Science.gov

Sample records for energy electron dosimetry

  1. [Total cutaneous irradiation with low energy electrons and mycosis fungoides. Technic and dosimetry].

    PubMed

    Monetti, U; Ragona, R; Anglesio, S; Urgesi, A; Fillini, C

    1987-10-01

    Mycosis fungoides initially involves the epidermis and the superficial layers of derma at a depth of about 1 cm. Wide field irradiation with low energy electrons is therefore the treatment of choice in the initial stages of the disease. In our Institute, total skin electron beam irradiation is delivered with Therac 20 linear accelerator: the lowest available energy is 6 MeV. A lucite sheet of 0.6 cm thickness is used to decrease the energy of the beam. We used film dosimetry to evaluate the homogeneity of dose distribution in an Alderson-Rando phantom with different arrangements of the fields and the lucite sheet: 4 and 6 fields techniques have been compared with different positions of the lucite filter, near the phantom and near the collimator. Six fields yield a better dose distribution: homogeneity is within +/- 3.7%, while with four fields it is within +/- 6%. X-rays contamination is less than 2%. "In vivo" dosimetry has been performed using thermoluminescent dosimeters: homogeneity is within +/- 15%.

  2. Electron Paramagnetic Resonance Retrospective Dosimetry

    SciTech Connect

    Romanyukha, Alex; Trompier, Francois

    2011-05-05

    Necessity for, principles of, and general concepts of the electron paramagnetic resonance (EPR) retrospective dosimetry are presented. Also presented and given in details are examples of EPR retrospective dosimetry applications in tooth enamel, bone, and fingernails with focus on general approaches for solving technical and methodological problems. Advantages, drawbacks, and possible future developments are discussed and an extensive bibliography on EPR retrospective dosimetry is provided.

  3. Gafchromic EBT3 film dosimetry in electron beams - energy dependence and improved film read-out.

    PubMed

    Sipilä, Petri; Ojala, Jarkko; Kaijaluoto, Sampsa; Jokelainen, Ilkka; Kosunen, Antti

    2016-01-01

    For megavoltage photon radiation, the fundamental dosimetry characteristics of Gafchromic EBT3 film were determined in  60Co gamma ray beam with addition of experimental and Monte Carlo (MC)-simulated energy dependence of the film for 6 MV photon beam and 6 MeV, 9 MeV, 12 MeV, and 16 MeV electron beams in water phantom. For the film read-out, two phase correction of scanner sensitivity was applied: a matrix correction for scanning area and dose-dependent correction by iterative procedure. With these corrections, the uniformity of response can be improved to be within ±50 pixel values (PVs). To improve the read-out accuracy, a procedure with flipped film orientations was established. With the method, scanner uniformity can be improved further and dust particles, scratches and/or dirt on scanner glass can be detected and eliminated. Responses from red and green channels were averaged for read-out, which decreased the effect of noise present in values from separate channels. Since the signal level with the blue channel is considerably lower than with other channels, the signal variation due to different perturbation effects increases the noise level so that the blue channel is not recommended to be used for dose determination. However, the blue channel can be used for the detection of emulsion thickness variations for film quality evaluations with unexposed films. With electron beams ranging from 6 MeV to 16 MeV and at reference measurement conditions in water, the energy dependence of the EBT3 film is uniform within 0.5%, with uncertainties close to 1.6% (k=2). Including 6 MV photon beam and the electron beams mentioned, the energy dependence is within 1.1%. No notable differences were found between the experimental and MC-simulated responses, indicating negligible change in intrinsic energy dependence of the EBT3 film for 6 MV photon beam and 6 MeV-16 MeV electron beams. Based on the dosimetric characteristics of the EBT3 film, the read-out procedure established

  4. Gafchromic EBT3 film dosimetry in electron beams - energy dependence and improved film read-out.

    PubMed

    Sipilä, Petri; Ojala, Jarkko; Kaijaluoto, Sampsa; Jokelainen, Ilkka; Kosunen, Antti

    2016-01-08

    For megavoltage photon radiation, the fundamental dosimetry characteristics of Gafchromic EBT3 film were determined in 60Co gamma ray beam with addition of experimental and Monte Carlo (MC)-simulated energy dependence of the film for 6 MV photon beam and 6 MeV, 9 MeV, 12 MeV, and 16 MeV electron beams in water phantom. For the film read-out, two phase correction of scanner sensitivity was applied: a matrix correction for scanning area and dose-dependent correction by iterative procedure. With these corrections, the uniformity of response can be improved to be within ± 50 pixel values (PVs). To improve the read-out accuracy, a procedure with flipped film orientations was established. With the method, scanner uniformity can be improved further and dust particles, scratches and/or dirt on scan-ner glass can be detected and eliminated. Responses from red and green channels were averaged for read-out, which decreased the effect of noise present in values from separate channels. Since the signal level with the blue channel is considerably lower than with other channels, the signal variation due to different perturbation effects increases the noise level so that the blue channel is not recommended to be used for dose determination. However, the blue channel can be used for the detection of emulsion thickness variations for film quality evaluations with unexposed films. With electron beams ranging from 6 MeV to 16 MeV and at reference measurement conditions in water, the energy dependence of the EBT3 film is uniform within 0.5%, with uncertainties close to 1.6% (k = 2). Including 6 MV photon beam and the electron beams mentioned, the energy dependence is within 1.1%. No notable differences were found between the experimental and MC-simulated responses, indicating negligible change in intrinsic energy dependence of the EBT3 film for 6 MV photon beam and 6 MeV-16 MeV electron beams. Based on the dosimetric characteristics of the EBT3 film, the read-out procedure established

  5. Dosimetry of very high energy electrons (VHEE) for radiotherapy applications: using radiochromic film measurements and Monte Carlo simulations.

    PubMed

    Subiel, A; Moskvin, V; Welsh, G H; Cipiccia, S; Reboredo, D; Evans, P; Partridge, M; DesRosiers, C; Anania, M P; Cianchi, A; Mostacci, A; Chiadroni, E; Di Giovenale, D; Villa, F; Pompili, R; Ferrario, M; Belleveglia, M; Di Pirro, G; Gatti, G; Vaccarezza, C; Seitz, B; Isaac, R C; Brunetti, E; Wiggins, S M; Ersfeld, B; Islam, M R; Mendonca, M S; Sorensen, A; Boyd, M; Jaroszynski, D A

    2014-10-07

    Very high energy electrons (VHEE) in the range from 100-250 MeV have the potential of becoming an alternative modality in radiotherapy because of their improved dosimetry properties compared with MV photons from contemporary medical linear accelerators. Due to the need for accurate dosimetry of small field size VHEE beams we have performed dose measurements using EBT2 Gafchromic® film. Calibration of the film has been carried out for beams of two different energy ranges: 20 MeV and 165 MeV from conventional radio frequency linear accelerators. In addition, EBT2 film has been used for dose measurements with 135 MeV electron beams produced by a laser-plasma wakefield accelerator. The dose response measurements and percentage depth dose profiles have been compared with calculations carried out using the general-purpose FLUKA Monte Carlo (MC) radiation transport code. The impact of induced radioactivity on film response for VHEEs has been evaluated using the MC simulations. A neutron yield of the order of 10(-5) neutrons cm(-2) per incident electron has been estimated and induced activity due to radionuclide production is found to have a negligible effect on total dose deposition and film response. Neutron and proton contribution to the equivalent doses are negligible for VHEE. The study demonstrates that EBT2 Gafchromic film is a reliable dosimeter that can be used for dosimetry of VHEE. The results indicate an energy-independent response of the dosimeter for 20 MeV and 165 MeV electron beams and has been found to be suitable for dosimetry of VHEE.

  6. The dose rate dependence of synthetic diamond detectors in the relative dosimetry of high-energy electron therapy beams

    NASA Astrophysics Data System (ADS)

    Ade, N.; Nam, T. L.; Derry, T. E.; Mhlanga, S. H.

    2014-05-01

    Evaluation of the linear response of a radiation detector with absorbed dose rate should be of paramount importance in clinical dosimetry. As modelled by Fowler, electrical conductivity, σ, of a solid-state detector and absorbed dose rate, Dr, are related by σ~DrΔ where Δ is the linearity index. The detector is thus independent of dose rate if Δ is unity. This contribution investigates and evaluates the dependence of Δ of synthetic diamond detectors of various types on therapy electron energy and its influence in relative electron dosimetry with the aim of selecting a suitable crystal. The study was conducted initially on one HPHT and eight CVD synthesised diamonds of optical grade (OG) and detector grade (DG) qualities using 6-14 MeV electron therapy beams. For quality control, the diamond specimens were characterised by Raman spectroscopy and electron spin resonance (ESR). Values of Δ ranging between 0.79 and 1.03 were obtained for all the nine diamond detectors at 1000 V/cm for 7 and 12 MeV electron beams. Whereas the Δ values of the HPHT diamond were found not to vary with the electron energies, those of three CVD samples of a given class varied with the electron energies within 2%. In addition, a very strong variation of about 9% was observed for two OG crystals of another class. The Δ values were found to decrease with increasing dose rate and there was a tendency for the Δ values to change with defect levels present within the crystals. Due to the independence of the HPHT diamond's Δ values on electron energy and its better stability of response to radiation, a small-size HPHT crystal was then evaluated of its potential applications in small radiation fields. Relative dose distributions measured with the diamond probe on exposure to 6, 12 and 14 MeV electron beams between 1×1 cm2 and 10×10 cm2 fields were compared with those obtained with reference ion chambers and a Dosimetry Diode E. The results showed that with careful selection of a suitable

  7. Applicability of Topaz Composites to Electron Dosimetry

    NASA Astrophysics Data System (ADS)

    Bomfim, K. S.; Souza, D. N.

    2010-11-01

    Thermoluminescent dosimetric topaz properties have been investigated and the results have shown that this mineral presents characteristics of a good dosimeter mainly in doses evaluation in radiotherapy with photons beams in radiotherapy. Typical applications of thermoluminescent dosimeters in radiotherapy are: in vivo dosimetry on patients (either as a routine quality assurance procedure or for dose monitoring in special cases); verification of treatment techniques; dosimetry audits; and comparisons among hospitals. The mean aim of this work was to evaluate the efficiency of topaz-Teflon pellets as thermoluminescent dosimeters in high-energy electron beams used to radiotherapy. Topaz-Teflon pellets were used as TLD.

  8. Graded-gap AlxGa1-xAs detector for high-energy electron beam dosimetry

    NASA Astrophysics Data System (ADS)

    Silenas, Aldis; Miller, Albert; Pozela, Juras; Pozela, Karolis; Dapkus, Leonas; Juciene, Vida

    2011-05-01

    A new graded-gap p-Al0.2Ga0.8As-p-AlxGa1-xAs-n-GaAs detector structure with internal optical response was developed and investigated as a detector for high-energy electron beam dosimetry. An additional p-Al0.2Ga0.8As top layer was grown on the narrow-gap side of the structure. This thin (2 μm) top layer significantly reduces nonradiative surface recombination and increases detector sensitivity for high-energy electron beams by about 10-13%. The increase in doping level of the graded-gap AlxGa1-xAs layer from p=3×1017 to 1.9×1018 cm-3 increases detector sensitivity by about 2.3 times. The detector was encapsulated into a plastic body and fitted for dosimetric measurements in a water phantom. Linear response on absorbed dose and dose rate was obtained for beams with electron energies of 6, 12 and 20 MeV. A good agreement of relative depth dose distribution measured by the AlxGa1-xAs detector and ionization chamber is obtained for the 6 MeV energy electron beam, but a discernible discrepancy is observed for the higher electron energies.

  9. Depth dependence of electron backscatter: An energy spectral and dosimetry study using Monte Carlo simulation

    SciTech Connect

    Chow, James C. L.; Owrangi, Amir M.

    2009-02-15

    This study investigated the depth dependence of electron backscatter from a layer of lead (Pb) for clinical electron beams. The change in the electron backscatter with variation in the water depth above the Pb was determined. Electron energy spectra and relative depth doses as a function of depth in water over the Pb layer were calculated using a Monte Carlo simulation and studied. Phase-space files for 4 and 9 MeV electron beams (10x10 cm{sup 2} applicator and cutout) based on the Varian 21 EX linear accelerator were generated using the EGSnrc-based BEAMNRC code. 3 mm of Pb, at depths of 0.5 and 1 cm in water, was irradiated with electrons. The source-to-surface distance is equal to 100 cm. Electron energy spectra and relative depth doses with and without the presence of the Pb layer at different depths in water were determined using the BEAMNRC code. For the 4 MeV electron energy spectra at a depth of 0.5 cm in water, electron backscatter was found to originate at the Pb-water interface and extend to 0.5 cm above the Pb insert. However, at a depth of 1 cm in water, electron backscatter almost disappeared at 0.5 and 1 cm above th ePb insert. This is due to the increased attenuation of the incident 4 MeV electron beam in a thicker layer of water as well as increased attenuation of the electron backscatter above the Pb. This resulted in a 23% decrease in relative dose at a measurement point of 0.5 cm depth, when the depth of the Pb insert was changed from 1 to 0.5 cm. For the electron energy spectra of the 9 MeV beams with a 0.5 cm depth of water, only a small amount of electron backscatter was observed. However, more electron backscatter was found when the water depth was increased to 1 cm. This is because the electron beam energy was decreased more due to the increase in attenuation from the increased depth of water compared to 0.5 cm. Since the electron energy spectrum and relative depth dose above the Pb layer vary with depth of water on top of the Pb, the

  10. Electron dosimetry for 10-MEV linac

    NASA Astrophysics Data System (ADS)

    Mehta, K. K.; Chu, R.; VanDyk, G.

    Recent developments in electron accelerator technology may allow the role of high-energy machines to expand. Implementation of appropriate dosimetry and quality comtrol methods for non-homogeneous materials is an important part of the expansion of this technology. To implement such methods and provide electron dosimetry for an applications development program, we recently conducted several dosimetry experiments. Our 10-MeV prototype electron accelerator as well as the accelerator at the National Research Council of Canada were used for these experiments. Polystyrene and graphite phantoms were constructed to measure the dose profile with depth. This yielded the extrapolated range and hence the most probable energy of the electrons in the beam. A polymethyl methacrylate (PMMA) sandwich-type range finder was also designed and used to directly measure the range and therefore the electron energy. Some of the range-finder results indicated that the charge buildup in the non- conducting PMMA affected the dose distribution. The measured energy values agreed very well with the beam energy values calculated from the analyzing magnet current of the accelerator. Also, responses of a graphite calorimeter as well as of various dosimeters compared fairly well in an electron field. The interface effects near the surface of homogeneous products were studied by analyzing the transmitted dose measured by the red acrylic continuous dosimeter placed under the products. The same technique was also used to examine the nature of inhomogeneity of various food products. We found this dosimeter extremely convenient and useful for measuring dose distribution in a plane. A Monte Carlo computer code was used to compute the depth-dose distributions in various materials and to compute the dose distribution near the interface of acrylic and air. These results were then compared against the measured distributions.

  11. Experimental verification of dosimetry predictions of bremsstrahlung attenuation as a function of material and electron energy

    SciTech Connect

    Sanford, T.W.L.; Halbleib, J.A.; Beutler, D.E. ); Knott, D.P. )

    1993-12-01

    Dose attenuation with depth in an absorber of on-axis bremsstrahlung generated from an electron target is measured and shown to agree within [+-]9% with Monte Carlo predictions as a function of absorber material (Al,Fe,Pb) and incident electron beam energy (5.5-25.1 MeV). For this on-axis bremsstrahlung, 1 to 5 g/cm[sup 2] of upstream and 0.2 to 1 g/cm[sup 2] of downstream Al buffer is sufficient to provide electron equilibration for CaF[sub 2]:Mn thermoluminescent dosimeters (TI-Ds) over the measured energy range of 5.5 to 25.1 MeV, respectively. Once effective'' equilibration has been established, an expression of the form DA/Q = C[sub 1]V[sup C[sub 2

  12. Experimental verification of dosimetry predictions of bremsstrahlung attenuation as a function of material and electron energy

    SciTech Connect

    Sanford, T.W.L.; Halbleib, J.A.; Beutler, D.E. ); Knott, D.P. )

    1993-01-01

    Dose attenuation with depth in an absorber of on-axis bremsstrahlung generated from an electron target is measured and shown to agree within [plus minus]9% with Monte Carlo predictions as a function of absorber material (Al, Fe, Pb) and incident electron-beam energy (5.5--25.1 MeV). For this on-axis bremsstrahlung, 1 to 5 g/cm[sup 2] of upstream and 0.2 to 1 g/cm[sup 2] of downs Al buffer is sufficient to provide electron equilibration for CaF[sub 2]:Mn thermoluminescent dosimeter (TLDs) over the measured energy range of 5.5 to 25.1 MeV, respectively. Once effective'' equilibration has been established, an expression of the form DA/Q = C[sub 1]V[sup c[sub 2

  13. Experimental verification of dosimetry predictions of bremsstrahlung attenuation as a function of material and electron energy

    SciTech Connect

    Sanford, T.W.L.; Halbleib, J.A.; Beutler, D.E.; Knott, D.P.

    1993-05-01

    Dose attenuation with depth in an absorber of on-axis bremsstrahlung generated from an electron target is measured and shown to agree within {plus_minus}9% with Monte Carlo predictions as a function of absorber material (Al, Fe, Pb) and incident electron-beam energy (5.5--25.1 MeV). For this on-axis bremsstrahlung, 1 to 5 g/cm{sup 2} of upstream and 0.2 to 1 g/cm{sup 2} of downs Al buffer is sufficient to provide electron equilibration for CaF{sub 2}:Mn thermoluminescent dosimeter (TLDs) over the measured energy range of 5.5 to 25.1 MeV, respectively. Once ``effective`` equilibration has been established, an expression of the form DA/Q = C{sub 1}V{sup c{sub 2}}e{sup {minus}C}{sub 3}V{sup c}{sub 4}{ell}, can be used to predict the dose-area (DA) product per absorbed beam charge (Q) at a given incident beam energy (V) in TLDs as a function of depth ({ell}) in absorbers, within a fixed solid angle centered about the beam axis. This expression is quantified for the measurements presented here.

  14. Small Field: dosimetry in electron disequilibrium region

    NASA Astrophysics Data System (ADS)

    Zhu, Timothy C.

    2010-11-01

    Small fields are more commonly used for radiation therapy because of the development of IMRT, stereotactic radiosurgery, and other special equipments such as Cyberknife and Tomotherapy. The dosimetry in the sub-centimeter field can result in substantial uncertainties because of the presence of electron disequilibrium due to the large dose gradients in the field. It is further complicated by the introduction of various radiation detectors, which usually perturb the conditions of disequilibrium. Hence additional corrections are required to maintain the dosimetric accuracy previously achieved for standard radiation dosimetry. A review of small field dosimetry provides some insights into the methods to characterize the detector convolution kernel and other methods to characterize detector perturbation effect.

  15. Dosimetry considerations for the high-energy photon/electron environment of HERMES III; Implications for experiments and modeling

    SciTech Connect

    Beutler, D.E.; Halbleib, J.A.; Sanford, T.W.L.; Fehl, D.L. ); Knott, D.P. )

    1991-12-01

    In this paper measurements of energy deposition as a function of equilibrator thickness and position in the HERMES III radiation field are compared to ITS code predictions. These measurements demonstrate the combined photon/electron nature of the radiation field and the importance of the electron field in both measurements and calculations.

  16. Practical neutron dosimetry at high energies

    SciTech Connect

    McCaslin, J.B.; Thomas, R.H.

    1980-10-01

    Dosimetry at high energy particle accelerators is discussed with emphasis on physical measurements which define the radiation environment and provide an immutable basis for the derivation of any quantities subsequently required for risk evaluation. Results of inter-laboratory dosimetric comparisons are reviewed and it is concluded that a well-supported systematic program is needed which would make possible detailed evaluations and inter-comparisons of instruments and techniques in well characterized high energy radiation fields. High-energy dosimetry is so coupled with radiation transport that it is clear their study should proceed concurrently.

  17. The IPEM code of practice for electron dosimetry for radiotherapy beams of initial energy from 4 to 25 MeV based on an absorbed dose to water calibration

    NASA Astrophysics Data System (ADS)

    Thwaites (Chair), IPEM Working Party: D. I.; Du Sautoy, A. R.; Jordan, T.; McEwen, M. R.; Nisbet, A.; Nahum, A. E.; Pitchford, W. G.

    2003-09-01

    This report contains the recommendations of the Electron Dosimetry Working Party of the UK Institute of Physics and Engineering in Medicine (IPEM). The recommendations consist of a code of practice for electron dosimetry for radiotherapy beams of initial energy from 4 to 25 MeV. The code is based on the absorbed dose to water calibration service for electron beams provided by the UK standards laboratory, the National Physical Laboratory (NPL). This supplies direct ND,w calibration factors, traceable to a calorimetric primary standard, at specified reference depths over a range of electron energies up to approximately 20 MeV. Electron beam quality is specified in terms of R50,D, the depth in water along the beam central axis at which the dose is 50% of the maximum. The reference depth for any given beam at the NPL for chamber calibration and also for measurements for calibration of clinical beams is 0.6R50,D - 0.1 cm in water. Designated chambers are graphite-walled Farmer-type cylindrical chambers and the NACP- and Roos-type parallel-plate chambers. The practical code provides methods to determine the absorbed dose to water under reference conditions and also guidance on methods to transfer this dose to non-reference points and to other irradiation conditions. It also gives procedures and data for extending up to higher energies above the range where direct calibration factors are currently available. The practical procedures are supplemented by comprehensive appendices giving discussion of the background to the formalism and the sources and values of any data required. The electron dosimetry code improves consistency with the similar UK approach to megavoltage photon dosimetry, in use since 1990. It provides reduced uncertainties, approaching 1% standard uncertainty in optimal conditions, and a simpler formalism than previous air kerma calibration based recommendations for electron dosimetry.

  18. SU-D-19A-01: Can Farmer-Type Ionization Chambers Be Used to Improve the Accuracy of Low-Energy Electron Beam Reference Dosimetry?

    SciTech Connect

    Muir, B R; McEwen, M R

    2014-06-01

    Purpose: To investigate the use of cylindrical Farmer-type ionization chambers to improve the accuracy of low-energy electron beam calibration. Historically, these chamber types have not been used in beams with incident energies less than 10 MeV (R{sub 5} {sub 0} < 4.3 cm) because early investigations suggested large (up to 5 %) fluence perturbation factors in these beams, implying that a significant component of uncertainty would be introduced if used for calibration. More recently, the assumptions used to determine perturbation corrections for cylindrical chambers have been questioned. Methods: Measurements are made with cylindrical chambers in Elekta Precise 4, 8 and 18 MeV electron beams. Several chamber types are investigated that employ graphite walls and aluminum electrodes with very similar specifications (NE2571, NE2505/3, FC65-G). Depth-ionization scans are measured in water in the 8 and 18 MeV beams. To reduce uncertainty from chamber positioning, measurements in the 4 MeV beam are made at the reference depth in Virtual Water™. The variability of perturbation factors is quantified by comparing normalized response of various chambers. Results: Normalized ion chamber response varies by less than 0.7 % for similar chambers at average electron energies corresponding to that at the reference depth from 4 or 6 MeV beams. Similarly, normalized measurements made with similar chambers at the reference depth in the 4 MeV beam vary by less than 0.4 %. Absorbed dose calibration coefficients derived from these results are stable within 0.1 % on average over a period of 6 years. Conclusion: These results indicate that the uncertainty associated with differences in fluence perturbations for cylindrical chambers with similar specifications is only 0.2 %. The excellent long-term stability of these chambers in both photon and electron beams suggests that these chambers might offer the best performance for all reference dosimetry applications.

  19. Clinical applications of alanine/electron spin resonance dosimetry.

    PubMed

    Baffa, Oswaldo; Kinoshita, Angela

    2014-05-01

    This paper discusses the clinical applications of electron spin resonance (ESR) dosimetry focusing on the ESR/alanine system. A review of few past studies in this area is presented offering a critical overview of the challenges and opportunities for extending this system into clinical applications. Alanine/ESR dosimetry fulfills many of the required properties for several clinical applications such as water-equivalent composition, independence of the sensitivity for the energy range used in therapy and high precision. Improvements in sensitivity and the development of minidosimeters coupled with the use of a spectrometer of higher microwave frequency expanded the possibilities for clinical applications to the new modalities of radiotherapy (intensity-modulated radiation therapy and radiosurgery) and to the detection of low doses such as those present in some radiological image procedures.

  20. Effects of water on fingernail electron paramagnetic resonance dosimetry

    PubMed Central

    Zhang, Tengda; Zhao, Zhixin; Zhang, Haiying; Zhai, Hezheng; Ruan, Shuzhou; Jiao, Ling; Zhang, Wenyi

    2016-01-01

    Electron paramagnetic resonance (EPR) is a promising biodosimetric method, and fingernails are sensitive biomaterials to ionizing radiation. Therefore, kinetic energy released per unit mass (kerma) can be estimated by measuring the level of free radicals within fingernails, using EPR. However, to date this dosimetry has been deficient and insufficiently accurate. In the sampling processes and measurements, water plays a significant role. This paper discusses many effects of water on fingernail EPR dosimetry, including disturbance to EPR measurements and two different effects on the production of free radicals. Water that is unable to contact free radicals can promote the production of free radicals due to indirect ionizing effects. Therefore, varying water content within fingernails can lead to varying growth rates in the free radical concentration after irradiation—these two variables have a linear relationship, with a slope of 1.8143. Thus, EPR dosimetry needs to be adjusted according to the water content of the fingernails of an individual. When the free radicals are exposed to water, the eliminating effect will appear. Therefore, soaking fingernail pieces in water before irradiation, as many researchers have previously done, can cause estimation errors. In addition, nails need to be dehydrated before making accurately quantitative EPR measurements. PMID:27342838

  1. Energy response improvement for photon dosimetry using pulse analysis

    NASA Astrophysics Data System (ADS)

    Zaki, Dizaji H.

    2016-02-01

    During the last few years, active personal dosimeters have been developed and have replaced passive personal dosimeters in some external monitoring systems, frequently using silicon diode detectors. Incident photons interact with the constituents of the diode detector and produce electrons. These photon-induced electrons deposit energy in the detector's sensitive region and contribute to the response of diode detectors. To achieve an appropriate photon dosimetry response, the detectors are usually covered by a metallic layer with an optimum thickness. The metallic cover acts as an energy compensating shield. In this paper, a software process is performed for energy compensation. Selective data sampling based on pulse height is used to determine the photon dose equivalent. This method is applied to improve the energy response in photon dosimetry. The detector design is optimized for the response function and determination of the photon dose equivalent. Photon personal dose equivalent is determined in the energy range of 0.3-6 MeV. The error values of the calculated data for this wide energy range and measured data for 133Ba, 137Cs, 60Co and 241Am-Be sources respectively are up to 20% and 15%. Fairly good agreement is seen between simulation and dose values obtained from our process and specifications from several photon sources.

  2. Dosimetry considerations for the high-energy photon/electron environment of HERMES III: Implications for experiments and modeling

    SciTech Connect

    Beutler, D.E.; Halbleib, J.A.; Sanford, T.W.L. ); Knott, D.P. )

    1990-01-01

    Measurements of energy deposition as function of equilibrator thickness and position in the HERMES III radiation field are compared to ITS code predictions. The onset of dose-rate effects in CaF{sub 2} TLDs have also been observed at 10{sup 10} Gy/s levels. 10 refs., 3 figs.

  3. Cellular dosimetry and microdosimetry for internal electron emitters.

    PubMed

    Chao, T C; Huang, Y S; Hsu, F Y; Hsiao, Y; Lee, C C; Tung, C J

    2011-02-01

    Radiobiological descriptions of cellular dosimetry and microdosimetry require both radiation dose and radiation quality. The lineal energy, defined as a ratio of the energy deposition by a particle in the biological target and the mean chord length of this target, is generally adopted to characterise the radiation quality. Most microdosimetry applications assume that the cell nucleus is the target region. Therefore, the lineal energy is obtained for the source (S) to target (T) geometry, T ← S, where S = cell surface, cytoplasm, cell nucleus and T = cell nucleus. The definition of lineal energy is based on the approximation that the particle mean pathlength is equal to target mean chord length. This approximation is valid for crossers of external irradiations. In the case of starters, insiders and stoppers of internal sources, particle pathlengths are always shorter than target chord lengths. Thus, the lineal energy does not reflect the specific energy deposition along particle path. In the present work, the specific energy deposition in a target is calculated using three distance parameters, i.e. target mean chord length, particle mean pathlength in the target and particle individual pathlength in the target. Monte Carlo calculations are performed for electrons of various energies and cells of different sizes. Results are analysed and discussed.

  4. The use of a portable electronic device in accident dosimetry.

    PubMed

    Beerten, Koen; Vanhavere, Filip

    2008-01-01

    The use of a portable electronic device in accident dosimetry has been investigated. The thermoluminescence properties of a surface-mount alumina-rich ceramic resonator from a USB flash drive were investigated. The following characteristics were verified: the absence of a zero-dose signal, gamma dose response, dose recycling behaviour, fading and optical bleaching. Finally, this component has been successfully used to determine a simulated accident dose (1 d following the irradiation event). It is concluded that it should be possible to perform rapid and reliable accident dose assessments with such components using conventional thermoluminescence dosimetry equipment.

  5. Monte Carlo calculations of correction factors for plane-parallel ionization chambers in clinical electron dosimetry

    SciTech Connect

    Araki, Fujio

    2008-09-15

    Recent standard dosimetry protocols recommend that plane-parallel ionization chambers be used in the measurements of depth-dose distributions or the calibration of low-energy electron beams with beam quality R{sub 50}<4 g/cm{sup 2}. In electron dosimetry protocols with the plane-parallel chambers, the wall correction factor, P{sub wall}, in water is assumed to be unity and the replacement correction factor, P{sub repl}, is taken to be unity for well-guarded plane-parallel chambers, at all measurement depths. This study calculated P{sub wall} and P{sub repl} for NACP-02, Markus, and Roos plane-parallel chambers in clinical electron dosimetry using the EGSnrc Monte Carlo code system. The P{sub wall} values for the plane-parallel chambers increased rapidly as a function of depth in water, especially at lower energy. The value around R{sub 50} for NACP-02 was about 10% greater than unity at 4 MeV. The effect was smaller for higher electron energies. Similarly, P{sub repl} values with depth increased drastically at the region with the steep dose gradient for lower energy. For Markus P{sub repl} departed more than 10% from unity close to R{sub 50} due to the narrow guard ring width. P{sub repl} for NACP-02 and Roos was close to unity in the plateau region of depth-dose curves that includes a reference depth, d{sub ref}. It was also found that the ratio of the dose to water and the dose to the sensitive volume in the air cavity for the plane-parallel chambers, D{sub w}/[D{sub air}]{sub pp}, at d{sub ref} differs significantly from that assumed by electron dosimetry protocols.

  6. SU-D-213-06: Dosimetry of Modulated Electron Radiation Therapy Using Fricke Gel Dosimeter

    SciTech Connect

    Gawad, M Abdel; Elgohary, M; Hassaan, M; Emam, M; Desouky, O; Eldib, A; Ma, C

    2015-06-15

    Purpose: Modulated electron radiation therapy (MERT) has been proposed as an effective modality for treatment of superficial targets. MERT utilizes multiple beams of different energies which are intensity modulated to deliver optimized dose distribution. Energy independent dosimeters are thus needed for quantitative evaluations of MERT dose distributions and measurements of absolute doses delivered to patients. Thus in the current work we study the feasibility of Fricke gel dosimeters in MERT dosimetry. Methods: Batches of radiation sensitive Fricke gel is fabricated and poured into polymethyl methacrylate cuvettes. The samples were irradiated in solid water phantom and a thick layer of bolus was used as a buildup. A spectrophotometer system was used for measuring the color changes (the absorbance) before and after irradiation and then we calculate net absorbance. We constructed calibration curves to relate the measured absorbance in terms of absorbed dose for all available electron energies. Dosimetric measurements were performed for mixed electron beam delivery and we also performed measurement for segmented field delivery with the dosimeter placed at the junction of two adjacent electron beams of different energies. Dose measured by our gel dosimetry is compared to that calculation from our precise treatment planning system. We also initiated a Monte Carlo study to evaluate the water equivalence of our dosimeters. MCBEAM and MCSIM codes were used for treatment head simulation and phantom dose calculation. PDDs and profiles were calculated for electron beams incident on a phantom designed with 1cm slab of Fricke gel. Results: The calibration curves showed no observed energy dependence with all studied electron beam energies. Good agreement was obtained between dose calculated and that obtained by gel dosimetry. Monte Carlo results illustrated the tissue equivalency of our Gel dosimeters. Conclusion: Fricke Gel dosimeters represent a good option for the dosimetric

  7. Application of the ICRP/ICRU reference computational phantoms to internal dosimetry: calculation of specific absorbed fractions of energy for photons and electrons.

    PubMed

    Hadid, L; Desbrée, A; Schlattl, H; Franck, D; Blanchardon, E; Zankl, M

    2010-07-07

    The emission of radiation from a contaminated body region is connected with the dose received by radiosensitive tissue through the specific absorbed fractions (SAFs) of emitted energy, which is therefore an essential quantity for internal dose assessment. A set of SAFs were calculated using the new adult reference computational phantoms, released by the International Commission on Radiological Protection (ICRP) together with the International Commission on Radiation Units and Measurements (ICRU). Part of these results has been recently published in ICRP Publication 110 (2009 Adult reference computational phantoms (Oxford: Elsevier)). In this paper, we mainly discuss the results and also present them in numeric form. The emission of monoenergetic photons and electrons with energies ranging from 10 keV to 10 MeV was simulated for three source organs: lungs, thyroid and liver. SAFs were calculated for four target regions in the body: lungs, colon wall, breasts and stomach wall. For quality assurance purposes, the simulations were performed simultaneously at the Helmholtz Zentrum München (HMGU, Germany) and at the Institute for Radiological Protection and Nuclear Safety (IRSN, France), using the Monte Carlo transport codes EGSnrc and MCNPX, respectively. The comparison of results shows overall agreement for photons and high-energy electrons with differences lower than 8%. Nevertheless, significant differences were found for electrons at lower energy for distant source/target organ pairs. Finally, the results for photons were compared to the SAF values derived using mathematical phantoms. Significant variations that can amount to 200% were found. The main reason for these differences is the change of geometry in the more realistic voxel body models. For electrons, no SAFs have been computed with the mathematical phantoms; instead, approximate formulae have been used by both the Medical Internal Radiation Dose committee (MIRD) and the ICRP due to the limitations imposed

  8. Application of the ICRP/ICRU reference computational phantoms to internal dosimetry: calculation of specific absorbed fractions of energy for photons and electrons

    NASA Astrophysics Data System (ADS)

    Hadid, L.; Desbrée, A.; Schlattl, H.; Franck, D.; Blanchardon, E.; Zankl, M.

    2010-07-01

    The emission of radiation from a contaminated body region is connected with the dose received by radiosensitive tissue through the specific absorbed fractions (SAFs) of emitted energy, which is therefore an essential quantity for internal dose assessment. A set of SAFs were calculated using the new adult reference computational phantoms, released by the International Commission on Radiological Protection (ICRP) together with the International Commission on Radiation Units and Measurements (ICRU). Part of these results has been recently published in ICRP Publication 110 (2009 Adult reference computational phantoms (Oxford: Elsevier)). In this paper, we mainly discuss the results and also present them in numeric form. The emission of monoenergetic photons and electrons with energies ranging from 10 keV to 10 MeV was simulated for three source organs: lungs, thyroid and liver. SAFs were calculated for four target regions in the body: lungs, colon wall, breasts and stomach wall. For quality assurance purposes, the simulations were performed simultaneously at the Helmholtz Zentrum München (HMGU, Germany) and at the Institute for Radiological Protection and Nuclear Safety (IRSN, France), using the Monte Carlo transport codes EGSnrc and MCNPX, respectively. The comparison of results shows overall agreement for photons and high-energy electrons with differences lower than 8%. Nevertheless, significant differences were found for electrons at lower energy for distant source/target organ pairs. Finally, the results for photons were compared to the SAF values derived using mathematical phantoms. Significant variations that can amount to 200% were found. The main reason for these differences is the change of geometry in the more realistic voxel body models. For electrons, no SAFs have been computed with the mathematical phantoms; instead, approximate formulae have been used by both the Medical Internal Radiation Dose committee (MIRD) and the ICRP due to the limitations imposed

  9. Thin film tritium dosimetry

    DOEpatents

    Moran, Paul R.

    1976-01-01

    The present invention provides a method for tritium dosimetry. A dosimeter comprising a thin film of a material having relatively sensitive RITAC-RITAP dosimetry properties is exposed to radiation from tritium, and after the dosimeter has been removed from the source of the radiation, the low energy electron dose deposited in the thin film is determined by radiation-induced, thermally-activated polarization dosimetry techniques.

  10. Two-parametric model of electron beam in computational dosimetry for radiation processing

    NASA Astrophysics Data System (ADS)

    Lazurik, V. M.; Lazurik, V. T.; Popov, G.; Zimek, Z.

    2016-07-01

    Computer simulation of irradiation process of various materials with electron beam (EB) can be applied to correct and control the performances of radiation processing installations. Electron beam energy measurements methods are described in the international standards. The obtained results of measurements can be extended by implementation computational dosimetry. Authors have developed the computational method for determination of EB energy on the base of two-parametric fitting of semi-empirical model for the depth dose distribution initiated by mono-energetic electron beam. The analysis of number experiments show that described method can effectively consider random displacements arising from the use of aluminum wedge with a continuous strip of dosimetric film and minimize the magnitude uncertainty value of the electron energy evaluation, calculated from the experimental data. Two-parametric fitting method is proposed for determination of the electron beam model parameters. These model parameters are as follow: E0 - energy mono-energetic and mono-directional electron source, X0 - the thickness of the aluminum layer, located in front of irradiated object. That allows obtain baseline data related to the characteristic of the electron beam, which can be later on applied for computer modeling of the irradiation process. Model parameters which are defined in the international standards (like Ep- the most probably energy and Rp - practical range) can be linked with characteristics of two-parametric model (E0, X0), which allows to simulate the electron irradiation process. The obtained data from semi-empirical model were checked together with the set of experimental results. The proposed two-parametric model for electron beam energy evaluation and estimation of accuracy for computational dosimetry methods on the base of developed model are discussed.

  11. Radiological characterization and water equivalency of genipin gel for x-ray and electron beam dosimetry.

    PubMed

    Gorjiara, Tina; Hill, Robin; Kuncic, Zdenka; Bosi, Stephen; Davies, Justin B; Baldock, Clive

    2011-08-07

    The genipin radiochromic gel offers enormous potential as a three-dimensional dosimeter in advanced radiotherapy techniques. We have used several methods (including Monte Carlo simulation), to investigate the water equivalency of genipin gel by characterizing its radiological properties, including mass and electron densities, photon interaction cross sections, mass energy absorption coefficient, effective atomic number, collisional, radiative and total mass stopping powers and electron mass scattering power. Depth doses were also calculated for clinical kilovoltage and megavoltage x-ray beams as well as megavoltage electron beams. The mass density, electron density and effective atomic number of genipin were found to differ from water by less than 2%. For energies below 150 keV, photoelectric absorption cross sections are more than 3% higher than water due to the strong dependence on atomic number. Compton scattering and pair production interaction cross sections for genipin gel differ from water by less than 1%. The mass energy absorption coefficient is approximately 3% higher than water for energies <60 keV due to the dominance of photoelectric absorption in this energy range. The electron mass stopping power and mass scattering power differ from water by approximately 0.3%. X-ray depth dose curves for genipin gel agree to within 1% with those for water. Our results demonstrate that genipin gel can be considered water equivalent for kilovoltage and megavoltage x-ray beam dosimetry. For megavoltage electron beam dosimetry, however, our results suggest that a correction factor may be needed to convert measured dose in genipin gel to that of water, since differences in some radiological properties of up to 3% compared to water are observed. Our results indicate that genipin gel exhibits greater water equivalency than polymer gels and PRESAGE formulations.

  12. Dosimetry quality assurance in Martin Marietta Energy Systems' centralized external dosimetry system

    SciTech Connect

    Souleyrette, M.L.

    1992-10-23

    External dosimetry needs at the four Martin Marietta Energy Systems facilities are served by Energy Systems Centralized External Dosimetry System (CEDS). The CEDS is a four plant program with four dosimeter distribution centers and two dosimeter processing centers. Each plant has its own distribution center, while processing centers are located at ORNL and the Y-12 Plant. The program has been granted accreditation by the Department of Energy Laboratory Accreditation Program (DOELAP). The CEDS is a TLD based system which is responsible for whole-body beta-gamma, neutron, and extremity monitoring. Beta-gamma monitoring is performed using the Harshaw/Solon Technologies model 8805 dosimeter. Effective October 1, 1992 the standard silver mylar has been replaced with an Avery mylar foil blackened on the underside with ink. This was done in an effort to reduce the number of light induced suspect readings. At this time we have little operational experience with the new blackened mylars-The CEDS neutron dosimeter is the Harshaw model 8806B. This card/holder configuration contains two TLD-600/TLD-700 chip pairs; one pair is located beneath a cadmium filter and one pair is located beneath a plastic filter. In routine personnel monitoring the CEDS neutron dosimeter is always paired with a CEDS beta-gamma dosimeter.The CEDS extremity dosimeter is composed of a Harshaw thin TLD-700 dosiclip placed inside a Teledyne RB-4 finger sachet. The finger sachet provides approximately 7 mg/cm[sup 2] filtration over the chip. A teflon ring surrounds the dosiclip to help prevent tearing of the vinyl sachet.

  13. Boundary Electron and Beta Dosimetry-Quantification of the Effects of Dissimilar Media on Absorbed Dose

    NASA Astrophysics Data System (ADS)

    Nunes, Josane C.

    1991-02-01

    This work quantifies the changes effected in electron absorbed dose to a soft-tissue equivalent medium when part of this medium is replaced by a material that is not soft -tissue equivalent. That is, heterogeneous dosimetry is addressed. Radionuclides which emit beta particles are the electron sources of primary interest. They are used in brachytherapy and in nuclear medicine: for example, beta -ray applicators made with strontium-90 are employed in certain ophthalmic treatments and iodine-131 is used to test thyroid function. More recent medical procedures under development and which involve beta radionuclides include radioimmunotherapy and radiation synovectomy; the first is a cancer modality and the second deals with the treatment of rheumatoid arthritis. In addition, the possibility of skin surface contamination exists whenever there is handling of radioactive material. Determination of absorbed doses in the examples of the preceding paragraph requires considering boundaries of interfaces. Whilst the Monte Carlo method can be applied to boundary calculations, for routine work such as in clinical situations, or in other circumstances where doses need to be determined quickly, analytical dosimetry would be invaluable. Unfortunately, few analytical methods for boundary beta dosimetry exist. Furthermore, the accuracy of results from both Monte Carlo and analytical methods has to be assessed. Although restricted to one radionuclide, phosphorus -32, the experimental data obtained in this work serve several purposes, one of which is to provide standards against which calculated results can be tested. The experimental data also contribute to the relatively sparse set of published boundary dosimetry data. At the same time, they may be useful in developing analytical boundary dosimetry methodology. The first application of the experimental data is demonstrated. Results from two Monte Carlo codes and two analytical methods, which were developed elsewhere, are compared

  14. Ion beam energy spectrum calculation via dosimetry data deconvolution.

    SciTech Connect

    Harper-Slaboszewicz, Victor Jozef; Sharp, Andrew Clinton

    2010-10-01

    The energy spectrum of a H{sup +} beam generated within the HERMES III accelerator is calculated from dosimetry data to refine future experiments. Multiple layers of radiochromic film are exposed to the beam. A graphic user interface was written in MATLAB to align the film images and calculate the beam's dose depth profile. Singular value regularization is used to stabilize the unfolding and provide the H{sup +} beam's energy spectrum. The beam was found to have major contributions from 1 MeV and 8.5 MeV protons. The HERMES III accelerator is typically used as a pulsed photon source to experimentally obtain photon impulse response of systems due to high energy photons. A series of experiments were performed to explore the use of Hermes III to generate an intense pulsed proton beam. Knowing the beam energy spectrum allows for greater precision in experiment predictions and beam model verification.

  15. Recommendations for clinical electron beam dosimetry: supplement to the recommendations of Task Group 25.

    PubMed

    Gerbi, Bruce J; Antolak, John A; Deibel, F Christopher; Followill, David S; Herman, Michael G; Higgins, Patrick D; Huq, M Saiful; Mihailidis, Dimitris N; Yorke, Ellen D; Hogstrom, Kenneth R; Khan, Faiz M

    2009-07-01

    The goal of Task Group 25 (TG-25) of the Radiation Therapy Committee of the American Association of.Physicists in Medicine (AAPM) was to provide a methodology and set of procedures for a medical physicist performing clinical electron beam dosimetry in the nominal energy range of 5-25 MeV. Specifically, the task group recommended procedures for acquiring basic information required for acceptance testing and treatment planning of new accelerators with therapeutic electron beams. Since the publication of the TG-25 report, significant advances have taken place in the field of electron beam dosimetry, the most significant being that primary standards laboratories around the world have shifted from calibration standards based on exposure or air kerma to standards based on absorbed dose to water. The AAPM has published a new calibration protocol, TG-51, for the calibration of high-energy photon and electron beams. The formalism and dosimetry procedures recommended in this protocol are based on the absorbed dose to water calibration coefficient of an ionization chamber at 60Co energy, N60Co(D,w), together with the theoretical beam quality conversion coefficient k(Q) for the determination of absorbed dose to water in high-energy photon and electron beams. Task Group 70 was charged to reassess and update the recommendations in TG-25 to bring them into alignment with report TG-51 and to recommend new methodologies and procedures that would allow the practicing medical physicist to initiate and continue a high quality program in clinical electron beam dosimetry. This TG-70 report is a supplement to the TG-25 report and enhances the TG-25 report by including new topics and topics that were not covered in depth in the TG-25 report. These topics include procedures for obtaining data to commission a treatment planning computer, determining dose in irregularly shaped electron fields, and commissioning of sophisticated special procedures using high-energy electron beams. The use of

  16. Recommendations for clinical electron beam dosimetry: Supplement to the recommendations of Task Group 25

    SciTech Connect

    Gerbi, Bruce J.; Antolak, John A.; Deibel, F. Christopher; and others

    2009-07-15

    The goal of Task Group 25 (TG-25) of the Radiation Therapy Committee of the American Association of Physicists in Medicine (AAPM) was to provide a methodology and set of procedures for a medical physicist performing clinical electron beam dosimetry in the nominal energy range of 5-25 MeV. Specifically, the task group recommended procedures for acquiring basic information required for acceptance testing and treatment planning of new accelerators with therapeutic electron beams. Since the publication of the TG-25 report, significant advances have taken place in the field of electron beam dosimetry, the most significant being that primary standards laboratories around the world have shifted from calibration standards based on exposure or air kerma to standards based on absorbed dose to water. The AAPM has published a new calibration protocol, TG-51, for the calibration of high-energy photon and electron beams. The formalism and dosimetry procedures recommended in this protocol are based on the absorbed dose to water calibration coefficient of an ionization chamber at {sup 60}Co energy, N{sub D,w}{sup 60{sub C}{sub o}}, together with the theoretical beam quality conversion coefficient k{sub Q} for the determination of absorbed dose to water in high-energy photon and electron beams. Task Group 70 was charged to reassess and update the recommendations in TG-25 to bring them into alignment with report TG-51 and to recommend new methodologies and procedures that would allow the practicing medical physicist to initiate and continue a high quality program in clinical electron beam dosimetry. This TG-70 report is a supplement to the TG-25 report and enhances the TG-25 report by including new topics and topics that were not covered in depth in the TG-25 report. These topics include procedures for obtaining data to commission a treatment planning computer, determining dose in irregularly shaped electron fields, and commissioning of sophisticated special procedures using high-energy

  17. Personnel neutron dosimetry at Department of Energy facilities

    SciTech Connect

    Brackenbush, L.W.; Endres, G.W.R.; Selby, J.M.; Vallario, E.J.

    1980-08-01

    This study assesses the state of personnel neutron dosimetry at DOE facilities. A survey of the personnel dosimetry systems in use at major DOE facilities was conducted, a literature search was made to determine recent advances in neutron dosimetry, and several dosimetry experts were interviewed. It was concluded that personnel neutron dosimeters do not meet current needs and that serious problems exist now and will increase in the future if neutron quality factors are increased and/or dose limits are lowered.

  18. The US Department of Energy Personnel Dosimetry Evaluation and Upgrade Program

    SciTech Connect

    Faust, L.G.; Stroud, C.M.; Swinth, K.L.; Vallario, E.J.

    1987-11-01

    The US Department of Energy (DOE) Personnel Dosimetry Evaluation and Upgrade Program is designed to identify and evaluate dosimetry deficiencies and to conduct innovative research and development programs that will improve overall capabilities, thus ensuring that DOE can comply with applicable standards and regulations for dose measurement. To achieve these goals, two programs were initiated to evaluate and upgrade beta measurement and neutron dosimetry. 3 refs.

  19. Handbook for the Department of Energy Laboratory Accreditation Program for personnel dosimetry systems

    SciTech Connect

    Not Available

    1986-12-01

    The program contained in this Handbook provides a significant advance in the field of radiation protection through a structured means for assuring the quality of personnel dosimetry performance. Since personnel dosimetry performance is directly related to the assurance of worker safety, it has been of key interest to the Department of Energy. Studies conducted over the past three decades have clearly demonstrated a need for personnel dosimetry performance criteria, related testing programs, and improvements in dosimetry technology. In responding to these needs, the DOE Office of Nuclear Safety (EH) has developed and initiated a DOE Laboratory Accreditation Program (DOELAP) which is intended to improve the quality of personnel dosimetry through (1) performance testing, (2) dosimetry and calibration intercomparisons, and (3) applied research. In the interest of improving dosimetry technology, the DOE Laboratory Accreditation Program (DOELAP) is also designed to encourage cooperation and technical interchange between DOE laboratories. Dosimetry intercomparison programs have been scheduled which include the use of transport standard instruments, transport standard radioactive sources and special dosimeters. The dosimeters used in the intercomparison program are designed to obtain optimum data on the comparison of dosimetry calibration methodologies and capabilities. This data is used in part to develop enhanced calibration protocols. In the interest of overall calibration update, assistance and guidance for the calibration of personnel dosimeters is available through the DOELAP support laboratories. 20 refs., 1 tab.

  20. Electron paramagnetic resonance dosimetry: Methodology and material characterization

    NASA Astrophysics Data System (ADS)

    Hayes, Robert Bruce

    Electron Paramagnetic Resonance (EPR) methodologies for radiation dose reconstruction are investigated using various dosimeter materials. Specifically, methodologies were developed and used that were intended to improve the accuracy and precision of EPR dosimetric techniques, including combining specimen rotation during measurement, use of an internal manganese standard, instrument stabilization techniques and strict measurement protocols. Characterization and quantification of these improvements were preformed on three specific EPR dosimeter materials. The dosimeter materials investigated using these optimized EPR techniques were Walrus teeth, human tooth enamel and alanine dosimeters. Walrus teeth showed the least desirable properties for EPR dosimetry yielding large native signals and low sensitivity (EPR signal per unit dose). The methods for tooth enamel and alanine resulted in large improvements in precision and accuracy. The minimum detectable dose (MDD) found for alanine was approximately 30 mGy (three standard deviations from the measured zero dose value). This is a sensitivity improvement of 5 to 10 over other specialized techniques published in the literature that offer MDD's in the range of 150 mGy to 300 mGy. The accuracy of the method on tooth enamel was comparable to that typically reported in the literature although the measurement precision was increased by about 7. This improvement in measurement precision enables various applications including dose vs. depth profile analysis and a more nondestructive testing evaluation (where the whole sample need not be additively irradiated in order to calibrate its radiation response). A nondestructive evaluation of numerous samples showed that the method could reconstruct the same doses to within 10 mGy of those evaluated destructively. Doses used for this assessment were in the range of 100 to 250 mGy. The method had sufficient stability to measure tooth enamel samples exhibiting extreme anisotropy with a

  1. Superficial dosimetry imaging of Čerenkov emission in electron beam radiotherapy of phantoms

    NASA Astrophysics Data System (ADS)

    Zhang, Rongxiao; Fox, Colleen J.; Glaser, Adam K.; Gladstone, David J.; Pogue, Brian W.

    2013-08-01

    Čerenkov emission is generated from ionizing radiation in tissue above 264 keV energy. This study presents the first examination of this optical emission as a surrogate for the absorbed superficial dose. Čerenkov emission was imaged from the surface of flat tissue phantoms irradiated with electrons, using a range of field sizes from 6 cm × 6 cm to 20 cm × 20 cm, incident angles from 0° to 50°, and energies from 6 to 18 MeV. The Čerenkov images were compared with the estimated superficial dose in phantoms from direct diode measurements, as well as calculations by Monte Carlo and the treatment planning system. Intensity images showed outstanding linear agreement (R2 = 0.97) with reference data of the known dose for energies from 6 to 18 MeV. When orthogonal delivery was carried out, the in-plane and cross-plane dose distribution comparisons indicated very little difference (±2-4% differences) between the different methods of estimation as compared to Čerenkov light imaging. For an incident angle 50°, the Čerenkov images and Monte Carlo simulation show excellent agreement with the diode data, but the treatment planning system had a larger error (OPT = ±1˜2%, diode = ±2˜3%, TPS = ±6-8% differences) as would be expected. The sampling depth of superficial dosimetry based on Čerenkov radiation has been simulated in a layered skin model, showing the potential of sampling depth tuning by spectral filtering. Taken together, these measurements and simulations indicate that Čerenkov emission imaging might provide a valuable method of superficial dosimetry imaging from incident radiotherapy beams of electrons.

  2. Spreadsheet calculations of absorbed dose to water for photons and electrons according to established dosimetry protocols.

    PubMed

    Cederbaum, M; Kuten, A

    1999-01-01

    The calculation of absorbed dose to water according to a Code of Practice demands a strict adherence to the rules and data of the protocol. To ease the calculations and to avoid computational and methodological errors, we have developed a number of spreadsheets to perform the calculations in accordance with an established dosimetry protocol-in our case those of the International Atomic Energy Agency (IAEA) and the Institution of Physics and Engineering in Medicine and Biology (IPEMB). The spreadsheets are implemented as Microsoft Excel V5.0 worksheets. Only a limited selection of dosimetry equipment is used for calibration, which is performed according to only one of the methods allowed by the protocol. This voluntary limitation of equipment and methods is reflected in a spreadsheet that is beam-specific, compact, focused, and very practical. There are four main spreadsheets: high-energy photons (IAEA), high-energy electrons (IAEA), medium energy X rays (IPEMB), and low-energy X rays (IPEMB). The sheets allow the input of setup and measured data, but tabulated data and formulas are protected. Parameter values are copied from the protocols, and the relevant value is found by linear interpolation. Once the spreadsheets are drawn up correctly and thoroughly checked, protocol calculations are performed easily and accurately. The spreadsheets presented are tailored to suit our specific needs but can easily be modified to conform to the practices of any other institution. They are not intended as "cookbooks" but need to be filled in by a radiation physicist with the input data checked by a second professional. The same method is also used for calculating the Reference Air Kerma Rate of brachytherapy sources.

  3. The application of thermoluminescence dosimetry in X-ray energy discrimination.

    PubMed

    Nelson, V K; Holloway, L; McLean, I D

    2015-12-01

    Clinical dosimetry requires an understanding of radiation energy to accurately determine the delivered dose. For many situations this is known, however there are also many situations where the radiation energy is not well known, thus limiting dosimetric accuracy. This is the case in personnel dosimetry where thermo luminescent (TL) dosimetry is the method of choice. Traditionally beam energy characteristics in personnel dosimetry are determined through discrimination with the use of various filters fitted within a radiation monitor. The presence of scattered and characteristic radiation produced by these metallic filters, however, can compromise the results. In this study the TL response of five materials TLD100, TLD100H, TLD200, TLD400 and TLD500, was measured at various X-ray energies. The TL sensitivity ratio for various combinations of materials as a function of X-ray energy was calculated. The results indicate that in personal dosimetry a combination of three or more TL detector system has a better accuracy of estimation of effective radiation energy of an X-ray beam than some of the current method of employed for energy estimation and has the potential to improve the accuracy in dose determination in a variety of practical situations. The development of this method also has application in other fields including quality assurance of the orthovoltage therapy machines, dosimetry intercomparisons of kilovoltage X-ray beams, and measurement of the dose to critical organs outside a treatment field of a megavoltage therapy beam.

  4. Experimental verification of bremsstrahlung production and dosimetry predictions as a function of energy and angle

    SciTech Connect

    Beutler, D.E.; Halbleib, J.A.; Sanford, T.W.L. ); Knott, D.P. )

    1994-12-01

    The integrated TIGER series (ITS) of coupled electron/photon Monte Carlo transport codes is widely used to predict the radiation output from flash x-ray sources and for the design of bremsstrahlung converters. The codes are also used to predict the response of radiation diagnostics (e.g., thermoluminescent dosimeters (TLD's)) and the response of electronic components and subsystems. Hence, the demonstration of the validity of the ITS codes for these applications is important. Here, measurements of energy deposition from bremsstrahlung production as a function of angle and beam energy (5-25 MeV) are shown to be in excellent agreement with Monte Carlo predictions. Dosimetry measurements are made and predicted in both equilibrated and under equilibrated radiation environments. In the latter case the quality of the agreement requires an accurate prediction of both the photon and electron spectra produced by the primary electron beam. An improved empirical equation for predicting bremsstrahlung production is also presented. This empirical relation can be used to estimate doses without resorting to expensive calculational efforts. It also gives an analytical relationship for dose as a function of energy and angle for a converter optimized for bremsstrahlung production using 15.5 MeV electrons.

  5. US Department of Energy Laboratory Accredition Program (DOELAP) for personnel dosimetry systems

    SciTech Connect

    Cummings, F.M.; Carlson, R.D.; Loesch, R.M.

    1993-12-31

    Accreditation of personnel dosimetry systems is required for laboratories that conduct personnel dosimetry for the U.S. Department of Energy (DOE). Accreditation is a two-step process which requires the participant to pass a proficiency test and an onsite assessment. The DOE Laboratory Accreditation Program (DOELAP) is a measurement quality assurance program for DOE laboratories. Currently, the DOELAP addresses only dosimetry systems used to assess the whole body dose to personnel. A pilot extremity DOELAP has been completed and routine testing is expected to begin in January 1994. It is expected that participation in the extremity program will be a regulatory requirement by January 1996.

  6. An image-based skeletal dosimetry model for the ICRP reference adult female—internal electron sources

    NASA Astrophysics Data System (ADS)

    O'Reilly, Shannon E.; DeWeese, Lindsay S.; Maynard, Matthew R.; Rajon, Didier A.; Wayson, Michael B.; Marshall, Emily L.; Bolch, Wesley E.

    2016-12-01

    An image-based skeletal dosimetry model for internal electron sources was created for the ICRP-defined reference adult female. Many previous skeletal dosimetry models, which are still employed in commonly used internal dosimetry software, do not properly account for electron escape from trabecular spongiosa, electron cross-fire from cortical bone, and the impact of marrow cellularity on active marrow self-irradiation. Furthermore, these existing models do not employ the current ICRP definition of a 50 µm bone endosteum (or shallow marrow). Each of these limitations was addressed in the present study. Electron transport was completed to determine specific absorbed fractions to both active and shallow marrow of the skeletal regions of the University of Florida reference adult female. The skeletal macrostructure and microstructure were modeled separately. The bone macrostructure was based on the whole-body hybrid computational phantom of the UF series of reference models, while the bone microstructure was derived from microCT images of skeletal region samples taken from a 45 years-old female cadaver. The active and shallow marrow are typically adopted as surrogate tissue regions for the hematopoietic stem cells and osteoprogenitor cells, respectively. Source tissues included active marrow, inactive marrow, trabecular bone volume, trabecular bone surfaces, cortical bone volume, and cortical bone surfaces. Marrow cellularity was varied from 10 to 100 percent for active marrow self-irradiation. All other sources were run at the defined ICRP Publication 70 cellularity for each bone site. A total of 33 discrete electron energies, ranging from 1 keV to 10 MeV, were either simulated or analytically modeled. The method of combining skeletal macrostructure and microstructure absorbed fractions assessed using MCNPX electron transport was found to yield results similar to those determined with the PIRT model applied to the UF adult male skeletal dosimetry model. Calculated

  7. An image-based skeletal dosimetry model for the ICRP reference adult female-internal electron sources.

    PubMed

    O'Reilly, Shannon E; DeWeese, Lindsay S; Maynard, Matthew R; Rajon, Didier A; Wayson, Michael B; Marshall, Emily L; Bolch, Wesley E

    2016-12-21

    An image-based skeletal dosimetry model for internal electron sources was created for the ICRP-defined reference adult female. Many previous skeletal dosimetry models, which are still employed in commonly used internal dosimetry software, do not properly account for electron escape from trabecular spongiosa, electron cross-fire from cortical bone, and the impact of marrow cellularity on active marrow self-irradiation. Furthermore, these existing models do not employ the current ICRP definition of a 50 µm bone endosteum (or shallow marrow). Each of these limitations was addressed in the present study. Electron transport was completed to determine specific absorbed fractions to both active and shallow marrow of the skeletal regions of the University of Florida reference adult female. The skeletal macrostructure and microstructure were modeled separately. The bone macrostructure was based on the whole-body hybrid computational phantom of the UF series of reference models, while the bone microstructure was derived from microCT images of skeletal region samples taken from a 45 years-old female cadaver. The active and shallow marrow are typically adopted as surrogate tissue regions for the hematopoietic stem cells and osteoprogenitor cells, respectively. Source tissues included active marrow, inactive marrow, trabecular bone volume, trabecular bone surfaces, cortical bone volume, and cortical bone surfaces. Marrow cellularity was varied from 10 to 100 percent for active marrow self-irradiation. All other sources were run at the defined ICRP Publication 70 cellularity for each bone site. A total of 33 discrete electron energies, ranging from 1 keV to 10 MeV, were either simulated or analytically modeled. The method of combining skeletal macrostructure and microstructure absorbed fractions assessed using MCNPX electron transport was found to yield results similar to those determined with the PIRT model applied to the UF adult male skeletal dosimetry model. Calculated

  8. Extremity dosimetry at US Department of Energy facilities

    SciTech Connect

    Harty, R.; Reece, W.D.; MacLellan, J.A.

    1986-05-01

    A questionnaire on extremity dosimetry was distributed to DOE facilities along with a questionnaire on beta dosimetry. An informal telephone survey was conducted as a follow-up survey to answer a few additional questions concerning extremity monitoring practices. The responses to the questionnaire and the telephone survey are summarized in this report. Background information, developed from operational experience and a review of the current literature, is presented as a basis for understanding the information obtained by the survey and questionnaire.

  9. An alternative method using microwave power saturate in fingernail/electron paramagnetic resonance dosimetry.

    PubMed

    Choi, Hoon; Park, Byeongryong; Choi, Muhyun; Lee, Byungil; Lee, Cheol Eui

    2014-06-01

    An alternative method for fingernail/electron paramagnetic resonance (EPR) dosimetry valid at low doses (0-3 Gy) is suggested in this paper. The method consisted of two steps. The first step involved dehydrating fingernail clippings to remove their water content by heating them at 70 °C for 72 h. As the water content in the fingernails decreased, the variability of the EPR signals improved. The second step involved measuring and fitting the EPR signals at successive microwave power levels. A newly derived value known as 'curvature', which was based on the conventional peak-to-peak amplitudes of the EPR signals, was applied for the dosimetry. This method could be used as an alternative method in cases of low-radiation exposure doses (<3 Gy) or where use of the conventional dosimetry method is not proper for a fingernail sample.

  10. Calculated and measured brachytherapy dosimetry parameters in water for the Xoft Axxent X-Ray Source: an electronic brachytherapy source.

    PubMed

    Rivard, Mark J; Davis, Stephen D; DeWerd, Larry A; Rusch, Thomas W; Axelrod, Steve

    2006-11-01

    A new x-ray source, the model S700 Axxent X-Ray Source (Source), has been developed by Xoft Inc. for electronic brachytherapy. Unlike brachytherapy sources containing radionuclides, this Source may be turned on and off at will and may be operated at variable currents and voltages to change the dose rate and penetration properties. The in-water dosimetry parameters for this electronic brachytherapy source have been determined from measurements and calculations at 40, 45, and 50 kV settings. Monte Carlo simulations of radiation transport utilized the MCNP5 code and the EPDL97-based mcplib04 cross-section library. Inter-tube consistency was assessed for 20 different Sources, measured with a PTW 34013 ionization chamber. As the Source is intended to be used for a maximum of ten treatment fractions, tube stability was also assessed. Photon spectra were measured using a high-purity germanium (HPGe) detector, and calculated using MCNP. Parameters used in the two-dimensional (2D) brachytherapy dosimetry formalism were determined. While the Source was characterized as a point due to the small anode size, < 1 mm, use of the one-dimensional (1D) brachytherapy dosimetry formalism is not recommended due to polar anisotropy. Consequently, 1D brachytherapy dosimetry parameters were not sought. Calculated point-source model radial dose functions at gP(5) were 0.20, 0.24, and 0.29 for the 40, 45, and 50 kV voltage settings, respectively. For 1

  11. Review of plastic and liquid scintillation dosimetry for photon, electron, and proton therapy

    NASA Astrophysics Data System (ADS)

    Beaulieu, Luc; Beddar, Sam

    2016-10-01

    While scintillation dosimetry has been around for decades, the need for a dosimeter tailored to the reality of modern radiation therapy—in particular a real-time, water-equivalent, energy-independent dosimeter with high spatial resolution—has generated renewed interest in scintillators over the last 10 years. With the advent of at least one commercial plastic scintillation dosimeter and the ever-growing scientific literature on this subject, this topical review is intended to provide the medical physics community with a wide overview of scintillation physics, related optical concepts, and applications of plastic scintillation dosimetry.

  12. Effect of electron contamination of a 6 MV x-ray beam on near surface diode dosimetry

    NASA Astrophysics Data System (ADS)

    Edwards, C. R.; Mountford, P. J.; Moloney, A. J.

    2006-12-01

    In critical organ in vivo x-ray dosimetry, the relative contaminating electron contribution to the total dose and total detector response outside the field will be different to the corresponding contributions at the central axis detector calibration position, mainly due to the effects of shielding in the linear accelerator head on the electron and x-ray energy spectrum. To investigate these contributions, the electron energy response of a Scanditronix PFD diode was measured using electrons with mean energies from 0.45 to 14.6 MeV, and the Monte Carlo code MCNP-4C was used to calculate the electron energy spectra on the central axis, and at 1 and 10 cm outside the edge of a 4 × 4, 10 × 10 and a 15 × 15 cm2 6 MV x-ray field. The electron contribution to the total dose varied from about 8% on the central axis of the smallest field to about 76% at 10 cm outside the edge of the largest field. The electron contribution to the total diode response varied from about 7-8% on the central axis of all three fields to about 58% at 10 cm outside the edge of the smallest field. The results indicated that a near surface x-ray dose measurement with a diode outside the treatment field has to be interpreted with caution and requires knowledge of the relative electron contribution specific to the measurement position and field size.

  13. Effect of electron contamination of a 6 MV x-ray beam on near surface diode dosimetry.

    PubMed

    Edwards, C R; Mountford, P J; Moloney, A J

    2006-12-21

    In critical organ in vivo x-ray dosimetry, the relative contaminating electron contribution to the total dose and total detector response outside the field will be different to the corresponding contributions at the central axis detector calibration position, mainly due to the effects of shielding in the linear accelerator head on the electron and x-ray energy spectrum. To investigate these contributions, the electron energy response of a Scanditronix PFD diode was measured using electrons with mean energies from 0.45 to 14.6 MeV, and the Monte Carlo code MCNP-4C was used to calculate the electron energy spectra on the central axis, and at 1 and 10 cm outside the edge of a 4 x 4, 10 x 10 and a 15 x 15 cm(2) 6 MV x-ray field. The electron contribution to the total dose varied from about 8% on the central axis of the smallest field to about 76% at 10 cm outside the edge of the largest field. The electron contribution to the total diode response varied from about 7-8% on the central axis of all three fields to about 58% at 10 cm outside the edge of the smallest field. The results indicated that a near surface x-ray dose measurement with a diode outside the treatment field has to be interpreted with caution and requires knowledge of the relative electron contribution specific to the measurement position and field size.

  14. The stability of liquid-filled matrix ionization chamber electronic portal imaging devices for dosimetry purposes.

    PubMed

    Louwe, R J W; Tielenburg, R; van Ingen, K M; Mijnheer, B J; van Herk, M B

    2004-04-01

    This study was performed to determine the stability of liquid-filled matrix ionization chamber (LiFi-type) electronic portal imaging devices (EPID) for dosimetric purposes. The short- and long-term stability of the response was investigated, as well as the importance of factors influencing the response (e.g., temperature fluctuations, radiation damage, and the performance of the electronic hardware). It was shown that testing the performance of the electronic hardware as well as the short-term stability of the imagers may reveal the cause of a poor long-term stability of the imager response. In addition, the short-term stability was measured to verify the validity of the fitted dose-response curve immediately after beam startup. The long-term stability of these imagers could be considerably improved by correcting for room temperature fluctuations and gradual changes in response due to radiation damage. As a result, the reproducibility was better than 1% (1 SD) over a period of two years. The results of this study were used to formulate recommendations for a quality control program for portal dosimetry. The effect of such a program was assessed by comparing the results of portal dosimetry and in vivo dosimetry using diodes during the treatment of 31 prostate patients. The improvement of the results for portal dosimetry was consistent with the deviations observed with the reproducibility tests in that particular period. After a correction for the variation in response of the imager, the average difference between the measured and prescribed dose during the treatment of prostate patients was -0.7%+/-1.5% (1 SD), and -0.6%+/-1.1% (1 SD) for EPID and diode in vivo dosimetry, respectively. It can be concluded that a high stability of the response can be achieved for this type of EPID by applying a rigorous quality control program.

  15. Response of lithium formate EPR dosimeters at photon energies relevant to the dosimetry of brachytherapy

    SciTech Connect

    Adolfsson, Emelie; Alm Carlsson, Gudrun; Grindborg, Jan-Erik; Gustafsson, Haakan; Lund, Eva; Carlsson Tedgren, Aasa

    2010-09-15

    Purpose: To investigate experimentally the energy dependence of the detector response of lithium formate EPR dosimeters for photon energies below 1 MeV relative to that at {sup 60}Co energies. High energy photon beams are used in calibrating dosimeters for use in brachytherapy since the absorbed dose to water can be determined with high accuracy in such beams using calibrated ion chambers and standard dosimetry protocols. In addition to any differences in mass-energy absorption properties between water and detector, variations in radiation yield (detector response) with radiation quality, caused by differences in the density of ionization in the energy imparted (LET), may exist. Knowledge of an eventual deviation in detector response with photon energy is important for attaining high accuracy in measured brachytherapy dose distributions. Methods: Lithium formate EPR dosimeters were irradiated to known levels of air kerma in 25-250 kV x-ray beams and in {sup 137}Cs and {sup 60}Co beams at the Swedish Secondary Standards Dosimetry Laboratory. Conversions from air kerma free in air into values of mean absorbed dose to the detectors were made using EGSnrc MC simulations and x-ray energy spectra measured or calculated for the actual beams. The signals from the detectors were measured using EPR spectrometry. Detector response (the EPR signal per mean absorbed dose to the detector) relative to that for {sup 60}Co was determined for each beam quality. Results: Significant decreases in the relative response ranging from 5% to 6% were seen for x-ray beams at tube voltages {<=}180 kV. No significant reduction in the relative response was seen for {sup 137}Cs and 250 kV x rays. Conclusions: When calibrated in {sup 60}Co or MV photon beams, corrections for the photon energy dependence of detector response are needed to achieve the highest accuracy when using lithium formate EPR dosimeters for measuring absorbed doses around brachytherapy sources emitting photons in the energy

  16. SU-E-QI-15: Single Point Dosimetry by Means of Cerenkov Radiation Energy Transfer (CRET)

    SciTech Connect

    Volotskova, O; Jenkins, C; Xing, L

    2014-06-15

    Purpose: Cerenkov light is generated when a charged particles with energy greater then 250 keV, moves faster than the speed of light in a given medium. Both x-ray photons and electrons produce optical Cerenkov photons during the static megavoltage linear accelerator (LINAC) operational mode. Recently, Cerenkov radiation gained considerable interest as possible candidate as a new imaging modality. Optical signals generated by Cerenkov radiation may act as a surrogate for the absorbed superficial radiation dose. We demonstrated a novel single point dosimetry method for megavoltage photon and electron therapy utilizing down conversion of Cerenkov photons. Methods: The custom build signal characterization system was used: a sample holder (probe) with adjacent light tight compartments was connected via fiber-optic cables to a photon counting photomultiplier tube (PMT). One compartment contains a medium only while the other contains medium and red-shifting nano-particles (Q-dots, nanoclusters). By taking the difference between the two signals (Cerenkov photons and CRET photons) we obtain a measure of the down-converted light, which we expect to be proportional to dose as measured with an adjacent ion chamber. Experimental results are compared to Monte Carlo simulations performed using the GEANT4 code. Results: The signal correlation between CR signal, CRET readings and dose produced by LINAC at a single point were investigated. The experimental results were compared with simulations. The dose linearity, signal to noise ratio and dose rate dependence were tested with custom build CRET based probe. Conclusion: Performance characteristics of the proposed single point CRET based probe were evaluated. The direct use of the induced Cerenkov emission and CRET in an irradiated single point volume as an indirect surrogate for the imparted dose was investigated. We conclude that CRET is a promising optical based dosimetry method that offers advantages over those already proposed.

  17. Dosimetry of low energy proton beams for use in spacecraft parts testing

    NASA Technical Reports Server (NTRS)

    Miller, C. G.

    1975-01-01

    Thermoluminescent Dosimeters tes (TLD) were used to measure proton fluences consisting of 5MeV or lower energies. The results were at variance with the corresponding gamma measurements. The results of experiments on low energy proton dosimetry using LiF-in-teflon microrods (TLD-700 or LiF-7), are presented.

  18. An image-based skeletal dosimetry model for the ICRP reference newborn--internal electron sources.

    PubMed

    Pafundi, Deanna; Rajon, Didier; Jokisch, Derek; Lee, Choonsik; Bolch, Wesley

    2010-04-07

    In this study, a comprehensive electron dosimetry model of newborn skeletal tissues is presented. The model is constructed using the University of Florida newborn hybrid phantom of Lee et al (2007 Phys. Med. Biol. 52 3309-33), the newborn skeletal tissue model of Pafundi et al (2009 Phys. Med. Biol. 54 4497-531) and the EGSnrc-based Paired Image Radiation Transport code of Shah et al (2005 J. Nucl. Med. 46 344-53). Target tissues include the active bone marrow (surrogate tissue for hematopoietic stem cells), shallow marrow (surrogate tissue for osteoprogenitor cells) and unossified cartilage (surrogate tissue for chondrocytes). Monoenergetic electron emissions are considered over the energy range 1 keV to 10 MeV for the following source tissues: active marrow, trabecular bone (surfaces and volumes), cortical bone (surfaces and volumes) and cartilage. Transport results are reported as specific absorbed fractions according to the MIRD schema and are given as skeletal-averaged values in the paper with bone-specific values reported in both tabular and graphic format as electronic annexes (supplementary data). The method utilized in this work uniquely includes (1) explicit accounting for the finite size and shape of newborn ossification centers (spongiosa regions), (2) explicit accounting for active and shallow marrow dose from electron emissions in cortical bone as well as sites of unossified cartilage, (3) proper accounting of the distribution of trabecular and cortical volumes and surfaces in the newborn skeleton when considering mineral bone sources and (4) explicit consideration of the marrow cellularity changes for active marrow self-irradiation as applicable to radionuclide therapy of diseased marrow in the newborn child.

  19. High energy electron cooling

    SciTech Connect

    Parkhomchuk, V.

    1997-09-01

    High energy electron cooling requires a very cold electron beam. The questions of using electron cooling with and without a magnetic field are presented for discussion at this workshop. The electron cooling method was suggested by G. Budker in the middle sixties. The original idea of the electron cooling was published in 1966. The design activities for the NAP-M project was started in November 1971 and the first run using a proton beam occurred in September 1973. The first experiment with both electron and proton beams was started in May 1974. In this experiment good result was achieved very close to theoretical prediction for a usual two component plasma heat exchange.

  20. Skeletal dosimetry in a voxel-based rat phantom for internal exposures to photons and electrons

    SciTech Connect

    Xie Tianwu; Han Dao; Liu Yang; Sun Wenjuan; Liu Qian

    2010-05-15

    Purpose: The skeleton makes a significant contribution to the whole body absorbed dose evaluation of rats, since the bone marrow and bone surface in the skeleton express high radiosensitivity and are considered to be important dose-limiting tissues. The bone marrow can be categorized as red bone marrow (RBM) and yellow bone marrow (YBM). It is important to investigate the bone marrow in skeletal dosimetry. Methods: Cryosectional color images of the skeleton of a 156 g rat were segmented into mineral bone (including cortical bone and trabecular bone), RBM, and YBM. These three tissue types were identified at 40 different bone sites and integrated into a previously developed voxel-based rat computational phantom. Photon and electron skeletal absorbed fractions were then calculated using the MCNPX Monte Carlo code. Results: Absorbed fraction (AF) and specific absorbed fraction (SAF) for mineral bone, RBM, and YBM at the 40 different bone sites were established for monoenergetic photon and electron sources placed in 18 organs and seven bone sites. Discrete photon energy was varied from 0.01 to 5.0 MeV in 21 discrete steps, while 21 discrete electron energies were studied, from 0.1 to 10.0 MeV. The trends and values found were consistent with the results of other researchers [M. G. Stabin, T. E. Peterson, G. E. Holburn, and M. A. Emmons, ''Voxel-based mouse and rat models for internal dose calculations,'' J. Nucl. Med. 47, 655-659 (2006)]. S-factors for the radionuclides {sup 169}Er, {sup 143}Pr, {sup 89}Sr, {sup 32}P, and {sup 90}Y, located in 18 organs and seven bone sites for the skeleton, were calculated and are provided in detail. Conclusions: For internal dose calculations, the AF data reveal that the mineral bone in the rat skeletal system is responsible for significant attenuation of gamma rays, especially at low energies. The photon SAF curves of RBM show that, for photon energies greater than 0.6 MeV, there is an increase in secondary photons emitted from the

  1. Dosimetry of small fields for Therac 20 electron beams.

    PubMed

    Sharma, S C; Wilson, D L; Jose, B

    1984-01-01

    The Therac 20 medical linear accelerator produces electron beams of 6, 9, 13, 17, and 20 MeV. We measured depth dose, isodose curves, and output factors for small electron fields using an ionization chamber, film, and thermoluminescent dosimeters. Tables and graphs were generated from these measurements for accurate treatment planning of various blocked and open fields.

  2. Experimental verification of bremsstrahlung production and dosimetry predictions for 15. 5 MeV electrons

    SciTech Connect

    Sanford, T.W.L.; Beutler, D.E.; Halbleib, J.A. ); Knott, D.P. )

    1991-11-01

    The radiation produced by a 15.5-Mev mono-energetic electron beam incident on optimized and non-optimized bremsstrahlung targets is characterized using the ITS Monte Carlo code and measurements with equilibrated and non-equilibrated TLD dosimetry. Comparisons between calculations and measurements verify the calculations and demonstrate that the code can be used to predict both bremsstrahlung production and TLD response for radiation fields that are characteristic of those produced by pulsed simulators of gamma rays. At optimum bremsstrahlung production, the predicted total forward radiation fluence detected in equilibrated TLD dosimetry agrees with that measured within the {plus minus}6% uncertainty of the measurement. The absolute comparisons made here provide independent confirmation of the validity of the TLD calibration for photon fields characteristic of gamma-ray simulators. The empirical Martin equation, which is often used to calculate radiation dose from optimized bremsstrahlung targets, is examined, and its range of validity is established from the data presented.

  3. Experimental verification of bremsstrahlung production and dosimetry predictions for 15.5 MeV electrons

    SciTech Connect

    Sanford, T.W.L.; Beutler, D.E.; Halbleib, J.A.; Knott, D.P.

    1991-11-01

    The radiation produced by a 15.5-Mev mono-energetic electron beam incident on optimized and non-optimized bremsstrahlung targets is characterized using the ITS Monte Carlo code and measurements with equilibrated and non-equilibrated TLD dosimetry. Comparisons between calculations and measurements verify the calculations and demonstrate that the code can be used to predict both bremsstrahlung production and TLD response for radiation fields that are characteristic of those produced by pulsed simulators of gamma rays. At optimum bremsstrahlung production, the predicted total forward radiation fluence detected in equilibrated TLD dosimetry agrees with that measured within the {plus_minus}6% uncertainty of the measurement. The absolute comparisons made here provide independent confirmation of the validity of the TLD calibration for photon fields characteristic of gamma-ray simulators. The empirical Martin equation, which is often used to calculate radiation dose from optimized bremsstrahlung targets, is examined, and its range of validity is established from the data presented.

  4. Practical considerations for electron beam small field size dosimetry

    SciTech Connect

    Sharma, Subhash C.; Johnson, Martin W.; Gossman, Michael S. . E-mail: GossmanMS@erlanger.org

    2005-06-30

    Special care of superficial lesions surrounding critical structures, such as an eye, may require tight margins. When this is the case, small megavoltage electron treatment fields and nonstandard treatment distances become necessary. When the field size is found to be less than the practical range of the electron beam, dosimetric measurements should be performed. This research includes data proving that very small electron fields can be employed for treatment with appropriate beam flatness and penumbra. This is accomplished by first coning down the incident beam to a small field size, then secondly by adding a single lead sheet to the patient's skin surface. The aperture of the sheet is required to be greater than 2 x 2 cm{sup 2} in size, and must be cut properly to adequately confine the treatment area.

  5. [Dosimetry on a rotating phantom in remote electron irradiation].

    PubMed

    Müller-Sievers, K; Schäffler, D; Kober, B; Wöllgens, P

    1988-08-01

    The Therac-20 Saturne produces a high dose rate electron radiation allowing a whole-skin electron irradiation. The problem of producing large fields enclosing the whole patient has been solved by superposition of two tilted stationary fields. The angle regulations are optimized by a computer program fed with the TLD values of transverse dose distributions. A homogeneous irradiation is obtained by the patient's rotation on a turntable within the radiation field. In case of a distance of 3 m between focus and skin, the irradiation times are only 5 min for a body surface dose of 1 Gy.

  6. ELECTRON PARAMAGNETIC RESONANCE DOSIMETRY FOR A LARGE-SCALE RADIATION INCIDENT

    PubMed Central

    Swartz, Harold M.; Flood, Ann Barry; Williams, Benjamin B.; Dong, Ruhong; Swarts, Steven G.; He, Xiaoming; Grinberg, Oleg; Sidabras, Jason; Demidenko, Eugene; Gui, Jiang; Gladstone, David J.; Jarvis, Lesley A.; Kmiec, Maciej M.; Kobayashi, Kyo; Lesniewski, Piotr N.; Marsh, Stephen D.P.; Matthews, Thomas P.; Nicolalde, Roberto J.; Pennington, Patrick M.; Raynolds, Timothy; Salikhov, Ildar; Wilcox, Dean E.; Zaki, Bassem I.

    2013-01-01

    With possibilities for radiation terrorism and intensified concerns about nuclear accidents since the recent Fukushima Daiichi event, the potential exposure of large numbers of individuals to radiation that could lead to acute clinical effects has become a major concern. For the medical community to cope with such an event and avoid overwhelming the medical care system, it is essential to identify not only individuals who have received clinically significant exposures and need medical intervention but also those who do not need treatment. The ability of electron paramagnetic resonance to measure radiation-induced paramagnetic species, which persist in certain tissues (e.g., teeth, fingernails, toenails, bone, and hair), has led this technique to become a prominent method for screening significantly exposed individuals. Although the technical requirements needed to develop this method for effective application in a radiation event are daunting, remarkable progress has been made. In collaboration with General Electric, and through funding committed by the Biomedical Advanced Research and Development Authority, electron paramagnetic resonance tooth dosimetry of the upper incisors is being developed to become a Food and Drug Administration-approved and manufacturable device designed to carry out triage for a threshold dose of 2 Gy. Significant progress has also been made in the development of electron paramagnetic resonance nail dosimetry based on measurements of nails in situ under point-of-care conditions, and in the near future this may become a second field-ready technique. Based on recent progress in measurements of nail clippings, we anticipate that this technique may be implementable at remotely located laboratories to provide additional information when the measurements of dose on site need to be supplemented. We conclude that electron paramagnetic resonance dosimetry is likely to be a useful part of triage for a large-scale radiation incident. PMID:22850230

  7. WE-E-BRE-01: An Image-Based Skeletal Dosimetry Model for the ICRP Reference Adult Female - Internal Electron Sources

    SciTech Connect

    O'Reilly, S; Maynard, M; Marshall, E; Bolch, W; Sinclair, L; Rajon, D; Wayson, M

    2014-06-15

    Purpose: Limitations seen in previous skeletal dosimetry models, which are still employed in commonly used software today, include the lack of consideration of electron escape and cross-fire from cortical bone, the modeling of infinite spongiosa, the disregard of the effect of varying cellularity on active marrow self-irradiation, and the lack of use of the more recent ICRP definition of a 50 micron surrogate tissue region for the osteoprogenitor cells - shallow marrow. These limitations were addressed in the present dosimetry model. Methods: Electron transport was completed to determine specific absorbed fractions to active marrow and shallow marrow of the skeletal regions of the adult female. The bone macrostructure was obtained from the whole-body hybrid computational phantom of the UF series of reference phantoms, while the bone microstructure was derived from microCT images of skeletal region samples taken from a 45 year-old female cadaver. The target tissue regions were active marrow and shallow marrow. The source tissues were active marrow, inactive marrow, trabecular bone volume, trabecular bone surfaces, cortical bone volume and cortical bone surfaces. The marrow cellularity was varied from 10 to 100 percent for active marrow self-irradiation. A total of 33 discrete electron energies, ranging from 1 keV to 10 MeV, were either simulated or modeled analytically. Results: The method of combining macro- and microstructure absorbed fractions calculated using MCNPX electron transport was found to yield results similar to those determined with the PIRT model for the UF adult male in the Hough et al. study. Conclusion: The calculated skeletal averaged absorbed fractions for each source-target combination were found to follow similar trends of more recent dosimetry models (image-based models) and did not follow current models used in nuclear medicine dosimetry at high energies (due to that models use of an infinite expanse of trabecular spongiosa)

  8. Neutron dosimetry, moderated energy spectrum, and neutron capture therapy for californium-252 medical sources

    NASA Astrophysics Data System (ADS)

    Rivard, Mark Joseph

    Examination of neutron dosimetry for 252Cf has been conducted using calculative and experimental means. Monte Carlo N-Particle (MCNP) transport code was used in a distributed computing environment as a parallel virtual machine (PVM) to determine the absorbed neutron dose and neutron energy spectrum from 252Cf in a variety of clinically relevant materials. Herein, a Maxwellian spectrum was used to model the 252Cf neutron emissions within these materials. 252Cf mixed-field dosimetry of Applicator Tube (AT) type sources was measured using 1.0 and 0.05 cm3 tissue-equivalent ion chambers and a miniature GM counter. A dosimetry protocol was formulated similar that of ICRU 45. The 252Cf AT neutron dosimetry was determined in the cylindrical coordinate system formalism recommended by the AAPM Task Group 43. These results demonstrated the overwhelming dependence of dosimetry on the source geometry factor as there was no significant neutron attenuation within the source or encapsulation. Gold foils and TLDs were used to measure the thermal flux in the vicinity of 252Cf AT sources to compare with the results calculated using MCNP. As the fast neutron energy spectrum did not markedly changed at increasing distances from the AT source, neutron dosimetry results obtained with paired ion chambers using fixed sensitivity factors agreed well with MCNP results and those in the literature. Calculations of moderated 252Cf neutron energy spectrum with various loadings of 10B and 157Gd were performed, in addition to analysis of neutron capture therapy dosimetry with these isotopes. Radiological concerns such as personnel exposure and shielding of 252Cf emissions were examined. Feasibility of a high specific-activity 252Cf HDR source was investigated through radiochemical and metallurgical studies using stand-ins such as Tb, Gd and 249Cf. Issues such as capsule burst strength due to helium production for a variety of proposed HDR sources were addressed. A recommended 252Cf source

  9. Transit Dosimetry for Patient Treatment Verification with an Electronic Portal Imaging Device

    NASA Astrophysics Data System (ADS)

    Berry, Sean L.

    The complex and individualized photon fluence patterns constructed during intensity modulated radiation therapy (IMRT) treatment planning must be verified before they are delivered to the patient. There is a compelling argument for additional verification throughout the course of treatment due to the possibility of data corruption, unintentional modification of the plan parameters, changes in patient anatomy, errors in patient alignment, and even mistakes in identifying the correct patient for treatment. Amorphous silicon (aSi) Electronic Portal Imaging Devices (EPIDs) can be utilized for IMRT verification. The goal of this thesis is to implement EPID transit dosimetry, measurement of the dose at a plane behind the patient during their treatment, within the clinical process. In order to achieve this goal, a number of the EPID's dosimetric shortcomings were studied and subsequently resolved. Portal dose images (PDIs) acquired with an aSi EPID suffer from artifacts related to radiation backscattered asymmetrically from the EPID support structure. This backscatter signal varies as a function of field size (FS) and location on the EPID. Its presence can affect pixel values in the measured PDI by up to 3.6%. Two methods to correct for this artifact are offered: discrete FS specific correction matrices and a single generalized equation. The dosimetric comparison between the measured and predicted through-air dose images for 49 IMRT treatment fields was significantly improved (p << .001) after the application of these FS specific backscatter corrections. The formulation of a transit dosimetry algorithm followed the establishment of the backscatter correction and a confirmation of the EPID's positional stability with linac gantry rotation. A detailed characterization of the attenuation, scatter, and EPID response behind an object in the beam's path is necessary to predict transit PDIs. In order to validate the algorithm's performance, 49 IMRT fields were delivered to a

  10. A modified Fricke gel dosimeter for fast electron blood dosimetry

    NASA Astrophysics Data System (ADS)

    Del Lama, L. S.; de Góes, E. G.; Sampaio, F. G. A.; Petchevist, P. C. D.; de Almeida, A.

    2014-12-01

    It has been suggested for more than forty years that blood and blood components be irradiated before allogeneic transfusions for immunosuppressed patients in order to avoid the Transfusion-Associated Graft-versus-Host Disease (TA-GVHD). Whole blood, red blood cells, platelets and granulocytes may have viable T cells and should be irradiated before transfusion for different patient clinical conditions. According to international guides, absorbed doses from 25 up to 50 Gy should be delivered to the central middle plane of each blood bag. Although gamma and X-rays from radiotherapy equipments and dedicated cell irradiators are commonly used for this purpose, electron beams from Linear Accelerators (LINACs) could be used as well. In this work, we developed a methodology able to acquire dosimetric data from blood irradiations, especially after fast electrons exposures. This was achieved using a proposed Fricke Xylenol Gel (FXGp) dosimeter, which presents closer radiological characteristics (attenuation coefficients and stopping-powers) to the whole blood, as well as complete absorbed dose range linearity. The developed methodology and the FXGp dosimeter were also able to provide isodose curves and field profiles for the irradiated samples.

  11. US Department of Energy Laboratory Accreditation Program for personnel dosimetry systems (DOELAP)

    SciTech Connect

    Carlson, R.D.; Gesell, T.F.; Kalbeitzer, F.L.; Roberson, P.L.; Jones, K.L.; MacDonald, J.C.; Vallario, E.J.; Pacific Northwest Lab., Richland, WA; USDOE Assistant Secretary for Nuclear Energy, Washington, DC . Office of Nuclear Safety)

    1988-01-01

    The US Department of Energy (DOE) Office of Nuclear Safety has developed and initiated the DOE Laboratory Accreditation Program (DOELAP) for personnel dosimetry systems to assure and improve the quality of personnel dosimetry at DOE and DOE contractor facilities. It consists of a performance evaluation program that measures current performance and an applied research program that evaluates and recommends additional or improved test and performance criteria. It also provides guidance to DOE, identifying areas where technological improvements are needed. The two performance evaluation elements in the accreditation process are performance testing and onsite assessment by technical experts. Performance testing evaluates the participant's ability to accurately and reproducibly measure dose equivalent. Tests are conducted in accident level categories for low- and high-energy photons as well as protection level categories for low- and high-energy photons, beta particles, neutrons and mixtures of these.

  12. Experimental assessment of gold nanoparticle-mediated dose enhancement in radiation therapy beams using electron spin resonance dosimetry

    NASA Astrophysics Data System (ADS)

    Wolfe, T.; Guidelli, E. J.; Gómez, J. A.; Baffa, O.; Nicolucci, P.

    2015-06-01

    In this work, we aim to experimentally assess increments of dose due to nanoparticle-radiation interactions via electron spin resonance (ESR) dosimetry performed with a biological-equivalent sensitive material. We employed 2-Methyl-Alanine (2MA) in powder form to compose the radiation sensitive medium embedding gold nanoparticles (AuNPs) 5 nm in diameter. Dosimeters manufactured with 0.1% w/w of AuNPs or no nanoparticles were irradiated with clinically utilized 250 kVp orthovoltage or 6 MV linac x-rays in dosimetric conditions. Amplitude peak-to-peak (App) at the central ESR spectral line was used for dosimetry. Dose-response curves were obtained for samples with or without nanoparticles and each energy beam. Dose increments due to nanoparticles were analyzed in terms of absolute dose enhancements (DEs), calculated as App ratios for each dose/beam condition, or relative dose enhancement factors (DEFs) calculated as the slopes of the dose-response curves. Dose enhancements were observed to present an amplified behavior for small doses (between 0.1-0.5 Gy), with this effect being more prominent with the kV beam. For doses between 0.5-5 Gy, dose-independent trends were observed for both beams, stable around (2.1   ±   0.7) and (1.3   ±   0.4) for kV and MV beams, respectively. We found DEFs of (1.62   ±   0.04) or (1.27   ±   0.03) for the same beams. Additionally, we measured no interference between AuNPs and the ESR apparatus, including the excitation microwaves, the magnetic fields and the paramagnetic radicals. 2MA was demonstrated to be a feasible paramagnetic radiation-sensitive material for dosimetry in the presence of AuNPs, and ESR dosimetry a powerful experimental method for further verifications of increments in nanoparticle-mediated doses of biological interest. Ultimately, gold nanoparticles can cause significant and detectable dose enhancements in biological-like samples irradiated at both

  13. Computed tomography dosimetry with high-resolution detectors commonly used in radiotherapy - an energy dependence study.

    PubMed

    Liebmann, Mario; Poppe, Bjoern; von Boetticher, Heiner

    2015-09-08

    New methods of dosimetry in computed tomography (CT) X-ray fields require the use of high-resolution detectors instead of pencil-type ionization chambers typically used for CT dose index (CTDI) measurements. This paper presents a study on the suitability of a wide range of ionization chambers, diodes, and a two-dimensional detector array, used primarily in radiation therapy, for CT and cone-beam CT dosimetry. Specifically, the energy dependence of these detectors from 50 kVp up to 125 kVp is reported. All measurements were performed in reference to a calibrated diode for use in this energy region. The radiation quality correction factors provided by the manufacturer were used, depending on the measured half-value layer (HVL) for the particular X-ray beam. Our study demonstrated the general usability of thimble ionization chambers. These thimble ionization chambers showed a maximum variation in energy response of 5%. Ionization chambers with even smaller sensitive volume, and which exhibit similar variation in energy dependence, can be used if higher spatial resolution is required. Furthermore, the investigated detectors are better suited for dosimetry at CT and CBCT units than conventional large volume or flat detectors, due to their rotational symmetry. Nevertheless, a flat detector can be used for certain measurement tasks, such as the acquisition of percent depth-dose curves or beam profiles for nonrotating beams, which are important for beam characterization.

  14. Alanine-EPR as a transfer standard dosimetry system for low energy X radiation

    NASA Astrophysics Data System (ADS)

    Khoury, H. J.; da Silva, E. J.; Mehta, K.; de Barros, V. S.; Asfora, V. K.; Guzzo, P. L.; Parker, A. G.

    2015-11-01

    The purpose of this paper is to evaluate the use of alanine-EPR as a transfer standard dosimetry system for low energy X radiation, such as that in RS-2400, which operates in the range from 25 to 150 kV and 2 to 45 mA. Two types of alanine dosimeters were investigated. One is a commercial alanine pellets from Aérial-Centre de Ressources Technologiques, France and one was prepared in our laboratory (LMRI-DEN/UFPE). The EPR spectra of the irradiated dosimeters were recorded in the Nuclear Energy Department of UFPE, using a Bruker EMX10 EPR spectrometer operating in the X-band. The alanine-EPR dosimetry system was calibrated in the range of 20-220 Gy in this X-ray field, against an ionization chamber calibrated at the relevant X-ray energy with traceability to PTB. The results showed that both alanine dosimeters presented a linear dose response the same sensitivity, when the EPR signal was normalized to alanine mass. The total uncertainty in the measured dose was estimated to be about 3%. The results indicate that it is possible to use the alanine-EPR dosimetry system for validation of a low-energy X ray irradiator, such as RS-2400.

  15. Monte Carlo calculations for reference dosimetry of electron beams with the PTW Roos and NE2571 ion chambers

    SciTech Connect

    Muir, B. R. Rogers, D. W. O.

    2013-12-15

    beam quality conversion factors is obtained without explicitly correcting for gradient effects. The inadequacy of R{sub 50} to uniquely specify beam quality for the accurate selection of k{sub Q} factors is discussed. Systematic uncertainties in beam quality conversion factors are analyzed for the NE2571 chamber and amount to between 0.4% and 1.2% depending on assumptions used. Conclusions: The calculated beam quality conversion factors for the PTW Roos chamber obtained here are in good agreement with literature data. These results characterize the use of an NE2571 ion chamber for reference dosimetry of electron beams even in low-energy beams.

  16. Experimental verification of bremsstrahlung production and dosimetry predictions for 15. 5 MeV electrons

    SciTech Connect

    Sanford, T.W.L.; Beutler, D.E.; Halbleib, J.A.; Knott, D.P.

    1991-01-01

    The radiation produced by a 15.5-MeV monoenergetic electron beam incident on optimized and nonoptimized bremsstrahlung targets is characterized using the ITS Monte Carlo code and measurements with equilibrated and non-equilibrated TLD dosimetry. Comparisons between calculations and measurements verify the calculations and demonstrate that the code can be used to predict both bremsstrahlung production and TLD response for radiation fields that are characteristic of those produced by pulsed simulators of gamma rays. At optimum bremsstrahlung production, the predicted total forward radiation fluence detected in equilibrated TLD dosimetry agrees with that measured within the {plus minus}6% uncertainty of the measurement. The absolute comparisons made here provide independent confirmation of the validity of the TLD calibration for photon fields characteristic of gamma-ray simulators. The empirical Martin equation, which is often used to calculate radiation dose from optimized bremsstrahlung targets, is examined, and its range of validity is established from the data presented. 23 refs., 11 figs., 2 tabs.

  17. Experimental verification of bremsstrahlung production and dosimetry predictions for 15. 5 MeV electrons

    SciTech Connect

    Sanford, T.W.L.; Beutler, D.E.; Halbleib, J.A. ); Knott, D.P. )

    1991-12-01

    In this paper the radiation produced by a 15.5-MeV mono-energetic electron beam incident on optimized and non-optimized bremsstrahlung targets is characterized using the ITS Monte Carlo code and measurements with equilibrated and non-equilibrated TLD dosimetry. Comparisons between calculations and measurements verify the calculations and demonstrate that the code can be used to predict both bremsstrahlung production and TLD response for radiation fields that are characteristic of those produced by pulsed simulators of gamma rays. At optimum bremsstrahlung production, the predicted total forward radiation fluence detected in equilibrated TLD dosimetry agrees with that measured with the {plus minus} 6% uncertainty of the measurement. The absolute comparisons made here provide independent confirmation of the validity of the TLD calibration for photon fields characteristic of gamma-ray simulators. The empirical Martin equation, which is often used to calculate radiation dose from optimized bremsstrahlung targets, is examined, and its range of validity is established from the data presented.

  18. MO-FG-303-02: BEST IN PHYSICS (THERAPY): Cherenkov Emission Dosimetry: Feasibility for Electron Radiotherapy

    SciTech Connect

    Zlateva, Y; El Naqa, I

    2015-06-15

    Purpose: To investigate from first principles, corroborated by Monte Carlo simulations and experimental measurements, the feasibility of developing a relative Cherenkov emission (CE) dosimetry protocol for electron beam radiotherapy. Methods: Monte Carlo (MC) simulations of mono-energetic electrons incident on water were carried out in Geant4. Percent depth Cherenkov emission (PDCE) and dose (PDD) distributions were scored for incidence energies of 4, 6, 9, 12, 15, and 18 MeV. PDCE-to-PDD analytical conversion models were developed from least-squares data fits generated for PDD as a function of PDCE at the same depth and at different depths. Experimental techniques for validation of these models are examined. Results: Same-depth PDD versus PDCE data fits indicate that although the relationship is linear to first order (correlation r > 0.9 for all energies), it is much more accurately approximated by separate linear and quadratic models for the build-up and drop-off regions, respectively (r > 0.999), which is theoretically underpinned. To understand the source of this relationship and its basis for developing robust conversion models, an approximate quadratic first-principles model was derived and found in agreement with MC/measured data (20% deviation at worst). Conversely, data fits of PDD versus different-depth PDCE unveiled a depth-invariant effective point of measurement of 1.5–2.1 mm downstream with 4–18 MeV incidence, respectively (r > 0.999 in the drop-off region). We present an analytical first-principles justification for this shift. This method led to errors of <1% in drop-off region PDD (<2% for PDD<20% with 4 MeV incidence) and <0.2 mm in practical range prediction. Conclusion: We present robust quantitative prediction models, derived from first-principles and supported by simulation and measurement, for relative dose from Cherenkov emission by high-energy electrons. This constitutes a major step towards development of protocols for routine clinical

  19. Towards Establishing Capacity for Biological Dosimetry at Ghana Atomic Energy Commission

    PubMed Central

    Achel, Daniel Gyingiri; Achoribo, Elom; Agbenyegah, Sandra; Adaboro, Rudolph M.; Donkor, Shadrack; Adu-Bobi, Nana A. K.; Agyekum, Akwasi A.; Akuamoa, Felicia; Tagoe, Samuel N.; Kyei, Kofi A.; Yarney, Joel; Serafin, Antonio; Akudugu, John M.

    2016-01-01

    The aim of this study was not only to obtain basic technical prerequisites for the establishment of capacity of biological dosimetry at the Ghana Atomic Energy Commission (GAEC) but also to stimulate interest in biological dosimetry research in Ghana and Sub-Saharan Africa. Peripheral blood from four healthy donors was exposed to different doses (0–6 Gy) of gamma rays from a radiotherapy machine and lymphocytes were subsequently stimulated, cultured, and processed according to standard protocols for 48–50 h. Processed cells were analyzed for the frequencies of dicentric and centric ring chromosomes. Radiation dose delivered to the experimental model was verified using GafChromic® EBT films in parallel experiments. Basic technical prerequisites for the establishment of capacity of biological dosimetry in the GAEC have been realized and expertise in the dicentric chromosome assay consolidated. We successfully obtained preliminary cytogenetic data for a dose-response relationship of the irradiated blood lymphocytes. The data strongly indicate the existence of significant linear (α) and quadratic (β) components and are consistent with those published for the production of chromosome aberrations in comparable absorbed dose ranges. PMID:28217279

  20. Neutron dosimetry with TL albedo dosemeters at high energy accelerators.

    PubMed

    Haninger, T; Fehrenbacher, G

    2007-01-01

    The GSF-Personal Monitoring Service uses the TLD albedo dosemeter as standard neutron personal dosemeter. Due to its low sensitivity for fast neutrons however, it is generally not recommended for workplaces at high-energy accelerators. Test measurements with the albedo dosemeter were performed at the accelerator laboratories of GSI in Darmstadt and DESY in Hamburg to reconsider this hypothesis. It revealed that the albedo dosemeter can also be used as personal dosemeter at these workplaces, because at all measurement locations a significant part of neutrons with lower energies could be found, which were produced by scattering at walls or the ground.

  1. Performance comparisons of selected personnel-dosimetry systems in use at Department of Energy facilities

    SciTech Connect

    Roberson, P.L; Holbrook, K.L.; Yoder, R.C.; Fox, R.A.; Hadley, R.T.; Hogan, B.T.; Hooker, C.D.

    1983-10-01

    Dosimeter performance data were collected to help develop a uniform approach to the calibration and use of personnel dosimetry systems for Department of Energy (DOE) laboratories. Eleven DOE laboratories participated in six months of testing using the American National Draft Standard, Criteria for Testing Personnel Dosimetry Performance, ANSI N13.11, and additional testing categories. The tests described in ANSI N13.11 used a pass/fail system to determine compliance with the draft standard. Recalculation to PNL irradiations showed that the /sup 137/Cs, /sup 90/Sr//sup 90/Y, and /sup 252/Cf categories can be recalibrated to have acceptable performance for nearly all participant systems. Deficient dosimeter design or handling techniques caused poor performance in the x-ray category for nearly half of the participants. Too little filtration for the deep-dose element caused poor performance in the beta/photon mixture category for one participant. Two participants had excessively high standard deviations in the neutron category due to dosimeter design or handling deficiencies. The participating dosimetry systems were separated into three categories on their dose evaluation procedure for low-energy photons. These were film dosimeters, fixed-calibration thermoluminescent (TL) dosimeters, and variable-calibration TL dosimeters. The performance of the variable-calibration design was best while the film dosimeters performed considerably worse than either TL dosimeter design. Beta energy dependence studies confirmed a strong correlation between sensitive element thickness, shallow element filtration and low-energy beta response. Studies of neutron calibration conditions for each participant suggested a relationship between response and calibration facility design.

  2. Review of the results of the in vivo dosimetry during total skin electron beam therapy

    PubMed Central

    Guidi, Gabriele; Gottardi, Giovanni; Ceroni, Paola; Costi, Tiziana

    2013-01-01

    This work reviews results of in vivo dosimetry (IVD) for total skin electron beam (TSEB) therapy, focusing on new methods, data emerged within 2012. All quoted data are based on a careful review of the literature reporting IVD results for patients treated by means of TSEB therapy. Many of the reviewed papers refer mainly to now old studies and/or old guidelines and recommendations (by IAEA, AAPM and EORTC), because (due to intrinsic rareness of TSEB-treated pathologies) only a limited number of works and reports with a large set of numerical data and proper statistical analysis is up-to-day available in scientific literature. Nonetheless, a general summary of the results obtained by the now numerous IVD techniques available is reported; innovative devices and methods, together with areas of possible further and possibly multicenter investigations for TSEB therapies are highlighted. PMID:24936333

  3. Radiochromic film dosimetry of a low energy proton beam.

    PubMed

    Piermattei, A; Miceli, R; Azario, L; Fidanzio, A; delle Canne, S; De Angelis, C; Onori, S; Pacilio, M; Petetti, E; Raffaele, L; Sabini, M G

    2000-07-01

    In this work some dosimetric characteristics of MD-55-2 GafChromic films were studied in a low energy proton beam (21.5 MeV) directly in a water phantom. The nonlinearity of the optical density was quantified by a factor P(lin). A correction factor P(en), that accounts for optical density dependence on the energy, was empirically determined. The effects of detector thickness in depth dose measurements and of the film orientation with respect to beam direction were investigated. The results show that the MD-55-2 films provide dose measurements with the films positioned perpendicularly to the proton beam. A dosimetric formalizm is proposed to determine the dose to water at depth d, with films oriented perpendicularly to the beam axis. This formalism uses a calibration factor of the radiochromic film determined directly on the proton beam at a reference depth in water, and the P(lin) factor, that takes into account the nonlinearity of the calibration curve and the P(en) factor that, in turn takes into account the change of proton beam energy in water. The MD-55-2 films with their high spatial resolution and the quasiwater equivalent material are attractive, positioned perpendicularly along the beam axis, for the absolute dose determination of very small beam sizes and modulated proton beams.

  4. An image-based skeletal dosimetry model for the ICRP reference adult male--internal electron sources.

    PubMed

    Hough, Matthew; Johnson, Perry; Rajon, Didier; Jokisch, Derek; Lee, Choonsik; Bolch, Wesley

    2011-04-21

    In this study, a comprehensive electron dosimetry model of the adult male skeletal tissues is presented. The model is constructed using the University of Florida adult male hybrid phantom of Lee et al (2010 Phys. Med. Biol. 55 339-63) and the EGSnrc-based Paired Image Radiation Transport code of Shah et al (2005 J. Nucl. Med. 46 344-53). Target tissues include the active bone marrow, associated with radiogenic leukemia, and total shallow marrow, associated with radiogenic bone cancer. Monoenergetic electron emissions are considered over the energy range 1 keV to 10 MeV for the following sources: bone marrow (active and inactive), trabecular bone (surfaces and volumes), and cortical bone (surfaces and volumes). Specific absorbed fractions are computed according to the MIRD schema, and are given as skeletal-averaged values in the paper with site-specific values reported in both tabular and graphical format in an electronic annex available from http://stacks.iop.org/0031-9155/56/2309/mmedia. The distribution of cortical bone and spongiosa at the macroscopic dimensions of the phantom, as well as the distribution of trabecular bone and marrow tissues at the microscopic dimensions of the phantom, is imposed through detailed analyses of whole-body ex vivo CT images (1 mm resolution) and spongiosa-specific ex vivo microCT images (30 µm resolution), respectively, taken from a 40 year male cadaver. The method utilized in this work includes: (1) explicit accounting for changes in marrow self-dose with variations in marrow cellularity, (2) explicit accounting for electron escape from spongiosa, (3) explicit consideration of spongiosa cross-fire from cortical bone, and (4) explicit consideration of the ICRP's change in the surrogate tissue region defining the location of the osteoprogenitor cells (from a 10 µm endosteal layer covering the trabecular and cortical surfaces to a 50 µm shallow marrow layer covering trabecular and medullary cavity surfaces). Skeletal

  5. An image-based skeletal dosimetry model for the ICRP reference adult male—internal electron sources

    NASA Astrophysics Data System (ADS)

    Hough, Matthew; Johnson, Perry; Rajon, Didier; Jokisch, Derek; Lee, Choonsik; Bolch, Wesley

    2011-04-01

    In this study, a comprehensive electron dosimetry model of the adult male skeletal tissues is presented. The model is constructed using the University of Florida adult male hybrid phantom of Lee et al (2010 Phys. Med. Biol. 55 339-63) and the EGSnrc-based Paired Image Radiation Transport code of Shah et al (2005 J. Nucl. Med. 46 344-53). Target tissues include the active bone marrow, associated with radiogenic leukemia, and total shallow marrow, associated with radiogenic bone cancer. Monoenergetic electron emissions are considered over the energy range 1 keV to 10 MeV for the following sources: bone marrow (active and inactive), trabecular bone (surfaces and volumes), and cortical bone (surfaces and volumes). Specific absorbed fractions are computed according to the MIRD schema, and are given as skeletal-averaged values in the paper with site-specific values reported in both tabular and graphical format in an electronic annex available from http://stacks.iop.org/0031-9155/56/2309/mmedia. The distribution of cortical bone and spongiosa at the macroscopic dimensions of the phantom, as well as the distribution of trabecular bone and marrow tissues at the microscopic dimensions of the phantom, is imposed through detailed analyses of whole-body ex vivo CT images (1 mm resolution) and spongiosa-specific ex vivo microCT images (30 µm resolution), respectively, taken from a 40 year male cadaver. The method utilized in this work includes: (1) explicit accounting for changes in marrow self-dose with variations in marrow cellularity, (2) explicit accounting for electron escape from spongiosa, (3) explicit consideration of spongiosa cross-fire from cortical bone, and (4) explicit consideration of the ICRP's change in the surrogate tissue region defining the location of the osteoprogenitor cells (from a 10 µm endosteal layer covering the trabecular and cortical surfaces to a 50 µm shallow marrow layer covering trabecular and medullary cavity surfaces). Skeletal

  6. Internal photon and electron dosimetry of the newborn patient—a hybrid computational phantom study

    NASA Astrophysics Data System (ADS)

    Wayson, Michael; Lee, Choonsik; Sgouros, George; Treves, S. Ted; Frey, Eric; Bolch, Wesley E.

    2012-03-01

    Estimates of radiation absorbed dose to organs of the nuclear medicine patient are a requirement for administered activity optimization and for stochastic risk assessment. Pediatric patients, and in particular the newborn child, represent that portion of the patient population where such optimization studies are most crucial owing to the enhanced tissue radiosensitivities and longer life expectancies of this patient subpopulation. In cases where whole-body CT imaging is not available, phantom-based calculations of radionuclide S values—absorbed dose to a target tissue per nuclear transformation in a source tissue—are required for dose and risk evaluation. In this study, a comprehensive model of electron and photon dosimetry of the reference newborn child is presented based on a high-resolution hybrid-voxel phantom from the University of Florida (UF) patient model series. Values of photon specific absorbed fraction (SAF) were assembled for both the reference male and female newborn using the radiation transport code MCNPX v2.6. Values of electron SAF were assembled in a unique and time-efficient manner whereby the collisional and radiative components of organ dose--for both self- and cross-dose terms—were computed separately. Dose to the newborn skeletal tissues were assessed via fluence-to-dose response functions reported for the first time in this study. Values of photon and electron SAFs were used to assemble a complete set of S values for some 16 radionuclides commonly associated with molecular imaging of the newborn. These values were then compared to those available in the OLINDA/EXM software. S value ratios for organ self-dose ranged from 0.46 to 1.42, while similar ratios for organ cross-dose varied from a low of 0.04 to a high of 3.49. These large discrepancies are due in large part to the simplistic organ modeling in the stylized newborn model used in the OLINDA/EXM software. A comprehensive model of internal dosimetry is presented in this study for

  7. Internal photon and electron dosimetry of the newborn patient--a hybrid computational phantom study.

    PubMed

    Wayson, Michael; Lee, Choonsik; Sgouros, George; Treves, S Ted; Frey, Eric; Bolch, Wesley E

    2012-03-07

    Estimates of radiation absorbed dose to organs of the nuclear medicine patient are a requirement for administered activity optimization and for stochastic risk assessment. Pediatric patients, and in particular the newborn child, represent that portion of the patient population where such optimization studies are most crucial owing to the enhanced tissue radiosensitivities and longer life expectancies of this patient subpopulation. In cases where whole-body CT imaging is not available, phantom-based calculations of radionuclide S values--absorbed dose to a target tissue per nuclear transformation in a source tissue--are required for dose and risk evaluation. In this study, a comprehensive model of electron and photon dosimetry of the reference newborn child is presented based on a high-resolution hybrid-voxel phantom from the University of Florida (UF) patient model series. Values of photon specific absorbed fraction (SAF) were assembled for both the reference male and female newborn using the radiation transport code MCNPX v2.6. Values of electron SAF were assembled in a unique and time-efficient manner whereby the collisional and radiative components of organ dose--for both self- and cross-dose terms--were computed separately. Dose to the newborn skeletal tissues were assessed via fluence-to-dose response functions reported for the first time in this study. Values of photon and electron SAFs were used to assemble a complete set of S values for some 16 radionuclides commonly associated with molecular imaging of the newborn. These values were then compared to those available in the OLINDA/EXM software. S value ratios for organ self-dose ranged from 0.46 to 1.42, while similar ratios for organ cross-dose varied from a low of 0.04 to a high of 3.49. These large discrepancies are due in large part to the simplistic organ modeling in the stylized newborn model used in the OLINDA/EXM software. A comprehensive model of internal dosimetry is presented in this study for the

  8. Clinical implementation of an electron monitor unit dosimetry system based on task group 71 report and a commercial calculation program

    PubMed Central

    Xu, Huijun; Guerrero, Mariana; Chen, Shifeng; Yang, Xiaocheng; Prado, Karl; Schinkel, Colleen

    2016-01-01

    Many clinics still use monitor unit (MU) calculations for electron treatment planning and/or quality assurance (QA). This work (1) investigates the clinical implementation of a dosimetry system including a modified American Association of Physicists in Medicine-task group-71 (TG-71)-based electron MU calculation protocol (modified TG-71 electron [mTG-71E] and an independent commercial calculation program and (2) provides the practice recommendations for clinical usage. Following the recently published TG-71 guidance, an organized mTG-71E databook was developed to facilitate data access and subsequent MU computation according to our clinical need. A recently released commercial secondary calculation program – Mobius3D (version 1.5.1) Electron Quick Calc (EQC) (Mobius Medical System, LP, Houston, TX, USA), with inherent pencil beam algorithm and independent beam data, was used to corroborate the calculation results. For various setups, the calculation consistency and accuracy of mTG-71E and EQC were validated by their cross-comparison and the ion chamber measurements in a solid water phantom. Our results show good agreement between mTG-71E and EQC calculations, with average 2% difference. Both mTG-71E and EQC calculations match with measurements within 3%. In general, these differences increase with decreased cutout size, increased extended source to surface distance, and lower energy. It is feasible to use TG71 and Mobius3D clinically as primary and secondary electron MU calculations or vice versa. We recommend a practice that only requires patient-specific measurements in rare cases when mTG-71E and EQC calculations differ by 5% or more. PMID:28144112

  9. Clinical implementation of an electron monitor unit dosimetry system based on task group 71 report and a commercial calculation program.

    PubMed

    Xu, Huijun; Guerrero, Mariana; Chen, Shifeng; Yang, Xiaocheng; Prado, Karl; Schinkel, Colleen

    2016-01-01

    Many clinics still use monitor unit (MU) calculations for electron treatment planning and/or quality assurance (QA). This work (1) investigates the clinical implementation of a dosimetry system including a modified American Association of Physicists in Medicine-task group-71 (TG-71)-based electron MU calculation protocol (modified TG-71 electron [mTG-71E] and an independent commercial calculation program and (2) provides the practice recommendations for clinical usage. Following the recently published TG-71 guidance, an organized mTG-71E databook was developed to facilitate data access and subsequent MU computation according to our clinical need. A recently released commercial secondary calculation program - Mobius3D (version 1.5.1) Electron Quick Calc (EQC) (Mobius Medical System, LP, Houston, TX, USA), with inherent pencil beam algorithm and independent beam data, was used to corroborate the calculation results. For various setups, the calculation consistency and accuracy of mTG-71E and EQC were validated by their cross-comparison and the ion chamber measurements in a solid water phantom. Our results show good agreement between mTG-71E and EQC calculations, with average 2% difference. Both mTG-71E and EQC calculations match with measurements within 3%. In general, these differences increase with decreased cutout size, increased extended source to surface distance, and lower energy. It is feasible to use TG71 and Mobius3D clinically as primary and secondary electron MU calculations or vice versa. We recommend a practice that only requires patient-specific measurements in rare cases when mTG-71E and EQC calculations differ by 5% or more.

  10. Clinical implementation of electron energy changes of varian linear accelerators.

    PubMed

    Zhang, Sean; Liengsawangwong, Praimakorn; Lindsay, Patricia; Prado, Karl; Sun, Tzouh-Liang; Steadham, Roy; Wang, Xiaochun; Salehpour, Mohammad; Gillin, Michael

    2009-10-27

    Modern dual photon energy linear accelerators often come with a few megavoltage electron beams. The megavoltage electron beam has limited range and relative sharp distal falloff in its depth dose curve compared to that of megavoltage photon beam. Its radiation dose is often delivered appositionally to cover the target volume to its distal 90% depth dose (d90), while avoiding the normal--sometimes critical--structure immediately distal to the target. Varian linear accelerators currently offer selected electron beams of 4, 6, 9, 12, 16 and 20 MeV electron beam energies. However, intermediate electron energy is often needed for optimal dose distribution. In this study we investigated electron beam characteristics and implemented two intermediate 7 and 11 MeV electron beams on Varian linear accelerators. Comprehensive tests and measurements indicated the new electron beams met all dosimetry parameter criteria and operational safety standards. Between the two new electron beams and the existing electron beams we were able to provide a choice of electron beams of 4, 6, 7, 9, 11, 12, 16 and 20 MeV electron energies, which had d90 depth between 1.5 cm and 6.0 cm (from 1.5 cm to 4.0 cm in 0.5 cm increments) to meet our clinical needs.

  11. The energy dependence of the lateral dose response functions of detectors with various densities in photon-beam dosimetry

    NASA Astrophysics Data System (ADS)

    Khee Looe, Hui; Harder, Dietrich; Poppe, Björn

    2017-02-01

    The lateral dose response function is a general characteristic of the volume effect of a detector used for photon dosimetry in a water phantom. It serves as the convolution kernel transforming the true absorbed dose to water profile, which would be produced within the undisturbed water phantom, into the detector-measured signal profile. The shape of the lateral dose response function characterizes (i) the volume averaging attributable to the detector’s size and (ii) the disturbance of the secondary electron field associated with the deviation of the electron density of the detector material from the surrounding water. In previous work, the characteristic dependence of the shape of the lateral dose response function upon the electron density of the detector material was studied for 6 MV photons by Monte Carlo simulation of a wall-less voxel-sized detector (Looe et al 2015 Phys. Med. Biol. 60 6585-07). This study is here continued for 60Co gamma rays and 15 MV photons in comparison with 6 MV photons. It is found (1) that throughout these photon spectra the shapes of the lateral dose response functions are retaining their characteristic dependence on the detector’s electron density, and (2) that their energy-dependent changes are only moderate. This appears as a practical advantage because the lateral dose response function can then be treated as practically invariant across a clinical photon beam in spite of the known changes of the photon spectrum with increasing distance from the beam axis.

  12. Radiation Dosimetry Study in Dental Enamel of Human Tooth Using Electron Paramagnetic Resonance

    NASA Astrophysics Data System (ADS)

    De, Tania; Romanyukha, Alex; Pass, Barry; Misra, Prabhakar

    2009-07-01

    Electron paramagnetic resonance (EPR) dosimetry of tooth enamel is used for individual dose reconstruction following radiation accidents. The purpose of this study is to develop a rapid, minimally invasive technique of obtaining a sample of dental enamel small enough to not disturb the structure and functionality of a tooth and to improve the sensitivity of the spectral signals using X-band (9.4 GHz) and Q-band (34 GHz) EPR technique. In this study EPR measurements in X-band were performed on 100 mg isotropic powdered enamel samples and Q-band was performed on 4 mg, 1×1×3 mm enamel biopsy samples. All samples were obtained from discarded teeth collected during normal dental treatment. To study the variation of the Radiation-Induced Signal (RIS) at different orientations in the applied magnetic field, samples were placed in the resonance cavity for Q-band EPR. X-band EPR measurements were performed on 100 mg isotropic powdered enamel samples. In X-band spectra, the RIS is distinct from the "native" radiation-independent signal only for doses >0.5 Gy. Q-band, however, resolves the RIS and "native" signals and improves sensitivity by a factor of 20, enabling measurements in 2-4 mg tooth enamel samples, as compared to 100 mg for X-band. The estimated lower limit of Q-band dose measurement is 0.5 Gy. Q-band EPR enamel dosimetry results in greater sensitivity and smaller sample size through enhanced spectral resolution. Thus, this can be a valuable technique for population triage in the event of detonation of a radiation dispersal device ("dirty" bomb) or other radiation event with massive casualties. Further, the small 4 mg samples can be obtained by a minimally-invasive biopsy technique.

  13. Study of runaway electrons using dosimetry of hard x-ray radiations in Damavand tokamak

    SciTech Connect

    Rasouli, C.; Pourshahab, B.; Rasouli, H.; Hosseini Pooya, S. M.; Orouji, T.

    2014-05-15

    In this work several studies have been conducted on hard x-ray emissions of Damavand tokamak based on radiation dosimetry using the Thermoluminescence method. The goal was to understand interactions of runaway electrons with plasma particles, vessel wall, and plasma facing components. Total of 354 GR-200 (LiF:Mg,Cu,P) thermoluminescence dosimeter (TLD) crystals have been placed on 118 points – three TLDs per point – to map hard x-ray radiation doses on the exterior of the vacuum vessel. Results show two distinctive levels of x-ray radiations doses on the exterior of the vessel. The low-dose area on which measured dose is about 0.5 mSv/shot. In the low-dose area there is no particular component inside the vessel. On the contrary, on high-dose area of the vessel, x-ray radiations dose exceeds 30 mSv/shot. The high-dose area coincides with the position of limiters, magnetic probe ducts, and vacuum vessel intersections. Among the high-dose areas, the highest level of dose is measured in the position of the limiter, which could be due to its direct contact with the plasma column and with runaway electrons. Direct collisions of runaway electrons with the vessel wall and plasma facing components make a major contribution for production of hard x-ray photons in Damavand tokamak.

  14. Study of runaway electrons using dosimetry of hard x-ray radiations in Damavand tokamak.

    PubMed

    Rasouli, C; Pourshahab, B; Hosseini Pooya, S M; Orouji, T; Rasouli, H

    2014-05-01

    In this work several studies have been conducted on hard x-ray emissions of Damavand tokamak based on radiation dosimetry using the Thermoluminescence method. The goal was to understand interactions of runaway electrons with plasma particles, vessel wall, and plasma facing components. Total of 354 GR-200 (LiF:Mg,Cu,P) thermoluminescence dosimeter (TLD) crystals have been placed on 118 points--three TLDs per point--to map hard x-ray radiation doses on the exterior of the vacuum vessel. Results show two distinctive levels of x-ray radiations doses on the exterior of the vessel. The low-dose area on which measured dose is about 0.5 mSv/shot. In the low-dose area there is no particular component inside the vessel. On the contrary, on high-dose area of the vessel, x-ray radiations dose exceeds 30 mSv/shot. The high-dose area coincides with the position of limiters, magnetic probe ducts, and vacuum vessel intersections. Among the high-dose areas, the highest level of dose is measured in the position of the limiter, which could be due to its direct contact with the plasma column and with runaway electrons. Direct collisions of runaway electrons with the vessel wall and plasma facing components make a major contribution for production of hard x-ray photons in Damavand tokamak.

  15. Department of Energy standard for the performance testing of personnel dosimetry systems

    SciTech Connect

    Not Available

    1986-12-01

    This standard is intended to be used in the Department of Energy Laboratory Accreditation Program (DOELAP) for personnel dosimetry systems. It is based on the American National Standards Institute's (ANSI) ''Criteria for Testing Personnel Dosimetry Performance,'' ANSI N13.11-1983, recommendations made to DOE in ''Guidelines for the Calibration of Personnel Dosimeters,'' Pacific Northwest Laboratory (PNL)-4515 and comments received during peer review by DOE and DOE contractor personnel. The recommendations contained in PNL-4515 were based on an evaluation of ANSI N13.11 conducted for the Office of Nuclear Safety, DOE, by PNL. Parts of ANSI N13.11 that did not require modification were used essentially intact in this standard to maintain consistency with nationally recognized standards. Modifications to this standard have resulted from several DOE/DOE contractor reviews and a pilot testing session. An initial peer review by selected DOE and DOE contractor representatives on technical content was conducted in 1983. A review by DOE field offices, program offices, and contractors was conducted in mid-1984. A pilot performance testing session sponsored by the Office of Nuclear Safety was conducted in early 1985 by the Radiological and Environmental Sciences Laboratory, Idaho Falls. Results of the pilot test were reviewed in late 1985 by a DOE and DOE contractor committee. 11 refs., 4 tabs.

  16. Characterization of a synthetic single crystal diamond Schottky diode for radiotherapy electron beam dosimetry

    SciTech Connect

    Di Venanzio, C.; Marinelli, Marco; Milani, E.; Prestopino, G.; Verona, C.; Verona-Rinati, G.; Falco, M. D.; Bagala, P.; Santoni, R.; Pimpinella, M.

    2013-02-15

    Purpose: To investigate the dosimetric properties of synthetic single crystal diamond based Schottky diodes under irradiation with therapeutic electron beams from linear accelerators. Methods: A single crystal diamond detector was fabricated and tested under 6, 8, 10, 12, and 15 MeV electron beams. The detector performances were evaluated using three types of commercial detectors as reference dosimeters: an Advanced Markus plane parallel ionization chamber, a Semiflex cylindrical ionization chamber, and a p-type silicon detector. Preirradiation, linearity with dose, dose rate dependence, output factors, lateral field profiles, and percentage depth dose profiles were investigated and discussed. Results: During preirradiation the diamond detector signal shows a weak decrease within 0.7% with respect to the plateau value and a final signal stability of 0.1% (1{sigma}) is observed after about 5 Gy. A good linear behavior of the detector response as a function of the delivered dose is observed with deviations below {+-}0.3% in the dose range from 0.02 to 10 Gy. In addition, the detector response is dose rate independent, with deviations below 0.3% in the investigated dose rate range from 0.17 to 5.45 Gy/min. Percentage depth dose curves obtained from the diamond detector are in good agreement with the ones from the reference dosimeters. Lateral beam profile measurements show an overall good agreement among detectors, taking into account their respective geometrical features. The spatial resolution of solid state detectors is confirmed to be better than that of ionization chambers, being the one from the diamond detector comparable to that of the silicon diode. A good agreement within experimental uncertainties was also found in terms of output factor measurements between the diamond detector and reference dosimeters. Conclusions: The observed dosimetric properties indicate that the tested diamond detector is a suitable candidate for clinical electron beam dosimetry.

  17. Development and testing of an improved dosimetry system using a backscatter shielded electronic portal imaging device

    SciTech Connect

    King, Brian W.; Morf, Daniel; Greer, Peter B.

    2012-05-15

    Purpose: To investigate the properties of a modified backscatter shielded electronic portal imaging device (BSS-EPID) and to develop a dose model to convert BSS-EPID images to dose in water as part of an improved system for dosimetry using EPIDs. Methods: The effectiveness of the shielding of the BSS-EPID was studied by comparing images measured with the BSS-EPID mounted on the support arm to images measured with the BSS-EPID removed from the support arm. A dose model was developed and optimized to reconstruct dose in water at different depths from measured BSS-EPID images. The accuracy of the dose model was studied using BSS-EPID images of 28 IMRT fields to reconstruct dose in water at depths of 2, 5, 10, and 20 cm and comparing to measured dose in water from a two-dimensional diode array at the same depths. The ability of the BSS-EPID system to operate independently of detector position was demonstrated by comparing the dose reconstruction of a 10 x 10 cm{sup 2} field using different detector offsets to that measured by a two-dimensional diode array. Results: The shielding of the BSS-EPID was found to be effective, with more than 99% of pixels showing less than 0.5% change due to the presence of the support arm and at most a 0.2% effect on the central axis for 2 x 2 cm{sup 2} fields to fully open 30 x 40 cm{sup 2} images. The dose model was shown to accurately reconstruct measurements of dose in water using BSS-EPID images with average {gamma} pass rates (2%, 2 mm criteria) of 92.5%, 98.7%, 97.4%, and 97.2% at depths of 2, 5, 10, and 20 cm, respectively, when compared to two-dimensional diode array measurements. When using 3%, 3 mm {gamma} criteria, the average pass rate was greater than 97% at all depths. Reconstructed dose in water for a 10 x 10 cm{sup 2} field measured with detector offsets as large as 10 cm agreed with each other and two-dimensional diode array measurements within 0.9%. Conclusions: The modified BSS-EPID and associated dose model provide an

  18. Tooth Retrospective Dosimetry Using Electron Paramagnetic Resonance: Influence of Irradiated Dental Composites

    PubMed Central

    Desmet, Céline M.; Djurkin, Andrej; Dos Santos-Goncalvez, Ana Maria; Dong, Ruhong; Kmiec, Maciej M.; Kobayashi, Kyo; Rychert, Kevin; Beun, Sébastien; Leprince, Julian G.; Leloup, Gaëtane; Levêque, Philippe; Gallez, Bernard

    2015-01-01

    In the aftermath of a major radiological accident, the medical management of overexposed individuals will rely on the determination of the dose of ionizing radiations absorbed by the victims. Because people in the general population do not possess conventional dosimeters, after the fact dose reconstruction methods are needed. Free radicals are induced by radiations in the tooth enamel of victims, in direct proportion to dose, and can be quantified using Electron Paramagnetic Resonance (EPR) spectrometry, a technique that was demonstrated to be very appropriate for mass triage. The presence of dimethacrylate based restorations on teeth can interfere with the dosimetric signal from the enamel, as free radicals could also be induced in the various composites used. The aim of the present study was to screen irradiated composites for a possible radiation-induced EPR signal, to characterize it, and evaluate a possible interference with the dosimetric signal of the enamel. We investigated the most common commercial composites, and experimental compositions, for a possible class effect. The effect of the dose was studied between 10 Gy and 100 Gy using high sensitivity X-band spectrometer. The influence of this radiation-induced signal from the composite on the dosimetric signal of the enamel was also investigated using a clinical L-Band EPR spectrometer, specifically developed in the EPR center at Dartmouth College. In X-band, a radiation-induced signal was observed for high doses (25-100 Gy); it was rapidly decaying, and not detected after only 24h post irradiation. At 10 Gy, the signal was in most cases not measurable in the commercial composites tested, with the exception of 3 composites showing a significant intensity. In L-band study, only one irradiated commercial composite influenced significantly the dosimetric signal of the tooth, with an overestimation about 30%. In conclusion, the presence of the radiation-induced signal from dental composites should not

  19. The response of Kodak EDR2 film in high-energy electron beams.

    PubMed

    Gerbi, Bruce J; Dimitroyannis, Dimitri A

    2003-10-01

    Kodak XV2 film has been a key dosimeter in radiation therapy for many years. The advantages of the recently introduced Kodak EDR2 film for photon beam dosimetry have been the focus of several IMRT verification dosimetry publications. However, no description of this film's response to electron beams exists in the literature. We initiated a study to characterize the response and utility of this film for electron beam dosimetry. We exposed a series of EDR2 films to 6, 9, 12, 16, and 20 MeV electrons in addition to 6 and 18 MV x rays to develop standard characteristic curves. The linac was first calibrated to ensure that the delivered dose was known accurately. All irradiations were done at dmax in polystyrene for both photons and electrons, all films were from the same batch, and were developed at the same time. We also exposed the EDR2 films in a solid water phantom to produce central axis depth dose curves. These data were compared against percent depth dose curves measured in a water phantom using an IC-10 ion chamber, Kodak XV2 film, and a PTW electron diode. The response of this film was the same for both 6 and 18 MV x rays, but showed an apparent energy-dependent enhancement for electron beams. The response of the film also increased with increasing electron energy. This caused the percent depth dose curves using film to be shifted toward the surface compared to the ion chamber data.

  20. Validating plastic scintillation detectors for photon dosimetry in the radiologic energy range

    SciTech Connect

    Lessard, Francois; Archambault, Louis; Plamondon, Mathieu; and others

    2012-09-15

    Purpose: Photon dosimetry in the kilovolt (kV) energy range represents a major challenge for diagnostic and interventional radiology and superficial therapy. Plastic scintillation detectors (PSDs) are potentially good candidates for this task. This study proposes a simple way to obtain accurate correction factors to compensate for the response of PSDs to photon energies between 80 and 150 kVp. The performance of PSDs is also investigated to determine their potential usefulness in the diagnostic energy range. Methods: A 1-mm-diameter, 10-mm-long PSD was irradiated by a Therapax SXT 150 unit using five different beam qualities made of tube potentials ranging from 80 to 150 kVp and filtration thickness ranging from 0.8 to 0.2 mmAl + 1.0 mmCu. The light emitted by the detector was collected using an 8-m-long optical fiber and a polychromatic photodiode, which converted the scintillation photons to an electrical current. The PSD response was compared with the reference free air dose rate measured with a calibrated Farmer NE2571 ionization chamber. PSD measurements were corrected using spectra-weighted corrections, accounting for mass energy-absorption coefficient differences between the sensitive volumes of the ionization chamber and the PSD, as suggested by large cavity theory (LCT). Beam spectra were obtained from x-ray simulation software and validated experimentally using a CdTe spectrometer. Correction factors were also obtained using Monte Carlo (MC) simulations. Percent depth dose (PDD) measurements were compensated for beam hardening using the LCT correction method. These PDD measurements were compared with uncorrected PSD data, PDD measurements obtained using Gafchromic films, Monte Carlo simulations, and previous data. Results: For each beam quality used, the authors observed an increase of the energy response with effective energy when no correction was applied to the PSD response. Using the LCT correction, the PSD response was almost energy independent, with

  1. Experimental determination of the effective point of measurement of cylindrical ionization chambers for high-energy photon and electron beams.

    PubMed

    Huang, Yanxiao; Willomitzer, Christian; Zakaria, Golam Abu; Hartmann, Guenther H

    2010-01-01

    Measurements of depth-dose curves in water phantom using a cylindrical ionization chamber require that its effective point of measurement is located at the measuring depth. Recommendations for the position of the effective point of measurement with respect to the central axis valid for high-energy electron and photon beams are given in dosimetry protocols. According to these protocols, the use of a constant shift P(eff) is currently recommended. However, this is still based on a very limited set of experimental results. It is therefore expected that an improved knowledge of the exact position of the effective point of measurement will further improve the accuracy of dosimetry. Recent publications have revealed that the position of the effective point of measurement is indeed varying with beam energy, field size and also with chamber geometry. The aim of this study is to investigate whether the shift of P(eff) can be taken to be constant and independent from the beam energy. An experimental determination of the effective point of measurement is presented based on a comparison between cylindrical chambers and a plane-parallel chamber using conventional dosimetry equipment. For electron beams, the determination is based on the comparison of halfvalue depth R(50) between the cylindrical chamber of interest and a well guarded plane-parallel Roos chamber. For photon beams, the depth of dose maximum, d(max), the depth of 80% dose, d(80), and the dose parameter PDD(10) were used. It was again found that the effective point of measurement for both, electron and photon beams Dosimetry, depends on the beam energy. The deviation from a constant value remains very small for photons, whereas significant deviations were found for electrons. It is therefore concluded that use of a single upstream shift value from the centre of the cylindrical chamber as recommended in current dosimetry protocols is adequate for photons, however inadequate for accurate electron beam dosimetry.

  2. Dosimetry of Auger emitters: Physical and phenomenological approaches

    SciTech Connect

    Sastry, K.S.R.; Howell, R.W.; Rao, D.V.; Mylavarapu, V.B.; Kassis, A.I.; Adelstein, S.J.; Wright, H.A.; Hamm, R.N.; Turner, J.E.

    1987-01-01

    Recent radiobiological studies have demonstrated that Auger cascades can cause severe biological damage contrary to expectations based on conventional dosimetry. Several determinants govern these effects, including the nature of the Auger electron spectrum; localized energy deposition; cellular geometry; chemical form of the carrier; cellular localization, concentration, and subcellular distribution of the radionuclide. Conventional dosimetry is inadequate in that these considerations are ignored. Our results provide the basis for biophysical approaches toward subcellular dosimetry of Auger emitters in vitro and in vivo. 12 refs., 7 figs., 2 tabs.

  3. Dosimetry at the sub-cellular scale of Auger-electron emitter 99mTc in a mouse single thyroid follicle.

    PubMed

    Taborda, A; Benabdallah, N; Desbrée, A

    2016-02-01

    The Auger-electrons emitted by (99m)Tc have been recently associated with the induction of thyroid stunning in in vivo experiments in mice, making the dosimetry at the sub-cellular level of (99m)Tc a pertinent and pressing subject. The S-values for (99m)Tc were calculated using MCNP6, which was first validated for studies at the sub-cellular scale and for low energies electrons. The calculation was then performed for (99m)Tc within different cellular compartments in a single mouse thyroid follicle model, considering the radiative and non-radiative transitions of the (99m)Tc radiation spectrum. It was shown that the contribution of the (99m)Tc Auger and low energy electrons to the absorbed dose to the follicular cells' nucleus is important, being at least of the same order of magnitude compared to the emitted photons' contribution and cannot be neglected. The results suggest that Auger-electrons emitted by (99m)Tc play a significant role in the occurrence of the thyroid stunning effect in mice.

  4. A low energy electron magnetometer

    NASA Technical Reports Server (NTRS)

    Singh, J. J.; Wood, G. M., Jr.; Rayborn, G. H.; White, F. A.

    1979-01-01

    The concept of a highly sensitive magnetometer based on the deflection of low energy electron beams in magnetic fields is analyzed. Because of its extremely low mass and consequently high e/m ratio, a low energy electron is easily deflected in a magnetic field, thus providing a basis for very low field measurement. Calculations for a specific instrument design indicate that a low energy electron magnetometer (LEEM) can measure magnetic fields as low as 1000 nT. The anticipated performance of LEEM is compared with that of the existing high resolution magnetometers in selected applications. The fast response time of LEEM makes it especially attractive as a potential instrument for magnetic signature analysis in large engineering systems.

  5. Current internal-dosimetry practices at US Department of Energy facilities

    SciTech Connect

    Traub, R.J.; Murphy, B.L.; Selby, J.M.; Vallario, E.J.

    1985-04-01

    The internal dosimetry practice at DOE facilities were characterized. The purpose was to determine the size of the facilities' internal dosimetry programs, the uniformity of the programs among the facilities, and the areas of greatest concern to health physicists in providing and reporting accurate estimates of internal radiation dose and in meeting proposed changes in internal dosimetry. The differences among the internal-dosimetry programs are related to the radioelements in use at each facility and, to some extent, the number of workers at each facility. The differences include different frequencies in the use of quality control samples, different minimum detection levels, different methods of recording radionuclides, different amounts of data recorded in the permanent record, and apparent differences in modeling the metabolism of radionuclides within the body. Recommendations for improving internal-dosimetry practices include studying the relationship between air-monitoring/survey readings and bioassay data, establishing uniform methods for recording bioassay results, developing more sensitive direct-bioassay procedures, establishing a mechanism for sharing information on internal-dosimetry procedures among DOE facilities, and developing mathematical models and interactive computer codes that can help quantify the uptake of radioactive materials and predict their distribution in the body. 19 refs., 8 tabs.

  6. Advances in personnel neutron dosimetry: part 2

    SciTech Connect

    Vallario, E.; Faust, L.

    1983-08-01

    A continuation of the advances in personnel neutron dosimetry research programs and technology transfer reviews work on active dosimeters, electronic devices that determine the dose equivalent to a worker during an exposure to neutron radiation. Active dosemeters are routinely used for gamma radiation dosimetry. Experience with neutron-sensitive pocket rem-meters at several DOE laboratories covers three prototypes. Pocket rem-meters work well for detecting neutrons over a wide energy range. They give instantaneous readout of the accumulated neutron dose-equivalent. 1 figure.

  7. The calibration and use of plane-parallel ionization chambers for dosimetry of electron beams.

    PubMed

    Almond, P R; Xu, Z; Li, H; Park, H C

    1995-08-01

    The AAPM TG 39 protocol has proposed three different methods of calibrating plane-parallel ionization chambers, i.e., in-phantom irradiation with a high-energy electron beam and in-phantom and in-air 60Co irradiation. To verify the consistency of the three methods, we have measured Ngaspp values using each of these techniques for the five most commonly used plane-parallel chambers considered by the protocol. Our results demonstrate that the measured Ngaspp values for the three different methods for any of the chambers agree to within +/- 0.6%. Once Ngaspp was measured, the determination of absorbed dose for electron beams with different energies for an AECL Therac 20 and Philips SL25 was carried out according to the AAPM TG 39 protocol. The results show that the determination of the absorbed dose outputs for any of the five chambers agree to within +/- 0.7% for electron-beam energies of 4-20 MeV if all five chambers had Ngaspp values determined by the electron-beam method. The uncertainties are well within the expected error for these approaches.

  8. Backscatter factors and mass energy-absorption coefficient ratios for diagnostic radiology dosimetry.

    PubMed

    Benmakhlouf, Hamza; Bouchard, Hugo; Fransson, Annette; Andreo, Pedro

    2011-11-21

    Backscatter factors, B, and mass energy-absorption coefficient ratios, (μ(en)/ρ)(w, air), for the determination of the surface dose in diagnostic radiology were calculated using Monte Carlo simulations. The main purpose was to extend the range of available data to qualities used in modern x-ray techniques, particularly for interventional radiology. A comprehensive database for mono-energetic photons between 4 and 150 keV and different field sizes was created for a 15 cm thick water phantom. Backscattered spectra were calculated with the PENELOPE Monte Carlo system, scoring track-length fluence differential in energy with negligible statistical uncertainty; using the Monte Carlo computed spectra, B factors and (μ(en)/ρ)(w, air) were then calculated numerically for each energy. Weighted averaging procedures were subsequently used to convolve incident clinical spectra with mono-energetic data. The method was benchmarked against full Monte Carlo calculations of incident clinical spectra obtaining differences within 0.3-0.6%. The technique used enables the calculation of B and (μ(en)/ρ)(w, air) for any incident spectrum without further time-consuming Monte Carlo simulations. The adequacy of the extended dosimetry data to a broader range of clinical qualities than those currently available, while keeping consistency with existing data, was confirmed through detailed comparisons. Mono-energetic and spectra-averaged values were compared with published data, including those in ICRU Report 74 and IAEA TRS-457, finding average differences of 0.6%. Results are provided in comprehensive tables appropriated for clinical use. Additional qualities can easily be calculated using a designed GUI interface in conjunction with software to generate incident photon spectra.

  9. SU-E-T-340: Dosimetry of a Small Field Electron Beam for Innovative Radiotherapy of Small Surface Or Internal Tumors

    SciTech Connect

    Reft, C; Lu, Z; Noonan, J

    2015-06-15

    Purpose: An innovative small high intensity electron beams with energies from 6 to 12 MeV is being developed at Argonne National Laboratory to deliver an absorbed dose via a catheter to small malignant and nonmalignant lesions. This study reports on the initial dosimetric characteristics of this electron beam. These include output calibration, percent depth dose, beam profiles and leakage through the catheter. Methods: To simulate the narrow electron beam, the Argonne Wakefield Accelerator is used to produce high energy electron beams. The electron beam from the accelerator is monitored by measuring the current through a transmission coil while the beam shape is observed with a fluorescent screen. The dosimetry properties of the electron beam transmitting through bone and tissue-like materials are measured with nanodot optically stimulated luminescent dosimeters and EDR radiographic film. The 6 MV photon beam from a Varian True beam linac is used to calibrate both the OSLDs and the film. Results: The beam characteristics of the 12 MeV beam were measured. The properties of the small diameter, 5 mm, beam differs from that of broad clinical electron beams from radiotherapy linacs. Due to the lack of scatter from the narrow beam, the maximum dose is at the surface and the depth of the 50% depth dose is 35 mm compared to 51 mm for a clinical 12 MeV. The widths of the 90% isodose measured at the surface and depths of 2, 6, 12, and 16 mm varied from 6.6 to 8.8 mm while the widths of the FWHM isodose varied from 7.8 to 25.5 mm. Conclusion: Initial beam measurements show favorable dosimetric properties for its use in treating either small surface or internal lesions, particularly to deliver radiation at the time of surgery to maximize the dose to the lesion and spare normal tissue.

  10. Boron dose determination for BNCT using Fricke and EPR dosimetry

    SciTech Connect

    Wielopolski, L.; Ciesielski, B.

    1995-02-01

    In Boron Neutron Capture Therapy (BNCT) the dominant dose delivered to the tumor is due to {alpha} and {sup 7}Li charged particles resulting from a neutron capture by {sup 10}B and is referred to herein as the boron dose. Boron dose is directly attributable to the following two independent factors, one boron concentration and the neutron capture energy dependent cross section of boron, and two the energy spectrum of the neutrons that interact with boron. The neutron energy distribution at a given point is dictated by the incident neutron energy distribution, the depth in tissue, geometrical factors such as beam size and patient`s dimensions. To account for these factors can be accommodated by using Monte Carlo theoretical simulations. However, in conventional experimental BNCT dosimetry, e.g., using TLDs or ionization chambers, it is only possible to estimate the boron dose. To overcome some of the limitations in the conventional dosimetry, modifications in ferrous sulfate dosimetry (Fricke) and Electron Paramagnetic Resonance (EPR) dosimetry in alanine, enable to measure specifically boron dose in a mixed gamma neutron radiation fields. The boron dose, in either of the dosimeters, is obtained as a difference between measurements with boronated and unboronated dosimeters. Since boron participates directly in the measurements, the boron dosimetry reflects the true contribution, integral of the neutron energy spectrum with boron cross section, of the boron dose to the total dose. Both methods are well established and used extensively in dosimetry, they are presented briefly here.

  11. Dosimetry calculations for internal electron sources using a Korean reference adult stylised phantom.

    PubMed

    Park, S; Lee, J K; Lee, C; Lee, C

    2008-01-01

    Absorbed fractions (AFs) and specific absorbed fractions (SAFs) for internally deposited electron were calculated using a Korean reference adult stylised phantom, where a total of 15 internal organ volumes and external body dimension were designed to match average Korean adult male. The walls of oesophagus, stomach, colon and urinary bladder were additionally divided into the mucosal layer and residual wall to accommodate dose calculation for weakly penetrating electron. The mucosal wall thicknesses were determined by the data reported in the International Commission on Radiological Protection Publication 89 and other literature resources and by direct measurements. The Monte Carlo transport code MCNPX (version 2.5.0) was employed to calculate the electron energy deposited. The SAFs and AFs for monoenergetic electrons with the energies ranging from 10 keV to 2 MeV were calculated. The results were compared with those of the revised Oak Ridge National Laboratory phantoms and showed considerable differences up to 150% in SAFs, whereas no substantial differences were observed in the AFs.

  12. Retrospective assessment of radiation exposure using biological dosimetry: chromosome painting, electron paramagnetic resonance and the glycophorin a mutation assay.

    PubMed

    Kleinerman, R A; Romanyukha, A A; Schauer, D A; Tucker, J D

    2006-07-01

    Biological monitoring of dose can contribute important, independent estimates of cumulative radiation exposure in epidemiological studies, especially in studies in which the physical dosimetry is lacking. Three biodosimeters that have been used in epidemiological studies to estimate past radiation exposure from external sources will be highlighted: chromosome painting or FISH (fluorescence in situ hybridization), the glycophorin A somatic mutation assay (GPA), and electron paramagnetic resonance (EPR) with teeth. All three biodosimeters have been applied to A-bomb survivors, Chernobyl clean-up workers, and radiation workers. Each biodosimeter has unique advantages and limitations depending upon the level and type of radiation exposure. Chromosome painting has been the most widely applied biodosimeter in epidemiological studies of past radiation exposure, and results of these studies provide evidence that dose-related translocations persist for decades. EPR tooth dosimetry has been used to validate dose models of acute and chronic radiation exposure, although the present requirement of extracted teeth has been a disadvantage. GPA has been correlated with physically based radiation dose after high-dose, acute exposures but not after low-dose, chronic exposures. Interindividual variability appears to be a limitation for both chromosome painting and GPA. Both of these techniques can be used to estimate the level of past radiation exposure to a population, whereas EPR can provide individual dose estimates of past exposure. This paper will review each of these three biodosimeters and compare their application in selected epidemiological studies.

  13. Low energy electron magnetometer using a monoenergetic electron beam

    NASA Technical Reports Server (NTRS)

    Singh, J. J.; Wood, G. M.; Rayborn, G. H.; White, F. A. (Inventor)

    1983-01-01

    A low energy electron beam magnetometer utilizes near-monoenergetic electrons thereby reducing errors due to electron energy spread and electron nonuniform angular distribution. In a first embodiment, atoms in an atomic beam of an inert gas are excited to a Rydberg state and then electrons of near zero energy are detached from the Rydberg atoms. The near zero energy electrons are then accelerated by an electric field V(acc) to form the electron beam. In a second embodiment, a filament emits electrons into an electrostatic analyzer which selects electrons at a predetermined energy level within a very narrow range. These selected electrons make up the electron beam that is subjected to the magnetic field being measured.

  14. Verification of absorbed dose determined with plane-parallel chambers in clinical electron beams following AAPM Task Group 39 protocol using ferrous sulphate dosimetry.

    PubMed

    Xu, Z; Li, H; Almond, P R; Guan, T Y

    1996-03-01

    The absorbed dose values determined with the Exradin and PTW-Markus plane-parallel chambers were compared to the values obtained with the ferrous sulphate dosimetry for a number of the Philips SL25 and the Therac 20 electron beams. For the plane-parallel chambers, the cavity-gas calibration factor Ngaspp, was derived by a direct comparison with a calibrated cylindrical chamber using the three different calibration methods as proposed by the newly published AAPM TG 39 protocol. For the ferrous sulphate dosimetry, an epsilon mG value of 352 x 10(-6) m-2 kg-1 Gy-1 was adopted from ICRU Report No. 35. The average ratio of the dose values determined with the plane-parallel chambers and the dose values determined with the Fricke dosimetry system was 1.001 +/- 1.4%. These measurements are consistent with the AAPM TG 39 protocol.

  15. ELECTRON ABSORBED FRACTIONS IN AN IMAGE-BASED MICROSCOPIC SKELETAL DOSIMETRY MODEL OF CHINESE ADULT MALE.

    PubMed

    Gao, Shenshen; Ren, Li; Qiu, Rui; Wu, Zhen; Li, Chunyan; Li, Junli

    2017-01-10

    Based on the Chinese reference adult male voxel model, a set of microscopic skeletal models of Chinese adult male is constructed through the processes of computed tomography (CT) imaging, bone coring, micro-CT imaging, image segmentation, merging into macroscopic bone model and implementation in Geant4. At the step of image segmentation, a new bone endosteum (BE) segmentation method is realized by sampling. The set of model contains 32 spongiosa samples with voxel size of 19 μm cubes. The microscopic spongiosa bone data for Chinese adult male are provided. Electron absorbed fractions in red bone marrow (RBM) and BE are calculated. Source tissues include the bone marrow (red and yellow), trabecular bone (surfaces and volumes) and cortical bone (surfaces and volumes). Target tissues include RBM and BE. Electron energies range from 10 keV to 10 MeV. Additionally, comparison of the result with other investigations is provided.

  16. Computational Dosimetry for Electron Microbeams: Monte-Carlo Track Simulation with Confocal Microscopy

    SciTech Connect

    Miller, John H.; Wilson, W E.; Lynch, D J.; Resat, Marianne S.; Trease, Harold E.

    2001-10-15

    Both in vitro and in vivo experiments show that cells that do not receive energy directly from the radiation field (bystanders) respond to radiation exposure. This effect is most easily demonstrated with radiation fields composed of particles with high linear energy transfer (LET) that traverse only a few cells before they are stopped. Even at a moderate fluence of high-LET radiation only a small fraction of cells in the irradiated population are hit; hence, many bystanders are present. Low-LET radiation tends to generate a homogeneous distribution of dose at the cellular level so that identifying bystanders is much more difficult than in experiments with the same fluence of high-LET radiation. Experiments are underway at several laboratories to characterize bystander responses induced by low-LET radiation. At the Pacific Northwest National Laboratory, experiments of this type are being carried out with an electron microbeam. A cell selected to receive energy directly from the irradiation source is placed over a hole in a mask that covers an electron gun. Monte Carlo simulations by Miller et al.(1) suggest that individual mammalian cells in a confluent monolayer could be targeted for irradiation by 25 to 100 keV electrons with minimal dose leakage to their neighbors. These calculations were based on a simple model of the cellular monolayer in which cells were assumed to be cylindrically symmetric with concentric cytoplasm and nucleus. Radial profiles, the lateral extent of cytoplasm and nucleus as a function of depth into a cell, were obtained from confocal microscopy of HeLa-cell monolayers.

  17. Comparison between X-rays spectra and their effective energies in small animal CT tomographic imaging and dosimetry.

    PubMed

    Hamdi, Mahdjoub; Mimi, Malika; Bentourkia, M'hamed

    2017-03-01

    Small animal CT imaging and dosimetry usually rely on X-ray radiation produced by X-ray tubes. These X-rays typically cover a large energy range. In this study, we compared poly-energetic X-ray spectra against estimated equivalent (effective) mono-energetic beams with the same number of simulated photons for small animal CT imaging and dosimetry applications. Two poly-energetic X-ray spectra were generated from a tungsten anode at 50 and 120 kVp. The corresponding effective mono-energetic beams were established as 36 keV for the 50 kVp spectrum and 49.5 keV for the 120 kVp spectrum. To assess imaging applications, we investigated the spatial resolution by a tungsten wire, and the contrast-to-noise ratio in a reference phantom and in a realistic mouse phantom. For dosimetry investigation, we calculated the absorbed dose in a segmented digital mouse atlas in the skin, fat, heart and bone tissues. Differences of 2.1 and 2.6% in spatial resolution were respectively obtained between the 50 and 120 kVp poly-energetic spectra and their respective 36 and 49.5 keV mono-energetic beams. The differences in contrast-to-noise ratio between the poly-energetic 50 kVp spectrum and its corresponding mono-energetic 36 keV beam for air, fat, brain and bone were respectively -2.9, -0.2, 11.2 and -4.8%, and similarly between the 120 kVp and its effective energy 49.5 keV: -11.3, -20.2, -4.2 and -13.5%. Concerning the absorbed dose, for the lower X-ray beam energies, 50 kVp against 36 keV, the poly-energetic radiation doses were higher than the mono-energetic doses. Instead, for the higher X-ray beam energies, 120 kVp and 49.5 keV, the absorbed dose to the bones and lungs were higher for the mono-energetic 49.5 keV. The intensity and energy of the X-ray beam spectrum have an impact on both imaging and dosimetry in small animal studies. Simulations with mono-energetic beams should take into account these differences in order to study biological effects or to be compared to

  18. Mycosis Fungoides electron beam absorbed dose distribution using Fricke xylenol gel dosimetry

    NASA Astrophysics Data System (ADS)

    da Silveira, Michely C.; Sampaio, Francisco G. A.; Petchevist, Paulo C. D.; de Oliveira, André L.; Almeida, Adelaide de

    2011-12-01

    Radiotherapy uses ionizing radiation to destroy tumor cells. The absorbed dose control in the target volume is realized through radiation sensors, such as Fricke dosimeters and radiochromic film, which permit to realize bi-dimensional evaluations at once and because of that, they will be used in this study as well. Among the several types of cancer suitable for ionizing radiation treatment, the Mycosis Fungoides, a lymphoma that spreads on the skin surface and depth, requires for its treatment total body irradiation by high-energy electrons. In this work the Fricke xylenol gel (FXG) was used in order to obtain information about the absorbed dose distribution induced by the electron interactions with the irradiated tissues and to control this type of treatment. FXG can be considered as an alternative dosimeter, since up to now only films have been used. FXG sample cuvettes, simulating two selected tomos (cranium and abdomen) of the Rando anthropomorphic phantom, were positioned along with radiochromic films for comparison. The phantom was subjected to Stanford total body irradiation using 6 MeV electrons. Tomographic images were acquired for both dosimeters and evaluated through horizontal and vertical profiles along the tomographic centers. These profiles were obtained through a Matlab routine developed for this purpose. From the obtained results, one could infer that, for a superficial and internal patient irradiation, the FXG dosimeter showed an absorbed dose distribution similar to the one of the film. These results can validate the FXG dosimeter as an alternative dosimeter for the Mycosis Fungoides treatment planning.

  19. Energy Efficient Electronics Cooling Project

    SciTech Connect

    Steve O'Shaughnessey; Tim Louvar; Mike Trumbower; Jessica Hunnicutt; Neil Myers

    2012-02-17

    Parker Precision Cooling Business Unit was awarded a Department of Energy grant (DE-EE0000412) to support the DOE-ITP goal of reducing industrial energy intensity and GHG emissions. The project proposed by Precision Cooling was to accelerate the development of a cooling technology for high heat generating electronics components. These components are specifically related to power electronics found in power drives focused on the inverter, converter and transformer modules. The proposed cooling system was expected to simultaneously remove heat from all three of the major modules listed above, while remaining dielectric under all operating conditions. Development of the cooling system to meet specific customer's requirements and constraints not only required a robust system design, but also new components to support long system functionality. Components requiring further development and testing during this project included pumps, fluid couplings, cold plates and condensers. All four of these major categories of components are required in every Precision Cooling system. Not only was design a key area of focus, but the process for manufacturing these components had to be determined and proven through the system development.

  20. A survey of physical dosimetry to date and in the near future: Part 1. Review of standards and regulatory issues.

    PubMed

    Cassata, James R

    2002-02-01

    This article summarizes the status of the relevant standards and current regulatory issues for use of physical dosimetry devices for the occupational worker in the United States. Included is a summary of relevant standards from the International Organization for Standardization (ISO), the International Electrotechnical Commission (IEC), the American National Standards Institute (ANSI), the United States Nuclear Regulatory Commission NUREG-Series, the National Voluntary Laboratory Accreditation Program (NVLAP), the Department of Energy Laboratory Accreditation Program (DOELAP), and the U.S. Military Specifications and Standards (MIL-STD). Proposed changes to ANSI N13.11-1993, "American National Standard for Dosimetry-Personnel Dosimetry Performance Criteria for Testing," are listed. The strategic changes that the United States Nuclear Regulatory Commission (NRC) is making in rulemaking activities related to dosimetry and standards are given. The status of Measurement Program Description (MPD) C.18, "Implementation of Electronic Dosimetry for Primary Dosimetry," from the Council on Ionizing Radiation Measurements and Standards (CIRMS) is given.

  1. Response of LiF:Mg,Ti thermoluminescent dosimeters at photon energies relevant to the dosimetry of brachytherapy (<1 MeV)

    SciTech Connect

    Tedgren, Aasa Carlsson; Hedman, Angelica; Grindborg, Jan-Erik; Carlsson, Gudrun Alm

    2011-10-15

    Purpose: High energy photon beams are used in calibrating dosimeters for use in brachytherapy since absorbed dose to water can be determined accurately and with traceability to primary standards in such beams, using calibrated ion chambers and standard dosimetry protocols. For use in brachytherapy, beam quality correction factors are needed, which include corrections for differences in mass energy absorption properties between water and detector as well as variations in detector response (intrinsic efficiency) with radiation quality, caused by variations in the density of ionization (linear energy transfer (LET) -distributions) along the secondary electron tracks. The aim of this work was to investigate experimentally the detector response of LiF:Mg,Ti thermoluminescent dosimeters (TLD) for photon energies below 1 MeV relative to {sup 60}Co and to address discrepancies between the results found in recent publications of detector response. Methods: LiF:Mg,Ti dosimeters of formulation MTS-N Poland were irradiated to known values of air kerma free-in-air in x-ray beams at tube voltages 25-250 kV, in {sup 137}Cs- and {sup 60}Co-beams at the Swedish Secondary Standards Dosimetry Laboratory. Conversions from air kerma free-in-air into values of mean absorbed dose in the dosimeters in the actual irradiation geometries were made using EGSnrc Monte Carlo simulations. X-ray energy spectra were measured or calculated for the actual beams. Detector response relative to that for {sup 60}Co was determined at each beam quality. Results: An increase in relative response was seen for all beam qualities ranging from 8% at tube voltage 25 kV (effective energy 13 keV) to 3%-4% at 250 kV (122 keV effective energy) and {sup 137}Cs with a minimum at 80 keV effective energy (tube voltage 180 kV). The variation with effective energy was similar to that reported by Davis et al.[Radiat. Prot. Dosim. 106, 33-43 (2003)] with our values being systematically lower by 2%-4%. Compared to the

  2. Limitations of current dosimetry for intracavitary accelerated partial breast irradiation with high dose rate iridium-192 and electronic brachytherapy sources

    NASA Astrophysics Data System (ADS)

    Raffi, Julie A.

    illustrate the limitations of TG-43 dosimetry for intracavitary APBI. TG-43 dose calculations overestimate the dose for regions approaching the lung and breast surface and underestimate the dose for regions in and beyond less-attenuating media such as lung tissue, and for lower energies, breast tissue as well.

  3. Housing Electrons: Relating Quantum Numbers, Energy Levels, and Electron Configurations.

    ERIC Educational Resources Information Center

    Garofalo, Anthony

    1997-01-01

    Presents an activity that combines the concepts of quantum numbers and probability locations, energy levels, and electron configurations in a concrete, hands-on way. Uses model houses constructed out of foam board and colored beads to represent electrons. (JRH)

  4. Mass, energy, and the electron

    SciTech Connect

    Mulligan, Bernard . E-mail: mulligan.3@osu.edu

    2006-08-15

    The two-component solutions of the Dirac equation currently in use are not separately a particle equation or an antiparticle equation. We present a unitary transformation that uncouples the four-component, force-free Dirac equation to yield a two-component spinor equation for the force-free motion of a relativistic particle and a corresponding two-component, time-reversed equation for an antiparticle. The particle-antiparticle nature of the two equations is established by applying to the solutions of these two-component equations criteria analogous to those applied for establishing the four-component particle and antiparticle solutions of the four-component Dirac equation. Wave function solutions of our two-component particle equation describe both a right and a left circularly polarized particle. Interesting characteristics of our solutions include spatial distributions that are confined in extent along directions perpendicular to the motion, without the artifice of wave packets, and an intrinsic chirality (handedness) that replaces the usual definition of chirality for particles without mass. Our solutions demonstrate that both the rest mass and the relativistic increase in mass with velocity of the force-free electron are due to an increase in the rate of Zitterbewegung with velocity. We extend this result to a bound electron, in which case the loss of energy due to binding is shown to decrease the rate of Zitterbewegung.

  5. Energy absorption buildup factors, exposure buildup factors and Kerma for optically stimulated luminescence materials and their tissue equivalence for radiation dosimetry

    NASA Astrophysics Data System (ADS)

    Singh, Vishwanath P.; Badiger, N. M.

    2014-11-01

    Optically stimulated luminescence (OSL) materials are sensitive dosimetric materials used for precise and accurate dose measurement for low-energy ionizing radiation. Low dose measurement capability with improved sensitivity makes these dosimeters very useful for diagnostic imaging, personnel monitoring and environmental radiation dosimetry. Gamma ray energy absorption buildup factors and exposure build factors were computed for OSL materials using the five-parameter Geometric Progression (G-P) fitting method in the energy range 0.015-15 MeV for penetration depths up to 40 mean free path. The computed energy absorption buildup factor and exposure buildup factor values were studied as a function of penetration depth and incident photon energy. Effective atomic numbers and Kerma relative to air of the selected OSL materials and tissue equivalence were computed and compared with that of water, PMMA and ICRU standard tissues. The buildup factors and kerma relative to air were found dependent upon effective atomic numbers. Buildup factors determined in the present work should be useful in radiation dosimetry, medical diagnostics and therapy, space dosimetry, accident dosimetry and personnel monitoring.

  6. Free-air ionization chamber, FAC-IR-300, designed for medium energy X-ray dosimetry

    NASA Astrophysics Data System (ADS)

    Mohammadi, S. M.; Tavakoli-Anbaran, H.; Zeinali, H. Z.

    2017-01-01

    The primary standard for X-ray photons is based on parallel-plate free-air ionization chamber (FAC). Therefore, the Atomic Energy Organization of Iran (AEOI) is tried to design and build the free-air ionization chamber, FAC-IR-300, for low and medium energy X-ray dosimetry. The main aim of the present work is to investigate specification of the FAC-IR-300 ionization chamber and design it. FAC-IR-300 dosimeter is composed of two parallel plates, a high voltage (HV) plate and a collector plate, along with a guard electrode that surrounds the collector plate. The guard plate and the collector were separated by an air gap. For obtaining uniformity in the electric field distribution, a group of guard strips was used around the ionization chamber. These characterizations involve determining the exact dimensions of the ionization chamber by using Monte Carlo simulation and introducing correction factors.

  7. Performance characteristics of a gated fiber-optic-coupled dosimeter in high-energy pulsed photon radiation dosimetry.

    PubMed

    Tanyi, James A; Krafft, Shane P; Ushino, Toshihide; Huston, Alan L; Justus, Brian L

    2010-02-01

    Fiber-optic-coupled dosimeters (FOCDs) are a new class of in vivo dosimetry systems that are finding increased clinical applications. Utility of FOCDs has been limited in dosimetric applications due Cerenkov-ray signal contamination. The current study reports on the characterization of a novel FOCD, with a gated detection system for the discrimination and effective elimination of the direct contribution of Cerenkov radiation, for use in the radiotherapeutic realm. System reproducibility, linearity and output dependence on dose rate, energy, field size, and temperature response were characterized for 6, 10, and 15MV photon energies. The system exhibited a linear response to absorbed dose ranging from 1 to 2400cGy and showed little dependence to dose rate variations. Overall system reproducibility was 0.52% with no field-geometry and temperature dependence.

  8. Computational dosimetry

    SciTech Connect

    Siebert, B.R.L.; Thomas, R.H.

    1996-01-01

    The paper presents a definition of the term ``Computational Dosimetry`` that is interpreted as the sub-discipline of computational physics which is devoted to radiation metrology. It is shown that computational dosimetry is more than a mere collection of computational methods. Computational simulations directed at basic understanding and modelling are important tools provided by computational dosimetry, while another very important application is the support that it can give to the design, optimization and analysis of experiments. However, the primary task of computational dosimetry is to reduce the variance in the determination of absorbed dose (and its related quantities), for example in the disciplines of radiological protection and radiation therapy. In this paper emphasis is given to the discussion of potential pitfalls in the applications of computational dosimetry and recommendations are given for their avoidance. The need for comparison of calculated and experimental data whenever possible is strongly stressed.

  9. Review of the near-earth space radiation dosimetry

    NASA Astrophysics Data System (ADS)

    Guo, Jianming; Chen, Xiaoqian; Li, Shiyou

    2016-07-01

    The near-earth space radiation environment has a great effect to the spacecraft and maybe do harm to the astronaut's health. Thus, how to measure the radiation has become a serious challenge. In order to provide sufficient protection both for astronauts and for instruments on-board, dose equivalent and linear energy transfer should be measured instead of merely measuring total radiation dose. This paper reviews the methods of radiation measurement and presents a brief introduction of dosimetry instruments. The method can be divided into two different kinds, i.e., positive dosimetry and passive dosimetry. The former usually includes electronic devices which can be used for data storage and can offer simultaneous monitoring on space radiation. The passive dosimetry has a much simple structure, and need extra operation after on-orbit missions for measuring. To get more reliable data of radiation dosimetry, various instruments and methods had been applied in the spacecrafts and the manned spacecrafts in particular. The outlook of the development in the space radiation dosimetry measurement is also presented.

  10. Correlation between energy deposition and molecular damage from Auger electrons: A case study of ultra-low energy (5–18 eV) electron interactions with DNA

    SciTech Connect

    Rezaee, Mohammad Hunting, Darel J.; Sanche, Léon

    2014-07-15

    Purpose: The present study introduces a new method to establish a direct correlation between biologically related physical parameters (i.e., stopping and damaging cross sections, respectively) for an Auger-electron emitting radionuclide decaying within a target molecule (e.g., DNA), so as to evaluate the efficacy of the radionuclide at the molecular level. These parameters can be applied to the dosimetry of Auger electrons and the quantification of their biological effects, which are the main criteria to assess the therapeutic efficacy of Auger-electron emitting radionuclides. Methods: Absorbed dose and stopping cross section for the Auger electrons of 5–18 eV emitted by{sup 125}I within DNA were determined by developing a nanodosimetric model. The molecular damages induced by these Auger electrons were investigated by measuring damaging cross section, including that for the formation of DNA single- and double-strand breaks. Nanoscale films of pure plasmid DNA were prepared via the freeze-drying technique and subsequently irradiated with low-energy electrons at various fluences. The damaging cross sections were determined by employing a molecular survival model to the measured exposure–response curves for induction of DNA strand breaks. Results: For a single decay of{sup 125}I within DNA, the Auger electrons of 5–18 eV deposit the energies of 12.1 and 9.1 eV within a 4.2-nm{sup 3} volume of a hydrated or dry DNA, which results in the absorbed doses of 270 and 210 kGy, respectively. DNA bases have a major contribution to the deposited energies. Ten-electronvolt and high linear energy transfer 100-eV electrons have a similar cross section for the formation of DNA double-strand break, while 100-eV electrons are twice as efficient as 10 eV in the induction of single-strand break. Conclusions: Ultra-low-energy electrons (<18 eV) substantially contribute to the absorbed dose and to the molecular damage from Auger-electron emitting radionuclides; hence, they should

  11. Electron Attachment to Molecules at Low Electron Energies

    NASA Technical Reports Server (NTRS)

    Chutjian, A.; Garscadden, A.; Wadehra, J. M.

    1994-01-01

    One of the most efficient ways of producing negative ions is by the process of dissociative electron attachment to molecules. Here, a diatomic or polyatomic molecule dissociates, by the impact of a low energy electron, into component atoms (or smaller molecular species) while the incident electron attaches itself to one of the dissociating fragments.

  12. Single track nanodosimetry of low energy electrons

    NASA Astrophysics Data System (ADS)

    Bantsar, A.; Grosswendt, B.; Pszona, S.; Kula, J.

    2009-02-01

    Auger-electron-emitting radionuclides (for instance, 125I) with a predominant energy spectrum below 3 keV are an active area of research towards the clinical application of radiopharmaceuticals. Hence, the necessity for an adequate description of the effects of radiation by low-energy electrons on nanometric biological targets seems to be unquestionable. Experimental nanodosimetry for low-energy electrons has been accomplished with a device named JET COUNTER. The present paper describes, for the first time, nanodosimetric experiments in nanometer-sized cavities of nitrogen using low energy electrons ranging from 100 eV to 2 keV.

  13. Accuracy of dose planning for prostate radiotherapy in the presence of metallic implants evaluated by electron spin resonance dosimetry

    PubMed Central

    Alves, G.G.; Kinoshita, A.; de Oliveira, H.F.; Guimarães, F.S.; Amaral, L.L.; Baffa, O.

    2015-01-01

    Radiotherapy is one of the main approaches to cure prostate cancer, and its success depends on the accuracy of dose planning. A complicating factor is the presence of a metallic prosthesis in the femur and pelvis, which is becoming more common in elderly populations. The goal of this work was to perform dose measurements to check the accuracy of radiotherapy treatment planning under these complicated conditions. To accomplish this, a scale phantom of an adult pelvic region was used with alanine dosimeters inserted in the prostate region. This phantom was irradiated according to the planned treatment under the following three conditions: with two metallic prostheses in the region of the femur head, with only one prosthesis, and without any prostheses. The combined relative standard uncertainty of dose measurement by electron spin resonance (ESR)/alanine was 5.05%, whereas the combined relative standard uncertainty of the applied dose was 3.35%, resulting in a combined relative standard uncertainty of the whole process of 6.06%. The ESR dosimetry indicated that there was no difference (P>0.05, ANOVA) in dosage between the planned dose and treatments. The results are in the range of the planned dose, within the combined relative uncertainty, demonstrating that the treatment-planning system compensates for the effects caused by the presence of femur and hip metal prostheses. PMID:26017344

  14. A highly sensitive CaF2:Dy nanophosphor as an efficient low energy ion dosimetry

    NASA Astrophysics Data System (ADS)

    Bhadane, Mahesh S.; Hareesh, K.; Dahiwale, S. S.; Sature, K. R.; Patil, B. J.; Asokan, K.; Kanjilal, D.; Bhoraskar, V. N.; Dhole, S. D.

    2016-11-01

    Dysprosium doped calcium fluoride (CaF2:Dy) powers synthesized by co-precipitation method were irradiated with low energy ion beams (LEIB) viz. 100 keV H, 200 keV Ar and 350 keV N beams at different fluences and demonstrated for low energy ion dosimetric application. X-ray Diffraction and Transmission electron microscopy revealed the formation of highly crystalline cubic structured particles with size ∼45-50 nm. FTIR spectra of the CaF2:Dy samples show changes of some bonds such as N-O asymmetric, C-F bonding and C-H aromatic contain stretching mode after LEIB irradiation. The thermoluminescence (TL) glow curve peaks were observed at 207 °C for Ar ion, at 203 °C for H ion and at 216 °C and 270 °C for N ion. It has been found that CaF2:Dy nanophosphor shows a linear response with minimum fading for all the ion species. Computerized Glow Curve Deconvolution was performed for TL curve of high fluence ion irradiated nanophosphor to estimate the trapping parameters and the respective figure of merit (FOM) found to be very appropriate for all the nanophosphor. These results indicated that the CaF2:Dy can be used as a low energy ion detector or dose.

  15. Comparative dosimetric characterization for different types of detectors in high-energy electron beams

    NASA Astrophysics Data System (ADS)

    Lee, Chang Yeol; Kim, Woo Chul; Kim, Hun Jeong; Huh, Hyun Do; Park, Seungwoo; Choi, Sang Hyoun; Kim, Kum Bae; Min, Chul Kee; Kim, Seong Hoon; Shin, Dong Oh

    2017-02-01

    The purpose of this study is to perform a comparison and on analysis of measured dose factor values by using various commercially available high-energy electron beam detectors to measure dose profiles and energy property data. By analyzing the high-energy electron beam data from each detector, we determined the optimal detector for measuring electron beams in clinical applications. The dose linearity, dose-rate dependence, percentage depth dose, and dose profile of each detector were measured to evaluate the dosimetry characteristics of high-energy electron beams. The dose profile and the energy characteristics of high-energy electron beams were found to be different when measured by different detectors. Through comparison with other detectors based on the analyzed data, the microdiamond detector was found to have outstanding dose linearity, a low dose-rate dependency, and a small effective volume. Thus, this detector has outstanding spatial resolution and is the optimal detector for measuring electron beams. Radiation therapy results can be improved and related medical accidents can be prevented by using the procedure developed in this research in clinical practice for all beam detectors when measuring the electron beam dose.

  16. Electronic correlation contributions to structural energies

    NASA Astrophysics Data System (ADS)

    Haydock, Roger

    2015-03-01

    The recursion method is used to calculate electronic excitation spectra including electron-electron interactions within the Hubbard model. The effects of correlation on structural energies are then obtained from these spectra and applied to stacking faults. http://arxiv.org/abs/1405.2288 Supported by the Richmond F. Snyder Fund and Gifts.

  17. Attainment of Electron Beam Suitable for Medium Energy Electron Cooling

    SciTech Connect

    Seletskiy, Sergei M.

    2005-01-01

    Electron cooling of charged particle beams is a well-established technique at electron energies of up to 300 keV. However, up to the present time the advance of electron cooling to the MeV-range energies has remained a purely theoretical possibility. The electron cooling project at Fermilab has recently demonstrated the ¯rst cooling of 8.9 GeV/c antiprotons in the Recycler ring, and therefore, has proved the validity of the idea of relativistic electron cool- ing. The Recycler Electron Cooler (REC) is the key component of the Teva- tron Run II luminosity upgrade project. Its performance depends critically on the quality of electron beam. A stable electron beam of 4.3 MeV car- rying 0.5 A of DC current is required. The beam suitable for the Recycler Electron Cooler must have an angular spread not exceeding 200 ¹rad. The full-scale prototype of the REC was designed, built and tested at Fermilab in the Wideband laboratory to study the feasibility of attaining the high-quality electron beam. In this thesis I describe various aspects of development of the Fermilab electron cooling system, and the techniques used to obtain the electron beam suitable for the cooling process. In particular I emphasize those aspects of the work for which I was principally responsible.

  18. Energy efficiency of electron plasma emitters

    SciTech Connect

    Zalesski, V. G.

    2011-12-15

    Electron emission influence from gas-discharge plasma on plasma emitter energy parameters is considered. It is shown, that electron emission from plasma is accompanied by energy contribution redistribution in the gas-discharge from plasma emitter supplies sources-the gas-discharge power supply and the accelerating voltage power supply. Some modes of electron emission as a result can be realized: 'a probe measurements mode,' 'a transitive mode,' and 'a full switching mode.'.

  19. Measurement of the neutron energy spectrum on the Godiva IV fast burst assembly for application to neutron dosimetry studies

    SciTech Connect

    Casson, W.H.; Hsu, H.H.; Paternoster, R.R.; Butterfield, K.B.

    1996-06-01

    In June, 1995, Los Alamos National Laboratory hosted the 23rd U.S. Department of Energy sponsored Nuclear Accident Dosimetry Study at the Los Alamos Critical Experiments Facility. The participants tested their facilities accident dosimeters under a variety of neutrons fields produced by the Solution High Energy Burst Assembly (SHEBA) and the Godiva IV fast burst assembly. To provide useful information for the evaluation of the results, the neutron energy Spectrum was determined and the delivered absorbed dose to tissue. The measurement of the neutron energy spectrum on Godiva provides a unique problem in that the burst, which is nearly Gaussian in time, has a full width at half maximum of around 50 microseconds. The neutron spectrum was first determined at low-power while running at delayed critical using a standard set of Bonner spheres. At the same time, the response of a set of TLD dosimeters were measured. After that, measurements were conducted during a burst with another set of TLDs and with sulfur pellets.

  20. Ion storage dosimetry

    NASA Astrophysics Data System (ADS)

    Mathur, V. K.

    2001-09-01

    The availability of a reliable, accurate and cost-effective real-time personnel dosimetry system is fascinating to radiation workers. Electronic dosimeters are contemplated to meet this demand of active dosimetry. The development of direct ion storage (DIS) dosimeters, a member of the electronic dosimeter family, for personnel dosimetry is also an attempt in this direction. DIS dosimeter is a hybrid of the well-established technology of ion chambers and the latest advances in data storage using metal oxide semiconductor field effect transistor (MOSFET) analog memory device. This dosimeter is capable of monitoring legal occupational radiation doses of gamma, X-rays, beta and neutron radiation. Similar to an ion chamber, the performance of the dosimeter for a particular application can be optimized through the selection of appropriate wall materials. The use of the floating gate of a MOSFET as one of the electrodes of the ion chamber allows the miniaturization of the device to the size of a dosimetry badge and avoids the use of power supplies during dose accumulation. The concept of the device, underlying physics and the design of the DIS dosimeter are discussed. The results of preliminary testing of the device are also provided.

  1. Assessment of a 2D electronic portal imaging devices-based dosimetry algorithm for pretreatment and in-vivo midplane dose verification

    PubMed Central

    Jomehzadeh, Ali; Shokrani, Parvaneh; Mohammadi, Mohammad; Amouheidari, Alireza

    2016-01-01

    Background: The use of electronic portal imaging devices (EPIDs) is a method for the dosimetric verification of radiotherapy plans, both pretreatment and in vivo. The aim of this study is to test a 2D EPID-based dosimetry algorithm for dose verification of some plans inside a homogenous and anthropomorphic phantom and in vivo as well. Materials and Methods: Dose distributions were reconstructed from EPID images using a 2D EPID dosimetry algorithm inside a homogenous slab phantom for a simple 10 × 10 cm2 box technique, 3D conformal (prostate, head-and-neck, and lung), and intensity-modulated radiation therapy (IMRT) prostate plans inside an anthropomorphic (Alderson) phantom and in the patients (one fraction in vivo) for 3D conformal plans (prostate, head-and-neck and lung). Results: The planned and EPID dose difference at the isocenter, on an average, was 1.7% for pretreatment verification and less than 3% for all in vivo plans, except for head-and-neck, which was 3.6%. The mean γ values for a seven-field prostate IMRT plan delivered to the Alderson phantom varied from 0.28 to 0.65. For 3D conformal plans applied for the Alderson phantom, all γ1% values were within the tolerance level for all plans and in both anteroposterior and posteroanterior (AP-PA) beams. Conclusion: The 2D EPID-based dosimetry algorithm provides an accurate method to verify the dose of a simple 10 × 10 cm2 field, in two dimensions, inside a homogenous slab phantom and an IMRT prostate plan, as well as in 3D conformal plans (prostate, head-and-neck, and lung plans) applied using an anthropomorphic phantom and in vivo. However, further investigation to improve the 2D EPID dosimetry algorithm for a head-and-neck case, is necessary. PMID:28028511

  2. Topical Review: Polymer gel dosimetry

    PubMed Central

    Baldock, C; De Deene, Y; Doran, S; Ibbott, G; Jirasek, A; Lepage, M; McAuley, K B; Oldham, M; Schreiner, L J

    2010-01-01

    Polymer gel dosimeters are fabricated from radiation sensitive chemicals which, upon irradiation, polymerize as a function of the absorbed radiation dose. These gel dosimeters, with the capacity to uniquely record the radiation dose distribution in three-dimensions (3D), have specific advantages when compared to one-dimensional dosimeters, such as ion chambers, and two-dimensional dosimeters, such as film. These advantages are particularly significant in dosimetry situations where steep dose gradients exist such as in intensity-modulated radiation therapy (IMRT) and stereotactic radiosurgery. Polymer gel dosimeters also have specific advantages for brachytherapy dosimetry. Potential dosimetry applications include those for low-energy x-rays, high-linear energy transfer (LET) and proton therapy, radionuclide and boron capture neutron therapy dosimetries. These 3D dosimeters are radiologically soft-tissue equivalent with properties that may be modified depending on the application. The 3D radiation dose distribution in polymer gel dosimeters may be imaged using magnetic resonance imaging (MRI), optical-computerized tomography (optical-CT), x-ray CT or ultrasound. The fundamental science underpinning polymer gel dosimetry is reviewed along with the various evaluation techniques. Clinical dosimetry applications of polymer gel dosimetry are also presented. PMID:20150687

  3. TOPICAL REVIEW: Polymer gel dosimetry

    NASA Astrophysics Data System (ADS)

    Baldock, C.; De Deene, Y.; Doran, S.; Ibbott, G.; Jirasek, A.; Lepage, M.; McAuley, K. B.; Oldham, M.; Schreiner, L. J.

    2010-03-01

    Polymer gel dosimeters are fabricated from radiation sensitive chemicals which, upon irradiation, polymerize as a function of the absorbed radiation dose. These gel dosimeters, with the capacity to uniquely record the radiation dose distribution in three-dimensions (3D), have specific advantages when compared to one-dimensional dosimeters, such as ion chambers, and two-dimensional dosimeters, such as film. These advantages are particularly significant in dosimetry situations where steep dose gradients exist such as in intensity-modulated radiation therapy (IMRT) and stereotactic radiosurgery. Polymer gel dosimeters also have specific advantages for brachytherapy dosimetry. Potential dosimetry applications include those for low-energy x-rays, high-linear energy transfer (LET) and proton therapy, radionuclide and boron capture neutron therapy dosimetries. These 3D dosimeters are radiologically soft-tissue equivalent with properties that may be modified depending on the application. The 3D radiation dose distribution in polymer gel dosimeters may be imaged using magnetic resonance imaging (MRI), optical-computerized tomography (optical-CT), x-ray CT or ultrasound. The fundamental science underpinning polymer gel dosimetry is reviewed along with the various evaluation techniques. Clinical dosimetry applications of polymer gel dosimetry are also presented.

  4. Hot Electron Energy Relaxation in Quantum Wells

    NASA Astrophysics Data System (ADS)

    Yang, Chia-Hung

    We present experimental results on hot electron relaxation in doped bulk GaAs and quantum wells. Using steady state photoluminescence we measured the electron -LO phonon scattering time for thermalized hot electrons in quantum wells. The results are in good agreement with our theoretical calculation of electron-LO phonon interaction in two dimensional systems. Within random phase approximation, the emitted LO phonons may couple to two dimensional plasmons. Both the screening and phonon reabsorption properties can be drastically changed as a function of electron density, temperature and phonon lifetime. Theoretical energy relaxation rates, including dynamical screening and phonon reabsorption effects, will be presented. For hot electrons with energies well above the LO phonon energy, we developed a two-beam, lock-in technique to measure the energy-resolved cooling rate. In the case of quantum wells, hot electrons relax at a constant rate. For heavily doped bulk GaAs, the relaxation rate is inversely proportional to electron kinetic energy. The new method demonstrates itself as a valuable way to study the fast initial relaxation which would otherwise need femtosecond pulse laser techniques.

  5. An approach to an accurate determination of the energy spectrum of high-energy electron beams using magnetic spectrometry

    NASA Astrophysics Data System (ADS)

    Renner, F.; Schwab, A.; Kapsch, R.-P.; Makowski, Ch; Jannek, D.

    2014-03-01

    At the national metrology institute of Germany, the Physikalisch-Technische Bundesanstalt, a research accelerator for dosimetry in radiation therapy has been installed. Magnetic spectrometry is used to determine the spectrum of high-energy electrons generated by this accelerator. Regarding the intended experiments at the accelerator, a high accuracy for the energy determination of the electron beam is required. For this purpose, an experimental setup is used that has a number of additional devices assembled around the spectrometer to determine geometric characteristics of the electron beam, which influence the energy analysis. For the analysis of the acquired data, a software was developed which meets specific needs. One important aspect is that the software is based on an algorithm for energy determination which considers the measured magnetic flux density of the spectrometer and geometric details of the beam and the spectrometer. The software also meets the demand that it can be used to estimate the uncertainty assigned to the energy. This paper covers the experimental and analytical background of magnetic spectrometry at the high-energy beamline of PTB's research accelerator. A comparison of results calculated with the specific algorithm for energy determination which was developed for this experimental setup and with well-known algorithms is given to show the advantage of the specific method. Results of measurements and their analysis with the algorithm are presented as well.

  6. Characteristics of in vivo radiotherapy dosimetry.

    PubMed

    Edwards, C R; Mountford, P J

    2009-11-01

    The recent discussion and debate about the use of in vivo dosimetry as a routine component of the radiotherapy treatment process has not included the limitations introduced by the physical characteristics of the detectors. Although a robust calibration procedure will ensure acceptable uncertainties in the measurements of tumour dose, further work is required to confirm the accuracy of critical organ measurements with a diode or a thermoluminescent dosemeter outside the main field owing to limitations caused by a non-uniform X-ray energy response of the detector, differences between the X-ray energy spectrum inside and outside the main field, and contaminating electrons.

  7. A STUDY ON THE UNCERTAINTY FOR THE ROUTINE DOSIMETRY SERVICE AT THE LEBANESE ATOMIC ENERGY COMMISSION USING HARSHAW 8814 DOSEMETERS.

    PubMed

    Rizk, C; Vanhavere, F

    2016-09-01

    The personal dosimetry service at the Lebanese Atomic Energy Commission uses Harshaw 8814 cards with LiF:Mg,Ti detectors. The dosemeters are read in a Harshaw 6600 TLD reader. In the process of accreditation for the ISO 17025 standard((1)), different influence factors are investigated and the uncertainty has been determined. The Individual Monitoring Service Laboratory-LAEC reads the dosemeters once it receives them from the customer, and new cards are immediately given for the next wearing period. The wearing period is 2 months. The dosemeter results are reported to the customers without background subtraction. Both Hp(10) and Hp(0.07) are reported. For this paper, only the uncertainty on Hp(10) will be focussed. The following factors are taken into account for the uncertainty: calibration factor, dosemeter homogeneity and repeatability, energy and angular dependence, non-linearity, temperature dependence, etc. Also the detection limit was determined. One of the important factors is the correction for fading. This fading correction depends on the procedure used such as storage temperatures, the time-temperature profile of the read-out, pre-heat and annealing conditions. Pre- and post-irradiation fading curves were measured for a storage period up to 182 d at room temperature (15-25°C). The resulting final combined standard uncertainty on the reported doses is of the order of 24 % for doses of ∼1 mSv.

  8. Diffraction of electrons at intermediate energies

    NASA Astrophysics Data System (ADS)

    Ascolani, H.; Barrachina, R. O.; Guraya, M. M.; Zampieri, G.

    1992-08-01

    We present a theory of the elastic scattering of electrons from crystalline surfaces that contains both low-energy-electron-diffraction (LEED) effects at low energies and x-ray-photoelectron- and Auger-electron-diffraction (XPD/AED) effects at intermediate energies. The theory is based on a cluster-type approach to the scattering problem and includes temperature effects. The transition from one regime to the other may be explained as follows: At low energies all the scattered waves add coherently, and the intensity is dominated by LEED effects. At intermediate energies the thermal vibration of the atoms destroys the long-range coherency responsible for the LEED peaks, but affects little the interference of those waves that share parts of their paths inside the solid. Thus, the interference of these waves comes to dominate the intensity, giving rise to structures similar to those observed in XPD/AED experiments. We perform a calculation of the elastic reflection of electrons from Cu(001) that is in good agreement with the experiment in the range 200-1500 eV. At low energies the intensity is dominated by LEED peaks; at 400 eV LEED peaks and XPD/AED structures coexist; and above this energy the intensity is dominated by the latter. We analyze the contributions to the intensity at intermediate energies of the interferences in the incoming and outgoing parts of the electron path.

  9. Applications in Energy, Optics and Electronics.

    ERIC Educational Resources Information Center

    Rosenberg, Robert; And Others

    1980-01-01

    Discusses the applications of thin films in energy, optics and electronics. The use of thin-film technologies for heat mirrors, anti-reflection coatings, interference filters, solar cells, and metal contacts is included. (HM)

  10. Atomic electron binding energies in fermium

    SciTech Connect

    Das, M.P.

    1981-02-01

    Calculations of the binding energies of electrons in fermium by using a relativistic local-density functional theory are reported. It is found that relaxation effects are nonnegligible for inner core orbitals. Calculated orbital binding energies are compared with those due to nonlocal Dirac-Fock calculations and also with those determined experimentally from conversion electron spectroscopy. Finally the usefulness of the local-density approximation for the study of heavy atomic and condensed systems is discussed.

  11. Results from 2010 Caliban Criticality Dosimetry Intercomparison

    SciTech Connect

    Veinot, K. G.

    2011-10-12

    The external dosimetry program participated in a criticality dosimetry intercomparison conducted at the Caliban facility in Valduc, France in 2010. Representatives from the dosimetry and instrumentation groups were present during testing which included irradiations of whole-body beta/gamma (HBGT) and neutron thermoluminescent dosimeters (TLDs), a fixed nuclear accident dosimeter (FNAD), electronic alarming dosimeters, and a humanoid phantom filled with reference man concentrations of sodium. This report reviews the testing procedures, preparations, irradiations, and presents results of the tests.

  12. Electron energy-distribution functions in gases

    SciTech Connect

    Pitchford, L.C.

    1981-01-01

    Numerical calculation of the electron energy distribution functions in the regime of drift tube experiments is discussed. The discussion is limited to constant applied fields and values of E/N (ratio of electric field strength to neutral density) low enough that electron growth due to ionization can be neglected. (GHT)

  13. Monte Carlo simulation and film dosimetry for electron therapy in vicinity of a titanium mesh.

    PubMed

    Jabbari, Keyvan; Rostampour, Masoumeh; Roayaei, Mahnaz

    2014-07-08

    Titanium (Ti) mesh plates are used as a bone replacement in brain tumor surgeries. In the case of radiotherapy, these plates might interfere with the beam path. The purpose of this study is to evaluate the effect of titanium mesh on the dose distribution of electron fields. Simulations were performed using Monte Carlo BEAMnrc and DOSXYZnrc codes for 6 and 10 MeV electron beams. In Monte Carlo simulation, the shape of the titanium mesh was simulated. The simulated titanium mesh was considered as the one which is used in head and neck surgery with a thickness of 0.055 cm. First, by simulation, the percentage depth dose was obtained while the titanium mesh was present, and these values were then compared with the depth dose of homogeneous phantom with no titanium mesh. In the experimental measurements, the values of depth dose with titanium mesh and without titanium mesh in various depths were measured. The experiments were performed using a RW3 phantom with GAFCHROMIC EBT2 film. The results of experimental measurements were compared with values of depth dose obtained by simulation. In Monte Carlo simulation, as well as experimental measurements, for the voxels immediately beyond the titanium mesh, the change of the dose were evaluated. For this purpose the ratio of the dose for the case with titanium to the case without titanium was calculated as a function of titanium depth. For the voxels before the titanium mesh there was always an increase of the dose up to 13% with respect to the same voxel with no titanium mesh. This is because of the increased back scattering effect of the titanium mesh. The results also showed that for the voxel right beyond the titanium mesh, there is an increased or decreased dose to soft tissues, depending on the depth of the titanium mesh. For the regions before the depth of maximum dose, there is an increase of the dose up to 10% compared to the dose of the same depth in homogeneous phantom. Beyond the depth of maximum dose, there was a

  14. (Biological dosimetry)

    SciTech Connect

    Sega, G.A.

    1990-11-06

    The traveler participated in an International Symposium on Trends in Biological Dosimetry and presented an invited paper entitled, Adducts in sperm protamine and DNA vs mutation frequency.'' The purpose of the Symposium was to examine the applicability of new methods to study quantitatively the effects of xenobiotic agents (radiation and chemicals) on molecular, cellular and organ systems, with special emphasis on human biological dosimetry. The general areas covered at the meeting included studies on parent compounds and metabolites; protein adducts; DNA adducts; gene mutations; cytogenetic end-points and reproductive methods.

  15. Determining Energy Distributions of HF-Accelerated Electrons at HAARP

    DTIC Science & Technology

    2015-11-18

    are presented for selected modification mechanisms (electron heating or electron acceleration energy ), total RF-plasma energy transfer flux, and...suprathermal accelerated electron energy spectra [Gustavsson et al., 2005] using inversion techniques similar to those described by Rees and Luckey [1974...primary excitation mechanisms include electron impact excitation by energetic electrons with kinetic energy exceeding the respective energies of 1.96 and

  16. Electronic Devices and Systems. Energy Technology Series.

    ERIC Educational Resources Information Center

    Technical Education Research Centre-Southwest, Waco, TX.

    This course in electronic devices and systems is one of 16 courses in the Energy Technology Series developed for an Energy Conservation-and-Use Technology curriculum. Intended for use in two-year postsecondary technical institutions to prepare technicians for employment, the courses are also useful in industry for updating employees in…

  17. 10 CFR 35.630 - Dosimetry equipment.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Dosimetry equipment. 35.630 Section 35.630 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Photon Emitting Remote Afterloader Units, Teletherapy Units, and Gamma Stereotactic Radiosurgery Units § 35.630 Dosimetry equipment. (a) Except for low...

  18. High Energy Electron Detection with ATIC

    NASA Technical Reports Server (NTRS)

    Chang, J.; Schmidt, W. K. H.; Adams, James H., Jr.; Ahn, H.; Ampe, J.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    The ATIC (Advanced Thin Ionization Calorimeter) balloon-borne ionization calorimeter is well suited to record and identify high energy cosmic ray electrons. The instrument was exposed to high-energy beams at CERN H2 bean-dine in September of 1999. We have simulated the performance of the instrument, and compare the simulations with actual high energy electron exposures at the CERN accelerator. Simulations and measurements do not compare exactly, in detail, but overall the simulations have predicted actual measured behavior quite well.

  19. Theory of directed electronic energy transfer.

    PubMed

    Andrews, David L; Crisp, Richard G

    2006-03-01

    The migration of electronic energy between molecules or chromophores in molecular solids is a well-studied phenomenon. The ability to exert control over the directionality of this transfer, by a variety of methods involving applied electrical or optical fields, holds promise for advances in fields including nanoelectronics and energy harvesting materials. In this paper, we review in detail a number of methods for directing energy transfer, also identifying potential applications.

  20. (Biological dosimetry)

    SciTech Connect

    Preston, R.J.

    1990-12-17

    The traveler attended the 1st International Conference on Biological Dosimetry in Madrid, Spain. This conference was organized to provide information to a general audience of biologists, physicists, radiotherapists, industrial hygiene personnel and individuals from related fields on the current ability of cytogenetic analysis to provide estimates of radiation dose in cases of occupational or environmental exposure. There is a growing interest in Spain in biological dosimetry because of the increased use of radiation sources for medical and occupational uses, and with this the anticipated and actual increase in numbers of overexposure. The traveler delivered the introductory lecture on Biological Dosimetry: Mechanistic Concepts'' that was intended to provide a framework by which the more applied lectures could be interpreted in a mechanistic way. A second component of the trip was to provide advice with regard to several recent cases of overexposure that had been or were being assessed by the Radiopathology and Radiotherapy Department of the Hospital General Gregorio Maranon'' in Madrid. The traveler had provided information on several of these, and had analyzed cells from some exposed or purportedly exposed individuals. The members of the biological dosimetry group were referred to individuals at REACTS at Oak Ridge Associated Universities for advice on follow-up treatment.

  1. Stability of electron energy in the Fermilab electron cooler

    SciTech Connect

    Shemyakin, A.; Carlson, K.; Prost, L.R.; Saewert, G.; /Fermilab

    2009-02-01

    A powerful electron beam (4.3 MeV, 0.1 A DC) generated by an electrostatic accelerator has been used at Fermilab for three years to cool antiprotons in the Recycler ring. For electron cooling to be effective, the electron energy should not deviate from its optimum value by more than 500V. The main tool for studying the energy stability is the electron beam position in a high-dispersion area. The energy ripple (frequencies above 0.2 Hz) was found to be less than 150 eV rms; the main cause of the ripple is the fluctuations of the chain current. In addition, the energy can drift to up to several keV that is traced to two main sources. One of them is a drift of the charging current, and another is a temperature dependence of generating voltmeter readings. The paper describes the efforts to reach the required level of stability as well as the setup, diagnostics, results of measurements, and operational experience.

  2. Neutron personnel dosimetry

    SciTech Connect

    Griffith, R.V.

    1981-06-16

    The current state-of-the-art in neutron personnel dosimetry is reviewed. Topics covered include dosimetry needs and alternatives, current dosimetry approaches, personnel monitoring devices, calibration strategies, and future developments. (ACR)

  3. Image simulation for electron energy loss spectroscopy

    SciTech Connect

    Oxley, Mark P.; Pennycook, Stephen J.

    2007-10-22

    In this paper, aberration correction of the probe forming optics of the scanning transmission electron microscope has allowed the probe-forming aperture to be increased in size, resulting in probes of the order of 1 Å in diameter. The next generation of correctors promise even smaller probes. Improved spectrometer optics also offers the possibility of larger electron energy loss spectrometry detectors. The localization of images based on core-loss electron energy loss spectroscopy is examined as function of both probe-forming aperture and detector size. The effective ionization is nonlocal in nature, and two common local approximations are compared to full nonlocal calculations. Finally, the affect of the channelling of the electron probe within the sample is also discussed.

  4. Image simulation for electron energy loss spectroscopy

    DOE PAGES

    Oxley, Mark P.; Pennycook, Stephen J.

    2007-10-22

    In this paper, aberration correction of the probe forming optics of the scanning transmission electron microscope has allowed the probe-forming aperture to be increased in size, resulting in probes of the order of 1 Å in diameter. The next generation of correctors promise even smaller probes. Improved spectrometer optics also offers the possibility of larger electron energy loss spectrometry detectors. The localization of images based on core-loss electron energy loss spectroscopy is examined as function of both probe-forming aperture and detector size. The effective ionization is nonlocal in nature, and two common local approximations are compared to full nonlocal calculations.more » Finally, the affect of the channelling of the electron probe within the sample is also discussed.« less

  5. SU-E-T-308: Systematic Characterization of the Energy Response of Different LiF TLD Crystals for Dosimetry Applications

    SciTech Connect

    Pena, E; Caprile, P; Sanchez-Nieto, B

    2014-06-01

    Purpose: The thermoluminiscense dosimeters (TLDs) are widely used in personal and clinical dosimetry due to its small size, good sensitivity and tissue equivalence, among other advantages. This study presents the characterization of Lithium Fluoride based TLDs, in terms of their absorbed dose response to successive irradiation cycles in a broad range of beam energies, measured under reference conditions. Methods: Four types of Harshaw TLD chips were used: TLD-100, TLD-600 TLD-700 and 100-H. They were irradiated with 10 photon beams of different energy spectrums, from 28 kVp to 18MV (in 30 consecutive cycles for 6 and 18 MV). Results: It was found that the response of the dosimetric system was stabilized (less than ±3%) after 10 cycles for TLD-600 and TLD-700. In the case of TLD-100 and TLD-100H this dependence was not observed. A decreased response to increasing beam energy in terms of absorbed dose to water was observed, as expected, except for TLD-100H which showed the opposite behavior. The less energy dependent detector was the TLD-100H exhibiting a maximum deviation of 12%. The highest variation observed was 33% for TLD-100. The study allowed the determination of calibration factors in absorbed dose for a wide range of energies and materials for different dosimetric applications, such as in-vivo dosimetry during imaging and radiotherapy. Conclusion: The study allowed the determination of calibration factors in absorbed dose for a wide range of energies and materials for different dosimetric applications, such as in-vivo dosimetry during imaging and radiotherapy.

  6. Dosimetry and fast neutron energies characterization of photoneutrons produced in some medical linear accelerators

    NASA Astrophysics Data System (ADS)

    Khaled, N. E.; Attalla, E. M.; Ammar, H.; Khalil, W.

    2011-12-01

    This work focusses on the estimation of induced photoneutrons energy, fluence, and strength using nuclear track detector (NTD) (CR-39). Photoneutron energy was estimated for three different linear accelerators, LINACs as an example for the commonly used accelerators. For high-energy linear accelerators, neutrons are produced as a consequence of photonuclear reactions in the target nuclei, accelerator head, field-flattening filters and beam collimators, and other irradiated objects. NTD (CR-39) is used to evaluate energy and fluence of the fast neutron. Track length is used to estimate fast photoneutrons energy for linear accelerators (Elekta 10 MV, Elekta 15 MV, and Varian 15 MV). Results show that the estimated neutron energies for the three chosen examples of LINACs reveals neutron energies in the range of 1-2 MeV for 10 and 15 MV X-ray beams. The fluence of neutrons at the isocenter (Φtotal) is found to be (4×106 n cm2 Gy-1) for Elekta machine 10 MV. The neutron source strengths Q are calculated. It was found to be 0.2×1012 n Gy-1 X-ray at the isocenter. This work represents simple, low cost, and accurate methods of measuring fast neutrons dose and energies.

  7. SU-E-T-284: Revisiting Reference Dosimetry for the Model S700 Axxent 50 KV{sub p} Electronic Brachytherapy Source

    SciTech Connect

    Hiatt, JR; Rivard, MJ

    2014-06-01

    Purpose: The model S700 Axxent electronic brachytherapy source by Xoft was characterized in 2006 by Rivard et al. The source design was modified in 2006 to include a plastic centering insert at the source tip to more accurately position the anode. The objectives of the current study were to establish an accurate Monte Carlo source model for simulation purposes, to dosimetrically characterize the new source and obtain its TG-43 brachytherapy dosimetry parameters, and to determine dose differences between the source with and without the centering insert. Methods: Design information from dissected sources and vendor-supplied CAD drawings were used to devise the source model for radiation transport simulations of dose distributions in a water phantom. Collision kerma was estimated as a function of radial distance, r, and polar angle, θ, for determination of reference TG-43 dosimetry parameters. Simulations were run for 10{sup 10} histories, resulting in statistical uncertainties on the transverse plane of 0.03% at r=1 cm and 0.08% at r=10 cm. Results: The dose rate distribution the transverse plane did not change beyond 2% between the 2006 model and the current study. While differences exceeding 15% were observed near the source distal tip, these diminished to within 2% for r>1.5 cm. Differences exceeding a factor of two were observed near θ=150° and in contact with the source, but diminished to within 20% at r=10 cm. Conclusions: Changes in source design influenced the overall dose rate and distribution by more than 2% over a third of the available solid angle external from the source. For clinical applications using balloons or applicators with tissue located within 5 cm from the source, dose differences exceeding 2% were observed only for θ>110°. This study carefully examined the current source geometry and presents a modern reference TG-43 dosimetry dataset for the model S700 source.

  8. On Puthoff's Semiclassical Electron and Vacuum Energy

    NASA Astrophysics Data System (ADS)

    Pereira, N. R.

    2016-12-01

    A possible connection between a point electron and vacuum energy was recently claimed by Puthoff (Int. J. Theor. Phys. 46, 3005 (2007)). He envisions a point electron as an ideally conducting spherical shell with a distributed charge on the surface, in equilibrium with the radiation pressure from electromagnetic vacuum fluctuations on the outside, and claims that his analysis demonstrates the reality of high-energy-density vacuum fluctuation fields. The present paper finds, instead, that the analysis is meaningless without specific knowledge on the cutoff frequency that is a free parameter in the model.

  9. Electron energy loss spectrometry of interstellar diamonds

    NASA Technical Reports Server (NTRS)

    Bernatowicz, Thomas J.; Gibbons, Patrick C.; Lewis, Roy S.

    1990-01-01

    The results are reported of electron energy loss spectra (EELS) measurements on diamond residues from carbonaceous meteorites designed to elucidate the structure and composition of interstellar diamonds. Dynamic effective medium theory is used to model the dielectric properties of the diamonds and in particular to synthesize the observed spectra as mixtures of diamond and various pi-bonded carbons. The results are shown to be quantitatively consistent with the idea that diamonds and their surfaces are the only contributors to the electron energy loss spectra of the diamond residues and that these peculiar spectra are the result of the exceptionally small grain size and large specific surface area of the interstellar diamonds.

  10. Design and dosimetry characteristics of a commercial applicator system for intra-operative electron beam therapy utilizing ELEKTA Precise accelerator.

    PubMed

    Nevelsky, Alexander; Bernstein, Zvi; Bar-Deroma, Raquel; Kuten, Abraham; Orion, Itzhak

    2010-07-19

    The design concept and dosimetric characteristics of a new applicator system for intraoperative radiation therapy (IORT) are presented in this work. A new hard-docking commercial system includes polymethylmethacrylate (PMMA) applicators with different diameters and applicator end angles and a set of secondary lead collimators. A telescopic device allows changing of source-to-surface distance (SSD). All measurements were performed for 6, 9, 12 and 18 MeV electron energies. Output factors and percentage depth doses (PDD) were measured in a water phantom using a plane-parallel ion chamber. Isodose contours and radiation leakage were measured using a solid water phantom and radiographic films. The dependence of PDD on SSD was checked for the applicators with the smallest and the biggest diameters. SSD dependence of the output factors was measured. Hardcopies of PDD and isodose contours were prepared to help the team during the procedure on deciding applicator size and energy to be chosen. Applicator output factors are a function of energy, applicator size and applicator type. Dependence of SSD correction factors on applicator size and applicator type was found to be weak. The same SSD correction will be applied for all applicators in use for each energy. The radiation leakage through the applicators is clinically acceptable. The applicator system enables effective collimation of electron beams for IORT. The data presented are sufficient for applicator, energy and monitor unit selection for IORT treatment of a patient.

  11. Hanford External Dosimetry Technical Basis Manual PNL-MA-842

    SciTech Connect

    Rathbone, Bruce A.

    2011-04-04

    The Hanford External Dosimetry Technical Basis Manual PNL-MA-842 documents the design and implementation of the external dosimetry system used at the U.S. Department of Energy (DOE) Hanford site. The manual describes the dosimeter design, processing protocols, dose calculation methodology, radiation fields encountered, dosimeter response characteristics, limitations of dosimeter design under field conditions, and makes recommendations for effective use of the dosimeters in the field. The manual describes the technical basis for the dosimetry system in a manner intended to help ensure defensibility of the dose of record at Hanford and to demonstrate compliance with requirements of 10 CFR 835, the DOE Laboratory Accreditation Program, the DOE Richland Operations Office, DOE Office of River Protection, DOE Pacific Northwest Office of Science, and Hanford’s DOE contractors. The dosimetry system is operated by the Pacific Northwest National Laboratory (PNNL) Hanford External Dosimetry Program which provides dosimetry services to PNNL and all Hanford contractors. The primary users of this manual are DOE and DOE contractors at Hanford using the dosimetry services of PNNL. Development and maintenance of this manual is funded directly by DOE and DOE contractors. Its contents have been reviewed and approved by DOE and DOE contractors at Hanford through the Hanford Personnel Dosimetry Advisory Committee which is chartered and chaired by DOE-RL and serves as means of coordinating dosimetry practices across contractors at Hanford. This manual was established in 1996. Since its inception, it has been revised many times and maintained by PNNL as a controlled document with controlled distribution. The first revision to be released through PNNL’s Electronic Records & Information Capture Architecture database was designated Revision 0. Revision numbers that are whole numbers reflect major revisions typically involving significant changes to all chapters in the document. Revision

  12. Hanford External Dosimetry Technical Basis Manual PNL-MA-842

    SciTech Connect

    Rathbone, Bruce A.

    2010-04-01

    The Hanford External Dosimetry Technical Basis Manual PNL-MA-842 documents the design and implementation of the external dosimetry system used at the U.S. Department of Energy (DOE) Hanford site. The manual describes the dosimeter design, processing protocols, dose calculation methodology, radiation fields encountered, dosimeter response characteristics, limitations of dosimeter design under field conditions, and makes recommendations for effective use of the dosimeters in the field. The manual describes the technical basis for the dosimetry system in a manner intended to help ensure defensibility of the dose of record at Hanford and to demonstrate compliance with requirements of 10 CFR 835, the DOE Laboratory Accreditation Program, the DOE Richland Operations Office, DOE Office of River Protection, DOE Pacific Northwest Office of Science, and Hanford’s DOE contractors. The dosimetry system is operated by the Pacific Northwest National Laboratory (PNNL) Hanford External Dosimetry Program which provides dosimetry services to PNNL and all Hanford contractors. The primary users of this manual are DOE and DOE contractors at Hanford using the dosimetry services of PNNL. Development and maintenance of this manual is funded directly by DOE and DOE contractors. Its contents have been reviewed and approved by DOE and DOE contractors at Hanford through the Hanford Personnel Dosimetry Advisory Committee which is chartered and chaired by DOE-RL and serves as means of coordinating dosimetry practices across contractors at Hanford. This manual was established in 1996. Since its inception, it has been revised many times and maintained by PNNL as a controlled document with controlled distribution. The first revision to be released through PNNL’s Electronic Records & Information Capture Architecture database was designated Revision 0. Revision numbers that are whole numbers reflect major revisions typically involving significant changes to all chapters in the document. Revision

  13. Radiation dosimetry.

    PubMed Central

    Cameron, J

    1991-01-01

    This article summarizes the basic facts about the measurement of ionizing radiation, usually referred to as radiation dosimetry. The article defines the common radiation quantities and units; gives typical levels of natural radiation and medical exposures; and describes the most important biological effects of radiation and the methods used to measure radiation. Finally, a proposal is made for a new radiation risk unit to make radiation risks more understandable to nonspecialists. PMID:2040250

  14. 10 CFR 835.1304 - Nuclear accident dosimetry.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Nuclear accident dosimetry. 835.1304 Section 835.1304... Nuclear accident dosimetry. (a) Installations possessing sufficient quantities of fissile material to... nuclear accident is possible, shall provide nuclear accident dosimetry for those individuals. (b)...

  15. 10 CFR 835.1304 - Nuclear accident dosimetry.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Nuclear accident dosimetry. 835.1304 Section 835.1304... Nuclear accident dosimetry. (a) Installations possessing sufficient quantities of fissile material to... nuclear accident is possible, shall provide nuclear accident dosimetry for those individuals. (b)...

  16. 10 CFR 835.1304 - Nuclear accident dosimetry.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false Nuclear accident dosimetry. 835.1304 Section 835.1304... Nuclear accident dosimetry. (a) Installations possessing sufficient quantities of fissile material to... nuclear accident is possible, shall provide nuclear accident dosimetry for those individuals. (b)...

  17. 10 CFR 835.1304 - Nuclear accident dosimetry.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Nuclear accident dosimetry. 835.1304 Section 835.1304... Nuclear accident dosimetry. (a) Installations possessing sufficient quantities of fissile material to... nuclear accident is possible, shall provide nuclear accident dosimetry for those individuals. (b)...

  18. 10 CFR 835.1304 - Nuclear accident dosimetry.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Nuclear accident dosimetry. 835.1304 Section 835.1304... Nuclear accident dosimetry. (a) Installations possessing sufficient quantities of fissile material to... nuclear accident is possible, shall provide nuclear accident dosimetry for those individuals. (b)...

  19. High-energy neutron dosimetry at the Clinton P. Anderson Meson Physics Facility

    SciTech Connect

    Mallett, M.W.; Vasilik, D.G.; Littlejohn, G.J.; Cortez, J.R.

    1990-01-01

    Neutron energy spectrum measurements performed at the Clinton P. Anderson Meson Physics Facility indicated potential areas for high energy neutron exposure to personnel. The low sensitivity of the Los Alamos thermoluminescent dosimeter (TLD) to high energy neutrons warranted issuing a NTA dosimeter in addition to the TLD badge to employees entering these areas. The dosimeter consists of a plastic holder surrounding NTA film that has been desiccated and sealed in a dry nitrogen environment. A study of the fading of latent images in NTA film demonstrated the success of this packaging method to control the phenomenon. The Los Alamos NTA dosimeter is characterized and the fading study discussed. 10 refs., 4 figs., 2 tabs.

  20. Applications for Energy Recovering Free Electron Lasers

    SciTech Connect

    George Neil

    2007-08-01

    The availability of high-power, high-brilliance sources of tunable photons from energy-recovered Free Electron Lasers is opening up whole new fields of application of accelerators in industry. This talk will review some of the ideas that are already being put into production, and some of the newer ideas that are still under development.

  1. Electron energy flux in the solar wind.

    NASA Technical Reports Server (NTRS)

    Ogilvie, K. W.; Scudder, J. D.; Sugiura, M.

    1971-01-01

    Description of studies of electrons between 10 eV and 9.9 keV in the solar wind. The transport of energy in the rest frame of the plasma is evaluated and shown to be parallel to the interplanetary magnetic field. The presence of electrons from solar events causes this energy-flux density to exceed the heat flow due to thermal electrons. In one such event, the observations are shown to be consistent with the solar-electron observations made at higher energies. When observations are made at a point connected to the earth's bow shock by an interplanetary-field line, a comparatively large energy flux along the field toward the sun is observed, but the heat flow remains outwardly directed during this time interval. In either situation the heat flow is found to be consistent with measurements made on Vela satellites by a different method. These values, less than .01 ergs/sq cm/sec, are sufficiently low to require modifications to the Spitzer-Harm conductivity formula for use in solar-wind theories.

  2. Fluctuations in energy loss and their implications for dosimetry and radiobiology

    NASA Technical Reports Server (NTRS)

    Baily, N. A.; Steigerwalt, J. E.

    1972-01-01

    Serious consideration of the physics of energy deposition indicates that a fundamental change in the interpretation of absorbed dose is required at least for considerations of effects in biological systems. In addition, theoretical approaches to radiobiology and microdosimetry seem to require statistical considerations incorporating frequency distributions of the magnitude of the event sizes within the volume of interest.

  3. Electronic excitation of molecular hydrogen by low-energy electrons

    NASA Astrophysics Data System (ADS)

    Hargreaves, Leigh

    2016-09-01

    Molecular hydrogen is the most abundant element in the universe, particularly in interstellar plasmas such as atmospheres of gas giant planets and stars. Electron collision data for hydrogen is critical to interpreting the spectroscopy of interstellar objects, as well as being of applied value for modelling technological plasmas. Hydrogen is also fundamentally interesting, as while highly accurate wave functions for this simple molecule are available, providing an accurate, ab initio, treatment the collision dynamics has proven challenging, on account of the need to have a complete description of channel coupling and polarization effects. To date, no single theoretical approach has been able to replicate experimental results across all transitions and incident energies, while the experimental database that is available is far from complete and not all available measurements are in satisfactory agreement. In this talk, we present differential and integral cross section measurements for electronic excitation cross sections for molecular hydrogen by low-energy electron impact. The data were measured at incident energies below 20eV, using a well-tested crossed beam apparatus and employing a moveable gas source approach to ensure that background contributions to the scattering are accurately accounted for. These measurements are compared with new theoretical results employing the convergent close coupling approach.

  4. Electron impact ionization at relativistic energies

    NASA Astrophysics Data System (ADS)

    Belkacem, Ali; Cole, Kyra; Hertlein, Marcus; Feinberg, Benedict; Schriel, Ralf; Adaniya, Hidehito; Neumann, Nadine

    2004-05-01

    We used an ion time-of-flight set up based on a pulsed high-voltage extraction technique to study the charge state distribution of He, Ne, Ar, Kr and Xe atoms after impact of 0.2 to 1.5 GeV electrons. The relativistic electron beam is produced at the booster beamline at the Advanced Light Source at the Lawrence Berkeley National Laboratory. The yield of ions drops drastically with the charge state number. Our measurements show that the ratio of doubly-charge to singly-charged ions reaches an asymptotic limit of 0.0028 for He already at electron energies below 40 MeV. However we observe a very pronounced energy dependence of the ratio of the doubly-charged to singly-charged ions for the heavier atoms such as Kr and Xe in the 0.2 - 1.5 GeV energy range. This energy dependence takes place way above the energy at which theories based on the equivalent photon method or the born- approximation predict the asymptotic limit to be reached. This may be an indication of new physics coming into play in the photoionization process due to relativistic effects.

  5. Prostate PDT dosimetry

    PubMed Central

    Zhu, Timothy C.; Finlay, Jarod C.

    2015-01-01

    Summary We provide a review of the current state of dosimetry in prostate photodynamic therapy (PDT). PDT of the human prostate has been performed with a number of different photosensitizers and with a variety of dosimetry schemes. The simplest clinical light dose prescription is to quantify the total light energy emitted per length (J/cm) of cylindrical diffusing fibers (CDF) for patients treated with a defined photosensitizer injection per body weight. However, this approach does not take into account the light scattering by tissue and usually underestimates the local light fluence rate, and consequently the fluence. Techniques have been developed to characterize tissue optical properties and light fluence rates in vivo using interstitial measurements during prostate PDT. Optical methods have been developed to characterize tissue absorption and scattering spectra, which in turn provide information about tissue oxygenation and drug concentration. Fluorescence techniques can be used to quantify drug concentrations and photobleaching rates of photosensitizers. PMID:25046988

  6. Hanford External Dosimetry Program

    SciTech Connect

    Fix, J.J.

    1990-10-01

    This document describes the Hanford External Dosimetry Program as it is administered by Pacific Northwest Laboratory (PNL) in support of the US Department of Energy (DOE) and its Hanford contractors. Program services include administrating the Hanford personnel dosimeter processing program and ensuring that the related dosimeter data accurately reflect occupational dose received by Hanford personnel or visitors. Specific chapters of this report deal with the following subjects: personnel dosimetry organizations at Hanford and the associated DOE and contractor exposure guidelines; types, characteristics, and procurement of personnel dosimeters used at Hanford; personnel dosimeter identification, acceptance testing, accountability, and exchange; dosimeter processing and data recording practices; standard sources, calibration factors, and calibration processes (including algorithms) used for calibrating Hanford personnel dosimeters; system operating parameters required for assurance of dosimeter processing quality control; special dose evaluation methods applied for individuals under abnormal circumstances (i.e., lost results, etc.); and methods for evaluating personnel doses from nuclear accidents. 1 ref., 14 figs., 5 tabs.

  7. Non-reference condition correction factor kNR of typical radiation detectors applied for the dosimetry of high-energy photon fields in radiotherapy.

    PubMed

    Chofor, Ndimofor; Harder, Dietrich; Poppe, Björn

    2012-09-01

    According to accepted dosimetry protocols, the "radiation quality correction factor"k(Q) accounts for the energy-dependent changes of detector responses under the conditions of clinical dosimetry for high-energy photon radiations. More precisely, a factor k(QR) is valid under reference conditions, i.e. at a point on the beam axis at depth 10 cm in a large water phantom, for 10×10 cm(2) field size, SSD 100 cm and the given radiation quality with quality index Q. Therefore, a further correction factor k(NR) has been introduced to correct for the influences of spectral quality changes when detectors are used under non-reference conditions such as other depths, field sizes and off-axis distances, while under reference conditions k(NR) is normalized to unity. In this paper, values of k(NR) are calculated for 6 and 15 MV photon beams, using published data of the energy-dependent responses of various radiation detectors to monoenergetic photon radiations, and weighting these responses with validated photon spectra of clinical high-energy photon beams from own Monte-Carlo-calculations for a wide variation of the non-reference conditions within a large water phantom. Our results confirm the observation by Scarboro et al. [26] that k(NR) can be represented by a unique function of the mean energy Em, weighted by the spectral photon fluence. Accordingly, the numerical variations of Em with depth, field size and off-axis distance have been provided. Throughout all considered conditions, the deviations of the k(NR) values from unity are at most 2% for a Farmer type ion chamber, and they remain below 15% for the thermoluminescent detectors LiF:Mg,Ti and LiF:Mg,Cu,P. For the shielded diode EDP-10, k(NR) varies from unity up to 20%, while the unshielded diode EDD-5 shows deviations up to 60% in the peripheral region. Thereby, the restricted application field of unshielded diodes has been clarified. For small field dosimetry purposes k(NR) can be converted into k(NCSF), the non

  8. Influence of trace elements in human tissue in low-energy photon brachytherapy dosimetry

    NASA Astrophysics Data System (ADS)

    White, Shane A.; Landry, Guillaume; van Gils, Francis; Verhaegen, Frank; Reniers, Brigitte

    2012-06-01

    The aim of this paper is to determine the dosimetric impact of trace elements in human tissues for low-energy photon sources used in brachytherapy. Monte Carlo dose calculations were used to investigate the dosimetric effect of trace elements present in normal or cancerous human tissues. The effect of individual traces (atomic number Z = 11-30) was studied in soft tissue irradiated by low-energy brachytherapy sources. Three other tissue types (prostate, adipose and mammary gland) were also simulated with varying trace concentrations to quantify the contribution of each trace to the dose distribution. The dose differences between cancerous and healthy prostate tissues were calculated in single- and multi-source geometries. The presence of traces in a tissue produces a difference in the dose distribution that is dependent on Z and the concentration of the trace. Low-Z traces (Na) have a negligible effect (<0.3%) in all tissues, while higher Z (K) had a larger effect (>3%). There is a potentially significant difference in the dose distribution between cancerous and healthy prostate tissues (4%) and even larger if compared to the trace-free composition (15%) in both single- and multi-sourced geometries. Trace elements have a non-negligible (up to 8% in prostate D90) effect on the dose in tissues irradiated with low-energy photon sources. This study underlines the need for further investigation into accurate determination of the trace composition of tissues associated with low-energy brachytherapy. Alternatively, trace elements could be incorporated as a source of uncertainty in dose calculations. This work was part of an invited presentation at the ‘International Workshop on Recent Advances in Monte Carlo Techniques for Radiation Therapy’, held in Montreal, June 8-10, 2011.

  9. DOSEXPRT: A bioassay dosimetry code for Martin Marietta Energy Systems, Inc

    SciTech Connect

    Ward, R.C.; Eckerman, K.F.

    1992-04-01

    The bioassay code DOSEXPRT was developed for Martin Marietta Energy Systems, Inc., to provide compliance with Department of Energy (DOE) Order 5480, Chapter 11. DOSEXPRT computes the intake of a radionuclide in any year (considering both acute and chronic intakes) from in vivo measurements of the retained activity and/or measurements of the activity in excreta. The committed effective and organ doses for the intake are computed as well as the effective and organ doses expected to be received in each calendar year out to 50 years beyond the year of intake. The bioassay records used as input for DOSEXPRT are extracted from the Martin Marietta Energy Systems Occupational Health Information System (OHIS). DOSEXPRT implements a set of algorithms with parameters governing the translocation, retention, and excretion of the nuclide contained in data files specific to the nuclide. These files also contain dose-per-unit-intake coefficients used to compute the committed dose equivalent for the intakes in the year. Annual organ and effective doses are computed using additional dose-rate files that contain data on the dose rate at various times following a unit intake. If measurements are presented for more than one assay for a given nuclide, DOSEXPRT estimates the intake by applying weights assigned in the nuclide file for each assay. DOSEXPRT is accessed off the OHIS MENU No. 4 and designed to be run as a batch processor, but can also be run interactively for testing purposes.

  10. DOSEXPRT: A bioassay dosimetry code for Martin Marietta Energy Systems, Inc.

    SciTech Connect

    Ward, R.C.; Eckerman, K.F.

    1992-04-01

    The bioassay code DOSEXPRT was developed for Martin Marietta Energy Systems, Inc., to provide compliance with Department of Energy (DOE) Order 5480, Chapter 11. DOSEXPRT computes the intake of a radionuclide in any year (considering both acute and chronic intakes) from in vivo measurements of the retained activity and/or measurements of the activity in excreta. The committed effective and organ doses for the intake are computed as well as the effective and organ doses expected to be received in each calendar year out to 50 years beyond the year of intake. The bioassay records used as input for DOSEXPRT are extracted from the Martin Marietta Energy Systems Occupational Health Information System (OHIS). DOSEXPRT implements a set of algorithms with parameters governing the translocation, retention, and excretion of the nuclide contained in data files specific to the nuclide. These files also contain dose-per-unit-intake coefficients used to compute the committed dose equivalent for the intakes in the year. Annual organ and effective doses are computed using additional dose-rate files that contain data on the dose rate at various times following a unit intake. If measurements are presented for more than one assay for a given nuclide, DOSEXPRT estimates the intake by applying weights assigned in the nuclide file for each assay. DOSEXPRT is accessed off the OHIS MENU No. 4 and designed to be run as a batch processor, but can also be run interactively for testing purposes.

  11. Low Energy Electron Scattering from Fuels

    NASA Astrophysics Data System (ADS)

    Lopes, M. C. A.; Silva, D. G. M.; Bettega, M. H. F.; da Costa, R. F.; Lima, M. A. P.; Khakoo, M. A.; Winstead, C.; McKoy, V.

    2012-11-01

    In order to understand and optimize processes occurring during the ignition of plasma and its consequences in post-discharge for an internal combustion engine, especially considering the spark plug, we have produced in this work some basic information necessary to modeling spark ignition in alcohol- fuelled engines. Total cross sections of electron scattering by methanol and ethanol molecules in the energy range from 60 to 500 eV are reported, using the linear transmission method based on the Beer-Lambert law to first approximation. Aditionally to that, measurements and calculations of differential cross sections for elastic low-energy (rotationally unresolved) electron scattering were also discussed, for impact energies of 1, 2, 5, 10, 15, 20, 30, 50, and 100 eV and for scattering angles of 5°-130°. The measurements were obtained using the relative flow method with an aperture source, and calculations using two different implementations of the Schwinger multichannel method, one that takes all electrons into account and is adapted for parallel computers, and another that uses pseudopotentials and considers only the valence electrons.

  12. Low Energy Electron Impact Excitation of Water

    NASA Astrophysics Data System (ADS)

    Ralphs, Kevin; Serna, Gabriela; Hargreaves, Leigh R.; Khakoo, Murtadha A.; Winstead, Carl; McKoy, B. Vincent

    2011-10-01

    We present normalized absolute differential and integral cross-section measurements for the low energy electron impact excitation of the lowest dissociative 3B1, 1B1,3A1 and 1A1 states of H2O. The DCS were taken at incident energies of 9 eV, 10 eV, 12 eV, 15 eV and 20 eV and scattering angles of 15° to 130° and normalized to the elastic electron scattering measurements of. The DCS were obtained after a sophisticated unfolding of the electron energy loss spectrum of water using photoabsorption data in the literature as investigated by Thorn et al.. Our measurements extend those of to near-threshold energies. We find both important agreements and differences between our DCS and those of. Comparison to our theory (multi-channel Schwinger) and that of earlier work will also be presented. Funded by an NSF grant # RUI-PHY 0968874.

  13. Low Energy Electron Scattering from Fuels

    NASA Astrophysics Data System (ADS)

    Lopes, M. Cristina A.

    2012-06-01

    We report an investigation of processes that occur during the ignition of the plasma and its consequences in post-discharge time for an internal combustion engine, in order to find the appropriate parameters to be used in cars that operate with lean mixtures air-fuel. The relevance of this theme has attracted much attention, and has been one of the subjects of collaboration between experimental and theoretical groups in the USA and Brazil. We have produced some basic information necessary to modeling spark ignition in alcohol- fuelled engines. Total cross sections of electron scattering by methanol and ethanol molecules were obtained, using the linear transmission method based on the Beer-Lambert law to first approximation. Measurements and calculations of differential cross sections for low-energy (rotationally unresolved) electron scattering were also obtained, for scattering angles of 5 --130 . The measurements were taken using the relative flow method with an aperture source, and calculations using two different implementations of the Schwinger multichannel method, one that takes all electrons into account and is adapted for parallel computers, and another that uses pseudopotentials and considers only the valence electrons. Additionally to these, computer simulation studies of electronic discharge in mixtures of ethanol were performed, using a Zero-Dimensional Plasma Kinetic solver. Previous reported models for combustion of ethanol and cross sections data for momentum transfer of electron collisions with ethanol were used. The time evolutions of the main species densities are reported and the ignition time delay discussed.

  14. Semiconductor diode characterization for total skin electron irradiation.

    PubMed

    Madrid González, O A; Rivera Montalvo, T

    2014-01-01

    In this paper, a semiconductor diode characterization was performed. The diode characterization was completed using an electron beam with 4 MeV of energy. The semiconductor diode calibration used irradiation with an electron beam in an ion chamber. "In vivo" dosimetry was also conducted. The dosimetry results revealed that the semiconductor diode was a good candidate for use in the total skin electron therapy (TSET) treatment control.

  15. Acceleration of polarized electrons UPTO ultrahigh energies

    NASA Astrophysics Data System (ADS)

    Koop, I.; Otboev, A.; Shatunov, P.; Shatunov, Yu.; Mane, S.

    2016-12-01

    A wide world discussion have been opened few years ago about future e + e - collider after the Higgsboson discovery. Besides utterly high luminosity this machine has to operate with polarized beams. We shall overview in this paper problems and practical possibilities to satisfy second requirements of the future collider. The radiative beam polarization at this 100 km machine will be very long procedure. On other side, at the present time there are developed intensive polarized electron sources based on ArGa photo cathodes with polarization about 90 percents. We show, that fast electron synchrotron equipped pair Siberian Snake is able to provide to accelerate polarized electrons up to the top energy of the collider.

  16. Energy Transformation in Molecular Electronic Systems

    SciTech Connect

    Kasha, Michael

    1999-05-17

    This laboratory has developed many new ideas and methods in the electronic spectroscopy of molecules. This report covers the contract period 1993-1995. A number of the projects were completed in 1996, and those papers are included in the report. The DOE contract was terminated at the end of 1995 owing to a reorganizational change eliminating nationally the projects under the Office of Health and Environmental Research, U. S. Department of Energy.

  17. Low-energy electron scattering from cyanamide

    NASA Astrophysics Data System (ADS)

    Wang, Kedong; Guo, Shuangcheng; Meng, Ju; Huang, Xiaotian; Wang, Yongfeng

    2016-09-01

    The low-energy electron collisions with cyanamide molecule are investigated by using the UK molecular R -matrix codes for electron energies ranging from 0.01 eV to 10 eV. Three models including static-exchange, static-exchange plus polarization, and close-coupling (CC) approximations are employed to reveal the dynamic interaction. Elastic (integrated and differential), momentum-transfer, and excitation cross sections from the ground state to the three low-lying electron excited states have been presented. Two shape resonances, two core-excited resonances, and two Feshbach resonances are detected in the CC approximation. The role of active space in the target and scattering problem including the resonances is discussed. The precise resonance parameters are found to be sensitive to the treatment of polarization effects employed. These resonances may be responsible for the fragments observed in a recent experiment of the dissociative electron attachments to cyanamide. Since the cyanamide molecule has a large permanent dipole moment, a Born closure procedure is used to account for the contribution of partial waves higher than l =4 to obtain converged cross sections.

  18. Clinical implementation and rapid commissioning of an EPID based in-vivo dosimetry system

    NASA Astrophysics Data System (ADS)

    Hanson, Ian M.; Hansen, Vibeke N.; Olaciregui-Ruiz, Igor; van Herk, Marcel

    2014-10-01

    Using an Electronic Portal Imaging Device (EPID) to perform in-vivo dosimetry is one of the most effective and efficient methods of verifying the safe delivery of complex radiotherapy treatments. Previous work has detailed the development of an EPID based in-vivo dosimetry system that was subsequently used to replace pre-treatment dose verification of IMRT and VMAT plans. Here we show that this system can be readily implemented on a commercial megavoltage imaging platform without modification to EPID hardware and without impacting standard imaging procedures. The accuracy and practicality of the EPID in-vivo dosimetry system was confirmed through a comparison with traditional TLD in-vivo measurements performed on five prostate patients. The commissioning time required for the EPID in-vivo dosimetry system was initially prohibitive at approximately 10 h per linac. Here we present a method of calculating linac specific EPID dosimetry correction factors that allow a single energy specific commissioning model to be applied to EPID data from multiple linacs. Using this method reduced the required per linac commissioning time to approximately 30 min. The validity of this commissioning method has been tested by analysing in-vivo dosimetry results of 1220 patients acquired on seven linacs over a period of 5 years. The average deviation between EPID based isocentre dose and expected isocentre dose for these patients was (-0.7  ±  3.2)%. EPID based in-vivo dosimetry is now the primary in-vivo dosimetry tool used at our centre and has replaced nearly all pre-treatment dose verification of IMRT treatments.

  19. History of dose specification in Brachytherapy: From Threshold Erythema Dose to Computational Dosimetry

    NASA Astrophysics Data System (ADS)

    Williamson, Jeffrey F.

    2006-09-01

    This paper briefly reviews the evolution of brachytherapy dosimetry from 1900 to the present. Dosimetric practices in brachytherapy fall into three distinct eras: During the era of biological dosimetry (1900-1938), radium pioneers could only specify Ra-226 and Rn-222 implants in terms of the mass of radium encapsulated within the implanted sources. Due to the high energy of its emitted gamma rays and the long range of its secondary electrons in air, free-air chambers could not be used to quantify the output of Ra-226 sources in terms of exposure. Biological dosimetry, most prominently the threshold erythema dose, gained currency as a means of intercomparing radium treatments with exposure-calibrated orthovoltage x-ray units. The classical dosimetry era (1940-1980) began with successful exposure standardization of Ra-226 sources by Bragg-Gray cavity chambers. Classical dose-computation algorithms, based upon 1-D buildup factor measurements and point-source superposition computational algorithms, were able to accommodate artificial radionuclides such as Co-60, Ir-192, and Cs-137. The quantitative dosimetry era (1980- ) arose in response to the increasing utilization of low energy K-capture radionuclides such as I-125 and Pd-103 for which classical approaches could not be expected to estimate accurate correct doses. This led to intensive development of both experimental (largely TLD-100 dosimetry) and Monte Carlo dosimetry techniques along with more accurate air-kerma strength standards. As a result of extensive benchmarking and intercomparison of these different methods, single-seed low-energy radionuclide dose distributions are now known with a total uncertainty of 3%-5%.

  20. Electronic energy transfer: Localized operator partitioning of electronic energy in composite quantum systems

    NASA Astrophysics Data System (ADS)

    Khan, Yaser; Brumer, Paul

    2012-11-01

    A Hamiltonian based approach using spatially localized projection operators is introduced to give precise meaning to the chemically intuitive idea of the electronic energy on a quantum subsystem. This definition facilitates the study of electronic energy transfer in arbitrarily coupled quantum systems. In particular, the decomposition scheme can be applied to molecular components that are strongly interacting (with significant orbital overlap) as well as to isolated fragments. The result defines a consistent electronic energy at all internuclear distances, including the case of separated fragments, and reduces to the well-known Förster and Dexter results in their respective limits. Numerical calculations of coherent energy and charge transfer dynamics in simple model systems are presented and the effect of collisionally induced decoherence is examined.

  1. Collisions between low-energy electrons and small polyatomic targets of biological relevance

    NASA Astrophysics Data System (ADS)

    Hargreaves, Leigh

    2016-05-01

    Over the last decade, cross section measurements and calculations for DNA prototype molecules have received significant attention from the collisions community, due to the potential applications of this data in modelling electron transport through biological matter with a view to improving radiation dosimetry. Such data are additionally interesting from a fundamental aspect, as small carbon-based molecules are ideal targets for considering effects including target conformation, long-range dynamical interactions and coupling effects between the various degrees of freedom on the scattering properties of the target. At the California State University Fullerton, we have made a series of measurements of the elastic, vibrationally inelastic and electronically inelastic cross sections for a variety of small polyatomic targets, including water and the basic alcohols, ethylene, toluene and several fluorinated alkanes. These processes are important in a range of applications, primarily for modelling electron transport and thermalization, and energy deposition to a biological media. The data were obtained using a high resolution electron energy-loss spectrometer, operating in a crossed beam configuration with a moveable aperture gas source. The gas source design facilitates both an expedient and highly accurate method of removing background signal, and removes uncertainties from the data due to uncertainties in the beam profile. We have also performed scattering calculations employing the Schwinger Multichannel method, in collaboration with the California institute of technology, to compare with our measurements. In this talk, I will present an overview of our recent data and future research plans.

  2. Propagation of low energy solar electrons

    NASA Technical Reports Server (NTRS)

    Anderson, K. A.; Mcfadden, J. P.; Lin, R. P.

    1981-01-01

    Two events are reported in which 2-10 keV electrons of solar energy have undergone significant adiabatic mirroring and pitch angle scattering in large scale magnetic structures in the interplanetary medium within a distance of about 0.5 AU from the earth. Electrons of 3 keV, typical of the energies measured, have a speed of about one-tenth of the speed of light, so that their travel time from the sun at 0 deg pitch angle would be about 100 minutes. Their cyclotron radius is about 20 km for a pitch angle of 30 deg, and a field of magnitude of 5 nT, and the cyclotron period is about 7.1 milliseconds. The electrons are scattered by spatial variations in the interplanetary magnetic field. When the spatial variations are convected past a stationary spacecraft by a 500 km/sec solar wind, they are seen as temporal fluctuations at a frequency of about 3 Hz.

  3. Performance of two commercial electron beam algorithms over regions close to the lung-mediastinum interface, against Monte Carlo simulation and point dosimetry in virtual and anthropomorphic phantoms.

    PubMed

    Ojala, J; Hyödynmaa, S; Barańczyk, R; Góra, E; Waligórski, M P R

    2014-03-01

    Electron radiotherapy is applied to treat the chest wall close to the mediastinum. The performance of the GGPB and eMC algorithms implemented in the Varian Eclipse treatment planning system (TPS) was studied in this region for 9 and 16 MeV beams, against Monte Carlo (MC) simulations, point dosimetry in a water phantom and dose distributions calculated in virtual phantoms. For the 16 MeV beam, the accuracy of these algorithms was also compared over the lung-mediastinum interface region of an anthropomorphic phantom, against MC calculations and thermoluminescence dosimetry (TLD). In the phantom with a lung-equivalent slab the results were generally congruent, the eMC results for the 9 MeV beam slightly overestimating the lung dose, and the GGPB results for the 16 MeV beam underestimating the lung dose. Over the lung-mediastinum interface, for 9 and 16 MeV beams, the GGPB code underestimated the lung dose and overestimated the dose in water close to the lung, compared to the congruent eMC and MC results. In the anthropomorphic phantom, results of TLD measurements and MC and eMC calculations agreed, while the GGPB code underestimated the lung dose. Good agreement between TLD measurements and MC calculations attests to the accuracy of "full" MC simulations as a reference for benchmarking TPS codes. Application of the GGPB code in chest wall radiotherapy may result in significant underestimation of the lung dose and overestimation of dose to the mediastinum, affecting plan optimization over volumes close to the lung-mediastinum interface, such as the lung or heart.

  4. Nuclear accident dosimetry intercomparison studies.

    PubMed

    Sims, C S

    1989-09-01

    Twenty-two nuclear accident dosimetry intercomparison studies utilizing the fast-pulse Health Physics Research Reactor at the Oak Ridge National Laboratory have been conducted since 1965. These studies have provided a total of 62 different organizations a forum for discussion of criticality accident dosimetry, an opportunity to test their neutron and gamma-ray dosimetry systems under a variety of simulated criticality accident conditions, and the experience of comparing results with reference dose values as well as with the measured results obtained by others making measurements under identical conditions. Sixty-nine nuclear accidents (27 with unmoderated neutron energy spectra and 42 with eight different shielded spectra) have been simulated in the studies. Neutron doses were in the 0.2-8.5 Gy range and gamma doses in the 0.1-2.0 Gy range. A total of 2,289 dose measurements (1,311 neutron, 978 gamma) were made during the intercomparisons. The primary methods of neutron dosimetry were activation foils, thermoluminescent dosimeters, and blood sodium activation. The main methods of gamma dose measurement were thermoluminescent dosimeters, radiophotoluminescent glass, and film. About 68% of the neutron measurements met the accuracy guidelines (+/- 25%) and about 52% of the gamma measurements met the accuracy criterion (+/- 20%) for accident dosimetry.

  5. Dosimetry tools and techniques for IMRT.

    PubMed

    Low, Daniel A; Moran, Jean M; Dempsey, James F; Dong, Lei; Oldham, Mark

    2011-03-01

    Intensity modulated radiation therapy (IMRT) poses a number of challenges for properly measuring commissioning data and quality assurance (QA) radiation dose distributions. This report provides a comprehensive overview of how dosimeters, phantoms, and dose distribution analysis techniques should be used to support the commissioning and quality assurance requirements of an IMRT program. The proper applications of each dosimeter are described along with the limitations of each system. Point detectors, arrays, film, and electronic portal imagers are discussed with respect to their proper use, along with potential applications of 3D dosimetry. Regardless of the IMRT technique utilized, some situations require the use of multiple detectors for the acquisition of accurate commissioning data. The overall goal of this task group report is to provide a document that aids the physicist in the proper selection and use of the dosimetry tools available for IMRT QA and to provide a resource for physicists that describes dosimetry measurement techniques for purposes of IMRT commissioning and measurement-based characterization or verification of IMRT treatment plans. This report is not intended to provide a comprehensive review of commissioning and QA procedures for IMRT. Instead, this report focuses on the aspects of metrology, particularly the practical aspects of measurements that are unique to IMRT. The metrology of IMRT concerns the application of measurement instruments and their suitability, calibration, and quality control of measurements. Each of the dosimetry measurement tools has limitations that need to be considered when incorporating them into a commissioning process or a comprehensive QA program. For example, routine quality assurance procedures require the use of robust field dosimetry systems. These often exhibit limitations with respect to spatial resolution or energy response and need to themselves be commissioned against more established dosimeters. A chain of

  6. Photostimulable Storage Phosphor Dosimetry

    NASA Astrophysics Data System (ADS)

    Frye, Douglas Mahaffey Danks

    The feasibility of employing alkaline earth sulfide based photostimulable storage phosphors for relative dosimetry in radiation oncology has been investigated. The dosimetric characteristics, radiologic characteristics, and spacial sensitivity of calcium sulfide and strontium sulfide based phosphors were determined. Dosimetric characteristics were explored by cavity theory calculation, Monte Carlo simulation, and physical measurement. Dosimetric characteristics obtained with cavity theory and Monte Carlo simulations agree well. The dose perturbation of the phosphor base materials were comparable to those produced by clinical dosimeter materials over the energy region employed in radiation oncology. Dose perturbation in regions downstream of the phosphor were measured with a variety of clinical dosimeters and compared with simulation results. The results of the measurements and simulations agreed within the uncertainty levels of the simulations and the measurements. Radiological characteristics of sensitivity, fading, dose response, dose rate response, and energy dependence of response were studied with an experimental phosphor output reader. Relative sensitivity was found to be dependent upon the mass thickness of phosphor layer. Fading was quantified for the calcium sulfide phosphor, with a half time of 2300 minutes. The strontium sulfide sample exhibited some fading, however, the regression lines yielded low correlation coefficients. A linear dose response over the range of doses employed in radiation oncology was obtained for both phosphors. No significant dose rate dependence of response was measured for the phosphors. The phosphor's energy dependence of response paralleled the dose perturbation relative to water predicted by cavity theory and simulations. Spatial sensitivity was demonstrated with an experimental phosphor scanner. The phosphors exhibited spatial sensitivity, however, infrared scattering/piping in the transparent substrate appeared to cause

  7. Electron-electron correlations in square-well quantum dots: direct energy minimization approach.

    PubMed

    Goto, Hidekazu; Hirose, Kikuji

    2011-04-01

    Electron-electron correlations in two-dimensional square-well quantum dots are investigated using the direct energy minimization scheme. Searches for groundstate charges and spin configurations are performed with varying the sizes of dots and the number of electrons. For a two-electron system, a standout difference between the configurations with and without counting correlation energy is demonstrated. The emergence and melting of Wigner-molecule-like structures arising from the interplay between the kinetic energy and Coulombic interaction energy are described. Electron-electron correlation energies and addition energy spectra are calculated, and special electron numbers related to peculiar effects of the square well are extracted.

  8. EPR tooth dosimetry as a tool for validation of retrospective doses: an end-user perspective.

    PubMed

    Bhat, Mohandas

    2005-02-01

    The US Department of Energy (DOE) is co-funding several studies on health effects of radiation in Southern Urals in Russia and on Chernobyl liquidators in Ukraine. Obtaining dose-response relationships is central to all these studies. In order to validate retrospective doses estimated by various methods, Electron paramagnetic Resonance (EPR) tooth dosimetry, considered by many as a gold standard, was attempted. The EPR technique, however, has some limitations. This paper discusses the potential pitfalls of using EPR tooth dosimetry, and some potential solutions.

  9. Bone and mucosal dosimetry in skin radiation therapy: a Monte Carlo study using kilovoltage photon and megavoltage electron beams

    NASA Astrophysics Data System (ADS)

    Chow, James C. L.; Jiang, Runqing

    2012-06-01

    This study examines variations of bone and mucosal doses with variable soft tissue and bone thicknesses, mimicking the oral or nasal cavity in skin radiation therapy. Monte Carlo simulations (EGSnrc-based codes) using the clinical kilovoltage (kVp) photon and megavoltage (MeV) electron beams, and the pencil-beam algorithm (Pinnacle3 treatment planning system) using the MeV electron beams were performed in dose calculations. Phase-space files for the 105 and 220 kVp beams (Gulmay D3225 x-ray machine), and the 4 and 6 MeV electron beams (Varian 21 EX linear accelerator) with a field size of 5 cm diameter were generated using the BEAMnrc code, and verified using measurements. Inhomogeneous phantoms containing uniform water, bone and air layers were irradiated by the kVp photon and MeV electron beams. Relative depth, bone and mucosal doses were calculated for the uniform water and bone layers which were varied in thickness in the ranges of 0.5-2 cm and 0.2-1 cm. A uniform water layer of bolus with thickness equal to the depth of maximum dose (dmax) of the electron beams (0.7 cm for 4 MeV and 1.5 cm for 6 MeV) was added on top of the phantom to ensure that the maximum dose was at the phantom surface. From our Monte Carlo results, the 4 and 6 MeV electron beams were found to produce insignificant bone and mucosal dose (<1%), when the uniform water layer at the phantom surface was thicker than 1.5 cm. When considering the 0.5 cm thin uniform water and bone layers, the 4 MeV electron beam deposited less bone and mucosal dose than the 6 MeV beam. Moreover, it was found that the 105 kVp beam produced more than twice the dose to bone than the 220 kVp beam when the uniform water thickness at the phantom surface was small (0.5 cm). However, the difference in bone dose enhancement between the 105 and 220 kVp beams became smaller when the thicknesses of the uniform water and bone layers in the phantom increased. Dose in the second bone layer interfacing with air was found to be

  10. Fast neutron dosimetry

    SciTech Connect

    DeLuca, P.M. Jr.; Pearson, D.W.

    1992-01-01

    This progress report concentrates on two major areas of dosimetry research: measurement of fast neutron kerma factors for several elements for monochromatic and white spectrum neutron fields and determination of the response of thermoluminescent phosphors to various ultra-soft X-ray energies and beta-rays. Dr. Zhixin Zhou from the Shanghai Institute of Radiation Medicine, People's Republic of China brought with him special expertise in the fabrication and use of ultra-thin TLD materials. Such materials are not available in the USA. The rather unique properties of these materials were investigated during this grant period.

  11. Heavy-ion dosimetry

    SciTech Connect

    Schimmerling, W.

    1980-03-01

    This lecture deals with some of the more important physical characteristics of relativistic heavy ions and their measurement, with beam delivery and beam monitoring, and with conventional radiation dosimetry as used in the operation of the BEVALAC biomedical facility for high energy heavy ions (Lyman and Howard, 1977; BEVALAC, 1977). Even so, many fundamental aspects of the interaction of relativistic heavy ions with matter, including important atomic physics and radiation chemical considerations, are not discussed beyond the reminder that such additional understanding is required before an adequte perspective of the problem can be attained.

  12. Determination of neutron spectra within the energy of 1 keV to 1 MeV by means of reactor dosimetry

    SciTech Connect

    Sergeyeva, Victoria; Destouches, Christophe; Lyoussi, Abdallah; Thiollay, Nicolas; Vigneau, Olivier; Korschinek, Gunther; Carcreff, Hubert

    2015-07-01

    The standard procedure for neutron reactor dosimetry is based on neutron irradiation of a target and its post-irradiation analysis by Gamma and/or X-ray spectrometry. Nowadays, the neutron spectra can be easily characterized for thermal and fast energies (respectively 0.025 eV and >1 MeV). In this work we propose a new target and an innovating post-irradiation technique of analysis in order to detect the neutron spectra within the energy of 1 keV to 1 MeV. This article will present the calculations performed for the selection of a suitable nuclear reaction and isotope, the results predicted by simulations, the irradiation campaign that is proposed and the post-irradiation technique of analysis. (authors)

  13. Low-energy electron collisions with thiophene.

    PubMed

    da Costa, R F; Varella, M T do N; Lima, M A P; Bettega, M H F

    2013-05-21

    We report on elastic integral, momentum transfer, and differential cross sections for collisions of low-energy electrons with thiophene molecules. The scattering calculations presented here used the Schwinger multichannel method and were carried out in the static-exchange and static-exchange plus polarization approximations for energies ranging from 0.5 eV to 6 eV. We found shape resonances related to the formation of two long-lived π∗ anion states. These resonant structures are centered at the energies of 1.00 eV (2.85 eV) and 2.82 eV (5.00 eV) in the static-exchange plus polarization (static-exchange) approximation and belong to the B1 and A2 symmetries of the C2v point group, respectively. Our results also suggest the existence of a σ∗ shape resonance in the B2 symmetry with a strong d-wave character, located at around 2.78 eV (5.50 eV) as obtained in the static-exchange plus polarization (static-exchange) calculation. It is worth to mention that the results obtained at the static-exchange plus polarization level of approximation for the two π∗ resonances are in good agreement with the electron transmission spectroscopy results of 1.15 eV and 2.63 eV measured by Modelli and Burrow [J. Phys. Chem. A 108, 5721 (2004)]. The existence of the σ∗ shape resonance is in agreement with the observations of Dezarnaud-Dandiney et al. [J. Phys. B 31, L497 (1998)] based on the electron transmission spectra of dimethyl(poly)sulphides. A comparison among the resonances of thiophene with those of pyrrole and furan is also performed and, altogether, the resonance spectra obtained for these molecules point out that electron attachment to π∗ molecular orbitals is a general feature displayed by these five-membered heterocyclic compounds.

  14. Low-energy electron collisions with thiophene

    NASA Astrophysics Data System (ADS)

    da Costa, R. F.; Varella, M. T. do N.; Lima, M. A. P.; Bettega, M. H. F.

    2013-05-01

    We report on elastic integral, momentum transfer, and differential cross sections for collisions of low-energy electrons with thiophene molecules. The scattering calculations presented here used the Schwinger multichannel method and were carried out in the static-exchange and static-exchange plus polarization approximations for energies ranging from 0.5 eV to 6 eV. We found shape resonances related to the formation of two long-lived π* anion states. These resonant structures are centered at the energies of 1.00 eV (2.85 eV) and 2.82 eV (5.00 eV) in the static-exchange plus polarization (static-exchange) approximation and belong to the B1 and A2 symmetries of the C2v point group, respectively. Our results also suggest the existence of a σ* shape resonance in the B2 symmetry with a strong d-wave character, located at around 2.78 eV (5.50 eV) as obtained in the static-exchange plus polarization (static-exchange) calculation. It is worth to mention that the results obtained at the static-exchange plus polarization level of approximation for the two π* resonances are in good agreement with the electron transmission spectroscopy results of 1.15 eV and 2.63 eV measured by Modelli and Burrow [J. Phys. Chem. A 108, 5721 (2004), 10.1021/jp048759a]. The existence of the σ* shape resonance is in agreement with the observations of Dezarnaud-Dandiney et al. [J. Phys. B 31, L497 (1998), 10.1088/0953-4075/31/11/004] based on the electron transmission spectra of dimethyl(poly)sulphides. A comparison among the resonances of thiophene with those of pyrrole and furan is also performed and, altogether, the resonance spectra obtained for these molecules point out that electron attachment to π* molecular orbitals is a general feature displayed by these five-membered heterocyclic compounds.

  15. EPR/PTFE dosimetry for test reactor environments

    SciTech Connect

    Vehar, D.W.; Griffin, P.J.; Quirk, T.J.

    2011-07-01

    The use of Electron Paramagnetic Resonance (EPR) spectroscopy with materials such as alanine is well established as a technique for measurement of ionizing radiation absorbed dose in photon and electron fields such as Co-60, high-energy bremsstrahlung and electron-beam fields [1]. In fact, EPR/Alanine dosimetry has become a routine transfer standard for national standards bodies such as NIST and NPL. In 1992 the Radiation Metrology Laboratory (RML) at Sandia National Laboratories implemented EPR/Alanine capabilities for use in routine and calibration activities at its Co-60 and pulsed-power facilities. At that time it also investigated the usefulness of the system for measurement of absorbed dose in the mixed neutron/photon environments of reactors such as the Sandia Pulsed Reactor and the Annular Core Research Reactor used for hardness testing of electronics. The RML concluded that the neutron response of alanine was a sufficiently high fraction of the overall dosimeter response that the resulting uncertainties in the photon dose would be unacceptably large for silicon-device testing. However, it also suggested that non-hydrogenous materials such as polytetrafluoroethylene (PTFE) would exhibit smaller neutron response and might be useful in mixed environments. Preliminary research with PTFE in photon environments indicated considerable promise, but further development was not pursued at that time. Because of renewed interest in absorbed dose measurements that could better define the individual contributions of photon and neutron components to the overall dose delivered to a test object, the RML has re-initiated the development of an EPR/PTFE dosimetry system. This effort consists of three stages: 1) Identification of PTFE materials that may be suitable for dosimetry applications. It was speculated that the inconsistency of EPR signatures in the earlier samples may have been due to variability in PTFE manufacturing processes. 2) Characterization of dosimetry in

  16. Emerging technological bases for retrospective dosimetry.

    PubMed

    Straume, T; Anspaugh, L R; Haskell, E H; Lucas, J N; Marchetti, A A; Likhtarev, I A; Chumak, V V; Romanyukha, A A; Khrouch, V T; Gavrilin YuI; Minenko, V F

    1997-01-01

    In this article we discuss examples of challenging problems in retrospective dosimetry and describe some promising solutions. The ability to make measurements by accelerator mass spectrometry and luminescence techniques promises to provide improved dosimetry for regions of Belarus, Ukraine and Russian Federation contaminated by radionuclides from the Chernobyl accident. In addition, it may soon be possible to resolve the large neutron discrepancy in the dosimetry system for Hiroshima through novel measurement techniques that can be used to reconstruct the fast-neutron fluence emitted by the bomb some 51 years ago. Important advances in molecular cytogenetics and electron paramagnetic resonance measurements have produced biodosimeters that show potential in retrospective dosimetry. The most promising of these are the frequency of reciprocal translocations measured in chromosomes of blood lymphocytes using fluorescence in situ hybridization and the electron paramagnetic resonance signal in tooth enamel.

  17. Implementation of new physics models for low energy electrons in liquid water in Geant4-DNA.

    PubMed

    Bordage, M C; Bordes, J; Edel, S; Terrissol, M; Franceries, X; Bardiès, M; Lampe, N; Incerti, S

    2016-12-01

    A new alternative set of elastic and inelastic cross sections has been added to the very low energy extension of the Geant4 Monte Carlo simulation toolkit, Geant4-DNA, for the simulation of electron interactions in liquid water. These cross sections have been obtained from the CPA100 Monte Carlo track structure code, which has been a reference in the microdosimetry community for many years. They are compared to the default Geant4-DNA cross sections and show better agreement with published data. In order to verify the correct implementation of the CPA100 cross section models in Geant4-DNA, simulations of the number of interactions and ranges were performed using Geant4-DNA with this new set of models, and the results were compared with corresponding results from the original CPA100 code. Good agreement is observed between the implementations, with relative differences lower than 1% regardless of the incident electron energy. Useful quantities related to the deposited energy at the scale of the cell or the organ of interest for internal dosimetry, like dose point kernels, are also calculated using these new physics models. They are compared with results obtained using the well-known Penelope Monte Carlo code.

  18. Methods and computer readable medium for improved radiotherapy dosimetry planning

    DOEpatents

    Wessol, Daniel E.; Frandsen, Michael W.; Wheeler, Floyd J.; Nigg, David W.

    2005-11-15

    Methods and computer readable media are disclosed for ultimately developing a dosimetry plan for a treatment volume irradiated during radiation therapy with a radiation source concentrated internally within a patient or incident from an external beam. The dosimetry plan is available in near "real-time" because of the novel geometric model construction of the treatment volume which in turn allows for rapid calculations to be performed for simulated movements of particles along particle tracks therethrough. The particles are exemplary representations of alpha, beta or gamma emissions emanating from an internal radiation source during various radiotherapies, such as brachytherapy or targeted radionuclide therapy, or they are exemplary representations of high-energy photons, electrons, protons or other ionizing particles incident on the treatment volume from an external source. In a preferred embodiment, a medical image of a treatment volume irradiated during radiotherapy having a plurality of pixels of information is obtained.

  19. Femtosecond spectroscopy of electron-electron and electron-phonon energy relaxation in Ag and Au

    NASA Astrophysics Data System (ADS)

    Groeneveld, Rogier H. M.; Sprik, Rudolf; Lagendijk, Ad

    1995-05-01

    We show experimentally that the electron distribution of a laser-heated metal is a nonthermal distribution on the time scale of the electron-phonon (e-ph) energy relaxation time τE. We measured τE in 45-nm Ag and 30-nm Au thin films as a function of lattice temperature (Ti=10-300 K) and laser-energy density (Ul=0.3-1.3 J cm-3), combining femtosecond optical transient-reflection techniques with the surface-plasmon polariton resonance. The experimental effective e-ph energy relaxation time decreased from 710-530 fs and 830-530 fs for Ag and Au, respectively, when temperature is lowered from 300 to 10 K. At various temperatures we varied Ul between 0.3-1.3 J cm-3 and observed that τE is independent from Ul within the given range. The results were first compared to theoretical predictions of the two-temperature model (TTM). The TTM is the generally accepted model for e-ph energy relaxation and is based on the assumption that electrons and lattice can be described by two different time-dependent temperatures Te and Ti, implying that the two subsystems each have a thermal distribution. The TTM predicts a quasiproportional relation between τE and Ti in the perturbative regime where τE is not affected by Ul. Hence, it is shown that the measured dependencies of τE on lattice temperature and energy density are incompatible with the TTM. It is proven that the TTM assumption of a thermal electron distribution does not hold especially under our experimental conditions of low laser power and lattice temperature. The electron distribution is a nonthermal distribution on the picosecond time scale of e-ph energy relaxation. We developed a new model, the nonthermal electron model (NEM), in which we account for the (finite) electron-electron (e-e) and electron-phonon dynamics simultaneously. It is demonstrated that incomplete electron thermalization yields a slower e-ph energy relaxation in comparison to the thermalized limit. With the NEM we are able to give a consistent

  20. SU-E-T-678: Response Calibration Using Electron Depth-Dose Data for MRI-Based 3D Polymer Gel Dosimetry

    SciTech Connect

    Watanabe, Y; Warmington, L; Gopishankar, N

    2015-06-15

    Purpose: To evaluate a calibration method using the depth-dose data of an electron beam for MRI-based polymer gel dosimetry. Methods: MAGAT was manufactured in-house to fill two 400mL-cylindrical phantoms and nine 22mL-glass vials. Phantom-A was irradiated along the cylinder axis with a 9MeV electron beam of 6 cm x 6 cm field size (FS). Phantom-B was irradiated with a 6MV photon beam of 3 cm x 3 cm FS by a 360-degree arc technique. Eight vials were irradiated in a water-bath to various doses with a 20 cm x 20 cm FS 6MV photon beam. All irradiated phantoms and one un-irradiated vial were scanned with a 3T MRI scanner to obtain the spin-spin relaxation rate (R2) distributions. By comparing the measured R2-to-depth data with the known depth-dose data for Phantom-A, R2-to-dose calibration data were obtained (e-beam method). Another calibration data were obtained from the 9 vials data (9-vial method). We tested two regression equations, i.e., third-order polynomial and tangent functions, and two dose normalization methods, i.e., one-point and two-point methods. Then, these two calibration methods were used to obtain the 3D dose distribution of Phantom-B and evaluated by comparing the measured data with the dose distribution from a treatment planning system. The comparison was made with gamma passing rate (2%/2mm criteria). Results: We did not observe a clear advantage of the e-beam method over the 9-vial method for the 3D dose comparison with the test case. Nevertheless, we found that the e-beam method required a smaller dose scaling for the dose comparison. Furthermore, the tangent function showed better data fitting than the polynomial function with smaller uncertainty of the estimated coefficients. Conclusions: Considering the overall superior performance, we recommend the e-beam method with the tangent function as the regression equation and one-point dose normalization for the MRI-based polymer gel dosimetry.

  1. Dosimetry considerations in phototherapy

    SciTech Connect

    Profio, A.E.; Doiron, D.R.

    1981-03-01

    Dosimetry in phototherapy involves a determination of the energy absorbed per unit mass of tissue, corrected for the quantum yield in a photochemical reaction. The dose rate in photochemotherapy of cancer with hematoporphyrin derivative and visible light is related to the extinction coefficient, quantum yield for singlet oxygen production, concentration of sensitizer and energy flux density at depth. Data or methods of determining these quantities are presented. Calculations have been performed for the energy flux density at depth, as a function of the total attenuation coefficient and ratio of scattering coefficient to total attenuation coefficient, for isotropic scattering in slab geometry. For small absorption, these depth dose curves exhibit a maximum within the tissue followed by an exponential decrease.

  2. Energy transformation in molecular electronic systems

    SciTech Connect

    Kasha, M.

    1985-07-25

    Our new optical pumping spectroscopy (steady state, and double-laser pulse) allows the production and study of the unstable rare tautomer in its ground and excited states, including picosecond dynamic studies. Molecules under study here included 7-azaindole (model for biological purines), 3-hydroxyflavone (model for plant flavones), lumichrome, and other heterocyclics. New detailed molecular mechanisms for proton transfer are derived, especially with catalytic assisting molecules. A new proton-transfer laser of extraordinary efficiency has become a side dividend, possibly worth of industrial development. The excited and highly reactive singlet molecular oxygen species /sup 1/..delta../sub g/) has proven to be ubiquitous in chemical peroxide systems and in physically excited sensitizer-oxygen systems. Hyperbaric oxygen mechanisms in biology probably involve singlet oxygen. We have undertaken a spectroscopic study of tris - dibenzoylmethane chelates of Al, Gd, Eu, and Yb trivalent ions. These chelates offer a variety of electronic behaviors, from Z-effects on ..pi..-electron spin-orbital coupling (Al, Gd) to Weissman intramolecular energy transfer to 4f mestable levels (Eu, Gd). Elegant new spectroscopic resolution at 77K permits separation of tautomeric, parasitic self-absorption, dissociation, and cage effects to be resolved. 18 refs., 4 figs.

  3. Energy transformation in molecular electronic systems

    NASA Astrophysics Data System (ADS)

    Kasha, M.

    1985-07-01

    Our new optical pumping spectroscopy allows the production and study of the unstable rate tautomer in its ground and excited states, including picosecond dynamic studies. Molecules under study here included 7-azaindole 3-hydroxyflavone, lumichrome, and other heterocyclics. New detailed molecular mechanisms for proton transfer are derived, especially with catalytic assisting molecules. A new proton-transfer laser of extraordinary efficiency has become a side dividend, possibly worthy of industrial development. The excited and highly reactive singlet molecular oxygen species (1) DELTA sub g has proven to be ubiquitous in chemical peroxide systems and in physically excited sensitizer-oxygen systems. Hyperbaric oxygen mechanisms in biology probably involve singlet oxygen. We have undertaken a spectroscopic study of trisdibenzoylmethane chelates of Al, Gd, Eu, and Yb trivalent ions. These chelates offer a variety of electronic behaviors, from Z-effects on (PI)--electron spin-orbital coupling (Al, Gd) to Weissman intramolecular energy transfer to 4f mestable levels (Eu, Gd). Elegant new spectroscopic resolution at 77K permits separation of tautomeric, parasitic self-absorption, dissociation, and cage effects to be resolved.

  4. Triple Hybrid Energy Harvesting Interface Electronics

    NASA Astrophysics Data System (ADS)

    Uluşan, H.; Chamanian, S.; Pathirana, W. M. P. R.; Zorlu, Ö.; Muhtaroğlu, A.; Külah, H.

    2016-11-01

    This study presents a novel triple hybrid system that combines simultaneously generated power from thermoelectric (TE), vibration-based electromagnetic (EM) and piezoelectric (PZT) harvesters for a relatively high power supply capability. In the proposed solution each harvesting source utilizes a distinct power management circuit that generates a DC voltage suitable for combining the three parallel supplies. The circuits are designed and implemented in 180 nm standard CMOS technology, and are terminated with a schottky diode to avoid reverse current flow. The harvested AC signal from the EM harvester is rectified with a self-powered AC-DC doubler, which utilizes active diode structures to minimize the forward- bias voltage drop. The PZT interface electronics utilizes a negative voltage converter as the first stage, followed by synchronous power extraction and DC-to-DC conversion through internal switches, and an external inductor. The ultra-low voltage DC power harvested by the TE generator is stepped up through a charge-pump driven by an LC oscillator with fully- integrated center-tapped differential inductors. Test results indicate that hybrid energy harvesting circuit provides more than 1 V output for load resistances higher than 100 kΩ (10 μW) where the stand-alone harvesting circuits are not able to reach 1 V output. This is the first hybrid harvester circuit that simultaneously extracts energy from three independent sources, and delivers a single DC output.

  5. A small-scale anatomical dosimetry model of the liver

    NASA Astrophysics Data System (ADS)

    Stenvall, Anna; Larsson, Erik; Strand, Sven-Erik; Jönsson, Bo-Anders

    2014-07-01

    Radionuclide therapy is a growing and promising approach for treating and prolonging the lives of patients with cancer. For therapies where high activities are administered, the liver can become a dose-limiting organ; often with a complex, non-uniform activity distribution and resulting non-uniform absorbed-dose distribution. This paper therefore presents a small-scale dosimetry model for various source-target combinations within the human liver microarchitecture. Using Monte Carlo simulations, Medical Internal Radiation Dose formalism-compatible specific absorbed fractions were calculated for monoenergetic electrons; photons; alpha particles; and 125I, 90Y, 211At, 99mTc, 111In, 177Lu, 131I and 18F. S values and the ratio of local absorbed dose to the whole-organ average absorbed dose was calculated, enabling a transformation of dosimetry calculations from macro- to microstructure level. For heterogeneous activity distributions, for example uptake in Kupffer cells of radionuclides emitting low-energy electrons (125I) or high-LET alpha particles (211At) the target absorbed dose for the part of the space of Disse, closest to the source, was more than eight- and five-fold the average absorbed dose to the liver, respectively. With the increasing interest in radionuclide therapy of the liver, the presented model is an applicable tool for small-scale liver dosimetry in order to study detailed dose-effect relationships in the liver.

  6. A small-scale anatomical dosimetry model of the liver.

    PubMed

    Stenvall, Anna; Larsson, Erik; Strand, Sven-Erik; Jönsson, Bo-Anders

    2014-07-07

    Radionuclide therapy is a growing and promising approach for treating and prolonging the lives of patients with cancer. For therapies where high activities are administered, the liver can become a dose-limiting organ; often with a complex, non-uniform activity distribution and resulting non-uniform absorbed-dose distribution. This paper therefore presents a small-scale dosimetry model for various source-target combinations within the human liver microarchitecture. Using Monte Carlo simulations, Medical Internal Radiation Dose formalism-compatible specific absorbed fractions were calculated for monoenergetic electrons; photons; alpha particles; and (125)I, (90)Y, (211)At, (99m)Tc, (111)In, (177)Lu, (131)I and (18)F. S values and the ratio of local absorbed dose to the whole-organ average absorbed dose was calculated, enabling a transformation of dosimetry calculations from macro- to microstructure level. For heterogeneous activity distributions, for example uptake in Kupffer cells of radionuclides emitting low-energy electrons ((125)I) or high-LET alpha particles ((211)At) the target absorbed dose for the part of the space of Disse, closest to the source, was more than eight- and five-fold the average absorbed dose to the liver, respectively. With the increasing interest in radionuclide therapy of the liver, the presented model is an applicable tool for small-scale liver dosimetry in order to study detailed dose-effect relationships in the liver.

  7. Study of effective atomic number and electron density for tissues from human organs in the energy range of 1 keV-100 GeV.

    PubMed

    Manjunatha, H C; Rudraswamy, B

    2013-02-01

    Effective atomic numbers' (Z(eff)) effective electron density (N(el)) for human organs and tissues have been computed in the energy region of 1 keV to 100 GeV using WinXCOM. The computed data of Z(eff) and N(el) are tabulated. The computed values are compared with previous results. The computed data of Z(eff)and N(el)for almost all tissues (34 tissues of different human organs) in the given energy range are not available in literature and find application in radiotherapy and dosimetry.

  8. Health physics research reactor reference dosimetry

    SciTech Connect

    Sims, C.S.; Ragan, G.E.

    1987-06-01

    Reference neutron dosimetry is developed for the Health Physics Research Reactor (HPRR) in the new operational configuration directly above its storage pit. This operational change was physically made early in CY 1985. The new reference dosimetry considered in this document is referred to as the 1986 HPRR reference dosimetry and it replaces any and all HPRR reference documents or papers issued prior to 1986. Reference dosimetry is developed for the unshielded HPRR as well as for the reactor with each of five different shield types and configurations. The reference dosimetry is presented in terms of three different dose and six different dose equivalent reporting conventions. These reporting conventions cover most of those in current use by dosimetrists worldwide. In addition to the reference neutron dosimetry, this document contains other useful dosimetry-related data for the HPRR in its new configuration. These data include dose-distance measurements and calculations, gamma dose measurements, neutron-to-gamma ratios, ''9-to-3 inch'' ratios, threshold detector unit measurements, 56-group neutron energy spectra, sulfur fluence measurements, and details concerning HPRR shields. 26 refs., 11 figs., 31 tabs.

  9. Reflection Electron Energy Loss Spectroscopy of Iron Monosilicide

    NASA Astrophysics Data System (ADS)

    Parshin, A. S.; Igumenov, A. Yu.; Mikhlin, Yu. L.; Pchelyakov, O. P.; Zhigalov, V. S.

    2017-02-01

    X-ray photoelectron spectra, reflection electron energy loss spectra, and inelastic electron scattering cross section spectra of iron monosilicide FeSi are investigated. It is shown that the spectra of inelastic electron scattering cross section have advantages over the reflection electron energy loss spectra in studying the processes of electron energy losses. An analysis of the fine structure of the inelastic electron scattering cross section spectra allows previously unresolved peaks to be identified and their energy, intensity, and nature to be determined. The difference between energies of fitting loss peaks in the spectra of inelastic electron scattering cross section of FeSi and pure Fe are more substantial than the chemical shifts in X-ray photoelectron spectra, which indicates the possibility of application of the fine structure of the spectra of inelastic electron scattering cross section for elemental analysis.

  10. Production and dosimetry of simultaneous therapeutic photons and electrons beam by linear accelerator: A Monte Carlo study

    SciTech Connect

    Khledi, Navid; Sardari, Dariush; Arbabi, Azim; Ameri, Ahmad; Mohammadi, Mohammad

    2015-02-24

    Depending on the location and depth of tumor, the electron or photon beams might be used for treatment. Electron beam have some advantages over photon beam for treatment of shallow tumors to spare the normal tissues beyond of the tumor. In the other hand, the photon beam are used for deep targets treatment. Both of these beams have some limitations, for example the dependency of penumbra with depth, and the lack of lateral equilibrium for small electron beam fields. In first, we simulated the conventional head configuration of Varian 2300 for 16 MeV electron, and the results approved by benchmarking the Percent Depth Dose (PDD) and profile of the simulation and measurement. In the next step, a perforated Lead (Pb) sheet with 1mm thickness placed at the top of the applicator holder tray. This layer producing bremsstrahlung x-ray and a part of the electrons passing through the holes, in result, we have a simultaneous mixed electron and photon beam. For making the irradiation field uniform, a layer of steel placed after the Pb layer. The simulation was performed for 10×10, and 4×4 cm2 field size. This study was showed the advantages of mixing the electron and photon beam by reduction of pure electron's penumbra dependency with the depth, especially for small fields, also decreasing of dramatic changes of PDD curve with irradiation field size.

  11. Fundamentals of Radiation Dosimetry

    SciTech Connect

    Bos, Adrie J. J.

    2011-05-05

    The basic concepts of radiation dosimetry are reviewed on basis of ICRU reports and text books. The radiation field is described with, among others, the particle fluence. Cross sections for indirectly ionizing radiation are defined and indicated is how they are related to the mass energy transfer and mass energy absorption coefficients. Definitions of total and restricted mass stopping powers of directly ionizing radiation are given. The dosimetric quantities, kerma, absorbed dose and exposure together with the relations between them are discussed in depth. Finally it is indicated how the absorbed dose can be measured with a calorimeter by measuring the temperature increase and with an ionisation chamber measuring the charge produced by the ionizing radiation and making use of the Bragg-Gray relation.

  12. Fundamentals of Radiation Dosimetry

    NASA Astrophysics Data System (ADS)

    Bos, Adrie J. J.

    2011-05-01

    The basic concepts of radiation dosimetry are reviewed on basis of ICRU reports and text books. The radiation field is described with, among others, the particle fluence. Cross sections for indirectly ionizing radiation are defined and indicated is how they are related to the mass energy transfer and mass energy absorption coefficients. Definitions of total and restricted mass stopping powers of directly ionizing radiation are given. The dosimetric quantities, kerma, absorbed dose and exposure together with the relations between them are discussed in depth. Finally it is indicated how the absorbed dose can be measured with a calorimeter by measuring the temperature increase and with an ionisation chamber measuring the charge produced by the ionizing radiation and making use of the Bragg-Gray relation.

  13. Photon and electron collimator effects on electron output and abutting segments in energy modulated electron therapy

    SciTech Connect

    Olofsson, Lennart; Karlsson, Magnus G.; Karlsson, Mikael

    2005-10-15

    In energy modulated electron therapy a large fraction of the segments will be arranged as abutting segments where inhomogeneities in segment matching regions must be kept as small as possible. Furthermore, the output variation between different segments should be minimized and must in all cases be well predicted. For electron therapy with add-on collimators, both the electron MLC (eMLC) and the photon MLC (xMLC) contribute to these effects when an xMLC tracking technique is utilized to reduce the x-ray induced leakage. Two add-on electron collimator geometries have been analyzed using Monte Carlo simulations: One isocentric eMLC geometry with an isocentric clearance of 35 cm and air or helium in the treatment head, and one conventional proximity geometry with a clearance of 5 cm and air in the treatment head. The electron fluence output for 22.5 MeV electrons is not significantly affected by the xMLC if the shielding margins are larger than 2-3 cm. For small field sizes and 9.6 MeV electrons, the isocentric design with helium in the treatment head or shielding margins larger than 3 cm is needed to avoid a reduced electron output. Dose inhomogeneity in the matching region of electron segments is, in general, small when collimator positions are adjusted to account for divergence in the field. The effect of xMLC tracking on the electron output can be made negligible while still obtaining a substantially reduced x-ray leakage contribution. Collimator scattering effects do not interfere significantly when abutting beam techniques are properly applied.

  14. Ionization By Impact Electrons in Solids: Electron Mean Free Path Fitted Over A Wide Energy Range

    SciTech Connect

    Ziaja, B; London, R A; Hajdu, J

    2005-06-09

    We propose a simple formula for fitting the electron mean free paths in solids both at high and at low electron energies. The free-electron-gas approximation used for predicting electron mean free paths is no longer valid at low energies (E < 50 eV), as the band structure effects become significant at those energies. Therefore we include the results of the band structure calculations in our fit. Finally, we apply the fit to 9 elements and 2 compounds.

  15. Thermal electron energy distribution measurements in the ionosphere.

    NASA Technical Reports Server (NTRS)

    Hays, P. B.; Nagy, A. F.

    1973-01-01

    A recoverable payload instrumented for twilight airglow studies was launched by an Aerobee 150 from the White Sands Test Range on Feb. 8, 1971 at 13.56 UT. The payload included a low energy electron spectrometer (HARP) and a cylindrical Langmuir probe. The HARP electron spectrometer is a new device designed to make high resolution differential electron flux measurements. Measurements of ionospheric electron energy distribution in the range from about 0.2 to 4.0 eV are presented.

  16. Energy Measurements of Trapped Electrons from a Plasma Wakefield Accelerator

    SciTech Connect

    Kirby, Neil; Berry, Melissa; Blumenfeld, Ian; Decker, Franz-Josef; Hogan, Mark J.; Ischebeck, Rasmus; Iverson, Richard; Siemann, Robert H.; Walz, Dieter; Auerbach, David; Clayton, Christopher E.; Huang, Chengkun; Johnson, Devon; Joshi, Chandrashekhar; Lu, Wei; Marsh, Kenneth A.; Mori, Warren B.; Zhou, Miaomiao; Katsouleas, Thomas; Muggli, Patric

    2006-11-27

    Recent electron beam driven plasma wakefield accelerator experiments carried out at SLAC indicate trapping of plasma electrons. More charge came out of than went into the plasma. Most of this extra charge had energies at or below the 10 MeV level. In addition, there were trapped electron streaks that extended from a few GeV to tens of GeV, and there were mono-energetic trapped electron bunches with tens of GeV in energy.

  17. Energy Measurements of Trapped Electrons from a Plasma Wakefield Accelerator

    SciTech Connect

    Kirby, Neal; Auerbach, David; Berry, Melissa; Blumenfeld, Ian; Clayton, Christopher E.; Decer, Franz-Josef; Hogan, Mark J.; Huang, Chengkun; Ischebeck, Rasmus; Iverson, Richard; Johnson, Devon; Joshi, Chadrashekhar; Katsouleas, Thomas; Lu, Wei; Marsh, Kenneth A.; Mori, Warren B.; Muggli, Patric; Oz, Erdem; Siemann, Robert H.; Walz, Dieter; Zhou, Miaomiao; /SLAC /UCLA /Southern California U.

    2007-01-03

    Recent electron beam driven plasma wakefield accelerator experiments carried out at SLAC indicate trapping of plasma electrons. More charge came out of than went into the plasma. Most of this extra charge had energies at or below the 10 MeV level. In addition, there were trapped electron streaks that extended from a few GeV to tens of GeV, and there were mono-energetic trapped electron bunches with tens of GeV in energy.

  18. Application of a new dosimetry formalism to volumetric modulated arc therapy (VMAT).

    PubMed

    Rosser, Karen E; Bedford, James L

    2009-12-07

    Volumetric modulated arc therapy (VMAT) offers a challenge to classical dosimetry protocols as the beams are dynamic in orientation and aperture shape and may include small apertures. The aim of this paper is to apply a formalism to VMAT beams that has recently been published by the International Atomic Energy Agency (IAEA) working party to improve the dosimetry for small and non-standard fields. We investigated three possible fields and assessed their suitability as plan class specific reference (pcsr) fields. The factors in the new dosimetry formalism were investigated: the conversion of dose to water from the conventional reference field to the pcsr and then from the pcsr to a treatment plan, using a PTW semiflex chamber, two Farmer chambers and an electron diode. Finally, the dose was compared for Alanine, the new formalism and calculated using Pinnacle(3) (Philips Radiation Oncology Systems) for two typical clinical VMAT beams. Correction factors between the reference field and the pcsr determined with Alanine range from 0.1% to 2.3% for the three pcsr fields. Dose to water measured using the calibrated ionization chambers is less than 2% different to the dose calculated by Pinnacle(3). VMAT planning and delivery procedures have been successfully implemented and a new dosimetry protocol has been investigated for this new technique. Calibration factors for pcsr fields are found to be up to 2.3% different when using the new formalism, compared to using a standard dosimetry protocol. Using the calibration factors determined in the pcsr fields, the ionization chambers and electron diode agree to within 1% with Alanine dosimetry for two clinical VMAT plans. Good agreements between calculations and measurements are found for these two plans when the new formalism is used.

  19. The radiation dosimetry of intrathecally administered radionuclides

    SciTech Connect

    Stabin, M.G.; Evans, J.F.

    1999-01-01

    The radiation dose to the spine, spinal cord, marrow, and other organs of the body from intrathecal administration of several radiopharmaceuticals was studied. Anatomic models were developed for the spine, spinal cerebrospinal fluid (CSF), spinal cord, spinal skeleton, cranial skeleton, and cranial CSF. A kinetic model for the transport of CSF was used to determine residence times in the CSF; material leaving the CSF was thereafter assumed to enter the bloodstream and follow the kinetics of the radiopharmaceutical as if intravenously administered. The radiation transport codes MCNP and ALGAMP were used to model the electron and photon transport and energy deposition. The dosimetry of Tc-99m DTPA and HSA, In-111 DTPA, I-131 HSA, and Yb-169 DTPA was studied. Radiation dose profiles for the spinal cord and marrow in the spine were developed and average doses to all other organs were estimated, including dose distributions within the bone and marrow.

  20. Energy distribution asymmetry of electron precipitation signatures at Mars

    NASA Astrophysics Data System (ADS)

    Soobiah, Y. I. J.; Barabash, S.; Nilsson, H.; Stenberg, G.; Lundin, R.; Coates, A. J.; Winningham, J. D.; Frahm, R. A.

    2013-02-01

    The different types of asymmetry observed in the energy distributions of electrons and heavy-ions (M/Q=16-44) during signatures of electron precipitation in the Martian ionosphere have been classified. This has been achieved using the space plasma instrumentation of MEX ASPERA-3 from peri-centre altitude to 2200 km. ASPERA-3 ELS observes signatures of electron precipitation on 43.0% of MEX orbits. Unaccelerated electrons in the form of sudden electron flux enhancements are the most common type of electron precipitation signature at Mars and account for ∼70% of the events observed in this study. Electrons that form unaccelerated electron precipitation signatures are either local ionospheric electrons with enhanced density, or electrons transported from another region of ionosphere, solar wind or tail, or a combination of local and transported electrons. The heating of electrons has a strong influence on the shape of most electron energy spectra from accelerated precipitation signatures. On most occasions the general flow of heavy-ions away from Mars is unchanged during the precipitation of electrons, which is thought to be the result of the finite gyroradius effect of the heavy-ions on crustal magnetic field lines. Only ∼17% of events show some form of heavy-ion acceleration that is either concurrent or at the periphery of an electron precipitation signature. The most common combination of electron and heavy-ion energy distributions for signatures of electron precipitation involves electrons that visually have very little asymmetry or are isotropic and heavy-ions that have a upward net flux, and suggest the upward current associated with aurora. Due to a lack of reliable measurements of electrons travelling towards Mars, it is likely we miss further evidence of upward currents. The second most common combination of electron and heavy-ion energy distributions for signatures of electron precipitation, are those distributions of electrons that are asymmetric and

  1. Electron polarimetry at low energies in Hall C at JLab

    NASA Astrophysics Data System (ADS)

    Gaskell, D.

    2013-11-01

    Although the majority of Jefferson Lab experiments require multi-GeV electron beams, there have been a few opportunities to make electron beam polarization measurements at rather low energies. This proceedings will discuss some of the practical difficulties encountered in performing electron polarimetry via Mo/ller scattering at energies on the order of a few hundred MeV. Prospects for Compton polarimetry at very low energies will also be discussed. While Mo/ller scattering is likely the preferred method for electron polarimetry at energies below 500 MeV, there are certain aspects of the polarimeter and experiment design that must be carefully considered.

  2. Electron polarimetry at low energies in Hall C at JLab

    SciTech Connect

    Gaskell, D.

    2013-11-07

    Although the majority of Jefferson Lab experiments require multi-GeV electron beams, there have been a few opportunities to make electron beam polarization measurements at rather low energies. This proceedings will discuss some of the practical difficulties encountered in performing electron polarimetry via Mo/ller scattering at energies on the order of a few hundred MeV. Prospects for Compton polarimetry at very low energies will also be discussed. While Mo/ller scattering is likely the preferred method for electron polarimetry at energies below 500 MeV, there are certain aspects of the polarimeter and experiment design that must be carefully considered.

  3. MO-D-BRD-02: In Memoriam of Bengt Bjarngard: SBRT II: Small Field Dosimetry - TG155

    SciTech Connect

    Das, I; Reft, C

    2014-06-15

    Specialized radiation treatment such as SRS/SRT. SBRT, IMRT, VMAT, Tomotherapy, CyberKnife and Gamma Knife use small fields or combination of small fields where dosimetry is challenging and uncertain due to non-equilibrium conditions such as longitudinal and lateral disequilibrium. Additionally the primary photon fluence is greatly affected by the obstruction of the source size by the jaws creating a large dose gradient across the field. Electronic equilibrium is a phenomenon associated with the range of secondary particles which depend on the beam energy, photon spectrum and the composition of the medium. Additionally, the finite size of detectors creates volume averaging and fluence perturbations especially in small fields. The IAEA/AAPM has provided a frame work for non-compliant reference dosimetry in small fields1. The AAPM TG-1552 has adopted this frame work to provide guidelines in relative dosimetry. This course provides the insight of TG-155 that defines small field, provides recommendations for suitable detectors and associated correction factors to convert reading to dose. Recommendations of a good working practice for relative dosimetry measurements (PDD, TMR, output factor, etc.) and dose calculations based on the new formulation is are elaborated. It also discusses beam modeling and dose calculations as a critical step in clinical utilization of small field radiotherapy. Small errors in beam data, approximations in dose algorithms, or misaligned of detectors and field settings can propagate into large errors in planned and delivered dose. The modeling and treatment planning aspects of small field dosimetry are reviewed with emphasis on the most critical parts for ensuring accurate and safe radiation therapy. Discussion on k(fmsr, fclin) for commercially available detectors are also provided.1 P. Alfonso, P. Andreo, R. Capote, M. S. Huq, W. Kilby, P. Kjall, T. R. Mackie, H. Palmans, K. Rosser, J. Seuntjens, W. Ullrich and S. Vatnitsky, “A new

  4. Sterilization of foods with low-energy electrons (``soft-electrons'')

    NASA Astrophysics Data System (ADS)

    Hayashi, Toru; Takahashi, Yoko; Todoriki, Setsuko

    1998-06-01

    Electrons with an energy of 300 keV or lower were defined as "Soft-electrons", which showed several advantages over conventional irradiation with gamma-rays or high-energy electrons in decontamination of grains and spices. Energies of electrons necessary to reduce microbial loads to levels lower than 10 CFU/g were 60 keV for brown rice, 75 keV for wheat, 100 keV for white pepper, coriander and basil, 130 keV for buckwheat, 160 keV for rough rice, and 210 keV for black pepper. Electrons with such energies did not significantly influence the quality.

  5. Computer Simulation of Reflection High Energy Electron Diffraction and Low Energy Electron Diffraction

    NASA Astrophysics Data System (ADS)

    Flexner, Soren; Davidson, Bruce; Odonnell, James; Eckstein, J. N.

    2000-03-01

    Simulation software for Reflection High Energy Electron Diffraction (RHEED) and Low Energy Electron Diffraction (LEED) imaging has been developed using the C programming language. This software models experimental electron diffraction patterns obtained in-situ during deposition of oxide films by molecular beam epitaxy in our lab. Using the kinematical approximation the software considers the phase contributions from scatterers via a modifiable, finite, two or three-dimensional real lattice to construct the RHEED and LEED images. We have found quantitative agreement in the positions of diffraction maxima, and proceed to use the software to explore the qualitative aspects of La and Mn termination in LaMnO2, surface Jahn-Teller distortion in perovskites, terracing in various materials, and domain formation in a-axis DBCO resulting from in-plane rotation of the c-axis. In addition the software is used to examine proposed surface reconstructions capable of producing, e.g. the elevated half-order streaks seen along the [100] azimuth during growth of LaMnO2.

  6. Electron energy recovery system for negative ion sources

    DOEpatents

    Dagenhart, W.K.; Stirling, W.L.

    1979-10-25

    An electron energy recovery system for negative ion sources is provided. The system, employing crossed electric and magnetic fields, separates the electrons from the ions as they are extracted from the ion source plasma generator and before the ions are accelerated to their full energy. With the electric and magnetic fields oriented 90/sup 0/ to each other, the electrons remain at approximately the electrical potential at which they were generated. The electromagnetic forces cause the ions to be accelerated to the full accelerating supply voltage energy while being deflected through an angle of less than 90/sup 0/. The electrons precess out of the accelerating field region into an electron recovery region where they are collected at a small fraction of the full accelerating supply energy. It is possible, by this method, to collect > 90% of the electrons extracted along with the negative ions from a negative ion source beam at < 4% of full energy.

  7. Electron energy distributions in a metal-polymer-vacuum system

    SciTech Connect

    Yumaguzin, Yu. M.; Kornilov, V. M.; Lachinov, A. N.

    2006-08-15

    The energy distributions of electrons emitted from a metal coated with a polymer (polydiphenylene phthalide) is studied experimentally using field electron spectroscopy. A considerable decrease in the electron work function for the metal-polymer-vacuum system as compared to pure metal is observed. Analysis of the energy distributions of emitted electrons shows that the distribution in the case with the polymer is broader and displaced towards low energies, and its high-energy edge is slightly extended. The effect of emission voltage on the shape of the energy distribution of emitted electrons is studied. A model is proposed to explain the substantial decrease in the effective electron work function in the case when the metal electrode is coated with a polymer film.

  8. Is the electron radiation length constant at high energies?

    PubMed

    Hansen, H D; Uggerhøj, U I; Biino, C; Ballestrero, S; Mangiarotti, A; Sona, P; Ketel, T J; Vilakazi, Z Z

    2003-07-04

    Experimental results for the radiative energy loss of 149, 207, and 287 GeV electrons in a thin Ir target are presented. From the data we conclude that at high energies the radiation length increases in accordance with the Landau-Pomeranchuk-Migdal (LPM) theory and thus electrons become more penetrating the higher the energy. The increase of the radiation length as a result of the LPM effect has a significant impact on the behavior of high-energy electromagnetic showers.

  9. Atomic electron energies including relativistic effects and quantum electrodynamic corrections

    NASA Technical Reports Server (NTRS)

    Aoyagi, M.; Chen, M. H.; Crasemann, B.; Huang, K. N.; Mark, H.

    1977-01-01

    Atomic electron energies have been calculated relativistically. Hartree-Fock-Slater wave functions served as zeroth-order eigenfunctions to compute the expectation of the total Hamiltonian. A first order correction to the local approximation was thus included. Quantum-electrodynamic corrections were made. For all orbitals in all atoms with 2 less than or equal to Z less than or equal to 106, the following quantities are listed: total energies, electron kinetic energies, electron-nucleus potential energies, electron-electron potential energies consisting of electrostatic and Breit interaction (magnetic and retardation) terms, and vacuum polarization energies. These results will serve for detailed comparison of calculations based on other approaches. The magnitude of quantum electrodynamic corrections is exhibited quantitatively for each state.

  10. Small fields: Nonequilibrium radiation dosimetry

    SciTech Connect

    Das, Indra J.; Ding, George X.; Ahnesjoe, Anders

    2008-01-15

    Advances in radiation treatment with beamlet-based intensity modulation, image-guided radiation therapy, and stereotactic radiosurgery (including specialized equipments like CyberKnife, Gamma Knife, tomotherapy, and high-resolution multileaf collimating systems) have resulted in the use of reduced treatment fields to a subcentimeter scale. Compared to the traditional radiotherapy with fields {>=}4x4 cm{sup 2}, this can result in significant uncertainty in the accuracy of clinical dosimetry. The dosimetry of small fields is challenging due to nonequilibrium conditions created as a consequence of the secondary electron track lengths and the source size projected through the collimating system that are comparable to the treatment field size. It is further complicated by the prolonged electron tracks in the presence of low-density inhomogeneities. Also, radiation detectors introduced into such fields usually perturb the level of disequilibrium. Hence, the dosimetric accuracy previously achieved for standard radiotherapy applications is at risk for both absolute and relative dose determination. This article summarizes the present knowledge and gives an insight into the future procedures to handle the nonequilibrium radiation dosimetry problems. It is anticipated that new miniature detectors with controlled perturbations and corrections will be available to meet the demand for accurate measurements. It is also expected that the Monte Carlo techniques will increasingly be used in assessing the accuracy, verification, and calculation of dose, and will aid perturbation calculations of detectors used in small and highly conformal radiation beams.

  11. Electrospun Fibers for Energy, Electronic, & Environmental Applications

    NASA Astrophysics Data System (ADS)

    Bedford, Nicholas M.

    Electrospinning is an established method for creating polymer and bio-polymer fibers of dimensions ranging from ˜10 nanometers to microns. The process typically involves applying a high voltage between a solution source (usually at the end of a capillary or syringe) and a substrate on which the nanofibers are deposited. The high electric field distorts the shape of the liquid droplet, creating a Taylor cone. Additional applied voltage ejects a liquid jet of the polymer solution in the Taylor cone toward the counter electrode. The formation of fibers is generated by the rapid electrostatic elongation and solvent evaporation of this viscoelastic jet, which typically generates an entangled non-woven mesh of fibers with a high surface area to volume ratio. Electrospinning is an attractive alternative to other processes for creating nano-scale fibers and high surface area to volume ratio surfaces due to its low start up cost, overall simplicity, wide range of processable materials, and the ability to generate a moderate amount of fibers in one step. It has also been demonstrated that coaxial electrospinning is possible, wherein the nanofiber has two distinct phases, one being the core and another being the sheath. This method is advantageous because properties of two materials can be combined into one fiber, while maintaining two distinct material phases. Materials that are inherently electrospinable could be made into fibers using this technique as well. The most common applications areas for electrospun fibers are in filtration and biomedical areas, with a comparatively small amount of work done in energy, environmental, and sensor applications. Furthermore, the use of biologically materials in electrospun fibers is an avenue of research that needs more exploration, given the unique properties these materials can exhibit. The research aim of this thesis is to explore the use of electrospun fibers for energy, electrical and environmental applications. For energy

  12. Low energy cyclotron production and separation of yttrium-86 for evaluation of monoclonal antibody pharmacokinetics and dosimetry

    SciTech Connect

    Shoner, S.; Link, J.; Krohn, K.; Schlyer, D.

    1999-06-01

    Although an excellent radionuclide for application to systemic isotopic therapy when complexed to various monoclonal antibodies, the lack of photon emission from yttrium-90 makes the determination of the pharmacokinetics and dosimetry of the resultant radiopharmaceutical difficult. The introduction of the positron-emitting radionuclide yttrium-86 (T{sub 1/2}=14.7&hthinsp;h,&hthinsp;{beta}{sup +}=33{percent}) provides the non-invasive quantitation for the biodistribution of the chelated complex. The yttrium-86 radionuclide is produced at Memorial Sloan-Kettering using the CS-15 cyclotron via the (p,n) nuclear reaction on an enriched strontium-86 target. The separation is effectively achieved through a combination of solvent extraction and ion exchange chromatography. Once investigational new drug approval has been received, the mixed nuclides, Y-90 and Y-86, are to be used to formulate the HuM195 labeled monoclonal antibody, a radiopharmaceutical under active investigation against hematopoietic progenitor cells. {copyright} {ital 1999 American Institute of Physics.}

  13. Variations in dose response with x-ray energy of LiF:Mg,Cu,P thermoluminescence dosimeters: implications for clinical dosimetry

    NASA Astrophysics Data System (ADS)

    Duggan, Lisa; Hood, Claire; Warren-Forward, Helen; Haque, Mamoon; Kron, Tomas

    2004-09-01

    In many medical procedures where accurate radiation dose measurements are needed, the variation of detector response with x-ray energy is of concern. The response of LiF:Mg,Cu,P TLDs to a range of x-ray energies was analysed in monoenergetic (synchrotron), diagnostic and therapy radiation beams with the aim of implementing this dosimeter into clinical practice where existing dosimetry techniques are limited due to lack of sensitivity or tissue equivalence (e.g. neonatal radiography, mammography and brachytherapy). LiF:Mg,Cu,P TLDs in different forms from two manufacturers (MCP-N: TLD Poland, GR-200: SDDML China) were irradiated using x-ray beams covering 10 keV to 18 MVp. Dose readings were compared with an ionization chamber. The effect of different TLD types and annealing cycles on clinical utility was investigated. The measured energy response of LiF:Mg,Cu,P TLDs was fit to a simple model devised by Kron et al (1998 Phys. Med. Biol. 43 3235-59) to describe the variation of TLD response with x-ray energy. If TLDs are handled as recommended in the present paper, the energy response of LiF:Mg,Cu,P deviates by a maximum of 15% from unity and agrees with the model to within 5% or experimental uncertainty between 15 keV and 10 MeV. LiF:Mg,Cu,P TLDs of all forms have consistent and superior energy response compared to the standard material LiF:Mg,Ti and are therefore suitable for a wide range of applications in diagnostic radiology and radiotherapy.

  14. Characteristic energy range of electron scattering due to plasmaspheric hiss

    NASA Astrophysics Data System (ADS)

    Ma, Q.; Li, W.; Thorne, R. M.; Bortnik, J.; Reeves, G. D.; Kletzing, C. A.; Kurth, W. S.; Hospodarsky, G. B.; Spence, H. E.; Baker, D. N.; Blake, J. B.; Fennell, J. F.; Claudepierre, S. G.; Angelopoulos, V.

    2016-12-01

    We investigate the characteristic energy range of electron flux decay due to the interaction with plasmaspheric hiss in the Earth's inner magnetosphere. The Van Allen Probes have measured the energetic electron flux decay profiles in the Earth's outer radiation belt during a quiet period following the geomagnetic storm that occurred on 7 November 2015. The observed energy of significant electron decay increases with decreasing L shell and is well correlated with the energy band corresponding to the first adiabatic invariant μ = 4-200 MeV/G. The electron diffusion coefficients due to hiss scattering are calculated at L = 2-6, and the modeled energy band of effective pitch angle scattering is also well correlated with the constant μ lines and is consistent with the observed energy range of electron decay. Using the previously developed statistical plasmaspheric hiss model during modestly disturbed periods, we perform a 2-D Fokker-Planck simulation of the electron phase space density evolution at L = 3.5 and demonstrate that plasmaspheric hiss causes the significant decay of 100 keV-1 MeV electrons with the largest decay rate occurring at around 340 keV, forming anisotropic pitch angle distributions at lower energies and more flattened distributions at higher energies. Our study provides reasonable estimates of the electron populations that can be most significantly affected by plasmaspheric hiss and the consequent electron decay profiles.

  15. A compact, versatile low-energy electron beam ion source

    SciTech Connect

    Zschornack, G.; König, J.; Schmidt, M.; Thorn, A.

    2014-02-15

    A new compact Electron Beam Ion Source, the Dresden EBIT-LE, is introduced as an ion source working at low electron beam energies. The EBIT-LE operates at an electron energy ranging from 100 eV to some keV and can easily be modified to an EBIT also working at higher electron beam energies of up to 15 keV. We show that, depending on the electron beam energy, electron beam currents from a few mA in the low-energy regime up to about 40 mA in the high-energy regime are possible. Technical solutions as well as first experimental results of the EBIT-LE are presented. In ion extraction experiments, a stable production of low and intermediate charged ions at electron beam energies below 2 keV is demonstrated. Furthermore, X-ray spectroscopy measurements confirm the possibility of using the machine as a source of X-rays from ions excited at low electron energies.

  16. A compact, versatile low-energy electron beam ion source.

    PubMed

    Zschornack, G; König, J; Schmidt, M; Thorn, A

    2014-02-01

    A new compact Electron Beam Ion Source, the Dresden EBIT-LE, is introduced as an ion source working at low electron beam energies. The EBIT-LE operates at an electron energy ranging from 100 eV to some keV and can easily be modified to an EBIT also working at higher electron beam energies of up to 15 keV. We show that, depending on the electron beam energy, electron beam currents from a few mA in the low-energy regime up to about 40 mA in the high-energy regime are possible. Technical solutions as well as first experimental results of the EBIT-LE are presented. In ion extraction experiments, a stable production of low and intermediate charged ions at electron beam energies below 2 keV is demonstrated. Furthermore, X-ray spectroscopy measurements confirm the possibility of using the machine as a source of X-rays from ions excited at low electron energies.

  17. An extension of the Eisberg-Resnick treatment for electron energies in many-electron atoms

    NASA Astrophysics Data System (ADS)

    Whitaker, M. A. B.; Bennett, I.

    1989-03-01

    Eisberg and Resnick present a simple argument for the energy of an electron in a multielectron atom using the concept of shielding from electrons in inner shells. The results of such a treatment are unfortunately confined so as to be out of range of experimental values. Here, the effect of electrons in outer shells is included, and, in the nonrelativistic region, energies are obtained for electrons in the first and second shells in reasonable agreement with experiment.

  18. Spectral shape variation of interstellar electrons at high energies

    NASA Technical Reports Server (NTRS)

    Tan, L. C.

    1985-01-01

    The high energy electron spectrum analysis has shown that the electron intensity inside the H2 cloud region, or in a spiral arm, should be much lower than that outside it and the observed electron energy spectrum should flatten again at about 1 TeV. In the framework of the leady box model the recently established rigidity dependence of the escape pathlength of cosmic rays would predict a high energy electron spectrum which is flatter than the observed one. This divergence is explained by assuming that the leaky box model can only apply to cosmic ray heavy nuclei, and light nuclei and electrons in cosmic rays may have different behaviors in the interstellar propagation. Therefore, the measured data on high energy electrons should be analyzed based on the proposed nonuniform galactic disk (NUGD) mode.

  19. PROGRESS OF HIGH-ENERGY ELECTRON COOLING FOR RHIC.

    SciTech Connect

    FEDOTOV,A.V.

    2007-09-10

    The fundamental questions about QCD which can be directly answered at Relativistic Heavy Ion Collider (RHIC) call for large integrated luminosities. The major goal of RHIC-I1 upgrade is to achieve a 10 fold increase in luminosity of Au ions at the top energy of 100 GeV/nucleon. Such a boost in luminosity for RHIC-II is achievable with implementation of high-energy electron cooling. The design of the higher-energy cooler for RHIC-II recently adopted a non-magnetized approach which requires a low temperature electron beam. Such electron beams will be produced with a superconducting Energy Recovery Linac (ERL). Detailed simulations of the electron cooling process and numerical simulations of the electron beam transport including the cooling section were performed. An intensive R&D of various elements of the design is presently underway. Here, we summarize progress in these electron cooling efforts.

  20. LAT Perspectives in Detection of High Energy Cosmic Ray Electrons

    NASA Technical Reports Server (NTRS)

    Moiseev, Alexander; Ormes, J. F.; Funk, Stefan

    2007-01-01

    The GLAST Large Area Telescope (LAT) science objectives and capabilities in the detection of high energy electrons in the energy range from 20 GeV to approx. 1 TeV are presented. LAT simulations are used to establish the event selections. It is found that maintaining the efficiency of electron detection at the level of 30% the residual hadron contamination does not exceed 2-3% of the electron flux. LAT should collect approx. ten million of electrons with the energy above 20 GeV for each year of observation. Precise spectral reconstruction with high statistics presents us with a unique opportunity to investigate several important problems such as studying galactic models of IC radiation, revealing the signatures of nearby sources such as high energy cutoff in the electron spectrum, testing the propagation model, and searching for KKDM particles decay through their contribution to the electron spectrum.

  1. The source of multi spectral energy of solar energetic electron

    SciTech Connect

    Herdiwijaya, Dhani

    2015-04-16

    We study the solar energetic electron distribution obtained from ACE and GOES satellites which have different altitudes and electron spectral energy during the year 1997 to 2011. The electron spectral energies were 0.038–0.315 MeV from EPAM instrument onboard ACE satellite and >2 MeV from GOES satellite. We found that the low electron energy has no correlation with high energy. In spite of we have corrected to the altitude differences. It implied that they originated from time dependent events with different sources and physical processes at the solar atmosphere. The sources of multi spectral energetic electron were related to flare and CME phenomena. However, we also found that high energetic electron comes from coronal hole.

  2. SHEEBA: A spatial high energy electron beam analyzer

    NASA Astrophysics Data System (ADS)

    Galimberti, Marco; Giulietti, Antonio; Giulietti, Danilo; Gizzi, Leonida A.

    2005-05-01

    Electron bunches with large energy and angle spread are not easy to be analyzed with conventional spectrometers. In this article, a device for the detection of high energy electrons is presented. This detector, based on the traces left by electrons on a stack of dosimetric films, together with an original numerical algorithm for traces deconvolution, is able to characterize both angularly and spectrally (up to some mega-electron-volts) a broad-spectrum electron bunch. A numerical test was successfully performed with a virtual electron beam, which was in turn reconstructed using a Montecarlo code (based on the CERN library GEANT4). Due to its simplicity and small size, the spatial high energy electron beam analyzer (SHEEBA) detector is particularly suitable to be used in laser plasma acceleration experiments.

  3. Electrothermal energy conversion using electron gas volumetric change inside semiconductors

    NASA Astrophysics Data System (ADS)

    Yazawa, K.; Shakouri, A.

    2016-07-01

    We propose and analyze an electrothermal energy converter using volumetric changes in non-equilibrium electron gas inside semiconductors. The geometric concentration of electron gas under an electric field increases the effective pressure of the electrons, and then a barrier filters out cold electrons, acting like a valve. Nano- and micro-scale features enable hot electrons to arrive at the contact in a short enough time to avoid thermalization with the lattice. Key length and time scales, preliminary device geometry, and anticipated efficiency are estimated for electronic analogs of Otto and Brayton power generators and Joule-Thomson micro refrigerators on a chip. The power generators convert the energy of incident photons from the heat source to electrical current, and the refrigerator can reduce the temperature of electrons in a semiconductor device. The analytic calculations show that a large energy conversion efficiency or coefficient of performance may be possible.

  4. Hanford External Dosimetry Technical Basis Manual PNL-MA-842

    SciTech Connect

    Rathbone, Bruce A.

    2005-02-25

    The Hanford External Dosimetry Technical Basis Manual PNL-MA-842 documents the design and implementation of the external dosimetry system used at Hanford. The manual describes the dosimeter design, processing protocols, dose calculation methodology, radiation fields encountered, dosimeter response characteristics, limitations of dosimeter design under field conditions, and makes recommendations for effective use of the dosimeters in the field. The manual describes the technical basis for the dosimetry system in a manner intended to help ensure defensibility of the dose of record at Hanford and to demonstrate compliance with 10 CFR 835, DOELAP, DOE-RL, ORP, PNSO, and Hanford contractor requirements. The dosimetry system is operated by PNNL’s Hanford External Dosimetry Program which provides dosimetry services to all Hanford contractors. The primary users of this manual are DOE and DOE contractors at Hanford using the dosimetry services of PNNL. Development and maintenance of this manual is funded directly by DOE and DOE contractors. Its contents have been reviewed and approved by DOE and DOE contractors at Hanford through the Hanford Personnel Dosimetry Advisory Committee which is chartered and chaired by DOE-RL and serves as means of coordinating dosimetry practices across contractors at Hanford. This manual was established in 1996. Since inception, it has been revised many times and maintained by PNNL as a controlled document with controlled distribution. Rev. 0 marks the first revision to be released through PNNL’s Electronic Records & Information Capture Architecture (ERICA) database.

  5. TU-F-201-00: Radiochromic Film Dosimetry Update

    SciTech Connect

    2015-06-15

    Since the introduction of radiochromic films (RCF) for radiation dosimetry, the scope of RCF dosimetry has expanded steadily to include many medical applications, such as radiation therapy and diagnostic radiology. The AAPM Task Group (TG) 55 published a report on the recommendations for RCF dosimetry in 1998. As the technology is advancing rapidly, and its routine clinical use is expanding, TG 235 has been formed to provide an update to TG-55 on radiochromic film dosimetry. RCF dosimetry applications in clinical radiotherapy have become even more widespread, expanding from primarily brachytherapy and radiosurgery applications, and gravitating towards (but not limited to) external beam therapy (photon, electron and protons), such as quality assurance for IMRT, VMAT, Tomotherapy, SRS/SRT, and SBRT. In addition, RCF applications now extend to measurements of radiation dose in particle beams and patients undergoing medical exams, especially fluoroscopically guided interventional procedures and CT. The densitometers/scanners used for RCF dosimetry have also evolved from the He-Ne laser scanner to CCD-based scanners, including roller-based scanner, light box-based digital camera, and flatbed color scanner. More recently, multichannel RCF dosimetry introduced a new paradigm for external beam dose QA for its high accuracy and efficiency. This course covers in detail the recent advancements in RCF dosimetry. Learning Objectives: Introduce the paradigm shift on multichannel film dosimetry Outline the procedures to achieve accurate dosimetry with a RCF dosimetry system Provide comprehensive guidelines on RCF dosimetry for various clinical applications One of the speakers has a research agreement from Ashland Inc., the manufacturer of Gafchromic film.

  6. Electron-helium and electron-neon scattering cross sections at low electron energies using a photoelectron source

    NASA Technical Reports Server (NTRS)

    Kumar, Vijay; Subramanian, K. P.; Krishnakumar, E.

    1987-01-01

    Absolute electron-helium and electron-neon scattering cross sections have been measured at low electron energies using the powerful technique of photoelectron spectroscopy. The measurements have been carried out at 17 electron energies varying from 0.7 to 10 eV with an accuracy of + or - 2.7 percent. The results obtained in the present work have been compared with other recent measurement and calculations.

  7. Energy dependence and dose response of Gafchromic EBT2 film over a wide range of photon, electron, and proton beam energies

    SciTech Connect

    Arjomandy, Bijan; Tailor, Ramesh; Anand, Aman; Sahoo, Narayan; Gillin, Michael; Prado, Karl; Vicic, Milos

    2010-05-15

    Purpose: Since the Gafchromic film EBT has been recently replaced by the newer model EBT2, its characterization, especially energy dependence, has become critically important. The energy dependence of the dose response of Gafchromic EBT2 film is evaluated for a broad range of energies from different radiation sources used in radiation therapy. Methods: The beams used for this study comprised of kilovoltage x rays (75, 125, and 250 kVp), {sup 137}Cs gamma (662 KeV), {sup 60}Co gamma (1.17-1.33 MeV), megavoltage x rays (6 and 18 MV), electron beams (6 and 20 MeV), and proton beams (100 and 250 MeV). The film's response to each of the above energies was measured over the dose range of 0.4-10 Gy, which corresponds to optical densities ranging from 0.05 to 0.74 for the film reader used. Results: The energy dependence of EBT2 was found to be relatively small within measurement uncertainties (1{sigma}={+-}4.5%) for all energies and modalities. Conclusion: For relative and absolute dosimetry of radiation therapy beams, the weak energy dependence of the EBT2 makes it most suitable for clinical use compared to other films.

  8. Testis dosimetry in individual patients by combining a small-scale dosimetry model and pharmacokinetic modeling-application of 111In-Ibritumomab Tiuxetan (Zevalin®)

    NASA Astrophysics Data System (ADS)

    Meerkhan, Suaad A.; Sjögreen-Gleisner, Katarina; Larsson, Erik; Strand, Sven-Erik; Jönsson, Bo-Anders

    2014-12-01

    A heterogeneous distribution of radionuclides emitting low-energy electrons in the testicles may result in a significant difference between an absorbed dose to the radiosensitive spermatogonia and the mean absorbed dose to the whole testis. This study focused on absorbed dose distribution in patients at a finer scale than normally available in clinical dosimetry, which was accomplished by combining a small-scale dosimetry model with patient pharmacokinetic data. The activity in the testes was measured and blood sampling was performed for patients that underwent pre-therapy imaging with 111In-Zevalin®. Using compartment modeling, testicular activity was separated into two components: vascular and extravascular. The uncertainty of absorbed dose due to geometry variations between testicles was explored by an assumed activity micro-distribution and by varying the radius of the interstitial tubule. Results showed that the absorbed dose to germ cells might be strongly dependent on the location of the radioactive source, and may exceed the absorbed dose to the whole testis by as much as a factor of two. Small-scale dosimetry combined with compartmental analysis of clinical data proved useful for gauging tissue dosimetry and interpreting how intrinsic geometric variation influences the absorbed dose.

  9. Neutron dosimetry and radiation damage calculations for HFBR

    SciTech Connect

    Greenwood, L.R.; Ratner, R.T.

    1998-03-01

    Neutron dosimetry measurements have been conducted for various positions of the High Flux Beam Reactor (HFBR) at Brookhaven National Laboratory (BNL) in order to measure the neutron flux and energy spectra. Neutron dosimetry results and radiation damage calculations are presented for positions V10, V14, and V15.

  10. Electron energy-loss spectra in molecular fluorine

    NASA Technical Reports Server (NTRS)

    Nishimura, H.; Cartwright, D. C.; Trajmar, S.

    1979-01-01

    Electron energy-loss spectra in molecular fluorine, for energy losses from 0 to 17.0 eV, have been taken at incident electron energies of 30, 50, and 90 eV and scattering angles from 5 to 140 deg. Features in the spectra above 11.5 eV energy loss agree well with the assignments recently made from optical spectroscopy. Excitations of many of the eleven repulsive valence excited electronic states are observed and their location correlates reasonably well with recent theoretical results. Several of these excitations have been observed for the first time and four features, for which there are no identifications, appear in the spectra.

  11. A new water-equivalent 2D plastic scintillation detectors array for the dosimetry of megavoltage energy photon beams in radiation therapy

    SciTech Connect

    Guillot, Mathieu; Beaulieu, Luc; Archambault, Louis; Beddar, Sam; Gingras, Luc

    2011-12-15

    Purpose: The objective of this work is to present a new 2D plastic scintillation detectors array (2D-PSDA) designed for the dosimetry of megavoltage (MV) energy photon beams in radiation therapy and to characterize its basic performance. Methods: We developed a 2D detector array consisting of 781 plastic scintillation detectors (PSDs) inserted into a plane of a water-equivalent phantom. The PSDs were distributed on a 26 x 26 cm{sup 2} grid, with an interdetector spacing of 10 mm, except for two perpendicular lines centered on the detection plane, where the spacing was 5 mm. Each PSD was made of a 1 mm diameter by 3 mm long cylindrical polystyrene scintillating fiber coupled to a clear nonscintillating plastic optical fiber. All of the light signals emitted by the PSDs were read simultaneously with an optical system at a rate of one measurement per second. We characterized the performance of the optical system, the angular dependency of the device, and the perturbation of dose distributions caused by the hundreds of PSDs inserted into the phantom. We also evaluated the capacity of the system to monitor complex multileaf collimator (MLC) sequences such as those encountered in step-and-shoot intensity modulated radiation therapy (IMRT) plans. We compared our results with calculations performed by a treatment planning system and with measurements taken with a 2D ionization chamber array and with a radiochromic film. Results: The detector array that we developed allowed us to measure doses with an average precision of better than 1% for cumulated doses equal to or greater than 6.3 cGy. Our results showed that the dose distributions produced by the 6-MV photon beam are not perturbed (within {+-}1.1%) by the presence of the hundreds of PSDs located into the phantom. The results also showed that the variations in the beam incidences have little effect on the dose response of the device. For all incidences tested, the passing rates of the gamma tests between the 2D-PSDA and

  12. Neutron dosimetry

    DOEpatents

    Quinby, Thomas C.

    1976-07-27

    A method of measuring neutron radiation within a nuclear reactor is provided. A sintered oxide wire is disposed within the reactor and exposed to neutron radiation. The induced radioactivity is measured to provide an indication of the neutron energy and flux within the reactor.

  13. Evaluation of GAFCHROMIC registered EBT film for CyberKnife registered dosimetry

    SciTech Connect

    Wilcox, Ellen E.; Daskalov, George M.

    2007-06-15

    External beam therapy (EBT) GAFCHROMIC registered film is evaluated for dosimetry and characterization of the CyberKnife registered radiation beams. Percentage depth doses, lateral beam profiles, and output factors are measured in solid water using EBT GAFCHROMIC registered film (International Specialty Products, Wayne, NJ) for the 6 MV radiation beams of diameter 5 to 60 mm produced by the CyberKnife registered (Accuray, Sunnyvale, CA). The data are compared to those measured with the PTW 60008 diode and the Wellhofer CC01 ion chamber in water. For the small radiation field sizes used in stereotactic radiosurgery, lateral electronic disequilibrium and steep dose gradients exist in a large portion of these fields, requiring the use of high-resolution measurement techniques. For small beams, the detector size approaches the dimensions of the beam and adversely affects measurement accuracy in regions where the gradient varies across the detector. When film is the detector, the scanning system is usually the resolution-limiting component. Radiographic films based upon silver halide (AgH) emulsions are widely used for relative dosimetry of external radiation treatment beams in the megavoltage energy range, because of their good spatial resolution and capability to provide integrated dosimetry over two dimensions. Film dosimetry, however, has drawbacks due to its steep energy dependence at low photon energies as well as film processor and densitometer artifacts. EBT radiochromic film, introduced in 2004 specifically for IMRT dosimetry, may be a detector of choice for the characterization of small radiosurgical beams, because of its near-tissue equivalence, radiation beam energy independence, high spatial resolution, and self developing properties. For radiation beam sizes greater than 10 mm, the film measurements were identical to those of the diode and ion chamber. For the smaller beam diameters of 7.5 and 5 mm, however, there were differences in the data measured with

  14. Electron cooling for low-energy RHIC program

    SciTech Connect

    Fedotov, A.; Ben-Zvi, I.; Chang, X.; Kayran, D.; Litvinenko, V.N.; Pendzick, A.; Satogata, T.

    2009-08-31

    Electron cooling was proposed to increase luminosity of the RHIC collider for heavy ion beam energies below 10 GeV/nucleon. Providing collisions at such energies, termed RHIC 'low-energy' operation, will help to answer one of the key questions in the field of QCD about existence and location of critical point on the QCD phase diagram. The electron cooling system should deliver electron beam of required good quality over energies of 0.9-5 MeV. Several approaches to provide such cooling were considered. The baseline approach was chosen and design work started. Here we describe the main features of the cooling system and its expected performance. We have started design work on a low-energy RHIC electron cooler which will operate with kinetic electron energy range 0.86-2.8 (4.9) MeV. Several approaches to an electron cooling system in this energy range are being investigated. At present, our preferred scheme is to transfer the Fermilab Pelletron to BNL after Tevatron shutdown, and to use it for DC non-magnetized cooling in RHIC. Such electron cooling system can significantly increase RHIC luminosities at low-energy operation.

  15. OPTIMAL ELECTRON ENERGIES FOR DRIVING CHROMOSPHERIC EVAPORATION IN SOLAR FLARES

    SciTech Connect

    Reep, J. W.; Bradshaw, S. J.; Alexander, D. E-mail: stephen.bradshaw@rice.edu

    2015-08-01

    In the standard model of solar flares, energy deposition by a beam of electrons drives strong chromospheric evaporation leading to a significantly denser corona and much brighter emission across the spectrum. Chromospheric evaporation was examined in great detail by Fisher et al., who described a distinction between two different regimes, termed explosive and gentle evaporation. In this work, we examine the importance of electron energy and stopping depths on the two regimes and on the atmospheric response. We find that with explosive evaporation, the atmospheric response does not depend strongly on electron energy. In the case of gentle evaporation, lower energy electrons are significantly more efficient at heating the atmosphere and driving up-flows sooner than higher energy electrons. We also find that the threshold between explosive and gentle evaporation is not fixed at a given beam energy flux, but also depends strongly on the electron energy and duration of heating. Further, at low electron energies, a much weaker beam flux is required to drive explosive evaporation.

  16. REVIEW OF DOSIMETRY FIELD

    DTIC Science & Technology

    three, oxalic acid , polyisobutylene, and Mylar film, seem sufficiently promising to warrant further development. Their current states of development...ceric sulfate dosimeters be included in the dosimetry handbook, but that additional work should be done on oxalic acid , polyisobutylene, and Mylar as dosimetry materials. (Author)

  17. Energy-filtered Electron Transport Structures for Low-power Low-noise 2-D Electronics

    PubMed Central

    Pan, Xuan; Qiu, Wanzhi; Skafidas, Efstratios

    2016-01-01

    In addition to cryogenic techniques, energy filtering has the potential to achieve high-performance low-noise 2-D electronic systems. Assemblies based on graphene quantum dots (GQDs) have been demonstrated to exhibit interesting transport properties, including resonant tunnelling. In this paper, we investigate GQDs based structures with the goal of producing energy filters for next generation lower-power lower-noise 2-D electronic systems. We evaluate the electron transport properties of the proposed GQD device structures to demonstrate electron energy filtering and the ability to control the position and magnitude of the energy passband by appropriate device dimensioning. We also show that the signal-to-thermal noise ratio performance of the proposed nanoscale device can be modified according to device geometry. The tunability of two-dimensional GQD structures indicates a promising route for the design of electron energy filters to produce low-power and low-noise electronics. PMID:27796343

  18. Energy-filtered Electron Transport Structures for Low-power Low-noise 2-D Electronics.

    PubMed

    Pan, Xuan; Qiu, Wanzhi; Skafidas, Efstratios

    2016-10-31

    In addition to cryogenic techniques, energy filtering has the potential to achieve high-performance low-noise 2-D electronic systems. Assemblies based on graphene quantum dots (GQDs) have been demonstrated to exhibit interesting transport properties, including resonant tunnelling. In this paper, we investigate GQDs based structures with the goal of producing energy filters for next generation lower-power lower-noise 2-D electronic systems. We evaluate the electron transport properties of the proposed GQD device structures to demonstrate electron energy filtering and the ability to control the position and magnitude of the energy passband by appropriate device dimensioning. We also show that the signal-to-thermal noise ratio performance of the proposed nanoscale device can be modified according to device geometry. The tunability of two-dimensional GQD structures indicates a promising route for the design of electron energy filters to produce low-power and low-noise electronics.

  19. Energy-filtered Electron Transport Structures for Low-power Low-noise 2-D Electronics

    NASA Astrophysics Data System (ADS)

    Pan, Xuan; Qiu, Wanzhi; Skafidas, Efstratios

    2016-10-01

    In addition to cryogenic techniques, energy filtering has the potential to achieve high-performance low-noise 2-D electronic systems. Assemblies based on graphene quantum dots (GQDs) have been demonstrated to exhibit interesting transport properties, including resonant tunnelling. In this paper, we investigate GQDs based structures with the goal of producing energy filters for next generation lower-power lower-noise 2-D electronic systems. We evaluate the electron transport properties of the proposed GQD device structures to demonstrate electron energy filtering and the ability to control the position and magnitude of the energy passband by appropriate device dimensioning. We also show that the signal-to-thermal noise ratio performance of the proposed nanoscale device can be modified according to device geometry. The tunability of two-dimensional GQD structures indicates a promising route for the design of electron energy filters to produce low-power and low-noise electronics.

  20. The electron energy loss rate due to radiative recombination

    NASA Astrophysics Data System (ADS)

    Mao, Junjie; Kaastra, Jelle; Badnell, N. R.

    2017-02-01

    Context. For photoionized plasmas, electron energy loss rates due to radiative recombination (RR) are required for thermal equilibrium calculations, which assume a local balance between the energy gain and loss. While many calculations of total and/or partial RR rates are available from the literature, specific calculations of associated RR electron energy loss rates are lacking. Aims: Here we focus on electron energy loss rates due to radiative recombination of H-like to Ne-like ions for all the elements up to and including zinc (Z = 30), over a wide temperature range. Methods: We used the AUTOSTRUCTURE code to calculate the level-resolved photoionization cross section and modify the ADASRR code so that we can simultaneously obtain level-resolved RR rate coefficients and associated RR electron energy loss rate coefficients. We compared the total RR rates and electron energy loss rates of H i and He i with those found in the literature. Furthermore, we utilized and parameterized the weighted electron energy loss factors (dimensionless) to characterize total electron energy loss rates due to RR. Results: The RR electron energy loss data are archived according to the Atomic Data and Analysis Structure (ADAS) data class adf48. The RR electron energy loss data are also incorporated into the SPEX code for detailed modeling of photoionized plamsas. Full Tables 1 and 2 are available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/599/A10

  1. From ``micro`` to ``macro`` internal dosimetry

    SciTech Connect

    Fisher, D.R.

    1994-06-01

    Radiation dose is the amount of radiation energy deposited per unit mass of absorbing tissue. Internal dosimetry applies to assessments of dose to internal organs from penetrating radiation sources outside the body and from radionuclides taken into the body. Dosimetry is essential for correlating energy deposition with biological effects that are observed when living tissues are irradiated. Dose-response information provides the basis for radiation protection standards and risk assessment. Radiation interactions with living matter takes place on a microscopic scale, and the manifestation of damage may be evident at the cellular, multi-cellular, and even organ levels of biological organization. The relative biological effectiveness of ionization radiation is largely determined by the spatial distribution of energy deposition events within microscopic as well as macroscopic biological targets of interest. The spatial distribution of energy imparted is determined by the spatial distribution of radionuclides and properties of the emitted charged-particle radiation involved. The nonuniformity of energy deposition events in microscopic volumes, particularly from high linear energy transfer (LET) radiation, results in large variations in the amount of energy imparted to very small volumes or targets. Microdosimetry is the study of energy deposition events at the cellular level. Macrodosimetry is a term for conventional dose averaging at the tissue or organ level. In between is a level of dosimetry sometimes referred to as multi-cellular dosimetry. The distinction between these terms and their applications in assessment of dose from internally deposited radionuclides is described.

  2. 10 CFR 35.630 - Dosimetry equipment.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Dosimetry equipment. 35.630 Section 35.630 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Photon Emitting Remote Afterloader Units, Teletherapy... American Association of Physicists in Medicine (AAPM). The calibration must have been performed within...

  3. 10 CFR 35.630 - Dosimetry equipment.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Dosimetry equipment. 35.630 Section 35.630 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Photon Emitting Remote Afterloader Units, Teletherapy... American Association of Physicists in Medicine (AAPM). The calibration must have been performed within...

  4. 10 CFR 35.630 - Dosimetry equipment.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Dosimetry equipment. 35.630 Section 35.630 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Photon Emitting Remote Afterloader Units, Teletherapy... American Association of Physicists in Medicine (AAPM). The calibration must have been performed within...

  5. 10 CFR 35.630 - Dosimetry equipment.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Dosimetry equipment. 35.630 Section 35.630 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Photon Emitting Remote Afterloader Units, Teletherapy... American Association of Physicists in Medicine (AAPM). The calibration must have been performed within...

  6. SU-E-T-335: Transit Dosimetry for Verification of Dose Delivery Using Electronic Portal Imaging Device (EPID)

    SciTech Connect

    Baek, T; Chung, E; Lee, S; Yoon, M

    2014-06-01

    Purpose: To evaluate the effectiveness of transit dose, measured with an electronic portal imaging device (EPID), in verifying actual dose delivery to patients. Methods: Plans of 5 patients with lung cancer, who received IMRT treatment, were examined using homogeneous solid water phantom and inhomogeneous anthropomorphic phantom. To simulate error in patient positioning, the anthropomorphic phantom was displaced from 5 mm to 10 mm in the inferior to superior (IS), superior to inferior (SI), left to right (LR), and right to left (RL) directions. The transit dose distribution was measured with EPID and was compared to the planed dose using gamma index. Results: Although the average passing rate based on gamma index (GI) with a 3% dose and a 3 mm distance-to-dose agreement tolerance limit was 94.34 % for the transit dose with homogeneous phantom, it was reduced to 84.63 % for the transit dose with inhomogeneous anthropomorphic phantom. The Result also shows that the setup error of 5mm (10mm) in IS, SI, LR and SI direction can Result in the decrease in values of GI passing rates by 1.3% (3.0%), 2.2% (4.3%), 5.9% (10.9%), and 8.9% (16.3%), respectively. Conclusion: Our feasibility study suggests that the transit dose-based quality assurance may provide information regarding accuracy of dose delivery as well as patient positioning.

  7. CHEER, Canadian high energy electron ring

    NASA Astrophysics Data System (ADS)

    Hemingway, R. J.

    The Institute of Particle Physics (IPP) in Canada have received funds from the Natural Sciences and Engineering Research Council (NSERC) to pursue a study which looks at the feasibility of adding an external electron storage ring at one of the long straight sections of the Tevatron. The machine, as currently configured, has a 300 MeV Linac injector, a 300 MeV accumulator ring, a 2 GeV booster synchrotron, and a 10 GeV storage ring holding 120 mA of either electrons or positrons. Particular attention has been paid to beam polarisation and the design of the interaction region.

  8. Energy resolution and power consumption of Timepix detector for different detector settings and saturation of front-end electronics

    NASA Astrophysics Data System (ADS)

    Kroupa, M.; Hoang, S.; Stoffle, N.; Soukup, P.; Jakubek, J.; Pinsky, L. S.

    2014-05-01

    An ongoing research project in the area of radiation monitoring employing the Timepix technology from the CERN-based Medipix2 Collaboration profits greatly from optimizing the precision of the position and energy information obtained for the detected quanta. Wider applications of the Timepix technology as a radiation monitor also puts new demands on the precision and speed of the energy calibration. We compare the analog signal in pixel front-end electronics for different sources used during detector evaluation and energy calibration. We use the direct measurement of the analog signal from the pixel preamplifier and comparator to characterize pulse shape differences for different sources, e.g. internal test pulses, external test pulses, ionizing radiation, etc. and study their interchangeability. Accurate per-pixel energy calibration of the Timepix detector enables the direct measurement of the energy deposited by different types of ionizing radiation. The energy calibration process requires the application of a known charge to front-end electronics of each pixel. The small pixel size limits use of the radioactive sources. The 59.54 keV line from 241Am is commonly used as the highest point in calibration curve. The heavy ion dosimetry as encountered in the space radiation environment requires a considerable extrapolation to the energies in the MeV range. We have observed that for energies around and beyond 1 MeV the response of the Timepix's front-end electronics no longer follows the extrapolated calibration function. We have investigated this non-linearity and identified its source. We also propose both hardware and software solutions to suppress this effect. In this paper we show the impact on pixel calibration and the subsequent energy resolution for different detector settings as well as the resulting power consumptions. We discuss the parameter optimization for several different real-world applications.

  9. Low electron beam energy CIVA analysis of passivated ICs

    SciTech Connect

    Cole, E.I. Jr.; Soden, J.M.; Dodd, B.A.; Henderson, C.L.

    1994-08-01

    Low Energy Charge-Induced Voltage Alteration (LECIVA) is a new scanning electron microscopy technique developed to localize open conductors in passivated ICs. LECIVA takes advantage of recent experimental work showing that the dielectric surface equilibrium voltage has an electron flux density dependence at low electron beam energies ({le}1.0 keV). The equilibrium voltage changes from positive to negative as the electron flux density is increased. Like Charge-Induced Voltage Alteration (CIVA), LECIVA images are produced from the voltage fluctuations of a constant current power supply as an electron beam is scanned over the IC surface. LECIVA image contrast is generated only by the electrically open part of a conductor, yielding, the same high selectivity demonstrated by CIVA. Because LECIVA is performed at low beam energies, radiation damage by the primary electrons and x-rays to MOS structures is far less than that caused by CIVA. LECIVA may also be performed on commercial electron beam test systems that do not have high primary electron beam energy capabilities. The physics of LECIVA signal generation are described. LECIVA imaging examples illustrate its utility on both a standard scanning electron microscope (SEM) and a commercial electron beam test system.

  10. Studies in Ultrasonic Dosimetry.

    NASA Astrophysics Data System (ADS)

    Zitouni, Abderrachid

    The widespread use of ultrasonic devices in both industry and medicine confirms the great importance of ultrasound as a source of nonionizing radiation. The biological effects of this type of radiation are not completely known up to today, and the need for proper dosimetry is evident. Previous work in the field has been limited to the determination of ultrasonic energy deposition by attenuation measurements of traveling sound waves in homogenized specimens. Alternatively, observed effects were correlated to the output of the source. The objective of this work was to correlate the absorption properties of sound absorbing media to their elastic properties and deduce a correlation between the sonic absorption coefficient and the corresponding Young's modulus. Energy deposition measurements were performed in isotropic rubber samples and in anisotropic meat specimens by the use of the thermocouple probe method which measures the absorbed energy directly. Elasticity measurements were performed for the different types of materials used. The Young's modulus for each type was deduced from defletion measurements on rectangular strips when subjected to successive forces of varying magnitude. The final experimental results showed the existence of a linear relationship between the absorption coefficient of a given elastic material and the inverse square root of its Young's modulus.

  11. Absolute and relative dose measurements with Gafchromic trade mark sign EBT film for high energy electron beams with different doses per pulse

    SciTech Connect

    Fiandra, Christian; Ragona, Riccardo; Ricardi, Umberto; Anglesio, Silvia; Giglioli, Francesca Romana

    2008-12-15

    The authors have evaluated the accuracy, in absolute and relative dose measurements, of the Gafchromic trade mark sign EBT film in pulsed high-energy electron beams. Typically, the electron beams used in radiotherapy have a dose-per-pulse value of less than 0.1 mGy/pulse. However, very high dose-per-pulse electron beams are employed in certain linear accelerators dedicated to intraoperatory radiation therapy (IORT). In this study, the absorbed dose measurements with Gafchromic trade mark sign EBT in both low (less than 0.3 mGy per pulse) and high (30 and 70 mGy per pulse) dose-per-pulse electron beams were compared with ferrous sulfate chemical Fricke dosimetry (operated by the Italian Primary Standard Dosimetry Laboratory), a method independent of the dose per pulse. A summary of Gafchromic trade mark sign EBT in relative and absolute beam output determination is reported. This study demonstrates the independence of Gafchromic trade mark sign EBT absorption as a function of dose per pulse at different dose levels. A good agreement (within 3%) was found with Fricke dosimeters for plane-base IORT applicators. Comparison with a diode detector is presented for relative dose measurements, showing acceptable agreement both in the steep dose falloff zone and in the homogeneous dose region. This work also provides experimental values for recombination correction factor (K{sub sat}) of a Roos (plane parallel) ionization chamber calculated on the basis of theoretical models for charge recombination.

  12. The transfer between electron bulk kinetic energy and thermal energy in collisionless magnetic reconnection

    SciTech Connect

    Lu, San; Lu, Quanming; Huang, Can; Wang, Shui

    2013-06-15

    By performing two-dimensional particle-in-cell simulations, we investigate the transfer between electron bulk kinetic and electron thermal energy in collisionless magnetic reconnection. In the vicinity of the X line, the electron bulk kinetic energy density is much larger than the electron thermal energy density. The evolution of the electron bulk kinetic energy is mainly determined by the work done by the electric field force and electron pressure gradient force. The work done by the electron gradient pressure force in the vicinity of the X line is changed to the electron enthalpy flux. In the magnetic island, the electron enthalpy flux is transferred to the electron thermal energy due to the compressibility of the plasma in the magnetic island. The compression of the plasma in the magnetic island is the consequence of the electromagnetic force acting on the plasma as the magnetic field lines release their tension after being reconnected. Therefore, we can observe that in the magnetic island the electron thermal energy density is much larger than the electron bulk kinetic energy density.

  13. Energy Spread Reduction of Electron Beams Produced via Laser Wake

    SciTech Connect

    Pollock, Bradley Bolt

    2012-01-01

    Laser wakefield acceleration of electrons holds great promise for producing ultra-compact stages of GeV scale, high quality electron beams for applications such as x-ray free electron lasers and high energy colliders. Ultra-high intensity laser pulses can be self-guided by relativistic plasma waves over tens of vacuum diffraction lengths, to give >1 GeV energy in cm-scale low density plasma using ionization-induced injection to inject charge into the wake at low densities. This thesis describes a series of experiments which investigates the physics of LWFA in the self-guided blowout regime. Beginning with high density gas jet experiments the scaling of the LWFA-produced electron beam energy with plasma electron density is found to be in excellent agreement with both phenomenological theory and with 3-D PIC simulations. It is also determined that self-trapping of background electrons into the wake exhibits a threshold as a function of the electron density, and at the densities required to produce electron beams with energies exceeding 1 GeV a different mechanism is required to trap charge into low density wakes. By introducing small concentrations of high-Z gas to the nominal He background the ionization-induced injection mechanism is enabled. Electron trapping is observed at densities as low as 1.3 x 1018 cm-3 in a gas cell target, and 1.45 GeV electrons are demonstrated for the first time from LWFA. This is currently the highest electron energy ever produced from LWFA. The ionization-induced trapping mechanism is also shown to generate quasi-continuous electron beam energies, which is undesirable for accelerator applications. By limiting the region over which ionization-induced trapping occurs, the energy spread of the electron beams can be controlled. The development of a novel two-stage gas cell target provides the capability to tailor the gas composition in the longitudinal direction, and confine the trapping process to occur only in a

  14. Electron energy recovery system for negative ion sources

    DOEpatents

    Dagenhart, William K.; Stirling, William L.

    1982-01-01

    An electron energy recovery system for negative ion sources is provided. The system, employs crossed electric and magnetic fields to separate the electrons from ions as they are extracted from a negative ion source plasma generator and before the ions are accelerated to their full kinetic energy. With the electric and magnetic fields oriented 90.degree. to each other, the electrons are separated from the plasma and remain at approximately the electrical potential of the generator in which they were generated. The electrons migrate from the ion beam path in a precessing motion out of the ion accelerating field region into an electron recovery region provided by a specially designed electron collector electrode. The electron collector electrode is uniformly spaced from a surface of the ion generator which is transverse to the direction of migration of the electrons and the two surfaces are contoured in a matching relationship which departs from a planar configuration to provide an electric field component in the recovery region which is parallel to the magnetic field thereby forcing the electrons to be directed into and collected by the electron collector electrode. The collector electrode is maintained at a potential slightly positive with respect to the ion generator so that the electrons are collected at a small fraction of the full accelerating supply voltage energy.

  15. Microbunched electron cooling for high-energy hadron beams.

    PubMed

    Ratner, D

    2013-08-23

    Electron and stochastic cooling are proven methods for cooling low-energy hadron beams, but at present there is no way of cooling hadrons as they near the TeV scale. In the 1980s, Derbenev suggested that electron instabilities, such as free-electron lasers, could create collective space charge fields strong enough to correct the hadron energies. This Letter presents a variation on Derbenev's electron cooling scheme using the microbunching instability as the amplifier. The large bandwidth of the instability allows for faster cooling of high-density beams. A simple analytical model illustrates the cooling mechanism, and simulations show cooling rates for realistic parameters of the Large Hadron Collider.

  16. Study on electron beam in a low energy plasma focus

    SciTech Connect

    Khan, Muhammad Zubair; Ling, Yap Seong; San, Wong Chiow

    2014-03-05

    Electron beam emission was investigated in a low energy plasma focus device (2.2 kJ) using copper hollow anode. Faraday cup was used to estimate the energy of the electron beam. XR100CR X-ray spectrometer was used to explore the impact of the electron beam on the target observed from top-on and side-on position. Experiments were carried out at optimized pressure of argon gas. The impact of electron beam is exceptionally notable with two different approaches using lead target inside hollow anode in our plasma focus device.

  17. Substituent effect on electronic transition energy of dichlorobenzyl radicals

    NASA Astrophysics Data System (ADS)

    Yoon, Young Wook; Chae, Sang Youl; Lee, Sang Kuk

    2016-01-01

    Ring-substituted benzyl radicals exhibit electronic energies of the D1 ⿿ D0 transition being shifted to red region with respect to the benzyl radical. The red-shifts of disubstituted benzyl radicals are highly dependent on the substitution positions irrespective of substituents. By analyzing the red-shifts of dichlorobenzyl radicals observed, we found that the substituent effect on electronic transition energy is attributed to the molecular plane shape of delocalized Ͽ electrons. We will discuss the influences of locations of Cl substituents on the D1 ⿿ D0 transition energies of dichlorobenzyl radicals using Hückel's molecular orbital theory.

  18. Can low-energy electrons affect high-energy physics accelerators?

    SciTech Connect

    Cimino, R.; Collins, I.R.; Furman, M.A.; Pivi, M.; Ruggiero, F.; Rumolo, G.; Zimmermann, F.

    2004-02-09

    Present and future accelerators performances may be limited by the electron cloud (EC) effect. The EC formation and evolution are determined by the wall-surface properties of the accelerator vacuum chamber.We present measurements of the total secondary electron yield (SEY) and the related energy distribution curves of the secondary electrons as a function of incident-electron energy. Particular attention has been paid to the emission process due to very low-energy primary electrons (<20 eV). It is shown that the SEY approaches unity and the reflected electron component is predominant in the limit of zero primary incident electron energy. Motivated by these measurements, we have used state-of-the-art EC simulation codes to predict how these results may impact the production of the electron cloud in the Large Hadron Collider, under construction at CERN, and the related surface heat load.

  19. High-Current Energy-Recovering Electron Linacs

    SciTech Connect

    Nikolitsa Merminga; David Douglas; Geoffrey Krafft

    2003-12-01

    The use of energy recovery provides a potentially powerful new paradigm for generation of the charged particle beams used in synchrotron radiation sources, high-energy electron cooling devices, electron-ion colliders, and other applications in photon science and nuclear and high-energy physics. Energy-recovering electron linear accelerators (called energy-recovering linacs, or ERLs) share many characteristics with ordinary linacs, as their six-dimensional beam phase space is largely determined by electron source properties. However, in common with classic storage rings, ERLs possess a high average-current-carrying capability enabled by the energy recovery process, and thus promise similar efficiencies. The authors discuss the concept of energy recovery and its technical challenges and describe the Jefferson Lab (JLab) Infrared Demonstration Free-Electron Laser (IR Demo FEL), originally driven by a 3548-MeV, 5-mA superconducting radiofrequency (srf) ERL, which provided the most substantial demonstration of energy recovery to date: a beam of 250 kW average power. They present an overview of envisioned ERL applications and a development path to achieving the required performance. They use experimental data obtained at the JLab IR Demo FEL and recent experimental results from CEBAF-ERL GeV-scale, comparatively low-current energy-recovery demonstration at JLab to evaluate the feasibility of the new applications of high-current ERLs, as well as ERLs' limitations and ultimate performance.

  20. HIGH-ENERGY ELECTRON COOLING BASED ON REALISTIC SIX-DIMENSIONAL DISTRIBUTION OF ELECTRONS

    SciTech Connect

    FEDOTOV,A.; BEN-ZVI, I.; ET AL.

    2007-06-25

    The high-energy electron cooling system for RHIC-II is unique compared to standard coolers. It requires bunched electron beam. Electron bunches are produced by an Energy Recovery Linac (ERL), and cooling is planned without longitudinal magnetic field. To address unique features of the RHIC cooler, a generalized treatment of cooling force was introduced in BETACOOE code which allows us to calculate friction force for an arbitrary distribution of electrons. Simulations for RHIC cooler based on electron distribution from ERL are presented.

  1. Ligand reorganization and activation energies in nonadiabatic electron transfer reactions

    NASA Astrophysics Data System (ADS)

    Zhu, Jianjun; Wang, Jianji; Stell, George

    2006-10-01

    The activation energy and ligand reorganization energy for nonadiabatic electron transfer reactions in chemical and biological systems are investigated in this paper. The free energy surfaces and the activation energy are derived exactly in the general case in which the ligand vibration frequencies are not equal. The activation energy is derived by free energy minimization at the transition state. Our formulation leads to the Marcus-Hush [J. Chem. Phys. 24, 979 (1956); 98, 7170 (1994); 28, 962 (1958)] results in the equal-frequency limit and also generalizes the Marcus-Sumi [J. Chem. Phys. 84, 4894 (1986)] model in the context of studying the solvent dynamic effect on electron transfer reactions. It is found that when the ligand vibration frequencies are different, the activation energy derived from the Marcus-Hush formula deviates by 5%-10% from the exact value. If the reduced reorganization energy approximation is introduced in the Marcus-Hush formula, the result is almost exact.

  2. Technical Note: Improvements in GEANT4 energy-loss model and the effect on low-energy electron transport in liquid water

    SciTech Connect

    Kyriakou, I.; Incerti, S.

    2015-07-15

    Purpose: The GEANT4-DNA physics models are upgraded by a more accurate set of electron cross sections for ionization and excitation in liquid water. The impact of the new developments on low-energy electron transport simulations by the GEANT4 Monte Carlo toolkit is examined for improving its performance in dosimetry applications at the subcellular and nanometer level. Methods: The authors provide an algorithm for an improved implementation of the Emfietzoglou model dielectric response function of liquid water used in the GEANT4-DNA existing model. The algorithm redistributes the imaginary part of the dielectric function to ensure a physically motivated behavior at the binding energies, while retaining all the advantages of the original formulation, e.g., the analytic properties and the fulfillment of the f-sum-rule. In addition, refinements in the exchange and perturbation corrections to the Born approximation used in the GEANT4-DNA existing model are also made. Results: The new ionization and excitation cross sections are significantly different from those of the GEANT4-DNA existing model. In particular, excitations are strongly enhanced relative to ionizations, resulting in higher W-values and less diffusive dose-point-kernels at sub-keV electron energies. Conclusions: An improved energy-loss model for the excitation and ionization of liquid water by low-energy electrons has been implemented in GEANT4-DNA. The suspiciously low W-values and the unphysical long tail in the dose-point-kernel have been corrected owing to a different partitioning of the dielectric function.

  3. Sun exposure behaviour among subgroups of the Danish population. Based on personal electronic UVR dosimetry and corresponding exposure diaries.

    PubMed

    Thieden, Elisabeth

    2008-02-01

    Solar ultraviolet radiation (UVR) is known to be the most important etiological factor in skin cancer development. The main objective of this thesis was to achieve an objective, basic knowledge of the individual UVR exposure dose pattern and to reveal the factors and with which power they influence on the UVR dose among the Danes. Eight open prospective, observational studies and one study analyzing the compliance and reliability of data were performed in healthy Danish volunteers with an age range of 4-68 years. The subjects were chosen to cover an age span group of children, adolescents, and indoor workers and in addition, groups with expected high UVR exposure, sun worshippers, golfers, and gardeners. We developed a personal, electronic UVR dosimeter in a wristwatch (SunSaver). The subjects wore the UVR dosimeter that measured time-stamped UVR doses in standard erythema doses (SED) and completed diaries with data on their sun exposure behaviour. This resulted in corresponding UVR dosimeter and diary data from 346 sun-years where one sun-year is one person participating in one summer half-year (median 119 days). The annual UVR doses were calculated based on the personal and ambient measured UVR doses. We found a huge variation in annual UVR exposure dose within the total population sample, median 173 SED (range, 17-980 SED). The inter-group variation in annual UVR dose was from median 132 SED among indoor workers to median 224 SED among gardeners. No significant correlation was found between annual UVR dose and age either within the total population or among the adults. But the subjects below 20 years of age had an increase in annual UVR dose of 5 SED per year. Young people before the age of 20 years did not get a higher proportion of the lifetime UVR dose than expected (25%) when assuming a life expectancy of 80 years. There was no significant difference in annual UVR dose between males and females in the total population sample. But, among children, girls

  4. EDITORIAL: Special issue on radiation dosimetry Special issue on radiation dosimetry

    NASA Astrophysics Data System (ADS)

    Sharpe, Peter

    2009-04-01

    This special issue of Metrologia on radiation dosimetry is the second in a trilogy on the subject of ionizing radiation measurements, a field that is overseen by Sections I, II and III of the CIPM's Consultative Committee for Ionizing Radiation (CCRI). The work of Section II, on radionuclide metrology, was covered in issue 44(4), published in 2007, and that of Section III, on neutron metrology, will be covered in a special issue to be published shortly. This issue covers the work of Section I (x-rays and γ rays, and charged particles). The proposal to publish special issues of Metrologia covering the work of the CCRI Sections was first made in 2003 and refined at the two subsequent meetings of the CCRI in 2005 and 2007. The overall aim is to present the work of the CCRI to a wider metrological audience and to highlight the relevance and importance of the field. The main focus of our special issue on dosimetry metrology is on the 'state of the art' in the various areas covered, with an indication of the current developments taking place and the problems and challenges that remain. Where appropriate, this is set in a brief historical context, although it is not the aim to give a historical review. The need for accurate measurement has been appreciated from the pioneering days of the use of ionizing radiation in the early 20th century, particularly in the fields of diagnostic and therapeutic medicine. Over the years, the range of applications for ionizing radiation has expanded both in scope and in the types and energies of radiation employed. This has led to the need to develop a wide variety of measurement techniques and standards covering fields ranging from the low doses experienced in environmental and protection applications to the extremely high doses used in industrial processing. The different types of radiation employed give rise to the need for dose measurements in radiation beams whose effective penetration through a material such as water ranges from a

  5. Monte Carlo simulation of energy deposition by low-energy electrons in molecular hydrogen

    NASA Technical Reports Server (NTRS)

    Heaps, M. G.; Furman, D. R.; Green, A. E. S.

    1975-01-01

    A set of detailed atomic cross sections has been used to obtain the spatial deposition of energy by 1-20-eV electrons in molecular hydrogen by a Monte Carlo simulation of the actual trajectories. The energy deposition curve (energy per distance traversed) is quite peaked in the forward direction about the entry point for electrons with energies above the threshold of the electronic states, but the peak decreases and broadens noticeably as the electron energy decreases below 10 eV (threshold for the lowest excitable electronic state of H2). The curve also assumes a very symmetrical shape for energies below 10 eV, indicating the increasing importance of elastic collisions in determining the shape of the curve, although not the mode of energy deposition.

  6. Enhanced production of low energy electrons by alpha particle impact.

    PubMed

    Kim, Hong-Keun; Titze, Jasmin; Schöffler, Markus; Trinter, Florian; Waitz, Markus; Voigtsberger, Jörg; Sann, Hendrik; Meckel, Moritz; Stuck, Christian; Lenz, Ute; Odenweller, Matthias; Neumann, Nadine; Schössler, Sven; Ullmann-Pfleger, Klaus; Ulrich, Birte; Fraga, Rui Costa; Petridis, Nikos; Metz, Daniel; Jung, Annika; Grisenti, Robert; Czasch, Achim; Jagutzki, Ottmar; Schmidt, Lothar; Jahnke, Till; Schmidt-Böcking, Horst; Dörner, Reinhard

    2011-07-19

    Radiation damage to living tissue stems not only from primary ionizing particles but to a substantial fraction from the dissociative attachment of secondary electrons with energies below the ionization threshold. We show that the emission yield of those low energy electrons increases dramatically in ion-atom collisions depending on whether or not the target atoms are isolated or embedded in an environment. Only when the atom that has been ionized and excited by the primary particle impact is in immediate proximity of another atom is a fragmentation route known as interatomic Coulombic decay (ICD) enabled. This leads to the emission of a low energy electron. Over the past decade ICD was explored in several experiments following photoionization. Most recent results show its observation even in water clusters. Here we show the quantitative role of ICD for the production of low energy electrons by ion impact, thus approaching a scenario closer to that of radiation damage by alpha particles: We choose ion energies on the maximum of the Bragg peak where energy is most efficiently deposited in tissue. We compare the electron production after colliding He(+) ions on isolated Ne atoms and on Ne dimers (Ne(2)). In the latter case the Ne atom impacted is surrounded by a most simple environment already opening ICD as a deexcitation channel. As a consequence, we find a dramatically enhanced low energy electron yield. The results suggest that ICD may have a significant influence on cell survival after exposure to ionizing radiation.

  7. Dosimetry implant for treating restenosis and hyperplasia

    DOEpatents

    Srivastava, Suresh; Gonzales, Gilbert R; Howell, Roger W; Bolch, Wesley E; Adzic, Radoslav

    2014-09-16

    The present invention discloses a method of selectively providing radiation dosimetry to a subject in need of such treatment. The radiation is applied by an implant comprising a body member and .sup.117mSn electroplated at selected locations of the body member, emitting conversion electrons absorbed immediately adjacent selected locations while not affecting surrounding tissue outside of the immediately adjacent area.

  8. Electron, photons, and molecules: Storing energy from light

    SciTech Connect

    Miller, J.R.

    1996-09-01

    Molecular charge separation has important potential for photochemical energy storage. Its efficiency can be enhanced by principals which maximize the rates of the electron transfer steps which separate charge and minimize those which recombine high-energy charge pairs to lose stored energy. Dramatic scientific progress in understanding these principals has occurred since the founding of DOE and its predecessor agency ERDA. While additional knowledge in needed in broad areas of molecular electron transfer, some key areas of knowledge hold particular promise for the possibility of moving this area from science toward technology capable of contributing to the nation`s energy economy.

  9. Simulations and measurements in scanning electron microscopes at low electron energy.

    PubMed

    Walker, Christopher G H; Frank, Luděk; Müllerová, Ilona

    2016-11-01

    The advent of new imaging technologies in Scanning Electron Microscopy (SEM) using low energy (0-2 keV) electrons has brought about new ways to study materials at the nanoscale. It also brings new challenges in terms of understanding electron transport at these energies. In addition, reduction in energy has brought new contrast mechanisms producing images that are sometimes difficult to interpret. This is increasing the push for simulation tools, in particular for low impact energies of electrons. The use of Monte Carlo calculations to simulate the transport of electrons in materials has been undertaken by many authors for several decades. However, inaccuracies associated with the Monte Carlo technique start to grow as the energy is reduced. This is not simply associated with inaccuracies in the knowledge of the scattering cross-sections, but is fundamental to the Monte Carlo technique itself. This is because effects due to the wave nature of the electron and the energy band structure of the target above the vacuum energy level become important and these are properties which are difficult to handle using the Monte Carlo method. In this review we briefly describe the new techniques of scanning low energy electron microscopy and then outline the problems and challenges of trying to understand and quantify the signals that are obtained. The effects of charging and spin polarised measurement are also briefly explored. SCANNING 38:802-818, 2016. © 2016 Wiley Periodicals, Inc.

  10. Electron energy distribution produced by beam-plasma discharge

    NASA Technical Reports Server (NTRS)

    Anderson, H. R.; Gordeuk, J.; Jost, R. J.

    1982-01-01

    In an investigation of a beam-plasma discharge (BPD), the electron energy distribution of an electron beam moving through a partially ionized gas is analyzed. Among other results, it is found that the occurrence of BPD heats the initially cold electron beam from the accelerator. The directional intensity of electrons measured outside the beam core indicates that most particles suffer a single scattering in energy and pitch angle. At low currents this result is expected as beam particles collide with the neutral atmosphere, while in BPD the majority of particles is determined to still undergo a single scattering near the original beam core. The extended energy spectra at various beam currents show two rather distinct plasma populations, one centered at the initial beam energy (approximately 1500 eV) and the other at approximately 150 eV.

  11. Ultra High Energy Electrons Powered by Pulsar Rotation

    NASA Astrophysics Data System (ADS)

    Mahajan, Swadesh; Machabeli, George; Osmanov, Zaza; Chkheidze, Nino

    2013-02-01

    A new mechanism of particle acceleration, driven by the rotational slow down of the Crab pulsar, is explored. The rotation, through the time dependent centrifugal force, can efficiently excite unstable Langmuir waves in the electron-positron (hereafter e+/-) plasma of the star magnetosphere. These waves, then, Landau damp on electrons accelerating them in the process. The net transfer of energy is optimal when the wave growth and the Landau damping times are comparable and are both very short compared to the star rotation time. We show, by detailed calculations, that these are precisely the conditions for the parameters of the Crab pulsar. This highly efficient route for energy transfer allows the electrons in the primary beam to be catapulted to multiple TeV (~ 100 TeV) and even PeV energy domain. It is expected that the proposed mechanism may, unravel the puzzle of the origin of ultra high energy cosmic ray electrons.

  12. Ultra high energy electrons powered by pulsar rotation.

    PubMed

    Mahajan, Swadesh; Machabeli, George; Osmanov, Zaza; Chkheidze, Nino

    2013-01-01

    A new mechanism of particle acceleration, driven by the rotational slow down of the Crab pulsar, is explored. The rotation, through the time dependent centrifugal force, can efficiently excite unstable Langmuir waves in the electron-positron (hereafter e(±)) plasma of the star magnetosphere. These waves, then, Landau damp on electrons accelerating them in the process. The net transfer of energy is optimal when the wave growth and the Landau damping times are comparable and are both very short compared to the star rotation time. We show, by detailed calculations, that these are precisely the conditions for the parameters of the Crab pulsar. This highly efficient route for energy transfer allows the electrons in the primary beam to be catapulted to multiple TeV (~ 100 TeV) and even PeV energy domain. It is expected that the proposed mechanism may, unravel the puzzle of the origin of ultra high energy cosmic ray electrons.

  13. Ultra High Energy Electrons Powered by Pulsar Rotation

    PubMed Central

    Mahajan, Swadesh; Machabeli, George; Osmanov, Zaza; Chkheidze, Nino

    2013-01-01

    A new mechanism of particle acceleration, driven by the rotational slow down of the Crab pulsar, is explored. The rotation, through the time dependent centrifugal force, can efficiently excite unstable Langmuir waves in the electron-positron (hereafter e±) plasma of the star magnetosphere. These waves, then, Landau damp on electrons accelerating them in the process. The net transfer of energy is optimal when the wave growth and the Landau damping times are comparable and are both very short compared to the star rotation time. We show, by detailed calculations, that these are precisely the conditions for the parameters of the Crab pulsar. This highly efficient route for energy transfer allows the electrons in the primary beam to be catapulted to multiple TeV (~ 100 TeV) and even PeV energy domain. It is expected that the proposed mechanism may, unravel the puzzle of the origin of ultra high energy cosmic ray electrons. PMID:23405276

  14. Internal dosimetry - a review.

    SciTech Connect

    Potter, Charles Augustus

    2004-06-01

    The field history and current status of internal dosimetry is reviewed in this article. Elements of the field that are reviewed include standards and models, derivation of dose coefficients and intake retention fractions, bioassay measurements, and intake and dose calculations. In addition, guidance is developed and provided as to the necessity of internal dosimetry for a particular facility or operation and methodology for implementing a program. A discussion of the purposes of internal dosimetry is included as well as recommendations for future development and direction.

  15. Radial Distribution of Electron Spectra from High-Energy Ions

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Katz, Robert; Wilson, John W.

    1998-01-01

    The average track model describes the response of physical and biological systems using radial dose distribution as the key physical descriptor. We report on an extension of this model to describe the average distribution of electron spectra as a function of radial distance from an ion. We present calculations of these spectra for ions of identical linear energy transfer (LET), but dissimilar charge and velocity to evaluate the differences in electron spectra from these ions. To illustrate the usefulness of the radial electron spectra for describing effects that are not described by electron dose, we consider the evaluation of the indirect events in microdosimetric distributions for ions. We show that folding our average electron spectra model with experimentally determined frequency distributions for photons or electrons provides a good representation of radial event spectra from high-energy ions in 0.5-2 micrometer sites.

  16. Development, validation, and implementation of a patient-specific Monte Carlo 3D internal dosimetry platform

    NASA Astrophysics Data System (ADS)

    Besemer, Abigail E.

    Targeted radionuclide therapy is emerging as an attractive treatment option for a broad spectrum of tumor types because it has the potential to simultaneously eradicate both the primary tumor site as well as the metastatic disease throughout the body. Patient-specific absorbed dose calculations for radionuclide therapies are important for reducing the risk of normal tissue complications and optimizing tumor response. However, the only FDA approved software for internal dosimetry calculates doses based on the MIRD methodology which estimates mean organ doses using activity-to-dose scaling factors tabulated from standard phantom geometries. Despite the improved dosimetric accuracy afforded by direct Monte Carlo dosimetry methods these methods are not widely used in routine clinical practice because of the complexity of implementation, lack of relevant standard protocols, and longer dose calculation times. The main goal of this work was to develop a Monte Carlo internal dosimetry platform in order to (1) calculate patient-specific voxelized dose distributions in a clinically feasible time frame, (2) examine and quantify the dosimetric impact of various parameters and methodologies used in 3D internal dosimetry methods, and (3) develop a multi-criteria treatment planning optimization framework for multi-radiopharmaceutical combination therapies. This platform utilizes serial PET/CT or SPECT/CT images to calculate voxelized 3D internal dose distributions with the Monte Carlo code Geant4. Dosimetry can be computed for any diagnostic or therapeutic radiopharmaceutical and for both pre-clinical and clinical applications. In this work, the platform's dosimetry calculations were successfully validated against previously published reference doses values calculated in standard phantoms for a variety of radionuclides, over a wide range of photon and electron energies, and for many different organs and tumor sizes. Retrospective dosimetry was also calculated for various pre

  17. EPR dosimetry of cortical bone and tooth enamel irradiated with X and gamma rays: Study of energy dependence

    SciTech Connect

    Schauer, D.A.; Links, J.M. ); Desrosiers, M.F.; Le, F.G.; Seltzer, S.M. )

    1994-04-01

    Previous investigators have reported that the radiation-induced EPR signal intensity in compact or cortical bone increases up to a factor of two with decreasing photon energy for a given absorbed dose. If the EPR signal intensity was dependent on energy, it could limit the application of EPR spectrometry and the additive reirradiation method to obtain dose estimates. We have recently shown that errors in the assumptions governing conversion of measured exposure to absorbed dose can lead to similar [open quotes]apparent[close quotes] energy-dependence results. We hypothesized that these previous results were due to errors in the estimated dose in bone, rather than the effects of energy dependence per se. To test this hypothesis we studied human adult cortical bone from male and female donors ranging in age from 23 to 95 years, and bovine tooth enamel, using 34 and 138 keV average energy X-ray beams and [sup 137]Cs (662 keV) and [sup 60]Co (1250 keV) [gamma] rays. In a femur from a 47-year-old male (subject 1), there was a difference of borderline significance at the [alpha] = 0.05 level in the mean radiation-induced hydroxyapatite signal intensities as a function of photon energy. No other statistically significant differences in EPR signal intensity as a function of photon energy were observed in this subject, or in the tibia from a 23-year-old male (subject 2) and the femur from a 75-year-old female (subject 3). However, there was a trend toward a decrease (12-15%) in signal intensity at the lowest energy compared with the highest energy in subjects 1 and 3. Further analysis of the data from subject 1 revealed that this trend, which is in the opposite direction of previous reports but is consistent with theory, is statistically significant. There were no efforts of energy dependence in the tooth samples. 16 refs., 7 figs., 5 tabs.

  18. Diffraction of electrons at intermediate energies: The role of phonons

    NASA Astrophysics Data System (ADS)

    Ascolani, H.; Zampieri, G.

    1996-07-01

    The intensity of electrons reflected ``elastically'' from crystalline surfaces presents two regimes: the low-energy or LEED regime (<500 eV), in which the electrons are reflected along the Bragg directions, and the intermediate-energy or XPD/AED regime (>500 eV), in which the maxima of intensity are along the main crystallographic axes. We present a model which explains this transition in terms of the excitation/absorption of phonons during the scattering.

  19. Evaluation of Miscellaneous and Electronic Device Energy Use in Hospitals

    SciTech Connect

    Black, Douglas R.; Lanzisera, Steven M.; Lai, Judy; Brown, Richard E.; Singer, Brett C.

    2012-09-01

    Miscellaneous and electronic loads (MELs) consume about one-thirdof the primary energy used in US buildings, and their energy use is increasing faster than other end-uses. In healthcare facilities, 30percent of the annual electricity was used by MELs in 2008. This paper presents methods and challenges for estimating medical MELs energy consumption along with estimates of energy use in a hospital by combining device-level metered data with inventories and usage information. An important finding is that common, small devices consume large amounts of energy in aggregate and should not be ignored when trying to address hospital energy use.

  20. Anomalous electron-ion energy coupling in electron drift wave turbulence

    NASA Astrophysics Data System (ADS)

    Zhao, Lei

    Turbulence is a ubiquitous phenomenon in nature, and it is well known that turbulence couples energy input to dissipation by cascade processes. Plasma turbulence play a critical role in tokamak confinement. Magnetized plasma turbulence is quasi 2D, anisotropic, wave like and two fluid (i.e. electrons and ions) in structure. Thus, weakly collisional plasma turbulence can mediate electron and ion energy transfer. The issue of anomalous electron and ion energy coupling is particularly important for low collisionality, electron heated plasmas, such as ITER. In this work, we reconsider the classic problem of turbulent heating and energy transfer pathways in drift wave turbulence. The total turbulent heating, composed of quasilinear electron cooling, quasilinear ion heating, nonlinear ion heating and zonal flow frictional heating, is analyzed. In Chapter 2, the electron and ion energy exchange via linear wave and particle resonance will be computed. To address net heating, we show the turbulent heating in an annulus arises due to a wave energy flux differential across this region. We show this net heating is proportional to the Reynolds work on the zonal flow. Zonal flow friction heats ions, thus the turbulence and zonal flow interaction enters as an important energy transfer channel. Since zonal flows are nonlinearly generated, it follows that we should apply weak turbulence theory to calculate the nonlinear ion turbulent heating via the virtual mode resonance in the electron drift wave turbulence, which will be discussed in Chapter 3. We defines a new collisionless turbulent energy transfer channel through nonlinear Landau damping in the electron and ion energy coupling process. The result shows that nonlinear ion heating can exceed quasilinear ion heating, so that nonlinear heating becomes the principal collisionless wave energy dissipation channel in electron drift wave turbulence. This follows since the beat mode resonates with the bulk of the ion distribution, in

  1. Non-locality, adiabaticity, thermodynamics and electron energy probability functions

    NASA Astrophysics Data System (ADS)

    Boswell, Roderick; Zhang, Yunchao; Charles, Christine; Takahashi, Kazunori

    2016-09-01

    Thermodynamic properties are revisited for electrons that are governed by nonlocal electron energy probability functions in a plasma of low collisionality. Measurements in a laboratory helicon double layer experiment have shown that the effective electron temperature and density show a polytropic correlation with an index of γe = 1 . 17 +/- 0 . 02 along the divergent magnetic field, implying a nearly isothermal plasma (γe = 1) with heat being brought into the system. However, the evolution of electrons along the divergent magnetic field is essentially an adiabatic process, which should have a γe = 5 / 3 . The reason for this apparent contradiction is that the nearly collisionless plasma is very far from local thermodynamic equilibrium and the electrons behave nonlocally. The corresponding effective electron enthalpy has a conservation relation with the potential energy, which verifies that there is no heat transferred into the system during the electron evolution. The electrons are shown in nonlocal momentum equilibrium under the electric field and the gradient of the effective electron pressure. The convective momentum of ions, which can be assumed as a cold species, is determined by the effective electron pressure and the effective electron enthalpy is shown to be the source for ion acceleration. For these nearly collisionless plasmas, the use of traditional thermodynamic concepts can lead to very erroneous conclusions regarding the thermal conductivity.

  2. High-energy-resolution monochromator for aberration-corrected scanning transmission electron microscopy/electron energy-loss spectroscopy.

    PubMed

    Krivanek, Ondrej L; Ursin, Jonathan P; Bacon, Neil J; Corbin, George J; Dellby, Niklas; Hrncirik, Petr; Murfitt, Matthew F; Own, Christopher S; Szilagyi, Zoltan S

    2009-09-28

    An all-magnetic monochromator/spectrometer system for sub-30 meV energy-resolution electron energy-loss spectroscopy in the scanning transmission electron microscope is described. It will link the energy being selected by the monochromator to the energy being analysed by the spectrometer, without resorting to decelerating the electron beam. This will allow it to attain spectral energy stability comparable to systems using monochromators and spectrometers that are raised to near the high voltage of the instrument. It will also be able to correct the chromatic aberration of the probe-forming column. It should be able to provide variable energy resolution down to approximately 10 meV and spatial resolution less than 1 A.

  3. Energy measurement of electron beams by Compton scattering

    NASA Technical Reports Server (NTRS)

    Keppel, Cynthia

    1995-01-01

    A method has been proposed to utilize the well-known Compton scattering process as a tool to measure the centroid energy of a high energy electron beam at the 0.01% level. It is suggested to use the Compton scattering of an infrared laser off the electron beam, and then to measure the energy of the scattered gamma-rays very precisely using solid-state detectors. The technique proposed is applicable for electron beams with energies from 200 MeV to 16 GeV using presently available lasers. This technique was judged to be the most viable of all those proposed for beam energy measurements at the nearby Continuous Electron Beam Accelerator Facility (CEBAF). Plans for a prototype test of the technique are underway, where the main issues are the possible photon backgrounds associated with an electron accelerator and the electron and laser beam stabilities and diagnostics. The bulk of my ASEE summer research has been spent utilizing the expertise of the staff at the Aerospace Electronics Systems Division at LaRC to assist in the design of the test. Investigations were made regarding window and mirror transmission and radiation damage issues, remote movement of elements in ultra-high vacuum conditions, etc. The prototype test of the proposed laser backscattering method is planned for this December.

  4. Magnetosphere-Ionosphere Energy Interchange in the Electron Diffuse Aurora

    NASA Technical Reports Server (NTRS)

    Khazanov, George V.; Glocer, Alex; Himwich, E. W.

    2014-01-01

    The diffuse aurora has recently been shown to be a major contributor of energy flux into the Earth's ionosphere. Therefore, a comprehensive theoretical analysis is required to understand its role in energy redistribution in the coupled ionosphere-magnetosphere system. In previous theoretical descriptions of precipitated magnetospheric electrons (E is approximately 1 keV), the major focus has been the ionization and excitation rates of the neutral atmosphere and the energy deposition rate to thermal ionospheric electrons. However, these precipitating electrons will also produce secondary electrons via impact ionization of the neutral atmosphere. This paper presents the solution of the Boltzman-Landau kinetic equation that uniformly describes the entire electron distribution function in the diffuse aurora, including the affiliated production of secondary electrons (E greater than 600 eV) and their ionosphere-magnetosphere coupling processes. In this article, we discuss for the first time how diffuse electron precipitation into the atmosphere and the associated secondary electron production participate in ionosphere-magnetosphere energy redistribution.

  5. Weighting mean timers for high energy physics electronics

    SciTech Connect

    J. Wu

    1998-11-01

    A new family of electronics circuits, weighting mean timer, is presented in this technical memo. Weighting mean timers can be used in high energy physics experiment electronics to implement the \\concurrence" condition in hardware trigger stage. Several possible architectures of weighting mean timers have been discussed.

  6. Monolithic electronics for nuclear and high-energy physics experiments

    SciTech Connect

    Young, G.R.

    1994-12-31

    Electronic instrumentation for large fixed-target and collider experiments is rapidly moving to the use of highly integrated electronics wherever it is cost effective. This trend is aided by the development of circuit building blocks useful for nuclear and high-energy physics instrumentation and has accelerated recently with the development of monolithic silicon chips with multiple functions on one substrate. Examples of recent developments are given, together with remarks on the rationale for use of monolithic electronics and economic considerations.

  7. Efficiency enhancement using electron energy detuning in a laser seeded free electron laser amplifier

    SciTech Connect

    Wang, X. J.; Watanabe, T.; Shen, Y.; Li, R. K.; Murphy, J. B.; Tsang, T.; Freund, H. P.

    2007-10-29

    We report the experimental characterization of efficiency enhancement in a single-pass seeded free-electron laser (FEL) where the electron energy is detuned from resonance. Experiments show a doubling of the efficiency for beam energies above the resonant energy. Measurements of the FEL spectra versus energy detuning shows that the wavelength is governed by the seed laser. The variation in the gain length with beam energy was also observed. Good agreement is found between the experiment and numerical simulations using the MEDUSA simulation code.

  8. Continuous Electron--Energy Variation of the Eindhoven Racetrack Microtron.

    NASA Astrophysics Data System (ADS)

    Theuws, W. H. C.; Botman, J. I. M.; Hagedoorn, H. L.

    1997-05-01

    Energy variation of the Eindhoven racetrack microtron, which has been designed as a fixed--energy electron accelerator at 75 MeV, is considered in this paper. By taking the orbit pattern in the RTM as constant and varying certain parameters continuous energy variation can be obtained. The microtron injector is a linac producing electrons between 6 and 12 MeV. The microtron cavity potential and the magnetic guide fields must be adapted to the injection energy in order to fulfil the synchronism condition. The transverse and longitudinal acceptance of the RTM are effected by deviations of the electron velocity from the speed of light, which are different for each parameter setting. An account of these effects is presented together with the energy--setting measurements by using one of the microtron magnets as a spectrometer.

  9. Investigation of effect of variations in bone fraction and red marrow cellularity on bone marrow dosimetry in radio-immunotherapy

    NASA Astrophysics Data System (ADS)

    Wilderman, S. J.; Roberson, P. L.; Bolch, W. E.; Dewaraja, Y. K.

    2013-07-01

    A method is described for computing patient-specific absorbed dose rates to active marrow which accounts for spatial variation in bone volume fraction and marrow cellularity. A module has been added to the 3D Monte Carlo dosimetry program DPM to treat energy deposition in the components of bone spongiosa distinctly. Homogeneous voxels in regions containing bone spongiosa (as defined on CT images) are assumed to be comprised only of bone, active (red) marrow and inactive (yellow) marrow. Cellularities are determined from biopsy, and bone volume fractions are computed from cellularities and CT-derived voxel densities. Electrons are assumed to deposit energy locally in the three constituent components in proportions determined by electron energy absorption fractions which depend on energy, cellularity, and bone volume fraction, and which are either taken from the literature or are derived from Monte Carlo simulations using EGS5. Separate algorithms are used to model primary β particles and secondary electrons generated after photon interactions. Treating energy deposition distinctly in bone spongiosa constituents leads to marrow dosimetry results which differ from homogeneous spongiosa dosimetry by up to 20%. Dose rates in active marrow regions with cellularities of 20, 50, and 80% can vary by up to 20%, and can differ by up to 10% as a function of bone volume fraction. Dose to bone marrow exhibits a strong dependence on marrow cellularity and a potentially significant dependence on bone volume fraction.

  10. Investigation of effect of variations in bone fraction and red marrow cellularity on bone marrow dosimetry in radio-immunotherapy.

    PubMed

    Wilderman, S J; Roberson, P L; Bolch, W E; Dewaraja, Y K

    2013-07-21

    A method is described for computing patient-specific absorbed dose rates to active marrow which accounts for spatial variation in bone volume fraction and marrow cellularity. A module has been added to the 3D Monte Carlo dosimetry program DPM to treat energy deposition in the components of bone spongiosa distinctly. Homogeneous voxels in regions containing bone spongiosa (as defined on CT images) are assumed to be comprised only of bone, active (red) marrow and inactive (yellow) marrow. Cellularities are determined from biopsy, and bone volume fractions are computed from cellularities and CT-derived voxel densities. Electrons are assumed to deposit energy locally in the three constituent components in proportions determined by electron energy absorption fractions which depend on energy, cellularity, and bone volume fraction, and which are either taken from the literature or are derived from Monte Carlo simulations using EGS5. Separate algorithms are used to model primary β particles and secondary electrons generated after photon interactions. Treating energy deposition distinctly in bone spongiosa constituents leads to marrow dosimetry results which differ from homogeneous spongiosa dosimetry by up to 20%. Dose rates in active marrow regions with cellularities of 20, 50, and 80% can vary by up to 20%, and can differ by up to 10% as a function of bone volume fraction. Dose to bone marrow exhibits a strong dependence on marrow cellularity and a potentially significant dependence on bone volume fraction.

  11. SU-F-BRA-10: Fricke Dosimetry: Determination of the G-Value for Ir-192 Energy Based On the NRC Methodology

    SciTech Connect

    Salata, C; David, M; Rosado, P; Almeida, C de

    2015-06-15

    Purpose: Use the methodology developed by the National Research Council Canada (NRC), for Fricke Dosimetry, to determine the G-value used at Ir-192 energies. Methods: In this study the Radiology Science Laboratory of Rio de Janeiro State University (LCR),based the G-value determination on the NRC method, using polyethylene bags. Briefly, this method consists of interpolating the G-values calculated for Co-60 and 250 kV x-rays for the average energy of Ir-192 (380 keV). As the Co-60 G-value is well described at literature, and associated with low uncertainties, it wasn’t measured in this present study. The G-values for 150 kV (Effective energy of 68 keV), 250 kV (Effective energy of 132 keV)and 300 kV(Effective energy of 159 keV)were calculated using the air kerma given by a calibrated ion chamber, and making it equivalent to the absorbed to the Fricke solution, using a Monte Carlo calculated factor for this conversion. Instead of interpolations, as described by the NRC, we displayed the G-values points in a graph, and used the line equation to determine the G- value for Ir-192 (380 keV). Results: The measured G-values were 1.436 ± 0.002 µmol/J for 150 kV, 1.472 ± 0.002 µmol/J for 250 kV, 1.497 ± 0.003 µmol/J for 300 kV. The used G-value for Co-60 (1.25 MeV) was 1,613 µmol/J. The R-square of the fitted regression line among those G-value points was 0.991. Using the line equation, the calculate G-value for 380 KeV was 1.542 µmol/J. Conclusion: The Result found for Ir-192 G-value is 3,1% different (lower) from the NRC value. But it agrees with previous literature results, using different methodologies to calculate this parameter. We will continue this experiment measuring the G-value for Co-60 in order to compare with the NRC method and better understand the reasons for the found differences.

  12. Properties of the electron cloud in a high-energy positron and electron storage ring

    DOE PAGES

    Harkay, K. C.; Rosenberg, R. A.

    2003-03-20

    Low-energy, background electrons are ubiquitous in high-energy particle accelerators. Under certain conditions, interactions between this electron cloud and the high-energy beam can give rise to numerous effects that can seriously degrade the accelerator performance. These effects range from vacuum degradation to collective beam instabilities and emittance blowup. Although electron-cloud effects were first observed two decades ago in a few proton storage rings, they have in recent years been widely observed and intensely studied in positron and proton rings. Electron-cloud diagnostics developed at the Advanced Photon Source enabled for the first time detailed, direct characterization of the electron-cloud properties in amore » positron and electron storage ring. From in situ measurements of the electron flux and energy distribution at the vacuum chamber wall, electron-cloud production mechanisms and details of the beam-cloud interaction can be inferred. A significant longitudinal variation of the electron cloud is also observed, due primarily to geometrical details of the vacuum chamber. Furthermore, such experimental data can be used to provide realistic limits on key input parameters in modeling efforts, leading ultimately to greater confidence in predicting electron-cloud effects in future accelerators.« less

  13. Properties of the electron cloud in a high-energy positron and electron storage ring

    SciTech Connect

    Harkay, K. C.; Rosenberg, R. A.

    2003-03-20

    Low-energy, background electrons are ubiquitous in high-energy particle accelerators. Under certain conditions, interactions between this electron cloud and the high-energy beam can give rise to numerous effects that can seriously degrade the accelerator performance. These effects range from vacuum degradation to collective beam instabilities and emittance blowup. Although electron-cloud effects were first observed two decades ago in a few proton storage rings, they have in recent years been widely observed and intensely studied in positron and proton rings. Electron-cloud diagnostics developed at the Advanced Photon Source enabled for the first time detailed, direct characterization of the electron-cloud properties in a positron and electron storage ring. From in situ measurements of the electron flux and energy distribution at the vacuum chamber wall, electron-cloud production mechanisms and details of the beam-cloud interaction can be inferred. A significant longitudinal variation of the electron cloud is also observed, due primarily to geometrical details of the vacuum chamber. Furthermore, such experimental data can be used to provide realistic limits on key input parameters in modeling efforts, leading ultimately to greater confidence in predicting electron-cloud effects in future accelerators.

  14. Suprathermal electron energy distribution within the dayside Venus ionosphere

    NASA Technical Reports Server (NTRS)

    Knudsen, W. C.; Miller, K. L.; Spenner, K.; Novak, V.; Michelson, P. F.; Whitten, R. C.

    1980-01-01

    The suprathermal electron energy distribution for the dayside ionosphere has been derived from data returned by the Pioneer-Venus orbiter retarding potential analyzer. The shape and magnitude of the spectrum are consistent with the assumption that solar EUV radiation is the only significant source. The magnitude of the spectrum and its variation with altitude suggest that significant vertical transport occurs, with the electrons being lost through the ionopause. In turn, significant vertical transport suggests that the effective vertical electron heat conductivity may be comparable to the field-free value. The heat input to the thermal electron gas from the measured suprathermal electron flux is too small by a factor of at least five to maintain the observed electron temperature profile if the electron thermal conductivity is assumed to be close to the field-free value. It is thus inferred that most of the heat is supplied by the solar wind.

  15. Modelling low energy electron interactions for biomedical uses of radiation

    NASA Astrophysics Data System (ADS)

    Fuss, M.; Muñoz, A.; Oller, J. C.; Blanco, F.; Limão-Vieira, P.; Huerga, C.; Téllez, M.; Hubin-Fraskin, M. J.; Nixon, K.; Brunger, M.; García, G.

    2009-11-01

    Current radiation based medical applications in the field of radiotherapy, radio-diagnostic and radiation protection require modelling single particle interactions at the molecular level. Due to their relevance in radiation damage to biological systems, special attention should be paid to include the effect of low energy secondary electrons. In this study we present a single track simulation procedure for photons and electrons which is based on reliable experimental and theoretical cross section data and the energy loss distribution functions derived from our experiments. The effect of including secondary electron interactions in this model will be discussed.

  16. Sandia National Laboratories Internal Dosimetry Technical Basis Manual (Rev 4)

    SciTech Connect

    Goke, Sarah Hayes; Elliott, Nathan Ryan

    2014-09-01

    The Sandia National Laboratories’ Internal Dosimetry Technical Basis Manual is intended to provide extended technical discussion and justification of the internal dosimetry program at SNL. It serves to record the approach to evaluating internal doses from radiobioassay data, and where appropriate, from workplace monitoring data per the Department of Energy Internal Dosimetry Program Guide DOE G 441.1C. The discussion contained herein is directed primarily to current and future SNL internal dosimetrists. In an effort to conserve space in the TBM and avoid duplication, it contains numerous references providing an entry point into the internal dosimetry literature relevant to this program. The TBM is not intended to act as a policy or procedure statement, but will supplement the information normally found in procedures or policy documents. The internal dosimetry program outlined in this manual is intended to meet the requirements of Federal Rule 10CFR835 for monitoring the workplace and for assessing internal radiation doses to workers.

  17. ELECTRON COOLING SIMULATIONS FOR LOW-ENERGY RHIC OPERATION.

    SciTech Connect

    FEDOTOV,A.V.; BEN-ZVI, I.; CHANG, X.; KAYRAN, D.; SATOGATA, T.

    2007-09-10

    Recently, a strong interest emerged in running the Relativistic Heavy Ion Collider (RHIC) at low beam total energies of 2.5-25 GeV/nucleon, substantially lower than the nominal beam total energy of 100 GeV/nucleon. Collisions in this low energy range are motivated by one of the key questions of quantum chromodynamics (QCD) about the existence and location of critical point on the QCD phase diagram. Applying electron cooling directly at these low energies in RHIC would result in significant luminosity increase and long beam stores for physics. Without direct cooling in RHIC at these low energies, beam lifetime and store times are very short, limited by strong transverse and longitudinal intrabeam scattering (IBS). In addition, for the lowest energies of the proposed energy scan, the longitudinal emittance of ions injected from the AGS into RHIC may be too big to fit into the RHIC RF bucket. An improvement in the longitudinal emittance of the ion beam can be provided by an electron cooling system at the AGS injection energy. Simulations of electron cooling both for direct cooling at low energies in RHIC and for injection energy cooling in the AGS were performed and are summarized in this report.

  18. A molecularly based theory for electron transfer reorganization energy.

    PubMed

    Zhuang, Bilin; Wang, Zhen-Gang

    2015-12-14

    Using field-theoretic techniques, we develop a molecularly based dipolar self-consistent-field theory (DSCFT) for charge solvation in pure solvents under equilibrium and nonequilibrium conditions and apply it to the reorganization energy of electron transfer reactions. The DSCFT uses a set of molecular parameters, such as the solvent molecule's permanent dipole moment and polarizability, thus avoiding approximations that are inherent in treating the solvent as a linear dielectric medium. A simple, analytical expression for the free energy is obtained in terms of the equilibrium and nonequilibrium electrostatic potential profiles and electric susceptibilities, which are obtained by solving a set of self-consistent equations. With no adjustable parameters, the DSCFT predicts activation energies and reorganization energies in good agreement with previous experiments and calculations for the electron transfer between metallic ions. Because the DSCFT is able to describe the properties of the solvent in the immediate vicinity of the charges, it is unnecessary to distinguish between the inner-sphere and outer-sphere solvent molecules in the calculation of the reorganization energy as in previous work. Furthermore, examining the nonequilibrium free energy surfaces of electron transfer, we find that the nonequilibrium free energy is well approximated by a double parabola for self-exchange reactions, but the curvature of the nonequilibrium free energy surface depends on the charges of the electron-transferring species, contrary to the prediction by the linear dielectric theory.

  19. A molecularly based theory for electron transfer reorganization energy

    SciTech Connect

    Zhuang, Bilin; Wang, Zhen-Gang

    2015-12-14

    Using field-theoretic techniques, we develop a molecularly based dipolar self-consistent-field theory (DSCFT) for charge solvation in pure solvents under equilibrium and nonequilibrium conditions and apply it to the reorganization energy of electron transfer reactions. The DSCFT uses a set of molecular parameters, such as the solvent molecule’s permanent dipole moment and polarizability, thus avoiding approximations that are inherent in treating the solvent as a linear dielectric medium. A simple, analytical expression for the free energy is obtained in terms of the equilibrium and nonequilibrium electrostatic potential profiles and electric susceptibilities, which are obtained by solving a set of self-consistent equations. With no adjustable parameters, the DSCFT predicts activation energies and reorganization energies in good agreement with previous experiments and calculations for the electron transfer between metallic ions. Because the DSCFT is able to describe the properties of the solvent in the immediate vicinity of the charges, it is unnecessary to distinguish between the inner-sphere and outer-sphere solvent molecules in the calculation of the reorganization energy as in previous work. Furthermore, examining the nonequilibrium free energy surfaces of electron transfer, we find that the nonequilibrium free energy is well approximated by a double parabola for self-exchange reactions, but the curvature of the nonequilibrium free energy surface depends on the charges of the electron-transferring species, contrary to the prediction by the linear dielectric theory.

  20. Dosimetry and Risk Assessment: Fundamental Concepts

    SciTech Connect

    Fisher, Darrell R.

    2005-12-29

    Radiation dosimetry is important for characterizing radiation exposures and for risk assessment. In a medical setting, dosimetry is important for evaluating the safety of administered radiopharmaceuticals and for planning the safe administration of therapeutic radionuclides. Environmental dosimetry helps establish the safety of radionuclide releases from electric power production and other human activities. Internal and external dosimetry help us understand the consequences of radiation exposure. The absorbed dose is the fundamental quantity in radiation dosimetry from which all other operational values in radiation protection are obtained. Equivalent dose to tissue and effective dose to the whole body are derivatives of absorbed dose and constructs of risk. Mathematical systems supported by computer software facilitate dose calculations and make it possible to estimate internal dose based on bioassay or other biokinetic data. Risk coefficients for radiation-induced cancer rely primarily on data from animal studies and long-term observations of the Hiroshima and Nagasaki bomb survivors. Low-dose research shows that mechanisms of radiation interactions with tissue are dose-dependent, but the resulting biological effects are not necessarily linear with absorbed dose. Thus, the analysis of radiation effects and associated risks must account for the influences of microscopic energy distributions at the cellular level, dose-rate, cellular repair of sub-lethal radiation damage, and modifying factors such as bystander effects, adaptive response, and genomic instability.

  1. An energy recovery electron linac-on-ring collider

    SciTech Connect

    Merminga, L.; Krafft, G.A.; Lebedev, V.A.; Ben-Zvi, I.

    2000-09-14

    We present the design of high-luminosity electron-proton/ion colliders in which the electrons are produced by an Energy Recovering Linac (ERL). Electron-proton/ion colliders with center of mass energies between 14 GeV and 100 GeV (protons) or 63 GeV/A (ions) and luminosities at the 10{sup 33}(per nucleon) level have been proposed recently as a means for studying hadronic structure. The linac-on-ring option presents significant advantages with respect to: (1) spin manipulations (2) reduction of the synchrotron radiation load in the detectors (3) a wide range of continuous energy variability. Rf power and beam dump considerations require that the electron linac recover the beam energy. Based on extrapolations from actual measurements and calculations, energy recovery is expected to be feasible at currents of a few hundred mA and multi-GeV energies. Luminosity projections for the linac-ring scenario based on fundamental limitations are presented. The feasibility of an energy recovery electron linac-on-proton ring collider is investigated and four conceptual point designs are shown corresponding to electron to proton energies of: 3 GeV on 15 GeV, 5 GeV on 50 GeV and 10 GeV on 250 GeV, and for gold ions with 100 GeV/A. The last two designs assume that the protons or ions are stored in the existing RHIC accelerator. Accelerator physics issues relevant to proton rings and energy recovery linacs are discussed and a list of required R and D for the realization of such a design is presented.

  2. Rotational And Rovibrational Energy Transfer In Electron Collisions With Molecules

    NASA Technical Reports Server (NTRS)

    Thuemmel, Helmar T.; Langhoff, Stephen R. (Technical Monitor)

    1995-01-01

    Air flows around a hypervelocity reentry vehicle undergo dissociation, rovibrational excitation and ionization. More specifically the air, initially 80% N2 and 20% O2, in the shock layer consists of species such as N, O, N2, O2, NO, N+, O+, N+, O+, NO+ and 2 free electrons. It was pointed out in multi temperature models'' that the temperature of the rotational energy modes and the gas-kinetic translational temperature are quickly equilibrated by a few collisions and rise rapidly to high temperatures as 50000K before falling off to equilibrium value of 10000K. Contrary, the electronic and vibrational temperatures state energy distributions remain low (less than 15000K) because of the slow equilibration. Electron vibrational energy transfer is thought to play a crucial role in such a ionizing flow regime since chemical reaction rates and dissociation depend strongly on the vibrational temperatures. Modeling of these flowfields in principle require the rovibrational excitation and de-excitation cross section data for average electron energies from threshold up to several eV (leV=11605.4 K). In this lecture we focus on theoretical description of rotational effects i.e. energy transfer of electrons to molecules such that the molecular rotational (vojo goes to voj) or vibrational and rotational (v(sub 0)j(sub 0) goes to vj) states are changed. Excitation and de-excitation of electronic states was discussed in a previous talk at this conference.

  3. A comparison between Rad-Hard Standard Float Zone (FZ) and Magnetic Czochralski (MCz) Silicon Diodes in Radiotherapy Electron Beams Dosimetry

    NASA Astrophysics Data System (ADS)

    dos Santos, T. C.; Gonçalves, J. A. C.; Vasques, M. M.; Tobias, C. C. B.; Neves-Junior, W. F. P.; Haddad, C. M. K.; Harkonen, J.

    2011-08-01

    In this work we present the preliminary results obtained with a comparison between rad-hard FZ and MCz silicon diodes as on-line clinical electron beams dosimeters. The dynamic current response of the diodes under irradiation with electron beams within the energy range of 6 MeV up to 21 MeV was investigated. For all energies, data show good instantaneous repeatability of the diodes, characterized by coefficients of variation better than 2.8% and 2.5% to FZ and MCz, respectively. The dose-response curves of both diodes are quite linear with charge sensitivities better than 0.55 μC/Gy and 0.68 μC/Gy to FZ and MCz devices. These results show that MCz diode is more sensitive than FZ diode.

  4. Technical basis for internal dosimetry at Hanford

    SciTech Connect

    Sula, M.J.; Carbaugh, E.H.; Bihl, D.E.

    1989-04-01

    The Hanford Internal Dosimetry Program, administered by Pacific Northwest Laboratory for the US Department of Energy, provides routine bioassay monitoring for employees who are potentially exposed to radionuclides in the workplace. This report presents the technical basis for routine bioassay monitoring and the assessment of internal dose at Hanford. The radionuclides of concern include tritium, corrosion products (/sup 58/Co, /sup 60/Co, /sup 54/Mn, and /sup 59/Fe), strontium, cesium, iodine, europium, uranium, plutonium, and americium. Sections on each of these radionuclides discuss the sources and characteristics; dosimetry; bioassay measurements and monitoring; dose measurement, assessment, and mitigation; and bioassay follow-up treatment. 64 refs., 42 figs., 118 tabs.

  5. Technical basis for internal dosimetry at Hanford

    SciTech Connect

    Sula, M.J.; Carbaugh, E.H.; Bihl, D.E.

    1991-07-01

    The Hanford Internal Dosimetry Program, administered by Pacific Northwest Laboratory for the US Department of Energy, provides routine bioassay monitoring for employees who are potentially exposed to radionuclides in the workplace. This report presents the technical basis for routine bioassay monitoring and the assessment of internal dose at Hanford. The radionuclides of concern include tritium, corrosion products ({sup 58}Co, {sup 60}Co, {sup 54}Mn, and {sup 59}Fe), strontium, cesium, iodine, europium, uranium, plutonium, and americium,. Sections on each of these radionuclides discuss the sources and characteristics; dosimetry; bioassay measurements and monitoring; dose measurement, assessment, and mitigation and bioassay follow-up treatment. 78 refs., 35 figs., 115 tabs.

  6. Electron energy can oscillate near a crystal dislocation

    NASA Astrophysics Data System (ADS)

    Li, Mingda; Cui, Wenping; Dresselhaus, Mildred S.; Chen, Gang

    2017-01-01

    Crystal dislocations govern the plastic mechanical properties of materials but also affect the electrical and optical properties. However, a fundamental and quantitative quantum field theory of a dislocation has remained undiscovered for decades. Here we present an exactly-solvable one-dimensional quantum field theory of a dislocation, for both edge and screw dislocations in an isotropic medium, by introducing a new quasiparticle which we have called the ‘dislon’. The electron-dislocation relaxation time can then be studied directly from the electron self-energy calculation, which is reducible to classical results. In addition, we predict that the electron energy will experience an oscillation pattern near a dislocation. Compared with the electron density’s Friedel oscillation, such an oscillation is intrinsically different since it exists even with only single electron is present. With our approach, the effect of dislocations on materials’ non-mechanical properties can be studied at a full quantum field theoretical level.

  7. Electronic effects in high-energy radiation damage in iron.

    PubMed

    Zarkadoula, E; Daraszewicz, S L; Duffy, D M; Seaton, M A; Todorov, I T; Nordlund, K; Dove, M T; Trachenko, K

    2014-02-26

    Electronic effects have been shown to be important in high-energy radiation damage processes where a high electronic temperature is expected, yet their effects are not currently understood. Here, we perform molecular dynamics simulations of high-energy collision cascades in α-iron using a coupled two-temperature molecular dynamics (2T-MD) model that incorporates both the effects of electronic stopping and electron-phonon interaction. We subsequently compare it with the model employing electronic stopping only, and find several interesting novel insights. The 2T-MD results in both decreased damage production in the thermal spike and faster relaxation of the damage at short times. Notably, the 2T-MD model gives a similar amount of final damage at longer times, which we interpret to be the result of two competing effects: a smaller amount of short-time damage and a shorter time available for damage recovery.

  8. High Energy Electron and Gamma - Ray Detection with ATIC

    NASA Technical Reports Server (NTRS)

    Chang, J.; Schmidt, W. K. H.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    The Advanced Thin Ionization Calorimeter (ATIC) balloon borne ionization calorimeter is well suited to record and identify high energy cosmic ray electrons, and at very high energies gamma-ray photons as well. We have simulated the performance of the instrument, and compare the simulations with actual high energy electron exposures at the CERN accelerator. Simulations and measurements do not compare exactly, in detail, but overall the simulations have predicted actual measured behavior quite well. ATIC has had its first 16 day balloon flight at the turn of the year over Antarctica, and first results obtained using the analysis methods derived from simulations and calibrations will be reported.

  9. Energy of auroral electrons and Z mode generation

    NASA Technical Reports Server (NTRS)

    Krauss-Varban, D.; Wong, H. K.

    1990-01-01

    The present consideration of Z-mode radiation generation, in light of observational results indicating that the O mode and second-harmonic X-mode emissions can prevail over the X-mode fundamental radiation when suprathermal electron energy is low, gives attention to whether the thermal effect on the Z-mode dispersion can be equally important, and whether the Z-mode can compete for the available free-energy source. It is found that, under suitable circumstances, the growth rate of the Z-mode can be substantial even for low suprathermal auroral electron energies. Growth is generally maximized for propagation perpendicular to the magnetic field.

  10. Excitation of phonons in medium-energy electron diffraction

    NASA Astrophysics Data System (ADS)

    Alvarez, M. A. Vicente; Ascolani, H.; Zampieri, G.

    1996-03-01

    The ``elastic'' backscattering of electrons from crystalline surfaces presents two regimes: a low-energy regime, in which the characteristic low-energy electron diffraction (LEED) pattern is observed, and a medium-energy regime, in which the diffraction pattern is similar to those observed in x-ray photoemission diffraction (XPD) and Auger electron diffraction (AED) experiments. We present a model for the electron scattering which, including the vibrational degrees of freedom of the crystal, contains both regimes and explains the passage from one regime to the other. Our model is based on a separation of the electron and atomic motions (adiabatic approximation) and on a cluster-type formulation of the multiple scattering of the electron. The inelastic scattering events (excitation and/or absorption of phonons) are treated as coherent processes and no break of the phase relation between the incident and the exit paths of the electron is assumed. The LEED and the medium-energy electron diffraction regimes appear naturally in this model as the limit cases of completely elastic scattering and of inelastic scattering with excitation and/or absorption of multiple phonons. Intensity patterns calculated with this model are in very good agreement with recent experiments of electron scattering on Cu(001) at low and medium energies. We show that there is a correspondence between the type of intensity pattern and the mean number of phonons excited and/or absorbed during the scattering: a LEED-like pattern is observed when this mean number is less than 2, LEED-like and XPD/AED-like features coexist when this number is 3-4, and a XPD/AED-like pattern is observed when this number is greater than 5-6.

  11. Czech results at criticality dosimetry intercomparison 2002.

    PubMed

    Frantisek, Spurný; Jaroslav, Trousil

    2004-01-01

    Two criticality dosimetry systems were tested by Czech participants during the intercomparison held in Valduc, France, June 2002. The first consisted of the thermoluminescent detectors (TLDs) (Al-P glasses) and Si-diodes as passive neutron dosemeters. Second, it was studied to what extent the individual dosemeters used in the Czech routine personal dosimetry service can give a reliable estimation of criticality accident exposure. It was found that the first system furnishes quite reliable estimation of accidental doses. For routine individual dosimetry system, no important problems were encountered in the case of photon dosemeters (TLDs, film badge). For etched track detectors in contact with the 232Th or 235U-Al alloy, the track density saturation for the spark counting method limits the upper dose at approximately 1 Gy for neutrons with the energy >1 MeV.

  12. Kinetic and electron-electron energies for convex sums of ground state densities with degeneracies and fractional electron number

    SciTech Connect

    Levy, Mel E-mail: mlevy@tulane.edu; Anderson, James S. M.; Zadeh, Farnaz Heidar; Ayers, Paul W. E-mail: mlevy@tulane.edu

    2014-05-14

    Properties of exact density functionals provide useful constraints for the development of new approximate functionals. This paper focuses on convex sums of ground-level densities. It is observed that the electronic kinetic energy of a convex sum of degenerate ground-level densities is equal to the convex sum of the kinetic energies of the individual degenerate densities. (The same type of relationship holds also for the electron-electron repulsion energy.) This extends a known property of the Levy-Valone Ensemble Constrained-Search and the Lieb Legendre-Transform refomulations of the Hohenberg-Kohn functional to the individual components of the functional. Moreover, we observe that the kinetic and electron-repulsion results also apply to densities with fractional electron number (even if there are no degeneracies), and we close with an analogous point-wise property involving the external potential. Examples where different degenerate states have different kinetic energy and electron-nuclear attraction energy are given; consequently, individual components of the ground state electronic energy can change abruptly when the molecular geometry changes. These discontinuities are predicted to be ubiquitous at conical intersections, complicating the development of universally applicable density-functional approximations.

  13. The electronic properties of potassium doped copper-phthalocyanine studied by electron energy-loss spectroscopy.

    PubMed

    Flatz, K; Grobosch, M; Knupfer, M

    2007-06-07

    The authors have studied the electronic structure of potassium doped copper-phthalocyanine using electron energy-loss spectroscopy. The evolution of the loss function indicates the formation of distinct KxCuPc phases. Taking into account the C1s and K2p core level excitations and recent results by Giovanelli et al. [J. Chem. Phys. 126, 044709 (2007)], they conclude that these are K2CuPc and K4CuPc. They discuss the changes in the electronic excitations upon doping on the basis of the molecular electronic levels and the presence of electronic correlations.

  14. High energy electron-positron experiments

    NASA Astrophysics Data System (ADS)

    Dong-Chul, Son

    We carried out e(+)e(-) experiments in two centers of mass energy regions: the AMY experiment in a 60 GeV region and the L 3 experiment in a 90 GeV region. The two experiments have both tested the Electroweak Standard model with high precision and measured the important coupling constants in QCD. The two-photon physics were also studied and new particles and related new physics were searched for. The results of AMY experiments includes those of measurements of hadronic production cross section, leptonic production cross sections, and their ratios, the forward-backward asymmetries of leptons and b-quarks and most of the data were consistent with the predictions of the Standard Model. The L 3 experiments, with the high resolution L 3 detector and many Z's recorded, have measured the mass and the widths of Z, the g(sub v) and g(sub A) of leptons, the forward-backward asymmetries of b-quarks, tau polarizations, and related the sin(sup 2)theta(sub W). They also tested the QCD and QED and searched for Higgs particles and other new particles in vain. But the L 3 observed a rather followed the L 3 searching for an unknown s-channel scalar boson but only obtained the limits on (2 J+1)(Gamma) x BR(gamma)(gamma).

  15. Energy spectrum of cosmic-ray electrons at TeV energies.

    PubMed

    Aharonian, F; Akhperjanian, A G; Barres de Almeida, U; Bazer-Bachi, A R; Becherini, Y; Behera, B; Benbow, W; Bernlöhr, K; Boisson, C; Bochow, A; Borrel, V; Braun, I; Brion, E; Brucker, J; Brun, P; Brucker, R; Bulik, T; Büsching, I; Boutelier, T; Carrigan, S; Chadwick, P M; Charbonnier, A; Chaves, R C G; Cheesebrough, A; Chounet, L M; Clapson, A C; Coignet, G; Costamante, L; Dalton, M; Degrange, B; Deil, C; Dickinson, H J; Djannati-Ataï, A; Domainko, W; Drury, L O'C; Dubois, F; Dubus, G; Dyks, J; Dyrda, M; Egberts, K; Emmanoulopoulos, D; Espigat, P; Farnier, C; Feinstein, F; Fiasson, A; Fontaine, G; Füsling, M; Gabici, S; Gallant, Y A; Gérard, L; Giebels, B; Glicenstein, J F; Glück, B; Goret, P; Hadjichristidis, C; Hauser, D; Hauser, M; Heinz, S; Heinzelmann, G; Henri, G; Hermann, G; Hinton, J A; Hoffmann, A; Hofmann, W; Holleran, M; Hoppe, S; Horns, D; Jacholkowska, A; de Jager, O C; Jung, I; Katarzyński, K; Kaufmann, S; Kendziorra, E; Kerschhaggl, M; Khangulyan, D; Khélifi, B; Keogh, D; Komin, Nu; Kosack, K; Lamanna, G; Lenain, J P; Lohse, T; Marandon, V; Martin, J M; Martineau-Huynh, O; Marcowith, A; Maurin, D; McComb, T J L; Medina, C; Moderski, R; Moulin, E; Naumann-Godo, M; de Naurois, M; Nedbal, D; Nekrassov, D; Niemiec, J; Nolan, S J; Ohm, S; Olive, J F; de Oña Wilhelmi, E; Orford, K J; Osborne, J L; Ostrowski, M; Panter, M; Pedaletti, G; Pelletier, G; Petrucci, P O; Pita, S; Pühlhofer, G; Punch, M; Quirrenbach, A; Raubenheimer, B C; Raue, M; Rayner, S M; Renaud, M; Rieger, F; Ripken, J; Rob, L; Rosier-Lees, S; Rowell, G; Rudak, B; Rulten, C B; Ruppel, J; Sahakian, V; Santangelo, A; Schlickeiser, R; Schöck, F M; Schröder, R; Schwanke, U; Schwarzburg, S; Schwemmer, S; Shalchi, A; Skilton, J L; Sol, H; Spangler, D; Stawarz, Ł; Steenkamp, R; Stegmann, C; Superina, G; Tam, P H; Tavernet, J P; Terrier, R; Tibolla, O; van Eldik, C; Vasileiadis, G; Venter, C; Vialle, J P; Vincent, P; Vivier, M; Völk, H J; Volpe, F; Wagner, S J; Ward, M; Zdziarski, A A; Zech, A

    2008-12-31

    The very large collection area of ground-based gamma-ray telescopes gives them a substantial advantage over balloon or satellite based instruments in the detection of very-high-energy (>600 GeV) cosmic-ray electrons. Here we present the electron spectrum derived from data taken with the High Energy Stereoscopic System (H.E.S.S.) of imaging atmospheric Cherenkov telescopes. In this measurement, the first of this type, we are able to extend the measurement of the electron spectrum beyond the range accessible to direct measurements. We find evidence for a substantial steepening in the energy spectrum above 600 GeV compared to lower energies.

  16. Energy Spectrum of Cosmic-Ray Electrons at TeV Energies

    SciTech Connect

    Aharonian, F.; Akhperjanian, A. G.; Sahakian, V.; Barres de Almeida, U.; Chadwick, P. M.; Cheesebrough, A.; Dickinson, H. J.; Hadjichristidis, C.; Keogh, D.; McComb, T. J. L.; Nolan, S. J.; Orford, K. J.; Osborne, J. L.; Rayner, S. M.; Rulten, C. B.; Spangler, D.; Ward, M.; Bazer-Bachi, A. R.; Borrel, V.; Olive, J-F.

    2008-12-31

    The very large collection area of ground-based {gamma}-ray telescopes gives them a substantial advantage over balloon or satellite based instruments in the detection of very-high-energy (>600 GeV) cosmic-ray electrons. Here we present the electron spectrum derived from data taken with the High Energy Stereoscopic System (H.E.S.S.) of imaging atmospheric Cherenkov telescopes. In this measurement, the first of this type, we are able to extend the measurement of the electron spectrum beyond the range accessible to direct measurements. We find evidence for a substantial steepening in the energy spectrum above 600 GeV compared to lower energies.

  17. Electron energy transport in the solar wind: Ulysses observations

    NASA Technical Reports Server (NTRS)

    Scime, Earl; Gary, S. Peter; Phillips, J. L.; Corniileau-Wehrlin, N.; Solomon, J.

    1995-01-01

    The electron heat flux in the solar wind has been measured by the Ulysses solar wind plasma experiment in the ecliptic from 1 to 5 AU and out of the ecliptic during the recently completed pass over the solar south pole and the ongoing pass over the solar north pole. Although the electron heat flux contains only a fraction of the kinetic energy of the solar wind. the available energy is sufficient to account for the non-adiabatic expansion of the solar wind electrons. The Ulysses measurements indicate that the electron heat flux is actively dissipated in the solar wind. The exact mechanism or mechanisms is unknown. but a model based on the whistler heat flux instability predicts radial gradients for the electron heat flux in good agreement with the data. We will present measurements of the correlation between wave activity measured by the unified radio and plasma experiment (URAP) and the electron heat flux throughout the Ulysses mission. The goal is to determine if whistler waves are a good candidate for the observed electron heat flux dissipation. The latitudinal gradients of the electron heat flux. wave activity. and electron pressure will be discussed in light of the changes in the magnetic field geometry from equator to poles.

  18. Diamond detector in absorbed dose measurements in high-energy linear accelerator photon and electron beams.

    PubMed

    Ravichandran, Ramamoorthy; Binukumar, John Pichy; Al Amri, Iqbal; Davis, Cheriyathmanjiyil Antony

    2016-03-08

    Diamond detectors (DD) are preferred in small field dosimetry of radiation beams because of small dose profile penumbras, better spatial resolution, and tissue-equivalent properties. We investigated a commercially available 'microdiamond' detector in realizing absorbed dose from first principles. A microdiamond detector, type TM 60019 with tandem electrometer is used to measure absorbed doses in water, nylon, and PMMA phantoms. With sensitive volume 0.004 mm3, radius 1.1mm, thickness 1 x10(-3) mm, the nominal response is 1 nC/Gy. It is assumed that the diamond detector could collect total electric charge (nC) developed during irradiation at 0 V bias. We found that dose rate effect is less than 0.7% for changing dose rate by 500 MU/min. The reproducibility in obtaining readings with diamond detector is found to be ± 0.17% (1 SD) (n = 11). The measured absorbed doses for 6 MV and 15 MV photons arrived at using mass energy absorption coefficients and stop-ping power ratios compared well with Nd, water calibrated ion chamber measured absorbed doses within 3% in water, PMMA, and nylon media. The calibration factor obtained for diamond detector confirmed response variation is due to sensitivity due to difference in manufacturing process. For electron beams, we had to apply ratio of electron densities of water to carbon. Our results qualify diamond dosimeter as a transfer standard, based on long-term stability and reproducibility. Based on micro-dimensions, we recommend these detectors for pretreatment dose verifications in small field irradiations like stereotactic treatments with image guidance.

  19. Effect of the electron energy distribution on total energy loss with argon in inductively coupled plasmas

    SciTech Connect

    Kim, June Young; Kim, Young-Cheol; Kim, Yu-Sin; Chung, Chin-Wook

    2015-01-15

    The total energy lost per electron-ion pair lost ε{sub T} is investigated with the electron energy distribution function (EEDF). The EEDFs are measured at various argon powers in RF inductively coupled plasma, and the EEDFs show a depleted distribution (a discontinuity occurring at the minimum argon excitation threshold energy level) with the bulk temperature and the tail temperature. The total energy loss per electron-ion pair lost ε{sub T} is calculated from a power balance model with the Maxwellian EEDFs and the depleted EEDFs and then compared with the measured ε{sub T} from the floating probe. It is concluded that the small population of the depleted high energy electrons dramatically increases the collisional energy loss, and the calculated ε{sub T} from the depleted EEDFs has a value that is similar to the measured ε{sub T}.

  20. Communication: Investigation of the electron momentum density distribution of nanodiamonds by electron energy-loss spectroscopy

    SciTech Connect

    Feng, Zhenbao; Yang, Bing; Lin, Yangming; Su, Dangsheng

    2015-12-07

    The electron momentum distribution of detonation nanodiamonds (DND) was investigated by recording electron energy-loss spectra at large momentum transfer in the transmission electron microscope (TEM), which is known as electron Compton scattering from solid (ECOSS). Compton profile of diamond film obtained by ECOSS was found in good agreement with prior photon experimental measurement and theoretical calculation that for bulk diamond. Compared to the diamond film, the valence Compton profile of DND was found to be narrower, which indicates a more delocalization of the ground-state charge density for the latter. Combining with other TEM characterizations such as high-resolution transmission electron spectroscopy, diffraction, and energy dispersive X-ray spectroscopy measurements, ECOSS was shown to be a great potential technique to study ground-state electronic properties of nanomaterials.

  1. Permethrin Exposure Dosimetry: Biomarkers and Modifiable Factors

    DTIC Science & Technology

    2016-08-01

    the effect of body weight/BMI and total energy expenditure on permethrin absorption and dose, as determined by measurement of urinary biomarkers...Data collection for Study 2 is in progress. 15. SUBJECT TERMS Permethrin, biomarkers, military, dose, exposure dosimetry, military, energy expenditure...body weight/BMI and total energy expenditure on permethrin absorption and dose, as determined by measurement of urinary biomarkers (3PBA and cis- and

  2. Improving the neutron-to-photon discrimination capability of detectors used for neutron dosimetry in high energy photon beam radiotherapy.

    PubMed

    Irazola, L; Terrón, J A; Bedogni, R; Pola, A; Lorenzoli, M; Sánchez-Nieto, B; Gómez, F; Sánchez-Doblado, F

    2016-09-01

    The increasing interest of the medical community to radioinduced second malignancies due to photoneutrons in patients undergoing high-energy radiotherapy, has stimulated in recent years the study of peripheral doses, including the development of some dedicated active detectors. Although these devices are designed to respond to neutrons only, their parasitic photon response is usually not identically zero and anisotropic. The impact of these facts on measurement accuracy can be important, especially in points close to the photon field-edge. A simple method to estimate the photon contribution to detector readings is to cover it with a thermal neutron absorber with reduced secondary photon emission, such as a borated rubber. This technique was applied to the TNRD (Thermal Neutron Rate Detector), recently validated for thermal neutron measurements in high-energy photon radiotherapy. The positive results, together with the accessibility of the method, encourage its application to other detectors and different clinical scenarios.

  3. Electron beam directed energy device and methods of using same

    DOEpatents

    Retsky, Michael W.

    2007-10-16

    A method and apparatus is disclosed for an electron beam directed energy device. The device consists of an electron gun with one or more electron beams. The device includes one or more accelerating plates with holes aligned for beam passage. The plates may be flat or preferably shaped to direct each electron beam to exit the electron gun at a predetermined orientation. In one preferred application, the device is located in outer space with individual beams that are directed to focus at a distant target to be used to impact and destroy missiles. The aimings of the separate beams are designed to overcome Coulomb repulsion. A method is also presented for directing the beams to a target considering the variable terrestrial magnetic field. In another preferred application, the electron beam is directed into the ground to produce a subsurface x-ray source to locate and/or destroy buried or otherwise hidden objects including explosive devices.

  4. Total electron scattering cross section of Fluorocarbons at intermediate electron energies

    NASA Astrophysics Data System (ADS)

    Palihawadana, Prasanga; Villela, Gilberto; Ariyasinghe, Wickramasinghe

    2008-10-01

    Total electron scattering cross sections (TCS) of Tetrafluoromethane (CF4), Trifluoromethane (CHF3), Hexafluoroethane (C2F6) and Octafluorocyclobutane (C4F8) have been measured using the linear transmission technique for impact energies 0.10 -- 4.00 keV. These TCS are compared to existing experimental and theoretical TCS in the literature. Based on the present measurements, an empirical formula is developed to predict the TCS of fluorocarbons as a function of incident electron energy.

  5. SCALING PARAMETERS FOR HOT-PARTICLE BETA DOSIMETRY.

    PubMed

    Mangini, Colby D; Hamby, David M

    2016-12-01

    Scaling of dose-point kernel (DPK) values for beta particles transmitted by high-Z sources will overestimate dose at shallow depths while underestimating dose at greater depths due to spectral hardening. A new model has been developed based on a determination of the amount of monoenergetic electron absorption that occurs in a given source thickness through the use of EGSnrc (Electron Gamma Shower) Monte Carlo simulations. Integration over a particular beta spectrum provides the beta-particle DPK following self-absorption as a function of source thickness and radial depth in water, thereby accounting for spectral hardening that may occur in higher-Z materials. Beta spectra of varying spectral shapes and endpoint energies were used to test the model for select source materials with 7.42 ≤ Z ≤ 94. The results demonstrate that significant improvements can be made to DPK-based dosimetry models when dealing with high-Z volumetric sources. This new scaling model is currently being used to improve the accuracy of the beta-dosimetry calculations in VARSKIN 5.

  6. Energy Spectrum of Nonthermal Electrons Accelerated at a Plane Shock

    NASA Astrophysics Data System (ADS)

    Kang, Hyesung

    2011-04-01

    We calculate the energy spectra of cosmic ray (CR) protons and electrons at a plane shock with quasi-parallel magnetic fields,using time-dependent, diffusive shock acceleration (DSA) simulations,including energy losses via synchrotron emission and Inverse Compton (IC) scattering. A thermal leakage injection model and a Bohm type diffusion coefficient are adopted. The electron spectrum at the shock becomes steady after the DSA energy gains balance the synchrotron/IC losses, and it cuts off at the equilibrium momentum p_{eq}.In the postshock region the cutoff momentum of the electron spectrum decreases with the distance from the shock due to the energy losses and the thickness of the spatial distribution of electrons scales as p^{-1}. Thus the slope of the downstream integrated spectrum steepens by one power of p for p_{br}electron spectrum exhibit a concave curvature and deviate from the canonical test-particle power-law, and the upstream integrated electron spectrum could dominate over the downstream integrated spectrum near the cutoff momentum. Thus the spectral shape near the cutoff of X-ray synchrotron emission could reveal a signature of nonlinear DSA.

  7. Tantalum surface oxidation: Bond relaxation, energy entrapment, and electron polarization

    NASA Astrophysics Data System (ADS)

    Guo, Yongling; Bo, Maolin; Wang, Yan; Liu, Yonghui; Sun, Chang Q.; Huang, Yongli

    2017-02-01

    A combination of photoelectron spectrometric analysis and density functional theory calculations has enabled reconciliation of the bond-energy-electron relaxation for the Ta(100, 110, 111) surfaces chemisorbed with oxygen at different coverages. Results show that increasing oxygen coverage lowers the adsorption energy associated with lattice reconstruction. Valence electrons transfer from Ta surface atoms to oxygen to create four excessive DOS features in terms of Osbnd Ta bonding, lone pairs of oxygen, Ta+ electron holes, and polarized Ta dipoles. Oxidation proceeds in the following dynamics: oxygen gets electrons from two neighboring Ta atoms left behind Ta+; the sp3-orbital hybridization takes place with additional two electron lone pairs, the lone pairs polarize the other two Ta neighbors becoming dipoles. X-ray photoelectron spectral analysis results in the 4f binding energy of an isolated Ta atom and its shift upon bond formation and oxidation. Exercises provide not only a promising numerical approach for the quantitative information about the bond and electronic behavior but also consistent insight into the electronic dynamics of metal oxidation.

  8. Energy Extraction from the Electron Beam in a Free Electron Laser Resonator Gaussian Mode.

    DTIC Science & Technology

    1983-01-01

    Elias, Juan Gallardo and Peter Goldstein N00014-80-C-0308 S. PF OR -ING ORGANIZATION NAME AND ADDRESS I . PROGRAM ELEMt.T PROJECT, TASK * ,’ niwxrsity...Elias, Juan Gallardo , Peter Goldstein Quantum Institue, University of California Santa Barbara, California 93106 ABSTRACT We present preliminary...QUANTUM INSTITUTE FREE ELECTRON LASER PROJECT Energy Extraction fran the Electron Beam in a Free Electron Laser Resonator Gaussian Mode Luis Elias, Juan

  9. Detectors for low energy electron cooling in RHIC

    SciTech Connect

    Carlier, F. S.

    2016-02-15

    Low energy operation of RHIC is of particular interest to study the location of a possible critical point in the QCD phase diagram. The performance of RHIC at energies equal to or lower than 10 GV/nucleon is limited by nonlinearities, Intra-BeamScattering (IBS) processes and space-charge effects. To successfully address the luminosity and ion store lifetime limitations imposed by IBS the method of electron cooling has been envisaged. During electron cooling processes electrons are injected along with the ion beam at the nominal ion bunch velocities. The velocity spread of the ion beam is reduced in all planes through Coulomb interactions between the cold electron beam and the ion beam. The electron cooling system proposed for RHIC will be the first of its kind to use bunched beams for the delivery of the electron bunches, and will therefore be accompanied by the necessary challenges. The designed electron cooler will be located in IP2. The electron bunches will be accelerated by a linac before being injected along side the ion beams. Thirty consecutive electron bunches will be injected to overlap with a single ion bunch. They will first cool the yellow beam before being extracted turned by 180-degrees and reinjected into the blue beam for cooling. As such, both the yellow and blue beams will be cooled by the same ion bunches. This will pose considerable challenges to ensure proper electron beam quality to cool the second ion beam. Furthermore, no ondulator will be used in the electron cooler so radiative recombination between the ions and the electrons will occur.

  10. Low Energy Electrons in the Mars Plasma Environment

    NASA Technical Reports Server (NTRS)

    Link, Richard

    2001-01-01

    The ionosphere of Mars is rather poorly understood. The only direct measurements were performed by the Viking 1 and 2 landers in 1976, both of which carried a Retarding Potential Analyzer. The RPA was designed to measure ion properties during the descent, although electron fluxes were estimated from changes in the ion currents. Using these derived low-energy electron fluxes, Mantas and Hanson studied the photoelectron and the solar wind electron interactions with the atmosphere and ionosphere of Mars. Unanswered questions remain regarding the origin of the low-energy electron fluxes in the vicinity of the Mars plasma boundary. Crider, in an analysis of Mars Global Surveyor Magnetometer/Electron Reflectometer measurements, has attributed the formation of the magnetic pile-up boundary to electron impact ionization of exospheric neutral species by solar wind electrons. However, the role of photoelectrons escaping from the lower ionosphere was not determined. In the proposed work, we will examine the role of solar wind and ionospheric photoelectrons in producing ionization in the upper ionosphere of Mars. Low-energy (< 4 keV) electrons will be modeled using the two-stream electron transport code of Link. The code models both external (solar wind) and internal (photoelectron) sources of ionization, and accounts for Auger electron production. The code will be used to analyze Mars Global Surveyor measurements of solar wind and photoelectrons down to altitudes below 200 km in the Mars ionosphere, in order to determine the relative roles of solar wind and escaping photoelectrons in maintaining plasma densities in the region of the Mars plasma boundary.

  11. The CERN-EU high-energy reference field (CERF) facility for dosimetry at commercial flight altitudes and in space.

    PubMed

    Mitaroff, A; Cern, M Silari

    2002-01-01

    A reference facility for the calibration and intercomparison of active and passive detectors in broad neutron fields has been available at CERN since 1992. A positively charged hadron beam (a mixture of protons and pions) with momentum of 120 GeV/c hits a copper target, 50 cm thick and 7 cm in diameter. The secondary particles produced in the interaction traverse a shield, at 90 degrees with respect to the direction of the incoming beam. made of either 80 to 160 cm of concrete or 40 cm of iron. Behind the iron shield, the resulting neutron spectrum has a maximum at about 1 MeV, with an additional high-energy component. Behind the 80 cm concrete shield, the neutron spectrum has a second pronounced maximum at about 70 MeV and resembles the high-energy component of the radiation field created by cosmic rays at commercial flight altitudes. This paper describes the facility, reports on the latest neutron spectral measurements, gives an overview of the most important experiments performed by the various collaborating institutions over recent years and briefly addresses the possible application of the facility to measurements related to the space programme.

  12. Sustainably powering wearable electronics solely by biomechanical energy

    PubMed Central

    Wang, Jie; Li, Shengming; Yi, Fang; Zi, Yunlong; Lin, Jun; Wang, Xiaofeng; Xu, Youlong; Wang, Zhong Lin

    2016-01-01

    Harvesting biomechanical energy is an important route for providing electricity to sustainably drive wearable electronics, which currently still use batteries and therefore need to be charged or replaced/disposed frequently. Here we report an approach that can continuously power wearable electronics only by human motion, realized through a triboelectric nanogenerator (TENG) with optimized materials and structural design. Fabricated by elastomeric materials and a helix inner electrode sticking on a tube with the dielectric layer and outer electrode, the TENG has desirable features including flexibility, stretchability, isotropy, weavability, water-resistance and a high surface charge density of 250 μC m−2. With only the energy extracted from walking or jogging by the TENG that is built in outsoles, wearable electronics such as an electronic watch and fitness tracker can be immediately and continuously powered. PMID:27677971

  13. Radiation damage in zircon by high-energy electron beams

    SciTech Connect

    Jiang Nan; Spence, John C. H.

    2009-06-15

    Radiation damage induced by high-energy (200 keV) electron irradiation in zircon has been studied thoroughly using imaging, diffraction, and electron energy-loss spectroscopy techniques in transmission electron microscopy. Both structural and compositional changes during the damage were measured using the above techniques in real time. It was found that the damage was mainly caused by the preferential sputtering of O. The loss of O occurred initially within small sporadic regions with dimension of several nanometers, resulting in the direct transformation of zircon into Zr{sub x}Si{sub y}. These isolated patches gradually connect each other and eventually cover the whole area of the electron beam. These differ from the previous observations either in the self-irradiated natural and synthetic zircon or in ion-beam irradiated thin zircon specimen.

  14. Optical and electronic properties of some semiconductors from energy gaps

    NASA Astrophysics Data System (ADS)

    Tripathy, Sunil K.; Pattanaik, Anup

    2016-03-01

    II-VI and III-V tetrahedral semiconductors have significant potential for novel optoelectronic applications. In the present work, some of the optical and electronic properties of these groups of semiconductors have been studied using a recently proposed empirical relationship for refractive index from energy gap. The calculated values of these properties are also compared with those calculated from some well known relationships. From an analysis of the calculated electronic polarisability of these tetrahedral binary semiconductors from different formulations, we have proposed an empirical relation for its calculation. The predicted values of electronic polarisability of these semiconductors agree fairly well with the known values over a wide range of energy gap. The proposed empirical relation has also been used to calculate the electronic polarisability of some ternary compounds.

  15. Sustainably powering wearable electronics solely by biomechanical energy.

    PubMed

    Wang, Jie; Li, Shengming; Yi, Fang; Zi, Yunlong; Lin, Jun; Wang, Xiaofeng; Xu, Youlong; Wang, Zhong Lin

    2016-09-28

    Harvesting biomechanical energy is an important route for providing electricity to sustainably drive wearable electronics, which currently still use batteries and therefore need to be charged or replaced/disposed frequently. Here we report an approach that can continuously power wearable electronics only by human motion, realized through a triboelectric nanogenerator (TENG) with optimized materials and structural design. Fabricated by elastomeric materials and a helix inner electrode sticking on a tube with the dielectric layer and outer electrode, the TENG has desirable features including flexibility, stretchability, isotropy, weavability, water-resistance and a high surface charge density of 250 μC m(-2). With only the energy extracted from walking or jogging by the TENG that is built in outsoles, wearable electronics such as an electronic watch and fitness tracker can be immediately and continuously powered.

  16. Steering continuum electron dynamics by low-energy attosecond streaking

    NASA Astrophysics Data System (ADS)

    Geng, Ji-Wei; Xiong, Wei-Hao; Xiao, Xiang-Ru; Gong, Qihuang; Peng, Liang-You

    2016-08-01

    A semiclassical model is developed to understand the electronic dynamics in the low-energy attosecond streaking. Under a relatively strong infrared (IR) pulse, the low-energy part of photoelectrons initialized by a single attosecond pulse (SAP) can either rescatter with the ionic core and induce interferences structures in the momentum spectra of the ionized electrons or be recaptured into the Rydberg states. The Coulomb potential plays essential roles in both the electron rescattering and recapturing processes. We find that by changing the time delay between the SAP and the IR pulse, the photoelectrons yield or the population of the Rydberg states can be effectively controlled. The present study demonstrates a fascinating way to steer the electron motion in the continuum.

  17. Inelastic low energy electron diffraction at metal surfaces

    NASA Astrophysics Data System (ADS)

    Nazarov, V. U.; Nishigaki, S.

    2001-06-01

    The role of incident electrons penetration under a metal surface in electron energy loss spectroscopy is considered within the fully quantum-mechanical approach. The stabilized jellium model of the surface in the semi-infinite geometry and the time-dependent local density approximation for the dynamical response are used. The travel of the projectile electron inside the target metal is treated within the kinematic low energy electron diffraction theory. Confirming our simplified hard-wall reflection model results [Phys. Rev. B 59 (1999) 9866], the dramatic enhancement of the multipole plasmon peak as compared with the dipole-mode calculations is obtained for Na and Cs, which is in a qualitative agreement with the experiment. However, for K the calculation fails to explain the experiment, which discrepancy is discussed and the future improvements of the method are outlined.

  18. Sustainably powering wearable electronics solely by biomechanical energy

    NASA Astrophysics Data System (ADS)

    Wang, Jie; Li, Shengming; Yi, Fang; Zi, Yunlong; Lin, Jun; Wang, Xiaofeng; Xu, Youlong; Wang, Zhong Lin

    2016-09-01

    Harvesting biomechanical energy is an important route for providing electricity to sustainably drive wearable electronics, which currently still use batteries and therefore need to be charged or replaced/disposed frequently. Here we report an approach that can continuously power wearable electronics only by human motion, realized through a triboelectric nanogenerator (TENG) with optimized materials and structural design. Fabricated by elastomeric materials and a helix inner electrode sticking on a tube with the dielectric layer and outer electrode, the TENG has desirable features including flexibility, stretchability, isotropy, weavability, water-resistance and a high surface charge density of 250 μC m-2. With only the energy extracted from walking or jogging by the TENG that is built in outsoles, wearable electronics such as an electronic watch and fitness tracker can be immediately and continuously powered.

  19. Data Acquisition System for Electron Energy Loss Coincident Spectrometers

    NASA Astrophysics Data System (ADS)

    Zhang, Chi; Yu, Xiaoqi; Yang, Tao

    2005-12-01

    A Data Acquisition System (DAQ) for electron energy loss coincident spectrometers (EELCS) has been developed. The system is composed of a Multiplex Time-Digital Converter (TDC) that measures the flying time of positive and negative ions and a one-dimension position-sensitive detector that records the energy loss of scattering electrons. The experimental data are buffered in a first-in-first-out (FIFO) memory module, then transferred from the FIFO memory to PC by the USB interface. The DAQ system can record the flying time of several ions in one collision, and allows of different data collection modes. The system has been demonstrated at the Electron Energy Loss Coincident Spectrometers at the Laboratory of Atomic and Molecular Physics, USTC. A detail description of the whole system is given and experimental results shown.

  20. Flexible Nanogenerators for Energy Harvesting and Self-Powered Electronics.

    PubMed

    Fan, Feng Ru; Tang, Wei; Wang, Zhong Lin

    2016-06-01

    Flexible nanogenerators that efficiently convert mechanical energy into electrical energy have been extensively studied because of their great potential for driving low-power personal electronics and self-powered sensors. Integration of flexibility and stretchability to nanogenerator has important research significance that enables applications in flexible/stretchable electronics, organic optoelectronics, and wearable electronics. Progress in nanogenerators for mechanical energy harvesting is reviewed, mainly including two key technologies: flexible piezoelectric nanogenerators (PENGs) and flexible triboelectric nanogenerators (TENGs). By means of material classification, various approaches of PENGs based on ZnO nanowires, lead zirconate titanate (PZT), poly(vinylidene fluoride) (PVDF), 2D materials, and composite materials are introduced. For flexible TENG, its structural designs and factors determining its output performance are discussed, as well as its integration, fabrication and applications. The latest representative achievements regarding the hybrid nanogenerator are also summarized. Finally, some perspectives and challenges in this field are discussed.

  1. The Role of Resonant Vibrations in Electronic Energy Transfer

    PubMed Central

    Somsen, Oscar J. G.; Novoderezhkin, Vladimir I.; Mančal, Tomáš; van Grondelle, Rienk

    2016-01-01

    Abstract Nuclear vibrations play a prominent role in the spectroscopy and dynamics of electronic systems. As recent experimental and theoretical studies suggest, this may be even more so when vibrational frequencies are resonant with transitions between the electronic states. Herein, a vibronic multilevel Redfield model is reported for excitonically coupled electronic two‐level systems with a few explicitly included vibrational modes and interacting with a phonon bath. With numerical simulations the effects of the quantized vibrations on the dynamics of energy transfer and coherence in a model dimer are illustrated. The resonance between the vibrational frequency and energy gap between the sites leads to a large delocalization of vibronic states, which then results in faster energy transfer and longer‐lived mixed coherences. PMID:26910485

  2. Energy- and Activity-Dependent Loss Timescales for Inner Magnetospheric keV-Energy Electrons

    NASA Astrophysics Data System (ADS)

    Liemohn, M. W.

    2011-12-01

    The Hot Electron and Ion Drift Integrator (HEIDI) inner magnetospheric drift physics model has recently been modified to include keV-energy electron scattering rates by VLF chorus and hiss waves, thus allowing for the calculation of the electron phase space distribution in the inner magnetosphere and electron precipitation to the upper atmosphere. Comparisons of calculated electron fluxes are made with low-Earth orbit electron precipitation data and dayside electron measurements to validate the scattering implementation procedure. The energy-dependent scattering rate coefficients are adjusted to take into account geomagnetic activity and plasmapause location, providing a scattering rate that best matches the simulations to the observed electron fluxes. In addition, the electron ring current intensities and spatio-temporal evolution are compared against simulation results for the hot ion species. While the electron total energy content is typically 10 times smaller than the ion total energy content in the inner magnetosphere, it can be significantly higher than this during the late main phase of magnetic storms.

  3. Probing battery chemistry with liquid cell electron energy loss spectroscopy

    DOE PAGES

    Unocic, Raymond R.; Baggetto, Loic; Veith, Gabriel M.; ...

    2015-01-01

    Electron energy loss spectroscopy (EELS) was used to determine the chemistry and oxidation state of LiMn2O4 and Li4Ti5O12 thin film battery electrodes in liquid cells for in situ scanning/transmission electron microscopy (S/TEM). Using the L2,3 white line intensity ratio method we determine the oxidation state of Mn and Ti in a liquid electrolyte solvent and discuss experimental parameters that influence measurement sensitivity.

  4. Theoretical interpretation of electron energy-loss spectroscopic images

    DOE PAGES

    Allen, L. J.; D'Alfonso, Adrian J.; Findlay, Scott D.; ...

    2008-04-10

    In this paper, we discuss the theory of electron energy-loss spectroscopic images in scanning transmission electron microscopy. Three case studies are presented which have as common themes issues of inelastic scattering, coherence and image interpretation. The first is a state-by-state inelastic transitions analysis of a spectroscopic image which does not admit direct visual interpretation. The second compares theory and experiment for two-dimensional mapping. Finally, the third considers imaging in three dimensions via depth sectioning.

  5. Development of a continuous broad-energy-spectrum electron source

    NASA Technical Reports Server (NTRS)

    Adamo, R. C.; Nanevicz, J. E.

    1985-01-01

    The development of a practical prototype, large-area, continuous-spectrum, multienergy electron source to simulate the lower energy (approx = 1 to 30 keV) portion of the geosynchronous orbit electron environment was investigated. The results of future materials-charging tests using this multienergy source should significantly improve the understanding of actual in-orbit charging processes and should help to resolve some of the descrepancies between predicted and observed spacecraft materials performance.

  6. Superconductor digital electronics: Scalability and energy efficiency issues (Review Article)

    NASA Astrophysics Data System (ADS)

    Tolpygo, Sergey K.

    2016-05-01

    Superconductor digital electronics using Josephson junctions as ultrafast switches and magnetic-flux encoding of information was proposed over 30 years ago as a sub-terahertz clock frequency alternative to semiconductor electronics based on complementary metal-oxide-semiconductor (CMOS) transistors. Recently, interest in developing superconductor electronics has been renewed due to a search for energy saving solutions in applications related to high-performance computing. The current state of superconductor electronics and fabrication processes are reviewed in order to evaluate whether this electronics is scalable to a very large scale integration (VLSI) required to achieve computation complexities comparable to CMOS processors. A fully planarized process at MIT Lincoln Laboratory, perhaps the most advanced process developed so far for superconductor electronics, is used as an example. The process has nine superconducting layers: eight Nb wiring layers with the minimum feature size of 350 nm, and a thin superconducting layer for making compact high-kinetic-inductance bias inductors. All circuit layers are fully planarized using chemical mechanical planarization (CMP) of SiO2 interlayer dielectric. The physical limitations imposed on the circuit density by Josephson junctions, circuit inductors, shunt and bias resistors, etc., are discussed. Energy dissipation in superconducting circuits is also reviewed in order to estimate whether this technology, which requires cryogenic refrigeration, can be energy efficient. Fabrication process development required for increasing the density of superconductor digital circuits by a factor of ten and achieving densities above 107 Josephson junctions per cm2 is described.

  7. Application of optical instrumentations to reactor dosimetry for material irradiation study

    SciTech Connect

    Shikama, T.; Nagata, S.; Tsuchiya, B.; Zhao, M.; Katsui, H.; Narui, M.

    2011-07-01

    Optical dosimetry, utilizing the radioluminescence, the Cerenkov radiation, and the radiation induced optical absorption, has attractive features. However, it has a serious setback, namely, the optical signal changes in the course of irradiation and complicated calibration would be needed. Also, the intensity of radioluminescence would depend complicatedly on energy and kind of incident ions and quanta. Here, optical dosimetry, which could measure the electronic excitation dose rate, the atomic displacement, and the thermal neutron flux, separately and in-situ, is proposed, by analyzing behaviors of radioluminescence peaks in the fused silica (SiO{sub 2}), the chromium doped alumina (Al{sub 2}O{sub 3}-Cr{sub 2}O{sub 3}) and the Li{sub 2}ZrO{sub 3}). (authors)

  8. Diffraction of electrons at intermediate energies: The role of phonons

    SciTech Connect

    Ascolani, H.; Zampieri, G.

    1996-07-01

    The intensity of electrons reflected {open_quote}{open_quote}elastically{close_quote}{close_quote} from crystalline surfaces presents two regimes: the low-energy or LEED regime ({lt}500 eV), in which the electrons are reflected along the Bragg directions, and the intermediate-energy or XPD/AED regime ({gt}500 eV), in which the maxima of intensity are along the main crystallographic axes. We present a model which explains this transition in terms of the excitation/absorption of phonons during the scattering. {copyright} {ital 1996 American Institute of Physics.}

  9. Role of the kinematics of probing electrons in electron energy-loss spectroscopy of solid surfaces

    NASA Astrophysics Data System (ADS)

    Nazarov, V. U.; Silkin, V. M.; Krasovskii, E. E.

    2016-01-01

    Inelastic scattering of electrons incident on a solid surface is determined by two properties: (i) electronic response of the target system and (ii) the detailed quantum-mechanical motion of the projectile electron inside and in the vicinity of the target. We emphasize the equal importance of the second ingredient, pointing out the fundamental limitations of the conventionally used theoretical description of the electron energy-loss spectroscopy (EELS) in terms of the "energy-loss functions." Our approach encompasses the dipole and impact scattering as specific cases, with the emphasis on the quantum-mechanical treatment of the probe electron. Applied to the high-resolution EELS of Ag surface, our theory largely agrees with recent experiments, while some instructive exceptions are rationalized.

  10. Free electron lasers for transmission of energy in space

    NASA Technical Reports Server (NTRS)

    Segall, S. B.; Hiddleston, H. R.; Catella, G. C.

    1981-01-01

    A one-dimensional resonant-particle model of a free electron laser (FEL) is used to calculate laser gain and conversion efficiency of electron energy to photon energy. The optical beam profile for a resonant optical cavity is included in the model as an axial variation of laser intensity. The electron beam profile is matched to the optical beam profile and modeled as an axial variation of current density. Effective energy spread due to beam emittance is included. Accelerators appropriate for a space-based FEL oscillator are reviewed. Constraints on the concentric optical resonator and on systems required for space operation are described. An example is given of a space-based FEL that would produce 1.7 MW of average output power at 0.5 micrometer wavelength with over 50% conversion efficiency of electrical energy to laser energy. It would utilize a 10 m-long amplifier centered in a 200 m-long optical cavity. A 3-amp, 65 meV electrostatic accelerator would provide the electron beam and recover the beam after it passes through the amplifier. Three to five shuttle flights would be needed to place the laser in orbit.

  11. Electron-Proton and High Energy Telescopes for Solar Orbiter

    NASA Astrophysics Data System (ADS)

    Kulkarni, Shrinivasrao R.; Grunau, Jan; Boden, Sebastian; Steinhagen, Jan; Martin, Cesar; Wimmer-Schweingruber, Robert F.; Boettcher, Stephan; Rodríguez-Pacheco, Javier; Seimetz, Lars; Schuster, Bjoern; Kulemzin, Alexander; Wetzel, Moritz; Ravanbakhsh, Ali

    2013-04-01

    The Energetic Particle Detector (EPD) suite for ESA's Solar Orbiter will provide key measurements to address particle acceleration at and near the Sun. The EPD suite consists of five sensors (STEIN, SIS, EPT, LET and HET). The University of Kiel in Germany is responsible for the design, development, and build of EPT and HET which are presented here. The Electron Proton Telescope (EPT) is designed to cleanly separate and measure electrons in the energy range from 20 - 400 keV and protons from 20 - 7000 keV. The Solar Orbiter EPT electron measurements from 20 - 400 keV will cover the gap with some overlap between suprathermal electrons measured by STEIN and high energy electrons measured by HET. The proton measurements from 20 -7000 keV will cover the gap between STEIN and LET. The Electron and Proton Telescope relies on the magnet/foil-technique. The High-Energy Telescope (HET) on ESA's Solar Orbiter mission, will measure electrons from 300 keV up to about 30 MeV, protons from 10 -100 MeV, and heavy ions from ~20 to 200 MeV/nuc. Thus, HET covers the energy range which is of specific interest for studies of the space environment and will perform the measurements needed to understand the origin of high-energy events at the Sun which occasionally accelerate particles to such high energies that they can penetrate the Earth's atmosphere and be measured at ground level (ground-level events). These measurement capabilities are reached by a combination of solid-state detectors and a scintillator calorimeter which allows use of the dE/dx vs. total E technique for particle identification and energy measurement. The upper limits on energy listed above refer to particles (ions) stopping in the scintillator and careful modeling of HET properties will allow discrimination of forward/backward penetrating particles in a wider energy range. Here we present the current development status of EPT-HET units focusing on the test and calibration results obtained with the demonstration

  12. Strong shock generation by fast electron energy deposition

    SciTech Connect

    Fox, T. E.; Pasley, J.; Robinson, A. P. L.

    2013-12-15

    It has been suggested that fast electrons may play a beneficial role in the formation of the ignitor shock in shock ignition owing to the high areal density of the fuel at the time of the ignitor pulse. In this paper, we extend previous studies which have focused on monoenergetic electron sources to populations with extended energy distributions. In good agreement with analytic scalings, we show that strong shocks can be produced with peak pressures of a few hundred Mbar to over 1 Gbar using fast electron intensities of 1–10 PW/cm{sup 2} in a uniform deuterium-tritium plasma at 10 g/cm{sup 3}. However, the length required for shock formation increases with fast electron temperature. As this shock formation distance becomes comparable to the target size, the shock is not able to fully develop, and this implies a limit on the ability of fast electrons to aid shock formation.

  13. Enhancement of fast electron energy deposition by external magnetic fields

    NASA Astrophysics Data System (ADS)

    Honrubia, J. J.; Murakami, M.; Mima, K.; Johzaki, T.; Sunahara, A.; Nagatomo, H.; Fujioka, S.; Shiraga, H.; Azechi, H.

    2016-03-01

    Recently, generation of external magnetic fields of a few kT has been reported [Fujioka et al. Scientific Reports 2013 3 1170]. These fields can be used in fast ignition to mitigate the large fast electron divergence. In this summary, two fast ignition applications are briefly outlined. The first one deals with electron guiding by external B-fields applied at the end of the shell implosion of a re-entrant cone target. Preliminary results show that the B-field strength at the time of peak ρR may be sufficiently high for fast electron guiding. The second application deals with guiding of fast electrons in magnetized wires surrounded by plasma. Results show a significant enhancement of electron energy deposition at the end of the wire, which is particularly important for low-Z wires.

  14. Comparison of CREME (cosmic-ray effects on microelectronics) model LET (linear energy transfer) spaceflight dosimetry data

    SciTech Connect

    Letaw, J.R.; Adams, J.H.

    1986-07-15

    The galactic cosmic radiation (GCR) component of space radiation is the dominant cause of single-event phenomena in microelectronic circuits when Earth's magnetic shielding is low. Spaceflights outside the magnetosphere and in high inclination orbits are examples of such circumstances. In high-inclination orbits, low-energy (high LET) particles are transmitted through the field only at extreme latitudes, but can dominate the orbit-averaged dose. GCR is an important part of the radiation dose to astronauts under the same conditions. As a test of the CREME environmental model and particle transport codes used to estimate single event upsets, we have compiled existing measurements of HZE doses were compiled where GCR is expected to be important: Apollo 16 and 17, Skylab, Apollo Soyuz Test Project, and Kosmos 782. The LET spectra, due to direct ionization from GCR, for each of these missions has been estimated. The resulting comparisons with data validate the CREME model predictions of high-LET galactic cosmic-ray fluxes to within a factor of two. Some systematic differences between the model and data are identified.

  15. Electron attachment to oxygen clusters studied with high energy resolution

    NASA Astrophysics Data System (ADS)

    Matejcik, S.; Stampfli, P.; Stamatovic, A.; Scheier, P.; Märk, T. D.

    1999-08-01

    Highly monochromatized electrons (with energy distributions of less than 30 meV FWHM) are used in a crossed beam experiments to investigate electron attachment to oxygen clusters (O2)n at electron energies from approximately zero eV up to several eV. At energies close to zero the attachment cross section for the reaction (O2)n+e→(O2)m- (for m=1, 2, and 3) rises strongly with decreasing electron energy compatible with s-wave electron capture to (O2)n. Peaks in the oxygen attachment cross sections present at higher energies (≈80 meV, 193 meV, 302 meV) can be ascribed to vibrational levels of the anion populated by attachment of an electron to a single oxygen molecule within the target cluster via a direct Franck-Condon transition from the ground vibrational state v=0 to a vibrational excited state v'=7,8,9,… of the anion produced. The vibrational structures observed here for the first time can be quantitatively accounted for by model calculations using a microscopic model to examine the attachment of an electron to an oxygen molecule inside a cluster. This involves (i) molecular dynamics simulations to calculate the structure of neutral clusters prior to the attachment process and (ii) calculation of the solvation energy of an oxygen anion in the cluster from the electrostatic polarization of the molecules of the cluster. The occurrence of this polarization energy at the surface of larger clusters explains the appearance of an s-wave capturing cross section at 0 eV and the slightly smaller spacings (compared to the monomer case) between the peaks at finite energy, as observed experimentally. The relative transition probabilities from the ground state of the neutral oxygen molecule to the different vibrational levels of the anion are obtained by calculating the corresponding Franck-Condon factors thereby resulting in a reasonable theoretical fit to the observed yields of negatively charged oxygen molecules and clusters.

  16. Inverse electron energy dispersion from moving auroral forms

    NASA Astrophysics Data System (ADS)

    Cameron, Taylor; Knudsen, David

    2016-12-01

    Numerous published examples of energy-dispersed bursts show electron energies reaching as high as several keV and decaying to lower energies over a fraction of 1 s. This signature has been interpreted by some authors as due to impulsive acceleration to a broad range of energies in a localized region and by others as the result of impulsive, dispersive Alfvén waves, in which case the acceleration takes place over an extended distance along magnetic field lines. A survey by the Suprathermal (0-350 eV) Electron Imager on the Enhanced Polar Outflow Probe (ePOP) in the topside ionosphere has produced examples of high-to-low ("regular") energy dispersion, but also a smaller number of examples exhibiting low-to-high ("inverse") dispersion, which to our knowledge has not been reported before. Motivated by a recent report of regular electron dispersion produced by auroral rays moving faster than the E × B drift speed, we investigate a heuristic model of electron acceleration within a region of uniform electric field parallel to B which extends a distance La along magnetic field lines. We show that in addition to a broad range of energies, this model produces inverse dispersion when the detector is less than La beneath the bottom of the acceleration region and regular dispersion for detector distances larger than La. This simple model is meant to inform future efforts to construct a more physical model of suprathermal electron acceleration within moving auroral forms and suggests that inverse dispersion indicates relative proximity to an altitude-extended acceleration region.

  17. Proposal for an x-ray free electron laser oscillator with intermediate energy electron beam.

    PubMed

    Dai, Jinhua; Deng, Haixiao; Dai, Zhimin

    2012-01-20

    Harmonic lasing of low-gain free electron laser oscillators has been experimentally demonstrated in the terahertz and infrared regions. Recently, the low-gain oscillator has been reconsidered as a promising candidate for hard x-ray free electron lasers, through the use of high reflectivity, high-resolution x-ray crystals. In this Letter, it is proposed to utilize a crystal-based cavity resonant at a higher harmonic of the undulator radiation, together with phase shifting, to enable harmonic lasing of the x-ray free electron laser oscillator, and hence allow the generation of hard x-ray radiation at a reduced electron beam energy. Results show that fully coherent free electron laser radiation with megawatt peak power, in the spectral region of 10-25 keV, can be generated with a 3.5 GeV electron beam.

  18. Energy conversion mechanism for electron perpendicular energy in high guide-field reconnection

    NASA Astrophysics Data System (ADS)

    Guo, X.; Horiuchi, R.; Cheng, C. Z.; Kaminou, Y.; Ono, Y.

    2017-03-01

    The energy conversion mechanism for electron perpendicular energy, both the thermal and the kinetic energies, is investigated by means of two-dimensional, full-particle simulations in an open system. It is shown that electron perpendicular heating is mainly due to the breaking of magnetic moment conservation in separatrix region because the charge separation generates intense variation of electric field within the several electron Larmor radii. Meanwhile, electron perpendicular acceleration takes place mainly due to the polarization drift term as well as the curvature drift term of E .u⊥ in the downstream near the X-point. The enhanced electric field due to the charge separation there results in a significant effect of the polarization drift term on the dissipation of magnetic energy within the ion inertia length in the downstream.

  19. Energy Conversion Mechanism for Electron Perpendicular Energy in High Guide-Field Reconnection

    NASA Astrophysics Data System (ADS)

    Guo, Xuehan; Horiuchi, Ritoku; Kaminou, Yasuhiro; Cheng, Frank; Ono, Yasushi

    2016-10-01

    The energy conversion mechanism for electron perpendicular energy, both the thermal and the kinetic energy, is investigated by means of two-dimensional, full-particle simulations in an open system. It is shown that electron perpendicular heating is mainly due to the breaking of magnetic moment conservation in separatrix region because the charge separation generates intense variation of electric field within the electron Larmor radius. Meanwhile, electron perpendicular acceleration takes place manly due to the polarization drift term as well as the curvature drift term of E . u⊥ in the downstream near the X-point. The enhanced electric field due to the charge separation there results in a significant effect of the polarization drift term on the dissipation of magnetic energy within the ion inertia length in the downstream. Japan Society for the Promotion of Science (JSPS) Fellows 15J03758.

  20. In vitro dosimetry of agglomerates

    NASA Astrophysics Data System (ADS)

    Hirsch, V.; Kinnear, C.; Rodriguez-Lorenzo, L.; Monnier, C. A.; Rothen-Rutishauser, B.; Balog, S.; Petri-Fink, A.

    2014-06-01

    Agglomeration of nanoparticles in biological fluids is a pervasive phenomenon that leads to difficulty in the interpretation of results from in vitro exposure, primarily due to differing particokinetics of agglomerates to nanoparticles. Therefore, well-defined small agglomerates were designed that possessed different particokinetic profiles, and their cellular uptake was compared to a computational model of dosimetry. The approach used here paves the way for a better understanding of the impact of agglomeration on the nanoparticle-cell interaction.Agglomeration of nanoparticles in biological fluids is a pervasive phenomenon that leads to difficulty in the interpretation of results from in vitro exposure, primarily due to differing particokinetics of agglomerates to nanoparticles. Therefore, well-defined small agglomerates were designed that possessed different particokinetic profiles, and their cellular uptake was compared to a computational model of dosimetry. The approach used here paves the way for a better understanding of the impact of agglomeration on the nanoparticle-cell interaction. Electronic supplementary information (ESI) available: ITC data for tiopronin/Au-NP interactions, agglomeration kinetics at different pHs for tiopronin-coated Au-NPs, UV-Vis spectra in water, PBS and DMEM and temporal correlation functions for single Au-NPs and corresponding agglomerates, calculation of diffusion and sedimentation parameters, modelling of relative cell uptake based on the ISDD model and cytotoxicity of single Au-NPs and their agglomerates, and synthesis and cell uptake of large spherical Au-NPs. See DOI: 10.1039/c4nr00460d

  1. Applications of Cherenkov Light Emission for Dosimetry in Radiation Therapy

    NASA Astrophysics Data System (ADS)

    Glaser, Adam Kenneth

    Since its discovery in the 1930's, the Cherenkov effect has been paramount in the development of high-energy physics research. It results in light emission from charged particles traveling faster than the local speed of light in a dielectric medium. The ability of this emitted light to describe a charged particle's trajectory, energy, velocity, and mass has allowed scientists to study subatomic particles, detect neutrinos, and explore the properties of interstellar matter. However, only recently has the phenomenon been considered in the practical context of medical physics and radiation therapy dosimetry, where Cherenkov light is induced by clinical x-ray photon, electron, and proton beams. To investigate the relationship between this phenomenon and dose deposition, a Monte Carlo plug-in was developed within the Geant4 architecture for medically-oriented simulations (GAMOS) to simulate radiation-induced optical emission in biological media. Using this simulation framework, it was determined that Cherenkov light emission may be well suited for radiation dosimetry of clinically used x-ray photon beams. To advance this application, several novel techniques were implemented to realize the maximum potential of the signal, such as time-gating for maximizing the signal to noise ratio (SNR) and Cherenkov-excited fluorescence for generating isotropic light release in water. Proof of concept experiments were conducted in water tanks to demonstrate the feasibility of the proposed method for two-dimensional (2D) projection imaging, three-dimensional (3D) parallel beam tomography, large field of view 3D cone beam tomography, and video-rate dynamic imaging of treatment plans for a number of common radiotherapy applications. The proposed dosimetry method was found to have a number of unique advantages, including but not limited to its non-invasive nature, water-equivalence, speed, high-resolution, ability to provide full 3D data, and potential to yield data in-vivo. Based on

  2. Study of Intrabeam Scattering in Low Energy Electron Rings

    SciTech Connect

    Venturini, Marco

    2002-08-08

    The paper contains a study of intrabeam scattering in a low energy electron storage ring to be used as part of a Compton back-scattering x-ray source. We discuss time evolution of emittance and dependence of IBS growth rates on lattice parameters.

  3. One particularity of energy-angular secondary electrons spectrum

    NASA Astrophysics Data System (ADS)

    Borisov, S. S.; Zaitsev, S. I.

    2006-05-01

    In this work we discuss the problems of the energy-angular spectrum of backscattered and true secondary electrons simulation using the discrete (DLA) and the continuous (CLA) loss approximations. The presence of an angular spectrum artefact - the deviation from the sinusoidal distribution over the range of 177-18O° from the beam direction is shown.

  4. Electronic correlation in magnetic contributions to structural energies

    NASA Astrophysics Data System (ADS)

    Haydock, Roger

    For interacting electrons the density of transitions [see http://arxiv.org/abs/1405.2288] replaces the density of states in calculations of structural energies. Extending previous work on paramagnetic metals, this approach is applied to correlation effects on the structural stability of magnetic transition metals. Supported by the H. V. Snyder Gift to the University of Oregon.

  5. Characterization of radiation belt electron energy spectra from CRRES observations

    NASA Astrophysics Data System (ADS)

    Johnston, W. R.; Lindstrom, C. D.; Ginet, G. P.

    2010-12-01

    Energetic electrons in the outer radiation belt and the slot region exhibit a wide variety of energy spectral forms, more so than radiation belt protons. We characterize the spatial and temporal dependence of these forms using observations from the CRRES satellite Medium Electron Sensor A (MEA) and High-Energy Electron Fluxmeter (HEEF) instruments, together covering an energy range 0.15-8 MeV. Spectra were classified with two independent methods, data clustering and curve-fitting analyses, in each case defining categories represented by power law, exponential, and bump-on-tail (BOT) or other complex shapes. Both methods yielded similar results, with BOT, exponential, and power law spectra respectively dominating in the slot region, outer belt, and regions just beyond the outer belt. The transition from exponential to power law spectra occurs at higher L for lower magnetic latitude. The location of the transition from exponential to BOT spectra is highly correlated with the location of the plasmapause. In the slot region during the days following storm events, electron spectra were observed to evolve from exponential to BOT yielding differential flux minima at 350-650 keV and maxima at 1.5-2 MeV; such evolution has been attributed to energy-dependent losses from scattering by whistler hiss.

  6. An Energy Recovery Electron Linac On Ring Collider

    SciTech Connect

    Nikolitsa Merminga; Geoffrey Krafft; Valeri Lebedev; Ilan Ben-Zvi

    2001-09-01

    Electron-proton/ion colliders with center of mass energies between 14 GeV and 100 GeV (protons) or 63 GeV/A (ions) and luminosities at the 10{sup 33} (per nucleon) level have been proposed recently as a means for studying hadronic structure. Electron beam polarization appears to be crucial for many of the experiments. Two accelerator design scenarios have been examined in detail: colliding rings and recirculating linac-on-ring. Although the linac-on-ring scenario is not as well developed as the ring-ring scenario, comparable luminosities appear feasible. The linac-on-ring option presents significant advantages with respect to: (1) spin manipulations; (2) reduction of the synchrotron radiation load in the detectors; (3) a wide range of continuous energy variability. Rf power and beam dump considerations require that the electron linac recover the beam energy. This technology has been demonstrated at Jefferson Lab's IR FEL with cw current up to 5 mA and beam energy up to 50 MeV. Based on extrapolations from actual measurements and calculations, energy recovery is expected to be feasible at higher currents (a few hundred mA) and higher energies (a few GeV) as well. The report begins with a brief overview of Jefferson Lab's experience with energy recovery and summarize its benefits. Luminosity projections for the linac-ring scenario based on fundamental limitations are presented next. The feasibility of an energy recovery electron linac-on-proton ring collider is investigated and four conceptual point designs are shown corresponding to electron to proton energies of: 3 GeV on 15 GeV, 5 GeV on 50 GeV and 10 GeV on 250 GeV, and for gold ions with 100 GeV/A. The last two designs assume that the protons or ions are stored in the existing RHIC accelerator. Accelerator physics issues relevant to proton rings and energy recovery linacs are discussed next and a list of required R and D for the realization of such a design is presented.

  7. Resonant vibrational excitation of CO by low-energy electrons

    SciTech Connect

    Poparic, G. B.; Belic, D. S.; Vicic, M. D.

    2006-06-15

    Electron impact vibrational excitation of the CO molecule, via the {sup 2}{pi} resonance, in the 0-4 eV energy region has been investigated. The energy dependence of the resonant excitation of the first ten vibrational levels, v=1 to v=10, has been measured by use of a crossed-beams double trochoidal electron spectrometer. Obtained relative differential cross sections are normalized to the absolute values. Integral cross sections are determined by using our recent results on scattered electrons angular distributions, which demonstrate clear p-partial wave character of this resonance. Substructures appear in the {sup 2}{pi} resonant excitation of the CO molecule which have not been previously observed.

  8. Origins of the low energy relativistic interplanetary electrons

    NASA Technical Reports Server (NTRS)

    Eraker, J. H.; Simpson, J. A.

    1981-01-01

    Electron measurements in the energy range 2-25 MeV on the Pioneer 10 spacecraft are studied from 1 to 21.5 AU. It is found that in this radial range, interplanetary low energy electron fluxes are of Jovian origin, based on the decreasing electron intensity from about 6 to 21.5 AU, a negative gradient from about 11 to 21.5 AU, and the constant spectral index observed from 1 to 21.5 AU. The upper limit of the galactic flux is estimated at 12 MeV and standard assumptions are applied to solar modulation. It is found that at 1 AU, the expected flux of galactic origin is a factor 300 or more below the observed quiet time flux, and the extrapolated interstellar flux level is consistent with estimates based on galactic diffuse radio and gamma-ray emissions.

  9. Low-energy dissociative electron attachment to CF2

    NASA Astrophysics Data System (ADS)

    Chourou, S. T.; Larson, Ã.; Orel, A. E.

    2015-08-01

    We present the results of a theoretical study of dissociative electron attachment (DEA) of low-energy electrons to CF2. We carried out electron scattering calculations using the complex Kohn variational method at the static-exchange and relaxed self-consistent field (SCF) level at the equilibrium geometry and compare our differential cross sections to other results. We then repeated these calculations as a function of the three internal degrees of freedom to obtain the resonance energy surfaces and autoionization widths. We use this data as input to form the Hamiltonian relevant to the nuclear dynamics. The multidimensional wave equation is solved using the multiconfiguration time-dependent Hartree (MCTDH) approach within the local approximation.

  10. Electronic effects in high-energy radiation damage in tungsten

    DOE PAGES

    Zarkadoula, Eva; Duffy, Dorothy M.; Nordlund, Kai; ...

    2015-01-01

    Even though the effects of the electronic excitations during high-energy radiation damage processes are not currently understood, it is shown that their role in the interaction of radiation with matter is important. We perform molecular dynamics simulations of high-energy collision cascades in bcc-tungsten using the coupled two-temperature molecular dynamics (2T-MD) model that incorporates both the effects of electronic stopping and electron–phonon interaction. We compare the combination of these effects on the induced damage with only the effect of electronic stopping, and conclude in several novel insights. In the 2T-MD model, the electron–phonon coupling results in less damage production in themore » molten region and in faster relaxation of the damage at short times. We show these two effects lead to a significantly smaller amount of the final damage at longer times.« less

  11. Electronic effects in high-energy radiation damage in tungsten

    SciTech Connect

    Zarkadoula, Eva; Duffy, Dorothy M.; Nordlund, Kai; Seaton, M. A.; Todorov, I. T.; Weber, William J.; Trachenko, Kostya

    2015-01-01

    Even though the effects of the electronic excitations during high-energy radiation damage processes are not currently understood, it is shown that their role in the interaction of radiation with matter is important. We perform molecular dynamics simulations of high-energy collision cascades in bcc-tungsten using the coupled two-temperature molecular dynamics (2T-MD) model that incorporates both the effects of electronic stopping and electron–phonon interaction. We compare the combination of these effects on the induced damage with only the effect of electronic stopping, and conclude in several novel insights. In the 2T-MD model, the electron–phonon coupling results in less damage production in the molten region and in faster relaxation of the damage at short times. We show these two effects lead to a significantly smaller amount of the final damage at longer times.

  12. Energy exchange in strongly coupled plasmas with electron drift

    SciTech Connect

    Akbari-Moghanjoughi, M.; Ghorbanalilu, M.

    2015-11-15

    In this paper, the generalized viscoelastic collisional quantum hydrodynamic model is employed in order to investigate the linear dielectric response of a quantum plasma in the presence of strong electron-beam plasma interactions. The generalized Chandrasekhar's relativistic degeneracy pressure together with the electron-exchange and Coulomb interaction effects are taken into account in order to extend current research to a wide range of plasma number density relevant to big planetary cores and astrophysical compact objects. The previously calculated shear viscosity and the electron-ion collision frequencies are used for strongly coupled ion fluid. The effect of the electron-beam velocity on complex linear dielectric function is found to be profound. This effect is clearly interpreted in terms of the wave-particle interactions and their energy-exchange according to the sign of the imaginary dielectric function, which is closely related to the wave attenuation coefficient in plasmas. Such kinetic effect is also shown to be in close connection with the stopping power of a charged-particle beam in a quantum plasma. The effect of many independent plasma parameters, such as the ion charge-state, electron beam-velocity, and relativistic degeneracy, is shown to be significant on the growing/damping of plasma instability or energy loss/gain of the electron-beam.

  13. Reactor Dosimetry State of the Art 2008

    NASA Astrophysics Data System (ADS)

    Voorbraak, Wim; Debarberis, Luigi; D'Hondt, Pierre; Wagemans, Jan

    2009-08-01

    data, damage correlations. Two-dimensional mapping of the calculated fission power for the full-size fuel plate experiment irradiated in the advanced test reactor / G. S. Chang and M. A. Lillo. The radiation safety information computational center: a resource for reactor dosimetry software and nuclear data / B. L. Kirk. Irradiated xenon isotopic ratio measurement for failed fuel detection and location in fast reactor / C. Ito, T. Iguchi and H. Harano. Characterization of dosimetry of the BMRR horizontal thimble tubes and broad beam facility / J.-P. Hu, R. N. Reciniello and N. E. Holden. 2007 nuclear data review / N. E. Holden. Further dosimetry studies at the Rhode Island nuclear science / R. N. Reciniello ... [et al.]. Characterization of neutron fields in the experimental fast reactor Joyo MK-III core / S. Maeda ... [et al.]. Measuring [symbol]Li(n, t) and [symbol]B(n, [symbol]) cross sections using the NIST alpha-gamma apparatus / M. S. Dewey ... [et al.]. Improvement of neutron/gamma field evaluation for restart of JMTR / Y. Nagao ... [et al.]. Monitoring of the irradiated neutron fluence in the neutron transmutation doping process of HANARO / M.-S. Kim and S.-J. Park.Training reactor VR-l neutron spectrum determination / M. Vins, A. Kolros and K. Katovsky. Differential cross sections for gamma-ray production by 14 MeV neutrons on iron and bismuth / V. M. Bondar ... [et al.]. The measurements of the differential elastic neutron cross-sections of carbon for energies from 2 to 133 ke V / O. Gritzay ... [et al.]. Determination of neutron spectrum by the dosimetry foil method up to 35 Me V / S. P. Simakov ... [et al.]. Extension of the BGL broad group cross section library / D. Kirilova, S. Belousov and Kr. Ilieva. Measurements of neutron capture cross-section for tantalum at the neutron filtered beams / O. Gritzayand V. Libman. Measurements of microscopic data at GELINA in support of dosimetry / S. Kopecky ... [et al.]. Nuclide guide and international chart of

  14. Effects of energy spectrum on dose distribution calculations for high energy electron beams.

    PubMed

    Toutaoui, Abdelkader; Khelassi-Toutaoui, Nadia; Brahimi, Zakia; Chami, Ahmed Chafik

    2009-01-01

    In an early work we have demonstrated the possibility of using Monte Carlo generated pencil beams for 3D electron beam dose calculations. However, in this model the electron beam was considered as monoenergetic and the effects of the energy spectrum were taken into account by correction factors, derived from measuring central-axis depth dose curves. In the present model, the electron beam is considered as polyenergetic and the pencil beam distribution of a clinical electron beam, of a given nominal energy, is represented as a linear combination of Monte Carlo monoenergetic pencil beams. The coefficients of the linear combination describe the energy spectrum of the clinical electron beam, and are chosen to provide the best-fit between the calculated and measured central axis depth dose, in water. The energy spectrum is determined by the constrained least square method. The angular distribution of the clinical electron beam is determined by in-air penumbra measurements. The predictions of this algorithm agree very well with the measurements in the region near the surface, and the discrepancies between the measured and calculated dose distributions, behind 3D heterogeneities, are reduced to less than 10%. We have demonstrated a new algorithm for 3D electron beam dose calculations, which takes into account the energy spectra. Results indicate that the use of this algorithm leads to a better modeling of dose distributions downstream, from complex heterogeneities.

  15. Effects of energy spectrum on dose distribution calculations for high energy electron beams

    PubMed Central

    Toutaoui, Abdelkader; Khelassi-Toutaoui, Nadia; Brahimi, Zakia; Chami, Ahmed Chafik

    2009-01-01

    In an early work we have demonstrated the possibility of using Monte Carlo generated pencil beams for 3D electron beam dose calculations. However, in this model the electron beam was considered as monoenergetic and the effects of the energy spectrum were taken into account by correction factors, derived from measuring central-axis depth dose curves. In the present model, the electron beam is considered as polyenergetic and the pencil beam distribution of a clinical electron beam, of a given nominal energy, is represented as a linear combination of Monte Carlo monoenergetic pencil beams. The coefficients of the linear combination describe the energy spectrum of the clinical electron beam, and are chosen to provide the best-fit between the calculated and measured central axis depth dose, in water. The energy spectrum is determined by the constrained least square method. The angular distribution of the clinical electron beam is determined by in-air penumbra measurements. The predictions of this algorithm agree very well with the measurements in the region near the surface, and the discrepancies between the measured and calculated dose distributions, behind 3D heterogeneities, are reduced to less than 10%. We have demonstrated a new algorithm for 3D electron beam dose calculations, which takes into account the energy spectra. Results indicate that the use of this algorithm leads to a better modeling of dose distributions downstream, from complex heterogeneities. PMID:20126560

  16. Curing Composite Materials Using Lower-Energy Electron Beams

    NASA Technical Reports Server (NTRS)

    Byrne, Catherine A.; Bykanov, Alexander

    2004-01-01

    In an improved method of fabricating composite-material structures by laying up prepreg tapes (tapes of fiber reinforcement impregnated by uncured matrix materials) and then curing them, one cures the layups by use of beams of electrons having kinetic energies in the range of 200 to 300 keV. In contrast, in a prior method, one used electron beams characterized by kinetic energies up to 20 MeV. The improved method was first suggested by an Italian group in 1993, but had not been demonstrated until recently. With respect to both the prior method and the present improved method, the impetus for the use of electron- beam curing is a desire to avoid the high costs of autoclaves large enough to effect thermal curing of large composite-material structures. Unfortunately, in the prior method, the advantages of electron-beam curing are offset by the need for special walls and ceilings on curing chambers to shield personnel from x rays generated by impacts of energetic electrons. These shields must be thick [typically 2 to 3 ft (about 0.6 to 0.9 m) if made of concrete] and are therefore expensive. They also make it difficult to bring large structures into and out of the curing chambers. Currently, all major companies that fabricate composite-material spacecraft and aircraft structures form their layups by use of automated tape placement (ATP) machines. In the present improved method, an electron-beam gun is attached to an ATP head and used to irradiate the tape as it is pressed onto the workpiece. The electron kinetic energy between 200 and 300 keV is sufficient for penetration of the ply being laid plus one or two of the plies underneath it. Provided that the electron-beam gun is properly positioned, it is possible to administer the required electron dose and, at the same time, to protect personnel with less shielding than is needed in the prior method. Adequate shielding can be provided by concrete walls 6 ft (approximately equal to 1.8 m) high and 16 in. (approximately

  17. Secondary electron emission in the limit of low incident electron energies

    NASA Astrophysics Data System (ADS)

    Mustafaev, Aleksandr; Kaganovich, Igor; Soukhomlinov, Vladimir; Grabovskiy, Artiom

    2016-09-01

    A detailed review of experimental and theoretical studies of secondary electron emission (SEE) at low incident electron energies has been recently given in paper. In particularly, discussion of some authors' statement on increase of the SEE yield up to unity if the primary electron energy tends to zero was reviewed. Present paper considers a technique for measurements of SEE yield near a sample surface making use of a magnetic field parallel to the surface. Using this technique it was shown that the SEE yield can approach unity for a polycrystalline, but not for a monocrystalline sample. This result was explained by additional reflection of primary electrons from a potential barrier near the sample surface. Therefore for suppression of the deleterious effects of SEE, e.g, for better performance of accelerators, it is important to monitor and control micro electric-fields arising near a polycrystalline surface.

  18. Hanford External Dosimetry Technical Basis Manual PNL-MA-842

    SciTech Connect

    Rathbone, Bruce A.

    2009-08-28

    The Hanford External Dosimetry Technical Basis Manual PNL-MA-842 documents the design and implementation of the external dosimetry system used at Hanford. The manual describes the dosimeter design, processing protocols, dose calculation methodology, radiation fields encountered, dosimeter response characteristics, limitations of dosimeter design under field conditions, and makes recommendations for effective use of the dosimeters in the field. The manual describes the technical basis for the dosimetry system in a manner intended to help ensure defensibility of the dose of record at Hanford and to demonstrate compliance with 10 CFR 835, DOELAP, DOE-RL, ORP, PNSO, and Hanford contractor requirements. The dosimetry system is operated by PNNL’s Hanford External Dosimetry Program (HEDP) which provides dosimetry services to all Hanford contractors. The primary users of this manual are DOE and DOE contractors at Hanford using the dosimetry services of PNNL. Development and maintenance of this manual is funded directly by DOE and DOE contractors. Its contents have been reviewed and approved by DOE and DOE contractors at Hanford through the Hanford Personnel Dosimetry Advisory Committee (HPDAC) which is chartered and chaired by DOE-RL and serves as means of coordinating dosimetry practices across contractors at Hanford. This manual was established in 1996. Since inception, it has been revised many times and maintained by PNNL as a controlled document with controlled distribution. The first revision to be released through PNNL’s Electronic Records & Information Capture Architecture (ERICA) database was designated Revision 0. Revision numbers that are whole numbers reflect major revisions typically involving changes to all chapters in the document. Revision numbers that include a decimal fraction reflect minor revisions, usually restricted to selected chapters or selected pages in the document.

  19. Plasma jet braking: energy dissipation and nonadiabatic electrons.

    PubMed

    Khotyaintsev, Yu V; Cully, C M; Vaivads, A; André, M; Owen, C J

    2011-04-22

    We report in situ observations by the Cluster spacecraft of wave-particle interactions in a magnetic flux pileup region created by a magnetic reconnection outflow jet in Earth's magnetotail. Two distinct regions of wave activity are identified: lower-hybrid drift waves at the front edge and whistler-mode waves inside the pileup region. The whistler-mode waves are locally generated by the electron temperature anisotropy, and provide evidence for ongoing betatron energization caused by magnetic flux pileup. The whistler-mode waves cause fast pitch-angle scattering of electrons and isotropization of the electron distribution, thus making the flow braking process nonadiabatic. The waves strongly affect the electron dynamics and thus play an important role in the energy conversion chain during plasma jet braking.

  20. Plasma Jet Braking: Energy Dissipation and Nonadiabatic Electrons

    NASA Astrophysics Data System (ADS)

    Khotyaintsev, Yu. V.; Cully, C. M.; Vaivads, A.; André, M.; Owen, C. J.

    2011-04-01

    We report in situ observations by the Cluster spacecraft of wave-particle interactions in a magnetic flux pileup region created by a magnetic reconnection outflow jet in Earth’s magnetotail. Two distinct regions of wave activity are identified: lower-hybrid drift waves at the front edge and whistler-mode waves inside the pileup region. The whistler-mode waves are locally generated by the electron temperature anisotropy, and provide evidence for ongoing betatron energization caused by magnetic flux pileup. The whistler-mode waves cause fast pitch-angle scattering of electrons and isotropization of the electron distribution, thus making the flow braking process nonadiabatic. The waves strongly affect the electron dynamics and thus play an important role in the energy conversion chain during plasma jet braking.

  1. Controlled cooling of an electronic system for reduced energy consumption

    DOEpatents

    David, Milnes P.; Iyengar, Madhusudan K.; Schmidt, Roger R.

    2016-08-09

    Energy efficient control of a cooling system cooling an electronic system is provided. The control includes automatically determining at least one adjusted control setting for at least one adjustable cooling component of a cooling system cooling the electronic system. The automatically determining is based, at least in part, on power being consumed by the cooling system and temperature of a heat sink to which heat extracted by the cooling system is rejected. The automatically determining operates to reduce power consumption of the cooling system and/or the electronic system while ensuring that at least one targeted temperature associated with the cooling system or the electronic system is within a desired range. The automatically determining may be based, at least in part, on one or more experimentally obtained models relating the targeted temperature and power consumption of the one or more adjustable cooling components of the cooling system.

  2. Plasma Jet Braking: Energy Dissipation and Nonadiabatic Electrons

    SciTech Connect

    Khotyaintsev, Yu. V.; Cully, C. M.; Vaivads, A.; Andre, M.; Owen, C. J.

    2011-04-22

    We report in situ observations by the Cluster spacecraft of wave-particle interactions in a magnetic flux pileup region created by a magnetic reconnection outflow jet in Earth's magnetotail. Two distinct regions of wave activity are identified: lower-hybrid drift waves at the front edge and whistler-mode waves inside the pileup region. The whistler-mode waves are locally generated by the electron temperature anisotropy, and provide evidence for ongoing betatron energization caused by magnetic flux pileup. The whistler-mode waves cause fast pitch-angle scattering of electrons and isotropization of the electron distribution, thus making the flow braking process nonadiabatic. The waves strongly affect the electron dynamics and thus play an important role in the energy conversion chain during plasma jet braking.

  3. Electron heating and control of electron energy distribution for the enhancement of the plasma ashing processing

    NASA Astrophysics Data System (ADS)

    Lee, Hyo-Chang; Chung, Chin-Wook

    2015-04-01

    Control of the electron energy distribution function (EEDF) is investigated through applying an inductive field in oxygen capacitively coupled plasma (CCP). With the addition of a small amount of antenna coil power to the CCP, low energy electrons are effectively heated and the EEDF is controlled. This method is applied to the ashing process of the photoresistor (PR). It is revealed that the ashing rate of the PR is significantly increased due to O radicals produced by the controlled EEDF, even though the ion density/energy flux is not increased. The roles of the power transfer mode in the electron heating and plasma control are also presented in the hybrid plasma source with inductive and capacitive fields. This work provides a route to enhance or control the processing result.

  4. Computational methods in radionuclide dosimetry

    NASA Astrophysics Data System (ADS)

    Bardiès, M.; Myers, M. J.

    1996-10-01

    The various approaches in radionuclide dosimetry depend on the size and spatial relation of the sources and targets considered in conjunction with the emission range of the radionuclide used. We present some of the frequently reported computational techniques on the basis of the source/target size. For whole organs, or for sources or targets bigger than some centimetres, the acknowledged standard was introduced 30 years ago by the MIRD committee and is still being updated. That approach, based on the absorbed fraction concept, is mainly used for radioprotection purposes but has been updated to take into account the dosimetric challenge raised by therapeutic use of vectored radiopharmaceuticals. At this level, the most important computational effort is in the field of photon dosimetry. On the millimetre scale, photons can often be disregarded, and or electron dosimetry is generally reported. Heterogeneities at this level are mainly above the cell level, involving groups of cell or a part of an organ. The dose distribution pattern is often calculated by generalizing a point source dose distribution, but direct calculation by Monte Carlo techniques is also frequently reported because it allows media of inhomogeneous density to be considered. At the cell level, and electron (low-range or Auger) are the predominant emissions examined. Heterogeneities in the dose distribution are taken into account, mainly to determine the mean dose at the nucleus. At the DNA level, Auger electrons or -particles are considered from a microdosimetric point of view. These studies are often connected with radiobiological experiments on radionuclide toxicity.

  5. Numerically fitting the electron Fermi energy and the electron fraction in a neutron star

    NASA Astrophysics Data System (ADS)

    Li, Xing Hu; Gao, Zhi Fu; Li, Xiang Dong; Xu, Yan; Wang, Pei; Wang, Na; Peng, Qiu He

    2016-10-01

    Based on the basic definition of the Fermi energy of degenerate and relativistic electrons, we obtain a special solution to the electron Fermi energy, EF(e), and express EF(e) as a function of the electron fraction, Ye, and matter density, ρ. We obtain several useful analytical formula for Ye and ρ within classical models and the work of Dutra et al. (2014) (Type-2) in relativistic mean-field theory are obtained using numerically fitting. When describing the mean-field Lagrangian, density, we adopt the TMA parameter set, which is remarkably consistent with the updated astrophysical observations of neutron stars (NSs). Due to the importance of the density dependence of the symmetry energy, J, in nuclear astrophysics, a brief discussion on J and its slop is presented. Combining these fitting formula with boundary conditions for different density regions, we can evaluate the value of EF(e) in any given matter density, and obtain a schematic diagram of EF(e) as a continuous function of ρ. Compared with previous studies on the electron Fermi energy in other studies models, our methods of calculating EF(e) are more simple and convenient, and can be universally suitable for the relativistic electron regions in the circumstances of common neutron stars. We have deduced a general expression of EF(e) and ne, which could be used to indirectly test whether one equation of state of a NS is correct in our future studies on neutron star matter properties. Since URCA reactions are expected in the center of a massive star due to high-value electron Fermi energy and electron fraction, this study could be useful in the future studies on the NS thermal evolution.

  6. Energy transfer from lower energy to higher-energy electrons mediated by whistler waves in the radiation belts

    NASA Astrophysics Data System (ADS)

    Shklyar, D. R.

    2017-01-01

    We study the problem of energy exchange between waves and particles, which leads to energization of the latter, in an unstable plasma typical of the radiation belts. The ongoing Van Allen Probes space mission brought this problem among the most discussed in space physics. A free energy which is present in an unstable plasma provides the indispensable condition for energy transfer from lower energy particles to higher-energy particles via resonant wave-particle interaction. This process is studied in detail by the example of electron interactions with whistler mode wave packets originated from lightning-induced emission. We emphasize that in an unstable plasma, the energy source for electron energization is the energy of other particles, rather than the wave energy as is often assumed. The way by which the energy is transferred from lower energy to higher-energy particles includes two processes that operate concurrently, in the same space-time domain, or sequentially, in different space-time domains, in which a given wave packet is located. In the first process, one group of resonant particles gives the energy to the wave. The second process consists in wave absorption by another group of resonant particles, whose energy therefore increases. We argue that this mechanism represents an efficient means of electron energization in the radiation belts.

  7. Asymmetric electron energy sharing in electron-impact double ionization of helium

    NASA Astrophysics Data System (ADS)

    Silenou Mengoue, M.; Tetchou Nganso, H. M.

    2016-12-01

    We present the fully fivefold differential cross sections (FDCSs) for (e ,3 e ) processes in helium within the first Born approximation. The calculation is performed for a coplanar geometry in which the incident electron is fast (˜6 keV), the momentum transfer is small (0.24 a.u.), and for an asymmetric energy sharing between both slow ejected electrons at excess energy of 20 eV. Two cases have been considered: E1=15 eV, E2=5 eV and E1=8 eV, E2=12 eV. While waiting for new theoretical and experimental results for confrontations, in particular for asymmetric energy sharing, our results clearly demonstrate that, for the same incident energy, the same momentum transfer and the same excess energy, the (e ,3 e ) process in helium with asymmetric energy sharing between ejected electrons is more likely than the case with symmetric energy sharing. The two- and three-dimensional representation of the FDCSs covering all possible values of the angle of ejections are presented and discussed. The theoretical cross sections are calculated by using a compact-kernel-integral-equation approach associated with the Jacobi matrix method to calculate a three-body wave function and which leads to a full convergence in terms of the basis size.

  8. Diamond dosimetry: Outcomes of the CANDIDO and CONRAD INFN projects

    NASA Astrophysics Data System (ADS)

    Bucciolini, M.; Borchi, E.; Bruzzi, M.; Casati, M.; Cirrone, P.; Cuttone, G.; De Angelis, C.; Lovik, I.; Onori, S.; Raffaele, L.; Sciortino, S.

    2005-10-01

    This paper reviews the main results of the study, carried out in the framework of the Italian National Institute of Nuclear Physics (INFN, Istituto Nazionale di Fisica Nucleare) projects, namely CANDIDO and CONRAD, on natural and synthetic diamond-based dosimeters for clinical radiotherapy. Characteristics of diamond such as radiation hardness, high sensitivity, tissue equivalence, etc., make this material interesting for dosimetry applications. For some years, natural diamonds have been commercially available for on-line radiotherapy dosimetry. Nevertheless, recent developments in the "Chemical Vapour Deposition" (CVD) technique have addressed the attention on synthetic samples that potentially could be grown at low cost and with features suitable for dosimetric use. Several samples, differently grown and with different electrical contacts, have been compared by measuring their current response during irradiation with high-energy photon, electron and proton beams. Properties of dosimetric interest such as linearity, pre-irradiation dose, dose rate dependence, stability and rise time have been investigated. The results obtained so far within the INFN collaboration demonstrate the suitability of natural diamond detectors for many radiotherapy applications and the great potential of CVD diamond-based devices even though, at present, the commercial natural diamond dosimeters have a better behaviour with respect to the synthetic samples. Further efforts have to be made mainly to improve the dynamic of response and performance stability.

  9. Detailed Monte Carlo Simulation of electron transport and electron energy loss spectra.

    PubMed

    Attarian Shandiz, M; Salvat, F; Gauvin, R

    2016-11-01

    A computer program for detailed Monte Carlo simulation of the transport of electrons with kinetic energies in the range between about 0.1 and about 500 keV in bulk materials and in thin solid films is presented. Elastic scattering is described from differential cross sections calculated by the relativistic (Dirac) partial-wave expansion method with different models of the scattering potential. Inelastic interactions are simulated from an optical-data model based on an empirical optical oscillator strength that combines optical functions of the solid with atomic photoelectric data. The generalized oscillator strength is built from the adopted optical oscillator strength by using an extension algorithm derived from Lindhard's dielectric function for a free-electron gas. It is shown that simulated backscattering fractions of electron beams from bulk (semi-infinite) specimens are in good agreement with experimental data for beam energies from 0.1 keV up to about 100 keV. Simulations also yield transmitted and backscattered fractions of electron beams on thin solid films that agree closely with measurements for different film thicknesses and incidence angles. Simulated most probable deflection angles and depth-dose distributions also agree satisfactorily with measurements. Finally, electron energy loss spectra of several elemental solids are simulated and the effects of the beam energy and the foil thickness on the signal to background and signal to noise ratios are investigated. SCANNING 38:475-491, 2016. © 2015 Wiley Periodicals, Inc.

  10. 77 FR 13109 - Petition for Waiver of Samsung Electronics America, Inc. From the Department of Energy...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-05

    ... of Energy Efficiency and Renewable Energy Petition for Waiver of Samsung Electronics America, Inc.... SUMMARY: This notice announces receipt of and publishes the Samsung Electronics America, Inc. (Samsung... petitioner is: Michael Moss, Director of Corporate Environmental Affairs, Samsung Electronics America,...

  11. High time resolution electron measurement by Fast Electron energy Spectrum Analyzer (FESA)

    SciTech Connect

    Saito, Yoshifumi; Fujimoto, Masaki; Maezawa, Kiyoshi; Shinohara, Iku; Tsuda, Yuichi; Sasaki, Shintaro; Kojima, Hirotsugu

    2009-06-16

    We have newly developed an electron energy analyzer FESA (Fast Electron energy Spectrum Analyzer) for a future magnetospheric satellite mission SCOPE. The SCOPE mission is designed in order that observational studies from the cross-scale coupling viewpoint are enabled. One of the key observations necessary for the SCOPE mission is high-time resolution electron measurement. Eight FESAs on a spinning spacecraft are capable of measuring three dimensional electron distribution function with time resolution of 8 msec. FESA consists of two electrostatic analyzers that are composed of three nested hemispherical deflectors. Single FESA functions as four top-hat type electrostatic analyzers that can measure electrons with four different energies simultaneously. By measuring the characteristics of the test model FESA, we proved the validity of the design concept of FESA. Based on the measured characteristics, we designed FESA optimized for the SCOPE mission. This optimized analyzer has good enough performance to measure three dimensional electron distribution functions around the magnetic reconnection region in the Earth's magnetotail.

  12. Energy- and Intensity-Modulated Electron Beam for Breast Cancer Treatment

    DTIC Science & Technology

    1999-10-01

    Dosimetry of small fields for Therac 20 electron beams Med. Phys. 11 697-702 Shiu A S, Tung S, Hogstrom K R, Wong J W, Gerber R L, Harms W B and Purdy...accelerator, was developed by Lovelock et al (1995). Sixel and Faddegon (1995) simulated a Therac -6 treatment head in radiosurgery mode using the cylindrically...simulated three GGR MeV/AECL accelerators, i.e. Therac 40 Sagittaire, Therac 20 Saturne and Therac 10 Neptune, using a Monte Carlo code based on the

  13. Software for evaluation of EPR-dosimetry performance.

    PubMed

    Shishkina, E A; Timofeev, Yu S; Ivanov, D V

    2014-06-01

    Electron paramagnetic resonance (EPR) with tooth enamel is a method extensively used for retrospective external dosimetry. Different research groups apply different equipment, sample preparation procedures and spectrum processing algorithms for EPR dosimetry. A uniform algorithm for description and comparison of performances was designed and implemented in a new computer code. The aim of the paper is to introduce the new software 'EPR-dosimetry performance'. The computer code is a user-friendly tool for providing a full description of method-specific capabilities of EPR tooth dosimetry, from metrological characteristics to practical limitations in applications. The software designed for scientists and engineers has several applications, including support of method calibration by evaluation of calibration parameters, evaluation of critical value and detection limit for registration of radiation-induced signal amplitude, estimation of critical value and detection limit for dose evaluation, estimation of minimal detectable value for anthropogenic dose assessment and description of method uncertainty.

  14. Variably spaced superlattice energy filter, a new device design concept for high-energy electron injection

    NASA Technical Reports Server (NTRS)

    Summers, C. J.; Brennan, K. F.

    1986-01-01

    A new variably spaced superlattice energy filter is proposed which provides high-energy injection of electrons into a bulk semiconductor layer based on resonant tunneling between adjacent quantum well levels which are brought into alignment by an applied bias. Applications of this concept to a variety of optoelectronic devices and to thin-film electroluminescent devices and photodetectors are discussed.

  15. Electron momentum spectroscopy study of amantadine: binding energy spectra and valence orbital electron density distributions

    NASA Astrophysics Data System (ADS)

    Litvinyuk, I. V.; Zheng, Y.; Brion, C. E.

    2000-11-01

    The electron binding energy spectrum and valence orbital electron momentum density distributions of amantadine (1-aminoadamantane), an important anti-viral and anti-Parkinsonian drug, have been measured by electron momentum spectroscopy. Theoretical momentum distributions, calculated at the 6-311++G** and AUG-CC-PVTZ levels within the target Hartree-Fock and also the target Kohn-Sham density functional theory approximations, show good agreement with the experimental results. The results for amantadine are also compared with those for the parent molecule, adamantane, reported earlier (Chem. Phys. 253 (2000) 41). Based on the comparison tentative assignments of the valence region ionization bands of amantadine have been made.

  16. Low-Energy Electron Scattering by Sugarcane Lignocellulosic Biomass Molecules

    NASA Astrophysics Data System (ADS)

    Oliveira, Eliane; Sanchez, Sergio; Bettega, Marcio; Lima, Marco; Varella, Marcio

    2012-06-01

    The use of second generation (SG) bioethanol instead of fossil fuels could be a good strategy to reduce greenhouse gas emissions. However, the efficient production of SG bioethanol has being a challenge to researchers around the world. The main barrier one must overcome is the pretreatment, a very important step in SG bioethanol aimed at breaking down the biomass and facilitates the extraction of sugars from the biomass. Plasma-based treatment, which can generate reactive species, could be an interesting possibility since involves low-cost atmospheric-pressure plasma. In order to offer theoretical support to this technique, the interaction of low-energy electrons from the plasma with biomass is investigated. This study was motived by several works developed by Sanche et al., in which they understood that DNA damage arises from dissociative electron attachment, a mechanism in which electrons are resonantly trapped by DNA subunits. We will present elastic cross sections for low-energy electron scattering by sugarcane biomass molecules, obtained with the Schwinger multichannel method. Our calculations indicate the formation of π* shape resonances in the lignin subunits, while a series of broad and overlapping σ* resonances are found in cellulose and hemicellulose subunits. The presence of π* and σ* resonances could give rise to direct and indirect dissociation pathways in biomass. Then, theoretical resonance energies can be useful to guide the plasma-based pretreatment to break down specific linkages of interest in biomass.

  17. Energy level control: toward an efficient hot electron transport.

    PubMed

    Jin, Xiao; Li, Qinghua; Li, Yue; Chen, Zihan; Wei, Tai-Huei; He, Xingdao; Sun, Weifu

    2014-08-07

    Highly efficient hot electron transport represents one of the most important properties required for applications in photovoltaic devices. Whereas the fabrication of efficient hot electron capture and lost-cost devices remains a technological challenge, regulating the energy level of acceptor-donor system through the incorporation of foreign ions using the solution-processed technique is one of the most promising strategies to overcome this obstacle. Here we present a versatile acceptor-donor system by incorporating MoO3:Eu nanophosphors, which reduces both the 'excess' energy offset between the conduction band of acceptor and the lowest unoccupied molecular orbital of donor, and that between the valence band and highest occupied molecular orbital. Strikingly, the hot electron transfer time has been shortened. This work demonstrates that suitable energy level alignment can be tuned to gain the higher hot electron/hole transport efficiency in a simple approach without the need for complicated architectures. This work builds up the foundation of engineering building blocks for third-generation solar cells.

  18. Energy level control: toward an efficient hot electron transport

    PubMed Central

    Jin, Xiao; Li, Qinghua; Li, Yue; Chen, Zihan; Wei, Tai-Huei; He, Xingdao; Sun, Weifu

    2014-01-01

    Highly efficient hot electron transport represents one of the most important properties required for applications in photovoltaic devices. Whereas the fabrication of efficient hot electron capture and lost-cost devices remains a technological challenge, regulating the energy level of acceptor-donor system through the incorporation of foreign ions using the solution-processed technique is one of the most promising strategies to overcome this obstacle. Here we present a versatile acceptor-donor system by incorporating MoO3:Eu nanophosphors, which reduces both the ‘excess' energy offset between the conduction band of acceptor and the lowest unoccupied molecular orbital of donor, and that between the valence band and highest occupied molecular orbital. Strikingly, the hot electron transfer time has been shortened. This work demonstrates that suitable energy level alignment can be tuned to gain the higher hot electron/hole transport efficiency in a simple approach without the need for complicated architectures. This work builds up the foundation of engineering building blocks for third-generation solar cells. PMID:25099864

  19. The beta-SiC(100) surface studied by low energy electron diffraction, Auger electron spectroscopy, and electron energy loss spectra

    NASA Technical Reports Server (NTRS)

    Dayan, M.

    1986-01-01

    The beta-SiC(100) surface has been studied by low energy electron diffraction, Auger electron spectroscopy, high resolution electron energy loss spectra (HREELS), and core level excitation EELS. Two new Si-terminated phases have been discovered, one with (3 x 2) symmetry, and the other with (2 x 1) symmetry. Models are presented to describe these phases. New results, for the C-rich surface, are presented and discussed. In addition, core level excitation EELS results are given and compared with theory.

  20. Equation satisfied by the energy-density functional for electron-electron mutual Coulomb repulsion

    SciTech Connect

    Joubert, Daniel P.

    2011-10-15

    It is shown that the electron-electron mutual Coulomb repulsion energy-density functional V{sub ee}{sup {gamma}}[{rho}] satisfies the equationV{sub ee}{sup {gamma}}[{rho}{sub N}{sup 1}]-V{sub ee}{sup {gamma}}[{rho}{sub N-1}{sup {gamma}}]={integral}d{sup 3}r({delta}V{sub ee}{sup {gamma}}[{rho}{sub N}{sup 1}]/{delta}{rho}{sub N}{sup 1}(r))[{rho}{sub N}{sup 1}(r)-{rho}{sub N-1}{sup {gamma}}(r)], where {rho}{sub N}{sup 1}(r) and {rho}{sub N-1}{sup {gamma}}(r) are N-electron and (N-1)-electron densities determined from the same adiabatic scaled external potential of the N-electron system at coupling strength {gamma}.

  1. Low-energy behavior of exothermic dissociative electron attachment

    NASA Astrophysics Data System (ADS)

    Fabrikant, Ilya I.; Hotop, Hartmut

    2001-02-01

    We discuss two models for electron attachment to molecules: the Vogt-Wannier model for capture into a polarization well and the resonance model for dissociative attachment. The Vogt-Wannier model is generalized for the case of a target with a permanent dipole moment, and results are presented for dissociative attachment to CH3I. It is shown that the resonance theory should incorporate in this case a weakly bound dipole-supported state of CH3I-, whereas the generalized Vogt-Wannier theory gives a reasonable estimate for the cross section in the meV and sub-meV region. The Vogt-Wannier model is also applied to the process of attachment to SF6, CCl4, and C60. In the first case the s-wave capture model provides a satisfactory description of the experimental data for energies below the first vibrational excitation threshold, whereas for CCl4 it underestimates the attachment cross section by a factor of 2 in the sub-meV region. For C60 we suggest that electron attachment is dominated by s-wave capture in the region below 2 meV and by p-wave capture in the energy range above 4 meV. Our model reproduces data for Rydberg electron and free-electron attachment observed in beam experiments. It is, however, at variance with the strong rise of the attachment rate coefficients with electron temperature observed in flowing afterglow-Langmuir probe measurements.

  2. Ion-kill dosimetry

    NASA Technical Reports Server (NTRS)

    Katz, R.; Cucinotta, F. A.; Fromm, M.; Chambaudet, A.

    2001-01-01

    Unanticipated late effects in neutron and heavy ion therapy, not attributable to overdose, imply a qualitative difference between low and high LET therapy. We identify that difference as 'ion kill', associated with the spectrum of z/beta in the radiation field, whose measurement we label 'ion-kill dosimetry'.

  3. Electron energy spectrum in circularly polarized laser irradiated overdense plasma

    SciTech Connect

    Liu, C. S.; Tripathi, V. K.; Shao, Xi; Kumar, Pawan

    2014-10-15

    A circularly polarized laser normally impinged on an overdense plasma thin foil target is shown to accelerate the electrons in the skin layer towards the rear, converting the quiver energy into streaming energy exactly if one ignores the space charge field. The energy distribution of electrons is close to Maxwellian with an upper cutoff ε{sub max}=mc{sup 2}[(1+a{sub 0}{sup 2}){sup 1/2}−1], where a{sub 0}{sup 2}=(1+(2ω{sup 2}/ω{sub p}{sup 2})|a{sub in}|{sup 2}){sup 2}−1, |a{sub in}| is the normalized amplitude of the incident laser of frequency ω, and ω{sub p} is the plasma frequency. The energetic electrons create an electrostatic sheath at the rear and cause target normal sheath acceleration of protons. The energy gain by the accelerated ions is of the order of ε{sub max}.

  4. Inverse planning of energy-modulated electron beams in radiotherapy

    SciTech Connect

    Gentry, John R. . E-mail: gentryj@gmh.org; Steeves, Richard; Paliwal, Bhudatt A.

    2006-01-01

    The use of megavoltage electron beams often poses a clinical challenge in that the planning target volume (PTV) is anterior to other radiosensitive structures and has variable depth. To ensure that skin as well as the deepest extent of the PTV receives the prescribed dose entails prescribing to a point beyond the depth of peak dose for a single electron energy. This causes dose inhomogeneities and heightened potential for tissue fibrosis, scarring, and possible soft tissue necrosis. Use of bolus on the skin improves the entrant dose at the cost of decreasing the therapeutic depth that can be treated. Selection of a higher energy to improve dose homogeneity results in increased dose to structures beyond the PTV, as well as enlargement of the volume receiving heightened dose. Measured electron data from a linear accelerator was used as input to create an inverse planning tool employing energy and intensity modulation using bolus (e-IMRT{sup TM}). Using tools readily available in a radiotherapy department, the applications of energy and intensity modulation on the central axis makes it possible to remove hot spots of 115% or more over the depths clinically encountered. The e-IMRT{sup TM} algorithm enables the development of patient-specific dose distributions with user-defined positions of peak dose, range, and reduced dose to points beyond the prescription point.

  5. Very Low Energy Electron Scattering from Ozone and Chlorine Dioxide

    NASA Astrophysics Data System (ADS)

    Gulley, R. J.; Field, T. A.; Steer, W. A.; Mason, N. J.; Ziesel, J. P.; Lunt, S. L.; Field, D.

    1998-10-01

    Total cross-sections are reported for the scattering of electrons from ozone (O_3) and chlorine dioxide (OClO) for energies in the range of 9 meV to 10 eV. The measurements were made in transmission experiments using a synchrotron photoionization apparatus with an energy resolution in the incident electron beam of ~ 3.5 meV (FWHM). The cross section for O3 shows strong rotational scattering at low energy, through the presence of the permanent dipole moment of O_3. Superposed on this strong scattering signal, there is evidence of a weak structure around 50 meV associated with dissociative attachment. A shape resonance, known from earlier work at ~ 4 meV, is also observed. Electron scattering from OClO is dominated by rotationally inelastic scattering decreasing from a peak at essentially zero eV to an energy of 40 meV, where p-wave attachment becomes more important, peaking at 50--60 meV and extending to several hundred meV.

  6. A satellite investigation of energy flux and inferred potential drop in auroral electron energy spectra

    NASA Technical Reports Server (NTRS)

    Menietti, J. D.; Burch, J. L.

    1981-01-01

    The relationship between auroral electron energy flux and the inferred accelerating potential drop for accelerated Maxwellian distributions is investigated on the basis of Atmospheric Explorer D spectral measurements. An analytical approximation for the total downward energy flux carried by an isotropic Maxwellian electron population accelerated by a field-aligned electrostatic potential drop is derived which is valid for values of the electron energy/characteristic accelerated Maxwellian distribution energy which are less than the difference between the ratio of the magnetic field strengths at the altitude of observation and the altitude of potential drop, and unity. Data from the Low Energy Electron Experiment on board AE D obtained on both the dayside and the nightside during periods of significant inverted-V type electron precipitation shows that the 455 energy spectra considered, 160 of them, obtained between 60 and 85 deg invariant latitude, could be fit to accelerated Maxwellian distributions. The 160 Maxwellian spectra are then shown to be in agreement with the predictions of the accelerated Maxwellian model. Finally, analysis of individual spectra suggests that the altitude of the inferred potential drop is at a maximum near the center of the inverted-V structures.

  7. Dynamics of Low Energy Electron Attachment to Formic Acid

    SciTech Connect

    Rescigno, Thomas N.; Trevisan, Cynthia S.; Orel, Ann E.

    2006-04-03

    Low-energy electrons (<2 eV) can fragment gas phaseformic acid (HCOOH) molecules through resonant dissociative attachmentprocesses. Recent experiments have shown that the principal reactionproducts of such collisions are formate ions (HCOO-) and hydrogen atoms.Using first-principles electron scattering calculations, we haveidentified the responsible negative ion state as a transient \\pi* anion.Symmetry considerations dictate that the associated dissociation dynamicsare intrinsically polyatomic: a second anion surface, connected to thefirst by a conical intersection, is involved in the dynamics and thetransient anion must necessarily deform to non-planar geometries beforeit can dissociate to the observed stable products.

  8. Probing Battery Chemistry with Liquid Cell Electron Energy Loss Spectroscopy

    SciTech Connect

    Unocic, Raymond R.; Baggetto, Loic; Veith, Gabriel M.; Aguiar, Jeffery A.; Unocic, Kinga A.; Sacci, Robert L.; Dudney, Nancy J.; More, Karren L.

    2015-11-25

    We demonstrate the ability to apply electron energy loss spectroscopy (EELS) to follow the chemistry and oxidation states of LiMn2O4 and Li4Ti5O12 battery electrodes within a battery solvent. The use and importance of in situ electrochemical cells coupled with a scanning/transmission electron microscope (S/TEM) has expanded and been applied to follow changes in battery chemistry during electrochemical cycling. Furthermore, we discuss experimental parameters that influence measurement sensitivity and provide a framework to apply this important analytical method to future in situ electrochemical studies.

  9. Probing battery chemistry with liquid cell electron energy loss spectroscopy

    SciTech Connect

    Unocic, Raymond R.; Baggetto, Loic; Veith, Gabriel M.; Unocic, Kinga A.; Sacci, Robert L.; Dudney, Nancy J.; More, Karren Leslie; Aguiar, Jeffery A.

    2015-01-01

    Electron energy loss spectroscopy (EELS) was used to determine the chemistry and oxidation state of LiMn2O4 and Li4Ti5O12 thin film battery electrodes in liquid cells for in situ scanning/transmission electron microscopy (S/TEM). Using the L2,3 white line intensity ratio method we determine the oxidation state of Mn and Ti in a liquid electrolyte solvent and discuss experimental parameters that influence measurement sensitivity.

  10. Improving the energy response of external beam therapy (EBT) GafChromic{sup TM} dosimetry films at low energies (≤100 keV)

    SciTech Connect

    Bekerat, H. Devic, S.; DeBlois, F.; Singh, K.; Sarfehnia, A.; Seuntjens, J.; Shih, Shelley; Yu, Xiang; Lewis, D.

    2014-02-15

    Purpose: Purpose of this work is to investigate the effects of varying the active layer composition of external beam therapy (EBT) GafChromic{sup TM} films on the energy dependence of the film, as well as try to develop a new prototype with more uniform energy response at low photon energies (⩽100 keV). Methods: First, the overall energy response (S{sub AD,} {sub W}(Q)) of different commercial EBT type film models that represent the three different generations produced to date, i.e., EBT, EBT2, and EBT3, was investigated. Pieces of each film model were irradiated to a fixed dose of 2 Gy to water for a wide range of beam qualities and the corresponding S{sub AD,} {sub W}(Q) was measured using a flatbed document scanner. Furthermore, the DOSRZnrc Monte Carlo code was used to determine the absorbed dose to water energy dependence of the film, f(Q). Moreover, the intrinsic energy dependence, k{sub bq}(Q), for each film model was evaluated using the corresponding S{sub AD,} {sub W}(Q) and f(Q). In the second part of this study, the authors investigated the effects of changing the chemical composition of the active layer on S{sub AD,} {sub W}(Q). Finally, based on these results, the film manufacturer fabricated several film prototypes and the authors evaluated their S{sub AD,} {sub W}(Q). Results: The commercial EBT film model shows an under response at all energies below 100 keV reaching 39% ± 4% at about 20 keV. The commercial EBT2 and EBT3 film models show an under response of about 27% ± 4% at 20 keV and an over response of about 16% ± 4% at 40 keV.S{sub AD,} {sub W}(Q) of the three commercial film models at low energies show strong correlation with the corresponding f{sup −1}(Q) curves. The commercial EBT3 model with 4% Cl in the active layer shows under response of 22% ± 4% at 20 keV and 6% ± 4% at about 40 keV. However, increasing the mass percent of chlorine makes the film more hygroscopic which may affect the stability of the film's readout. The

  11. Effect of respiratory motion on internal radiation dosimetry

    SciTech Connect

    Xie, Tianwu; Zaidi, Habib

    2014-11-01

    Purpose: Estimation of the radiation dose to internal organs is essential for the assessment of radiation risks and benefits to patients undergoing diagnostic and therapeutic nuclear medicine procedures including PET. Respiratory motion induces notable internal organ displacement, which influences the absorbed dose for external exposure to radiation. However, to their knowledge, the effect of respiratory motion on internal radiation dosimetry has never been reported before. Methods: Thirteen computational models representing the adult male at different respiratory phases corresponding to the normal respiratory cycle were generated from the 4D dynamic XCAT phantom. Monte Carlo calculations were performed using the MCNP transport code to estimate the specific absorbed fractions (SAFs) of monoenergetic photons/electrons, the S-values of common positron-emitting radionuclides (C-11, N-13, O-15, F-18, Cu-64, Ga-68, Rb-82, Y-86, and I-124), and the absorbed dose of {sup 18}F-fluorodeoxyglucose ({sup 18}F-FDG) in 28 target regions for both the static (average of dynamic frames) and dynamic phantoms. Results: The self-absorbed dose for most organs/tissues is only slightly influenced by respiratory motion. However, for the lung, the self-absorbed SAF is about 11.5% higher at the peak exhale phase than the peak inhale phase for photon energies above 50 keV. The cross-absorbed dose is obviously affected by respiratory motion for many combinations of source-target pairs. The cross-absorbed S-values for the heart contents irradiating the lung are about 7.5% higher in the peak exhale phase than the peak inhale phase for different positron-emitting radionuclides. For {sup 18}F-FDG, organ absorbed doses are less influenced by respiratory motion. Conclusions: Respiration-induced volume variations of the lungs and the repositioning of internal organs affect the self-absorbed dose of the lungs and cross-absorbed dose between organs in internal radiation dosimetry. The dynamic

  12. Electron energy-loss spectroscopy of coupled plasmonic systems: beyond the standard electron perspective

    NASA Astrophysics Data System (ADS)

    Bernasconi, G. D.; Flauraud, V.; Alexander, D. T. L.; Brugger, J.; Martin, O. J. F.; Butet, J.

    2016-09-01

    Electron energy-loss spectroscopy (EELS) has become an experimental method of choice for the investigation of localized surface plasmon resonances, allowing the simultaneous mapping of the associated field distributions and their resonant energies with a nanoscale spatial resolution. The experimental observations have been well-supported by numerical models based on the computation of the Lorentz force acting on the impinging electrons by the scattered field. However, in this framework, the influence of the intrinsic properties of the plasmonic nanostructures studied with the electron energy-loss (EEL) measurements is somehow hidden in the global response. To overcome this limitation, we propose to go beyond this standard, and well-established, electron perspective and instead to interpret the EELS data using directly the intrinsic properties of the nanostructures, without regard to the force acting on the electron. The proposed method is particularly well-suited for the description of coupled plasmonic systems, because the role played by each individual nanoparticle in the observed EEL spectrum can be clearly disentangled, enabling a more subtle understanding of the underlying physical processes. As examples, we consider different plasmonic geometries in order to emphasize the benefits of this new conceptual approach for interpreting experimental EELS data. In particular, we use it to describe results from samples made by traditional thin film patterning and by arranging colloidal nanostructures.

  13. Electronic Quasiparticle Renormalization on the Spin Wave Energy Scale

    NASA Astrophysics Data System (ADS)

    Schäfer, J.; Schrupp, D.; Rotenberg, Eli; Rossnagel, K.; Koh, H.; Blaha, P.; Claessen, R.

    2004-03-01

    High-resolution photoemission data of the (110) iron surface reveal the existence of well-defined metallic surface resonances in good correspondence to band calculations. Close to the Fermi level, their dispersion and momentum broadening display anomalies characteristic of quasiparticle renormalization due to coupling to bosonic excitations. Its energy scale exceeds that of phonons by far, and is in striking coincidence with that of the spin wave spectrum in iron. The self-energy behavior thus gives spectroscopic evidence of a quasiparticle mass enhancement due to electron-magnon coupling.

  14. Low-energy scattering of electrons and positrons in liquids

    NASA Technical Reports Server (NTRS)

    Schrader, D. M.

    1990-01-01

    The scattering of low energy electrons and positrons is described for the liquid phase and compared and contrasted with that for the gas phase. Similarities as well as differences are noted. The loci of scattering sites, called spurs in the liquid phase, are considered in detail. In particular, their temporal and spatial evolution is considered from the point of view of scattering. Two emphases are made: one upon the stochastic calculation of the distribution of distances required for slowing down to thermal velocities, and the other upon the calculation of cross sections for energy loss by means of quantum mechanics.

  15. LDRD project 151362 : low energy electron-photon transport.

    SciTech Connect

    Kensek, Ronald Patrick; Hjalmarson, Harold Paul; Magyar, Rudolph J.; Bondi, Robert James; Crawford, Martin James

    2013-09-01

    At sufficiently high energies, the wavelengths of electrons and photons are short enough to only interact with one atom at time, leading to the popular %E2%80%9Cindependent-atom approximation%E2%80%9D. We attempted to incorporate atomic structure in the generation of cross sections (which embody the modeled physics) to improve transport at lower energies. We document our successes and failures. This was a three-year LDRD project. The core team consisted of a radiation-transport expert, a solid-state physicist, and two DFT experts.

  16. National energy use of consumer electronics in 1999

    SciTech Connect

    Rosen, Karen; Meier, Alan; Zandelin, Stefan

    2000-02-15

    The major consumer electronics in U.S. homes accounted for nearly 7 percent of U.S. residential electricity consumption in 1999. We attribute more than half of this figure (3.6 percent) to televisions, videocassette recorders, and DVD players, and nearly one-third (1.8 percent) to audio products. Set-top boxes currently account for a relatively small fraction of residential electricity use (0.7 percent), but we expect this end-use to grow quickly with the proliferation of digital set-top boxes, which currently use 40 percent more energy per unit than the average TV set. In all, these consumer electronics plus telephone products consumed 75 TWh in the U.S. in 1999, half of which was consumed while the products were not in use. This energy use is expected to grow as products with new or advanced functionality hit the market.

  17. Neutron ESR dosimetry through ammonium tartrate with low Gd content.

    PubMed

    Marrale, M; Brai, M; Longo, A; Panzeca, S; Tranchina, L; Tomarchio, E; Parlato, A; Buttafava, A; Dondi, D

    2014-06-01

    This paper continues analyses on organic compounds for application in neutron dosimetry performed through electron spin resonance (ESR). Here, the authors present the results obtained by ESR measurements of a blend of ammonium tartrate dosemeters and gadolinium oxide (5 % by weight). The choice of low amount of Gd is due to the need of improving neutron sensitivity while not significantly influencing tissue equivalence. A study of the effect of gadolinium presence on tissue equivalence was carried out. The experiments show that the neutron sensitivity is enhanced by more than an order of magnitude even with this small additive content. Monte Carlo simulations on the increment of energy release due to gadolinium presence were carried, and the results were in good agreement with the experimental data.

  18. Electron energy-loss spectroscopy of branched gap plasmon resonators

    PubMed Central

    Raza, Søren; Esfandyarpour, Majid; Koh, Ai Leen; Mortensen, N. Asger; Brongersma, Mark L.; Bozhevolnyi, Sergey I.

    2016-01-01

    The miniaturization of integrated optical circuits below the diffraction limit for high-speed manipulation of information is one of the cornerstones in plasmonics research. By coupling to surface plasmons supported on nanostructured metallic surfaces, light can be confined to the nanoscale, enabling the potential interface to electronic circuits. In particular, gap surface plasmons propagating in an air gap sandwiched between metal layers have shown extraordinary mode confinement with significant propagation length. In this work, we unveil the optical properties of gap surface plasmons in silver nanoslot structures with widths of only 25 nm. We fabricate linear, branched and cross-shaped nanoslot waveguide components, which all support resonances due to interference of counter-propagating gap plasmons. By exploiting the superior spatial resolution of a scanning transmission electron microscope combined with electron energy-loss spectroscopy, we experimentally show the propagation, bending and splitting of slot gap plasmons. PMID:27982030

  19. Electron energy-loss spectroscopy of branched gap plasmon resonators

    NASA Astrophysics Data System (ADS)

    Raza, Søren; Esfandyarpour, Majid; Koh, Ai Leen; Mortensen, N. Asger; Brongersma, Mark L.; Bozhevolnyi, Sergey I.

    2016-12-01

    The miniaturization of integrated optical circuits below the diffraction limit for high-speed manipulation of information is one of the cornerstones in plasmonics research. By coupling to surface plasmons supported on nanostructured metallic surfaces, light can be confined to the nanoscale, enabling the potential interface to electronic circuits. In particular, gap surface plasmons propagating in an air gap sandwiched between metal layers have shown extraordinary mode confinement with significant propagation length. In this work, we unveil the optical properties of gap surface plasmons in silver nanoslot structures with widths of only 25 nm. We fabricate linear, branched and cross-shaped nanoslot waveguide components, which all support resonances due to interference of counter-propagating gap plasmons. By exploiting the superior spatial resolution of a scanning transmission electron microscope combined with electron energy-loss spectroscopy, we experimentally show the propagation, bending and splitting of slot gap plasmons.

  20. Nanocellulose as Material Building Block for Energy and Flexible Electronics

    NASA Astrophysics Data System (ADS)

    Hu, Liangbing

    2014-03-01

    In this talk, I will discuss the fabrications, properties and device applications of functional nanostructured paper based on nanocellulose. Nanostructures with tunable optical, electrical, ionic and mechanical properties will be discussed. Lab-scale demonstration devices, including low-cost Na-ion batteries, microbial fuel cells, solar cells, transparent transistors, actuators and touch screens will be briefly mentioned. These studies show that nanocellulose is a promising green material for electronics and energy devices.

  1. Electronic Energies for Neon Dimer Dication Radiative Charge Transfer

    DTIC Science & Technology

    1989-12-01

    E+ or E- symmetry, but Herzberg indicates that they are both E- The electronic energy levels shown can be verified by examining their values at large... Herzberg , Molecular Spectra and Molecular Structure: 1. Spectra of Diatomic Molecules, Second Ed., Princeton, New Jersey: D. Van Nostrand Company, Inc...tlerzherg, Gerhard , F.R.S. Molecular Spectra and Molecular Structure: 1. Spectra of Diatomic .M,,leculcs. Second Ed., Princeton, New Jersey: D. Van

  2. Near Zero ev Subexcitation Energy Electrons Break DNA

    NASA Astrophysics Data System (ADS)

    Martin, Frederic; Cai, Zhongli; Cloutier, Pierre; Hunting, Darel; Sanche, Leon

    2004-03-01

    The passage of ionizing radiation through a living cell produces about 4 x 10^4 electrons/MeV, with more than 50% having energies well below the excitation threshold for water (7-8 eV) (M. Michaud et al, Physical Review, 44(9), 5623-5627, (1991)). We have previously shown that 5-20eV electrons cause DNA strand breaks via a resonant process with a maximum at 10eV (B. Boudaiffa et al, Science 287, 1658-1660, (2000)). The present results demonstrate that very low energy electrons in the range of 0 to 5eV cause single strand breaks (SSB) in DNA. Plasmid DNA is extracted from the host bacteria purified and resuspended in distilled and deionised water. It is deposited on a chemically clean tantalum, lyophilised and placed in an UHV chamber for 24 hours before irradiation. After irradiation, plasmid DNA is retrieved from the UHV chamber and the samples are dissolved in tris buffer. The different topological forms of DNA resulting from single strand break formation are separated by electrophoresis gel, stained by SYBR Green 1, scanned by laser and quantified with the imageQuant program. The quantification protocol has been optimized to maximize both sensitivity and linearity. Two resonant peaks are observed with maxima at 0,8 eV and 2,2 eV ( 10,5 and 7,5 ssb per 10^3 electrons, respectively).

  3. Collisions of low-energy electrons with formamide

    NASA Astrophysics Data System (ADS)

    Bettega, Márcio H. F.

    2010-06-01

    We present integral and momentum transfer cross sections for elastic scattering of low-energy electrons by formamide (HCONH2) from 1 to 12 eV. To calculate the cross sections we employed the Schwinger multichannel method with pseudopotentials in the static-exchange and in the static-exchange-polarization approximations. We found a π* shape resonance belonging to the A″ symmetry which is located at around 4.5 eV in the static-exchange approximation, and at around 2.5 eV in the static-exchange-polarization approximation. This result is in close agreement with the observations of Seydou [Eur. Phys. J. DEPJDF61434-606010.1140/epjd/e2005-00089-5 35, 199 (2005)] which reported the value of 2.05 eV to the vertical electron attachment energy, and is lower than the value of 3.77 eV computed by Goumans [J. Chem. Theory Comp.JPCBFK1549-961810.1021/ct800379h 5, 217 (2009)]. We carried out additional minimal basis set electronic structure calculations to help in the interpretation of our results. Our results support the conclusions of Goumans , namely, that this resonance may initiate the indirect dissociation mechanism of formamide by electron impact.

  4. Uranium trioxide behavior during electron energy loss spectroscopy analysis

    NASA Astrophysics Data System (ADS)

    Degueldre, Claude; Alekseev, Evgeny V.

    2015-03-01

    A sample of uranium trioxide (UO3) was produced by focused ion beam (~10 μm×~10 μm×<0.5 μm) for transmission electron and electron energy loss (EEL) spectroscopy examinations in a transmission electron microscope (TEM). The EEL spectra were recorded as a function of the thickness for the P and O edges in the low energy range 0-350 eV and were compared to spectra of UO3 small grains attached to a TEM grid. The EEL spectrum was studied through a range of thicknesses going from ~60 to ~260 nm. The EEL spectra recorded for UO3 are compared with those recorded for UO2. The reduction of UO3 into U4O9 and/or UO2 is readily observed apparently during the TEM investigations and as confirmed by electron diffraction (eD). This redox effect is similar to that known for other redox sensitive oxides. Recommendations are suggested to avoid sample decomposition.

  5. Superthermal electron energy interchange in the ionosphere-plasmasphere system

    NASA Astrophysics Data System (ADS)

    Khazanov, G. V.; Glocer, A.; Liemohn, M. W.; Himwich, E. W.

    2013-02-01

    A self-consistent approach to superthermal electron (SE) transport along closed field lines in the inner magnetosphere is used to examine the concept of plasmaspheric transparency, magnetospheric trapping, and SE energy deposition to the thermal electrons. The dayside SE population is generated both by photoionization of the thermosphere and by secondary electron production from impact ionization when the photoelectrons collide with upper atmospheric neutral particles. It is shown that a self-consistent approach to this problem produces significant changes, in comparison with other approaches, in the SE energy exchange between the plasmasphere and the two magnetically conjugate ionospheres. In particular, plasmaspheric transparency can vary by a factor of two depending on the thermal plasma content along the field line and the illumination conditions of the two conjugate ionospheres. This variation in plasmaspheric transparency as a function of thermal plasma and ionospheric conditions increases with L-shell, as the field line gets longer and the equatorial pitch angle extent of the fly-through zone gets smaller. The inference drawn from these results is that such a self-consistent approach to SE transport and energy deposition should be included to ensure robustness in ionosphere-magnetosphere modeling networks.

  6. Interpretation of low-energy electron-CO2 scattering

    NASA Astrophysics Data System (ADS)

    Vanroose, W.; McCurdy, C. W.; Rescigno, T. N.

    2002-09-01

    Recent ab initio calculations of low-energy electron-CO2 scattering [Rescigno et al., Phys. Rev. A 65, 032716 (2002)] are interpreted using an analytically solvable model. The model, which treats two partial-wave Hamiltonians with different l values coupled by a long-range (d/r2) interaction, is a generalization of similar single-channel models that have previously been used to interpret the low-energy behavior of electron scattering by polar diatomic molecules. The present model is used to track the pole trajectories of both resonances and virtual states, both of which figure prominently in low-energy electron-CO2 scattering, in the plane of complex momentum. The connection between resonant and virtual states is found to display a different topology in the case of a polyatomic molecule than it does in diatomic molecules. In a polyatomic molecule, these states may have a conical intersection and consequently acquire a Berry phase along closed paths in two-dimensional vibrational motion. The analytic behavior of the S matrix is further modified by the presence of a geometry-dependent dipole moment.

  7. Superthermal Electron Energy Interchange in the Ionosphere-Plasmasphere System

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Glocer, A.; Liemohn, M. W.; Himwich, E. W.

    2013-01-01

    A self-consistent approach to superthermal electron (SE) transport along closed field lines in the inner magnetosphere is used to examine the concept of plasmaspheric transparency, magnetospheric trapping, and SE energy deposition to the thermal electrons. The dayside SE population is generated both by photoionization of the thermosphere and by secondary electron production from impact ionization when the photoelectrons collide with upper atmospheric neutral particles. It is shown that a self-consistent approach to this problem produces significant changes, in comparison with other approaches, in the SE energy exchange between the plasmasphere and the two magnetically conjugate ionospheres. In particular, plasmaspheric transparency can vary by a factor of two depending on the thermal plasma content along the field line and the illumination conditions of the two conjugate ionospheres. This variation in plasmaspheric transparency as a function of thermal plasma and ionospheric conditions increases with L-shell, as the field line gets longer and the equatorial pitch angle extent of the fly-through zone gets smaller. The inference drawn from these results is that such a self-consistent approach to SE transport and energy deposition should be included to ensure robustness in ionosphere-magnetosphere modeling networks.

  8. TOPICAL REVIEW: RBE of low energy electrons and photons

    NASA Astrophysics Data System (ADS)

    Nikjoo, Hooshang; Lindborg, Lennart

    2010-05-01

    Relative biological effectiveness (RBE) compares the severity of damage induced by a radiation under test at a dose D relative to the reference radiation Dx for the same biological endpoint. RBE is an important parameter in estimation of risk from exposure to ionizing radiation (IR). The present work provides a review of the recently published data and the knowledge of the RBE of low energy electrons and photons. The review presents RBE values derived from experimental data and model calculations including cell inactivation, chromosome aberration, cell transformation, micronuclei formation and induction of double-strand breaks. Biophysical models, including physical features of radiation track, and microdosimetry parameters are presented, analysed and compared with experimental data. The biological effects of low energy electrons and photons are of particular interest in radiation biology as these are strongly absorbed in micrometer and sub-micrometer layers of tissue. RBE values not only depend on the electron and photon energies but also on the irradiation condition, cell type and experimental conditions.

  9. Electronic and optical properties of Fe, Pd, and Ti studied by reflection electron energy loss spectroscopy

    SciTech Connect

    Tahir, Dahlang; Kraaer, Jens; Tougaard, Sven

    2014-06-28

    We have studied the electronic and optical properties of Fe, Pd, and Ti by reflection electron energy-loss spectroscopy (REELS). REELS spectra recorded for primary energies in the range from 300 eV to 10 keV were corrected for multiple inelastically scattered electrons to determine the effective inelastic-scattering cross section. The dielectric functions and optical properties were determined by comparing the experimental inelastic-electron scattering cross section with a simulated cross section calculated within the semi-classical dielectric response model in which the only input is Im(−1/ε) by using the QUEELS-ε(k,ω)-REELS software package. The complex dielectric functions ε(k,ω), in the 0–100 eV energy range, for Fe, Pd, and Ti were determined from the derived Im(−1/ε) by Kramers-Kronig transformation and then the refractive index n and extinction coefficient k. The validity of the applied model was previously tested and found to give consistent results when applied to REELS spectra at energies between 300 and 1000 eV taken at widely different experimental geometries. In the present paper, we provide, for the first time, a further test on its validity and find that the model also gives consistent results when applied to REELS spectra in the full range of primary electron energies from 300 eV to 10000 eV. This gives confidence in the validity of the applied method.

  10. Develop real-time dosimetry concepts and instrumentation for long term missions

    NASA Technical Reports Server (NTRS)

    Braby, L. A.

    1981-01-01

    The development of a rugged portable dosimetry system, based on microdosimetry techniques, which will measure dose and evaluate dose equivalent in a mixed radiation field is described. Progress in the desired dosimetry system can be divided into three distinct areas: development of the radiation detector, and electron system are presented. The mathematical techniques required are investigated.

  11. High resolution electron energy loss spectroscopy with two-dimensional energy and momentum mapping.

    PubMed

    Zhu, Xuetao; Cao, Yanwei; Zhang, Shuyuan; Jia, Xun; Guo, Qinlin; Yang, Fang; Zhu, Linfan; Zhang, Jiandi; Plummer, E W; Guo, Jiandong

    2015-08-01

    High resolution electron energy loss spectroscopy (HREELS) is a powerful technique to probe vibrational and electronic excitations at surfaces. The dispersion relation of surface excitations, i.e., energy as a function of momentum, has in the past, been obtained by measuring the energy loss at a fixed angle (momentum) and then rotating sample, monochromator, or analyzer. Here, we introduce a new strategy for HREELS, utilizing a specially designed lens system with a double-cylindrical Ibach-type monochromator combined with a commercial VG Scienta hemispherical electron energy analyzer, which can simultaneously measure the energy and momentum of the scattered electrons. The new system possesses high angular resolution (<0.1°), detecting efficiency and sampling density. The capabilities of this system are demonstrated using Bi2Sr2CaCu2O(8+δ). The time required to obtain a complete dispersion spectrum is at least one order of magnitude shorter than conventional spectrometers, with improved momentum resolution and no loss in energy resolution.

  12. High resolution electron energy loss spectroscopy with two-dimensional energy and momentum mapping

    SciTech Connect

    Zhu, Xuetao; Cao, Yanwei; Zhang, Shuyuan; Jia, Xun; Guo, Qinlin; Yang, Fang; Zhu, Linfan; Zhang, Jiandi; Plummer, E. W.; Guo, Jiandong

    2015-08-15

    High resolution electron energy loss spectroscopy (HREELS) is a powerful technique to probe vibrational and electronic excitations at surfaces. The dispersion relation of surface excitations, i.e., energy as a function of momentum, has in the past, been obtained by measuring the energy loss at a fixed angle (momentum) and then rotating sample, monochromator, or analyzer. Here, we introduce a new strategy for HREELS, utilizing a specially designed lens system with a double-cylindrical Ibach-type monochromator combined with a commercial VG Scienta hemispherical electron energy analyzer, which can simultaneously measure the energy and momentum of the scattered electrons. The new system possesses high angular resolution (<0.1°), detecting efficiency and sampling density. The capabilities of this system are demonstrated using Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+δ}. The time required to obtain a complete dispersion spectrum is at least one order of magnitude shorter than conventional spectrometers, with improved momentum resolution and no loss in energy resolution.

  13. In vivo dosimetry for IMRT

    SciTech Connect

    Vial, Philip

    2011-05-05

    In vivo dosimetry has a well established role in the quality assurance of 2D radiotherapy and 3D conformal radiotherapy. The role of in vivo dosimetry for IMRT is not as well established. IMRT introduces a range of technical issues that complicate in vivo dosimetry. The first decade or so of IMRT implementation has largely relied upon pre-treatment phantom based dose verification. During that time, several new devices and techniques for in vivo dosimetry have emerged with the promise of providing the ultimate form of IMRT dose verification. Solid state dosimeters continue to dominate the field of in vivo dosimetry in the IMRT era. In this report we review the literature on in vivo dosimetry for IMRT, with an emphasis on clinical evidence for different detector types. We describe the pros and cons of different detectors and techniques in the IMRT setting and the roles that they are likely to play in the future.

  14. Influence of stochastic magnetic fields on the confinement of runaway electrons and thermal electron energy in tokamaks

    SciTech Connect

    Mynick, H.E.; Strachan, J.D.

    1980-07-01

    The ratio of the runaway electron confinement to thermal electron energy confinement is derived for tokamaks where both processes are determined by free streaming along stochastic magnetic field lines. The runaway electron confinement is enhanced at high runaway electron energies due to phase averaging over the magnetic perturbations when the runaway electron drift surfaces are dislaced from the magnetic surfaces. Comparison with experimental data from LT-3, ORMAK, PLT, ST, and TM-3 indicates that magnetic stochasticity may explain the relative transport rates of runaways and thermal electron energy.

  15. MO-A-BRD-07: Feasibility of X-Ray Acoustic Computed Tomography as a Tool for Calibration and In Vivo Dosimetry of Radiotherapy Electron and Photon Beams

    SciTech Connect

    Hickling, S; Hobson, M; El Naqa, I

    2014-06-15

    Purpose: This work simulates radiation-induced acoustic waves to assess the feasibility of x-ray acoustic computed tomography (XACT) as a dosimeter. XACT exploits the phenomenon that acoustic waves with amplitude proportional to the dose deposited are induced following a radiation pulse. After detecting these acoustic waves with an ultrasound transducer, an image of the dose distribution can be reconstructed in realtime. Methods: Monte Carlo was used to simulate the dose distribution for monoenergetic 6 MeV photon and 9 MeV electron beams incident on a water tank. The dose distribution for a prostate patient planned with a photon 4-field box technique was calculated using clinical treatment planning software. All three dose distributions were converted into initial pressure distributions, and transportation of the induced acoustic waves was simulated using an open-source toolkit. Ideal transducers were placed around the circumference of the target to detect the acoustic waves, and a time reversal reconstruction algorithm was used to obtain an XACT image of the dose for each radiation pulse. Results: For the photon water tank relative dosimetry case, it was found that the normalized acoustic signal amplitude agreed with the normalized dose at depths from 0 cm to 10 cm, with an average percent difference of 0.5%. For the reconstructed in-plane dose distribution of an electron water tank irradiation, all pixels passed a 3%–3 mm 2D gamma test. The reconstructed prostate dose distribution closely resembled the plan, with 89% of pixels passing a 3%–3 mm 2D gamma test. For all situations, the amplitude of the induced acoustic waves ranged from 0.01 Pa to 1 Pa. Conclusion: Based on the amplitude of the radiation-induced acoustic waves and accuracy of the reconstructed dose distributions, XACT is a feasible technique for dosimetry in both calibration and in vivo environments for photon and electron beams and merits further investigation. Funding from NSERC, CIHR and Mc

  16. Dosimetry for Radiopharmaceutical Therapy

    PubMed Central

    Sgouros, George; Hobbs, Robert F.

    2014-01-01

    Radiopharmaceutical therapy (RPT) involves the use of radionuclides that are either conjugated to tumor-targeting agents (eg, nanoscale constructs, antibodies, peptides, and small molecules) or concentrated in tissue through natural physiological mechanisms that occur predominantly in neoplastic or otherwise targeted cells (eg, Graves disease). The ability to collect pharmacokinetic data by imaging and use this to perform dosimetry calculations for treatment planning distinguishes RPT from other systemic treatment modalities. Treatment planning has not been widely adopted, in part, because early attempts to relate dosimetry to outcome were not successful. This was partially because a dosimetry methodology appropriate to risk evaluation rather than efficacy and toxicity was being applied to RPT. The weakest links in both diagnostic and therapeutic dosimetry are the accuracy of the input and the reliability of the radiobiological models used to convert dosimetric data to the relevant biologic end points. Dosimetry for RPT places a greater demand on both of these weak links. To date, most dosimetric studies have been retrospective, with a focus on tumor dose-response correlations rather than prospective treatment planning. In this regard, transarterial radioembolization also known as intra-arterial radiation therapy, which uses radiolabeled (90Y) microspheres of glass or resin to treat lesions in the liver holds much promise for more widespread dosimetric treatment planning. The recent interest in RPT with alpha-particle emitters has highlighted the need to adopt a dosimetry methodology that specifically accounts for the unique aspects of alpha particles. The short range of alpha-particle emitters means that in cases in which the distribution of activity is localized to specific functional components or cell types of an organ, the absorbed dose will be equally localized and dosimetric calculations on the scale of organs or even voxels (~5 mm) are no longer sufficient

  17. Simulating electron energy loss spectroscopy with the MNPBEM toolbox

    NASA Astrophysics Data System (ADS)

    Hohenester, Ulrich

    2014-03-01

    Within the MNPBEM toolbox, we show how to simulate electron energy loss spectroscopy (EELS) of plasmonic nanoparticles using a boundary element method approach. The methodology underlying our approach closely follows the concepts developed by García de Abajo and coworkers (Garcia de Abajo, 2010). We introduce two classes eelsret and eelsstat that allow in combination with our recently developed MNPBEM toolbox for a simple, robust, and efficient computation of EEL spectra and maps. The classes are accompanied by a number of demo programs for EELS simulation of metallic nanospheres, nanodisks, and nanotriangles, and for electron trajectories passing by or penetrating through the metallic nanoparticles. We also discuss how to compute electric fields induced by the electron beam and cathodoluminescence. Catalogue identifier: AEKJ_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEKJ_v2_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 38886 No. of bytes in distributed program, including test data, etc.: 1222650 Distribution format: tar.gz Programming language: Matlab 7.11.0 (R2010b). Computer: Any which supports Matlab 7.11.0 (R2010b). Operating system: Any which supports Matlab 7.11.0 (R2010b). RAM:≥1 GB Classification: 18. Catalogue identifier of previous version: AEKJ_v1_0 Journal reference of previous version: Comput. Phys. Comm. 183 (2012) 370 External routines: MESH2D available at www.mathworks.com Does the new version supersede the previous version?: Yes Nature of problem: Simulation of electron energy loss spectroscopy (EELS) for plasmonic nanoparticles. Solution method: Boundary element method using electromagnetic potentials. Reasons for new version: The new version of the toolbox includes two additional classes for the simulation of electron energy

  18. Vibrational and Electronic Energy Transfer and Dissociation of Diatomic Molecules by Electron Collisions

    NASA Technical Reports Server (NTRS)

    Huo, Winifred M.; Langhoff, Stephen R. (Technical Monitor)

    1995-01-01

    At high altitudes and velocities equal to or greater than the geosynchronous return velocity (10 kilometers per second), the shock layer of a hypersonic flight will be in thermochemical nonequilibrium and partially ionized. The amount of ionization is determined by the velocity. For a trans atmospheric flight of 10 kilometers per second and at an altitude of 80 kilometers, a maximum of 1% ionization is expected. At a velocity of 12 - 17 kilometer per second, such as a Mars return mission, up to 30% of the atoms and molecules in the flow field will be ionized. Under those circumstances, electrons play an important role in determining the internal states of atoms and molecules in the flow field and hence the amount of radiative heat load and the distance it takes for the flow field to re-establish equilibrium. Electron collisions provide an effective means of transferring energy even when the electron number density is as low as 1%. Because the mass of an electron is 12,760 times smaller than the reduced mass of N2, its average speed, and hence its average collision frequency, is more than 100 times larger. Even in the slightly ionized regime with only 1% electrons, the frequency of electron-molecule collisions is equal to or larger than that of molecule-molecule collisions, an important consideration in the low density part of the atmosphere. Three electron-molecule collision processes relevant to hypersonic flows will be considered: (1) vibrational excitation/de-excitation of a diatomic molecule by electron impact, (2) electronic excitation/de-excitation, and (3) dissociative recombination in electron-diatomic ion collisions. A review of available data, both theory and experiment, will be given. Particular attention will be paid to tailoring the molecular physics to the condition of hypersonic flows. For example, the high rotational temperatures in a hypersonic flow field means that most experimental data carried out under room temperatures are not applicable. Also

  19. Dielectric surface discharges: Effects of combined low-energy and high-energy incident electrons

    NASA Technical Reports Server (NTRS)

    Balmain, K. G.; Hirt, W.

    1981-01-01

    Dielectric surface discharges affected by the addition of high energy electrons at 5 pA/sq cm to a primary 20 keV, 10 nA/sq cm electron beam with the high energy broad spectrum particles coming from the beta decay of Strontium 90 are studied. Kapton exhibits significantly increased discharge strength, increased waiting time between discharges, and a decreased number of discharges per specimen before discharge cessation. Mylar exhibits similar but less pronounced effects, while Teflon is relatively unaffected. With Kapton and Mylar, the high energy electrons act in some way to delay the instant of discharge ignition so that more charge can be accumulated and hence released during discharge.

  20. Dielectric surface discharges - Effects of combined low-energy and high-energy incident electrons

    NASA Technical Reports Server (NTRS)

    Balmain, K. G.; Hirt, W.

    1983-01-01

    Dielectric surface discharges affected by the addition of high energy electrons at 5 pA/sq cm to a primary 20 keV, 10 nA/sq cm electron beam with the high energy broad spectrum particles coming from the beta decay of Strontium 90 are studied. Kapton exhibits significantly increased discharge strength, increased waiting time between discharges, and a decreased number of discharges per specimen before discharge cessation. Mylar exhibits similar but less pronounced effects, while Teflon is relatively unaffected. With Kapton and Mylar, the high energy electrons act in some way to delay the instant of discharge ignition so that more charge can be accumulated and hence released during discharge. Previously announced in STAR as N82-14222

  1. Energy-Filtered Tunnel Transistor: A New Device Concept Toward Extremely-Low Energy Consumption Electronics

    DTIC Science & Technology

    2015-12-17

    single-electron transistor, tunnel transistor, energy- efficient electronics 16. SECURITY CLASSIFICATION OF: a. REPORT u b. ABSTRACT U c. THIS PAGE...Publications/Patents p.39 III.B. Presentations p.39 . 9 . I. Introduction and Background Excessive heat dissipation (or power consumption) of modem...of heat dissipation/power consumption of smart phones, tablets, and laptops is such that it prohibits a continuous and prolonged operation of these

  2. Benefits of Power Electronic Interfaces for Distributed Energy Systems

    SciTech Connect

    Kroposki, B.; Pink, C.; DeBlasio, R.; Thomas, H.; Simoes, M.; Sen, P. K.

    2006-01-01

    Optimization of overall electrical system performance is important for the long-term economic viability of distributed energy (DE) systems. With the increasing use of DE systems in industry and its technological advancement, it is becoming more important to understand the integration of these systems with the electric power systems. New markets and benefits for distributed energy applications include the ability to provide ancillary services, improve energy efficiency, enhance power system reliability, and allow customer choice. Advanced power electronic (PE) interfaces will allow DE systems to provide increased functionality through improved power quality and voltage/VAR support, increase electrical system compatibility by reducing the fault contributions, and flexibility in operations with various other DE sources, while reducing overall interconnection costs. This paper examines the system integration and optimization issues associated with DE systems and show the benefits of using PE interfaces for such applications.

  3. Application of jade samples for high-dose dosimetry using the EPR technique.

    PubMed

    Teixeira, Maria Inês; Melo, Adeilson P; Ferraz, Gilberto M; Caldas, Linda V E

    2010-01-01

    The dosimeter characteristics of jade samples were studied for application in high-dose dosimetry. Jade is the common denomination of two silicates: jadeite and actinolite. The EPR spectra of different jade samples were obtained after irradiation with absorbed doses of 100 Gy up to 20 kGy. The jade samples present signals that increase with the absorbed dose (g-factors around 2.00); they can be attributed to electron centers. The EPR spectra obtained for the USA jade samples and their main dosimetric properties as reproducibility, calibration curves and energy dependence were investigated.

  4. Sample thickness determination by scanning transmission electron microscopy at low electron energies.

    PubMed

    Volkenandt, Tobias; Müller, Erich; Gerthsen, Dagmar

    2014-02-01

    Sample thickness is a decisive parameter for any quantification of image information and composition in transmission electron microscopy. In this context, we present a method to determine the local sample thickness by scanning transmission electron microscopy at primary energies below 30 keV. The image intensity is measured with respect to the intensity of the incident electron beam and can be directly compared with Monte Carlo simulations. Screened Rutherford and Mott scattering cross-sections are evaluated with respect to fitting experimental data with simulated image intensities as a function of the atomic number of the sample material and primary electron energy. The presented method is tested for sample materials covering a wide range of atomic numbers Z, that is, fluorenyl hexa-peri-hexabenzocoronene (Z = 3.5), carbon (Z = 6), silicon (Z = 14), gallium nitride (Z = 19), and tungsten (Z = 74). Investigations were conducted for two primary energies (15 and 30 keV) and a sample thickness range between 50 and 400 nm.

  5. Retarding field energy analyzer for high energy pulsed electron beam measurements

    NASA Astrophysics Data System (ADS)

    Hu, Jing; Rovey, Joshua L.; Zhao, Wansheng

    2017-01-01

    A retarding field energy analyzer (RFEA) designed specifically for high energy pulsed electron beam measurements is described in this work. By proper design of the entrance grid, attenuation grid, and beam collector, this RFEA is capable of determining the time-resolved energy distribution of high energy pulsed electron beams normally generated under "soft vacuum" environment. The performance of the RFEA is validated by multiple tests of the leakage current, attenuation coefficient, and response time. The test results show that the retarding potential in the RFEA can go up to the same voltage as the electron beam source, which is 20 kV for the maximum in this work. Additionally, an attenuation coefficient of 4.2 is obtained in the RFEA while the percent difference of the rise time of the electron beam pulse before and after attenuation is lower than 10%. When compared with a reference source, the percent difference of the RFEA response time is less than 10% for fall times greater than 35 ns. Finally, the test results of the 10 kV pseudospark-based pulsed electron beam currents collected under varying retarding potentials are presented in this paper.

  6. Determining the static electronic and vibrational energy correlations via two-dimensional electronic-vibrational spectroscopy

    DOE PAGES

    Dong, Hui; Lewis, Nicholas H. C.; Oliver, Thomas A. A.; ...

    2015-05-07

    Changes in the electronic structure of pigments in protein environments and of polar molecules in solution inevitably induce a re-adaption of molecular nuclear structure. Both changes of electronic and vibrational energies can be probed with visible or infrared lasers, such as two-dimensional electronic spectroscopy or vibrational spectroscopy. The extent to which the two changes are correlated remains elusive. The recent demonstration of two-dimensional electronic-vibrational (2DEV) spectroscopy potentially enables a direct measurement of this correlation experimentally. However, it has hitherto been unclear how to characterize the correlation from the spectra. In this report, we present a theoretical formalism to demonstrate themore » slope of the nodal line between the excited state absorption and ground state bleach peaks in the spectra as a characterization of the correlation between electronic and vibrational transition energies. In conclusion, we also show the dynamics of the nodal line slope is correlated to the vibrational spectral dynamics. Additionally, we demonstrate the fundamental 2DEV spectral line-shape of a monomer with newly developed response functions« less

  7. Determining the static electronic and vibrational energy correlations via two-dimensional electronic-vibrational spectroscopy

    SciTech Connect

    Dong, Hui; Lewis, Nicholas H. C.; Oliver, Thomas A. A.; Fleming, Graham R.

    2015-05-07

    Changes in the electronic structure of pigments in protein environments and of polar molecules in solution inevitably induce a re-adaption of molecular nuclear structure. Both changes of electronic and vibrational energies can be probed with visible or infrared lasers, such as two-dimensional electronic spectroscopy or vibrational spectroscopy. The extent to which the two changes are correlated remains elusive. The recent demonstration of two-dimensional electronic-vibrational (2DEV) spectroscopy potentially enables a direct measurement of this correlation experimentally. However, it has hitherto been unclear how to characterize the correlation from the spectra. In this paper, we present a theoretical formalism to demonstrate the slope of the nodal line between the excited state absorption and ground state bleach peaks in the spectra as a characterization of the correlation between electronic and vibrational transition energies. We also show the dynamics of the nodal line slope is correlated to the vibrational spectral dynamics. Additionally, we demonstrate the fundamental 2DEV spectral line-shape of a monomer with newly developed response functions.

  8. Determining the static electronic and vibrational energy correlations via two-dimensional electronic-vibrational spectroscopy.

    PubMed

    Dong, Hui; Lewis, Nicholas H C; Oliver, Thomas A A; Fleming, Graham R

    2015-05-07

    Changes in the electronic structure of pigments in protein environments and of polar molecules in solution inevitably induce a re-adaption of molecular nuclear structure. Both changes of electronic and vibrational energies can be probed with visible or infrared lasers, such as two-dimensional electronic spectroscopy or vibrational spectroscopy. The extent to which the two changes are correlated remains elusive. The recent demonstration of two-dimensional electronic-vibrational (2DEV) spectroscopy potentially enables a direct measurement of this correlation experimentally. However, it has hitherto been unclear how to characterize the correlation from the spectra. In this paper, we present a theoretical formalism to demonstrate the slope of the nodal line between the excited state absorption and ground state bleach peaks in the spectra as a characterization of the correlation between electronic and vibrational transition energies. We also show the dynamics of the nodal line slope is correlated to the vibrational spectral dynamics. Additionally, we demonstrate the fundamental 2DEV spectral line-shape of a monomer with newly developed response functions.

  9. Determining the static electronic and vibrational energy correlations via two-dimensional electronic-vibrational spectroscopy

    SciTech Connect

    Dong, Hui; Lewis, Nicholas H. C.; Oliver, Thomas A. A.; Fleming, Graham R.

    2015-05-07

    Changes in the electronic structure of pigments in protein environments and of polar molecules in solution inevitably induce a re-adaption of molecular nuclear structure. Both changes of electronic and vibrational energies can be probed with visible or infrared lasers, such as two-dimensional electronic spectroscopy or vibrational spectroscopy. The extent to which the two changes are correlated remains elusive. The recent demonstration of two-dimensional electronic-vibrational (2DEV) spectroscopy potentially enables a direct measurement of this correlation experimentally. However, it has hitherto been unclear how to characterize the correlation from the spectra. In this report, we present a theoretical formalism to demonstrate the slope of the nodal line between the excited state absorption and ground state bleach peaks in the spectra as a characterization of the correlation between electronic and vibrational transition energies. In conclusion, we also show the dynamics of the nodal line slope is correlated to the vibrational spectral dynamics. Additionally, we demonstrate the fundamental 2DEV spectral line-shape of a monomer with newly developed response functions

  10. Relative optically stimulated luminescence and thermoluminescence efficiencies of Al{sub 2}O{sub 3}:C dosimeters to heavy charged particles with energies relevant to space and radiotherapy dosimetry

    SciTech Connect

    Sawakuchi, G. O.; Yukihara, E. G.; McKeever, S. W. S.; Benton, E. R.; Gaza, R.; Uchihori, Y.; Yasuda, N.; Kitamura, H.

    2008-12-15

    This article presents a comprehensive characterization of the thermoluminescence (TL) and optically stimulated luminescence (OSL) relative luminescence efficiencies of carbon-doped aluminum (Al{sub 2}O{sub 3}:C) for heavy charged particles (HCPs) with atomic numbers ranging from 1 (proton) to 54 (xenon) and energies ranging from 7 to 1000 MeV/u, and investigates the dependence of the Al{sub 2}O{sub 3}:C response on experimental conditions. Relative luminescence efficiency values are presented for 19 primary charge/energy combinations, plus 31 additional charge/energy combinations obtained by introducing absorbers in the primary beam. Our results show that for energies of hundreds of MeV/u the data can be described by a single curve of relative luminescence efficiency versus linear energy transfer (LET). This information is needed to compensate for the reduced OSL efficiency to high-LET particles in such applications as space dosimetry. For lower energies, the relative luminescence efficiency as function of LET cannot be described by a single curve; instead, it separates into different components corresponding to different particles. We also present data on the low-LET dose response of Al{sub 2}O{sub 3}:C, measured under the same experimental conditions in which the relative luminescence efficiencies to HCPs were obtained, providing information relevant to future theoretical investigations of HCP energy deposition and luminescence production in Al{sub 2}O{sub 3}:C.

  11. Low Energy Electrons as Probing Tool for Astrochemical Reaction Mechanisms

    NASA Astrophysics Data System (ADS)

    Hendrik Bredehöft, Jan; Swiderek, Petra; Hamann, Thorben

    The complexity of molecules found in space varies widely. On one end of the scale of molecular complexity is the hydrogen molecule H2 . Its formation from H atoms is if not understood than at least thoroughly investigated[1]. On the other side of said spectrum the precursors to biopolymers can be found, such as amino acids[2,3], sugars[4], lipids, cofactors[5], etc, and the kerogen-like organic polymer material in carbonaceous meteorites called "black stuff" [6]. These have also received broad attention in the last decades. Sitting in the middle between these two extremes are simple molecules that are observed by radio astronomy throughout the Universe. These are molecules like methane (CH4 ), methanol (CH3 OH), formaldehyde (CH2 O), hydrogen cyanide (HCN), and many many others. So far more than 40 such species have been identified.[7] They are often used in laboratory experiments to create larger complex molecules on the surface of simulated interstellar dust grains.[2,8] The mechanisms of formation of these observed starting materials for prebiotic chemistry is however not always clear. Also the exact mechanisms of formation of larger molecules in photochemical experiments are largely unclear. This is mostly due to the very complex chemistry going on which involves many different radicals and ions. The creation of radicals and ions can be studied in detail in laboratory simulations. They can be created in a setup mimicking interstellar grain chemistry using slow electrons. There is no free electron radiation in space. What can be found though is a lot of radiation of different sorts. There is electromagnetic radiation (UV light, X-Rays, rays, etc.) and there is particulate radiation as well in the form of high energy ions. This radiation can provide energy that drives chemical reactions in the ice mantles of interstellar dust grains. And while the multitude of different kinds of radiation might be a little confusing, they all have one thing in common: Upon

  12. High-resolution electron microscopy and electron energy-loss spectroscopy of giant palladium clusters

    NASA Astrophysics Data System (ADS)

    Oleshko, V.; Volkov, V.; Gijbels, R.; Jacob, W.; Vargaftik, M.; Moiseev, I.; van Tendeloo, G.

    1995-12-01

    Combined structural and chemical characterization of cationic polynuclear palladium coordination compounds Pd561L60(OAc)180, where L=1,10-phenantroline or 2,2'-bipyridine has been carried out by high-resolution electron microscopy (HREM) and analytical electron microscopy methods including electron energy-loss spectroscopy (EELS), zero-loss electron spectroscopic imaging, and energy-dispersive X-ray spectroscopy (EDX). The cell structure of the cluster matter with almost completely uniform metal core size distributions centered around 2.3 ±0.5 nm was observed. Zero-loss energy filtering allowed to improve the image contrast and resolution. HREM images showed that most of the palladium clusters had a cubo-octahedral shape. Some of them had a distorted icosahedron structure exhibiting multiple twinning. The selected-area electron diffraction patterns confirmed the face centered cubic structure with lattice parameter close to that of metallic palladium. The energy-loss spectra of the populations of clusters contained several bands, which could be assigned to the delayed Pd M4, 5-edge at 362 eV, the Pd M3-edge at 533 eV and the Pd M2-edge at 561 eV, the NK-edge at about 400 eV, the O K-edge at 532 eV overlapping with the Pd M3-edge and the carbon C K-edge at 284 eV. Background subtraction was applied to reveal the exact positions and fine structure of low intensity elemental peaks. EELS evaluations have been confirmed by EDX. The recorded series of the Pd M-edges and the N K-edge in the spectra of the giant palladium clusters obviously were related to Pd-Pd- and Pd-ligand bonding.

  13. Thermoluminescence dosimetry features of DY and Cu doped SrF2 nanoparticles under gamma irradiation.

    PubMed

    Zahedifar, M; Sadeghi, E; Kashefi biroon, M; Harooni, S; Almasifard, F

    2015-11-01

    Dy and Cu-doped SrF2 nanoparticles (NPs) were synthesized by using co-precipitation method and their possible application to solid state dosimetry were studied and compared to that of pure SrF2 NPs. X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive spectrometer (EDS) were used for sample characterization. The highest thermoluminescence (TL) response of SrF2:Dy and SrF2:Cu NPs were found respectively at 0.5 and 0.7mol% of Dy and Cu impurities. Seven overlapping glow peaks at 384, 406, 421, 449, 569, 495, 508K and three component glow peaks at 381, 421 and 467K were identified respectively for SrF2:Dy and SrF2:Cu NPs employing Tm-Tstop and computerized glow curve deconvolution (CGCD) methods. The TL sensitivity of SrF2:Dy is approximately the same as that of LiF:Mg,Ti (TLD-100) cheeps. Linear dose response were observed for the SrF2:Dy and SrF2:Cu NPs up to the absorbed doses of 1kGy and 10kGy correspondingly. Regarding other dosimetry characteristics of the produced NPs such as fading, reproducibility and thermal treatment, Dy and Cu doped SrF2 NPs recommend for high dose TL dosimetry applications.

  14. Electron Thermionic Emission from Graphene and a Thermionic Energy Converter

    NASA Astrophysics Data System (ADS)

    Liang, Shi-Jun; Ang, L. K.

    2015-01-01

    In this paper, we propose a model to investigate the electron thermionic emission from single-layer graphene (ignoring the effects of the substrate) and to explore its application as the emitter of a thermionic energy converter (TIC). An analytical formula is derived, which is a function of the temperature, work function, and Fermi energy level. The formula is significantly different from the traditional Richardson-Dushman (RD) law for which it is independent of mass to account for the supply function of the electrons in the graphene behaving like massless fermion quasiparticles. By comparing with a recent experiment [K. Jiang et al., Nano Res. 7, 553 (2014)] measuring electron thermionic emission from suspended single-layer graphene, our model predicts that the intrinsic work function of single-layer graphene is about 4.514 eV with a Fermi energy level of 0.083 eV. For a given work function, a scaling of T3 is predicted, which is different from the traditional RD scaling of T2. If the work function of the graphene is lowered to 2.5-3 eV and the Fermi energy level is increased to 0.8-0.9 eV, it is possible to design a graphene-cathode-based TIC operating at around 900 K or lower, as compared with the metal-based cathode TIC (operating at about 1500 K). With a graphene-based cathode (work function=4.514 eV ) at 900 K and a metallic-based anode (work function=2.5 eV ) like LaB6 at 425 K, the efficiency of our proposed TIC is about 45%.

  15. Alignment of electronic energy levels at electrochemical interfaces.

    PubMed

    Cheng, Jun; Sprik, Michiel

    2012-08-28

    The position of electronic energy levels in a phase depends on the surface potentials at its boundaries. Bringing two phases in contact at an interface will alter the surface potentials shifting the energy levels relative to each other. Calculating such shifts for electrochemical interfaces requires a combination of methods from computational surface science and physical chemistry. The problem is closely related to the computation of potentials of electrochemically inactive electrodes. These so-called ideally polarizable interfaces are impossible to cross for electrons. In this perspective we review two density functional theory based methods that have been developed for this purpose, the workfunction method and the hydrogen insertion method. The key expressions of the two methods are derived from the formal theory of absolute electrode potentials. As an illustration of the workfunction method we review the computation of the potential of zero charge of the Pt(111)-water interface as recently published by a number of groups. The example of the hydrogen insertion method is from our own work on the rutile TiO(2)(110)-water interface at the point of zero proton charge. The calculations are summarized in level diagrams aligning the electronic energy levels of the solid electrode (Fermi level of the metal, valence band maximum and conduction band minimum of the semiconductor) to the band edges of liquid water and the standard potential for the reduction of the hydroxyl radical. All potentials are calculated at the same level of density functional theory using the standard hydrogen electrode as common energy reference. Comparison to experiment identifies the treatment of the valence band of water as a potentially dangerous source of error for application to electrocatalysis and photocatalysis.

  16. Neutron beam measurement dosimetry

    SciTech Connect

    Amaro, C.R.

    1995-11-01

    This report describes animal dosimetry studies and phantom measurements. During 1994, 12 dogs were irradiated at BMRR as part of a 4 fraction dose tolerance study. The animals were first infused with BSH and irradiated daily for 4 consecutive days. BNL irradiated 2 beagles as part of their dose tolerance study using BPA fructose. In addition, a dog at WSU was irradiated at BMRR after an infusion of BPA fructose. During 1994, the INEL BNCT dosimetry team measured neutron flux and gamma dose profiles in two phantoms exposed to the epithermal neutron beam at the BMRR. These measurements were performed as a preparatory step to the commencement of human clinical trials in progress at the BMRR.

  17. Effects of inverse degree on electronic structure and electron energy-loss spectrum in zinc ferrites

    NASA Astrophysics Data System (ADS)

    Sun, D.; Wang, M. X.; Zhang, Z. H.; Tao, H. L.; He, M.; Song, B.; Li, Q.

    2015-12-01

    First-principles calculations were performed to study the effects of inverse degree in zinc ferrite on electronic structure and properties. The electron energy-loss near-edge fine structure (ELNES) were simulated, and the splitting of peak and intensities of the oxygen K-edges can be used to identify the inversion of zinc ferrite. More Fe3+ transferring from the octahedral sites to the tetrahedral sites lead to the changing of the ligand shells surrounding the absorbing atom, accounting for the observed changing in ELNES. The standard criterion for determining the reversal extent of the cations in zinc ferrite by ELNES was given.

  18. Coulomb repulsion and the electron beam directed energy weapon

    NASA Astrophysics Data System (ADS)

    Retsky, Michael W.

    2004-09-01

    Mutual repulsion of discrete charged particles or Coulomb repulsion is widely considered to be an ultimate hard limit in charged particle optics. It prevents the ability to finely focus high current beams into small spots at large distances from defining apertures. A classic example is the 1970s era "Star Wars" study of an electron beam directed energy weapon as an orbiting antiballistic missile device. After much analysis, it was considered physically impossible to focus a 1000-amp 1-GeV beam into a 1-cm diameter spot 1000-km from the beam generator. The main reason was that a 1-cm diameter beam would spread to 5-m diameter at 1000-km due to Coulomb repulsion. Since this could not be overcome, the idea was abandoned. But is this true? What if the rays were reversed? That is, start with a 5-m beam converging slightly with the same nonuniform angular and energy distribution as the electrons from the original problem were spreading at 1000-km distance. Could Coulomb repulsion be overcome? Looking at the terms in computational studies, some are reversible while others are not. Based on estimates, the nonreversible terms should be small - of the order of 0.1 mm. If this is true, it is possible to design a practical electron beam directed weapon not limited by Coulomb repulsion.

  19. Ultralow Energy Electron Attachment at Sub-Millielectron Volt Resolution

    NASA Technical Reports Server (NTRS)

    Chutjian, A.; Kortyna, A.; Darrach, M. R.; Howe, P. -T.

    1999-01-01

    The technique of rare-gas photoionization has been extended by use of direct laser ionization to electron energies epsilon in the range 0-100 meV, with a resolution Delta(epsilon) of 0.4-0.5 meV (FWHM). Tunable UV light at (Lambda)276 nm is produced using a pulsed Nd:YAG laser and nonlinear mixing techniques. The beam is frequency tripled in a pulsed jet of xenon. The VUV radiation, tunable at (Lambda)92 nm, is then used to photoionize Xe at its 2P(sub 1/2) threshold (single-photon ionization). The photoelectrons produced interact with admixed target gas to generate negative ions through the s-wave capture process. Recent results in electron attachment to SF(sub 6) will be reported which show resonance structure at the opening of the ground-state vibrational channels. This structure corresponds to the process of vibrational excitation + attachment, which is superimposed on the underlying s-wave (direct) capture process. It should be a general phenomenon, present in a wide variety of zero-energy electron attaching molecules.

  20. Electron flux models for different energies at geostationary orbit

    NASA Astrophysics Data System (ADS)

    Boynton, R. J.; Balikhin, M. A.; Sibeck, D. G.; Walker, S. N.; Billings, S. A.; Ganushkina, N.

    2016-10-01

    Forecast models were derived for energetic electrons at all energy ranges sampled by the third-generation Geostationary Operational Environmental Satellites (GOES). These models were based on Multi-Input Single-Output Nonlinear Autoregressive Moving Average with Exogenous inputs methodologies. The model inputs include the solar wind velocity, density and pressure, the fraction of time that the interplanetary magnetic field (IMF) was southward, the IMF contribution of a solar wind-magnetosphere coupling function proposed by Boynton et al. (2011b), and the Dst index. As such, this study has deduced five new 1 h resolution models for the low-energy electrons measured by GOES (30-50 keV, 50-100 keV, 100-200 keV, 200-350 keV, and 350-600 keV) and extended the existing >800 keV and >2 MeV Geostationary Earth Orbit electron fluxes models to forecast at a 1 h resolution. All of these models were shown to provide accurate forecasts, with prediction efficiencies ranging between 66.9% and 82.3%.