mestable levels (Eu, Gd). Elegant new spectroscopic resolution at 77K permits separation of tautomeric, parasitic self-absorption, dissociation, and cage effects to be resolved.

  4. Design and characterization of a tissue-equivalent CVD-diamond detector for clinical dosimetry in high-energy photon beams.

    PubMed

    Górka, B; Nilsson, B; Svensson, R; Brahme, A; Ascarelli, P; Trucchi, D M; Conte, G; Kalish, R

    2008-09-01

    New solid-state detectors, based on chemical vapour deposited (CVD) polycrystalline diamonds produced by hot-filament (HF) or microwave plasma (MW) assisted deposition methods, were constructed for radiation therapy dosimetry. Properties of diamond crystals, such as high radiation sensitivity, resistance to radiation damage and tissue-equivalence giving a low-energy dependence are very advantageous for clinical dosimetry. Therefore the encapsulation was specially designed for these detectors to have as little influence as possible on the radiation response. The prototypes were irradiated with use of a wide range of photon beam qualities ((60)Co gamma-rays, 6 and 18 MV X-rays). The radiation sensitivity varied considerably between samples deposited with HF (9 nC Gy(-1)mm(-3)) and MW (66 and 144 nC Gy(-1)mm(-3)) methods. For all detectors the leakage current was of the order of 10% of the radiation-induced current (bias voltage 100 V, dose rate 0.3 Gy/min). When irradiated with (60)Co gamma-rays, the detectors showed a dose-rate linearity with an exponential Delta parameter close to unity. However, a difference of 8% was found between Delta values for the different beam qualities. A small energy dependence was observed, for which the most probable sources are interface effects due to the silver electrodes and partly the geometry of the encapsulation which needs to be further optimized. Despite some limitations in the performance of present prototype detectors, with an improved CVD technique producing crystals of better electrical and dosimetric properties, and with a well-designed tissue-equivalent encapsulation, CVD-diamonds could serve as very good dosimeters for radiotherapy.

  5. Triple Hybrid Energy Harvesting Interface Electronics

    NASA Astrophysics Data System (ADS)

    Uluşan, H.; Chamanian, S.; Pathirana, W. M. P. R.; Zorlu, Ö.; Muhtaroğlu, A.; Külah, H.

    2016-11-01

    This study presents a novel triple hybrid system that combines simultaneously generated power from thermoelectric (TE), vibration-based electromagnetic (EM) and piezoelectric (PZT) harvesters for a relatively high power supply capability. In the proposed solution each harvesting source utilizes a distinct power management circuit that generates a DC voltage suitable for combining the three parallel supplies. The circuits are designed and implemented in 180 nm standard CMOS technology, and are terminated with a schottky diode to avoid reverse current flow. The harvested AC signal from the EM harvester is rectified with a self-powered AC-DC doubler, which utilizes active diode structures to minimize the forward- bias voltage drop. The PZT interface electronics utilizes a negative voltage converter as the first stage, followed by synchronous power extraction and DC-to-DC conversion through internal switches, and an external inductor. The ultra-low voltage DC power harvested by the TE generator is stepped up through a charge-pump driven by an LC oscillator with fully- integrated center-tapped differential inductors. Test results indicate that hybrid energy harvesting circuit provides more than 1 V output for load resistances higher than 100 kΩ (10 μW) where the stand-alone harvesting circuits are not able to reach 1 V output. This is the first hybrid harvester circuit that simultaneously extracts energy from three independent sources, and delivers a single DC output.

  6. The energy spectra of solar flare electrons

    NASA Technical Reports Server (NTRS)

    Evenson, P. A.; Hovestadt, D.; Meyer, P.; Moses, D.

    1985-01-01

    A survey of 50 electron energy spectra from .1 to 100 MeV originating from solar flares was made by the combination of data from two spectrometers onboard the International Sun Earth Explorer-3 spacecraft. The observed spectral shapes of flare events can be divided into two classes through the criteria of fit to an acceleration model. This standard two step acceleration model, which fits the spectral shape of the first class of flares, involves an impulsive step that accelerates particles up to 100 keV and a second step that further accelerates these particles up to 100 MeV by a single shock. This fit fails for the second class of flares that can be characterized as having excessively hard spectra above 1 MeV relative to the predictions of the model. Correlations with soft X-ray and meter radio observations imply that the acceleration of the high energy particles in the second class of flares is dominated by the impulsive phase of the flares.

  7. Microwave energy fixation for electron microscopy.

    PubMed Central

    Login, G. R.; Dvorak, A. M.

    1985-01-01

    We have demonstrated that microwave energy (MW) can be used in conjunction with chemical cross-linking agents in order to rapidly fix cell suspensions and tissue blocks for electron microscopy in 7-9 seconds. The optimal MW fixation method involved immersing tissues up to 1 cu cm in dilute aldehyde fixation and immediately irradiating the specimens in a conventional microwave oven for 9 seconds to 50 C. Ultrastructural preservation of samples irradiated by MW energy was comparable to that of the control samples immersed in aldehyde fixative for 2 hours at 25 C. Stereologic analysis showed that tissue blocks fixed by the MW fixation method did not cause organelles such as liver mitochondria and salivary gland granules to shrink or to swell. Potential applications for this new fixation technology include the investigation of rapid intracellular processes (eg, vesicular transport) and preservation of proteins that are difficult to demonstrate with routine fixation methods (eg, antigens and enzymes). Images Figure 4 Figure 5 Figure 2 Figure 3 Figure 6 Figure 7 Figure 8 Figure 9 Figure 10 Figure 11 PMID:3927740

  8. A small-scale anatomical dosimetry model of the liver

    NASA Astrophysics Data System (ADS)

    Stenvall, Anna; Larsson, Erik; Strand, Sven-Erik; Jönsson, Bo-Anders

    2014-07-01

    Radionuclide therapy is a growing and promising approach for treating and prolonging the lives of patients with cancer. For therapies where high activities are administered, the liver can become a dose-limiting organ; often with a complex, non-uniform activity distribution and resulting non-uniform absorbed-dose distribution. This paper therefore presents a small-scale dosimetry model for various source-target combinations within the human liver microarchitecture. Using Monte Carlo simulations, Medical Internal Radiation Dose formalism-compatible specific absorbed fractions were calculated for monoenergetic electrons; photons; alpha particles; and 125I, 90Y, 211At, 99mTc, 111In, 177Lu, 131I and 18F. S values and the ratio of local absorbed dose to the whole-organ average absorbed dose was calculated, enabling a transformation of dosimetry calculations from macro- to microstructure level. For heterogeneous activity distributions, for example uptake in Kupffer cells of radionuclides emitting low-energy electrons (125I) or high-LET alpha particles (211At) the target absorbed dose for the part of the space of Disse, closest to the source, was more than eight- and five-fold the average absorbed dose to the liver, respectively. With the increasing interest in radionuclide therapy of the liver, the presented model is an applicable tool for small-scale liver dosimetry in order to study detailed dose-effect relationships in the liver.

  9. A small-scale anatomical dosimetry model of the liver.

    PubMed

    Stenvall, Anna; Larsson, Erik; Strand, Sven-Erik; Jönsson, Bo-Anders

    2014-07-07

    Radionuclide therapy is a growing and promising approach for treating and prolonging the lives of patients with cancer. For therapies where high activities are administered, the liver can become a dose-limiting organ; often with a complex, non-uniform activity distribution and resulting non-uniform absorbed-dose distribution. This paper therefore presents a small-scale dosimetry model for various source-target combinations within the human liver microarchitecture. Using Monte Carlo simulations, Medical Internal Radiation Dose formalism-compatible specific absorbed fractions were calculated for monoenergetic electrons; photons; alpha particles; and (125)I, (90)Y, (211)At, (99m)Tc, (111)In, (177)Lu, (131)I and (18)F. S values and the ratio of local absorbed dose to the whole-organ average absorbed dose was calculated, enabling a transformation of dosimetry calculations from macro- to microstructure level. For heterogeneous activity distributions, for example uptake in Kupffer cells of radionuclides emitting low-energy electrons ((125)I) or high-LET alpha particles ((211)At) the target absorbed dose for the part of the space of Disse, closest to the source, was more than eight- and five-fold the average absorbed dose to the liver, respectively. With the increasing interest in radionuclide therapy of the liver, the presented model is an applicable tool for small-scale liver dosimetry in order to study detailed dose-effect relationships in the liver.

  10. Study of effective atomic number and electron density for tissues from human organs in the energy range of 1 keV-100 GeV.

    PubMed

    Manjunatha, H C; Rudraswamy, B

    2013-02-01

    Effective atomic numbers' (Z(eff)) effective electron density (N(el)) for human organs and tissues have been computed in the energy region of 1 keV to 100 GeV using WinXCOM. The computed data of Z(eff) and N(el) are tabulated. The computed values are compared with previous results. The computed data of Z(eff)and N(el)for almost all tissues (34 tissues of different human organs) in the given energy range are not available in literature and find application in radiotherapy and dosimetry.

  11. Reflection Electron Energy Loss Spectroscopy of Iron Monosilicide

    NASA Astrophysics Data System (ADS)

    Parshin, A. S.; Igumenov, A. Yu.; Mikhlin, Yu. L.; Pchelyakov, O. P.; Zhigalov, V. S.

    2017-02-01

    X-ray photoelectron spectra, reflection electron energy loss spectra, and inelastic electron scattering cross section spectra of iron monosilicide FeSi are investigated. It is shown that the spectra of inelastic electron scattering cross section have advantages over the reflection electron energy loss spectra in studying the processes of electron energy losses. An analysis of the fine structure of the inelastic electron scattering cross section spectra allows previously unresolved peaks to be identified and their energy, intensity, and nature to be determined. The difference between energies of fitting loss peaks in the spectra of inelastic electron scattering cross section of FeSi and pure Fe are more substantial than the chemical shifts in X-ray photoelectron spectra, which indicates the possibility of application of the fine structure of the spectra of inelastic electron scattering cross section for elemental analysis.

  12. Health physics research reactor reference dosimetry

    SciTech Connect

    Sims, C.S.; Ragan, G.E.

    1987-06-01

    Reference neutron dosimetry is developed for the Health Physics Research Reactor (HPRR) in the new operational configuration directly above its storage pit. This operational change was physically made early in CY 1985. The new reference dosimetry considered in this document is referred to as the 1986 HPRR reference dosimetry and it replaces any and all HPRR reference documents or papers issued prior to 1986. Reference dosimetry is developed for the unshielded HPRR as well as for the reactor with each of five different shield types and configurations. The reference dosimetry is presented in terms of three different dose and six different dose equivalent reporting conventions. These reporting conventions cover most of those in current use by dosimetrists worldwide. In addition to the reference neutron dosimetry, this document contains other useful dosimetry-related data for the HPRR in its new configuration. These data include dose-distance measurements and calculations, gamma dose measurements, neutron-to-gamma ratios, ''9-to-3 inch'' ratios, threshold detector unit measurements, 56-group neutron energy spectra, sulfur fluence measurements, and details concerning HPRR shields. 26 refs., 11 figs., 31 tabs.

  13. Modified electron acoustic field and energy applied to observation data

    SciTech Connect

    Abdelwahed, H. G. E-mail: hgomaa-eg@mans.edu.eg; El-Shewy, E. K.

    2016-08-15

    Improved electrostatic acoustic field and energy have been debated in vortex trapped hot electrons and fluid of cold electrons with pressure term plasmas. The perturbed higher-order modified-Korteweg-de Vries equation (PhomKdV) has been worked out. The effect of trapping and electron temperatures on the electro-field and energy properties in auroral plasmas has been inspected.

  14. Energy loss of relativistic electrons and positrons traversing cosmic matter

    NASA Technical Reports Server (NTRS)

    Gould, R. J.

    1975-01-01

    Questions of adiabatic expansion are considered along with aspects of Compton scattering, bremsstrahlung, electronic excitation, synchrotron radiation, and electron-positron pair production. It is found that, unless the intergalactic magnetic field is very small, synchrotron radiation will dominate all other energy loss processes at ultrahigh electron and positron energies. The dependence of the loss rates on the cosmic epoch is also discussed.

  15. Fundamentals of Radiation Dosimetry

    NASA Astrophysics Data System (ADS)

    Bos, Adrie J. J.

    2011-05-01

    The basic concepts of radiation dosimetry are reviewed on basis of ICRU reports and text books. The radiation field is described with, among others, the particle fluence. Cross sections for indirectly ionizing radiation are defined and indicated is how they are related to the mass energy transfer and mass energy absorption coefficients. Definitions of total and restricted mass stopping powers of directly ionizing radiation are given. The dosimetric quantities, kerma, absorbed dose and exposure together with the relations between them are discussed in depth. Finally it is indicated how the absorbed dose can be measured with a calorimeter by measuring the temperature increase and with an ionisation chamber measuring the charge produced by the ionizing radiation and making use of the Bragg-Gray relation.

  16. Fundamentals of Radiation Dosimetry

    SciTech Connect

    Bos, Adrie J. J.

    2011-05-05

    The basic concepts of radiation dosimetry are reviewed on basis of ICRU reports and text books. The radiation field is described with, among others, the particle fluence. Cross sections for indirectly ionizing radiation are defined and indicated is how they are related to the mass energy transfer and mass energy absorption coefficients. Definitions of total and restricted mass stopping powers of directly ionizing radiation are given. The dosimetric quantities, kerma, absorbed dose and exposure together with the relations between them are discussed in depth. Finally it is indicated how the absorbed dose can be measured with a calorimeter by measuring the temperature increase and with an ionisation chamber measuring the charge produced by the ionizing radiation and making use of the Bragg-Gray relation.

  17. Production and dosimetry of simultaneous therapeutic photons and electrons beam by linear accelerator: A Monte Carlo study

    NASA Astrophysics Data System (ADS)

    Khledi, Navid; Arbabi, Azim; Sardari, Dariush; Mohammadi, Mohammad; Ameri, Ahmad

    2015-02-01

    Depending on the location and depth of tumor, the electron or photon beams might be used for treatment. Electron beam have some advantages over photon beam for treatment of shallow tumors to spare the normal tissues beyond of the tumor. In the other hand, the photon beam are used for deep targets treatment. Both of these beams have some limitations, for example the dependency of penumbra with depth, and the lack of lateral equilibrium for small electron beam fields. In first, we simulated the conventional head configuration of Varian 2300 for 16 MeV electron, and the results approved by benchmarking the Percent Depth Dose (PDD) and profile of the simulation and measurement. In the next step, a perforated Lead (Pb) sheet with 1mm thickness placed at the top of the applicator holder tray. This layer producing bremsstrahlung x-ray and a part of the electrons passing through the holes, in result, we have a simultaneous mixed electron and photon beam. For making the irradiation field uniform, a layer of steel placed after the Pb layer. The simulation was performed for 10×10, and 4×4 cm2 field size. This study was showed the advantages of mixing the electron and photon beam by reduction of pure electron's penumbra dependency with the depth, especially for small fields, also decreasing of dramatic changes of PDD curve with irradiation field size.

  18. Production and dosimetry of simultaneous therapeutic photons and electrons beam by linear accelerator: A Monte Carlo study

    SciTech Connect

    Khledi, Navid; Sardari, Dariush; Arbabi, Azim; Ameri, Ahmad; Mohammadi, Mohammad

    2015-02-24

    Depending on the location and depth of tumor, the electron or photon beams might be used for treatment. Electron beam have some advantages over photon beam for treatment of shallow tumors to spare the normal tissues beyond of the tumor. In the other hand, the photon beam are used for deep targets treatment. Both of these beams have some limitations, for example the dependency of penumbra with depth, and the lack of lateral equilibrium for small electron beam fields. In first, we simulated the conventional head configuration of Varian 2300 for 16 MeV electron, and the results approved by benchmarking the Percent Depth Dose (PDD) and profile of the simulation and measurement. In the next step, a perforated Lead (Pb) sheet with 1mm thickness placed at the top of the applicator holder tray. This layer producing bremsstrahlung x-ray and a part of the electrons passing through the holes, in result, we have a simultaneous mixed electron and photon beam. For making the irradiation field uniform, a layer of steel placed after the Pb layer. The simulation was performed for 10×10, and 4×4 cm2 field size. This study was showed the advantages of mixing the electron and photon beam by reduction of pure electron's penumbra dependency with the depth, especially for small fields, also decreasing of dramatic changes of PDD curve with irradiation field size.

  19. Photon and electron collimator effects on electron output and abutting segments in energy modulated electron therapy

    SciTech Connect

    Olofsson, Lennart; Karlsson, Magnus G.; Karlsson, Mikael

    2005-10-15

    In energy modulated electron therapy a large fraction of the segments will be arranged as abutting segments where inhomogeneities in segment matching regions must be kept as small as possible. Furthermore, the output variation between different segments should be minimized and must in all cases be well predicted. For electron therapy with add-on collimators, both the electron MLC (eMLC) and the photon MLC (xMLC) contribute to these effects when an xMLC tracking technique is utilized to reduce the x-ray induced leakage. Two add-on electron collimator geometries have been analyzed using Monte Carlo simulations: One isocentric eMLC geometry with an isocentric clearance of 35 cm and air or helium in the treatment head, and one conventional proximity geometry with a clearance of 5 cm and air in the treatment head. The electron fluence output for 22.5 MeV electrons is not significantly affected by the xMLC if the shielding margins are larger than 2-3 cm. For small field sizes and 9.6 MeV electrons, the isocentric design with helium in the treatment head or shielding margins larger than 3 cm is needed to avoid a reduced electron output. Dose inhomogeneity in the matching region of electron segments is, in general, small when collimator positions are adjusted to account for divergence in the field. The effect of xMLC tracking on the electron output can be made negligible while still obtaining a substantially reduced x-ray leakage contribution. Collimator scattering effects do not interfere significantly when abutting beam techniques are properly applied.

  20. Ionization By Impact Electrons in Solids: Electron Mean Free Path Fitted Over A Wide Energy Range

    SciTech Connect

    Ziaja, B; London, R A; Hajdu, J

    2005-06-09

    We propose a simple formula for fitting the electron mean free paths in solids both at high and at low electron energies. The free-electron-gas approximation used for predicting electron mean free paths is no longer valid at low energies (E < 50 eV), as the band structure effects become significant at those energies. Therefore we include the results of the band structure calculations in our fit. Finally, we apply the fit to 9 elements and 2 compounds.

  1. Thermal electron energy distribution measurements in the ionosphere.

    NASA Technical Reports Server (NTRS)

    Hays, P. B.; Nagy, A. F.

    1973-01-01

    A recoverable payload instrumented for twilight airglow studies was launched by an Aerobee 150 from the White Sands Test Range on Feb. 8, 1971 at 13.56 UT. The payload included a low energy electron spectrometer (HARP) and a cylindrical Langmuir probe. The HARP electron spectrometer is a new device designed to make high resolution differential electron flux measurements. Measurements of ionospheric electron energy distribution in the range from about 0.2 to 4.0 eV are presented.

  2. Energy Measurements of Trapped Electrons from a Plasma Wakefield Accelerator

    SciTech Connect

    Kirby, Neil; Berry, Melissa; Blumenfeld, Ian; Decker, Franz-Josef; Hogan, Mark J.; Ischebeck, Rasmus; Iverson, Richard; Siemann, Robert H.; Walz, Dieter; Auerbach, David; Clayton, Christopher E.; Huang, Chengkun; Johnson, Devon; Joshi, Chandrashekhar; Lu, Wei; Marsh, Kenneth A.; Mori, Warren B.; Zhou, Miaomiao; Katsouleas, Thomas; Muggli, Patric

    2006-11-27

    Recent electron beam driven plasma wakefield accelerator experiments carried out at SLAC indicate trapping of plasma electrons. More charge came out of than went into the plasma. Most of this extra charge had energies at or below the 10 MeV level. In addition, there were trapped electron streaks that extended from a few GeV to tens of GeV, and there were mono-energetic trapped electron bunches with tens of GeV in energy.

  3. Energy Measurements of Trapped Electrons from a Plasma Wakefield Accelerator

    SciTech Connect

    Kirby, Neal; Auerbach, David; Berry, Melissa; Blumenfeld, Ian; Clayton, Christopher E.; Decer, Franz-Josef; Hogan, Mark J.; Huang, Chengkun; Ischebeck, Rasmus; Iverson, Richard; Johnson, Devon; Joshi, Chadrashekhar; Katsouleas, Thomas; Lu, Wei; Marsh, Kenneth A.; Mori, Warren B.; Muggli, Patric; Oz, Erdem; Siemann, Robert H.; Walz, Dieter; Zhou, Miaomiao; /SLAC /UCLA /Southern California U.

    2007-01-03

    Recent electron beam driven plasma wakefield accelerator experiments carried out at SLAC indicate trapping of plasma electrons. More charge came out of than went into the plasma. Most of this extra charge had energies at or below the 10 MeV level. In addition, there were trapped electron streaks that extended from a few GeV to tens of GeV, and there were mono-energetic trapped electron bunches with tens of GeV in energy.

  4. Electron acceleration and kinetic energy tailoring via ultrafast terahertz fields.

    PubMed

    Greig, S R; Elezzabi, A Y

    2014-11-17

    We propose a mechanism for tuning the kinetic energy of surface plasmon generated electron pulses through control of the time delay between a pair of externally applied terahertz pulses. Varying the time delay results in translation, compression, and broadening of the kinetic energy spectrum of the generated electron pulse. We also observe that the electrons' kinetic energy dependence on the carrier envelope phase of the surface plasmon is preserved under the influence of a terahertz electric field.

  5. Energy distribution asymmetry of electron precipitation signatures at Mars

    NASA Astrophysics Data System (ADS)

    Soobiah, Y. I. J.; Barabash, S.; Nilsson, H.; Stenberg, G.; Lundin, R.; Coates, A. J.; Winningham, J. D.; Frahm, R. A.

    2013-02-01

    The different types of asymmetry observed in the energy distributions of electrons and heavy-ions (M/Q=16-44) during signatures of electron precipitation in the Martian ionosphere have been classified. This has been achieved using the space plasma instrumentation of MEX ASPERA-3 from peri-centre altitude to 2200 km. ASPERA-3 ELS observes signatures of electron precipitation on 43.0% of MEX orbits. Unaccelerated electrons in the form of sudden electron flux enhancements are the most common type of electron precipitation signature at Mars and account for ∼70% of the events observed in this study. Electrons that form unaccelerated electron precipitation signatures are either local ionospheric electrons with enhanced density, or electrons transported from another region of ionosphere, solar wind or tail, or a combination of local and transported electrons. The heating of electrons has a strong influence on the shape of most electron energy spectra from accelerated precipitation signatures. On most occasions the general flow of heavy-ions away from Mars is unchanged during the precipitation of electrons, which is thought to be the result of the finite gyroradius effect of the heavy-ions on crustal magnetic field lines. Only ∼17% of events show some form of heavy-ion acceleration that is either concurrent or at the periphery of an electron precipitation signature. The most common combination of electron and heavy-ion energy distributions for signatures of electron precipitation involves electrons that visually have very little asymmetry or are isotropic and heavy-ions that have a upward net flux, and suggest the upward current associated with aurora. Due to a lack of reliable measurements of electrons travelling towards Mars, it is likely we miss further evidence of upward currents. The second most common combination of electron and heavy-ion energy distributions for signatures of electron precipitation, are those distributions of electrons that are asymmetric and

  6. The radiation dosimetry of intrathecally administered radionuclides

    SciTech Connect

    Stabin, M.G.; Evans, J.F.

    1999-01-01

    The radiation dose to the spine, spinal cord, marrow, and other organs of the body from intrathecal administration of several radiopharmaceuticals was studied. Anatomic models were developed for the spine, spinal cerebrospinal fluid (CSF), spinal cord, spinal skeleton, cranial skeleton, and cranial CSF. A kinetic model for the transport of CSF was used to determine residence times in the CSF; material leaving the CSF was thereafter assumed to enter the bloodstream and follow the kinetics of the radiopharmaceutical as if intravenously administered. The radiation transport codes MCNP and ALGAMP were used to model the electron and photon transport and energy deposition. The dosimetry of Tc-99m DTPA and HSA, In-111 DTPA, I-131 HSA, and Yb-169 DTPA was studied. Radiation dose profiles for the spinal cord and marrow in the spine were developed and average doses to all other organs were estimated, including dose distributions within the bone and marrow.

  7. Electron polarimetry at low energies in Hall C at JLab

    NASA Astrophysics Data System (ADS)

    Gaskell, D.

    2013-11-01

    Although the majority of Jefferson Lab experiments require multi-GeV electron beams, there have been a few opportunities to make electron beam polarization measurements at rather low energies. This proceedings will discuss some of the practical difficulties encountered in performing electron polarimetry via Mo/ller scattering at energies on the order of a few hundred MeV. Prospects for Compton polarimetry at very low energies will also be discussed. While Mo/ller scattering is likely the preferred method for electron polarimetry at energies below 500 MeV, there are certain aspects of the polarimeter and experiment design that must be carefully considered.

  8. Electron polarimetry at low energies in Hall C at JLab

    SciTech Connect

    Gaskell, D.

    2013-11-07

    Although the majority of Jefferson Lab experiments require multi-GeV electron beams, there have been a few opportunities to make electron beam polarization measurements at rather low energies. This proceedings will discuss some of the practical difficulties encountered in performing electron polarimetry via Mo/ller scattering at energies on the order of a few hundred MeV. Prospects for Compton polarimetry at very low energies will also be discussed. While Mo/ller scattering is likely the preferred method for electron polarimetry at energies below 500 MeV, there are certain aspects of the polarimeter and experiment design that must be carefully considered.

  9. Application of a new dosimetry formalism to volumetric modulated arc therapy (VMAT).

    PubMed

    Rosser, Karen E; Bedford, James L

    2009-12-07

    Volumetric modulated arc therapy (VMAT) offers a challenge to classical dosimetry protocols as the beams are dynamic in orientation and aperture shape and may include small apertures. The aim of this paper is to apply a formalism to VMAT beams that has recently been published by the International Atomic Energy Agency (IAEA) working party to improve the dosimetry for small and non-standard fields. We investigated three possible fields and assessed their suitability as plan class specific reference (pcsr) fields. The factors in the new dosimetry formalism were investigated: the conversion of dose to water from the conventional reference field to the pcsr and then from the pcsr to a treatment plan, using a PTW semiflex chamber, two Farmer chambers and an electron diode. Finally, the dose was compared for Alanine, the new formalism and calculated using Pinnacle(3) (Philips Radiation Oncology Systems) for two typical clinical VMAT beams. Correction factors between the reference field and the pcsr determined with Alanine range from 0.1% to 2.3% for the three pcsr fields. Dose to water measured using the calibrated ionization chambers is less than 2% different to the dose calculated by Pinnacle(3). VMAT planning and delivery procedures have been successfully implemented and a new dosimetry protocol has been investigated for this new technique. Calibration factors for pcsr fields are found to be up to 2.3% different when using the new formalism, compared to using a standard dosimetry protocol. Using the calibration factors determined in the pcsr fields, the ionization chambers and electron diode agree to within 1% with Alanine dosimetry for two clinical VMAT plans. Good agreements between calculations and measurements are found for these two plans when the new formalism is used.

  10. Extrapolation chamber mounted on perspex for calibration of high energy photon and electron beams from a clinical linear accelerator.

    PubMed

    Ravichandran, R; Binukumar, J P; Sivakumar, S S; Krishnamurthy, K; Davis, C A

    2009-01-01

    The objective of the present study is to establish radiation standards for absorbed doses, for clinical high energy linear accelerator beams. In the nonavailability of a cobalt-60 beam for arriving at Nd, water values for thimble chambers, we investigated the efficacy of perspex mounted extrapolation chamber (EC) used earlier for low energy x-rays and beta dosimetry. Extrapolation chamber with facility for achieving variable electrode separations 10.5mm to 0.5mm using micrometer screw was used for calibrations. Photon beams 6 MV and 15 MV and electron beams 6 MeV and 15 MeV from Varian Clinac linacs were calibrated. Absorbed Dose estimates to Perspex were converted into dose to solid water for comparison with FC 65 ionisation chamber measurements in water. Measurements made during the period December 2006 to June 2008 are considered for evaluation. Uncorrected ionization readings of EC for all the radiation beams over the entire period were within 2% showing the consistency of measurements. Absorbed doses estimated by EC were in good agreement with in-water calibrations within 2% for photons and electron beams. The present results suggest that extrapolation chambers can be considered as an independent measuring system for absorbed dose in addition to Farmer type ion chambers. In the absence of standard beam quality (Co-60 radiations as reference Quality for Nd,water) the possibility of keeping EC as Primary Standards for absorbed dose calibrations in high energy radiation beams from linacs should be explored. As there are neither Standard Laboratories nor SSDL available in our country, we look forward to keep EC as Local Standard for hospital chamber calibrations. We are also participating in the IAEA mailed TLD intercomparison programme for quality audit of existing status of radiation dosimetry in high energy linac beams. The performance of EC has to be confirmed with cobalt-60 beams by a separate study, as linacs are susceptible for minor variations in dose

  11. Extrapolation chamber mounted on perspex for calibration of high energy photon and electron beams from a clinical linear accelerator

    PubMed Central

    Ravichandran, R.; Binukumar, J. P.; Sivakumar, S. S.; Krishnamurthy, K.; Davis, C. A.

    2009-01-01

    The objective of the present study is to establish radiation standards for absorbed doses, for clinical high energy linear accelerator beams. In the nonavailability of a cobalt-60 beam for arriving at Nd, water values for thimble chambers, we investigated the efficacy of perspex mounted extrapolation chamber (EC) used earlier for low energy x-rays and beta dosimetry. Extrapolation chamber with facility for achieving variable electrode separations 10.5mm to 0.5mm using micrometer screw was used for calibrations. Photon beams 6 MV and 15 MV and electron beams 6 MeV and 15 MeV from Varian Clinac linacs were calibrated. Absorbed Dose estimates to Perspex were converted into dose to solid water for comparison with FC 65 ionisation chamber measurements in water. Measurements made during the period December 2006 to June 2008 are considered for evaluation. Uncorrected ionization readings of EC for all the radiation beams over the entire period were within 2% showing the consistency of measurements. Absorbed doses estimated by EC were in good agreement with in-water calibrations within 2% for photons and electron beams. The present results suggest that extrapolation chambers can be considered as an independent measuring system for absorbed dose in addition to Farmer type ion chambers. In the absence of standard beam quality (Co-60 radiations as reference Quality for Nd,water) the possibility of keeping EC as Primary Standards for absorbed dose calibrations in high energy radiation beams from linacs should be explored. As there are neither Standard Laboratories nor SSDL available in our country, we look forward to keep EC as Local Standard for hospital chamber calibrations. We are also participating in the IAEA mailed TLD intercomparison programme for quality audit of existing status of radiation dosimetry in high energy linac beams. The performance of EC has to be confirmed with cobalt-60 beams by a separate study, as linacs are susceptible for minor variations in dose

  12. Sterilization of foods with low-energy electrons (``soft-electrons'')

    NASA Astrophysics Data System (ADS)

    Hayashi, Toru; Takahashi, Yoko; Todoriki, Setsuko

    1998-06-01

    Electrons with an energy of 300 keV or lower were defined as "Soft-electrons", which showed several advantages over conventional irradiation with gamma-rays or high-energy electrons in decontamination of grains and spices. Energies of electrons necessary to reduce microbial loads to levels lower than 10 CFU/g were 60 keV for brown rice, 75 keV for wheat, 100 keV for white pepper, coriander and basil, 130 keV for buckwheat, 160 keV for rough rice, and 210 keV for black pepper. Electrons with such energies did not significantly influence the quality.

  13. MO-D-BRD-02: In Memoriam of Bengt Bjarngard: SBRT II: Small Field Dosimetry - TG155

    SciTech Connect

    Das, I; Reft, C

    2014-06-15

    Specialized radiation treatment such as SRS/SRT. SBRT, IMRT, VMAT, Tomotherapy, CyberKnife and Gamma Knife use small fields or combination of small fields where dosimetry is challenging and uncertain due to non-equilibrium conditions such as longitudinal and lateral disequilibrium. Additionally the primary photon fluence is greatly affected by the obstruction of the source size by the jaws creating a large dose gradient across the field. Electronic equilibrium is a phenomenon associated with the range of secondary particles which depend on the beam energy, photon spectrum and the composition of the medium. Additionally, the finite size of detectors creates volume averaging and fluence perturbations especially in small fields. The IAEA/AAPM has provided a frame work for non-compliant reference dosimetry in small fields1. The AAPM TG-1552 has adopted this frame work to provide guidelines in relative dosimetry. This course provides the insight of TG-155 that defines small field, provides recommendations for suitable detectors and associated correction factors to convert reading to dose. Recommendations of a good working practice for relative dosimetry measurements (PDD, TMR, output factor, etc.) and dose calculations based on the new formulation is are elaborated. It also discusses beam modeling and dose calculations as a critical step in clinical utilization of small field radiotherapy. Small errors in beam data, approximations in dose algorithms, or misaligned of detectors and field settings can propagate into large errors in planned and delivered dose. The modeling and treatment planning aspects of small field dosimetry are reviewed with emphasis on the most critical parts for ensuring accurate and safe radiation therapy. Discussion on k(fmsr, fclin) for commercially available detectors are also provided.1 P. Alfonso, P. Andreo, R. Capote, M. S. Huq, W. Kilby, P. Kjall, T. R. Mackie, H. Palmans, K. Rosser, J. Seuntjens, W. Ullrich and S. Vatnitsky, “A new

  14. Computer Simulation of Reflection High Energy Electron Diffraction and Low Energy Electron Diffraction

    NASA Astrophysics Data System (ADS)

    Flexner, Soren; Davidson, Bruce; Odonnell, James; Eckstein, J. N.

    2000-03-01

    Simulation software for Reflection High Energy Electron Diffraction (RHEED) and Low Energy Electron Diffraction (LEED) imaging has been developed using the C programming language. This software models experimental electron diffraction patterns obtained in-situ during deposition of oxide films by molecular beam epitaxy in our lab. Using the kinematical approximation the software considers the phase contributions from scatterers via a modifiable, finite, two or three-dimensional real lattice to construct the RHEED and LEED images. We have found quantitative agreement in the positions of diffraction maxima, and proceed to use the software to explore the qualitative aspects of La and Mn termination in LaMnO2, surface Jahn-Teller distortion in perovskites, terracing in various materials, and domain formation in a-axis DBCO resulting from in-plane rotation of the c-axis. In addition the software is used to examine proposed surface reconstructions capable of producing, e.g. the elevated half-order streaks seen along the [100] azimuth during growth of LaMnO2.

  15. Electronic Delocalization, Vibrational Dynamics, and Energy Transfer in Organic Chromophores.

    PubMed

    Nelson, Tammie; Fernandez-Alberti, Sebastian; Roitberg, Adrian E; Tretiak, Sergei

    2017-07-06

    The efficiency of materials developed for solar energy and technological applications depends on the interplay between molecular architecture and light-induced electronic energy redistribution. The spatial localization of electronic excitations is very sensitive to molecular distortions. Vibrational nuclear motions can couple to electronic dynamics driving changes in localization. The electronic energy transfer among multiple chromophores arises from several distinct mechanisms that can give rise to experimentally measured signals. Atomistic simulations of coupled electron-vibrational dynamics can help uncover the nuclear motions directing energy flow. Through careful analysis of excited state wave function evolution and a useful fragmenting of multichromophore systems, through-bond transport and exciton hopping (through-space) mechanisms can be distinguished. Such insights are crucial in the interpretation of fluorescence anisotropy measurements and can aid materials design. This Perspective highlights the interconnected vibrational and electronic motions at the foundation of nonadiabatic dynamics where nuclear motions, including torsional rotations and bond vibrations, drive electronic transitions.

  16. Electron energy recovery system for negative ion sources

    DOEpatents

    Dagenhart, W.K.; Stirling, W.L.

    1979-10-25

    An electron energy recovery system for negative ion sources is provided. The system, employing crossed electric and magnetic fields, separates the electrons from the ions as they are extracted from the ion source plasma generator and before the ions are accelerated to their full energy. With the electric and magnetic fields oriented 90/sup 0/ to each other, the electrons remain at approximately the electrical potential at which they were generated. The electromagnetic forces cause the ions to be accelerated to the full accelerating supply voltage energy while being deflected through an angle of less than 90/sup 0/. The electrons precess out of the accelerating field region into an electron recovery region where they are collected at a small fraction of the full accelerating supply energy. It is possible, by this method, to collect > 90% of the electrons extracted along with the negative ions from a negative ion source beam at < 4% of full energy.

  17. Electron energy distributions in a metal-polymer-vacuum system

    SciTech Connect

    Yumaguzin, Yu. M.; Kornilov, V. M.; Lachinov, A. N.

    2006-08-15

    The energy distributions of electrons emitted from a metal coated with a polymer (polydiphenylene phthalide) is studied experimentally using field electron spectroscopy. A considerable decrease in the electron work function for the metal-polymer-vacuum system as compared to pure metal is observed. Analysis of the energy distributions of emitted electrons shows that the distribution in the case with the polymer is broader and displaced towards low energies, and its high-energy edge is slightly extended. The effect of emission voltage on the shape of the energy distribution of emitted electrons is studied. A model is proposed to explain the substantial decrease in the effective electron work function in the case when the metal electrode is coated with a polymer film.

  18. Is the electron radiation length constant at high energies?

    PubMed

    Hansen, H D; Uggerhøj, U I; Biino, C; Ballestrero, S; Mangiarotti, A; Sona, P; Ketel, T J; Vilakazi, Z Z

    2003-07-04

    Experimental results for the radiative energy loss of 149, 207, and 287 GeV electrons in a thin Ir target are presented. From the data we conclude that at high energies the radiation length increases in accordance with the Landau-Pomeranchuk-Migdal (LPM) theory and thus electrons become more penetrating the higher the energy. The increase of the radiation length as a result of the LPM effect has a significant impact on the behavior of high-energy electromagnetic showers.

  19. Variations in dose response with x-ray energy of LiF:Mg,Cu,P thermoluminescence dosimeters: implications for clinical dosimetry.

    PubMed

    Duggan, Lisa; Hood, Claire; Warren-Forward, Helen; Haque, Mamoon; Kron, Tomas

    2004-09-07

    In many medical procedures where accurate radiation dose measurements are needed, the variation of detector response with x-ray energy is of concern. The response of LiF:Mg,Cu,P TLDs to a range of x-ray energies was analysed in monoenergetic (synchrotron), diagnostic and therapy radiation beams with the aim of implementing this dosimeter into clinical practice where existing dosimetry techniques are limited due to lack of sensitivity or tissue equivalence (e.g. neonatal radiography, mammography and brachytherapy). LiF:Mg,Cu,P TLDs in different forms from two manufacturers (MCP-N: TLD Poland, GR200: SDDML China) were irradiated using x-ray beams covering 10 keV to 18 MVp. Dose readings were compared with an ionization chamber. The effect of different TLD types and annealing cycles on clinical utility was investigated. The measured energy response of LiF:Mg,Cu,P TLDs was fit to a simple model devised by Kron et al (1998 Phys. Med. Biol. 43 3235-59) to describe the variation of TLD response with x-ray energy. If TLDs are handled as recommended in the present paper, the energy response of LiF:Mg,Cu,P deviates by a maximum of 15% from unity and agrees with the model to within 5% or experimental uncertainty between 15 keV and 10 MeV. LiF:Mg,Cu,P TLDs of all forms have consistent and superior energy response compared to the standard material LiF:Mg,Ti and are therefore suitable for a wide range of applications in diagnostic radiology and radiotherapy.

  20. Variations in dose response with x-ray energy of LiF:Mg,Cu,P thermoluminescence dosimeters: implications for clinical dosimetry

    NASA Astrophysics Data System (ADS)

    Duggan, Lisa; Hood, Claire; Warren-Forward, Helen; Haque, Mamoon; Kron, Tomas

    2004-09-01

    In many medical procedures where accurate radiation dose measurements are needed, the variation of detector response with x-ray energy is of concern. The response of LiF:Mg,Cu,P TLDs to a range of x-ray energies was analysed in monoenergetic (synchrotron), diagnostic and therapy radiation beams with the aim of implementing this dosimeter into clinical practice where existing dosimetry techniques are limited due to lack of sensitivity or tissue equivalence (e.g. neonatal radiography, mammography and brachytherapy). LiF:Mg,Cu,P TLDs in different forms from two manufacturers (MCP-N: TLD Poland, GR-200: SDDML China) were irradiated using x-ray beams covering 10 keV to 18 MVp. Dose readings were compared with an ionization chamber. The effect of different TLD types and annealing cycles on clinical utility was investigated. The measured energy response of LiF:Mg,Cu,P TLDs was fit to a simple model devised by Kron et al (1998 Phys. Med. Biol. 43 3235-59) to describe the variation of TLD response with x-ray energy. If TLDs are handled as recommended in the present paper, the energy response of LiF:Mg,Cu,P deviates by a maximum of 15% from unity and agrees with the model to within 5% or experimental uncertainty between 15 keV and 10 MeV. LiF:Mg,Cu,P TLDs of all forms have consistent and superior energy response compared to the standard material LiF:Mg,Ti and are therefore suitable for a wide range of applications in diagnostic radiology and radiotherapy.

  1. Atomic electron energies including relativistic effects and quantum electrodynamic corrections

    NASA Technical Reports Server (NTRS)

    Aoyagi, M.; Chen, M. H.; Crasemann, B.; Huang, K. N.; Mark, H.

    1977-01-01

    Atomic electron energies have been calculated relativistically. Hartree-Fock-Slater wave functions served as zeroth-order eigenfunctions to compute the expectation of the total Hamiltonian. A first order correction to the local approximation was thus included. Quantum-electrodynamic corrections were made. For all orbitals in all atoms with 2 less than or equal to Z less than or equal to 106, the following quantities are listed: total energies, electron kinetic energies, electron-nucleus potential energies, electron-electron potential energies consisting of electrostatic and Breit interaction (magnetic and retardation) terms, and vacuum polarization energies. These results will serve for detailed comparison of calculations based on other approaches. The magnitude of quantum electrodynamic corrections is exhibited quantitatively for each state.

  2. Low energy cyclotron production and separation of yttrium-86 for evaluation of monoclonal antibody pharmacokinetics and dosimetry

    SciTech Connect

    Shoner, S.; Link, J.; Krohn, K.; Schlyer, D.

    1999-06-01

    Although an excellent radionuclide for application to systemic isotopic therapy when complexed to various monoclonal antibodies, the lack of photon emission from yttrium-90 makes the determination of the pharmacokinetics and dosimetry of the resultant radiopharmaceutical difficult. The introduction of the positron-emitting radionuclide yttrium-86 (T{sub 1/2}=14.7&hthinsp;h,&hthinsp;{beta}{sup +}=33{percent}) provides the non-invasive quantitation for the biodistribution of the chelated complex. The yttrium-86 radionuclide is produced at Memorial Sloan-Kettering using the CS-15 cyclotron via the (p,n) nuclear reaction on an enriched strontium-86 target. The separation is effectively achieved through a combination of solvent extraction and ion exchange chromatography. Once investigational new drug approval has been received, the mixed nuclides, Y-90 and Y-86, are to be used to formulate the HuM195 labeled monoclonal antibody, a radiopharmaceutical under active investigation against hematopoietic progenitor cells. {copyright} {ital 1999 American Institute of Physics.}

  3. Electrospun Fibers for Energy, Electronic, & Environmental Applications

    NASA Astrophysics Data System (ADS)

    Bedford, Nicholas M.

    Electrospinning is an established method for creating polymer and bio-polymer fibers of dimensions ranging from ˜10 nanometers to microns. The process typically involves applying a high voltage between a solution source (usually at the end of a capillary or syringe) and a substrate on which the nanofibers are deposited. The high electric field distorts the shape of the liquid droplet, creating a Taylor cone. Additional applied voltage ejects a liquid jet of the polymer solution in the Taylor cone toward the counter electrode. The formation of fibers is generated by the rapid electrostatic elongation and solvent evaporation of this viscoelastic jet, which typically generates an entangled non-woven mesh of fibers with a high surface area to volume ratio. Electrospinning is an attractive alternative to other processes for creating nano-scale fibers and high surface area to volume ratio surfaces due to its low start up cost, overall simplicity, wide range of processable materials, and the ability to generate a moderate amount of fibers in one step. It has also been demonstrated that coaxial electrospinning is possible, wherein the nanofiber has two distinct phases, one being the core and another being the sheath. This method is advantageous because properties of two materials can be combined into one fiber, while maintaining two distinct material phases. Materials that are inherently electrospinable could be made into fibers using this technique as well. The most common applications areas for electrospun fibers are in filtration and biomedical areas, with a comparatively small amount of work done in energy, environmental, and sensor applications. Furthermore, the use of biologically materials in electrospun fibers is an avenue of research that needs more exploration, given the unique properties these materials can exhibit. The research aim of this thesis is to explore the use of electrospun fibers for energy, electrical and environmental applications. For energy

  4. Small fields: Nonequilibrium radiation dosimetry

    SciTech Connect

    Das, Indra J.; Ding, George X.; Ahnesjoe, Anders

    2008-01-15

    Advances in radiation treatment with beamlet-based intensity modulation, image-guided radiation therapy, and stereotactic radiosurgery (including specialized equipments like CyberKnife, Gamma Knife, tomotherapy, and high-resolution multileaf collimating systems) have resulted in the use of reduced treatment fields to a subcentimeter scale. Compared to the traditional radiotherapy with fields {>=}4x4 cm{sup 2}, this can result in significant uncertainty in the accuracy of clinical dosimetry. The dosimetry of small fields is challenging due to nonequilibrium conditions created as a consequence of the secondary electron track lengths and the source size projected through the collimating system that are comparable to the treatment field size. It is further complicated by the prolonged electron tracks in the presence of low-density inhomogeneities. Also, radiation detectors introduced into such fields usually perturb the level of disequilibrium. Hence, the dosimetric accuracy previously achieved for standard radiotherapy applications is at risk for both absolute and relative dose determination. This article summarizes the present knowledge and gives an insight into the future procedures to handle the nonequilibrium radiation dosimetry problems. It is anticipated that new miniature detectors with controlled perturbations and corrections will be available to meet the demand for accurate measurements. It is also expected that the Monte Carlo techniques will increasingly be used in assessing the accuracy, verification, and calculation of dose, and will aid perturbation calculations of detectors used in small and highly conformal radiation beams.

  5. Recent trends in radioprotection dosimetry: Promising solutions for personal neutron dosimetry

    NASA Astrophysics Data System (ADS)

    Tommasino, L.

    1987-03-01

    Conventional detectors used in radiation protection dosimetry (for a given amount of energy deposited in their macroscopic volumes) are more sensitive to sparse radiations (electrons, X or gamma) than to fast neutrons or high-LET particles, i.e. those particles characterized by high biological effectiveness. By contrast, detectors needed in radiation protection monitoring should have a registration sensitivity which follows the opposite trend. With conventional detectors, in order to register the high-LET component in mixed fields, it is necessary to count individual energy-depositing tracks thus requiring elaborate electronics or complex automatic systems. In this paper new detecting methods will be described, which are very sensitive to fast neutrons and are completely insensitive to gamma radiations. These new detectors are based on the same properties of highly ionizing particles which determine their high biological effectiveness, namely the high deposition of energy at microscopic and submicroscopic distances from the particle trajectory in solid materials. Another important characteristic, common to these new detecting methods, is the exploitation of the high-energy deposition in the vicinity of the track to initiate avalanche-type of processes, which can be easily detected. These new registration techniques are respectively the electrochemically etched damage track detectors and the bubble damage polymer detectors. The simplicity, low cost and small size of these new detecting systems, together with their high sensitivity and their ability to discriminate against large fluxes of sparsely ionizing radiations make it possible to tackle some of the most difficult problems yet to be solved in radioprotection monitoring, such as personnel neutron dosimetry.

  6. Characteristic energy range of electron scattering due to plasmaspheric hiss

    NASA Astrophysics Data System (ADS)

    Ma, Q.; Li, W.; Thorne, R. M.; Bortnik, J.; Reeves, G. D.; Kletzing, C. A.; Kurth, W. S.; Hospodarsky, G. B.; Spence, H. E.; Baker, D. N.; Blake, J. B.; Fennell, J. F.; Claudepierre, S. G.; Angelopoulos, V.

    2016-12-01

    We investigate the characteristic energy range of electron flux decay due to the interaction with plasmaspheric hiss in the Earth's inner magnetosphere. The Van Allen Probes have measured the energetic electron flux decay profiles in the Earth's outer radiation belt during a quiet period following the geomagnetic storm that occurred on 7 November 2015. The observed energy of significant electron decay increases with decreasing L shell and is well correlated with the energy band corresponding to the first adiabatic invariant μ = 4-200 MeV/G. The electron diffusion coefficients due to hiss scattering are calculated at L = 2-6, and the modeled energy band of effective pitch angle scattering is also well correlated with the constant μ lines and is consistent with the observed energy range of electron decay. Using the previously developed statistical plasmaspheric hiss model during modestly disturbed periods, we perform a 2-D Fokker-Planck simulation of the electron phase space density evolution at L = 3.5 and demonstrate that plasmaspheric hiss causes the significant decay of 100 keV-1 MeV electrons with the largest decay rate occurring at around 340 keV, forming anisotropic pitch angle distributions at lower energies and more flattened distributions at higher energies. Our study provides reasonable estimates of the electron populations that can be most significantly affected by plasmaspheric hiss and the consequent electron decay profiles.

  7. A compact, versatile low-energy electron beam ion source

    SciTech Connect

    Zschornack, G.; König, J.; Schmidt, M.; Thorn, A.

    2014-02-15

    A new compact Electron Beam Ion Source, the Dresden EBIT-LE, is introduced as an ion source working at low electron beam energies. The EBIT-LE operates at an electron energy ranging from 100 eV to some keV and can easily be modified to an EBIT also working at higher electron beam energies of up to 15 keV. We show that, depending on the electron beam energy, electron beam currents from a few mA in the low-energy regime up to about 40 mA in the high-energy regime are possible. Technical solutions as well as first experimental results of the EBIT-LE are presented. In ion extraction experiments, a stable production of low and intermediate charged ions at electron beam energies below 2 keV is demonstrated. Furthermore, X-ray spectroscopy measurements confirm the possibility of using the machine as a source of X-rays from ions excited at low electron energies.

  8. A compact, versatile low-energy electron beam ion source.

    PubMed

    Zschornack, G; König, J; Schmidt, M; Thorn, A

    2014-02-01

    A new compact Electron Beam Ion Source, the Dresden EBIT-LE, is introduced as an ion source working at low electron beam energies. The EBIT-LE operates at an electron energy ranging from 100 eV to some keV and can easily be modified to an EBIT also working at higher electron beam energies of up to 15 keV. We show that, depending on the electron beam energy, electron beam currents from a few mA in the low-energy regime up to about 40 mA in the high-energy regime are possible. Technical solutions as well as first experimental results of the EBIT-LE are presented. In ion extraction experiments, a stable production of low and intermediate charged ions at electron beam energies below 2 keV is demonstrated. Furthermore, X-ray spectroscopy measurements confirm the possibility of using the machine as a source of X-rays from ions excited at low electron energies.

  9. Mixed high energy photon and electron radiation fields for calibrating radiation protection dosemeters.

    PubMed

    Büermann, L; Gargioni, E; Kramer, H M

    2001-01-01

    According to ISO 4037-3, calibrations of radiation protection dosemeters with photon radiation of energies above 3 MeV are performed under conditions of charged particle equilibrium. No information is provided concerning how to determine the response of dosemeters to radiation fields in the more general case when these conditions are not fulfilled. This paper deals with the production of mixed high energy photon and electron fields characterised by a lack or an excess of charged particles relative to conditions of equilibrium and describes a new procedure for the dosimetry in such fields. Through variation of the charged particle fluence fraction with respect to a nearly constant photon fluence, Hp(10) and H'(10) values varied by up to a factor of 1.74. The above mentioned basic study was utilised in the recent IAEA intercomparison (Co-ordinated Research Project 1996-1998) and EURADOS 'trial performance test' (1996-1998) for individual monitoring of photon radiation in testing response characteristics of individual dosemeters in non-charged particle equilibrium conditions.

  10. In aqua vivo EPID dosimetry

    SciTech Connect

    Wendling, Markus; McDermott, Leah N.; Mans, Anton; Olaciregui-Ruiz, Igor; Pecharroman-Gallego, Raul; Sonke, Jan-Jakob; Stroom, Joep; Herk, Marcel J.; Mijnheer, Ben van

    2012-01-15

    Purpose: At the Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital in vivo dosimetry using an electronic portal imaging device (EPID) has been implemented for almost all high-energy photon treatments of cancer with curative intent. Lung cancer treatments were initially excluded, because the original back-projection dose-reconstruction algorithm uses water-based scatter-correction kernels and therefore does not account for tissue inhomogeneities accurately. The aim of this study was to test a new method, in aqua vivo EPID dosimetry, for fast dose verification of lung cancer irradiations during actual patient treatment. Methods: The key feature of our method is the dose reconstruction in the patient from EPID images, obtained during the actual treatment, whereby the images have been converted to a situation as if the patient consisted entirely of water; hence, the method is termed in aqua vivo. This is done by multiplying the measured in vivo EPID image with the ratio of two digitally reconstructed transmission images for the unit-density and inhomogeneous tissue situation. For dose verification, a comparison is made with the calculated dose distribution with the inhomogeneity correction switched off. IMRT treatment verification is performed for each beam in 2D using a 2D {gamma} evaluation, while for the verification of volumetric-modulated arc therapy (VMAT) treatments in 3D a 3D {gamma} evaluation is applied using the same parameters (3%, 3 mm). The method was tested using two inhomogeneous phantoms simulating a tumor in lung and measuring its sensitivity for patient positioning errors. Subsequently five IMRT and five VMAT clinical lung cancer treatments were investigated, using both the conventional back-projection algorithm and the in aqua vivo method. The verification results of the in aqua vivo method were statistically analyzed for 751 lung cancer patients treated with IMRT and 50 lung cancer patients treated with VMAT. Results: The improvements by

  11. Spectral shape variation of interstellar electrons at high energies

    NASA Technical Reports Server (NTRS)

    Tan, L. C.

    1985-01-01

    The high energy electron spectrum analysis has shown that the electron intensity inside the H2 cloud region, or in a spiral arm, should be much lower than that outside it and the observed electron energy spectrum should flatten again at about 1 TeV. In the framework of the leady box model the recently established rigidity dependence of the escape pathlength of cosmic rays would predict a high energy electron spectrum which is flatter than the observed one. This divergence is explained by assuming that the leaky box model can only apply to cosmic ray heavy nuclei, and light nuclei and electrons in cosmic rays may have different behaviors in the interstellar propagation. Therefore, the measured data on high energy electrons should be analyzed based on the proposed nonuniform galactic disk (NUGD) mode.

  12. LAT Perspectives in Detection of High Energy Cosmic Ray Electrons

    NASA Technical Reports Server (NTRS)

    Moiseev, Alexander; Ormes, J. F.; Funk, Stefan

    2007-01-01

    The GLAST Large Area Telescope (LAT) science objectives and capabilities in the detection of high energy electrons in the energy range from 20 GeV to approx. 1 TeV are presented. LAT simulations are used to establish the event selections. It is found that maintaining the efficiency of electron detection at the level of 30% the residual hadron contamination does not exceed 2-3% of the electron flux. LAT should collect approx. ten million of electrons with the energy above 20 GeV for each year of observation. Precise spectral reconstruction with high statistics presents us with a unique opportunity to investigate several important problems such as studying galactic models of IC radiation, revealing the signatures of nearby sources such as high energy cutoff in the electron spectrum, testing the propagation model, and searching for KKDM particles decay through their contribution to the electron spectrum.

  13. PROGRESS OF HIGH-ENERGY ELECTRON COOLING FOR RHIC.

    SciTech Connect

    FEDOTOV,A.V.

    2007-09-10

    The fundamental questions about QCD which can be directly answered at Relativistic Heavy Ion Collider (RHIC) call for large integrated luminosities. The major goal of RHIC-I1 upgrade is to achieve a 10 fold increase in luminosity of Au ions at the top energy of 100 GeV/nucleon. Such a boost in luminosity for RHIC-II is achievable with implementation of high-energy electron cooling. The design of the higher-energy cooler for RHIC-II recently adopted a non-magnetized approach which requires a low temperature electron beam. Such electron beams will be produced with a superconducting Energy Recovery Linac (ERL). Detailed simulations of the electron cooling process and numerical simulations of the electron beam transport including the cooling section were performed. An intensive R&D of various elements of the design is presently underway. Here, we summarize progress in these electron cooling efforts.

  14. The source of multi spectral energy of solar energetic electron

    SciTech Connect

    Herdiwijaya, Dhani

    2015-04-16

    We study the solar energetic electron distribution obtained from ACE and GOES satellites which have different altitudes and electron spectral energy during the year 1997 to 2011. The electron spectral energies were 0.038–0.315 MeV from EPAM instrument onboard ACE satellite and >2 MeV from GOES satellite. We found that the low electron energy has no correlation with high energy. In spite of we have corrected to the altitude differences. It implied that they originated from time dependent events with different sources and physical processes at the solar atmosphere. The sources of multi spectral energetic electron were related to flare and CME phenomena. However, we also found that high energetic electron comes from coronal hole.

  15. Energy dependence and dose response of Gafchromic EBT2 film over a wide range of photon, electron, and proton beam energies

    SciTech Connect

    Arjomandy, Bijan; Tailor, Ramesh; Anand, Aman; Sahoo, Narayan; Gillin, Michael; Prado, Karl; Vicic, Milos

    2010-05-15

    Purpose: Since the Gafchromic film EBT has been recently replaced by the newer model EBT2, its characterization, especially energy dependence, has become critically important. The energy dependence of the dose response of Gafchromic EBT2 film is evaluated for a broad range of energies from different radiation sources used in radiation therapy. Methods: The beams used for this study comprised of kilovoltage x rays (75, 125, and 250 kVp), {sup 137}Cs gamma (662 KeV), {sup 60}Co gamma (1.17-1.33 MeV), megavoltage x rays (6 and 18 MV), electron beams (6 and 20 MeV), and proton beams (100 and 250 MeV). The film's response to each of the above energies was measured over the dose range of 0.4-10 Gy, which corresponds to optical densities ranging from 0.05 to 0.74 for the film reader used. Results: The energy dependence of EBT2 was found to be relatively small within measurement uncertainties (1{sigma}={+-}4.5%) for all energies and modalities. Conclusion: For relative and absolute dosimetry of radiation therapy beams, the weak energy dependence of the EBT2 makes it most suitable for clinical use compared to other films.

  16. An extension of the Eisberg-Resnick treatment for electron energies in many-electron atoms

    NASA Astrophysics Data System (ADS)

    Whitaker, M. A. B.; Bennett, I.

    1989-03-01

    Eisberg and Resnick present a simple argument for the energy of an electron in a multielectron atom using the concept of shielding from electrons in inner shells. The results of such a treatment are unfortunately confined so as to be out of range of experimental values. Here, the effect of electrons in outer shells is included, and, in the nonrelativistic region, energies are obtained for electrons in the first and second shells in reasonable agreement with experiment.

  17. The COOLER Code: A Novel Analytical Approach to Calculate Subcellular Energy Deposition by Internal Electron Emitters.

    PubMed

    Siragusa, Mattia; Baiocco, Giorgio; Fredericia, Pil M; Friedland, Werner; Groesser, Torsten; Ottolenghi, Andrea; Jensen, Mikael

    2017-08-01

    COmputation Of Local Electron Release (COOLER), a software program has been designed for dosimetry assessment at the cellular/subcellular scale, with a given distribution of administered low-energy electron-emitting radionuclides in cellular compartments, which remains a critical step in risk/benefit analysis for advancements in internal radiotherapy. The software is intended to overcome the main limitations of the medical internal radiation dose (MIRD) formalism for calculations of cellular S-values (i.e., dose to a target region in the cell per decay in a given source region), namely, the use of the continuous slowing down approximation (CSDA) and the assumption of a spherical cell geometry. To this aim, we developed an analytical approach, entrusted to a MATLAB-based program, using as input simulated data for electron spatial energy deposition directly derived from full Monte Carlo track structure calculations with PARTRAC. Results from PARTRAC calculations on electron range, stopping power and residual energy versus traveled distance curves are presented and, when useful for implementation in COOLER, analytical fit functions are given. Example configurations for cells in different culture conditions (V79 cells in suspension or adherent culture) with realistic geometrical parameters are implemented for use in the tool. Finally, cellular S-value predictions by the newly developed code are presented for different cellular geometries and activity distributions (uniform activity in the nucleus, in the entire cell or on the cell surface), validated against full Monte Carlo calculations with PARTRAC, and compared to MIRD standards, as well as results based on different track structure calculations (Geant4-DNA). The largest discrepancies between COOLER and MIRD predictions were generally found for electrons between 25 and 30 keV, where the magnitude of disagreement in S-values can vary from 50 to 100%, depending on the activity distribution. In calculations for

  18. Electrothermal energy conversion using electron gas volumetric change inside semiconductors

    SciTech Connect

    Yazawa, K.; Shakouri, A.

    2016-07-25

    We propose and analyze an electrothermal energy converter using volumetric changes in non-equilibrium electron gas inside semiconductors. The geometric concentration of electron gas under an electric field increases the effective pressure of the electrons, and then a barrier filters out cold electrons, acting like a valve. Nano- and micro-scale features enable hot electrons to arrive at the contact in a short enough time to avoid thermalization with the lattice. Key length and time scales, preliminary device geometry, and anticipated efficiency are estimated for electronic analogs of Otto and Brayton power generators and Joule-Thomson micro refrigerators on a chip. The power generators convert the energy of incident photons from the heat source to electrical current, and the refrigerator can reduce the temperature of electrons in a semiconductor device. The analytic calculations show that a large energy conversion efficiency or coefficient of performance may be possible.

  19. Electrothermal energy conversion using electron gas volumetric change inside semiconductors

    NASA Astrophysics Data System (ADS)

    Yazawa, K.; Shakouri, A.

    2016-07-01

    We propose and analyze an electrothermal energy converter using volumetric changes in non-equilibrium electron gas inside semiconductors. The geometric concentration of electron gas under an electric field increases the effective pressure of the electrons, and then a barrier filters out cold electrons, acting like a valve. Nano- and micro-scale features enable hot electrons to arrive at the contact in a short enough time to avoid thermalization with the lattice. Key length and time scales, preliminary device geometry, and anticipated efficiency are estimated for electronic analogs of Otto and Brayton power generators and Joule-Thomson micro refrigerators on a chip. The power generators convert the energy of incident photons from the heat source to electrical current, and the refrigerator can reduce the temperature of electrons in a semiconductor device. The analytic calculations show that a large energy conversion efficiency or coefficient of performance may be possible.

  20. SHEEBA: A spatial high energy electron beam analyzer

    NASA Astrophysics Data System (ADS)

    Galimberti, Marco; Giulietti, Antonio; Giulietti, Danilo; Gizzi, Leonida A.

    2005-05-01

    Electron bunches with large energy and angle spread are not easy to be analyzed with conventional spectrometers. In this article, a device for the detection of high energy electrons is presented. This detector, based on the traces left by electrons on a stack of dosimetric films, together with an original numerical algorithm for traces deconvolution, is able to characterize both angularly and spectrally (up to some mega-electron-volts) a broad-spectrum electron bunch. A numerical test was successfully performed with a virtual electron beam, which was in turn reconstructed using a Montecarlo code (based on the CERN library GEANT4). Due to its simplicity and small size, the spatial high energy electron beam analyzer (SHEEBA) detector is particularly suitable to be used in laser plasma acceleration experiments.

  1. A new water-equivalent 2D plastic scintillation detectors array for the dosimetry of megavoltage energy photon beams in radiation therapy.

    PubMed

    Guillot, Mathieu; Beaulieu, Luc; Archambault, Louis; Beddar, Sam; Gingras, Luc

    2011-12-01

    The objective of this work is to present a new 2D plastic scintillation detectors array (2D-PSDA) designed for the dosimetry of megavoltage (MV) energy photon beams in radiation therapy and to characterize its basic performance. We developed a 2D detector array consisting of 781 plastic scintillation detectors (PSDs) inserted into a plane of a water-equivalent phantom. The PSDs were distributed on a 26 × 26 cm(2) grid, with an interdetector spacing of 10 mm, except for two perpendicular lines centered on the detection plane, where the spacing was 5 mm. Each PSD was made of a 1 mm diameter by 3 mm long cylindrical polystyrene scintillating fiber coupled to a clear nonscintillating plastic optical fiber. All of the light signals emitted by the PSDs were read simultaneously with an optical system at a rate of one measurement per second. We characterized the performance of the optical system, the angular dependency of the device, and the perturbation of dose distributions caused by the hundreds of PSDs inserted into the phantom. We also evaluated the capacity of the system to monitor complex multileaf collimator (MLC) sequences such as those encountered in step-and-shoot intensity modulated radiation therapy (IMRT) plans. We compared our results with calculations performed by a treatment planning system and with measurements taken with a 2D ionization chamber array and with a radiochromic film. The detector array that we developed allowed us to measure doses with an average precision of better than 1% for cumulated doses equal to or greater than 6.3 cGy. Our results showed that the dose distributions produced by the 6-MV photon beam are not perturbed (within ±1.1%) by the presence of the hundreds of PSDs located into the phantom. The results also showed that the variations in the beam incidences have little effect on the dose response of the device. For all incidences tested, the passing rates of the gamma tests between the 2D-PSDA and the treatment planning

  2. A new water-equivalent 2D plastic scintillation detectors array for the dosimetry of megavoltage energy photon beams in radiation therapy

    SciTech Connect

    Guillot, Mathieu; Beaulieu, Luc; Archambault, Louis; Beddar, Sam; Gingras, Luc

    2011-12-15

    Purpose: The objective of this work is to present a new 2D plastic scintillation detectors array (2D-PSDA) designed for the dosimetry of megavoltage (MV) energy photon beams in radiation therapy and to characterize its basic performance. Methods: We developed a 2D detector array consisting of 781 plastic scintillation detectors (PSDs) inserted into a plane of a water-equivalent phantom. The PSDs were distributed on a 26 x 26 cm{sup 2} grid, with an interdetector spacing of 10 mm, except for two perpendicular lines centered on the detection plane, where the spacing was 5 mm. Each PSD was made of a 1 mm diameter by 3 mm long cylindrical polystyrene scintillating fiber coupled to a clear nonscintillating plastic optical fiber. All of the light signals emitted by the PSDs were read simultaneously with an optical system at a rate of one measurement per second. We characterized the performance of the optical system, the angular dependency of the device, and the perturbation of dose distributions caused by the hundreds of PSDs inserted into the phantom. We also evaluated the capacity of the system to monitor complex multileaf collimator (MLC) sequences such as those encountered in step-and-shoot intensity modulated radiation therapy (IMRT) plans. We compared our results with calculations performed by a treatment planning system and with measurements taken with a 2D ionization chamber array and with a radiochromic film. Results: The detector array that we developed allowed us to measure doses with an average precision of better than 1% for cumulated doses equal to or greater than 6.3 cGy. Our results showed that the dose distributions produced by the 6-MV photon beam are not perturbed (within {+-}1.1%) by the presence of the hundreds of PSDs located into the phantom. The results also showed that the variations in the beam incidences have little effect on the dose response of the device. For all incidences tested, the passing rates of the gamma tests between the 2D-PSDA and

  3. Electron energy-loss spectra in molecular fluorine

    NASA Technical Reports Server (NTRS)

    Nishimura, H.; Cartwright, D. C.; Trajmar, S.

    1979-01-01

    Electron energy-loss spectra in molecular fluorine, for energy losses from 0 to 17.0 eV, have been taken at incident electron energies of 30, 50, and 90 eV and scattering angles from 5 to 140 deg. Features in the spectra above 11.5 eV energy loss agree well with the assignments recently made from optical spectroscopy. Excitations of many of the eleven repulsive valence excited electronic states are observed and their location correlates reasonably well with recent theoretical results. Several of these excitations have been observed for the first time and four features, for which there are no identifications, appear in the spectra.

  4. Electron-helium and electron-neon scattering cross sections at low electron energies using a photoelectron source

    NASA Technical Reports Server (NTRS)

    Kumar, Vijay; Subramanian, K. P.; Krishnakumar, E.

    1987-01-01

    Absolute electron-helium and electron-neon scattering cross sections have been measured at low electron energies using the powerful technique of photoelectron spectroscopy. The measurements have been carried out at 17 electron energies varying from 0.7 to 10 eV with an accuracy of + or - 2.7 percent. The results obtained in the present work have been compared with other recent measurement and calculations.

  5. Electron-helium and electron-neon scattering cross sections at low electron energies using a photoelectron source

    NASA Technical Reports Server (NTRS)

    Kumar, Vijay; Subramanian, K. P.; Krishnakumar, E.

    1987-01-01

    Absolute electron-helium and electron-neon scattering cross sections have been measured at low electron energies using the powerful technique of photoelectron spectroscopy. The measurements have been carried out at 17 electron energies varying from 0.7 to 10 eV with an accuracy of + or - 2.7 percent. The results obtained in the present work have been compared with other recent measurement and calculations.

  6. Neutron dosimetry and radiation damage calculations for HFBR

    SciTech Connect

    Greenwood, L.R.; Ratner, R.T.

    1998-03-01

    Neutron dosimetry measurements have been conducted for various positions of the High Flux Beam Reactor (HFBR) at Brookhaven National Laboratory (BNL) in order to measure the neutron flux and energy spectra. Neutron dosimetry results and radiation damage calculations are presented for positions V10, V14, and V15.

  7. Hanford External Dosimetry Technical Basis Manual PNL-MA-842

    SciTech Connect

    Rathbone, Bruce A.

    2005-02-25

    The Hanford External Dosimetry Technical Basis Manual PNL-MA-842 documents the design and implementation of the external dosimetry system used at Hanford. The manual describes the dosimeter design, processing protocols, dose calculation methodology, radiation fields encountered, dosimeter response characteristics, limitations of dosimeter design under field conditions, and makes recommendations for effective use of the dosimeters in the field. The manual describes the technical basis for the dosimetry system in a manner intended to help ensure defensibility of the dose of record at Hanford and to demonstrate compliance with 10 CFR 835, DOELAP, DOE-RL, ORP, PNSO, and Hanford contractor requirements. The dosimetry system is operated by PNNL’s Hanford External Dosimetry Program which provides dosimetry services to all Hanford contractors. The primary users of this manual are DOE and DOE contractors at Hanford using the dosimetry services of PNNL. Development and maintenance of this manual is funded directly by DOE and DOE contractors. Its contents have been reviewed and approved by DOE and DOE contractors at Hanford through the Hanford Personnel Dosimetry Advisory Committee which is chartered and chaired by DOE-RL and serves as means of coordinating dosimetry practices across contractors at Hanford. This manual was established in 1996. Since inception, it has been revised many times and maintained by PNNL as a controlled document with controlled distribution. Rev. 0 marks the first revision to be released through PNNL’s Electronic Records & Information Capture Architecture (ERICA) database.

  8. Testis dosimetry in individual patients by combining a small-scale dosimetry model and pharmacokinetic modeling-application of 111In-Ibritumomab Tiuxetan (Zevalin®)

    NASA Astrophysics Data System (ADS)

    Meerkhan, Suaad A.; Sjögreen-Gleisner, Katarina; Larsson, Erik; Strand, Sven-Erik; Jönsson, Bo-Anders

    2014-12-01

    A heterogeneous distribution of radionuclides emitting low-energy electrons in the testicles may result in a significant difference between an absorbed dose to the radiosensitive spermatogonia and the mean absorbed dose to the whole testis. This study focused on absorbed dose distribution in patients at a finer scale than normally available in clinical dosimetry, which was accomplished by combining a small-scale dosimetry model with patient pharmacokinetic data. The activity in the testes was measured and blood sampling was performed for patients that underwent pre-therapy imaging with 111In-Zevalin®. Using compartment modeling, testicular activity was separated into two components: vascular and extravascular. The uncertainty of absorbed dose due to geometry variations between testicles was explored by an assumed activity micro-distribution and by varying the radius of the interstitial tubule. Results showed that the absorbed dose to germ cells might be strongly dependent on the location of the radioactive source, and may exceed the absorbed dose to the whole testis by as much as a factor of two. Small-scale dosimetry combined with compartmental analysis of clinical data proved useful for gauging tissue dosimetry and interpreting how intrinsic geometric variation influences the absorbed dose.

  9. TU-F-201-00: Radiochromic Film Dosimetry Update

    SciTech Connect

    2015-06-15

    Since the introduction of radiochromic films (RCF) for radiation dosimetry, the scope of RCF dosimetry has expanded steadily to include many medical applications, such as radiation therapy and diagnostic radiology. The AAPM Task Group (TG) 55 published a report on the recommendations for RCF dosimetry in 1998. As the technology is advancing rapidly, and its routine clinical use is expanding, TG 235 has been formed to provide an update to TG-55 on radiochromic film dosimetry. RCF dosimetry applications in clinical radiotherapy have become even more widespread, expanding from primarily brachytherapy and radiosurgery applications, and gravitating towards (but not limited to) external beam therapy (photon, electron and protons), such as quality assurance for IMRT, VMAT, Tomotherapy, SRS/SRT, and SBRT. In addition, RCF applications now extend to measurements of radiation dose in particle beams and patients undergoing medical exams, especially fluoroscopically guided interventional procedures and CT. The densitometers/scanners used for RCF dosimetry have also evolved from the He-Ne laser scanner to CCD-based scanners, including roller-based scanner, light box-based digital camera, and flatbed color scanner. More recently, multichannel RCF dosimetry introduced a new paradigm for external beam dose QA for its high accuracy and efficiency. This course covers in detail the recent advancements in RCF dosimetry. Learning Objectives: Introduce the paradigm shift on multichannel film dosimetry Outline the procedures to achieve accurate dosimetry with a RCF dosimetry system Provide comprehensive guidelines on RCF dosimetry for various clinical applications One of the speakers has a research agreement from Ashland Inc., the manufacturer of Gafchromic film.

  10. Neutron dosimetry

    DOEpatents

    Quinby, Thomas C.

    1976-07-27

    A method of measuring neutron radiation within a nuclear reactor is provided. A sintered oxide wire is disposed within the reactor and exposed to neutron radiation. The induced radioactivity is measured to provide an indication of the neutron energy and flux within the reactor.

  11. Electron cooling for low-energy RHIC program

    SciTech Connect

    Fedotov, A.; Ben-Zvi, I.; Chang, X.; Kayran, D.; Litvinenko, V.N.; Pendzick, A.; Satogata, T.

    2009-08-31

    Electron cooling was proposed to increase luminosity of the RHIC collider for heavy ion beam energies below 10 GeV/nucleon. Providing collisions at such energies, termed RHIC 'low-energy' operation, will help to answer one of the key questions in the field of QCD about existence and location of critical point on the QCD phase diagram. The electron cooling system should deliver electron beam of required good quality over energies of 0.9-5 MeV. Several approaches to provide such cooling were considered. The baseline approach was chosen and design work started. Here we describe the main features of the cooling system and its expected performance. We have started design work on a low-energy RHIC electron cooler which will operate with kinetic electron energy range 0.86-2.8 (4.9) MeV. Several approaches to an electron cooling system in this energy range are being investigated. At present, our preferred scheme is to transfer the Fermilab Pelletron to BNL after Tevatron shutdown, and to use it for DC non-magnetized cooling in RHIC. Such electron cooling system can significantly increase RHIC luminosities at low-energy operation.

  12. OPTIMAL ELECTRON ENERGIES FOR DRIVING CHROMOSPHERIC EVAPORATION IN SOLAR FLARES

    SciTech Connect

    Reep, J. W.; Bradshaw, S. J.; Alexander, D. E-mail: stephen.bradshaw@rice.edu

    2015-08-01

    In the standard model of solar flares, energy deposition by a beam of electrons drives strong chromospheric evaporation leading to a significantly denser corona and much brighter emission across the spectrum. Chromospheric evaporation was examined in great detail by Fisher et al., who described a distinction between two different regimes, termed explosive and gentle evaporation. In this work, we examine the importance of electron energy and stopping depths on the two regimes and on the atmospheric response. We find that with explosive evaporation, the atmospheric response does not depend strongly on electron energy. In the case of gentle evaporation, lower energy electrons are significantly more efficient at heating the atmosphere and driving up-flows sooner than higher energy electrons. We also find that the threshold between explosive and gentle evaporation is not fixed at a given beam energy flux, but also depends strongly on the electron energy and duration of heating. Further, at low electron energies, a much weaker beam flux is required to drive explosive evaporation.

  13. Low-energy electron dose-point kernel simulations using new physics models implemented in Geant4-DNA

    NASA Astrophysics Data System (ADS)

    Bordes, Julien; Incerti, Sébastien; Lampe, Nathanael; Bardiès, Manuel; Bordage, Marie-Claude

    2017-05-01

    When low-energy electrons, such as Auger electrons, interact with liquid water, they induce highly localized ionizing energy depositions over ranges comparable to cell diameters. Monte Carlo track structure (MCTS) codes are suitable tools for performing dosimetry at this level. One of the main MCTS codes, Geant4-DNA, is equipped with only two sets of cross section models for low-energy electron interactions in liquid water (;option 2; and its improved version, ;option 4;). To provide Geant4-DNA users with new alternative physics models, a set of cross sections, extracted from CPA100 MCTS code, have been added to Geant4-DNA. This new version is hereafter referred to as ;Geant4-DNA-CPA100;. In this study, ;Geant4-DNA-CPA100; was used to calculate low-energy electron dose-point kernels (DPKs) between 1 keV and 200 keV. Such kernels represent the radial energy deposited by an isotropic point source, a parameter that is useful for dosimetry calculations in nuclear medicine. In order to assess the influence of different physics models on DPK calculations, DPKs were calculated using the existing Geant4-DNA models (;option 2; and ;option 4;), newly integrated CPA100 models, and the PENELOPE Monte Carlo code used in step-by-step mode for monoenergetic electrons. Additionally, a comparison was performed of two sets of DPKs that were simulated with ;Geant4-DNA-CPA100; - the first set using Geant4‧s default settings, and the second using CPA100‧s original code default settings. A maximum difference of 9.4% was found between the Geant4-DNA-CPA100 and PENELOPE DPKs. Between the two Geant4-DNA existing models, slight differences, between 1 keV and 10 keV were observed. It was highlighted that the DPKs simulated with the two Geant4-DNA's existing models were always broader than those generated with ;Geant4-DNA-CPA100;. The discrepancies observed between the DPKs generated using Geant4-DNA's existing models and ;Geant4-DNA-CPA100; were caused solely by their different cross

  14. Evaluation of GAFCHROMIC registered EBT film for CyberKnife registered dosimetry

    SciTech Connect

    Wilcox, Ellen E.; Daskalov, George M.

    2007-06-15

    External beam therapy (EBT) GAFCHROMIC registered film is evaluated for dosimetry and characterization of the CyberKnife registered radiation beams. Percentage depth doses, lateral beam profiles, and output factors are measured in solid water using EBT GAFCHROMIC registered film (International Specialty Products, Wayne, NJ) for the 6 MV radiation beams of diameter 5 to 60 mm produced by the CyberKnife registered (Accuray, Sunnyvale, CA). The data are compared to those measured with the PTW 60008 diode and the Wellhofer CC01 ion chamber in water. For the small radiation field sizes used in stereotactic radiosurgery, lateral electronic disequilibrium and steep dose gradients exist in a large portion of these fields, requiring the use of high-resolution measurement techniques. For small beams, the detector size approaches the dimensions of the beam and adversely affects measurement accuracy in regions where the gradient varies across the detector. When film is the detector, the scanning system is usually the resolution-limiting component. Radiographic films based upon silver halide (AgH) emulsions are widely used for relative dosimetry of external radiation treatment beams in the megavoltage energy range, because of their good spatial resolution and capability to provide integrated dosimetry over two dimensions. Film dosimetry, however, has drawbacks due to its steep energy dependence at low photon energies as well as film processor and densitometer artifacts. EBT radiochromic film, introduced in 2004 specifically for IMRT dosimetry, may be a detector of choice for the characterization of small radiosurgical beams, because of its near-tissue equivalence, radiation beam energy independence, high spatial resolution, and self developing properties. For radiation beam sizes greater than 10 mm, the film measurements were identical to those of the diode and ion chamber. For the smaller beam diameters of 7.5 and 5 mm, however, there were differences in the data measured with

  15. Energy-filtered Electron Transport Structures for Low-power Low-noise 2-D Electronics.

    PubMed

    Pan, Xuan; Qiu, Wanzhi; Skafidas, Efstratios

    2016-10-31

    In addition to cryogenic techniques, energy filtering has the potential to achieve high-performance low-noise 2-D electronic systems. Assemblies based on graphene quantum dots (GQDs) have been demonstrated to exhibit interesting transport properties, including resonant tunnelling. In this paper, we investigate GQDs based structures with the goal of producing energy filters for next generation lower-power lower-noise 2-D electronic systems. We evaluate the electron transport properties of the proposed GQD device structures to demonstrate electron energy filtering and the ability to control the position and magnitude of the energy passband by appropriate device dimensioning. We also show that the signal-to-thermal noise ratio performance of the proposed nanoscale device can be modified according to device geometry. The tunability of two-dimensional GQD structures indicates a promising route for the design of electron energy filters to produce low-power and low-noise electronics.

  16. Energy-filtered Electron Transport Structures for Low-power Low-noise 2-D Electronics

    PubMed Central

    Pan, Xuan; Qiu, Wanzhi; Skafidas, Efstratios

    2016-01-01

    In addition to cryogenic techniques, energy filtering has the potential to achieve high-performance low-noise 2-D electronic systems. Assemblies based on graphene quantum dots (GQDs) have been demonstrated to exhibit interesting transport properties, including resonant tunnelling. In this paper, we investigate GQDs based structures with the goal of producing energy filters for next generation lower-power lower-noise 2-D electronic systems. We evaluate the electron transport properties of the proposed GQD device structures to demonstrate electron energy filtering and the ability to control the position and magnitude of the energy passband by appropriate device dimensioning. We also show that the signal-to-thermal noise ratio performance of the proposed nanoscale device can be modified according to device geometry. The tunability of two-dimensional GQD structures indicates a promising route for the design of electron energy filters to produce low-power and low-noise electronics. PMID:27796343

  17. Energy-filtered Electron Transport Structures for Low-power Low-noise 2-D Electronics

    NASA Astrophysics Data System (ADS)

    Pan, Xuan; Qiu, Wanzhi; Skafidas, Efstratios

    2016-10-01

    In addition to cryogenic techniques, energy filtering has the potential to achieve high-performance low-noise 2-D electronic systems. Assemblies based on graphene quantum dots (GQDs) have been demonstrated to exhibit interesting transport properties, including resonant tunnelling. In this paper, we investigate GQDs based structures with the goal of producing energy filters for next generation lower-power lower-noise 2-D electronic systems. We evaluate the electron transport properties of the proposed GQD device structures to demonstrate electron energy filtering and the ability to control the position and magnitude of the energy passband by appropriate device dimensioning. We also show that the signal-to-thermal noise ratio performance of the proposed nanoscale device can be modified according to device geometry. The tunability of two-dimensional GQD structures indicates a promising route for the design of electron energy filters to produce low-power and low-noise electronics.

  18. REVIEW OF DOSIMETRY FIELD

    DTIC Science & Technology

    three, oxalic acid , polyisobutylene, and Mylar film, seem sufficiently promising to warrant further development. Their current states of development...ceric sulfate dosimeters be included in the dosimetry handbook, but that additional work should be done on oxalic acid , polyisobutylene, and Mylar as dosimetry materials. (Author)

  19. The electron energy loss rate due to radiative recombination

    NASA Astrophysics Data System (ADS)

    Mao, Junjie; Kaastra, Jelle; Badnell, N. R.

    2017-02-01

    Context. For photoionized plasmas, electron energy loss rates due to radiative recombination (RR) are required for thermal equilibrium calculations, which assume a local balance between the energy gain and loss. While many calculations of total and/or partial RR rates are available from the literature, specific calculations of associated RR electron energy loss rates are lacking. Aims: Here we focus on electron energy loss rates due to radiative recombination of H-like to Ne-like ions for all the elements up to and including zinc (Z = 30), over a wide temperature range. Methods: We used the AUTOSTRUCTURE code to calculate the level-resolved photoionization cross section and modify the ADASRR code so that we can simultaneously obtain level-resolved RR rate coefficients and associated RR electron energy loss rate coefficients. We compared the total RR rates and electron energy loss rates of H i and He i with those found in the literature. Furthermore, we utilized and parameterized the weighted electron energy loss factors (dimensionless) to characterize total electron energy loss rates due to RR. Results: The RR electron energy loss data are archived according to the Atomic Data and Analysis Structure (ADAS) data class adf48. The RR electron energy loss data are also incorporated into the SPEX code for detailed modeling of photoionized plamsas. Full Tables 1 and 2 are available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/599/A10

  20. From ``micro`` to ``macro`` internal dosimetry

    SciTech Connect

    Fisher, D.R.

    1994-06-01

    Radiation dose is the amount of radiation energy deposited per unit mass of absorbing tissue. Internal dosimetry applies to assessments of dose to internal organs from penetrating radiation sources outside the body and from radionuclides taken into the body. Dosimetry is essential for correlating energy deposition with biological effects that are observed when living tissues are irradiated. Dose-response information provides the basis for radiation protection standards and risk assessment. Radiation interactions with living matter takes place on a microscopic scale, and the manifestation of damage may be evident at the cellular, multi-cellular, and even organ levels of biological organization. The relative biological effectiveness of ionization radiation is largely determined by the spatial distribution of energy deposition events within microscopic as well as macroscopic biological targets of interest. The spatial distribution of energy imparted is determined by the spatial distribution of radionuclides and properties of the emitted charged-particle radiation involved. The nonuniformity of energy deposition events in microscopic volumes, particularly from high linear energy transfer (LET) radiation, results in large variations in the amount of energy imparted to very small volumes or targets. Microdosimetry is the study of energy deposition events at the cellular level. Macrodosimetry is a term for conventional dose averaging at the tissue or organ level. In between is a level of dosimetry sometimes referred to as multi-cellular dosimetry. The distinction between these terms and their applications in assessment of dose from internally deposited radionuclides is described.

  1. Assessing energy relaxation in 2d with ballistic electron spectroscopy

    NASA Astrophysics Data System (ADS)

    Hohls, F.; Pepper, M.; Griffiths, J. P.; Jones, G. A. C.; Ritchie, D. A.

    2007-04-01

    We demonstrate the use of ballistic electron spectroscopy in a two-dimensional electron system to assess energy relaxation of non-equilibrium electrons. The spectrometer consists of a quantum dot tuned to the transition between none and one electron on the dot. The readout of the spectrometer is provided by a nearby one-dimensional wire used as charge detector. We prepare a well defined distribution of non-equilibrium ballistic electrons using a quantum point contact on the first conductance plateau. The energy distribution evolves due to scattering during the 2.5 μm long path towards the spectrometer were it is detected. We use varying injection energy to map out the energy relaxation.

  2. Low-energy electron-induced reactions in condensed matter

    NASA Astrophysics Data System (ADS)

    Arumainayagam, Christopher R.; Lee, Hsiao-Lu; Nelson, Rachel B.; Haines, David R.; Gunawardane, Richard P.

    2010-01-01

    The goal of this review is to discuss post-irradiation analysis of low-energy (≤50 eV) electron-induced processes in nanoscale thin films. Because electron-induced surface reactions in monolayer adsorbates have been extensively reviewed, we will instead focus on low-energy electron-induced reactions in multilayer adsorbates. The latter studies, involving nanoscale thin films, serve to elucidate the pivotal role that the low-energy electron-induced reactions play in high-energy radiation-induced chemical reactions in condensed matter. Although electron-stimulated desorption (ESD) experiments conducted during irradiation have yielded vital information relevant to primary or initial electron-induced processes, we wish to demonstrate in this review that analyzing the products following low-energy electron irradiation can provide new insights into radiation chemistry. This review presents studies of electron-induced reactions in nanoscale films of molecular species such as oxygen, nitrogen trifluoride, water, alkanes, alcohols, aldehydes, ketones, carboxylic acids, nitriles, halocarbons, alkane and phenyl thiols, thiophenes, ferrocene, amino acids, nucleotides, and DNA using post-irradiation techniques such as temperature-programmed desorption (TPD), reflection-absorption infrared spectroscopy (RAIRS), X-ray photoelectron spectroscopy (XPS), high-resolution electron energy loss spectroscopy (HREELS), gel electrophoresis, and microarray fluorescence. Post-irradiation temperature-programmed desorption, in particular, has been shown to be useful in identifying labile radiolysis products as demonstrated by the first identification of methoxymethanol as a reaction product of methanol radiolysis. Results of post-irradiation studies have been used not only to identify radiolysis products, but also to determine the dynamics of electron-induced reactions. For example, studies of the radiolysis yield as a function of incident electron energy have shown that dissociative

  3. Energy resolution and power consumption of Timepix detector for different detector settings and saturation of front-end electronics

    NASA Astrophysics Data System (ADS)

    Kroupa, M.; Hoang, S.; Stoffle, N.; Soukup, P.; Jakubek, J.; Pinsky, L. S.

    2014-05-01

    An ongoing research project in the area of radiation monitoring employing the Timepix technology from the CERN-based Medipix2 Collaboration profits greatly from optimizing the precision of the position and energy information obtained for the detected quanta. Wider applications of the Timepix technology as a radiation monitor also puts new demands on the precision and speed of the energy calibration. We compare the analog signal in pixel front-end electronics for different sources used during detector evaluation and energy calibration. We use the direct measurement of the analog signal from the pixel preamplifier and comparator to characterize pulse shape differences for different sources, e.g. internal test pulses, external test pulses, ionizing radiation, etc. and study their interchangeability. Accurate per-pixel energy calibration of the Timepix detector enables the direct measurement of the energy deposited by different types of ionizing radiation. The energy calibration process requires the application of a known charge to front-end electronics of each pixel. The small pixel size limits use of the radioactive sources. The 59.54 keV line from 241Am is commonly used as the highest point in calibration curve. The heavy ion dosimetry as encountered in the space radiation environment requires a considerable extrapolation to the energies in the MeV range. We have observed that for energies around and beyond 1 MeV the response of the Timepix's front-end electronics no longer follows the extrapolated calibration function. We have investigated this non-linearity and identified its source. We also propose both hardware and software solutions to suppress this effect. In this paper we show the impact on pixel calibration and the subsequent energy resolution for different detector settings as well as the resulting power consumptions. We discuss the parameter optimization for several different real-world applications.

  4. CHEER, Canadian high energy electron ring

    NASA Astrophysics Data System (ADS)

    Hemingway, R. J.

    The Institute of Particle Physics (IPP) in Canada have received funds from the Natural Sciences and Engineering Research Council (NSERC) to pursue a study which looks at the feasibility of adding an external electron storage ring at one of the long straight sections of the Tevatron. The machine, as currently configured, has a 300 MeV Linac injector, a 300 MeV accumulator ring, a 2 GeV booster synchrotron, and a 10 GeV storage ring holding 120 mA of either electrons or positrons. Particular attention has been paid to beam polarisation and the design of the interaction region.

  5. Low electron beam energy CIVA analysis of passivated ICs

    SciTech Connect

    Cole, E.I. Jr.; Soden, J.M.; Dodd, B.A.; Henderson, C.L.

    1994-08-01

    Low Energy Charge-Induced Voltage Alteration (LECIVA) is a new scanning electron microscopy technique developed to localize open conductors in passivated ICs. LECIVA takes advantage of recent experimental work showing that the dielectric surface equilibrium voltage has an electron flux density dependence at low electron beam energies ({le}1.0 keV). The equilibrium voltage changes from positive to negative as the electron flux density is increased. Like Charge-Induced Voltage Alteration (CIVA), LECIVA images are produced from the voltage fluctuations of a constant current power supply as an electron beam is scanned over the IC surface. LECIVA image contrast is generated only by the electrically open part of a conductor, yielding, the same high selectivity demonstrated by CIVA. Because LECIVA is performed at low beam energies, radiation damage by the primary electrons and x-rays to MOS structures is far less than that caused by CIVA. LECIVA may also be performed on commercial electron beam test systems that do not have high primary electron beam energy capabilities. The physics of LECIVA signal generation are described. LECIVA imaging examples illustrate its utility on both a standard scanning electron microscope (SEM) and a commercial electron beam test system.

  6. Plasma expansion into vacuum assuming a steplike electron energy distribution.

    PubMed

    Kiefer, Thomas; Schlegel, Theodor; Kaluza, Malte C

    2013-04-01

    The expansion of a semi-infinite plasma slab into vacuum is analyzed with a hydrodynamic model implying a steplike electron energy distribution function. Analytic expressions for the maximum ion energy and the related ion distribution function are derived and compared with one-dimensional numerical simulations. The choice of the specific non-Maxwellian initial electron energy distribution automatically ensures the conservation of the total energy of the system. The estimated ion energies may differ by an order of magnitude from the values obtained with an adiabatic expansion model supposing a Maxwellian electron distribution. Furthermore, good agreement with data from experiments using laser pulses of ultrashort durations τ(L)electron distribution is assumed.

  7. SU-E-T-335: Transit Dosimetry for Verification of Dose Delivery Using Electronic Portal Imaging Device (EPID)

    SciTech Connect

    Baek, T; Chung, E; Lee, S; Yoon, M

    2014-06-01

    Purpose: To evaluate the effectiveness of transit dose, measured with an electronic portal imaging device (EPID), in verifying actual dose delivery to patients. Methods: Plans of 5 patients with lung cancer, who received IMRT treatment, were examined using homogeneous solid water phantom and inhomogeneous anthropomorphic phantom. To simulate error in patient positioning, the anthropomorphic phantom was displaced from 5 mm to 10 mm in the inferior to superior (IS), superior to inferior (SI), left to right (LR), and right to left (RL) directions. The transit dose distribution was measured with EPID and was compared to the planed dose using gamma index. Results: Although the average passing rate based on gamma index (GI) with a 3% dose and a 3 mm distance-to-dose agreement tolerance limit was 94.34 % for the transit dose with homogeneous phantom, it was reduced to 84.63 % for the transit dose with inhomogeneous anthropomorphic phantom. The Result also shows that the setup error of 5mm (10mm) in IS, SI, LR and SI direction can Result in the decrease in values of GI passing rates by 1.3% (3.0%), 2.2% (4.3%), 5.9% (10.9%), and 8.9% (16.3%), respectively. Conclusion: Our feasibility study suggests that the transit dose-based quality assurance may provide information regarding accuracy of dose delivery as well as patient positioning.

  8. The transfer between electron bulk kinetic energy and thermal energy in collisionless magnetic reconnection

    SciTech Connect

    Lu, San; Lu, Quanming; Huang, Can; Wang, Shui

    2013-06-15

    By performing two-dimensional particle-in-cell simulations, we investigate the transfer between electron bulk kinetic and electron thermal energy in collisionless magnetic reconnection. In the vicinity of the X line, the electron bulk kinetic energy density is much larger than the electron thermal energy density. The evolution of the electron bulk kinetic energy is mainly determined by the work done by the electric field force and electron pressure gradient force. The work done by the electron gradient pressure force in the vicinity of the X line is changed to the electron enthalpy flux. In the magnetic island, the electron enthalpy flux is transferred to the electron thermal energy due to the compressibility of the plasma in the magnetic island. The compression of the plasma in the magnetic island is the consequence of the electromagnetic force acting on the plasma as the magnetic field lines release their tension after being reconnected. Therefore, we can observe that in the magnetic island the electron thermal energy density is much larger than the electron bulk kinetic energy density.

  9. Studies in Ultrasonic Dosimetry.

    NASA Astrophysics Data System (ADS)

    Zitouni, Abderrachid

    The widespread use of ultrasonic devices in both industry and medicine confirms the great importance of ultrasound as a source of nonionizing radiation. The biological effects of this type of radiation are not completely known up to today, and the need for proper dosimetry is evident. Previous work in the field has been limited to the determination of ultrasonic energy deposition by attenuation measurements of traveling sound waves in homogenized specimens. Alternatively, observed effects were correlated to the output of the source. The objective of this work was to correlate the absorption properties of sound absorbing media to their elastic properties and deduce a correlation between the sonic absorption coefficient and the corresponding Young's modulus. Energy deposition measurements were performed in isotropic rubber samples and in anisotropic meat specimens by the use of the thermocouple probe method which measures the absorbed energy directly. Elasticity measurements were performed for the different types of materials used. The Young's modulus for each type was deduced from defletion measurements on rectangular strips when subjected to successive forces of varying magnitude. The final experimental results showed the existence of a linear relationship between the absorption coefficient of a given elastic material and the inverse square root of its Young's modulus.

  10. Energy Spread Reduction of Electron Beams Produced via Laser Wake

    SciTech Connect

    Pollock, Bradley Bolt

    2012-01-01

    Laser wakefield acceleration of electrons holds great promise for producing ultra-compact stages of GeV scale, high quality electron beams for applications such as x-ray free electron lasers and high energy colliders. Ultra-high intensity laser pulses can be self-guided by relativistic plasma waves over tens of vacuum diffraction lengths, to give >1 GeV energy in cm-scale low density plasma using ionization-induced injection to inject charge into the wake at low densities. This thesis describes a series of experiments which investigates the physics of LWFA in the self-guided blowout regime. Beginning with high density gas jet experiments the scaling of the LWFA-produced electron beam energy with plasma electron density is found to be in excellent agreement with both phenomenological theory and with 3-D PIC simulations. It is also determined that self-trapping of background electrons into the wake exhibits a threshold as a function of the electron density, and at the densities required to produce electron beams with energies exceeding 1 GeV a different mechanism is required to trap charge into low density wakes. By introducing small concentrations of high-Z gas to the nominal He background the ionization-induced injection mechanism is enabled. Electron trapping is observed at densities as low as 1.3 x 1018 cm-3 in a gas cell target, and 1.45 GeV electrons are demonstrated for the first time from LWFA. This is currently the highest electron energy ever produced from LWFA. The ionization-induced trapping mechanism is also shown to generate quasi-continuous electron beam energies, which is undesirable for accelerator applications. By limiting the region over which ionization-induced trapping occurs, the energy spread of the electron beams can be controlled. The development of a novel two-stage gas cell target provides the capability to tailor the gas composition in the longitudinal direction, and confine the trapping process to occur only in a

  11. Calculations of specific cellular doses for low-energy electrons

    NASA Astrophysics Data System (ADS)

    Liu, C. S.; Tung, C.-J.; Hu, Y. H.; Chou, C. M.; Chao, T. C.; Lee, C. C.

    2009-05-01

    The objectives of this work were to calculate the cellular doses and the lineal energies of low-energy electrons in liquid water for different source-target geometry in a cell. Calculated specific cellular doses and their variations were analyzed for the dependences on electron energy, source-target geometry, elastic interaction, and type of energy depositions, i.e. starter, stopper, insider and crosser. Two approaches, i.e. the probabilistic method and the mixed method, were applied. In the probabilistic method, the Monte Carlo Penelope code was used. In the mixed method, the range-energy relation and the sampling of electron paths were applied. It was found that for N ← Cy elastic interactions led to a change of the specific cellular dose by about 30% for electron energies below 10 keV. Here N ← Cy denotes electrons emitted from the source region, Cy (cytoplasm), to deposit energy in the target region, N (cell nucleus). The variation of specific cellular dose was found greater (more than 10%) for N ← Cy than N ← N, C ← C and C ← CS, where C and CS denote the cell and cell surface, respectively. The lineal energy distribution varied substantially with electron energy, source-target geometry, and target size. The maximum values of the relative dose-mean lineal energy for 1, 5 and 10 keV electrons, relative to 36 keV reference electrons used to define the relative biological effectiveness, occurred at target radii of several tens, hundreds and thousands nanometers, respectively.

  12. Study on electron beam in a low energy plasma focus

    SciTech Connect

    Khan, Muhammad Zubair; Ling, Yap Seong; San, Wong Chiow

    2014-03-05

    Electron beam emission was investigated in a low energy plasma focus device (2.2 kJ) using copper hollow anode. Faraday cup was used to estimate the energy of the electron beam. XR100CR X-ray spectrometer was used to explore the impact of the electron beam on the target observed from top-on and side-on position. Experiments were carried out at optimized pressure of argon gas. The impact of electron beam is exceptionally notable with two different approaches using lead target inside hollow anode in our plasma focus device.

  13. Energetic electrons as an energy transport mechanism in solar flares

    NASA Technical Reports Server (NTRS)

    Emslie, A. G.

    1983-01-01

    A review is conducted of the observations and theory relating to the role of energetic electrons in the solar flare, with particular emphasis on discriminating between 'thermal' and 'nonthermal' origins of these electrons. Diagnostics in hard X-rays, especially those relating to the recent observations of the SMM and Hinotori satellites are discussed. Attention is briefly given to the response of the atmosphere to energy input in the form of high energy electrons, in particular through the diagnostics of both the Fe K-alpha feature and optically thin transition region lines such as OV. Finally, the relative roles of electron and proton heating in gamma-ray flare events are discussed.

  14. Energetic electrons as an energy transport mechanism in solar flares

    NASA Astrophysics Data System (ADS)

    Emslie, A. G.

    1983-07-01

    A review is conducted of the observations and theory relating to the role of energetic electrons in the solar flare, with particular emphasis on discriminating between 'thermal' and 'nonthermal' origins of these electrons. Diagnostics in hard X-rays, especially those relating to the recent observations of the SMM and Hinotori satellites are discussed. Attention is briefly given to the response of the atmosphere to energy input in the form of high energy electrons, in particular through the diagnostics of both the Fe K-alpha feature and optically thin transition region lines such as OV. Finally, the relative roles of electron and proton heating in gamma-ray flare events are discussed.

  15. Energetic electrons as an energy transport mechanism in solar flares

    NASA Astrophysics Data System (ADS)

    Gordon Emslie, A.

    1983-07-01

    We review the observations and theory relating to the role of energetic electrons in the solar flare, with particular emphasis on discriminating between “thermal” and “nonthermal” origins of these electrons. We discuss diagnostics in hard X-rays, especially those relating to the recent observations of the SMM and HINOTORI satellites. We also briefly address the response of the atmosphere to energy input in the form of high energy electrons, in particular through the diagnostics of both the Fe Kα feature and optically thin transition region lines such as 0V. Finally, we discuss the relative roles of electron and proton heating in γ-ray flare events.

  16. Microbunched electron cooling for high-energy hadron beams.

    PubMed

    Ratner, D

    2013-08-23

    Electron and stochastic cooling are proven methods for cooling low-energy hadron beams, but at present there is no way of cooling hadrons as they near the TeV scale. In the 1980s, Derbenev suggested that electron instabilities, such as free-electron lasers, could create collective space charge fields strong enough to correct the hadron energies. This Letter presents a variation on Derbenev's electron cooling scheme using the microbunching instability as the amplifier. The large bandwidth of the instability allows for faster cooling of high-density beams. A simple analytical model illustrates the cooling mechanism, and simulations show cooling rates for realistic parameters of the Large Hadron Collider.

  17. Can low-energy electrons affect high-energy physics accelerators?

    SciTech Connect

    Cimino, R.; Collins, I.R.; Furman, M.A.; Pivi, M.; Ruggiero, F.; Rumolo, G.; Zimmermann, F.

    2004-02-09

    Present and future accelerators performances may be limited by the electron cloud (EC) effect. The EC formation and evolution are determined by the wall-surface properties of the accelerator vacuum chamber.We present measurements of the total secondary electron yield (SEY) and the related energy distribution curves of the secondary electrons as a function of incident-electron energy. Particular attention has been paid to the emission process due to very low-energy primary electrons (<20 eV). It is shown that the SEY approaches unity and the reflected electron component is predominant in the limit of zero primary incident electron energy. Motivated by these measurements, we have used state-of-the-art EC simulation codes to predict how these results may impact the production of the electron cloud in the Large Hadron Collider, under construction at CERN, and the related surface heat load.

  18. Electron energy recovery system for negative ion sources

    DOEpatents

    Dagenhart, William K.; Stirling, William L.

    1982-01-01

    An electron energy recovery system for negative ion sources is provided. The system, employs crossed electric and magnetic fields to separate the electrons from ions as they are extracted from a negative ion source plasma generator and before the ions are accelerated to their full kinetic energy. With the electric and magnetic fields oriented 90.degree. to each other, the electrons are separated from the plasma and remain at approximately the electrical potential of the generator in which they were generated. The electrons migrate from the ion beam path in a precessing motion out of the ion accelerating field region into an electron recovery region provided by a specially designed electron collector electrode. The electron collector electrode is uniformly spaced from a surface of the ion generator which is transverse to the direction of migration of the electrons and the two surfaces are contoured in a matching relationship which departs from a planar configuration to provide an electric field component in the recovery region which is parallel to the magnetic field thereby forcing the electrons to be directed into and collected by the electron collector electrode. The collector electrode is maintained at a potential slightly positive with respect to the ion generator so that the electrons are collected at a small fraction of the full accelerating supply voltage energy.

  19. Energy-filtered cold electron transport at room temperature

    PubMed Central

    Bhadrachalam, Pradeep; Subramanian, Ramkumar; Ray, Vishva; Ma, Liang-Chieh; Wang, Weichao; Kim, Jiyoung; Cho, Kyeongjae; Koh, Seong Jin

    2014-01-01

    Fermi-Dirac electron thermal excitation is an intrinsic phenomenon that limits functionality of various electron systems. Efforts to manipulate electron thermal excitation have been successful when the entire system is cooled to cryogenic temperatures, typically <1 K. Here we show that electron thermal excitation can be effectively suppressed at room temperature, and energy-suppressed electrons, whose energy distribution corresponds to an effective electron temperature of ~45 K, can be transported throughout device components without external cooling. This is accomplished using a discrete level of a quantum well, which filters out thermally excited electrons and permits only energy-suppressed electrons to participate in electron transport. The quantum well (~2 nm of Cr2O3) is formed between source (Cr) and tunnelling barrier (SiO2) in a double-barrier-tunnelling-junction structure having a quantum dot as the central island. Cold electron transport is detected from extremely narrow differential conductance peaks in electron tunnelling through CdSe quantum dots, with full widths at half maximum of only ~15 mV at room temperature. PMID:25204839

  20. Energy Harvesting for Soft-Matter Machines and Electronics

    DTIC Science & Technology

    2016-06-09

    AFRL-AFOSR-VA-TR-2016-0353 Energy Harvesting for Soft-Matter Machines and Electronics Carmel Majidi CARNEGIE MELLON UNIVERSITY Final Report 06/09...TITLE AND SUBTITLE Energy Harvesting for Soft-Matter Machines and Electronics 5a.  CONTRACT NUMBER 5b.  GRANT NUMBER FA9550-13-1-0123 5c.  PROGRAM...PERFORMANCE REPORT Reporting Period: 3/15/2015 – 3/14/2016 Energy Harvesting for Soft-Matter Machines and Electronics (YIP ‘13) PI: CARMEL MAJIDI

  1. Calculation of electron binding energies of {Na}_{55}^- clusters

    NASA Astrophysics Data System (ADS)

    Melikyan, Armen; Minassian, Hayk; Grigoryan, Valeri G.; Springborg, Michael

    2016-07-01

    Within the frame of the one-electron approximation, we calculate the electron binding energies of the {Na}_{55}^- cluster which allows for the identification of the icosahedral structure of the cluster through comparison with experimental photoelectron spectroscopy data. The surface of the icosahedral cluster is represented as a slightly deformed spherical surface, and the corresponding splitting of the energy levels caused by this symmetry reduction is calculated. Subsequently, we demonstrate that the calculated energies of photoelectrons agree very well with the experimental values. This gives an unambiguous demonstration of the role of the cluster structure in photoelectron spectra, whereas electronic shell filling effects are less important.

  2. Low Energy X-Ray and Electron Interactions within Matter.

    DTIC Science & Technology

    1980-03-01

    0-C3962 HAWAII] UNIV HONOLULU DEPT OF PHYSICS AND AST/RONiOMY FmI SelfLOW ENERGY X-RAY AND ELECTRON INTERACTIONS WITHIN MATTER.1U) 14M a L HEM Ai -79...U UNCLASSIFIED AFMWTI olL E iiEEEEEsoE II,,,,hEEIN Eh~hEhh~hhhmmEEmhEEAhE Xbo R-TE. 8oo194 DV , LOW ENERGY X-RAY AND ELECTRON INTERACTIONS WITHIN...ACCESSION NO 3. RECiPIENT’S CATALOG NUMBER TITLE (and SublIII.) 5. TYPE OF REPORT & PERIOD COVERE? LOW ENERGY X-RAY AND ELECTRON INTERACTIONS // Interim A

  3. Substituent effect on electronic transition energy of dichlorobenzyl radicals

    NASA Astrophysics Data System (ADS)

    Yoon, Young Wook; Chae, Sang Youl; Lee, Sang Kuk

    2016-01-01

    Ring-substituted benzyl radicals exhibit electronic energies of the D1 ⿿ D0 transition being shifted to red region with respect to the benzyl radical. The red-shifts of disubstituted benzyl radicals are highly dependent on the substitution positions irrespective of substituents. By analyzing the red-shifts of dichlorobenzyl radicals observed, we found that the substituent effect on electronic transition energy is attributed to the molecular plane shape of delocalized Ͽ electrons. We will discuss the influences of locations of Cl substituents on the D1 ⿿ D0 transition energies of dichlorobenzyl radicals using Hückel's molecular orbital theory.

  4. Absolute and relative dose measurements with Gafchromic trade mark sign EBT film for high energy electron beams with different doses per pulse

    SciTech Connect

    Fiandra, Christian; Ragona, Riccardo; Ricardi, Umberto; Anglesio, Silvia; Giglioli, Francesca Romana

    2008-12-15

    The authors have evaluated the accuracy, in absolute and relative dose measurements, of the Gafchromic trade mark sign EBT film in pulsed high-energy electron beams. Typically, the electron beams used in radiotherapy have a dose-per-pulse value of less than 0.1 mGy/pulse. However, very high dose-per-pulse electron beams are employed in certain linear accelerators dedicated to intraoperatory radiation therapy (IORT). In this study, the absorbed dose measurements with Gafchromic trade mark sign EBT in both low (less than 0.3 mGy per pulse) and high (30 and 70 mGy per pulse) dose-per-pulse electron beams were compared with ferrous sulfate chemical Fricke dosimetry (operated by the Italian Primary Standard Dosimetry Laboratory), a method independent of the dose per pulse. A summary of Gafchromic trade mark sign EBT in relative and absolute beam output determination is reported. This study demonstrates the independence of Gafchromic trade mark sign EBT absorption as a function of dose per pulse at different dose levels. A good agreement (within 3%) was found with Fricke dosimeters for plane-base IORT applicators. Comparison with a diode detector is presented for relative dose measurements, showing acceptable agreement both in the steep dose falloff zone and in the homogeneous dose region. This work also provides experimental values for recombination correction factor (K{sub sat}) of a Roos (plane parallel) ionization chamber calculated on the basis of theoretical models for charge recombination.

  5. High-Current Energy-Recovering Electron Linacs

    SciTech Connect

    Nikolitsa Merminga; David Douglas; Geoffrey Krafft

    2003-12-01

    The use of energy recovery provides a potentially powerful new paradigm for generation of the charged particle beams used in synchrotron radiation sources, high-energy electron cooling devices, electron-ion colliders, and other applications in photon science and nuclear and high-energy physics. Energy-recovering electron linear accelerators (called energy-recovering linacs, or ERLs) share many characteristics with ordinary linacs, as their six-dimensional beam phase space is largely determined by electron source properties. However, in common with classic storage rings, ERLs possess a high average-current-carrying capability enabled by the energy recovery process, and thus promise similar efficiencies. The authors discuss the concept of energy recovery and its technical challenges and describe the Jefferson Lab (JLab) Infrared Demonstration Free-Electron Laser (IR Demo FEL), originally driven by a 3548-MeV, 5-mA superconducting radiofrequency (srf) ERL, which provided the most substantial demonstration of energy recovery to date: a beam of 250 kW average power. They present an overview of envisioned ERL applications and a development path to achieving the required performance. They use experimental data obtained at the JLab IR Demo FEL and recent experimental results from CEBAF-ERL GeV-scale, comparatively low-current energy-recovery demonstration at JLab to evaluate the feasibility of the new applications of high-current ERLs, as well as ERLs' limitations and ultimate performance.

  6. Ligand reorganization and activation energies in nonadiabatic electron transfer reactions

    NASA Astrophysics Data System (ADS)

    Zhu, Jianjun; Wang, Jianji; Stell, George

    2006-10-01

    The activation energy and ligand reorganization energy for nonadiabatic electron transfer reactions in chemical and biological systems are investigated in this paper. The free energy surfaces and the activation energy are derived exactly in the general case in which the ligand vibration frequencies are not equal. The activation energy is derived by free energy minimization at the transition state. Our formulation leads to the Marcus-Hush [J. Chem. Phys. 24, 979 (1956); 98, 7170 (1994); 28, 962 (1958)] results in the equal-frequency limit and also generalizes the Marcus-Sumi [J. Chem. Phys. 84, 4894 (1986)] model in the context of studying the solvent dynamic effect on electron transfer reactions. It is found that when the ligand vibration frequencies are different, the activation energy derived from the Marcus-Hush formula deviates by 5%-10% from the exact value. If the reduced reorganization energy approximation is introduced in the Marcus-Hush formula, the result is almost exact.

  7. Monte Carlo simulation of energy deposition by low-energy electrons in molecular hydrogen

    NASA Technical Reports Server (NTRS)

    Heaps, M. G.; Furman, D. R.; Green, A. E. S.

    1975-01-01

    A set of detailed atomic cross sections has been used to obtain the spatial deposition of energy by 1-20-eV electrons in molecular hydrogen by a Monte Carlo simulation of the actual trajectories. The energy deposition curve (energy per distance traversed) is quite peaked in the forward direction about the entry point for electrons with energies above the threshold of the electronic states, but the peak decreases and broadens noticeably as the electron energy decreases below 10 eV (threshold for the lowest excitable electronic state of H2). The curve also assumes a very symmetrical shape for energies below 10 eV, indicating the increasing importance of elastic collisions in determining the shape of the curve, although not the mode of energy deposition.

  8. Technical Note: Improvements in GEANT4 energy-loss model and the effect on low-energy electron transport in liquid water

    SciTech Connect

    Kyriakou, I.; Incerti, S.

    2015-07-15

    Purpose: The GEANT4-DNA physics models are upgraded by a more accurate set of electron cross sections for ionization and excitation in liquid water. The impact of the new developments on low-energy electron transport simulations by the GEANT4 Monte Carlo toolkit is examined for improving its performance in dosimetry applications at the subcellular and nanometer level. Methods: The authors provide an algorithm for an improved implementation of the Emfietzoglou model dielectric response function of liquid water used in the GEANT4-DNA existing model. The algorithm redistributes the imaginary part of the dielectric function to ensure a physically motivated behavior at the binding energies, while retaining all the advantages of the original formulation, e.g., the analytic properties and the fulfillment of the f-sum-rule. In addition, refinements in the exchange and perturbation corrections to the Born approximation used in the GEANT4-DNA existing model are also made. Results: The new ionization and excitation cross sections are significantly different from those of the GEANT4-DNA existing model. In particular, excitations are strongly enhanced relative to ionizations, resulting in higher W-values and less diffusive dose-point-kernels at sub-keV electron energies. Conclusions: An improved energy-loss model for the excitation and ionization of liquid water by low-energy electrons has been implemented in GEANT4-DNA. The suspiciously low W-values and the unphysical long tail in the dose-point-kernel have been corrected owing to a different partitioning of the dielectric function.

  9. HIGH-ENERGY ELECTRON COOLING BASED ON REALISTIC SIX-DIMENSIONAL DISTRIBUTION OF ELECTRONS

    SciTech Connect

    FEDOTOV,A.; BEN-ZVI, I.; ET AL.

    2007-06-25

    The high-energy electron cooling system for RHIC-II is unique compared to standard coolers. It requires bunched electron beam. Electron bunches are produced by an Energy Recovery Linac (ERL), and cooling is planned without longitudinal magnetic field. To address unique features of the RHIC cooler, a generalized treatment of cooling force was introduced in BETACOOE code which allows us to calculate friction force for an arbitrary distribution of electrons. Simulations for RHIC cooler based on electron distribution from ERL are presented.

  10. Enhanced production of low energy electrons by alpha particle impact

    PubMed Central

    Kim, Hong-Keun; Titze, Jasmin; Schöffler, Markus; Trinter, Florian; Waitz, Markus; Voigtsberger, Jörg; Sann, Hendrik; Meckel, Moritz; Stuck, Christian; Lenz, Ute; Odenweller, Matthias; Neumann, Nadine; Schössler, Sven; Ullmann-Pfleger, Klaus; Ulrich, Birte; Fraga, Rui Costa; Petridis, Nikos; Metz, Daniel; Jung, Annika; Grisenti, Robert; Czasch, Achim; Jagutzki, Ottmar; Schmidt, Lothar; Jahnke, Till; Schmidt-Böcking, Horst; Dörner, Reinhard

    2011-01-01

    Radiation damage to living tissue stems not only from primary ionizing particles but to a substantial fraction from the dissociative attachment of secondary electrons with energies below the ionization threshold. We show that the emission yield of those low energy electrons increases dramatically in ion–atom collisions depending on whether or not the target atoms are isolated or embedded in an environment. Only when the atom that has been ionized and excited by the primary particle impact is in immediate proximity of another atom is a fragmentation route known as interatomic Coulombic decay (ICD) enabled. This leads to the emission of a low energy electron. Over the past decade ICD was explored in several experiments following photoionization. Most recent results show its observation even in water clusters. Here we show the quantitative role of ICD for the production of low energy electrons by ion impact, thus approaching a scenario closer to that of radiation damage by alpha particles: We choose ion energies on the maximum of the Bragg peak where energy is most efficiently deposited in tissue. We compare the electron production after colliding He+ ions on isolated Ne atoms and on Ne dimers (Ne2). In the latter case the Ne atom impacted is surrounded by a most simple environment already opening ICD as a deexcitation channel. As a consequence, we find a dramatically enhanced low energy electron yield. The results suggest that ICD may have a significant influence on cell survival after exposure to ionizing radiation. PMID:21730184

  11. Enhanced production of low energy electrons by alpha particle impact.

    PubMed

    Kim, Hong-Keun; Titze, Jasmin; Schöffler, Markus; Trinter, Florian; Waitz, Markus; Voigtsberger, Jörg; Sann, Hendrik; Meckel, Moritz; Stuck, Christian; Lenz, Ute; Odenweller, Matthias; Neumann, Nadine; Schössler, Sven; Ullmann-Pfleger, Klaus; Ulrich, Birte; Fraga, Rui Costa; Petridis, Nikos; Metz, Daniel; Jung, Annika; Grisenti, Robert; Czasch, Achim; Jagutzki, Ottmar; Schmidt, Lothar; Jahnke, Till; Schmidt-Böcking, Horst; Dörner, Reinhard

    2011-07-19

    Radiation damage to living tissue stems not only from primary ionizing particles but to a substantial fraction from the dissociative attachment of secondary electrons with energies below the ionization threshold. We show that the emission yield of those low energy electrons increases dramatically in ion-atom collisions depending on whether or not the target atoms are isolated or embedded in an environment. Only when the atom that has been ionized and excited by the primary particle impact is in immediate proximity of another atom is a fragmentation route known as interatomic Coulombic decay (ICD) enabled. This leads to the emission of a low energy electron. Over the past decade ICD was explored in several experiments following photoionization. Most recent results show its observation even in water clusters. Here we show the quantitative role of ICD for the production of low energy electrons by ion impact, thus approaching a scenario closer to that of radiation damage by alpha particles: We choose ion energies on the maximum of the Bragg peak where energy is most efficiently deposited in tissue. We compare the electron production after colliding He(+) ions on isolated Ne atoms and on Ne dimers (Ne(2)). In the latter case the Ne atom impacted is surrounded by a most simple environment already opening ICD as a deexcitation channel. As a consequence, we find a dramatically enhanced low energy electron yield. The results suggest that ICD may have a significant influence on cell survival after exposure to ionizing radiation.

  12. SU-E-T-126: Non-Reference Condition Correction Factor KNR of Typical Radiation Detectors for the Dosimetry of High-Energy Photons.

    PubMed

    Chofor, N; Poppe, B; Harder, D

    2012-06-01

    To correct for the deviations of the detector response when typical radiation detectors are used under non-reference conditions, factor kNR was calculated from the known energy dependence of the detector response at photon energies from 10 keV upwards and from clinical photon spectra within a large water phantom beneath a Siemens Primus 6/15 MV linac. A Farmer type ion chamber (NE2571), two TLD detector types and two diodes were investigated. Factor kNR was obtained as the ratio of the weighted responses Yt of a given detector t under reference conditions xref (axial distance r = 0 cm, depth d = 10 cm, field size 10 × 10 cm(2) and SSD = 100 cm) and that under non-reference conditions × (off-axis points and depths for various field sizes); kNR = Yt(xref)/Yt(x). For small field (SF) dosimetry, we evaluated correction factor kNRSF, which refers to small field reference conditions (4 × 4 cm(2) field). For all detectors investigated, the deviations of kNR from unity were highest outside the field, due to prevailing low-energy scatter contributions. For the Farmer chamber and EDP-10 diode, the kNR deviations did not exceed 2%, but were up to 60% for the EDD-5 diode, while kNR values for LiF:Mg,Cu,P and LiF:Mg,Ti deviated at most 15% and 5% respectively. kNR values appear as unique functions of the mean photon energy at the point of interest. Air-filled ion chambers show only small kNR variations, while for non-water equivalent detectors, kNR variations depend on the detector response at low photon energy. kNR can be presented as a unique function of the mean photon energy at the point of interest. A 4 × 4 cm(2) reference field is recommended for small fields, with correction factor kNRSF varying almost negligibly from kNR except for unshielded Si diodes. © 2012 American Association of Physicists in Medicine.

  13. Electron, photons, and molecules: Storing energy from light

    SciTech Connect

    Miller, J.R.

    1996-09-01

    Molecular charge separation has important potential for photochemical energy storage. Its efficiency can be enhanced by principals which maximize the rates of the electron transfer steps which separate charge and minimize those which recombine high-energy charge pairs to lose stored energy. Dramatic scientific progress in understanding these principals has occurred since the founding of DOE and its predecessor agency ERDA. While additional knowledge in needed in broad areas of molecular electron transfer, some key areas of knowledge hold particular promise for the possibility of moving this area from science toward technology capable of contributing to the nation`s energy economy.

  14. Further measurements of high energy cosmic ray electrons

    NASA Technical Reports Server (NTRS)

    Mueller, D.; Tang, J.

    1982-01-01

    The University of Chicago balloon telescope for cosmic ray electrons has been substantially modified and improved, and has been exposed in another successful balloon flight in 1980. Preliminary results from this flight, over the energy range 5 to 200 GeV, are presented. Data indicate an electron flux of 0.27 plus or minus 0.04/(sq m sec sr GeV) at 10 GeV, and a spectral shape consistent with a power law E to the -3.0 power at low energies, but steepening further, probably due to radiative energy losses, with increasing energy.

  15. Low voltage TEM: influences on electron energy loss spectrometry experiments.

    PubMed

    Stöger-Pollach, M

    2010-08-01

    We discuss the advantages and disadvantages of electron energy loss spectrometry (EELS) a transmission electron microscope (TEM) at different high tensions. Instrumental effects such as energy resolution, spatial resolution, and point spread function of the detecting system, as well as physical effects like inelastic (Coloumb) delocalization and Cerenkov losses are dealt with. It is found that the actually available equipment is suitable for performing low voltage experiments. The energy resolution of a thermo-ionic emitter can be tremendously improved at lower energies, and the detector also has advantageous behaviour. (c) 2010 Elsevier Ltd. All rights reserved.

  16. Neutron detection and dosimetry using polycrystalline CVD diamond detectors with high collection efficiency.

    PubMed

    Angelone, M; Marinelli, M; Milani, E; Tucciarone, A; Pillon, M; Pucella, G; Verona-Rinati, G

    2006-01-01

    Polycrystalline chemical vapour deposited (CVD) diamond film is an interesting material for neutron detection and dosimetry. However, the use of CVD diamond detectors is still limited by the low-level signal pulse produced because of the high energy required to produce an electron-hole pair in diamond (13.2 eV) and by the reduced charge collection efficiency owing to several types of traps for electrons and holes in CVD films. A new type of CVD diamond detector with high gain (HG) contacts was produced as part of the collaboration between the ENEA Fusion Division and the Faculty of Engineering of Rome 'Tor Vergata' University. In this paper the performance of the HG CVD diamond detector is presented and possible applications of CVD diamond detectors to neutron dosimetry are also discussed.

  17. [Clinical calibration dosimetry in JSMP-01: measurements using plane-parallel ion chambers.].

    PubMed

    Araki, Fujio; Kumagai, Kozo; Yoshiura, Takao; Oura, Hiroki; Tachibana, Masayuki; Moribe, Nobuyuki; Tajima, Hidetaka; Yoshida, Atsushi; Kido, Tetsuo

    2005-01-01

    The Japan Society of Medical Physics (JSMP) Task Group published Standard dosimetry of absorbed dose in external beam radiotherapy (Standard dosimetry 01) as a new high-energy photon and electron dosimetry protocol in 2002. In this study, we present Standard dosimetry 01 as the JSMP-01 protocol for the convenience of users. This protocol is based on using an ion chamber having a (60)Co absorbed dose to water calibration coefficient, N(D,w), which is calculated from a (60)Co exposure calibration coefficient, N(c). We present dose comparisons between a reference chamber and various plane-parallel chambers. The absorbed dose to water was compared at the calibration depth of 5 cm for a (60)Co beam and d(c) = 0.6R(50) - 0.1 (cm) for electron beams according to JSMP-01. The absorbed dose to water calibration coefficients, [N(D,w)](Co) and [N(D,w)](18E), for the plane-parallel chambers were also determined by (60)Co and electron beam cross-calibrations using a reference chamber. The dose for the plane-parallel chambers derived from [N(D,w)](Co) and [N(D,w)](18E) was compared to that for the reference chamber using electron beams. The JARP chamber in the Kyushu Regional Center which meets third-order standards in Japan was used as the reference chamber. The doses for the plane-parallel chambers determined according to JSMP-01 agreed with that for the JARP chamber within 1% and 2% for (60)Co and electron beams, respectively. For electron beams, the doses for the plane-parallel chambers calculated from [N(D,w)](Co) and [N(D,w)](18E) were within 1.5% and 1.0% compared to those for the JARP chamber, respectively, except for the Exradin A10 chamber.

  18. EDITORIAL: Special issue on radiation dosimetry Special issue on radiation dosimetry

    NASA Astrophysics Data System (ADS)

    Sharpe, Peter

    2009-04-01

    This special issue of Metrologia on radiation dosimetry is the second in a trilogy on the subject of ionizing radiation measurements, a field that is overseen by Sections I, II and III of the CIPM's Consultative Committee for Ionizing Radiation (CCRI). The work of Section II, on radionuclide metrology, was covered in issue 44(4), published in 2007, and that of Section III, on neutron metrology, will be covered in a special issue to be published shortly. This issue covers the work of Section I (x-rays and γ rays, and charged particles). The proposal to publish special issues of Metrologia covering the work of the CCRI Sections was first made in 2003 and refined at the two subsequent meetings of the CCRI in 2005 and 2007. The overall aim is to present the work of the CCRI to a wider metrological audience and to highlight the relevance and importance of the field. The main focus of our special issue on dosimetry metrology is on the 'state of the art' in the various areas covered, with an indication of the current developments taking place and the problems and challenges that remain. Where appropriate, this is set in a brief historical context, although it is not the aim to give a historical review. The need for accurate measurement has been appreciated from the pioneering days of the use of ionizing radiation in the early 20th century, particularly in the fields of diagnostic and therapeutic medicine. Over the years, the range of applications for ionizing radiation has expanded both in scope and in the types and energies of radiation employed. This has led to the need to develop a wide variety of measurement techniques and standards covering fields ranging from the low doses experienced in environmental and protection applications to the extremely high doses used in industrial processing. The different types of radiation employed give rise to the need for dose measurements in radiation beams whose effective penetration through a material such as water ranges from a

  19. EPR dosimetry of cortical bone and tooth enamel irradiated with X and gamma rays: Study of energy dependence

    SciTech Connect

    Schauer, D.A.; Links, J.M. ); Desrosiers, M.F.; Le, F.G.; Seltzer, S.M. )

    1994-04-01

    Previous investigators have reported that the radiation-induced EPR signal intensity in compact or cortical bone increases up to a factor of two with decreasing photon energy for a given absorbed dose. If the EPR signal intensity was dependent on energy, it could limit the application of EPR spectrometry and the additive reirradiation method to obtain dose estimates. We have recently shown that errors in the assumptions governing conversion of measured exposure to absorbed dose can lead to similar [open quotes]apparent[close quotes] energy-dependence results. We hypothesized that these previous results were due to errors in the estimated dose in bone, rather than the effects of energy dependence per se. To test this hypothesis we studied human adult cortical bone from male and female donors ranging in age from 23 to 95 years, and bovine tooth enamel, using 34 and 138 keV average energy X-ray beams and [sup 137]Cs (662 keV) and [sup 60]Co (1250 keV) [gamma] rays. In a femur from a 47-year-old male (subject 1), there was a difference of borderline significance at the [alpha] = 0.05 level in the mean radiation-induced hydroxyapatite signal intensities as a function of photon energy. No other statistically significant differences in EPR signal intensity as a function of photon energy were observed in this subject, or in the tibia from a 23-year-old male (subject 2) and the femur from a 75-year-old female (subject 3). However, there was a trend toward a decrease (12-15%) in signal intensity at the lowest energy compared with the highest energy in subjects 1 and 3. Further analysis of the data from subject 1 revealed that this trend, which is in the opposite direction of previous reports but is consistent with theory, is statistically significant. There were no efforts of energy dependence in the tooth samples. 16 refs., 7 figs., 5 tabs.

  20. Ultra High Energy Electrons Powered by Pulsar Rotation

    PubMed Central

    Mahajan, Swadesh; Machabeli, George; Osmanov, Zaza; Chkheidze, Nino

    2013-01-01

    A new mechanism of particle acceleration, driven by the rotational slow down of the Crab pulsar, is explored. The rotation, through the time dependent centrifugal force, can efficiently excite unstable Langmuir waves in the electron-positron (hereafter e±) plasma of the star magnetosphere. These waves, then, Landau damp on electrons accelerating them in the process. The net transfer of energy is optimal when the wave growth and the Landau damping times are comparable and are both very short compared to the star rotation time. We show, by detailed calculations, that these are precisely the conditions for the parameters of the Crab pulsar. This highly efficient route for energy transfer allows the electrons in the primary beam to be catapulted to multiple TeV (~ 100 TeV) and even PeV energy domain. It is expected that the proposed mechanism may, unravel the puzzle of the origin of ultra high energy cosmic ray electrons. PMID:23405276

  1. Electron energy distribution produced by beam-plasma discharge

    NASA Technical Reports Server (NTRS)

    Anderson, H. R.; Gordeuk, J.; Jost, R. J.

    1982-01-01

    In an investigation of a beam-plasma discharge (BPD), the electron energy distribution of an electron beam moving through a partially ionized gas is analyzed. Among other results, it is found that the occurrence of BPD heats the initially cold electron beam from the accelerator. The directional intensity of electrons measured outside the beam core indicates that most particles suffer a single scattering in energy and pitch angle. At low currents this result is expected as beam particles collide with the neutral atmosphere, while in BPD the majority of particles is determined to still undergo a single scattering near the original beam core. The extended energy spectra at various beam currents show two rather distinct plasma populations, one centered at the initial beam energy (approximately 1500 eV) and the other at approximately 150 eV.

  2. Electron energy distribution produced by beam-plasma discharge

    NASA Technical Reports Server (NTRS)

    Anderson, H. R.; Gordeuk, J.; Jost, R. J.

    1982-01-01

    In an investigation of a beam-plasma discharge (BPD), the electron energy distribution of an electron beam moving through a partially ionized gas is analyzed. Among other results, it is found that the occurrence of BPD heats the initially cold electron beam from the accelerator. The directional intensity of electrons measured outside the beam core indicates that most particles suffer a single scattering in energy and pitch angle. At low currents this result is expected as beam particles collide with the neutral atmosphere, while in BPD the majority of particles is determined to still undergo a single scattering near the original beam core. The extended energy spectra at various beam currents show two rather distinct plasma populations, one centered at the initial beam energy (approximately 1500 eV) and the other at approximately 150 eV.

  3. Ultra high energy electrons powered by pulsar rotation.

    PubMed

    Mahajan, Swadesh; Machabeli, George; Osmanov, Zaza; Chkheidze, Nino

    2013-01-01

    A new mechanism of particle acceleration, driven by the rotational slow down of the Crab pulsar, is explored. The rotation, through the time dependent centrifugal force, can efficiently excite unstable Langmuir waves in the electron-positron (hereafter e(±)) plasma of the star magnetosphere. These waves, then, Landau damp on electrons accelerating them in the process. The net transfer of energy is optimal when the wave growth and the Landau damping times are comparable and are both very short compared to the star rotation time. We show, by detailed calculations, that these are precisely the conditions for the parameters of the Crab pulsar. This highly efficient route for energy transfer allows the electrons in the primary beam to be catapulted to multiple TeV (~ 100 TeV) and even PeV energy domain. It is expected that the proposed mechanism may, unravel the puzzle of the origin of ultra high energy cosmic ray electrons.

  4. Ultra High Energy Electrons Powered by Pulsar Rotation

    NASA Astrophysics Data System (ADS)

    Mahajan, Swadesh; Machabeli, George; Osmanov, Zaza; Chkheidze, Nino

    2013-02-01

    A new mechanism of particle acceleration, driven by the rotational slow down of the Crab pulsar, is explored. The rotation, through the time dependent centrifugal force, can efficiently excite unstable Langmuir waves in the electron-positron (hereafter e+/-) plasma of the star magnetosphere. These waves, then, Landau damp on electrons accelerating them in the process. The net transfer of energy is optimal when the wave growth and the Landau damping times are comparable and are both very short compared to the star rotation time. We show, by detailed calculations, that these are precisely the conditions for the parameters of the Crab pulsar. This highly efficient route for energy transfer allows the electrons in the primary beam to be catapulted to multiple TeV (~ 100 TeV) and even PeV energy domain. It is expected that the proposed mechanism may, unravel the puzzle of the origin of ultra high energy cosmic ray electrons.

  5. Sun exposure behaviour among subgroups of the Danish population. Based on personal electronic UVR dosimetry and corresponding exposure diaries.

    PubMed

    Thieden, Elisabeth

    2008-02-01

    Solar ultraviolet radiation (UVR) is known to be the most important etiological factor in skin cancer development. The main objective of this thesis was to achieve an objective, basic knowledge of the individual UVR exposure dose pattern and to reveal the factors and with which power they influence on the UVR dose among the Danes. Eight open prospective, observational studies and one study analyzing the compliance and reliability of data were performed in healthy Danish volunteers with an age range of 4-68 years. The subjects were chosen to cover an age span group of children, adolescents, and indoor workers and in addition, groups with expected high UVR exposure, sun worshippers, golfers, and gardeners. We developed a personal, electronic UVR dosimeter in a wristwatch (SunSaver). The subjects wore the UVR dosimeter that measured time-stamped UVR doses in standard erythema doses (SED) and completed diaries with data on their sun exposure behaviour. This resulted in corresponding UVR dosimeter and diary data from 346 sun-years where one sun-year is one person participating in one summer half-year (median 119 days). The annual UVR doses were calculated based on the personal and ambient measured UVR doses. We found a huge variation in annual UVR exposure dose within the total population sample, median 173 SED (range, 17-980 SED). The inter-group variation in annual UVR dose was from median 132 SED among indoor workers to median 224 SED among gardeners. No significant correlation was found between annual UVR dose and age either within the total population or among the adults. But the subjects below 20 years of age had an increase in annual UVR dose of 5 SED per year. Young people before the age of 20 years did not get a higher proportion of the lifetime UVR dose than expected (25%) when assuming a life expectancy of 80 years. There was no significant difference in annual UVR dose between males and females in the total population sample. But, among children, girls

  6. Simulations and measurements in scanning electron microscopes at low electron energy.

    PubMed

    Walker, Christopher G H; Frank, Luděk; Müllerová, Ilona

    2016-11-01

    The advent of new imaging technologies in Scanning Electron Microscopy (SEM) using low energy (0-2 keV) electrons has brought about new ways to study materials at the nanoscale. It also brings new challenges in terms of understanding electron transport at these energies. In addition, reduction in energy has brought new contrast mechanisms producing images that are sometimes difficult to interpret. This is increasing the push for simulation tools, in particular for low impact energies of electrons. The use of Monte Carlo calculations to simulate the transport of electrons in materials has been undertaken by many authors for several decades. However, inaccuracies associated with the Monte Carlo technique start to grow as the energy is reduced. This is not simply associated with inaccuracies in the knowledge of the scattering cross-sections, but is fundamental to the Monte Carlo technique itself. This is because effects due to the wave nature of the electron and the energy band structure of the target above the vacuum energy level become important and these are properties which are difficult to handle using the Monte Carlo method. In this review we briefly describe the new techniques of scanning low energy electron microscopy and then outline the problems and challenges of trying to understand and quantify the signals that are obtained. The effects of charging and spin polarised measurement are also briefly explored. SCANNING 38:802-818, 2016. © 2016 Wiley Periodicals, Inc.

  7. Evaluation of Miscellaneous and Electronic Device Energy Use in Hospitals

    SciTech Connect

    Black, Douglas R.; Lanzisera, Steven M.; Lai, Judy; Brown, Richard E.; Singer, Brett C.

    2012-09-01

    Miscellaneous and electronic loads (MELs) consume about one-thirdof the primary energy used in US buildings, and their energy use is increasing faster than other end-uses. In healthcare facilities, 30percent of the annual electricity was used by MELs in 2008. This paper presents methods and challenges for estimating medical MELs energy consumption along with estimates of energy use in a hospital by combining device-level metered data with inventories and usage information. An important finding is that common, small devices consume large amounts of energy in aggregate and should not be ignored when trying to address hospital energy use.

  8. Dosimetry implant for treating restenosis and hyperplasia

    DOEpatents

    Srivastava, Suresh; Gonzales, Gilbert R; Howell, Roger W; Bolch, Wesley E; Adzic, Radoslav

    2014-09-16

    The present invention discloses a method of selectively providing radiation dosimetry to a subject in need of such treatment. The radiation is applied by an implant comprising a body member and .sup.117mSn electroplated at selected locations of the body member, emitting conversion electrons absorbed immediately adjacent selected locations while not affecting surrounding tissue outside of the immediately adjacent area.

  9. Radial Distribution of Electron Spectra from High-Energy Ions

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Katz, Robert; Wilson, John W.

    1998-01-01

    The average track model describes the response of physical and biological systems using radial dose distribution as the key physical descriptor. We report on an extension of this model to describe the average distribution of electron spectra as a function of radial distance from an ion. We present calculations of these spectra for ions of identical linear energy transfer (LET), but dissimilar charge and velocity to evaluate the differences in electron spectra from these ions. To illustrate the usefulness of the radial electron spectra for describing effects that are not described by electron dose, we consider the evaluation of the indirect events in microdosimetric distributions for ions. We show that folding our average electron spectra model with experimentally determined frequency distributions for photons or electrons provides a good representation of radial event spectra from high-energy ions in 0.5-2 micrometer sites.

  10. Radial Distribution of Electron Spectra from High-Energy Ions

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Katz, Robert; Wilson, John W.

    1998-01-01

    The average track model describes the response of physical and biological systems using radial dose distribution as the key physical descriptor. We report on an extension of this model to describe the average distribution of electron spectra as a function of radial distance from an ion. We present calculations of these spectra for ions of identical linear energy transfer (LET), but dissimilar charge and velocity to evaluate the differences in electron spectra from these ions. To illustrate the usefulness of the radial electron spectra for describing effects that are not described by electron dose, we consider the evaluation of the indirect events in microdosimetric distributions for ions. We show that folding our average electron spectra model with experimentally determined frequency distributions for photons or electrons provides a good representation of radial event spectra from high-energy ions in 0.5-2 micrometer sites.

  11. Diffraction of electrons at intermediate energies: The role of phonons

    NASA Astrophysics Data System (ADS)

    Ascolani, H.; Zampieri, G.

    1996-07-01

    The intensity of electrons reflected ``elastically'' from crystalline surfaces presents two regimes: the low-energy or LEED regime (<500 eV), in which the electrons are reflected along the Bragg directions, and the intermediate-energy or XPD/AED regime (>500 eV), in which the maxima of intensity are along the main crystallographic axes. We present a model which explains this transition in terms of the excitation/absorption of phonons during the scattering.

  12. Transfer calibration of the transmission of electron-energy spectrometers

    NASA Technical Reports Server (NTRS)

    Gardner, J. L.; Samson, J. A. R.

    1975-01-01

    Relative intensities of strong peaks in the Hel photoelectron spectra of N2, CO2, CO, and O2 are tabulated. These data were measured with an electron energy analyzer whose relative transmission was calibrated to an accuracy of + or - 5%. The tables are useful for calibrating the transmission of other analyzers for electron energies below 9 eV. Correction for angular distribution effects is discussed.

  13. High-energy-resolution monochromator for aberration-corrected scanning transmission electron microscopy/electron energy-loss spectroscopy.

    PubMed

    Krivanek, Ondrej L; Ursin, Jonathan P; Bacon, Neil J; Corbin, George J; Dellby, Niklas; Hrncirik, Petr; Murfitt, Matthew F; Own, Christopher S; Szilagyi, Zoltan S

    2009-09-28

    An all-magnetic monochromator/spectrometer system for sub-30 meV energy-resolution electron energy-loss spectroscopy in the scanning transmission electron microscope is described. It will link the energy being selected by the monochromator to the energy being analysed by the spectrometer, without resorting to decelerating the electron beam. This will allow it to attain spectral energy stability comparable to systems using monochromators and spectrometers that are raised to near the high voltage of the instrument. It will also be able to correct the chromatic aberration of the probe-forming column. It should be able to provide variable energy resolution down to approximately 10 meV and spatial resolution less than 1 A.

  14. One-electron density matrices and energy gradients in second-order electron propagator theory

    NASA Astrophysics Data System (ADS)

    Cioslowski, Jerzy; Ortiz, J. V.

    1992-06-01

    A formalism for evaluation of the effective first-order density matrices associated with second-order electron propagator theory is described. Computer implementation of this formalism affords first-order density properties, such as dipole moments, and energy gradients. Given an initial state with N electrons, this approach enables geometry optimization of the ground and excited electronic states of species with N-1 and N+1 electrons. The performance of the present method is assessed with test calculations on the formyl radical.

  15. Energy measurement of electron beams by Compton scattering

    NASA Technical Reports Server (NTRS)

    Keppel, Cynthia

    1995-01-01

    A method has been proposed to utilize the well-known Compton scattering process as a tool to measure the centroid energy of a high energy electron beam at the 0.01% level. It is suggested to use the Compton scattering of an infrared laser off the electron beam, and then to measure the energy of the scattered gamma-rays very precisely using solid-state detectors. The technique proposed is applicable for electron beams with energies from 200 MeV to 16 GeV using presently available lasers. This technique was judged to be the most viable of all those proposed for beam energy measurements at the nearby Continuous Electron Beam Accelerator Facility (CEBAF). Plans for a prototype test of the technique are underway, where the main issues are the possible photon backgrounds associated with an electron accelerator and the electron and laser beam stabilities and diagnostics. The bulk of my ASEE summer research has been spent utilizing the expertise of the staff at the Aerospace Electronics Systems Division at LaRC to assist in the design of the test. Investigations were made regarding window and mirror transmission and radiation damage issues, remote movement of elements in ultra-high vacuum conditions, etc. The prototype test of the proposed laser backscattering method is planned for this December.

  16. Energy measurement of electron beams by Compton scattering

    NASA Technical Reports Server (NTRS)

    Keppel, Cynthia

    1995-01-01

    A method has been proposed to utilize the well-known Compton scattering process as a tool to measure the centroid energy of a high energy electron beam at the 0.01% level. It is suggested to use the Compton scattering of an infrared laser off the electron beam, and then to measure the energy of the scattered gamma-rays very precisely using solid-state detectors. The technique proposed is applicable for electron beams with energies from 200 MeV to 16 GeV using presently available lasers. This technique was judged to be the most viable of all those proposed for beam energy measurements at the nearby Continuous Electron Beam Accelerator Facility (CEBAF). Plans for a prototype test of the technique are underway, where the main issues are the possible photon backgrounds associated with an electron accelerator and the electron and laser beam stabilities and diagnostics. The bulk of my ASEE summer research has been spent utilizing the expertise of the staff at the Aerospace Electronics Systems Division at LaRC to assist in the design of the test. Investigations were made regarding window and mirror transmission and radiation damage issues, remote movement of elements in ultra-high vacuum conditions, etc. The prototype test of the proposed laser backscattering method is planned for this December.

  17. Internal dosimetry - a review.

    SciTech Connect

    Potter, Charles Augustus

    2004-06-01

    The field history and current status of internal dosimetry is reviewed in this article. Elements of the field that are reviewed include standards and models, derivation of dose coefficients and intake retention fractions, bioassay measurements, and intake and dose calculations. In addition, guidance is developed and provided as to the necessity of internal dosimetry for a particular facility or operation and methodology for implementing a program. A discussion of the purposes of internal dosimetry is included as well as recommendations for future development and direction.

  18. Internal dosimetry: a review.

    PubMed

    Potter, Charles A

    2005-06-01

    The field history and current status of internal dosimetry is reviewed in this article. Elements of the field that are reviewed include standards and models, derivation of dose coefficients and intake retention fractions, bioassay measurements, and intake and dose calculations. In addition, guidance is developed and provided as to the necessity of internal dosimetry for a particular facility or operation and methodology for implementing a program. A discussion of the purposes of internal dosimetry is included as well as recommendations for future development and direction.

  19. Non-locality, adiabaticity, thermodynamics and electron energy probability functions

    NASA Astrophysics Data System (ADS)

    Boswell, Roderick; Zhang, Yunchao; Charles, Christine; Takahashi, Kazunori

    2016-09-01

    Thermodynamic properties are revisited for electrons that are governed by nonlocal electron energy probability functions in a plasma of low collisionality. Measurements in a laboratory helicon double layer experiment have shown that the effective electron temperature and density show a polytropic correlation with an index of γe = 1 . 17 +/- 0 . 02 along the divergent magnetic field, implying a nearly isothermal plasma (γe = 1) with heat being brought into the system. However, the evolution of electrons along the divergent magnetic field is essentially an adiabatic process, which should have a γe = 5 / 3 . The reason for this apparent contradiction is that the nearly collisionless plasma is very far from local thermodynamic equilibrium and the electrons behave nonlocally. The corresponding effective electron enthalpy has a conservation relation with the potential energy, which verifies that there is no heat transferred into the system during the electron evolution. The electrons are shown in nonlocal momentum equilibrium under the electric field and the gradient of the effective electron pressure. The convective momentum of ions, which can be assumed as a cold species, is determined by the effective electron pressure and the effective electron enthalpy is shown to be the source for ion acceleration. For these nearly collisionless plasmas, the use of traditional thermodynamic concepts can lead to very erroneous conclusions regarding the thermal conductivity.

  20. Magnetosphere-Ionosphere Energy Interchange in the Electron Diffuse Aurora

    NASA Technical Reports Server (NTRS)

    Khazanov, George V.; Glocer, Alex; Himwich, E. W.

    2014-01-01

    The diffuse aurora has recently been shown to be a major contributor of energy flux into the Earth's ionosphere. Therefore, a comprehensive theoretical analysis is required to understand its role in energy redistribution in the coupled ionosphere-magnetosphere system. In previous theoretical descriptions of precipitated magnetospheric electrons (E is approximately 1 keV), the major focus has been the ionization and excitation rates of the neutral atmosphere and the energy deposition rate to thermal ionospheric electrons. However, these precipitating electrons will also produce secondary electrons via impact ionization of the neutral atmosphere. This paper presents the solution of the Boltzman-Landau kinetic equation that uniformly describes the entire electron distribution function in the diffuse aurora, including the affiliated production of secondary electrons (E greater than 600 eV) and their ionosphere-magnetosphere coupling processes. In this article, we discuss for the first time how diffuse electron precipitation into the atmosphere and the associated secondary electron production participate in ionosphere-magnetosphere energy redistribution.

  1. Weighting mean timers for high energy physics electronics

    SciTech Connect

    J. Wu

    1998-11-01

    A new family of electronics circuits, weighting mean timer, is presented in this technical memo. Weighting mean timers can be used in high energy physics experiment electronics to implement the \\concurrence" condition in hardware trigger stage. Several possible architectures of weighting mean timers have been discussed.

  2. Flux profile scanners for scattered high-energy electrons

    NASA Astrophysics Data System (ADS)

    Hicks, R. S.; Decowski, P.; Arroyo, C.; Breuer, M.; Celli, J.; Chudakov, E.; Kumar, K. S.; Olson, M.; Peterson, G. A.; Pope, K.; Ricci, J.; Savage, J.; Souder, P. A.

    2005-11-01

    The paper describes the design and performance of flux integrating Cherenkov scanners with air-core reflecting light guides used in a high-energy, high-flux electron scattering experiment at the Stanford Linear Accelerator Center. The scanners were highly radiation resistant and provided a good signal to background ratio leading to very good spatial resolution of the scattered electron flux profile scans.

  3. SU-F-BRA-10: Fricke Dosimetry: Determination of the G-Value for Ir-192 Energy Based On the NRC Methodology

    SciTech Connect

    Salata, C; David, M; Rosado, P; Almeida, C de

    2015-06-15

    Purpose: Use the methodology developed by the National Research Council Canada (NRC), for Fricke Dosimetry, to determine the G-value used at Ir-192 energies. Methods: In this study the Radiology Science Laboratory of Rio de Janeiro State University (LCR),based the G-value determination on the NRC method, using polyethylene bags. Briefly, this method consists of interpolating the G-values calculated for Co-60 and 250 kV x-rays for the average energy of Ir-192 (380 keV). As the Co-60 G-value is well described at literature, and associated with low uncertainties, it wasn’t measured in this present study. The G-values for 150 kV (Effective energy of 68 keV), 250 kV (Effective energy of 132 keV)and 300 kV(Effective energy of 159 keV)were calculated using the air kerma given by a calibrated ion chamber, and making it equivalent to the absorbed to the Fricke solution, using a Monte Carlo calculated factor for this conversion. Instead of interpolations, as described by the NRC, we displayed the G-values points in a graph, and used the line equation to determine the G- value for Ir-192 (380 keV). Results: The measured G-values were 1.436 ± 0.002 µmol/J for 150 kV, 1.472 ± 0.002 µmol/J for 250 kV, 1.497 ± 0.003 µmol/J for 300 kV. The used G-value for Co-60 (1.25 MeV) was 1,613 µmol/J. The R-square of the fitted regression line among those G-value points was 0.991. Using the line equation, the calculate G-value for 380 KeV was 1.542 µmol/J. Conclusion: The Result found for Ir-192 G-value is 3,1% different (lower) from the NRC value. But it agrees with previous literature results, using different methodologies to calculate this parameter. We will continue this experiment measuring the G-value for Co-60 in order to compare with the NRC method and better understand the reasons for the found differences.

  4. Anomalous electron-ion energy coupling in electron drift wave turbulence

    NASA Astrophysics Data System (ADS)

    Zhao, Lei

    Turbulence is a ubiquitous phenomenon in nature, and it is well known that turbulence couples energy input to dissipation by cascade processes. Plasma turbulence play a critical role in tokamak confinement. Magnetized plasma turbulence is quasi 2D, anisotropic, wave like and two fluid (i.e. electrons and ions) in structure. Thus, weakly collisional plasma turbulence can mediate electron and ion energy transfer. The issue of anomalous electron and ion energy coupling is particularly important for low collisionality, electron heated plasmas, such as ITER. In this work, we reconsider the classic problem of turbulent heating and energy transfer pathways in drift wave turbulence. The total turbulent heating, composed of quasilinear electron cooling, quasilinear ion heating, nonlinear ion heating and zonal flow frictional heating, is analyzed. In Chapter 2, the electron and ion energy exchange via linear wave and particle resonance will be computed. To address net heating, we show the turbulent heating in an annulus arises due to a wave energy flux differential across this region. We show this net heating is proportional to the Reynolds work on the zonal flow. Zonal flow friction heats ions, thus the turbulence and zonal flow interaction enters as an important energy transfer channel. Since zonal flows are nonlinearly generated, it follows that we should apply weak turbulence theory to calculate the nonlinear ion turbulent heating via the virtual mode resonance in the electron drift wave turbulence, which will be discussed in Chapter 3. We defines a new collisionless turbulent energy transfer channel through nonlinear Landau damping in the electron and ion energy coupling process. The result shows that nonlinear ion heating can exceed quasilinear ion heating, so that nonlinear heating becomes the principal collisionless wave energy dissipation channel in electron drift wave turbulence. This follows since the beat mode resonates with the bulk of the ion distribution, in

  5. Reactions induced by low energy electrons in cryogenic films (Review)

    NASA Astrophysics Data System (ADS)

    Bass, A. D.; Sanche, L.

    2003-03-01

    We review recent research on reactions (including dissociation) initiated by low-energy electron bombardment of monolayer and multilayer molecular solids at cryogenic temperatures. With incident electrons of energies below 20 eV, dissociation is observed by the electron stimulated desorption (ESD) of anions from target films and is attributed to the processes of dissociative electron attachment (DEA) and to dipolar dissociation. It is shown that DEA to condensed molecules is sensitive to environmental factors such as the identity of co-adsorbed species and film morphology. The effects of image-charge induced polarization on cross sections for DEA to CH3Cl are also discussed. Taking as example, the electron-induced production of CO within multilayer films of methanol and acetone, it is shown that the detection of electronic excited states by high-resolution electron energy loss spectroscopy can be used to monitor electron beam damage. In particular, the incident energy dependence of the CO indicates that below 19 eV, dissociation proceeds via the decay of transient negative ions (TNI) into electronically excited dissociative states. The electron-induced dissociation of biomolecular targets is also considered, taking as examples the ribose analog tetrahydrofuran and DNA bases adenine and thymine, cytosine and guanine. The ESD of anions from such films also show dissociation via the formation of TNI. In multilayer molecular solids, fragment species resulting from dissociation, may react with neighboring molecules, as is demonstrated in anion ESD measurements from films containing O2 and various hydrocarbon molecules. X-ray photoelectron spectroscopy measurements reported for electron-irradiated monolayers of H2O and CF4 on a Si-H passivated surface further show that DEA is an important initial step in the electron-induced chemisorption of fragment species.

  6. Monolithic electronics for nuclear and high-energy physics experiments

    SciTech Connect

    Young, G.R.

    1994-12-31

    Electronic instrumentation for large fixed-target and collider experiments is rapidly moving to the use of highly integrated electronics wherever it is cost effective. This trend is aided by the development of circuit building blocks useful for nuclear and high-energy physics instrumentation and has accelerated recently with the development of monolithic silicon chips with multiple functions on one substrate. Examples of recent developments are given, together with remarks on the rationale for use of monolithic electronics and economic considerations.

  7. Controlling the Electron Energy Distribution Function Using an Anode

    NASA Astrophysics Data System (ADS)

    Baalrud, Scott D.; Barnat, Edward V.; Hopkins, Mathew M.

    2014-10-01

    Positively biased electrodes inserted into plasmas influence the electron energy distribution function (EEDF) by providing a sink for low energy electrons that would otherwise be trapped by ion sheaths at the chamber walls. We develop a model for the EEDF in a hot filament generated discharge in the presence of positively biased electrodes of various surface areas, and compare the model results with experimental Langmuir probe measurements and particle-in-cell simulations. In the absence of an anode, the EEDF is characterized by a cool trapped population at energies below the sheath energy, and a comparatively warm tail population associated with the filament primaries. Anodes that are small enough to collect a negligible fraction of the electrons exiting the plasma have little affect on the EEDF, but as the anode area approaches √{me /mi }Aw , where Aw is the chamber wall area, the anode collects most of the electrons leaving the plasma. This drastically reduces the density of the otherwise trapped population, causing an effective heating of the electrons and a corresponding density decrease. A global model is developed based on the EEDF model and current balance, which shows the interconnected nature of the electron temperature, density and the plasma potential. This work was supported by the Office of Fusion Energy Science at the U.S. Department of Energy under Contract DE-AC04-94SL85000, and by the University of Iowa Old Gold Program.

  8. Development, validation, and implementation of a patient-specific Monte Carlo 3D internal dosimetry platform

    NASA Astrophysics Data System (ADS)

    Besemer, Abigail E.

    Targeted radionuclide therapy is emerging as an attractive treatment option for a broad spectrum of tumor types because it has the potential to simultaneously eradicate both the primary tumor site as well as the metastatic disease throughout the body. Patient-specific absorbed dose calculations for radionuclide therapies are important for reducing the risk of normal tissue complications and optimizing tumor response. However, the only FDA approved software for internal dosimetry calculates doses based on the MIRD methodology which estimates mean organ doses using activity-to-dose scaling factors tabulated from standard phantom geometries. Despite the improved dosimetric accuracy afforded by direct Monte Carlo dosimetry methods these methods are not widely used in routine clinical practice because of the complexity of implementation, lack of relevant standard protocols, and longer dose calculation times. The main goal of this work was to develop a Monte Carlo internal dosimetry platform in order to (1) calculate patient-specific voxelized dose distributions in a clinically feasible time frame, (2) examine and quantify the dosimetric impact of various parameters and methodologies used in 3D internal dosimetry methods, and (3) develop a multi-criteria treatment planning optimization framework for multi-radiopharmaceutical combination therapies. This platform utilizes serial PET/CT or SPECT/CT images to calculate voxelized 3D internal dose distributions with the Monte Carlo code Geant4. Dosimetry can be computed for any diagnostic or therapeutic radiopharmaceutical and for both pre-clinical and clinical applications. In this work, the platform's dosimetry calculations were successfully validated against previously published reference doses values calculated in standard phantoms for a variety of radionuclides, over a wide range of photon and electron energies, and for many different organs and tumor sizes. Retrospective dosimetry was also calculated for various pre

  9. Efficiency enhancement using electron energy detuning in a laser seeded free electron laser amplifier

    SciTech Connect

    Wang, X. J.; Watanabe, T.; Shen, Y.; Li, R. K.; Murphy, J. B.; Tsang, T.; Freund, H. P.

    2007-10-29

    We report the experimental characterization of efficiency enhancement in a single-pass seeded free-electron laser (FEL) where the electron energy is detuned from resonance. Experiments show a doubling of the efficiency for beam energies above the resonant energy. Measurements of the FEL spectra versus energy detuning shows that the wavelength is governed by the seed laser. The variation in the gain length with beam energy was also observed. Good agreement is found between the experiment and numerical simulations using the MEDUSA simulation code.

  10. Hot Electrons and Energy Transport in Metals at MK Temperatures.

    NASA Astrophysics Data System (ADS)

    Roukes, Michael Lee

    Using a new technique involving the generation of hot carriers, we directly measure energy loss lifetimes for electrons in impure metals at mK temperatures. At these temperatures very weak inelastic scattering processes determine energy transport out of the electron gas. A temperature difference between the electron gas and the lattice can be induced by applying an extremely small electric field (of order 1 (mu)V/cm at 25 mK). This temperature difference reflects the rate at which electrons lose energy to the surroundings. The experiment is carried out using a pair of interdigitated thin film resistors mounted on a millidegree demagnetization cryostat: we obtain electron temperature directly by observing current fluctuations. Noise generated by the resistors is measured using an ultra-sensitive two -channel dc SQUID system, providing femtoamp resolution at KHz frequencies. A dc voltage applied across one resistor imposes the bias field causing electron heating. Phonon temperature in the metal lattice is obtained by measuring noise from a second (unbiased) resistor, which is tightly coupled thermally to the first (biased). Our measurements show that electron heating follows an E('2/5) power law in the regime where electron temperature is largely determined by the electric field, E. This implies a T('-3) law for the energy loss lifetime, suggesting electron -acoustic phonon processes dominate. In the mK temperature regime the conductivity is impurity limited and remains ohmic, even as the electrons heat. Assuming a T('3) dependence and extrapolating our measured rates to higher temperatures, we find agreement with electron-phonon rates measured above 1K in clean bulk metals. This contrasts with results from weak localization experiments showing a power law differing from T('3) and much faster rates. This difference arises because weak localization experiments measure the electron phase coherence lifetime; our electron heating experiments, however, measure an energy

  11. Investigation of effect of variations in bone fraction and red marrow cellularity on bone marrow dosimetry in radio-immunotherapy.

    PubMed

    Wilderman, S J; Roberson, P L; Bolch, W E; Dewaraja, Y K

    2013-07-21

    A method is described for computing patient-specific absorbed dose rates to active marrow which accounts for spatial variation in bone volume fraction and marrow cellularity. A module has been added to the 3D Monte Carlo dosimetry program DPM to treat energy deposition in the components of bone spongiosa distinctly. Homogeneous voxels in regions containing bone spongiosa (as defined on CT images) are assumed to be comprised only of bone, active (red) marrow and inactive (yellow) marrow. Cellularities are determined from biopsy, and bone volume fractions are computed from cellularities and CT-derived voxel densities. Electrons are assumed to deposit energy locally in the three constituent components in proportions determined by electron energy absorption fractions which depend on energy, cellularity, and bone volume fraction, and which are either taken from the literature or are derived from Monte Carlo simulations using EGS5. Separate algorithms are used to model primary β particles and secondary electrons generated after photon interactions. Treating energy deposition distinctly in bone spongiosa constituents leads to marrow dosimetry results which differ from homogeneous spongiosa dosimetry by up to 20%. Dose rates in active marrow regions with cellularities of 20, 50, and 80% can vary by up to 20%, and can differ by up to 10% as a function of bone volume fraction. Dose to bone marrow exhibits a strong dependence on marrow cellularity and a potentially significant dependence on bone volume fraction.

  12. Investigation of effect of variations in bone fraction and red marrow cellularity on bone marrow dosimetry in radio-immunotherapy

    NASA Astrophysics Data System (ADS)

    Wilderman, S. J.; Roberson, P. L.; Bolch, W. E.; Dewaraja, Y. K.

    2013-07-01

    A method is described for computing patient-specific absorbed dose rates to active marrow which accounts for spatial variation in bone volume fraction and marrow cellularity. A module has been added to the 3D Monte Carlo dosimetry program DPM to treat energy deposition in the components of bone spongiosa distinctly. Homogeneous voxels in regions containing bone spongiosa (as defined on CT images) are assumed to be comprised only of bone, active (red) marrow and inactive (yellow) marrow. Cellularities are determined from biopsy, and bone volume fractions are computed from cellularities and CT-derived voxel densities. Electrons are assumed to deposit energy locally in the three constituent components in proportions determined by electron energy absorption fractions which depend on energy, cellularity, and bone volume fraction, and which are either taken from the literature or are derived from Monte Carlo simulations using EGS5. Separate algorithms are used to model primary β particles and secondary electrons generated after photon interactions. Treating energy deposition distinctly in bone spongiosa constituents leads to marrow dosimetry results which differ from homogeneous spongiosa dosimetry by up to 20%. Dose rates in active marrow regions with cellularities of 20, 50, and 80% can vary by up to 20%, and can differ by up to 10% as a function of bone volume fraction. Dose to bone marrow exhibits a strong dependence on marrow cellularity and a potentially significant dependence on bone volume fraction.

  13. Properties of the electron cloud in a high-energy positron and electron storage ring

    SciTech Connect

    Harkay, K. C.; Rosenberg, R. A.

    2003-03-20

    Low-energy, background electrons are ubiquitous in high-energy particle accelerators. Under certain conditions, interactions between this electron cloud and the high-energy beam can give rise to numerous effects that can seriously degrade the accelerator performance. These effects range from vacuum degradation to collective beam instabilities and emittance blowup. Although electron-cloud effects were first observed two decades ago in a few proton storage rings, they have in recent years been widely observed and intensely studied in positron and proton rings. Electron-cloud diagnostics developed at the Advanced Photon Source enabled for the first time detailed, direct characterization of the electron-cloud properties in a positron and electron storage ring. From in situ measurements of the electron flux and energy distribution at the vacuum chamber wall, electron-cloud production mechanisms and details of the beam-cloud interaction can be inferred. A significant longitudinal variation of the electron cloud is also observed, due primarily to geometrical details of the vacuum chamber. Furthermore, such experimental data can be used to provide realistic limits on key input parameters in modeling efforts, leading ultimately to greater confidence in predicting electron-cloud effects in future accelerators.

  14. Properties of the electron cloud in a high-energy positron and electron storage ring

    DOE PAGES

    Harkay, K. C.; Rosenberg, R. A.

    2003-03-20

    Low-energy, background electrons are ubiquitous in high-energy particle accelerators. Under certain conditions, interactions between this electron cloud and the high-energy beam can give rise to numerous effects that can seriously degrade the accelerator performance. These effects range from vacuum degradation to collective beam instabilities and emittance blowup. Although electron-cloud effects were first observed two decades ago in a few proton storage rings, they have in recent years been widely observed and intensely studied in positron and proton rings. Electron-cloud diagnostics developed at the Advanced Photon Source enabled for the first time detailed, direct characterization of the electron-cloud properties in amore » positron and electron storage ring. From in situ measurements of the electron flux and energy distribution at the vacuum chamber wall, electron-cloud production mechanisms and details of the beam-cloud interaction can be inferred. A significant longitudinal variation of the electron cloud is also observed, due primarily to geometrical details of the vacuum chamber. Furthermore, such experimental data can be used to provide realistic limits on key input parameters in modeling efforts, leading ultimately to greater confidence in predicting electron-cloud effects in future accelerators.« less

  15. Modelling low energy electron interactions for biomedical uses of radiation

    NASA Astrophysics Data System (ADS)

    Fuss, M.; Muñoz, A.; Oller, J. C.; Blanco, F.; Limão-Vieira, P.; Huerga, C.; Téllez, M.; Hubin-Fraskin, M. J.; Nixon, K.; Brunger, M.; García, G.

    2009-11-01

    Current radiation based medical applications in the field of radiotherapy, radio-diagnostic and radiation protection require modelling single particle interactions at the molecular level. Due to their relevance in radiation damage to biological systems, special attention should be paid to include the effect of low energy secondary electrons. In this study we present a single track simulation procedure for photons and electrons which is based on reliable experimental and theoretical cross section data and the energy loss distribution functions derived from our experiments. The effect of including secondary electron interactions in this model will be discussed.

  16. ELECTRON COOLING SIMULATIONS FOR LOW-ENERGY RHIC OPERATION.

    SciTech Connect

    FEDOTOV,A.V.; BEN-ZVI, I.; CHANG, X.; KAYRAN, D.; SATOGATA, T.

    2007-09-10

    Recently, a strong interest emerged in running the Relativistic Heavy Ion Collider (RHIC) at low beam total energies of 2.5-25 GeV/nucleon, substantially lower than the nominal beam total energy of 100 GeV/nucleon. Collisions in this low energy range are motivated by one of the key questions of quantum chromodynamics (QCD) about the existence and location of critical point on the QCD phase diagram. Applying electron cooling directly at these low energies in RHIC would result in significant luminosity increase and long beam stores for physics. Without direct cooling in RHIC at these low energies, beam lifetime and store times are very short, limited by strong transverse and longitudinal intrabeam scattering (IBS). In addition, for the lowest energies of the proposed energy scan, the longitudinal emittance of ions injected from the AGS into RHIC may be too big to fit into the RHIC RF bucket. An improvement in the longitudinal emittance of the ion beam can be provided by an electron cooling system at the AGS injection energy. Simulations of electron cooling both for direct cooling at low energies in RHIC and for injection energy cooling in the AGS were performed and are summarized in this report.

  17. Electron energy and electron trajectories in an inverse free-electron laser accelerator based on a novel electrostatic wiggler

    NASA Astrophysics Data System (ADS)

    Nikrah, M.; Jafari, S.

    2016-06-01

    We expand here a theory of a high-gradient laser-excited electron accelerator based on an inverse free-electron laser (inverse-FEL), but with innovations in the structure and design. The electrostatic wiggler used in our scheme, namely termed the Paul wiggler, is generated by segmented cylindrical electrodes with applied oscillatory voltages {{V}\\text{osc}}(t) over {{90}\\circ} segments. The inverse-FEL interaction can be described by the equations that govern the electron motion in the combined fields of both the laser pulse and Paul wiggler field. A numerical study of electron energy and electron trajectories has been made using the fourth-order Runge-Kutta method. The results indicate that the electron attains a considerable energy at short distances in this device. It is found that if the electron has got sufficient suitable wiggler amplitude intensities, it can not only gain higher energy in longer distances, but also can retain it even after the passing of the laser pulse. In addition, the results reveal that the electron energy gains different peaks for different initial axial velocities, so that a suitable small initial axial velocity of e-beam produces substantially high energy gain. With regard to the transverse confinement of the electron beam in a Paul wiggler, there is no applied axial guide magnetic field in this device.

  18. A molecularly based theory for electron transfer reorganization energy.

    PubMed

    Zhuang, Bilin; Wang, Zhen-Gang

    2015-12-14

    Using field-theoretic techniques, we develop a molecularly based dipolar self-consistent-field theory (DSCFT) for charge solvation in pure solvents under equilibrium and nonequilibrium conditions and apply it to the reorganization energy of electron transfer reactions. The DSCFT uses a set of molecular parameters, such as the solvent molecule's permanent dipole moment and polarizability, thus avoiding approximations that are inherent in treating the solvent as a linear dielectric medium. A simple, analytical expression for the free energy is obtained in terms of the equilibrium and nonequilibrium electrostatic potential profiles and electric susceptibilities, which are obtained by solving a set of self-consistent equations. With no adjustable parameters, the DSCFT predicts activation energies and reorganization energies in good agreement with previous experiments and calculations for the electron transfer between metallic ions. Because the DSCFT is able to describe the properties of the solvent in the immediate vicinity of the charges, it is unnecessary to distinguish between the inner-sphere and outer-sphere solvent molecules in the calculation of the reorganization energy as in previous work. Furthermore, examining the nonequilibrium free energy surfaces of electron transfer, we find that the nonequilibrium free energy is well approximated by a double parabola for self-exchange reactions, but the curvature of the nonequilibrium free energy surface depends on the charges of the electron-transferring species, contrary to the prediction by the linear dielectric theory.

  19. A molecularly based theory for electron transfer reorganization energy

    SciTech Connect

    Zhuang, Bilin; Wang, Zhen-Gang

    2015-12-14

    Using field-theoretic techniques, we develop a molecularly based dipolar self-consistent-field theory (DSCFT) for charge solvation in pure solvents under equilibrium and nonequilibrium conditions and apply it to the reorganization energy of electron transfer reactions. The DSCFT uses a set of molecular parameters, such as the solvent molecule’s permanent dipole moment and polarizability, thus avoiding approximations that are inherent in treating the solvent as a linear dielectric medium. A simple, analytical expression for the free energy is obtained in terms of the equilibrium and nonequilibrium electrostatic potential profiles and electric susceptibilities, which are obtained by solving a set of self-consistent equations. With no adjustable parameters, the DSCFT predicts activation energies and reorganization energies in good agreement with previous experiments and calculations for the electron transfer between metallic ions. Because the DSCFT is able to describe the properties of the solvent in the immediate vicinity of the charges, it is unnecessary to distinguish between the inner-sphere and outer-sphere solvent molecules in the calculation of the reorganization energy as in previous work. Furthermore, examining the nonequilibrium free energy surfaces of electron transfer, we find that the nonequilibrium free energy is well approximated by a double parabola for self-exchange reactions, but the curvature of the nonequilibrium free energy surface depends on the charges of the electron-transferring species, contrary to the prediction by the linear dielectric theory.

  20. Suprathermal electron energy distribution within the dayside Venus ionosphere

    NASA Technical Reports Server (NTRS)

    Knudsen, W. C.; Miller, K. L.; Spenner, K.; Novak, V.; Michelson, P. F.; Whitten, R. C.

    1980-01-01

    The suprathermal electron energy distribution for the dayside ionosphere has been derived from data returned by the Pioneer-Venus orbiter retarding potential analyzer. The shape and magnitude of the spectrum are consistent with the assumption that solar EUV radiation is the only significant source. The magnitude of the spectrum and its variation with altitude suggest that significant vertical transport occurs, with the electrons being lost through the ionopause. In turn, significant vertical transport suggests that the effective vertical electron heat conductivity may be comparable to the field-free value. The heat input to the thermal electron gas from the measured suprathermal electron flux is too small by a factor of at least five to maintain the observed electron temperature profile if the electron thermal conductivity is assumed to be close to the field-free value. It is thus inferred that most of the heat is supplied by the solar wind.

  1. [Clinical calibration dosimetry in JSMP-01: measurements using Farmer-type cylindrical ion chambers.].

    PubMed

    Araki, Fujio; Kumagai, Kozo; Yoshiura, Takao; Oura, Hiroki; Tachibana, Masayuki; Moribe, Nobuyuki; Tajima, Hidetaka; Yoshida, Atsushi; Kido, Tetsuo

    2005-01-01

    The Japan Society of Medical Physics (JSMP) Task Group published Standard dosimetry of absorbed dose in external beam radiotherapy (Standard dosimetry 01) as a new high-energy photon and electron dosimetry protocol in 2002. In this study, we present Standard dosimetry 01 as the JSMP-01 protocol for the convenience of users. This protocol is based on using an ion chamber having a (60)Co absorbed dose to water calibration coefficient, N(D,w), which is calculated from a (60)Co exposure calibration coefficient, N(c). We present dose comparisons between a reference chamber and various Farmer-type cylindrical chambers with different wall materials. The absorbed dose to water was compared at the calibration depths of 5 cm for a (60)Co beam, 10 cm for photons, and d(c) = 0.6 R(50) - 0.1 (cm) for electrons according to JSMP-01. The JARP chamber in the Kyushu Regional Center which meets third-order standards in Japan was used as the reference chamber. The absorbed dose to water for the Farmer-type chambers determined according to JSMP-01 agreed with that for the JARP chamber within 1% for photon and electron beams. The doses obtained by JSMP-01 and the Japan Association of Radiological Physics protocol (JARP-86) were also compared for photon and electron beams. For the Farmer-type chambers with photon beams, JSMP-01 results were up to 1.5% higher than JARP-86 results. For electron beams JSMP-01 results were higher than JARP-86 results by 1.3-2.8%.

  2. An energy recovery electron linac-on-ring collider

    SciTech Connect

    Merminga, L.; Krafft, G.A.; Lebedev, V.A.; Ben-Zvi, I.

    2000-09-14

    We present the design of high-luminosity electron-proton/ion colliders in which the electrons are produced by an Energy Recovering Linac (ERL). Electron-proton/ion colliders with center of mass energies between 14 GeV and 100 GeV (protons) or 63 GeV/A (ions) and luminosities at the 10{sup 33}(per nucleon) level have been proposed recently as a means for studying hadronic structure. The linac-on-ring option presents significant advantages with respect to: (1) spin manipulations (2) reduction of the synchrotron radiation load in the detectors (3) a wide range of continuous energy variability. Rf power and beam dump considerations require that the electron linac recover the beam energy. Based on extrapolations from actual measurements and calculations, energy recovery is expected to be feasible at currents of a few hundred mA and multi-GeV energies. Luminosity projections for the linac-ring scenario based on fundamental limitations are presented. The feasibility of an energy recovery electron linac-on-proton ring collider is investigated and four conceptual point designs are shown corresponding to electron to proton energies of: 3 GeV on 15 GeV, 5 GeV on 50 GeV and 10 GeV on 250 GeV, and for gold ions with 100 GeV/A. The last two designs assume that the protons or ions are stored in the existing RHIC accelerator. Accelerator physics issues relevant to proton rings and energy recovery linacs are discussed and a list of required R and D for the realization of such a design is presented.

  3. Rotational And Rovibrational Energy Transfer In Electron Collisions With Molecules

    NASA Technical Reports Server (NTRS)

    Thuemmel, Helmar T.; Langhoff, Stephen R. (Technical Monitor)

    1995-01-01

    Air flows around a hypervelocity reentry vehicle undergo dissociation, rovibrational excitation and ionization. More specifically the air, initially 80% N2 and 20% O2, in the shock layer consists of species such as N, O, N2, O2, NO, N+, O+, N+, O+, NO+ and 2 free electrons. It was pointed out in multi temperature models'' that the temperature of the rotational energy modes and the gas-kinetic translational temperature are quickly equilibrated by a few collisions and rise rapidly to high temperatures as 50000K before falling off to equilibrium value of 10000K. Contrary, the electronic and vibrational temperatures state energy distributions remain low (less than 15000K) because of the slow equilibration. Electron vibrational energy transfer is thought to play a crucial role in such a ionizing flow regime since chemical reaction rates and dissociation depend strongly on the vibrational temperatures. Modeling of these flowfields in principle require the rovibrational excitation and de-excitation cross section data for average electron energies from threshold up to several eV (leV=11605.4 K). In this lecture we focus on theoretical description of rotational effects i.e. energy transfer of electrons to molecules such that the molecular rotational (vojo goes to voj) or vibrational and rotational (v(sub 0)j(sub 0) goes to vj) states are changed. Excitation and de-excitation of electronic states was discussed in a previous talk at this conference.

  4. Rotational And Rovibrational Energy Transfer In Electron Collisions With Molecules

    NASA Technical Reports Server (NTRS)

    Thuemmel, Helmar T.; Langhoff, Stephen R. (Technical Monitor)

    1995-01-01

    Air flows around a hypervelocity reentry vehicle undergo dissociation, rovibrational excitation and ionization. More specifically the air, initially 80% N2 and 20% O2, in the shock layer consists of species such as N, O, N2, O2, NO, N+, O+, N+, O+, NO+ and 2 free electrons. It was pointed out in multi temperature models'' that the temperature of the rotational energy modes and the gas-kinetic translational temperature are quickly equilibrated by a few collisions and rise rapidly to high temperatures as 50000K before falling off to equilibrium value of 10000K. Contrary, the electronic and vibrational temperatures state energy distributions remain low (less than 15000K) because of the slow equilibration. Electron vibrational energy transfer is thought to play a crucial role in such a ionizing flow regime since chemical reaction rates and dissociation depend strongly on the vibrational temperatures. Modeling of these flowfields in principle require the rovibrational excitation and de-excitation cross section data for average electron energies from threshold up to several eV (leV=11605.4 K). In this lecture we focus on theoretical description of rotational effects i.e. energy transfer of electrons to molecules such that the molecular rotational (vojo goes to voj) or vibrational and rotational (v(sub 0)j(sub 0) goes to vj) states are changed. Excitation and de-excitation of electronic states was discussed in a previous talk at this conference.

  5. Electron energy loss spectroscopy of gold nanoparticles on graphene

    SciTech Connect

    DeJarnette, Drew; Roper, D. Keith

    2014-08-07

    Plasmon excitation decay by absorption, scattering, and hot electron transfer has been distinguished from effects induced by incident photons for gold nanoparticles on graphene monolayer using electron energy loss spectroscopy (EELS). Gold nano-ellipses were evaporated onto lithographed graphene, which was transferred onto a silicon nitride transmission electron microscopy grid. Plasmon decay from lithographed nanoparticles measured with EELS was compared in the absence and presence of the graphene monolayer. Measured decay values compared favorably with estimated radiative and non-radiative contributions to decay in the absence of graphene. Graphene significantly enhanced low-energy plasmon decay, increasing mode width 38%, but did not affect higher energy plasmon or dark mode decay. This decay beyond expected radiative and non-radiative mechanisms was attributed to hot electron transfer, and had quantum efficiency of 20%, consistent with previous reports.

  6. Sandia National Laboratories Internal Dosimetry Technical Basis Manual (Rev 4)

    SciTech Connect

    Goke, Sarah Hayes; Elliott, Nathan Ryan

    2014-09-01

    The Sandia National Laboratories’ Internal Dosimetry Technical Basis Manual is intended to provide extended technical discussion and justification of the internal dosimetry program at SNL. It serves to record the approach to evaluating internal doses from radiobioassay data, and where appropriate, from workplace monitoring data per the Department of Energy Internal Dosimetry Program Guide DOE G 441.1C. The discussion contained herein is directed primarily to current and future SNL internal dosimetrists. In an effort to conserve space in the TBM and avoid duplication, it contains numerous references providing an entry point into the internal dosimetry literature relevant to this program. The TBM is not intended to act as a policy or procedure statement, but will supplement the information normally found in procedures or policy documents. The internal dosimetry program outlined in this manual is intended to meet the requirements of Federal Rule 10CFR835 for monitoring the workplace and for assessing internal radiation doses to workers.

  7. Energy of auroral electrons and Z mode generation

    NASA Technical Reports Server (NTRS)

    Krauss-Varban, D.; Wong, H. K.

    1990-01-01

    The present consideration of Z-mode radiation generation, in light of observational results indicating that the O mode and second-harmonic X-mode emissions can prevail over the X-mode fundamental radiation when suprathermal electron energy is low, gives attention to whether the thermal effect on the Z-mode dispersion can be equally important, and whether the Z-mode can compete for the available free-energy source. It is found that, under suitable circumstances, the growth rate of the Z-mode can be substantial even for low suprathermal auroral electron energies. Growth is generally maximized for propagation perpendicular to the magnetic field.

  8. Energy of auroral electrons and Z mode generation

    NASA Technical Reports Server (NTRS)

    Krauss-Varban, D.; Wong, H. K.

    1990-01-01

    The present consideration of Z-mode radiation generation, in light of observational results indicating that the O mode and second-harmonic X-mode emissions can prevail over the X-mode fundamental radiation when suprathermal electron energy is low, gives attention to whether the thermal effect on the Z-mode dispersion can be equally important, and whether the Z-mode can compete for the available free-energy source. It is found that, under suitable circumstances, the growth rate of the Z-mode can be substantial even for low suprathermal auroral electron energies. Growth is generally maximized for propagation perpendicular to the magnetic field.

  9. High Energy Electron and Gamma - Ray Detection with ATIC

    NASA Technical Reports Server (NTRS)

    Chang, J.; Schmidt, W. K. H.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    The Advanced Thin Ionization Calorimeter (ATIC) balloon borne ionization calorimeter is well suited to record and identify high energy cosmic ray electrons, and at very high energies gamma-ray photons as well. We have simulated the performance of the instrument, and compare the simulations with actual high energy electron exposures at the CERN accelerator. Simulations and measurements do not compare exactly, in detail, but overall the simulations have predicted actual measured behavior quite well. ATIC has had its first 16 day balloon flight at the turn of the year over Antarctica, and first results obtained using the analysis methods derived from simulations and calibrations will be reported.

  10. Low-energy elastic electron interactions with pyrimidine

    SciTech Connect

    Palihawadana, Prasanga; Sullivan, James; Buckman, Stephen; Brunger, Michael; Winstead, Carl; McKoy, Vincent; Garcia, Gustavo; Blanco, F.

    2011-12-15

    We present results of measurements and calculations of elastic electron scattering from pyrimidine in the energy range 3-50 eV. Absolute differential and integral elastic cross sections have been measured using a crossed electron-molecule beam spectrometer and the relative flow technique. The measured cross sections are compared with results of calculations using the well-known Schwinger variational technique and an independent-atom model. Agreement between the measured differential cross sections and the results of the Schwinger calculations is good at lower energies but less satisfactory at higher energies where inelastic channels that should be open are kept closed in the calculations.

  11. Dosimetry and Risk Assessment: Fundamental Concepts

    SciTech Connect

    Fisher, Darrell R.

    2005-12-29

    Radiation dosimetry is important for characterizing radiation exposures and for risk assessment. In a medical setting, dosimetry is important for evaluating the safety of administered radiopharmaceuticals and for planning the safe administration of therapeutic radionuclides. Environmental dosimetry helps establish the safety of radionuclide releases from electric power production and other human activities. Internal and external dosimetry help us understand the consequences of radiation exposure. The absorbed dose is the fundamental quantity in radiation dosimetry from which all other operational values in radiation protection are obtained. Equivalent dose to tissue and effective dose to the whole body are derivatives of absorbed dose and constructs of risk. Mathematical systems supported by computer software facilitate dose calculations and make it possible to estimate internal dose based on bioassay or other biokinetic data. Risk coefficients for radiation-induced cancer rely primarily on data from animal studies and long-term observations of the Hiroshima and Nagasaki bomb survivors. Low-dose research shows that mechanisms of radiation interactions with tissue are dose-dependent, but the resulting biological effects are not necessarily linear with absorbed dose. Thus, the analysis of radiation effects and associated risks must account for the influences of microscopic energy distributions at the cellular level, dose-rate, cellular repair of sub-lethal radiation damage, and modifying factors such as bystander effects, adaptive response, and genomic instability.

  12. Electron energy can oscillate near a crystal dislocation

    NASA Astrophysics Data System (ADS)

    Li, Mingda; Cui, Wenping; Dresselhaus, Mildred S.; Chen, Gang

    2017-01-01

    Crystal dislocations govern the plastic mechanical properties of materials but also affect the electrical and optical properties. However, a fundamental and quantitative quantum field theory of a dislocation has remained undiscovered for decades. Here we present an exactly-solvable one-dimensional quantum field theory of a dislocation, for both edge and screw dislocations in an isotropic medium, by introducing a new quasiparticle which we have called the ‘dislon’. The electron-dislocation relaxation time can then be studied directly from the electron self-energy calculation, which is reducible to classical results. In addition, we predict that the electron energy will experience an oscillation pattern near a dislocation. Compared with the electron density’s Friedel oscillation, such an oscillation is intrinsically different since it exists even with only single electron is present. With our approach, the effect of dislocations on materials’ non-mechanical properties can be studied at a full quantum field theoretical level.

  13. Electronic effects in high-energy radiation damage in iron.

    PubMed

    Zarkadoula, E; Daraszewicz, S L; Duffy, D M; Seaton, M A; Todorov, I T; Nordlund, K; Dove, M T; Trachenko, K

    2014-02-26

    Electronic effects have been shown to be important in high-energy radiation damage processes where a high electronic temperature is expected, yet their effects are not currently understood. Here, we perform molecular dynamics simulations of high-energy collision cascades in α-iron using a coupled two-temperature molecular dynamics (2T-MD) model that incorporates both the effects of electronic stopping and electron-phonon interaction. We subsequently compare it with the model employing electronic stopping only, and find several interesting novel insights. The 2T-MD results in both decreased damage production in the thermal spike and faster relaxation of the damage at short times. Notably, the 2T-MD model gives a similar amount of final damage at longer times, which we interpret to be the result of two competing effects: a smaller amount of short-time damage and a shorter time available for damage recovery.

  14. Study of the electronic structures of high T c cuprate superconductors by electron energy loss and secondary electron emission spectroscopies

    NASA Astrophysics Data System (ADS)

    Jayaram, V.; Kulkarni, G. U.; Rao, C. N. R.

    1989-10-01

    Energy loss spectra of superconducting YBa 2Cu 3O 6.9' Bi 1.5Pb 0.5Ca 2.5Sr 1.5Cu 3O 10+δ and Tl 2CaBa 2Cu 3O 8 obtained at primary electron energies in the 170-310 eV range show features reflecting the commonalities in their electronic structures. The relative intensity of the plasmon peak shows a marked drop across the transition temperature. Secondary electron emission spectra of the cuprates also reveal some features of the electronic structure.

  15. Excitation of phonons in medium-energy electron diffraction

    NASA Astrophysics Data System (ADS)

    Alvarez, M. A. Vicente; Ascolani, H.; Zampieri, G.

    1996-03-01

    The ``elastic'' backscattering of electrons from crystalline surfaces presents two regimes: a low-energy regime, in which the characteristic low-energy electron diffraction (LEED) pattern is observed, and a medium-energy regime, in which the diffraction pattern is similar to those observed in x-ray photoemission diffraction (XPD) and Auger electron diffraction (AED) experiments. We present a model for the electron scattering which, including the vibrational degrees of freedom of the crystal, contains both regimes and explains the passage from one regime to the other. Our model is based on a separation of the electron and atomic motions (adiabatic approximation) and on a cluster-type formulation of the multiple scattering of the electron. The inelastic scattering events (excitation and/or absorption of phonons) are treated as coherent processes and no break of the phase relation between the incident and the exit paths of the electron is assumed. The LEED and the medium-energy electron diffraction regimes appear naturally in this model as the limit cases of completely elastic scattering and of inelastic scattering with excitation and/or absorption of multiple phonons. Intensity patterns calculated with this model are in very good agreement with recent experiments of electron scattering on Cu(001) at low and medium energies. We show that there is a correspondence between the type of intensity pattern and the mean number of phonons excited and/or absorbed during the scattering: a LEED-like pattern is observed when this mean number is less than 2, LEED-like and XPD/AED-like features coexist when this number is 3-4, and a XPD/AED-like pattern is observed when this number is greater than 5-6.

  16. Technical basis for internal dosimetry at Hanford

    SciTech Connect

    Sula, M.J.; Carbaugh, E.H.; Bihl, D.E.

    1989-04-01

    The Hanford Internal Dosimetry Program, administered by Pacific Northwest Laboratory for the US Department of Energy, provides routine bioassay monitoring for employees who are potentially exposed to radionuclides in the workplace. This report presents the technical basis for routine bioassay monitoring and the assessment of internal dose at Hanford. The radionuclides of concern include tritium, corrosion products (/sup 58/Co, /sup 60/Co, /sup 54/Mn, and /sup 59/Fe), strontium, cesium, iodine, europium, uranium, plutonium, and americium. Sections on each of these radionuclides discuss the sources and characteristics; dosimetry; bioassay measurements and monitoring; dose measurement, assessment, and mitigation; and bioassay follow-up treatment. 64 refs., 42 figs., 118 tabs.

  17. Technical basis for internal dosimetry at Hanford

    SciTech Connect

    Sula, M.J.; Carbaugh, E.H.; Bihl, D.E.

    1991-07-01

    The Hanford Internal Dosimetry Program, administered by Pacific Northwest Laboratory for the US Department of Energy, provides routine bioassay monitoring for employees who are potentially exposed to radionuclides in the workplace. This report presents the technical basis for routine bioassay monitoring and the assessment of internal dose at Hanford. The radionuclides of concern include tritium, corrosion products ({sup 58}Co, {sup 60}Co, {sup 54}Mn, and {sup 59}Fe), strontium, cesium, iodine, europium, uranium, plutonium, and americium,. Sections on each of these radionuclides discuss the sources and characteristics; dosimetry; bioassay measurements and monitoring; dose measurement, assessment, and mitigation and bioassay follow-up treatment. 78 refs., 35 figs., 115 tabs.

  18. Energy Spectrum of Cosmic-Ray Electrons at TeV