Chen, Zhongxian; Yu, Haitao; Wen, Cheng
2014-01-01
The goal of direct drive ocean wave energy extraction system is to convert ocean wave energy into electricity. The problem explored in this paper is the design and optimal control for the direct drive ocean wave energy extraction system. An optimal control method based on internal model proportion integration differentiation (IM-PID) is proposed in this paper though most of ocean wave energy extraction systems are optimized by the structure, weight, and material. With this control method, the heavy speed of outer heavy buoy of the energy extraction system is in resonance with incident wave, and the system efficiency is largely improved. Validity of the proposed optimal control method is verified in both regular and irregular ocean waves, and it is shown that IM-PID control method is optimal in that it maximizes the energy conversion efficiency. In addition, the anti-interference ability of IM-PID control method has been assessed, and the results show that the IM-PID control method has good robustness, high precision, and strong anti-interference ability. PMID:25152913
Chen, Zhongxian; Yu, Haitao; Wen, Cheng
2014-01-01
The goal of direct drive ocean wave energy extraction system is to convert ocean wave energy into electricity. The problem explored in this paper is the design and optimal control for the direct drive ocean wave energy extraction system. An optimal control method based on internal model proportion integration differentiation (IM-PID) is proposed in this paper though most of ocean wave energy extraction systems are optimized by the structure, weight, and material. With this control method, the heavy speed of outer heavy buoy of the energy extraction system is in resonance with incident wave, and the system efficiency is largely improved. Validity of the proposed optimal control method is verified in both regular and irregular ocean waves, and it is shown that IM-PID control method is optimal in that it maximizes the energy conversion efficiency. In addition, the anti-interference ability of IM-PID control method has been assessed, and the results show that the IM-PID control method has good robustness, high precision, and strong anti-interference ability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Y., E-mail: thuzhangyu@foxmail.com; Huang, S. L., E-mail: huangsling@tsinghua.edu.cn; Wang, S.
The time-of-flight of the Lamb wave provides an important basis for defect evaluation in metal plates and is the input signal for Lamb wave tomographic imaging. However, the time-of-flight can be difficult to acquire because of the Lamb wave dispersion characteristics. This work proposes a time-frequency energy density precipitation method to accurately extract the time-of-flight of narrowband Lamb wave detection signals in metal plates. In the proposed method, a discrete short-time Fourier transform is performed on the narrowband Lamb wave detection signals to obtain the corresponding discrete time-frequency energy density distribution. The energy density values at the center frequency formore » all discrete time points are then calculated by linear interpolation. Next, the time-domain energy density curve focused on that center frequency is precipitated by least squares fitting of the calculated energy density values. Finally, the peak times of the energy density curve obtained relative to the initial pulse signal are extracted as the time-of-flight for the narrowband Lamb wave detection signals. An experimental platform is established for time-of-flight extraction of narrowband Lamb wave detection signals, and sensitivity analysis of the proposed time-frequency energy density precipitation method is performed in terms of propagation distance, dispersion characteristics, center frequency, and plate thickness. For comparison, the widely used Hilbert–Huang transform method is also implemented for time-of-flight extraction. The results show that the time-frequency energy density precipitation method can accurately extract the time-of-flight with relative error of <1% and thus can act as a universal time-of-flight extraction method for narrowband Lamb wave detection signals.« less
Zhang, Y; Huang, S L; Wang, S; Zhao, W
2016-05-01
The time-of-flight of the Lamb wave provides an important basis for defect evaluation in metal plates and is the input signal for Lamb wave tomographic imaging. However, the time-of-flight can be difficult to acquire because of the Lamb wave dispersion characteristics. This work proposes a time-frequency energy density precipitation method to accurately extract the time-of-flight of narrowband Lamb wave detection signals in metal plates. In the proposed method, a discrete short-time Fourier transform is performed on the narrowband Lamb wave detection signals to obtain the corresponding discrete time-frequency energy density distribution. The energy density values at the center frequency for all discrete time points are then calculated by linear interpolation. Next, the time-domain energy density curve focused on that center frequency is precipitated by least squares fitting of the calculated energy density values. Finally, the peak times of the energy density curve obtained relative to the initial pulse signal are extracted as the time-of-flight for the narrowband Lamb wave detection signals. An experimental platform is established for time-of-flight extraction of narrowband Lamb wave detection signals, and sensitivity analysis of the proposed time-frequency energy density precipitation method is performed in terms of propagation distance, dispersion characteristics, center frequency, and plate thickness. For comparison, the widely used Hilbert-Huang transform method is also implemented for time-of-flight extraction. The results show that the time-frequency energy density precipitation method can accurately extract the time-of-flight with relative error of <1% and thus can act as a universal time-of-flight extraction method for narrowband Lamb wave detection signals.
NASA Astrophysics Data System (ADS)
Kobayashi, Hiroshi; Suzuki, Seiji; Takahashi, Hisanori; Tange, Akira; Kikuchi, Kohki
This study deals with a method to realize automatic contour extraction of facial features such as eyebrows, eyes and mouth for the time-wise frontal face with various facial expressions. Because Snakes which is one of the most famous methods used to extract contours, has several disadvantages, we propose a new method to overcome these issues. We define the elastic contour model in order to hold the contour shape and then determine the elastic energy acquired by the amount of modification of the elastic contour model. Also we utilize the image energy obtained by brightness differences of the control points on the elastic contour model. Applying the dynamic programming method, we determine the contour position where the total value of the elastic energy and the image energy becomes minimum. Employing 1/30s time-wise facial frontal images changing from neutral to one of six typical facial expressions obtained from 20 subjects, we have estimated our method and find it enables high accuracy automatic contour extraction of facial features.
Extraction study on uranyl nitrate for energy applications
NASA Astrophysics Data System (ADS)
Giri, R.; Nath, G.
2017-07-01
Due to the ever-growing demand of energy nuclear reactor materials and the nuclear energy are now considered to be the most critical materials and source of energy for future era. Deposition of nuclear wastes in different industry, nuclear power sector are very much toxic in open environment which are hazardous to living being. There are different methods for extraction and reprocessing of these materials which are cost effective and tedious process. Ultrasonic assisted solvent extraction process is a most efficient and economical way for extraction of such type materials. The presence of third phase in mixing of extractants-diluent pair with aqueous phase imposes the problems in extraction of nuclear reactor materials. The appropriate solvent mixture in proper concentration is an important step in the solvent extraction process. Study of thermo-physical properties helps in selecting an optimum blend for extraction process. In the present work, the extraction of uranium with the binary mixture of Methyl Ethyl Ketone (MEK) and Kerosene was investigated and discussed with the variation of ultrasonic frequency for different temperatures. The result shows that the low frequency and low temperature is suitable environment for extraction. The extraction of uranium by this method is found to be a better result for extraction study in laboratory scale as well as industrial sector.
Review on the Extraction Methods of Crude oil from all Generation Biofuels in last few Decades
NASA Astrophysics Data System (ADS)
Bhargavi, G.; Nageswara Rao, P.; Renganathan, S.
2018-03-01
The ever growing demand for the energy fuels, economy of oil, depletion of energy resources and environmental protection are the inevitable challenges required to be solved meticulously in future decades in order to sustain the life of humans and other creatures. Switching to alternate fuels that are renewable, biodegradable, economically and environmentally friendly can quench the minimum thirst of fuel demands, in addition to mitigation of climate changes. At this moment, production of biofuels has got prominence. The term biofuels broadly refer to the fuels derived from living matter either animals or plants. Among the competent biofuels, biodiesel is one of the promising alternates for diesel engines. Biodiesel is renewable, environmentally friendly, safe to use with wide applications and biodegradable. Due to which, it has become a major focus of intensive global research and development of alternate energy. The present review has been focused specifically on biodiesel. Concerning to the biodiesel production, the major steps includes lipid extraction followed by esterification/transesterification. For the extraction of lipids, several extraction techniques have been put forward irrespective of the generations and feed stocks used. This review provides theoretical background on the two major extraction methods, mechanical and chemical extraction methods. The practical issues of each extraction method such as efficiency of extraction, extraction time, oil sources and its pros and cons are discussed. It is conceived that congregating information on oil extraction methods may helpful in further research advancements to ease biofuel production.
NASA Astrophysics Data System (ADS)
Wang, Bingjie; Sun, Qi; Pi, Shaohua; Wu, Hongyan
2014-09-01
In this paper, feature extraction and pattern recognition of the distributed optical fiber sensing signal have been studied. We adopt Mel-Frequency Cepstral Coefficient (MFCC) feature extraction, wavelet packet energy feature extraction and wavelet packet Shannon entropy feature extraction methods to obtain sensing signals (such as speak, wind, thunder and rain signals, etc.) characteristic vectors respectively, and then perform pattern recognition via RBF neural network. Performances of these three feature extraction methods are compared according to the results. We choose MFCC characteristic vector to be 12-dimensional. For wavelet packet feature extraction, signals are decomposed into six layers by Daubechies wavelet packet transform, in which 64 frequency constituents as characteristic vector are respectively extracted. In the process of pattern recognition, the value of diffusion coefficient is introduced to increase the recognition accuracy, while keeping the samples for testing algorithm the same. Recognition results show that wavelet packet Shannon entropy feature extraction method yields the best recognition accuracy which is up to 97%; the performance of 12-dimensional MFCC feature extraction method is less satisfactory; the performance of wavelet packet energy feature extraction method is the worst.
Combination pulsed electric field with ethanol solvent for Nannochloropsis sp. extraction
NASA Astrophysics Data System (ADS)
Nafis, Ghazy Ammar; Mumpuni, Perwitasari Yekti; Indarto, Budiman, Arief
2015-12-01
Nowadays, energy is one of human basic needs. As the human population increased, energy consumption also increased. This condition causes energy depletion. In case of the situation, alternative energy is needed to replace existing energy. Microalgae is chosen to become one of renewable energy resource, especially biodiesel, because it contains high amount of lipid instead of other feedstock which usually used. Fortunately, Indonesia has large area of water and high intensity of sunlight so microalgae cultivation becomes easier. Nannochloropsis sp., one of microalgae species, becomes the main focus because of its high lipid content. Many ways to break the cell wall of microalgae so the lipid content inside the microalgae will be released, for example conventional extraction, ultrasonic wave extraction, pressing, and electrical method. The most effective way for extraction is electrical method such as pulsed electric field method (PEF). The principal work of this method is by draining the electrical current into parallel plate. Parallel plate will generate the electrical field to break microalgae cell wall and the lipid will be released. The aim of this work is to evaluate two-stage procedure for extraction of useful components from microalgae Nannochloropsis sp. The first stage of this procedure includes pre-treatment of microalgae by ethanol solvent extraction and the second stage applies the PEF extraction using a binary mixture of water and ethanol solvent. Ethanol is chosen as solvent because it's safer to be used and easier to be handled than other solvent. Some variables that used to study the most effective operation conditions are frequency and duty cycle for microalgae. The optimum condition based on this research are at frequency 1 Hz and duty cycle 13%.
Error-based Extraction of States and Energy Landscapes from Experimental Single-Molecule Time-Series
NASA Astrophysics Data System (ADS)
Taylor, J. Nicholas; Li, Chun-Biu; Cooper, David R.; Landes, Christy F.; Komatsuzaki, Tamiki
2015-03-01
Characterization of states, the essential components of the underlying energy landscapes, is one of the most intriguing subjects in single-molecule (SM) experiments due to the existence of noise inherent to the measurements. Here we present a method to extract the underlying state sequences from experimental SM time-series. Taking into account empirical error and the finite sampling of the time-series, the method extracts a steady-state network which provides an approximation of the underlying effective free energy landscape. The core of the method is the application of rate-distortion theory from information theory, allowing the individual data points to be assigned to multiple states simultaneously. We demonstrate the method's proficiency in its application to simulated trajectories as well as to experimental SM fluorescence resonance energy transfer (FRET) trajectories obtained from isolated agonist binding domains of the AMPA receptor, an ionotropic glutamate receptor that is prevalent in the central nervous system.
Fonseca, Carlos Roberto; Esteller, María Vicenta; Díaz-Delgado, Carlos
2013-10-15
This work proposes a method to estimate increased energy consumption of pumping caused by a drawdown of groundwater level and the equivalent energy consumption of the motor-pump system in an aquifer under intensive exploitation. This method has been applied to the Valley of Toluca aquifer, located in the Mexican highlands, whose intensive exploitation is reflected in a decline in the groundwater level of between 0.10 and 1.6 m/year. Results provide a summary of energy consumption and a map of energy consumption isopleths showing the areas that are most susceptible to increases in energy consumption due to pumping. The proposed method can be used to estimate the effect of the intensive exploitation of the Valley of Toluca aquifer on the energy consumption of groundwater extraction. Finding reveals that, for the year 2006, groundwater extraction in the urban zone required 2.39 times more energy than the conditions observed 38 years earlier. In monetary terms, this reflects an increase of USD$ 3 million annually, according to 2005 energy production costs. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Shimada, J.; Shimada, M.; Tsunashima, K.; Aoyama, C.
2017-12-01
Methane hydrate is gaining remarkable attention as future natural gas resource. Collection procedures such as heating, depressurization, and chemical intrusion are being tested, but because of its high cost, they are still under development and not yet implemented. Cost reduction of the procedures cannot be expected as long as fossil fuel is used as power and heat source to extract methane gas from methane hydrate. In this regard, natural energy such as sunlight, wind, tidal, and wave powers should be implemented as energy resources as alternatives of fossil fuels. Using natural energy instead of fossil fuel will also help to prevent global warming. However, only a few proposals have been made regarding extraction methods to use clean natural energy effectively. In this study, authors will present a new extraction method using optical fibers to expose direct sunlight onto methane hydrate, and verify from various standpoints such as energy balance during extraction process and dependency of the environment.
Incipient fault feature extraction of rolling bearings based on the MVMD and Teager energy operator.
Ma, Jun; Wu, Jiande; Wang, Xiaodong
2018-06-04
Aiming at the problems that the incipient fault of rolling bearings is difficult to recognize and the number of intrinsic mode functions (IMFs) decomposed by variational mode decomposition (VMD) must be set in advance and can not be adaptively selected, taking full advantages of the adaptive segmentation of scale spectrum and Teager energy operator (TEO) demodulation, a new method for early fault feature extraction of rolling bearings based on the modified VMD and Teager energy operator (MVMD-TEO) is proposed. Firstly, the vibration signal of rolling bearings is analyzed by adaptive scale space spectrum segmentation to obtain the spectrum segmentation support boundary, and then the number K of IMFs decomposed by VMD is adaptively determined. Secondly, the original vibration signal is adaptively decomposed into K IMFs, and the effective IMF components are extracted based on the correlation coefficient criterion. Finally, the Teager energy spectrum of the reconstructed signal of the effective IMF components is calculated by the TEO, and then the early fault features of rolling bearings are extracted to realize the fault identification and location. Comparative experiments of the proposed method and the existing fault feature extraction method based on Local Mean Decomposition and Teager energy operator (LMD-TEO) have been implemented using experimental data-sets and a measured data-set. The results of comparative experiments in three application cases show that the presented method can achieve a fairly or slightly better performance than LMD-TEO method, and the validity and feasibility of the proposed method are proved. Copyright © 2018. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Shimada, M.; Shimada, J.; Tsunashima, K.; Aoyama, C.
2017-12-01
Methane hydrate is anticipated to be the unconventional natural gas energy resource. Two types of methane hydrates are known to exist, based on the settings: "shallow" type and "sand layer" type. In comparison, shallow type is considered an advantage due to its high purity and the more simple exploration. However, not much development methods have been made in the area of extraction techniques. Currently, heating and depressurization are used as methods to collect sand layer methane hydrate, but these methods are still under examination and not yet to be implemented. This is probably because fossil fuel is used for the extraction process instead of natural energy. It is necessary to utilize natural energy instead of relying on fossil fuel. This is why sunlight is believed to be the most significant alternative. Solar power generation is commonly used to extract sunlight, but it is said that this process causes extreme energy loss since solar energy converted to electricity requires conversion to heat energy. A new method is contrived to accelerate the decomposition of methane hydrate with direct sunlight utilizing optical fibers. Authors will present details of this new method to collect methane hydrate with direct sunlight exposure.
Periche, Angela; Castelló, Maria Luisa; Heredia, Ana; Escriche, Isabel
2015-06-01
This study evaluated the application of ultrasound techniques and microwave energy, compared to conventional extraction methods (high temperatures at atmospheric pressure), for the solid-liquid extraction of steviol glycosides (sweeteners) and antioxidants (total phenols, flavonoids and antioxidant capacity) from dehydrated Stevia leaves. Different temperatures (from 50 to 100 °C), times (from 1 to 40 min) and microwave powers (1.98 and 3.30 W/g extract) were used. There was a great difference in the resulting yields according to the treatments applied. Steviol glycosides and antioxidants were negatively correlated; therefore, there is no single treatment suitable for obtaining the highest yield in both groups of compounds simultaneously. The greatest yield of steviol glycosides was obtained with microwave energy (3.30 W/g extract, 2 min), whereas, the conventional method (90 °C, 1 min) was the most suitable for antioxidant extraction. Consequently, the best process depends on the subsequent use (sweetener or antioxidant) of the aqueous extract of Stevia leaves.
Mandal, Vivekananda; Dewanjee, Saikat; Mandal, Subhash C
2009-08-01
This work highlights the development of a green extraction technology for botanicals with the use of microwave energy. Taking into consideration the extensive time involved in conventional extraction methods, coupled with usage of large volumes of organic solvent and energy resources, an ecofriendly green method that can overcome the above problems has been developed. The work compares the effect of sample pretreatment with untreated sample for improved yield of oleanolic acid from Gymnema sylvestre leaves. The pretreated sample with water produced 0.71% w/w oleanolic acid in one extraction cycle with 500 W microwave power, 25 mL methanol and only an 8 min extraction time. On the other hand, a conventional heat reflux extraction for 6 hours could produce only 0.62% w/w oleanolic acid. The detailed mechanism of extraction has been studied through scanning electron micrographs. The environmental impact of the proposed green method has also been evaluated.
Ponnusamy, Sundaravadivelnathan; Reddy, Harvind Kumar; Muppaneni, Tapaswy; Downes, Cara Meghan; Deng, Shuguang
2014-10-01
A life cycle assessment study is performed for the energy requirements and greenhouse gas emissions in an algal biodiesel production system. Subcritical water (SCW) extraction was applied for extracting bio-crude oil from algae, and conventional transesterification method was used for converting the algal oil to biodiesel. 58MJ of energy is required to produce 1kg of biodiesel without any co-products management, of which 36% was spent on cultivation and 56% on lipid extraction. SCW extraction with thermal energy recovery reduces the energy consumption by 3-5 folds when compared to the traditional solvent extraction. It is estimated that 1kg of algal biodiesel fixes about 0.6kg of CO2. An optimized case considering the energy credits from co-products could further reduce the total energy demand. The energy demand for producing 1kg of biodiesel in the optimized case is 28.23MJ. Copyright © 2014 Elsevier Ltd. All rights reserved.
Solar energy storage and utilization
NASA Technical Reports Server (NTRS)
Yuan, S. W.; Bloom, A. M.
1976-01-01
A method of storing solar energy in the ground for heating residential buildings is described. The method would utilize heat exchanger pipes with a circulating fluid to transfer the energy beneath the surface as well as to extract the stored energy.
Xiaoli Sun; Wengang Li; Jian Li; Yuangang Zu; Chung-Yun Hse; Jiulong Xie; Xiuhua Zhao
2016-01-01
Ethanol and hexane mixture agent microwave-assisted extraction (MAE) method was conducted to extract peony (Paeonia suffruticosa Andr.) seed oil (PSO). The aim of the study was to optimise the extraction for both yield and energy consumption in mixture agent MAE. The highest oil yield (34.49%) and lowest unit energy consumption (14 125.4 J g -1)...
NASA Astrophysics Data System (ADS)
Putri, D. K. Y.; Kusuma, H. S.; Syahputra, M. E.; Parasandi, D.; Mahfud, M.
2017-12-01
Patchouli plant (Pogostemon cablin Benth) is one of the important essential oil-producing plant, contributes more than 50% of total exports of Indonesia’s essential oil. However, the extraction of patchouli oil that has been done in Indonesia is generally still used conventional methods that require enormous amount of energy, high solvent usage, and long time of extraction. Therefore, in this study, patchouli oil extraction was carried out by using microwave hydrodistillation and solvent-free microwave extraction methods. Based on this research, it is known that the extraction of patchouli oil using microwave hydrodistillation method with longer extraction time (240 min) only produced patchouli oil’s yield 1.2 times greater than solvent-free microwave extraction method which require faster extraction time (120 min). Otherwise the analysis of electric consumption and the environmental impact, the solvent-free microwave extraction method showed a smaller amount when compared with microwave hydrodistillation method. It is conclude that the use of solvent-free microwave extraction method for patchouli oil extraction is suitably method as a new green technique.
A Hybrid Method for Pancreas Extraction from CT Image Based on Level Set Methods
Tan, Hanqing; Fujita, Hiroshi
2013-01-01
This paper proposes a novel semiautomatic method to extract the pancreas from abdominal CT images. Traditional level set and region growing methods that request locating initial contour near the final boundary of object have problem of leakage to nearby tissues of pancreas region. The proposed method consists of a customized fast-marching level set method which generates an optimal initial pancreas region to solve the problem that the level set method is sensitive to the initial contour location and a modified distance regularized level set method which extracts accurate pancreas. The novelty in our method is the proper selection and combination of level set methods, furthermore an energy-decrement algorithm and an energy-tune algorithm are proposed to reduce the negative impact of bonding force caused by connected tissue whose intensity is similar with pancreas. As a result, our method overcomes the shortages of oversegmentation at weak boundary and can accurately extract pancreas from CT images. The proposed method is compared to other five state-of-the-art medical image segmentation methods based on a CT image dataset which contains abdominal images from 10 patients. The evaluated results demonstrate that our method outperforms other methods by achieving higher accuracy and making less false segmentation in pancreas extraction. PMID:24066016
Gallegos, Tanya J.; Bern, Carleton R.; Birdwell, Justin E.; Haines, Seth S.; Engle, Mark A.
2015-01-01
Global trends toward developing new energy resources from lower grade, larger tonnage deposits that are not generally accessible using “conventional” extraction methods involve variations of subsurface in situ extraction techniques including in situ oil-shale retorting, hydraulic fracturing of petroleum reservoirs, and in situ recovery (ISR) of uranium. Although these methods are economically feasible and perhaps result in a smaller above-ground land-use footprint, there remain uncertainties regarding potential subsurface impacts to groundwater. This chapter provides an overview of the role of water in these technologies and the opportunities and challenges for water reuse and recycling.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Joseph; Windmiller, Joshua Ray; Jia, Wenzhao
2016-11-22
Methods, systems, and devices are disclosed for implementing a biofuel cell device for extracting energy from a biofuel. In one aspect, a biofuel cell device includes a substrate, an anode including a catalyst to facilitate the conversion of a fuel in a biological fluid in an oxidative process that releases electrons captured at the anode, thereby extracting energy from the fuel substance, a cathode configured on the substrate adjacent to the anode and separated from the anode by a spacing region, and a load electrically coupled to the anode and cathode via electrical interconnects to obtain the extracted energy asmore » electrical energy.« less
Xu, Pengcheng; Yu, Haitao; Li, Xinxin
2016-05-03
Activation-energy (Ea) value for trace-amount adsorption of gas molecules on material is rapidly and inexpensively obtained, for the first time, from a microgravimetric analysis experiment. With the material loaded, a resonant microcantilever is used to record in real time the adsorption process at two temperatures. The kinetic parameter Ea is thereby extracted by solving the Arrhenius equation. As an example, two CO2 capture nanomaterials are examined by the Ea extracting method for evaluation/optimization and, thereby, demonstrating the applicability of the microgravimetric analysis method. The achievement helps to solve the absence in rapid quantitative characterization of sorption kinetics and opens a new route to investigate molecule adsorption processes and materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Torcellini, Paul A.; Bonnema, Eric; Goldwasser, David
Building energy consumption can only be measured at the site or at the point of utility interconnection with a building. Often, to evaluate the total energy impact, this site-based energy consumption is translated into source energy, that is, the energy at the point of fuel extraction. Consistent with this approach, the U.S. Department of Energy's (DOE) definition of zero energy buildings uses source energy as the metric to account for energy losses from the extraction, transformation, and delivery of energy. Other organizations, as well, use source energy to characterize the energy impacts. Four methods of making the conversion from sitemore » energy to source energy were investigated in the context of the DOE definition of zero energy buildings. These methods were evaluated based on three guiding principles--improve energy efficiency, reduce and stabilize power demand, and use power from nonrenewable energy sources as efficiently as possible. This study examines relative trends between strategies as they are implemented on very low-energy buildings to achieve zero energy. A typical office building was modeled and variations to this model performed. The photovoltaic output that was required to create a zero energy building was calculated. Trends were examined with these variations to study the impacts of the calculation method on the building's ability to achieve zero energy status. The paper will highlight the different methods and give conclusions on the advantages and disadvantages of the methods studied.« less
Method for energy recovery of spent ERL beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marhauser, Frank; Hannon, Fay; Rimmer, Robert
A method for recovering energy from spent energy recovered linac (ERL) beams. The method includes adding a plurality of passive decelerating cavities at the beam dump of the ERL, adding one or more coupling waveguides between the passive decelerating cavities, setting an adequate external Q (Qext) to adjust to the beam loading situation, and extracting the RF energy through the coupling waveguides.
Active surface model improvement by energy function optimization for 3D segmentation.
Azimifar, Zohreh; Mohaddesi, Mahsa
2015-04-01
This paper proposes an optimized and efficient active surface model by improving the energy functions, searching method, neighborhood definition and resampling criterion. Extracting an accurate surface of the desired object from a number of 3D images using active surface and deformable models plays an important role in computer vision especially medical image processing. Different powerful segmentation algorithms have been suggested to address the limitations associated with the model initialization, poor convergence to surface concavities and slow convergence rate. This paper proposes a method to improve one of the strongest and recent segmentation algorithms, namely the Decoupled Active Surface (DAS) method. We consider a gradient of wavelet edge extracted image and local phase coherence as external energy to extract more information from images and we use curvature integral as internal energy to focus on high curvature region extraction. Similarly, we use resampling of points and a line search for point selection to improve the accuracy of the algorithm. We further employ an estimation of the desired object as an initialization for the active surface model. A number of tests and experiments have been done and the results show the improvements with regards to the extracted surface accuracy and computational time of the presented algorithm compared with the best and recent active surface models. Copyright © 2015 Elsevier Ltd. All rights reserved.
Extraction and quantification of adenosine triphosphate in mammalian tissues and cells.
Chida, Junji; Kido, Hiroshi
2014-01-01
Adenosine 5'-triphosphate (ATP) is the "energy currency" of organisms and plays central roles in bioenergetics, whereby its level is used to evaluate cell viability, proliferation, death, and energy transmission. In this chapter, we describe an improved and efficient method for extraction of ATP from tissues and cells using phenol-based reagents. The chaotropic extraction reagents reported so far co-precipitate ATP with insoluble proteins during extraction and with salts during neutralization. In comparison, the phenol-based reagents extract ATP well without the risks of co-precipitation. The extracted ATP can be quantified by the luciferase assay or high-performance liquid chromatography.
Separation of crack extension modes in orthotropic delamination models
NASA Technical Reports Server (NTRS)
Beuth, Jack L.
1995-01-01
In the analysis of an interface crack between dissimilar elastic materials, the mode of crack extension is typically not unique, due to oscillatory behavior of near-tip stresses and displacements. This behavior currently limits the applicability of interfacial fracture mechanics as a means to predict composite delamination. The Virtual Crack Closure Technique (VCCT) is a method used to extract mode 1 and mode 2 energy release rates from numerical fracture solutions. The mode of crack extension extracted from an oscillatory solution using the VCCT is not unique due to the dependence of mode on the virtual crack extension length, Delta. In this work, a method is presented for using the VCCT to extract Delta-independent crack extension modes for the case of an interface crack between two in-plane orthotropic materials. The method does not involve altering the analysis to eliminate its oscillatory behavior. Instead, it is argued that physically reasonable, Delta-independent modes of crack extension can be extracted from oscillatory solutions. Knowledge of near-tip fields is used to determine the explicit Delta dependence of energy release rate parameters. Energy release rates are then defined that are separated from the oscillatory dependence on Delta. A modified VCCT using these energy release rate definitions is applied to results from finite element analyses, showing that Delta-independent modes of crack extension result. The modified technique has potential as a consistent method for extracting crack extension modes from numerical solutions. The Delta-independent modes extracted using this technique can also serve as guides for testing the convergence of finite element models. Direct applications of this work include the analysis of planar composite delamination problems, where plies or debonded laminates are modeled as in-plane orthotropic materials.
EXTRACTION OF ORGANIC CONTAMINANTS FROM MARINE SEDIMENTS AND TISSUES USING MICROWAVE ENERGY
In this study, we compared microwave solvent extraction (MSE) to conventional methods for extracting organic contaminants from marine sediments and tissues with high and varying moisture content. The organic contaminants measured were polychlorinated biphenyl (PCB) congeners, chl...
Preliminary assessment for DNA extraction on microfluidic channel
NASA Astrophysics Data System (ADS)
Gopinath, Subash C. B.; Hashim, Uda; Uda, M. N. A.
2017-03-01
The aim of this research is to extract, purify and yield DNA in mushroom from solid state mushroom sample by using fabricated continuous high-capacity sample delivery microfluidic through integrated solid state extraction based amino-coated silica bead. This device is made to specifically extract DNA in mushroom sample in continuous inflow process with energy and cost consumption. In this project, we present two methods of DNA extraction and purification which are by using centrifuge (complex and conventional method) and by using microfluidic biosensor (new and fast method). DNA extracted can be determined by using ultraviolet-visible spectroscopy (UV-VIS). The peak obtained at wavelength 260nm after measuring the absorbance of sample proves that DNA is successfully extracted from the mushroom.
Emerging Trends in Microwave Processing of Spices and Herbs.
Rahath Kubra, Ismail; Kumar, Devender; Jagan Mohan Rao, Lingamallu
2016-10-02
Today, spices are integral part of our food as they provide sensory attributes such as aroma, color, flavour and taste to food. Further their antimicrobial, antioxidant, pharmaceutical and nutritional properties are also well known. Since spices are seasonal so their availability can be extended year round by adopting different preservation techniques. Drying and extraction are most important methods for preservation and value addition to spices. There are different techniques for drying of spices with their own advantages and limitations. A novel, non-conventional technique for drying of spices is use of microwave radiation. This technique proved to be very rapid, and also provide a good quality product. Similarly, there are a number of non-conventional extraction methods in use that are all, in principle, solid-liquid extractions but which introduce some form of additional energy to the process in order to facilitate the transfer of analytes from sample to solvent. This paper reviews latest advances in the use of microwave energy for drying of spices and herbs. Also, the review describes the potential application of microwave energy for extraction of essential oil/bioactive components from spices and herbs and the advantages of microwave-assisted process over the other extraction processes generally employed for extraction. It also showcases some recent research results on microwave drying/extraction from spices and herbs.
Systems and methods for multi-fluid geothermal energy systems
Buscheck, Thomas A.
2017-09-19
A method for extracting geothermal energy from a geothermal reservoir formation. A production well is used to extract brine from the reservoir formation. At least one of nitrogen (N.sub.2) and carbon dioxide (CO.sub.2) may be used to form a supplemental working fluid which may be injected into a supplemental working fluid injection well. The supplemental working fluid may be used to augment a pressure of the reservoir formation, to thus drive a flow of the brine out from the reservoir formation.
Residues with similar hexagon neighborhoods share similar side-chain conformations.
Li, Shuai Cheng; Bu, Dongbo; Li, Ming
2012-01-01
We present in this study a new approach to code protein side-chain conformations into hexagon substructures. Classical side-chain packing methods consist of two steps: first, side-chain conformations, known as rotamers, are extracted from known protein structures as candidates for each residue; second, a searching method along with an energy function is used to resolve conflicts among residues and to optimize the combinations of side chain conformations for all residues. These methods benefit from the fact that the number of possible side-chain conformations is limited, and the rotamer candidates are readily extracted; however, these methods also suffer from the inaccuracy of energy functions. Inspired by threading and Ab Initio approaches to protein structure prediction, we propose to use hexagon substructures to implicitly capture subtle issues of energy functions. Our initial results indicate that even without guidance from an energy function, hexagon structures alone can capture side-chain conformations at an accuracy of 83.8 percent, higher than 82.6 percent by the state-of-art side-chain packing methods.
Multi-fluid renewable geo-energy systems and methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buscheck, Thomas A.
A geo-energy production method for extracting thermal energy from a reservoir formation. A production well extracts brine from the reservoir formation. A plurality of working fluid injection ("WFI") wells may be arranged proximate to the production well to at least partially circumscribe the production well. A plurality of brine production ("BP") wells may be arranged in a vicinity of the WFI wells to at least partially circumscribe the WFI wells. A working fluid is injected into the WFI wells to help drive a flow of the brine up through the production and BP wells, together with at least a portionmore » of the injected working fluid. Parasitic-load time-shifting and to storing of excess solar thermal energy may also be performed.« less
[Determination of benzo(alpha)pyrene in food with microwave-assisted extraction].
Zhou, Na; Luo, He-Dong; Li, Na; Li, Yao-Qun
2014-03-01
Coupling derivative technique and constant-energy synchronous fluorescence scanning technique, a method of determining benzo[alpha] pyrene in foods by second derivative constant-energy synchronous spectrofluorimetry after microwave-assisted treatment of samples was established using domestic microwave oven. The main factors of influencing the efficiency of microwave extraction were discussed, including the extraction solvent types and amounts, the microwave extraction time, microwave radiation power and cooling time. And the comparison with ultrasonic extraction was made. Low-fat food samples, which were just microwave-extracted with mixed-solvents, could be analyzed immediately by the spectrofluorimetric technique. For high-fat food samples, microwave-assisted saponification and extraction were made at the same time, thus simplifying operation steps and reducing sample analysis time. So the whole sample analysis process could be completed within one hour. This method was simple, rapid and inexpensive. In consequence, it was applied to determine benzo(a)pyrene in food with good reproducibility and the recoveries of benzo(alpha) pyrene ranged from 90.0% to 105.0% for the low fat samples and 83.3% to 94.6% for high-fat samples.
Chemical Processing of Non-Crop Plants for Jet Fuel Blends Production
NASA Technical Reports Server (NTRS)
Kulis, M. J.; Hepp, A. F.; McDowell, M.; Ribita, D.
2009-01-01
The use of Biofuels has been gaining in popularity over the past few years due to their ability to reduce the dependence on fossil fuels. Biofuels as a renewable energy source can be a viable option for sustaining long-term energy needs if they are managed efficiently. We describe our initial efforts to exploit algae, halophytes and other non-crop plants to produce synthetics for fuel blends that can potentially be used as fuels for aviation and non-aerospace applications. Our efforts have been dedicated to crafting efficient extraction and refining processes in order to extract constituents from the plant materials with the ultimate goal of determining the feasibility of producing biomass-based jet fuel from the refined extract. Two extraction methods have been developed based on communition processes, and liquid-solid extraction techniques. Refining procedures such as chlorophyll removal and transesterification of triglycerides have been performed. Gas chromatography in tandem with mass spectroscopy is currently being utilized in order to qualitatively determine the individual components of the refined extract. We also briefly discuss and compare alternative methods to extract fuel-blending agents from alternative biofuels sources.
Heart rate calculation from ensemble brain wave using wavelet and Teager-Kaiser energy operator.
Srinivasan, Jayaraman; Adithya, V
2015-01-01
Electroencephalogram (EEG) signal artifacts are caused by various factors, such as, Electro-oculogram (EOG), Electromyogram (EMG), Electrocardiogram (ECG), movement artifact and line interference. The relatively high electrical energy cardiac activity causes EEG artifacts. In EEG signal processing the general approach is to remove the ECG signal. In this paper, we introduce an automated method to extract the ECG signal from EEG using wavelet and Teager-Kaiser energy operator for R-peak enhancement and detection. From the detected R-peaks the heart rate (HR) is calculated for clinical diagnosis. To check the efficiency of our method, we compare the HR calculated from ECG signal recorded in synchronous with EEG. The proposed method yields a mean error of 1.4% for the heart rate and 1.7% for mean R-R interval. The result illustrates that, proposed method can be used for ECG extraction from single channel EEG and used in clinical diagnosis like estimation for stress analysis, fatigue, and sleep stages classification studies as a multi-model system. In addition, this method eliminates the dependence of additional synchronous ECG in extraction of ECG from EEG signal process.
NASA Astrophysics Data System (ADS)
Ismanto, A. W.; Kusuma, H. S.; Mahfud, M.
2017-12-01
The comparison of solvent-free microwave extraction (SFME) and microwave hydrodistillation (MHD) in the extraction of essential oil from Melaleuca leucadendra Linn. was examined. Dry cajuput leaves were used in this study. The purpose of this study is also to determine optimal condition (microwave power). The relative electric consumption of SFME and MHD methods are both showing 0,1627 kWh/g and 0,3279 kWh/g. The results showed that solvent-free microwave extraction methods able to reduce energy consumption and can be regarded as a green technique for extraction of cajuput oil.
Energy Implications of Materials Processing
ERIC Educational Resources Information Center
Hayes, Earl T.
1976-01-01
Processing of materials could become energy-limited rather than resource-limited. Methods to extract metals, industrial minerals, and energy materials and convert them to useful states requires more than one-fifth of the United States energy budget. Energy accounting by industries must include a total systems analysis of costs to insure net energy…
Chatter detection in milling process based on VMD and energy entropy
NASA Astrophysics Data System (ADS)
Liu, Changfu; Zhu, Lida; Ni, Chenbing
2018-05-01
This paper presents a novel approach to detect the milling chatter based on Variational Mode Decomposition (VMD) and energy entropy. VMD has already been employed in feature extraction from non-stationary signals. The parameters like number of modes (K) and the quadratic penalty (α) need to be selected empirically when raw signal is decomposed by VMD. Aimed at solving the problem how to select K and α, the automatic selection method of VMD's based on kurtosis is proposed in this paper. When chatter occurs in the milling process, energy will be absorbed to chatter frequency bands. To detect the chatter frequency bands automatically, the chatter detection method based on energy entropy is presented. The vibration signal containing chatter frequency is simulated and three groups of experiments which represent three cutting conditions are conducted. To verify the effectiveness of method presented by this paper, chatter feather extraction has been successfully employed on simulation signals and experimental signals. The simulation and experimental results show that the proposed method can effectively detect the chatter.
Zhang, Heng; Pan, Zhongming; Zhang, Wenna
2018-06-07
An acoustic⁻seismic mixed feature extraction method based on the wavelet coefficient energy ratio (WCER) of the target signal is proposed in this study for classifying vehicle targets in wireless sensor networks. The signal was decomposed into a set of wavelet coefficients using the à trous algorithm, which is a concise method used to implement the wavelet transform of a discrete signal sequence. After the wavelet coefficients of the target acoustic and seismic signals were obtained, the energy ratio of each layer coefficient was calculated as the feature vector of the target signals. Subsequently, the acoustic and seismic features were merged into an acoustic⁻seismic mixed feature to improve the target classification accuracy after the acoustic and seismic WCER features of the target signal were simplified using the hierarchical clustering method. We selected the support vector machine method for classification and utilized the data acquired from a real-world experiment to validate the proposed method. The calculated results show that the WCER feature extraction method can effectively extract the target features from target signals. Feature simplification can reduce the time consumption of feature extraction and classification, with no effect on the target classification accuracy. The use of acoustic⁻seismic mixed features effectively improved target classification accuracy by approximately 12% compared with either acoustic signal or seismic signal alone.
Abdelmoez, Weal; Ashour, Eman; Naguib, Shahenaz M
2015-01-01
It became a global agenda to develop clean alternative fuels which were domestically available, environmentally acceptable and technically feasible. Thus, biodiesel was destined to make a substantial contribution to the future energy demands of the domestic and industrial economies. Utilization of the non edible vegetable oils as raw materials for biodiesel production had been handled frequently for the past few years. The oil content of these seeds could be extracted by different oil extraction methods, such as mechanical extraction, solvent extraction and by subcritical water extraction technology SWT. Among them, SWT represents a new promising green extraction method. Therefore this review covered the current used non edible oil seeds for biodiesel production as well as giving a sharp focus on the efficiency of using the SWT as a promising extraction method. In addition the advantages and the disadvantages of the different biodiesel production techniques would be covered.
Yip, Ngai Yin; Elimelech, Menachem
2012-05-01
The Gibbs free energy of mixing dissipated when fresh river water flows into the sea can be harnessed for sustainable power generation. Pressure retarded osmosis (PRO) is one of the methods proposed to generate power from natural salinity gradients. In this study, we carry out a thermodynamic and energy efficiency analysis of PRO work extraction. First, we present a reversible thermodynamic model for PRO and verify that the theoretical maximum extractable work in a reversible PRO process is identical to the Gibbs free energy of mixing. Work extraction in an irreversible constant-pressure PRO process is then examined. We derive an expression for the maximum extractable work in a constant-pressure PRO process and show that it is less than the ideal work (i.e., Gibbs free energy of mixing) due to inefficiencies intrinsic to the process. These inherent inefficiencies are attributed to (i) frictional losses required to overcome hydraulic resistance and drive water permeation and (ii) unutilized energy due to the discontinuation of water permeation when the osmotic pressure difference becomes equal to the applied hydraulic pressure. The highest extractable work in constant-pressure PRO with a seawater draw solution and river water feed solution is 0.75 kWh/m(3) while the free energy of mixing is 0.81 kWh/m(3)-a thermodynamic extraction efficiency of 91.1%. Our analysis further reveals that the operational objective to achieve high power density in a practical PRO process is inconsistent with the goal of maximum energy extraction. This study demonstrates thermodynamic and energetic approaches for PRO and offers insights on actual energy accessible for utilization in PRO power generation through salinity gradients. © 2012 American Chemical Society
Tidal energy extraction: renewable, sustainable and predictable.
Nicholls-Lee, R F; Turnock, S R
2008-01-01
The tidal flow of sea water induced by planetary motion is a potential source of energy if suitable systems can be designed and operated in a cost-effective manner This paper examines the physical origins of the tides and how the local currents are influenced by the depth of the seabed and presence of land mass and associated coastal features. The available methods of extracting energy from tidal movement are classified into devices that store and release potential energy and those that capture kinetic energy directly. A survey is made of candidate designs and, for the most promising, the likely efficiency of energy conversion and methods of installing them are considered. Overall, the need to reduce CO2 emissions, a likely continued rise in fossil fuel cost will result in a significantly increased use of tidal energy. What is still required, especially for kinetic energy devices, is a much greater understanding of how they can be designed to withstand long-term immersion in the marine environment.
Mi, Jianing; Zhang, Min; Zhang, Hongyang; Wang, Yuerong; Wu, Shikun; Hu, Ping
2013-02-01
A high-efficient and environmental-friendly method for the preparation of ginsenosides from Radix Ginseng using the method of coupling of ultrasound-assisted extraction with expanded bed adsorption is described. Based on the optimal extraction conditions screened by surface response methodology, ginsenosides were extracted and adsorbed, then eluted by the two-step elution protocol. The comparison results between the coupling of ultrasound-assisted extraction with expanded bed adsorption method and conventional method showed that the former was better than the latter in both process efficiency and greenness. The process efficiency and energy efficiency of the coupling of ultrasound-assisted extraction with expanded bed adsorption method rapidly increased by 1.4-fold and 18.5-fold of the conventional method, while the environmental cost and CO(2) emission of the conventional method were 12.9-fold and 17.0-fold of the new method. Furthermore, the theoretical model for the extraction of targets was derived. The results revealed that the theoretical model suitably described the process of preparing ginsenosides by the coupling of ultrasound-assisted extraction with expanded bed adsorption system. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hughes, Richard; Tyagi, Mayank; Radonjic, Mileva
This project is intended to demonstrate the technical and economic feasibility, and environmental and social attractiveness of a novel method of heat extraction from geothermal reservoirs. The emphasis is on assessing the potential for a heat extraction method that couples forced and free convection to maximize extraction efficiency. The heat extraction concept is enhanced by considering wellbore energy conversion, which may include only a boiler for a working fluid, or perhaps a complete boiler, turbine, and condenser cycle within the wellbore. The feasibility of this system depends on maintaining mechanical and hydraulic integrity of the wellbore, so the material propertiesmore » of the casing-cement system are examined both experimentally and with well design calculations. The attractiveness depends on mitigation of seismic and subsidence risks, economic performance, environmental impact, and social impact – all of which are assessed as components of this study.« less
Analysis of the essential oils of Alpiniae Officinarum Hance in different extraction methods
NASA Astrophysics Data System (ADS)
Yuan, Y.; Lin, L. J.; Huang, X. B.; Li, J. H.
2017-09-01
It was developed for the analysis of the essential oils of Alpiniae Officinarum Hance extracted by steam distillation (SD), ultrasonic assisted solvent extraction (UAE) and supercritical fluid extraction (SFE) via gas chromatography mass spectrometry (GC-MS) combined with retention index (RI) method. There were multiple volatile components of the oils extracted by the three above-mention methods respectively identified; meanwhile, each one was quantified by area normalization method. The results indicated that the content of 1,8-Cineole, the index constituent, by SD was similar as SFE, and higher than UAE. Although UAE was less time consuming and consumed less energy, the oil quality was poorer due to the use of organic solvents was hard to degrade. In addition, some constituents could be obtained by SFE but could not by SD. In conclusion, essential oil of different extraction methods from the same batch of materials had been proved broadly similarly, however, there were some differences in composition and component ratio. Therefore, development and utilization of different extraction methods must be selected according to the functional requirements of products.
Improvement of seawater salt quality by hydro-extraction and re-crystallization methods
NASA Astrophysics Data System (ADS)
Sumada, K.; Dewati, R.; Suprihatin
2018-01-01
Indonesia is one of the salt producing countries that use sea water as a source of raw materials, the quality of salt produced is influenced by the quality of sea water. The resulting average salt quality contains 85-90% NaCl. The Indonesian National Standard (SNI) for human salt’s consumption sodium chloride content is 94.7 % (dry base) and for industrial salt 98,5 %. In this study developed the re-crystallization without chemical and hydro-extraction method. The objective of this research to choose the best methods based on efficiency. The results showed that re-crystallization method can produce salt with NaCl content 99,21%, while hydro-extraction method content 99,34 % NaCl. The salt produced through both methods can be used as a consumption and industrial salt, Hydro-extraction method is more efficient than re-crystallization method because re-crystallization method requires heat energy.
Rosner, Sabine; Klein, Andrea; Wimmer, Rupert; Karlsson, Bo
2011-01-01
Summary • The aim of this study was to assess the hydraulic vulnerability of Norway spruce (Picea abies) trunkwood by extraction of selected features of acoustic emissions (AEs) detected during dehydration of standard size samples. • The hydraulic method was used as the reference method to assess the hydraulic vulnerability of trunkwood of different cambial ages. Vulnerability curves were constructed by plotting the percentage loss of conductivity vs an overpressure of compressed air. • Differences in hydraulic vulnerability were very pronounced between juvenile and mature wood samples; therefore, useful AE features, such as peak amplitude, duration and relative energy, could be filtered out. The AE rates of signals clustered by amplitude and duration ranges and the AE energies differed greatly between juvenile and mature wood at identical relative water losses. • Vulnerability curves could be constructed by relating the cumulated amount of relative AE energy to the relative loss of water and to xylem tension. AE testing in combination with feature extraction offers a readily automated and easy to use alternative to the hydraulic method. PMID:16771986
Sinkiewicz, Daniel; Friesen, Lendra; Ghoraani, Behnaz
2017-02-01
Cortical auditory evoked potentials (CAEP) are used to evaluate cochlear implant (CI) patient auditory pathways, but the CI device produces an electrical artifact, which obscures the relevant information in the neural response. Currently there are multiple methods, which attempt to recover the neural response from the contaminated CAEP, but there is no gold standard, which can quantitatively confirm the effectiveness of these methods. To address this crucial shortcoming, we develop a wavelet-based method to quantify the amount of artifact energy in the neural response. In addition, a novel technique for extracting the neural response from single channel CAEPs is proposed. The new method uses matching pursuit (MP) based feature extraction to represent the contaminated CAEP in a feature space, and support vector machines (SVM) to classify the components as normal hearing (NH) or artifact. The NH components are combined to recover the neural response without artifact energy, as verified using the evaluation tool. Although it needs some further evaluation, this approach is a promising method of electrical artifact removal from CAEPs. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.
Lallart, Mickaël; Garbuio, Lauric; Petit, Lionel; Richard, Claude; Guyomar, Daniel
2008-10-01
This paper presents a new technique for optimized energy harvesting using piezoelectric microgenerators called double synchronized switch harvesting (DSSH). This technique consists of a nonlinear treatment of the output voltage of the piezoelectric element. It also integrates an intermediate switching stage that ensures an optimal harvested power whatever the load connected to the microgenerator. Theoretical developments are presented considering either constant vibration magnitude, constant driving force, or independent extraction. Then experimental measurements are carried out to validate the theoretical predictions. This technique exhibits a constant output power for a wide range of load connected to the microgenerator. In addition, the extracted power obtained using such a technique allows a gain up to 500% in terms of maximal power output compared with the standard energy harvesting method. It is also shown that such a technique allows a fine-tuning of the trade-off between vibration damping and energy harvesting.
New geothermal heat extraction process to deliver clean power generation
McGrail, Pete
2017-12-27
A new method for capturing significantly more heat from low-temperature geothermal resources holds promise for generating virtually pollution-free electrical energy. Scientists at the Department of Energys Pacific Northwest National Laboratory will determine if their innovative approach can safely and economically extract and convert heat from vast untapped geothermal resources. The goal is to enable power generation from low-temperature geothermal resources at an economical cost. In addition to being a clean energy source without any greenhouse gas emissions, geothermal is also a steady and dependable source of power.
A new method to extract modal parameters using output-only responses
NASA Astrophysics Data System (ADS)
Kim, Byeong Hwa; Stubbs, Norris; Park, Taehyo
2005-04-01
This work proposes a new output-only modal analysis method to extract mode shapes and natural frequencies of a structure. The proposed method is based on an approach with a single-degree-of-freedom in the time domain. For a set of given mode-isolated signals, the un-damped mode shapes are extracted utilizing the singular value decomposition of the output energy correlation matrix with respect to sensor locations. The natural frequencies are extracted from a noise-free signal that is projected on the estimated modal basis. The proposed method is particularly efficient when a high resolution of mode shape is essential. The accuracy of the method is numerically verified using a set of time histories that are simulated using a finite-element method. The feasibility and practicality of the method are verified using experimental data collected at the newly constructed King Storm Water Bridge in California, United States.
Wang, Junlong; Zhang, Ji; Wang, Xiaofang; Zhao, Baotang; Wu, Yiqian; Yao, Jian
2009-12-01
The conventional extraction methods for polysaccharides were time-consuming, laborious and energy-consuming. Microwave-assisted extraction (MAE) technique was employed for the extraction of Artemisia sphaerocephala polysaccharides (ASP), which is a traditional Chinese food. The extracting parameters were optimized by Box-Behnken design. In microwave heating process, a decrease in molecular weight (M(w)) was detected in SEC-LLS measurement. A d(f) value of 2.85 indicated ASP using MAE exhibited as a sphere conformation of branched clusters in aqueous solution. Furthermore, it showed stronger antioxidant activities compared with hot water extraction. The data obtained showed that the molecular weights played a more important role in antioxidant activities.
Solvent Extraction of Furfural From Biomass
NASA Technical Reports Server (NTRS)
Humphrey, M. F.
1984-01-01
Solvent-extraction method reduces energy required to remove furfural produced during acid hydrolysis of biomass. Acid hydrolysis performed in vessel containing both solvents and reacting ingredients. With intimate contact between solvents and aqueous hydrolyis liqour, furfural removed form liquor almost as fast as it forms.
Low-Temperature Extraction of Oil From Shale
NASA Technical Reports Server (NTRS)
Compton, L. E.
1985-01-01
Technique increases recovery and energy efficiency. Advantages of method greater product yield and, because of the relatively low temperatures, minimal gas formation, smaller amounts of char byproduct, and less carbonate-rock decomposition. Up to 94 percent by weight of organic material in shale extracted.
Turbine Design for Energy Extraction from Dust Devils
NASA Astrophysics Data System (ADS)
Malaya, Nicholas; Moser, Robert
2016-11-01
Columnar vortices ("Dust-Devils") arise naturally in the atmosphere, over a wide range of scales in many different locations across the Earth, as well as on Mars. A new energy harvesting approach makes use of this ubiquitous process by creating and anchoring the vortices artificially and extracting energy from them. However, any analysis of the power that can be extracted is complicated by the presence of considerable vertical and azimuthal flow in the vortex, and so the design considerations are different from those for a classical wind turbine. This talk presents a modeling approach to estimate the upper limit on the power that could be extracted from such a flow. This method is based on the actuator disk model common to turbine design, but with generalized drag polars permitting exploration of a broader design space. This model can be fully coupled to the flow, which ensures the results do not violate any Betz-like considerations that might similarly arise in an analysis of frozen flow fields. The results of this model demonstrate a limit on how much of the energy can be extracted before disrupting the flow so greatly that the vortex cannot be maintained. This work supported by the Department of Energy [ARPA-E] un- der Award Number [DE-FOA-0000670].
Hara, Kiyotaka Y; Kim, Songhee; Kiriyama, Kentaro; Yoshida, Hideyo; Arai, Shogo; Ishii, Jun; Ogino, Chiaki; Fukuda, Hideki; Kondo, Akihiko
2012-05-01
Glutathione is a valuable tripeptide that is widely used in the pharmaceutical, food, and cosmetic industries. Glutathione is industrially produced by fermentation using Saccharomyces cerevisiae. Before the glutathione fermentation process with S. cerevisiae, a glucose extraction process from starchy materials is required. This glucose extraction is usually carried out by converting starchy materials to starch using high-temperature cooking and subsequent hydrolysis by amylases to convert starch to glucose. In this study, to develop an energy-saving glutathione production process by reducing energy consumption during the cooking step, we efficiently produced glutathione from low-temperature cooked rice using amylase-expressing S. cerevisiae. The combination of the amylase-expressing yeast with low-temperature cooking is potentially applicable to a variety of energy-saving bio-production methods of chemicals from starchy bio-resources. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Lu, Wenlong; Xie, Junwei; Wang, Heming; Sheng, Chuan
2016-01-01
Inspired by track-before-detection technology in radar, a novel time-frequency transform, namely polynomial chirping Fourier transform (PCFT), is exploited to extract components from noisy multicomponent signal. The PCFT combines advantages of Fourier transform and polynomial chirplet transform to accumulate component energy along a polynomial chirping curve in the time-frequency plane. The particle swarm optimization algorithm is employed to search optimal polynomial parameters with which the PCFT will achieve a most concentrated energy ridge in the time-frequency plane for the target component. The component can be well separated in the polynomial chirping Fourier domain with a narrow-band filter and then reconstructed by inverse PCFT. Furthermore, an iterative procedure, involving parameter estimation, PCFT, filtering and recovery, is introduced to extract components from a noisy multicomponent signal successively. The Simulations and experiments show that the proposed method has better performance in component extraction from noisy multicomponent signal as well as provides more time-frequency details about the analyzed signal than conventional methods.
NASA Astrophysics Data System (ADS)
Wei, Xixiong; Deng, Wanling; Fang, Jielin; Ma, Xiaoyu; Huang, Junkai
2017-10-01
A physical-based straightforward extraction technique for interface and bulk density of states in metal oxide semiconductor thin film transistors (TFTs) is proposed by using the capacitance-voltage (C-V) characteristics. The interface trap density distribution with energy has been extracted from the analysis of capacitance-voltage characteristics. Using the obtained interface state distribution, the bulk trap density has been determined. With this method, for the interface trap density, it is found that deep state density nearing the mid-gap is approximately constant and tail states density increases exponentially with energy; for the bulk trap density, it is a superposition of exponential deep states and exponential tail states. The validity of the extraction is verified by comparisons with the measured current-voltage (I-V) characteristics and the simulation results by the technology computer-aided design (TCAD) model. This extraction method uses non-numerical iteration which is simple, fast and accurate. Therefore, it is very useful for TFT device characterization.
An energy ratio feature extraction method for optical fiber vibration signal
NASA Astrophysics Data System (ADS)
Sheng, Zhiyong; Zhang, Xinyan; Wang, Yanping; Hou, Weiming; Yang, Dan
2018-03-01
The intrusion events in the optical fiber pre-warning system (OFPS) are divided into two types which are harmful intrusion event and harmless interference event. At present, the signal feature extraction methods of these two types of events are usually designed from the view of the time domain. However, the differences of time-domain characteristics for different harmful intrusion events are not obvious, which cannot reflect the diversity of them in detail. We find that the spectrum distribution of different intrusion signals has obvious differences. For this reason, the intrusion signal is transformed into the frequency domain. In this paper, an energy ratio feature extraction method of harmful intrusion event is drawn on. Firstly, the intrusion signals are pre-processed and the power spectral density (PSD) is calculated. Then, the energy ratio of different frequency bands is calculated, and the corresponding feature vector of each type of intrusion event is further formed. The linear discriminant analysis (LDA) classifier is used to identify the harmful intrusion events in the paper. Experimental results show that the algorithm improves the recognition rate of the intrusion signal, and further verifies the feasibility and validity of the algorithm.
An image-domain, contrast material extraction method for Dual-Energy CT
Lambert, Jack W.; Sun, Yuxin; Gould, Robert G.; Ohliger, Michael A.; Li, Zhixi; Yeh, Benjamin M.
2016-01-01
Objectives Conventional material decomposition techniques for dual-energy CT (DECT) assume mass or volume conservation, where the CT number of each voxel is fully assigned to predefined materials. We present an image-domain contrast material extraction process (CMEP) method that preferentially extracts contrast-producing materials while leaving the remaining image intact. Materials and Methods Image processing freeware (Fiji) is used to perform consecutive arithmetic operations on a dual-energy ratio map to generate masks, which are then applied to the original images to generate material-specific images. First, a low-energy image is divided by a high-energy image to generate a ratio map. The ratio map is then split into material-specific masks. Ratio intervals known to correspond to particular materials (e.g. iodine, calcium) are assigned a multiplier of 1, while ratio values in between these intervals are assigned linear gradients from 0 to 1. The masks are then multiplied by an original CT image to produce material-specific images. The method was tested quantitatively at Dual-Source (DSCT) and Rapid kVp-Switching CT (RSCT) with phantoms using pure and mixed formulations of tungsten, calcium and iodine. Errors were evaluated by comparing the known material concentrations with those derived from the CMEP material-specific images. Further qualitative evaluation was performed in vivo at RSCT with a rabbit model using identical CMEP parameters to the phantom. Orally administered tungsten, vascularly administered iodine, and skeletal calcium were used as the three contrast materials. Results All five material combinations; tungsten, iodine and calcium, and mixtures of tungsten-calcium and iodine-calcium, showed distinct dual-energy ratios, largely independent of material concentration at both DSCT and RSCT. The CMEP was successful in both phantoms and in vivo. For pure contrast materials in the phantom, the maximum error between the known and CMEP-derived material concentrations was 0.9 mg/mL, 24.9 mg/mL and 0.4 mg/mL for iodine, calcium and tungsten respectively. Mixtures of iodine and calcium showed the highest discrepancies, which reflected the sensitivity of iodine to the image-type chosen for the extraction of the final material-specific image. The rabbit model was able to clearly show the three extracted material phases, vascular iodine, oral tungsten and skeletal calcium. Some skeletal calcium was misassigned to the extracted iodine image, however this did not impede the depiction of the vasculature. Conclusions The CMEP is a straightforward, image domain approach to extract material signal at dual-energy CT. It has particular value for separation of experimental high-Z contrast elements from conventional iodine contrast or calcium, even when the exact attenuation coefficient profiles of desired contrast materials may be unknown. The CMEP is readily implemented in the image-domain within freeware, and can be adapted for use with images from multiple vendors. PMID:27875338
Role of core excitation in (d ,p ) transfer reactions
NASA Astrophysics Data System (ADS)
Deltuva, A.; Ross, A.; Norvaišas, E.; Nunes, F. M.
2016-10-01
Background: Recent work found that core excitations can be important in extracting structure information from (d ,p ) reactions. Purpose: Our objective is to systematically explore the role of core excitation in (d ,p ) reactions and to understand the origin of the dynamical effects. Method: Based on the particle-rotor model of n +10Be , we generate a number of models with a range of separation energies (Sn=0.1 -5.0 MeV), while maintaining a significant core excited component. We then apply the latest extension of the momentum-space-based Faddeev method, including dynamical core excitation in the reaction mechanism to all orders, to the 10Be(d ,p )11Be -like reactions, and study the excitation effects for beam energies Ed=15 -90 MeV. Results: We study the resulting angular distributions and the differences between the spectroscopic factor that would be extracted from the cross sections, when including dynamical core excitation in the reaction, and that of the original structure model. We also explore how different partial waves affect the final cross section. Conclusions: Our results show a strong beam-energy dependence of the extracted spectroscopic factors that become smaller for intermediate beam energies. This dependence increases for loosely bound systems.
Apparatus and method for extracting power from energetic ions produced in nuclear fusion
Fisch, N.J.; Rax, J.M.
1994-12-20
An apparatus and method of extracting power from energetic ions produced by nuclear fusion in a toroidal plasma to enhance respectively the toroidal plasma current and fusion reactivity. By injecting waves of predetermined frequency and phase traveling substantially in a selected poloidal direction within the plasma, the energetic ions become diffused in energy and space such that the energetic ions lose energy and amplify the waves. The amplified waves are further adapted to travel substantially in a selected toroidal direction to increase preferentially the energy of electrons traveling in one toroidal direction which, in turn, enhances or generates a toroidal plasma current. In an further adaptation, the amplified waves can be made to preferentially increase the energy of fuel ions within the plasma to enhance the fusion reactivity of the fuel ions. The described direct, or in situ, conversion of the energetic ion energy provides an efficient and economical means of delivering power to a fusion reactor. 4 figures.
Apparatus and method for extracting power from energetic ions produced in nuclear fusion
Fisch, Nathaniel J.; Rax, Jean M.
1994-01-01
An apparatus and method of extracting power from energetic ions produced by nuclear fusion in a toroidal plasma to enhance respectively the toroidal plasma current and fusion reactivity. By injecting waves of predetermined frequency and phase traveling substantially in a selected poloidal direction within the plasma, the energetic ions become diffused in energy and space such that the energetic ions lose energy and amplify the waves. The amplified waves are further adapted to travel substantially in a selected toroidal direction to increase preferentially the energy of electrons traveling in one toroidal direction which, in turn, enhances or generates a toroidal plasma current. In an further adaptation, the amplified waves can be made to preferentially increase the energy of fuel ions within the plasma to enhance the fusion reactivity of the fuel ions. The described direct, or in situ, conversion of the energetic ion energy provides an efficient and economical means of delivering power to a fusion reactor.
Longatte, G; Rappaport, F; Wollman, F-A; Guille-Collignon, M; Lemaître, F
2016-08-04
Plants or algae take many benefits from oxygenic photosynthesis by converting solar energy into chemical energy through the synthesis of carbohydrates from carbon dioxide and water. However, the overall yield of this process is rather low (about 4% of the total energy available from sunlight is converted into chemical energy). This is the principal reason why recently many studies have been devoted to extraction of photosynthetic electrons in order to produce a sustainable electric current. Practically, the electron transfer occurs between the photosynthetic organism and an electrode and can be assisted by an exogenous mediator, mainly a quinone. In this regard, we recently reported on a method involving fluorescence measurements to estimate the ability of different quinones to extract photosynthetic electrons from a mutant of Chlamydomonas reinhardtii. In the present work, we used the same kind of methodology to establish a zone diagram for predicting the most suitable experimental conditions to extract photoelectrons from intact algae (quinone concentration and light intensity) as a function of the purpose of the study. This will provide further insights into the extraction mechanism of photosynthetic electrons using exogenous quinones. Indeed fluorescence measurements allowed us to model the capacity of photosynthetic algae to donate electrons to an exogenous quinone by considering a numerical parameter called "open center ratio" which is related to the Photosystem II acceptor redox state. Then, using it as a proxy for investigating the extraction of photosynthetic electrons by means of an exogenous quinone, 2,6-DCBQ, we suggested an extraction mechanism that was globally found consistent with the experimentally extracted parameters.
NASA Astrophysics Data System (ADS)
Poiata, Natalia; Vilotte, Jean-Pierre; Bernard, Pascal; Satriano, Claudio; Obara, Kazushige
2018-06-01
In this study, we demonstrate the capability of an automatic network-based detection and location method to extract and analyse different components of tectonic tremor activity by analysing a 9-day energetic tectonic tremor sequence occurring at the downdip extension of the subducting slab in southwestern Japan. The applied method exploits the coherency of multiscale, frequency-selective characteristics of non-stationary signals recorded across the seismic network. Use of different characteristic functions, in the signal processing step of the method, allows to extract and locate the sources of short-duration impulsive signal transients associated with low-frequency earthquakes and of longer-duration energy transients during the tectonic tremor sequence. Frequency-dependent characteristic functions, based on higher-order statistics' properties of the seismic signals, are used for the detection and location of low-frequency earthquakes. This allows extracting a more complete (˜6.5 times more events) and time-resolved catalogue of low-frequency earthquakes than the routine catalogue provided by the Japan Meteorological Agency. As such, this catalogue allows resolving the space-time evolution of the low-frequency earthquakes activity in great detail, unravelling spatial and temporal clustering, modulation in response to tide, and different scales of space-time migration patterns. In the second part of the study, the detection and source location of longer-duration signal energy transients within the tectonic tremor sequence is performed using characteristic functions built from smoothed frequency-dependent energy envelopes. This leads to a catalogue of longer-duration energy sources during the tectonic tremor sequence, characterized by their durations and 3-D spatial likelihood maps of the energy-release source regions. The summary 3-D likelihood map for the 9-day tectonic tremor sequence, built from this catalogue, exhibits an along-strike spatial segmentation of the long-duration energy-release regions, matching the large-scale clustering features evidenced from the low-frequency earthquake's activity analysis. Further examination of the two catalogues showed that the extracted short-duration low-frequency earthquakes activity coincides in space, within about 10-15 km distance, with the longer-duration energy sources during the tectonic tremor sequence. This observation provides a potential constraint on the size of the longer-duration energy-radiating source region in relation with the clustering of low-frequency earthquakes activity during the analysed tectonic tremor sequence. We show that advanced statistical network-based methods offer new capabilities for automatic high-resolution detection, location and monitoring of different scale-components of tectonic tremor activity, enriching existing slow earthquakes catalogues. Systematic application of such methods to large continuous data sets will allow imaging the slow transient seismic energy-release activity at higher resolution, and therefore, provide new insights into the underlying multiscale mechanisms of slow earthquakes generation.
NASA Astrophysics Data System (ADS)
Poiata, Natalia; Vilotte, Jean-Pierre; Bernard, Pascal; Satriano, Claudio; Obara, Kazushige
2018-02-01
In this study, we demonstrate the capability of an automatic network-based detection and location method to extract and analyse different components of tectonic tremor activity by analysing a 9-day energetic tectonic tremor sequence occurring at the down-dip extension of the subducting slab in southwestern Japan. The applied method exploits the coherency of multi-scale, frequency-selective characteristics of non-stationary signals recorded across the seismic network. Use of different characteristic functions, in the signal processing step of the method, allows to extract and locate the sources of short-duration impulsive signal transients associated with low-frequency earthquakes and of longer-duration energy transients during the tectonic tremor sequence. Frequency-dependent characteristic functions, based on higher-order statistics' properties of the seismic signals, are used for the detection and location of low-frequency earthquakes. This allows extracting a more complete (˜6.5 times more events) and time-resolved catalogue of low-frequency earthquakes than the routine catalogue provided by the Japan Meteorological Agency. As such, this catalogue allows resolving the space-time evolution of the low-frequency earthquakes activity in great detail, unravelling spatial and temporal clustering, modulation in response to tide, and different scales of space-time migration patterns. In the second part of the study, the detection and source location of longer-duration signal energy transients within the tectonic tremor sequence is performed using characteristic functions built from smoothed frequency-dependent energy envelopes. This leads to a catalogue of longer-duration energy sources during the tectonic tremor sequence, characterized by their durations and 3-D spatial likelihood maps of the energy-release source regions. The summary 3-D likelihood map for the 9-day tectonic tremor sequence, built from this catalogue, exhibits an along-strike spatial segmentation of the long-duration energy-release regions, matching the large-scale clustering features evidenced from the low-frequency earthquake's activity analysis. Further examination of the two catalogues showed that the extracted short-duration low-frequency earthquakes activity coincides in space, within about 10-15 km distance, with the longer-duration energy sources during the tectonic tremor sequence. This observation provides a potential constraint on the size of the longer-duration energy-radiating source region in relation with the clustering of low-frequency earthquakes activity during the analysed tectonic tremor sequence. We show that advanced statistical network-based methods offer new capabilities for automatic high-resolution detection, location and monitoring of different scale-components of tectonic tremor activity, enriching existing slow earthquakes catalogues. Systematic application of such methods to large continuous data sets will allow imaging the slow transient seismic energy-release activity at higher resolution, and therefore, provide new insights into the underlying multi-scale mechanisms of slow earthquakes generation.
Tao, Yang; Zhang, Zhihang; Sun, Da-Wen
2014-07-01
The effects of acoustic energy density (6.8-47.4 W/L) and temperature (20-50 °C) on the extraction yields of total phenolics and tartaric esters during ultrasound-assisted extraction from grape marc were investigated in this study. The ultrasound treatment was performed in a 25-kHz ultrasound bath system and the 50% aqueous ethanol was used as the solvent. The initial extraction rate and final extraction yield increased with the increase of acoustic energy density and temperature. The two site kinetic model was used to simulate the kinetics of extraction process and the diffusion model based on the Fick's second law was employed to determine the effective diffusion coefficient of phenolics in grape marc. Both models gave satisfactory quality of data fit. The diffusion process was divided into one fast stage and one slow stage and the diffusion coefficients in both stages were calculated. Within the current experimental range, the diffusion coefficients of total phenolics and tartaric esters for both diffusion stages increased with acoustic energy density. Meanwhile, the rise of temperature also resulted in the increase of diffusion coefficients of phenolics except the diffusion coefficient of total phenolics in the fast stage, the value of which being the highest at 40 °C. Moreover, an empirical equation was suggested to correlate the effective diffusion coefficient of phenolics in grape marc with acoustic energy density and temperature. In addition, the performance comparison of ultrasound-assisted extraction and convention methods demonstrates that ultrasound is an effective and promising technology to extract bioactive substances from grape marc. Copyright © 2014 Elsevier B.V. All rights reserved.
The problem of the second wind turbine - a note on a common but flawed wind power estimation method
NASA Astrophysics Data System (ADS)
Gans, F.; Miller, L. M.; Kleidon, A.
2012-06-01
Several recent wind power estimates suggest that this renewable energy resource can meet all of the current and future global energy demand with little impact on the atmosphere. These estimates are calculated using observed wind speeds in combination with specifications of wind turbine size and density to quantify the extractable wind power. However, this approach neglects the effects of momentum extraction by the turbines on the atmospheric flow that would have effects outside the turbine wake. Here we show with a simple momentum balance model of the atmospheric boundary layer that this common methodology to derive wind power potentials requires unrealistically high increases in the generation of kinetic energy by the atmosphere. This increase by an order of magnitude is needed to ensure momentum conservation in the atmospheric boundary layer. In the context of this simple model, we then compare the effect of three different assumptions regarding the boundary conditions at the top of the boundary layer, with prescribed hub height velocity, momentum transport, or kinetic energy transfer into the boundary layer. We then use simulations with an atmospheric general circulation model that explicitly simulate generation of kinetic energy with momentum conservation. These simulations show that the assumption of prescribed momentum import into the atmospheric boundary layer yields the most realistic behavior of the simple model, while the assumption of prescribed hub height velocity can clearly be disregarded. We also show that the assumptions yield similar estimates for extracted wind power when less than 10% of the kinetic energy flux in the boundary layer is extracted by the turbines. We conclude that the common method significantly overestimates wind power potentials by an order of magnitude in the limit of high wind power extraction. Ultimately, environmental constraints set the upper limit on wind power potential at larger scales rather than detailed engineering specifications of wind turbine design and placement.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sang, Yuanrui; Karayaka, H. Bora; Yan, Yanjun
The slider crank is a proven mechanical linkage system with a long history of successful applications, and the slider-crank ocean wave energy converter (WEC) is a type of WEC that converts linear motion into rotation. This paper presents a control algorithm for a slider-crank WEC. In this study, a time-domain hydrodynamic analysis is adopted, and an AC synchronous machine is used in the power take-off system to achieve relatively high system performance. Also, a rule-based phase control strategy is applied to maximize energy extraction, making the system suitable for not only regular sinusoidal waves but also irregular waves. Simulations aremore » carried out under regular sinusoidal wave and synthetically produced irregular wave conditions; performance validations are also presented with high-precision, real ocean wave surface elevation data. The influences of significant wave height, and peak period upon energy extraction of the system are studied. Energy extraction results using the proposed method are compared to those of the passive loading and complex conjugate control strategies; results show that the level of energy extraction is between those of the passive loading and complex conjugate control strategies, and the suboptimal nature of this control strategy is verified.« less
Terrien, Jérémy; Marque, Catherine; Germain, Guy
2008-05-01
Time-frequency representations (TFRs) of signals are increasingly being used in biomedical research. Analysis of such representations is sometimes difficult, however, and is often reduced to the extraction of ridges, or local energy maxima. In this paper, we describe a new ridge extraction method based on the image processing technique of active contours or snakes. We have tested our method on several synthetic signals and for the analysis of uterine electromyogram or electrohysterogram (EHG) recorded during gestation in monkeys. We have also evaluated a postprocessing algorithm that is especially suited for EHG analysis. Parameters are evaluated on real EHG signals in different gestational periods. The presented method gives good results when applied to synthetic as well as EHG signals. We have been able to obtain smaller ridge extraction errors when compared to two other methods specially developed for EHG. The gradient vector flow (GVF) snake method, or GVF-snake method, appears to be a good ridge extraction tool, which could be used on TFR of mono or multicomponent signals with good results.
NASA Astrophysics Data System (ADS)
Kusuma, H. S.; Altway, A.; Mahfud, M.
2017-12-01
In this study the extraction of essential oil from vetiver roots (Vetiveria zizanioides) has been carried out by using microwave hydrodistillation. In the extraction of vetiver oil using microwave hydrodistillation method is studied the effect of microwave power, feed to solvent (F/S) ratio and extraction time on the yield of vetiver oil. Besides, in this study can be seen that microwave hydrodistillation method offers important advantages over hydrodistillation, such as shorter extraction time (3 h vs. 24 h for hydrodistillation); better yields (0.49% vs. 0.46% for hydrodistillation); and environmental impact (energy cost is appreciably higher for performing hydrodistillation than that required for extraction using microwave hydrodistillation). Based on the analysis using GC-MS can be seen 19 components on vetiver oil that has been extracted using microwave hydrodistillation. In addition, GC-MS analysis showed that the main components of vetiver oil that has been extracted using microwave hydrodistillation method were β-Gurjunene (30.12%), α-Vetivone (20.12%), 4-(1-cyclohexenyl)-2-trimethylsilymethyl-1-buten-3-yne (13.52%) and δ-Selinene (7.27%).
NASA Astrophysics Data System (ADS)
Adetya, NP; Hadiyanto, H.
2018-01-01
Microalgae Spirulina sp. has been identified as potential source of natural food supplement and food colorant. The high water content of microalgae (70-90%) causes an obstacle in biomass dehydration which requires large amounts of energy, eventually damaging the lipid in the microalgae. Therefore, the lipid must be extracted by using a suitable method which complies to wet biomass conditions. One of the methods is applying osmotic shock. This study was aimed to investigate the influence of osmotic agent (NaCl) concentration (10-30%) and extraction time (20-50 min) on yield of lipid and also to determine the optimal conditions in the extraction process through response surface methodology. The extraction was conducted at a temperature of 40°C under ultrasound frequency of 40 kHz. The result showed that the optimum yield lipid obtained was 6.39% in 16.98% NaCl concentration for 36 minutes 10 seconds.
Excited-State Effective Masses in Lattice QCD
DOE Office of Scientific and Technical Information (OSTI.GOV)
George Fleming, Saul Cohen, Huey-Wen Lin
2009-10-01
We apply black-box methods, i.e. where the performance of the method does not depend upon initial guesses, to extract excited-state energies from Euclidean-time hadron correlation functions. In particular, we extend the widely used effective-mass method to incorporate multiple correlation functions and produce effective mass estimates for multiple excited states. In general, these excited-state effective masses will be determined by finding the roots of some polynomial. We demonstrate the method using sample lattice data to determine excited-state energies of the nucleon and compare the results to other energy-level finding techniques.
Wind Extraction for Natural Ventilation
NASA Astrophysics Data System (ADS)
Fagundes, Tadeu; Yaghoobian, Neda; Kumar, Rajan; Ordonez, Juan
2017-11-01
Due to the depletion of energy resources and the environmental impact of pollution and unsustainable energy resources, energy consumption has become one of the main concerns in our rapidly growing world. Natural ventilation, a traditional method to remove anthropogenic and solar heat gains, proved to be a cost-effective, alternative method to mechanical ventilation. However, while natural ventilation is simple in theory, its detailed design can be a challenge, particularly for wind-driven ventilation, which its performance highly involves the buildings' form, surrounding topography, turbulent flow characteristics, and climate. One of the main challenges with wind-driven natural ventilation schemes is due to the turbulent and unpredictable nature of the wind around the building that impose complex pressure loads on the structure. In practice, these challenges have resulted in founding the natural ventilation mainly on buoyancy (rather than the wind), as the primary force. This study is the initial step for investigating the physical principals of wind extraction over building walls and investigating strategies to reduce the dependence of the wind extraction on the incoming flow characteristics and the target building form.
Hu, Wen; Guo, Ting; Jiang, Wen-Jun; Dong, Guang-Li; Chen, Da-Wei; Yang, Shi-Lin; Li, He-Ran
2015-06-01
The present study was designed to establish and optimize a new method for extracting chlorogenic acid and cynaroside from Lonicera japonica Thunb. through orthogonal experimental designl. A new ultrahigh pressure extraction (UPE) technology was applied to extract chlorogenic acid and cynaroside from L. japonica. The influential factors, including solvent type, ethanol concentration, extraction pressure, time, and temperature, and the solid/liquid ratio, have been studied to optimize the extraction process. The optimal conditions for the UPE were developed by quantitative analysis of the extraction products by HPLC-DAD in comparison with standard samples. In addition, the microstructures of the medicinal materials before and after extraction were studied by scanning electron microscopy (SEM). Furthermore, the extraction efficiency of different extraction methods and the 2, 2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activities of the extracts were investigated. The optimal conditions for extracting chlorogenic acid and cynaroside were as follows: ethanol concentration, 60%; extraction pressure, 400 MPa; extraction time, 2 min; extraction temperature, 30 °C; and the solid/liquid ratio, 1 : 50. Under these conditions, the yields of chlorogenic acid and cynaroside were raised to 4.863% and 0.080%, respectively. Compared with other extraction methods, such as heat reflux extraction (HRE), ultrasonic extraction (UE), and Sohxlet extraction (SE), the UPE method showed several advantages, including higher extraction yield, shorter extraction time, lower energy consumption, and higher purity of the extracts. This study could help better utilize L. japonica flower buds as a readily accessible source of natural antioxidants in food and pharmaceutical industries. Copyright © 2015 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, K. A.; Schoefer, V.; Tomizawa, M.
The new accelerator complex at J-PARC will operate with both high energy and very high intensity proton beams. With a design slow extraction efficiency of greater than 99% this facility will still be depositing significant beam power onto accelerator components [2]. To achieve even higher efficiencies requires some new ideas. The design of the extraction system and the accelerator lattice structure leaves little room for improvement using conventional techniques. In this report we will present one method for improving the slow extraction efficiency at J-PARC by adding duodecapoles or octupoles to the slow extraction system. We will review the theorymore » of resonant extraction, describe simulation methods, and present the results of detailed simulations. From our investigations we find that we can improve extraction efficiency and thereby reduce the level of residual activation in the accelerator components and surrounding shielding.« less
Farhat, Asma; Fabiano-Tixier, Anne-Sylvie; Visinoni, Franco; Romdhane, Mehrez; Chemat, Farid
2010-11-19
Without adding any solvent or water, we proposed a novel and green approach for the extraction of secondary metabolites from dried plant materials. This "solvent, water and vapor free" approach based on a simple principle involves the application of microwave irradiation and earth gravity to extract the essential oil from dried caraway seeds. Microwave dry-diffusion and gravity (MDG) has been compared with a conventional technique, hydrodistillation (HD), for the extraction of essential oil from dried caraway seeds. Essential oils isolated by MDG were quantitatively (yield) and qualitatively (aromatic profile) similar to those obtained by HD, but MDG was better than HD in terms of rapidity (45min versus 300min), energy saving, and cleanliness. The present apparatus permits fast and efficient extraction, reduces waste, avoids water and solvent consumption, and allows substantial energy savings. Copyright © 2010 Elsevier B.V. All rights reserved.
Yang, Lei; Sun, Xiaowei; Yang, Fengjian; Zhao, Chunjian; Zhang, Lin; Zu, Yuangang
2012-01-01
Ionic liquid based, microwave-assisted extraction (ILMAE) was successfully applied to the extraction of proanthocyanidins from Larix gmelini bark. In this work, in order to evaluate the performance of ionic liquids in the microwave-assisted extraction process, a series of 1-alkyl-3-methylimidazolium ionic liquids with different cations and anions were evaluated for extraction yield, and 1-butyl-3-methylimidazolium bromide was selected as the optimal solvent. In addition, the ILMAE procedure for the proanthocyanidins was optimized and compared with other conventional extraction techniques. Under the optimized conditions, satisfactory extraction yield of the proanthocyanidins was obtained. Relative to other methods, the proposed approach provided higher extraction yield and lower energy consumption. The Larix gmelini bark samples before and after extraction were analyzed by Thermal gravimetric analysis, Fourier-transform infrared spectroscopy and characterized by scanning electron microscopy. The results showed that the ILMAE method is a simple and efficient technique for sample preparation. PMID:22606036
NASA Astrophysics Data System (ADS)
Mitsutake, Ayori; Takano, Hiroshi
2015-09-01
It is important to extract reaction coordinates or order parameters from protein simulations in order to investigate the local minimum-energy states and the transitions between them. The most popular method to obtain such data is principal component analysis, which extracts modes of large conformational fluctuations around an average structure. We recently applied relaxation mode analysis for protein systems, which approximately estimates the slow relaxation modes and times from a simulation and enables investigations of the dynamic properties underlying the structural fluctuations of proteins. In this study, we apply this relaxation mode analysis to extract reaction coordinates for a system in which there are large conformational changes such as those commonly observed in protein folding/unfolding. We performed a 750-ns simulation of chignolin protein near its folding transition temperature and observed many transitions between the most stable, misfolded, intermediate, and unfolded states. We then applied principal component analysis and relaxation mode analysis to the system. In the relaxation mode analysis, we could automatically extract good reaction coordinates. The free-energy surfaces provide a clearer understanding of the transitions not only between local minimum-energy states but also between the folded and unfolded states, even though the simulation involved large conformational changes. Moreover, we propose a new analysis method called Markov state relaxation mode analysis. We applied the new method to states with slow relaxation, which are defined by the free-energy surface obtained in the relaxation mode analysis. Finally, the relaxation times of the states obtained with a simple Markov state model and the proposed Markov state relaxation mode analysis are compared and discussed.
Development of an ATP measurement method suitable for xenobiotic treatment activated sludge biomass.
Nguyen, Lan Huong; Chong, Nyuk-Min
2015-09-01
Activated sludge consumes a large amount of energy to degrade a xenobiotic organic compound. By tracking the energy inventory of activated sludge biomass during the sludge's degradation of a xenobiotic, any disadvantageous effect on the sludge's performance caused by energy deficiency can be observed. The purpose of this study was to develop a reliable and accurate method for measuring the ATP contents of activated sludge cells that were to degrade a xenobiotic organic. Cell disruption and cellular ATP extraction were performed by a protocol with which xenobiotic degrading activated sludge biomass was washed with SDS, treated by Tris and TCA, and followed by bead blasting. The suspension of disrupted cells was filtered before the filtrate was injected into HPLC that was set at optimal conditions to measure the ATP concentration therein. This extraction protocol and HPLC measurement of ATP was evaluated for its linearity, limits of detection, and reproducibility. Evaluation test results reported a R(2) of 0.999 of linear fit of ATP concentration versus activated sludge concentration, a LOD=0.00045mg/L, a LOQ=0.0015mg/L for HPLC measurement of ATP, a MDL=0.46mg/g SS for ATP extraction protocol, and a recovery efficiency of 96.4±2%. This method of ATP measurement was simple, rapid, reliable, and was unburdened of some limitations other methods may have. Copyright © 2015 Elsevier B.V. All rights reserved.
Isovector dipole resonance and shear viscosity in low energy heavy-ion collisions
NASA Astrophysics Data System (ADS)
Guo, C. Q.; Ma, Y. G.; He, W. B.; Cao, X. G.; Fang, D. Q.; Deng, X. G.; Zhou, C. L.
2017-05-01
The ratio of shear viscosity over entropy density in low energy heavy-ion collision has been calculated by using the Green-Kubo method in the framework of an extended quantum molecular dynamics model. After the system almost reaches a local equilibration for a head-on 40Ca+100Mo collision, thermodynamic and transport properties are extracted. Meanwhile, the isovector giant dipole resonance (IVGDR) of the collision system also is studied. By the Gaussian fits to the IVGDR photon spectra, the peak energies of the IVGDR are extracted at different incident energies. The result shows that the IVGDR peak energy has a positive correlation with the ratio of shear viscosity over entropy density. This is a quantum effect and indicates a difference between nuclear matter and classical fluid.
NASA Astrophysics Data System (ADS)
Kong, Yun; Wang, Tianyang; Li, Zheng; Chu, Fulei
2017-09-01
Planetary transmission plays a vital role in wind turbine drivetrains, and its fault diagnosis has been an important and challenging issue. Owing to the complicated and coupled vibration source, time-variant vibration transfer path, and heavy background noise masking effect, the vibration signal of planet gear in wind turbine gearboxes exhibits several unique characteristics: Complex frequency components, low signal-to-noise ratio, and weak fault feature. In this sense, the periodic impulsive components induced by a localized defect are hard to extract, and the fault detection of planet gear in wind turbines remains to be a challenging research work. Aiming to extract the fault feature of planet gear effectively, we propose a novel feature extraction method based on spectral kurtosis and time wavelet energy spectrum (SK-TWES) in the paper. Firstly, the spectral kurtosis (SK) and kurtogram of raw vibration signals are computed and exploited to select the optimal filtering parameter for the subsequent band-pass filtering. Then, the band-pass filtering is applied to extrude periodic transient impulses using the optimal frequency band in which the corresponding SK value is maximal. Finally, the time wavelet energy spectrum analysis is performed on the filtered signal, selecting Morlet wavelet as the mother wavelet which possesses a high similarity to the impulsive components. The experimental signals collected from the wind turbine gearbox test rig demonstrate that the proposed method is effective at the feature extraction and fault diagnosis for the planet gear with a localized defect.
Yang, Yu-Chiao; Wei, Ming-Chi; Hong, Show-Jen
2014-01-03
This study evaluated ultrasound-assisted supercritical carbon dioxide (USC-CO2) extraction for determining the extraction yields of oils and the contents of eugenol, β-caryophyllene, eugenyl acetate and α-humulene from clove buds. Compared to traditional SC-CO2 extraction, USC-CO2 extraction might provide a 13.5% increase in the extraction yield for the oil while utilizing less severe operating parameters, such as temperature, pressure, CO2 flow rate and the time consumed by the process. Our results were comparable to those obtained using the heat reflux extraction method, though the yield was improved by 20.8% using USC-CO2. In kinetic studies, the USC-CO2 extraction of clove oil followed second-order kinetics. The activation energy for the oil extraction was 76.56kJ/mol. The USC-CO2 procedure facilitated the use of mild extraction conditions, improved extraction efficiency and the quality of products and is a potential method for industry. Copyright © 2013 Elsevier B.V. All rights reserved.
Fang, Xinsheng; Wang, Jianhua; Hao, Jifu; Li, Xueke; Guo, Ning
2015-12-01
A simple and rapid method was developed using microwave-assisted extraction (MAE) combined with HPLC-DAD-ESI-MS/MS for the simultaneous extraction, identification, and quantification of phenolic compounds in Eclipta prostrata, a common herb and vegetable in China. The optimized parameters of MAE were: employing 50% ethanol as solvent, microwave power 400 W, temperature 70 °C, ratio of liquid/solid 30 mL/g and extraction time 2 min. Compared to conventional extraction methods, the optimized MAE can avoid the degradation of the phenolic compounds and simultaneously obtained the highest yields of all components faster with less consumption of solvent and energy. Six phenolic acids, six flavonoid glycosides and one coumarin were firstly identified. The phenolic compounds were quantified by HPLC-DAD with good linearity, precision, and accuracy. The extract obtained by MAE showed significant antioxidant activity. The proposed method provides a valuable and green analytical methodology for the investigation of phenolic components in natural plants. Copyright © 2015 Elsevier Ltd. All rights reserved.
Key frame extraction based on spatiotemporal motion trajectory
NASA Astrophysics Data System (ADS)
Zhang, Yunzuo; Tao, Ran; Zhang, Feng
2015-05-01
Spatiotemporal motion trajectory can accurately reflect the changes of motion state. Motivated by this observation, this letter proposes a method for key frame extraction based on motion trajectory on the spatiotemporal slice. Different from the well-known motion related methods, the proposed method utilizes the inflexions of the motion trajectory on the spatiotemporal slice of all the moving objects. Experimental results show that although a similar performance is achieved in the single-objective screen, by comparing the proposed method to that achieved with the state-of-the-art methods based on motion energy or acceleration, the proposed method shows a better performance in a multiobjective video.
NASA Astrophysics Data System (ADS)
Kokorian, Jaap; Merlijn van Spengen, W.
2017-11-01
In this paper we demonstrate a new method for analyzing and visualizing friction force measurements of meso-scale stick-slip motion, and introduce a method for extracting two separate dissipative energy components. Using a microelectromechanical system tribometer, we execute 2 million reciprocating sliding cycles, during which we measure the static friction force with a resolution of \
NASA Astrophysics Data System (ADS)
Iwafune, Yumiko; Ogimoto, Kazuhiko; Yagita, Yoshie
The Energy management systems (EMS) on demand sides are expected as a method to enhance the capability of supply and demand balancing of a power system under the anticipated penetration of renewable energy generation such as Photovoltaics (PV). Elucidation of energy consumption structure in a building is one of important elements for realization of EMS and contributes to the extraction of potential energy saving. In this paper, we propose the estimation method of operating condition of household appliances using circuit current data on an electric distribution board. Circuit current data are broken down by their shape using a self-organization map method and aggregated by appliance based on customers' information of appliance possessed. Proposed method is verified using residential energy consumption measurement survey data.
Virot, Matthieu; Tomao, Valérie; Ginies, Christian; Visinoni, Franco; Chemat, Farid
2008-07-04
Here is described a green and original alternative procedure for fats and oils' determination in oleaginous seeds. Extractions were carried out using a by-product of the citrus industry as extraction solvent, namely d-limonene, instead of hazardous petroleum solvents such as n-hexane. The described method is achieved in two steps using microwave energy: at first, extractions are attained using microwave-integrated Soxhlet, followed by the elimination of the solvent from the medium using a microwave Clevenger distillation in the second step. Oils extracted from olive seeds were compared with both conventional Soxhlet and microwave-integrated Soxhlet extraction procedures performed with n-hexane in terms of qualitative and quantitative determination. No significant difference was obtained between each extract allowing us to conclude that the proposed method is effective and valuable.
NASA Astrophysics Data System (ADS)
Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; Aggarwal, M. M.; Ahammed, Z.; Alekseev, I.; Alford, J.; Anson, C. D.; Aparin, A.; Arkhipkin, D.; Aschenauer, E. C.; Averichev, G. S.; Banerjee, A.; Beavis, D. R.; Bellwied, R.; Bhasin, A.; Bhati, A. K.; Bhattarai, P.; Bichsel, H.; Bielcik, J.; Bielcikova, J.; Bland, L. C.; Bordyuzhin, I. G.; Borowski, W.; Bouchet, J.; Brandin, A. V.; Brovko, S. G.; Bültmann, S.; Bunzarov, I.; Burton, T. P.; Butterworth, J.; Caines, H.; Calderón de la Barca Sánchez, M.; Cebra, D.; Cendejas, R.; Cervantes, M. C.; Chaloupka, P.; Chang, Z.; Chattopadhyay, S.; Chen, H. F.; Chen, J. H.; Chen, L.; Cheng, J.; Cherney, M.; Chikanian, A.; Christie, W.; Chwastowski, J.; Codrington, M. J. M.; Contin, G.; Cramer, J. G.; Crawford, H. J.; Cui, X.; Das, S.; Davila Leyva, A.; De Silva, L. C.; Debbe, R. R.; Dedovich, T. G.; Deng, J.; Derevschikov, A. A.; Derradi de Souza, R.; Dhamija, S.; di Ruzza, B.; Didenko, L.; Dilks, C.; Ding, F.; Djawotho, P.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Du, C. M.; Dunkelberger, L. E.; Dunlop, J. C.; Efimov, L. G.; Engelage, J.; Engle, K. S.; Eppley, G.; Eun, L.; Evdokimov, O.; Eyser, O.; Fatemi, R.; Fazio, S.; Fedorisin, J.; Filip, P.; Finch, E.; Fisyak, Y.; Flores, C. E.; Gagliardi, C. A.; Gangadharan, D. R.; Garand, D.; Geurts, F.; Gibson, A.; Girard, M.; Gliske, S.; Greiner, L.; Grosnick, D.; Gunarathne, D. S.; Guo, Y.; Gupta, A.; Gupta, S.; Guryn, W.; Haag, B.; Hamed, A.; Han, L.-X.; Haque, R.; Harris, J. W.; Heppelmann, S.; Hirsch, A.; Hoffmann, G. W.; Hofman, D. J.; Horvat, S.; Huang, B.; Huang, H. Z.; Huang, X.; Huck, P.; Humanic, T. J.; Igo, G.; Jacobs, W. W.; Jang, H.; Judd, E. G.; Kabana, S.; Kalinkin, D.; Kang, K.; Kauder, K.; Ke, H. W.; Keane, D.; Kechechyan, A.; Kesich, A.; Khan, Z. H.; Kikola, D. P.; Kisel, I.; Kisiel, A.; Koetke, D. D.; Kollegger, T.; Konzer, J.; Koralt, I.; Kosarzewski, L. K.; Kotchenda, L.; Kraishan, A. F.; Kravtsov, P.; Krueger, K.; Kulakov, I.; Kumar, L.; Kycia, R. A.; Lamont, M. A. C.; Landgraf, J. M.; Landry, K. D.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, J. H.; LeVine, M. J.; Li, C.; Li, W.; Li, X.; Li, X.; Li, Y.; Li, Z. M.; Lisa, M. A.; Liu, F.; Ljubicic, T.; Llope, W. J.; Lomnitz, M.; Longacre, R. S.; Luo, X.; Ma, G. L.; Ma, Y. G.; Madagodagettige Don, D. M. M. D.; Mahapatra, D. P.; Majka, R.; Margetis, S.; Markert, C.; Masui, H.; Matis, H. S.; McDonald, D.; McShane, T. S.; Minaev, N. G.; Mioduszewski, S.; Mohanty, B.; Mondal, M. M.; Morozov, D. A.; Mustafa, M. K.; Nandi, B. K.; Nasim, Md.; Nayak, T. K.; Nelson, J. M.; Nigmatkulov, G.; Nogach, L. V.; Noh, S. Y.; Novak, J.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Oh, K.; Ohlson, A.; Okorokov, V.; Oldag, E. W.; Olvitt, D. L.; Pachr, M.; Page, B. S.; Pal, S. K.; Pan, Y. X.; Pandit, Y.; Panebratsev, Y.; Pawlak, T.; Pawlik, B.; Pei, H.; Perkins, C.; Peryt, W.; Pile, P.; Planinic, M.; Pluta, J.; Poljak, N.; Poniatowska, K.; Porter, J.; Poskanzer, A. M.; Pruthi, N. K.; Przybycien, M.; Pujahari, P. R.; Putschke, J.; Qiu, H.; Quintero, A.; Ramachandran, S.; Raniwala, R.; Raniwala, S.; Ray, R. L.; Riley, C. K.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Ross, J. F.; Roy, A.; Ruan, L.; Rusnak, J.; Rusnakova, O.; Sahoo, N. R.; Sahu, P. K.; Sakrejda, I.; Salur, S.; Sandweiss, J.; Sangaline, E.; Sarkar, A.; Schambach, J.; Scharenberg, R. P.; Schmah, A. M.; Schmidke, W. B.; Schmitz, N.; Seger, J.; Seyboth, P.; Shah, N.; Shahaliev, E.; Shanmuganathan, P. V.; Shao, M.; Sharma, B.; Shen, W. Q.; Shi, S. S.; Shou, Q. Y.; Sichtermann, E. P.; Singaraju, R. N.; Skoby, M. J.; Smirnov, D.; Smirnov, N.; Solanki, D.; Sorensen, P.; Spinka, H. M.; Srivastava, B.; Stanislaus, T. D. S.; Stevens, J. R.; Stock, R.; Strikhanov, M.; Stringfellow, B.; Sumbera, M.; Sun, X.; Sun, X. M.; Sun, Y.; Sun, Z.; Surrow, B.; Svirida, D. N.; Symons, T. J. M.; Szelezniak, M. A.; Takahashi, J.; Tang, A. H.; Tang, Z.; Tarnowsky, T.; Thomas, J. H.; Timmins, A. R.; Tlusty, D.; Tokarev, M.; Trentalange, S.; Tribble, R. E.; Tribedy, P.; Trzeciak, B. A.; Tsai, O. D.; Turnau, J.; Ullrich, T.; Underwood, D. G.; Van Buren, G.; van Nieuwenhuizen, G.; Vandenbroucke, M.; Vanfossen, J. A.; Varma, R.; Vasconcelos, G. M. S.; Vasiliev, A. N.; Vertesi, R.; Videbæk, F.; Viyogi, Y. P.; Vokal, S.; Vossen, A.; Wada, M.; Wang, F.; Wang, G.; Wang, H.; Wang, J. S.; Wang, X. L.; Wang, Y.; Wang, Y.; Webb, G.; Webb, J. C.; Westfall, G. D.; Wieman, H.; Wissink, S. W.; Witt, R.; Wu, Y. F.; Xiao, Z.; Xie, W.; Xin, K.; Xu, H.; Xu, J.; Xu, N.; Xu, Q. H.; Xu, Y.; Xu, Z.; Yan, W.; Yang, C.; Yang, Y.; Yang, Y.; Ye, Z.; Yepes, P.; Yi, L.; Yip, K.; Yoo, I.-K.; Yu, N.; Zawisza, Y.; Zbroszczyk, H.; Zha, W.; Zhang, J. B.; Zhang, J. L.; Zhang, S.; Zhang, X. P.; Zhang, Y.; Zhang, Z. P.; Zhao, F.; Zhao, J.; Zhong, C.; Zhu, X.; Zhu, Y. H.; Zoulkarneeva, Y.; Zyzak, M.; STAR Collaboration
2015-07-01
We present results of analyses of two-pion interferometry in Au +Au collisions at √{sNN}=7.7 , 11.5, 19.6, 27, 39, 62.4, and 200 GeV measured in the STAR detector as part of the BNL Relativistic Heavy Ion Collider Beam Energy Scan program. The extracted correlation lengths (Hanbury-Brown-Twiss radii) are studied as a function of beam energy, azimuthal angle relative to the reaction plane, centrality, and transverse mass (mT) of the particles. The azimuthal analysis allows extraction of the eccentricity of the entire fireball at kinetic freeze-out. The energy dependence of this observable is expected to be sensitive to changes in the equation of state. A new global fit method is studied as an alternate method to directly measure the parameters in the azimuthal analysis. The eccentricity shows a monotonic decrease with beam energy that is qualitatively consistent with the trend from all model predictions and quantitatively consistent with a hadronic transport model.
A Penning sputter ion source with very low energy spread
NASA Astrophysics Data System (ADS)
Nouri, Z.; Li, R.; Holt, R. A.; Rosner, S. D.
2010-03-01
We have developed a version of the Frankfurt Penning ion source that produces ion beams with very low energy spreads of ˜3 eV, while operating in a new discharge mode characterized by very high pressure, low voltage, and high current. The extracted ions also comprise substantial metastable and doubly charged species. Detailed studies of the operating parameters of the source showed that careful adjustment of the magnetic field and gas pressure is critical to achieving optimum performance. We used a laser-fluorescence method of energy analysis to characterize the properties of the extracted ion beam with a resolving power of 1×10 4, and to measure the absolute ion beam energy to an accuracy of 4 eV in order to provide some insight into the distribution of plasma potential within the ion source. This characterization method is widely applicable to accelerator beams, though not universal. The low energy spread, coupled with the ability to produce intense ion beams from almost any gas or conducting solid, make this source very useful for high-resolution spectroscopic measurements on fast-ion beams.
Adamczyk, L.
2015-07-10
In this study, we present results of analyses of two-pion interferometry in Au+Au collisions at √s NN = 7.7, 11.5, 19.6, 27, 39, 62.4, and 200 GeV measured in the STAR detector as part of the RHIC Beam Energy Scan program. The extracted correlation lengths (HBT radii) are studied as a function of beam energy, azimuthal angle relative to the reaction plane, centrality, and transverse mass ( mT) of the particles. The azimuthal analysis allows extraction of the eccentricity of the entire fireball at kinetic freeze-out. The energy dependence of this observable is expected to be sensitive to changes inmore » the equation of state. A new global fit method is studied as an alternate method to directly measure the parameters in the azimuthal analysis. The eccentricity shows a monotonic decrease with beam energy that is qualitatively consistent with the trend from all model predictions and quantitatively consistent with a hadronic transport model.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adamczyk, L.
In this study, we present results of analyses of two-pion interferometry in Au+Au collisions at √s NN = 7.7, 11.5, 19.6, 27, 39, 62.4, and 200 GeV measured in the STAR detector as part of the RHIC Beam Energy Scan program. The extracted correlation lengths (HBT radii) are studied as a function of beam energy, azimuthal angle relative to the reaction plane, centrality, and transverse mass ( mT) of the particles. The azimuthal analysis allows extraction of the eccentricity of the entire fireball at kinetic freeze-out. The energy dependence of this observable is expected to be sensitive to changes inmore » the equation of state. A new global fit method is studied as an alternate method to directly measure the parameters in the azimuthal analysis. The eccentricity shows a monotonic decrease with beam energy that is qualitatively consistent with the trend from all model predictions and quantitatively consistent with a hadronic transport model.« less
Method and turbine for extracting kinetic energy from a stream of two-phase fluid
NASA Technical Reports Server (NTRS)
Elliott, D. G. (Inventor)
1979-01-01
An axial flow separator turbine is described which includes a number of nozzles for delivering streams of a two-phase fluid along linear paths. A phase separator which responsively separates the vapor and liquid is characterized by concentrically related annuli supported for rotation within the paths. The separator has endless channels for confining the liquid under the influence of centrifugal forces. A vapor turbine fan extracts kinetic energy from the liquid. Angular momentum of both the liquid phase and the vapor phase of the fluid is converted to torque.
Explicit symplectic orbit and spin tracking method for electric storage ring
Hwang, Kilean; Lee, S. Y.
2016-08-18
We develop a symplectic charged particle tracking method for phase space coordinates and polarization in all electric storage rings. Near the magic energy, the spin precession tune is proportional to the fractional momentum deviation δ m from the magic energy, and the amplitude of the radial and longitudinal spin precession is proportional to η/δ m, where η is the electric dipole moment for an initially vertically polarized beam. As a result, the method can be used to extract the electron electric dipole moment of a charged particle by employing narrow band frequency analysis of polarization around the magic energy.
Electron energy recovery system for negative ion sources
Dagenhart, W.K.; Stirling, W.L.
1979-10-25
An electron energy recovery system for negative ion sources is provided. The system, employing crossed electric and magnetic fields, separates the electrons from the ions as they are extracted from the ion source plasma generator and before the ions are accelerated to their full energy. With the electric and magnetic fields oriented 90/sup 0/ to each other, the electrons remain at approximately the electrical potential at which they were generated. The electromagnetic forces cause the ions to be accelerated to the full accelerating supply voltage energy while being deflected through an angle of less than 90/sup 0/. The electrons precess out of the accelerating field region into an electron recovery region where they are collected at a small fraction of the full accelerating supply energy. It is possible, by this method, to collect > 90% of the electrons extracted along with the negative ions from a negative ion source beam at < 4% of full energy.
Exponential blocking-temperature distribution in ferritin extracted from magnetization measurements
NASA Astrophysics Data System (ADS)
Lee, T. H.; Choi, K.-Y.; Kim, G.-H.; Suh, B. J.; Jang, Z. H.
2014-11-01
We developed a direct method to extract the zero-field zero-temperature anisotropy energy barrier distribution of magnetic particles in the form of a blocking-temperature distribution. The key idea is to modify measurement procedures slightly to make nonequilibrium magnetization calculations (including the time evolution of magnetization) easier. We applied this method to the biomagnetic molecule ferritin and successfully reproduced field-cool magnetization by using the extracted distribution. We find that the resulting distribution is more like an exponential type and that the distribution cannot be correlated simply to the widely known log-normal particle-size distribution. The method also allows us to determine the values of the zero-temperature coercivity and Bloch coefficient, which are in good agreement with those determined from other techniques.
A novel fruit shape classification method based on multi-scale analysis
NASA Astrophysics Data System (ADS)
Gui, Jiangsheng; Ying, Yibin; Rao, Xiuqin
2005-11-01
Shape is one of the major concerns and which is still a difficult problem in automated inspection and sorting of fruits. In this research, we proposed the multi-scale energy distribution (MSED) for object shape description, the relationship between objects shape and its boundary energy distribution at multi-scale was explored for shape extraction. MSED offers not only the mainly energy which represent primary shape information at the lower scales, but also subordinate energy which represent local shape information at higher differential scales. Thus, it provides a natural tool for multi resolution representation and can be used as a feature for shape classification. We addressed the three main processing steps in the MSED-based shape classification. They are namely, 1) image preprocessing and citrus shape extraction, 2) shape resample and shape feature normalization, 3) energy decomposition by wavelet and classification by BP neural network. Hereinto, shape resample is resample 256 boundary pixel from a curve which is approximated original boundary by using cubic spline in order to get uniform raw data. A probability function was defined and an effective method to select a start point was given through maximal expectation, which overcame the inconvenience of traditional methods in order to have a property of rotation invariants. The experiment result is relatively well normal citrus and serious abnormality, with a classification rate superior to 91.2%. The global correct classification rate is 89.77%, and our method is more effective than traditional method. The global result can meet the request of fruit grading.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dolgonos, Alex; Mason, Thomas O.; Poeppelmeier, Kenneth R., E-mail: krp@northwestern.edu
2016-08-15
The direct optical band gap of semiconductors is traditionally measured by extrapolating the linear region of the square of the absorption curve to the x-axis, and a variation of this method, developed by Tauc, has also been widely used. The application of the Tauc method to crystalline materials is rooted in misconception–and traditional linear extrapolation methods are inappropriate for use on degenerate semiconductors, where the occupation of conduction band energy states cannot be ignored. A new method is proposed for extracting a direct optical band gap from absorption spectra of degenerately-doped bulk semiconductors. This method was applied to pseudo-absorption spectramore » of Sn-doped In{sub 2}O{sub 3} (ITO)—converted from diffuse-reflectance measurements on bulk specimens. The results of this analysis were corroborated by room-temperature photoluminescence excitation measurements, which yielded values of optical band gap and Burstein–Moss shift that are consistent with previous studies on In{sub 2}O{sub 3} single crystals and thin films. - Highlights: • The Tauc method of band gap measurement is re-evaluated for crystalline materials. • Graphical method proposed for extracting optical band gaps from absorption spectra. • The proposed method incorporates an energy broadening term for energy transitions. • Values for ITO were self-consistent between two different measurement methods.« less
Ren, Xiaojie; Zhao, Xinhe; Turcotte, François; Deschênes, Jean-Sébastien; Tremblay, Réjean; Jolicoeur, Mario
2017-02-11
Microalgae have the potential to rapidly accumulate lipids of high interest for the food, cosmetics, pharmaceutical and energy (e.g. biodiesel) industries. However, current lipid extraction methods show efficiency limitation and until now, extraction protocols have not been fully optimized for specific lipid compounds. The present study thus presents a novel lipid extraction method, consisting in the addition of a water treatment of biomass between the two-stage solvent extraction steps of current extraction methods. The resulting modified method not only enhances lipid extraction efficiency, but also yields a higher triacylglycerols (TAG) ratio, which is highly desirable for biodiesel production. Modification of four existing methods using acetone, chloroform/methanol (Chl/Met), chloroform/methanol/H 2 O (Chl/Met/H 2 O) and dichloromethane/methanol (Dic/Met) showed respective lipid extraction yield enhancement of 72.3, 35.8, 60.3 and 60.9%. The modified acetone method resulted in the highest extraction yield, with 68.9 ± 0.2% DW total lipids. Extraction of TAG was particularly improved with the water treatment, especially for the Chl/Met/H 2 O and Dic/Met methods. The acetone method with the water treatment led to the highest extraction level of TAG with 73.7 ± 7.3 µg/mg DW, which is 130.8 ± 10.6% higher than the maximum value obtained for the four classical methods (31.9 ± 4.6 µg/mg DW). Interestingly, the water treatment preferentially improved the extraction of intracellular fractions, i.e. TAG, sterols, and free fatty acids, compared to the lipid fractions of the cell membranes, which are constituted of phospholipids (PL), acetone mobile polar lipids and hydrocarbons. Finally, from the 32 fatty acids analyzed for both neutral lipids (NL) and polar lipids (PL) fractions, it is clear that the water treatment greatly improves NL-to-PL ratio for the four standard methods assessed. Water treatment of biomass after the first solvent extraction step helps the subsequent release of intracellular lipids in the second extraction step, thus improving the global lipids extraction yield. In addition, the water treatment positively modifies the intracellular lipid class ratios of the final extract, in which TAG ratio is significantly increased without changes in the fatty acids composition. The novel method thus provides an efficient way to improve lipid extraction yield of existing methods, as well as selectively favoring TAG, a lipid of the upmost interest for biodiesel production.
Golmakani, Mohammad-Taghi; Moayyedi, Mahsa
2015-11-01
Dried and fresh peels of Citrus limon were subjected to microwave-assisted hydrodistillation (MAHD) and solvent-free microwave extraction (SFME), respectively. A comparison was made between MAHD and SFME with the conventional hydrodistillation (HD) method in terms of extraction kinetic, chemical composition, and antioxidant activity. Higher yield results from higher extraction rates by microwaves and could be due to a synergy of two transfer phenomena: mass and heat acting in the same way. Gas chromatography/mass spectrometry (GC/MS) analysis did not indicate any noticeable differences between the constituents of essential oils obtained by MAHD and SFME, in comparison with HD. Antioxidant analysis of the extracted essential oils indicated that microwave irradiation did not have adverse effects on the radical scavenging activity of the extracted essential oils. The results of this study suggest that MAHD and SFME can be termed as green technologies because of their less energy requirements per ml of essential oil extraction.
Methylxanthines: properties and determination in various objects
NASA Astrophysics Data System (ADS)
Andreeva, Elena Yu; Dmitrienko, Stanislava G.; Zolotov, Yurii A.
2012-05-01
Published data on the properties and determination of caffeine, theophylline, theobromine and some other methylxanthines in various objects are surveyed and described systematically. Different sample preparation procedures such as liquid extraction from solid matrices and liquid-liquid, supercritical fluid and solid-phase extraction are compared. The key methods of analysis including chromatography, electrophoresis, spectrometry and electrochemical methods are discussed. Examples of methylxanthine determination in plants, food products, energy beverages, pharmaceuticals, biological fluids and natural and waste waters are given. The bibliography includes 393 references.
Moradi, Sara; Fazlali, Alireza; Hamedi, Hamid
Background: Hydro-distillation (HD) method is a traditional technique which is used in most industrial companies. Microwave-assisted Hydro-distillation (MAHD) is an advanced HD technique utilizing a microwave oven in the extraction process. Methods: In this research, MAHD of essential oils from the aerial parts (leaves) of rosemary (Rosmarinus officinalis L.) was studied and the results were compared with those of the conventional HD in terms of extraction time, extraction efficiency, chemical composition, quality of the essential oils and cost of the operation. Results: Microwave hydro-distillation was superior in terms of saving energy and extraction time (30 min, compared to 90 min in HD). Chromatography was used for quantity analysis of the essential oils composition. Quality of essential oil improved in MAHD method due to an increase of 17% in oxygenated compounds. Conclusion: Consequently, microwave hydro-distillation can be used as a substitute of traditional hydro-distillation. PMID:29296263
Lee, Ilgyu; Han, Jong-In
2015-06-01
Simultaneous treatment (combining with cell disruption and lipid extraction) using hydrodynamic cavitation (HC) was applied to Nannochloropsis salina to demonstrate a simple and integrated way to produce oil from wet microalgae. A high lipid yield from the HC (25.9-99.0%) was observed compared with autoclave (16.2-66.5%) and ultrasonication (5.4-26.9%) in terms of the specific energy input (500-10,000 kJ/kg). The optimal conditions for the simultaneous treatment were established using a statistical approach. The efficiency of the simultaneous method was also demonstrated by comparing each separate treatment. The maximum lipid yield (predicted: 45.9% and experimental: 45.5%) was obtained using 0.89% sulfuric acid with a cavitation number of 1.17 for a reaction time of 25.05 min via response surface methodology. Considering its comparable extractability, energy-efficiency, and potential for scale-up, HC may be a promising method to achieve industrial-scale microalgae operation. Copyright © 2015 Elsevier Ltd. All rights reserved.
Wang, Dongqin; Li, Yanqun; Hu, Xueqiong; Su, Weimin; Zhong, Min
2015-01-01
Microalgal biodiesel is one of the most promising renewable fuels. The wet technique for lipids extraction has advantages over the dry method, such as energy-saving and shorter procedure. The cell disruption is a key factor in wet oil extraction to facilitate the intracellular oil release. Ultrasonication, high-pressure homogenization, enzymatic hydrolysis and the combination of enzymatic hydrolysis with high-pressure homogenization and ultrasonication were employed in this study to disrupt the cells of the microalga Neochloris oleoabundans. The cell disruption degree was investigated. The cell morphology before and after disruption was assessed with scanning and transmission electron microscopy. The energy requirements and the operation cost for wet cell disruption were also estimated. The highest disruption degree, up to 95.41%, assessed by accounting method was achieved by the combination of enzymatic hydrolysis and high-pressure homogenization. A lipid recovery of 92.6% was also obtained by the combined process. The combined process was found to be more efficient and economical compared with the individual process. PMID:25853267
Liu, Ye; Yang, Lei; Zu, Yuangang; Zhao, Chunjian; Zhang, Lin; Zhang, Ying; Zhang, Zhonghua; Wang, Wenjie
2012-12-15
Cortex cinnamomi is associated with many health benefits and is used in the food and pharmaceutical industries. In this study, an efficient ionic liquid-based microwave-assisted simultaneous extraction and distillation (ILMSED) technique was used to extract cassia oil and proanthocyanidins from Cortex cinnamomi; these were quantified by gas chromatography/mass spectrometry (GC-MS) and the vanillin-HCl colorimetric method, respectively. 0.5M 1-butyl-3-methylimidazolium bromide ionic liquid was selected as solvent. The optimum parameters of dealing with 20.0 g sample were 230 W microwave irradiation power, 15 min microwave extraction time and 10 liquid-solid ratio. The yields of essential oil and proanthocyanidins were 1.24 ± 0.04% and 4.58 ± 0.21% under the optimum conditions. The composition of the essential oil was analysed by GC-MS. Using the ILMSED method, the energy consumption was reduced and the extraction yields were improved. The proposed method was validated using stability, repeatability, and recovery experiments. The results indicated that the developed ILMSED method provided a good alternative for the extraction of both the essential oil and proanthocyanidins from Cortex cinnamomi. Copyright © 2012 Elsevier Ltd. All rights reserved.
Hybrid Technology of Hard Coal Mining from Seams Located at Great Depths
NASA Astrophysics Data System (ADS)
Czaja, Piotr; Kamiński, Paweł; Klich, Jerzy; Tajduś, Antoni
2014-10-01
Learning to control fire changed the life of man considerably. Learning to convert the energy derived from combustion of coal or hydrocarbons into another type of energy, such as steam pressure or electricity, has put him on the path of scientific and technological revolution, stimulating dynamic development. Since the dawn of time, fossil fuels have been serving as the mankind's natural reservoir of energy in an increasingly great capacity. A completely incomprehensible refusal to use fossil fuels causes some local populations, who do not possess a comprehensive knowledge of the subject, to protest and even generate social conflicts as an expression of their dislike for the extraction of minerals. Our times are marked by the search for more efficient ways of utilizing fossil fuels by introducing non-conventional technologies of exploiting conventional energy sources. During apartheid, South Africa demonstrated that cheap coal can easily satisfy total demand for liquid and gaseous fuels. In consideration of current high prices of hydrocarbon media (oil and gas), gasification or liquefaction of coal seems to be the innovative technology convergent with contemporary expectations of both energy producers as well as environmentalists. Known mainly from literature reports, underground coal gasification technologies can be brought down to two basic methods: - shaftless method - drilling, in which the gasified seam is uncovered using boreholes drilled from the surface, - shaft method, in which the existing infrastructure of underground mines is used to uncover the seams. This paper presents a hybrid shaft-drilling approach to the acquisition of primary energy carriers (methane and syngas) from coal seams located at great depths. A major advantage of this method is the fact that the use of conventional coal mining technology requires the seams located at great depths to be placed on the off-balance sheet, while the hybrid method of underground gasification enables them to become a source of additional energy for the economy. It should be noted, however, that the shaft-drilling method cannot be considered as an alternative to conventional methods of coal extraction, but rather as a complementary and cheaper way of utilizing resources located almost beyond the technical capabilities of conventional extraction methods due to the associated natural hazards and high costs of combating them. This article presents a completely different approach to the issue of underground coal gasification. Repurposing of the already fully depreciated mining infrastructure for the gasification process may result in a large value added of synthesis gas production and very positive economic effect.
Geothermal waste heat utilization from in situ thermal bitumen recovery operations.
Nakevska, Nevenka; Schincariol, Robert A; Dehkordi, S Emad; Cheadle, Burns A
2015-01-01
In situ thermal methods for bitumen extraction introduce a tremendous amount of energy into the reservoirs raising ambient temperatures of 13 °C to as high as 200 °C at the steam chamber edge and 50 °C along the reservoir edge. In essence these operations have unintentionally acted as underground thermal energy storage systems which can be recovered after completion of bitumen extraction activities. Groundwater flow and heat transport models of the Cold Lake, Alberta, reservoir, coupled with a borehole heat exchanger (BHE) model, allowed for investigating the use of closed-loop geothermal systems for energy recovery. Three types of BHEs (single U-tube, double U-tube, coaxial) were tested and analyzed by comparing outlet temperatures and corresponding heat extraction rates. Initial one year continuous operation simulations show that the double U-tube configuration had the best performance producing an average temperature difference of 5.7 °C, and an average heat extraction of 41 W/m. Given the top of the reservoir is at a depth of 400 m, polyethylene piping provided for larger extraction gains over more thermally conductive steel piping. Thirty year operation simulations illustrate that allowing 6 month cyclic recovery periods only increases the loop temperature gain by a factor of 1.2 over continuous operation. Due to the wide spacing of existing boreholes and reservoir depth, only a small fraction of the energy is efficiently recovered. Drilling additional boreholes between existing wells would increase energy extraction. In areas with shallower bitumen deposits such as the Athabasca region, i.e. 65 to 115 m deep, BHE efficiencies should be larger. © 2014, National Ground Water Association.
Effects of Hydrocarbon Extraction on Landscapes of the Appalachian Basin
Slonecker, Terry E.; Milheim, Lesley E.; Roig-Silva, Coral M.; Kalaly, Siddiq S.
2015-09-30
The need for energy resources has created numerous economic opportunities for hydrocarbon extraction in the Appalachian basin. The development of alternative energy natural gas resources from deep-shale drilling techniques, along with conventional natural gas extraction methods, has created a flurry of wells, roads, pipelines, and related infrastructure across many parts of the region. An unintended and sometimes overlooked consequence of these activities is their effect on the structure and function of the landscape and ecosystems. The collective effect of over 100,000 hydrocarbon extraction permits for oil, coal bed methane, Marcellus and Utica Shale natural gas wells, and other types of hydrocarbon gases and their associated infrastructure has saturated much of the landscape and disturbed the natural environment in the Appalachian basin. The disturbance created by the sheer magnitude of the development of these collective wells and infrastructure directly affects how the landscape and ecosystems function and how they provide ecological goods and services.
Chan, Chung-Hung; See, Tiam-You; Yusoff, Rozita; Ngoh, Gek-Cheng; Kow, Kien-Woh
2017-04-15
This work demonstrated the optimization and scale up of microwave-assisted extraction (MAE) and ultrasonic-assisted extraction (UAE) of bioactive compounds from Orthosiphon stamineus using energy-based parameters such as absorbed power density and absorbed energy density (APD-AED) and response surface methodology (RSM). The intensive optimum conditions of MAE obtained at 80% EtOH, 50mL/g, APD of 0.35W/mL, AED of 250J/mL can be used to determine the optimum conditions of the scale-dependent parameters i.e. microwave power and treatment time at various extraction scales (100-300mL solvent loading). The yields of the up scaled conditions were consistent with less than 8% discrepancy and they were about 91-98% of the Soxhlet extraction yield. By adapting APD-AED method in the case of UAE, the intensive optimum conditions of the extraction, i.e. 70% EtOH, 30mL/g, APD of 0.22W/mL, AED of 450J/mL are able to achieve similar scale up results. Copyright © 2016 Elsevier Ltd. All rights reserved.
R Peak Detection Method Using Wavelet Transform and Modified Shannon Energy Envelope
2017-01-01
Rapid automatic detection of the fiducial points—namely, the P wave, QRS complex, and T wave—is necessary for early detection of cardiovascular diseases (CVDs). In this paper, we present an R peak detection method using the wavelet transform (WT) and a modified Shannon energy envelope (SEE) for rapid ECG analysis. The proposed WTSEE algorithm performs a wavelet transform to reduce the size and noise of ECG signals and creates SEE after first-order differentiation and amplitude normalization. Subsequently, the peak energy envelope (PEE) is extracted from the SEE. Then, R peaks are estimated from the PEE, and the estimated peaks are adjusted from the input ECG. Finally, the algorithm generates the final R features by validating R-R intervals and updating the extracted R peaks. The proposed R peak detection method was validated using 48 first-channel ECG records of the MIT-BIH arrhythmia database with a sensitivity of 99.93%, positive predictability of 99.91%, detection error rate of 0.16%, and accuracy of 99.84%. Considering the high detection accuracy and fast processing speed due to the wavelet transform applied before calculating SEE, the proposed method is highly effective for real-time applications in early detection of CVDs. PMID:29065613
R Peak Detection Method Using Wavelet Transform and Modified Shannon Energy Envelope.
Park, Jeong-Seon; Lee, Sang-Woong; Park, Unsang
2017-01-01
Rapid automatic detection of the fiducial points-namely, the P wave, QRS complex, and T wave-is necessary for early detection of cardiovascular diseases (CVDs). In this paper, we present an R peak detection method using the wavelet transform (WT) and a modified Shannon energy envelope (SEE) for rapid ECG analysis. The proposed WTSEE algorithm performs a wavelet transform to reduce the size and noise of ECG signals and creates SEE after first-order differentiation and amplitude normalization. Subsequently, the peak energy envelope (PEE) is extracted from the SEE. Then, R peaks are estimated from the PEE, and the estimated peaks are adjusted from the input ECG. Finally, the algorithm generates the final R features by validating R-R intervals and updating the extracted R peaks. The proposed R peak detection method was validated using 48 first-channel ECG records of the MIT-BIH arrhythmia database with a sensitivity of 99.93%, positive predictability of 99.91%, detection error rate of 0.16%, and accuracy of 99.84%. Considering the high detection accuracy and fast processing speed due to the wavelet transform applied before calculating SEE, the proposed method is highly effective for real-time applications in early detection of CVDs.
Computer implemented empirical mode decomposition method, apparatus and article of manufacture
NASA Technical Reports Server (NTRS)
Huang, Norden E. (Inventor)
1999-01-01
A computer implemented physical signal analysis method is invented. This method includes two essential steps and the associated presentation techniques of the results. All the steps exist only in a computer: there are no analytic expressions resulting from the method. The first step is a computer implemented Empirical Mode Decomposition to extract a collection of Intrinsic Mode Functions (IMF) from nonlinear, nonstationary physical signals. The decomposition is based on the direct extraction of the energy associated with various intrinsic time scales in the physical signal. Expressed in the IMF's, they have well-behaved Hilbert Transforms from which instantaneous frequencies can be calculated. The second step is the Hilbert Transform. The final result is the Hilbert Spectrum. Thus, the invention can localize any event on the time as well as the frequency axis. The decomposition can also be viewed as an expansion of the data in terms of the IMF's. Then, these IMF's, based on and derived from the data, can serve as the basis of that expansion. The local energy and the instantaneous frequency derived from the IMF's through the Hilbert transform give a full energy-frequency-time distribution of the data which is designated as the Hilbert Spectrum.
Ma, Chun-hui; Liu, Ting-ting; Yang, Lei; Zu, Yuan-gang; Chen, Xiaoqiang; Zhang, Lin; Zhang, Ying; Zhao, Chunjian
2011-12-02
Ionic liquid-based microwave-assisted extraction (ILMAE) has been successfully applied in extracting essential oil and four kinds of biphenyl cyclooctene lignans from Schisandra chinensis Baill. 0.25 M 1-lauryl-3-methylimidazolium bromide ionic liquid is selected as solvent. The optimum parameters of dealing with 25.0 g sample are 385 W irradiation power, 40 min microwave extraction time and 1:12 solid-liquid ratio. The yields of essential oil and lignans are 12.12±0.37 ml/kg and 250.2±38.2 mg/kg under the optimum conditions. The composition of the essential oil extracted by hydro-distillation, steam-distillation and ILMAE is analyzed by GC-MS. With ILMAE method, the energy consumption time has not only been shortened to 40 min (hydro-distillation 3.0 h for extracting essential oil and reflux extraction 4.0 h for extracting lignans, respectively), but also the extraction efficiency has been improved (extraction of lignans and distillation of essential oil at the same time) and reduces the environmental pollution. S. chinensis materials treated by different methods are observed by scanning electronic microscopy. Micrographs provide more evidence to prove that ILMAE is a better and faster method. The experimental results also indicate that ILMAE is a simple and efficient technique for sample preparation. Copyright © 2011 Elsevier B.V. All rights reserved.
Research on Operation Assessment Method for Energy Meter
NASA Astrophysics Data System (ADS)
Chen, Xiangqun; Huang, Rui; Shen, Liman; chen, Hao; Xiong, Dezhi; Xiao, Xiangqi; Liu, Mouhai; Xu, Renheng
2018-03-01
The existing electric energy meter rotation maintenance strategy regularly checks the electric energy meter and evaluates the state. It only considers the influence of time factors, neglects the influence of other factors, leads to the inaccuracy of the evaluation, and causes the waste of resources. In order to evaluate the running state of the electric energy meter in time, a method of the operation evaluation of the electric energy meter is proposed. The method is based on extracting the existing data acquisition system, marketing business system and metrology production scheduling platform that affect the state of energy meters, and classified into error stability, operational reliability, potential risks and other factors according to the influencing factors, based on the above basic test score, inspecting score, monitoring score, score of family defect detection. Then, according to the evaluation model according to the scoring, we evaluate electric energy meter operating state, and finally put forward the corresponding maintenance strategy of rotation.
A Method of Evaluating Operation of Electric Energy Meter
NASA Astrophysics Data System (ADS)
Chen, Xiangqun; Li, Tianyang; Cao, Fei; Chu, Pengfei; Zhao, Xinwang; Huang, Rui; Liu, Liping; Zhang, Chenglin
2018-05-01
The existing electric energy meter rotation maintenance strategy regularly checks the electric energy meter and evaluates the state. It only considers the influence of time factors, neglects the influence of other factors, leads to the inaccuracy of the evaluation, and causes the waste of resources. In order to evaluate the running state of the electric energy meter in time, a method of the operation evaluation of the electric energy meter is proposed. The method is based on extracting the existing data acquisition system, marketing business system and metrology production scheduling platform that affect the state of energy meters, and classified into error stability, operational reliability, potential risks and other factors according to the influencing factors, based on the above basic test score, inspecting score, monitoring score, score of family defect detection. Then, according to the evaluation model according to the scoring, we evaluate electric energy meter operating state, and finally put forward the corresponding maintenance strategy of rotation.
Green extraction of natural products: concept and principles.
Chemat, Farid; Vian, Maryline Abert; Cravotto, Giancarlo
2012-01-01
The design of green and sustainable extraction methods of natural products is currently a hot research topic in the multidisciplinary area of applied chemistry, biology and technology. Herein we aimed to introduce the six principles of green-extraction, describing a multifaceted strategy to apply this concept at research and industrial level. The mainstay of this working protocol are new and innovative technologies, process intensification, agro-solvents and energy saving. The concept, principles and examples of green extraction here discussed, offer an updated glimpse of the huge technological effort that is being made and the diverse applications that are being developed.
Wang, Liping; Duan, Haotian; Jiang, Jiebing; Long, Jiakun; Yu, Yingjia; Chen, Guiliang; Duan, Gengli
2017-09-01
A new, simple, and fast infrared-assisted self enzymolysis extraction (IRASEE) approach for the extraction of total flavonoid aglycones (TFA) mainly including baicalein, wogonin, and oroxylin A from Scutellariae Radix is presented to enhance extraction yield. Extraction enzymolysis temperature, enzymolysis liquid-to-solid ratio, enzymolysis pH, enzymolysis time and infrared power, the factors affecting IRASEE procedure, were investigated in a newly designed, temperature-controlled infrared-assisted extraction (TC-IRAE) system to acquire the optimum analysis conditions. The results illustrated that IRASEE possessed great advantages in terms of efficiency and time compared with other conventional extraction techniques. Furthermore, the mechanism of IRASEE was preliminarily explored by observing the microscopic change of the samples surface structures, studying the main chemical compositions change of the samples before and after extraction and investigating the kinetics and thermodynamics at three temperature levels during the IRASEE process. These findings revealed that IRASEE can destroy the surface microstructures to accelerate the mass transfer and reduce the activation energy to intensify the chemical process. This integrative study presents a simple, rapid, efficient, and environmental IRASEE method for TFA extraction which has promising prospects for other similar herbal medicines. Graphical Abstract ᅟ.
Leung, K.N.
1996-05-14
A ion source is described wherein selected ions maybe extracted to the exclusion of unwanted ion species of higher ionization potential. Also described is a method of producing selected ions from a compound, such as P{sup +} from PH{sub 3}. The invention comprises a plasma chamber, an electron source, a means for introducing a gas to be ionized by electrons from the electron source, means for limiting electron energy from the electron source to a value between the ionization energy of the selected ion species and the greater ionization energy of an unwanted ion specie, and means for extracting the target ion specie from the plasma chamber. In one embodiment, the electrons are generated in a plasma cathode chamber immediately adjacent to the plasma chamber. A small extractor draws the electrons from the plasma cathode chamber into the relatively positive plasma chamber. The energy of the electrons extracted in this manner is easily controlled. The invention is particularly useful for doping silicon with P{sup +}, As{sup +}, and B{sup +} without the problematic presence of hydrogen, helium, water, or carbon oxide ions. Doped silicon is important for manufacture of semiconductors and semiconductor devices. 6 figs.
Leung, Ka-Ngo
1996-01-01
A ion source is described wherein selected ions maybe extracted to the exclusion of unwanted ion species of higher ionization potential. Also described is a method of producing selected ions from a compound, such as P.sup.+ from PH.sub.3. The invention comprises a plasma chamber, an electron source, a means for introducing a gas to be ionized by electrons from the electron source, means for limiting electron energy from the electron source to a value between the ionization energy of the selected ion species and the greater ionization energy of an unwanted ion specie, and means for extracting the target ion specie from the plasma chamber. In one embodiment, the electrons are generated in a plasma cathode chamber immediately adjacent to the plasma chamber. A small extractor draws the electrons from the plasma cathode chamber into the relatively positive plasma chamber. The energy of the electrons extracted in this manner is easily controlled. The invention is particularly useful for doping silicon with P.sup.+, AS.sup.+, and B.sup.+ without the problematic presence of hydrogen, helium, water, or carbon oxide ions. Doped silicon is important for manufacture of semiconductors and semiconductor devices.
Isothermal separation processes
NASA Technical Reports Server (NTRS)
England, C.
1982-01-01
The isothermal processes of membrane separation, supercritical extraction and chromatography were examined using availability analysis. The general approach was to derive equations that identified where energy is consumed in these processes and how they compare with conventional separation methods. These separation methods are characterized by pure work inputs, chiefly in the form of a pressure drop which supplies the required energy. Equations were derived for the energy requirement in terms of regular solution theory. This approach is believed to accurately predict the work of separation in terms of the heat of solution and the entropy of mixing. It can form the basis of a convenient calculation method for optimizing membrane and solvent properties for particular applications. Calculations were made on the energy requirements for a membrane process separating air into its components.
Top quark mass determination from the energy peaks of b-jets and B-hadrons at NLO QCD
Agashe, Kaustubh; Franceschini, Roberto; Kim, Doojin; ...
2016-11-21
Here, we analyze the energy spectra of single b-jets and B-hadrons resulting from the production and decay of top quarks within the SM at the LHC at the NLO QCD. For both hadrons and jets, we calculate the correlation of the peak of the spectrum with the top quark mass, considering the “energy peak” as an observable to determine the top quarkmass. Such a method is motivated by our previous work where we argued that this approach can have reduced sensitivity to the details of the production mechanism of the top quark, whether it concerns higher-order QCD effects or newmore » physics contributions. For a 1% jet energy scale uncertainty, the top quark mass can then be extracted using the energy peak of b-jets with an error ±(1.2(exp) + 0.6(th)) GeV. In view of the dominant jet energy scale uncertainty in the measurement using b-jets, we also investigate the extraction of the top quark mass from the energy peak of the corresponding B-hadrons which, in principle, can be measured without this uncertainty. The calculation of the B-hadron energy spectrum is carried out using fragmentation functions at NLO. The dependence on the fragmentation scale turns out to be the largest theoretical uncertainty in this extraction of top quark mass.« less
Top quark mass determination from the energy peaks of b-jets and B-hadrons at NLO QCD
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agashe, Kaustubh; Franceschini, Roberto; Kim, Doojin
Here, we analyze the energy spectra of single b-jets and B-hadrons resulting from the production and decay of top quarks within the SM at the LHC at the NLO QCD. For both hadrons and jets, we calculate the correlation of the peak of the spectrum with the top quark mass, considering the “energy peak” as an observable to determine the top quarkmass. Such a method is motivated by our previous work where we argued that this approach can have reduced sensitivity to the details of the production mechanism of the top quark, whether it concerns higher-order QCD effects or newmore » physics contributions. For a 1% jet energy scale uncertainty, the top quark mass can then be extracted using the energy peak of b-jets with an error ±(1.2(exp) + 0.6(th)) GeV. In view of the dominant jet energy scale uncertainty in the measurement using b-jets, we also investigate the extraction of the top quark mass from the energy peak of the corresponding B-hadrons which, in principle, can be measured without this uncertainty. The calculation of the B-hadron energy spectrum is carried out using fragmentation functions at NLO. The dependence on the fragmentation scale turns out to be the largest theoretical uncertainty in this extraction of top quark mass.« less
Bioleaching mechanism of Zn, Pb, In, Ag, Cd and As from Pb/Zn smelting slag by autotrophic bacteria.
Wang, Jia; Huang, Qifei; Li, Ting; Xin, Baoping; Chen, Shi; Guo, Xingming; Liu, Changhao; Li, Yuping
2015-08-15
A few studies have focused on release of valuable/toxic metals from Pb/Zn smelting slag by heterotrophic bioleaching using expensive yeast extract as an energy source. The high leaching cost greatly limits the practical potential of the method. In this work, autotrophic bioleaching using cheap sulfur or/and pyrite as energy matter was firstly applied to tackle the smelting slag and the bioleaching mechanisms were explained. The results indicated autotrophic bioleaching can solubilize valuable/toxic metals from slag, yielding maximum extraction efficiencies of 90% for Zn, 86% for Cd and 71% for In, although the extraction efficiencies of Pb, As and Ag were poor. The bioleaching performance of Zn, Cd and Pb was independent of leaching system, and leaching mechanism was acid dissolution. A maximum efficiency of 25% for As was achieved by acid dissolution in sulfursulfur oxidizing bacteria (S-SOB), but the formation of FeAsO4 reduced extraction efficiency in mixed energy source - mixed culture (MS-MC). Combined works of acid dissolution and Fe(3+) oxidation in MS-MC was responsible for the highest extraction efficiency of 71% for In. Ag was present in the slag as refractory AgPb4(AsO4)3 and AgFe2S3, so extraction did not occur. Copyright © 2015 Elsevier Ltd. All rights reserved.
The problem of the second wind turbine - a note on a common but flawed wind power estimation method
NASA Astrophysics Data System (ADS)
Gans, F.; Miller, L. M.; Kleidon, A.
2010-06-01
Several recent wind power estimates suggest how this renewable resource can meet all of the current and future global energy demand with little impact on the atmosphere. These estimates are calculated using observed wind speeds in combination with specifications of wind turbine size and density to quantify the extractable wind power. Here we show that this common methodology is flawed because it does not account for energy removal by the turbines that is necessary to ensure the conservation of energy. We will first illustrate the common but flawed methodology using parameters from a recent global quantification of wind power in a simple experimental setup. For a small number of turbines at small scales, the conservation of energy hardly results in a difference when compared to the common method. However, when applied at large to global scales, the ability of radiative gradients to generate a finite amount of kinetic energy needs to be taken into account. Using the same experimental setup, we use the simplest method to ensure the conservation of energy to show a non-negligble decrease in wind velocity after the first turbine that will successively result in lower extraction of the downwind turbines. We then show how the conservation of energy inevitably results in substantially lower estimates of wind power at the global scale. Because conservation of energy is fundamental, we conclude that ultimately environmental constraints set the upper limit for wind power availability at the larger scale rather than detailed engineering specifications of the wind turbine design and placement.
Gaddy, James L.; Clausen, Edgar C.; Ko, Ching-Whan; Wade, Leslie E.; Wikstrom, Carl V.
2007-03-27
A modified water-immiscible solvent useful in the extraction of acetic acid from aqueous streams is a substantially pure mixture of isomers of highly branched di-alkyl amines. Solvent mixtures formed of such a modified solvent with a desired co-solvent, preferably a low boiling hydrocarbon, are useful in the extraction of acetic acid from aqueous gaseous streams. An anaerobic microbial fermentation process for the production of acetic acid employs such solvents, under conditions which limit amide formation by the solvent and thus increase the efficiency of acetic acid recovery. Methods for the direct extraction of acetic acid and the extractive fermentation of acetic acid also employ the modified solvents and increase efficiency of acetic acid production. Such increases in efficiency are also obtained where the energy source for the microbial fermentation contains carbon dioxide and the method includes a carbon dioxide stripping step prior to extraction of acetic acid in solvent.
Gaddy, James L.; Clausen, Edgar C.; Ko, Ching-Whan; Wade, Leslie E.; Wikstrom, Carl V.
2004-06-22
A modified water-immiscible solvent useful in the extraction of acetic acid from aqueous streams is a substantially pure mixture of isomers of highly branched di-alkyl amines. Solvent mixtures formed of such a modified solvent with a desired co-solvent, preferably a low boiling hydrocarbon, are useful in the extraction of acetic acid from aqueous gaseous streams. An anaerobic microbial fermentation process for the production of acetic acid employs such solvents, under conditions which limit amide formation by the solvent and thus increase the efficiency of acetic acid recovery. Methods for the direct extraction of acetic acid and the extractive fermentation of acetic acid also employ the modified solvents and increase efficiency of acetic acid production. Such increases in efficiency are also obtained where the energy source for the microbial fermentation contains carbon dioxide and the method includes a carbon dioxide stripping step prior to extraction of acetic acid in solvent.
Section Curve Reconstruction and Mean-Camber Curve Extraction of a Point-Sampled Blade Surface
Li, Wen-long; Xie, He; Li, Qi-dong; Zhou, Li-ping; Yin, Zhou-ping
2014-01-01
The blade is one of the most critical parts of an aviation engine, and a small change in the blade geometry may significantly affect the dynamics performance of the aviation engine. Rapid advancements in 3D scanning techniques have enabled the inspection of the blade shape using a dense and accurate point cloud. This paper proposes a new method to achieving two common tasks in blade inspection: section curve reconstruction and mean-camber curve extraction with the representation of a point cloud. The mathematical morphology is expanded and applied to restrain the effect of the measuring defects and generate an ordered sequence of 2D measured points in the section plane. Then, the energy and distance are minimized to iteratively smoothen the measured points, approximate the section curve and extract the mean-camber curve. In addition, a turbine blade is machined and scanned to observe the curvature variation, energy variation and approximation error, which demonstrates the availability of the proposed method. The proposed method is simple to implement and can be applied in aviation casting-blade finish inspection, large forging-blade allowance inspection and visual-guided robot grinding localization. PMID:25551467
Section curve reconstruction and mean-camber curve extraction of a point-sampled blade surface.
Li, Wen-long; Xie, He; Li, Qi-dong; Zhou, Li-ping; Yin, Zhou-ping
2014-01-01
The blade is one of the most critical parts of an aviation engine, and a small change in the blade geometry may significantly affect the dynamics performance of the aviation engine. Rapid advancements in 3D scanning techniques have enabled the inspection of the blade shape using a dense and accurate point cloud. This paper proposes a new method to achieving two common tasks in blade inspection: section curve reconstruction and mean-camber curve extraction with the representation of a point cloud. The mathematical morphology is expanded and applied to restrain the effect of the measuring defects and generate an ordered sequence of 2D measured points in the section plane. Then, the energy and distance are minimized to iteratively smoothen the measured points, approximate the section curve and extract the mean-camber curve. In addition, a turbine blade is machined and scanned to observe the curvature variation, energy variation and approximation error, which demonstrates the availability of the proposed method. The proposed method is simple to implement and can be applied in aviation casting-blade finish inspection, large forging-blade allowance inspection and visual-guided robot grinding localization.
Machine fault feature extraction based on intrinsic mode functions
NASA Astrophysics Data System (ADS)
Fan, Xianfeng; Zuo, Ming J.
2008-04-01
This work employs empirical mode decomposition (EMD) to decompose raw vibration signals into intrinsic mode functions (IMFs) that represent the oscillatory modes generated by the components that make up the mechanical systems generating the vibration signals. The motivation here is to develop vibration signal analysis programs that are self-adaptive and that can detect machine faults at the earliest onset of deterioration. The change in velocity of the amplitude of some IMFs over a particular unit time will increase when the vibration is stimulated by a component fault. Therefore, the amplitude acceleration energy in the intrinsic mode functions is proposed as an indicator of the impulsive features that are often associated with mechanical component faults. The periodicity of the amplitude acceleration energy for each IMF is extracted by spectrum analysis. A spectrum amplitude index is introduced as a method to select the optimal result. A comparison study of the method proposed here and some well-established techniques for detecting machinery faults is conducted through the analysis of both gear and bearing vibration signals. The results indicate that the proposed method has superior capability to extract machine fault features from vibration signals.
Experimental results of use of triple-energy X-ray beam with K-edge filter in multi-energy imaging
NASA Astrophysics Data System (ADS)
Kim, D.; Lee, S.; Jeon, P.-H.
2016-04-01
Multi-energy imaging is useful for contrast enhancement of lesions, quantitative analysis of specific materials and material separation in the human body. Generally, dual-energy methods are applied to discriminating two materials, but this method cannot discriminate more than two materials. Photon-counting detectors provide spectral information from polyenergetic X-rays using multiple energy bins. In this work, we developed triple-energy X-ray beams using a filter with K-edge energy and applied them experimentally. The energy spectra of triple-energy X-ray beams were assessed by using a spectrometer. The designed triple-energy X-ray beams were validated by measuring quantitative evaluations with mean energy ratio (MER), contrast variation ratio (CVR) and exposure efficiency (EE). Then, triple-energy X-ray beams were used to extract density map of three materials, iodine (I), aluminum (Al) and polymethyl methacrylate (PMMA). The results of the thickness density maps obtained with the developed triple-energy X-ray beams were compared to those acquired using the photon-counting method. As a result, it was found experimentally that the proposed triple-energy X-ray beam technique can separate the three materials as well as the photon-counting method.
1992-01-01
entropy , energy. variance, skewness, and object. It can also be applied to an image of a phenomenon. It kurtosis. These parameters are then used as...statistic. The co-occurrence matrix method is used in this study to derive texture values of entropy . Limogeneity. energy (similar to the GLDV angular...from working with the co-occurrence matrix method. Seven convolution sizes were chosen to derive the texture values of entropy , local homogeneity, and
Current experiences in applied underground coal gasification
NASA Astrophysics Data System (ADS)
Peters, Justyn
2010-05-01
The world is experiencing greater stress on its ability to mine and exploit energy resources such as coal, through traditional mining methods. The resources available by extraction from traditional mining methods will have a finite time and quantity. In addition, the high quality coals available are becoming more difficult to find substantially increasing exploration costs. Subsequently, new methods of extraction are being considered to improve the ability to unlock the energy from deep coals and improve the efficiency of the exploitation of the resources while also considering the mitigation of global warming. Underground Coal Gasification (UCG) is a leading commercial technology that is able to maximize the exploitation of the deep coal through extraction of the coal as a syngas (CO and H2) in situ. The syngas is then brought to the surface and efficiently utilized in any of combined cycle power generation, liquid hydrocarbon transport fuel production, fertilizer production or polymer production. Commercial UCG has been successfully operating for more than 50 years at the Yerostigaz facility in Angren, Uzbekistan. Yerostigaz is the only remaining UCG site in the former Soviet Union. Linc Energy currently owns 91.6% of this facility. UCG produces a high quality synthetic gas (syngas), containing carbon monoxide, hydrogen and methane. UCG produced syngas can be economically used for a variety of purposes, including: the production of liquid fuels when combined with Gas to Liquids (GTL) technology power generation in gas turbine combined cycle power stations a feedstock for different petrochemical processes, for example producing chemicals or other gases such as hydrogen, methane, ammonia, methanol and dimethyl ether Linc Energy has proven the combined use of UCG to Gas to Liquids (GTL) technologies. UCG to GTL technologies have the ability to provide energy alternatives to address increasing global demand for energy products. With these technologies, Linc Energy is set to become the leading producer of cleaner liquid fuels and other associated products. UCG has now been developed to a point where the commercialisation of the process is no longer questioned, the economics of the process are compelling, and is now seen as a method that resolves energy security for countries that have access to deep coal previously thought to have no economic value.
Self-Organizing Maps and Parton Distribution Functions
DOE Office of Scientific and Technical Information (OSTI.GOV)
K. Holcomb, Simonetta Liuti, D. Z. Perry
2011-05-01
We present a new method to extract parton distribution functions from high energy experimental data based on a specific type of neural networks, the Self-Organizing Maps. We illustrate the features of our new procedure that are particularly useful for an anaysis directed at extracting generalized parton distributions from data. We show quantitative results of our initial analysis of the parton distribution functions from inclusive deep inelastic scattering.
Green synthesis of iron nanoparticles by various tea extracts: comparative study of the reactivity.
Huang, Lanlan; Weng, Xiulan; Chen, Zuliang; Megharaj, Mallavarapu; Naidu, Ravendra
2014-09-15
Iron nanoparticles (Fe NPs) are often synthesized using sodium borohydride with aggregation, which is a high cost process and environmentally toxic. To address these issues, Fe NPs were synthesized using green methods based on tea extracts, including green, oolong and black teas. The best method for degrading malachite green (MG) was Fe NPs synthesized by green tea extracts because it contains a high concentration of caffeine/polyphenols which act as both reducing and capping agents in the synthesis of Fe NPs. These characteristics were confirmed by a scanning electron microscope (SEM), UV-visible (UV-vis) and specific surface area (BET). To understand the formation of Fe NPs using various tea extracts, the synthesized Fe NPs were characterized by SEM, X-ray energy-dispersive spectrometer (EDS), and X-ray diffraction (XRD). What emerged were different sizes and concentrations of Fe NPs being synthesized by tea extracts, leading to various degradations of MG. Furthermore, kinetics for the degradation of MG using these Fe NPs fitted well to the pseudo first-order reaction kinetics model with more than 20 kJ/mol activation energy, suggesting a chemically diffusion-controlled reaction. The degradation mechanism using these Fe NPs included adsorption of MG to Fe NPs, oxidation of iron, and cleaving the bond that was connected to the benzene ring. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Ikeda, Yoichi
2018-03-01
We present recent progress of lattice QCD studies on hadronic interactions which play a crucial role to understand the properties of atomic nuclei and hadron resonances. There are two methods, the plateau method (or the direct method) and the HAL QCD method, to study the hadronic interactions. In the plateau method, the determination of a ground state energy from the temporal correlation functions of multi-hadron systems is a key to reliably extract the physical observables. It turns out that, due to the contamination of excited elastic scattering states nearby, one can easily be misled by a fake plateau into extracting the ground state energy. We introduce a consistency check (sanity check) which can rule out obviously false results obtained from a fake plateau, and find that none of the results obtained at the moment for two-baryon systems in the plateau method pass the test. On the other hand, the HAL QCD method is free from the fake-plateau problem. We investigate the systematic uncertainties of the HAL QCD method, which are found to be well controlled. On the basis of the HAL QCD method, the structure of the tetraquark candidate Zc(3900), which was experimentally reported in e+e- collisions, is studied by the s-wave two-meson coupled-channel scattering. The results show that the Zc(3900) is not a conventional resonance but a threshold cusp. A semi-phenomenological analysis with the coupled-channel interaction to the experimentally observed decay mode is also presented to confirm the conclusion.
A new diagnostic method of bolt loosening detection for thermal protection systems
NASA Astrophysics Data System (ADS)
Xie, Weihua; Meng, Songhe; Han, Jiecai; Du, Shanyi; Zhang, Boming; Yu, Dong
2009-07-01
Research and development efforts are underway to provide structural health monitoring systems to ensure the integrity of thermal protection system (TPS). An improved analytical method was proposed to assess the fastener integrity of a bolted structure in this paper. A new unsymmetrical washer was designed and fabricated, taking full advantage of piezoelectric ceramics (PZT) to play both roles as actuators and sensors, and using energy as the only extracted feature to identify abnormality. This diagnostic method is not restricted by the materials of the bracket, panel and base structure of the TPS whose condition is under inspection. A series of experiments on a metallic honeycomb sandwich panel were completed to demonstrate the capability of detecting bolt loosening on the TPS structure. Studies showed that this method can be used not only to identify the location of loosened bolts rapidly, but also to estimate the torque level of loosening bolts. Since that energy is the only extracted feature used to detect bolt loosening in this method, the diagnostic process become very simple and swift without sacrificing the accuracy of the results.
Blicharski, Tomasz; Oniszczuk, Anna; Olech, Marta; Oniszczuk, Tomasz; Wójtowicz, Agnieszka; Krawczyk, Wojciech; Nowak, Renata
2017-05-11
[b]Abstract Introduction[/b]. Functional food plays an important role in the prevention, management and treatment of chronic diseases. One of the most interesting techniques of functional food production is extrusion-cooking. Functional foods may include such items as puffed cereals, breads and beverages that are fortified with vitamins, some nutraceuticals and herbs. Due to its pharmacological activity, chamomile flowers are the most popular components added to functional food. Quantitative analysis of polyphenolic antioxidants, as well as comparison of various methods for the extraction of phenolic compounds from corn puffed cereals, puffed cereals with an addition of chamomile (3, 5, 10 and 20%) and from [i]Chamomillae anthodium. [/i] [b]Materials and Methods[/b]. Two modern extraction methods - ultrasound assisted extraction (UAE) at 40 °C and 60 °C, as well as accelerated solvent extraction (ASE) at 100 °C and 120 °C were used for the isolation of polyphenols from functional food. Analysis of flavonoids and phenolic acids was carried out using reversed-phase high-performance liquid chromatography and electrospray ionization mass spectrometry (LC-ESI-MS/MS). [b]Results and Conclusions[/b]. For most of the analyzed compounds, the highest yields were obtained by ultrasound assisted extraction. The highest temperature during the ultrasonification process (60 °C) increased the efficiency of extraction, without degradation of polyphenols. UAE easily arrives at extraction equilibrium and therefore permits shorter periods of time, reducing the energy input. Furthermore, UAE meets the requirements of 'Green Chemistry'.
The Magnetron Method for the Determination of e/m for Electrons: Revisited
ERIC Educational Resources Information Center
Azooz, A. A.
2007-01-01
Additional information concerning the energy distribution function of electrons in a magnetron diode valve can be extracted. This distribution function is a manifestation of the effect of space charge at the anode. The electron energy distribution function in the magnetron is obtained from studying the variation of the anode current with the…
Multiple pass laser amplifier system
Brueckner, Keith A.; Jorna, Siebe; Moncur, N. Kent
1977-01-01
A laser amplification method for increasing the energy extraction efficiency from laser amplifiers while reducing the energy flux that passes through a flux limited system which includes apparatus for decomposing a linearly polarized light beam into multiple components, passing the components through an amplifier in delayed time sequence and recombining the amplified components into an in phase linearly polarized beam.
Ak-Chin Indian Community Biomass Feasiiblity Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mark A. Moser, RCM Digesters, Inc.; Mark Randall, Daystar Consulting, LLC; Leonard S. Gold, Ak-Chin Energy Services & Utility Strategies Consulting Group
2005-12-31
Study of the conversion of chicken litter to biogas for the production of energy. There was an additional requirement that after extracting the energy from the chicken litter the nutrient value of the raw chicken litter had to be returned to the Ak-Chin Farms for use as fertilizer in a form and delivery method acceptable to the Farm.
Bio-Oil Separation and Stabilization by Near-Critical Propane Fractionation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ginosar, Daniel M.; Petkovic, Lucia M.; Agblevor, Foster A.
Bio-oils produced by thermal process are promising sources of sustainable, low greenhouse gas alternative fuels. These thermal processes are also well suited to decentralized energy production due to low capital and operating costs. Algae feedstocks for bio-oil production are of particular interest, due in part to their high-energy growth yields. Further, algae can be grown in non-arable areas in fresh, brackish, salt water, or even waste water. Unfortunately, bio-oils produced by thermal processes present significant stability challenges. These oils have complex chemical compositions, are viscous, reactive, and thermally unstable. Further, the components within the oils are difficult to separate bymore » fractional distillation. By far, the most effective separation and stabilization method has been solvent extraction. However, liquid phase extraction processes pose two main obstacles to commercialization; they require a significant amount of energy to remove and recover the solvent from the product, and they have a propensity for the solvent to become contaminated with minerals from the char and ash present in the original bio-oil. Separation and fractionation of thermally produced bio-oils using supercritical fluids (SCF) offers the advantages of liquid solvent extraction while drastically reducing energy demands and the predisposition to carry over solids into the extracted phase. SCFs are dense fluids with liquid-like solvent properties and gas-like transport properties. Further, SCF density and solvent strength can be tuned with minor adjustments in pressure, co-solvent addition, or gas anti-solvent addition. Catalytic pyrolysis oils were produced from Scenedesmus dimorphus algae using a fluid catalytic cracking catalyst. Bio-oil produced from catalytic fast pyrolysis (CFP) was separated using critical fluids. Propane extraction was performed at 65 °C at a fluid reduced pressure of 2.0 (85 bar) using an eight to one solvent to feed ratio by weight. Extraction of catalytic fast pyrolysis oil with near critical propane produced an oil extract that was physically and chemically different from and more stable than the original oil. The propane extract displayed lower viscosity and lower average molecular weight. The species present in the propane extract were likely the less polar that would be expected from using a non-polar solvent (propane). Carbonyl containing species in the extract were likely ketones and esters. The raffinate contained a higher amnount of OH bonded species along with the more polar more polar acids, amides, and alcohols. The higher concentration of nitrogen in the raffinate may confirm the presence of amides. Viscosity of the propane extract increased only half as much as that of the CFP bio-oil. Further, In situ NMR aging studies showed that the propane extract was more stable than the raw oil. In conclusion, propane extraction is a promising method to decrease the nitrogen content of bio-oils and to improve the stability of bio-oils obtained by the catalytic pyrolysis of algae based biomass.« less
Statistical analysis of experimental multifragmentation events in 64Zn+112Sn at 40 MeV/nucleon
NASA Astrophysics Data System (ADS)
Lin, W.; Zheng, H.; Ren, P.; Liu, X.; Huang, M.; Wada, R.; Chen, Z.; Wang, J.; Xiao, G. Q.; Qu, G.
2018-04-01
A statistical multifragmentation model (SMM) is applied to the experimentally observed multifragmentation events in an intermediate heavy-ion reaction. Using the temperature and symmetry energy extracted from the isobaric yield ratio (IYR) method based on the modified Fisher model (MFM), SMM is applied to the reaction 64Zn+112Sn at 40 MeV/nucleon. The experimental isotope distribution and mass distribution of the primary reconstructed fragments are compared without afterburner and they are well reproduced. The extracted temperature T and symmetry energy coefficient asym from SMM simulated events, using the IYR method, are also consistent with those from the experiment. These results strongly suggest that in the multifragmentation process there is a freezeout volume, in which the thermal and chemical equilibrium is established before or at the time of the intermediate-mass fragments emission.
Cell disruption and lipid extraction for microalgal biorefineries: A review.
Lee, Soo Youn; Cho, Jun Muk; Chang, Yong Keun; Oh, You-Kwan
2017-11-01
The microalgae-based biorefinement process has attracted much attention from academic and industrial researchers attracted to its biofuel, food and nutraceutical applications. In this paper, recent developments in cell-disruption and lipid-extraction methods, focusing on four biotechnologically important microalgal species (namely, Chlamydomonas, Haematococcus, Chlorella, and Nannochloropsis spp.), are reviewed. The structural diversity and rigidity of microalgal cell walls complicate the development of efficient downstream processing methods for cell-disruption and subsequent recovery of intracellular lipid and pigment components. Various mechanical, chemical and biological cell-disruption methods are discussed in detail and compared based on microalgal species and status (wet/dried), scale, energy consumption, efficiency, solvent extraction, and synergistic combinations. The challenges and prospects of the downstream processes for the future development of eco-friendly and economical microalgal biorefineries also are outlined herein. Copyright © 2017 Elsevier Ltd. All rights reserved.
A microfluidic study of liquid-liquid extraction mediated by carbon dioxide.
Lestari, Gabriella; Salari, Alinaghi; Abolhasani, Milad; Kumacheva, Eugenia
2016-07-05
Liquid-liquid extraction is an important separation and purification method; however, it faces a challenge in reducing the energy consumption and the environmental impact of solvent (extractant) recovery. The reversible chemical reactions of switchable solvents (nitrogenous bases) with carbon dioxide (CO2) can be implemented in reactive liquid-liquid extraction to significantly reduce the cost and energy requirements of solvent recovery. The development of new effective switchable solvents reacting with CO2 and the optimization of extraction conditions rely on the ability to evaluate and screen the performance of switchable solvents in extraction processes. We report a microfluidic strategy for time- and labour-efficient studies of CO2-mediated solvent extraction. The platform utilizes a liquid segment containing an aqueous extractant droplet and a droplet of a solution of a switchable solvent in a non-polar liquid, with gaseous CO2 supplied to the segment from both sides. Following the reaction of the switchable solvent with CO2, the solvent becomes hydrophilic and transfers from the non-polar solvent to the aqueous droplet. By monitoring the time-dependent variation in droplet volumes, we determined the efficiency and extraction time for the CO2-mediated extraction of different nitrogenous bases in a broad experimental parameter space. The platform enables a significant reduction in the amount of switchable solvents used in these studies, provides accurate temporal characterization of the liquid-liquid extraction process, and offers the capability of high-throughput screening of switchable solvents.
Stevenson, Steven; Thompson, M. Corey; Coumbe, H. Louie; Mackey, Mary A.; Coumbe, Curtis E.; Phillips, J. Paige
2008-01-01
Goals are (1) to selectively synthesize MNFs in lieu of empty-cage fullerenes (e.g., C60, C70) without compromising MNF yield and (2) to test our hypothesis that MNFs possess a different set of optimal formation parameters than empty-cage fullerenes. In this work, we introduce a novel approach for the selective synthesis of metallic nitride fullerenes (MNFs). This new method is “Chemically Adjusting Plasma Temperature, Energy and Reactivity” (CAPTEAR). The CAPTEAR approach with copper nitrate hydrate uses NOx vapor from NOx generating solid reagents, air and combustion to “tune” the temperature, energy and reactivity of the plasma environment. The extent of temperature, energy and reactive environment is stoichiometrically varied until optimal conditions for selective MNF synthesis are achieved. Analysis of soot extracts indicate that percentages of C60 and Sc3N@C80 are inversely related, whereas the percentages of C70 and higher empty-cage C2n fullerenes are largely unaffected. Hence, there may be a “competitive link” in the formation and mechanism of C60 and Sc3N@C80. Using this CAPTEAR method, purified MNFs (96% Sc3N@C80, 12 mg) have been obtained in soot extracts without a significant penalty in milligram yield when compared to control soot extracts (4% Sc3N@C80, 13 mg Sc3N@C80). The CAPTEAR process with Cu(NO3)2·2.5 H2O uses an exothermic nitrate moiety to suppress empty-cage fullerene formation, whereas Cu functions as a catalyst additive to offset the reactive plasma environment and boost the Sc3N@C80 MNF production. PMID:18052069
Numerical research of a 2D axial symmetry hybrid model for the radio-frequency ion thruster
NASA Astrophysics Data System (ADS)
Chenchen, WU; Xinfeng, SUN; Zuo, GU; Yanhui, JIA
2018-04-01
Since the high efficiency discharge is critical to the radio-frequency ion thruster (RIT), a 2D axial symmetry hybrid model has been developed to study the plasma evolution of RIT. The fluid method and the drift energy correction of the electron energy distribution function (EEDF) are applied to the analysis of the RIT discharge. In the meantime, the PIC-MCC method is used to investigate the ion beam current extraction character for the plasma plume region. The beam current simulation results, with the hybrid model, agree well with the experimental results, and the error is lower than 11%, which shows the validity of the model. The further study shows there is an optimal ratio for the radio-frequency (RF) power and the beam current extraction power under the fixed RIT configuration. And the beam extraction efficiency will decrease when the discharge efficiency beyond a certain threshold (about 87 W). As the input parameters of the hybrid model are all the design values, it can be directly used to the optimum design for other kinds of RITs and radio-frequency ion sources.
Bai, Ruixi; Yang, Fan; Zhang, Yang; Zhao, Zhigang; Liao, Qiuxia; Chen, Peng; Zhao, Panpan; Guo, Wanghuan; Cai, Chunqing
2018-06-15
Inspired by the phenomenon of sponges soaking up water, a novel syringe-like adsorption device used diglycolamic-acid modified chitosan sponges (CSs-DGAA) as adsorbents is reported for recycling of rare-earth elements (REEs) by Squeezing & Soaking (S&S) operation. Integrating the elasticity of sponges and selective extraction ability of diglycolamic acid groups, the new device can efficiently recycle REEs from aqueous solutions. This device only needs 10 min to achieve adsorption equilibrium; squeezing the water from the sponges achieves solid-liquid separation. This syringe-like adsorption method not only solves the pollution problem caused by the organic solvents used during liquidliquid extractions, but also improves the time needed to achieve adsorption equilibrium and uses significantly less energy than energy intensive solid-phase extractions of solid-liquid separations. Moreover, the environment-friendly adsorbents effectively recycle yttrium and europium from waste phosphor powders. These experimental results demonstrated that the S&S method based on polymeric sponges has potential application in hydrometallurgy and environmental remediation. Copyright © 2018 Elsevier Ltd. All rights reserved.
Moderate pressure plasma source of nonthermal electrons
NASA Astrophysics Data System (ADS)
Gershman, S.; Raitses, Y.
2018-06-01
Plasma sources of electrons offer control of gas and surface chemistry without the need for complex vacuum systems. The plasma electron source presented here is based on a cold cathode glow discharge (GD) operating in a dc steady state mode in a moderate pressure range of 2–10 torr. Ion-induced secondary electron emission is the source of electrons accelerated to high energies in the cathode sheath potential. The source geometry is a key to the availability and the extraction of the nonthermal portion of the electron population. The source consists of a flat and a cylindrical electrode, 1 mm apart. Our estimates show that the length of the cathode sheath in the plasma source is commensurate (~0.5–1 mm) with the inter-electrode distance so the GD operates in an obstructed regime without a positive column. Estimations of the electron energy relaxation confirm the non-local nature of this GD, hence the nonthermal portion of the electron population is available for extraction outside of the source. The use of a cylindrical anode presents a simple and promising method of extracting the high energy portion of the electron population. Langmuir probe measurements and optical emission spectroscopy confirm the presence of electrons with energies ~15 eV outside of the source. These electrons become available for surface modification and radical production outside of the source. The extraction of the electrons of specific energies by varying the anode geometry opens exciting opportunities for future exploration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Charlier, R.H.
1982-01-01
The various methods of extracting energy from the ocean are covered, along with information on what causes tides, how tides are used to generate electricity, and the locations of hundreds of potential sites for tidal power plants. The rehabilitation of old tide mills, new methods of building tidal power plants, and the plastic barrier scheme are described. A world-wide examination is provided of tidal power plant sites and the status of power projects in the US, France, the USSR, England, Canada, North and South Korea, Argentina, Australia, and India. (WHR)
Extracting renewable energy from a salinity difference using a capacitor.
Brogioli, Doriano
2009-07-31
Completely renewable energy can be produced by using water solutions of different salinity, like river water and sea water. Many different methods are already known, but development is still at prototype stage. Here I report a novel method, based on electric double-layer capacitor technology. Two porous electrodes, immersed in the salt solution, constitute a capacitor. It is first charged, then the salt solution is brought into contact with fresh water. The electrostatic energy increases as the salt concentration of the solution is reduced due to diffusion. This device can be used to turn sources of salinity difference into completely renewable sources of energy. An experimental demonstration is given, and performances and possible improvements are discussed.
The Researches on Damage Detection Method for Truss Structures
NASA Astrophysics Data System (ADS)
Wang, Meng Hong; Cao, Xiao Nan
2018-06-01
This paper presents an effective method to detect damage in truss structures. Numerical simulation and experimental analysis were carried out on a damaged truss structure under instantaneous excitation. The ideal excitation point and appropriate hammering method were determined to extract time domain signals under two working conditions. The frequency response function and principal component analysis were used for data processing, and the angle between the frequency response function vectors was selected as a damage index to ascertain the location of a damaged bar in the truss structure. In the numerical simulation, the time domain signal of all nodes was extracted to determine the location of the damaged bar. In the experimental analysis, the time domain signal of a portion of the nodes was extracted on the basis of an optimal sensor placement method based on the node strain energy coefficient. The results of the numerical simulation and experimental analysis showed that the damage detection method based on the frequency response function and principal component analysis could locate the damaged bar accurately.
Zhang, Xiaoliang; Liu, Jianhua; Johansson, Erik M J
2015-01-28
The utilization of electron-hole pairs (EHPs) generated from multiple excitons in quantum dots (QDs) is of great interest toward efficient photovoltaic devices and other optoelectronic devices; however, extraction of charge carriers remains difficult. Herein, we extract photocharges from Ag2S QDs and investigate the dependence of the electric field on the extraction of charges from multiple exciton generation (MEG). Low toxic Ag2S QDs are directly grown on TiO2 mesoporous substrates by employing the successive ionic layer adsorption and reaction (SILAR) method. The contact between QDs is important for the initial charge separation after MEG and for the carrier transport, and the space between neighbor QDs decreases with more SILAR cycles, resulting in better charge extraction. At the optimal electric field for extraction of photocharges, the results suggest that the threshold energy (hνth) for MEG is 2.41Eg. The results reveal that Ag2S QD is a promising material for efficient extraction of charges from MEG and that QDs prepared by SILAR have an advantageous electrical contact facilitating charge separation and extraction.
Wu, Jia; Xu, Zilin; Pan, Yixuan; Shi, Yi; Bao, Xiujie; Li, Jun; Tong, Yu; Tang, Han; Ma, Shuyan; Wang, Xuedong; Lyu, Jianxin
2018-05-01
Herein, a novel magnetic effervescence tablet-assisted microextraction coupled to in situ metathesis reaction of ionic liquid (IS-META-ILDM) is presented for the determination of four endogenous steroids in human urine, pregnant women's blood, and fetal umbilical cord blood. The magnetic effervescent tablets, which were composed of Fe 3 O 4 nanoparticles, sodium carbonate (alkaline source), and tartaric acid (acidic source), were used to disperse the extractant and for convenient magnetic separation. After the effervescent reaction, in situ reaction between NH 4 PF 6 and [C 6 MIM]BF 4 was adopted to change hydrophilic ionic liquid to hydrophobic liquid, which could be separated from the aqueous phase. The newly developed method has three obvious advantages: (1) combination of effervescent dispersion and magnetic nanoparticles' retrieval is cost-effective and the dispersion and collection of the extractant can be completed almost simultaneously; (2) as compared to temperature-controlled ionic liquid dispersive microextraction and cold-induced solidified microextraction, this method avoids a heating and cooling process which significantly reduces the extraction time and energy cost; and (3) the combination of adsorption by magnetic nanoparticles with extraction by in situ metathesis reaction easily produces high recoveries for target analytes. The optimized composition of effervescent tablet and experimental parameters are as follows: 0.64 g mixture of sodium carbonate and tartaric acid, 7 mg of Fe 3 O 4 (20 nm) as magnetic sorbents, 40 μL of [C 6 MIM]BF 4 as the extraction solvent, 0.15 g NH 4 PF 6 , and 300 μL of elution solvent. Under the optimized conditions, the newly developed method provided high extraction recoveries (90.0-118.5%) and low LODs (0.14-0.17 μg L -1 ) in urine and blood samples. In total, this IS-META-ILDM method provided high extraction efficiency, fast and convenient separation, and underutilization of any organic solvent, and thus it has great potential for the determination of trace endogenous steroids in complex human fluids. Graphical abstract The newly developed method has three obvious advantages: combination of effervescent dispersion and magnetic nanoparticles' retrieval is cost-effective and the dispersion and collection of the extractant can be completed almost simultaneously. It avoids a heating and cooling process which significantly reduces the extraction time and energy cost and easily produces high recoveries for target analytes.
Shock-Bubble Heating of the Intracluster Medium
NASA Astrophysics Data System (ADS)
Friedman, Samuel H.; Heinz, S.; Churazov, E.
2011-01-01
Active galactic nuclei (AGN) Feedback via extragalactic jets requires a thermalization of the energy injected into the intracluster medium (ICM) in order for energy feedback to occur. Heinz and Churazov (2005) proposed a method using shock waves and previously inflated bubbles in the ICM to extract energy from the shock waves and turn the energy into rotational kinetic energy. This energy would decay and allow heating to occur elsewhere throughout the galaxy cluster. In this paper, we extend to three dimensions (3D) the previous work using hydrodynamic simulations. We also compare our results to previous related work done performed experimentally.
Wang, Yongqiang; Gao, Yujie; Ding, Hui; Liu, Shejiang; Han, Xu; Gui, Jianzhou; Liu, Dan
2017-03-01
A large-scale process to extract flavonoids from Moringa oleifera leaf by subcritical ethanol was developed and HPLC-MS analysis was conducted to qualitatively identify the compounds in the extracts. To optimize the effects of process parameters on the yield of flavonoids, a Box-Behnken design combined with response surface methodology was conducted in the present work. The results indicated that the highest extraction yield of flavonoids by subcritical ethanol extraction could reach 2.60% using 70% ethanol at 126.6°C for 2.05h extraction. Under the optimized conditions, flavonoids yield was substantially improved by 26.7% compared with the traditional ethanol reflux method while the extraction time was only 2h, and obvious energy saving was observed. FRAP and DPPH assays showed that the extracts had strong antioxidant and free radical scavenging activities. Copyright © 2016 Elsevier Ltd. All rights reserved.
Wen, Tingxi; Zhang, Zhongnan; Qiu, Ming; Zeng, Ming; Luo, Weizhen
2017-01-01
The computer mouse is an important human-computer interaction device. But patients with physical finger disability are unable to operate this device. Surface EMG (sEMG) can be monitored by electrodes on the skin surface and is a reflection of the neuromuscular activities. Therefore, we can control limbs auxiliary equipment by utilizing sEMG classification in order to help the physically disabled patients to operate the mouse. To develop a new a method to extract sEMG generated by finger motion and apply novel features to classify sEMG. A window-based data acquisition method was presented to extract signal samples from sEMG electordes. Afterwards, a two-dimensional matrix image based feature extraction method, which differs from the classical methods based on time domain or frequency domain, was employed to transform signal samples to feature maps used for classification. In the experiments, sEMG data samples produced by the index and middle fingers at the click of a mouse button were separately acquired. Then, characteristics of the samples were analyzed to generate a feature map for each sample. Finally, the machine learning classification algorithms (SVM, KNN, RBF-NN) were employed to classify these feature maps on a GPU. The study demonstrated that all classifiers can identify and classify sEMG samples effectively. In particular, the accuracy of the SVM classifier reached up to 100%. The signal separation method is a convenient, efficient and quick method, which can effectively extract the sEMG samples produced by fingers. In addition, unlike the classical methods, the new method enables to extract features by enlarging sample signals' energy appropriately. The classical machine learning classifiers all performed well by using these features.
Akkam, Yazan; Al-Batayneh, Khalid M.; Abo Alrob, Osama; Alkilany, Alaaldin M.; Benamara, Mourad
2018-01-01
(1) Background: There is a growing need for the development of new methods for the synthesis of nanoparticles. The interest in such particles has raised concerns about the environmental safety of their production methods; (2) Objectives: The current methods of nanoparticle production are often expensive and employ chemicals that are potentially harmful to the environment, which calls for the development of “greener” protocols. Herein we describe the synthesis of gold nanoparticles (AuNPs) using plant extracts, which offers an alternative, efficient, inexpensive, and environmentally friendly method to produce well-defined geometries of nanoparticles; (3) Methods: The phytochemicals present in the aqueous leaf extract acted as an effective reducing agent. The generated AuNPs were characterized by Transmission electron microscopy (TEM), Scanning electron microscope (SEM), and Atomic Force microscopy (AFM), X-ray diffraction (XRD), UV-visible spectroscopy, energy dispersive X-ray (EDX), and thermogravimetric analyses (TGA); (4) Results and Conclusions: The prepared nanoparticles were found to be biocompatible and exhibited no antimicrobial or antifungal effect, deeming the particles safe for various applications in nanomedicine. TGA analysis revealed that biomolecules, which were present in the plant extract, capped the nanoparticles and acted as stabilizing agents. PMID:29562669
Final report - Magma Energy Research Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Colp, J.L.
1982-10-01
Scientific feasibility was demonstrated for the concept of magma energy extraction. The US magma resource is estimated at 50,000 to 500,000 quads of energy - a 700- to 7000-yr supply at the current US total energy use rate of 75 quads per year. Existing geophysical exploration systems are believed capable of locating and defining magma bodies and were demonstrated over a known shallow buried molten-rock body. Drilling rigs that can drill to the depths required to tap magma are currently available and experimental boreholes were drilled well into buried molten rock at temperatures up to 1100/sup 0/C. Engineering materials compatiblemore » with the buried magma environment are available and their performances were demonstrated in analog laboratory experiments. Studies show that energy can be extracted at attractive rates from magma resources in all petrologic compositions and physical configurations. Downhole heat extraction equipment was designed, built, and demonstrated successfully in buried molten rock and in the very hot margins surrounding it. Two methods of generating gaseous fuels in the high-temperature magmatic environment - generation of H/sub 2/ by the interaction of water with the ferrous iron and H/sub 2/, CH/sub 4/, and CO generation by the conversion of water-biomass mixtures - have been investigated and show promise.« less
Microwave-assisted extraction of pectin from cocoa peel
NASA Astrophysics Data System (ADS)
Sarah, M.; Hanum, F.; Rizky, M.; Hisham, M. F.
2018-02-01
Pectin is a polymer of d-galacturonate acids linked by β-1,4 glycosidic bond. This study isolates pectin from cocoa peel (Theobroma cacao) using citric acid as solvent by microwave-assisted extraction method. Cocoa peels (moisture content of 10%) with citric acid solution (pH of 1.5) irradiated by microwave energy at various microwave power (180, 300, 450 and 600 W) for 10, 15, 20, 25 and 30 minutes respectively. Pectin obtained from this study was collected and filtrated by adding 96% ethanol to precipitate the pectin. The best results obtained from extraction process using microwave power of 180 Watt for 30 minutes. This combination of power and time yielded 42.3% pectin with moisture content, ash content, weight equivalent, methoxyl content and galacturonate levels were 8.08%, 5%, 833.33 mg, 6.51% and 58,08%, respectively. The result finding suggested that microwave-assisted extraction method has a great potency on the commercial pectin production.
NASA Astrophysics Data System (ADS)
Li, M.; Jiang, Y. S.
2014-11-01
Micro-Doppler effect is induced by the micro-motion dynamics of the radar target itself or any structure on the target. In this paper, a simplified cone-shaped model for ballistic missile warhead with micro-nutation is established, followed by the theoretical formula of micro-nutation is derived. It is confirmed that the theoretical results are identical to simulation results by using short-time Fourier transform. Then we propose a new method for nutation period extraction via signature maximum energy fitting based on empirical mode decomposition and short-time Fourier transform. The maximum wobble angle is also extracted by distance approximate approach in a small range of wobble angle, which is combined with the maximum likelihood estimation. By the simulation studies, it is shown that these two feature extraction methods are both valid even with low signal-to-noise ratio.
Moradi, Sara; Fazlali, Alireza; Hamedi, Hamid
2018-01-01
Hydro-distillation (HD) method is a traditional technique which is used in most industrial companies. Microwave-assisted Hydro-distillation (MAHD) is an advanced HD technique utilizing a microwave oven in the extraction process. In this research, MAHD of essential oils from the aerial parts (leaves) of rosemary ( Rosmarinus officinalis L. ) was studied and the results were compared with those of the conventional HD in terms of extraction time, extraction efficiency, chemical composition, quality of the essential oils and cost of the operation. Microwave hydro-distillation was superior in terms of saving energy and extraction time (30 min , compared to 90 min in HD). Chromatography was used for quantity analysis of the essential oils composition. Quality of essential oil improved in MAHD method due to an increase of 17% in oxygenated compounds. Consequently, microwave hydro-distillation can be used as a substitute of traditional hydro-distillation.
Richard, David; Speck, Thomas
2018-03-28
We investigate the kinetics and the free energy landscape of the crystallization of hard spheres from a supersaturated metastable liquid though direct simulations and forward flux sampling. In this first paper, we describe and test two different ways to reconstruct the free energy barriers from the sampled steady state probability distribution of cluster sizes without sampling the equilibrium distribution. The first method is based on mean first passage times, and the second method is based on splitting probabilities. We verify both methods for a single particle moving in a double-well potential. For the nucleation of hard spheres, these methods allow us to probe a wide range of supersaturations and to reconstruct the kinetics and the free energy landscape from the same simulation. Results are consistent with the scaling predicted by classical nucleation theory although a quantitative fit requires a rather large effective interfacial tension.
NASA Astrophysics Data System (ADS)
Richard, David; Speck, Thomas
2018-03-01
We investigate the kinetics and the free energy landscape of the crystallization of hard spheres from a supersaturated metastable liquid though direct simulations and forward flux sampling. In this first paper, we describe and test two different ways to reconstruct the free energy barriers from the sampled steady state probability distribution of cluster sizes without sampling the equilibrium distribution. The first method is based on mean first passage times, and the second method is based on splitting probabilities. We verify both methods for a single particle moving in a double-well potential. For the nucleation of hard spheres, these methods allow us to probe a wide range of supersaturations and to reconstruct the kinetics and the free energy landscape from the same simulation. Results are consistent with the scaling predicted by classical nucleation theory although a quantitative fit requires a rather large effective interfacial tension.
Lattice quantum chromodynamical approach to nuclear physics
NASA Astrophysics Data System (ADS)
Aoki, Sinya; Doi, Takumi; Hatsuda, Tetsuo; Ikeda, Yoichi; Inoue, Takashi; Ishii, Noriyoshi; Murano, Keiko; Nemura, Hidekatsu; Sasaki, Kenji; HAL QCD Collaboration
2012-09-01
We review recent progress in the HAL QCD method, which was recently proposed to investigate hadron interactions in lattice quantum chromodynamics (QCD). The strategy to extract the energy-independent non-local potential in lattice QCD is explained in detail. The method is applied to study nucleon-nucleon, nucleon-hyperon, hyperon-hyperon, and meson-baryon interactions. Several extensions of the method are also discussed.
Quantum Field Energy Sensor based on the Casimir Effect
NASA Astrophysics Data System (ADS)
Ludwig, Thorsten
The Casimir effect converts vacuum fluctuations into a measurable force. Some new energy technologies aim to utilize these vacuum fluctuations in commonly used forms of energy like electricity or mechanical motion. In order to study these energy technologies it is helpful to have sensors for the energy density of vacuum fluctuations. In today's scientific instrumentation and scanning microscope technologies there are several common methods to measure sub-nano Newton forces. While the commercial atomic force microscopes (AFM) mostly work with silicon cantilevers, there are a large number of reports on the use of quartz tuning forks to get high-resolution force measurements or to create new force sensors. Both methods have certain advantages and disadvantages over the other. In this report the two methods are described and compared towards their usability for Casimir force measurements. Furthermore a design for a quantum field energy sensor based on the Casimir force measurement will be described. In addition some general considerations on extracting energy from vacuum fluctuations will be given.
Ankowski, Artur M.; Benhar, Omar; Coloma, Pilar; ...
2015-10-22
To be able to achieve their physics goals, future neutrino-oscillation experiments will need to reconstruct the neutrino energy with very high accuracy. In this work, we analyze how the energy reconstruction may be affected by realistic detection capabilities, such as energy resolutions, efficiencies, and thresholds. This allows us to estimate how well the detector performance needs to be determined a priori in order to avoid a sizable bias in the measurement of the relevant oscillation parameters. We compare the kinematic and calorimetric methods of energy reconstruction in the context of two ν μ → ν μ disappearance experiments operating inmore » different energy regimes. For the calorimetric reconstruction method, we find that the detector performance has to be estimated with an O(10%) accuracy to avoid a significant bias in the extracted oscillation parameters. Thus, in the case of kinematic energy reconstruction, we observe that the results exhibit less sensitivity to an overestimation of the detector capabilities.« less
Wavelet Types Comparison for Extracting Iris Feature Based on Energy Compaction
NASA Astrophysics Data System (ADS)
Rizal Isnanto, R.
2015-06-01
Human iris has a very unique pattern which is possible to be used as a biometric recognition. To identify texture in an image, texture analysis method can be used. One of method is wavelet that extract the image feature based on energy. Wavelet transforms used are Haar, Daubechies, Coiflets, Symlets, and Biorthogonal. In the research, iris recognition based on five mentioned wavelets was done and then comparison analysis was conducted for which some conclusions taken. Some steps have to be done in the research. First, the iris image is segmented from eye image then enhanced with histogram equalization. The features obtained is energy value. The next step is recognition using normalized Euclidean distance. Comparison analysis is done based on recognition rate percentage with two samples stored in database for reference images. After finding the recognition rate, some tests are conducted using Energy Compaction for all five types of wavelets above. As the result, the highest recognition rate is achieved using Haar, whereas for coefficients cutting for C(i) < 0.1, Haar wavelet has a highest percentage, therefore the retention rate or significan coefficient retained for Haaris lower than other wavelet types (db5, coif3, sym4, and bior2.4)
Multiobjective Optimization of Low-Energy Trajectories Using Optimal Control on Dynamical Channels
NASA Technical Reports Server (NTRS)
Coffee, Thomas M.; Anderson, Rodney L.; Lo, Martin W.
2011-01-01
We introduce a computational method to design efficient low-energy trajectories by extracting initial solutions from dynamical channels formed by invariant manifolds, and improving these solutions through variational optimal control. We consider trajectories connecting two unstable periodic orbits in the circular restricted 3-body problem (CR3BP). Our method leverages dynamical channels to generate a range of solutions, and approximates the areto front for impulse and time of flight through a multiobjective optimization of these solutions based on primer vector theory. We demonstrate the application of our method to a libration orbit transfer in the Earth-Moon system.
Batteries for efficient energy extraction from a water salinity difference.
La Mantia, Fabio; Pasta, Mauro; Deshazer, Heather D; Logan, Bruce E; Cui, Yi
2011-04-13
The salinity difference between seawater and river water is a renewable source of enormous entropic energy, but extracting it efficiently as a form of useful energy remains a challenge. Here we demonstrate a device called "mixing entropy battery", which can extract and store it as useful electrochemical energy. The battery, containing a Na(2-x)Mn(5)O(10) nanorod electrode, was shown to extract energy from real seawater and river water and can be applied to a variety of salt waters. We demonstrated energy extraction efficiencies of up to 74%. Considering the flow rate of river water into oceans as the limiting factor, the renewable energy production could potentially reach 2 TW, or ∼13% of the current world energy consumption. The mixing entropy battery is simple to fabricate and could contribute significantly to renewable energy in the future.
New procedure for extraction of algal lipids from wet biomass: a green clean and scalable process.
Dejoye Tanzi, Celine; Abert Vian, Maryline; Chemat, Farid
2013-04-01
A new procedure, called Simultaneous Distillation and Extraction Process (SDEP), for lipid extraction from wet microalgae (Nannochloropsis oculata and Dunaliella salina) was reported. This method does not require a pre-drying of the biomass and employs alternative solvents such as d-limonene, α-pinene and p-cymene. This procedure has been compared with Soxhlet extraction (Sox) and Bligh & Dyer method (B&D). For N. oculata, results showed that SDEP-cymene provided similar lipid yields to B&D (21.45% and 23.78%), while SDEP-limonene and pinene provided lower yields (18.73% and 18.75% respectively). For D. salina, SDEP-pinene provided the maximum lipid yield (3.29%) compared to the other solvents, which is quite close to B&D result (4.03%). No significant differences in terms of distribution of lipid classes and fatty acid composition have been obtained for different techniques. Evaluation of energy consumption indicates a substantial saving in the extraction cost by SDEP compared to the conventional extraction technique, Soxhlet. Copyright © 2013 Elsevier Ltd. All rights reserved.
Gaddy, James L.; Clausen, Edgar C.; Ko, Ching-Whan; Wade, Leslie E.; Wikstrom, Carl V.
2006-07-11
A modified water-immiscible solvent useful in the extraction of acetic acid from aqueous streams is a substantially pure mixture of isomers of highly branched di-alkyl amines. This solvent is substantially devoid of mono-alkyl amines and alcohols. Solvent mixtures formed of such a modified solvent with a desired cosolvent, preferably a low boiling hydrocarbon which forms an azeotrope with water are useful in the extraction of acetic acid from aqueous gaseous streams. An anaerobic microbial fermentation process for the production of acetic acid employs such solvents, under conditions which limit amide formation by the solvent and thus increase the efficiency of acetic acid recovery. Methods for the direct extraction of acetic acid and the extractive fermentation of acetic acid also employ the modified solvents and increase efficiency of acetic acid production. Such increases in efficiency are also obtained where the energy source for the microbial fermentation contains carbon dioxide and the method includes a carbon dioxide stripping step prior to extraction of acetic acid in solvent.
Gaddy, James L.; Clausen, Edgar C.; Ko, Ching-Whan; Wade, Leslie E.; Wikstrom, Carl V.
2002-01-01
A modified water-immiscible solvent useful in the extraction of acetic acid from aqueous streams is a substantially pure mixture of isomers of highly branched di-alkyl amines. This solvent is substantially devoid of mono-alkyl amines and alcohols. Solvent mixtures formed of such a modified solvent with a desired cosolvent, preferably a low boiling hydrocarbon which forms an azeotrope with water are useful in the extraction of acetic acid from aqueous gaseous streams. An anaerobic microbial fermentation process for the production of acetic acid employs such solvents, under conditions which limit amide formation by the solvent and thus increase the efficiency of acetic acid recovery. Methods for the direct extraction of acetic acid and the extractive fermentation of acetic acid also employ the modified solvents and increase efficiency of acetic acid production. Such increases in efficiency are also obtained where the energy source for the microbial fermentation contains carbon dioxide and the method includes a carbon dioxide stripping step prior to extraction of acetic acid in solvent.
Yera, H.; Filisetti, D.; Bastien, P.; Ancelle, T.; Thulliez, P.; Delhaes, L.
2009-01-01
Over the past few years, a number of new nucleic acid extraction methods and extraction platforms using chemistry combined with magnetic or silica particles have been developed, in combination with instruments to facilitate the extraction procedure. The objective of the present study was to investigate the suitability of these automated methods for the isolation of Toxoplasma gondii DNA from amniotic fluid (AF). Therefore, three automated procedures were compared to two commercialized manual extraction methods. The MagNA Pure Compact (Roche), BioRobot EZ1 (Qiagen), and easyMAG (bioMérieux) automated procedures were compared to two manual DNA extraction kits, the QIAamp DNA minikit (Qiagen) and the High Pure PCR template preparation kit (Roche). Evaluation was carried out with two specific Toxoplasma PCRs (targeting the 529-bp repeat element), inhibitor search PCRs, and human beta-globin PCRs. The samples each consisted of 4 ml of AF with or without a calibrated Toxoplasma gondii RH strain suspension (0, 1, 2.5, 5, and 25 tachyzoites/ml). All PCR assays were laboratory-developed real-time PCR assays, using either TaqMan or fluorescent resonance energy transfer probes. A total of 1,178 PCRs were performed, including 978 Toxoplasma PCRs. The automated and manual methods were similar in sensitivity for DNA extraction from T. gondii at the highest concentration (25 Toxoplasma gondii cells/ml). However, our results showed that the DNA extraction procedures led to variable efficacy in isolating low concentrations of tachyzoites in AF samples (<5 Toxoplasma gondii cells/ml), a difference that might have repercussions since low parasite concentrations in AF exist and can lead to congenital toxoplasmosis. PMID:19846633
Coconut coir pith lignin: A physicochemical and thermal characterization.
Asoka Panamgama, L; Peramune, P R U S K
2018-07-01
The structural and thermal features of coconut coir pith lignin, isolated by three different extraction protocols incorporating two different energy supply sources, were characterized by different analytical tools. The three different chemical extraction protocols were alkaline - 7.5% (w/v) NaOH, organosolv - 85% (v/v) formic and acetic acids at 7:3 (v/v) ratio and polyethylene glycol (PEG): water ratio at 80:20wt%. The two sources of energy were thermal or microwave. Raw lignins were modified by epichlorohydrin to enhance reactivity, and the characteristics of raw and modified lignins were comparatively analysed. Using the thermal energy source, the alkaline and organosolv processes obtained the highest and lowest lignin yields of 26.4±1.5wt% and 3.4±0.2wt%, respectively, as shown by wet chemical analysis. Specific functional group analysis by Fourier transform infrared spectra (FTIR) revealed that significantly different amounts of hydroxyl and carbonyl groups exist in alkaline, organosolv and PEG lignins. Thermogravimetric analysis (TGA) illustrated that the lowest degradation onset temperature was recorded for organosolv lignin, and the overall order was organosolv
Yang, Zheng; Hou, Xiandeng; Jones, Bradley T
2003-03-10
A simple, particle size-independent spectrometric method has been developed for the multi-element determination of wear metals in used engine oil. A small aliquot (0.5 ml) of an acid-digested oil sample is spotted onto a C-18 solid phase extraction disk to form a uniform thin film. The dried disk is then analyzed directly by energy dispersive X-ray fluorescence spectrometry. This technique provides a homogeneous and reproducible sample surface to the instrument, thus overcoming the typical problems associated with uneven particle size distribution and sedimentation. As a result, the method provides higher precision and accuracy than conventional methods. Furthermore, the disk sample may be stored and re-analyzed or extracted at a later date. The signals arising from the spotted disks, and the calibration curves constructed from them, are stable for at least 2 months. The limits of detection for Fe, Cu, Zn, Pb, and Cr are 5, 1, 4, 2, and 4 microg g(-1), respectively. Recoveries of these elements from spiked oil samples range from 92 to 110%. The analysis of two standard reference materials and a used oil sample produced results comparable to those found by inductively coupled plasma atomic emission spectrometry.
Rayleigh-wave mode separation by high-resolution linear radon transform
Luo, Y.; Xia, J.; Miller, R.D.; Xu, Y.; Liu, J.; Liu, Q.
2009-01-01
Multichannel analysis of surface waves (MASW) method is an effective tool for obtaining vertical shear wave profiles from a single non-invasive measurement. One key step of the MASW method is generation of a dispersion image and extraction of a reliable dispersion curve from raw multichannel shot records. Because different Rayleigh-wave modes normally interfere with each other in the time and space domain, it is necessary to perform mode separation and reconstruction to increase the accuracy of phase velocities determined from a dispersion image. In this paper, we demonstrate the effectiveness of high-resolution linear Radon transform (LRT) as a means of separating and reconstructing multimode, dispersive Rayleigh-wave energy. We first introduce high-resolution LRT methods and Rayleigh-wave mode separation using high-resolution LRT. Next, we use synthetic data and a real-world example to demonstrate the effectiveness of Rayleigh-wave mode separation using high-resolution LRT. Our synthetic and real-world results demonstrate that (1) high-resolution LRT successfully separates and reconstructs multimode dispersive Rayleigh-wave energy with high resolution allowing the multimode energy to be more accurately determined. The horizontal resolution of the Rayleigh-wave method can be increased by extraction of dispersion curves from a pair of traces in the mode-separated shot gather and (2) multimode separation and reconstruction expand the usable frequency range of higher mode dispersive energy, which increases the depth of investigation and provides a means for accurately determining cut-off frequencies. ?? 2009 The Authors Journal compilation ?? 2009 RAS.
Comparison of spike-sorting algorithms for future hardware implementation.
Gibson, Sarah; Judy, Jack W; Markovic, Dejan
2008-01-01
Applications such as brain-machine interfaces require hardware spike sorting in order to (1) obtain single-unit activity and (2) perform data reduction for wireless transmission of data. Such systems must be low-power, low-area, high-accuracy, automatic, and able to operate in real time. Several detection and feature extraction algorithms for spike sorting are described briefly and evaluated in terms of accuracy versus computational complexity. The nonlinear energy operator method is chosen as the optimal spike detection algorithm, being most robust over noise and relatively simple. The discrete derivatives method [1] is chosen as the optimal feature extraction method, maintaining high accuracy across SNRs with a complexity orders of magnitude less than that of traditional methods such as PCA.
Magnetic Partitioning Nanofluid for Rare Earth Extraction from Geothermal Fluids
DOE Office of Scientific and Technical Information (OSTI.GOV)
McGrail, Bernard P.; Thallapally, Praveen K.; Liu, Jian
Rare earth metals are critical materials in a wide variety of applications in generating and storing renewable energy and in designing more energy efficient devices. Extracting rare earth metals from geothermal brines is a very challenging problem due to the low concentrations of these elements and engineering challenges with traditional chemical separations methods involving packed sorbent beds or membranes that would impede large volumetric flow rates of geothermal fluids transitioning through the plant. We are demonstrating a simple and highly cost-effective nanofluid-based method for extracting rare earth metals from geothermal brines. Core-shell composite nanoparticles are produced that contain a magneticmore » iron oxide core surrounded by a shell made of silica or metal-organic framework (MOF) sorbent functionalized with chelating ligands selective for the rare earth elements. By introducing the nanoparticles at low concentration (≈0.05 wt%) into the geothermal brine after it passes through the plant heat exchanger, the brine is exposed to a very high concentration of chelating sites on the nanoparticles without need to pass through a large and costly traditional packed bed or membrane system where pressure drop and parasitic pumping power losses are significant issues. Instead, after a short residence time flowing with the brine, the particles are effectively separated out with an electromagnet and standard extraction methods are then applied to strip the rare earth metals from the nanoparticles, which are then recycled back to the geothermal plant. Recovery efficiency for the rare earths at ppm level has now been measured for both silica and MOF sorbents functionalized with a variety of chelating ligands. A detailed preliminary techno-economic performance analysis of extraction systems using both sorbents showed potential to generate a promising internal rate of return (IRR) up to 20%.« less
Parisis, Nikolaos A; Giokas, Dimosthenis L; Vlessidis, Athanasios G; Evmiridis, Nicholaos P
2005-12-02
The ability of vesicle-coated silica to aid the extraction of organic compounds from water prior to liquid chromatographic analysis is presented for the first time. The method is based on the formation of silica supported cationic multi-lamellar vesicles of gemini surfactants inherently ensuring the presence of hydrophilic and hydrophobic sites for the partitioning of analytes bearing different properties. Method development is illustrated by studying the adsolubilization of UV absorbing chemicals from swimming pool water. Due to the requirement for external energy input (intense shearing) a method based on solid-phase dispersion (SPD) was applied producing better results than off-line solid-phase extraction (SPE). Meticulous investigation of the experimental parameters was conducted in order to elucidate the mechanisms behind the proposed extraction pattern. Analyte recoveries were quantitative under the optimum experimental conditions offering recoveries higher than 96% with RSD values below 5%.
Apparatus And Method For Osl-Based, Remote Radiation Monitoring And Spectrometry
Miller, Steven D.; Smith, Leon Eric; Skorpik, James R.
2006-03-07
Compact, OSL-based devices for long-term, unattended radiation detection and spectroscopy are provided. In addition, a method for extracting spectroscopic information from these devices is taught. The devices can comprise OSL pixels and at least one radiation filter surrounding at least a portion of the OSL pixels. The filter can modulate an incident radiation flux. The devices can further comprise a light source and a detector, both proximally located to the OSL pixels, as well as a power source and a wireless communication device, each operably connected to the light source and the detector. Power consumption of the device ranges from ultra-low to zero. The OSL pixels can retain data regarding incident radiation events as trapped charges. The data can be extracted wirelessly or manually. The method for extracting spectroscopic data comprises optically stimulating the exposed OSL pixels, detecting a readout luminescence, and reconstructing an incident-energy spectrum from the luminescence.
Apparatus and method for OSL-based, remote radiation monitoring and spectrometry
Smith, Leon Eric [Richland, WA; Miller, Steven D [Richland, WA; Bowyer, Theodore W [Oakton, VA
2008-05-20
Compact, OSL-based devices for long-term, unattended radiation detection and spectroscopy are provided. In addition, a method for extracting spectroscopic information from these devices is taught. The devices can comprise OSL pixels and at least one radiation filter surrounding at least a portion of the OSL pixels. The filter can modulate an incident radiation flux. The devices can further comprise a light source and a detector, both proximally located to the OSL pixels, as well as a power source and a wireless communication device, each operably connected to the light source and the detector. Power consumption of the device ranges from ultra-low to zero. The OSL pixels can retain data regarding incident radiation events as trapped charges. The data can be extracted wirelessly or manually. The method for extracting spectroscopic data comprises optically stimulating the exposed OSL pixels, detecting a readout luminescence, and reconstructing an incident-energy spectrum from the luminescence.
Automatic sub-pixel coastline extraction based on spectral mixture analysis using EO-1 Hyperion data
NASA Astrophysics Data System (ADS)
Hong, Zhonghua; Li, Xuesu; Han, Yanling; Zhang, Yun; Wang, Jing; Zhou, Ruyan; Hu, Kening
2018-06-01
Many megacities (such as Shanghai) are located in coastal areas, therefore, coastline monitoring is critical for urban security and urban development sustainability. A shoreline is defined as the intersection between coastal land and a water surface and features seawater edge movements as tides rise and fall. Remote sensing techniques have increasingly been used for coastline extraction; however, traditional hard classification methods are performed only at the pixel-level and extracting subpixel accuracy using soft classification methods is both challenging and time consuming due to the complex features in coastal regions. This paper presents an automatic sub-pixel coastline extraction method (ASPCE) from high-spectral satellite imaging that performs coastline extraction based on spectral mixture analysis and, thus, achieves higher accuracy. The ASPCE method consists of three main components: 1) A Water- Vegetation-Impervious-Soil (W-V-I-S) model is first presented to detect mixed W-V-I-S pixels and determine the endmember spectra in coastal regions; 2) The linear spectral mixture unmixing technique based on Fully Constrained Least Squares (FCLS) is applied to the mixed W-V-I-S pixels to estimate seawater abundance; and 3) The spatial attraction model is used to extract the coastline. We tested this new method using EO-1 images from three coastal regions in China: the South China Sea, the East China Sea, and the Bohai Sea. The results showed that the method is accurate and robust. Root mean square error (RMSE) was utilized to evaluate the accuracy by calculating the distance differences between the extracted coastline and the digitized coastline. The classifier's performance was compared with that of the Multiple Endmember Spectral Mixture Analysis (MESMA), Mixture Tuned Matched Filtering (MTMF), Sequential Maximum Angle Convex Cone (SMACC), Constrained Energy Minimization (CEM), and one classical Normalized Difference Water Index (NDWI). The results from the three test sites indicated that the proposed ASPCE method extracted coastlines more efficiently than did the compared methods, and its coastline extraction accuracy corresponded closely to the digitized coastline, with 0.39 pixels, 0.40 pixels, and 0.35 pixels in the three test regions, showing that the ASPCE method achieves an accuracy below 12.0 m (0.40 pixels). Moreover, in the quantitative accuracy assessment for the three test sites, the ASPCE method shows the best performance in coastline extraction, achieving a 0.35 pixel-level at the Bohai Sea, China test site. Therefore, the proposed ASPCE method can extract coastline more accurately than can the hard classification methods or other spectral unmixing methods.
Self-deconstructing algae biomass as feedstock for transportation fuels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, Ryan Wesley
The potential for producing biofuels from algae has generated much excitement based on projections of large oil yields with relatively little land use. However, numerous technical challenges remain for achieving market parity with conventional non-renewable liquid fuel sources. Among these challenges, the energy intensive requirements of traditional cell rupture, lipid extraction, and residuals fractioning of microalgae biomass have posed significant challenges to the nascent field of algal biotechnology. Our novel approach to address these problems was to employ low cost solution-state methods and biochemical engineering to eliminate the need for extensive hardware and energy intensive methods for cell rupture, carbohydratemore » and protein solubilization and hydrolysis, and fuel product recovery using consolidated bioprocessing strategies. The outcome of the biochemical deconstruction and conversion process consists of an emulsion of algal lipids and mixed alcohol products from carbohydrate and protein fermentation for co-extraction or in situ transesterification.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sergi, M. L., E-mail: sergi@lns.infn.it; La Cognata, M.; Pizzone, R. G.
2015-10-15
In recent years, the Trojan Horse Method (THM) has been used to investigate the low-energy cross sections of proton-induced reactions on {sup 17}O nuclei, overcoming extrapolation procedures and enhancement effects due to electron screening. We will report on the indirect study of the {sup 17}O(p,α){sup 14}N reaction via the THM by applying the approach developed for extracting the resonance strength of narrow resonance in the ultralow energy region. Two measurements will be described and the experimental THM cross sections will be shown for both experiments.
Green synthesis of silver nanoparticles mediated by Pulicaria glutinosa extract
Khan, Mujeeb; Khan, Merajuddin; Adil, Syed Farooq; Tahir, Muhammad Nawaz; Tremel, Wolfgang; Alkhathlan, Hamad Z; Al-Warthan, Abdulrahman; Siddiqui, Mohammed Rafiq H
2013-01-01
The green synthesis of metallic nanoparticles (NPs) has attracted tremendous attention in recent years because these protocols are low cost and more environmentally friendly than standard methods of synthesis. In this article, we report a simple and eco-friendly method for the synthesis of silver NPs using an aqueous solution of Pulicaria glutinosa plant extract as a bioreductant. The as-prepared silver NPs were characterized using ultraviolet–visible spectroscopy, powder X-ray diffraction, transmission electron microscopy, energy-dispersive X-ray spectroscopy, and Fourier-transform infrared spectroscopy. Moreover, the effects of the concentration of the reductant (plant extract) and precursor solution (silver nitrate), the temperature on the morphology, and the kinetics of reaction were investigated. The results indicate that the size of the silver NPs varied as the plant extract concentration increased. The as-synthesized silver NPs were phase pure and well crystalline with a face-centered cubic structure. Further, Fourier-transform infrared spectroscopy analysis confirmed that the plant extract not only acted as a bioreductant but also functionalized the NPs’ surfaces to act as a capping ligand to stabilize them in the solvent. The developed eco-friendly method for the synthesis of NPs could prove a better substitute for the physical and chemical methods currently used to prepare metallic NPs commonly used in cosmetics, foods, and medicines. PMID:23620666
Contaminants in ventilated filling boxes
NASA Astrophysics Data System (ADS)
Bolster, D. T.; Linden, P. F.
While energy efficiency is important, the adoption of energy-efficient ventilation systems still requires the provision of acceptable indoor air quality. Many low-energy systems, such as displacement or natural ventilation, rely on temperature stratification within the interior environment, always extracting the warmest air from the top of the room. Understanding buoyancy-driven convection in a confined ventilated space is key to understanding the flow that develops with many of these modern low-energy ventilation schemes. In this work we study the transport of an initially uniformly distributed passive contaminant in a displacement-ventilated space. Representing a heat source as an ideal sourced of buoyancy, analytical and numerical models are developed that allow us to compare the average efficiency of contaminant removal between traditional mixing and modern low-energy systems. A set of small-scale analogue laboratory experiments was also conducted to further validate our analytical and numerical solutions.We find that on average traditional and low-energy ventilation methods are similar with regard to pollutant flushing efficiency. This is because the concentration being extracted from the system at any given time is approximately the same for both systems. However, very different vertical concentration gradients exist. For the low-energy system, a peak in contaminant concentration occurs at the temperature interface that is established within the space. This interface is typically designed to sit at some intermediate height in the space. Since this peak does not coincide with the extraction point, displacement ventilation does not offer the same benefits for pollutant flushing as it does for buoyancy removal.
NASA Astrophysics Data System (ADS)
Chen, Jingbo; Yue, Anzhi; Wang, Chengyi; Huang, Qingqing; Chen, Jiansheng; Meng, Yu; He, Dongxu
2018-01-01
The wind turbine is a device that converts the wind's kinetic energy into electrical power. Accurate and automatic extraction of wind turbine is instructive for government departments to plan wind power plant projects. A hybrid and practical framework based on saliency detection for wind turbine extraction, using Google Earth image at spatial resolution of 1 m, is proposed. It can be viewed as a two-phase procedure: coarsely detection and fine extraction. In the first stage, we introduced a frequency-tuned saliency detection approach for initially detecting the area of interest of the wind turbines. This method exploited features of color and luminance, was simple to implement, and was computationally efficient. Taking into account the complexity of remote sensing images, in the second stage, we proposed a fast method for fine-tuning results in frequency domain and then extracted wind turbines from these salient objects by removing the irrelevant salient areas according to the special properties of the wind turbines. Experiments demonstrated that our approach consistently obtains higher precision and better recall rates. Our method was also compared with other techniques from the literature and proves that it is more applicable and robust.
Xiu, Zhi-Long; Zeng, An-Ping
2008-04-01
1,3-Propanediol and 2,3-butanediol are two promising chemicals which have a wide range of applications and can be biologically produced. The separation of these diols from fermentation broth makes more than 50% of the total costs in their microbial production. This review summarizes the present state of methods studied for the recovery and purification of biologically produced diols, with particular emphasis on 1,3-propoanediol. Previous studies on the separation of 1,3-propanediol primarily include evaporation, distillation, membrane filtration, pervaporation, ion exchange chromatography, liquid-liquid extraction, and reactive extraction. Main methods for the recovery of 2,3-butanediol include steam stripping, pervaporation, and solvent extraction. No single method has proved to be simple and efficient, and improvements are especially needed with regard to yield, purity, and energy consumption. Perspectives for an improved downstream processing of biologically produced diols, especially 1,3-propanediol are discussed based on our own experience and recent work. It is argued that separation technologies such as aqueous two-phase extraction with short chain alcohols, pervaporation, reverse osmosis, and in situ extractive or pervaporative fermentations deserve more attention in the future.
Modeling In-stream Tidal Energy Extraction and Its Potential Environmental Impacts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Zhaoqing; Wang, Taiping; Copping, Andrea
In recent years, there has been growing interest in harnessing in-stream tidal energy in response to concerns of increasing energy demand and to mitigate climate change impacts. While many studies have been conducted to assess and map tidal energy resources, efforts for quantifying the associated potential environmental impacts have been limited. This paper presents the development of a tidal turbine module within a three-dimensional unstructured-grid coastal ocean model and its application for assessing the potential environmental impacts associated with tidal energy extraction. The model is used to investigate in-stream tidal energy extraction and associated impacts on estuarine hydrodynamic and biologicalmore » processes in a tidally dominant estuary. A series of numerical experiments with varying numbers and configurations of turbines installed in an idealized estuary were carried out to assess the changes in the hydrodynamics and biological processes due to tidal energy extraction. Model results indicated that a large number of turbines are required to extract the maximum tidal energy and cause significant reduction of the volume flux. Preliminary model results also indicate that extraction of tidal energy increases vertical mixing and decreases flushing rate in a stratified estuary. The tidal turbine model was applied to simulate tidal energy extraction in Puget Sound, a large fjord-like estuary in the Pacific Northwest coast.« less
Jing, Yu; Chen, Ji; Chen, Li; Su, Wenrou; Liu, Yu; Li, Deqian
2017-03-30
Heavy rare earths (HREs), namely Ho 3+ , Er 3+ , Tm 3+ , Yb 3+ and Lu 3+ , are rarer and more exceptional than light rare earths, due to the stronger extraction capacity for 100 000 extractions. Therefore, their incomplete stripping and high acidity of stripping become problems for HRE separation by organophosphoric extractants. However, the theories of extractant structure-performance relationship and molecular design method of novel HRE extractants are still not perfect. Beyond the coordination chemistry of the HRE-extracted complex, the extractant dimer dissociation, acid ionization, and complexation behaviors can be crucial to HRE extraction and reactivity of ionic species for understanding and further improving the extraction performance. To address the above issues, three primary fundamental processes, including extractant dimer dissociation, acid ionization, and HRE complexation, were identified and investigated systematically. The intrinsic extraction performances of HRE cations with four acidic organophosphoric extractants (P507, P204, P227 and Cyanex 272) were studied by using relativistic energy-consistent 4f core pseudopotentials, combined with density functional theory and a solvation model. Four acidic organophosphoric extractants have been qualified quantitatively from microscopic structures to chemical properties. It has been found that the Gibbs free energy changes of the overall extraction process (sequence: P204 > P227 > P507 > Cyanex 272) and their differences as a function of HREs (sequence: Ho/Er > Er/Tm > Tm/Yb > Yb/Lu) are in good agreement with the experimental maximum extraction capacities and separation factors. These results could provide an important approach to evaluate HRE extractants by the comprehensive consideration of dimer dissociation, acid ionization, and complexation processes. This paper also demonstrates the importance of the P-O bond, the P-C bond, isomer substituent, and solvation effects on the structure-performance relationship that can be used to guide molecular designs of HRE extraction in future.
NASA Astrophysics Data System (ADS)
Adams, T.; Batra, P.; Bugel, L.; Camilleri, L.; Conrad, J. M.; de Gouvêa, A.; Fisher, P. H.; Formaggio, J. A.; Jenkins, J.; Karagiorgi, G.; Kobilarcik, T. R.; Kopp, S.; Kyle, G.; Loinaz, W. A.; Mason, D. A.; Milner, R.; Moore, R.; Morfín, J. G.; Nakamura, M.; Naples, D.; Nienaber, P.; Olness, F. I.; Owens, J. F.; Pate, S. F.; Pronin, A.; Seligman, W. G.; Shaevitz, M. H.; Schellman, H.; Schienbein, I.; Syphers, M. J.; Tait, T. M. P.; Takeuchi, T.; Tan, C. Y.; van de Water, R. G.; Yamamoto, R. K.; Yu, J. Y.
We extend the physics case for a new high-energy, ultra-high statistics neutrino scattering experiment, NuSOnG (Neutrino Scattering On Glass) to address a variety of issues including precision QCD measurements, extraction of structure functions, and the derived Parton Distribution Functions (PDF's). This experiment uses a Tevatron-based neutrino beam to obtain a sample of Deep Inelastic Scattering (DIS) events which is over two orders of magnitude larger than past samples. We outline an innovative method for fitting the structure functions using a parametrized energy shift which yields reduced systematic uncertainties. High statistics measurements, in combination with improved systematics, will enable NuSOnG to perform discerning tests of fundamental Standard Model parameters as we search for deviations which may hint of "Beyond the Standard Model" physics.
Face-iris multimodal biometric scheme based on feature level fusion
NASA Astrophysics Data System (ADS)
Huo, Guang; Liu, Yuanning; Zhu, Xiaodong; Dong, Hongxing; He, Fei
2015-11-01
Unlike score level fusion, feature level fusion demands all the features extracted from unimodal traits with high distinguishability, as well as homogeneity and compatibility, which is difficult to achieve. Therefore, most multimodal biometric research focuses on score level fusion, whereas few investigate feature level fusion. We propose a face-iris recognition method based on feature level fusion. We build a special two-dimensional-Gabor filter bank to extract local texture features from face and iris images, and then transform them by histogram statistics into an energy-orientation variance histogram feature with lower dimensions and higher distinguishability. Finally, through a fusion-recognition strategy based on principal components analysis and support vector machine (FRSPS), feature level fusion and one-to-n identification are accomplished. The experimental results demonstrate that this method can not only effectively extract face and iris features but also provide higher recognition accuracy. Compared with some state-of-the-art fusion methods, the proposed method has a significant performance advantage.
Yamini, Yadollah; Seidi, Shahram; Rezazadeh, Maryam
2014-03-03
Sample preparation is an important issue in analytical chemistry, and is often a bottleneck in chemical analysis. So, the major incentive for the recent research has been to attain faster, simpler, less expensive, and more environmentally friendly sample preparation methods. The use of auxiliary energies, such as heat, ultrasound, and microwave, is one of the strategies that have been employed in sample preparation to reach the above purposes. Application of electrical driving force is the current state-of-the-art, which presents new possibilities for simplifying and shortening the sample preparation process as well as enhancing its selectivity. The electrical driving force has scarcely been utilized in comparison with other auxiliary energies. In this review, the different roles of electrical driving force (as a powerful auxiliary energy) in various extraction techniques, including liquid-, solid-, and membrane-based methods, have been taken into consideration. Also, the references have been made available, relevant to the developments in separation techniques and Lab-on-a-Chip (LOC) systems. All aspects of electrical driving force in extraction and separation methods are too specific to be treated in this contribution. However, the main aim of this review is to provide a brief knowledge about the different fields of analytical chemistry, with an emphasis on the latest efforts put into the electrically assisted membrane-based sample preparation systems. The advantages and disadvantages of these approaches as well as the new achievements in these areas have been discussed, which might be helpful for further progress in the future. Copyright © 2013 Elsevier B.V. All rights reserved.
ARRAY OPTIMIZATION FOR TIDAL ENERGY EXTRACTION IN A TIDAL CHANNEL – A NUMERICAL MODELING ANALYSIS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Zhaoqing; Wang, Taiping; Copping, Andrea
This paper presents an application of a hydrodynamic model to simulate tidal energy extraction in a tidal dominated estuary in the Pacific Northwest coast. A series of numerical experiments were carried out to simulate tidal energy extraction with different turbine array configurations, including location, spacing and array size. Preliminary model results suggest that array optimization for tidal energy extraction in a real-world site is a very complex process that requires consideration of multiple factors. Numerical models can be used effectively to assist turbine siting and array arrangement in a tidal turbine farm for tidal energy extraction.
Syafiuddin, Achmad; Salmiati; Hadibarata, Tony; Salim, Mohd Razman; Kueh, Ahmad Beng Hong; Sari, Ajeng Arum
2017-09-01
Green procedure for synthesizing silver nanoparticles (AgNPs) is currently considered due to its economy and toxic-free effects. Several existing works on synthesizing AgNPs using leaves extract still involve the use of physical or mechanical treatment such as heating or stirring, which consume a lot of energy. To extend and explore the green extraction philosophy, we report here the synthesis and antibacterial evaluations of a purely green procedure to synthesize AgNPs using Carica papaya, Manihot esculenta, and Morinda citrifolia leaves extract without the aforementioned additional treatment. The produced AgNPs were characterized using the ultraviolet-visible spectroscopy, field emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy, and antibacterial investigations. For antibacterial tests, two bacteria namely Escherichia coli and Bacillus cereus were selected. The presently employed method has successfully produced spherical AgNPs having sizes ranging from 9 to 69 nm, with plasmonic characteristics ranging from 356 to 485 nm, and energy-dispersive X-ray peak at approximately 3 keV. In addition, the smallest particles can be produced when Manihot esculenta leaves extract was applied. Moreover, this study also confirmed that both the leaves and synthesized AgNPs exhibit the antibacterial capability, depending on their concentration and the bacteria type.
Plans for wind energy system simulation
NASA Technical Reports Server (NTRS)
Dreier, M. E.
1978-01-01
A digital computer code and a special purpose hybrid computer, were introduced. The digital computer program, the Root Perturbation Method or RPM, is an implementation of the classic floquet procedure which circumvents numerical problems associated with the extraction of Floquet roots. The hybrid computer, the Wind Energy System Time domain simulator (WEST), yields real time loads and deformation information essential to design and system stability investigations.
Santos-Zea, Liliana; Antunes-Ricardo, Marilena; Gutierrez-Uribe, Janet A; García-Pérez, Jose V; Benedito, Jose
2018-10-01
Power ultrasound is applied in food technology to intensify extraction processes, due to the phenomena ultrasonic energy induces in the medium, enhancing mass transfer. The purpose of this work was the acoustic characterization of four transducers of different geometries and the evaluation of their performance in the ultrasonically assisted supercritical fluid extraction of antioxidants from oregano. The transducers differed in the amount of energy transmitted into the medium. Designs varied from the base model (T1), a larger cylindrical headmass (T2), a stepped circular section sonotrode (T3) and a multiplate configuration (T4). The highest nominal power density provided according to the calorimetric method was for T4 (151.6 ± 7.1 W/L). The T2 produced a more uniform acoustic field and a higher acoustic pressure (150.6 ± 20.5 kPa). Both parameters had an impact on total phenolics and antioxidants extraction with CO 2 under supercritical conditions (35 MPa, 35 °C, 2.3% ethanol as co-solvent). T4 and T2 were equally efficient (4.0 ± 0.2 and 4.2 ± 0.2 mg GA/g) for phenolic extraction, and with respect to antioxidant capacity, the best performance was that of T4 (26.4 ± 1.1 μmol TE/g). Of the antioxidant compounds extracted, flavones and flavanones were identified. Therefore, transducer geometry influenced the amount and distribution of energy transmitted into the medium, thus determining the efficiency of the extraction process. Copyright © 2018 Elsevier B.V. All rights reserved.
Power maximization of a point absorber wave energy converter using improved model predictive control
NASA Astrophysics Data System (ADS)
Milani, Farideh; Moghaddam, Reihaneh Kardehi
2017-08-01
This paper considers controlling and maximizing the absorbed power of wave energy converters for irregular waves. With respect to physical constraints of the system, a model predictive control is applied. Irregular waves' behavior is predicted by Kalman filter method. Owing to the great influence of controller parameters on the absorbed power, these parameters are optimized by imperialist competitive algorithm. The results illustrate the method's efficiency in maximizing the extracted power in the presence of unknown excitation force which should be predicted by Kalman filter.
Chan, Chung-Hung; Yusoff, Rozita; Ngoh, Gek-Cheng
2013-09-01
A modeling technique based on absorbed microwave energy was proposed to model microwave-assisted extraction (MAE) of antioxidant compounds from cocoa (Theobroma cacao L.) leaves. By adapting suitable extraction model at the basis of microwave energy absorbed during extraction, the model can be developed to predict extraction profile of MAE at various microwave irradiation power (100-600 W) and solvent loading (100-300 ml). Verification with experimental data confirmed that the prediction was accurate in capturing the extraction profile of MAE (R-square value greater than 0.87). Besides, the predicted yields from the model showed good agreement with the experimental results with less than 10% deviation observed. Furthermore, suitable extraction times to ensure high extraction yield at various MAE conditions can be estimated based on absorbed microwave energy. The estimation is feasible as more than 85% of active compounds can be extracted when compared with the conventional extraction technique. Copyright © 2013 Elsevier Ltd. All rights reserved.
Single-shot work extraction in quantum thermodynamics revisited
NASA Astrophysics Data System (ADS)
Wang, Shang-Yung
2018-01-01
We revisit the problem of work extraction from a system in contact with a heat bath to a work storage system, and the reverse problem of state formation from a thermal system state in single-shot quantum thermodynamics. A physically intuitive and mathematically simple approach using only elementary majorization theory and matrix analysis is developed, and a graphical interpretation of the maximum extractable work, minimum work cost of formation, and corresponding single-shot free energies is presented. This approach provides a bridge between two previous methods based respectively on the concept of thermomajorization and a comparison of subspace dimensions. In addition, a conceptual inconsistency with regard to general work extraction involving transitions between multiple energy levels of the work storage system is clarified and resolved. It is shown that an additional contribution to the maximum extractable work in those general cases should be interpreted not as work extracted from the system, but as heat transferred from the heat bath. Indeed, the additional contribution is an artifact of a work storage system (essentially a suspended ‘weight’ that can be raised or lowered) that does not truly distinguish work from heat. The result calls into question the common concept that a work storage system in quantum thermodynamics is simply the quantum version of a suspended weight in classical thermodynamics.
de Sales, Nathalia F F; Silva da Costa, Leandro; Carneiro, Talita I A; Minuzzo, Daniela A; Oliveira, Felipe L; Cabral, Lourdes M C; Torres, Alexandre G; El-Bacha, Tatiana
2018-03-08
Cancer cells demand high ATP provisions to support proliferation, and targeting of energy metabolism is a good strategy to increase their sensitivity to treatments. In Brazil, wine manufacture is expanding, increasing the amount of pomace that is produced. We determined the phenolic composition and antioxidant properties of a dark skin Grape Pomace Extract and its effects on metabolism and redox state in human hepatocarcinoma HepG2 cells. The material and the methods used represented the industrial process since pomace derived from white wine production and the extract concentrated by pilot plant scale reverse osmosis. Grape pomace extract was rich in polyphenols, mainly anthocyanins, and presented high antioxidant capacity. Short-term metabolic effects, irrespective of any cytotoxicity, involved increased mitochondrial respiration and antioxidant capacity and decreased glycolytic metabolism. Long-term incubation was cytotoxic and cells died by necrosis and GPE was not toxic to non-cancer human fibroblasts. To the best of our knowledge, this is the first report to characterize pomace extract from white wine production from Brazilian winemaking regarding its effects on energy metabolism, suggesting its potential use for pharmaceutical and nutraceutical purposes.
Method of producing molybdenum-99
Pitcher, Eric John
2013-05-28
Method of producing molybdenum-99, comprising accelerating ions by means of an accelerator; directing the ions onto a metal target so as to generate neutrons having an energy of greater than 10 MeV; directing the neutrons through a converter material comprising techentium-99 to produce a mixture comprising molybdenum-99; and, chemically extracting the molybdenum-99 from the mixture.
Douglas, David R [York County, VA
2012-01-10
A method of using off-axis particle beam injection in energy-recovering linear accelerators that increases operational efficiency while eliminating the need to merge the high energy re-circulating beam with an injected low energy beam. In this arrangement, the high energy re-circulating beam and the low energy beam are manipulated such that they are within a predetermined distance from one another and then the two immerged beams are injected into the linac and propagated through the system. The configuration permits injection without geometric beam merging as well as decelerated beam extraction without the use of typical beamline elements.
Maximum wind energy extraction strategies using power electronic converters
NASA Astrophysics Data System (ADS)
Wang, Quincy Qing
2003-10-01
This thesis focuses on maximum wind energy extraction strategies for achieving the highest energy output of variable speed wind turbine power generation systems. Power electronic converters and controls provide the basic platform to accomplish the research of this thesis in both hardware and software aspects. In order to send wind energy to a utility grid, a variable speed wind turbine requires a power electronic converter to convert a variable voltage variable frequency source into a fixed voltage fixed frequency supply. Generic single-phase and three-phase converter topologies, converter control methods for wind power generation, as well as the developed direct drive generator, are introduced in the thesis for establishing variable-speed wind energy conversion systems. Variable speed wind power generation system modeling and simulation are essential methods both for understanding the system behavior and for developing advanced system control strategies. Wind generation system components, including wind turbine, 1-phase IGBT inverter, 3-phase IGBT inverter, synchronous generator, and rectifier, are modeled in this thesis using MATLAB/SIMULINK. The simulation results have been verified by a commercial simulation software package, PSIM, and confirmed by field test results. Since the dynamic time constants for these individual models are much different, a creative approach has also been developed in this thesis to combine these models for entire wind power generation system simulation. An advanced maximum wind energy extraction strategy relies not only on proper system hardware design, but also on sophisticated software control algorithms. Based on literature review and computer simulation on wind turbine control algorithms, an intelligent maximum wind energy extraction control algorithm is proposed in this thesis. This algorithm has a unique on-line adaptation and optimization capability, which is able to achieve maximum wind energy conversion efficiency through continuously improving the performance of wind power generation systems. This algorithm is independent of wind power generation system characteristics, and does not need wind speed and turbine speed measurements. Therefore, it can be easily implemented into various wind energy generation systems with different turbine inertia and diverse system hardware environments. In addition to the detailed description of the proposed algorithm, computer simulation results are presented in the thesis to demonstrate the advantage of this algorithm. As a final confirmation of the algorithm feasibility, the algorithm has been implemented inside a single-phase IGBT inverter, and tested with a wind simulator system in research laboratory. Test results were found consistent with the simulation results. (Abstract shortened by UMI.)
Complex Impedance of Fast Optical Transition Edge Sensors up to 30 MHz
NASA Astrophysics Data System (ADS)
Hattori, K.; Kobayashi, R.; Numata, T.; Inoue, S.; Fukuda, D.
2018-03-01
Optical transition edge sensors (TESs) are characterized by a very fast response, of the order of μs, which is 10^3 times faster than TESs for X-ray and gamma-ray. To extract important parameters associated with the optical TES, complex impedances at high frequencies (> 1 MHz) need to be measured, where the parasitic impedance in the circuit and reflections of electrical signals due to discontinuities in the characteristic impedance of the readout circuits become significant. This prevents the measurements of the current sensitivity β , which can be extracted from the complex impedance. In usual setups, it is hard to build a circuit model taking into account the parasitic impedances and reflections. In this study, we present an alternative method to estimate a transfer function without investigating the details of the entire circuit. Based on this method, the complex impedance up to 30 MHz was measured. The parameters were extracted from the impedance and were compared with other measurements. Using these parameters, we calculated the theoretical limit on an energy resolution and compared it with the measured energy resolution. In this paper, the reasons for the deviation of the measured value from theoretically predicted values will be discussed.
Test of the combined method for extracting spectroscopic factors in N =50 nuclei
NASA Astrophysics Data System (ADS)
Walter, David; Cizewski, J. A.; Baugher, T.; Ratkiewicz, A.; Pain, S. D.; Nunes, F. M.; Ahn, S.; Cerizza, G.; Jones, K. L.; Manning, B.; Thornsberry, C.
2017-09-01
The single-particle properties of nuclei near shell closures and r-process waiting points can be observed using single-nucleon transfer reactions with beams of rare isotopes. However, approximations have to be made about the final bound state to extract spectroscopic information. An approach to constrain the bound state potential has been proposed by Mukhamedzhanov and Nunes. At peripheral reaction energies ( 5 MeV/u), the ANC for the nucleus can be extracted, and is combined with the same reaction at higher energies ( 40 MeV/u). These combined measurements can constrain the shape of the bound state potential, and the spectroscopic factor can be reliably extracted. To test this method, the 86Kr(d , p) reaction was performed in inverse kinematics with a 35 MeV/u beam at the National Superconducting Cyclotron Laboratory (NSCL) with the ORRUBA and SIDAR arrays of silicon strip detectors coupled to the S800 spectrometer. Successful results supported the measurement of a radioactive ion beam of 84Se at 45 MeV/u at the NSCL to be measured at the end of 2017. Results from the 86Kr(d , p) measurement will be presented as well as preparations for the upcoming 84Se(d , p) measurement. This work is supported in part by the National Science Foundation and U.S. D.O.E.
Methods and systems for concentrated solar power
Ma, Zhiwen
2016-05-24
Embodiments described herein relate to a method of producing energy from concentrated solar flux. The method includes dropping granular solid particles through a solar flux receiver configured to transfer energy from concentrated solar flux incident on the solar flux receiver to the granular solid particles as heat. The method also includes fluidizing the granular solid particles from the solar flux receiver to produce a gas-solid fluid. The gas-solid fluid is passed through a heat exchanger to transfer heat from the solid particles in the gas-solid fluid to a working fluid. The granular solid particles are extracted from the gas-solid fluid such that the granular solid particles can be dropped through the solar flux receiver again.
Energy extraction from a large-scale microbial fuel cell system treating municipal wastewater
NASA Astrophysics Data System (ADS)
Ge, Zheng; Wu, Liao; Zhang, Fei; He, Zhen
2015-11-01
Development of microbial fuel cell (MFC) technology must address the challenges associated with energy extraction from large-scale MFC systems consisting of multiple modules. Herein, energy extraction is investigated with a 200-L MFC system (effective volume of 100 L for this study) treating actual municipal wastewater. A commercially available energy harvesting device (BQ 25504) is used successfully to convert 0.8-2.4 V from the MFCs to 5 V for charging ultracapacitors and running a DC motor. Four different types of serial connection containing different numbers of MFC modules are examined for energy extraction and conversion efficiency. The connection containing three rows of the MFCs has exhibited the best performance with the highest power output of ∼114 mW and the conversion efficiency of ∼80%. The weak performance of one-row MFCs negatively affects the overall performance of the connected MFCs in terms of both energy production and conversion. Those results indicate that an MFC system with balanced performance among individual modules will be critical to energy extraction. Future work will focus on application of the extracted energy to support MFC operation.
NASA Technical Reports Server (NTRS)
Shen, Zheng (Inventor); Huang, Norden Eh (Inventor)
2003-01-01
A computer implemented physical signal analysis method is includes two essential steps and the associated presentation techniques of the results. All the steps exist only in a computer: there are no analytic expressions resulting from the method. The first step is a computer implemented Empirical Mode Decomposition to extract a collection of Intrinsic Mode Functions (IMF) from nonlinear, nonstationary physical signals based on local extrema and curvature extrema. The decomposition is based on the direct extraction of the energy associated with various intrinsic time scales in the physical signal. Expressed in the IMF's, they have well-behaved Hilbert Transforms from which instantaneous frequencies can be calculated. The second step is the Hilbert Transform. The final result is the Hilbert Spectrum. Thus, the invention can localize any event on the time as well as the frequency axis. The decomposition can also be viewed as an expansion of the data in terms of the IMF's. Then, these IMF's, based on and derived from the data, can serve as the basis of that expansion. The local energy and the instantaneous frequency derived from the IMF's through the Hilbert transform give a full energy-frequency-time distribution of the data which is designated as the Hilbert Spectrum.
Diatom Milking: A Review and New Approaches
Vinayak, Vandana; Manoylov, Kalina M.; Gateau, Hélène; Blanckaert, Vincent; Hérault, Josiane; Pencréac’h, Gaëlle; Marchand, Justine; Gordon, Richard; Schoefs, Benoît
2015-01-01
The rise of human populations and the growth of cities contribute to the depletion of natural resources, increase their cost, and create potential climatic changes. To overcome difficulties in supplying populations and reducing the resource cost, a search for alternative pharmaceutical, nanotechnology, and energy sources has begun. Among the alternative sources, microalgae are the most promising because they use carbon dioxide (CO2) to produce biomass and/or valuable compounds. Once produced, the biomass is ordinarily harvested and processed (downstream program). Drying, grinding, and extraction steps are destructive to the microalgal biomass that then needs to be renewed. The extraction and purification processes generate organic wastes and require substantial energy inputs. Altogether, it is urgent to develop alternative downstream processes. Among the possibilities, milking invokes the concept that the extraction should not kill the algal cells. Therefore, it does not require growing the algae anew. In this review, we discuss research on milking of diatoms. The main themes are (a) development of alternative methods to extract and harvest high added value compounds; (b) design of photobioreactors; (c) biodiversity and (d) stress physiology, illustrated with original results dealing with oleaginous diatoms. PMID:25939034
Cyclodextrin-enhanced extraction and energy transfer of carcinogens in complex oil environments.
Serio, Nicole; Chanthalyma, Chitapom; Prignano, Lindsey; Levine, Mindy
2013-11-27
Reported herein is the use of γ-cyclodextrin for two tandem functions: (a) the extraction of carcinogenic polycyclic aromatic hydrocarbons (PAHs) from oil samples into aqueous solution and (b) the promotion of highly efficient energy transfer from the newly extracted PAHs to a high-quantum-yield fluorophore. The extraction proceeded in moderate to good efficiencies, and the resulting cyclodextrin-promoted energy transfer led to a new, brightly fluorescent signal in aqueous solution. The resulting dual-function system (extraction followed by energy transfer) has significant relevance in the environmental detection and cleanup of oil-spill-related carcinogens.
Smart Extraction and Analysis System for Clinical Research.
Afzal, Muhammad; Hussain, Maqbool; Khan, Wajahat Ali; Ali, Taqdir; Jamshed, Arif; Lee, Sungyoung
2017-05-01
With the increasing use of electronic health records (EHRs), there is a growing need to expand the utilization of EHR data to support clinical research. The key challenge in achieving this goal is the unavailability of smart systems and methods to overcome the issue of data preparation, structuring, and sharing for smooth clinical research. We developed a robust analysis system called the smart extraction and analysis system (SEAS) that consists of two subsystems: (1) the information extraction system (IES), for extracting information from clinical documents, and (2) the survival analysis system (SAS), for a descriptive and predictive analysis to compile the survival statistics and predict the future chance of survivability. The IES subsystem is based on a novel permutation-based pattern recognition method that extracts information from unstructured clinical documents. Similarly, the SAS subsystem is based on a classification and regression tree (CART)-based prediction model for survival analysis. SEAS is evaluated and validated on a real-world case study of head and neck cancer. The overall information extraction accuracy of the system for semistructured text is recorded at 99%, while that for unstructured text is 97%. Furthermore, the automated, unstructured information extraction has reduced the average time spent on manual data entry by 75%, without compromising the accuracy of the system. Moreover, around 88% of patients are found in a terminal or dead state for the highest clinical stage of disease (level IV). Similarly, there is an ∼36% probability of a patient being alive if at least one of the lifestyle risk factors was positive. We presented our work on the development of SEAS to replace costly and time-consuming manual methods with smart automatic extraction of information and survival prediction methods. SEAS has reduced the time and energy of human resources spent unnecessarily on manual tasks.
Man, Zhengyin; Wang, Quanlin; Li, Hesheng; Zhang, Aizhi; Shen, Jian
2015-03-01
A comprehensive analytical method based on ultra-performance liquid chromatography coupled with triple quadrupole mass spectrometry (UPLC-MS/MS) has been developed for the simultaneous determination of 33 primary aromatic amines (PAAs) in polystyrene (PS) and polyethylene (PE) masterbatches for foods. The PS masterbatches were dissolved with dichloromethane, and methanol was added to precipitate after extraction by ultrasound extraction. Then the extract was purified by passing through a carbon graphite solid phase extraction column. The PE masterbatches were swelled and extracted with dichloromethane by ultrasound. The purified PS solution and PE extract were concentrated, and diluted to 2 mL with methanol-water (1:9, v/v), and filtered through the membranes of 0.22 µm before UPLC-MS/MS analysis. The analytes were separated on a BEH Phenyl column (100 mm x 2.1 mm, 1.7 µm), eluted by gradient with 0.07% (v/v) formic acid in methanol-water (1:9, v/v). The PAAs were detected by UPLC-MS/MS under multiple reaction monitoring (MRM) mode and quantified by the internal standard method. The separation conditions, fragment voltages and collision energies were optimized. The impacts of extraction times, extraction solvents and concentration methods on recoveries were studied. The limits of detection for the 33 primary aromatic amines were 6-10 µg/kg, and the limits of quantitation were 20-30 µg/kg. The mean recoveries of the two different masterbatch products at three spiked levels of 20, 100, 200 µg/kg were 61.3%-119.8%, and the relative standard deviations were 1.4%-14.8%. The experimental results indicated that the method is simple, rapid, sensitive, accurate, and can meet the related requirements for determination.
Extraction of organic contaminants from marine sediments and tissues using microwave energy.
Jayaraman, S; Pruell, R J; McKinney, R
2001-07-01
In this study, we compared microwave solvent extraction (MSE) to conventional methods for extracting organic contaminants from marine sediments and tissues with high and varying moisture content. The organic contaminants measured were polychlorinated biphenyl (PCB) congeners, chlorinated pesticides, and polycyclic aromatic hydrocarbons (PAHs). Initial experiments were conducted on dry standard reference materials (SRMs) and field collected marine sediments. Moisture content in samples greatly influenced the recovery of the analytes of interest. When wet sediments were included in a sample batch, low recoveries were often encountered in other samples in the batch, including the dry SRM. Experiments were conducted to test the effect of standardizing the moisture content in all samples in a batch prior to extraction. SRM1941a (marine sediment). SRM1974a (mussel tissue), as well as QA96SED6 (marine sediment), and QA96TIS7 (marine tissue), both from 1996 NIST Intercalibration Exercise were extracted using microwave and conventional methods. Moisture levels were adjusted in SRMs to match those of marine sediment and tissue samples before microwave extraction. The results demonstrated that it is crucial to standardize the moisture content in all samples, including dry reference material to ensure good recovery of organic contaminants. MSE yielded equivalent or superior recoveries compared to conventional methods for the majority of the compounds evaluated. The advantages of MSE over conventional methods are reduced solvent usage, higher sample throughput and the elimination of halogenated solvent usage.
Jia, Yuqian; Zhao, Yanfang; Zhao, Mei; Wang, Zhenhua; Chen, Xiangfeng; Wang, Minglin
2018-05-25
A core-shell discoid shaped indium (III) sulfide@metal-organic framework (MIL-125(Ti)) nanocomposite was synthesized by a solvothermal method and explored as an adsorbent material for dispersive solid-phase extraction (d-SPE). The as-synthesized sorbent was characterized by scanning electron microscopy, energy-dispersive spectroscopy, transmission electron microscopy, powder X-ray diffraction, N 2 adsorption-desorption analysis, and Fourier transform infrared spectroscopy. The extraction performance was evaluated by the d-SPE of 16 nitro-polycyclic aromatic hydrocarbons (NPAHs) from water samples. The analysis was carried out by gas chromatography (GC) coupled with triple quadruple mass spectrometer in negative chemical ionization (NCI) mode. The selected ion monitoring (SIM) was used in the quantification of the target NPAHs. Extraction factors affecting the d-SPE, including the ionic strength, extraction temperature, and extraction time were optimized by the response surface methodology. The developed d-SPE method showed good linear correlations from 10 to 1000 ng L -1 (r > 0.99), low detection limits (2.9-83.0 ng L -1 ), satisfactory repeatability (relative standard deviation of <10%, n = 6), and acceptable recoveries (71.3%-112.2%) for water samples. The developed method was used for the food and environmental sample analysis. The results demonstrated that the method could be used for sample preparation of trace NPAHs in real samples. Copyright © 2018. Published by Elsevier B.V.
Wang, Ming-Chih; Lai, Yih-Cherng; Chang, Chia-Lin
2008-05-01
Dibenzo[a,c]cyclooctadiene lignans of Schisandra chinensis Baill are well known because of their hepatoprotective activity, antioxidant activity, and anticancer effect. For the isolation of the dibenzo[a,c]cyclooctadiene lignans of Schisandra chinensis Baill two extraction methods were used: modified-ultrasonic extraction and supercritical fluid extraction. A specific and fast analytical method for structure identification is established for quality control because structure elucidation could be accomplished by means of liquid chromatography-mass spectrometry (LC-MS) technologies. The separation and identification of the compounds were completed by: (i) a water-acetonitrile gradient system using a C18 reversed-phase column; (ii) UV detection at 225 nm; (iii) MS/MS experiments with electrospray ionization interface (ESI) ion trap mass spectrometry in the positive mode. Normalized collision energy was used to obtain fragment ions of structural relevance in the LC-MS/MS. These results provided a reliable LC-MS/MS method for the determination of the dibenzo[a,c]cyclooctadiene lignans from Schisandra chinensis Baill. Finally, we also detected 1,1-diphenyl-2-picrylhydrazyl (DPPH) scavenging effects (%) of the modified-ultrasonic and supercritical fluid extracts of Schisandra chinensis Baill compared with 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid (Trolox). The antioxidant activities of the modified-ultrasonic and supercritical fluid extracts were lower than that of trolox.
NASA Astrophysics Data System (ADS)
Sun, L. B.; Wu, Z. S.; Yang, K. K.
2018-04-01
Islanding and power quality (PQ) disturbances in hybrid energy system become more serious with the application of renewable energy sources. In this paper, a novel method based on wavelet transform (WT) and modified feed forward neural network (FNN) is proposed to detect islanding and classify PQ problems. First, the performance indices, i.e., the energy content and SD of the transformed signal are extracted from the negative sequence component of the voltage signal at PCC using WT. Afterward, WT indices are fed to train FNNs midfield by Particle Swarm Optimization (PSO) which is a novel heuristic optimization method. Then, the results of simulation based on WT-PSOFNN are discussed in MATLAB/SIMULINK. Simulations on the hybrid power system show that the accuracy can be significantly improved by the proposed method in detecting and classifying of different disturbances connected to multiple distributed generations.
Coherent vector meson photoproduction from deuterium at intermediate energies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rogers, T.C.; Strikman, M.I.; Sargsian, M.M.
2006-04-15
We analyze the cross section for vector meson photoproduction off a deuteron for the intermediate range of photon energies starting at a few giga-electron-volts above the threshold and higher. We reproduce the steps in the derivation of the conventional nonrelativistic Glauber expression based on an effective diagrammatic method while making corrections for Fermi motion and intermediate-energy kinematic effects. We show that, for intermediate-energy vector meson production, the usual Glauber factorization breaks down, and we derive corrections to the usual Glauber method to linear order in longitudinal nucleon momentum. The purpose of our analysis is to establish methods for probing interestingmore » physics in the production mechanism for {phi} mesons and heavier vector mesons. We demonstrate how neglecting the breakdown of Glauber factorization can lead to errors in measurements of basic cross sections extracted from nuclear data.« less
Bao, Zhong-Min; Xu, Rui-Peng; Li, Chi; Xie, Zhong-Zhi; Zhao, Xin-Dong; Zhang, Yi-Bo; Li, Yan-Qing; Tang, Jian-Xin
2016-08-31
Charge transport at organic/inorganic hybrid contacts significantly affects the performance of organic optoelectronic devices because the unfavorable energy level offsets at these interfaces can hinder charge injection or extraction due to large barrier heights. Herein, we report a technologically relevant method to functionalize a traditional hole-transport layer of solution-processed nickel oxide (NiOx) with various interlayers. The photoemission spectroscopy measurements reveal the continuous tuning of the NiOx substrate work function ranging from 2.5 to 6.6 eV, enabling the alignment transition of energy levels between the Schottky-Mott limit and Fermi level pinning at the organic/composite NiOx interface. As a result, switching hole and electron transport for the active organic material on the composite NiOx layer is achieved due to the controlled carrier injection/extraction barriers. The experimental findings indicate that tuning the work function of metal oxides with optimum energy level offsets can facilitate the charge transport at organic/electrode contacts.
[A graph cuts-based interactive method for segmentation of magnetic resonance images of meningioma].
Li, Shuan-qiang; Feng, Qian-jin; Chen, Wu-fan; Lin, Ya-zhong
2011-06-01
For accurate segmentation of the magnetic resonance (MR) images of meningioma, we propose a novel interactive segmentation method based on graph cuts. The high dimensional image features was extracted, and for each pixel, the probabilities of its origin, either the tumor or the background regions, were estimated by exploiting the weighted K-nearest neighborhood classifier. Based on these probabilities, a new energy function was proposed. Finally, a graph cut optimal framework was used for the solution of the energy function. The proposed method was evaluated by application in the segmentation of MR images of meningioma, and the results showed that the method significantly improved the segmentation accuracy compared with the gray level information-based graph cut method.
Nuclear shape evolution based on microscopic level densities
Ward, D. E.; Carlsson, B. G.; Døssing, T.; ...
2017-02-27
Here, by combining microscopically calculated level densities with the Metropolis walk method, we develop a consistent framework for treating the energy and angular-momentum dependence of the nuclear shape evolution in the fission process. For each nucleus under consideration, the level density is calculated microscopically for each of more than five million shapes with a recently developed combinatorial method. The method employs the same single-particle levels as those used for the extraction of the pairing and shell contributions to the macroscopic-microscopic deformation-energy surface. Containing no new parameters, the treatment is suitable for elucidating the energy dependence of the dynamics of warmmore » nuclei on pairing and shell effects. It is illustrated for the fission fragment mass distribution for several uranium and plutonium isotopes of particular interest.« less
Coulomb suppression in the low-energy p-p elastic scattering via the Trojan Horse Method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tumino, A.; Universita degli Studi di Enna 'Kore', Enna; Spitaleri, C.
2010-11-24
We present here an important test of the main feature of the Trojan Horse Method (THM), namely the suppression of Coulomb effects in the entrance channel due to off-energy-shell effects. This is done by measuring the THM p-p elastic scattering via the p+d{yields}p+p+n reaction at 4.7 and 5 MeV, corresponding to a p-p relative energy ranging from 80 to 670 keV. In contrast to the on-energy-shell (OES) case, the extracted p-p cross section does not exhibit the Coulomb-nuclear interference minimum due to the suppression of the Coulomb amplitude. This is confirmed by the half-off-energy shell (HOES) calculations and strengthened bymore » the agreement with the calculated OES nuclear cross sections.« less
NASA Astrophysics Data System (ADS)
Lallart, Mickaël; Wu, Wen-Jong; Hsieh, Yuchieh; Yan, Linjuan
2017-11-01
This paper aims at proposing an electrical interface taking advantage of nonlinear treatment for both significantly increasing the voltage of a piezoelectric device and extracting the corresponding electrostatic energy in an independent way from the connected electrical load. The principles of the proposed system lies in quickly inverting the piezoelectric voltage on each extremum (synchronized switch on inductor operations) for a given number of extremum occurrences, and then extracting the total electrostatic energy available on the piezoelectric element through the so-called synchronous electric charge extraction (SECE) for energy harvesting purpose. Compared to classical SECE approach, which consists in extracting the energy on each voltage extremum occurrence, the proposed scheme shows a significant improvement in low-coupled systems thanks to a fine control of the trade-off between voltage amplification and number of extraction events.
Role of core excitation in ( d , p ) transfer reactions
Deltuva, A.; Ross, A.; Norvaišas, E.; ...
2016-10-24
In our recent work we found that core excitations can be important in extracting structure information from (d,p) reactions. Our objective is to systematically explore the role of core excitation in (d,p) reactions and to understand the origin of the dynamical effects. Based on the particle-rotor model of n+Be 10, we generate a number of models with a range of separation energies (S n=0.1–5.0 MeV), while maintaining a significant core excited component. We then apply the latest extension of the momentum-space-based Faddeev method, including dynamical core excitation in the reaction mechanism to all orders, to the Be 10(d,p)Be 11-like reactions,more » and study the excitation effects for beam energies E d=15–90 MeV. We study the resulting angular distributions and the differences between the spectroscopic factor that would be extracted from the cross sections, when including dynamical core excitation in the reaction, and that of the original structure model. We also explore how different partial waves affect the final cross section. Our results show a strong beam-energy dependence of the extracted spectroscopic factors that become smaller for intermediate beam energies. Finally, this dependence increases for loosely bound systems.« less
Airborne gamma-ray spectra processing: Extracting photopeaks.
Druker, Eugene
2018-07-01
The acquisition of information from the airborne gamma-ray spectra is based on the ability to evaluate photopeak areas in regular spectra from natural and other sources. In airborne gamma-ray spectrometry, extraction of photopeaks of radionuclides from regular one-second spectra is a complex problem. In the region of higher energies, difficulties are associated with low signal level, i.e. low count rates, whereas at lower energies difficulties are associated with high noises due to a high signal level. In this article, a new procedure is proposed for processing the measured spectra up to and including the extraction of evident photopeaks. The procedure consists of reducing the noise in the energy channels along the flight lines, transforming the spectra into the spectra of equal resolution, removing the background from each spectrum, sharpening the details, and transforming the spectra back to the original energy scale. The resulting spectra are better suited for examining and using the photopeaks. No assumptions are required regarding the number, locations, and magnitudes of photopeaks. The procedure does not generate negative photopeaks. The resolution of the spectrometer is used for the purpose. The proposed methodology, apparently, will contribute also to study environmental problems, soil characterization, and other near-surface geophysical methods. Copyright © 2018 Elsevier Ltd. All rights reserved.
Wang, Yu; Zhu, Jianxin
2012-05-15
This paper presents a novel process of extracting lead oxide nanoparticles from cathode-ray tube (CRT) funnel glass using self-propagating high-temperature synthesis (SHS) method. The impacts of added amount of funnel glass on the extraction ratio of lead, the lead extraction velocity and the micromorphology, as well as particle size of extracted nanoparticles were investigated. We found that self-propagating reaction in the presence of Mg and Fe(2)O(3) could separate lead preferentially and superfine lead oxide nanoparticles were obtained from a collecting chamber. The separation ratio was related closely to the amount of funnel glass added in the original mixture. At funnel glass addition of no more than 40wt.%, over 90wt.% of lead was recovered from funnel glass. High extraction yield reveals that the network structure of funnel glass was fractured due to the dramatic energy generated during the SHS melting process. The PbO nanoparticles collected show good dispersion and morphology with a mean grain size of 40-50nm. Copyright © 2012 Elsevier B.V. All rights reserved.
Text-line extraction in handwritten Chinese documents based on an energy minimization framework.
Koo, Hyung Il; Cho, Nam Ik
2012-03-01
Text-line extraction in unconstrained handwritten documents remains a challenging problem due to nonuniform character scale, spatially varying text orientation, and the interference between text lines. In order to address these problems, we propose a new cost function that considers the interactions between text lines and the curvilinearity of each text line. Precisely, we achieve this goal by introducing normalized measures for them, which are based on an estimated line spacing. We also present an optimization method that exploits the properties of our cost function. Experimental results on a database consisting of 853 handwritten Chinese document images have shown that our method achieves a detection rate of 99.52% and an error rate of 0.32%, which outperforms conventional methods.
NASA Astrophysics Data System (ADS)
Goudarzi, Mojgan; Mir, Noshin; Mousavi-Kamazani, Mehdi; Bagheri, Samira; Salavati-Niasari, Masoud
2016-09-01
In this work, two natural sources, including pomegranate peel extract and cochineal dye were employed for the synthesis of silver nanoparticles. The natural silver complex from pomegranate peel extract resulted in nano-sized structures through solution-phase method, but this method was not efficient for cochineal dye-silver precursor and the as-formed products were highly agglomerated. Therefore, an alternative facile solid-state approach was investigated as for both natural precursors and the results showed successful production of well-dispersed nanoparticles with narrow size distribution for cochineal dye-silver precursor. The products were characterized by X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), Energy dispersive X-ray microanalysis (EDX), and Transmission Electron Microscopy (TEM).
Design of the ILC RTML Extraction Lines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seletskiy, S.; Tenenbaum, P.; Walz, D.
2011-10-17
The ILC [1] Damping Ring to the Main Linac beamline (RTML) contains three extraction lines (EL). Each EL can be used both for an emergency abort dumping of the beam and tune-up continual train-by-train extraction. Two of the extraction lines are located downstream of the first and second stages of the RTML bunch compressor, and must accept both compressed and uncompressed beam with energy spreads of 2.5% and 0.15%, respectively. In this paper we report on an optics design that allowed minimizing the length of the extraction lines while offsetting the beam dumps from the main line by the distancemore » required for acceptable radiation levels in the service tunnel. The proposed extraction lines can accommodate beams with different energy spreads while at the same time providing the beam size acceptable for the aluminum dump window. The RTML incorporates three extraction lines, which can be used for either an emergency beam abort or for a train-by-train extraction. The first EL is located downstream of the Damping Ring extraction arc. The other two extraction lines are located downstream of each stage of the two-stage bunch compressor. The first extraction line (EL1) receives 5GeV beam with an 0.15% energy spread. The extraction line located downstream of the first stage of bunch compressor (ELBC1) receives both compressed and uncompressed beam, and therefore must accept beam with both 5 and 4.88GeV energy, and 0.15% and 2.5% energy spread, respectively. The extraction line located after the second stage of the bunch compressor (ELBC2) receives 15GeV beam with either 0.15 or 1.8% energy spread. Each of the three extraction lines is equipped with the 220kW aluminum ball dump, which corresponds to the power of the continuously dumped beam with 5GeV energy, i.e., the beam trains must be delivered to the ELBC2 dump at reduced repetition rate.« less
Grisales Díaz, Víctor Hugo; Olivar Tost, Gerard
2017-01-01
Dual extraction, high-temperature extraction, mixture extraction, and oleyl alcohol extraction have been proposed in the literature for acetone, butanol, and ethanol (ABE) production. However, energy and economic evaluation under similar assumptions of extraction-based separation systems are necessary. Hence, the new process proposed in this work, direct steam distillation (DSD), for regeneration of high-boiling extractants was compared with several extraction-based separation systems. The evaluation was performed under similar assumptions through simulation in Aspen Plus V7.3 ® software. Two end distillation systems (number of non-ideal stages between 70 and 80) were studied. Heat integration and vacuum operation of some units were proposed reducing the energy requirements. Energy requirement of hybrid processes, substrate concentration of 200 g/l, was between 6.4 and 8.3 MJ-fuel/kg-ABE. The minimum energy requirements of extraction-based separation systems, feeding a water concentration in the substrate equivalent to extractant selectivity, and ideal assumptions were between 2.6 and 3.5 MJ-fuel/kg-ABE, respectively. The efficiencies of recovery systems for baseline case and ideal evaluation were 0.53-0.57 and 0.81-0.84, respectively. The main advantages of DSD were the operation of the regeneration column at atmospheric pressure, the utilization of low-pressure steam, and the low energy requirements of preheating. The in situ recovery processes, DSD, and mixture extraction with conventional regeneration were the approaches with the lowest energy requirements and total annualized costs.
Sun, Ting; Xing, Fei; You, Zheng; Wang, Xiaochu; Li, Bin
2014-03-10
The star tracker is one of the most promising attitude measurement devices widely used in spacecraft for its high accuracy. High dynamic performance is becoming its major restriction, and requires immediate focus and promotion. A star image restoration approach based on the motion degradation model of variable angular velocity is proposed in this paper. This method can overcome the problem of energy dispersion and signal to noise ratio (SNR) decrease resulting from the smearing of the star spot, thus preventing failed extraction and decreased star centroid accuracy. Simulations and laboratory experiments are conducted to verify the proposed methods. The restoration results demonstrate that the described method can recover the star spot from a long motion trail to the shape of Gaussian distribution under the conditions of variable angular velocity and long exposure time. The energy of the star spot can be concentrated to ensure high SNR and high position accuracy. These features are crucial to the subsequent star extraction and the whole performance of the star tracker.
Nuclear Proton-proton Elastic Scattering via the Trojan Horse Method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tumino, A.; Universita degli Studi di Enna 'Kore', Enna; Spitaleri, C.
2009-08-26
We present here an important test of the main feature of the Trojan Horse Method (THM), namely the suppression of Coulomb effects in the entrance channel due to off-energy-shell effects. This is done by measuring the THM p--p elastic scattering via the p+d{yields}p+p+n reaction at 4.7 and 5 MeV, corresponding to a p--p relative energy ranging from 80 to 670 keV. In contrast to the on-energy-shell (OES) case, the extracted p-p cross section does not exhibit the Coulomb-nuclear interference minimum due to the suppression of the Coulomb amplitude. This is confirmed by the half-off-energy shell (HOES) calculations and strengthened bymore » the agreement with the calculated OES nuclear cross sections.« less
Zinc oxide crystal whiskers as a novel sorbent for solid-phase extraction of flavonoids.
Wang, Licheng; Shangguan, Yangnan; Hou, Xiudan; Jia, Yong; Liu, Shujuan; Sun, Yingxin; Guo, Yong
2017-08-15
As a novel solid-phase extraction material, zinc oxide crystal whiskers were used to extract flavonoid compounds and showed good extraction abilities. X-ray diffraction, scanning electron microscopy with energy dispersive X-ray spectroscopy and surface area/pore volume characterized the sorbent. The zinc oxide was packed into a solid-phase extraction micro-column and its extraction ability was evaluated by four model flavonoid compounds. The sample loading and elution parameters were optimized and the zinc oxide based analytical method for flavonoids was established. It showed that the method has wide linearities from 1 to 150μg/L and low limits of detection at 0.25μg/L. The relative standard deviations of a single column repeatability and column to column reproducibility were less than 6.8% and 10.6%. Several real samples were analyzed by the established method and satisfactory results were obtained. The interactions between flavonoids and zinc oxide were calculated and proved to be from the Van der Waals' forces between the 4p and 5d orbitals from zinc atom and the neighboring π orbitals from flavonoid phenyl groups. Moreover, the zinc oxide crystal whiskers showed good stability and could be reused more than 50 times under the operation conditions. This work proves that the zinc oxide crystal whiskers are a good candidate for flavonoids enrichment. Copyright © 2017. Published by Elsevier B.V.
A Simple Method for Nucleon-Nucleon Cross Sections in a Nucleus
NASA Technical Reports Server (NTRS)
Tripathi, R. K.; Cucinotta, Francis A.; Wilson, John W.
1999-01-01
A simple reliable formalism is presented for obtaining nucleon-nucleon cross sections within a nucleus in nuclear collisions for a given projectile and target nucleus combination at a given energy for use in transport, Monte Carlo, and other calculations. The method relies on extraction of these values from experiments and has been tested and found to give excellent results.
Signal processing methods for MFE plasma diagnostics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Candy, J.V.; Casper, T.; Kane, R.
1985-02-01
The application of various signal processing methods to extract energy storage information from plasma diamagnetism sensors occurring during physics experiments on the Tandom Mirror Experiment-Upgrade (TMX-U) is discussed. We show how these processing techniques can be used to decrease the uncertainty in the corresponding sensor measurements. The algorithms suggested are implemented using SIG, an interactive signal processing package developed at LLNL.
Identification of Load Categories in Rotor System Based on Vibration Analysis
Yang, Zhaojian
2017-01-01
Rotating machinery is often subjected to variable loads during operation. Thus, monitoring and identifying different load types is important. Here, five typical load types have been qualitatively studied for a rotor system. A novel load category identification method for rotor system based on vibration signals is proposed. This method is a combination of ensemble empirical mode decomposition (EEMD), energy feature extraction, and back propagation (BP) neural network. A dedicated load identification test bench for rotor system was developed. According to loads characteristics and test conditions, an experimental plan was formulated, and loading tests for five loads were conducted. Corresponding vibration signals of the rotor system were collected for each load condition via eddy current displacement sensor. Signals were reconstructed using EEMD, and then features were extracted followed by energy calculations. Finally, characteristics were input to the BP neural network, to identify different load types. Comparison and analysis of identifying data and test data revealed a general identification rate of 94.54%, achieving high identification accuracy and good robustness. This shows that the proposed method is feasible. Due to reliable and experimentally validated theoretical results, this method can be applied to load identification and fault diagnosis for rotor equipment used in engineering applications. PMID:28726754
Automatic Segmentation of High-Throughput RNAi Fluorescent Cellular Images
Yan, Pingkum; Zhou, Xiaobo; Shah, Mubarak; Wong, Stephen T. C.
2010-01-01
High-throughput genome-wide RNA interference (RNAi) screening is emerging as an essential tool to assist biologists in understanding complex cellular processes. The large number of images produced in each study make manual analysis intractable; hence, automatic cellular image analysis becomes an urgent need, where segmentation is the first and one of the most important steps. In this paper, a fully automatic method for segmentation of cells from genome-wide RNAi screening images is proposed. Nuclei are first extracted from the DNA channel by using a modified watershed algorithm. Cells are then extracted by modeling the interaction between them as well as combining both gradient and region information in the Actin and Rac channels. A new energy functional is formulated based on a novel interaction model for segmenting tightly clustered cells with significant intensity variance and specific phenotypes. The energy functional is minimized by using a multiphase level set method, which leads to a highly effective cell segmentation method. Promising experimental results demonstrate that automatic segmentation of high-throughput genome-wide multichannel screening can be achieved by using the proposed method, which may also be extended to other multichannel image segmentation problems. PMID:18270043
Analysis of mixtures of fatty acids and fatty alcohols in fermentation broth.
Liu, Yilan; Chen, Ting; Yang, Maohua; Wang, Caixia; Huo, Weiyan; Yan, Daojiang; Chen, Jinjin; Zhou, Jiemin; Xing, Jianmin
2014-01-03
Microbial production of fatty acids and fatty alcohols has attracted increasing concerns because of energy crisis and environmental impact of fossil fuels. Therefore, simple and efficient methods for the extraction and quantification of these compounds become necessary. In this study, a high-performance liquid chromatography-refractive index detection (HPLC-RID) method was developed for the simultaneous quantification of fatty acids and fatty alcohols in these samples. The optimum chromatographic conditions are C18 column eluted with methanol:water:acetic acid (90:9.9:0.1, v/v/v); column temperature, 26°C; flow rate, 1.0mL/min. Calibration curves of all selected analytes showed good linearity (r(2)≥0.9989). The intra-day and inter-day relative standard deviations (RSDs) of the 10 compounds were less than 4.46% and 5.38%, respectively, which indicated that the method had good repeatability and precision. Besides, a method for simultaneous extraction of fatty acids and fatty alcohols from fermentation broth was optimized by orthogonal design. The optimal extraction conditions were as follows: solvent, ethyl acetate; solvent to sample ratio, 0.5:1; rotation speed, 2min at 260rpm; extraction temperature, 10°C. This study provides simple and fast methods to simultaneously extract and quantify fatty acids and fatty alcohols for the first time. It will be useful for the study of microbial production of these products. Copyright © 2013 Elsevier B.V. All rights reserved.
McDowell, W J; Farrar, D T; Billings, M R
1974-12-01
A method for the determination of uranium and plutonium by a combined high-resolution liquid scintillation-solvent extraction method is presented. Assuming a sample count equal to background count to be the detection limit, the lower detection limit for these and other alpha-emitting nuclides is 1.0 dpm with a Pyrex sample tube, 0.3 dpm with a quartz sample tube using present detector shielding or 0.02 d.p.m. with pulse-shape discrimination. Alpha-counting efficiency is 100%. With the counting data presented as an alpha-energy spectrum, an energy resolution of 0.2-0.3 MeV peak half-width and an energy identification to +/-0.1 MeV are possible. Thus, within these limits, identification and quantitative determination of a specific alpha-emitter, independent of chemical separation, are possible. The separation procedure allows greater than 98% recovery of uranium and plutonium from solution containing large amounts of iron and other interfering substances. In most cases uranium, even when present in 10(8)-fold molar ratio, may be quantitatively separated from plutonium without loss of the plutonium. Potential applications of this general analytical concept to other alpha-counting problems are noted. Special problems associated with the determination of plutonium in soil and water samples are discussed. Results of tests to determine the pulse-height and energy-resolution characteristics of several scintillators are presented. Construction of the high-resolution liquid scintillation detector is described.
Wang, Taiping; Yang, Zhaoqing
2017-03-25
Previously, a major focus of tidal energy studies in Puget Sound were the deep channels such as Admiralty Inlet that have a larger power potential. Our paper focuses on the possibility of extracting tidal energy from minor tidal channels of Puget Sound by using a hydrodynamic model to quantify the power potential and the associated impact on tidal circulation. The study site is a multi-inlet bay system connected by two narrow inlets, Agate Pass and Rich Passage, to the Main Basin of Puget Sound. A three-dimensional hydrodynamic model was applied to the study site and validated for tidal elevations andmore » currents. Here, we examined three energy extraction scenarios in which turbines were deployed in each of the two passages and concurrently in both. Extracted power rates and associated changes in tidal elevation, current, tidal flux, and residence time were examined. Maximum instantaneous power rates reached 250 kW, 1550 kW, and 1800 kW, respectively, for the three energy extraction scenarios. Model results suggest that with the level of energy extraction in the three energy extraction scenarios, the impact on tidal circulation is very small. It is worth investigating the feasibility of harnessing tidal energy from minor tidal channels of Puget Sound.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Taiping; Yang, Zhaoqing
Previously, a major focus of tidal energy studies in Puget Sound were the deep channels such as Admiralty Inlet that have a larger power potential. Our paper focuses on the possibility of extracting tidal energy from minor tidal channels of Puget Sound by using a hydrodynamic model to quantify the power potential and the associated impact on tidal circulation. The study site is a multi-inlet bay system connected by two narrow inlets, Agate Pass and Rich Passage, to the Main Basin of Puget Sound. A three-dimensional hydrodynamic model was applied to the study site and validated for tidal elevations andmore » currents. Here, we examined three energy extraction scenarios in which turbines were deployed in each of the two passages and concurrently in both. Extracted power rates and associated changes in tidal elevation, current, tidal flux, and residence time were examined. Maximum instantaneous power rates reached 250 kW, 1550 kW, and 1800 kW, respectively, for the three energy extraction scenarios. Model results suggest that with the level of energy extraction in the three energy extraction scenarios, the impact on tidal circulation is very small. It is worth investigating the feasibility of harnessing tidal energy from minor tidal channels of Puget Sound.« less
Development of methods for assessing exposure and effects of produced waters from energy and mineral resource extraction operations on stream invertebrate species is important in order to elucidate environmentally relevant information. Centroptilum triangulifer is a parthenogene...
Hyperspectral landcover classification for the Yakima Training Center, Yakima, Washington
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steinmaus, K.L.; Perry, E.M.; Petrie, G.M.
1998-04-01
The US Department of Energy`s (DOE`s) Pacific Northwest National Laboratory (PNNL) was tasked in FY97-98 to conduct a multisensor feature extraction project for the Terrain Modeling Project Office (TMPO) of the National Imagery and Mapping Agency (NIMA). The goal of this research is the development of near-autonomous methods to remotely classify and characterize regions of military interest, in support of the TMPO of NIMA. These methods exploit remotely sensed datasets including hyperspectral (HYDICE) imagery, near-infrared and thermal infrared (Daedalus 3600), radar, and terrain datasets. The study site for this project is the US Army`s Yakima Training Center (YTC), a 326,741-acremore » training area located near Yakima, Washington. Two study areas at the YTC were selected to conduct and demonstrate multisensor feature extraction, the 2-km x 2-km Cantonment Area and the 3-km x 3-km Choke Point area. Classification of the Cantonment area afforded a comparison of classification results at different scales.« less
The Trojan Horse Method in Nuclear Astrophysics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spitaleri, C.
2010-11-24
The Trojan Horse Method allows for the measurements of cross section in nuclear reaction between charged particles at astrophysical energies. The basic features of the method are discussed in the non resonant reactions case. A review of applications aimed to extract the bare nucleus astrophysical S{sub b}(E) factor for two body processes are presented. The information on electron screening potential U{sub e} were obtained from comparison with direct experiments of fusion reactions.
Kachangoon, Rawikan; Vichapong, Jitlada; Burakham, Rodjana; Santaladchaiyakit, Yanawath; Srijaranai, Supalax
2018-05-12
An effective pre-concentration method, namely amended-cloud point extraction (CPE), has been developed for the extraction and pre-concentration of neonicotinoid insecticide residues. The studied analytes including clothianidin, imidacloprid, acetamiprid, thiamethoxam and thiacloprid were chosen as a model compound. The amended-CPE procedure included two cloud point processes. Triton™ X-114 was used to extract neonicotinoid residues into the surfactant-rich phase and then the analytes were transferred into an alkaline solution with the help of ultrasound energy. The extracts were then analyzed by high-performance liquid chromatography (HPLC) coupled with a monolithic column. Several factors influencing the extraction efficiency were studied such as kind and concentration of surfactant, type and content of salts, kind and concentration of back extraction agent, and incubation temperature and time. Enrichment factors (EFs) were found in the range of 20⁻333 folds. The limits of detection of the studied neonicotinoids were in the range of 0.0003⁻0.002 µg mL −1 which are below the maximum residue limits (MRLs) established by the European Union (EU). Good repeatability was obtained with relative standard deviations lower than 1.92% and 4.54% for retention time ( t R ) and peak area, respectively. The developed extraction method was successfully applied for the analysis of water samples. No detectable residues of neonicotinoids in the studied samples were found.
[Mass Transfer Kinetics Model of Ultrasonic Extraction of Pomegranate Peel Polyphenols].
Wang, Zhan-yi; Zhang, Li-hua; Wang, Yu-hai; Zhang, Yuan-hu; Ma, Li; Zheng, Dan-dan
2015-05-01
The dynamic mathematical model of ultrasonic extraction of polyphenols from pomegranate peel was constructed with the Fick's second law as the theoretical basis. The spherical model was selected, with mass concentrations of pomegranate peel polyphenols as the index, 50% ethanol as the extraction solvent and ultrasonic extraction as the extraction method. In different test conditions including the liquid ratio, extraction temperature and extraction time, a series of kinetic parameters were solved, such as the extraction process (k), relative raffinate rate, surface diffusion coefficient(D(S)), half life (t½) and the apparent activation energy (E(a)). With the extraction temperature increasing, k and D(S) were gradually increased with t½ decreasing,which indicated that the elevated temperature was favorable to the extraction of pomegranate peel polyphenols. The exponential equation of relative raffinate rate showed that the established numerical dynamics model fitted the extraction of pomegranate peel polyphenols, and the relationship between the reaction conditions and pomegranate peel polyphenols concentration was well reflected by the model. Based on the experimental results, a feasible and reliable kinetic model for ultrasonic extraction of polyphenols from pomegranate peel is established, which can be used for the optimization control of engineering magnifying production.
Yuan, Hang; Wang, Yulei; Lu, Zhiwei; Zheng, Zhenxing
2018-02-01
A frequency matching Brillouin amplification in high-power solid-state laser systems is proposed. The energy extraction efficiency could be maintained at a high level in a non-collinear Brillouin amplification structure using an exact Stokes frequency shift. Laser pulses having a width of 200 ps and energy of 2.4 J were produced. This method can be used to transfer energy from a long pulse to a short pulse through a high-power solid-state laser system.
Medical Image Fusion Based on Feature Extraction and Sparse Representation
Wei, Gao; Zongxi, Song
2017-01-01
As a novel multiscale geometric analysis tool, sparse representation has shown many advantages over the conventional image representation methods. However, the standard sparse representation does not take intrinsic structure and its time complexity into consideration. In this paper, a new fusion mechanism for multimodal medical images based on sparse representation and decision map is proposed to deal with these problems simultaneously. Three decision maps are designed including structure information map (SM) and energy information map (EM) as well as structure and energy map (SEM) to make the results reserve more energy and edge information. SM contains the local structure feature captured by the Laplacian of a Gaussian (LOG) and EM contains the energy and energy distribution feature detected by the mean square deviation. The decision map is added to the normal sparse representation based method to improve the speed of the algorithm. Proposed approach also improves the quality of the fused results by enhancing the contrast and reserving more structure and energy information from the source images. The experiment results of 36 groups of CT/MR, MR-T1/MR-T2, and CT/PET images demonstrate that the method based on SR and SEM outperforms five state-of-the-art methods. PMID:28321246
NASA Astrophysics Data System (ADS)
Yusuf, M. A.; Romli, M.; Suprihatin; Wiloso, E. I.
2018-05-01
Industrial activities use material, energy and water resources and generate greenhouse gas (GHG). Currently, various regulations require industry to measure and quantify the emissions generated from its process activity. LCA is a method that can be used to analyze and report the environmental impact of an activity that uses resources and generates waste by an industrial activity. In this work, LCA is used to determine the environmental impact of a semi-mechanical extraction process of sago industry. The data was collected through the sago industry in Cimahpar, Bogor. The extraction of sago starch consists of stem cutting, rasping, mixing, filtration, starch sedimentation, washing, and drying. The scope of LCA study covers the harvesting of sago stem, transportation to extraction site, and the starch extraction process. With the assumption that the average transportation distance of sago stem to extraction site is 200 km, the GHG emission is estimated to be 325 kg CO2 eq / ton of sundried sago starch. This figure is lower than that reported for maize starch (1120 kg CO2 eq), potato starch (2232 kg CO2 eq) and cassava starch (4310 kg CO2 eq). This is most likely due to the uncounted impact from the use of electrical energy on the extraction process, which is currently being conducted. A follow-up study is also underway to formulate several process improvement scenarios to derive the design of sago starch processing that generates the minimum emissions.
Dewulf, J; Bösch, M E; De Meester, B; Van der Vorst, G; Van Langenhove, H; Hellweg, S; Huijbregts, M A J
2007-12-15
The objective of the paper is to establish a comprehensive resource-based life cycle impact assessment (LCIA) method which is scientifically sound and that enables to assess all kinds of resources that are deprived from the natural ecosystem, all quantified on one single scale, free of weighting factors. The method is based on the exergy concept. Consistent exergy data on fossils, nuclear and metal ores, minerals, air, water, land occupation, and renewable energy sources were elaborated, with well defined system boundaries. Based on these data, the method quantifies the exergy "taken away" from natural ecosystems, and is thus called the cumulative exergy extraction from the natural environment (CEENE). The acquired data set was coupled with a state-of-the art life cycle inventory database, ecoinvent. In this way, the method is able to quantitatively distinguish eight categories of resources withdrawn from the natural environment: renewable resources, fossil fuels, nuclear energy, metal ores, minerals, water resources, land resources, and atmospheric resources. Third, the CEENE method is illustrated for a number of products that are available in ecoinvent, and results are compared with common resource oriented LCIA methods. The application to the materials in the ecoinvent database showed that fossil resources and land use are of particular importance with regard to the total CEENE score, although the other resource categories may also be significant.
Multistate metadynamics for automatic exploration of conical intersections
NASA Astrophysics Data System (ADS)
Lindner, Joachim O.; Röhr, Merle I. S.; Mitrić, Roland
2018-05-01
We introduce multistate metadynamics for automatic exploration of conical intersection seams between adiabatic Born-Oppenheimer potential energy surfaces in molecular systems. By choosing the energy gap between the electronic states as a collective variable the metadynamics drives the system from an arbitrary ground-state configuration toward the intersection seam. Upon reaching the seam, the multistate electronic Hamiltonian is extended by introducing biasing potentials into the off-diagonal elements, and the molecular dynamics is continued on a modified potential energy surface obtained by diagonalization of the latter. The off-diagonal bias serves to locally open the energy gap and push the system to the next intersection point. In this way, the conical intersection energy landscape can be explored, identifying minimum energy crossing points and the barriers separating them. We illustrate the method on the example of furan, a prototype organic molecule exhibiting rich photophysics. The multistate metadynamics reveals plateaus on the conical intersection energy landscape from which the minimum energy crossing points with characteristic geometries can be extracted. The method can be combined with the broad spectrum of electronic structure methods and represents a generally applicable tool for the exploration of photophysics and photochemistry in complex molecules and materials.
Green synthesis, spectroscopic investigation and photocatalytic activity of lead nanoparticles.
Elango, Ganesh; Roopan, Selvaraj Mohana
2015-03-15
Most of researcher focused their research towards synthesize of nanoparticles by the method of applied chemical method which was one of the costliest method. We have focused cheapest and simplest method for the synthesizing of lead nanoparticles (Pb-NPs) using cocos nucifera L extract. The methanolic extract of cocos nucifera L was efficiently used as a reducing agent for synthesizing Pb-NPs. On treatment of lead acetate with cocos nucifera coir extracts, stable Pb-NPs were formed. The synthesized Pb-NPs were further confirmed by UV-visible spectroscopy, X-ray diffraction (XRD), Transmission electron microscope (TEM) and Energy Dispersive (EDAX) analysis. The secondary metabolites present in methanolic extract which can mainly act as a reducing and capping agents for the formation of Pb-NPs were identified by GC-MS. Anti-microbial activity for Pb-NPs against four pathogenic strain's such as Staphylococcus aureus, Escheria coli, Staphylococcus epidermis and Bacillus subtilis. Result states that Pb-NPs size was 47 nm and also shows good activity against S. aureus. Further we report on photocatalytic absorption of malachite green dye processed in short UV wavelength at 254 nm. UV spectral analysis showed peak absorbance at 613 nm with special reference to the excitation of surfaces plasmon vibration by Pb-NPs. Copyright © 2014 Elsevier B.V. All rights reserved.
Green synthesis, spectroscopic investigation and photocatalytic activity of lead nanoparticles
NASA Astrophysics Data System (ADS)
Elango, Ganesh; Roopan, Selvaraj Mohana
2015-03-01
Most of researcher focused their research towards synthesize of nanoparticles by the method of applied chemical method which was one of the costliest method. We have focused cheapest and simplest method for the synthesizing of lead nanoparticles (Pb-NPs) using cocos nucifera L extract. The methanolic extract of cocos nucifera L was efficiently used as a reducing agent for synthesizing Pb-NPs. On treatment of lead acetate with cocos nucifera coir extracts, stable Pb-NPs were formed. The synthesized Pb-NPs were further confirmed by UV-visible spectroscopy, X-ray diffraction (XRD), Transmission electron microscope (TEM) and Energy Dispersive (EDAX) analysis. The secondary metabolites present in methanolic extract which can mainly act as a reducing and capping agents for the formation of Pb-NPs were identified by GC-MS. Anti-microbial activity for Pb-NPs against four pathogenic strain's such as Staphylococcus aureus, Escheria coli, Staphylococcus epidermis and Bacillus subtilis. Result states that Pb-NPs size was 47 nm and also shows good activity against S. aureus. Further we report on photocatalytic absorption of malachite green dye processed in short UV wavelength at 254 nm. UV spectral analysis showed peak absorbance at 613 nm with special reference to the excitation of surfaces plasmon vibration by Pb-NPs.
NASA Astrophysics Data System (ADS)
Liu, Jian; Ren, Zhongzhou; Xu, Chang
2018-07-01
Combining the modified Skyrme-like model and the local density approximation model, the slope parameter L of symmetry energy is extracted from the properties of finite nuclei with an improved iterative method. The calculations of the iterative method are performed within the framework of the spherical symmetry. By choosing 200 neutron rich nuclei on 25 isotopic chains as candidates, the slope parameter is constrained to be 50 MeV < L < 62 MeV. The validity of this method is examined by the properties of finite nuclei. Results show that reasonable descriptions on the properties of finite nuclei and nuclear matter can be obtained together.
Tackling saponin diversity in marine animals by mass spectrometry: data acquisition and integration.
Decroo, Corentin; Colson, Emmanuel; Demeyer, Marie; Lemaur, Vincent; Caulier, Guillaume; Eeckhaut, Igor; Cornil, Jérôme; Flammang, Patrick; Gerbaux, Pascal
2017-05-01
Saponin analysis by mass spectrometry methods is nowadays progressively supplementing other analytical methods such as nuclear magnetic resonance (NMR). Indeed, saponin extracts from plant or marine animals are often constituted by a complex mixture of (slightly) different saponin molecules that requires extensive purification and separation steps to meet the requirement for NMR spectroscopy measurements. Based on its intrinsic features, mass spectrometry represents an inescapable tool to access the structures of saponins within extracts by using LC-MS, MALDI-MS, and tandem mass spectrometry experiments. The combination of different MS methods nowadays allows for a nice description of saponin structures, without extensive purification. However, the structural characterization process is based on low kinetic energy CID which cannot afford a total structure elucidation as far as stereochemistry is concerned. Moreover, the structural difference between saponins in a same extract is often so small that coelution upon LC-MS analysis is unavoidable, rendering the isomeric distinction and characterization by CID challenging or impossible. In the present paper, we introduce ion mobility in combination with liquid chromatography to better tackle the structural complexity of saponin congeners. When analyzing saponin extracts with MS-based methods, handling the data remains problematic for the comprehensive report of the results, but also for their efficient comparison. We here introduce an original schematic representation using sector diagrams that are constructed from mass spectrometry data. We strongly believe that the proposed data integration could be useful for data interpretation since it allows for a direct and fast comparison, both in terms of composition and relative proportion of the saponin contents in different extracts. Graphical Abstract A combination of state-of-the-art mass spectrometry methods, including ion mobility spectroscopy, is developed to afford a complete description of the saponin molecules in natural extracts.
NASA Astrophysics Data System (ADS)
Nazeruddin, G. M.; Prasad, N. R.; Prasad, S. R.; Garadkar, K. M.; Nayak, Arpan Kumar
2014-07-01
It is well known that on treating the metallic salt solution with some plant extracts, a rapid reduction occurs leading to the formation of highly stable metal nanoparticles. Extracellular synthesis of metal nanoparticles using extracts of plants like Azadirachta indica (Neem), and Zingiber officinale (Ginger) has been reported to be successfully carried out. In this study we have developed a novel method to synthesize silver nanoparticles by mixing silver salt solution with leaf extract of Adhathoda vasica (Adulsa) without using any surfactant or external energy. By this method physiologically stable, bio-compatible Ag nanoparticles were formed which could be used for a variety of applications such as targeted drug delivery which ensures enhanced therapeutic efficacy and minimal side effects. With this method rapid synthesis of nanoparticles was observed to occur; i.e. reaction time was 1-2 h as compared to 2-4 days required by microorganisms. These nanoparticles were analyzed by various characterization techniques to reveal their morphology, chemical composition, and antimicrobial activity. TEM image of these NPs indicated the formation of spherical, non-uniform, poly-dispersed nanoparticles. A detailed study of anti-microbial activity of nanoparticles was carried out.
NASA Astrophysics Data System (ADS)
Liu, Chang; Wu, Xing; Mao, Jianlin; Liu, Xiaoqin
2017-07-01
In the signal processing domain, there has been growing interest in using acoustic emission (AE) signals for the fault diagnosis and condition assessment instead of vibration signals, which has been advocated as an effective technique for identifying fracture, crack or damage. The AE signal has high frequencies up to several MHz which can avoid some signals interference, such as the parts of bearing (i.e. rolling elements, ring and so on) and other rotating parts of machine. However, acoustic emission signal necessitates advanced signal sampling capabilities and requests ability to deal with large amounts of sampling data. In this paper, compressive sensing (CS) is introduced as a processing framework, and then a compressive features extraction method is proposed. We use it for extracting the compressive features from compressively-sensed data directly, and also prove the energy preservation properties. First, we study the AE signals under the CS framework. The sparsity of AE signal of the rolling bearing is checked. The observation and reconstruction of signal is also studied. Second, we present a method of extraction AE compressive feature (AECF) from compressively-sensed data directly. We demonstrate the energy preservation properties and the processing of the extracted AECF feature. We assess the running state of the bearing using the AECF trend. The AECF trend of the running state of rolling bearings is consistent with the trend of traditional features. Thus, the method is an effective way to evaluate the running trend of rolling bearings. The results of the experiments have verified that the signal processing and the condition assessment based on AECF is simpler, the amount of data required is smaller, and the amount of computation is greatly reduced.
Fighting detection using interaction energy force
NASA Astrophysics Data System (ADS)
Wateosot, Chonthisa; Suvonvorn, Nikom
2017-02-01
Fighting detection is an important issue in security aimed to prevent criminal or undesirable events in public places. Many researches on computer vision techniques have studied to detect the specific event in crowded scenes. In this paper we focus on fighting detection using social-based Interaction Energy Force (IEF). The method uses low level features without object extraction and tracking. The interaction force is modeled using the magnitude and direction of optical flows. A fighting factor is developed under this model to detect fighting events using thresholding method. An energy map of interaction force is also presented to identify the corresponding events. The evaluation is performed using NUSHGA and BEHAVE datasets. The results show the efficiency with high accuracy regardless of various conditions.
Secondary iris recognition method based on local energy-orientation feature
NASA Astrophysics Data System (ADS)
Huo, Guang; Liu, Yuanning; Zhu, Xiaodong; Dong, Hongxing
2015-01-01
This paper proposes a secondary iris recognition based on local features. The application of the energy-orientation feature (EOF) by two-dimensional Gabor filter to the extraction of the iris goes before the first recognition by the threshold of similarity, which sets the whole iris database into two categories-a correctly recognized class and a class to be recognized. Therefore, the former are accepted and the latter are transformed by histogram to achieve an energy-orientation histogram feature (EOHF), which is followed by a second recognition with the chi-square distance. The experiment has proved that the proposed method, because of its higher correct recognition rate, could be designated as the most efficient and effective among its companion studies in iris recognition algorithms.
Method and apparatus for extracting water from air
Spletzer, Barry L.; Callow, Diane Schafer; Marron, Lisa C.; Salton, Jonathan R.
2002-01-01
The present invention provides a method and apparatus for extracting liquid water from moist air using minimal energy input. The method comprises compressing moist air under conditions that foster the condensation of liquid water. The air can be decompressed under conditions that do not foster the vaporization of the condensate. The decompressed, dried air can be exchanged for a fresh charge of moist air and the process repeated. The liquid condensate can be removed for use. The apparatus can comprise a compression chamber having a variable internal volume. An intake port allows moist air into the compression chamber. An exhaust port allows dried air out of the compression chamber. A condensation device fosters condensation at the desired conditions. A condensate removal port allows liquid water to be removed.
Batch and Continuous Ultrasound Assisted Extraction of Boldo Leaves (Peumus boldus Mol.).
Petigny, Loïc; Périno-Issartier, Sandrine; Wajsman, Joël; Chemat, Farid
2013-03-12
Vegetal extracts are widely used as primary ingredients for various products from creams to perfumes in the pharmaceutical, nutraceutic and cosmetic industries. Having concentrated and active extract is essential, as the process must extract as much soluble material as possible in a minimum time, using the least possible volume of solvent. The boldo leaves extract is of great interest for the industry as it holds a great anti-oxidant activity due to high levels of flavonoids and alkaloids such as boldine. Ultrasound Assisted Extraction (UAE) has been used to improve the efficiency of the plant extraction, reducing extraction time, increasing the concentration of the extract with the same amount of solvent and plant material. After a preliminary study, a response surface method has been used to optimize the extraction of soluble material from the plant. The results provided by the statistical analysis revealed that the optimized conditions were: sonication power 23 W/cm2 for 40 min and a temperature of 36 °C. The optimized parameters of the UAE provide a better extraction compared to a conventional maceration in terms of process time (30 min instead of 120 min), higher yield, more energy saving, cleanliness, safety and product quality.
Batch and Continuous Ultrasound Assisted Extraction of Boldo Leaves (Peumus boldus Mol.)
Petigny, Loïc; Périno-Issartier, Sandrine; Wajsman, Joël; Chemat, Farid
2013-01-01
Vegetal extracts are widely used as primary ingredients for various products from creams to perfumes in the pharmaceutical, nutraceutic and cosmetic industries. Having concentrated and active extract is essential, as the process must extract as much soluble material as possible in a minimum time, using the least possible volume of solvent. The boldo leaves extract is of great interest for the industry as it holds a great anti-oxidant activity due to high levels of flavonoids and alkaloids such as boldine. Ultrasound Assisted Extraction (UAE) has been used to improve the efficiency of the plant extraction, reducing extraction time, increasing the concentration of the extract with the same amount of solvent and plant material. After a preliminary study, a response surface method has been used to optimize the extraction of soluble material from the plant. The results provided by the statistical analysis revealed that the optimized conditions were: sonication power 23 W/cm2 for 40 min and a temperature of 36 °C. The optimized parameters of the UAE provide a better extraction compared to a conventional maceration in terms of process time (30 min instead of 120 min), higher yield, more energy saving, cleanliness, safety and product quality. PMID:23481637
NASA Astrophysics Data System (ADS)
Su, Zuqiang; Xiao, Hong; Zhang, Yi; Tang, Baoping; Jiang, Yonghua
2017-04-01
Extraction of sensitive features is a challenging but key task in data-driven machinery running state identification. Aimed at solving this problem, a method for machinery running state identification that applies discriminant semi-supervised local tangent space alignment (DSS-LTSA) for feature fusion and extraction is proposed. Firstly, in order to extract more distinct features, the vibration signals are decomposed by wavelet packet decomposition WPD, and a mixed-domain feature set consisted of statistical features, autoregressive (AR) model coefficients, instantaneous amplitude Shannon entropy and WPD energy spectrum is extracted to comprehensively characterize the properties of machinery running state(s). Then, the mixed-dimension feature set is inputted into DSS-LTSA for feature fusion and extraction to eliminate redundant information and interference noise. The proposed DSS-LTSA can extract intrinsic structure information of both labeled and unlabeled state samples, and as a result the over-fitting problem of supervised manifold learning and blindness problem of unsupervised manifold learning are overcome. Simultaneously, class discrimination information is integrated within the dimension reduction process in a semi-supervised manner to improve sensitivity of the extracted fusion features. Lastly, the extracted fusion features are inputted into a pattern recognition algorithm to achieve the running state identification. The effectiveness of the proposed method is verified by a running state identification case in a gearbox, and the results confirm the improved accuracy of the running state identification.
A new method to measure electron density and effective atomic number using dual-energy CT images
NASA Astrophysics Data System (ADS)
Ramos Garcia, Luis Isaac; Pérez Azorin, José Fernando; Almansa, Julio F.
2016-01-01
The purpose of this work is to present a new method to extract the electron density ({ρ\\text{e}} ) and the effective atomic number (Z eff) from dual-energy CT images, based on a Karhunen-Loeve expansion (KLE) of the atomic cross section per electron. This method was used to calibrate a Siemens Definition CT using the CIRS phantom. The predicted electron density and effective atomic number using 80 kVp and 140 kVp were compared with a calibration phantom and an independent set of samples. The mean absolute deviations between the theoretical and calculated values for all the samples were 1.7 % ± 0.1 % for {ρ\\text{e}} and 4.1 % ± 0.3 % for Z eff. Finally, these results were compared with other stoichiometric method. The application of the KLE to represent the atomic cross section per electron is a promising method for calculating {ρ\\text{e}} and Z eff using dual-energy CT images.
Cho, Hae-Mi; Kang, Young-Ho; Yoo, Hanju; Yoon, Seung-Yong; Kang, Sang-Wook; Chang, Eun-Ju; Song, Youngsup
2014-05-16
Regulation of balance between lipid accumulation and energy consumption is a critical step for the maintenance of energy homeostasis. Here, we show that Panax red ginseng extract treatments increased energy expenditures and prevented mice from diet induced obesity. Panax red ginseng extracts strongly activated Hormone Specific Lipase (HSL) via Protein Kinase A (PKA). Since activation of HSL induces lipolysis in WAT and fatty acid oxidation in brown adipose tissue (BAT), these results suggest that Panax red ginseng extracts reduce HFD induced obesity by regulating lipid mobilization. Copyright © 2014 Elsevier Inc. All rights reserved.
Surface diffusion in homoepitaxial SrTiO3 thin films
NASA Astrophysics Data System (ADS)
Woo, Chang-Su; Chu, Kanghyun; Song, Jong-Hyun; Yang, Chan-Ho; Charm Lab Team; Nano Spintronics Lab Collaboration
The development of growth techniques such as molecular beam epitaxy (MBE) and pulsed laser deposition (PLD) has facilitated growths of complex oxide thin films at the atomic level .... Systematic studies on surface diffusion process of adatoms using theoretical and experimental methods allow us to understand growth mechanism enabling atomically flat thin film surface. In this presentation, we introduce the synthesis of homoepitaxial SrTiO3 thin films using a PLD equipped with reflection of high energy electron diffraction (RHEED). We determine the surface diffusion time as a function of growth temperature and extract the activation energy of diffusion on the surface by in-situ monitoring the RHEED intensity recovery during the film deposition. From the extracted experimental results, we discuss the microscopic mechanism of the diffusion process
Mandal, Vivekananda; Dewanjee, Saikat; Mandal, Subhash C
2009-01-01
To develop a fast and ecofriendly microwave assisted extraction (MAE) technique for the effective and exhaustive extraction of gymnemagenin as an indicative biomarker for the quality control of Gymnema sylvestre. Several extraction parameters such as microwave power, extraction time, solvent composition, pre-leaching time, loading ratio and extraction cycle were studied for the determination of the optimum extraction condition. Scanning electron micrographs were obtained to elucidate the mechanism of extraction. The final optimum extraction conditions as obtained from the study were: 40% microwave power, 6 min irradiation time, 85% v/v methanol as the extraction solvent, 15 min pre-leaching time and 25 : 1 (mL/g) as the solvent-to-material loading ratio. The proposed extraction technique produced a maximum yield of 4.3% w/w gymnemagenin in 6 min which was 1.3, 2.5 and 1.95 times more efficient than 6 h of heat reflux, 24 h of maceration and stirring extraction, respectively. A synergistic heat and mass transfer theory was also proposed to support the extraction mechanism. Comparison with conventional extraction methods revealed that MAE could save considerable amounts of time and energy, whilst the reduction of volume of organic solvent consumed provides an ecofriendly feature.
Multi-focus image fusion using a guided-filter-based difference image.
Yan, Xiang; Qin, Hanlin; Li, Jia; Zhou, Huixin; Yang, Tingwu
2016-03-20
The aim of multi-focus image fusion technology is to integrate different partially focused images into one all-focused image. To realize this goal, a new multi-focus image fusion method based on a guided filter is proposed and an efficient salient feature extraction method is presented in this paper. Furthermore, feature extraction is primarily the main objective of the present work. Based on salient feature extraction, the guided filter is first used to acquire the smoothing image containing the most sharpness regions. To obtain the initial fusion map, we compose a mixed focus measure by combining the variance of image intensities and the energy of the image gradient together. Then, the initial fusion map is further processed by a morphological filter to obtain a good reprocessed fusion map. Lastly, the final fusion map is determined via the reprocessed fusion map and is optimized by a guided filter. Experimental results demonstrate that the proposed method does markedly improve the fusion performance compared to previous fusion methods and can be competitive with or even outperform state-of-the-art fusion methods in terms of both subjective visual effects and objective quality metrics.
Saito-Shida, Shizuka; Sakai, Takatoshi; Nemoto, Satoru; Akiyama, Hiroshi
2017-07-01
A simple and reliable multiresidue method for quantitative determination of veterinary drugs in bovine muscle and milk using liquid chromatography quadrupole time-of-flight mass spectrometry (LC-QTOF-MS) was developed. Critical MS parameters such as capillary voltage, cone voltage, collision energy, desolvation gas temperature and extraction mass window were carefully optimised to obtain the best possible sensitivity. Analytical samples were prepared using extraction with acetonitrile and hexane in the presence of anhydrous sodium sulphate and acetic acid, followed by ODS cartridge clean-up. The developed method was validated for 82 veterinary drugs in bovine muscle and milk at spike levels of 0.01 and 0.1 mg kg - 1 . With the exception of cefoperazone and phenoxymethylpenicillin, all these compounds exhibited sufficient signal intensity at 0.01 μg ml -1 (equivalent to 0.01 mg kg - 1 ), indicating the high sensitivity of the developed method. For most targets, the determined accuracies were within 70-120%, with repeatability and reproducibility being below 20% at both levels. Except for sulfathiazole in bovine muscle, no interfering peaks at target compound retention times were detected in the blank extract, indicating that the developed method is highly selective. The absence of sulfathiazole in bovine muscle was confirmed by simultaneous acquisition at low and high collision energies to afford exact masses of molecular adduct and fragment ions. Satisfactory linearity was observed for all compounds, with matrix effects being negligible for most targets in bovine muscle and milk at both spike levels. Overall, the results suggest that the developed LC-QTOF-MS method is suitable for routine regulatory-purpose analysis of veterinary drugs in bovine muscle and milk.
Classification of EEG Signals Based on Pattern Recognition Approach.
Amin, Hafeez Ullah; Mumtaz, Wajid; Subhani, Ahmad Rauf; Saad, Mohamad Naufal Mohamad; Malik, Aamir Saeed
2017-01-01
Feature extraction is an important step in the process of electroencephalogram (EEG) signal classification. The authors propose a "pattern recognition" approach that discriminates EEG signals recorded during different cognitive conditions. Wavelet based feature extraction such as, multi-resolution decompositions into detailed and approximate coefficients as well as relative wavelet energy were computed. Extracted relative wavelet energy features were normalized to zero mean and unit variance and then optimized using Fisher's discriminant ratio (FDR) and principal component analysis (PCA). A high density EEG dataset validated the proposed method (128-channels) by identifying two classifications: (1) EEG signals recorded during complex cognitive tasks using Raven's Advance Progressive Metric (RAPM) test; (2) EEG signals recorded during a baseline task (eyes open). Classifiers such as, K-nearest neighbors (KNN), Support Vector Machine (SVM), Multi-layer Perceptron (MLP), and Naïve Bayes (NB) were then employed. Outcomes yielded 99.11% accuracy via SVM classifier for coefficient approximations (A5) of low frequencies ranging from 0 to 3.90 Hz. Accuracy rates for detailed coefficients were 98.57 and 98.39% for SVM and KNN, respectively; and for detailed coefficients (D5) deriving from the sub-band range (3.90-7.81 Hz). Accuracy rates for MLP and NB classifiers were comparable at 97.11-89.63% and 91.60-81.07% for A5 and D5 coefficients, respectively. In addition, the proposed approach was also applied on public dataset for classification of two cognitive tasks and achieved comparable classification results, i.e., 93.33% accuracy with KNN. The proposed scheme yielded significantly higher classification performances using machine learning classifiers compared to extant quantitative feature extraction. These results suggest the proposed feature extraction method reliably classifies EEG signals recorded during cognitive tasks with a higher degree of accuracy.
Classification of EEG Signals Based on Pattern Recognition Approach
Amin, Hafeez Ullah; Mumtaz, Wajid; Subhani, Ahmad Rauf; Saad, Mohamad Naufal Mohamad; Malik, Aamir Saeed
2017-01-01
Feature extraction is an important step in the process of electroencephalogram (EEG) signal classification. The authors propose a “pattern recognition” approach that discriminates EEG signals recorded during different cognitive conditions. Wavelet based feature extraction such as, multi-resolution decompositions into detailed and approximate coefficients as well as relative wavelet energy were computed. Extracted relative wavelet energy features were normalized to zero mean and unit variance and then optimized using Fisher's discriminant ratio (FDR) and principal component analysis (PCA). A high density EEG dataset validated the proposed method (128-channels) by identifying two classifications: (1) EEG signals recorded during complex cognitive tasks using Raven's Advance Progressive Metric (RAPM) test; (2) EEG signals recorded during a baseline task (eyes open). Classifiers such as, K-nearest neighbors (KNN), Support Vector Machine (SVM), Multi-layer Perceptron (MLP), and Naïve Bayes (NB) were then employed. Outcomes yielded 99.11% accuracy via SVM classifier for coefficient approximations (A5) of low frequencies ranging from 0 to 3.90 Hz. Accuracy rates for detailed coefficients were 98.57 and 98.39% for SVM and KNN, respectively; and for detailed coefficients (D5) deriving from the sub-band range (3.90–7.81 Hz). Accuracy rates for MLP and NB classifiers were comparable at 97.11–89.63% and 91.60–81.07% for A5 and D5 coefficients, respectively. In addition, the proposed approach was also applied on public dataset for classification of two cognitive tasks and achieved comparable classification results, i.e., 93.33% accuracy with KNN. The proposed scheme yielded significantly higher classification performances using machine learning classifiers compared to extant quantitative feature extraction. These results suggest the proposed feature extraction method reliably classifies EEG signals recorded during cognitive tasks with a higher degree of accuracy. PMID:29209190
Digital representation of oil and natural gas well pad scars in southwest Wyoming
Garman, Steven L.; McBeth, Jamie L.
2014-01-01
The recent proliferation of oil and natural gas energy development in southwest Wyoming has stimulated the need to understand wildlife responses to this development. Central to many wildlife assessments is the use of geospatial methods that rely on digital representation of energy infrastructure. Surface disturbance of the well pad scars associated with oil and natural gas extraction has been an important but unavailable infrastructure layer. To provide a digital baseline of this surface disturbance, we extracted visible oil and gas well pad scars from 1-meter National Agriculture Imagery Program imagery (NAIP) acquired in 2009 for a 7.7 million-hectare region of southwest Wyoming. Scars include the pad area where wellheads, pumps, and storage facilities reside, and the surrounding area that was scraped and denuded of vegetation during the establishment of the pad. Scars containing tanks, compressors, and the storage of oil and gas related equipment, and produced-water ponds were also collected on occasion. Our extraction method was a two-step process starting with automated extraction followed by manual inspection and clean up. We used available well-point information to guide manual clean up and to derive estimates of year of origin and duration of activity on a pad scar. We also derived estimates of the proportion of non-vegetated area on a scar using a Normalized Difference Vegetation Index derived using 1-meter NAIP imagery. We extracted 16,973 pad scars of which 15,318 were oil and gas well pads. Digital representation of pad scars along with time-stamps of activity and estimates of non-vegetated area provides important baseline (circa 2009) data for assessments of wildlife responses, land-use trends, and disturbance-mediated pattern assessments.
NASA Astrophysics Data System (ADS)
Zhu, Zhenzhou; Guan, Qingyan; Guo, Ying; He, Jingren; Liu, Gang; Li, Shuyi; Barba, Francisco J.; Jaffrin, Michel Y.
2016-01-01
Response surface methodology was used to optimize experimental conditions for ultrasound-assisted extraction of valuable components (anthocyanins and phenolics) from purple sweet potatoes using water as a solvent. The Box-Behnken design was used for optimizing extraction responses of anthocyanin extraction yield, phenolic extraction yield, and specific energy consumption. Conditions to obtain maximal anthocyanin extraction yield, maximal phenolic extraction yield, and minimal specific energy consumption were different; an overall desirability function was used to search for overall optimal conditions: extraction temperature of 68ºC, ultrasonic treatment time of 52 min, and a liquid/solid ratio of 20. The optimized anthocyanin extraction yield, phenolic extraction yield, and specific energy consumption were 4.91 mg 100 g-1 fresh weight, 3.24 mg g-1 fresh weight, and 2.07 kWh g-1, respectively, with a desirability of 0.99. This study indicates that ultrasound-assisted extraction should contribute to a green process for valorization of purple sweet potatoes.
Yan, Han; Sun, Yuanyuan; Zhang, Qili; Yang, Mingjing; Wang, Xiaorui; Wang, Yang; Yu, Zhiguo; Zhao, Yunli
2015-07-01
A simple and rapid ultra high performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method was developed for the simultaneous determination of Atractylenolide I, II and III in rat plasma. Plasma samples were processed by liquid-liquid extraction with ethyl acetate, using schisandrin as internal standard (IS). Chromatographic separation was accomplished on a Thermo Hypersil GOLD C18 column (2.1mm×50mm, 1.9μm) with mobile phase consisting of acetonitrile and 0.1% formic acid-water (50:50, v/v). The detection was carried out by ESI-MS (positive ionization mode) and low-energy collision dissociation tandem mass spectrometric analyses using the multiple-reaction monitoring (MRM) scan mode. The quantification was performed using the transitions of the protonated molecule→product ion at m/z 231.0→185.1 for Atractylenolide I, at m/z 233.1→187.1 for Atractylenolide II and at m/z 249.1→231.1 for Atractylenolide III, respectively. Method validation revealed excellent linearity over investigated range together with satisfactory intra- and inter-day precision, accuracy, matrix effects and extraction recoveries. This method was successfully applied to the comparative pharmacokinetic study of Atractylenolide I, II and III in rat plasma after intragastric administration of Baizhufuling extract and Atractylodis extract. Copyright © 2015 Elsevier B.V. All rights reserved.
Corbin, Cyrielle; Fidel, Thibaud; Leclerc, Emilie A; Barakzoy, Esmatullah; Sagot, Nadine; Falguiéres, Annie; Renouard, Sullivan; Blondeau, Jean-Philippe; Ferroud, Clotilde; Doussot, Joël; Lainé, Eric; Hano, Christophe
2015-09-01
Flaxseed accumulates in its seedcoat a macromolecular complex composed of lignan (secoisolariciresinol diglucoside, SDG), flavonol (herbacetin diglucoside, HDG) and hydroxycinnamic acids (p-couramic, caffeic and ferulic acid glucosides). Their antioxidant and/or cancer chemopreventive properties support their interest in human health and therefore, the demand for their extraction. In the present study, ultrasound-assisted extraction (UAE) of flaxseed phenolic compounds was investigated. Scanning Electron Microscopy imaging and histochemical analysis revealed the deep alteration of the seedcoat ultrastructure and the release of the mucilage following ultrasound treatment. Therefore, this method was found to be very efficient for the reduction of mucilage entrapment of flaxseed phenolics. The optimal conditions for UAE phenolic compounds extraction from flaxseeds were found to be: water as solvent supplemented with 0.2N of sodium hydroxide for alkaline hydrolysis of the SDG-HMG complex, an extraction time of 60 min at a temperature of 25°C and an ultrasound frequency of 30 kHz. Under these optimized and validated conditions, highest yields of SDG, HDG and hydroxycinnamic acid glucosides were detected in comparison to other published methods. Therefore, the procedure presented herein is a valuable method for efficient extraction and quantification of the main flaxseed phenolics. Moreover, this UAE is of particular interest within the context of green chemistry in terms of reducing energy consumption and valuation of flaxseed cakes as by-products resulting from the production of flax oil. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Nurlela; Wibowo, R.; Gunlazuardi, J.
2017-04-01
Interaction between TiO2 and dyes sensitizer have been studied. The chlorophyll presents in the crude leave extract (CLE-dye) from cassava (Manihot utilissima) was immobilized on to the photo-anode, consists of TiO2 supported by fluor doped Tin oxide (SnO2-F) Glass. The TiO2 was prepared by Rapid Breakdown Anodization (RBA) method then immobilized on to glass coated by SnO2-F using doctor blade technique, to give CLE-dye/TiO2/SnO2-F/Glass photo-anode. The prepared photo-anode was characterized by UV-Vis-DRS, FTIR, XRD, SEM, electrochemical and spectro-electrochemical systems. In this study, the HOMO (highest occupied molecular orbital) and LUMO (lowest unoccupied molecular orbital) energy level of the CLE-dye were empirically determined by cyclic voltammetry method, while spectro-electro-chemistry method was used to determine the coefficient of degradation and formation of the dyes, and diffusion coefficient of the hole recombination as well. Good anchoring between TiO2 with dye extracts (CLE-dye) can be seen from value of dye LUMO energy level (-4.26 eV), which is approaching the conduction band of TiO2 (-4.3 eV). The coefficient of degradation and formation of the CLE-dye showed a quasi reversible and diffusion coefficient hole recombination values were small, indicated that it is quite suitable as a sensitizer in a dyes sensitized solar cell.
Determination of Energy Independent Neutron Densities using Dirac Phenomenology based on the RIA
NASA Astrophysics Data System (ADS)
Clark, B. C.; Kerr, L. J.; Hama, S.; Mercer, R. L.
2002-04-01
A new method for extracting neutron densities from intermediate energy elastic proton-nucleus scattering observables using a global Dirac phenomenological (DP) approach based on the Relativistic Impulse Approximation (RIA) is presented. (B. C. Clark, et al.) BAPS Vol 46, No. 7 pg.139, 2001. We have considered data sets for ^40Ca, ^48Ca and ^208Pb and energies from 500 MeV to 1040 MeV. The global fits are successful in reproducing the data and in predicting data sets not included in the analysis. Using this global DP approach we have obtained energy independent neutron densities. The vector point proton density distribution, ρ^p_v, is determined from the empirical charge density after unfolding the proton form factor. The other densities, ρ^n_v, ρ^p_s, ρ^n_s, are parameterized using the cosh form given in our paper on global DP optical potentials.(E. D. Cooper, et al.) Phys Rev. 47C, pg. 297, 1993 Neutron skin thicknesses extracted using the global analysis are compared to predictions from theoretical models.
Non-linear collisional Penrose process: How much energy can a black hole release?
NASA Astrophysics Data System (ADS)
Nakao, Ken-ichi; Okawa, Hirotada; Maeda, Kei-ichi
2018-01-01
Energy extraction from a rotating or charged black hole is one of the fascinating issues in general relativity. The collisional Penrose process is one such extraction mechanism and has been reconsidered intensively since Bañados, Silk, and West pointed out the physical importance of very high energy collisions around a maximally rotating black hole. In order to get results analytically, the test particle approximation has been adopted so far. Successive works based on this approximation scheme have not yet revealed the upper bound on the efficiency of the energy extraction because of the lack of backreaction. In the Reissner-Nordström spacetime, by fully taking into account the self-gravity of the shells, we find that there is an upper bound on the extracted energy that is consistent with the area law of a black hole. We also show one particular scenario in which almost the maximum energy extraction is achieved even without the Bañados-Silk-West collision.
Simple method for determining binding energies of fullerene and complex atomic negative ions
NASA Astrophysics Data System (ADS)
Felfli, Zineb; Msezane, Alfred
2017-04-01
A robust potential which embeds fully the vital core polarization interaction has been used in the Regge pole method to explore low-energy electron scattering from C60, Eu and Nb through the total cross sections (TCSs) calculations. From the characteristic dramatically sharp resonances in the TCSs manifesting negative ion formation in these systems, we extracted the binding energies for the C60, Euand Nbanions they are found to be in outstanding agreement with the measured electron affinities of C60, Eu and Nb. Common among these considered systems, including the standard atomic Au is the formation of their ground state negative ions at the second Ramsauer-Townsend (R-T) minima of their TCSs. Indeed, this is a signature of all the fullerenes and complex atoms considered thus far. Shape resonances, R-T minima and binding energies of the resultant anions are presented. This work was supported by U.S. DOE, Basic Energy Sciences, Office of Energy Research.
Polyelectrolyte-coated carbons used in the generation of blue energy from salinity differences.
Ahualli, S; Jiménez, M L; Fernández, M M; Iglesias, G; Brogioli, D; Delgado, A V
2014-12-14
In this work we present a method for the production of clean, renewable electrical energy from the exchange of solutions with different salinities. Activated carbon films are coated with negatively or positively charged polyelectrolytes using well-established adsorption methods. When two oppositely charged coated films are placed in contact with an ionic solution, the potential difference between them will be equal to the difference between their Donnan potentials, and hence, energy can be extracted by building an electrochemical cell with such electrodes. A model is elaborated on the operation of the cell, based on the electrokinetic theory of soft particles. All the features of the model are experimentally reproduced, although a small quantitative difference concerning the maximum open-circuit voltage is found, suggesting that the coating is the key point to improve the efficiency. In the experimental conditions used, we obtain a power of 12.1 mW m(-2). Overall, the method proves to be a fruitful and simple approach to salinity-gradient energy production.
Pradal, Delphine; Vauchel, Peggy; Decossin, Stéphane; Dhulster, Pascal; Dimitrov, Krasimir
2016-09-01
Ultrasound-assisted extraction (UAE) of antioxidant polyphenols from chicory grounds was studied in order to propose a suitable valorization of this food industry by-product. The main parameters influencing the extraction process were identified. A new mathematical model for multi-criteria optimization of UAE was proposed. This kinetic model permitted the following and the prediction of the yield of extracted polyphenols, the antioxidant activity of the obtained extracts and the energy consumption during the extraction process in wide ranges of temperature (20-60°C), ethanol content in the solvent (0-60% (vol.) in ethanol-water mixtures) and ultrasound power (0-100W). After experimental validation of the model, several simulations at different technological restrictions were performed to illustrate the potentiality of the model to find the optimal conditions for obtaining a given yield within minimal process duration or with minimal energy consumption. The advantage of ultrasound assistance was clearly demonstrated both for the reduction of extraction duration and for the reduction of energy consumption. Copyright © 2016 Elsevier B.V. All rights reserved.
Method and apparatus for extracting water from air using a desiccant
Spletzer, Barry L.; Callow, Diane Schafer
2003-01-01
The present invention provides a method and apparatus for extracting liquid water from moist air using minimal energy input. The method can be considered as four phases: (1) adsorbing water from air into a desiccant, (2) isolating the water-laden desiccant from the air source, (3) desorbing water as vapor from the desiccant into a chamber, and (4) isolating the desiccant from the chamber, and compressing the vapor in the chamber to form liquid condensate. The liquid condensate can be removed for use. Careful design of the dead volumes and pressure balances can minimize the energy required. The dried air can be exchanged for fresh moist air and the process repeated. An apparatus comprises a first chamber in fluid communication with a desiccant, and having ports to intake moist air and exhaust dried air. The apparatus also comprises a second chamber in fluid communication with the desiccant. The second chamber allows variable internal pressure, and has a port for removal of liquid condensate. Each chamber can be configured to be isolated or in communication with the desiccant. The first chamber can be configured to be isolated or in communication with a course of moist air. Various arrangements of valves, pistons, and chambers are described.
Computing Curvature Sensitivity of Biomolecules in Membranes by Simulated Buckling.
Elías-Wolff, Federico; Lindén, Martin; Lyubartsev, Alexander P; Brandt, Erik G
2018-03-13
Membrane curvature sensing, where the binding free energies of membrane-associated molecules depend on the local membrane curvature, is a key factor to modulate and maintain the shape and organization of cell membranes. However, the microscopic mechanisms are not well understood, partly due to absence of efficient simulation methods. Here, we describe a method to compute the curvature dependence of the binding free energy of a membrane-associated probe molecule that interacts with a buckled membrane, which has been created by lateral compression of a flat bilayer patch. This buckling approach samples a wide range of curvatures in a single simulation, and anisotropic effects can be extracted from the orientation statistics. We develop an efficient and robust algorithm to extract the motion of the probe along the buckled membrane surface, and evaluate its numerical properties by extensive sampling of three coarse-grained model systems: local lipid density in a curved environment for single-component bilayers, curvature preferences of individual lipids in two-component membranes, and curvature sensing by a homotrimeric transmembrane protein. The method can be used to complement experimental data from curvature partition assays and provides additional insight into mesoscopic theories and molecular mechanisms for curvature sensing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Zhaoqing; Wang, Taiping
A three-dimensional coastal ocean model with a tidal turbine module was used in this paper to study the effects of tidal energy extraction on temperature and salinity stratification and density driven two-layer estuarine circulation. Numerical experiments with various turbine array configurations were carried out to investigate the changes in tidally mean temperature, salinity and velocity profiles in an idealized stratified estuary that connects to coastal water through a narrow tidal channel. The model was driven by tides, river inflow and sea surface heat flux. To represent the realistic size of commercial tidal farms, model simulations were conducted based on amore » small percentage of the total number of turbines that would generate the maximum extractable energy in the system. Model results indicated that extraction of tidal energy will increase the vertical mixing and decrease the stratification in the estuary. Extraction of tidal energy has stronger impact on the tidally-averaged salinity, temperature and velocity in the surface layer than the bottom. Energy extraction also weakens the two-layer estuarine circulation, especially during neap tides when tidal mixing the weakest and energy extraction is the smallest. Model results also show that energy generation can be much more efficient with higher hub height with relatively small changes in stratification and two-layer estuarine circulation.« less
Simulation of radiation energy release in air showers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glaser, Christian; Erdmann, Martin; Hörandel, Jörg R.
2016-09-01
A simulation study of the energy released by extensive air showers in the form of MHz radiation is performed using the CoREAS simulation code. We develop an efficient method to extract this radiation energy from air-shower simulations. We determine the longitudinal profile of the radiation energy release and compare it to the longitudinal profile of the energy deposit by the electromagnetic component of the air shower. We find that the radiation energy corrected for the geometric dependence of the geomagnetic emission scales quadratically with the energy in the electromagnetic component of the air shower with a second-order dependence on themore » atmospheric density at the position of the maximum shower development X {sub max}. In a measurement where X {sub max} is not accessible, this second order dependence can be approximated using the zenith angle of the incoming direction of the air shower with only a minor loss in accuracy. Our method results in an intrinsic uncertainty of 4% in the determination of the energy in the electromagnetic air-shower component, which is well below current experimental uncertainties.« less
An efficient and scalable extraction and quantification method for algal derived biofuel.
Lohman, Egan J; Gardner, Robert D; Halverson, Luke; Macur, Richard E; Peyton, Brent M; Gerlach, Robin
2013-09-01
Microalgae are capable of synthesizing a multitude of compounds including biofuel precursors and other high value products such as omega-3-fatty acids. However, accurate analysis of the specific compounds produced by microalgae is important since slight variations in saturation and carbon chain length can affect the quality, and thus the value, of the end product. We present a method that allows for fast and reliable extraction of lipids and similar compounds from a range of algae, followed by their characterization using gas chromatographic analysis with a focus on biodiesel-relevant compounds. This method determines which range of biologically synthesized compounds is likely responsible for each fatty acid methyl ester (FAME) produced; information that is fundamental for identifying preferred microalgae candidates as a biodiesel source. Traditional methods of analyzing these precursor molecules are time intensive and prone to high degrees of variation between species and experimental conditions. Here we detail a new method which uses microwave energy as a reliable, single-step cell disruption technique to extract lipids from live cultures of microalgae. After extractable lipid characterization (including lipid type (free fatty acids, mono-, di- or tri-acylglycerides) and carbon chain length determination) by GC-FID, the same lipid extracts are transesterified into FAMEs and directly compared to total biodiesel potential by GC-MS. This approach provides insight into the fraction of total FAMEs derived from extractable lipids compared to FAMEs derived from the residual fraction (i.e. membrane bound phospholipids, sterols, etc.). This approach can also indicate which extractable lipid compound, based on chain length and relative abundance, is responsible for each FAME. This method was tested on three species of microalgae; the marine diatom Phaeodactylum tricornutum, the model Chlorophyte Chlamydomonas reinhardtii, and the freshwater green alga Chlorella vulgaris. The method is shown to be robust, highly reproducible, and fast, allowing for multiple samples to be analyzed throughout the time course of culturing, thus providing time-resolved information regarding lipid quantity and quality. Total time from harvesting to obtaining analytical results is less than 2h. © 2013.
First evidences for 19F(α, p)22Ne at astrophysical energies
NASA Astrophysics Data System (ADS)
D'Agata, G.; Spitaleri, C.; Pizzone, R. G.; Blagus, S.; Figuera, P.; Grassi, L.; Guardo, G. L.; Gulino, M.; Hayakawa, S.; Indelicato, I.; Kshetri, R.; La Cognata, M.; Lamia, L.; Lattuada, M.; Mijatović, T.; Milin, M.; Miljanic, D.; Prepolec, L.; Sergi, M. L.; Skukan, N.; Soic, N.; Tokic, V.; Tumino, A.; Uroic, M.
2016-04-01
19F experimental abundances is overestimated in respect to the theoretical one: it is therefore clear that further investigations are needed. We focused on the 19F(α, p) 22 Ne reaction, representing the main destruction channel in He-rich environments. The lowest energy at which this reaction has been studied with direct methods is E C.M. ≈ 0.91 MeV, while the Gamow region is between 0.39 ÷ 0.8 MeV, far below the Coulomb barrier (3.8 MeV). For this reason, an experiment at Rudjer Boskovic Institute (Zagreb) was performed, applying the Trojan Horse Method. Following this method we selected the quasi-free contribution coming from 6Li(19 F,p22 Ne)2 H at Ebeam=6 MeV at kinematically favourable angles, and the cross section at energies 0 < EC.M. < 1.4 MeV was extracted in arbitrary units, covering the astrophysical region of interest.
Thermodynamic properties of water solvating biomolecular surfaces
NASA Astrophysics Data System (ADS)
Heyden, Matthias
Changes in the potential energy and entropy of water molecules hydrating biomolecular interfaces play a significant role for biomolecular solubility and association. Free energy perturbation and thermodynamic integration methods allow calculations of free energy differences between two states from simulations. However, these methods are computationally demanding and do not provide insights into individual thermodynamic contributions, i.e. changes in the solvent energy or entropy. Here, we employ methods to spatially resolve distributions of hydration water thermodynamic properties in the vicinity of biomolecular surfaces. This allows direct insights into thermodynamic signatures of the hydration of hydrophobic and hydrophilic solvent accessible sites of proteins and small molecules and comparisons to ideal model surfaces. We correlate dynamic properties of hydration water molecules, i.e. translational and rotational mobility, to their thermodynamics. The latter can be used as a guide to extract thermodynamic information from experimental measurements of site-resolved water dynamics. Further, we study energy-entropy compensations of water at different hydration sites of biomolecular surfaces. This work is supported by the Cluster of Excellence RESOLV (EXC 1069) funded by the Deutsche Forschungsgemeinschaft.
Grating Oriented Line-Wise Filtration (GOLF) for Dual-Energy X-ray CT
NASA Astrophysics Data System (ADS)
Xi, Yan; Cong, Wenxiang; Harrison, Daniel; Wang, Ge
2017-12-01
In medical X-ray Computed Tomography (CT), the use of two distinct X-ray source spectra (energies) allows dose-reduction and material discrimination relative to that achieved with only one source spectrum. Existing dual-energy CT methods include source kVp-switching, double-layer detection, dual-source gantry, and two-pass scanning. Each method suffers either from strong spectral correlation or patient-motion artifacts. To simultaneously address these problems, we propose to improve CT data acquisition with the Grating Oriented Line-wise Filtration (GOLF) method, a novel X-ray filter that is placed between the source and patient. GOLF uses a combination of absorption and filtering gratings that are moved relative to each other and in synchronization with the X-ray tube kVp-switching process and/or the detector view-sampling process. Simulation results show that GOLF can improve the spectral performance of kVp-switching to match that of dual-source CT while avoiding patient motion artifacts and dual imaging chains. Although significant flux is absorbed by this pre-patient filter, the proposed GOLF method is a novel path for cost-effectively extracting dual-energy or multi-energy data and reducing radiation dose with or without kVp switching.
Grating Oriented Line-Wise Filtration (GOLF) for Dual-Energy X-ray CT
Xi, Yan; Cong, Wenxiang; Harrison, Daniel
2017-01-01
In medical X-ray Computed Tomography (CT), the use of two distinct X-ray source spectra (energies) allows dose-reduction and material discrimination relative to that achieved with only one source spectrum. Existing dual-energy CT methods include source kVp-switching, double-layer detection, dual-source gantry, and two-pass scanning. Each method suffers either from strong spectral correlation or patient-motion artifacts. To simultaneously address these problems, we propose to improve CT data acquisition with the Grating Oriented Line-wise Filtration (GOLF) method, a novel X-ray filter that is placed between the source and patient. GOLF uses a combination of absorption and filtering gratings that are moved relative to each other and in synchronization with the X-ray tube kVp-switching process and/or the detector view-sampling process. Simulation results show that GOLF can improve the spectral performance of kVp-switching to match that of dual-source CT while avoiding patient motion artifacts and dual imaging chains. Although significant flux is absorbed by this pre-patient filter, the proposed GOLF method is a novel path for cost-effectively extracting dual-energy or multi-energy data and reducing radiation dose with or without kVp switching. PMID:29333113
Accelerated weight histogram method for exploring free energy landscapes
NASA Astrophysics Data System (ADS)
Lindahl, V.; Lidmar, J.; Hess, B.
2014-07-01
Calculating free energies is an important and notoriously difficult task for molecular simulations. The rapid increase in computational power has made it possible to probe increasingly complex systems, yet extracting accurate free energies from these simulations remains a major challenge. Fully exploring the free energy landscape of, say, a biological macromolecule typically requires sampling large conformational changes and slow transitions. Often, the only feasible way to study such a system is to simulate it using an enhanced sampling method. The accelerated weight histogram (AWH) method is a new, efficient extended ensemble sampling technique which adaptively biases the simulation to promote exploration of the free energy landscape. The AWH method uses a probability weight histogram which allows for efficient free energy updates and results in an easy discretization procedure. A major advantage of the method is its general formulation, making it a powerful platform for developing further extensions and analyzing its relation to already existing methods. Here, we demonstrate its efficiency and general applicability by calculating the potential of mean force along a reaction coordinate for both a single dimension and multiple dimensions. We make use of a non-uniform, free energy dependent target distribution in reaction coordinate space so that computational efforts are not wasted on physically irrelevant regions. We present numerical results for molecular dynamics simulations of lithium acetate in solution and chignolin, a 10-residue long peptide that folds into a β-hairpin. We further present practical guidelines for setting up and running an AWH simulation.
Accelerated weight histogram method for exploring free energy landscapes.
Lindahl, V; Lidmar, J; Hess, B
2014-07-28
Calculating free energies is an important and notoriously difficult task for molecular simulations. The rapid increase in computational power has made it possible to probe increasingly complex systems, yet extracting accurate free energies from these simulations remains a major challenge. Fully exploring the free energy landscape of, say, a biological macromolecule typically requires sampling large conformational changes and slow transitions. Often, the only feasible way to study such a system is to simulate it using an enhanced sampling method. The accelerated weight histogram (AWH) method is a new, efficient extended ensemble sampling technique which adaptively biases the simulation to promote exploration of the free energy landscape. The AWH method uses a probability weight histogram which allows for efficient free energy updates and results in an easy discretization procedure. A major advantage of the method is its general formulation, making it a powerful platform for developing further extensions and analyzing its relation to already existing methods. Here, we demonstrate its efficiency and general applicability by calculating the potential of mean force along a reaction coordinate for both a single dimension and multiple dimensions. We make use of a non-uniform, free energy dependent target distribution in reaction coordinate space so that computational efforts are not wasted on physically irrelevant regions. We present numerical results for molecular dynamics simulations of lithium acetate in solution and chignolin, a 10-residue long peptide that folds into a β-hairpin. We further present practical guidelines for setting up and running an AWH simulation.
Extracting black-hole rotational energy: The generalized Penrose process
NASA Astrophysics Data System (ADS)
Lasota, J.-P.; Gourgoulhon, E.; Abramowicz, M.; Tchekhovskoy, A.; Narayan, R.
2014-01-01
In the case involving particles, the necessary and sufficient condition for the Penrose process to extract energy from a rotating black hole is absorption of particles with negative energies and angular momenta. No torque at the black-hole horizon occurs. In this article we consider the case of arbitrary fields or matter described by an unspecified, general energy-momentum tensor Tμν and show that the necessary and sufficient condition for extraction of a black hole's rotational energy is analogous to that in the mechanical Penrose process: absorption of negative energy and negative angular momentum. We also show that a necessary condition for the Penrose process to occur is for the Noether current (the conserved energy-momentum density vector) to be spacelike or past directed (timelike or null) on some part of the horizon. In the particle case, our general criterion for the occurrence of a Penrose process reproduces the standard result. In the case of relativistic jet-producing "magnetically arrested disks," we show that the negative energy and angular-momentum absorption condition is obeyed when the Blandford-Znajek mechanism is at work, and hence the high energy extraction efficiency up to ˜300% found in recent numerical simulations of such accretion flows results from tapping the black hole's rotational energy through the Penrose process. We show how black-hole rotational energy extraction works in this case by describing the Penrose process in terms of the Noether current.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sander, Kyle; Asano, Keiji G.; Bhandari, Deepak
Clostridium thermocellum and Thermoanaerobacterium saccharolyticum are prominent candidate biocatalysts that, together, can enable the direct biotic conversion of lignocellulosic biomass to ethanol. The imbalance and suboptimal turnover rates of redox cofactors are currently hindering engineering efforts to achieve higher bioproductivity in both organisms. Measuring relevant intracellular cofactor concentrations will help understand redox state of these cofactors and help identify a strategy to overcome these limitations; however, metabolomic determinations of these labile metabolites have historically proved challenging.Results: Through our validations, we verified the handling and storage stability of these metabolites, and verified extraction matrices and extraction solvent were not suppressing massmore » spectrometry signals. We recovered adenylate energy charge ratios (a main quality indicator) above 0.82 for all extractions. NADH/NAD+ values of 0.26 and 0.04 for an adhE-deficient strain of C. thermocellum and its parent, respectively, reflect the expected shift to a more reduced redox potential when a species lacks the ability to re-oxidize NADH by synthesizing ethanol. This method failed to yield reliable results with C. bescii and poor-growing strains of T. saccharolyticum. Lastly, our validated protocols demonstrate and validate the extraction and analysis of selected redox and energy-related metabolites from two candidate consolidated bioprocessing biocatalysts, C. thermocellum and T. saccharolyticum. This development and validation highlights the important, but often neglected, need to optimize and validate metabolomic protocols when adapting them to new cell or tissue types.« less
Sander, Kyle; Asano, Keiji G.; Bhandari, Deepak; ...
2017-11-30
Clostridium thermocellum and Thermoanaerobacterium saccharolyticum are prominent candidate biocatalysts that, together, can enable the direct biotic conversion of lignocellulosic biomass to ethanol. The imbalance and suboptimal turnover rates of redox cofactors are currently hindering engineering efforts to achieve higher bioproductivity in both organisms. Measuring relevant intracellular cofactor concentrations will help understand redox state of these cofactors and help identify a strategy to overcome these limitations; however, metabolomic determinations of these labile metabolites have historically proved challenging.Results: Through our validations, we verified the handling and storage stability of these metabolites, and verified extraction matrices and extraction solvent were not suppressing massmore » spectrometry signals. We recovered adenylate energy charge ratios (a main quality indicator) above 0.82 for all extractions. NADH/NAD+ values of 0.26 and 0.04 for an adhE-deficient strain of C. thermocellum and its parent, respectively, reflect the expected shift to a more reduced redox potential when a species lacks the ability to re-oxidize NADH by synthesizing ethanol. This method failed to yield reliable results with C. bescii and poor-growing strains of T. saccharolyticum. Lastly, our validated protocols demonstrate and validate the extraction and analysis of selected redox and energy-related metabolites from two candidate consolidated bioprocessing biocatalysts, C. thermocellum and T. saccharolyticum. This development and validation highlights the important, but often neglected, need to optimize and validate metabolomic protocols when adapting them to new cell or tissue types.« less
Total photoproduction cross section measurement at HERA energies
NASA Astrophysics Data System (ADS)
Ahmed, T.; Andreev, V.; Andrieu, B.; Arpagaus, M.; Babaev, A.; Bärwolff, H.; Bán, J.; Baranov, P.; Barrelet, E.; Bartel, W.; Bassler, U.; Beck, G. A.; Beck, H. P.; Behrend, H.-J.; Belousov, A.; Berger, Ch.; Bergstein, H.; Bernardi, G.; Bernet, R.; Berthon, U.; Bertrand-Coremans, G.; Besançon, M.; Biddulph, P.; Binder, E.; Bizot, J. C.; Blobel, V.; Borras, K.; Bosetti, P. C.; Boudry, V.; Bourdarios, C.; Brasse, F.; Braun, U.; Braunschweig, W.; Brisson, V.; Bruncko, D.; Bürger, J.; Büsser, F. W.; Buniatian, A.; Burke, S.; Buschhorn, G.; Campbell, A. J.; Carli, T.; Charles, F.; Clarke, D.; Clegg, A. B.; Colombo, M.; Coughlan, J. A.; Courau, A.; Coutures, Ch.; Cozzika, G.; Criegee, L.; Cvach, J.; Dainton, J. B.; Danilov, M.; Dann, A. W. E.; Dau, W. D.; David, M.; Deffur, E.; Delcourt, B.; del Buono, L.; Devel, M.; de Roeck, A.; Dingus, P.; Dollfus, C.; Dowell, J. D.; Dreis, H. B.; Drescher, A.; Duboc, J.; Düllmann, D.; Dünger, O.; Duhm, H.; Eberle, M.; Ebert, J.; Ebert, T. R.; Eckerlin, G.; Efremenko, V.; Egli, S.; Eichenberger, S.; Eichler, R.; Eisele, F.; Eisenhandler, E.; Ellis, N. N.; Ellison, R. J.; Elsen, E.; Erdmann, M.; Evrard, E.; Favart, L.; Fedotov, A.; Feeken, D.; Felst, R.; Feltesse, J.; Feng, Y.; Fensome, I. F.; Ferencei, J.; Ferrarotto, F.; Flauger, W.; Fleischer, M.; Flower, P. S.; Flügge, G.; Fomenko, A.; Fominykh, B.; Forbush, M.; Formánek, J.; Foster, J. M.; Franke, G.; Fretwurst, E.; Fuhrmann, P.; Gabathuler, E.; Gamerdinger, K.; Garvey, J.; Gayler, J.; Gellrich, A.; Gennis, M.; Gensch, U.; Genzel, H.; Gerhards, R.; Gillespie, D.; Godfrey, L.; Goerlach, U.; Goerlich, L.; Goldberg, M.; Goodall, A. M.; Gorelov, I.; Goritchev, P.; Grab, C.; Grässler, H.; Grässler, R.; Greenshaw, T.; Greif, H.; Grindhammer, G.; Gruber, C.; Haack, J.; Haidt, D.; Hajduk, L.; Hamon, O.; Handschuh, D.; Hanlon, E. M.; Hapke, M.; Harjes, J.; Hartz, P.; Haydar, R.; Haynes, W. J.; Heatherington, J.; Hedberg, V.; Hedgecock, R.; Heinzelmann, G.; Henderson, R. C. W.; Henschel, H.; Herma, R.; Herynek, I.; Hildesheim, W.; Hill, P.; Hilton, C. D.; Hladký, J.; Hoeger, K. C.; Huet, Ph.; Hufnagel, H.; Huot, N.; Ibbotson, M.; Jabiol, M. A.; Jacholkowska, A.; Jacobsson, C.; Jaffre, M.; Jönsson, L.; Johannsen, K.; Johnson, D. P.; Johnson, L.; Jung, H.; Kalmus, P. I. P.; Kasarian, S.; Kaschowitz, R.; Kasselmann, P.; Kathage, U.; Kaufmann, H. H.; Kenyon, I. R.; Kermiche, S.; Kiesling, C.; Klein, M.; Kleinwort, C.; Knies, G.; Köhler, T.; Kolanoski, H.; Kole, F.; Kolya, S. D.; Korbel, V.; Korn, M.; Kostka, P.; Kotelnikov, S. K.; Krasny, M. W.; Krehbiel, H.; Krücker, D.; Krüger, U.; Kubenka, J. P.; Küster, H.; Kuhlen, M.; Kurça, T.; Kurzhöfer, J.; Kuznik, B.; Lander, R.; Landon, M. P. J.; Langkau, R.; Lanius, P.; Laporte, J. F.; Lebedev, A.; Leuschner, A.; Leverenz, C.; Levin, D.; Levonian, S.; Ley, Ch.; Lindner, A.; Lindström, G.; Loch, P.; Lohmander, H.; Lopez, G. C.; Lüers, D.; Magnussen, N.; Malinovski, E.; Mani, S.; Marage, P.; Marks, J.; Marshall, R.; Martens, J.; Martin, R.; Martyn, H.-U.; Martyniak, J.; Masson, S.; Mavroidis, A.; Maxfield, S. J.; McMahon, S. J.; Mehta, A.; Meier, K.; Merz, T.; Meyer, C. A.; Meyer, H.; Meyer, J.; Mikocki, S.; Milone, V.; Monnier, E.; Moreau, F.; Moreels, J.; Morris, J. V.; Morton, J. M.; Müller, K.; Murín, P.; Murray, S. A.; Nagovizin, V.; Naroska, B.; Naumann, Th.; Newton, D.; Nguyen, H. K.; Niebergall, F.; Nisius, R.; Nowak, G.; Noyes, G. W.; Nyberg, M.; Oberlack, H.; Obrock, H.; Olsson, J. E.; Orenstein, S.; Ould-Saada, F.; Pascaud, C.; Patel, G. D.; Peppel, E.; Peters, S.; Phillips, H. T.; Phillips, J. P.; Pichler, Ch.; Pilgram, W.; Pitzl, D.; Prosi, R.; Raupach, F.; Rauschnabel, K.; Reimer, P.; Ribarics, P.; Riech, V.; Riedlberger, J.; Rietz, M.; Robertson, S. M.; Robmann, P.; Roosen, R.; Rostovtsev, A.; Royon, C.; Rudowicz, M.; Ruffer, M.; Rusakov, S.; Rybicki, K.; Ryseck, E.; Sacton, J.; Sahlmann, N.; Sanchez, E.; Sankey, D. P. C.; Savitsky, M.; Schacht, P.; Schleper, P.; von Schlippe, W.; Schmidt, C.; Schmidt, D.; Schmitz, W.; Schröder, V.; Schulz, M.; Schwind, A.; Scobel, W.; Seehausen, U.; Sell, R.; Seman, M.; Semenov, A.; Shekelyan, V.; Sheviakov, I.; Shooshtari, H.; Siegmon, G.; Siewert, U.; Sirois, Y.; Skillicorn, I. O.; Smirnov, P.; Smith, J. R.; Smolik, L.; Soloviev, Y.; Spitzer, H.; Staroba, P.; Steenbock, M.; Steffen, P.; Steinberg, R.; Steiner, H.; Stella, B.; Stephens, K.; Stier, J.; Strachota, J.; Straumann, U.; Struczinski, W.; Sutton, J. P.; Taylor, R. E.; Thompson, G.; Thompson, R. J.; Tichomirov, I.; Trenkel, C.; Truöl, P.; Tchernyshov, V.; Turnau, J.; Tutas, J.; Urban, L.; Usik, A.; Valkar, S.; Valkarova, A.; Vallee, C.; van Esch, P.; Vartapetian, A.; Vazdik, Y.; Vecko, M.; Verrecchia, P.; Vick, R.; Villet, G.; Vogel, E.; Wacker, K.; Walker, I. W.; Walther, A.; Weber, G.; Wegener, D.; Wegner, A.; Wellisch, H. P.; Willard, S.; Winde, M.; Winter, G.-G.; Wolff, Th.; Womersley, L. A.; Wright, A. E.; Wulff, N.; Yiou, T. P.; Áçek, J.; Závada, P.; Zeitnitz, C.; Ziaeepour, H.; Zimmer, M.; Zimmermann, W.; Zomer, F.
1993-01-01
We present first results on the total photoproduction cross section measurement with the H1 detector at HERA. The data were extracted from low Q2 collisions of 26.7 GeV electrons with 820 GeV protons. The γp total cross section has been measured by two independent methods in the γp center of mass energy range from 90 to 290 GeV. For an average center of mass energy of 195 GeV a value of σtot (γp) = 159 +/- 7 (stat.) +/- 20 (syst.) μb was obtained. Supported by the Swedish Natural Science Research Council.
Flooded Underground Coal Mines: A Significant Source of Inexpensive Geothermal Energy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watzlaf, G.R.; Ackman, T.E.
2007-04-01
Many mining regions in the United States contain extensive areas of flooded underground mines. The water within these mines represents a significant and widespread opportunity for extracting low-grade, geothermal energy. Based on current energy prices, geothermal heat pump systems using mine water could reduce the annual costs for heating to over 70 percent compared to conventional heating methods (natural gas or heating oil). These same systems could reduce annual cooling costs by up to 50 percent over standard air conditioning in many areas of the country. (Formatted full-text version is released by permission of publisher)
Electron capture rates in stars studied with heavy ion charge exchange reactions
NASA Astrophysics Data System (ADS)
Bertulani, C. A.
2018-01-01
Indirect methods using nucleus-nucleus reactions at high energies (here, high energies mean ~ 50 MeV/nucleon and higher) are now routinely used to extract information of interest for nuclear astrophysics. This is of extreme relevance as many of the nuclei involved in stellar evolution are short-lived. Therefore, indirect methods became the focus of recent studies carried out in major nuclear physics facilities. Among such methods, heavy ion charge exchange is thought to be a useful tool to infer Gamow-Teller matrix elements needed to describe electron capture rates in stars and also double beta-decay experiments. In this short review, I provide a theoretical guidance based on a simple reaction model for charge exchange reactions.
Analysis of digital communication signals and extraction of parameters
NASA Astrophysics Data System (ADS)
Al-Jowder, Anwar
1994-12-01
The signal classification performance of four types of electronics support measure (ESM) communications detection systems is compared from the standpoint of the unintended receiver (interceptor). Typical digital communication signals considered include binary phase shift keying (BPSK), quadrature phase shift keying (QPSK), frequency shift keying (FSK), and on-off keying (OOK). The analysis emphasizes the use of available signal processing software. Detection methods compared include broadband energy detection, FFT-based narrowband energy detection, and two correlation methods which employ the fast Fourier transform (FFT). The correlation methods utilize modified time-frequency distributions, where one of these is based on the Wigner-Ville distribution (WVD). Gaussian white noise is added to the signal to simulate various signal-to-noise ratios (SNR's).
News on Collectivity in PbPb Collisions at CMS
NASA Astrophysics Data System (ADS)
Moon, Dong Ho
2017-04-01
The flow anisotropies with the Fourier coefficients (n = 2, 3) for the charged particles produced in PbPb collisions at a nucleon-nucleon center-of-mass energy of 5.02 TeV is studied with the CMS detector. In order to extract the Fourier coefficients, several methods were used, such as the scalar product method or multi-particle cumulant method. The results cover both of the low-pT region (1 < pT < 3 GeV/c) associated with hydrodynamic flow phenomena and the high-pT region where anisotropic azimuthal distributions may reflect the path-length dependence of the parton energy loss in the created medium for the seven bins of collision centrality, spanning the rang of 0-60% most-central events.
NASA Astrophysics Data System (ADS)
Liu, Yan; Liu, Wen-Biao
2018-03-01
The energy extraction of the collisional Penrose process has been investigated in recent years. Previous researchers mainly concentrated on the case of nonspin massive or massless particles, and they discovered that when the collision occurs near the horizon of extremal rotating black holes, the arbitrary large efficiency can be achieved with the particle's angular momentum below the critical value as L1<2 . In this paper, the energy extraction of spinning massive particles is calculated via the super Penrose process. We obtain the dependence of the impact factor and the turning points on the particle's spin s . The super Penrose process can occur only when s ≤1 and J1<2 , where J1 is the spinning particle's angular momentum. It is found that the efficiency of the energy extraction is monotonously increasing with the particle's spin s increasing for s <1 , and it can become arbitrarily high when the collision occurs close to the horizon. We compare the maximum extracted energy of spinning particles with that of the nonspin case and find a significant increase of the extracted energy. When s →1 , the maximum extracted energy can be orders of magnitude larger than that of the nonspin case. For the astrophysical black holes, the large efficiency is also obtained. Naturally, when the particle's spin s ≪1 , we can degenerate the result back to the nonspin case.
Method and apparatus for extracting water from air
Spletzer, Barry L.
2001-01-01
The present invention provides a method and apparatus for extracting liquid water from moist air using minimal energy input. The method comprises compressing moist air under conditions that foster the condensation of liquid water (ideally isothermal to a humidity of 1.0, then adiabatic thereafter). The air can be decompressed under conditions that do not foster the vaporization of the condensate. The decompressed, dried air can be exchanged for a fresh charge of moist air and the process repeated. The liquid condensate can be removed for use. The apparatus can comprise a compression chamber having a variable internal volume. An intake port allows moist air into the compression chamber. An exhaust port allows dried air out of the compression chamber. A condensation device fosters condensation at the desired conditions. A condensate removal port allows liquid water to be removed.
Extracting Work from Quantum Measurement in Maxwell's Demon Engines
NASA Astrophysics Data System (ADS)
Elouard, Cyril; Herrera-Martí, David; Huard, Benjamin; Auffèves, Alexia
2017-06-01
The essence of both classical and quantum engines is to extract useful energy (work) from stochastic energy sources, e.g., thermal baths. In Maxwell's demon engines, work extraction is assisted by a feedback control based on measurements performed by a demon, whose memory is erased at some nonzero energy cost. Here we propose a new type of quantum Maxwell's demon engine where work is directly extracted from the measurement channel, such that no heat bath is required. We show that in the Zeno regime of frequent measurements, memory erasure costs eventually vanish. Our findings provide a new paradigm to analyze quantum heat engines and work extraction in the quantum world.
Jaitak, Vikas; Bikram Singh, Bandna; Kaul, V K
2009-01-01
Stevioside and rebaudioside-A are major low-calorie diterpene steviol glycosides in the leaves of Stevia rebaudiana. They are widely used as natural sweeteners for diabetic patients, but the long extraction procedures required and the optimisation of product yield present challenging problems. To develop a rapid and effective methodology for the extraction of stevioside and rebaudioside-A from S. rebaudiana leaves and to compare yields using different extraction techniques. Dried and powdered leaves of S. rebaudiana were extracted by conventional, ultrasound and microwave-assisted extraction techniques using methanol, ethanol and water as single solvents as well as in binary mixtures. Conventional cold extraction was performed at 25 degrees C for 12 h while ultrasound extraction was carried out at temperature of 35 +/- 5 degrees C for 30 min. Microwave-assisted extraction (MAE) was carried out at a power level of 80 W for 1 min at 50 degrees C. MAE yielded 8.64 and 2.34% of stevioside and rebaudioside-A, respectively, while conventional and ultrasound techniques yielded 6.54 and 1.20%, and 4.20 and 1.98% of stevioside and rebaudioside-A, respectively. A rapid and efficient method has been developed for the extraction of stevioside and rebaudioside-A in optimum yields using MAE procedure. This method has the advantage of rapid extraction and fast screening of a large number of S. rebaudiana samples for assessment of planting material. MAE saves considerable time, energy and has implications in the quality assessment of stevioside and rebaudioside-A prior to their industrial production from the leaves of S. rebaudiana. Copyright (c) 2009 John Wiley & Sons, Ltd.
Molecular separation method and apparatus
Villa-Aleman, Eliel
1996-01-01
A method and apparatus for separating a gaseous mixture of chemically identical but physically different molecules based on their polarities. The gaseous mixture of molecules is introduced in discrete quantities into the proximal end of a porous glass molecular. The molecular sieve is exposed to microwaves to excite the molecules to a higher energy state from a lower energy state, those having a higher dipole moment being excited more than those with a lower energy state. The temperature of the sieve kept cold by a flow of liquid nitrogen through a cooling jacket so that the heat generated by the molecules colliding with the material is transferred away from the material. The molecules thus alternate between a higher energy state and a lower one, with the portion of molecules having the higher dipole moment favored over the others. The former portion can then be extracted separately from the distal end of the molecular sieve.
Molecular separation method and apparatus
Villa-Aleman, E.
1996-04-09
A method and apparatus are disclosed for separating a gaseous mixture of chemically identical but physically different molecules based on their polarities. The gaseous mixture of molecules is introduced in discrete quantities into the proximal end of a porous glass molecular sieve. The molecular sieve is exposed to microwaves to excite the molecules to a higher energy state from a lower energy state, those having a higher dipole moment being excited more than those with a lower energy state. The temperature of the sieve kept cold by a flow of liquid nitrogen through a cooling jacket so that the heat generated by the molecules colliding with the material is transferred away from the material. The molecules thus alternate between a higher energy state and a lower one, with the portion of molecules having the higher dipole moment favored over the others. The former portion can then be extracted separately from the distal end of the molecular sieve. 2 figs.
Radiator Enhanced Geothermal System - A Revolutionary Method for Extracting Geothermal Energy
NASA Astrophysics Data System (ADS)
Karimi, S.; Marsh, B. D.; Hilpert, M.
2017-12-01
A new method of extracting geothermal energy, the Radiator Enhanced Geothermal System (RAD-EGS) has been developed. RAD-EGS attempts to mimic natural hydrothermal systems by 1) generating a vertical vane of artificially produced high porosity/permeability material deep in a hot sedimentary aquifer, 2) injecting water at surface temperatures to the bottom of the vane, where the rock is the hottest, 3) extracting super-heated water at the top of the vane. The novel RAD-EGS differs greatly from the currently available Enhanced Geothermal Systems in vane orientation, determined in the governing local crustal stress field by Shmax and Sl (meaning it is vertical), and in the vane location in a hot sedimentary aquifer, which naturally increases the longevity of the system. In this study, we explore several parameters regimes affecting the water temperature in the extraction well, keeping in mind that the minimum temperature of the extracted water has to be 150 °C in order for a geothermal system to be commercially viable. We used the COMSOL finite element package to simulate coupled heat and fluid transfer within the RAD-EGS model. The following geologic layers from top to bottom are accounted for in the model: i) confining upper layer, ii) hot sedimentary aquifer, and iii) underlying basement rock. The vane is placed vertically within the sedimentary aquifer. An injection well and an extraction well are also included in the simulation. We tested the model for a wide range of various parameters including background heat flux, thickness of geologic layers, geometric properties of the vane, diameter and location of the wells, fluid flow within the wells, regional hydraulic gradient, and permeability and porosity of the layers. The results show that among the aforementioned parameters, background heat flux and the depth of vane emplacement are highly significant in determining the level of commercial viability of the geothermal system. These results indicate that for the terrains with relatively high background heat flux or for vanes located in relatively deep layers, the RAD-EGS can produce economic geothermal energy for more than 40 years. Moreover, these simulations show that the geothermal vane design with the injection well at the bottom and production well at the top of the vane greatly contributes to the longevity of the system.
This page describes energy extraction and EPA's goal in assuring that energy sources are developed in an environmentally protective manner. Both enforcement cases, and a map of enforcement actions are provided.
Dynamic delamination of patterned thin films
NASA Astrophysics Data System (ADS)
Kandula, Soma S. V.; Tran, Phuong; Geubelle, Philippe H.; Sottos, Nancy R.
2008-12-01
We investigate laser-induced dynamic delamination of a patterned thin film on a substrate. Controlled delamination results from our insertion of a weak adhesion region beneath the film. The inertial forces acting on the weakly bonded portion of the film lead to stable propagation of a crack along the film/substrate interface. Through a simple energy balance, we extract the critical energy for interfacial failure, a quantity that is difficult and sometimes impossible to characterize by more conventional methods for many thin film/substrate combinations.
Method for isotope enrichment by photoinduced chemiionization
Dubrin, James W.
1985-01-01
Isotope enrichment, particularly .sup.235 U enrichment, is achieved by irradiating an isotopically mixed vapor feed with radiant energy at a wavelength or wavelengths chosen to selectively excite the species containing a desired isotope to a predetermined energy level. The vapor feed if simultaneously reacted with an atomic or molecular reactant species capable of preferentially transforming the excited species into an ionic product by a chemiionization reaction. The ionic product, enriched in the desired isotope, is electrostatically or electromagnetically extracted from the reaction system.
Comparison of end-of-life tire treatment technologies: a Chinese case study.
Li, Xingfu; Xu, He; Gao, Yingnan; Tao, Yijun
2010-11-01
The aim of this paper is to compare different end-of-life tire (ELT) treatment technologies in China from an environmental and economic perspective. Four treatment technologies were evaluated: ambient grinding, devulcanization, pyrolysis and illegal tire oil extraction. Life cycle assessment (LCA) was applied to evaluate the potential environmental impact of each treatment based on the Eco-indicator 99 (Hierarchist approach) method provided by GaBi 4 software. The final result shows that pyrolysis represents the environmentally benign option while illegal tire oil extraction caused the worst damages. For the three legal treatments, although high credit was obtained when considering avoided impacts from recycled materials and energy, they have great impact as to respiratory effects (inorganic) dominantly contributed by energy production stage, which implies that the emphasis on environmental policies related to ELT treatment should shift from the control of emissions from treatment process to the reduction of energy consumption. A simplified comparison of net benefits and total impacts shows that the most eco-effective ELT treatment technology is pyrolysis, followed by dynamic devulcanization and ambient grinding. The illegal tire oil extraction, however, must be prohibited immediately because of its highest environmental pollution and lowest net benefit. Copyright © 2010 Elsevier Ltd. All rights reserved.
Ruiz, Begoña; de Benito, Amparo; Rivera, José Daniel; Flotats, Xavier
2016-12-01
The objective of this study was to assess the limonene removal efficiency of three pre-treatment methods when applied to citrus waste and to evaluate their effects on the biochemical methane potential and the methane production rate using batch anaerobic tests. The methods tested were based on removal (biological pretreatment by fungi) or recovery (steam distillation and ethanol extraction) of limonene. All the treatments decreased the concentration of limonene in orange peel, with average efficiencies of 22%, 44% and 100% for the biological treatment, steam distillation and ethanol extraction, respectively. By-products from limonene biodegradation by fungi exhibited an inhibitory effect also, not making interesting the biological pretreatment. The methane potential and production rate of the treated orange peel increased significantly after applying the recovery strategies, which separated and recovered simultaneously other inhibitory components of the citrus essential oil. Apart from the high recovery efficiency of the ethanol extraction process, it presented a favourable energy balance. © The Author(s) 2016.
NASA Astrophysics Data System (ADS)
Ghafoori, Seyed Mohammad; Entezari, Maliheh; Taghva, Arefeh; Tayebi, Zahra
2017-12-01
There are several ways to produce nanoparticles, but the biological method of nanoparticle production is considered most efficient by researchers due to its eco-friendly and energy saving properties. In this study, the biosynthesis of silver nanoparticles (AgNPs) via Cassia fistula fruit pulp extract was examined. Furthermore, its antibacterial effects were investigated both in vitro and in vivo. To achieve biosynthesis, 10 ml of C. fistula extract was added to 90 ml of aqueous solution of 1 mM silver nitrate. The solution was incubated in darkness overnight, at room temperature. After changing the color of solution, the production of AgNPs was examined by UV-Vis spectrophotometry, XRD and DLS methods. Finally, the antibacterial activity of AgNPs was investigated by using three methods: (1) agar well diffusion, (2) MIC determining and (3) effect on prevention of infection in wound on rat models. The results revealed that synthesized silver nanoparticles have strong antibacterial activity in vitro and in vivo conditions. Undeniably, further research is required to investigate the side effects of such particles.
NASA Astrophysics Data System (ADS)
Takagaki, Shunsuke; Yamada, Hirofumi; Noda, Kei
2018-03-01
Contact effects in organic thin-film transistors (OTFTs) were examined by using our previously proposed parameter extraction method from the electrical characteristics of a single staggered-type device. Gate-voltage-dependent contact resistance and channel mobility in the linear regime were evaluated for bottom-gate/top-contact (BGTC) pentacene TFTs with active layers of different thicknesses, and for pentacene TFTs with contact-doped layers prepared by coevaporation of pentacene and tetrafluorotetracyanoquinodimethane (F4TCNQ). The extracted parameters suggested that the influence of the contact resistance becomes more prominent with the larger active-layer thickness, and that contact-doping experiments give rise to a drastic decrease in the contact resistance and a concurrent considerable improvement in the channel mobility. Additionally, the estimated energy distributions of trap density in the transistor channel probably reflect the trap filling with charge carriers injected into the channel regions. The analysis results in this study confirm the effectiveness of our proposed method, with which we can investigate contact effects and circumvent the influences of characteristic variations in OTFT fabrication.
Extraction of skin-friction fields from surface flow visualizations as an inverse problem
NASA Astrophysics Data System (ADS)
Liu, Tianshu
2013-12-01
Extraction of high-resolution skin-friction fields from surface flow visualization images as an inverse problem is discussed from a unified perspective. The surface flow visualizations used in this study are luminescent oil-film visualization and heat-transfer and mass-transfer visualizations with temperature- and pressure-sensitive paints (TSPs and PSPs). The theoretical foundations of these global methods are the thin-oil-film equation and the limiting forms of the energy- and mass-transport equations at a wall, which are projected onto the image plane to provide the relationships between a skin-friction field and the relevant quantities measured by using an imaging system. Since these equations can be re-cast in the same mathematical form as the optical flow equation, they can be solved by using the variational method in the image plane to extract relative or normalized skin-friction fields from images. Furthermore, in terms of instrumentation, essentially the same imaging system for measurements of luminescence can be used in these surface flow visualizations. Examples are given to demonstrate the applications of these methods in global skin-friction diagnostics of complex flows.
NASA Technical Reports Server (NTRS)
Huang, Norden E. (Inventor)
2004-01-01
A computer implemented physical signal analysis method includes four basic steps and the associated presentation techniques of the results. The first step is a computer implemented Empirical Mode Decomposition that extracts a collection of Intrinsic Mode Functions (IMF) from nonlinear, nonstationary physical signals. The decomposition is based on the direct extraction of the energy associated with various intrinsic time scales in the physical signal. Expressed in the IMF's, they have well-behaved Hilbert Transforms from which instantaneous frequencies can be calculated. The second step is the Hilbert Transform which produces a Hilbert Spectrum. Thus, the invention can localize any event on the time as well as the frequency axis. The decomposition can also be viewed as an expansion of the data in terms of the IMF's. Then, these IMF's, based on and derived from the data, can serve as the basis of that expansion. The local energy and the instantaneous frequency derived from the IMF's through the Hilbert transform give a full energy-frequency-time distribution of the data which is designated as the Hilbert Spectrum. The third step filters the physical signal by combining a subset of the IMFs. In the fourth step, a curve may be fitted to the filtered signal which may not have been possible with the original, unfiltered signal.
Zhang, X; Patel, L A; Beckwith, O; Schneider, R; Weeden, C J; Kindt, J T
2017-11-14
Micelle cluster distributions from molecular dynamics simulations of a solvent-free coarse-grained model of sodium octyl sulfate (SOS) were analyzed using an improved method to extract equilibrium association constants from small-system simulations containing one or two micelle clusters at equilibrium with free surfactants and counterions. The statistical-thermodynamic and mathematical foundations of this partition-enabled analysis of cluster histograms (PEACH) approach are presented. A dramatic reduction in computational time for analysis was achieved through a strategy similar to the selector variable method to circumvent the need for exhaustive enumeration of the possible partitions of surfactants and counterions into clusters. Using statistics from a set of small-system (up to 60 SOS molecules) simulations as input, equilibrium association constants for micelle clusters were obtained as a function of both number of surfactants and number of associated counterions through a global fitting procedure. The resulting free energies were able to accurately predict micelle size and charge distributions in a large (560 molecule) system. The evolution of micelle size and charge with SOS concentration as predicted by the PEACH-derived free energies and by a phenomenological four-parameter model fit, along with the sensitivity of these predictions to variations in cluster definitions, are analyzed and discussed.
NASA Astrophysics Data System (ADS)
Ong, Swee Khai; Lim, Wee Keong; Soo, Wooi King
2013-04-01
Trademark, a distinctive symbol, is used to distinguish products or services provided by a particular person, group or organization from other similar entries. As trademark represents the reputation and credit standing of the owner, it is important to differentiate one trademark from another. Many methods have been proposed to identify, classify and retrieve trademarks. However, most methods required features database and sample sets for training prior to recognition and retrieval process. In this paper, a new feature on wavelet coefficients, the localized wavelet energy, is introduced to extract features of trademarks. With this, unsupervised content-based symmetrical trademark image retrieval is proposed without the database and prior training set. The feature analysis is done by an integration of the proposed localized wavelet energy and quadtree decomposed regional symmetrical vector. The proposed framework eradicates the dependence on query database and human participation during the retrieval process. In this paper, trademarks for soccer games sponsors are the intended trademark category. Video frames from soccer telecast are extracted and processed for this study. Reasonably good localization and retrieval results on certain categories of trademarks are achieved. A distinctive symbol is used to distinguish products or services provided by a particular person, group or organization from other similar entries.
NASA Technical Reports Server (NTRS)
Huang, Norden E. (Inventor)
2002-01-01
A computer implemented physical signal analysis method includes four basic steps and the associated presentation techniques of the results. The first step is a computer implemented Empirical Mode Decomposition that extracts a collection of Intrinsic Mode Functions (IMF) from nonlinear, nonstationary physical signals. The decomposition is based on the direct extraction of the energy associated with various intrinsic time scales in the physical signal. Expressed in the IMF's, they have well-behaved Hilbert Transforms from which instantaneous frequencies can be calculated. The second step is the Hilbert Transform which produces a Hilbert Spectrum. Thus, the invention can localize any event on the time as well as the frequency axis. The decomposition can also be viewed as an expansion of the data in terms of the IMF's. Then, these IMF's, based on and derived from the data, can serve as the basis of that expansion. The local energy and the instantaneous frequency derived from the IMF's through the Hilbert transform give a full energy-frequency-time distribution of the data which is designated as the Hilbert Spectrum. The third step filters the physical signal by combining a subset of the IMFs. In the fourth step, a curve may be fitted to the filtered signal which may not have been possible with the original, unfiltered signal.
Imaging ultrafast dynamics of molecules with laser-induced electron diffraction.
Lin, C D; Xu, Junliang
2012-10-14
We introduce a laser-induced electron diffraction method (LIED) for imaging ultrafast dynamics of small molecules with femtosecond mid-infrared lasers. When molecules are placed in an intense laser field, both low- and high-energy photoelectrons are generated. According to quantitative rescattering (QRS) theory, high-energy electrons are produced by a rescattering process where electrons born at the early phase of the laser pulse are driven back to rescatter with the parent ion. From the high-energy electron momentum spectra, field-free elastic electron-ion scattering differential cross sections (DCS), or diffraction images, can be extracted. With mid-infrared lasers as the driving pulses, it is further shown that the DCS can be used to extract atomic positions in a molecule with sub-angstrom spatial resolution, in close analogy to the standard electron diffraction method. Since infrared lasers with pulse duration of a few to several tens of femtoseconds are already available, LIED can be used for imaging dynamics of molecules with sub-angstrom spatial and a few-femtosecond temporal resolution. The first experiment with LIED has shown that the bond length of oxygen molecules shortens by 0.1 Å in five femtoseconds after single ionization. The principle behind LIED and its future outlook as a tool for dynamic imaging of molecules are presented.
A predictive control framework for optimal energy extraction of wind farms
NASA Astrophysics Data System (ADS)
Vali, M.; van Wingerden, J. W.; Boersma, S.; Petrović, V.; Kühn, M.
2016-09-01
This paper proposes an adjoint-based model predictive control for optimal energy extraction of wind farms. It employs the axial induction factor of wind turbines to influence their aerodynamic interactions through the wake. The performance index is defined here as the total power production of the wind farm over a finite prediction horizon. A medium-fidelity wind farm model is utilized to predict the inflow propagation in advance. The adjoint method is employed to solve the formulated optimization problem in a cost effective way and the first part of the optimal solution is implemented over the control horizon. This procedure is repeated at the next controller sample time providing the feedback into the optimization. The effectiveness and some key features of the proposed approach are studied for a two turbine test case through simulations.
Vázquez Blanco, E; López Mahía, P; Muniategui Lorenzo, S; Prada Rodríguez, D; Fernández Fernández, E
2000-02-01
Microwave energy was applied to extract polycyclic aromatic hydrocarbons (PAHs) and linear aliphatic hydrocarbons (LAHs) from marine sediments. The influence of experimental conditions, such as different extracting solvents and mixtures, microwave power, irradiation time and number of samples extracted per run has been tested using real marine sediment samples; volume of the solvent, sample quantity and matrix effects were also evaluated. The yield of extracted compounds obtained by microwave irradiation was compared with that obtained using the traditional Soxhlet extraction. The best results were achieved with a mixture of acetone and hexane (1:1), and recoveries ranged from 92 to 106%. The extraction time is dependent on the irradiation power and the number of samples extracted per run, so when the irradiation power was set to 500 W, the extraction times varied from 6 min for 1 sample to 18 min for 8 samples. Analytical determinations were carried out by high-performance liquid chromatography (HPLC) with an ultraviolet-visible photodiode-array detector for PAHs and gas chromatography (GC) using a FID detector for LAHs. To test the accuracy of the microwave-assisted extraction (MAE) technique, optimized methodology was applied to the analysis of standard reference material (SRM 1941), obtaining acceptable results.
Lu, Nan; Wang, Ting; Zhao, Pan; Zhang, Lianjun; Lun, Xiaowen; Zhang, Xueli; Hou, Xiaohong
2016-11-01
In the presented work, metal-organic framework (MOF) material MIL-101(Cr) (MIL, Matérial Institute Lavoisier) was used as a sorbent for vortex assisted dispersive micro-solid-phase extraction (VA-D-μ-SPE) of trace amount of metronidazole (MNZ), ronidazole (RNZ), secnidazole (SNZ), dimetridazole (DMZ), tinidazole (TNZ), and ornidazole (ONZ) in different environmental water samples. Ultra-high-performance liquid chromatography coupled with tandem mass spectrometry (UPLC-MS/MS) was used to quantify the target analytes. The extraction conditions, including type of sorbents, amount of MIL-101(Cr), solution pH, extraction method, extraction time, effect of salt, and elution conditions were investigated. Upon the optimal conditions, the developed method showed an excellent extraction performance with the average recovery ranging from 75.2 to 98.8 %. Good sensitivity levels were achieved with the detection limits of 0.03∼0.06 μg/L and the quantitation limits of 0.09∼0.20 μg/L. The linear ranges were varied from 0.1 to 20 for SNZ and ONZ and from 0.2 to 40 μg/L for MNZ, RNZ, DMZ, and TNZ (r 2 > 0.992), and repeatability of the method was satisfactory with the relative standard deviations (RSD) <8 %. Ultimately, the applicability of the method was successfully confirmed by the extraction and determination of 5-nitroimidazoles (5-NDZs) in 12 real water samples, showing the positive findings of MNZ and TNZ ranging from 0.3 to 1.0 μg/L. Furthermore, molecular docking was applied to explain the molecular interactions and free binding energies between MIL-101(Cr) and 5-NDZs, providing a deep insight into the adsorption mechanism. The proposed method exhibited the advantages of simplicity, rapidly, less solvent consumption, ease of operation, higher sensitivity, and lower matrix effect. Graphical abstract Schematic diagram of the extraction process and molecular docking investigation.
NASA Astrophysics Data System (ADS)
Wu, T. Y.; Lin, S. F.
2013-10-01
Automatic suspected lesion extraction is an important application in computer-aided diagnosis (CAD). In this paper, we propose a method to automatically extract the suspected parotid regions for clinical evaluation in head and neck CT images. The suspected lesion tissues in low contrast tissue regions can be localized with feature-based segmentation (FBS) based on local texture features, and can be delineated with accuracy by modified active contour models (ACM). At first, stationary wavelet transform (SWT) is introduced. The derived wavelet coefficients are applied to derive the local features for FBS, and to generate enhanced energy maps for ACM computation. Geometric shape features (GSFs) are proposed to analyze each soft tissue region segmented by FBS; the regions with higher similarity GSFs with the lesions are extracted and the information is also applied as the initial conditions for fine delineation computation. Consequently, the suspected lesions can be automatically localized and accurately delineated for aiding clinical diagnosis. The performance of the proposed method is evaluated by comparing with the results outlined by clinical experts. The experiments on 20 pathological CT data sets show that the true-positive (TP) rate on recognizing parotid lesions is about 94%, and the dimension accuracy of delineation results can also approach over 93%.
Wave power focusing due to the Bragg resonance
NASA Astrophysics Data System (ADS)
Tao, Ai-feng; Yan, Jin; Wang, Yi; Zheng, Jin-hai; Fan, Jun; Qin, Chuan
2017-08-01
Wave energy has drawn much attention as an achievable way to exploit the renewable energy. At present, in order to enhance the wave energy extraction, most efforts have been concentrated on optimizing the wave energy convertor and the power take-off system mechanically and electrically. However, focusing the wave power in specific wave field could also be an alternative to improve the wave energy extraction. In this experimental study, the Bragg resonance effect is applied to focus the wave energy. Because the Bragg resonance effect of the rippled bottom largely amplifies the wave reflection, leading to a significant increase of wave focusing. Achieved with an energy conversion system consisting of a point absorber and a permanent magnet single phase linear motor, the wave energy extracted in the wave flume with and without Bragg resonance effect was measured and compared quantitatively in experiment. It shows that energy extraction by a point absorber from a standing wave field resulted from Bragg resonance effect can be remarkably increased compared with that from a propagating wave field (without Bragg resonance effect).
Beam commissioning of a superconducting rotating-gantry for carbon-ion radiotherapy
NASA Astrophysics Data System (ADS)
Iwata, Y.; Fujimoto, T.; Matsuba, S.; Fujita, T.; Sato, S.; Furukawa, T.; Hara, Y.; Mizushima, K.; Saraya, Y.; Tansho, R.; Saotome, N.; Shirai, T.; Noda, K.
2016-10-01
A superconducting rotating-gantry for carbon-ion radiotherapy was developed. This isocentric gantry can transport carbon ions having kinetic energies of between E=430 and 48 MeV/u to an isocenter over an angle of ±180°, and is further capable of performing three-dimensional raster-scanning irradiation. Construction of the entire rotating-gantry system was completed by the end of September 2015. Prior to beam commissioning, phase-space distributions of extracted carbon beams from the synchrotron were deduced by using an empirical method. In this method, phase-space distributions at the extraction channel of the synchrotron were modeled with 8 parameters, and the best parameters were determined so as to minimize a difference between the calculated and measured beam profiles by using a simplex method. Based on the phase-space distributions, beam optics through the beam-transport lines as well as the rotating gantry were designed. Since horizontal and vertical beam emittances, as extracted slowly from the synchrotron, generally differ with each other, a horizontal-vertical beam coupling would occur when the gantry rotates. Thus, the size and shape of beam spots at the isocenter should vary depending on the gantry angle. To compensate for the difference in the emittances, we employed a method to utilize multiple Coulomb scattering of the beam particles by a thin scatterer. Having compensated for the emittances and designed beam optics through the rotating gantry, beam commissioning over various combinations of gantry angles and beam energies was performed. By finely tuning the superconducting quadrupoles of the rotating gantry, we could successfully obtain the designed beam quality, which satisfies the requirements of scanning irradiation.
The use of silver nanoparticles (AgNPs) is gaining in popularity due to silver’s antibacterial properties. Conventional methods for AgNP synthesis require dangerous chemicals and large quantities of energy (heat) and can result in formation of hazardous by-products. This article ...
NASA Astrophysics Data System (ADS)
Hatarik, Robert; Caggiano, J. A.; Callahan, D.; Casey, D.; Clark, D.; Doeppner, T.; Eckart, M.; Field, J.; Frenje, J.; Gatu Johnson, M.; Grim, G.; Hartouni, E.; Hurricane, O.; Kilkenny, J.; Knauer, J.; Ma, T.; Mannion, O.; Munro, D.; Sayre, D.; Spears, B.
2015-11-01
The method of moments was introduced by Pearson as a process for estimating the population distributions from which a set of ``random variables'' are measured. These moments are compared with a parameterization of the distributions, or of the same quantities generated by simulations of the process. Most diagnostics processes extract scalar parameters depending on the moments of spectra derived from analytic solutions to the fusion rate, necessarily based on simplifying assumptions of the confined plasma. The precision of the TOF spectra, and the nature of the implosions at the NIF require the inclusion of factors beyond the traditional analysis and require the addition of higher order moments to describe the data. This talk will present a diagnostic process for extracting the moments of the neutron energy spectrum for a comparison with theoretical considerations as well as simulations of the implosions. Work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344.
Capacitive Energy Extraction by Few-Layer Graphene Electrodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lian, Cheng; Zhan, Cheng; Jiang, De-en
Capacitive double-layer expansion is a promising technology to harvest energy arising from the salinity difference between freshwater and seawater. Its optimal performance requires a careful selection of the operation potentials and electrode materials. While carbonaceous materials such as graphene and various forms of activated carbons are routinely used as the electrodes, there is little knowledge on how the quantum capacitance and the electric double-layer (EDL) capacitance, which are on the same order of magnitude, affect the capacitive performance. Toward understanding that from a theoretical perspective, here we study the capacitive energy extraction with graphene electrodes as a function of themore » number of graphene layers. The classical density functional theory is joined with the electronic density functional theory to obtain the EDL and the quantum capacitance, respectively. The theoretical results show that the quantum capacitance contribution plays a dominant role in extracting energy using the single-layer graphene, but its effect diminishes as the number of graphene layers increases. The overall extracted energy is dominated by the EDL contribution beyond about four graphene layers. Electrodes with more graphene layers are able to extract more energy at low charging potential. Here, because many porous carbons have nanopores with stacked graphene layers, our theoretical predictions are useful to identify optimal operation parameters for capacitive energy extraction with porous electrodes of different wall thickness.« less
Capacitive Energy Extraction by Few-Layer Graphene Electrodes
Lian, Cheng; Zhan, Cheng; Jiang, De-en; ...
2017-06-09
Capacitive double-layer expansion is a promising technology to harvest energy arising from the salinity difference between freshwater and seawater. Its optimal performance requires a careful selection of the operation potentials and electrode materials. While carbonaceous materials such as graphene and various forms of activated carbons are routinely used as the electrodes, there is little knowledge on how the quantum capacitance and the electric double-layer (EDL) capacitance, which are on the same order of magnitude, affect the capacitive performance. Toward understanding that from a theoretical perspective, here we study the capacitive energy extraction with graphene electrodes as a function of themore » number of graphene layers. The classical density functional theory is joined with the electronic density functional theory to obtain the EDL and the quantum capacitance, respectively. The theoretical results show that the quantum capacitance contribution plays a dominant role in extracting energy using the single-layer graphene, but its effect diminishes as the number of graphene layers increases. The overall extracted energy is dominated by the EDL contribution beyond about four graphene layers. Electrodes with more graphene layers are able to extract more energy at low charging potential. Here, because many porous carbons have nanopores with stacked graphene layers, our theoretical predictions are useful to identify optimal operation parameters for capacitive energy extraction with porous electrodes of different wall thickness.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Taiping; Yang, Zhaoqing
Previous tidal energy projects in Puget Sound have focused on major deep channels such as Admiralty Inlet that have a larger power potential but pose greater technical challenges than minor tidal channels connecting to small sub-basins. This paper focuses on the possibility of extracting energy from minor tidal channels by using a hydrodynamic model to quantify the power potential and the associated impact on tidal circulation. The study site is a multi-inlet bay system connected by two narrow inlets, Agate Pass and Rich Passage, to the Main Basin of Puget Sound. A three-dimensional hydrodynamic model was applied to the studymore » site and calibrated for tidal elevations and currents. We examined three energy extraction scenarios in which turbines were deployed in each of the two passages and concurrently in both. Extracted power rates and associated changes in tidal elevation, current, tidal flux, and residence time were examined. Maximum instantaneous power rates reached 250 kW, 1550 kW, and 1800 kW, respectively, for the three energy extraction scenarios. The model suggests that with the proposed level of energy extraction, the impact on tidal circulation is very small. It is worth investigating the feasibility of harnessing tidal energy from minor tidal channels of Puget Sound.« less
Spectroscopic method to study low charge state ion and cold electron population in ECRIS plasma
NASA Astrophysics Data System (ADS)
Kronholm, R.; Kalvas, T.; Koivisto, H.; Tarvainen, O.
2018-04-01
The results of optical emission spectroscopy experiments probing the cold electron population of a 14 GHz Electron Cyclotron Resonance Ion Source (ECRIS) are reported. The study has been conducted with a high resolution spectrometer and data acquisition setup developed specifically for the diagnostics of weak emission line characteristic to ECRIS plasmas. The optical emission lines of low charge state ions and neutral atoms of neon have been measured and analyzed with the line-ratio method. The aforementioned electron population temperature of the cold electron population (Te < 100 eV) is determined for Maxwell-Boltzmann and Druyvesteyn energy distributions to demonstrate the applicability of the method. The temperature was found to change significantly when the extraction voltage of the ion source is turned on/off. In the case of the Maxwellian distribution, the temperature of the cold electron population is 20 ± 10 eV when the extraction voltage is off and 40 ± 10 eV when it is on. The optical emission measurements revealed that the extraction voltage also affects both neutral and ion densities. Based on the rate coefficient analysis with the aforementioned temperatures, switching the extraction voltage off decreases the rate coefficient of neutral to 1+ ionization to 42% and 1+ to 2+ ionization to 24% of the original. This suggests that switching the extraction voltage on favors ionization to charge states ≥2+ and, thus, the charge state distributions of ECRIS plasmas are probably different with the extraction voltage on/off. It is therefore concluded that diagnostics results of ECRIS plasmas obtained without the extraction voltage are not depicting the plasma conditions in normal ECRIS operation.
NASA Astrophysics Data System (ADS)
Kocherlakota, Lakshmi S.; Krajina, Brad A.; Overney, René M.
2015-12-01
Recent advances in scanning probe methods that provide direct access to the surface free energy of inorganic layered materials in terms of the Hamaker constant yield energetic values for monolayer graphene that differ substantially, by a factor of around 0.4, from bulk graphite. The onset of bulk deviating energy values was observed at a multilayer slab thickness of ˜3 nm, corresponding to a layer number of 10. The findings, complemented with extractions from water contact angle measurements and calculated interlayer binding energies, find short-range ordinary van der Waals interactions to be most prominently affected by dimensional constraints and many-body interactions.
Kocherlakota, Lakshmi S; Krajina, Brad A; Overney, René M
2015-12-28
Recent advances in scanning probe methods that provide direct access to the surface free energy of inorganic layered materials in terms of the Hamaker constant yield energetic values for monolayer graphene that differ substantially, by a factor of around 0.4, from bulk graphite. The onset of bulk deviating energy values was observed at a multilayer slab thickness of ∼3 nm, corresponding to a layer number of 10. The findings, complemented with extractions from water contact angle measurements and calculated interlayer binding energies, find short-range ordinary van der Waals interactions to be most prominently affected by dimensional constraints and many-body interactions.
Chen, L Y
2010-10-01
The free-energy landscape of glycerol permeation through the aquaglyceroporin GlpF has been estimated in the literature by the nonequilibrium method of steered molecular dynamics (SMD) simulations and by the equilibrium method of adaptive biasing force (ABF) simulations. However, the ABF results qualitatively disagree with the SMD results that were based on the Jarzynski equality (JE) relating the equilibrium free-energy difference to the nonequilibrium work of the irreversible pulling experiments. In this paper, I present a new SMD study of the glycerol permeation through GlpF to explore the free-energy profile of glycerol along the permeation channel. Instead of the JE in terms of thermodynamic work, I use the fluctuation-dissipation theorem (FDT) of Brownian dynamics (BD), in terms of mechanical work, for extracting the free-energy difference from the nonequilibrium work of irreversible pulling experiments. The results of this new SMD-BD-FDT study are in agreement with the experimental data and with the ABF results. 2010 Elsevier B.V. All rights reserved.
Hou, Xiudan; Liu, Shujuan; Zhou, Panpan; Li, Jin; Liu, Xia; Wang, Licheng; Guo, Yong
2016-07-22
A solid-phase extraction method for the efficient analysis of the excretion-dynamics of flavonoids in urine was established and described. In this work, in situ surface radical chain-transfer polymerization and in situ anion exchange were utilized to tune the extraction performance of poly(1-vinyl-3-hexylimidazolium bromide)-graphene oxide-grafted silica (poly(VHIm(+)Br(-))@GO@Sil). Graphene oxide (GO) was first coated onto the silica using a layer-by-layer fabrication method, and then the anion of poly(VHIm(+)Br(-))@GO@Sil was changed into hexafluorophosphate (PF6(-)) by in situ anion exchange. The interaction energies between two PILs and four flavonoids were calculated with the Gaussian09 suite of programs. A Box-Behnken design was used for the optimization of four greatly influential parameters after single-factor experiments to obtain more accurate and precise results. Coupled to high performance liquid chromatography, the poly(VHIm(+)PF6(-))@GO@Sil method showed acceptable extraction recoveries for the four flavonoids, with limits of detection in the range of 0.1-0.5μgL(-1), and wide linear ranges with correlation coefficients (R) ranging from 0.9935 to 0.9987. Under the optimum conditions, the proposed method was applied to analyze the urines collected from a healthy volunteer. The excretion amount-time profiles revealed that 4-15h was the main excretion time for the detected flavonoids. The results indicated that the newly developed method offered the advantages of being feasible, green and cost-effective, and could be successfully applied to the extraction and enrichment of flavonoids in human body systems allowing the study of the metabolic kinetics. Copyright © 2016. Published by Elsevier B.V.
Verification of Eulerian-Eulerian and Eulerian-Lagrangian simulations for fluid-particle flows
NASA Astrophysics Data System (ADS)
Kong, Bo; Patel, Ravi G.; Capecelatro, Jesse; Desjardins, Olivier; Fox, Rodney O.
2017-11-01
In this work, we study the performance of three simulation techniques for fluid-particle flows: (1) a volume-filtered Euler-Lagrange approach (EL), (2) a quadrature-based moment method using the anisotropic Gaussian closure (AG), and (3) a traditional two-fluid model. By simulating two problems: particles in frozen homogeneous isotropic turbulence (HIT), and cluster-induced turbulence (CIT), the convergence of the methods under grid refinement is found to depend on the simulation method and the specific problem, with CIT simulations facing fewer difficulties than HIT. Although EL converges under refinement for both HIT and CIT, its statistical results exhibit dependence on the techniques used to extract statistics for the particle phase. For HIT, converging both EE methods (TFM and AG) poses challenges, while for CIT, AG and EL produce similar results. Overall, all three methods face challenges when trying to extract converged, parameter-independent statistics due to the presence of shocks in the particle phase. National Science Foundation and National Energy Technology Laboratory.
Optimal Energy Extraction From a Hot Water Geothermal Reservoir
NASA Astrophysics Data System (ADS)
Golabi, Kamal; Scherer, Charles R.; Tsang, Chin Fu; Mozumder, Sashi
1981-01-01
An analytical decision model is presented for determining optimal energy extraction rates from hot water geothermal reservoirs when cooled brine is reinjected into the hot water aquifer. This applied economic management model computes the optimal fluid pumping rate and reinjection temperature and the project (reservoir) life consistent with maximum present worth of the net revenues from sales of energy for space heating. The real value of product energy is assumed to increase with time, as is the cost of energy used in pumping the aquifer. The economic model is implemented by using a hydrothermal model that relates hydraulic pumping rate to the quality (temperature) of remaining heat energy in the aquifer. The results of a numerical application to space heating show that profit-maximizing extraction rate increases with interest (discount) rate and decreases as the rate of rise of real energy value increases. The economic life of the reservoir generally varies inversely with extraction rate. Results were shown to be sensitive to permeability, initial equilibrium temperature, well cost, and well life.
The effect of hydroalcoholic extract of Coriandrum sativum on rat appetite
Nematy, Mohsen; Kamgar, Maryam; Mohajeri, Seyed Mohammad Reza; Tabatabaei Zadeh, Seyed Amir; Jomezadeh, Mohammad Reza; Akbarieh Hasani, Omid; Kamali, Najmeh; Vojouhi, Shohreh; Baghban, Sara; Aghaei, Azita; Soukhtanloo, Mohammad; Hosseini, Mahmoud; Gholamnezhad, Zahra; Rakhshandeh, Hassan; Norouzy, Abdolreza; Esmaily, Habibollah; Ghayour-Mobarhan, Majid; Patterson, Michael
2013-01-01
Objective: Losing weight in consequence of appetite loss can be a sign of a serious underlying condition. Currently, the most widely prescribed medication for anorexia is cyproheptadine hydrochloride. However, the clinical use of cyproheptadine hydrochloride is limited by its side effects. In Iranian traditional medicine, Coriandrum sativum stimulates the appetite. Therefore, the effect of Coriandrum sativum (coriander) hydroalcoholic extract was investigated on food intake in rats. Material and Methods: Thirty male Wistar rats were randomly divided into five groups. Two control groups were used, one group received 0.5 ml water per day (vehicle group), and another group did not receive anything (control group). The other 3 groups were daily treated by 50, 100 or 150 mg/kg of coriander for 7 days, respectively. The daily amount of the food eaten by each rat was measured for 10 days. The amount of energy intake of each rat was also calculated for 7 days during the intervention. The difference in energy intake was calculated and compared between groups. Result: There was no significant change in energy intake between control and vehicle groups. The change in energy intake after treatment by 100 and 150 mg/kg of the extract was significantly higher than other groups (p=0.030 and p=0.007) Conclusion: This study indicated that coriander had positive effects on appetite of rats. Future studies are needed to evaluate the mechanisms of the effects of this plant on appetite. PMID:25050262
NASA Astrophysics Data System (ADS)
Iritani, Takumi
2018-03-01
Both direct and HAL QCD methods are currently used to study the hadron interactions in lattice QCD. In the direct method, the eigen-energy of two-particle is measured from the temporal correlation. Due to the contamination of excited states, however, the direct method suffers from the fake eigen-energy problem, which we call the "mirage problem," while the HAL QCD method can extract information from all elastic states by using the spatial correlation. In this work, we further investigate systematic uncertainties of the HAL QCD method such as the quark source operator dependence, the convergence of the derivative expansion of the non-local interaction kernel, and the single baryon saturation, which are found to be well controlled. We also confirm the consistency between the HAL QCD method and the Lüscher's finite volume formula. Based on the HAL QCD potential, we quantitatively confirm that the mirage plateau in the direct method is indeed caused by the contamination of excited states.
Precise determination of lattice phase shifts and mixing angles
Lu, Bing -Nan; Lähde, Timo A.; Lee, Dean; ...
2016-07-09
Here, we introduce a general and accurate method for determining lattice phase shifts and mixing angles, which is applicable to arbitrary, non-cubic lattices. Our method combines angular momentum projection, spherical wall boundaries and an adjustable auxiliary potential. This allows us to construct radial lattice wave functions and to determine phase shifts at arbitrary energies. For coupled partial waves, we use a complex-valued auxiliary potential that breaks time-reversal invariance. We benchmark our method using a system of two spin-1/2 particles interacting through a finite-range potential with a strong tensor component. We are able to extract phase shifts and mixing angles formore » all angular momenta and energies, with precision greater than that of extant methods. We discuss a wide range of applications from nuclear lattice simulations to optical lattice experiments.« less
Huang, Fangzhi; Berton, Paula; Lu, Chengfei; Siraj, Noureen; Wang, Chun; Magut, Paul K S; Warner, Isiah M
2014-09-01
A rapid liquid phase extraction employing a novel hydrophobic surfactant-based room temperature ionic liquid (RTIL), tetrabutylphosphonium dioctyl sulfosuccinate ([4C4 P][AOT]), coupled with capillary electrophoretic-UV (CE-UV) detection is developed for removal and determination of phenolic compounds. The long-carbon-chain RTIL used is sparingly soluble in most solvents and can be used to replace volatile organic solvents. This fact, in combination with functional-surfactant-anions, is proposed to reduce the interfacial energy of the two immiscible liquid phases, resulting in highly efficient extraction of analytes. Several parameters that influence the extraction efficiencies, such as extraction time, RTIL type, pH value, and ionic strength of aqueous solutions, were investigated. It was found that, under acidic conditions, most of the investigated phenols were extracted from aqueous solution into the RTIL phase within 12 min. Good linearity was observed over the concentration range of 0.1-80.0 μg/mL for all phenols investigated. The precision of this method, expressed as RSD, was determined to be within 3.4-5.3% range. The LODs (S/N = 3) of the method were in the range of 0.047-0.257 μg/mL. The proposed methodology was successfully applied to determination of phenols in real water samples. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Line fitting based feature extraction for object recognition
NASA Astrophysics Data System (ADS)
Li, Bing
2014-06-01
Image feature extraction plays a significant role in image based pattern applications. In this paper, we propose a new approach to generate hierarchical features. This new approach applies line fitting to adaptively divide regions based upon the amount of information and creates line fitting features for each subsequent region. It overcomes the feature wasting drawback of the wavelet based approach and demonstrates high performance in real applications. For gray scale images, we propose a diffusion equation approach to map information-rich pixels (pixels near edges and ridge pixels) into high values, and pixels in homogeneous regions into small values near zero that form energy map images. After the energy map images are generated, we propose a line fitting approach to divide regions recursively and create features for each region simultaneously. This new feature extraction approach is similar to wavelet based hierarchical feature extraction in which high layer features represent global characteristics and low layer features represent local characteristics. However, the new approach uses line fitting to adaptively focus on information-rich regions so that we avoid the feature waste problems of the wavelet approach in homogeneous regions. Finally, the experiments for handwriting word recognition show that the new method provides higher performance than the regular handwriting word recognition approach.
Cell-wall disruption and lipid/astaxanthin extraction from microalgae: Chlorella and Haematococcus.
Kim, Dong-Yeon; Vijayan, Durairaj; Praveenkumar, Ramasamy; Han, Jong-In; Lee, Kyubock; Park, Ji-Yeon; Chang, Won-Seok; Lee, Jin-Suk; Oh, You-Kwan
2016-01-01
Recently, biofuels and nutraceuticals produced from microalgae have emerged as major interests, resulting in intensive research of the microalgal biorefinery process. In this paper, recent developments in cell-wall disruption and extraction methods are reviewed, focusing on lipid and astaxanthin production from the biotechnologically important microalgae Chlorella and Haematococcus, respectively. As a common, critical bottleneck for recovery of intracellular components such as lipid and astaxanthin from these microalgae, the composition and structure of rigid, thick cell-walls were analyzed. Various chemical, physical, physico-chemical, and biological methods applied for cell-wall breakage and lipid/astaxanthin extraction from Chlorella and Haematococcus are discussed in detail and compared based on efficiency, energy consumption, type and dosage of solvent, biomass concentration and status (wet/dried), toxicity, scalability, and synergistic combinations. This report could serve as a useful guide to the implementation of practical downstream processes for recovery of valuable products from microalgae including Chlorella and Haematococcus. Copyright © 2015 Elsevier Ltd. All rights reserved.
Comprehensive cosmographic analysis by Markov chain method
NASA Astrophysics Data System (ADS)
Capozziello, S.; Lazkoz, R.; Salzano, V.
2011-12-01
We study the possibility of extracting model independent information about the dynamics of the Universe by using cosmography. We intend to explore it systematically, to learn about its limitations and its real possibilities. Here we are sticking to the series expansion approach on which cosmography is based. We apply it to different data sets: Supernovae type Ia (SNeIa), Hubble parameter extracted from differential galaxy ages, gamma ray bursts, and the baryon acoustic oscillations data. We go beyond past results in the literature extending the series expansion up to the fourth order in the scale factor, which implies the analysis of the deceleration q0, the jerk j0, and the snap s0. We use the Markov chain Monte Carlo method (MCMC) to analyze the data statistically. We also try to relate direct results from cosmography to dark energy (DE) dynamical models parametrized by the Chevallier-Polarski-Linder model, extracting clues about the matter content and the dark energy parameters. The main results are: (a) even if relying on a mathematical approximate assumption such as the scale factor series expansion in terms of time, cosmography can be extremely useful in assessing dynamical properties of the Universe; (b) the deceleration parameter clearly confirms the present acceleration phase; (c) the MCMC method can help giving narrower constraints in parameter estimation, in particular for higher order cosmographic parameters (the jerk and the snap), with respect to the literature; and (d) both the estimation of the jerk and the DE parameters reflect the possibility of a deviation from the ΛCDM cosmological model.
Employment Trends in Energy Extraction.
ERIC Educational Resources Information Center
Greene, Richard
1981-01-01
Between 1973 and 1980, employment in the basic energy extraction industries--coal, oil, and natural gas--has risen by more than 91 percent. The Arab oil embargo and subsequent emphasis on development of domestic energy sources are responsible for this trend. (Author/SK)
NASA Astrophysics Data System (ADS)
Esfandi, F.; Saramad, S.; Rezaei Shahmirzadi, M.
2017-07-01
In this work, a new method is proposed for extracting some X-ray detection properties of ZnO nanowires electrodeposited on Anodized Aluminum Oxide (AAO) nanoporous template. The results show that the detection efficiency for 12μm thickness of zinc oxide nano scintillator at an energy of 9.8 keV, near the K-edge of ZnO (9.65 keV), is 24%. The X-rays that interact with AAO can also generate electrons that reach the nano scintillator. The scintillation events of these electrons are seen as a low energy tail in the spectrum. In addition, it is found that all the X-rays that are absorbed in 300 nm thickness of the gold layer on the top of the zinc oxide nanowires can participate in the scintillation process with an efficiency of 6%. Hence, the scintillation detection efficiency of the whole detector for 9.8 keV X-ray energy is 30%. The simulation results from Geant4 and the experimental detected photons per MeV energy deposition are also used to extract the light yield of the zinc oxide nano scintillator. The results show that the light yield of the zinc oxide nanowires deposited by the electrochemical method is approximately the same as for single crystal zinc oxide scintillator (9000). Much better spatial resolution of this nano scintillator in comparison to the bulk ones is an advantage which candidates this nano scintillator for medical imaging applications.
NASA Astrophysics Data System (ADS)
Yuan, Chun-Gang; Huo, Can; Yu, Shuixin; Gui, Bing
2017-01-01
Biological synthesis approach has been regarded as a green, eco-friendly and cost effective method for nanoparticles preparation without any toxic solvents and hazardous bi-products during the process. This present study reported a facile and rapid biosynthesis method for gold nanoparticles (GNPs) from Capsicum annuum var. grossum pulp extract in a single-pot process. The aqueous pulp extract was used as biotic reducing agent for gold nanoparticle growing. Various shapes (triangle, hexagonal, and quasi-spherical shapes) were observed within range of 6-37 nm. The UV-Vis spectra showed surface plasmon resonance (SPR) peak for the formed GNPs at 560 nm after 10 min incubation at room temperature. The possible influences of extract amount, gold ion concentration, incubation time, reaction temperature and solution pH were evaluated to obtain the optimized synthesis conditions. The effects of the experimental factors on NPs synthesis process were also discussed. The produced gold nanoparticles were characterized by transform electron microscopy (TEM), X-ray diffraction (XRD), energy dispersive X-ray (EDS) and Fourier Transform infrared spectroscopy (FTIR). The results demonstrated that the as-obtained GNPs were well dispersed and stable with good catalytic activity. Biomolecules in the aqueous extract were responsible for the capping and stabilization of GNPs.
Tensor-based Dictionary Learning for Spectral CT Reconstruction
Zhang, Yanbo; Wang, Ge
2016-01-01
Spectral computed tomography (CT) produces an energy-discriminative attenuation map of an object, extending a conventional image volume with a spectral dimension. In spectral CT, an image can be sparsely represented in each of multiple energy channels, and are highly correlated among energy channels. According to this characteristics, we propose a tensor-based dictionary learning method for spectral CT reconstruction. In our method, tensor patches are extracted from an image tensor, which is reconstructed using the filtered backprojection (FBP), to form a training dataset. With the Candecomp/Parafac decomposition, a tensor-based dictionary is trained, in which each atom is a rank-one tensor. Then, the trained dictionary is used to sparsely represent image tensor patches during an iterative reconstruction process, and the alternating minimization scheme is adapted for optimization. The effectiveness of our proposed method is validated with both numerically simulated and real preclinical mouse datasets. The results demonstrate that the proposed tensor-based method generally produces superior image quality, and leads to more accurate material decomposition than the currently popular popular methods. PMID:27541628
Marrone, Babetta L.; Lacey, Ronald E.; Anderson, Daniel B.; ...
2017-08-07
Energy-efficient and scalable harvesting and lipid extraction processes must be developed in order for the algal biofuels and bioproducts industry to thrive. The major challenge for harvesting is the handling of large volumes of cultivation water to concentrate low amounts of biomass. For lipid extraction, the major energy and cost drivers are associated with disrupting the algae cell wall and drying the biomass before solvent extraction of the lipids. Here we review the research and development conducted by the Harvesting and Extraction Team during the 3-year National Alliance for Advanced Biofuels and Bioproducts (NAABB) algal consortium project. The harvesting andmore » extraction team investigated five harvesting and three wet extraction technologies at lab bench scale for effectiveness, and conducted a techoeconomic study to evaluate their costs and energy efficiency compared to available baseline technologies. Based on this study, three harvesting technologies were selected for further study at larger scale. We evaluated the selected harvesting technologies: electrocoagulation, membrane filtration, and ultrasonic harvesting, in a field study at minimum scale of 100 L/h. None of the extraction technologies were determined to be ready for scale-up; therefore, an emerging extraction technology (wet solvent extraction) was selected from industry to provide scale-up data and capabilities to produce lipid and lipid-extracted materials for the NAABB program. One specialized extraction/adsorption technology was developed that showed promise for recovering high value co-products from lipid extracts. Overall, the NAABB Harvesting and Extraction Team improved the readiness level of several innovative, energy efficient technologies to integrate with algae production processes and captured valuable lessons learned about scale-up challenges.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marrone, Babetta L.; Lacey, Ronald E.; Anderson, Daniel B.
Energy-efficient and scalable harvesting and lipid extraction processes must be developed in order for the algal biofuels and bioproducts industry to thrive. The major challenge for harvesting is the handling of large volumes of cultivation water to concentrate low amounts of biomass. For lipid extraction, the major energy and cost drivers are associated with disrupting the algae cell wall and drying the biomass before solvent extraction of the lipids. Here we review the research and development conducted by the Harvesting and Extraction Team during the 3-year National Alliance for Advanced Biofuels and Bioproducts (NAABB) algal consortium project. The harvesting andmore » extraction team investigated five harvesting and three wet extraction technologies at lab bench scale for effectiveness, and conducted a techoeconomic study to evaluate their costs and energy efficiency compared to available baseline technologies. Based on this study, three harvesting technologies were selected for further study at larger scale. We evaluated the selected harvesting technologies: electrocoagulation, membrane filtration, and ultrasonic harvesting, in a field study at minimum scale of 100 L/h. None of the extraction technologies were determined to be ready for scale-up; therefore, an emerging extraction technology (wet solvent extraction) was selected from industry to provide scale-up data and capabilities to produce lipid and lipid-extracted materials for the NAABB program. One specialized extraction/adsorption technology was developed that showed promise for recovering high value co-products from lipid extracts. Overall, the NAABB Harvesting and Extraction Team improved the readiness level of several innovative, energy efficient technologies to integrate with algae production processes and captured valuable lessons learned about scale-up challenges.« less
Combined impacts of tidal energy extraction and sea level rise in the Gulf of Maine
NASA Astrophysics Data System (ADS)
Hashemi, M. R.; Kresning, B.
2016-12-01
The objective of this study was to assess the combined effects of SLR and tidal energy extraction on the dynamics of tides in the Gulf of Maine in both US and Canadian waters. The dynamics of tides in the Gulf of Maine is dominated by tidal resonance, which generates one of the largest tidal ranges in the world. Further, sea level rise (SLR) is affecting tidal circulations globally, and in the Gulf of Maine. A large tidal energy resource is available in the Gulf of Maine, particularly in the Bay of Fundy, and is expected to be harvested in the future. Currently, more than 6 projects are operational or under development in this region (in both US and Canadian waters). Understanding the far-field impacts of tidal-stream arrays is important for future development of tidal energy extraction. The impacts include possible changes in water elevation, which can potentially increase flooding in coastal areas. Further, SLR can affect tidal energy resources and the impacts of tidal energy extraction during the project lifetime - which is usually more than 25 years. A tidal model of the Gulf of Maine was developed using Regional Ocean Model System (ROMS) at one arcminute scale. An array of turbines were simulated in the model. After validation of the model at NOAA tidal gauge stations and NERACOOS buoys, several scenarios; including SLR scenario, and tidal extraction scenario, were examined. In particular, the results of a recent research was used to assess the impacts of SLR on the boundary of the model domain, which was neglected in previous studies. The results of the impacts of the tidal energy extraction with and without the SLR were presented, and compared with those from literature. This includes the decrease of tidal range and M2 amplitude in Minas Basin due to the 2.5 GW extraction scenario, and possible changes in Massachusetts coastal area. The impacts were compared with the level of uncertainty in the model. It was shown that the impact of SLR on the dynamics of tides is more than those from energy extraction assuming 2.5 GW extraction in Minas Passage.
NASA Astrophysics Data System (ADS)
Riera, Enrique; Blanco, Alfonso; García, José; Benedito, José; Mulet, Antonio; Gallego-Juárez, Juan A.; Blasco, Miguel
2010-01-01
Oil is an important component of almonds and other vegetable substrates that can show an influence on human health. In this work the development and validation of an innovative, robust, stable, reliable and efficient ultrasonic system at pilot scale to assist supercritical CO2 extraction of oils from different substrates is presented. In the extraction procedure ultrasonic energy represents an efficient way of producing deep agitation enhancing mass transfer processes because of some mechanisms (radiation pressure, streaming, agitation, high amplitude vibrations, etc.). A previous work to this research pointed out the feasibility of integrating an ultrasonic field inside a supercritical extractor without losing a significant volume fraction. This pioneer method enabled to accelerate mass transfer and then, improving supercritical extraction times. To commercially develop the new procedure fulfilling industrial requirements, a new configuration device has been designed, implemented, tested and successfully validated for supercritical fluid extraction of oil from different vegetable substrates.
NASA Astrophysics Data System (ADS)
Cisneros, Rafael; Gao, Rui; Ortega, Romeo; Husain, Iqbal
2016-10-01
The present paper proposes a maximum power extraction control for a wind system consisting of a turbine, a permanent magnet synchronous generator, a rectifier, a load and one constant voltage source, which is used to form the DC bus. We propose a linear PI controller, based on passivity, whose stability is guaranteed under practically reasonable assumptions. PI structures are widely accepted in practice as they are easier to tune and simpler than other existing model-based methods. Real switching based simulations have been performed to assess the performance of the proposed controller.
Huang, Wen-Can; Park, Chan Woo; Kim, Jong-Duk
2017-02-01
Although microalgae are considered promising renewable sources of biodiesel, the high cost of the downstream process is a significant obstacle in large-scale biodiesel production. In this study, a novel approach for microalgal biodiesel production was developed by using the biodiesel as an extractant. First, wet microalgae with 70% water content were incubated with a mixture of biodiesel/methanol and penetration of the mixture through the cell membrane and swelling of the lipids contained in microalgae was confirmed. Significant increases of lipid droplets were observed by confocal microscopy. Second, the swelled lipid droplets in microalgae were squeezed out using mechanical stress across the cell membrane and washed with methanol. The lipid extraction efficiency reached 68%. This process does not require drying of microalgae or solvent recovery, which the most energy-intensive step in solvent-based biodiesel production. Copyright © 2016 Elsevier Ltd. All rights reserved.
White Light Emission from Vegetable Extracts
NASA Astrophysics Data System (ADS)
Singh, Vikram; Mishra, Ashok K.
2015-06-01
A mixture of extracts from two common vegetables, red pomegranate and turmeric, when photoexcited at 380 nm, produced almost pure white light emission (WLE) with Commission Internationale d’Eclairage (CIE) chromaticity index (0.35, 0.33) in acidic ethanol. It was also possible to obtain WLE in polyvinyl alcohol film (0.32, 0.25), and in gelatin gel (0.26, 0.33) using the same extract mixture. The colour temperature of the WLE was conveniently tunable by simply adjusting the concentrations of the component emitters. The primary emitting pigments responsible for contributing to WLE were polyphenols and anthocyanins from pomegranate, and curcumin from turmeric. It was observed that a cascade of Forster resonance energy transfer involving polyphenolics, curcumin and anthocyanins played a crucial role in obtaining a CIE index close to pure white light. The optimized methods of extraction of the two primary emitting pigments from their corresponding plant sources are simple, cheap and fairly green.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gubler, Philipp, E-mail: pgubler@riken.jp; RIKEN Nishina Center, Wako, Saitama 351-0198; Yamamoto, Naoki
2015-05-15
Making use of the operator product expansion, we derive a general class of sum rules for the imaginary part of the single-particle self-energy of the unitary Fermi gas. The sum rules are analyzed numerically with the help of the maximum entropy method, which allows us to extract the single-particle spectral density as a function of both energy and momentum. These spectral densities contain basic information on the properties of the unitary Fermi gas, such as the dispersion relation and the superfluid pairing gap, for which we obtain reasonable agreement with the available results based on quantum Monte-Carlo simulations.
Radio-nuclide mixture identification using medium energy resolution detectors
Nelson, Karl Einar
2013-09-17
According to one embodiment, a method for identifying radio-nuclides includes receiving spectral data, extracting a feature set from the spectral data comparable to a plurality of templates in a template library, and using a branch and bound method to determine a probable template match based on the feature set and templates in the template library. In another embodiment, a device for identifying unknown radio-nuclides includes a processor, a multi-channel analyzer, and a memory operatively coupled to the processor, the memory having computer readable code stored thereon. The computer readable code is configured, when executed by the processor, to receive spectral data, to extract a feature set from the spectral data comparable to a plurality of templates in a template library, and to use a branch and bound method to determine a probable template match based on the feature set and templates in the template library.
Quantum crystallography: A perspective.
Massa, Lou; Matta, Chérif F
2018-06-30
Extraction of the complete quantum mechanics from X-ray scattering data is the ultimate goal of quantum crystallography. This article delivers a perspective for that possibility. It is desirable to have a method for the conversion of X-ray diffraction data into an electron density that reflects the antisymmetry of an N-electron wave function. A formalism for this was developed early on for the determination of a constrained idempotent one-body density matrix. The formalism ensures pure-state N-representability in the single determinant sense. Applications to crystals show that quantum mechanical density matrices of large molecules can be extracted from X-ray scattering data by implementing a fragmentation method termed the kernel energy method (KEM). It is shown how KEM can be used within the context of quantum crystallography to derive quantum mechanical properties of biological molecules (with low data-to-parameters ratio). © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Optimization of the scan protocols for CT-based material extraction in small animal PET/CT studies
NASA Astrophysics Data System (ADS)
Yang, Ching-Ching; Yu, Jhih-An; Yang, Bang-Hung; Wu, Tung-Hsin
2013-12-01
We investigated the effects of scan protocols on CT-based material extraction to minimize radiation dose while maintaining sufficient image information in small animal studies. The phantom simulation experiments were performed with the high dose (HD), medium dose (MD) and low dose (LD) protocols at 50, 70 and 80 kVp with varying mA s. The reconstructed CT images were segmented based on Hounsfield unit (HU)-physical density (ρ) calibration curves and the dual-energy CT-based (DECT) method. Compared to the (HU;ρ) method performed on CT images acquired with the 80 kVp HD protocol, a 2-fold improvement in segmentation accuracy and a 7.5-fold reduction in radiation dose were observed when the DECT method was performed on CT images acquired with the 50/80 kVp LD protocol, showing the possibility to reduce radiation dose while achieving high segmentation accuracy.
Low-energy route for alcohol/gasohol recovery from fermentor beer. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mix, T.W.
1982-03-01
The production of gasohol directly from fermentor beer and gasoline is feasible and will enable a major reduction in the energy requirements for gasohol production. The fermentor beer is first enriched in a beer still to a 69 mol % ethanol, 31 mol % water product which is then dehydrated by extractive distillation with gasoline as the extractive agent. Gasohol is produced directly. In one version of the process, a heavy cut of gasoline, presumed available at a refinery before blending in of light components, is used as the extractive agent. The enriching column overhead vapors are used to reboilmore » the extractive distillation and steam stripping columns and to contribute to the preheating of the fermentor beer feed. Light components are blended into the heavy cut-ethanol bottom product from the extractive distillation column to form the desired gasohol. Energy requirements, including feed preheat, are 11,000 Btu per gallon of ethanol in the product gasohol. One hundred and fifty pound steam is required. In a second version, full range gasoline is used as the extractive agent. The enriching column overhead vapors are again used to reboil the extractive distillation and steam stripping columns and to contribute to the preheating of the fermentor beer feed. Light gasoline components recovered from the decanter following the overhead condenser of the extractive distillation column are blended in with the gasoline-ethanol product leaving the bottom of the extractive distillation column to form the desired gasohol. Energy requirements in this case are 13,000 Btu/gallon of ethanol in the product gasohol. In both of the above cases it is energy-conservative and desirable from a process standpoint to feed the enriched alcohol to the extractive distillation column as a liquid rather than as a vapor.« less
Ethanol production from carob extract by using Saccharomyces cerevisiae.
Turhan, Irfan; Bialka, Katherine L; Demirci, Ali; Karhan, Mustafa
2010-07-01
Carob has been widely grown in the Mediterranean region for a long time. It has been regarded as only a forest tree and has been neglected for other economical benefits. However, in recent years, this fruit has gained attention for several applications. As petroleum has become depleted, renewable energy production has started to gain attention all over the world; including the production of ethanol from underutilized agricultural products such as carob. In this project, the optimum extraction conditions were determined for the carob fruit by using the response surface design method. The obtained extract was utilized for production of ethanol by using suspended Saccharomyces cerevisiae fermentation. The effect of various fermentation parameters such as pH, media content and inoculum size were evaluated for ethanol fermentation in carob extract. Also, in order to determine economically appropriate nitrogen sources, four different nitrogen sources were evaluated. The optimum extraction condition for carob extract was determined to be 80 degrees C, 2h in 1:4 dilution rate (fruit: water ratio) according to the result of response surface analysis (115.3g/L). When the fermentation with pH at 5.5 was applied, the final ethanol concentration and production rates were 42.6g/L and 3.37 g/L/h, respectively, which were higher than using an uncontrolled pH. Among inoculum sizes of 1%, 3%, and 5%, 3% was determined as the best inoculum size. The maximum production rate and final ethanol concentration were 3.48 g/L/h and 44.51%, respectively, with an alternative nitrogen source of meat-bone meal. Overall, this study suggested that carob extract can be utilized for production of ethanol in order to meet the demands of renewable energy. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
Ellison, Candice R; Overa, Sean; Boldor, Dorin
2018-05-19
Lipids extracted from algal biomass could provide an abundant, rapidly growing, high yield feedstock for bio-diesel and other green fuels to supplement current fossil-based sources. Ultrasound pretreatment is a mechanical cell disruption method that has been shown to enhance lipid recovery from algae due to cavitation effects that disrupt algae cell walls. In this study, a locally grown mixture of Chlorella vulgaris/Cyanobacteria leptolyngbya was sonicated in an ultrasonic reactor with a clamp-on transducer prior to solvent lipid extraction. This configuration allows for a non-contact delivery method of ultrasonic energy with improved operational advantages (no fouling of transducer, continuous operation, and fully scalable design). A central composite design (CCD) was implemented to statistically analyze and evaluate the effect of ultrasonic power (350-750 W) and treatment time (5-30 min) on lipid yield. Lipid recovery was found to increase with both ultrasonic power and treatment time. Total lipid yields (on dry biomass basis) extracted via the Bligh and Dyer method from Chlorella vulgaris/cyanobacteria co-culture ranged from 8.3% for untreated algae to 16.9% for algae sonicated with 750 W power for 30 min, which corresponds to more than a doubling of lipid recovery due to ultrasound pretreatment. Increased power and treatment times were found to increase the degree of cell disruption as observed in the SEM and TEM images after ultrasonic pretreatment. Additionally, hexane (1:1 v/v) was evaluated as an alternative to the standard Bligh & Dyer (2:2:1.8 v/v/v chloroform/methanol/cell suspension) lipid extraction solvent system. On average, the Bligh and Dyer method extracted on average over twice the amount of lipids compared to hexane extraction. The lipid profile of the algae extracts indicates high concentrations of lauric acid (12:0), palmitic acid (16:0), stearic acid (18:0), oleic acid (18:1), and linoleic acid (18:2). This particular configuration of an ultrasonic system proved to be a viable method for the pretreatment of algae for enhanced lipid yields. Future research should focus on identifying alternative extraction solvents and expanding the range of treatment conditions to optimize the ultrasonic power and treatment times for maximum lipid recovery. Copyright © 2018 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheung, Gavin K. C.; Thomas, Christopher E.; Dudek, Jozef J.
We present a general class of operators resembling compact tetraquarks which have a range of colour-flavour-spin structures, transform irreducibly under the symmetries of the lattice and respect other relevant symmetries. These constructions are demonstrated in lattice QCD calculations with light quarks corresponding to m π = 391 MeV. Using the distillation framework, correlation functions involving large bases of meson-meson and tetraquark operators are computed in the isospin-1 hidden-charm and doubly-charmed sectors, and finite-volume spectra are extracted with the variational method. We find the spectra are insensitive to the addition of tetraquark operators to the bases of meson-meson operators. For themore » first time, through using diverse bases of meson-meson operators, the multiple energy levels associated with meson-meson levels which would be degenerate in the non-interacting limit are extracted reliably. The number of energy levels in each spectrum is found to be equal to the number of expected non-interacting meson-meson levels in the energy region considered and the majority of energies lie close to the non-interacting levels. Furthermore, there is no strong indication for any bound state or narrow resonance in the channels we study.« less
Tetraquark operators in lattice QCD and exotic flavour states in the charm sector
Cheung, Gavin K. C.; Thomas, Christopher E.; Dudek, Jozef J.; ...
2017-11-08
We present a general class of operators resembling compact tetraquarks which have a range of colour-flavour-spin structures, transform irreducibly under the symmetries of the lattice and respect other relevant symmetries. These constructions are demonstrated in lattice QCD calculations with light quarks corresponding to m π = 391 MeV. Using the distillation framework, correlation functions involving large bases of meson-meson and tetraquark operators are computed in the isospin-1 hidden-charm and doubly-charmed sectors, and finite-volume spectra are extracted with the variational method. We find the spectra are insensitive to the addition of tetraquark operators to the bases of meson-meson operators. For themore » first time, through using diverse bases of meson-meson operators, the multiple energy levels associated with meson-meson levels which would be degenerate in the non-interacting limit are extracted reliably. The number of energy levels in each spectrum is found to be equal to the number of expected non-interacting meson-meson levels in the energy region considered and the majority of energies lie close to the non-interacting levels. Furthermore, there is no strong indication for any bound state or narrow resonance in the channels we study.« less
Tetraquark operators in lattice QCD and exotic flavour states in the charm sector
NASA Astrophysics Data System (ADS)
Cheung, Gavin K. C.; Thomas, Christopher E.; Dudek, Jozef J.; Edwards, Robert G.
2017-11-01
We present a general class of operators resembling compact tetraquarks which have a range of colour-flavour-spin structures, transform irreducibly under the symmetries of the lattice and respect other relevant symmetries. These constructions are demonstrated in lattice QCD calculations with light quarks corresponding to m π = 391 MeV. Using the distillation framework, correlation functions involving large bases of meson-meson and tetraquark operators are computed in the isospin-1 hidden-charm and doubly-charmed sectors, and finite-volume spectra are extracted with the variational method. We find the spectra are insensitive to the addition of tetraquark operators to the bases of meson-meson operators. For the first time, through using diverse bases of meson-meson operators, the multiple energy levels associated with meson-meson levels which would be degenerate in the non-interacting limit are extracted reliably. The number of energy levels in each spectrum is found to be equal to the number of expected non-interacting meson-meson levels in the energy region considered and the majority of energies lie close to the non-interacting levels. Therefore, there is no strong indication for any bound state or narrow resonance in the channels we study.
Simulation and optimal control of wind-farm boundary layers
NASA Astrophysics Data System (ADS)
Meyers, Johan; Goit, Jay
2014-05-01
In large wind farms, the effect of turbine wakes, and their interaction leads to a reduction in farm efficiency, with power generated by turbines in a farm being lower than that of a lone-standing turbine by up to 50%. In very large wind farms or `deep arrays', this efficiency loss is related to interaction of the wind farms with the planetary boundary layer, leading to lower wind speeds at turbine level. Moreover, for these cases it has been demonstrated both in simulations and wind-tunnel experiments that the wind-farm energy extraction is dominated by the vertical turbulent transport of kinetic energy from higher regions in the boundary layer towards the turbine level. In the current study, we investigate the use of optimal control techniques combined with Large-Eddy Simulations (LES) of wind-farm boundary layer interaction for the increase of total energy extraction in very large `infinite' wind farms. We consider the individual wind turbines as flow actuators, whose energy extraction can be dynamically regulated in time so as to optimally influence the turbulent flow field, maximizing the wind farm power. For the simulation of wind-farm boundary layers we use large-eddy simulations in combination with actuator-disk and actuator-line representations of wind turbines. Simulations are performed in our in-house pseudo-spectral code SP-Wind that combines Fourier-spectral discretization in horizontal directions with a fourth-order finite-volume approach in the vertical direction. For the optimal control study, we consider the dynamic control of turbine-thrust coefficients in an actuator-disk model. They represent the effect of turbine blades that can actively pitch in time, changing the lift- and drag coefficients of the turbine blades. Optimal model-predictive control (or optimal receding horizon control) is used, where the model simply consists of the full LES equations, and the time horizon is approximately 280 seconds. The optimization is performed using a nonlinear conjugate gradient method, and the gradients are calculated by solving the adjoint LES equations. We find that the extracted farm power increases by approximately 20% when using optimal model-predictive control. However, the increased power output is also responsible for an increase in turbulent dissipation, and a deceleration of the boundary layer. Further investigating the energy balances in the boundary layer, it is observed that this deceleration is mainly occurring in the outer layer as a result of higher turbulent energy fluxes towards the turbines. In a second optimization case, we penalize boundary-layer deceleration, and find an increase of energy extraction of approximately 10%. In this case, increased energy extraction is balanced by a reduction in of turbulent dissipation in the boundary layer. J.M. acknowledges support from the European Research Council (FP7-Ideas, grant no. 306471). Simulations were performed on the computing infrastructure of the VSC Flemish Supercomputer Center, funded by the Hercules Foundation and the Flemish Government.
Leung, Ka-Ngo; Ehlers, Kenneth W.
1984-01-01
An ionization vessel is divided into an ionizing zone and an extraction zone by a magnetic filter. The magnetic filter prevents high-energy electrons from crossing from the ionizing zone to the extraction zone. A small positive voltage impressed on a plasma grid, located adjacent an extraction grid, positively biases the plasma in the extraction zone to thereby prevent positive ions from migrating from the ionizing zone to the extraction zone. Low-energy electrons, which would ordinarily be dragged by the positive ions into the extraction zone, are thereby prevented from being present in the extraction zone and being extracted along with negative ions by the extraction grid. Additional electrons are suppressed from the output flux using ExB drift provided by permanent magnets and the extractor grid electrical field.
Leung, K.N.; Ehlers, K.W.
1982-08-06
An ionization vessel is divided into an ionizing zone and an extraction zone by a magnetic filter. The magnetic filter prevents high-energy electrons from crossing from the ionizing zone to the extraction zone. A small positive voltage impressed on a plasma grid, located adjacent an extraction grid, positively biases the plasma in the extraction zone to thereby prevent positive ions from migrating from the ionizing zone to the extraction zone. Low-energy electrons, which would ordinarily be dragged by the positive ions into the extraction zone, are thereby prevented from being present in the extraction zone and being extracted along with negative ions by the extraction grid. Additional electrons are suppressed from the output flux using ExB drift provided by permanent magnets and the extractor grid electrical field.
Leung, K.N.; Ehlers, K.W.
1984-12-04
An ionization vessel is divided into an ionizing zone and an extraction zone by a magnetic filter. The magnetic filter prevents high-energy electrons from crossing from the ionizing zone to the extraction zone. A small positive voltage impressed on a plasma grid, located adjacent an extraction grid, positively biases the plasma in the extraction zone to thereby prevent positive ions from migrating from the ionizing zone to the extraction zone. Low-energy electrons, which would ordinarily be dragged by the positive ions into the extraction zone, are thereby prevented from being present in the extraction zone and being extracted along with negative ions by the extraction grid. Additional electrons are suppressed from the output flux using ExB drift provided by permanent magnets and the extractor grid electrical field. 14 figs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zare, Bijan; Faramarzi, Mohammad Ali; Sepehrizadeh, Zargham
Highlights: ► Biosynthesis of rod shape tellurium nanoparticles with a hexagonal crystal structure. ► Extraction procedure for isolation of tellurium nanoparticles from Bacillus sp. BZ. ► Extracted tellurium nanoparticles have good bactericidal activity against some bacteria. -- Abstract: In this study, a tellurium-transforming Bacillus sp. BZ was isolated from the Caspian Sea in northern Iran. The isolate was identified by various tests and 16S rDNA analysis, and then used to prepare elemental tellurium nanoparticles. The isolate was subsequently used for the intracellular biosynthesis of elemental tellurium nanoparticles. The biogenic nanoparticles were released by liquid nitrogen and purified by an n-octylmore » alcohol water extraction system. The shape, size, and composition of the extracted nanoparticles were characterized. The transmission electron micrograph showed rod-shaped nanoparticles with dimensions of about 20 nm × 180 nm. The energy dispersive X-ray and X-ray diffraction spectra respectively demonstrated that the extracted nanoparticles consisted of only tellurium and have a hexagonal crystal structure. This is the first study to demonstrate a biological method for synthesizing rod-shaped elemental tellurium by a Bacillus sp., its extraction and its antibacterial activity against different clinical isolates.« less
Characterising Tidal Flow Within AN Energetic Tidal Environment
NASA Astrophysics Data System (ADS)
Neill, S. P.; Goward Brown, A.; Lewis, M. J.
2016-02-01
The Pentland Firth is a highly energetic and complex tidal strait separating the north of Scotland with the Orkney Islands and is a key location for tidal energy exploitation. Topographic features including islands and headlands, combined with bathymetric complexities within the Pentland Firth create turbulent hydrodynamic flows which are difficult to observe. Site selection in tidal energy environments historically focuses on tidal current magnitude. Without consideration for the more complex hydrodynamics of tidal energy environments tidal energy developers may miss the opportunity to tune their devices or create environment specific tidal energy converters in order to harness the greatest potential from site. Fully characterising these tidal energy environments ensures economic energy extraction. Understanding the interaction of energy extraction with the environment will reduce uncertainty in site selection and allow mitigation of any potential environmental concerns. We apply the 3D ROMS model to the Pentland Firth with the aim of resolving uncertainties within tidal energy resource assessment. Flow magnitudes and directions are examined with a focus on tidal phasing and asymmetry and application to sediment dynamics. Using the ROMS model, it is possible to determine the extent to which the tidal resource varies temporally and spatially with tidal energy extraction. Accurately modelling the tidal dynamics within this environment ensures that potential consequences of tidal energy extraction on the surrounding environment are better understood.
Reconstructing particle masses in events with displaced vertices
NASA Astrophysics Data System (ADS)
Cottin, Giovanna
2018-03-01
We propose a simple way to extract particle masses given a displaced vertex signature in event topologies where two long-lived mother particles decay to visible particles and an invisible daughter. The mother could be either charged or neutral and the neutral daughter could correspond to a dark matter particle in different models. The method allows to extract the parent and daughter masses by using on-shell conditions and energy-momentum conservation, in addition to the displaced decay positions of the parents, which allows to solve the kinematic equations fully on an event-by-event basis. We show the validity of the method by means of simulations including detector effects. If displaced events are seen in discovery searches at the Large Hadron Collider (LHC), this technique can be applied.
Estimation of Coal Reserves for UCG in the Upper Silesian Coal Basin, Poland
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bialecka, Barbara
One of the prospective methods of coal utilization, especially in case of coal resources which are not mineable by means of conventional methods, is underground coal gasification (UCG). This technology allows recovery of coal energy 'in situ' and thus avoid the health and safety risks related to people which are inseparable from traditional coal extraction techniques.In Poland most mining areas are characterized by numerous coal beds where extraction was ceased on account of technical and economic reasons or safety issues. This article presents estimates of Polish hard coal resources, broken down into individual mines, that can constitute the basis ofmore » raw materials for the gasification process. Five mines, representing more than 4 thousand tons, appear to be UCG candidates.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mathew, Jose V.; Paul, Samit; Bhattacharjee, Sudeep
2010-05-15
An earlier study of the axial ion energy distribution in the extraction region (plasma meniscus) of a compact microwave plasma ion source showed that the axial ion energy spread near the meniscus is small ({approx}5 eV) and comparable to that of a liquid metal ion source, making it a promising candidate for focused ion beam (FIB) applications [J. V. Mathew and S. Bhattacharjee, J. Appl. Phys. 105, 96101 (2009)]. In the present work we have investigated the radial ion energy distribution (IED) under the influence of beam extraction. Initially a single Einzel lens system has been used for beam extractionmore » with potentials up to -6 kV for obtaining parallel beams. In situ measurements of IED with extraction voltages upto -5 kV indicates that beam extraction has a weak influence on the energy spread ({+-}0.5 eV) which is of significance from the point of view of FIB applications. It is found that by reducing the geometrical acceptance angle at the ion energy analyzer probe, close to unidirectional distribution can be obtained with a spread that is smaller by at least 1 eV.« less
Adekunle, Ademola; Raghavan, Vijaya
2017-01-01
In a number of energy-poor nations, peel from cassava processing represents one of the most abundant sources of lignocellulosic biomass. This peel is mostly discarded indiscriminately and eventually constitutes a problem to the environment. However, energy can be extracted from this peel in a microbial fuel cell. In this study, the viability of cassava peel extract as a substrate in a single-chamber air cathode microbial fuel cell is demonstrated, and optimum performance conditions are explored. The effects of different pretreatments on the extract are also discussed in the context of observed changes in the internal resistances, conductivity and Coulombic efficiencies. At the best conditions examined, the extract from cassava peel fermented for 168 h and adjusted to a pH of 7.63 attained a peak voltage of 687 mV ± 21 mV, a power density of 155 mW m -3 of reactor volume and a Coulombic efficiency of 11 %. Although this energy is limited to direct use, systems exist that can effectively harvest and boost the energy to levels sufficient for supplementary energy usage in cassava producing regions.
Energy or compost from green waste? - A CO{sub 2} - Based assessment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kranert, Martin, E-mail: martin.kranert@iswa.uni-stuttgart.d; Gottschall, Ralf; Bruns, Christian
2010-04-15
Green waste is increasingly extracted from the material recycling chain and, as a result of the financial subsidy arising from the German renewable energy law for the generation of energy from renewable raw materials; it is fed into the energy recovery process in biomass power stations. A reduction in climate relevant gases is also linked to the material recovery of green waste - in particular when using composts gained from the process as a new raw material in different types of potting compost and plant culture media as a replacement for peat. Unlike energy recovery, material valorisation is not currentlymore » subsidised. Through the analysis of material and energy valorisation methods for green waste, with particular emphasis on primary resource consumption and CO{sub 2}-balance, it could be determined that the use of green waste for energy generation and its recovery for material and peat replacement purposes can be considered to be on a par. Based on energy recovery or material oriented scenarios, it can be further deduced that no method on its own will achieve the desired outcome and that a combination of recycling processes is more likely to lead to a significant decrease of greenhouse gas emissions.« less
Effect of Coulomb collision on the negative ion extraction mechanism in negative ion sources.
Goto, I; Miyamoto, K; Nishioka, S; Mattei, S; Lettry, J; Abe, S; Hatayama, A
2016-02-01
To improve the H(-) ion beam optics, it is necessary to understand the energy relaxation process of surface produced H(-) ions in the extraction region of Cs seeded H(-) ion sources. Coulomb collisions of charged particles have been introduced to the 2D3V-PIC (two dimension in real space and three dimension in velocity space particle-in-cell) model for the H(-) extraction by using the binary collision model. Due to Coulomb collision, the lower energy part of the ion energy distribution function of H(-) ions has been greatly increased. The mean kinetic energy of the surface produced H(-) ions has been reduced to 0.65 eV from 1.5 eV. It has been suggested that the beam optics of the extracted H(-) ion beam is strongly affected by the energy relaxation process due to Coulomb collision.
High-resolution lithospheric imaging with seismic interferometry
NASA Astrophysics Data System (ADS)
Ruigrok, Elmer; Campman, Xander; Draganov, Deyan; Wapenaar, Kees
2010-10-01
In recent years, there has been an increase in the deployment of relatively dense arrays of seismic stations. The availability of spatially densely sampled global and regional seismic data has stimulated the adoption of industry-style imaging algorithms applied to converted- and scattered-wave energy from distant earthquakes, leading to relatively high-resolution images of the lower crust and upper mantle. We use seismic interferometry to extract reflection responses from the coda of transmitted energy from distant earthquakes. In theory, higher-resolution images can be obtained when migrating reflections obtained with seismic interferometry rather than with conversions, traditionally used in lithospheric imaging methods. Moreover, reflection data allow the straightforward application of algorithms previously developed in exploration seismology. In particular, the availability of reflection data allows us to extract from it a velocity model using standard multichannel data-processing methods. However, the success of our approach relies mainly on a favourable distribution of earthquakes. In this paper, we investigate how the quality of the reflection response obtained with interferometry is influenced by the distribution of earthquakes and the complexity of the transmitted wavefields. Our analysis shows that a reasonable reflection response could be extracted if (1) the array is approximately aligned with an active zone of earthquakes, (2) different phase responses are used to gather adequate angular illumination of the array and (3) the illumination directions are properly accounted for during processing. We illustrate our analysis using a synthetic data set with similar illumination and source-side reverberation characteristics as field data recorded during the 2000-2001 Laramie broad-band experiment. Finally, we apply our method to the Laramie data, retrieving reflection data. We extract a 2-D velocity model from the reflections and use this model to migrate the data. On the final reflectivity image, we observe a discontinuity in the reflections. We interpret this discontinuity as the Cheyenne Belt, a suture zone between Archean and Proterozoic terranes.
Pei, Yan-Ling; Wu, Zhi-Sheng; Shi, Xin-Yuan; Zhou, Lu-Wei; Qiao, Yan-Jiang
2014-09-01
The present paper firstly reviewed the research progress and main methods of NIR spectral assignment coupled with our research results. Principal component analysis was focused on characteristic signal extraction to reflect spectral differences. Partial least squares method was concerned with variable selection to discover characteristic absorption band. Two-dimensional correlation spectroscopy was mainly adopted for spectral assignment. Autocorrelation peaks were obtained from spectral changes, which were disturbed by external factors, such as concentration, temperature and pressure. Density functional theory was used to calculate energy from substance structure to establish the relationship between molecular energy and spectra change. Based on the above reviewed method, taking a NIR spectral assignment of chlorogenic acid as example, a reliable spectral assignment for critical quality attributes of Chinese materia medica (CMM) was established using deuterium technology and spectral variable selection. The result demonstrated the assignment consistency according to spectral features of different concentrations of chlorogenic acid and variable selection region of online NIR model in extract process. Although spectral assignment was initial using an active pharmaceutical ingredient, it is meaningful to look forward to the futurity of the complex components in CMM. Therefore, it provided methodology for NIR spectral assignment of critical quality attributes in CMM.
Zhang, Wei-Nong; Liu, Da-Chuan
2005-01-01
A new process for the preparation of soybean protein concentrate (SPC) by directly extracting full-fat soy flour with a mixture of hexane and aqueous ethanol was established. Compared with conventional methods, it has some advantages, such as saving energy and reducing protein denaturation caused by heat action during solvent recovery, because this process saves one step of solvent recovery. The effects of aqueous ethanol concentration and the mixure ratio (hexane to ethanol) on the degree of protein denaturation and product quality were investigated, on the basis of which the orthogonal tests were performed. The optimum technical parameters were obtained by analyzing the results of the orthogonal tests with statistical methods. We found that SPC can be obtained by extracting full-fat soy flour under the following conditions: mixture ratio hexane: 90% ethanol, 9:1, v/v; extraction temperature, 45 degrees C; ratio of solid to solvents, (1:2 w/v); and 5 repeated extractions (15 min each time). The results of quality analysis showed that solubility of the product was improved significantly [nitrogen solubility index (NSI) 46.6%] compared with that for ethanol washing of protein concentrate (NSI 8.7%).
NASA Astrophysics Data System (ADS)
Suyanto, A.; Noor, E.; Fahma, F.; Rusli, M. S.; Djatna, T.
2018-01-01
‘Kawista’ (Feronia limonia) as a tropical fruit has unique flavor that can be applied as a flavor for food products. Flavor as volatile components are unstable by environment factors such as temperature and storage. Flavor nano emulsification form to improve the stability towards environment and increase its use in food products. Research carried out is system development of the nano emulsification Kawista extract flavor with sonication method. The best treatments are selected by Response Surface Methodology (RSM) for independent variable are amplitude (70-100%), time (90-150s) and temperature (5-45°C) controlled by the software of the device. The Flavor Extraction by maceration technique extended highest yield and flavor components. Nano-emulsions made with composition 1% (w/w) flavor extract, 2% (w/w) surfactant (tween 80), 0.25% Gum, and 96.75% (w/w) deionized water. The probe of sonication successfully for preparing stable O/W nano emulsions at amplitude, time and temperature 81.01%, 150s, 45°C, respectively. Characteristic of nano-emulsions i.e energy input (15.489J), viscosity (2.076 mPa.s), droplet size (13.446nm), and Polydispersity index (0.469).
Energy harvesting from the interaction of a Lamb dipole with a flexible cantilever
NASA Astrophysics Data System (ADS)
Tang, Hui; Wang, Chenglei
2017-11-01
Energy harvesting from interactions of coherent flow structures with flexible solid structures can be used for powering miniature electronic devices. Although effective, the fundamental mechanism of such an energy extraction process has not been fully understood. Therefore, this study aims to provide more physical insights into this problem. The coherent flow structure is represented by a Lamb dipole, and the solid structure is assumed as a two-dimensional flexible cantilever. The cantilever is placed along the propagation direction of the dipole, with its fixed end initially towards or away from the dipole and its lateral distance from the dipole center varied. As the dipole passes through the cantilever, the latter can extract energy from the former through effective interactions. Such a two-dimensional fluid-structure interaction problem is numerically studied at a low Reynolds number of 200 using a lattice Boltzmann method (LBM) based numerical framework. The simulation results reveal that the flexible cantilever with a moderate stiffness is more beneficial to the energy harvesting, and it can scavenge more energy from the ambient vortices when its fixed end is initially away from the dipole with a relatively small lateral distance. The authors gratefully acknowledge the financial support for this study from the Research Grants Council of Hong Kong under General Research Fund (Project No. PolyU 152493/16E).
2011-01-01
Background There is an increasing demand for renewable resources to replace fossil fuels. However, different applications such as the production of secondary biofuels or combustion for energy production require different wood properties. Therefore, high-throughput methods are needed for rapid screening of wood in large scale samples, e.g., to evaluate the outcome of tree breeding or genetic engineering. In this study, we investigated the intra-specific variability of lignin and energy contents in extractive-free wood of hybrid poplar progenies (Populus trichocarpa × deltoides) and tested if the range was sufficient for the development of quantitative prediction models based on Fourier transform infrared spectroscopy (FTIR). Since lignin is a major energy-bearing compound, we expected that the energy content of wood would be positively correlated with the lignin content. Results Lignin contents of extractive-free poplar wood samples determined by the acetyl bromide method ranged from 23.4% to 32.1%, and the calorific values measured with a combustion calorimeter varied from 17260 to 19767 J g-1. For the development of calibration models partial least square regression and cross validation was applied to correlate FTIR spectra determined with an attenuated total reflectance (ATR) unit to measured values of lignin or energy contents. The best models with high coefficients of determination (R2 (calibration) = 0.91 and 0.90; R2 (cross-validation) = 0.81 and 0.79) and low root mean square errors of cross validation (RMSECV = 0.77% and 62 J g-1) for lignin and energy determination, respectively, were obtained after data pre-processing and automatic wavenumber restriction. The calibration models were validated by analyses of independent sets of wood samples yielding R2 = 0.88 and 0.86 for lignin and energy contents, respectively. Conclusions These results show that FTIR-ATR spectroscopy is suitable as a high-throughput method for lignin and energy estimations in large data sets. Our study revealed that the intra-specific variations in lignin and energy contents were unrelated to each other and that the lignin content, therefore, was no predictor of the energy content. Employing principle component analyses we showed that factor loadings for the energy content were mainly associated with carbohydrate ring vibrations, whereas those for lignin were mainly related to aromatic compounds. Therefore, our analysis suggests that it may be possible to optimize the energy content of trees without concomitant increase in lignin. PMID:21477346
Focused ion beam source method and apparatus
Pellin, Michael J.; Lykke, Keith R.; Lill, Thorsten B.
2000-01-01
A focused ion beam having a cross section of submicron diameter, a high ion current, and a narrow energy range is generated from a target comprised of particle source material by laser ablation. The method involves directing a laser beam having a cross section of critical diameter onto the target, producing a cloud of laser ablated particles having unique characteristics, and extracting and focusing a charged particle beam from the laser ablated cloud. The method is especially suited for producing focused ion beams for semiconductor device analysis and modification.
Lin, Zhichao; Wu, Zhongyu
2009-05-01
A rapid and reliable radiochemical method coupled with a simple and compact plating apparatus was developed, validated, and applied for the analysis of (210)Po in variety of food products and bioassay samples. The method performance characteristics, including accuracy, precision, robustness, and specificity, were evaluated along with a detailed measurement uncertainty analysis. With high Po recovery, improved energy resolution, and effective removal of interfering elements by chromatographic extraction, the overall method accuracy was determined to be better than 5% with measurement precision of 10%, at 95% confidence level.
Jian, Hou; Jing, Yang; Peidong, Zhang
2015-01-01
Life cycle assessment (LCA) has been widely used to analyze various pathways of biofuel preparation from "cradle to grave." Effects of nitrogen supply for algae cultivation and technology of algal oil extraction on life cycle fossil energy ratio of biodiesel are assessed in this study. Life cycle fossil energy ratio of Chlorella vulgaris based biodiesel is improved by growing algae under nitrogen-limited conditions, while the life cycle fossil energy ratio of biodiesel production from Phaeodactylum tricornutum grown with nitrogen deprivation decreases. Compared to extraction of oil from dried algae, extraction of lipid from wet algae with subcritical cosolvents achieves a 43.83% improvement in fossil energy ratio of algal biodiesel when oilcake drying is not considered. The outcome for sensitivity analysis indicates that the algal oil conversion rate and energy content of algae are found to have the greatest effects on the LCA results of algal biodiesel production, followed by utilization ratio of algal residue, energy demand for algae drying, capacity of water mixing, and productivity of algae.
Jian, Hou; Jing, Yang; Peidong, Zhang
2015-01-01
Life cycle assessment (LCA) has been widely used to analyze various pathways of biofuel preparation from “cradle to grave.” Effects of nitrogen supply for algae cultivation and technology of algal oil extraction on life cycle fossil energy ratio of biodiesel are assessed in this study. Life cycle fossil energy ratio of Chlorella vulgaris based biodiesel is improved by growing algae under nitrogen-limited conditions, while the life cycle fossil energy ratio of biodiesel production from Phaeodactylum tricornutum grown with nitrogen deprivation decreases. Compared to extraction of oil from dried algae, extraction of lipid from wet algae with subcritical cosolvents achieves a 43.83% improvement in fossil energy ratio of algal biodiesel when oilcake drying is not considered. The outcome for sensitivity analysis indicates that the algal oil conversion rate and energy content of algae are found to have the greatest effects on the LCA results of algal biodiesel production, followed by utilization ratio of algal residue, energy demand for algae drying, capacity of water mixing, and productivity of algae. PMID:26000338
Modelling and simulation of a moving interface problem: freeze drying of black tea extract
NASA Astrophysics Data System (ADS)
Aydin, Ebubekir Sıddık; Yucel, Ozgun; Sadikoglu, Hasan
2017-06-01
The moving interface separates the material that is subjected to the freeze drying process as dried and frozen. Therefore, the accurate modeling the moving interface reduces the process time and energy consumption by improving the heat and mass transfer predictions during the process. To describe the dynamic behavior of the drying stages of the freeze-drying, a case study of brewed black tea extract in storage trays including moving interface was modeled that the heat and mass transfer equations were solved using orthogonal collocation method based on Jacobian polynomial approximation. Transport parameters and physical properties describing the freeze drying of black tea extract were evaluated by fitting the experimental data using Levenberg-Marquardt algorithm. Experimental results showed good agreement with the theoretical predictions.
Exploring the potential energy landscape over a large parameter-space
NASA Astrophysics Data System (ADS)
He, Yang-Hui; Mehta, Dhagash; Niemerg, Matthew; Rummel, Markus; Valeanu, Alexandru
2013-07-01
Solving large polynomial systems with coefficient parameters are ubiquitous and constitute an important class of problems. We demonstrate the computational power of two methods — a symbolic one called the Comprehensive Gröbner basis and a numerical one called coefficient-parameter polynomial continuation — applied to studying both potential energy landscapes and a variety of questions arising from geometry and phenomenology. Particular attention is paid to an example in flux compactification where important physical quantities such as the gravitino and moduli masses and the string coupling can be efficiently extracted.
NASA Astrophysics Data System (ADS)
Yu, Jie; Wang, Sen-Ming; Yuan, Kai-Jun; Cong, Shu-Lin
2006-09-01
The method of time-dependent quantum wave packet dynamics is used to calculate the femtosecond pump-probe photoelectron spectra and study the wave packet dynamic processes of the double-minimum potential state 61Σ+ of NaK in intense laser fields. The evolutions of the wave packet and the photoelectron energy spectra with time and internuclear distance are described in detail. The wave packet dynamic information of the 61Σ+ state can be extracted from the photoelectron energy spectra.
Sharma, Dharmendar Kumar; Irfanullah, Mir; Basu, Santanu Kumar; Madhu, Sheri; De, Suman; Jadhav, Sameer; Ravikanth, Mangalampalli; Chowdhury, Arindam
2017-01-18
While fluorescence microscopy has become an essential tool amongst chemists and biologists for the detection of various analyte within cellular environments, non-uniform spatial distribution of sensors within cells often restricts extraction of reliable information on relative abundance of analytes in different subcellular regions. As an alternative to existing sensing methodologies such as ratiometric or FRET imaging, where relative proportion of analyte with respect to the sensor can be obtained within cells, we propose a methodology using spectrally-resolved fluorescence microscopy, via which both the relative abundance of sensor as well as their relative proportion with respect to the analyte can be simultaneously extracted for local subcellular regions. This method is exemplified using a BODIPY sensor, capable of detecting mercury ions within cellular environments, characterized by spectral blue-shift and concurrent enhancement of emission intensity. Spectral emission envelopes collected from sub-microscopic regions allowed us to compare the shift in transition energies as well as integrated emission intensities within various intracellular regions. Construction of a 2D scatter plot using spectral shifts and emission intensities, which depend on the relative amount of analyte with respect to sensor and the approximate local amounts of the probe, respectively, enabled qualitative extraction of relative abundance of analyte in various local regions within a single cell as well as amongst different cells. Although the comparisons remain semi-quantitative, this approach involving analysis of multiple spectral parameters opens up an alternative way to extract spatial distribution of analyte in heterogeneous systems. The proposed method would be especially relevant for fluorescent probes that undergo relatively nominal shift in transition energies compared to their emission bandwidths, which often restricts their usage for quantitative ratiometric imaging in cellular media due to strong cross-talk between energetically separated detection channels.
NASA Astrophysics Data System (ADS)
Sharma, Dharmendar Kumar; Irfanullah, Mir; Basu, Santanu Kumar; Madhu, Sheri; De, Suman; Jadhav, Sameer; Ravikanth, Mangalampalli; Chowdhury, Arindam
2017-03-01
While fluorescence microscopy has become an essential tool amongst chemists and biologists for the detection of various analyte within cellular environments, non-uniform spatial distribution of sensors within cells often restricts extraction of reliable information on relative abundance of analytes in different subcellular regions. As an alternative to existing sensing methodologies such as ratiometric or FRET imaging, where relative proportion of analyte with respect to the sensor can be obtained within cells, we propose a methodology using spectrally-resolved fluorescence microscopy, via which both the relative abundance of sensor as well as their relative proportion with respect to the analyte can be simultaneously extracted for local subcellular regions. This method is exemplified using a BODIPY sensor, capable of detecting mercury ions within cellular environments, characterized by spectral blue-shift and concurrent enhancement of emission intensity. Spectral emission envelopes collected from sub-microscopic regions allowed us to compare the shift in transition energies as well as integrated emission intensities within various intracellular regions. Construction of a 2D scatter plot using spectral shifts and emission intensities, which depend on the relative amount of analyte with respect to sensor and the approximate local amounts of the probe, respectively, enabled qualitative extraction of relative abundance of analyte in various local regions within a single cell as well as amongst different cells. Although the comparisons remain semi-quantitative, this approach involving analysis of multiple spectral parameters opens up an alternative way to extract spatial distribution of analyte in heterogeneous systems. The proposed method would be especially relevant for fluorescent probes that undergo relatively nominal shift in transition energies compared to their emission bandwidths, which often restricts their usage for quantitative ratiometric imaging in cellular media due to strong cross-talk between energetically separated detection channels. Dedicated to Professor Kankan Bhattacharyya.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hiler, E.A.; Stout, B.A.
1985-01-01
This monograph presents a review of the status of biomass as an alternative energy source, with particular emphasis on the energy research programs of the Texas A and M University System. Eight chapters include joint research efforts in thermochemical conversion (combustion, gasification, pyrolysis), biological conversion (anaerobic digestion, fermentation), and plant oil extraction (physical expelling, solvent extraction). Six chapters are indexed separately for inclusion in the Energy Data Base and in Energy Abstracts for Policy Analysis.
Progress on lipid extraction from wet algal biomass for biodiesel production.
Ghasemi Naghdi, Forough; González González, Lina M; Chan, William; Schenk, Peer M
2016-11-01
Lipid recovery and purification from microalgal cells continues to be a significant bottleneck in biodiesel production due to high costs involved and a high energy demand. Therefore, there is a considerable necessity to develop an extraction method which meets the essential requirements of being safe, cost-effective, robust, efficient, selective, environmentally friendly, feasible for large-scale production and free of product contamination. The use of wet concentrated algal biomass as a feedstock for oil extraction is especially desirable as it would avoid the requirement for further concentration and/or drying. This would save considerable costs and circumvent at least two lengthy processes during algae-based oil production. This article provides an overview on recent progress that has been made on the extraction of lipids from wet algal biomass. The biggest contributing factors appear to be the composition of algal cell walls, pre-treatments of biomass and the use of solvents (e.g. a solvent mixture or solvent-free lipid extraction). We compare recently developed wet extraction processes for oleaginous microalgae and make recommendations towards future research to improve lipid extraction from wet algal biomass. © 2016 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.
NASA Astrophysics Data System (ADS)
Liu, Jian; Bearden, Mark D.; Fernandez, Carlos A.; Fifield, Leonard S.; Nune, Satish K.; Motkuri, Radha K.; Koech, Philip K.; McGrail, B. Pete
2018-03-01
Magnesium (Mg) has many useful applications especially in the form of various Mg alloys that can decrease weight while increasing strength compared with common steels. To increase the affordability and minimize environment consequence, a novel catalyzed organo-metathetical (COMET) process was proposed to extract Mg from seawater aiming to achieve a significant reduction in total energy and production cost compared with the melting salt electrolysis method currently adapted by US Mg LLC. A process flow sheet for a reference COMET process was set up using Aspen Plus. The energy consumption, production cost, and CO2 emissions were estimated using the Aspen economic analyzer. Our results showed that it is possible to produce Mg from seawater with a production cost of 2.0/kg-Mg while consuming about 35.6 kWh/kg-Mg and releasing 7.7 kg CO2/kg-Mg. Under the simulated conditions, the reference COMET process maintains a comparable CO2 emission rate, saves about 40% in production cost, and saves about 15% in energy consumption compared with a simplified US Mg process.
NASA Technical Reports Server (NTRS)
Bomani, Bilal Mark McDowell; Link, Dirk; Kail, Brian; Morreale, Bryan; Lee, Eric S.; Gigante, Bethany M.; Hendricks, Robert C.
2014-01-01
Finding a viable and sustainable source of renewable energy is a global task. Biofuels as a renewable energy source can potentially be a viable option for sustaining long-term energy needs. Biodiesel from halophytes shows great promise due to their ability to serve not only as a fuel source, but a food source as well. Halophytes are one of the few biomass plant species that can tolerate a wide range of saline conditions. We investigate the feasibility of using the halophyte, Salicornia virginica as a biofuel source by conducting a series of experiments utilizing various growth and salinity conditions. The goal is to determine if the saline content of Salicornia virginica in our indoor growth vs outdoor growth conditions has an influence on lipid recovery and total biomass composition. We focused on using standard lipid extraction protocols and characterization methods to evaluate twelve Salicornia virginica samples under six saline values ranging from freshwater to seawater and two growth conditions. The overall goal is to develop an optimal lipid extraction protocol for Salicornia virginica and potentially apply this protocol to halophytes in general.
Extracting ligands from receptors by reversed targeted molecular dynamics.
Wolf, Romain M
2015-11-01
Short targeted MD trajectories are used to expel ligands from binding sites. The expulsion is governed by a linear increase of the target RMSD value, growing from zero to an arbitrary chosen final RMSD that forces the ligand to a selected distance outside of the receptor. The RMSD lag (i.e., the difference between the imposed and the actual RMSD) can be used to follow barriers encountered by the ligand during its way out of the receptor. The force constant used for the targeted MD can transform the RMSD lag into a strain energy. Integration of the (time-dependent) strain energy over time yields a value with the dimensions of "action" (i.e, energy multiplied by time) and can serve as a measure for the overall effort required to extract the ligand from its binding site. Possibilities to compare (numerically and graphically) the randomly detected exit pathways are discussed. As an example, the method is tested on the exit of bisphenol A from the human estrogen-related receptor [Formula: see text] and of GW0072 from the peroxysome proliferator activated receptor.
TU-G-204-02: Automatic Sclerotic Bone Metastases Detection in the Pelvic Region From Dual Energy CT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fehr, D; Schmidtlein, C; Hwang, S
Purpose: To automatically detect sclerotic bone metastases in the pelvic region using dual energy computed tomography (DECT). Methods: We developed a two stage algorithm to automatically detect sclerotic bone metastases in the pelvis from DECT for patients with multiple bone metastatic lesions and with hip implants. The first stage consists of extracting the bone and marrow regions by using a support vector machine (SVM) classifier. We employed a novel representation of the DECT images using multi-material decomposition, which represents each voxel as a mixture of different physical materials (e.g. bone+water+fat). Following the extraction of bone and marrow, in the secondmore » stage, a bi -histogram equalization method was employed to enhance the contrast to reveal the bone metastases. Next, meanshift segmentation was performed to separate the voxels by their intensity levels. Finally, shape-based filtering was performed to extract the possible locations of the metastatic lesions using multiple shape criteria. We used the following shape parameters: area, eccentricity, major and minor axis, perimeter and skeleton. Results: A radiologist with several years of experience with DECT manually labeled 64 regions consisting of metastatic lesions from 10 different patients. However, the patients had many more metastasic lesions throughout the pelvis. Our method correctly identified 46 of the marked 64 regions (72%). In addition, our method also identified several other lesions, which can then be validated by the radiologist. The missed lesions were typically very large elongated regions consisting of several islands of very small (<4mm) lesions. Conclusion: We developed an algorithm to automatically detect sclerotic lesions in the pelvic region from DECT. Preliminary assessment shows that our algorithm generated lesions agreeing with the radiologist generated candidate regions. Furthermore, our method reveals additional lesions that can be inspected by the radiologist, thereby, reducing radiologist effort in identifying all the lesions with poor contrast from the DECT images.« less
Enhancement of Extraction of Uranium from Seawater
DOE Office of Scientific and Technical Information (OSTI.GOV)
Al-Sheikhly, Mohamad; Dietz, Travis; Tsinas, Zois
2016-04-01
Even at a concentration of 3 μg/L, the world’s oceans contain a thousand times more uranium than currently know terrestrial sources. In order to take advantage of this stockpile, methods and materials must be developed to extract it efficiently, a difficult task considering the very low concentration of the element and the competition for extraction by other atoms in seawater such as sodium, calcium, and vanadium. The majority of current research on methods to extract uranium from seawater are vertical explorations of the grafting of amidoxime ligand, which was originally discovered and promoted by Japanese studies in the late 1980s.more » Our study expands on this research horizontally by exploring the effectiveness of novel uranium extraction ligands grafted to the surface of polymer substrates using radiation. Through this expansion, a greater understanding of uranium binding chemistry and radiation grafting effects on polymers has been obtained. While amidoxime-functionalized fabrics have been shown to have the greatest extraction efficiency so far, they suffer from an extensive chemical processing step which involves treatment with powerful basic solutions. Not only does this add to the chemical waste produced in the extraction process and add to the method’s complexity, but it also significantly impacts the regenerability of the amidoxime fabric. The approach of this project has been to utilize alternative, commercially available monomers capable of extracting uranium and containing a carbon-carbon double bond to allow it to be grafted using radiation, specifically phosphate, oxalate, and azo monomers. The use of commercially available monomers and radiation grafting with electron beam or gamma irradiation will allow for an easily scalable fabrication process once the technology has been optimized. The need to develop a cheap and reliable method for extracting uranium from seawater is extremely valuable to energy independence and will extend the quantity of uranium available to the nuclear power industry far into the future. The development of this technology will also promote science in relation to the extraction of other elements from seawater which could expand the known stockpiles of other highly desirable materials.« less
Enhancement of Extraction of Uranium from Seawater – Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dietz, Travis Cameron; Tsinas, Zois; Tomaszewski, Claire
2016-05-16
Even at a concentration of 3 μg/L, the world’s oceans contain a thousand times more uranium than currently know terrestrial sources. In order to take advantage of this stockpile, methods and materials must be developed to extract it efficiently, a difficult task considering the very low concentration of the element and the competition for extraction by other atoms in seawater such as sodium, calcium, and vanadium. The majority of current research on methods to extract uranium from seawater are vertical explorations of the grafting of amidoxime ligand, which was originally discovered and promoted by Japanese studies in the late 1980s.more » Our study expands on this research horizontally by exploring the effectiveness of novel uranium extraction ligands grafted to the surface of polymer substrates using radiation. Through this expansion, a greater understanding of uranium binding chemistry and radiation grafting effects on polymers has been obtained. While amidoxime-functionalized fabrics have been shown to have the greatest extraction efficiency so far, they suffer from an extensive chemical processing step which involves treatment with powerful basic solutions. Not only does this add to the chemical waste produced in the extraction process and add to the method’s complexity, but it also significantly impacts the regenerability of the amidoxime fabric. The approach of this project has been to utilize alternative, commercially available monomers capable of extracting uranium and containing a carbon-carbon double bond to allow it to be grafted using radiation, specifically phosphate, oxalate, and azo monomers. The use of commercially available monomers and radiation grafting with electron beam or gamma irradiation will allow for an easily scalable fabrication process once the technology has been optimized. The need to develop a cheap and reliable method for extracting uranium from seawater is extremely valuable to energy independence, and will extend the quantity of uranium available to the nuclear power industry far into the future. The development of this technology will also promote science in relation to the extraction of other elements from seawater, which could expand the known stockpiles of other highly desirable materials.« less
Pashaei, Yaser; Ghorbani-Bidkorbeh, Fatemeh; Shekarchi, Maryam
2017-05-26
In the present study, superparamagnetic graphene oxide-Fe 3 O 4 nanocomposites were successfully prepared by a modified impregnation method (MGO mi ) and their application as a sorbent in the magnetic-dispersive solid phase extraction (M-dSPE) mode to the preconcentration and determination of tamsulosin hydrochloride (TMS) in human plasma was investigated by coupling with high performance liquid chromatography-ultraviolet detection (HPLC-UV). The structure, morphology and magnetic properties of the prepared nanocomposites were characterized using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), and vibrating sample magnetometry (VSM). Some factors affecting the extraction efficiency, including the pH value, amount of sorbent, extraction time, elution solvent and its volume, and desorption time were studied and optimized. Magnetic nanocomposites plasma extraction of TMS following HPLC analyses showed a linear calibration curve in the range of 0.5-50.0ngmL -1 with an acceptable correlation coefficient (R 2 =0.9988). The method was sensitive, with a low limit of detection (0.17ngmL -1 ) and quantification (0.48ngmL -1 ). Inter- and intra-day precision expressed as relative standard deviation (n=3) and the preconcentration factor, were found to be 5.6-7.2%, 2.9-4.2% and 10, respectively. Good recoveries (98.1-101.4%) with low relative standard deviations (4.2-5.0%) indicated that the matrices under consideration do not significantly affect the extraction process. Due to its high precision and accuracy, the developed method may be a HPLC-UV alternative with M-dSPE for bioequivalence analysis of TMS in human plasma. Copyright © 2017 Elsevier B.V. All rights reserved.
An Active Contour Model Based on Adaptive Threshold for Extraction of Cerebral Vascular Structures.
Wang, Jiaxin; Zhao, Shifeng; Liu, Zifeng; Tian, Yun; Duan, Fuqing; Pan, Yutong
2016-01-01
Cerebral vessel segmentation is essential and helpful for the clinical diagnosis and the related research. However, automatic segmentation of brain vessels remains challenging because of the variable vessel shape and high complex of vessel geometry. This study proposes a new active contour model (ACM) implemented by the level-set method for segmenting vessels from TOF-MRA data. The energy function of the new model, combining both region intensity and boundary information, is composed of two region terms, one boundary term and one penalty term. The global threshold representing the lower gray boundary of the target object by maximum intensity projection (MIP) is defined in the first-region term, and it is used to guide the segmentation of the thick vessels. In the second term, a dynamic intensity threshold is employed to extract the tiny vessels. The boundary term is used to drive the contours to evolve towards the boundaries with high gradients. The penalty term is used to avoid reinitialization of the level-set function. Experimental results on 10 clinical brain data sets demonstrate that our method is not only able to achieve better Dice Similarity Coefficient than the global threshold based method and localized hybrid level-set method but also able to extract whole cerebral vessel trees, including the thin vessels.
Yang, Bin; Mahjouri-Samani, Masoud; Rouleau, Christopher M.; ...
2016-06-10
A promising way to advance perovskite solar cells is to improve the quality of the electron transport material e.g., titanium dioxide (TiO 2) in a direction that increases electron transport and extraction. Although dense TiO 2 films are easily grown in solution, efficient electron extraction suffers due to a lack of interfacial contact area with the perovskite. Conversely, mesoporous films do offer high surface-area-to-volume ratios, thereby promoting efficient electron extraction, but their morphology is relatively difficult to control via conventional solution synthesis methods. Here, a pulsed laser deposition method was used to assemble TiO 2 nanoparticles into TiO 2 hierarchicalmore » nanoarchitectures having the anatase crystal structure, and prototype solar cells employing these structures yielded power conversion efficiencies of ~ 14%. Our approach demonstrates a way to grow high aspect-ratio TiO 2 nanostructures for improved interfacial contact between TiO 2 and perovskite materials, leading to high electron-hole pair separation and electron extraction efficiencies for superior photovoltaic performance. In addition, compared to conventional solution-processed TiO 2 films that require 500 °C to obtain a good crystallinity, our relatively low temperature (300 °C) TiO 2 processing method may promote reduced energy-consumption during device fabrication as well as enable compatibility with various flexible polymer substrates.« less
Life cycle assessment of camelina oil derived biodiesel and jet fuel in the Canadian Prairies.
Li, Xue; Mupondwa, Edmund
2014-05-15
This study evaluated the environmental impact of biodiesel and hydroprocessed renewable jet fuel derived from camelina oil in terms of global warming potential, human health, ecosystem quality, and energy resource consumption. The life cycle inventory is based on production activities in the Canadian Prairies and encompasses activities ranging from agricultural production to oil extraction and fuel conversion. The system expansion method is used in this study to avoid allocation and to credit input energy to co-products associated with the products displaced in the market during camelina oil extraction and fuel processing. This is the preferred allocation method for LCA analysis in the context of most renewable and sustainable energy programs. The results show that greenhouse gas (GHG) emissions from 1 MJ of camelina derived biodiesel ranged from 7.61 to 24.72 g CO2 equivalent and 3.06 to 31.01 kg CO2/MJ equivalent for camelina HRJ fuel. Non-renewable energy consumption for camelina biodiesel ranged from 0.40 to 0.67 MJ/MJ; HRJ fuel ranged from -0.13 to 0.52 MJ/MJ. Camelina oil as a feedstock for fuel production accounted for the highest contribution to overall environmental performance, demonstrating the importance of reducing environmental burdens during the agricultural production process. Attaining higher seed yield would dramatically lower environmental impacts associated with camelina seed, oil, and fuel production. The lower GHG emissions and energy consumption associated with camelina in comparison with other oilseed derived fuel and petroleum fuel make camelina derived fuel from Canadian Prairies environmentally attractive. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.
Shimoda, Yoichi; Han, Junkyu; Kawada, Kiyokazu; Smaoui, Abderrazak; Isoda, Hiroko
2012-01-01
Energy metabolism is a very important process to improve and maintain health from the point of view of physiology. It is well known that the intracellular ATP production is contributed to energy metabolism in cells. Cistus monspeliensis is widely used as tea, spices, and medical herb; however, it has not been focusing on the activation of energy metabolism. In this study, C. monspeliensis was investigated as the food resources by activation of energy metabolism in human intestinal epithelial cells. C. monspeliensis extract showed high antioxidant ability. In addition, the promotion of metabolites of glycolysis and TCA cycle was induced by C. monspeliensis treatment. These results suggest that C. monspeliensis extract has an ability to enhance the energy metabolism in human intestinal cells. PMID:22523469
Status of the Magma Energy Project
NASA Astrophysics Data System (ADS)
Dunn, J. C.
The current magma energy project is assessing the engineering feasibility of extracting thermal energy directly from crustal magma bodies. The estimated size of the U.S. resource (50,000 to 500,000 quads) suggests a considerable potential impact on future power generation. In a previous seven-year study, we concluded that there are no insurmountable barriers that would invalidate the magma energy concept. Several concepts for drilling, energy extraction, and materials survivability were successfully demonstrated in Kilauea Iki lava lake, Hawaii. The present program is addressing the engineering design problems associated with accessing magma bodies and extracting thermal energy for power generation. The normal stages for development of a geothermal resource are being investigated: exploration, drilling and completions, production, and surface power plant design. Current status of the engineering program and future plans are described.
NASA Astrophysics Data System (ADS)
Elhussein, Elaf Abdelillah Ali; Şahin, Selin
2018-07-01
Drying is the crucial food processing for bioactive components from plant materials before strating extraction in addition to preservation of raw plant materials during storage period. Olive leaves were dried by various methods such as microwave drying (MD), oven drying (OD) and vacuum drying (VD) at several temperature values in the present study. Mathematical models allow to develop, design and control the processes. 14 emprical equations were used to estimate the drying behaviour and the time required for drying. Convenience of the models were evaluated according to the correlation coefficient ( R 2 ), varience ( S 2 ) and root mean square deviation ( D RMS ). On the other hand, the effective diffusion coefficient and energy for activation were also calculated. Effects of the drying methods on the total phenolic (TPC), flavonoid (TFC) and oleuropein contents and free radical scavenging activity (FRSA) of the olive leaves were also investigated to take into considiration the quality of the dried product. MD has proved to be the fastest drying method having the highest effective diffusivity and the lowest activation energy with a more qualitive product.
NASA Astrophysics Data System (ADS)
Elhussein, Elaf Abdelillah Ali; Şahin, Selin
2018-01-01
Drying is the crucial food processing for bioactive components from plant materials before strating extraction in addition to preservation of raw plant materials during storage period. Olive leaves were dried by various methods such as microwave drying (MD), oven drying (OD) and vacuum drying (VD) at several temperature values in the present study. Mathematical models allow to develop, design and control the processes. 14 emprical equations were used to estimate the drying behaviour and the time required for drying. Convenience of the models were evaluated according to the correlation coefficient (R 2 ), varience (S 2 ) and root mean square deviation (D RMS ). On the other hand, the effective diffusion coefficient and energy for activation were also calculated. Effects of the drying methods on the total phenolic (TPC), flavonoid (TFC) and oleuropein contents and free radical scavenging activity (FRSA) of the olive leaves were also investigated to take into considiration the quality of the dried product. MD has proved to be the fastest drying method having the highest effective diffusivity and the lowest activation energy with a more qualitive product.
Zero-Point Energy Leakage in Quantum Thermal Bath Molecular Dynamics Simulations.
Brieuc, Fabien; Bronstein, Yael; Dammak, Hichem; Depondt, Philippe; Finocchi, Fabio; Hayoun, Marc
2016-12-13
The quantum thermal bath (QTB) has been presented as an alternative to path-integral-based methods to introduce nuclear quantum effects in molecular dynamics simulations. The method has proved to be efficient, yielding accurate results for various systems. However, the QTB method is prone to zero-point energy leakage (ZPEL) in highly anharmonic systems. This is a well-known problem in methods based on classical trajectories where part of the energy of the high-frequency modes is transferred to the low-frequency modes leading to a wrong energy distribution. In some cases, the ZPEL can have dramatic consequences on the properties of the system. Thus, we investigate the ZPEL by testing the QTB method on selected systems with increasing complexity in order to study the conditions and the parameters that influence the leakage. We also analyze the consequences of the ZPEL on the structural and vibrational properties of the system. We find that the leakage is particularly dependent on the damping coefficient and that increasing its value can reduce and, in some cases, completely remove the ZPEL. When using sufficiently high values for the damping coefficient, the expected energy distribution among the vibrational modes is ensured. In this case, the QTB method gives very encouraging results. In particular, the structural properties are well-reproduced. The dynamical properties should be regarded with caution although valuable information can still be extracted from the vibrational spectrum, even for large values of the damping term.
Energy extraction from atmospheric turbulence to improve flight vehicle performance
NASA Astrophysics Data System (ADS)
Patel, Chinmay Karsandas
Small 'bird-sized' Unmanned Aerial Vehicles (UAVs) have now become practical due to technological advances in embedded electronics, miniature sensors and actuators, and propulsion systems. Birds are known to take advantage of wind currents to conserve energy and fly long distances without flapping their wings. This dissertation explores the possibility of improving the performance of small UAVs by extracting the energy available in atmospheric turbulence. An aircraft can gain energy from vertical gusts by increasing its lift in regions of updraft and reducing its lift in downdrafts - a concept that has been known for decades. Starting with a simple model of a glider flying through a sinusoidal gust, a parametric optimization approach is used to compute the minimum gust amplitude and optimal control input required for the glider to sustain flight without losing energy. For small UAVs using optimal control inputs, sinusoidal gusts with amplitude of 10--15% of the cruise speed are sufficient to keep the aircraft aloft. The method is then modified and extended to include random gusts that are representative of natural turbulence. A procedure to design optimal control laws for energy extraction from realistic gust profiles is developed using a Genetic Algorithm (GA). A feedback control law is designed to perform well over a variety of random gusts, and not be tailored for one particular gust. A small UAV flying in vertical turbulence is shown to obtain average energy savings of 35--40% with the use of a simple control law. The design procedure is also extended to determine optimal control laws for sinusoidal as well as turbulent lateral gusts. The theoretical work is complemented by experimental validation using a small autonomous UAV. The development of a lightweight autopilot and UAV platform is presented. Flight test results show that active control of the lift of an autonomous glider resulted in approximately 46% average energy savings compared to glides with fixed control surfaces. Statistical analysis of test samples shows that 19% of the active control test runs resulted in no energy loss, thus demonstrating the potential of the 'gust soaring' concept to dramatically improve the performance of small UAVs.
Non-overlapped P- and S-wave Poynting vectors and their solution by the grid method
NASA Astrophysics Data System (ADS)
Lu, Yongming; Liu, Qiancheng
2018-06-01
The Poynting vector represents the local directional energy flux density of seismic waves in geophysics. It is widely used in elastic reverse time migration to analyze source illumination, suppress low-wavenumber noise, correct for image polarity and extract angle-domain common-image gathers. However, the P- and S-waves are mixed together during wavefield propagation so that the P and S energy fluxes are not clean everywhere, especially at the overlapped points. In this paper, we use a modified elastic-wave equation in which the P and S vector wavefields are naturally separated. Then, we develop an efficient method to evaluate the separable P and S Poynting vectors, respectively, based on the view that the group velocity and phase velocity have the same direction in isotropic elastic media. We furthermore formulate our method using an unstructured mesh-based modeling method named the grid method. Finally, we verify our method using two numerical examples.
NASA Astrophysics Data System (ADS)
Aranha, R. F.; Soares, I. Damião; Tonini, E. V.
2012-01-01
We examine numerically the post-merger regime of two nonspining holes in non-head-on collisions in the realm of nonaxisymmetric Robinson-Trautman spacetimes. Characteristic initial data for the system are constructed and evolved via the Robinson-Trautman equation. The numerical integration is performed using a Galerkin spectral method which is sufficiently stable to reach the final configuration of the remnant black hole, when the gravitational wave emission ceases. The initial data contains three independent parameters, the ratio mass α of the individual colliding black holes, their initial premerger infalling velocity and the incidence angle of collision ρ0. The remnant black hole is characterized by its final boost parameter, rest mass and scattering angle. The motion of the remnant black hole is restricted to the plane determined by the directions of the two initial colliding black holes, characterizing a planar collision. The net momentum fluxes carried out by gravitational waves are confined to this plane. We evaluate the efficiency of mass-energy extraction, the total energy and momentum carried out by gravitational waves and the momentum distribution of the remnant black hole for a large domain of initial data parameters. Our analysis is based on the Bondi-Sachs four-momentum conservation laws. The process of mass-energy extraction is shown to be less efficient as the initial data departs from the head-on configuration. Head-on collisions (ρ0=0o) and orthogonal collisions (ρ0=90°) constitute, respectively, upper and lower bounds to the power emission and to the efficiency of mass-energy extraction. On the contrary, head-on collisions and orthogonal collisions constitute, respectively, lower and upper bounds for the momentum of the remnant. Distinct regimes of gravitational wave emission (bursts or quiescent emission) are characterized by the analysis of the time behavior of the gravitational wave power as a function of α. In particular, the net gravitational wave flux is nonzero for equal-mass colliding black holes in non-head-on collisions. The momentum extraction and the patterns of the momentum fluxes, as a function of the incidence angle, are examined. The relation between the incidence angle and the scattering angle closely approximates a relation for the inelastic collision of classical particles in Newtonian dynamics.
Review of the harvesting and extraction of advanced biofuels and bioproducts
Babette L. Marrone; Ronald E. Lacey; Daniel B. Anderson; James Bonner; Jim Coons; Taraka Dale; Cara Meghan Downes; Sandun Fernando; Christopher Fuller; Brian Goodall; Johnathan E. Holladay; Kiran Kadam; Daniel Kalb; Wei Liu; John B. Mott; Zivko Nikolov; Kimberly L. Ogden; Richard T. Sayre; Brian G. Trewyn; José A. Olivares
2017-01-01
Energy-efficient and scalable harvesting and lipid extraction processes must be developed in order for the algal biofuels and bioproducts industry to thrive. The major challenge for harvesting is the handling of large volumes of cultivation water to concentrate low amounts of biomass. For lipid extraction, the major energy and cost drivers are associated with...
Energy-conscious production of titania and titanium powders from slag
NASA Astrophysics Data System (ADS)
Middlemas, Scott C.
Titanium dioxide (TiO2) is used as a whitening agent in numerous domestic and technological applications and is mainly produced by the high temperature chloride process. A new hydrometallurgical process for making commercially pure TiO2 pigment is described with the goal of reducing the necessary energy consumption and CO2 emissions. The process includes alkaline roasting of titania slag with subsequent washing, HCl leaching, solvent extraction, hydrolysis, and calcination stages. The thermodynamics of the roasting reaction were analyzed, and the experimental parameters for each step in the new process were optimized with respect to TiO 2 recovery, final product purity, and total energy requirements. Contacting the leach solution with a tertiary amine extractant resulted in complete Fe extraction in a single stage and proved effective in reducing the concentration of discoloring impurities in the final pigment to commercially acceptable levels. Additionally, a new method of producing Ti powders from titania slag is proposed as a potentially more energy efficient and lower cost alternative to the traditional Kroll process. Thermodynamic analysis and initial experimental results validate the concept of reducing titanium slag with a metal hydride to produce titanium hydride (TiH2) powders, which are subsequently purified by leaching and dehydrided to form Ti powders. The effects of reducing agent type, heating time and temperature, ball milling, powder compaction, and eutectic chloride salts on the conversion of slag to TiH2 powders were determined. The purification of reduced powders through NH4Cl, NaOH, and HCl leaching stages was investigated, and reagent concentration, leaching temperature, and time were varied in order to determine the best conditions for maximum impurity removal and recovery of TiH2. A model plant producing 100,000 tons TiO2 per year was designed that would employ the new method of pigment manufacture. A comparison of the new process and the chloride process indicated a 25% decrease in energy consumption and CO2 emissions. For the Ti powder making process, a 10,000 tons per year model plant employing the metal hydride reduction was designed and a comparison with the Kroll process indicated potential for over 60% less energy consumption and 50% less CO2 emission.
Lorenzo, Jose M; Mousavi Khaneghah, Amin; Gavahian, Mohsen; Marszałek, Krystian; Eş, Ismail; Munekata, Paulo E S; Ferreira, Isabel C F R; Barba, Francisco J
2018-05-17
Natural bioactive compounds isolated from several aromatic plants have been studied for centuries due to their unique characteristics that carry great importance in food, and pharmaceutical, and cosmetic industries. For instance, several beneficial activities have been attributed to some specific compounds found in Thymus such as anti-inflammatory, antioxidant, antimicrobial, and antiseptic properties. Moreover, these compounds are classified as Generally Recognized as Safe (GRAS) which means they can be used as an ingrident of may food producs. Conventional extraction processes of these compounds and their derived forms from thyme leaves are well established. Hoewever, they present some important drawbacks such as long extraction time, low yield, high solvent consumption and degradation thermolabile compounds. Therefore, innovative extraction techniques such as ultrasound, microwave, enzyme, ohmic and heat-assisted methods can be useful strategies to enhance the exytraction yield and to reduce processing temperature, extraction time, and energy and solvent consumption. Furthermore, bioaccessibility and bioavailability aspects of these bioactive compounds as well as their metabolic fates are crucial for developing novel functional foods. Additionally, immobilization methods to improve stability, solubility, and the overall bioavailability of these valuable compounds are necessary for their commercial applications. This review aims to give an overall perspective of innovative extraction techniques to extract the targeted compounds with anti-inflammatory and antimicrobial activities. Moreover, the bioaccessi-bility and bioavailability of these compounds before and after processing discussed. In addition, some of the most important characteristics of thyme and their derived products discussed in this paper.
Sharma, Anuj; Verma, Subash Chandra; Saxena, Nisha; Chadda, Neetu; Singh, Narendra Pratap; Sinha, Arun Kumar
2006-03-01
Microwave-assisted extraction (MAE), ultrasound-assisted extraction (UAE) and conventional extraction of vanillin and its quantification by HPLC in pods of Vanilla planifolia is described. A range of nonpolar to polar solvents were used for the extraction of vanillin employing MAE, UAE and conventional methods. Various extraction parameters such as nature of the solvent, solvent volume, time of irradiation, microwave and ultrasound energy inputs were optimized. HPLC was performed on RP ODS column (4.6 mm ID x 250 mm, 5 microm, Waters), a photodiode array detector (Waters 2996) using gradient solvent system of ACN and ortho-phosphoric acid in water (0.001:99.999 v/v) at 25 degrees C. Regression equation revealed a linear relationship (r2 > 0.9998) between the mass of vanillin injected and the peak areas. The detection limit (S/N = 3) and limit of quantification (S/N = 10) were 0.65 and 1.2 microg/g, respectively. Recovery was achieved in the range 98.5-99.6% for vanillin. Maximum yield of vanilla extract (29.81, 29.068 and 14.31% by conventional extraction, MAE and UAE, respectively) was found in a mixture of ethanol/water (40:60 v/v). Dehydrated ethanolic extract showed the highest amount of vanillin (1.8, 1.25 and 0.99% by MAE, conventional extraction and UAE, respectively).
Assessment of critical-fluid extractions in the process industries
NASA Technical Reports Server (NTRS)
1982-01-01
The potential for critical-fluid extraction as a separation process for improving the productive use of energy in the process industries is assessed. Critical-fluid extraction involves the use of fluids, normally gaseous at ambient conditions, as extraction solvents at temperatures and pressures around the critical point. Equilibrium and kinetic properties in this regime are very favorable for solvent applications, and generally allow major reductions in the energy requirements for separating and purifying chemical component of a mixture.
Bandgap profiling in CIGS solar cells via valence electron energy-loss spectroscopy
NASA Astrophysics Data System (ADS)
Deitz, Julia I.; Karki, Shankar; Marsillac, Sylvain X.; Grassman, Tyler J.; McComb, David W.
2018-03-01
A robust, reproducible method for the extraction of relative bandgap trends from scanning transmission electron microscopy (STEM) based electron energy-loss spectroscopy (EELS) is described. The effectiveness of the approach is demonstrated by profiling the bandgap through a CuIn1-xGaxSe2 solar cell that possesses intentional Ga/(In + Ga) composition variation. The EELS-determined bandgap profile is compared to the nominal profile calculated from compositional data collected via STEM-based energy dispersive X-ray spectroscopy. The EELS based profile is found to closely track the calculated bandgap trends, with only a small, fixed offset difference. This method, which is particularly advantageous for relatively narrow bandgap materials and/or STEM systems with modest resolution capabilities (i.e., >100 meV), compromises absolute accuracy to provide a straightforward route for the correlation of local electronic structure trends with nanoscale chemical and physical structure/microstructure within semiconductor materials and devices.
Suaud, Nicolas; López, Xavier; Ben Amor, Nadia; Bandeira, Nuno A G; de Graaf, Coen; Poblet, Josep M
2015-02-10
Accurate quantum chemical calculations on real-world magnetic systems are challenging, the inclusion of electron correlation being the bottleneck of such task. One method proposed to overcome this difficulty is the embedded fragment approach. It tackles a chemical problem by dividing it into small fragments, which are treated in a highly accurate way, surrounded by an embedding included at an approximate level. For the vast family of medium-to-large sized polyoxometalates, two-electron-reduced systems are habitual and their magnetic properties are interesting. In this paper, we aim at assessing the quality of embedded fragment calculations by checking their ability to reproduce the electronic spectra of a complete system, here the mixed-metal series [MoxW6-xO19](4-) (x = 0-6). The microscopic parameters extracted from fragment calculations (electron hopping, intersite electrostatic repulsion, local orbital energy, etc.) have been used to reproduce the spectra through model Hamiltonian calculations. These energies are compared to the results of the highly accurate ab initio difference dedicated configuration interaction (DDCI) method on the complete system. In general, the model Hamiltonian calculations using parameters extracted from embedded fragments nearly exactly reproduce the DDCI spectra. This is quite an important result since it can be generalized to any inorganic magnetic system. Finally, the occurrence of singlet or triplet ground states in the series of molecules studied is rationalized upon the interplay of the parameters extracted.
High-order Path Integral Monte Carlo methods for solving strongly correlated fermion problems
NASA Astrophysics Data System (ADS)
Chin, Siu A.
2015-03-01
In solving for the ground state of a strongly correlated many-fermion system, the conventional second-order Path Integral Monte Carlo method is plagued with the sign problem. This is due to the large number of anti-symmetric free fermion propagators that are needed to extract the square of the ground state wave function at large imaginary time. In this work, I show that optimized fourth-order Path Integral Monte Carlo methods, which uses no more than 5 free-fermion propagators, in conjunction with the use of the Hamiltonian energy estimator, can yield accurate ground state energies for quantum dots with up to 20 polarized electrons. The correlations are directly built-in and no explicit wave functions are needed. This work is supported by the Qatar National Research Fund NPRP GRANT #5-674-1-114.
Hand Motion Classification Using a Multi-Channel Surface Electromyography Sensor
Tang, Xueyan; Liu, Yunhui; Lv, Congyi; Sun, Dong
2012-01-01
The human hand has multiple degrees of freedom (DOF) for achieving high-dexterity motions. Identifying and replicating human hand motions are necessary to perform precise and delicate operations in many applications, such as haptic applications. Surface electromyography (sEMG) sensors are a low-cost method for identifying hand motions, in addition to the conventional methods that use data gloves and vision detection. The identification of multiple hand motions is challenging because the error rate typically increases significantly with the addition of more hand motions. Thus, the current study proposes two new methods for feature extraction to solve the problem above. The first method is the extraction of the energy ratio features in the time-domain, which are robust and invariant to motion forces and speeds for the same gesture. The second method is the extraction of the concordance correlation features that describe the relationship between every two channels of the multi-channel sEMG sensor system. The concordance correlation features of a multi-channel sEMG sensor system were shown to provide a vast amount of useful information for identification. Furthermore, a new cascaded-structure classifier is also proposed, in which 11 types of hand gestures can be identified accurately using the newly defined features. Experimental results show that the success rate for the identification of the 11 gestures is significantly high. PMID:22438703
Dias, Pablo; Javimczik, Selene; Benevit, Mariana; Veit, Hugo; Bernardes, Andréa Moura
2016-11-01
Photovoltaic modules (or panels) are important power generators with limited lifespans. The modules contain known pollutants and valuable materials such as silicon, silver, copper, aluminum and glass. Thus, recycling such waste is of great importance. To date, there have been few published studies on recycling silver from silicon photovoltaic panels, even though silicon technology represents the majority of the photovoltaic market. In this study, the extraction of silver from waste modules is justified and evaluated. It is shown that the silver content in crystalline silicon photovoltaic modules reaches 600g/t. Moreover, two methods to concentrate silver from waste modules were studied, and the use of pyrolysis was evaluated. In the first method, the modules were milled, sieved and leached in 64% nitric acid solution with 99% sodium chloride; the silver concentration yield was 94%. In the second method, photovoltaic modules were milled, sieved, subjected to pyrolysis at 500°C and leached in 64% nitric acid solution with 99% sodium chloride; the silver concentration yield was 92%. The first method is preferred as it consumes less energy and presents a higher yield of silver. This study shows that the use of pyrolysis does not assist in the extraction of silver, as the yield was similar for both methods with and without pyrolysis. Copyright © 2016 Elsevier Ltd. All rights reserved.
Hand motion classification using a multi-channel surface electromyography sensor.
Tang, Xueyan; Liu, Yunhui; Lv, Congyi; Sun, Dong
2012-01-01
The human hand has multiple degrees of freedom (DOF) for achieving high-dexterity motions. Identifying and replicating human hand motions are necessary to perform precise and delicate operations in many applications, such as haptic applications. Surface electromyography (sEMG) sensors are a low-cost method for identifying hand motions, in addition to the conventional methods that use data gloves and vision detection. The identification of multiple hand motions is challenging because the error rate typically increases significantly with the addition of more hand motions. Thus, the current study proposes two new methods for feature extraction to solve the problem above. The first method is the extraction of the energy ratio features in the time-domain, which are robust and invariant to motion forces and speeds for the same gesture. The second method is the extraction of the concordance correlation features that describe the relationship between every two channels of the multi-channel sEMG sensor system. The concordance correlation features of a multi-channel sEMG sensor system were shown to provide a vast amount of useful information for identification. Furthermore, a new cascaded-structure classifier is also proposed, in which 11 types of hand gestures can be identified accurately using the newly defined features. Experimental results show that the success rate for the identification of the 11 gestures is significantly high.
Uranium extraction by complexation with siderophores
NASA Astrophysics Data System (ADS)
Bahamonde Castro, Cristina
One of the major concerns of energy production is the environmental impact associated with the extraction of natural resources. Nuclear energy fuel is obtained from uranium, an abundant and naturally occurring element in the environment, but the currently used techniques for uranium extraction leave either a significant fingerprint (open pit mines) or a chemical residue that alters the pH of the environment (acid or alkali leaching). It is therefore clear that a new and greener approach to uranium extraction is needed. Bioleaching is one potential alternative. In bioleaching, complexants naturally produced from fungi or bacteria may be used to extract the uranium. In the following research, the siderophore enterobactin, which is naturally produced by bacteria to extract and solubilize iron from the environment, is evaluated to determine its potential for complexing with uranium. To determine whether enterobactin could be used for uranium extraction, its acid dissociation and its binding strength with the metal of interest must be determined. Due to the complexity of working with radioactive materials, lanthanides were used as analogs for uranium. In addition, polyprotic acids were used as structural and chemical analogs for the siderophore during method development. To evaluate the acid dissociation of enterobactin and the subsequent binding constants with lanthanides, three different analytical techniques were studied including: potentiometric titration, UltraViolet Visible (UV-Vis) spectrophotometry and Isothermal Titration Calorimetry (ITC). After evaluation of three techniques, a combination of ITC and potentiometric titrations was deemed to be the most viable way for studying the siderophore of interest. The results obtained from these studies corroborate the ideal pH range for enterobactin complexation to the lanthanide of interest and pave the way for determining the strength of complexation relative to other naturally occurring metals. Ultimately, this fundamental research enhances our current understanding of heavy metal complexation to naturally occurring complexants, which may enhance the metals mobility in the environment or potentially be used as a greener alternative in uranium extraction or remediation.
Protein Hydrogel Microbeads for Selective Uranium Mining from Seawater.
Kou, Songzi; Yang, Zhongguang; Sun, Fei
2017-01-25
Practical methods for oceanic uranium extraction have yet to be developed in order to tap into the vast uranium reserve in the ocean as an alternative energy. Here we present a protein hydrogel system containing a network of recently engineered super uranyl binding proteins (SUPs) that is assembled through thiol-maleimide click chemistry under mild conditions. Monodisperse SUP hydrogel microbeads fabricated by a microfluidic device further enable uranyl (UO 2 2+ ) enrichment from natural seawater with great efficiency (enrichment index, K = 2.5 × 10 3 ) and selectivity. Our results demonstrate the feasibility of using protein hydrogels to extract uranium from the ocean.
Minho Won; Albalawi, Hassan; Xin Li; Thomas, Donald E
2014-01-01
This paper describes a low-power hardware implementation for movement decoding of brain computer interface. Our proposed hardware design is facilitated by two novel ideas: (i) an efficient feature extraction method based on reduced-resolution discrete cosine transform (DCT), and (ii) a new hardware architecture of dual look-up table to perform discrete cosine transform without explicit multiplication. The proposed hardware implementation has been validated for movement decoding of electrocorticography (ECoG) signal by using a Xilinx FPGA Zynq-7000 board. It achieves more than 56× energy reduction over a reference design using band-pass filters for feature extraction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Danko, George L
To increase understanding of the energy extraction capacity of Enhanced Geothermal System(s) (EGS), a numerical model development and application project is completed. The general objective of the project is to develop and apply a new, data-coupled Thermal-Hydrological-Mechanical-Chemical (T-H-M-C) model in which the four internal components can be freely selected from existing simulation software without merging and cross-combining a diverse set of computational codes. Eight tasks are completed during the project period. The results are reported in five publications, an MS thesis, twelve quarterly, and two annual reports to DOE. Two US patents have also been issued during the project period,more » with one patent application originated prior to the start of the project. The “Multiphase Physical Transport Modeling Method and Modeling System” (U.S. Patent 8,396,693 B2, 2013), a key element in the GHE sub-model solution, is successfully used for EGS studies. The “Geothermal Energy Extraction System and Method" invention (U.S. Patent 8,430,166 B2, 2013) originates from the time of project performance, describing a new fluid flow control solution. The new, coupled T-H-M-C numerical model will help analyzing and designing new, efficient EGS systems.« less
Kupidłowska, Ewa; Gniazdowska, Agnieszka; Stepień, Joanna; Corbineau, Francoise; Vinel, Dominique; Skoczowski, Andrzej; Janeczko, Anna; Bogatek, Renata
2006-12-01
One commonly observed effect of phytotoxic compounds is the inhibition or delay of germination of sensitive seeds. Mustard (Sinapis alba L.) seeds were incubated with aqueous extracts of sunflower (Helianthus annuus L.) leaves. Although sunflower phytotoxins did not influence seed viability, extracts completely inhibited seed germination. Inhibition of germination was associated with alterations in reserve mobilization and generation of energy in the catabolic phase of germination. Degradation of lipids was suppressed by sunflower foliar extracts resulting in insufficient carbohydrate supply. The lack of respiratory substrates and decrease in energy (ATP) generation resulted in suppression of the anabolic phase of seed germination and ultimately growth inhibition.
2015-01-01
Single molecule fluorescence spectroscopy holds the promise of providing direct measurements of protein folding free energy landscapes and conformational motions. However, fulfilling this promise has been prevented by technical limitations, most notably, the difficulty in analyzing the small packets of photons per millisecond that are typically recorded from individual biomolecules. Such limitation impairs the ability to accurately determine conformational distributions and resolve sub-millisecond processes. Here we develop an analytical procedure for extracting the conformational distribution and dynamics of fast-folding proteins directly from time-stamped photon arrival trajectories produced by single molecule FRET experiments. Our procedure combines the maximum likelihood analysis originally developed by Gopich and Szabo with a statistical mechanical model that describes protein folding as diffusion on a one-dimensional free energy surface. Using stochastic kinetic simulations, we thoroughly tested the performance of the method in identifying diverse fast-folding scenarios, ranging from two-state to one-state downhill folding, as a function of relevant experimental variables such as photon count rate, amount of input data, and background noise. The tests demonstrate that the analysis can accurately retrieve the original one-dimensional free energy surface and microsecond folding dynamics in spite of the sub-megahertz photon count rates and significant background noise levels of current single molecule fluorescence experiments. Therefore, our approach provides a powerful tool for the quantitative analysis of single molecule FRET experiments of fast protein folding that is also potentially extensible to the analysis of any other biomolecular process governed by sub-millisecond conformational dynamics. PMID:25988351
Ramanathan, Ravishankar; Muñoz, Victor
2015-06-25
Single molecule fluorescence spectroscopy holds the promise of providing direct measurements of protein folding free energy landscapes and conformational motions. However, fulfilling this promise has been prevented by technical limitations, most notably, the difficulty in analyzing the small packets of photons per millisecond that are typically recorded from individual biomolecules. Such limitation impairs the ability to accurately determine conformational distributions and resolve sub-millisecond processes. Here we develop an analytical procedure for extracting the conformational distribution and dynamics of fast-folding proteins directly from time-stamped photon arrival trajectories produced by single molecule FRET experiments. Our procedure combines the maximum likelihood analysis originally developed by Gopich and Szabo with a statistical mechanical model that describes protein folding as diffusion on a one-dimensional free energy surface. Using stochastic kinetic simulations, we thoroughly tested the performance of the method in identifying diverse fast-folding scenarios, ranging from two-state to one-state downhill folding, as a function of relevant experimental variables such as photon count rate, amount of input data, and background noise. The tests demonstrate that the analysis can accurately retrieve the original one-dimensional free energy surface and microsecond folding dynamics in spite of the sub-megahertz photon count rates and significant background noise levels of current single molecule fluorescence experiments. Therefore, our approach provides a powerful tool for the quantitative analysis of single molecule FRET experiments of fast protein folding that is also potentially extensible to the analysis of any other biomolecular process governed by sub-millisecond conformational dynamics.
NASA Astrophysics Data System (ADS)
Orhan, K.; Mayerle, R.
2016-12-01
A methodology comprising of the estimates of power yield, evaluation of the effects of power extraction on flow conditions, and near-field investigations to deliver wake characteritics, recovery and interactions is described and applied to several straits in Indonesia. Site selection is done with high-resolution, three-dimensional flow models providing sufficient spatiotemporal coverage. Much attention has been given to the meteorological forcing, and conditions at the open sea boundaries to adequately capture the density gradients and flow fields. Model verification using tidal records shows excellent agreement. Sites with adequate depth for the energy conversion using horizontal axis tidal turbines, average kinetic power density greater than 0.5 kW/m2, and surface area larger than 0.5km2 are defined as energy hotspots. Spatial variation of the average extractable electric power is determined, and annual tidal energy resource is estimated for the straits in question. The results showed that the potential for tidal power generation in Indonesia is likely to exceed previous predictions reaching around 4,800MW. To assess the impact of the devices, flexible mesh models with higher resolutions have been developed. Effects on flow conditions, and near-field turbine wakes are resolved in greater detail with triangular horizontal grids. The energy is assumed to be removed uniformly by sub-grid scale arrays of turbines, and calculations are made based on velocities at the hub heights of the devices. An additional drag force resulting in dissipation of the pre-existing kinetic power from %10 to %60 within a flow cross-section is introduced to capture the impacts. It was found that the effect of power extraction on water levels and flow speeds in adjacent areas is not significant. Results show the effectivess of the method to capture wake characteritics and recovery reasonably well with low computational cost.
Ozegbe, P C; Omirinde, J O
2012-12-18
Cuscuta australis (C. australis) seed and stem are historically used by the local population as dietary supplement for the management of infertility. This study, therefore, evaluated the effect of orally administered aqueous extracts of C. australis seed and stem, 300 mg/kg body weight/day for seven days, on the testis of the adult Wistar rat fed either low or normal protein-energy diets. The control group received water. The relative weight of the testis was non-significantly increased (p>0.05) in the Low Protein-energy diet-Water-treated (LPWA), Low Protein-energy diet-Seed-treated (LPSE) and Normal Protein-energy diet-Seed-treated (NPSE) groups relative to the Normal Protein-energy diet-Water-treated (NPWA). The weight of the testis was also non-significantly increased (p˃0.05) in the Low Protein-energy diet-Stem-treated (LPST), but decreased in the Normal Protein-energy diet-Stem-treated (NPST), relative to LPWA and NPWA. Heights of germinal epithelium were significantly decreased (p<0.05) in the LPWA, LPSE and LPST relative to the NPWA, NPSE and NPST. Diet significantly influenced (p<0.001) the effect of stem extract on the height of germinal epithelium. The NPSE, LPSE, NPST, LPST and LPWA showed significantly decreased (p<0.001) plasma levels of luteinizing hormone (LH) and follicle stimulating hormone (FSH) relative to NPWA. The LPWA, LPSE and NPST also showed significantly decreased (p<0.001) levels of testosterone relative to NPWA and LPST. Diet significantly influenced (p<0.001) the effect of seed on the level of LH. Seed-diet interactions significantly affected the levels of FSH (p<0.001) and LH (p<0.05), but not testosterone. Diet significantly influenced (p<0.001) the effects of stem extract on the levels of FSH, LH and testosterone. Stem-diet interactions significantly affected (p<0.001) the levels of FSH, LH and testosterone. Our data suggest that the aqueous extract of C. australis stem is more potent than the seed extract and that dietary protein-energy intake may influence the efficacy of orally administered aqueous extracts of C. australis.
Feng, Juanjuan; Sun, Min; Bu, Yanan; Luo, Chuannan
2016-03-01
Stir bar sorptive extraction is an environmentally friendly microextraction technique based on a stir bar with various sorbents. A commercial stirrer is a good support, but it has not been used in stir bar sorptive extraction due to difficult modification. A stirrer was modified with carbon nanoparticles by a simple carbon deposition process in flame and characterized by scanning electron microscopy and energy-dispersive X-ray spectrometry. A three-dimensional porous coating was formed with carbon nanoparticles. In combination with high-performance liquid chromatography, the stir bar was evaluated using five polycyclic aromatic hydrocarbons as model analytes. Conditions including extraction time and temperature, ionic strength, and desorption solvent were investigated by a factor-by-factor optimization method. The established method exhibited good linearity (0.01-10 μg/L) and low limits of quantification (0.01 μg/L). It was applied to detect model analytes in environmental water samples. No analyte was detected in river water, and five analytes were quantified in rain water. The recoveries of five analytes in two samples with spiked at 2 μg/L were in the range of 92.2-106% and 93.4-108%, respectively. The results indicated that the carbon nanoparticle-coated stirrer was an efficient stir bar for extraction analysis of some polycyclic aromatic hydrocarbons. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Sethupathy, A; Sivashanmugam, P
2018-06-04
In this study, a novel biosurfactant potential bacterial strain Pseudomonas pachastrellae RW43 was isolated from pulp and paper sludge and the biosurfactant namely rhamnolipid produced by Pseudomonas pachastrellae RW43 was investigated by varying pH and incubation time in batch liquid fermentation process. The maximal yield of rhamnolipid was found to be 12.1 g/L at an optimized condition of pH 7 and incubation time of 168 h. NMR analysis was performed for identification of molecular structure of produced rhamnolipid and its results concluded that the product was identified as di rhamnolipid. Then, statistically the global optimum conditions for hydrolytic enzymes extraction parameters (sonication power (100 W), extraction time (15 min) and rhamnolipid dosage (2% v/v)) were established. At 30,456 kJ/kg TS specific energy, ultrasonication with rhamnolipid disintegration method extracted maximal consortium activity of hydrolytic enzymes from mixed sludge (municipal and pulp & paper sludge) and the maximum observed were found to be 42.22, 51.75, 34.26, 24.21, 11.35 Units/g VSS respectively for protease, α-amylase, cellulase, lipase and α-glucosidase. Polyhydroxyalkanoates was recovered from enzymes extracted sludge using various solvents namely chloroform, sodium hypochlorite with chloroform and sodium lauryl sulfate with sodium hypochlorite. The maximum recovery was found to be 74 g/kg using sodium hypochlorite and chloroform extraction solvents.
On the hydrophilicity of electrodes for capacitive energy extraction
NASA Astrophysics Data System (ADS)
Lian, Cheng; Kong, Xian; Liu, Honglai; Wu, Jianzhong
2016-11-01
The so-called Capmix technique for energy extraction is based on the cyclic expansion of electrical double layers to harvest dissipative energy arising from the salinity difference between freshwater and seawater. Its optimal performance requires a careful selection of the electrical potentials for the charging and discharging processes, which must be matched with the pore characteristics of the electrode materials. While a number of recent studies have examined the effects of the electrode pore size and geometry on the capacitive energy extraction processes, there is little knowledge on how the surface properties of the electrodes affect the thermodynamic efficiency. In this work, we investigate the Capmix processes using the classical density functional theory for a realistic model of electrolyte solutions. The theoretical predictions allow us to identify optimal operation parameters for capacitive energy extraction with porous electrodes of different surface hydrophobicity. In agreement with recent experiments, we find that the thermodynamic efficiency can be much improved by using most hydrophilic electrodes.
On the hydrophilicity of electrodes for capacitive energy extraction
Lian, Cheng; East China Univ. of Science and Technology, Shanghai; Kong, Xian; ...
2016-09-14
The so-called Capmix technique for energy extraction is based on the cyclic expansion of electrical double layers to harvest dissipative energy arising from the salinity difference between freshwater and seawater. Its optimal performance requires a careful selection of the electrical potentials for the charging and discharging processes, which must be matched with the pore characteristics of the electrode materials. While a number of recent studies have examined the effects of the electrode pore size and geometry on the capacitive energy extraction processes, there is little knowledge on how the surface properties of the electrodes affect the thermodynamic efficiency. In thismore » paper, we investigate the Capmix processes using the classical density functional theory for a realistic model of electrolyte solutions. The theoretical predictions allow us to identify optimal operation parameters for capacitive energy extraction with porous electrodes of different surface hydrophobicity. Finally, in agreement with recent experiments, we find that the thermodynamic efficiency can be much improved by using most hydrophilic electrodes.« less
The Energy Burden and Environmental Impact of Health Services
Buettner, Petra G.; Canyon, Deon V.
2012-01-01
Objectives. We reviewed the English-language literature on the energy burden and environmental impact of health services. Methods. We searched all years of the PubMed, CINAHL, and ScienceDirect databases for publications reporting energy consumption, greenhouse gas emissions, or the environmental impact of health-related activities. We extracted and tabulated data to enable cross-comparisons among different activities and services; where possible, we calculated per patient or per event emissions. Results. We identified 38 relevant publications. Per patient or per event, health-related energy consumption and greenhouse gas emissions are quite modest; in the aggregate, however, they are considerable. In England and the United States, health-related emissions account for 3% and 8% of total national emissions, respectively. Conclusions. Although reducing health-related energy consumption and emissions alone will not resolve all of the problems of energy scarcity and climate change, it could make a meaningful contribution. PMID:23078475
Energy-Discriminative Performance of a Spectral Micro-CT System
He, Peng; Yu, Hengyong; Bennett, James; Ronaldson, Paul; Zainon, Rafidah; Butler, Anthony; Butler, Phil; Wei, Biao; Wang, Ge
2013-01-01
Experiments were performed to evaluate the energy-discriminative performance of a spectral (multi-energy) micro-CT system. The system, designed by MARS (Medipix All Resolution System) Bio-Imaging Ltd. (Christchurch, New Zealand), employs a photon-counting energy-discriminative detector technology developed by CERN (European Organization for Nuclear Research). We used the K-edge attenuation characteristic of some known materials to calibrate the detector’s photon energy discrimination. For tomographic analysis, we used the compressed sensing (CS) based ordered-subset simultaneous algebraic reconstruction techniques (OS-SART) to reconstruct sample images, which is effective to reduce noise and suppress artifacts. Unlike conventional CT, the principal component analysis (PCA) method can be applied to extract and quantify additional attenuation information from a spectral CT dataset. Our results show that the spectral CT has a good energy-discriminative performance and provides more attenuation information than the conventional CT. PMID:24004864
Vivekanandhan, Sapthagirivasan; Subramaniam, Janarthanam; Mariamichael, Anburajan
2016-10-01
Hip fractures due to osteoporosis are increasing progressively across the globe. It is also difficult for those fractured patients to undergo dual-energy X-ray absorptiometry scans due to its complicated protocol and its associated cost. The utilisation of computed tomography for the fracture treatment has become common in the clinical practice. It would be helpful for orthopaedic clinicians, if they could get some additional information related to bone strength for better treatment planning. The aim of our study was to develop an automated system to segment the femoral neck region, extract the cortical and trabecular bone parameters, and assess the bone strength using an isotropic volume construction from clinical computed tomography images. The right hip computed tomography and right femur dual-energy X-ray absorptiometry measurements were taken from 50 south-Indian females aged 30-80 years. Each computed tomography image volume was re-constructed to form isotropic volumes. An automated system by incorporating active contour models was used to segment the neck region. A minimum distance boundary method was applied to isolate the cortical and trabecular bone components. The trabecular bone was enhanced and segmented using trabecular enrichment approach. The cortical and trabecular bone features were extracted and statistically compared with dual-energy X-ray absorptiometry measured femur neck bone mineral density. The extracted bone measures demonstrated a significant correlation with neck bone mineral density (r > 0.7, p < 0.001). The inclusion of cortical measures, along with the trabecular measures extracted after isotropic volume construction and trabecular enrichment approach procedures, resulted in better estimation of bone strength. The findings suggest that the proposed system using the clinical computed tomography images scanned with low dose could eventually be helpful in osteoporosis diagnosis and its treatment planning. © IMechE 2016.
NASA Astrophysics Data System (ADS)
Mohammadian-Behbahani, Mohammad-Reza; Saramad, Shahyar
2018-07-01
In high count rate radiation spectroscopy and imaging, detector output pulses tend to pile up due to high interaction rate of the particles with the detector. Pile-up effects can lead to a severe distortion of the energy and timing information. Pile-up events are conventionally prevented or rejected by both analog and digital electronics. However, for decreasing the exposure times in medical imaging applications, it is important to maintain the pulses and extract their true information by pile-up correction methods. The single-event reconstruction method is a relatively new model-based approach for recovering the pulses one-by-one using a fitting procedure, for which a fast fitting algorithm is a prerequisite. This article proposes a fast non-iterative algorithm based on successive integration which fits the bi-exponential model to experimental data. After optimizing the method, the energy spectra, energy resolution and peak-to-peak count ratios are calculated for different counting rates using the proposed algorithm as well as the rejection method for comparison. The obtained results prove the effectiveness of the proposed method as a pile-up processing scheme designed for spectroscopic and medical radiation detection applications.
Automated Processing Workflow for Ambient Seismic Recordings
NASA Astrophysics Data System (ADS)
Girard, A. J.; Shragge, J.
2017-12-01
Structural imaging using body-wave energy present in ambient seismic data remains a challenging task, largely because these wave modes are commonly much weaker than surface wave energy. In a number of situations body-wave energy has been extracted successfully; however, (nearly) all successful body-wave extraction and imaging approaches have focused on cross-correlation processing. While this is useful for interferometric purposes, it can also lead to the inclusion of unwanted noise events that dominate the resulting stack, leaving body-wave energy overpowered by the coherent noise. Conversely, wave-equation imaging can be applied directly on non-correlated ambient data that has been preprocessed to mitigate unwanted energy (i.e., surface waves, burst-like and electromechanical noise) to enhance body-wave arrivals. Following this approach, though, requires a significant preprocessing effort on often Terabytes of ambient seismic data, which is expensive and requires automation to be a feasible approach. In this work we outline an automated processing workflow designed to optimize body wave energy from an ambient seismic data set acquired on a large-N array at a mine site near Lalor Lake, Manitoba, Canada. We show that processing ambient seismic data in the recording domain, rather than the cross-correlation domain, allows us to mitigate energy that is inappropriate for body-wave imaging. We first develop a method for window selection that automatically identifies and removes data contaminated by coherent high-energy bursts. We then apply time- and frequency-domain debursting techniques to mitigate the effects of remaining strong amplitude and/or monochromatic energy without severely degrading the overall waveforms. After each processing step we implement a QC check to investigate improvements in the convergence rates - and the emergence of reflection events - in the cross-correlation plus stack waveforms over hour-long windows. Overall, the QC analyses suggest that automated preprocessing of ambient seismic recordings in the recording domain successfully mitigates unwanted coherent noise events in both the time and frequency domain. Accordingly, we assert that this method is beneficial for direct wave-equation imaging with ambient seismic recordings.
NASA Astrophysics Data System (ADS)
Subba Rao, Y.; Kotakadi, Venkata S.; Prasad, T. N. V. K. V.; Reddy, A. V.; Sai Gopal, D. V. R.
2013-02-01
A simple method for the green synthesis of silver nanoparticles (AgNPs) using aqueous extract of Lakshmi tulasi (Ocimum sanctum) leaf as a reducing and stabilizing agent. AgNPs were rapidly synthesized using aqueous extract of tulasi leaf with AgNO3 solution within 15 min. The green synthesized AgNPs were characterized using physic-chemical techniques viz., UV-Vis, X-ray diffraction (XRD), scanning electron microscope (SEM) coupled with X-ray energy dispersive spectroscopy (EDX) and Fourier transform-infrared spectroscopy (FT-IR). Characterization data reveals that the particles were crystalline in nature and triangle shaped with an average size of 42 nm. The zeta potential of AgNPs were found to be -55.0 mV. This large negative zeta potential value indicates repulsion among AgNPs and their dispersion stability.
NASA Astrophysics Data System (ADS)
Chang, Hsun-Ming; Fan, Kai-Lin; Charnas, Adam; Ye, Peide D.; Lin, Yu-Ming; Wu, Chih-I.; Wu, Chao-Hsin
2018-04-01
Compared to graphene and MoS2, studies on metal contacts to black phosphorus (BP) transistors are still immature. In this work, we present the experimental analysis of titanium contacts on BP based upon the theory of thermionic emssion. The Schottky barrier height (SBH) is extracted by thermionic emission methods to analyze the properties of Ti-BP contact. To examine the results, the band gap of BP is extracted followed by theoretical band alignment by Schottky-Mott rule. However, an underestimated SBH is found due to the hysteresis in electrical results. Hence, a modified SBH extraction for contact resistance that avoids the effects of hysteresis is proposed and demonstrated, showing a more accurate SBH that agrees well with theoretical value and results of transmission electron microscopy and energy-dispersive x-ray spectroscopy.
Zeng, Rong-Gui; Jiang, Qie-Ying; Liao, Zheng-Gen; Zhao, Guo-Wei; Luo, Yun; Luo, Juan; Lv, Dan
2016-06-01
To study the improvement of powder flowability and hygroscopicity of traditional Chinese medicine extract by surface coating modification technology. The 1% hydrophobic silica nanoparticles were used as surface modifier, and andrographis extract powder was taken as a model drug. Three different techniques were used for coating model drugs, with angle of repose, compressibility, flat angle and cohesion as the comprehensive evaluation indexes for the powder flowability. The powder particle size and the size distribution were measured by Mastersizer 2000. FEI scanning electron microscope was used to observe the surface morphology and structure of the powder. The percentage of Si element on the powder surface was measured by energy dispersive spectrometer. The hygroscopicity of powder was determined by Chinese pharmacopoeia method. All of the three techniques can improve the flowability of powder extract. In particular, hygroscopicity of extract powder can also be improved by dispersion and then high-speed mixing, which can produce a higher percentage of Si element on the powder surface. The improvement principle may be correlated with a modifier adhered to the powder surface. Copyright© by the Chinese Pharmaceutical Association.
Wells for In Situ Extraction of Volatiles from Regolith (WIEVR)
NASA Technical Reports Server (NTRS)
Walton, Otis R.
2013-01-01
A document discusses WIEVRs, a means to extract water ice more efficiently than previous approaches. This water may exist in subsurface deposits on the Moon, in many NEOs (Near- Earth Objects), and on Mars. The WIEVR approach utilizes heat from the Sun to vaporize subsurface ice; the water (or other volatile) vapor is transported to a surface collection vessel where it is condensed (and collected). The method does not involve mining and extracting regolith before removing the frozen volatiles, so it uses less energy and is less costly than approaches that require mining of regolith. The only drilling required for establishing the WIEVR collection/recovery system is a well-bore drill hole. In its simplest form, the WIEVRs will function without pumps, compressors, or other gas-moving equipment, relying instead on diffusive transport and thermally induced convection of the vaporized volatiles for transport to the collection location(s). These volatile extraction wells could represent a significant advance in extraction efficiency for recovery of frozen volatiles in subsurface deposits on the Moon, Mars, or other extraterrestrial bodies.
Joint optimization of regional water-power systems
NASA Astrophysics Data System (ADS)
Pereira-Cardenal, Silvio J.; Mo, Birger; Gjelsvik, Anders; Riegels, Niels D.; Arnbjerg-Nielsen, Karsten; Bauer-Gottwein, Peter
2016-06-01
Energy and water resources systems are tightly coupled; energy is needed to deliver water and water is needed to extract or produce energy. Growing pressure on these resources has raised concerns about their long-term management and highlights the need to develop integrated solutions. A method for joint optimization of water and electric power systems was developed in order to identify methodologies to assess the broader interactions between water and energy systems. The proposed method is to include water users and power producers into an economic optimization problem that minimizes the cost of power production and maximizes the benefits of water allocation, subject to constraints from the power and hydrological systems. The method was tested on the Iberian Peninsula using simplified models of the seven major river basins and the power market. The optimization problem was successfully solved using stochastic dual dynamic programming. The results showed that current water allocation to hydropower producers in basins with high irrigation productivity, and to irrigation users in basins with high hydropower productivity was sub-optimal. Optimal allocation was achieved by managing reservoirs in very distinct ways, according to the local inflow, storage capacity, hydropower productivity, and irrigation demand and productivity. This highlights the importance of appropriately representing the water users' spatial distribution and marginal benefits and costs when allocating water resources optimally. The method can handle further spatial disaggregation and can be extended to include other aspects of the water-energy nexus.
An, Jianxin; Wang, Xuan; Ming, Meiting; Li, Jian; Ye, Nengsheng
2018-05-01
A synthetic polyethylene glycol-molybdenum disulfide (PEG@MoS 2 ) composite was prepared using a simple method, and the application of this material in dispersive solid-phase extraction (DSPE) was investigated for the enrichment of eight sulfonamides (SAs) in milk samples. The composite was characterized by energy dispersive spectroscopy, scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy and Brunauer-Emmett-Teller measurements. The results showed that the MoS 2 synthesized in the presence of PEG has the advantage of a larger surface area and that the adsorption effect of this MoS 2 was enhanced. After extraction, the eight SAs were separated by capillary zone electrophoresis with a good linear relationship ( R 2 > 0.9902) in the range of 0.3-30 µg ml -1 and good precision (between 0.32% and 9.83%). Additionally, good recoveries (between 60.52% and 110.91%) were obtained for the SAs in the milk samples. The developed PEG@MoS 2 -based DSPE method could be applied for the enrichment of SAs in real milk samples.
NASA Technical Reports Server (NTRS)
Bhatia, A. K.; Temkin, A.; Fisher, Richard R. (Technical Monitor)
2001-01-01
We report on the first part of a study of electron-hydrogen scattering, using a method which allows for the ab initio calculation of total and elastic cross sections at higher energies. In its general form the method uses complex 'radial' correlation functions, in a (Kohn) T-matrix formalism. The titled method, abbreviated Complex Correlation Kohn T (CCKT) method, is reviewed, in the context of electron-hydrogen scattering, including the derivation of the equation for the (complex) scattering function, and the extraction of the scattering information from the latter. The calculation reported here is restricted to S-waves in the elastic region, where the correlation functions can be taken, without loss of generality, to be real. Phase shifts are calculated using Hylleraas-type correlation functions with up to 95 terms. Results are rigorous lower bounds; they are in general agreement with those of Schwartz, but they are more accurate and outside his error bounds at a couple of energies,
Dettmer, Katja; Nürnberger, Nadine; Kaspar, Hannelore; Gruber, Michael A; Almstetter, Martin F; Oefner, Peter J
2011-01-01
Trypsin/ethylenediaminetetraacetic acid (EDTA) treatment and cell scraping in a buffer solution were compared for harvesting adherently growing mammalian SW480 cells for metabolomics studies. In addition, direct scraping with a solvent was tested. Trypsinated and scraped cell pellets were extracted using seven different extraction protocols including pure methanol, methanol/water, pure acetone, acetone/water, methanol/chloroform/water, methanol/isopropanol/water, and acid-base methanol. The extracts were analyzed by GC-MS after methoximation/silylation and derivatization with propyl chloroformate, respectively. The metabolic fingerprints were compared and 25 selected metabolites including amino acids and intermediates of energy metabolism were quantitatively determined. Moreover, the influence of freeze/thaw cycles, ultrasonication and homogenization using ceramic beads on extraction yield was tested. Pure acetone yielded the lowest extraction efficiency while methanol, methanol/water, methanol/isopropanol/water, and acid-base methanol recovered similar metabolite amounts with good reproducibility. Based on overall performance, methanol/water was chosen as a suitable extraction solvent. Repeated freeze/thaw cycles, ultrasonication and homogenization did not improve overall metabolite yield of the methanol/water extraction. Trypsin/EDTA treatment caused substantial metabolite leakage proving it inadequate for metabolomics studies. Gentle scraping of the cells in a buffer solution and subsequent extraction with methanol/water resulted on average in a sevenfold lower recovery of quantified metabolites compared with direct scraping using methanol/water, making the latter one the method of choice to harvest and extract metabolites from adherently growing mammalian SW480 cells.
Heat integrated ethanol dehydration flowsheets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hutahaean, L.S.; Shen, W.H.; Brunt, V. Van
1995-04-01
zA theoretical evaluation of heat-integrated heterogeneous-azeotropic ethanol-water distillation flowsheets is presented. Simulations of two column flowsheets using several different hydrocarbon entrainers reveal a region of potential heat integration and substantial reduction in operating energy. In this paper, methods for comparing hydrocarbon entrainers are shown. Two aspects of entrainers are related to operating and capital costs. The binary azeotropic composition of the entrainer-ethanol mixture is related to the energy requirements of the flowsheet. A temperature difference in the azeotrophic column is related to the size of the column and overall process staging requirements. Although the hydrophobicity of an entrainer is essentialmore » for specification of staging in the dehydration column, no substantial increase in operating energy results from an entrainer that has a higher water content. Likewise, liquid-liquid equilibria between several entrainer-ethanol-water mixtures have no substantial effect on either staging or operation. Rather, increasing the alcohol content of the entrainer-ethanol azeotrope limits its recovery in the dehydration column, and increases the recycle and reflux streams. These effects both contribute to increasing the separation energy requirements and reducing the region of potential heat integration. A cost comparison with a multieffect extractive distillation flowsheet reveals that the costs are comparable; however, the extractive distillation flowsheet is more cost effective as operating costs increase.« less
NASA Astrophysics Data System (ADS)
Dhara, Sangita; Misra, N. L.; Aggarwal, S. K.; Venugopal, V.
2010-06-01
An energy dispersive X-ray fluorescence method for determination of cadmium (Cd) in uranium (U) matrix using continuum source of excitation was developed. Calibration and sample solutions of cadmium, with and without uranium were prepared by mixing different volumes of standard solutions of cadmium and uranyl nitrate, both prepared in suprapure nitric acid. The concentration of Cd in calibration solutions and samples was in the range of 6 to 90 µg/mL whereas the concentration of Cd with respect to U ranged from 90 to 700 µg/g of U. From the calibration solutions and samples containing uranium, the major matrix uranium was selectively extracted using 30% tri-n-butyl phosphate in dodecane. Fixed volumes (1.5 mL) of aqueous phases thus obtained were taken directly in specially designed in-house fabricated leak proof Perspex sample cells for the energy dispersive X-ray fluorescence measurements and calibration plots were made by plotting Cd Kα intensity against respective Cd concentration. For the calibration solutions not having uranium, the energy dispersive X-ray fluorescence spectra were measured without any extraction and Cd calibration plots were made accordingly. The results obtained showed a precision of 2% (1 σ) and the results deviated from the expected values by < 4% on average.
NASA Astrophysics Data System (ADS)
Armeli Minicante, S.; Ambrosi, E.; Back, M.; Barichello, J.; Cattaruzza, E.; Gonella, F.; Scantamburlo, E.; Trave, E.
2016-07-01
Seaweeds are a reserve of natural dyes (chlorophylls a, b and c), characterized by low cost and easy supply, without potential environmental load in terms of land subtraction, and also complying with the requirements of an efficient waste management policy. In particular, the brown seaweed Undaria pinnatifida is a species largely present in the Venice Lagoon area, and for it a removal strategy is actually mandatory. In this paper, we set-up an eco-protocol for the best extraction and preparation procedures of the pigment, with the aim of finding an easy and affordable method for chlorophyll c extraction, exploring at the same time the possibility of using these algae within local sustainable management integrated strategies, among which the possible use of chlorophylls as a dye source in dye sensitized solar cells (DSSCs) is investigated. Experimental results suggest that the developed protocols are useful to optimize the chlorophyll c extraction, as shown by optical absorption spectroscopy measurements. The DSSCs built with the chlorophyll extracted by the proposed eco-protocol exhibit solar energy conversion efficiencies are similar to those obtained following extraction protocols with larger environmental impacts.
Off-energy-shell p-p scattering at sub-Coulomb energies via the Trojan horse method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tumino, A.; Dipartimento di Metodologie Fisiche e Chimiche per l'Ingegneria, Universita di Catania, Catania; Universita Kore di Enna, Enna
2008-12-15
Two-proton scattering at sub-Coulomb energies has been measured indirectly via the Trojan horse method applied to the p + d{yields}p + p + n reaction to investigate off-energy shell effects for scattering processes. The three-body experiment was performed at 5 and 4.7 MeV corresponding to a p-p relative energy ranging from 80 to 670 keV. The free p-p cross section exhibits a deep minimum right within this relative energy region due to Coulomb plus nuclear destructive interference. No minimum occurs instead in the Trojan horse p-p cross section, which was extracted by employing a simple plane-wave impulse approximation. A detailedmore » formalism was developed to build up the expression of the theoretical half-off-shell p-p cross section. Its behavior agrees with the Trojan horse data and in turn formally fits the n-n, n-p, and nuclear p-p cross sections given the fact that in its expression the Coulomb amplitude is negligible with respect to the nuclear one. These results confirm the Trojan horse suppression of the Coulomb amplitude for scattering due to the off-shell character of the process.« less
NASA Astrophysics Data System (ADS)
Orhan, Kadir; Mayerle, Roberto
2017-04-01
Climate change is an urgent and potentially irreversible threat to human societies and the planet and thus requires an effective and appropriate response, with a view to accelerating the reduction of global greenhouse gas emissions. At this point, a worldwide shift to renewable energy is crucial. In this study, a methodology comprising of the estimates of power yield, evaluation of the effects of power extraction on flow conditions, and near-field investigations to deliver wake characteristics, recovery and interactions is described and applied to several straits in Indonesia. Site selection is done with high-resolution, three-dimensional flow models providing sufficient spatiotemporal coverage. Much attention has been given to the meteorological forcing, and conditions at the open sea boundaries to adequately capture the density gradients and flow fields. Model verifications using tidal records show excellent agreement. Sites with adequate depth for the energy conversion using horizontal axis tidal turbines, average kinetic power density greater than 0.5 kW/m2, and surface area larger than 0.5km2 are defined as energy hotspots. Spatial variation of the average extractable electric power is determined, and annual tidal energy resource is estimated for the straits in question. The results showed that the potential for tidal power generation in Indonesia is likely to exceed previous predictions reaching around 4,800MW. Models with higher resolutions have been developed to assess the impacts of devices on flow conditions and to resolve near-field turbine wakes in greater detail. The energy is assumed to be removed uniformly by sub-grid scale arrays of turbines. An additional drag force resulting in dissipation of the pre-existing kinetic power from 10% to 60% within a flow cross-section is introduced to capture the impacts. k-ɛ model, which is a second order turbulence closure model is selected to involve the effects of the turbulent kinetic energy and turbulent kinetic energy dissipation. Preliminary results show the effectiveness of the method to capture the effects of power extraction, and wake characteristics and recovery reasonably well with low computational cost. It was found that although there is no significant change regarding water levels, an impact has been observed on current velocities as a result of velocity profile adjusting to the increased momentum transfer. It was also seen that, depending on the level of energy dissipation, currently recommended tidal farm configurations can be conservative regarding the spacing of the tidal turbines.
NASA Astrophysics Data System (ADS)
Schauer, F.; Nádaždy, V.; Gmucová, K.
2018-04-01
There is potential in applying conjugated polymers in novel organic optoelectronic devices, where a comprehensive understanding of the fundamental processes and energetics involved during transport and recombination is still lacking, limiting further device optimization. The electronic transport modeling and its optimization need the energy distribution of transport and defect states, expressed by the energy distribution of the Density of States (DOS) function, as input/comparative parameters. We present the Energy Resolved-Electrochemical Impedance Spectroscopy (ER-EIS) method for the study of transport and defect electronic states in organic materials. The method allows mapping over unprecedentedly wide energy and DOS ranges. The ER-EIS spectroscopic method is based on the small signal interaction between the surface of the organic film and the liquid electrolyte containing reduction-oxidation (redox) species, which is similar to the extraction of an electron by an acceptor and capture of an electron by a donor at a semiconductor surface. The desired DOS of electronic transport and defect states can be derived directly from the measured redox response signal to the small voltage perturbation at the instantaneous position of the Fermi energy, given by the externally applied voltage. The theory of the ER-EIS method and conditions for its validity for solid polymers are presented in detail. We choose four case studies on poly(3-hexylthiophene-2,5-diyl) and poly[methyl(phenyl)silane] to show the possibilities of the method to investigate the electronic structure expressed by DOS of polymers with a high resolution of about 6 orders of magnitude and in a wide energy range of 6 eV.
Karain, Wael
2016-10-01
The dynamics of a protein and the water surrounding it are coupled via nonbonded energy interactions. This coupling can exhibit a complex, nonlinear, and nonstationary nature. The THz frequency spectrum for this interaction energy characterizes both the vibration spectrum of the water hydrogen bond network, and the frequency range of large amplitude modes of proteins. We use a Recurrence Plot based Wiener-Khinchin method RPWK to calculate this spectrum, and the results are compared to those determined using the classical auto-covariance-based Wiener-Khinchin method WK. The frequency spectra for the total nonbonded interaction energy extracted from molecular dynamics simulations between the β-Lactamase Inhibitory Protein BLIP, and water molecules within a 10 Å distance from the protein surface, are calculated at 150, 200, 250, and 310 K, respectively. Similar calculations are also performed for the nonbonded interaction energy between the residues 49ASP, 53TYR, and 142PHE in BLIP, with water molecules within 10 Å from each residue respectively at 150, 200, 250, and 310 K. A comparison of the results shows that RPWK performs better than WK, and is able to detect some frequency data points that WK fails to detect. This points to the importance of using methods capable of taking the complex nature of the protein-solvent energy landscape into consideration, and not to rely on standard linear methods. In general, RPWK can be a valuable addition to the analysis tools for protein molecular dynamics simulations. Proteins 2016; 84:1549-1557. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Thouless-Valatin rotational moment of inertia from linear response theory
NASA Astrophysics Data System (ADS)
Petrík, Kristian; Kortelainen, Markus
2018-03-01
Spontaneous breaking of continuous symmetries of a nuclear many-body system results in the appearance of zero-energy restoration modes. These so-called spurious Nambu-Goldstone modes represent a special case of collective motion and are sources of important information about the Thouless-Valatin inertia. The main purpose of this work is to study the Thouless-Valatin rotational moment of inertia as extracted from the Nambu-Goldstone restoration mode that results from the zero-frequency response to the total-angular-momentum operator. We examine the role and effects of the pairing correlations on the rotational characteristics of heavy deformed nuclei in order to extend our understanding of superfluidity in general. We use the finite-amplitude method of the quasiparticle random-phase approximation on top of the Skyrme energy density functional framework with the Hartree-Fock-Bogoliubov theory. We have successfully extended this formalism and established a practical method for extracting the Thouless-Valatin rotational moment of inertia from the strength function calculated in the symmetry-restoration regime. Our results reveal the relation between the pairing correlations and the moment of inertia of axially deformed nuclei of rare-earth and actinide regions of the nuclear chart. We have also demonstrated the feasibility of the method for obtaining the moment of inertia for collective Hamiltonian models. We conclude that from the numerical and theoretical perspective, the finite-amplitude method can be widely used to effectively study rotational properties of deformed nuclei within modern density functional approaches.
Relationship of wood surface energy to surface composition
Feipeng P. Liu; Timothy G. Rials; John Simonsen
1998-01-01
The wood cell wall is composed of cellulose, lignin, hemicelluloses, and extractives. Thus, the surface energy of the wood material must be some combination of the surface energies of these components. The influence of extractives on wood surface chemistry can be important in diverse industrial applications, such as coating, pulping, and wood-based composites. In this...
Xenopus egg cytoplasm with intact actin.
Field, Christine M; Nguyen, Phuong A; Ishihara, Keisuke; Groen, Aaron C; Mitchison, Timothy J
2014-01-01
We report optimized methods for preparing Xenopus egg extracts without cytochalasin D, that we term "actin-intact egg extract." These are undiluted egg cytoplasm that contains abundant organelles, and glycogen which supplies energy, and represents the least perturbed cell-free cytoplasm preparation we know of. We used this system to probe cell cycle regulation of actin and myosin-II dynamics (Field et al., 2011), and to reconstitute the large, interphase asters that organize early Xenopus embryos (Mitchison et al., 2012; Wühr, Tan, Parker, Detrich, & Mitchison, 2010). Actin-intact Xenopus egg extracts are useful for analysis of actin dynamics, and interaction of actin with other cytoplasmic systems, in a cell-free system that closely mimics egg physiology, and more generally for probing the biochemistry and biophysics of the egg, zygote, and early embryo. Detailed protocols are provided along with assays used to check cell cycle state and tips for handling and storing undiluted egg extracts. © 2014 Elsevier Inc. All rights reserved.
Short Haul Civil Tiltrotor Contingency Power System Preliminary Design
NASA Technical Reports Server (NTRS)
Eames, David J. H.
2006-01-01
Single Langmuir probe measurements are presented over a two-dimensional array of locations in the near Discharge Cathode Assembly (DCA) region of a 30-cm diameter ring cusp ion thruster over a range of thruster operating conditions encompassing the high-power half of the NASA throttling table. The Langmuir probe data were analyzed with two separate methods. All data were analyzed initially assuming an electron population consisting of Maxwellian electrons only. The on-axis data were then analyzed assuming both Maxwellian and primary electrons. Discharge plasma data taken with beam extraction exhibit a broadening of the higher electron temperature plume boundary compared to similar discharge conditions without beam extraction. The opposite effect is evident with the electron/ion number density as the data without began, extraction appears to be more collimated than the corresponding data with beam extraction. Primary electron energy and number densities are presented for one operating condition giving an order of magnitude of their value and the error associated with this calculation.
Discharge Chamber Plasma Structure of a 30-cm NSTAR-Type Ion Engine
NASA Technical Reports Server (NTRS)
Herman, Daniel A.; Gallimore, Alec D.
2006-01-01
Single Langmuir probe measurements are presented over a two-dimensional array of locations in the near Discharge Cathode Assembly (DCA) region of a 30-cm diameter ring cusp ion thruster over a range of thruster operating conditions encompassing the high-power half of the NASA throttling table. The Langmuir probe data were analyzed with two separate methods. All data were analyzed initially assuming an electron population consisting of Maxwellian electrons only. The on-axis data were then analyzed assuming both Maxwellian and primary electrons. Discharge plasma data taken with beam extraction exhibit a broadening of the higher electron temperature plume boundary compared to similar discharge conditions without beam extraction. The opposite effect is evident with the electron/ion number density as the data without began, extraction appears to be more collimated than the corresponding data with beam extraction. Primary electron energy and number densities are presented for one operating condition giving an order of magnitude of their value and the error associated with this calculation.
Man, Zhengyin; Wang, Quanlin; Li, Hesheng; Zhang, Aizhi
2014-12-01
A comprehensive analytical method based on ultra-performance liquid chromatography coupled with triple quadrupole mass spectrometry (UPLC-MS/MS) has been developed for the simultaneous determination of 33 primary aromatic amines (PAAs) in fine pigments such as gouache paint, oil painting pigment and acrylic paint. The primary aromatic amines in samples were extracted with acetonitrile. Then the extract was concentrated by centrifugation and nitrogen blow, finally diluted to 2 mL with methanol-water (1:9, v/v) and filtered through 0. 22 im membrane before UPLC-MS/MS analysis. The analytes were separated on a BEH Phenyl column (100 mm x 2. 1 mm, 1. 7 1µm) with 0. 07% (v/v) formic acid in methanol-water as mobile phases in gradient elution. The PAAs were detected by UPLC-MS/MS under multiple reaction monitoring (MRM) mode and quantified by the internal standard method. The separation conditions, fragment voltages and collision energies were optimized. The impacts of extraction times, extraction solvents and concentration methods on recoveries were studied. The limits of detection and limits of quantitation for the 33 primary aromatic amines were 5-50 µg/kg and 15-150 µg/kg respectively. The mean recoveries of three different dye products at three spiked levels were 70. 1% - 115. 8%. The relative standard deviations were 2. 1% - 15%. The expenmental results indicated that the method is simple, rapid, sensitive, accurate and can meet the requirements for the determination.
High strength air-dried aerogels
Coronado, Paul R.; Satcher, Jr., Joe H.
2012-11-06
A method for the preparation of high strength air-dried organic aerogels. The method involves the sol-gel polymerization of organic gel precursors, such as resorcinol with formaldehyde (RF) in aqueous solvents with R/C ratios greater than about 1000 and R/F ratios less than about 1:2.1. Using a procedure analogous to the preparation of resorcinol-formaldehyde (RF) aerogels, this approach generates wet gels that can be air dried at ambient temperatures and pressures. The method significantly reduces the time and/or energy required to produce a dried aerogel compared to conventional methods using either supercritical solvent extraction. The air dried gel exhibits typically less than 5% shrinkage.
Omirinde, J O; Ozegbe, P C; Oyeyemi, M O
2014-06-19
Cuscuta australis (C. australis) seed and stem are commonly used as dietary supplements in a maize-meal, "Ogi", by the local population for the management of male and female reproductive dysfunctions. This study, as a part of on-going efforts, therefore, evaluated and compared the effects of Low Protein-energy (LP) and Normal Protein-energy (NP) diets on the sperm morphology and characteristics of adult Wistar rats orally dosed aqueous extracts of C. australis seed (LPSE and NPSE) and stem (LPST and NPST), 300 mg of extract/kg body weight of rat/day, for seven days. The control groups (LPWA and NPWA) received vehicle, water. Live-dead ratio and percentage of sperms with curved tail were significantly decreased (p<0.01) in the NPST relative to the NPWA, LPWA, LPST, NPSE and LPSE. Total abnormal sperm counts, acephalic sperms and tailless head sperms were significantly decreased (p<0.001, p<0.05 and p<0.001, respectively) in the LPST and NPST relative to LPSE, NPSE, LPWA and NPWA. The LPSE, LPST and NPST showed significantly decreased (p<0.05) percentages of sperms with either bent mid-piece or curved mid-piece relative to the LPWA. Significantly decreased (p<0.05) percentage of sperms with curved mid-piece was also observed in the NPSE relative to LPWA. Protein-energy diet significantly influenced (at least p<0.05) the effect of each extract on sperm motility and percentage of sperms with curved tail. Stem extract significantly decreased (p<0.01) the percentages of acephalic sperms and tailless head sperms. Diet-stem extract interaction significantly influenced (p<0.05) live-dead ratio. Our data suggest that orally administered aqueous extracts of C. australis generally enhanced the sperm morphology and characteristics of the male Wistar rat and that the stem extract maintained sperm morphology better than the seed extract. It also showed that the stem extract decreased live-dead ratio and that the efficacy of orally administered aqueous C. australis stem extract may be affected by variations in dietary protein-energy levels.
Application of Carbonate Reservoir using waveform inversion and reverse-time migration methods
NASA Astrophysics Data System (ADS)
Kim, W.; Kim, H.; Min, D.; Keehm, Y.
2011-12-01
Recent exploration targets of oil and gas resources are deeper and more complicated subsurface structures, and carbonate reservoirs have become one of the attractive and challenging targets in seismic exploration. To increase the rate of success in oil and gas exploration, it is required to delineate detailed subsurface structures. Accordingly, migration method is more important factor in seismic data processing for the delineation. Seismic migration method has a long history, and there have been developed lots of migration techniques. Among them, reverse-time migration is promising, because it can provide reliable images for the complicated model even in the case of significant velocity contrasts in the model. The reliability of seismic migration images is dependent on the subsurface velocity models, which can be extracted in several ways. These days, geophysicists try to obtain velocity models through seismic full waveform inversion. Since Lailly (1983) and Tarantola (1984) proposed that the adjoint state of wave equations can be used in waveform inversion, the back-propagation techniques used in reverse-time migration have been used in waveform inversion, which accelerated the development of waveform inversion. In this study, we applied acoustic waveform inversion and reverse-time migration methods to carbonate reservoir models with various reservoir thicknesses to examine the feasibility of the methods in delineating carbonate reservoir models. We first extracted subsurface material properties from acoustic waveform inversion, and then applied reverse-time migration using the inverted velocities as a background model. The waveform inversion in this study used back-propagation technique, and conjugate gradient method was used in optimization. The inversion was performed using the frequency-selection strategy. Finally waveform inversion results showed that carbonate reservoir models are clearly inverted by waveform inversion and migration images based on the inversion results are quite reliable. Different thicknesses of reservoir models were also described and the results revealed that the lower boundary of the reservoir was not delineated because of energy loss. From these results, it was noted that carbonate reservoirs can be properly imaged and interpreted by waveform inversion and reverse-time migration methods. This work was supported by the Energy Resources R&D program of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea government Ministry of Knowledge Economy (No. 2009201030001A, No. 2010T100200133) and the Brain Korea 21 project of Energy System Engineering.
Computational screening of biomolecular adsorption and self-assembly on nanoscale surfaces.
Heinz, Hendrik
2010-05-01
The quantification of binding properties of ions, surfactants, biopolymers, and other macromolecules to nanometer-scale surfaces is often difficult experimentally and a recurring challenge in molecular simulation. A simple and computationally efficient method is introduced to compute quantitatively the energy of adsorption of solute molecules on a given surface. Highly accurate summation of Coulomb energies as well as precise control of temperature and pressure is required to extract the small energy differences in complex environments characterized by a large total energy. The method involves the simulation of four systems, the surface-solute-solvent system, the solute-solvent system, the solvent system, and the surface-solvent system under consideration of equal molecular volumes of each component under NVT conditions using standard molecular dynamics or Monte Carlo algorithms. Particularly in chemically detailed systems including thousands of explicit solvent molecules and specific concentrations of ions and organic solutes, the method takes into account the effect of complex nonbond interactions and rotational isomeric states on the adsorption behavior on surfaces. As a numerical example, the adsorption of a dodecapeptide on the Au {111} and mica {001} surfaces is described in aqueous solution. Copyright 2009 Wiley Periodicals, Inc.
Effect of power shape on energy extraction from microbial fuel cell
NASA Astrophysics Data System (ADS)
Alaraj, Muhannad; Feng, Shuo; Roane, Timberley M.; Park, Jae-Do
2017-10-01
Microbial fuel cells (MFCs) generate renewable energy in the form of direct current (DC) power. Harvesting energy from MFCs started with passive components such as resistors and capacitors, then charge pumps were introduced with some more advantages. Power electronics converters were later preferred due to their higher efficiency and controllability; however, they introduce high frequency current ripple due to their high frequency switching. In this paper, the effect of shape of power extraction on MFC performance was investigated using three types of current shapes: continuous, square-wave, and triangular-wave. Simultaneously, chemical parameters, such as pH, dissolved oxygen, electrical conductivity, and redox potential, in the anode chamber were monitored to see how these parameters change with the shape of the electrical power extraction. Results showed that the shape of the extracted current did not have a substantial effect on the MFC life span, output power, and energy extraction, nor on the chemical parameters. The outcome of this study provided insight for the electrical impact by power electronics converters on some microbial and chemical aspects of an MFC system.
NASA Astrophysics Data System (ADS)
Bencheikh, Mohamed; Maghnouj, Abdelmajid; Tajmouati, Jaouad
2017-11-01
The Monte Carlo calculation method is considered to be the most accurate method for dose calculation in radiotherapy and beam characterization investigation, in this study, the Varian Clinac 2100 medical linear accelerator with and without flattening filter (FF) was modelled. The objective of this study was to determine flattening filter impact on particles' energy properties at phantom surface in terms of energy fluence, mean energy, and energy fluence distribution. The Monte Carlo codes used in this study were BEAMnrc code for simulating linac head, DOSXYZnrc code for simulating the absorbed dose in a water phantom, and BEAMDP for extracting energy properties. Field size was 10 × 10 cm2, simulated photon beam energy was 6 MV and SSD was 100 cm. The Monte Carlo geometry was validated by a gamma index acceptance rate of 99% in PDD and 98% in dose profiles, gamma criteria was 3% for dose difference and 3mm for distance to agreement. In without-FF, the energetic properties was as following: electron contribution was increased by more than 300% in energy fluence, almost 14% in mean energy and 1900% in energy fluence distribution, however, photon contribution was increased 50% in energy fluence, and almost 18% in mean energy and almost 35% in energy fluence distribution. The removing flattening filter promotes the increasing of electron contamination energy versus photon energy; our study can contribute in the evolution of removing flattening filter configuration in future linac.
Fabrication of dye-sensitized solar cell using chlorophylls pigment from sargassum
NASA Astrophysics Data System (ADS)
Ridwan, M. A.; Noor, E.; Rusli, M. S.; Akhiruddin
2018-04-01
Dye-sensitized solar cell (DSSC) is a new generation of the solar cell. Its development in the dye-sensitized system is varied. Natural dyes have been the choice in developing DSSC. This study used a dye-sensitized chlorophyll pigment from Sargassum sp. as a dye-sensitized solar cell. This study aims to obtain chlorophyll pigment extract to be used as a dye in DSSC and to obtain the best energy conversion efficiency from DSSC. The chlorophyll pigments were extracted using APHA method (2012), and the TiO2 coating method used was doctor blade method. The two fabricated cells have an area of 1 cm2 immersed with chlorophyll dye for 30 hours. Then these cells were tested using direct sun radiation. The concentration value of chlorophyll in acetone solution was 61.176 mg/L. The efficiency value obtained was 1.50% with VOC of 241 mV, ISC 2.9 x 10-4 mA and fill factor 0.432.
Methodological considerations for global analysis of cellular FLIM/FRET measurements
NASA Astrophysics Data System (ADS)
Adbul Rahim, Nur Aida; Pelet, Serge; Kamm, Roger D.; So, Peter T. C.
2012-02-01
Global algorithms can improve the analysis of fluorescence energy transfer (FRET) measurement based on fluorescence lifetime microscopy. However, global analysis of FRET data is also susceptible to experimental artifacts. This work examines several common artifacts and suggests remedial experimental protocols. Specifically, we examined the accuracy of different methods for instrument response extraction and propose an adaptive method based on the mean lifetime of fluorescent proteins. We further examined the effects of image segmentation and a priori constraints on the accuracy of lifetime extraction. Methods to test the applicability of global analysis on cellular data are proposed and demonstrated. The accuracy of global fitting degrades with lower photon count. By systematically tracking the effect of the minimum photon count on lifetime and FRET prefactors when carrying out global analysis, we demonstrate a correction procedure to recover the correct FRET parameters, allowing us to obtain protein interaction information even in dim cellular regions with photon counts as low as 100 per decay curve.
Zhao, Chao; Jiang, Jingchi; Guan, Yi; Guo, Xitong; He, Bin
2018-05-01
Electronic medical records (EMRs) contain medical knowledge that can be used for clinical decision support (CDS). Our objective is to develop a general system that can extract and represent knowledge contained in EMRs to support three CDS tasks-test recommendation, initial diagnosis, and treatment plan recommendation-given the condition of a patient. We extracted four kinds of medical entities from records and constructed an EMR-based medical knowledge network (EMKN), in which nodes are entities and edges reflect their co-occurrence in a record. Three bipartite subgraphs (bigraphs) were extracted from the EMKN, one to support each task. One part of the bigraph was the given condition (e.g., symptoms), and the other was the condition to be inferred (e.g., diseases). Each bigraph was regarded as a Markov random field (MRF) to support the inference. We proposed three graph-based energy functions and three likelihood-based energy functions. Two of these functions are based on knowledge representation learning and can provide distributed representations of medical entities. Two EMR datasets and three metrics were utilized to evaluate the performance. As a whole, the evaluation results indicate that the proposed system outperformed the baseline methods. The distributed representation of medical entities does reflect similarity relationships with respect to knowledge level. Combining EMKN and MRF is an effective approach for general medical knowledge representation and inference. Different tasks, however, require individually designed energy functions. Copyright © 2018 Elsevier B.V. All rights reserved.
Cottingham, James G.
1977-01-01
Method and apparatus for the use of hydrides to exhaust heat from one temperature source and deliver the thermal energy extracted for use at a higher temperature, thereby acting as a heat pump. For this purpose there are employed a pair of hydridable metal compounds having different characteristics working together in a closed pressure system employing a high temperature source to upgrade the heat supplied from a low temperature source.
NASA Astrophysics Data System (ADS)
Liu, Shuang; Liu, Fei; Hu, Shaohua; Yin, Zhenbiao
The major power information of the main transmission system in machine tools (MTSMT) during machining process includes effective output power (i.e. cutting power), input power and power loss from the mechanical transmission system, and the main motor power loss. These information are easy to obtain in the lab but difficult to evaluate in a manufacturing process. To solve this problem, a separation method is proposed here to extract the MTSMT power information during machining process. In this method, the energy flow and the mathematical models of major power information of MTSMT during the machining process are set up first. Based on the mathematical models and the basic data tables obtained from experiments, the above mentioned power information during machining process can be separated just by measuring the real time total input power of the spindle motor. The operation program of this method is also given.
Adaptive Fourier decomposition based R-peak detection for noisy ECG Signals.
Ze Wang; Chi Man Wong; Feng Wan
2017-07-01
An adaptive Fourier decomposition (AFD) based R-peak detection method is proposed for noisy ECG signals. Although lots of QRS detection methods have been proposed in literature, most detection methods require high signal quality. The proposed method extracts the R waves from the energy domain using the AFD and determines the R-peak locations based on the key decomposition parameters, achieving the denoising and the R-peak detection at the same time. Validated by clinical ECG signals in the MIT-BIH Arrhythmia Database, the proposed method shows better performance than the Pan-Tompkin (PT) algorithm in both situations of a native PT and the PT with a denoising process.
Roostaie, Ali; Allahnoori, Farzad; Ehteshami, Shokooh
2017-09-01
In this work, novel composite magnetic nanoparticles (CuFe2O4) were synthesized based on sol-gel combustion in the laboratory. Next, a simple production method was optimized for the preparation of the copper nanoferrites (CuFe2O4), which are stable in water, magnetically active, and have a high specific area used as sorbent material for organic dye extraction in water solution. CuFe2O4 nanopowders were characterized by field-emission scanning electron microscopy (SEM), FTIR spectroscopy, and energy dispersive X-ray spectroscopy. The size range of the nanoparticles obtained in such conditions was estimated by SEM images to be 35-45 nm. The parameters influencing the extraction of CuFe2O4 nanoparticles, such as desorption solvent, amount of sorbent, desorption time, sample pH, ionic strength, and extraction time, were investigated and optimized. Under the optimum conditions, a linear calibration curve in the range of 0.75-5.00 μg/L with R2 = 0.9996 was obtained. The LOQ (10Sb) and LOD (3Sb) of the method were 0.75 and 0.25 μg/L (n = 3), respectively. The RSD for a water sample spiked with 1 μg/L rhodamine B was 3% (n = 5). The method was applied for the determination of rhodamine B in tap water, dishwashing foam, dishwashing liquid, and shampoo samples. The relative recovery percentages for these samples were in the range of 95-99%.
NASA Astrophysics Data System (ADS)
Wang, Yongjia; Guo, Chenchen; Li, Qingfeng; Le Fèvre, Arnaud; Leifels, Yvonne; Trautmann, Wolfgang
2018-03-01
Background: The nuclear incompressibility (K0) plays a crucial role in understanding diverse phenomena in nuclear structure and reactions, as well as in astrophysics. Heavy-ion-collision measurements in combination with transport model simulations serve as important tools for extracting the nuclear incompressibility. However, uncertainties in transport models (or model dependence) partly affect the reliability of the extracted result. Purpose: In the present work, by using the recently measured data of rapidity-dependent flows, we constrain the incompressibility of nuclear matter and analyze the impact of model uncertainties on the obtained value. Method: The method is based on the newly updated version of the ultrarelativistic quantum molecular dynamics (UrQMD) model in which the Skyrme potential energy-density functional is introduced. Three different Skyrme interactions which give different incompressibilities varying from K0 = 201 to 271 MeV are adopted. The incompressibility is deduced from the comparison of the UrQMD model simulations and the FOPI data for rapidity-dependent elliptic flow in Au + Au collisions at beam energies 0.4A-1.0A GeV. Results: The elliptic flow v2 as a function of rapidity y0 can be well described by a quadratic fit v2 =v20 +v22 ṡ y02 . It is found that the quantity v2n defined by v2n = |v20 | + |v22 | is quite sensitive to the incompressibility K0 and the in-medium nucleon-nucleon cross section, but not sensitive to the slope parameter L of the nuclear symmetry energy. Conclusions: With the FU3FP4 parametrization of the in-medium nucleon-nucleon cross section, an averaged K0 = 220 ± 40 MeV is extracted from the v2n of free protons and deuterons. However, remaining systematic uncertainties, partly related to the choice of in-medium nucleon-nucleon cross sections, are of the same magnitude (± 40 MeV). Overall, the rapidity dependent elliptic flow supports a soft symmetric-matter equation-of-state.
Pairwise contact energy statistical potentials can help to find probability of point mutations.
Saravanan, K M; Suvaithenamudhan, S; Parthasarathy, S; Selvaraj, S
2017-01-01
To adopt a particular fold, a protein requires several interactions between its amino acid residues. The energetic contribution of these residue-residue interactions can be approximated by extracting statistical potentials from known high resolution structures. Several methods based on statistical potentials extracted from unrelated proteins are found to make a better prediction of probability of point mutations. We postulate that the statistical potentials extracted from known structures of similar folds with varying sequence identity can be a powerful tool to examine probability of point mutation. By keeping this in mind, we have derived pairwise residue and atomic contact energy potentials for the different functional families that adopt the (α/β) 8 TIM-Barrel fold. We carried out computational point mutations at various conserved residue positions in yeast Triose phosphate isomerase enzyme for which experimental results are already reported. We have also performed molecular dynamics simulations on a subset of point mutants to make a comparative study. The difference in pairwise residue and atomic contact energy of wildtype and various point mutations reveals probability of mutations at a particular position. Interestingly, we found that our computational prediction agrees with the experimental studies of Silverman et al. (Proc Natl Acad Sci 2001;98:3092-3097) and perform better prediction than i Mutant and Cologne University Protein Stability Analysis Tool. The present work thus suggests deriving pairwise contact energy potentials and molecular dynamics simulations of functionally important folds could help us to predict probability of point mutations which may ultimately reduce the time and cost of mutation experiments. Proteins 2016; 85:54-64. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Deen, Kashif Mairaj; Asselin, Edouard
2018-05-09
The development of a hybrid system capable of storing energy and the additional benefit of Cu extraction is discussed in this work. A fixed bed flow cell (FBFC) was used in which a composite negative electrode containing CuFeS 2 (80 wt %) and carbon black (20 wt %) in graphite felt was separated from a positive (graphite felt) electrode by a proton-exchange membrane. The anolyte (0.2 m H 2 SO 4 ) and catholyte (0.5 m Fe 2+ in 0.2 m H 2 SO 4 with or without 0.1 m Cu 2+ ) were circulated in the cell. The electrochemical activity of the Fe 2+ /Fe 3+ redox couple over graphite felt significantly improved after the addition of Cu 2+ in the catholyte. Ultimately, in the CuFeS 2 ∥Fe 2+ /Cu 2+ (CFeCu) FBFC system, the specific capacity increased continuously to 26.4 mAh g -1 in 500 galvanostatic charge-discharge (GCD) cycles, compared to the CuFeS 2 ∥Fe 2+ (CFe) system (13.9 mAh g -1 ). Interestingly, the specific discharge energy gradually increased to 3.6 Wh kg -1 in 500 GCD cycles for the CFeCu system compared to 3.29 Wh kg -1 for the CFe system in 150 cycles. In addition to energy storage, 10.75 % Cu was also extracted from the mineral, which is an important feature of the CFeCu system as it would allow Cu extraction and recovery through hydrometallurgical methods. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Liu, Shijie
2010-01-01
The conversion of biomass to chemicals and energy is imperative to sustaining our way of life as known to us today. Fossil chemical and energy sources are traditionally regarded as wastes from a distant past. Petroleum, natural gas, and coal are not being regenerated in a sustainable manner. However, biomass sources such as algae, grasses, bushes and forests are continuously being replenished. Woody biomass represents the most abundant and available biomass source. Woody biomass is a reliably sustainable source of chemicals and energy that could be replenished at a rate consistent with our needs. The biorefinery is a concept describing the collection of processes used to convert biomass to chemicals and energy. Woody biomass presents more challenges than cereal grains for conversion to platform chemicals due to its stereochemical structures. Woody biomass can be thought of as comprised of at least four components: extractives, hemicellulose, lignin and cellulose. Each of these four components has a different degree of resistance to chemical, thermal and biological degradation. The biorefinery concept proposed at ESF (State University of New York - College of Environmental Science and Forestry) aims at incremental sequential deconstruction, fractionation/conversion of woody biomass to achieve efficient separation of major components. The emphasis of this work is on the kinetics of hot-water extraction, filling the gap in the fundamental understanding, linking engineering developments, and completing the first step in the biorefinery processes. This first step removes extractives and hemicellulose fractions from woody biomass. While extractives and hemicellulose are largely removed in the extraction liquor, cellulose and lignin largely remain in the residual woody structure. Xylo-oligomers and acetic acid in the extract are the major components having the greatest potential value for development. Extraction/hydrolysis involves at least 16 general reactions that could be divided into four categories: adsorption of proton onto woody biomass, hydrolysis reactions on the woody biomass surface, dissolution of soluble substances into the extraction liquor, and hydrolysis and dehydration decomposition in the extraction liquor. The extraction/hydrolysis rates are significantly simplified when the reactivity of all the intermonomer bonds are regarded as identical within each macromolecule, and the overall reactivity are identical for all the extractable macromolecules on the surface. A pseudo-first order extraction rate expression has been derived based on concentrations in monomer units. The reaction rate constant is however lower at the beginning of the extraction than that towards the end of the extraction. Furthermore, the H-factor and/or severity factor can be applied to lump the effects of temperature and residence time on the extraction process, at least for short times. This provides a means to control and optimize the performance of the extraction process effectively. Copyright 2010 Elsevier Inc. All rights reserved.
Intelligent Gearbox Diagnosis Methods Based on SVM, Wavelet Lifting and RBR
Gao, Lixin; Ren, Zhiqiang; Tang, Wenliang; Wang, Huaqing; Chen, Peng
2010-01-01
Given the problems in intelligent gearbox diagnosis methods, it is difficult to obtain the desired information and a large enough sample size to study; therefore, we propose the application of various methods for gearbox fault diagnosis, including wavelet lifting, a support vector machine (SVM) and rule-based reasoning (RBR). In a complex field environment, it is less likely for machines to have the same fault; moreover, the fault features can also vary. Therefore, a SVM could be used for the initial diagnosis. First, gearbox vibration signals were processed with wavelet packet decomposition, and the signal energy coefficients of each frequency band were extracted and used as input feature vectors in SVM for normal and faulty pattern recognition. Second, precision analysis using wavelet lifting could successfully filter out the noisy signals while maintaining the impulse characteristics of the fault; thus effectively extracting the fault frequency of the machine. Lastly, the knowledge base was built based on the field rules summarized by experts to identify the detailed fault type. Results have shown that SVM is a powerful tool to accomplish gearbox fault pattern recognition when the sample size is small, whereas the wavelet lifting scheme can effectively extract fault features, and rule-based reasoning can be used to identify the detailed fault type. Therefore, a method that combines SVM, wavelet lifting and rule-based reasoning ensures effective gearbox fault diagnosis. PMID:22399894
Ge, Jing; Zhang, Guoping
2015-01-01
Advanced intelligent methodologies could help detect and predict diseases from the EEG signals in cases the manual analysis is inefficient available, for instance, the epileptic seizures detection and prediction. This is because the diversity and the evolution of the epileptic seizures make it very difficult in detecting and identifying the undergoing disease. Fortunately, the determinism and nonlinearity in a time series could characterize the state changes. Literature review indicates that the Delay Vector Variance (DVV) could examine the nonlinearity to gain insight into the EEG signals but very limited work has been done to address the quantitative DVV approach. Hence, the outcomes of the quantitative DVV should be evaluated to detect the epileptic seizures. To develop a new epileptic seizure detection method based on quantitative DVV. This new epileptic seizure detection method employed an improved delay vector variance (IDVV) to extract the nonlinearity value as a distinct feature. Then a multi-kernel functions strategy was proposed in the extreme learning machine (ELM) network to provide precise disease detection and prediction. The nonlinearity is more sensitive than the energy and entropy. 87.5% overall accuracy of recognition and 75.0% overall accuracy of forecasting were achieved. The proposed IDVV and multi-kernel ELM based method was feasible and effective for epileptic EEG detection. Hence, the newly proposed method has importance for practical applications.
Intelligent gearbox diagnosis methods based on SVM, wavelet lifting and RBR.
Gao, Lixin; Ren, Zhiqiang; Tang, Wenliang; Wang, Huaqing; Chen, Peng
2010-01-01
Given the problems in intelligent gearbox diagnosis methods, it is difficult to obtain the desired information and a large enough sample size to study; therefore, we propose the application of various methods for gearbox fault diagnosis, including wavelet lifting, a support vector machine (SVM) and rule-based reasoning (RBR). In a complex field environment, it is less likely for machines to have the same fault; moreover, the fault features can also vary. Therefore, a SVM could be used for the initial diagnosis. First, gearbox vibration signals were processed with wavelet packet decomposition, and the signal energy coefficients of each frequency band were extracted and used as input feature vectors in SVM for normal and faulty pattern recognition. Second, precision analysis using wavelet lifting could successfully filter out the noisy signals while maintaining the impulse characteristics of the fault; thus effectively extracting the fault frequency of the machine. Lastly, the knowledge base was built based on the field rules summarized by experts to identify the detailed fault type. Results have shown that SVM is a powerful tool to accomplish gearbox fault pattern recognition when the sample size is small, whereas the wavelet lifting scheme can effectively extract fault features, and rule-based reasoning can be used to identify the detailed fault type. Therefore, a method that combines SVM, wavelet lifting and rule-based reasoning ensures effective gearbox fault diagnosis.
Gruen, Dieter M.; Young, Charles E.; Pellin, Michael J.
1989-01-01
A method and apparatus for extracting for quantitative analysis ions of selected atomic components of a sample. A lens system is configured to provide a slowly diminishing field region for a volume containing the selected atomic components, enabling accurate energy analysis of ions generated in the slowly diminishing field region. The lens system also enables focusing on a sample of a charged particle beam, such as an ion beam, along a path length perpendicular to the sample and extraction of the charged particles along a path length also perpendicular to the sample. Improvement of signal to noise ratio is achieved by laser excitation of ions to selected autoionization states before carrying out quantitative analysis. Accurate energy analysis of energetic charged particles is assured by using a preselected resistive thick film configuration disposed on an insulator substrate for generating predetermined electric field boundary conditions to achieve for analysis the required electric field potential. The spectrometer also is applicable in the fields of SIMS, ISS and electron spectroscopy.
Gruen, D.M.; Young, C.E.; Pellin, M.J.
1989-08-08
A method and apparatus are described for extracting for quantitative analysis ions of selected atomic components of a sample. A lens system is configured to provide a slowly diminishing field region for a volume containing the selected atomic components, enabling accurate energy analysis of ions generated in the slowly diminishing field region. The lens system also enables focusing on a sample of a charged particle beam, such as an ion beam, along a path length perpendicular to the sample and extraction of the charged particles along a path length also perpendicular to the sample. Improvement of signal to noise ratio is achieved by laser excitation of ions to selected auto-ionization states before carrying out quantitative analysis. Accurate energy analysis of energetic charged particles is assured by using a preselected resistive thick film configuration disposed on an insulator substrate for generating predetermined electric field boundary conditions to achieve for analysis the required electric field potential. The spectrometer also is applicable in the fields of SIMS, ISS and electron spectroscopy. 8 figs.
Measurement of the e +e -→π +π - cross section between 600 and 900 MeV using initial state radiation
Ablikim, M.
2015-11-28
We extract the e +e -→π +π - cross section in the energy range between 600 and 900 MeV, exploiting the method of initial state radiation. A data set with an integrated luminosity of 2.93 fb -1 taken at a center-of-mass energy of 3.773 GeV with the BESIII detector at the BEPCII collider is used. The cross section is measured with a systematic uncertainty of 0.9%. We extract the pion form factor |F π| 2 as well as the contribution of the measured cross section to the leading-order hadronic vacuum polarization contribution to (g-2) μ. In conclusion, we find thismore » value to be a π μ π,LO (600–900 MeV) = (368.2 ±2.5 stat±3.3 sys) ·10 -10, which is between the corresponding values using the BaBar or KLOE data.« less
High brilliant thermal and cold moderator for the HBS neutron source project Jülich
NASA Astrophysics Data System (ADS)
Cronert, T.; Dabruck, J. P.; Doege, P. E.; Bessler, Y.; Klaus, M.; Hofmann, M.; Zakalek, P.; Rücker, U.; Lange, C.; Butzek, M.; Hansen, W.; Nabbi, R.; Brückel, T.
2016-09-01
The proposed High Brilliance Neutron Source (HBS), recognized within the Helmholtz Association of German Research Centres, will optimize the entire chain from particle source through particle accelerator, target, moderator, reflector, shielding, beam extraction, beam transport all the way to the detector, utilizing the nuclear Be(p,n) or Be(d,n) reaction in the lower MeV energy range. A D2O moderating reflector prototype (MRP) and a cold source were constructed and build according to MCNP parameter studies. The MRP was tested in a feasibility study at the TREFF instrument at MLZ (Garching). Cold beam extraction from the flux maximum within the moderator based on liquid para H2 and other cold moderators will be tested by energy spectroscopy via TOF-method. Different ratios of liquid ortho/para H2 will be fed to the cold moderator. The ratio will be controlled by feeding from reservoires of natural liquid H2 and a storage loop with an ortho/para converter and determined via online heat capacity measurement.
Tilsen, Sam; Arvaniti, Amalia
2013-07-01
This study presents a method for analyzing speech rhythm using empirical mode decomposition of the speech amplitude envelope, which allows for extraction and quantification of syllabic- and supra-syllabic time-scale components of the envelope. The method of empirical mode decomposition of a vocalic energy amplitude envelope is illustrated in detail, and several types of rhythm metrics derived from this method are presented. Spontaneous speech extracted from the Buckeye Corpus is used to assess the effect of utterance length on metrics, and it is shown how metrics representing variability in the supra-syllabic time-scale components of the envelope can be used to identify stretches of speech with targeted rhythmic characteristics. Furthermore, the envelope-based metrics are used to characterize cross-linguistic differences in speech rhythm in the UC San Diego Speech Lab corpus of English, German, Greek, Italian, Korean, and Spanish speech elicited in read sentences, read passages, and spontaneous speech. The envelope-based metrics exhibit significant effects of language and elicitation method that argue for a nuanced view of cross-linguistic rhythm patterns.
Test to Extract Soil Properties Using the Seismic HammerTM Active Seismic Source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Rebekah F.; Abbott, Robert E.
Geologic material properties are necessary parameters for ground motion modeling and are difficult and expensive to obtain via traditional methods. Alternative methods to estimate soil properties require a measurement of the ground's response to a force. A possible method of obtaining these measurements is active-source seismic surveys, but measurements of the ground response at the source must also be available. The potential of seismic sources to obtain soil properties is limited, however, by the repeatability of the source. Explosives, and hammer surveys are not repeatable because of variable ground coupling or swing strength. On the other hand, the Seismic Hammermore » TM (SH) is consistent in the amount of energy it inputs into the ground. In addition, it leaves large physical depressions as a result of ground compaction. The volume of ground compaction varies by location. Here, we hypothesize that physical depressions left in the earth by the SH correlate to energy recorded by nearby geophones, and therefore are a measurement of soil physical properties. Using measurements of the volume of shot holes, we compare the spatial distribution of the volume of ground compacted between the different shot locations. We then examine energy recorded by the nearest 50 geophones and compare the change in amplitude across hits at the same location. Finally, we use the percent difference between the energy recorded by the first and later hits at a location to test for a correlation to the volume of the shot depressions. We find that: * Ground compaction at the shot-depression does cluster geographically, but does not correlate to known surface features. * Energy recorded by nearby geophones reflects ground refusal after several hits. * There is no correlation to shot volume and changes in energy at particular shot locations. Deeper material properties (i.e. below the depth of surface compaction) may be contributing to the changes in energy propagation. * Without further processing of the data, shot-depression volumes are insufficient to understanding ground response to the SH. Without an accurate understanding of the ground response, we cannot extract material properties in conjunction with the SH survey. Additional processing including picking direct arrivals and static corrections may yield positive results.« less
Energy Extraction from a Hypothetical MHK Array in a Section of the Mississippi River
NASA Astrophysics Data System (ADS)
Barco, J.; James, S. C.; Roberts, J. D.; Jones, C. A.; Jepsen, R. A.
2010-12-01
The world is facing many challenges meeting the energy demands for the future. Growing populations and developing economies as well as increasing energy expenditures highlight the need for a spectrum of energy sources. Concerns about pollution and climate change have led to increased interest in all forms of renewable energy to stabilize or decrease consumption of fossil fuels. One promising renewable is marine and hydrokinetic (MHK) energy, which has the potential to make important contributions to energy portfolios of the future. However, a primary question remains: How much energy can be extracted from MHK devices in rivers and oceans without significant environmental effects? This study focuses on the potential energy extraction from different hypothetical MHK array configurations in a section of the Mississippi River located near to Scotlandville Bend, Louisiana. Bathymetry data, obtained from Free Flow Power Corporation (FFP) via the US Army Corps bathymetry survey library, were interpolated onto a DELFT3D curvilinear, orthogonal grid of the system using ArcGIS 9.3.1. Boundary conditions are constrained by the upstream and downstream river flow rates and gage heights obtained from USGS website. Acoustic Doppler Current Profiler (ADCP) measurements obtained from FFP are used for pre-array model validation. Energy extraction is simulated using momentum sinks recently coded into SNL-EFDC, which is an augmented version of US EPA’s Environmental Fluid Dynamics Code (EFDC). SNL-EFDC model includes a new module which considers energy removal by MHK devices and commensurate changes to the turbulent kinetic energy and turbulent kinetic energy dissipation rate. As expected, average velocities decrease downstream of each MHK device due to energy extraction and blunt-body form drag from the MHK support structures. Changes in the flow field can alter sediment transport dynamics around and downstream of an MHK array; various hypothetical scenarios are examined. This study highlights concepts that should be considered when planning, designing, and optimizing MHK devices arrays in riverine resources. Future efforts will focus on validating and verifying these sorts of models as data become available.
Climate impacts of oil extraction increase significantly with oilfield age
NASA Astrophysics Data System (ADS)
Masnadi, Mohammad S.; Brandt, Adam R.
2017-08-01
Record-breaking temperatures have induced governments to implement targets for reducing future greenhouse gas (GHG) emissions. Use of oil products contributes ~35% of global GHG emissions, and the oil industry itself consumes 3-4% of global primary energy. Because oil resources are becoming increasingly heterogeneous, requiring different extraction and processing methods, GHG studies should evaluate oil sources using detailed project-specific data. Unfortunately, prior oil-sector GHG analysis has largely neglected the fact that the energy intensity of producing oil can change significantly over the life of a particular oil project. Here we use decades-long time-series data from twenty-five globally significant oil fields (>1 billion barrels ultimate recovery) to model GHG emissions from oil production as a function of time. We find that volumetric oil production declines with depletion, but this depletion is accompanied by significant growth--in some cases over tenfold--in per-MJ GHG emissions. Depletion requires increased energy expenditures in drilling, oil recovery, and oil processing. Using probabilistic simulation, we derive a relationship for estimating GHG increases over time, showing an expected doubling in average emissions over 25 years. These trends have implications for long-term emissions and climate modelling, as well as for climate policy.
Wang, Yiqin; Yan, Hanxia; Yan, Jianjun; Yuan, Fengyin; Xu, Zhaoxia; Liu, Guoping; Xu, Wenjie
2015-01-01
Objective. This research provides objective and quantitative parameters of the traditional Chinese medicine (TCM) pulse conditions for distinguishing between patients with the coronary heart disease (CHD) and normal people by using the proposed classification approach based on Hilbert-Huang transform (HHT) and random forest. Methods. The energy and the sample entropy features were extracted by applying the HHT to TCM pulse by treating these pulse signals as time series. By using the random forest classifier, the extracted two types of features and their combination were, respectively, used as input data to establish classification model. Results. Statistical results showed that there were significant differences in the pulse energy and sample entropy between the CHD group and the normal group. Moreover, the energy features, sample entropy features, and their combination were inputted as pulse feature vectors; the corresponding average recognition rates were 84%, 76.35%, and 90.21%, respectively. Conclusion. The proposed approach could be appropriately used to analyze pulses of patients with CHD, which can lay a foundation for research on objective and quantitative criteria on disease diagnosis or Zheng differentiation. PMID:26180536
Guo, Rui; Wang, Yiqin; Yan, Hanxia; Yan, Jianjun; Yuan, Fengyin; Xu, Zhaoxia; Liu, Guoping; Xu, Wenjie
2015-01-01
Objective. This research provides objective and quantitative parameters of the traditional Chinese medicine (TCM) pulse conditions for distinguishing between patients with the coronary heart disease (CHD) and normal people by using the proposed classification approach based on Hilbert-Huang transform (HHT) and random forest. Methods. The energy and the sample entropy features were extracted by applying the HHT to TCM pulse by treating these pulse signals as time series. By using the random forest classifier, the extracted two types of features and their combination were, respectively, used as input data to establish classification model. Results. Statistical results showed that there were significant differences in the pulse energy and sample entropy between the CHD group and the normal group. Moreover, the energy features, sample entropy features, and their combination were inputted as pulse feature vectors; the corresponding average recognition rates were 84%, 76.35%, and 90.21%, respectively. Conclusion. The proposed approach could be appropriately used to analyze pulses of patients with CHD, which can lay a foundation for research on objective and quantitative criteria on disease diagnosis or Zheng differentiation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alleman, Jeffrey L; Olsen, Michele L; Glatzmaier, Gregory C
Latent heat thermal energy storage systems have the advantages of near isothermal heat release and high energy density compared to sensible heat, generally resulting in higher power block efficiencies. Until now, there has been no highly effective and reliable method to passively extract that stored latent energy. Most modern attempts rely on external power supplied to a pump to move viscous heat transfer fluids from the phase change material (PCM) to the power block. In this work, the problem of latent heat dispatchability has been addressed with a redesigned thermosyphon geometry that can act as a 'thermal valve' capable ofmore » passively and efficiently controlling the release of heat from a thermal reservoir. A bench-scale prototype with a stainless steel casing and sodium working fluid was designed and tested to be reliable for more than fifty 'on/off' cycles at an operating temperature of 600 degrees C. The measured thermal resistances in the 'on' and 'off' states were 0.0395 K/W and 11.0 K/W respectively. This device demonstrated efficient, fast, reliable, and passive heat extraction from a PCM and may have application to other fields and industries using thermal processing.« less
Zeljkovic, Ilija; Scipioni, Kane L; Walkup, Daniel; Okada, Yoshinori; Zhou, Wenwen; Sankar, R; Chang, Guoqing; Wang, Yung Jui; Lin, Hsin; Bansil, Arun; Chou, Fangcheng; Wang, Ziqiang; Madhavan, Vidya
2015-03-27
Bismuth chalcogenides and lead telluride/selenide alloys exhibit exceptional thermoelectric properties that could be harnessed for power generation and device applications. Since phonons play a significant role in achieving these desired properties, quantifying the interaction between phonons and electrons, which is encoded in the Eliashberg function of a material, is of immense importance. However, its precise extraction has in part been limited due to the lack of local experimental probes. Here we construct a method to directly extract the Eliashberg function using Landau level spectroscopy, and demonstrate its applicability to lightly doped thermoelectric bulk insulator PbSe. In addition to its high energy resolution only limited by thermal broadening, this novel experimental method could be used to detect variations in mass enhancement factor at the nanoscale level. This opens up a new pathway for investigating the local effects of doping and strain on the mass enhancement factor.
NASA Technical Reports Server (NTRS)
Huang, Norden E. (Inventor)
2001-01-01
A computer implemented method of processing two-dimensional physical signals includes five basic components and the associated presentation techniques of the results. The first component decomposes the two-dimensional signal into one-dimensional profiles. The second component is a computer implemented Empirical Mode Decomposition that extracts a collection of Intrinsic Mode Functions (IMF's) from each profile based on local extrema and/or curvature extrema. The decomposition is based on the direct extraction of the energy associated with various intrinsic time scales in the profiles. In the third component, the IMF's of each profile are then subjected to a Hilbert Transform. The fourth component collates the Hilbert transformed IMF's of the profiles to form a two-dimensional Hilbert Spectrum. A fifth component manipulates the IMF's by, for example, filtering the two-dimensional signal by reconstructing the two-dimensional signal from selected IMF(s).
Xi, Yong-lan; Chen, Ke-quan; Dai, Wen-yu; Ma, Jiang-feng; Zhang, Min; Jiang, Min; Wei, Ping; Ouyang, Ping-Kai
2013-05-01
In this study, corn steep liquor powder (CSL) was used as nitrogen source to replace the relatively costly yeast extract typically used for the production of succinic acid with Actinobacillus succinogenes NJ113. Moreover, when heme was added to the fermentation medium and the culture was agitated at a low speed, a maximum succinic acid concentration of 37.9 g/l was obtained from a glucose concentration of 50 g/l, and a productivity of 0.75 g/l/h was achieved. These yields are almost as high as for fermentation with glucose and yeast extract. These results suggest that heme-supplemented CSL may be a suitable alternative nitrogen source for a cost-effective method of producing succinic acid with A. succinogenes NJ113 while consuming less energy than previous methods. Copyright © 2013 Elsevier Ltd. All rights reserved.